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Extended abstract

Abstract.

This paper describes a probabilistic algorithm that, given a connected, undirected graph

G with n vertices, produces a spanning tree of G chosen uniformly at random among the

spanning trees of G. The expected running time is O(n logn) per generated tree for almost

all graphs, and O(n3) for the worst graphs. Previously known deterministic algorithms

and much more complicated and require O(n3) time per generated tree.

A Markov chain is called rapidly mixing if it gets close to the limit distribution in time

polynomial in the log of the number of states. Starting from the analysis of the algorithm

above we show that the Markov chain on the space of all spanning trees of a given a graph

where the basic step is an edge swap is rapidly mixing.

1. Introduction.

Puzzle: A particle moves on a cycle graph. At each step the particle goes from the current

vertex to one of the two adjacent vertices chosen with equal probability. Clearly, the first time

when the particle has visited all the vertices, it has gone over all the edges in the cycle, except

one. The question is, how is the “left-out” edge distributed, relative to the starting point? It is

tempting to conjecture that the edge farthest away from the origin is the most likely to be left

out. The answer is given at the end of section 3.
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Consider a particle that moves on a connected, undirected graph G = (V, E) with n

vertices. At each step the particle goes from the current vertex to one of its neighbors,

chosen uniformly at random. This stochastic process is a Markov chain; it is called the

simple random walk on the graph G. (See [KS69] for a general reference on Markov chains.)

The first result of this paper is that the simulation of the simple random walk on a

connected undirected graph G can be used to generate a spanning tree of G uniformly at

random (over all the spanning trees of G) by a very simple algorithm:

Algorithm Generate.

1. Simulate the simple random walk on the graph G starting at an arbitrary vertex s

until every vertex is visited. For each vertex i ∈ V − s collect the edge {j, i} that

corresponds to the first entrance to vertex i. Let T be this collection of edges.

2. Output the set T .

The set T is a spanning tree because it contains |V | − 1 edges (one for each vertex

except s) and no loops. We shall see later that it is indeed uniformly distributed.

The cover time, Cv is the first time when the particle has visited all the vertices

in the graph starting from a vertex v. Clearly the expected running time of Generate

per output tree is equal to E(Cs). It is known [AKLLR79] that for every connected

graph E(C) = O(n3); however it was recently shown in [BK89], that if the transition

probability matrix of the simple random walk has a second largest eigenvalue bounded

away from 1, then the expected cover time is only O(n logn). This condition is satisfied

by almost all graphs (in the Gn,p model, for every p > c log n/n, in particular p = 1/2

[FK81]), and by almost all d-regular graphs (see [BS87], [FKS89]). Also all expander graphs

have E(C) = O(n log n) [CRRST89]. Hence the expected running time of the Generate

algorithm is O(n log n) per generated tree for almost all graphs, and O(n3) for the worst

graphs.

The first previously published algorithm for this problem [Guénoche83] has a running

time of roughly n5. It is based on the fact that the total number of (directed) trees in a

graph can be computed exactly (the Matrix-Tree Theorem – see e.g. [Knuth73 – p. 377])

by computing a determinant of size n × n. The algorithm views the edges of the graph

as labeled with distinct labels from 1 to m. Each spanning tree is labeled by the set

of its edges. This induces a lexicographic order on the set of trees, and the i’th tree

can be found by computing at most m determinants. Subsequent improvements [CDN88,
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CDM89] reduced the number of determinant computations thus decreasing the running

time to O(n3) or O(L(n)) where L(n) is the time to multiply n × n matrices, but the

newer algorithms are quite complicated.

The algorithm Generate is based on the simulation of a Markov chain on the space of

the objects of interest, a technique that had recently seen several very interesting applica-

tions to the quasi-uniform generation of combinatorial structures, and via such generation

to approximate counting in polynomial time: [Broder86], [JS87], [DLMV88] describe the

quasi-uniform generation of matchings in certain classes of graphs and the approximation

of the permanent, and [DFK88] describes the quasi-uniform generation of sample points

that are useful for approximation of the volume of a given convex body.

In contrast Generate applied to an undirected graph produces spanning trees with

an exactly uniform distribution. For directed graphs, an algorithm similar to Generate

can be used to produce quasi-uniform directed trees in time O(nE(C)) where E(C) is the

expected time to cover the graph. (See section 4.) This reduces to only O(E(C)) if the

graph is out-degree regular. The basic idea is to simulate a certain Markov chain {Bt}
(called “the backward chain”) on the spanning trees of the directed graph and stop after

a fixed number of steps.

A more “natural” random walk on the spanning trees of an undirected graph G(V, E)

is the following: Let St be the current tree; pick an edge e ∈ E and edge f ∈ St uniformly

at random. If St +{f}−{e} is a tree then let St+1 = St +{f}−{e}; otherwise St+1 = St.

In other words, swap e and f if possible. The chain {St} being symmetric, converges to

the uniform distribution.

In section 5 we show that the chain {St} gets close to the uniform distribution in

time polynomial in the number of vertices in G. We use the fact that the transition graph

associated to {St} is a supergraph of a refinement of the transition graph associated to

{Bt}.

2. The Markov Chain Tree Theorem.

Let M be a Markov chain with a finite state space V = {1, . . . , n} and transition probability

matrix P . With this chain we associate a directed graph GM = (V, E), where the edge set

E is given by E = {[i, j] | Pi,j > 0}. For each edge [i, j] ∈ E, its weight, w
(
[i, j]

)
is Pi,j.

A directed spanning tree of GM rooted at i is spanning tree of GM with all edges pointing

towards the root i. We define the weight of a spanning tree T by w(T ) =
∏

e∈T w(e). The
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family of all the directed spanning trees of GM rooted at i is denoted Ti(GM ) and the

family of all rooted directed spanning trees of GM is denoted T (GM ).

We shall restrict our discussion to irreducible chains, in which case the graph GM is

strongly connected. All the results can be easily extended to reducible chains.

The Markov Chain Tree Theorem states that the stationary distribution, πi, of an

irreducible chain is proportional to the sum of the weights of all the directed spanning

tree rooted at i. This theorem goes apparently back to Kirchhoff [Diaconis88], but it was

re-discovered many times ([KV80], [LR82]).

We will not make direct use of this theorem, but the concepts introduced in the proof

below are essential to the proof of our main result.

Theorem 1. (The Markov chain tree theorem.) Let M be an irreducible Markov chain on

n states with stationary distribution π1, . . . , πn. Let GM be the directed graph associated

with M . Then

πi =

∑
T∈Ti(GM ) w(T )

∑
T∈T (GM ) w(T )

.

Proof: This proof is due to Persi Diaconis. (A similar proof was published in [AT88].)

Let M = X0, X1, . . .. It is convenient to view M as the position of a particle moving

on GM with suitable transition probabilities.

Define Bt, the backward tree at time t, as follows: Let I be the set of states visited

before time t + 1, that is I =
⋃

0≤i≤t {Xi}. For each i ∈ I let l(i, t) be the last time the

state i was visited before time t+1. The root of the backward tree Bt is Xt and the edges

of Bt are
{
[Xl(i,t), Xl(i,t)+1] | i ∈ I − Xt

}
. In other words, Bt is formed by superposing

the (directed) edges corresponding to the last exit from each visited state before time t.

Clearly Bt is a rooted directed tree with each edge going from leaves to root. For instance

if the sequence of visited states is

t 0 1 2 3 4 5 6 7 8 9 . . .
Xt 2 7 1 8 2 8 1 8 2 8 . . .

then B5 = {[7, 1], [1, 8], [2, 8]}, B6 = {[7, 1], [2, 8], [8, 1]} and so on.

Let C be the cover time, that is the first time when all the states are visited. Plainly,

for t ≥ C, the tree Bt is a rooted directed spanning tree of GM .

Remark that through the definition above, the random walk {Xt} on the vertices of

GM induces a Markov chain {Bt} on the space of all the directed trees of GM , called

the backward tree chain. In the backward tree chain, non-spanning directed trees of GM
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are transient states because all the states will be eventually visited, the base chain being

irreducible. Assume, as we will shall show later, that all the rooted directed spanning trees

of GM form exactly one recurrent class in the backward tree chain. Hence the backward

tree chain has a stationary distribution σ(T ) with σ(T ) > 0 iff T is a rooted directed

spanning tree.

Plainly, the stationary distributions of the two chains satisfy

πi = lim
N→∞

1
N

∑

0≤t≤N

Pr(Xt = i)

= lim
N→∞

1
N

∑

0≤t≤N

Pr(Bt rooted at i) =
∑

T∈Ti

σ(T ).

Hence all we need to show is that σ(T ) is proportional to w(T ), or equivalently that w(T )

satisfies the stationarity equations for the backward tree chain.

Let T (i) be a fixed directed spanning tree rooted at i. The only possible directed

spanning tree precursors of T (i) (that is, spanning trees from which T (i) can be reached in

one step) are trees corresponding to adding an edge [i, j] to T (i) and deleting the last edge

in the path from j to i in T (i). Call the deleted edge [l(j), i] and note that the probability of

the transition to T (i) from this predecessor is Pl(j),i. Therefore the stationarity equations

are

σ
(
T (i)

)
=

∑

[i,j]∈E

σ
(
T (i) + [i, j] − [l(j), i]

)
Pl(j),i.

These equations are satisfied by w(T ) because

∑

[i,j]∈E

w
(
T (i) + [i, j] − [l(j), i]

)
Pl(j),i

=
∑

[i,j]∈E

w
(
T (i)

)
Pi,j

Pl(j),i
Pl(j),i = w

(
T (i)

)∑

j

Pi,j = w
(
T (i)

)
,

as required.

It remains to show that all the rooted directed spanning trees of GM form one recurrent

class in the backward tree chain. This part of the proof is left for the full paper.

3. Reversible chains and uniform generation.

If M = {Xt} is a reversible chains it is possible to associate to M a second kind of directed

tree in GM .
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Define Ft, the forward tree at time t, as follows: Let I be the set of states visited

before time t + 1, that is I =
⋃

0≤i≤t {Xi}. For each i ∈ I let f(i, t) be the first time

the state i was visited. The root of the forward tree Ft is X0 and the edges of Ft are
{
[Xf(i,t), Xf(i,t)−1] | i ∈ I − X0

}
. In other words, Ft is formed by superposing the edges

corresponding to the first entrance to each visited state, with a reverse orientation. Because

M is a reversible chains, these reversed edges are guaranteed to exist. Clearly Ft is a

directed tree with each edge going from leaves to root. For instance if the sequence of

visited states is
t 0 1 2 3 4 5 6 7 8 9 . . .
Xt 2 7 1 8 2 8 1 8 2 8 . . .

then F2 = {[7, 2], [1, 7]}, F3, . . . , F9 = {[7, 2], [1, 7], [8, 1]}, and so on.

Note that for t ≥ C, where C is the cover time, Ft is a directed spanning tree and

Ft = FC . For the chain {Ft} the non-spanning trees are transient and each spanning tree is

an absorbing state. Furthermore, the next theorem shows that FC is distributed according

to the stationary distribution of the backward tree chain.

Theorem 2. Let M be an irreducible, reversible Markov chain on n states with stationary

distribution π1, . . . , πn. Let GM be the directed graph associated with M . Let C be the

cover time for M starting from the stationary distribution. Let FC be the forward tree at

time C. Then for any rooted directed spanning tree, T , of GM

Pr(FC = T ) =

∏
[i,j]∈T Pi,j∑

T ′∈T (GM )

∏
[i,j]∈T ′ Pi,j

.

Proof: Fix some integer k > 0. Because M is reversible and we start from the stationary

distribution,

Pr(X0 = x0, X1 = x1, . . . , Xk = xk)

= Pr(X0 = xk, X1 = xk−1, . . . , Xk = x0).

Hence, for reversible chains, starting from the stationary distribution, for any tree T ,

Pr(Bk = T | π) = Pr(Fk = T | π),

where the condition “| π” is a shorthand for “| X0 distributed according to π.”
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Let now T be a rooted directed spanning tree. The stationary distribution for the

backward tree chain, σ(T ), satisfies

σ(T ) = lim
N→∞

1
N

∑

0≤t≤N

Pr(Bt = T | π)

= lim
N→∞

1
N

∑

0≤t≤N

Pr(Ft = T | π).

But limN→∞
1
N

∑
0≤t≤N Pr(Ft = T | π) is exactly the probability that the forward chain

is absorbed into state T , which is the same as Pr(FC = T | π).

Let M be the simple random walk on a connected, undirected graph G = (V, E). This

process is a reversible Markov chain with stationary distribution πi = di/
∑

j∈V dj where

di is the degree of i. The directed graph associated with this chain, GM = (V, E′), is

obtained by replacing each undirected edge {i, j} ∈ E by a directed edge [i, j] with weight

1/di, and a directed edge [j, i] with weight 1/dj .

Corollary 3. Let M be the simple random walk on a connected, undirected graph G =

(V, E) starting at some vertex i. Let GM be the directed graph associated with M . Let C

be the cover time for G starting from the stationary distribution. Let FC be the forward

tree (in GM ) at time C. Then FC is uniformly distributed over all directed spanning trees

rooted at i.

Proof: We apply the previous theorem. Notice that the weight of any directed spanning

tree T rooted at i is di/
∏

j∈V dj because each node j 6= i has outdegree 1 in T and all

edges out of vertex j have weight 1/dj. Hence all directed spanning trees rooted at i are

equally likely.

Corollary 4. (Proof of the algorithm Generate) Let M be the simple random walk on a

connected, undirected graph G = (V, E) starting at some vertex i. Let GM be the directed

graph associated with M . Let C be the cover time for G starting from the stationary

distribution. Let FC be the forward tree (in GM ) at time C. Then the undirected version

of FC is a spanning tree of G distributed uniformly at random among the spanning trees

of G.

Proof: Immediate from the previous corollary. (The undirected version of a directed graph

is obtained by replacing each directed edge [i, j] by an undirected edge {i, j} and removing

duplicate edges.)
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Returning to the puzzle mentioned in the introduction, the corollary above implies

that the tree induced by the simple random walk until cover time is uniformly distributed

over the spanning trees of the cycle; but the “left-out” edge is exactly the complement of

the induced tree, and therefore it also uniformly distributed.

The brute force approach to proving this fact (path counting) is fairly tedious. How-

ever there is a very simple direct proof: consider a fixed edge {a, b} on the cycle. Eventually

(with probability 1) the particle will visit for the first time an endpoint of {a, b}, say a.

Given this fact, the probability that {a, b} is the “left-out” edge, is the probability that

the particle will visit b starting from a before it traverses the edge {a, b}. This is clearly

independent of the position of {a, b} and therefore all edges are equally likely to be the

“left-out” edge. This simple proof was re-discovered for my benefit by Jim Saxe. Previous

discoverers include Avrim Blum and Ernesto Ramos.

4. Quasi-uniform generation

In general the algorithm Generate can not be applied to directed graphs, because in

this case the simple random walk is not reversible. However a very simple coupling argu-

ment shows that the backward tree chain get close to the stationary distribution in time

O(E(C)). This idea yields an algorithm for quasi-uniform generation in time O(nE(C)).

The extra factor appears because the random walk needs to be modified in such a way

that all transitions have the same probability; thus every tree has the same weight. This

is done by adding self-loops to the graph. If the graph is already out-degree regular then

the running time is only O(E(C)). On the other hand for directed graphs E(C) can be as

large as 2n which is not competitive with the deterministic algorithm. The details are left

for the full paper.

5. The swap chain

The most “natural” random walk on the spanning trees of an undirected graph G

is the following: Let S′
t be the current tree; pick an edge e from G − S′

t uniformly at

random. Add e to T thus forming a cycle; pick an edge uniformly at random from the

cycle and delete it to obtain S′
t+1. The chain {S′

t} being symmetric, converges to the

uniform distribution. Despite many attempts so far there was no proof that {S′
t} gets

close to the uniform distribution in time polynomial in n. In this section we prove this

fact. (In general, the number of spanning trees is exponential in n; therefore we want to
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show that {St} gets close to its stationary distribution in time polynomial in the log of

the number of states. Such chains are called rapidly mixing.)

Consider this chain: Let St be the current tree; pick an edge e ∈ E and edge f ∈ St

uniformly at random. If St + {f}− {e} is a tree then let St+1 = St + {f}− {e}; otherwise

St+1 = St. In other words, swap e and f if possible. The chain {St} being symmetric,

converges to the uniform distribution. Moreover, all transition in {St} have the same

probability, 1/
(
(n − 1)m

)
. So {St} is just a simple random walk on the undirected graph

associated to it. We call {St} the swap chain. Note that {S′
t} is just the jump chain of

{St}.
To show that {St} is rapidly mixing, we use the fact that the transition graph as-

sociated to {St} is a supergraph of a refinement of the transition graph associated to

{Bt}.
Let M be an arbitrary irreducible Markov chain with state space V stationary distri-

bution π, and transition probability matrix P . Following [SJ89] define for every non-empty

subset S ⊂ V the ergodic flow out of S, as FS(P ) =
∑

i∈S,j/∈S πiPij .

Lemma 5. Let P be the transition probability matrix of an irreducible Markov chain

with state space V and stationary distribution π. Assume that P is doubly-stochastic.

Then for every non-empty S ⊂ V

FS(P t) ≤ tFS(P ).

Proof: Left for the full paper.

Lemma 6. Let P be the transition probability matrix of an irreducible Markov chain

with state space V and stationary distribution π. Assume that P is doubly-stochastic.

Then for every non-empty S ⊂ V

FS

(1
2
(P + PT )

)
= FS(P ),

where PT means P transposed.

Proof: Left for the full paper.

Lemma 7. Let G(V, E) and G′(V, E′) be regular graphs of degree d and d′. Assume that

G ⊂ G′. (Hence d′ ≥ d.) Let P and P ′ be the transition probability matrices of G and G′.

Then for every non-empty S ⊂ V

FS(P ′) ≥ d

d′FS(P ).
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Theorem 8. The swap chain {St} gets close to the uniform distribution in time polyno-

mial in the size of the underlying graph.

Proof: Sketch. We use Lemma 5 and a coupling argument to obtain a lower bound on the

ergodic flow for {Bt}. Then we “transform” the graph associated to {Bt} to the graph

associated to {St}, without reducing the ergodic flow too much. This gives a bound on

the second eigenvalue of the transition probability matrix associated to {St} which implies

that {St} is rapidly mixing. The details are left for the full paper.
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