
Counting minimum weight spanning

trees

Andrei Z. Broder� Ernst W. Mayry

We present an algorithm for counting the number of minimum weight

spanning trees, based on the fact that the generating function for the number
of spanning trees of a given graph, by weight, can be expressed as a simple
determinant. For a graph with n vertices and m edges, our algorithm requires
O(M(n)) elementary operations, whereM(n) is the number of elementary
operations needed to multiply n � n matrices. The previous best algorithm
for this problem, due to Gavril [3], required O(nM(n)) operations. (Since

the number of trees in a complete graph is nn�2, our algorithm, as well
as Gavril's, might involve operations on numbers of this magnitude. Such
operations are accounted as elementary operations.)

Theorem 1 Let G=(V,E) be a graph, with vertex set V = f1; : : : ; ng, edge
set E = fe1; : : : ; emg, and edge weights wi;j. Arbitrarily orient the edges of
G. Let A(x) be the n by m matrix de�ned by

ai;j(x) =

8>><
>>:

xwi;k if ej = (i; k);

�xwi;k if ej = (k; i);

0 otherwise.

Then the generating function for the number of spanning trees by weight is
the determinant of the matrix

DG = ~A(x)� ~AT (1)

where ~A is obtained from A by the deletion of an arbitrary row.

�Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA.

E-mail: broder@pa.dec.com
yInstitut f�ur Informatik, Tech. Univ. M�unchen, 80290 M�unchen, Germany. E-mail:

mayr@informatik.tu-muenchen.de

1

Counting minimum weight spanning trees 2

Proof: Assuming that we have deleted the n-th row from A(x), the matrix

DG is given by

di;j =

8>>>><
>>>>:

X
fi;kg2E

xwi;k if i = j;

�xwi;j if i 6= j and fi; jg 2 E;

0 otherwise,

where 1 � i; j � n� 1.

The claim now follows analogous to the proof of the matrix tree theorem
(see e.g. Theorem 2.10 in [2]). 2

4

3 1

5 3

3 1

11

1 2 2
L
L
L
L
L
L
L
L
L
LL"

"
"
"
"
"
""b

b
b
b
b
b
bb

L
L
L
L
L
LL�

�
�
�
�
�� �

�
�
�
�
�
�
�
�
��

v

v

v

v

v

Figure 1: Example

For instance for the graph in Figure 1, the determinant jDG(x)j is

jDGj =

���������

x3 + x2 + x �x2 0 �x3

�x2 x2 + 2x �x �x

0 �x 2x �x

�x3 �x �x 2x3 + 2x

���������
= 2x9+3x8+7x7+6x6+3x5:

Obviously, if wmin is the weight of a minimum spanning tree of G then,

by Theorem 1, xwmin divides jDG(x)j. However, as our example shows, the
product of the gcd's of each column might be only a strict divisor of xwmin.

The gist of our algorithm is that it is possible to use column operations on
DG(x) that preserve the value of jDG(x)j, such that eventually the prod-

uct of the gcd's of each column is exactly xwmin, after which counting the

Counting minimum weight spanning trees 3

begin Algorithm A.

Let T be an arbitrary spanning tree of G.

while T 6=fng do

choose a leaf i6=n of T ; let p(i) be its parent in T ;

if p(i)6=n then add column i to column p(i) �;

delete i from T

od

end

Figure 2: Listing of Algorithm A.

number of minimum spanning trees reduces to the evaluation of the factored
determinant at x = 0.

To this end, �x an arbitrary minimumspanning tree T of G. We associate

to it a sequence of operations on DG as given by Algorithm A depicted in
Figure 2.

For example, for the graph in Figure 1, the subgraph drawn in bold lines
is a minimum spanning tree. To this tree, Algorithm A might associate the
following sequence of operations (we show below that the �nal result does

not depend on the processing order chosen by A):

add column 4 to column 2;

add column 3 to column 2;

add column 2 to column 1;

after which, the determinant jDGj has the form

���������

x �x2 � x3 0 �x3

0 x2 �x �x

0 0 2x �x

x3 2x3 �x 2x3 + 2x

���������
= x5

���������

1 �x� 1 0 �x2

0 1 �1 �1

0 0 2 �1

x2 2x �1 2x2 + 2

���������
:

(We factored x from each of columns 1, 3, and 4, and x2 from column 2.)

Counting minimum weight spanning trees 4

Lemma 2 1. The operations performed by Algorithm A preserve the value

of jDGj.

2. The �nal result D0
G does not depend on the processing order in A.

3. The product of the highest powers of x that can be factored from each

column of D0
G is exactly xwmin.

Proof: The �rst claim follows from the fact that AlgorithmA only performs

elementary column operations on the matrix. To prove the other claims,

assume that the tree T is rooted at node n. Let Sj be the set of nodes in
T that hang from node j, including j. Clearly column j in D0

G is precisely
the sum of those columns in DG that correspond to the nodes in Sj, thus

establishing the second claim. Furthermore, it is easy to check that the entry
d0i;j of matrix D0

G in row i and column j is

d0i;j =

8>>>><
>>>>:

X
k=2Sj ; fi;kg2E

xwi;k if i 2 Sj ;

�
X

k2Sj; fi;kg2E

xwi;k if i =2 Sj .

The reason is that as noted above, column j in D0
G is the sum of those

columns in DG that correspond to the nodes in Sj , and, if i 2 Sj then this
sum consists of di;i with those terms belonging to edges with both endpoints
in Sj cancelled, whereas, if i =2 Sj then the sum is simply the sum of those
elements in row i and columns in Sj of DG.

Therefore, the entries of column j contain only terms corresponding to

edges between Sj and V nSj. The only edge from T in the cut (Sj ; V nSj) is
the edge fj; p(j)g. Any edge between a vertex of Sj and a vertex of V nSj has
weight at least wj;p(j), because otherwise the edge fj; p(j)g could be replaced

in T by an edge of lower weight, contradicting the minimality of T . Thus,

all edges in this cut have weight at least wj;p(j). Hence we can factor xwj;p(j)

from column j. But
Q

j=1;:::;n�1 x
wj;p(j) = xwmin. 2

A naive implementation of Algorithm A could require as many as nm

operations; to implement it more e�ciently we start by sorting the vertices
of T in reverse topological order, and renumbering them, so that

j < p(j); for j = 1; : : : ; n� 1 :

Counting minimum weight spanning trees 5

begin Algorithm A
0.

Let T be an arbitrary spanning tree of G.

for j 1 to n� 1 do

Sj fjg [fthe descendants of j in Tg

for i =2 Sj do

if j is a leaf of T then

d00i;j ��fi;jg2Ex
wi;j

else /* j is an internal node of T */

let j1; : : : ; jr be the children of j in T ;

d00i;j

min deg monomial of (��fi;jg2Ex
wi;j +Pr

s=1
d00i;js)

�

od

od ;

for i 1 to n� 1 do

for j ancestor of i in T , j in increasing order do

if li � Sj then d00i;j 0

else

let w be the weight in the �rst weight class
in li containing a vertex =2 Sj;

let r be the number of elements in this

weight class which are not in Sj;

d00i;j r � xw

�

od

od

end

Figure 3: Listing of Algorithm A
0.

Counting minimum weight spanning trees 6

For our purposes it su�ces to compute d00i;j, de�ned as the minimum degree

monomial of every d0i;j. The algorithm A
0 depicted in Figure 3 does this.

For this algorithm, we precompute for i = 1; : : : ; n � 1, the lists li of edges

incident to vertex i, and then sort each list, �rst in increasing weight order,

and then within each weight class we sort the list such that the ancestors of

i (if any) come �rst and in increasing order. (Within a weight class of li the

order of the nodes that are not ancestors of i is irrelevant.) Furthermore for

each element in the list we store the number of elements in the same weight

class that follow it in the list.

The Algorithm A
0 as given below �rst determines, for all j and all nodes

i =2 Sj , the minimumdegree monomial d00i;j of the (i; j)-entry of D
0
G. This part

uses the fact that the parent of a node has a larger number than the node
itself, and that the computations for di�erent rows are independent. In the
second part of the algorithm, the entries for all j and all nodes i 2 Sj, i.e.,
node j an ancestor of node i, are computed. In this case, it is advantageous
to have the outer loop run over all nodes i in topological order from the

leaves towards the root, and to consider, for each node i, the sequence of its
ancestors towards the root.

In the listing of Algorithm A
0, as given in Figure 3, the variable �fi;jg2E

is 1 if fi; jg 2 E and 0 otherwise.
The cost for the topological sort and for initially constructing the lists li

is O(m log n).

The �rst loop in AlgorithmA
0 determines the minimumdegree monomial

of d0i;j , for all i and j such that i =2 Sj . Its running time is O(n2) since each
child of j contributes at most O(n) operations, one for each i, and there are
at most O(n) children in total.

The second loop computes the minimum degree monomial of d0i;j, for all i

and j such that i 2 Sj , or, in other words, for j being an ancestor of i. Since
we are considering the ancestors of i in increasing order j1 < j2 < j3 < � � �,

the corresponding sets form a tower Sj1 � Sj2 � Sj3 � � � �. This fact and our

presorting of the lists li ensure that we can implement the inner loop such
that each element in the list li is scanned only once. Thus the total cost of

the second loop is O(m).
Hence, the total running time, including the �nal computation of the de-

terminant is O(m log n+n2+M(n)) = O(M(n)) operations and we conclude

with

Counting minimum weight spanning trees 7

Theorem 3 For a graph with n vertices and m edges and nonnegative in-

tegral edge weights, the number of minimum spanning trees can be computed

using O(M(n)) elementary operations, where M(n) is the number of ele-

mentary operations needed to multiply two n� n matrices.

Acknowledgment. We wish to thank an anonymous referee for several

useful comments and corrections.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis

of Computer Algorithms. Addison-Wesley, 1974.

[2] S. Even. Graph Algorithms. Computer Science Press, 1979.

[3] F. Gavril. Generating the maximum spanning-trees of a weighted
graph. Journal of Algorithms, 8:592{597, 1987.

