
Some applications of Rabin's �ngerprinting method�

Andrei Z. Broder
y

Abstract

Rabin's �ngerprinting scheme is based on arithmetic modulo an irreducible

polynomial with coe�cients in Z2. This paper presents an implementation

and several applications of this scheme that take considerable advantage of its

algebraic properties.

1 Introduction

Fingerprints are short tags for larger objects. They have the property that if two
�ngerprints are di�erent then the corresponding objects are certainly di�erent and
there is only a small probability that two di�erent objects have the same �ngerprint.
(The latter event is called a collision.)

More precisely, a �ngerprinting scheme is a certain collection of functions F =n
f :
! f0; 1gk

o
, where
 is the set of all possible objects of interest and k is the

length of the �ngerprint, such that, for any choice of a �xed set S �
 of n distinct
objects, if f is chosen uniformly at random in F , then with high probability

jf(S)j = jSj :

In other words, if an adversary chooses a set S �
 of n distinct objects, and we
choose f 2 F uniformly at random then

f(A) 6= f(B) =) A 6= B (1)

Pr(f(A) = f(B) j A 6= B) = very small (2)

(The requirements and the model used here, are similar to those for \universal
hashing" [1]; however the emphasis and the relation between n and k are di�erent:
for hashing we are interested in bounding the number of collisions, and typically n is
a small fraction of 2k; for �ngerprinting we want to avoid collisions altogether, and
we must take n� 2k.)

�Published in R. Capocelli, A. De Santis, U. Vaccaro (eds), Sequences II: Methods in Communi-

cations, Security, and Computer Science, Springer-Verlag, 1993.
yDEC Systems Research Center, 130 Lytton Ave, Palo Alto, CA.

1

2 Rabin's �ngerprinting scheme

The following �ngerprinting scheme for strings is due to Michael Rabin [4].

Let A = (a1; a2; : : : ; am) be a binary string. We assume that a1 = 1. (In certain
application this assumption might be false, hence the implementation must actually
pre�x every string to be �ngerprinted by a 1. We ignore this technicality for the rest
of the paper.) We associate to the string A a polynomial A(t) of degree m� 1 with
coe�cients in Z2,

A(t) = a1t
m�1 + a2t

m�2 + � � �+ am: (3)

Let P (t) be an irreducible polynomial of degree k, over Z2. (Such a polynomial
can be easily found. See [3].) Having �xed P , we de�ne the �ngerprint of A to be the
polynomial

f(A) = A(t) mod P (t): (4)

Assume that an adversary chooses a set S of n distinct binary strings. After the
adversary chooses S, we choose uniformly at random an irreducible polynomial P of
degree k. We claim that for a proper choice of k the probability (over the random
choices of P) that there exists a pair of distinct strings in S that have the same
�ngerprint, is extremely small.

Indeed, consider the product

Q =
Y

fA;Bg

(A(t)�B(t)); (5)

taken over all the unordered pairs A;B 2 S, with A 6= B. This product is a polyno-
mial with coe�cients in Z2. Its degree can be bound by

degQ �
X

fA;Bg

maxfdegA(t);degB(t)g

�
X

fA;Bg

(degA(t) + degB(t)) � n
X
A2S

jAj : (6)

In particular if all the strings in S have length less than m, then the degree of Q
is less than n2m.

If there are two distinct strings, A;B 2 S, such that f(A) = f(B), it means
that P divides A(t)�B(t) and hence P divides Q. The adversary, by his choices of
strings, has �xed a particular Q. This Q can not have more than deg(Q)=k irreducible
factors of degree k. However the total number of irreducible polynomials of degree
k with coe�cients in Z2 is greater than (2k � 2k=2)=k. Hence the probability that a
randomly chosen irreducible polynomial of degree k divides Q, which is the same as
the probability that two distinct strings have the same �ngerprint, is less than

degQ

k
�

k

2k � 2k=2
�

degQ

2k
�
nm2

2k
: (7)

2

For instance, if the adversary chooses any collection of 215 binary strings of total
length less than 225 bits, and we choose P uniformly at random among the irreducible
polynomials of degree 64 over Z2, the probability that we made a bad choice of P is
less than 2�23.

3 Properties of Rabin's scheme

Besides satisfying the basic conditions (1) and (2), Rabin's scheme has additional
properties that are useful in some applications and facilitate its implementation. (In
this section all arithmetic operations are in Z2.)

1. At the hardware level the representation of the string A and the polynomialA(t)
with coe�cients over Z2 is identical. The basic operations with polynomials
have simple implementations: addition is equivalent with bit-wise exclusive or,
and multiplication by t is equivalent with shift left one bit.

2. Fingerprinting is distributive over addition (in Z2):

f(A+B) = f(A) + f(B): (8)

3. Fingerprints can be computed in linear time. Consider the bit string A =
[b1; : : : ; bl]; If

f([b1; : : : ; bl])

= (b1t
l�1 + b2t

l�2 + : : :+ bl) mod P (t)

= r1t
k�1 + r2t

k�2 + : : :+ rk

then
f([b1; : : : ; bl+1])

= (f(b1; : : : ; bl)t+ bl+1) mod P (t)

= r2t
k�1 + r3t

k�2 + : : :+ rkt+ bl+1

+ (r1t
k) mod P (t)

Observe that
tk mod P (t) = tk � P (t) = P (t)� tk;

so tk mod P is equivalent to P with the leading coe�cient removed.

At the hardware level, the �ngerprint of A can be kept in a shift register.
Computing the �ngerprint of A extended by bl consists of one shift left operation
with bl as input bit and r1 as output bit, and then, conditioned upon r1 = 1,
a bit-wise exclusive or operation, the second operand being P with the leading
coe�cient removed. (The next section discusses software implementation for a
typical 32 bit word computer.)

3

4. More generally, the �ngerprint of the concatenation of two strings can be com-
puted via the equality

f(concat(A;B)) = f(concat(f(A); B)): (9)

5. If we are given f(A) and f(B), and the length l of B then

f(concat(A;B)) = A(t) � tl +B(t) mod P (t)

= f(f(A) � f(tl)) + f(B)
(10)

(In practical applications it is useful to precompute f(tl) for a suitable range of
values.)

4 Implementation issues

A straightforward implementation of the linear algorithm described above in soft-
ware for a 32 bit per word computer requires two word bit shifts and two word xors
(exclusive ors) per bit, or 16 shifts and 16 xors per byte. This is too slow for many
applications.

However it is easy to process more than one bit at a time, using precomputed
tables. A good trade-o� is to process 32 bits at a time divided into four bytes. It is
convenient to take k (that is, the degree of P , and thus the length of the �ngerprint)
to be a multiple of 32, in order to have �ngerprints that consist of an integral number
of words. Below we take k = 64.

The notations Wb1; : : : ;Wb4 refer to the four bytes of the 32-bit word W , and the
notations W1; : : : ;W32 refer to the 32 bits of of the same word.

The input is the string A[1]; : : : ; A[s] where each A[i] is a 32-bit word.

The �nal algorithm is

W [1] 0; W [2] 0;
for s = 1; : : : ;m do

h; i; j; l W [1]b1;W [1]b2;W [1]b3;W [1]b4;

W [1] W [2] xor TA[h; 1] xor TB[i; 1] xor TC[j; 1] xor
TD[l; 1];

W [2] A[s] xor TA[h; 2] xor TB[i; 2] xor TC[j; 2] xor
TD[l; 2];

od

The invariant maintained by this algorithm is that

W [1]1t
63 +W [1]2t

62 + � � �+W [1]32t
32

+W [2]1t
31 + � � �+W [2]32

= f((A[1]; A[2]; : : : ; A[s])) mod P (t):

4

The tables TA, TB, TC, and TD are de�ned by

TA[i; 1]1t
63 + TA[i; 1]2t

62 + � � � + TA[i; 1]32t
32

+ TA[i; 2]1t
31 + � � �+ TA[i; 2]32

= i1t
95 + i2t

94 + � � �+ i8t
88 mod P (t);

TB[i; 1]1t
63 + TB[i; 1]2t

62 + � � � + TB[i; 1]32t
32

+ TB[i; 2]1t
31 + � � �+ TB[i; 2]32

= i1t
87 + i2t

86 + � � �+ i8t
80 mod P (t);

TC[i; 1]1t
63 + TC[i; 1]2t

62 + � � �+ TC[i; 1]32t
32

+ TC[i; 2]1t
31 + � � �+ TC[i; 2]32

= i1t
79 + i2t

78 + � � �+ i8t
72 mod P (t);

TD[i; 1]1t
63 + TD[i; 1]2t

62 + � � �+ TD[i; 1]32t
32

+ TD[i; 2]1t
31 + � � �+ TD[i; 2]32

= i1t
71 + i2t

70 + � � �+ i8t
64 mod P (t);

where 0 � i < 256 and ij denotes the j-th bit in the binary representation of i.

This algorithm requires 2 xors and 1 table indexing per byte. For most applications
this is acceptable, particularly if the inner loop is coded in assembly language. For
instance in our implementation the time required to �ngerprint the contents of a �le
is under 3% of the time required to read the �le in memory.

Finding a random irreducible polynomial P (t) is simple (see [4]) and computing
the associated tables is straightforward. However if all we want is to �ngerprint rela-
tively short strings, the overhead is prohibitive. Nevertheless in typical applications
it is not necessary to pick a new random P (t) every time the �ngerprinting package of
procedures is used. Instead, the polynomial P (t) can be \wired-in," thus saving the
computation of the tables TA; : : : ; TD. The idea is to assume that the virtual ad-
versary has committed to all the strings that will �ngerprinted by the package in the
future in a certain context, and use equation (7) to bound the probability of collision.
For instance, we can imagine that the adversary has committed to all variable names
used in all Modula-2 programs in the next twenty years at DEC-SRC. We want to
avoid �ngerprint collisions within the same module. Assuming that the typical mod-
ule has 29 variable names of 26 bits average length, the probability of collision within
one module is less than 225=2k. If we assume that the number of modi�ed modules is
210 per day and that we use 64 bits �ngerprints, the probability of even one collision
in 20 years is less than 2�16, which is negligible compared to the likelihood that the
compiler produces erroneous results from other causes.

However, in order to maintain the �ction that the adversary has committed to
all the future strings, it is crucial to ensure that no string depends on our choice for

5

P (t). In particular, we must maintain the rule that no �ngerprinting of strings that
contain �ngerprints is allowed.

If �ngerprints are computed piecemeal via equations (9) and (10) then it makes
sense to make the length of the underlying string a part of the �ngerprint, and have
the �ngerprint package keep track of it. Since

x2
k�1 � 1 mod P (t);

it su�ces to record the length modulo 2k � 1 even if larger lengths might appear.
(However notice that in this case the bound (7) becomes useless.)

5 Applications

Below there are several �ngerprinting usages that take advantage of the algebraic
properties of Rabin's scheme. For more applications see [2] and [5].

5.1 Fingerprinting dags

This application of �ngerprints was motivated by Vesta, a software development en-
vironment in construction at DEC Systems Research Center.

Vesta needs to make identifying tags for derived objects, that is, �les mechanically
derived from other �les (e.g. via compilation or linking). Essentially, the relations
between all the derived objects (ever) and all the sources can be put in the form of
a gigantic dag (directed acyclic graph) with labeled edges. The vertices that have
no predecessors are sources. To any vertex we can associate an edge-labeled tree:
The tree of a vertex is formed in the obvious manner from the trees of its direct
predecessors.

Vesta requires the vertices of the dag to have identical tags if and only if their
associated trees are isomorphic. (In other words, two derived objects have the same
tag if and only if they were derived in the same way from the same sources.)

5.1.1 Simplistic solution

It is straightforward to encode these trees as strings; the string for a parent is the
concatenation of the strings corresponding to its children separated by labels and
delimiters. We can use as a tag the �ngerprint of the string. Fortunately it is
not necessary to keep the strings themselves around. The tag of the parent can
be computed from the tags of the children, provided that the length of the strings
involved is known.

More precisely let A represent a string and � its associated polynomial. Let \k"
denote concatenation. Then ignoring delimiters

A(parent) = A(child1) k A(child2)

6

or
�(parent) = �(child1) � tlength(A(child2)) + �(child2);

and hence

f(parent) = (f(child1) � tlength(A(child2)) + f(child2)) mod P (t):

The problem with this approach is that the length of the strings involved might be
extremely large and hence the formula (7) does not give any meaningful bound on the
probability of collision. (The length of the describing string may grow exponentially
in the size of the dag.)

5.1.2 General solution

Assume that an adversary chooses a dag G on n nodes. He also associates source
strings to the nodes with no predecessors. After the adversary chooses G, we choose
uniformly at random an irreducible polynomial P (t) of degree k and a random per-
mutation T of the set with 2k elements. (For the Vesta application described above,
a reasonable choice is k = 96.)

Let f be the Rabin's �ngerprinting function. The tag of a node is computed as
follows:

Tag(parent) = T (f(Label1 k Tag(child1) k Label2 k Tag(child2) k :::)):

For source nodes:
Tag(source) = T (f(text))

Observe that each node has a �ngerprint and a tag.

Because T is chosen uniformly at random we can imagine that we construct T
iteratively as follows: Start by assigning each sink (i.e. each Vesta source) in the dag
a distinct random tag. Process the nodes of the dag in reverse topological order. If
the result of f at a certain node v (i.e. either f(text) or f(label1 k :::)) is a new value
x, we let T (x) be a new random tag; otherwise T(x) is already determined.

Alternatively we can think that all these random tag are chosen simultaneously.
But with high probability for this assignment of tags all the node �ngerprints are
di�erent: we are �ngerprinting n strings of (reasonable) average length m so the
formula (7) applies and with high probability there are no collisions.

This would be a perfect solution except that generating a truly random permu-
tation on 2k elements requires time exponential in k. There are many ways of doing
pseudo-random permutations: In our implementation we use �rst a non-linear map-
ping (each byte of the �ngerprint is mapped via a random permutation of the set
f0; : : : ; 255g) followed by an arithmetic mapping (the �ngerprint is viewed as a vec-
tor of numbers in Z232 and multiplied by a non-singular matrix).

7

5.2 Fingerprinting subsets

Consider a programming application where there is a need to �ngerprint n subsets
A1; : : : ; An, of a given ground set
 = f!1; !2; : : : ; !rg. (An example of such an
application is given below.) Associate to each !i a distinct irreducible polynomial
Ri(t) of degree m and de�ne

R(A) =
Y
!i2A

Ri:

Let the �ngerprint of A be de�ned by

f(A) = R(A) mod P (t) =
Y
!i2A

Ri mod P (t); (11)

where as before P (t) is a random irreducible polynomial of degree k.

With this setup we obtain that

Pr(9i; j such that Ai 6= Aj and f(Ai) = f(Aj)) �
n2rm

2k
:

It is also possible to take the Ri to be just random polynomials of degree k. The
increase in the probability of collision is only 1=2k per pair, so the above formula
becomes

Pr(9i; j such that Ai 6= Aj and f(Ai) = f(Aj)) �
n2rk

2k
:

Note that if the �ngerprints have to be computed from scratch, then the bit
complexity of the approach above, O(rk2), is worse than simply representing each set
as a sorted list and computing the �ngerprint of the list in the obvious manner, in
O(rk log r) bit operations.

Yet another possibility is to de�ne the �ngerprint of a set via

f(A) =
X
!i2A

ti mod P (t): (12)

This is the most e�cient approach when the ground set is explicitly available and its
elements can be easily numbered.

However there are situations when the sets encountered are derived from previ-
ously �ngerprinted sets and when the ground set is not fully known at once. We can
then take advantage of the following relations

� If C = A [B for A \B = ;, then

f(C) = (f(A) � f(B)) mod P:

� If C = A nB for B � A, then

f(C) = (f(A) � f(B)�1) mod P;

where the inversion is in the �eld of residues modulo P .

8

As an example consider �ngerprinting the spanning trees of a graph G(V;E). Each
spanning tree can be viewed as a set of jV j � 1 edges. If we add an edge e to a tree T
it forms a cycle with the tree edges; the cycle can be broken by removing a suitable
edge f thus obtaining a new spanning tree, T 0. (If the edges e and f are chosen
at random among eligible edges, the process becomes a Markov Chain on the set of
spanning trees. We were interested in �ngerprinting these trees in order to check
certain statistics.)

Using the de�nition (11) we have

f(T 0) = (f(T) �Re �R
�1
f) mod P (t);

where Re and Rf are irreducible (or random) polynomials associated to e and f

respectively. Note that R�1
f (or even all pairs Re �R

�1
f) can be precomputed.

For de�nition (12) we have

f(T 0) = (f(T) + tN(e) � tN(f)) mod P (t);

where N(�) is just a numbering of the edges. In this case this approach is more
e�cient, in particular if we precompute ti mod P (t) for i = 1; : : : ; r.

5.3 Fingerprinting binary trees

We can �ngerprint binary trees using one of the two methods described in section 5.1.
For small trees, Jim O'Toole has found another approach (unpublished) that avoids
using delimiters and keeping track of the lengths of the strings involved.

Consider two strings A and B. Pad the shorter string with 0's to the left, to
ensure equal length. De�ne the intercalation of A and B to be the string obtained
by alternating the bits of A and B, that is, if A = (a1; : : : ; am) and B = (b1; : : : ; bm)
then

S(A;B) = (a1; b1; a2; b2; : : : ; am; bm): (13)

Let C be the string associated to the parent of two nodes with associated strings
A and B. The encoding rule is

C = S(A;B); (14)

and the �ngerprint of the tree rooted at the parent

f(C) = C(t) mod P (t): (15)

In order to make this encoding unambiguous we enlarge the input tree to a full
binary tree (that is, each node has degree either 2 or 0) by adding dummy leaves.
We associate the string 11 to the true leaves and 10 to the dummy leaves. It is easy
to check that with these initial conditions, equation (14) de�nes an unambiguous
encoding of binary trees.

9

Note that (14) implies that

C(t) = A(t2) � t+B(t):

But in Z2 we have A(t2) = (A(t))2, and therefore

C(t) mod P (t) =
�
(A(t) mod P (t))2 � t+B(t) mod P (t)

�
mod P (t)

= S(f(A); f(B)) mod P (t)

In other words the �ngerprint of C is obtained by �ngerprinting the intercalation of
the �ngerprints of A and B.

The disadvantage of this approach is that the length of the encoding might be
exponential in the size of the tree, while the length of the encoding presented in
section 5.1.1 is only linear in the size of the tree.

Acknowledgement

I am indebted to Jim O'Toole for allowing me to present here his results on �nger-
printing binary trees and for several stimulating discussions.

References

[1] L. Carter and M. Wegman, Universal Classes of Hash Functions. JCSS, 18:143{
154, 1979.

[2] R. M. Karp and M. O. Rabin, E�cient randomized pattern matching algorithms.
Center for Research in Computing Technology, Harvard University, Report TR-
31-81, 1981.

[3] M. O. Rabin, Probabilistic algorithms in �nite �elds. SIAM J. of Computing,
9:273{280, 1980.

[4] M. O. Rabin, Fingerprinting by random polynomials. Center for Research in
Computing Technology, Harvard University, Report TR-15-81, 1981.

[5] M. O. Rabin, Discovering repetitions in strings. In A. Apostolico and Z. Galil,
(eds.), \Combinatorial Algorithms on Words," Springer-Verlag, 279{288, 1985.

10

