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ABSTRACT
We compare several algorithms for identifying mirrored hosts
on the World Wide Web. The algorithms operate on the ba-
sis of URL strings and linkage data: the type of information
easily available from web proxies and crawlers.

Identification of mirrored hosts can improve web-based in-
formation retrieval in several ways: First, by identifying mir-
rored hosts, search engines can avoid storing and returning
duplicate documents. Second, several new information re-
trieval techniques for the Web make inferences based on the
explicit links among hypertext documents – mirroring per-
turbs their graph model and degrades performance. Third,
mirroring information can be used to redirect users to alter-
nate mirror sites to compensate for various failures, and can
thus improve the performance of web browsers and proxies.

We evaluated 4 classes of “top-down” algorithms for detect-
ing mirrored host pairs (that is, algorithms that are based on
page attributes such as URL, IP address, and connectivity,
and not on the page content) on a collection of 140 million
URLs (on 230,000 hosts) and their associated connectivity
information. Our best approach is one which combines 5 al-
gorithms and achieved a precision of 0.57 for a recall of 0.86
considering 100,000 ranked host pairs.

1 Introduction
The explosive growth of the World Wide Web (WWW) has
created both challenges and opportunities for the informa-
tion retrieval discipline. As many papers in the SIGIR’98

“Workshop on Hypertext Information Retrieval for the Web”
made clear, searching for information on the WWW differs
from information retrieval in classical collections in many re-
spects. Two of the most obvious are the very large size of the
Web, estimated at 275 million pages as of March 1998, and
growing at the rate of 20 million pages a month [3], and the
prevalence of systematic content duplication. The fraction of
the total WWW collection consisting of duplicates and near-
duplicates has been estimated at 30 to 45%. (See [7] and
[16].)

Duplication has both positive and negative aspects. On one
hand the redundancy makes retrieval easier: if a search en-
gine has missed one copy, maybe it has the other; or if one
page has become unavailable, maybe a replica can be re-
trieved. On the other hand, from the point of view of search
engines storing duplicate content is a waste of resources and
from the user’s point of view, getting duplicate answers in
response to a query is a nuisance.

The principal reason for duplication on the Web is the sys-
tematic replication of content across distinct hosts, a phe-
nomenon known as “mirroring” (These notions are defined
more precisely below.) It is estimated that at least 10% of
the hosts on the WWW are mirrored [2, 12]. The aim of this
paper is to present and evaluate algorithms for detecting mir-
roring on the WWW in an information retrieval framework.
We start with some definitions.

Each document on the WWW has a unique name called the
Universal Resource Locator (URL). The URL consists of
three disjoint parts, namely theaccess method, a hostname,
and apath. For example in the URL

http://www.research.digital.com/SRC/

the stringhttp defines the access method,

www.research.digital.com



is the hostname, andSRC/ is the path.

The hostname identifies ahostalso known as aweb server
on which the document is stored. In general it may also con-
tain a port identifier. A host stores a collection of documents
which all share the same hostname. Each document on a host
is identified by its path.

The hostname gets translated by aname serverinto an “Inter-
net Protocol (IP) address” represented as four octets (bytes).
This relation is many to many, that is, several hosts with
different hostnames can share the same IP address (“virtual
hosting”) or a host may have a set of associated IP addresses,
in which case the name server returns an arbitrary member
of the set.

Two hosts are mirrors if they contain the same set of docu-
ments identified by the same paths. However, replicated doc-
uments on the Web tend to differ slightly (for example, be-
cause of local customizations or dynamically generated parts
of the content such as time-stamps or advertisements), and
hence we use the following relaxed definition of a mirror:

Two hostsA andB are mirrors iff for every document
onA there is ahighly similardocument onB with the
same path, and vice versa.

Highly similar is a subjective measure. We made this notion
precise by adopting the resemblance distance described in
[7] that experimentally captures well the informal notion of
“roughly the same.” The technique efficiently computes the
syntactic resemblance between two documents as a fractional
score between 0 and 1. The higher the score, the greater the
resemblance. (See section 4.1.3 for more details.) Any edit-
distance measure that computes a similar resemblance score
can be substituted.

Reliable algorithms for finding mirrors can improve web-
based information access in several ways:

• Although search engines tend to filter out exact dupli-
cates and even some near duplicates, considerable dupli-
cate content stored on mirrored hosts escapes detection.
This wastes index space and annoys users. Mirror detec-
tion can alleviate this problem.

• Text based techniques that work well on classical col-
lections can return non-authoritative results when applied
to the Web. Recent web IR research has begun exploiting
connectivity (i.e., linkage between documents) to com-
pute a document’s authority score. Examples of such tech-
niques are PageRank [13], CLEVER [9, 8, 11], and Topic
Distillation [4]. The assumption underlying these algo-
rithms is that each linking document provides an inde-
pendent testimonial to the quality of the linked document.
Mirroring violates this independence assumption. Hence
documents pointed to by mirrors get artificially higher

scores. Conversely, mirrored documents get lower scores
than they normally would. Collapsing all mirrored hosts
into one solves both problems.

• Transient web server failures frustrate Web users. If a
mirroring relationship is known for the failed server, such
“broken links” can be made invisible by fetching the doc-
ument from a mirrored host.

• Web browsers and web proxies cache documents to im-
prove the speed at which information is accessed. A doc-
ument in the cache can potentially be used to satisfy a
request for the same path on a mirrored host as well.

If not for the size of the Web, detecting mirrors would be a
simple information retrieval problem: imagine that we have
for each host a pseudo document consisting of all the pages
on that host labeled by their paths. Then finding mirrors
reduces to computing pair-wise content similarity between
these pseudo documents. However, the scale of the Web
makes this prohibitively expensive if not impossible.

We believe that low-cost techniques based solely on URLs,
and requiring no access to the content of the pages, may be
sufficient for this problem. Search engine crawlers and large
Web proxies encounter URLs from a significant fraction of
the Web, but no list of URLs is complete and most hosts tend
to be only partially sampled. Typically the content associ-
ated to these URLs is not stored, only their names and pos-
sibly some information about the hyperlinks among them.
This makes our problem more challenging: Given an incom-
plete list of URLs on the Web and possibly some information
about their connectivity, how does one compute a list of mir-
rors on the Web? If term vector matching is to be used, how
should the terms be selected and weighted? How does one
evaluate such mirror detection algorithms? Since relevance
judgements are tedious to perform manually on the scale of
the Web, how can this be automated?

Fortunately the classic measures of precision and recall are
perfectly suited for evaluating mirror detection methods: we
simply require each algorithm to extract from the input those
pairs of hosts most likely to be mirrors under its detection
criteria and list in the order of likelihood. An automated, but
relatively slow, validation technique plays the role of rele-
vance judgements and allows us to analyze the ranked output
in the usual manner. In practice this technique might be used
to filter the output of a ranking algorithm to produce a clean
list of mirrors.

In this paper we discuss and evaluate four classes of algo-
rithms for finding mirrored hosts on the Web. It turns out
that the best approach is a combination of 5 algorithms: on
our test data achieved a precision of 0.57 for a recall of 0.86
considering 100,000 results.

Our algorithms are all “top-down” algorithms, that is, all our
algorithms are based on page attributes such as URL, IP ad-



dress, and connectivity, and not on the page content. We are
essentially using the replicated structure of mirrors to iden-
tify them. There is an alternative “bottom up” approach pre-
sented by Cho, Shivakumar, and Hector Garcia-Molina in
[10] whereby in the first stage of the algorithm copies of a
given pages are clustered together, and then these clusters
are grown until they represent an entire site.

There are advantages and disadvantages to each approach:
the “top down” structural approach has the advantage that
it needs only the URLs of pages, not the pages themselves.
A crawler typically “knows” about many more url’s than it
crawls. Similarly a smart cache can accumulate a collection
of valid url’s much larger than the collection of pages ever
stored. Another advantage is that mirrors can be discovered
even when very few of their duplicate pages are simultane-
ously present in the collection; it suffices that enough of the
replicated structure be visible (that is, enough shared paths
prefixes). A third advantage is that if replicated pages are
crawled at different times and they have changed enough in
the meantime it might thwart the “bottom-up” approach. An
advantage of the bottom-up approach is that it might discover
mirrors even under renaming of paths, and it might discover
mirrors that are too small for the “top down” approach.

It would be interesting to combine and/or compare the two
approaches and we intend to pursue this idea in future re-
search.

The remainder of the paper is organized as follows: Section 2
presents an overview, and section 3 describes our algorithms.
The performance of the algorithms is compared in section 4.
We discuss related work in section 5.

2 Methodology
As described above the input to our algorithms is a set of
URLs occurring on the Web. Our approach does not assume
that all URLs from a given host are present in the input. For
some algorithms we also consider the hyperlinks between
documents.

In our experiments the input contained approximately 179
million URLs which were among those found on web pages
by AltaVista during a crawl. Not all these URLs were valid
pages, because this set included URLs that were not crawled.
We tested algorithms which use this input to generate a list
of mirrored hosts ranked in decreasing order of likelihood.

We filtered the list of URLs to only include URLs from hosts
that had at least 100 URLs in the input. We felt that hosts
with fewer URLs were either too small to be mirrors or were
inadequately represented in the input. Additionally, URLs
with a small number of samples were often misspellings of
valid URLs and sometimes the host did not exist. This makes
it hard to determine the number of valid hosts in the input.
Restricting the set of hosts in this way reduced the input
to 140.6 million URLs on 233,035 hosts and hyperlinks be-
tween them (amounting to 11.2 Gigabytes of storage uncom-

pressed). Only mirroring relations between host pairs drawn
from this set were determined.

We used four different approaches:

1. IP Address Based:These algorithms list hosts that have
identical or highly similar IP addresses.

2. URL String Based:These algorithms list host pairs that
have URL strings that are highly similar. Term vector
matching is done with terms being generated from URL
strings in four different ways.

3. URL String and Connectivity Based:This algorithm ex-
ploits both the URL strings of the documents in the input
as well as their hyperlinks. The intuition here is that two
hosts are mirrors if they share many common paths, and
documents with the same path have similar outlinks.

4. Host Connectivity Based:These algorithms consider all
documents on a host as a single large document and an-
alyze the linkage between these pseudo-documents. The
basic idea is that two hosts are mirrors if they link to sim-
ilar sets of hosts.

Each algorithm was executed on the input and generated a
ranking list of probable mirrored hosts. We tested the top
30,000 host pairs from each list to see if they were indeed
mirrors, and used the resulting pool of mirrors to measure
precision and relative recall. (See section 4.2.2 for our defi-
nition of relative recall at a rank.) The testing was done auto-
matically using a method that is designed to be correct with
high probability, but that is comparatively very slow. Details
are in the evaluation section below.

3 Algorithms
We describe each algorithm in turn:

3.1 IP Address Based (Algorithms IP3 and IP4)
If exactly two hosts translate into the same IP address, it is
likely that they are mirrors accessing the same server, and
that the two hostnames are just aliases. A match on the first
3 octets signifies web servers on the same subnet. These usu-
ally part of the same organization, and are often mirrored
hosts, replicated to handle the traffic.

However, when many hosts resolve to the same IP address it
is indicative of virtual hosting by an internet service provider:
for instance, at the time of writing, Webcom uses the same IP
address, 209.1.28.62, to implement 18,000 distinct web sites.

These considerations led us to two algorithms:

• Algorithm IP4: We cluster hosts with the same IP ad-
dress. The larger the size of the cluster, the less likely it
is that all the hosts in the clusters are mirrors. Processing
clusters in the increasing order of size we enumerate up
to 200 host pairs from each cluster (If a cluster induces
more than 200 pairs we pick 200 pairs at random.)



• Algorithm IP3: Same as the above case but we instead
cluster based solely on the first three octets of the IP ad-
dress. Since now there are many more clusters we list at
most 5 pairs of hosts per cluster.

3.2 URL String Based
URL strings provide information about a potential mirroring
relationship between hosts in two different ways:

1. Similar hostnames suggest that hosts belong to the same
or related organizations.

2. Similar paths indicate a possible replication of directories.
This is because paths usually reflect the host’s directory
structure.

Term vector matching [15] is used to compute the likelihood
that a pair of hosts are mirrors. Based on the type of term
used we get four different algorithms, each with a corre-
sponding weighting scheme. These are summarized below:

3.2.1 Hostname Matching (Algorithm hosts)

• Term Selection: Substrings of the hostname are used
as terms. Specifically, substrings delimited by a period
(’.’) or the start or end of the hostname. When the host is
specified as an IP address we use the first two, three and
four octets as terms.

Only terms occurring in less than100 hosts (i.e., with doc-
ument frequency less than100) are used in the host term
vectors. As a further optimization, if document frequency
is greater than 25 we restrict the term to appear in the
vectors of only 25 of the hosts chosen at random. We had
73,736 distinct terms appearing in more than one host. Of
these 185 were rejected and 937 were restricted.

• Term Weighting: The weight of termt is computed in
terms of its document frequencydf(t), andlen(t), which
is the number of segments obtained by breaking the term
at ’.’ characters. The weight is computed aslog(len(t))

1+log(df(t)) .
This favors substrings composed of many segments which
are likely to be very specific.

3.2.2 Full Path Matching (Algorithm paths)

• Term Selection: The entire path is used as a term. The
same document frequency based restrictions in assigning
terms to vectors are applied as in the previous cases. We
had 6,897,285 distinct paths occurring in more than one
host. Of these 4,121 were rejected and 24,430 were re-
stricted.

• Term Weighting: The weight of termt is computed in
terms of its document frequencydf(t), andmaxdf , which
is the maximum document frequency of any term in the
collection. Since we discard all terms with document fre-
quencies greater than100, maxdf is effectively100. The
weight is computed as1 + log(maxdf

df(t) ).

3.2.3 Prefix Matching (Algorithm prefix)

• Term Selection: Prefixes of the path that either end in a
’/’ or terminate the path are enumerated. This results in a
large number of terms per host of which we keep only the
10 log p terms with largest term frequency, wherep is the
number of documents from the host in the input set. The
same document frequency based restrictions in assigning
terms to vectors are applied as in the previous cases. We
had 646,291 distinct prefixes selected from more than one
host. Of these 1,996 were rejected and 8,241 were re-
stricted.

• Term Weighting: We used the same term weighting
scheme as in the case of path matching. However, to com-
pensate for the fact that smaller hosts tend to contribute
fewer terms we normalized the host similarity weightw
by a multiplication factor 1

0.1+0.15(log(n1)+log(n2)) , where
n1 and n2 represent the number of URL strings in the
input from each of the two hosts. In the average case
a host contributes about 1000 URLs to the input, which
corresponds to a scaling factor of 1. All hosts contribute
at least 100 URLs to the input, and the largest host was
www.geocities.com which contributed about 12 million
URLs.

3.2.4 Positional Word Bigram Matching (Algorithm shingles)

• Term Selection: The path is broken into a list of words
by treating ’/’ and ’.’ as breaks. These symbols are com-
monly used separators in URL naming. Each resulting
word is normalized by eliminating non-alphanumericchar-
acters replacing every sequence of digits with ’*’. This
has an effect similar to stemming. To create terms we
combine successive pairs of words in the list. To make
the terms location specific within the path we also append
the ordinal position of the first word in the list to the term.
We call these terms,positional word bigrams.

Thus, given the path

conferences/dl99/advanceprogram.html ,

we first create the list (conferences , dl* , advan-
ceprogram , html ). Then we combine successive pairs
of words with the index of the first word to generate the
positional word bigrams:

conferences dl* 0
dl* advanceprogram 1
advanceprogram html 2

Our attempts to use single words and pairs of words re-
sulted in a lot of false matches, due to the repetitive nature
of URL names. Adding position makes the terms more
effective.

The sametf based selection of terms, and document fre-
quency based restrictions in assigning terms to vectors are
applied as in prefix matching. We had 734,968 distinct



terms selected from more than one host. Of these 2,148
were rejected and 9,682 were restricted.

• Term Weighting: The same weighting and normaliza-
tion scheme is used as in the case of prefix matching.

3.3 URL String and Connectivity Based (Algorithm conn)
The identification of mirrors can be aided by the use of con-
nectivity information. We extend the URL string basedpaths
algorithm (which selects host pairs with many common paths),
with a connectivity based filtering stage. This involves test-
ing for each common path if it has the same set of out-links
on both hosts under consideration. Host pairs that fail the test
are eliminated. There are two considerations however:

• Since content changes over time (e.g., at news sites)
and mirrors engage in local customizations, the set of out-
links in replicated documents often varies slightly. Hence,
when testing a common path for equivalence we require
only that a fractionf of the union of the set of out-links
from the two versions be common to both. Since we
wanted a high degree of agreement,f was0.9 in our ex-
periment.

• Links to other documents on the same host will involve
the name of the local host and will hence appear to dif-
fer. We compensate by removing the hostname from such
URLs, effectively turning them into relative URLs.

Given a host pair< host1, host2 > from the output ofpaths
we test some of the common paths for equivalence as de-
scribed above. In particular, we selectn paths from each
host with the highest outdegree. The intuition is that docu-
ments with many links are likely to provide more evidence
of a mirroring relationship than those with a small number
of links. For efficiency, we chosen to be 10. Anecdotal ev-
idence showed that larger values ofn did not improve the
performance by much.

After testing a total of2 ∗ n common paths, if a fractionm
of the paths were found to be equivalent (m was0.75 in our
experiment) then the host pair is allowed to remain in the
ranking. Otherwise, it is eliminated.

3.4 Host Connectivity-Based (Algorithms hconn1and
hconn2)

The host connectivity based algorithms constructs an edge-
weighted graph where each node corresponds to a host. The
graph contains a directed edge from node A to node B if there
exists a document on host A that points to a document on host
B. The weight of the edge is the total number of such links.
This graph is called thehost graph. Two hosts are likely to
be mirrors if their nodes point to the same nodes in the host
graph. However, since our input is incomplete and due to
local and temporal variations in content, nodes for mirrored
hosts tend to have asimilar rather than identical set of out-
edges.

As before, we use term vector matching to compute the like-

lihood of a host pair being mirrors. The set of nodes that a
host’s node points to are used as terms. Note that thedocu-
ment frequencyof a term is precisely the indegree of the node
it corresponds to. Theterm weightwe use is based solely on
inverse document frequency but not onterm frequency. This
is because many hosts tend to be poorly sampled and hence
we only have a lower bound on term frequencies. However,
we do use term frequency in term selection. Initially our host
graph had 126,853,032 edges. For efficiency we pruned the
graph by keeping only10 log p edges with largest weight per
host (corresponding to terms with highestterm frequency),
wherep is the number of documents on that host in the input
set. This reduced the number of edges in the host graph to
9,519,003.

For algorithmhconn1we assigned the following term weight
to each termt: If the indegreein(t) of nodet is at most
25, the term weight is 1. Otherwise the term weight oft is
25/in(t) for in(t) <= 125. For in(t) > 125 it is
min

(
1/5, 200/in(t)

)
. The term weight is linear in1/in(t)

(as opposed tolog
(
1/in(t)

)
) since computing an approxima-

tion of this term weight can be implemented efficiently by al-
lowing the term to appear only in vectors for 25 hosts chosen
at random for25 < in(t) <= 125 andmin(200, in(t)/5)
random hosts beyond that.

For algorithmhconn2we multiplied the above term weight
with 1+log(maxin

in(t) ), wheremaxin is the maximum indegree
of any node in the host graph.

4 Evaluation
4.1 Methodology
We adopted a relevance judgement technique similar to TREC
pooling [17] to evaluate the list of ranked host pairs returned
by our various mirror-detection algorithms. The top 30,000
host pairs from each ranking were tested for a mirroring re-
lationship. The limit of 30,000 was a product of time re-
strictions. However, the threshold was picked to be at least
more than 23,000, which is the number of hosts with a mir-
roring relationship discovered in a previous experiment [2].
Some rankings returned several million host pairs. Testing
all of them would have been impossible. Even considering
30,000 from each host, after accounting for duplicates this
gave us a total of 118,790 unique pairs of hosts to check. If
human judgement were required the task would have been
prohibitive. Instead we used themirroring test described
below. Since the test requires fetching documents from the
WWW this approach is more attractive as a testing or filter-
ing technique than as a host pair selection technique. The
results of the tests allowed us to compute precision vs rank
(Figure 1), and relative recall vs rank (Figure 3) for ranks up
to 25,000. Also, using the combined pool of known mirrors
from the various tests we were able to plot precision vs recall
(Figure 4) for the top 100,000 results from each ranking.

4.1.1 Mirroring Test To test ifhost1 andhost2 are mirrors
we alternately sample pages from each of the hosts, and for



each sample check if the other host has an equivalent page.
Rather than insist on identical content, we use the scheme
described in [7] to check if the documents have ahigh syn-
tactic similarity. See section 4.1.3 for more on this. We use
a 50% threshold for similarity, which corresponds to an esti-
mation that with high probability at least 50% of the unique
k-word-sequences found in the two documents are common
to both documents. Since the tests are repeated on multiple
paths the threshold can afford to be liberal. For the same rea-
son the performance was not sensitive to the exact value cho-
sen. Given dynamic content however, a threshold of 75% was
found to be too conservative. This compensates for variations
in content due to local server-side includes, variable banner
ads, local URL names, transaction-ids, and small amounts of
dynamic content.

Initially we compare the root pages for equivalence. If the
root pages are not equivalent, the test reports a mismatch. If
one of the root pages refuses to load we record a failure of the
corresponding host and abandon further testing. Otherwise,
we continue to check if a set of paths sampled fromhost1
are all valid onhost2 and yield highly similar documents,
and vice versa.

To select paths from a host we sort its paths lexicographi-
cally, and sample15 paths at equal intervals in the list. This
ensures a broad coverage of the host’s directory structure.
We permute both lists randomly and test paths in alternation
from the two lists. Paths failing on both hosts are are ignored.
If a path succeeds on both hosts but the pages are not highly
similar, we record a mismatch and abandon further testing.
If it fails on one host and not on the other it suggests that the
hosts are only partial mirrors. Further testing is abandoned.
We record only a tentative mismatch since the access fail-
ure may be a temporary phenomenon, as is common on the
WWW. All tentative mismatches are tested again at a later
point in time. If a mismatch is seen again it is taken as final.
If 10 paths yield highly similar documents we conclude that
the hosts are indeed mirrors.

The automatic testing procedure takes from a few seconds
to a maximum of 2 minutes per URL (since we had a 2
minute timeout on URL fetches). Because of slow and heav-
ily loaded servers the timeout was often exceeded. When
several paths from a host timeout the host pair is rescheduled
for later testing.

4.1.2 Pooling Evaluations Transitive inferences are possi-
ble of the form:

if MIRROR(A,B) AND MIRROR(B,C)
THEN MIRROR(A,C)
if MIRROR(A,B) AND MISMATCH(B,C)
THEN MISMATCH(A,C)

Transitive inferences allow us to avoid testing some of the
host pairs. To do this we pool the results of the tests as

they become available and compute transitive relations as
described above. For every host that is part of a cluster of
mirrors, we maintain itscluster-idusing a union-find tech-
nique. Mismatches are represented as a relation on cluster-
ids and/or hosts. Before validating a pair of hosts we first
map each host to a cluster-id if possible. If they map to the
same cluster-id, or a mismatch can be detected the test is
skipped. Another advantage of maintaining cluster informa-
tion on-line is that if a host becomes unavailable temporarily
during testing we can substitute another host from its cluster.

In evaluating precision and recall, failures pose a problem
that is not encountered with static collections. To avoid mak-
ing assumptions about the failed host pair that could bias the
outcome, we chose to remove host pairs involving failures
from our rankings.

4.1.3 Computing Document Resemblance We compute the
resemblanceof a pair of documents as a number between 0
and 1, such that when the resemblance is close to 1 it is likely
that the documents are roughly the same. We view each doc-
ument as a sequence of words, and lexically transform it into
a canonical sequence of tokens. This canonical form ignores
minor details such as formatting, HTML mark-up, and cap-
italization. We then associate with every document a set of
continguous subsequences of tokens of lengthw, which we
call w-shingles

For example the 4-shingling of

(a, rose, is, a, rose, is, a,rose)

is the set

{(a, rose, is, a), (rose, is, a, rose), (is, a, rose, is)}

LetS(D) denote the w-shingling of documentD for a certain
shingle size. The resemblancer of two documentsA andB
is defined as

r(A, B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)| .

To compute the resemblance of two documents it suffices to
keep for each document a “sketch” of a few (three to eight)
hundred bytes consisting of a collection of fingerprints (prob-
abilistic unique id’s) of shingles. The sketches can be com-
puted reasonably fast (time linear in the size of the docu-
ments) and given two sketches the resemblance of the corre-
sponding documents can be computed in time lineasr in the
size of the sketches. Furthermore, clustering a collection of
m documents into sets of closely resembling documents can
be done in time proportional tom log m rather thanm2. For
further details see [7, 5, 6].

4.2 Experimental Results
4.2.1 Precision vs Rank Figure 1 plots precision vs. rank
up to 25000 for all our algorithms.



The naivehostsalgorithm, which uses the least information
performs the worst, with a terminal precision of 0.27 at rank
25000. Thehconn1andhconn2algorithms, which compare
out-edges in the host graph, have terminal precisions of 0.43
and 0.45 respectively. These algorithms can be misled into
believing two hosts are mirrors if their pages point to a com-
mon set of hosts, which can happen with web sites that deal
with the same or related topic.

Thepathsalgorithm performs well on our input, with a termi-
nal precision of 0.59 at 25000. However, the performance of
pathsdepends on the presence of common paths which can-
not always be relied upon with incomplete input sets. The
prefix and shinglesalgorithms provide a big improvement
overpathswith terminal precision of 0.73 and 0.72 respec-
tively. In both cases top-level directory paths, which occur
in many URLs, are most likely to be selected as terms by
virtue of their high term frequency. This makes these algo-
rithms more effective and robust thanpaths. The IDF-based
term weighting performed by these algorithms shows that the
presence of a similar directory structure with similar names
on two hosts is good evidence that the hosts are mirrors. The
conn algorithm which filters the output ofpathsperforms
quite well, with a precision of 0.78 at 25000. By requiring
link structure conformance of common pathsconnis able to
filter out many of the incorrect host pairs produced bypaths.
This indicates that a similar link structure among a selection
of paths on two hosts is a good indicator of mirroring.

TheIP3 algorithm has a good initial yield with a precision of
0.92 at rank 7000. However, performance quickly degrades
to a precision of 0.49 at 25000. This is because for larger 3
octet IP clusters, the assumption that all hosts on the same
subnet are mirrors becomes untenable. AlgorithmIP4 per-
forms best with a terminal precision of 0.89. However, since
IP4 requires an exact IP address match, and a good fraction
of the mirrors we encounter do not meet this criteria, this al-
gorithm is limited in its potential recall. Also, as in the case
of IP3, as cluster size increases virtual hosting rather than
mirroring becomes the dominant phenomenon. This is illus-
trated in Figure 2, which shows the cumulative number of
hosts (solid line) and cumulative number of mirrors (dotted
line) as the 4 octet IP cluster size is increased. To compute
this we tested a sample of three hosts from every 4-octet IP
cluster and, if they were mirrors, concluded that all hosts in
the cluster are mirrors. Note that mirror count levels out al-
most completely after a cluster size of around 10, while the
hosts count continues to rise as cluster size increases. This
suggests that as larger and larger cluster sizes are reached,
the precision of the IP4 algorithm will decrease substantially.
(Figure 4 confirms this as we discuss below).

4.2.2 Relative Recall vs Rank Figure 3 plots relative recall
at rankk vs. rank up to 25000. We define relative recall at
a rankk for an algorithm as the number of mirrors found at
rankk expressed as a fraction of the total number of distinct

mirrors found in the union of all rankings up to rankk. Note
that even an ideal algorithm may not achieve a relative recall
of 1, since there may be more thank mirrors in the union
of all top k rankings. For ranks up to 25000, the ordering
of algorithms by relative recall performance is similar to that
obtained when considering precision. The algorithms that
rely on common paths and host connectivity are hurt by the
fact that the input set is incomplete.

Surprisingly, even the best relative recall at 25000 (namely
IP4) was only 53.9%. Thus, the task of finding mirrors can-
not be entrusted to just a single algorithm. To find more mir-
rors it is possible to use the output of two or more algorithms.

Table 1 shows the fraction of the total pool of mirrors found
by all algorithms to rank 25,000 present in the union of the
top 25,000 results of a pair of algorithms. The total pool of
mirrors consisted of 41,388 host pairs at rank 25,000. As the
table shows,IP4 singly finds only 53.9% of these mirrors.
However, if we count the number of correct answers found
by IP4 or any one of the algorithms that consider the URL
structure within hosts (conn, paths, prefix andshingles) up
to rank 25,000, at least 74.5% of the 41,388 host pairs were
found for each combination. The table also shows that there
is not much to be gained by combiningshinglesandprefix
together, orhconn1andhconn2together because they behave
similarly and find nearly the same sets of mirrors.

To experiment further with the idea of merging the output
of algorithms we combined the top 100,000 results from the
output of five different algorithmsIP4, prefix, hconn2, paths
andhostnames. The host pairs in the resulting union were
sorted in the decreasing order of the number of algorithms
that found them. Ties between host pairs were resolved in
favor of the host pair with the lowest rank in any of the five
algorithms. This resulted in a ranking which we callcom-
bined.

Using the transitive closure of all mirrors found in validat-
ing the top 30,000 host pairs, we rated host pairs in the top
100,000 results of all algorithms. Host pairs which could
not be rated were treated as mismatches. This gave us the
precision-recall graph in Figure 4. As predicted previously
IP4’s precision drops after a recall of 0.5 illustrating the lim-
itations of using IP address matching to find mirrors.Prefix
is the best of the individual algorithms, achieving a preci-
sion of 0.49 for a recall of 0.8.Connseems potentially better
but as only 30,000 host pairs were available this curve is in-
complete. The combined algorithmcombinedhad the best
performance overall, with a precision at 0.57 for a recall of
0.86 on considering 100,000 host pairs.

5 Related Work
The problem of computing mirrored host pairs on the WWW
was introduced in [2]. They use a more generalized defini-
tion of mirroring, which includespartial mirroring as well.
They tested a single algorithm corresponding to a weighted
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hosts IP3 IP4 conn hconn1 hconn2 paths prefix shingles

hosts 16.8%
IP3 38.9% 29.7%
IP4 60.6% 57.7% 53.9%
conn 58.2% 65.4% 79.6% 47.3%
hconn1 40.2% 51.1% 69.4% 59.3% 26.1%
hconn2 41.2% 51.9% 69.8% 60.0% 29.0% 27.3%
paths 48.4% 59.1% 77.8% 55.0% 50.7% 51.5% 35.8%
prefix 53.7% 60.8% 74.5% 64.6% 57.5% 58.1% 57.1% 44.4%
shingles 53.4% 60.6% 74.6% 64.2% 57.1% 57.7% 56.7% 48.4% 44.0%

Table 1: Percentage of correct answers found by combining the output of pairs of algorithms at rank 25000

combination of ourhostsandshinglesalgorithms, but did not
investigate the use of IP addresses or connectivity in finding
mirrors. Since we were interested in a comparative study of
algorithms we extended their validation scheme to include
the pooling of validated results from various algorithms, and
also the use of transitive inferences to expedite validation.

At first sight the problem of finding mirrors seems like it
could be cast as a clustering problem in which each host
is represented by the contents of the documents it contains.
There has been considerable prior work in document cluster-
ing (see e.g. [18, 14]). As mentioned earlier, owing to the
scale of the Web comparing the full contents of hosts is nei-
ther feasible, nor (as we believe) necessarily more useful than
comparing URL strings and connectivity. See also [19] for a
discussion on the applicability of clustering algorithms to the
WWW.

Connectivity information has been applied to the problem of
improving precision of WWW search results [13, 9, 8, 11,
4]. The graph model used by these methods is perturbed by
duplicate pages. We believe ourhconn*andconnalgorithms
represent the first attempt to use connectivity information to
finding mirrors. Furthermore, these two algorithms can be
easily integrated within the methods cited above to alleviate
the above perturbation problem.

6 Conclusion
Finding mirrors on the WWW is an information retrieval
problem of interest to the search engine and web caching
communities. In this paper we evaluated 4 classes of al-
gorithms for ranking potential mirrored host pairs, namely:
(i) IP address based approaches, (ii) URL string comparison
techniques, (iii) host connectivity based approaches, and (iv)
an approach that compares connectivity of documents with
shared paths. These were evaluated on a collection of 140
million URLs (on 230,000 hosts) and associated connectiv-
ity information. IP4 and prefix were our best single algo-
rithms. We concluded that single approaches are limited in
terms of recall. Our best approach is one which combines
5 algorithms and achieves a precision of 0.57 for a recall of

0.86 considering the top 100,000 results.
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