
On the Quality of Service of Failure Detectors�

Wei Cheny Sam Touegz Marcos Kawazoe Aguilerax

Abstract

We study the quality of service (QoS) of failure detectors. By QoS, we mean a specification
that quantifies (a) how fast the failure detector detects actual failures, and (b) how well it avoids
false detections. We first propose a set of QoS metrics to specify failure detectors for systems with
probabilistic behaviors, i.e., for systems where message delays and message losses follow some
probability distributions. We then give a new failure detector algorithm and analyze its QoS in
terms of the proposed metrics. We show that, among a large class of failure detectors, the new
algorithm is optimal with respect to some of these QoS metrics. Given a set of failure detector QoS
requirements, we show how to compute the parameters of our algorithm so that it satisfies these
requirements, and we show how this can be done even if the probabilistic behavior of the system
is not known. We then present some simulation results that show that the new failure detector
algorithm provides a better QoS than an algorithm that is commonly used in practice. Finally, we
suggest some ways to make our failure detector adaptive to changes in the probabilistic behavior of
the network.

keywords: failure detectors, quality of service, fault tolerance, distributed algorithm, probabilistic
analysis

1 Introduction

Fault-tolerant distributed systems are designed to provide reliable and continuous service despite the

failures of some of their components. A basic building block of such systems is the failure detector.

Failure detectors are used in a wide variety of settings, such as network communication protocols [10],

computer cluster management [24], group membership protocols [5, 9, 7, 29, 23, 22], etc.
�Research partially supported by NSF grant CCR-9711403 and an Olin Fellowship.
yOracle Corporation, One Oracle Drive, Nashua, NH 03062, USA. Email: Wei.Chen@oracle.com
zDepartment of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario, Canada M5S 3H5.

Email: sam@cs.toronto.edu
xCompaq Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301-1044, USA. Email: Mar-

cos.Aguilera@compaq.com

Roughly speaking, a failure detector provides some information on which processes have crashed.

This information, typically given in the form of a list of suspects, is not always up-to-date or correct:

a failure detector may take a long time to start suspecting a process that has crashed, and it may er-

roneously suspect a process that has not crashed (in practice this can be due to message losses and

delays).

Chandra and Toueg [12] provide the first formal specification of unreliable failure detectors and

show that they can be used to solve some fundamental problems in distributed computing, namely,

consensus and atomic broadcast. This approach was later used and generalized in other works, e.g.,

[21, 16, 17, 1, 3, 2].

In all of the above works, failure detectors are specified in terms of their eventual behavior (e.g.,

a process that crashes is eventually suspected). Such specifications are appropriate for asynchronous

systems, in which there is no timing assumption whatsoever.1 Many applications, however, have some

timing constraints, and for such applications, failure detectors with eventual guarantees are not suf-

ficient. For example, a failure detector that starts suspecting a process one hour after it crashed can

be used to solve asynchronous consensus, but it is useless to an application that needs to solve many

instances of consensus per minute. Applications that have timing constraints require failure detectors

that provide a quality of service (QoS) with some quantitative timeliness guarantees.

In this paper, we study the QoS of failure detectors in systems where message delays and message

losses follow some probability distributions. We first propose a set of metrics that can be used to specify

the QoS of a failure detector; these QoS metrics quantify (a) how fast it detects actual failures, and (b)

how well it avoids false detections. We then give a new failure detector algorithm and analyze its QoS in

terms of the proposed metrics. We show that, among a large class of failure detectors, the new algorithm

is optimal with respect to some of these QoS metrics. Given a set of failure detector QoS requirements,

we show how to compute the parameters of our algorithm so that it satisfies these requirements, and

we show how this can be done even if the probabilistic behavior of the system is not known. Finally,

we give simulation results showing that the new failure detector algorithm provides a better QoS than

an algorithm that is commonly used in practice. The QoS specification and the analysis of our failure

detector algorithm is based on the theory of stochastic processes. To the best of our knowledge, this

work is the first comprehensive and systematic study of the QoS of failure detectors using probability

theory.

1.1 On the QoS Specification of Failure Detectors

We consider message-passing distributed systems in which processes may fail by crashing, and mes-

sages may be delayed or dropped by communication links.2 A failure detector can be slow, i.e., it may
1Even though the fail-aware failure detector of [17] is implemented in the “timed asynchronous” model, its specification

is for the asynchronous model.
2We assume that process crashes are permanent, or, equivalently, that a process that recovers from a crash assumes a

new identity.

2

up

trust

T
D

p

suspect

down

trust

suspectFD at q

Figure 1: Detection time T
D

take a long time to suspect a process that has crashed, and it can make mistakes, i.e., it may erroneously

suspect some processes that are actually up (such a mistake is not necessarily permanent: the failure

detector may later stop suspecting this process). To be useful, a failure detector has to be reasonably

fast and accurate.

In this paper, we propose a set of metrics for the QoS specification of failure detectors. In general,

these QoS metrics should be able to describe the failure detector’s speed (how fast it detects crashes)

and its accuracy (how well it avoids mistakes). Note that speed is with respect to processes that crash,

while accuracy is with respect to processes that do not crash.

A failure detector’s speed is easy to measure: this is simply the time that elapses from the moment

when a process p crashes to the time when the failure detector starts suspecting p permanently. This

QoS metric, called detection time, is illustrated in Fig. 1.

How do we measure a failure detector’s accuracy? It turns out that determining a good set of accu-

racy metrics is a delicate task. To illustrate some of the subtleties involved, consider a system of two

processes p and q connected by a lossy communication link, and suppose that the failure detector at q

monitors process p. The output of the failure detector at q is either “I suspect that p has crashed” or “I

trust that p is up”, and it may alternate between these two outputs from time to time. For the purpose

of measuring the accuracy of the failure detector at q, suppose that p does not crash.

Consider an application that queries q’s failure detector at random times. For such an application, a

natural measure of accuracy is the probability that, when queried at a random time, the failure detector

at q indicates correctly that p is up. This QoS metric is the query accuracy probability. For example, in

Fig. 2, the query accuracy probability of FD 1 at q is 12=(12 + 4) = :75.

The query accuracy probability, however, is not sufficient to fully describe the accuracy of a failure

detector. To see this, we show in Fig. 2 two failure detectors FD 1 and FD2 such that (a) they have the

same query accuracy probability, but (b) FD2 makes mistakes more frequently than FD 1.3 In some

applications, every mistake causes a costly interrupt, and for such applications the mistake rate is an

important accuracy metric.
3The failure detector makes a mistake each time its output changes from “trust” to “suspect” while p is actually up.

3

3

1

3

1

12 12 12

3 ...

1 ...

p
up

FD1

FD2

4 4 4

Figure 2: FD1 and FD2 have the same query accuracy probability of :75, but the mistake rate of FD 2

is four times that of FD 1

p
up

FD2

12 12 12
FD1

8

8 8

8 8

8

4 4 4

Figure 3: FD1 and FD2 have the same mistake rate 1=16, but the query accuracy probabilities of FD 1

and FD2 are :75 and :50, respectively

Note, however, that the mistake rate alone is not sufficient to characterize accuracy: as shown in

Fig. 3, two failure detectors can have the same mistake rate, but different query accuracy probabilities.

Even when used together, the above two accuracy metrics are still not sufficient. In fact, it is easy to

find two failure detectors FD1 and FD2, such that (a) FD1 is better than FD2 in both measures (i.e.,

it has a higher query accuracy probability and a lower mistake rate), but (b) FD 2 is better than FD1 in

another respect: specifically, whenever FD2 makes a mistake, it corrects this mistake faster than FD 1;

in other words, the mistake durations in FD 2 are smaller than in FD1. Having small mistake durations

is important to some applications (e.g., applications that operate in a degraded mode while operating

processes are incorrectly suspected).

As it can be seen from the above, there are several different aspects of accuracy that may be important

to different applications, and each aspect has a corresponding accuracy metric.

In this paper, we identify six accuracy metrics (since the behavior of a failure detector is probabilistic,

most of these metrics are random variables). We then use the theory of stochastic processes to quantify

the relation between these metrics. This analysis allows us to select two accuracy metrics as the primary

ones in the sense that: (a) they are not redundant (one cannot be derived from the other), and (b)

together, they can be used to derive the other four accuracy metrics.

4

The QoS metrics defined in this paper are similar to some dependability measures. For example, the

query accuracy probability metric is similar to the availability measure; mistake duration is similar to

time to recover; and mistake recurrence time (Section 2.2) is similar to time between failures. However,

there are significant differences and one must be careful not to be confused. Dependability measures

refer to failures of the system whereas our QoS metrics refer to mistakes of the failure detector which,

itself, tracks failures of the system. Because of that, not all of our metrics have corresponding depend-

ability measures. In particular, the time to detect a failure is a natural metric for failure detectors, but it

has no counterpart among dependability measures.

In summary, we show that the QoS specification of failure detectors can be given in terms of three

basic metrics, namely, the detection time and the two primary accuracy metrics that we identified. Taken

together, these metrics can be used to characterize and compare the QoS of failure detectors. Note that

these QoS metrics are applicable to all failure detectors regardless of how they are implemented, even

though the second part of the paper focuses on the QoS of the failure detectors implemented through

heartbeats.

1.2 The Design and Analysis of a New Failure Detector Algorithm

In this paper, we consider a simple system of two processes p and q, connected through a communica-

tion link. Process p may fail by crashing, and the link between p and q may delay or drop messages.

Message delays and message losses follow some probabilistic distributions. Process q has a failure de-

tector that monitors p and outputs either “I suspect that p has crashed” or “I trust that p is up” (“suspect

p” and “trust p” in short, respectively).

A Common Failure Detection Algorithm and its Drawbacks. A simple failure detection algorithm,

commonly used in practice, works as follows: at regular time intervals, process p sends a heartbeat mes-

sage to q; when q receives a heartbeat message, it trusts p and starts a timer with a fixed timeout value

TO ; if the timer expires before q receives a newer heartbeat message from p, then q starts suspecting p.

This algorithm has two undesirable characteristics; one regards its accuracy and the other its detection

time, as we now explain. Consider the i-th heartbeat message mi. Intuitively, the probability of a

premature timeout on mi should depend solely on mi, and in particular on mi’s delay. With the simple

algorithm, however, the probability of a premature timeout on mi also depends on the heartbeat mi�1

that precedes mi! In fact, the timer for mi is started upon the receipt of mi�1, and so if mi�1 is “fast”,

the timer for mi starts early and this increases the probability of a premature timeout on mi. This

dependency on past heartbeats is undesirable.

To see the second problem, suppose p sends a heartbeat just before it crashes, and let d be the delay of

this last heartbeat. In the simple algorithm, q would permanently suspect p only d+TO time units after

p crashes. Thus, the worst-case detection time for this algorithm is the maximum message delay plus

TO . This is impractical because in many systems the maximum message delay is orders of magnitude

larger than the average message delay.

5

The source of the above problems is that even though the heartbeats are sent at regular intervals, the

timers to “catch” them expire at irregular times, namely the receipt times of the heartbeats plus a fixed

TO . The algorithm that we propose eliminates this problem. As a result, the probability of a premature

timeout on heartbeat mi does not depend on the behavior of the heartbeats that precede mi, and the

detection time does not depend on the maximum message delay.

A New Algorithm and its QoS Analysis. In the new algorithm, process p sends heartbeat messages

m1; m2; : : : to q periodically every � time units (just as in the simple algorithm). To determine whether

to suspect p, q uses a sequence �1; �2; : : : of fixed time points, called freshness points, obtained by

shifting the sending time of the heartbeat messages by a fixed parameter Æ. More precisely, �i = �i+ Æ,

where �i is the time when mi is sent. For any time t, let i be so that t 2 [�i; �i+1); then q trusts p at time

t if and only if q has received heartbeat mi or higher.

Given the probabilistic behavior of the system (i.e., the probability of message losses and the distri-

bution of message delays), and the parameters � and Æ of the algorithm, we determine the QoS of the

new algorithm using the theory of stochastic processes. Simulation results given in Section 7 are con-

sistent with our QoS analysis, and they show that the new algorithm performs better than the common

one.

In contrast to the common algorithm, the new algorithm guarantees an upper bound on the detection

time. Moreover, the new algorithm is optimal in the sense that it has the best possible query accuracy

probability with respect to any given bound on the detection time. More precisely, we show that among

all failure detectors that send heartbeats at the same rate (they use the same network bandwidth) and

satisfy the same upper bound on the detection time, the new algorithm has the best query accuracy

probability.

The first version of our algorithm (described above) assumes that p and q have synchronized clocks.

This assumption is not unrealistic, even in large networks. For example, GPS and Cesium clocks are

becoming accessible, and they can provide clocks that are very closely synchronized (see, e.g., [31]).

When synchronized clocks are not available, we propose a modification to this algorithm that performs

equally well in practice, as shown by our simulations. The basic idea is to use past heartbeat messages to

obtain accurate estimates of the expected arrival times of future heartbeats, and then use these estimates

to find the freshness points. This is explained in Section 6.

Configuring our Algorithm to Meet the Failure Detector Requirements of an Application. Given

a set of failure detector QoS requirements (provided by an application), we show how to compute the

parameters of our algorithm to achieve these requirements. We first do so assuming that one knows the

probabilistic behavior of the system (i.e., the probability distributions of message delays and message

losses). We then drop this assumption, and show how to configure the failure detector to meet the QoS

requirements of an application even when the probabilistic behavior of the system is not known.

6

1.3 Related Work

In [20], Gouda and McGuire measure the performance of some failure detector protocols under the

assumption that the protocol stops as soon as some process is suspected to have crashed (even if this

suspicion is a mistake). This class of failure detectors is less general than the one that we studied here:

in our work, a failure detector can alternate between suspicion and trust many times.

In [30], van Renesse et. al. propose a scalable gossip-style randomized failure detector protocol.

They measure the accuracy of this protocol in terms of the probability of premature timeouts.4 The

probability of premature timeouts, however, is not an appropriate metric for the specification of failure

detectors in general: it is implementation-specific and it cannot be used to compare failure detectors

that use timeouts in different ways. This point is further explained at the end of Section 2.3.

In [25], Raynal and Tronel present an algorithm that detects member failures in a group: if some

process detects a failure in the group (perhaps a false detection), then all processes report a group

failure and the protocol terminates. The algorithm is based on heartbeats, and its timeout mechanism is

the same as the simple algorithm that we described in Section 1.2.

In [31], Verı́ssimo and Raynal study QoS failure detectors — these are detectors that indicate when

a service does not meet its quality-of-service requirements. In contrast, this paper studies the QoS of

failure detectors, i.e., how well a failure detector works.

Failure detector implementations based on heartbeats are commonly used in practice. To keep both

good detection time and good accuracy, many implementations rely on special features of the operat-

ing system and communication system to try to ensure that heartbeat messages are received at regular

intervals (see discussion in Section 12.9 of [24]). This is not easy even for closely-connected computer

clusters, and it is very hard in wide-area networks. [19] describes a failure detector implementation,

which it calls the independent assessment protocol. This implementation is identical to the common

algorithm, except that it has a mechanism to discard heartbeats that are too old, based on a time thresh-

old. However, in practical systems the threshold must be much larger than the average message delay

(lest too many messages are discarded). The resulting scheme has exactly the same drawbacks as the

common algorithm.

The probabilistic network model used in this paper is similar to the ones used in [14, 6] for probabilis-

tic clock synchronization. The method of estimating the expected arrival times of heartbeat messages

is close to the method of remote clock reading of [6].

The rest of the paper is organized as follows. In Section 2, we propose a set of metrics to specify

the QoS of failure detectors. In Section 3, we describe a new failure detector algorithm and analyze

its QoS in terms of these metrics; we also present an optimality result. We then explain how to set

the algorithm’s parameters to meet some given QoS requirements — first in the case when we know

the probabilistic behavior of messages (Section 4), and then in the case when this is not known (Sec-

tion 5). In Section 6 we deal with unsynchronized clocks. We present the results of some simulations
4This is called “the probability of mistakes” in [30].

7

in Section 7, and we conclude the paper with some discussion in Section 8. Appendix A lists the main

symbols used in the paper, and Appendices B to D give the proofs of the main theorems. More detailed

proofs can be found in [13].

2 On the QoS Specification of Failure Detectors

We consider a system of two processes p and q. We assume that the failure detector at q monitors p,

and that q does not crash. Henceforth, real time is continuous and ranges from 0 to1.

2.1 The Failure Detector Model

The output of the failure detector at q at time t is either S or T , which means that q suspects or trusts

p at time t, respectively. A transition occurs when the output of the failure detector at q changes: An

S-transition occurs when the output at q changes from T to S; a T-transition occurs when the output at

q changes from S to T . We assume that there are only a finite number of transitions during any finite

time interval.

Since the behavior of the system is probabilistic, the precise definition of our model and of our QoS

metrics uses the theory of stochastic processes. To keep our presentation at an intuitive level, we omit

the technical details related to this theory (they can be found in [13]).

We consider only failure detectors whose behavior eventually reaches steady state, as we now explain

informally. When a failure detector starts running, and for a while after, its behavior depends on the

initial condition (such as whether initially q suspects p or not) and on how long it has been running.

Typically, as time passes the effect of the initial condition gradually diminishes and its behavior no

longer depends on how long it has been running — i.e., eventually the failure detector behavior reaches

equilibrium, or steady state. In steady state, the probability law governing the behavior of the failure

detector does not change over time. Typically, failure detector implementations reach steady state very

quickly. For example, our failure detector does so soon after the first heartbeat message is sent (see

Section 3.2).

The QoS metrics that we propose refer to the behavior of a failure detector after it reaches steady

state. Most of these metrics are random variables.

2.2 Primary Metrics

We propose three primary metrics for the QoS specification of failure detectors. The first one measures

the speed of a failure detector. It is defined with respect to the runs in which p crashes.

Detection time (T
D

): Informally, T
D

is the time that elapses from p’s crash to the time when q starts

suspecting p permanently. More precisely, T
D

is a random variable representing the time that elapses

from the time that p crashes to the time when the final S-transition (of the failure detector at q) occurs

and there are no transitions afterwards (Fig. 1). If there is no such final S-transition, then T
D
= 1; if

8

trust

suspect suspect

up

T
M

T
G

T
MR

p

FD at q

Figure 4: Mistake duration T
M

, good period duration T
G

, and mistake recurrence time T
MR

such an S-transition occurs before p crashes, then T
D
= 0.5

We next define some metrics that are used to specify the accuracy of a failure-detector. Throughout

the paper, all accuracy metrics are defined with respect to failure-free runs, i.e., runs in which p does

not crash.6 There are two primary accuracy metrics:

Mistake recurrence time (T
MR

): this measures the time between two consecutive mistakes. More

precisely, T
MR

is a random variable representing the time that elapses from an S-transition to the next

one (Fig. 4).

Mistake duration (T
M

): this measures the time it takes the failure detector to correct a mistake. More

precisely, T
M

is a random variable representing the time that elapses from an S-transition to the next

T-transition (Fig. 4).

As we discussed in the introduction, there are many aspects of failure detector accuracy that may be

important to applications. Thus, in addition to T
MR

and T
M

, we propose four other accuracy metrics

in the next section. We selected T
MR

and T
M

as the primary metrics because given these two, one can

compute the other four (this will be shown in Section 2.4).

2.3 Derived Metrics

We propose four additional accuracy metrics:

Average mistake rate (�
M

): this measures the rate at which a failure detector make mistakes, i.e., it is

the average number of S-transitions per time unit. This metric is important to long-lived applications

where each failure detector mistake (each S-transition) results in a costly interrupt. This is the case for

applications such as group membership and cluster management.

Query accuracy probability (P
A

): this is the probability that the failure detector’s output is correct at a

random time. This metric is important to applications that interact with the failure detector by querying

it at random times.

Many applications can make progress only during good periods — periods in which the failure

detector makes no mistakes. This observation leads to the following two metrics.

Good period duration (T
G

): this measures the length of a good period. More precisely, T
G

is a random
5We omit the boundary cases of other metrics since they can be similarly defined.
6As explained in [13], these metrics are also meaningful for runs in which p crashes.

9

variable representing the time that elapses from a T-transition to the next S-transition (Fig. 4).

For short-lived applications, however, a closely related metric may be more relevant. Suppose that

an application is started at a random time in a good period. If the remaining part of the good period is

long enough, the short-lived application will be able to complete its task. The metric that measures the

remaining part of the good period is:

Forward good period duration (T
FG

): this is a random variable representing the time that elapses

from a random time at which q trusts p, to the time of the next S-transition.

At first sight, it may seem that, on the average, T
FG

is just half of T
G

(the length of a good period).

But this is incorrect, and in Section 2.4 we give the actual relation between T
FG

and T
G

.

An important remark is now in order. For timeout-based failure detectors, the probability of prema-

ture timeouts has sometimes been used as the accuracy measure: this is the probability that when the

timer is set, it will prematurely timeout on a process that is actually up. The measure, however, is not

appropriate because: (a) it is implementation-specific, and (b) it is not useful to applications unless it is

given together with other implementation-specific measures, e.g., how often timers are started, whether

the timers are started at regular or variable intervals, whether the timeout periods are fixed or variable,

etc. (many such variations exist in practice [10, 20, 30]). Thus, the probability of premature timeouts is

not a good metric for the specification of failure detectors, e.g., it cannot be used to compare the QoS

of failure detectors that use timeouts in different ways. The six accuracy metrics that we identified in

this paper do not refer to implementation-specific features, in particular, they do not refer to timeouts

at all.

2.4 How the Accuracy Metrics are Related

Theorem 1 below explains how our six accuracy metrics are related. We then use this theorem to justify

our choice of the primary accuracy metrics. Henceforth, Pr(A) denotes the probability of event A;

E(X), E(Xk), and V(X) denote the expected value (or mean), the k-th moment, and the variance of

random variable X , respectively.

Parts (2) and (3) of Theorem 1 assume that in failure-free runs, the probabilistic distribution of failure

detector output histories is ergodic. Roughly speaking, this means that in failure-free runs, the failure

detector slowly “forgets” its past history: from any given time on, its future behavior may depend only

on its recent behavior. We call failure detectors satisfying this ergodicity condition ergodic failure

detectors. Ergodicity is a basic concept in the theory of stochastic processes [27], but the technical

details are substantial and outside the scope of this paper.

We have also determined the relations between our accuracy metrics in the case that ergodicity does

not hold. The resulting expressions are more complex (they are generalized versions of those given

below). More details, including a generalized form of Theorem 1 and its proof, can be found in [13].

Theorem 1 For any ergodic failure detector, the following results hold: (1) T
G

= T
MR
� T

M
. (2) If

0 < E(T
MR

) < 1, then �
M

= 1=E(T
MR

), and P
A
= E(T

G
)=E(T

MR
). (3) If 0 < E(T

MR
) < 1 and

10

E(T
G
) = 0, then T

FG
is always 0. If 0 < E(T

MR
) < 1 and E(T

G
) 6= 0, then (3a) for all x 2 [0;1),

Pr(T
FG
� x) =

R x
0 Pr(TG > y)dy=E(T

G
), (3b) E(T k

FG
) = E(T k+1

G
)=[(k + 1)E(T

G
)]. In particular,

(3c) E(T
FG

) = [1 + V(T
G
)=E(T

G
)2]E(T

G
)=2.

The fact that T
G
= T

MR
�T

M
holds is immediate by definition. The proofs of parts (2) and (3) use the

theory of stochastic processes. Part (2) is intuitive, while part (3), which relates T
G

and T
FG

, is more

complex. In particular, part (3c) is counter-intuitive: one may think that E(T
FG

) = E(T
G
)=2, but part

(3c) says that E(T
FG

) is in general larger than E(T
G
)=2 (this is a version of the “waiting time paradox”

in the theory of stochastic processes [4]).

We now explain how Theorem 1 guided our selection of the primary accuracy metrics. Parts (2) and

(3) show that �
M

, P
A

and T
FG

can be derived from T
MR

, T
M

and T
G

. This suggests that the primary

metrics should be selected among T
MR

, T
M

and T
G

. Moreover, since T
G
= T

MR
� T

M
, it is clear that

given the joint distribution of any two of them, one can derive the remaining one. Thus, two of T
MR

,

T
M

and T
G

should be selected as the primary metrics, but which two? By choosing T
MR

and T
M

as

our primary metrics, we get the following convenient property that helps to compare failure detectors:

if FD1 is better than FD2 in terms of both E(T
MR

) and E(T
M
) (the expected values of the primary

metrics) then we can be sure that FD1 is also better than FD 2 in terms of E(T
G
) (the expected values

of the other metric). We would not get this useful property if T
G

were selected as one of the primary

metrics.7

A final remark is now in order on the seven QoS metrics that we proposed. Although these generic

metrics should be sufficient for most applications that use failure detectors, there may be other special-

ized metrics that are relevant to specific applications. Such metrics could be derivable from ours.

3 The Design and QoS Analysis of a New Failure Detector Algo-
rithm

3.1 The Probabilistic Network Model

We assume that processes p and q are connected by a link that does not create or duplicate messages,8

but may delay or drop messages. Note that the link here represents an end-to-end connection and does

not necessarily correspond to a physical link.

We assume that the message loss and message delay behavior of any message sent through the link

is probabilistic, and is characterized by the following two parameters: (a) message loss probability p
L

,

which is the probability that a message is dropped by the link; and (b) message delay D, which is a
7For example, FD 1 may be better than FD 2 in terms of both E(T

G
) and E(T

M
), but worse than FD 2 in terms of

E(T
MR
).

8Message duplication can be easily taken care of: whenever we refer to a message being received, we change it to the
first copy of the message being received. With this modification, all definitions and analyses in the paper go through, and in
particular, our results remain correct without any change.

11

mi+1mi+1 mi+1

(c)(b)(a)

p

q

mi mimi

�i+1�i+1�i �i �i �i+1

FD at q

suspect

trust trust

suspect

�i �i+1 �i �i+1 �i �i+1

Figure 5: Three scenarios of the failure detector output in one interval [�i; �i+1)

random variable with range (0;1) representing the delay from the time a message is sent to the time

it is received, under the condition that the message is not dropped by the link. We assume that the

expected value E(D) and the variance V(D) of D are finite. Note that our model does not assume that

the message delay time D follows any particular distribution, and thus it is applicable to many practical

systems.

Processes p and q have access to their own local clocks. For simplicity, we assume that there is no

clock drift, i.e., local clocks run at the same speed as real time. In practice, clock drift rate is usually

very small (in the order of 10�6 [14]). Thus, for the purpose of failure detection, clock drift is usually

negligible because in most cases only messages from a short period of time are used for detection, and

the clock drift in this short period is not significant. In Sections 3, 4 and 5, we further assume that

clocks are synchronized – an assumption that holds in many systems. We explain how to remove this

assumption in Section 6.

For simplicity we assume that the probabilistic behavior of the network does not change over time.

In Section 8, we suggest some ways to modify the algorithm so that it dynamically adapts to changes

in the probabilistic behavior of the system.

We assume that crashes cannot be predicted, i.e., the state of the system at any given time has no

information whatsoever on the occurrence of future crashes (this excludes a system with program-

controlled crashes [11]). Moreover, the delay and loss behaviors of the messages that a process sends

are independent of whether (and when) the process crashes.

3.2 The Algorithm

The new algorithm works as follows. The monitored process p periodically sends heartbeat messages

m1; m2; m3; : : : to q every � time units, where � is a parameter of the algorithm. Every heartbeat

message mi is tagged with its sequence number i. Henceforth, �i denotes the sending time of message

mi. The monitoring process q shifts the �i’s forward by Æ — the other parameter of the algorithm —

12

Process p:

1 for all i � 1, at time �i = i � �, send heartbeat mi to q;

Process q:

2 Initialization: output = S; fsuspect p initiallyg

3 for all i � 1, at time �i = �i + Æ:
4 if did not receive mj with j � i then output S; fsuspect p if no fresh message is receivedg

5 upon receive message mj at time t 2 [�i; �i+1):
6 if j � i then output T ; ftrust p when some fresh message is receivedg

Figure 6: Failure detector algorithm NFD-S with parameters � and Æ (clocks are synchronized)

to obtain the sequence of times �1 < �2 < �3 < : : :, where �i = �i + Æ. Process q uses the �i’s and the

times it receives heartbeat messages, to determine whether to trust or suspect p, as follows. Consider

time period [�i; �i+1). At time �i, q checks whether it has received some message mj with j � i. If so,

q trusts p during the entire period [�i; �i+1) (Fig. 5 (a)). If not, q starts suspecting p. If at some time

before �i+1, q receives some message mj with j � i then q starts trusting p from that time until �i+1.

(Fig. 5 (b)). If by time �i+1, q has not received any message mj with j � i, then q suspects p during

the entire period [�i; �i+1) (Fig. 5 (c)). This procedure is repeated for every time period. The detailed

algorithm with parameters � and Æ is denoted by NFD-S, and is given in Fig. 6.9

Note that from time �i to �i+1, only messages mj with j � i can affect the output of the failure

detector. For this reason, �i is called a freshness point: from time �i to �i+1, messages mj with j � i

are still fresh (useful). So, our algorithm is characterized by the following property: q trusts p at time t

if and only if q received a message that is still fresh at time t.

This property immediately implies that the failure detector reaches its steady state very quickly: it

does so at time �1, i.e., Æ time after the first heartbeat message is sent. This is because after time �j , the

state of process q only depends on what happens at or after time �j (the time when the j-th heartbeat

message is sent).

3.3 The QoS Analysis of the Algorithm

We now give the QoS of the algorithm (the analysis is given in Appendix B). We assume that the link

from p to q satisfies the following message independence property: the behaviors of any two heartbeat

messages sent by p are independent.10 Henceforth, let �0
def
= 0, and �i = �i + Æ for i � 1 (as in line 3 of

the algorithm).
9This version of the algorithm is convenient for illustrating the main idea and for performing the analysis. We have

omitted some obvious optimizations.
10In practice, this holds only if consecutive heartbeats are sent more than some � time units apart, where � depends on

the system. So assuming that the behavior of heartbeats are independent is equivalent to assuming that � > �.

13

We first formalize the intuition behind freshness points and fresh messages:

Lemma 2 For all i � 0 and all time t 2 [�i; �i+1), q trusts p at time t if and only if q has received some

message mj with j � i by time t.

The following definitions are for runs where p does not crashes.

Definition 1

(1) For any i � 1, let k be the smallest integer such that for all j � i+ k, mj is sent at or after time

�i.

(2) For any i � 1, let pj(x) be the probability that q does not receive message mi+j by time �i + x,

for every j � 0 and every x � 0; let p0 = p0(0).

(3) For any i � 2, let q0 be the probability that q receives message mi�1 before time �i.

(4) For any i � 1, let u(x) be the probability that q suspects p at time �i + x, for every x 2 [0; �).

(5) For any i � 2, let p
S

be the probability that an S-transition occurs at time � i.

The above definitions are given in terms of i, a positive integer. Proposition 3, however, shows that

they are actually independent of i.

Proposition 3 (1) k = dÆ=�e. (2) For all j � 0 and for all x � 0, pj(x) = p
L
+ (1 � p

L
)Pr(D >

Æ + x � j�). (3) q0 = (1 � p
L
)Pr(D < Æ + �). (4) For all x 2 [0; �), u(x) =

Qk
j=0 pj(x). (5)

p
S
= q0 � u(0).

By definition, if p0 = 0 then for every i � 1, the probability that q receives mi by time �i is 1. Thus,

if p0 = 0 then, with probability one, q trusts p forever after time �1. Similarly, it is easy to see that if

q0 = 0 then, with probability one, q suspects p forever. So p0 = 0 and q0 = 0 are degenerated cases of

no interest. We henceforth assume that p0 > 0 and q0 > 0.

The following lemma indicates that Theorem 1 is applicable to failure detector NFD-S.

Lemma 4 NFD-S is an ergodic failure detector.

The following theorem summarizes our QoS analysis of the new failure detector algorithm.

Theorem 5 Consider a system with synchronized clocks, where the probability of message losses is

p
L

, and the distribution of message delays is Pr(D � x). The failure detector NFD-S of Fig. 6 with

parameters � and Æ has the following properties.

(1) The detection time is bounded as follows, and the bound is tight:

T
D
� Æ + �: (3.1)

14

(2) The average mistake recurrence time is:

E(T
MR

) =
�

p
S

: (3.2)

(3) The average mistake duration is:

E(T
M
) =

R �
0 u(x) dx

p
S

: (3.3)

From E(T
MR

) and E(T
M
) given in the theorem above, we can easily derive the other accuracy measures

using Theorem 1. For example, we can get the query accuracy probability P
A
= 1�E(T

M
)=E(T

MR
) =

1� 1=� �
R �
0 u(x) dx.

Theorem 5 (1) shows an important property of the algorithm: the detection time is bounded, and the

bound does not depend on the behavior of message delays and losses.

In Sections 4, 5 and 6, we show how to use Theorem 5 to compute the failure detector parameters,

so that the failure detector satisfies some QoS requirements (given by an application).

3.4 An Optimality Result

Among all failure detectors that send heartbeats at the same rate and satisfy the same upper bound on

the detection time, the new algorithm provides the best query accuracy probability. More precisely, let

C be the class of failure detector algorithms A such that in every run of A, process p sends heartbeats

to q every � time units and A satisfies T
D
� TU

D
for some constant T U

D
. Let A� be the instance of the

new failure detector algorithm NFD-S with parameters � and Æ = T U
D
� �. By part (1) of Theorem 5,

we know that A� 2 C. We can show that

Theorem 6 For any A 2 C, let P
A

be the query accuracy probability of A. Let P �

A
be the query

accuracy probability of A�. Then P �

A
� P

A
.

The theorem is a consequence of the following important property of algorithm A�. Consider any

algorithm A 2 C. Let r� be any failure-free run of A�, and r be any failure-free run of A in which the

heartbeat delays and losses are exactly as in r�. We can show that if q suspects p at time t in r�, then q

also suspects p at time t in r. With this property, it is easy to see that the probability that q trusts p at

a random time in A� must be at least as high as the probability that q trusts p at a random time in any

A 2 C. The detailed proof is given in Appendix C.

4 Configuring the Failure Detector to Satisfy QoS Requirements

Suppose we are given a set of failure detector QoS requirements (the QoS requirements could be given

by the application that uses this failure detector). We now show how to compute the parameters � and Æ

of our failure detector algorithm, so that these requirements are satisfied. We assume that (a) the local

15

Failure Detector
NFD-S

Configurator

pL

η δ

QoS
Requirements

T , T , TD
U

MR
L

M
U

Pr (D ≤ x)

Probabilistic Behavior
of Heartbeats

Figure 7: Meeting QoS requirements with NFD-S. The probabilistic behavior of heartbeats is given,
and clocks are synchronized

clocks of processes are synchronized, and (b) one knows the probabilistic behavior of the messages,

i.e., the message loss probability p
L

and the distribution of message delays Pr(D � x). In Sections 5

and 6, we consider the cases when these assumptions do not hold.

We assume that the QoS requirements are expressed using the primary metrics. More precisely, a set

of QoS requirements is a tuple (T U
D
; TL

MR
; TU

M
) of positive numbers, where T U

D
is an upper bound on the

detection time, T L
MR

is a lower bound on the average mistake recurrence time, and T U
M

is an upper bound

on the average mistake duration. In other words, the requirements are that:11

T
D
� TU

D
; E(T

MR
) � TL

MR
; E(T

M
) � TU

M
: (4.1)

Our goal, illustrated in Fig. 7, is to find a configuration procedure that takes as inputs (a) the QoS re-

quirements, namely T U
D
; TL

MR
; TU

M
, and (b) the probabilistic behavior of the heartbeat messages, namely

p
L

and Pr(D � x), and outputs the failure detector parameters � and Æ so that the failure detector

satisfies the QoS requirements in (4.1). Furthermore, to minimize the network bandwidth taken by the

failure detector, we want a configuration procedure that finds the largest intersending interval � that

satisfy these QoS requirements.

From Theorem 5, our goal can be restated as a mathematical programming problem:

maximize �

subject to Æ + � � TU
D

(4.2)
�

p
S

� TL
MR

(4.3)
R �
0 u(x) dx

p
S

� TU
M

(4.4)

11Note that the bounds on the primary metrics E(T
MR
) and E(T

M
) also impose bounds on the derived metrics, according

to Theorem 1. More precisely, we have �
M
� 1=TL

MR
, P
A
� (TL

MR
� T

U
M
)=TL

MR
, E(T

G
) � T

L
MR
� T

U
M

, and E(T
FG
) �

(TL
MR
� T

U
M
)=2.

16

where the values of u(x) and p
S

are given by Proposition 3. Solving this problem is hard, so instead

we show how to find some � and Æ that satisfy (4.2)–(4.4) (but the � that we find may not be the largest

possible). To do so, we replace (4.4) with a simpler and stronger constraint, and then compute the

optimal solution of this modified problem (see Appendix D). We obtain the following procedure to find

� and Æ:

� Step 1: Compute q00 = (1 � p
L
)Pr(D < TU

D
), and let �max = q00T

U
M

. If �max = 0, then output

“QoS cannot be achieved” and stop; else continue.

� Step 2: Let

f(�) =
�

q00
QdTU

D
=�e�1

j=1 [p
L
+ (1� p

L
)Pr(D > TU

D
� j�)]

: (4.5)

Find the largest � � �max such that f(�) � T L
MR

. Such an � always exists. To find such an �, we

can use a simple numerical method, such as binary search (this works because when � decreases,

f(�) increases exponentially fast).

� Step 3: Set Æ = T U
D
� �, and output � and Æ.

Theorem 7 Consider a system in which clocks are synchronized, and the probabilistic behavior of

messages is known. Suppose we are given a set of QoS requirements as in (4.1). The above procedure

has two possible outcomes: (1) It outputs � and Æ. In this case, with parameters � and Æ the failure

detector NFD-S of Fig. 6 satisfies the given QoS requirements. (2) It outputs “QoS cannot be achieved”.

In this case, no failure detector can achieve the given QoS requirements.

As an example of the configuration procedure of the failure detector, suppose we have the following

QoS requirements: (a) a crash failure is detected within 30 seconds, i.e., T U
D

= 30 s; (b) on average,

the failure detector makes at most one mistake per month, i.e., T L
MR

= 30 days = 2 592 000 s; (c) on

average, the failure detector corrects its mistakes within one minute, i.e. T U
M

= 60 s. Assume that

the message loss probability is p
L
= 0:01, the distribution of message delay D is exponential, and the

average message delay E(D) is 0:02 s. By inputting these numbers into the configuration procedure,

we get Æ = 20:03 s and � = 9:97 s. With these parameters, our failure detector satisfies the given QoS

requirements.

Note that the above procedure may not find the optimal (largest) possible � that satisfies the QoS

(but, as Theorem 7 states, the � found satisfies the QoS). How close is the � found by our procedure to

the optimal �? This depends on the distribution of the message delay and the message loss. However,

we can provide a conservative bound on the optimal � that always holds regardless of the distribution:

Proposition 8 To satisfy the QoS constraint (4.1) with NFD-S, parameter � has to satisfy � �

�max=(pL + (1� p
L
)Pr(D > TU

D
)), where �max is defined in Step 1 of the configuration procedure.

17

Failure Detector
NFD-S

Configurator

Estimator of the Probabilistic
Behavior of Heartbeats

pL V(D)

η δ

E(D)
QoS

Requirements

T , T , TD
U

MR
L

M
U

Figure 8: Meeting QoS requirements with NFD-S. The probabilistic behavior of heartbeats is not
known, and clocks are synchronized

5 Dealing with Unknown Message Behavior

In Section 4, our procedure to compute the parameters � and Æ of NFD-S to meet some QoS require-

ments assumed that one knows the probability p
L

of message loss and the distribution Pr(D � x) of

message delays. This assumption is not unrealistic, but in some systems the probabilistic behavior of

messages may not be known. In that case, it is still possible to compute � and Æ, as we now explain.

We proceed in two steps: (1) we first show how to compute � and Æ using only p
L

, E(D) and V(D)

(recall that E(D) and V (D) are the expected value and variance of message delays, respectively); (2)

we then show how to estimate p
L

, E(D) and V(D). In this section we still assume that local clocks are

synchronized (we drop this assumption in the next section). See Fig. 8.

Computing Failure Detector Parameters � and Æ Using p
L

, E(D) and V(D). With E(D) and

V(D), we can bound Pr(D > t) using the following One-Sided Inequality of probability theory (e.g.,

see [4], p.79): For any random variable D with a finite expected value and a finite variance,

Pr(D > t) �
V(D)

V(D) + (t� E(D))2
; for all t > E(D): (5.1)

With this, we can derive the following bounds on the QoS metrics of algorithm NFD-S.

Theorem 9 Consider a system with synchronized clocks and assume Æ > E(D). For algorithm NFD-S,

we have E(T
MR

) � �=� and E(T
M
) � �=, where

� =
k0Y
j=0

V(D) + p
L
(Æ � E(D)� j�)2

V(D) + (Æ � E(D)� j�)2
; k0 = d(Æ � E(D))=�e � 1;

and

 =
(1� p

L
)(Æ � E(D) + �)2

V(D) + (Æ � E(D) + �)2
:

18

Note that in Theorem 9 we assume that Æ > E(D), where Æ is a parameter of NFD-S. This assump-

tion is reasonable because if Æ � E(D) then NFD-S would generate a false suspicion every time the

heartbeat message is delayed by more than the average message delay. But then, NFD-S would make

too many mistakes to be a useful failure detector.

Theorem 9 can be used to compute the parameters � and Æ of the failure detector NFD-S, so that it

satisfies the QoS requirements given in (4.1). Recall that these QoS requirements are given as a tuple

(TU
D
; TL

MR
; TU

M
), where TU

D
is an upper bound on the worst-case detection time, T L

MR
is a lower bound on

the average mistake recurrence time, and TU
M

is an upper bound on the average mistake duration. The

configuration procedure is given below. This procedure assumes that T U
D

> E(D), i.e., the required

detection time is greater than the average message delay (a reasonable assumption).

� Step 1: Compute 0 = (1 � p
L
)(TU

D
� E(D))2=(V(D) + (TU

D
� E(D))2) and let �max =

min(0 TU
M
; TU

D
� E(D)). If �max = 0, then output “QoS cannot be achieved” and stop; else

continue.

� Step 2: Let

f(�) = � �

d(TU
D
�E(D))=�e�1Y

j=1

V(D) + (TU
D
� E(D)� j�)2

V(D) + p
L
(TU

D
� E(D)� j�)2

: (5.2)

Find the largest � � �max such that f(�) � T L
MR

. Such an � always exists.

� Step 3: Set Æ = T U
D
� �, and output � and Æ.

Notice that the above procedure does not use the distribution Pr(D � x) of message delays; it only

uses p
L

, E(D) and V(D).

Theorem 10 Consider a system in which clocks are synchronized, and the probabilistic behavior of

messages is not known. Suppose we are given a set of QoS requirements as in (4.1), and suppose

TU
D

> E(D). The above procedure has two possible outcomes: (1) It outputs � and Æ. In this case,

with parameters � and Æ the failure detector NFD-S of Fig. 6 satisfies the given QoS requirements.

(2) It outputs “QoS cannot be achieved”. In this case, no failure detector can achieve the given QoS

requirements.

The above configuration procedure works when the distribution of the message delay D is not known

(only E(D) and V (D) are known). To illustrate this procedure, we take the same example as in Sec-

tion 4, except that we do not assume that the distribution of D is exponential. Specifically, suppose

that the failure detector QoS requirements are that: (a) a crash failure is detected within 30 sec-

onds, i.e., T U
D

= 30 s; (b) on average, the failure detector makes at most one mistake per month,

i.e., TL
MR

= 30 days = 2 592 000 s; (c) on average, the failure detector corrects its mistakes within one

minute, i.e. T U
M

= 60 s. Assume that the message loss probability is p
L
= 0:01, the average message

19

delay E(D) is 0:02 s, and the variance V (D) is also 0:02. By inputting these numbers into the config-

uration procedure, we get Æ = 20:29 s and � = 9:71 s. With these parameters, failure detector NFD-S

satisfies the given QoS requirements. Note that when we go from the case that the distribution of D is

known (example of Section 4) to the case that D is not known, � decreases from 9:97 s to 9:71 s. This

corresponds to a slight increase in the heartbeat sending rate (in order to achieve the same given QoS).

Estimating p
L

, E(D) and V(D). It is easy to estimate p
L

, E(D) and V(D) using heartbeat messages.

For example, to estimate p
L

, one can use the sequence numbers of the heartbeat messages to count the

number of “missing” heartbeats, and then divide this count by the highest sequence number received so

far. To estimate E(D) and V(D), we use the synchronized clocks as follows: When p sends a heartbeat

m, p timestamps m with the sending time S, and when q receives m, q records the receipt time A. In

this way, A � S is the delay of m. We then compute the average and variance of A � S for multiple

past heartbeat messages, and thus obtain accurate estimates for E(D) and V(D).

6 Dealing with Unknown Message Behavior and Unsynchronized
Clocks

So far, we assumed that the clocks of p and q are synchronized. More precisely, in the algorithm NFD-S

of Fig. 6, q sets the freshness points �i’s by shifting the sending times of heartbeats by a constant. When

clocks are not synchronized, the local sending times of heartbeats at p cannot be used by q to set the �i’s,

and thus q needs to do it in a different way. The basic idea is that q sets the �i’s by shifting the expected

arrival times of the heartbeats, and q estimates the expected arrival times accurately (to compute these

estimates, q does not need synchronized clocks).

6.1 NFD-U: an Algorithm that Uses Expected Arrival Times

We now present NFD-U, a new failure detector algorithm for systems with unsynchronized clocks. The

new algorithm is very similar to NFD-S; the only difference is that q now sets the �i’s by shifting the

expected arrival times of the heartbeats, rather than the sending times of heartbeats. We assume that

local clocks do not drift with respect to real time, i.e., they accurately measure time intervals. Let �i

denote the sending time of mi with respect to q’s local clock. Then, the expected arrival time of mi at

q is EAi = �i + E(D), where E(D) is the expected message delay. Assume that q knows the EAi’s

(we will soon show how q can accurately estimate them). To set the �i’s, q shifts the EAi’s forward

by � time units (i.e., �i = EAi + �), where � is a new failure detector parameter that replaces Æ. The

intuition here is that EAi is the time when mi is expected to be received, and � is a slack added to EAi

to mitigate the effects of the possible extra delay or loss of mi.12

12To deal with the loss of mi, the slack � must be large enough to allow q to “catch” the next heartbeat message m i+1.

20

Process p: fusing p’s local clockg

1 for all i � 1, at time i � �, send heartbeat mi to q;

Process q: fusing q’s local clockg

2 Initialization:
3 �0 = 0;
4 ` = �1; f` keeps the largest sequence number in all messages q received so farg

5 upon �`+1 = the current time: fif the current time reaches �`+1, then none of the messages received is still freshg
6 output S; fsuspect p since no message received is still fresh at this timeg

7 upon receive message mj at time t:
8 if j > ` then freceived a message with a higher sequence numberg
9 ` j;
10 �`+1 EA`+1 + �; fset the next freshness point �`+1 using the expected arrival time of m`+1g
11 if t < �`+1 then output T ; ftrust p since m` is still fresh at time tg

Figure 9: Failure detector algorithm NFD-U with parameters � and � (clocks are not synchronized, but
the EAi’s are known)

Figure 9 shows the whole algorithm, denoted by NFD-U. We restructured the algorithm a little, to

show explicitly when q uses the EAi’s. Variable ` keeps the largest heartbeat sequence number received

so far, and �`+1 refers to the “next” freshness point. Note that when q updates `, it also changes �`+1. If

the local clock of q ever reaches time �`+1 (an event which might never happen), then at this time none

of the heartbeats received is still fresh, and so q starts suspecting p (lines 5–6). When q receives mj ,

it checks whether this is a new heartbeat (j > `) and in this case, (1) q updates `, (2) q sets the next

freshness point �`+1 to EA`+1 + �, and (3) q trusts p if the current time is less than �`+1 (lines 9–11).

Note that this algorithm is identical to NFD-S, except in the way in which q sets the � i’s. In particular,

for any time t, let i be so that t 2 [�i; �i+1); then with NFD-U q trusts p at time t if and only if q has

received heartbeat mi or higher by time t.

6.2 Analysis and Configuration of NFD-U

NFD-U and NFD-S differ only in the way they set the �i’s: in NFD-S, �i = �i + Æ, while in NFD-U,

�i = EAi + � = �i + E(D) + � (the last equality holds because EAi = �i + E(D)). Thus, the QoS

analysis of NFD-U is obtained by simply replacing Æ with E(D) + � in Proposition 3, Theorem 5 and

Theorem 9.

To configure the parameters � and � of NFD-U to meet some QoS requirements, we use a method

similar to the one in Section 5. We proceed in two steps: (1) we first show how to compute � and �

using only p
L

and V(D) (note that E(D) is not used); (2) we then show how to estimate p
L

and V(D).

See Fig. 10.

21

Failure Detector NFD-U
(EAi’s are known)

Configurator

Estimator of the Probabilistic
Behavior of Heartbeats

pL V(D)

η α

QoS
Requirements

T , T , TD
u

MR
L

M
U

Figure 10: Meeting QoS requirements with NFD-U. The probabilistic behavior of heartbeats is not
known; clocks are not synchronized, but they are drift-free

Computing Failure Detector Parameters � and � using p
L

and V(D). By replacing Æ withE(D)+

� in Theorem 9, we obtain the following bounds on the accuracy metrics of NFD-U:

Theorem 11 Consider a system with drift-free clocks and assume � > 0. For algorithm NFD-U, we

have E(T
MR

) � �=� and E(T
M
) � �=, where

� =
k0Y
j=0

V(D) + p
L
(�� j�)2

V(D) + (�� j�)2
; k0 = d�=�e � 1; and =

(1� p
L
)(� + �)2

V(D) + (� + �)2
:

Note that the bounds given in Theorem 11 uses only p
L

and V(D); on the other hand, E(D) is not used.

Theorem 11 can be used to compute the parameters � and � of the failure detector NFD-U, so that it

satisfies some QoS requirements. We assume the QoS requirements are given as a tuple (T u
D
; TL

MR
; TU

M
)

of positive numbers. The requirements are that:

T
D
� T u

D
+ E(D); E(T

MR
) � TL

MR
; E(T

M
) � TU

M
: (6.1)

Note that the upper bound on the detection time T
D

is not T u
D

, but T u
D

plus the unknown average

message delay E(D). So, the actual upper bound T U
D

on the detection time is T u
D
+ E(D). In other

words, the QoS requirement on detection time is not absolute as in (4.1), but relative to E(D). This

is justified as follows. Note that when local clocks are not synchronized and only one-way messages

are used, an absolute bound T U
D

on detection time cannot be enforced by any nontrivial failure detector.

Moreover, it is reasonable to specify an upper bound requirement relative to the average delay E(D)

of a heartbeat. In fact, a failure detector that guarantees to detect crashes faster than E(D) makes too

many mistakes to be useful.

The following is the configuration procedure for algorithm NFD-U, modified from the one in Sec-

tion 5.

22

� Step 1: Compute 0 = (1 � p
L
)(T u

D
)2=(V(D) + (T u

D
)2) and let �max = min(0 TU

M
; T u

D
). If

�max = 0, then output “QoS cannot be achieved” and stop; else continue.

� Step 2: Let

f(�) = � �

dTu
D
=�e�1Y
j=1

V(D) + (T u
D
� j�)2

V(D) + p
L
(T u

D
� j�)2

: (6.2)

Find the largest � � �max such that f(�) � T L
MR

. Such an � always exists.

� Step 3: Set � = T u
D
� �, and output � and �.

Theorem 12 Consider a system with unsynchronized, drift-free clocks, where the probabilistic behav-

ior of messages is not known. Suppose we are given a set of QoS requirements as in (6.1). The above

procedure has two possible outcomes: (1) It outputs � and �. In this case, with parameters � and � the

failure detector NFD-U of Fig. 9 satisfies the given QoS requirements. (2) It outputs “QoS cannot be

achieved”. In this case, no failure detector can achieve the given QoS requirements.

Estimating p
L

and V(D). When local clocks are not synchronized, we can estimate p
L

and V(D)

using the procedure of Section 5. To estimate p
L

, this procedure did not use clocks, and so it works

just as before. For V(D), the procedure did use clocks, but it works even though the clocks are not

synchronized. To see why, recall that the procedure estimates V(D) by computing the variance of

A� S of multiple heartbeat messages, where A is the time (with respect to q’s local clock time) when

q receives a message m, and S is the time (with respect to p’s local clock time) when p sends m. When

clocks are not synchronized, A � S is not the actual delay of m, but rather the delay of m plus a

constant, namely, the skew between the clocks of p and q. Thus the variance of A � S is the same as

the variance V(D) of message delays.

6.3 NFD-E: an Algorithm that Uses Estimates of Expected Arrival Times

Failure detector NFD-U (Fig. 9) assumes that q knows the exact value of all the EAi’s (the expected

arrival time of messages). In practice, q may not know such values, and needs to estimate them. To do

so, every time q executes line 10 of algorithm NFD-U in Fig. 9, q considers the n most recent heartbeat

messages (for some n), denoted m0

1; : : : ; m
0

n. Let s1; : : : ; sn be the sequence numbers of such messages

and A0

1; : : : ; A
0

n be their receipt times according to q’s local clock. Then EA`+1 can be estimated by:

EA`+1 �
1

n

nX
i=1

A0

i � �si

!
+ (`+ 1)�: (6.3)

Intuitively, this formula first “normalizes” each A0

i by shifting it backward in time by �si. Then it

computes the average of the normalized A0

is. Finally, it shifts forward the computed average by (`+1)�.

It is easy to see that this is a good estimate of EA`+1. We denote by NFD-E the algorithm obtained

23

Failure Detector
NFD-E

Configurator

Estimator of the Probabilistic
Behavior of Heartbeats

pL V(D)

η α

EAi’s

QoS
Requirements

T , T , TD
u

MR
L

M
U

Figure 11: Meeting QoS requirements with NFD-E (same as with NFD-U, except that the expected
arrival times EAi’s of heartbeats are estimated)

from Fig. 9 by replacing EA`+1 with this estimate. Our simulations show that NFD-E and NFD-U are

practically indistinguishable for values of n as low as 30. Thus, for large values of n, the configuration

procedure for NFD-U can also be used to configure NFD-E. See Fig. 11.

7 Simulation Results

We simulate both the new failure detector algorithm that we developed and the simple algorithm com-

monly used in practice (as described in Section 1.2). In particular, (a) we simulate the algorithm NFD-S

(the one with synchronized clocks), and show that the simulation results validate our QoS analysis of

NFD-S in Section 3.3; (b) we simulate the algorithm NFD-E (the one without synchronized clocks that

estimates the expected arrival times), and show that it provides essentially the same QoS as NFD-S;

and (c) we simulate the simple algorithm and compare it to the new algorithms NFD-S and NFD-E,

and show that the new algorithms provide a much better accuracy than the simple algorithm.

The settings of the simulations are as follows. For the purpose of comparison, we normalize the

intersending time � of heartbeat messages in both the new algorithm and the simple algorithm to 1. The

message loss probability p
L

is set to 0:01. The message delay D follows the exponential distribution

(i.e., Pr(D � x) = 1 � e�x=E(D) for all x � 0). We choose the exponential distribution because of

the following two reasons: first, it has the characteristic that a large portion of messages have fairly

short delays while a small portion of messages have large delays, which is also the characteristic of

message delays in many practical systems [14]; second, it has a simple analytical representation which

allows us to compare the simulation results with the analytical results given in Theorem 5. The average

message delay E(D) is set to 0:02, which is a small value compared to the intersending time �. This

corresponds to a system in which message delays are in the order of tens of milliseconds (typical for

messages transmitted over the Internet), while heartbeat messages are sent every few seconds. Note

24

1 1.5 2 2.5 3 3.5

10
1

10
2

10
3

10
4

10
5

10
6

10
7

required bound TU
D

 on the worst−case detection time

av
er

ag
e

m
is

ta
ke

 r
ec

ur
re

nc
e

tim
e

ob
ta

in
ed

 fr
om

 th
e

si
m

ul
at

io
ns

analytical
NFD−S
NFD−E
SFD−L
SFD−S

Figure 12: The average mistake recurrence times obtained by: (a) simulating the new algorithms NFD-S and
NFD-E (shown by + and �), (b) simulating the simple algorithm (shown by -Æ- and -�-), and (c) plotting the
analytical formula for E(T

MR
) of the new algorithm NFD-S (shown by —).

that since D follows an exponential distribution, the standard deviation is �(D) = E(D) = 0:02, and

the variance is V(D) = �(D)2 = 4� 10�4.

To compare the accuracy of different algorithms, we first set their parameters so that: (a) they send

messages at the same rate (recall that � = 1), and (b) they satisfy the same bound T U
D

on the detection

time. We simulated runs for values of T U
D

ranging from 1 to 3.5, and for each value of T U
D

, we measured

the accuracy of the failure detectors in terms of the average mistake recurrence time E(T
MR

) and the

average mistake duration E(T
M
). For each value of TU

D
, we plotted E(T

MR
) by considering a run

with 500 mistake recurrence intervals, and computing the average length of these intervals. We do not

show the plots for E(T
M
) because the E(T

M
) of all the algorithms were similar and bounded above by

approximately � = 1.

7.1 Simulation Results of NFD-S and NFD-E

To ensure that NFD-S meets the given upper bound T U
D

on the detection time, we set Æ to T U
D
� � =

TU
D
� 1 (as prescribed by Theorem 5 (1)). In algorithm NFD-E, we choose to estimate the expected

arrival time using the most recent 32 heartbeat messages. To ensure NFD-E meets the given upper

bound T U
D

, we set � = TU
D
� E(D)� � = TU

D
� 1:02.

In Fig. 12, we show the simulation results for algorithms NFD-S and NFD-E, together with the

analytical formula of E(T
MR

) derived in Section 3.3. These results show that: (a) the accuracy of

25

algorithms NFD-S and NFD-E are very similar, and (b) the simulation results of both algorithms match

the analytical formula for E(T
MR

).

7.2 Simulation Results of the Simple Algorithm

The simple algorithm has no upper bounds on the detection time. However, such an upper bound can

be guaranteed with a simple modification: the general idea is to discard heartbeats which have very

large delays. More precisely, the modified algorithm has another parameter, the cutoff time c, such

that all heartbeats delayed by more than c time units, called slow heartbeats, are discarded.13 With this

modification, the detection time T
D

is at most T
D
� c+ TO .

Given a bound T U
D

on the detection time, there is a tradeoff in setting the cutoff time c and the timeout

value TO : the larger the cutoff time c, the smaller the number of slow heartbeats being discarded, but

the shorter the timeout value TO , and vice versa. In our simulations, we choose two cutoff times

c = 0:16 and c = 0:08, i.e., 8 and 4 times the average message delay, respectively. The timeout TO is

set to T U
D
� c. The algorithm with c = 0:16 is denoted by SFD-L, and the one with c = 0:08 is denoted

by SFD-S.

The simulation results on the average mistake recurrence times of SFD-L and SFD-S (Fig. 12) show

that the accuracy of the new algorithms (with or without synchronized clocks) is better — sometimes

by an order of magnitude — than the accuracy of the simple algorithm. Intuitively, this is because the

use of a cutoff time to bound the detection time in the simple algorithm is detrimental to its accuracy: if

the simple algorithm uses a large cutoff time, then it must use a small timeout value, and this decreases

the accuracy of the failure detector; if it uses a small cutoff time, then it discards more heartbeats, and

this is equivalent to an increase in the message loss probability; this in turn also decreases the accuracy

of the failure detector (a detailed explanation of the simulation results can be found in [13]).

8 Discussion

Making the Failure Detector Adaptive

Dealing with gradual changes to network traffic. In this paper, we assumed that the probabilistic

behavior of heartbeat messages does not change. In some networks, this may not be the case. For

instance, a corporate network may have one behavior during working hours (when the message traffic

is high), and a completely different behavior during lunch time or at night (when the system is mostly

idle): During peak hours, the heartbeat messages may have a higher loss rate, a higher expected delay,

and a higher variance of delay, than during off-peak hours. Such networks require a failure detector

that adapts to the changing conditions, i.e., it dynamically reconfigures itself to meet some given QoS

requirements.
13This assumes that the algorithm can detect slow messages; this is not easy when local clocks are not synchronized, but

a fail-aware datagram service [18] may be used.

26

For this kind of gradual changes in the probabilistic behavior of the network, we suggest the follow-

ing way to make our failure detectors adaptive. For the case when clocks are synchronized, we make

NFD-S adaptive by periodically reexecuting the configuration outlined in Fig. 8. The basic idea is to

periodically run the estimator, which uses the n most recent heartbeats to estimate the current values of

p
L
; E(D) and V (D). These estimates are then fed into the configurator to recompute the new failure

detector parameters � and Æ.

Similarly, when clocks are not synchronized, we can make NFD-E adaptive by periodically reexecut-

ing the configuration outlined in Fig. 11. The only difference here is that the estimator also outputs EA i

— the estimated arrival time of the next heartbeat — which is input into the failure detector NFD-E.

The above adaptive algorithms form the core of a failure detection service that is currently being

implemented and evaluated [15]. This service is intended to be shared among many different concurrent

applications, each with a different set of QoS requirements. The failure detector in this architecture

dynamically adapts itself not only to changes in the network condition, but also to changes in the

current set of QoS demands (as new applications are started and old ones terminate).

Dealing with bursty traffic. What if the network conditions change very frequently due to bursty traf-

fic? The above ideas still work provided that (1) the occurrence of bursts are independent of each other

and follow some slowly changing probabilistic distribution and (2) the duration of each burst is short

(smaller than the sending period �). In this case, note that heartbeat messages behave independently of

each other, according to some new slowly changing probability distribution that takes into account the

occurrence of bursts. Thus, the situation is no different from before.

What if (1) or (2) does not hold? Then we need to use other techniques to attempt to estimate the

current behavior of the network based on past behavior. One possibility is to use two components: (a)

a short-term component that considers only the very latest messages and thus quickly reacts to sudden

changes in the network (e.g., due to bursty traffic) and (b) a long-term component that considers a longer

time sample and thus is insensitive to momentary fluctuations. One then combines the estimates from

both components, e.g., by selecting the most conservative one. This scheme is still under development

[28] and is the subject of future research.

Tradeoff between QoS and Cost

It is important to distinguish between two distinct failure detector concepts: the QoS requirement of a

failure detector, i.e., its specification, and the cost of running the failure detector, i.e., the complexity

of a particular failure detector implementation (in terms of network bandwidth, processor cycles, etc.).

Even though these two concepts are distinct, there is an obvious tradeoff between the two: achieving

a better QoS may require a higher cost (e.g., it may require an increase in the heartbeat sending rate).

Note also that a failure detector implementation may be inherently more efficient than another, in the

sense that it can provide the same QoS with lower costs.

Our results take into consideration the network bandwidth cost (measured by �, the heartbeat

27

intersending time). In particular, the analysis of our failure detector relates network bandwidth cost

to the QoS achieved. Moreover, the optimality result of our failure detector implementation is with

respect to implementations that have the same network bandwidth cost (in terms of one-way heartbeat

messages), and our configuration procedures try to find the failure detector parameters that yield the

lowest cost possible.

Nevertheless, there are a number of possible directions for further research. One interesting question

is how can one meet a given QoS specification while minimizing the cost? We answered this question

partially, by focusing on one type of failure detector implementations, namely, the ones based on one-

way heartbeat messages. But there are other types of implementation — e.g., implementations based

on two-way ping messages or on a logical rings of heartbeats. It remains an open question what failure

detectors with what parameters achieve a given QoS with the absolute minimum cost.

Another research direction is to combine the QoS specification with the cost requirements through

a utility function. Such a function could include parameters such as how costly is network bandwidth

and how desirable is a better QoS, and the goal is to maximize utility. One then needs to come up

with a more complex configuration procedure that takes utility into account. One possibility is to use

our current configuration procedure as a subroutine in an iterative process that tries to find local utility

maxima. This is definitely an open area that requires more work.

Acknowledgments

We would like to thank Carole Delporte-Gallet, Hugues Fauconnier and anonymous referees for their

useful comments which helped us improve the paper.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure detector for quiescent re-

liable communication and consensus in partitionable networks. Theoretical Computer Science,

220(1):3–30, June 1999.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery

model. Distributed Computing, 13(2):99–125, Apr. 2000.

[3] M. K. Aguilera, W. Chen, and S. Toueg. On quiescent reliable communication. SIAM Journal on

Computing, 29(6):2040–2073, Apr. 2000.

[4] A. O. Allen. Probability, Statistics, and Queueing Theory with Computer Science Applications.

Academic Press, 2nd edition, 1990.

28

[5] Y. Amir, D. Dolev, S. Kramer, and D. Malkhi. Transis: a communication sub-system for high

availability. In Proceedings of the 22nd Annual International Symposium on Fault-Tolerant Com-

puting, pages 76–84, Boston, July 1992.

[6] K. Arvind. Probabilistic clock synchronization in distributed systems. IEEE Transactions on

Parallel and Distributed Systems, 5(5):475–487, May 1994.

[7] O. Babaoğlu, R. Davoli, L.-A. Giachini, and M. G. Baker. Relacs: a communications infrastruc-

ture for constructing reliable applications in large-scale distributed systems, 1994. BROADCAST

Project deliverable report, Department of Computing Science, University of Newcastle upon Tyne,

UK.

[8] P. Billingsley. Probability and Measure. John Wiley & Sons, 3rd edition, 1995.

[9] K. P. Birman and R. van Renesse, editors. Reliable Distributed Computing with the Isis Toolkit.

IEEE Computer Society Press, 1993.

[10] R. Braden, editor. Requirements for Internet Hosts-Communication Layers. RFC 1122, Oct. 1989.

[11] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group

membership. In Proceedings of the 15th ACM Symposium on Principles of Distributed Comput-

ing, pages 322–330, May 1996.

[12] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal

of the ACM, 43(2):225–267, Mar. 1996. A preliminary version appeared in Proceedings of the

10th ACM Symposium on Principles of Distributed Computing, Aug., 1991, 325–340.

[13] W. Chen. On the Quality of Service of Failure Detectors. PhD thesis, Cornell University, May

2000. available at www.cs.cornell.edu/home/weichen/research/mypapers/thesis.ps.gz.

[14] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3):146–158, 1989.

[15] B. Deianov and S. Toueg. Failure detector service for dependable computing (fast abstract). In

Proceedings of the 2000 International Conference on Dependable Systems and Networks, pages

B14–B15. IEEE Computer Society, June 2000.

[16] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission failure environ-

ments. Technical Report 96-1608, Department of Computer Science, Cornell University, Ithaca,

New York, Sept. 1996.

[17] C. Fetzer and F. Cristian. Fail-aware failure detectors. In Proceedings of the 15th Symposium on

Reliable Distributed Systems, pages 200–209, Oct. 1996.

29

[18] C. Fetzer and F. Cristian. A fail-aware datagram service. In 2nd Annual Workshop on Fault-

Tolerant Parallel and Distributed Systems, Apr. 1997.

[19] C. Fetzer and F. Cristian. A fail-aware membership service. In Proceedings of the 16th Symposium

on Reliable Distributed Systems, pages 157–164, Oct. 1997.

[20] M. G. Gouda and T. M. McGuire. Accelerated heartbeat protocols. In Proceedings of the 18th

International Conference on Distributed Computing Systems, May 1998.

[21] R. Guerraoui, M. Larrea, and A. Schiper. Non blocking atomic commitment with an unreliable

failure detector. In Proceedings of the 14th IEEE Symposium on Reliable Distributed Systems,

pages 41–50, Sept. 1995.

[22] M. G. Hayden. The Ensemble System. PhD thesis, Department of Computer Science, Cornell

University, Jan. 1998.

[23] L. E. Moser, P. M. Melliar-Smith, D. A. Argarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos.

Totem: A fault-tolerant multicast group communication system. Commun. ACM, 39(4):54–63,

Apr. 1996.

[24] G. F. Pfister. In Search of Clusters. Prentice-Hall, Inc., 2nd edition, 1998.

[25] M. Raynal and F. Tronel. Group membership failure detection: a simple protocol and its proba-

bilistic analysis. Distributed Systems Engineering Journal, 6(3):95–102, 1999.

[26] S. M. Ross. Stochastic Processes. John Wiley & Sons, 1983.

[27] K. Sigman. Stationary Marked Point Processes, an Intuitive Approach. Chapman & Hall, 1995.

[28] S. Toueg and D. Ivan, May 2001. Private Communication.

[29] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: a flexible group communication system.

Commun. ACM, 39(4):76–83, Apr. 1996.

[30] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Proceed-

ings of Middleware’98, Sept. 1998.

[31] P. Verı́ssimo and M. Raynal. Time in distributed system models and algorithms. In S. Krakowiak

and S. K. Shrivastava, editors, Advances in Distributed Systems: Advanced Distributed Computing

from Algorithms to Systems, chapter 1. Springer-Verlag, 2000.

30

Appendix

A Main Symbols Used in the Paper

System model

p
L

message loss probability Section 3.1, page 11

D message delay (random variable) Section 3.1, page 11

Primary QoS metrics

T
D

detection time (random variable) Section 2.2, page 8

T
MR

mistake recurrence time (random variable) Section 2.2, page 9

T
M

mistake duration (random variable) Section 2.2, page 9

Derived QoS metrics

�
M

average mistake rate Section 2.3, page 9

P
A

query accuracy probability Section 2.3, page 9

T
G

good period duration (random variable) Section 2.3, page 9

T
FG

forward good period duration (random variable) Section 2.3, page 10

QoS requirements

TU
D

upper bound on detection time Section 4, page 16

TL
MR

lower bound on average mistake recurrence time Section 4, page 16

TU
M

upper bound on average mistake duration Section 4, page 16

T u
D

upper bound on detection time relative to the average mes-
sage delay E(D)

Section 6.2, page 22

Failure detector algorithms

NFD-S algorithm with synchronized clocks Section 3.2, page 13

NFD-U algorithm with unsynchronized clocks and known expected
arrival times of heartbeats

Section 6.1, page 20

NFD-E algorithm with unsynchronized clocks and estimates of ex-
pected arrival times of heartbeats

Section 6.3, page 23

Variables of failure detector algorithms

�i sending time of the i-th heartbeat at p Section 3.2, page 12

�i time of the i-th freshness point at q Section 3.2, page 13

EAi expected arrival time of the i-th heartbeat at q (in algorithm
NFD-U)

Section 6.1, page 20

31

Parameters of failure detector algorithms

� intersending time between two consecutive heartbeats Section 3.2, page 12

Æ shift of freshness point w.r.t. heartbeat sending time, i.e.,
�i = �i + Æ

Section 3.2, page 12

� shift of freshness point w.r.t. heartbeat expected arrival time,
i.e., �i = �i + E(D) + �

Section 6.1, page 20

B Proof of Theorem 5

For completeness, the definitions, lemmata, and the theorems in the main text are restated here in the

Appendices. Some of the following lemmata and propositions are easy and thus their proofs are omitted

here. The complete proofs can be found in [13].

Lemma 2 For all i � 0 and all time t 2 [�i; �i+1), q trusts p at time t if and only if q has received some

message mj with j � i by time t.

Proof. Fix an i � 0 and a time t 2 [�i; �i+1). Suppose first that q has received some message mj

with j � i by time t. Let t0 � t be the time when mj is received. Choose i0 such that t0 2 [�i0 ; �i0+1).

Thus i0 � i � j. According to line 6 of the algorithm, q trusts p at time t 0. For every �` in the period

(t0; t], since mj is received at t0 and ` � i � j, the output of the failure detector does not change to S,

according to lines 3–4. Therefore, q trusts p at time t.

Suppose now that q has not received any message mj with j � i by time t. Then at time �i, q suspects

p according to lines 3–4. During the period (�i; t], since no message mj with j � i is received, the

output of the failure detector does not change to T . So q suspects p at time t. 2

We now analyze the accuracy metrics of the algorithm NFD-S, and to do so we assume that p does

not crash.

Definition 1

(1) For any i � 1, let k be the smallest integer such that for all j � i + k, mj is sent at or after time

�i.

(2) For any i � 1, let pj(x) be the probability that q does not receive message mi+j by time �i+x, for

every j � 0 and every x � 0; let p0 = p0(0).

(3) For any i � 2, let q0 be the probability that q receives message mi�1 before time �i.

(4) For any i � 1, let u(x) be the probability that q suspects p at time �i + x, for every x 2 [0; �).

(5) For any i � 2, let p
S

be the probability that an S-transition occurs at time � i.

Proposition 3 (1) k = dÆ=�e. (2) For all j � 0 and for all x � 0, pj(x) = p
L
+ (1 � p

L
)Pr(D >

Æ + x � j�). (3) q0 = (1 � p
L
)Pr(D < Æ + �). (4) For all x 2 [0; �), u(x) =

Qk
j=0 pj(x). (5)

p
S
= q0 � u(0).

As stated in Section 3.3, we only consider the non-degenerated cases, in which p0 > 0 and q0 > 0.

32

Proposition 13 (1) An S-transition can only occur at time �i for some i � 2, and it occurs at �i if and

only if message mi�1 is received by q before time �i and no message mj with j � i is received by q by

time �i; (2) Lemma 2 remains true if j � i in the statement is replaced by i � j � i + k; (3) part (1)

above remains true if j � i in the statement is replaced by i � j < i + k.

Note that part (1) of the above proposition guarantees that during any bounded time period, there is

only a finite number of transitions of failure detector output.

Proposition 14 u(0) � pk0 , and for all x 2 [0; �), u(0) � u(x).

Lemma 15 P
A
= 1� 1

�

R �
0 u(x) dx.

Proof. For all i � 1, let Pi be the probability that at any random time T 2 [�i; �i+1), q is suspecting p.

Note that T is uniformly distributed on [�i; �i+1) with density 1=(�i+1 � �i) = 1=�. Thus

Pi =
1

�

Z �i+1

�i

u(x� �i) dx =
1

�

Z �

0
u(x) dx:

Note that the value of Pi does not depend on i. Let this value be P . Thus we have that P
A

, the

probability that q trusts p at a random time, is 1� P . This shows the lemma. 2

We now analyze the average mistake recurrence time E(T
MR

) of the failure detector. We will show

that

Lemma 16 E(T
MR

) = �=p
S
.

If, at each time point �i with i � 2, the test of whether an S-transition occurs were an independent

Bernoulli trial, then the above result would be very easy to obtain: p
S

is the probability of success in

one Bernoulli trial, i.e. an S-transition occurs at �i, and � is the time between two Bernoulli trials, and

so �=p
S

is the expected time between two successful Bernoulli trials, which is just the expected time

between two S-transitions. Unfortunately, this is not the case because the tests of whether S-transitions

occur at �i’s are not independent. In fact, by Proposition 13, the event that an S-transition occurs at

�i dependents on the behavior of messages mi; : : : ; mi+k�1. Thus two such events may depend on the

behavior of common messages, and so they are not independent in general.

To deal with this, we use some results in renewal theory, a branch in the theory of stochastic pro-

cesses. Besides proving Lemma 16, the analysis also reveals an important property of the failure

detector output: each recurrence interval between two consecutive S-transitions is independent of other

recurrence intervals.

The analysis proceeds as follows. We first introduce the concept of a renewal process. A more formal

account can be found in any standard textbook on stochastic processes (see for example Chapter 3 of

[26]). Let f(Tn; Rn); n = 1; 2; : : :g be a sequence of random variable pairs such that (1) a nonnegative

Tn denotes the time between the (n�1)-th and n-th occurrences of some recurrent eventA, i.e., eventA

33

occurs at time t1 = T1, t2 = T1+T2, t3 = T1+T2+T3, . . . ; and (2) Rn can be interpreted as the reward

associated with the n-th occurrence of event A. A delayed renewal reward process is such a sequence

satisfying: (1) The pairs (Tn; Rn); n � 1 are mutually independent; and (2) The pairs (Tn; Rn); n � 2

are identically distributed. If fRng is omitted, then the above process fTn; n � 1g is called a delayed

renewal process. Such processes are well studied in the literature, and are known to have some nice

properties.

Now consider S-transitions of the failure detector output as the recurrent events. Let T
MR;n

be the

random variable representing the time that elapses from the (n � 1)-th S-transition to the n-th S-

transition (as a convention consider time 0 to be the time at which the 0-th S-transition occurs). Let

T
M;n

be the random variable representing the time that elapses from the (n � 1)-th S-transition to the

n-th T-transition. Thus T
M;n
� T

MR;n
for all n � 1.

Lemma 17 f(T
MR;n

; T
M;n

); n = 1; 2; : : :g is a delayed renewal reward process.

We omit the proof of the lemma here since it is technical and lengthy. It can be found in [13].

It is immediate from the above lemma that for any n � 2, the joint probability distribution of

(T
MR;n

; T
M;n

) is identical to that of (T
MR
; T

M
). This provides a simple way to analyze the QoS met-

rics T
MR

, T
M

and T
G

. Moreover, the above lemma directly leads to the following result.

Lemma 4 NFD-S is an ergodic failure detector.

Proof (Sketch). With the rigorous definition of the ergodicity of failure detectors in [13], with

Lemma 17, and with the fact that any delayed renewal reward process is ergodic (see for example

Section 2.6 of [27]), it follows that NFD-S is ergodic. 2

The above lemma implies that Theorem 1 is applicable to our failure detector. We now prove

Lemma 16 using Lemma 17.

Proof of Lemma 16. For all i � 2, let Ai be the event that an S-transition occurs at time �i. By defini-

tion and Proposition 14, we have that Pr(Ai) = p
S
= q0 � u(0) � q0 � p

k
0 . Since in the nondegenerated

case q0 > 0 and p0 > 0, we have Pr(Ai) > 0. By Proposition 13 (3), Ai is also the event that mi�1

is received before time �i but no message mj with i � j < i + k is received by time �i. This implies

that Ai only depends on messages mj with i � 1 � j < i + k, which in turn implies that for every

j 2 f2; : : : ; k + 2g, events Ai(k+1)+j; i � 0 are independent.

For j 2 f2; : : : ; k + 2g, let Bj be the set of time points f�i(k+1)+j : i = 0; 1; : : :g. Obvious Bj; j � 0

is a partition of all time points �i; i � 2. Let Nj(t) be the random variable representing the number

of S-transitions that occur at times in Bj by time t. Let N(t) be the random variable representing the

number of S-transitions by time t. Thus N(t) =
Pk+2

j=2 Nj(t).

Consider Nj(t) for some j 2 f2; : : : ; k + 2g. For t � �j , the number of time points in Bj that are no

greater than t is b(t� �j)=((k + 1)�)c+ 1. From the above, we know that at each of these time points,

there is an independent probability of p
S

that an S-transition occurs. Therefore, the average number of

34

S-transitions at these time points by time t � �j is given by

E(Nj(t)) = p
S

 $
t� �j

(k + 1)�

%
+ 1

!
:

Hence, we have for t � �k+2,

E(N(t)) =
k+2X
j=2

p
S

 $
t� �j

(k + 1)�

%
+ 1

!
:

By Lemma 17, fT
MR;n

; n � 1g is a delayed renewal process. Then by the Elementary Renewal

Theorem (see for example [26] p.61),

E(T
MR

) = lim
t!1

t

E(N(t))
= lim

t!1

tPk+2
j=2 pS

�j
t��j

(k+1)�

k
+ 1

�

=
1Pk+2

j=2 pS limt!1

�j
t��j

(k+1)�

k
+ 1

�
=t

=
1Pk+2

j=2

p
S

(k+1)�

=
�

p
S

:

2

By Lemma 16, we know that 0 < E(T
MR

) <1. Then we can apply Theorem 1 to obtain results on

other metrics by our results on P
A

and E(T
MR

).

The above is the analysis on the accuracy metrics of the new failure detector. We now give the bound

on the detection time T
D

.

Lemma 18 T
D
� Æ + � and this bound is tight.

Proof. Suppose that process p crashes at time t. Let mi be the last heartbeat message sent by p before

p crashes. By definition, mi is sent at time �i, and �i � t. Since no messages with sequence number

greater than i are sent by p, q does not receive these messages. Thus by Lemma 2, for all t0 2 [�i+1;1),

q suspects p at time t0. So the detection time is at most �i+1 � t = �i + Æ + � � t � Æ + �.

Since q0 > 0, with nonzero probability mi is received before �i+1 and thus q trusts p just before

�i+1.14 In these cases, the detection time is �i + Æ + � � t. Since the time t when p crashes can be

arbitrarily close to �i, we have that the bound Æ + � is tight. 2

Theorem 5 Consider a system with synchronized clocks, where the probability of message losses is

p
L

, and the distribution of message delays is Pr(D � x). The failure detector NFD-S of Fig. 6 with

parameters � and Æ has the following properties.

(1) The detection time is bounded as follows, and the bound is tight:

T
D
� Æ + �:

14Even though q0 is defined with respect to runs in which p does not crash, it also applies to runs in which p crashes,
since the system behavior before p crashes is independent of if and when p crashes in the future.

35

(2) The average mistake recurrence time is:

E(T
MR

) =
�

p
S

:

(3) The average mistake duration is:

E(T
M
) =

R �
0 u(x) dx

p
S

:

Proof. Parts (1) and (2) of the theorem are direct from Lemmata 18 and 16. Part (3) is derived from

the relation between E(T
M
), P

A
and E(T

MR
) as given in part (2) of Theorem 1, and the results on P

A

and E(T
MR

) as given in Lemmata 15 and 16. 2

C Proof of Theorem 6

A message delay pattern PD is a sequence fd1; d2; d3; : : :g with di 2 (0;1] representing the delay time

of the i-th message sent by p; di =1 means that the i-th message is lost. The distribution of message

delay patterns are governed by the message loss probability p
L

and the message delay time D, and thus

it is the same for all algorithms in C.

We first consider a subclass C 0 of C such that for any algorithm A 2 C 0, in any run of A process

p sends messages to q at times �; 2�; 3�; : : :, just as in A�. For any algorithm in C 0, a message delay

pattern completely determines the time and the order at which q receives messages in failure-free runs.

For A�, this means that a message delay pattern uniquely determines a failure-free run of A�. For some

other algorithm A 2 C 0, if A is nondeterministic, then A may have different failure-free runs with the

same message delay pattern.

For technical completeness, we adopt the following convention about transitions of a failure detec-

tor’s output: when an S-transition occurs at time t, the output at time t is S, and a symmetric convention

is taken for T-transitions. With this convention, the output is right continuous: namely, if the output at

a time t is X 2 fT; Sg, then there exists � > 0 such that the output is also X in the period (t; t+ �).

Lemma 19 Given any message delay pattern PD, let r� be the failure-free run of A� with PD, and let

r be a failure-free run of some algorithm A 2 C 0 with PD. Then for every time t � TU
D

, if q suspects p

at time t in run r�, then q suspects p at time t in run r.

Proof. Suppose that in run r� of A�, q suspects p at time t � T U
D

. Note that T U
D

= � + Æ = �1, so

t � �1. Suppose t 2 [�i; �i+1) for some i � 1. By Lemma 2, in run r� q does not receive any message

mj with j � i by time t. Since in run r p sends messages at the same times as in run r�, and both runs

have the same message delay pattern PD, then in run r, by time t q does not receive any message sent

by p at time j� with j � i.

Consider first that t 2 (�i; �i+1). Suppose for a contradiction that q trusts p at time t in run r. Let

� = t � �i, and let t0 = (i � 1)� + �=2. Thus � > 0. We now construct a new run r0 of A as follows:

36

(a) p crashes at time t0; (b) before t0, p sends the same messages at the same times as in run r; this is

possible because p’s state before its crash is independent of its crash in the future; (c) the delays and

losses of all messages sent before t0 are the same as in run r; this is possible because the message loss

and delay behaviors of messages sent by p are independent of p’s crash. Note that for messages to be

sent after time t0, in run r none of them is received by q by time t, and in run r 0 they are not sent since

p crashes at time t0. Therefore, in run r0 up to time t, q receives the same messages at the same times as

in run r. Thus q cannot distinguish run r 0 from r at time t, and so q trusts p at time t in run r 0 as in run

r. The detection time in run r0, however, is at least t� t0 = (�i+ �)� ((i� 1)�+ �=2) = �+ Æ+ �=2 =

TU
D

+ �=2 > TU
D

, contradicting the assumption that A satisfies T
D
� TU

D
.

Now suppose t = �i. Since the failure detector output is right continuous, there exists � > 0 such that

q suspects p in the period (t; t + �) in run r�. Then by the above argument, q suspects p in the period

(t; t+ �) in run r. By the right continuity again, we have that q suspects p at time t in run r. 2

Corollary 20 For any A 2 C 0, let P
A

be the query accuracy probability of A. Let P �

A
be the query

accuracy probability of A�. Then P �

A
� P

A
.

Proof (Sketch). We first fix a message delay pattern PD. For the run r� of A� and any run r of A with

message delay pattern PD, Lemma 19 shows that for any time t � T U
D

, if q suspects p in r� at time t,

then q suspects p in r at time t. Thus, given a fixed message delay pattern PD, at any random time t,

the probability that q trusts p at time t in algorithm A� is at least as high as the probability that q trusts

p at time t in algorithm A. So P �

A
� P

A
given a fixed message delay pattern PD. When summing (or

integrating) both sides of the inequality over all message delay patterns according to their distribution,

we have P �

A
� P

A
. 2

The above corollary shows that the new algorithm A� has the best query accuracy probability in C 0,

the class of failure detector algorithms in which p sends messages at exactly the same times as in A�.

We now generalize this result to class C, where p still sends messages every � time units, but it may do

so at times different from those in A�.

A message sending pattern PS is a sequence of time points f�1; �2; �3; : : :g at which p sends mes-

sages. The message sending pattern is determined by the algorithm. For any algorithm A 2 C, its

message sending pattern is in the form fs; s + �; s + 2�; : : :g for some s 2 [0;1). Different runs

of algorithm A may have different message sending patterns due to the possible nondeterminism of

A. Let A�

s be the algorithm in which p sends heartbeat messages according to the sending pattern

fs; s + �; s + 2�; : : :g, and q behaves the same way as in A�. Thus A�

s is a shifted version of A�, and

so the behavior of the failure detector output in A�

s is also a shifted version of that of A�. Since the

behaviors of the two failure detectors only differ in some initial period, their steady state behaviors are

the same. Therefore the QoS metrics of A�

s and A� are the same. In particular, they have the same query

accuracy probability.

Theorem 6 For any A 2 C, let P
A

be the query accuracy probability of A. Let P �

A
be the query

accuracy probability of A�. Then P �

A
� P

A
.

37

Proof (Sketch). We first fix a message sending pattern PS = fs; s+ �; s+2�; : : :g. For any algorithm

A 2 C, consider the runs of A with the sending pattern PS . In these runs p sends messages at exactly

the same times as in algorithm A�

s. By the similar argument as in Lemma 19 and Corollary 20, we can

show that the query accuracy probability of A�

s is at least as high as the query accuracy probability of A

given the message sending pattern PS. Since A�

s and A� have the same query accuracy probability, we

have P �

A
� P

A
given the message sending pattern PS . Since PS is arbitrary, we thus have P �

A
� P

A
. 2

D Proof of Theorem 7 and Proposition 8

Proposition 21 If p0 > 0 and q0 > 0 (the nondegenerated case), then E(T
M
) � �=q0.

Proof. By Proposition 14, we have for all x 2 [0; �), u(0) � u(x). Thus by equality (3.3), we have

E(T
M
) =

R �
0 u(x) dx

p
S

�

R �
0 u(0) dx

q0u(0)
=

�

q0
:

2

Theorem 7 Consider a system in which clocks are synchronized, and the probabilistic behavior of

messages is known. Suppose we are given a set of QoS requirements as in (4.1). The procedure in

Section 4 has two possible outcomes: (1) It outputs � and Æ. In this case, with parameters � and Æ the

failure detector NFD-S of Fig. 6 satisfies the given QoS requirements. (2) It outputs “QoS cannot be

achieved”. In this case, no failure detector can achieve the given QoS requirements.

Proof. We prove the theorem in the following three parts.

(1) Suppose that the procedure outputs parameters � and Æ. Then by step 3 we have T U
D

= � + Æ.

By part (1) of Theorem 5, T
D
� TU

D
is satisfied. By step 1 and Proposition 3, q 00 = (1 � p

L
)Pr(D <

� + Æ) = q0. Note that we have q0 > 0, since otherwise �max = 0 and the procedure would output

“QoS cannot be achieved” instead of � and Æ. Consider first that p0 > 0. Then by Proposition 21,

E(T
M
) � �=q0 � �max=q0 = q0T

U
M
=q0 = TU

M
. So E(T

M
) � TU

M
is satisfied. Note that

dTU
D
=�e�1Y
j=1

[p
L
+ (1� p

L
)Pr(D > TU

D
� j�)]

=

d(�+Æ)=�e�1Y
j=1

[p
L
+ (1� p

L
)Pr(D > � + Æ � j�)]

=

dÆ=�e�1Y
j=0

[p
L
+ (1� p

L
)Pr(D > Æ � j�)]

=

dÆ=�eY
j=0

[p
L
+ (1� p

L
)Pr(D > Æ � j�)] = u(0):

Thus f(�) = �=(q0u(0)) = �=p
S

= E(T
MR

), by equality (3.2). By step 2, f(�) � T L
MR

, and so

E(T
MR

) � TL
MR

is satisfied.

38

Consider now that p0 = 0. This is the degenerated case where q trusts p forever after time �1, and so

E(T
MR

) =1 and E(T
M
) = 0. Thus the requirements in (4.1) are also satisfied.

(2) Suppose that the procedure outputs “QoS cannot be achieved”. Then the procedure stops at step 1,

and thus �max = 0. This implies q 00 = 0 (since TU
M

> 0), which in turn implies that either p
L
= 1 or

Pr(D < TU
D
) = 0. This means that, in such a system, no message is received within T U

D
time units

after it is sent. Then to satisfy T
D
� TU

D
, we claim that at any time t > T U

D
, any failure detector has

to suspect p. In fact, since all messages q has received by time t are sent before time t � T U
D

, q does

not obtain any information about whether p crashes at time t � T U
D

. Thus, to satisfy T
D
� TU

D
, q has

to suspect p at time t. Hence, for any failure detector, we have E(T
M
) =1, and thus it fails to satisfy

E(T
M
) � TU

M
. Therefore, no failure detector can satisfy the given QoS in this case.

(3) We now show that the procedure only has two possible outcomes: it either outputs parameters �

and Æ, or outputs “QoS cannot be achieved”. To show this, it is enough to show that if step 1 of the

procedure succeeds, then step 2 always succeeds in finding an � such that f(�) � T L
MR

.

Let r(x) = p
L
+ (1� p

L
)Pr(D > TU

D
� x), and s(�) =

QdTU
D
=�e�1

j=1 r(j�). Thus f(�) = �=(q00s(�)).

It is easy to see that for all x, 0 � r(x) � 1, and for all x1 � x2, r(x1) � r(x2).

We first claim that there exists an � > 0 such that r(�) < 1. Indeed, since �max > 0, we have

0 � p
L
< 1 and Pr(D < TU

D
) > 0. Thus there must be an � > 0 such that Pr(D � T U

D
� �) > 0.

Otherwise, we would have that for all � > 0, Pr(D � T U
D
��) = 0, and since the probability measure is

continuous from below (see, e.g., Theorem 2.1 (i) of [8]), we would have Pr(D < T U
D
) = 0. Therefore,

we have r(�) = p
L
+ (1� p

L
)Pr(D > TU

D
� �) = p

L
+ (1� p

L
)(1� Pr(D � TU

D
� �)) < 1.

Let � = 1� r(�). Thus 0 < � � 1. Let �1 = min(�; �max; T
U
D
=2). Let �i = �1=i for i = 1; 2; 3; : : :.

We have

s(�i) =

diTU
D
=�1e�1Y
j=1

r(j=i � �1) �
iY

j=1

r(j=i � �1) �
iY

j=1

r(�1) �
iY

j=1

r(�) = (1� �)i

Therefore, f(�i) = �i=(q
0

0s(�i)) � �1=(q
0

0i(1� �)i) ! 1 when i !1. Hence, there is always some

�i such that f(�i) � TL
MR

. We also see that when i increases linearly (�i decreases linearly), f(�i)

increases exponentially. 2

Proposition 8 To satisfy the QoS constraint (4.1) with NFD-S, parameter � has to satisfy � �

�max=(pL + (1� p
L
)Pr(D > TU

D
)), where �max is defined in Step 1 of the configuration procedure.

Proof. By Theorem 5, it is easy to see that for failure detector NFD-S, constraint (4.1) can be restated

as constraints (4.2)–(4.4). By Proposition 3, for all x 2 [0; �), u(x) =
Qk

j=0 pj(x) �
Qk

j=0 pj(�) =

p0(�)
Qk�1

j=0 pj(0). Thus, we have

R �
0 u(x) dx

p
S

�

R �
0 p0(�)

Qk�1
j=0 pj(0) dx

q0 �
Qk

j=0 pj(0)
=

� � p0(�)

q0 � pk(0)
�

� � p0(�)

q0
:

By Proposition 3 and constraint (4.2), we have p0(�) = p
L
+ (1 � p

L
)Pr(D > Æ + �) � p

L
+ (1 �

39

p
L
)Pr(D > TU

D
). Then by constraint (4.4) and the fact that �max = q00T

U
M

= q0T
U
M

, we have

� �
q0T

U
M

p0(�)
�

�max

p
L
+ (1� p

L
)Pr(D > TU

D
)
:

2

40

