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Abstract. We introduce the notion ddtable leader election and derive several
algorithms for this problem. Roughly speaking, a leader election algorithm is sta-
ble if it ensures that once a leader is elected, it remains the leader for as long
as it does not crash and its links have been behaving well, irrespective of the
behavior of other processes and links. In addition to being stable, our leader
election algorithms have several desirable properties. In particular, they are all
communication-efficient, i.e., they eventually use onlinks to carry messages,

and they are robust, i.e., they work in systems where only the links to/from some
correct process are required to be eventually timely. Moreover, our best leader
election algorithm tolerates message losses, and it ensures that a leader is elected
in constant time when the system is stable. We conclude the paper by applying the
above ideas to derive a robust and efficient algorithm for the eventually perfect
failure detectoK) P.

1 Introduction

1.1 Motivation and Background

Failure detection is at the core of many fault-tolerant systems and algorithms, and the
study of failure detectors has been the subject of intensive research in recent years. In
particular, there is growing interest in developing failure detector implementations that
are efficient, timely, and accurate [VRMMH98,LAF99,CTA00,FRT00,LFA00D].

A failure detector of particular interest i3 [CHT96]. At every procesg, and at
each time, the output of2 at p is a single process, say We say thap trusts ¢ to be
up at timet. £2 ensures that eventually all correct processes trustatheprocess and
that this process isorrect.

Note that a failure detectd? can also be thought of as a leader elector: The process
currently trusted to be up by, can be thought of as the current “leader’mpfand {2
ensures that eventually all processes have the same leader.

An (2 leader election is useful in many settings in distributed systems. For exam-
ple, some algorithms use it to solve consensus in asynchronous systems with failures
[Lam98,MR00,LFAQ00a] (in factS? is the weakest failure detector to solve consen-
sus [CHT96]). Electing a leader can also be useful to solve a set of tasks efficiently



in distributed environments [DHW98]. Even thoughis strong enough to solve hard
problems such as consensus, we will see that it is weak enough to admit efficient im-
plementations.

Our main goal here is to propose efficient algorithmsf®dn partially synchronous
systems with process crashes and message losses. To illustrate this problem, consider
the following simple implementation aP [Lam98,DPLL97]. Assume that processes
may crash, budll links are eventually timely, i.e., there is a time after which all mes-
sages sent take at mastime to be received. In this system, one can implenieiats
follows:

1. Every procesp periodically sends an OK message to all, and maintains a set of
processes from which it received an OK recently.
2. The output of2 atp is simply the smallest process currentlyia set.

Note that the set of processes thabuilds in part (1) is eventually equal to the set
of all correct processes. Thus part (1) actually implementvemtually perfect failure
detector O P [CT96]. So, in the above algorithm, we implemeéhby first implementing

¢ P and then outputting the smallest process in the set of processes trustéd by
This implementation of2 has several drawbacks:

1. The system assumptionsrequired by the algorithm are too strong. In fact, this algo-
rithm works only ifall links are eventually timely. Intuitively, however, one should
be able to find a leader in systems where only the links to and from some cor-
rect process are eventually timely. In other words, while this algorithm requites
eventually timely links, we would like an algorithm that works even if there are
only n eventually timely links (those to and from some correct process).

2. Thealgorithmisnot communication-efficient. In this algorithm, every process sends
an OK message to all processes, forever. That is, aththinks carry messages,
in both directions, forever. Intuitively, this is wasteful: once a correct process is
elected as a leader, it should be sufficient for it to periodically send OK messages
to all processes (to inform them that it is still alive and so they can keep it as their
leader), and all other processes can keep quiet. In other words, after an election
is over, no more than links should carry messages (those links from the elected
leader to the other processes). All the other links should become quiescent. We say
that a leader election algorithm ¢@mmunication-efficient if there is a time after
which it uses only unidirectionad links.

3. The election is not stable. In this algorithm, processes can demote their current
leader and elect a new leader for no real reason: even if the current leader has not
crashed and its links have been timely for an (arbitrarily) long time, the leader can
still be demoted at any moment by an extraneous event. To see this, suppose process
2 is trusted forever by) P (because it is correct and all its links are timely) and that
it is the current leader (because it is the smallest process currently trusfed)by
If OP starts trusting process 1 (this can occur if the links from process 1 become

1 “Recent” means withinA from the last OK received. If processes send OK everthen
A = 6 + n. If 6 andn are not knownp setsA by incrementing it for every mistake it
makes [CT96].



timely), then 2 loses the leadership and 1 is elected. If later 1 is suspected again,
2 regains the leadership. So 2 loses the leadership each time 1 becomes “good”
again,even though 2 keeps behaving well and remains trusted forever by all the
processes! This is a serious drawback, because leadership changes are quite costly
to most applications that rely on a leader. Thus, we are seekatgoke leader
election algorithm. Roughly speaking, such an algorithm ensures that once a leader
is elected, it remains the leader for as long as it does not crash and its links have
been behaving well, irrespective of the behavior of other processes or links.

Our main goal here is to give algorithms f@r(i.e., leader election algorithms) that are
communication-efficient, stable, and that work in systems where only the links to and
from some correct process are required to be eventually timely, as explained above. In
addition, we want an algorithm fap that can elect a leader quickly when the system
“stabilizes”, i.e., it has a smadlection time.

We achieve our goal progressively. We first present an algorithniXdhat is
communication-efficient. This algorithm is simple, however it has the following draw-
backs: (a) it is not stable, (b) it assumes that messages are not lost and (c) its worst-case
election time is proportional ta,2 even when the system is stable. We next modify this
algorithm to achieve stability. Then we change it so that it works despite message losses.
Finally, we modify it to achieve constant election time when the system “stabilizes”. It
is worth noting that our algorithms are self-stabilizing.

We conclude the paper by using our techniques to give an algorithinfahat is
both robust and efficient: In contrast to previous implementatiodggfour algorithm
works in systems where ontybidirectional links are required to be eventually timely,
and there is a time after which onlybidirectional links carry messages. This algorithm
for O P works despite message losses.

1.2 Related Work

The simple implementation a? described above is mentioned in several works (e.g.,
[Lam98,DPLL97]). Such an implementation, however, requires strong systems assump-
tions, is not communication-efficient, and is not stable. Larrea et al. give an algorithm
for 2 that is communication-efficient, but it requires strong systems assumptions, and
is not stable [LFAOOD]. An indirect way to implemeftis to first implement an even-
tually strong failure detectapS [CT96] and then transform it int®? using the algo-
rithms in [Chu98]. But such implementations also have drawbacks. First, the known
implementations oS are either not communication-efficient [CT96,ACT99,ACT00]
or they require strong system assumptions [LAF99,LFA00b]. Second that we get
this way is not necessarily stable.

To the best of our knowledge, all prior implementationg)df require thatO(n ?)
links to be eventually timely. Larrea et al propose a communication-efficient transfor-
mation of 2 to O P, but it requires all links to be eventually timely and it does not
tolerate message losses [Lar00].

2 Actually, it is proportional to the maximum number of failures.



1.3 Summary of Contributions

The contributions of the paper are the following:

— We introduce the notion attable leader election and describe the first leader elec-
tion algorithm that is simultaneously stable and communication-efficient and re-
quires onlyn eventually timely bidirectional links.

— We modify our algorithm to work with message losses, first when processes have
approximately synchronized clocks, and then when clocks are drift-free or have
bounded drift.

— We show how to achieve constant election time during good system periods.

— We give an algorithm fof) P that is both robust and efficient: it works in systems
where onlyn bidirectional links are required to be eventually timely, and there is a
time after which onlyn bidirectional links carry messages.

1.4 Roadmap

This paper is organized as follows. In Sect. 2 we describe our model. In Sect. 3, we
define the problem of stable and message-effiditlgader election. In Sect. 4, we give
a simple algorithm fof2, and then modify it in Sect. 5 to make it stable. In Sect. 6, we
give algorithms forf2 that work despite message losses. Then, in Sect. 7, we explain
how to obtains? with a constant election time when the system stabilizes. In Sect. 8
we discuss view numbers. Finally, in Sect. 9, we give a new algorithnd forthat
guarantees that, there is a time after which, anbjidirectional links carry messages.
Because of space limitations in this extended abstract, we have omitted all technical
proofs. They can be found in [ADGFTO1].

2 Informal Model

We consider a distributed system with> 2 processe$l = {0,...,n — 1} that can
communicate with each other by sending messages through a set ot lilesassume
that the network is fully connected, i.el, = II x II. The link from procesp to
process; is denoted by — ¢. The system is partially synchronous in that (1) links
are sometimes timely (good) and sometimes slow, (2) processes have drift-free clocks
(which may or may not be synchronized) and (3) there is an upper hBundthe time
a process takes to execute a step. For simplicity, we assumB thal, i.e., processes
execute a step instantaneously, but it is easy to modify our results foBany 0.
At each step a process can (1) receive a message, (2) change its state and (3) send a
message. The value of a variable of a process attiiméhe value of that variable after
the process takes a step at titme

Processes and process failure patternBrocesses can fail by crashing, and crashes
are permanent. A process failure pattern is funcfignthat indicates, for each timg
what processes have crashed bwe say thaprocessp isaliveat timet if p ¢ Fp(t).
We say procesgis correct if it is always alive.

Link behavior pattern. A link behavior pattern is a functiof';, that determines,
for each timef, which links are good at The guarantees provided by links when they



are good are specified by axiomatic links properties. These properties, given below,
depend on whether the link is reliable or lossy.

Reliable links. Some of our basic algorithms require reliable links. Such links do
not create, duplicate or drop messages. The link may sometimes be good and sometimes
slow. If a process sends a message through a link and the link remains gaod fer
a system parameter known by processes) then the recipient gets the message within
More precisely, a reliable link — ¢ € A satisfies the following properties:

— (No creation or duplication): Procesg receives a message from p at most once,
and only ifp previously sentn to q.

— (No late delivery in good periods): If p sendsn to ¢ by timet — § andp — q is
good during time$t — 4, ¢] theng does not receive: after timet.

— (Noloss): If p sendsn to ¢ theng eventually receives: from p.3

Lossy links. Like reliable links, lossy links do not create or duplicate messages and
may be slow or not. However, unlike reliable links, they may drop messages when they
are not good. A lossy link — ¢ € A satisfies the following properties:

— (No creation or duplication): Same as above.

— (No late delivery in good periods): Same as above.

— (No loss in good periods): If p sendsm to ¢ at timet — § andp — ¢ is good
during times[t — 4, t] thenq eventually receives: from p.

Connectivity. In this paper, we focus on implementify(defined below). It is easy
to show that this is impossible if links are never good. We thus assume that there exists
at least one process whose links are eventually good. More precisely, we say that a
process is accessible at time ¢ if it is alive at time¢ and all links to and fromp are
good at timet.* We say thap is eventually accessible if there exists a time such thap
is accessible at every time afte? We assume that there exists at least process that
is eventually accessible.

3 Stable Leader Election

3.1 Specification off2

We consider a weak form of leader election, denatedn which each procesgs has

a variableleader, that holds the identity of a process ar® Intuitively, eventually all

alive processes should hold the identity of the same process, and that process should be
correct. More precisely, we require the following property:

3 For convenience, in our model dead processes “receive” messages that are sent to them (but of
course they cannot process such messages).

4 For convenience, we assume that a process is not accessible at tines

5 Note that eventually-forever accessible would be a more precise name for this property, but it
is rather cumbersome.

% The original definition off2 does not allow the output to he. We allow it here because it is
convenient for processes to know when the leader elector has not yet selected a leader.



— There exists a correct procesand a time after which, for every alive process
leader, = ¢.

If at time ¢, leader,, contains the same proces$or all alive processes, then we
say that’ isleader at time¢. Note that a procegsnever knows ifleader ,, is really the
leader at time, or not. A process only knows thatentually leader ,, is leader. This
guarantee seems rather weak, but it is actually quite powerful: it can be used to solve
consensus in asynchronous systems [CHT96].

3.2 Communication-efficiency

An algorithm forf2 is communication-efficient if there is a time after which it uses only
n unidirectional links. All our(? algorithms are communication-efficient. Actually, if
we discount messages from a process to itself, our algorithms usewcnly links,
which is optimal [LFAOODb].

3.3 Stability

A change of leadership often incurs overhead to an application, which must react to
deal with the new leader. Thus, we would like to avoid switching leaders as much as
possible, unless there is a good reason to do so. For instance, if the leader has died
or has been inaccessible to processes, it must be replaced. An algorithm that changes
leaderonly in those circumstances is callstdble. More precisely, &-stable algorithm
guarantees that in every run,

— if pis leader at time andp is accessible during timgs— k4, t + 1] thenp is leader
at timet + 1.

Here k is a parameter that depends on the algorithm; the smallér, the better the
algorithm because it provides a stronger stability property. We introduced parameter
because no algorithm can be “instantaneously” stabigble) and -stable algorithms
have serious drawbacks, as we show in the full paper [ADGFTO01]. Our algorithm for
reliable links is3-stable while our best algorithm for lossy linksaisstable.

4 Basic Algorithm for 2

Figure 1 shows an algorithm fae that works in systems with reliable links. This algo-
rithm is simple and communication-efficient but not stable — we will later modify it to
get stability. Intuitively, processes execute in rounds 0,1,2,.. ., where variable
keeps the process’s current round. To start a rayredprocess (1) sendSTART, k)

to a specially designated process, called the “leader of r@Unthis is just process

k mod n, (2) setsr to k, (3) sets the output of? to k£ mod n and (4) starts a timer
— a variable that is automatically incremented at each clock tick. While in reund
the process checks if it is the leader of that round (task 0) and if so $éHdsr) to



Code for each procegs

1 procedure StartRound(s) { executed upon start of a new rouhd
2 if p # s mod n then send(START, s) to s mod n { wake up new leadey
3 T s { update current roundl
4 leader — s mod n { output of 2 }

5 restart timer

on initialization:
7 StartRound(0)

o

8 start tasks 0 and 1

s taskO: { leader send®K everys time }
10 loop forever

1 if p = r mod n and have not senfOK, r) within § then send(OK, r) to all

2 task 1:

13 upon receive(OK, k) with k = r do { current leader is activg
14 restart timer

15 upon timer > 26 do { timeout on current leadér
16 StartRound(r 4+ 1) { start next round

17 upon receive( OK , k) or (START, k) with k > r do
18 StartRound (k) { jump to roundk }

Fig. 1. Basic algorithm for2 with reliable links.

all everyé time.” When a process receives 61K, k) for the current roundi( = k),
the process restarts its timer. If the process does not re¢@iife r) for more thared
time, it times out on round and starts round + 1. If a process receive@)K, k) or
(START, k) from a higher roundk > r), the process starts that round.

Intuitively, this algorithm works because it guarantees that (1) if the leader of the
current round crashes then the process starts a new round and (2) processes eventually
reach a round whose leader is a correct process that sends (i@¥€lyk) messages.

Theorem 1. Consider a system with reliable links. Assume some process is eventually
accessible. Figure 1 is a communication-efficient algorithm for (2.

5 Stable Algorithm for 2

The algorithm of Fig. 1 implement® but it is not stable because it is possible that (1)
some procesg is accessible for an arbitrarily long time, (2) all alive processes have

"In this and other algorithms, we chose the sending period to be equal to the network delay
0. This arbitrary choice was made for simplicity of presentation only. In general, the sending
period can be set to any valug though, in this case, one needs to modify the algorithms
slightly, e.g., by adjusting the time out periods. The choice affects the quality of service
of the failure detector [CTAOQ], such as how fast a leader is demoted if it crashes.



as their leader at timg but (3)¢ is demoted at time + 1. This could happen in two
essentially different ways:

Problem scenario 1lnitially all processes are in round 0 and so process 0 is the leader.
All links are good (timely), except the links to and from proc2swhich are very slow.
Then at time20 + 1, proces< times out on round 0 and starts round 1, and so O loses
leadership. Moreover, 2 sendSTART, 1) to process 1. At tim&é + 2, process 2
crashes and process 0 becomes accessible. MegssAd& T, 1) is delayed until some
arbitrarily large timeM > 26 + 2. At time M, process 1 receivdSTART, 1) and
starts round, and thus process 0 is no longer leader.

In this scenario, process 0 becomes the leader right after process 2 crashes, since
all alive processes are then in round 0 and hence have 0 as their leader. Unfortunately
0 is demoted at timé/, even though it has been accessible to all processes during the
arbitrarily long period2§ + 2, M].

Problem scenario 2.We divide this scenario in two stagd#) Setup stage. Initially

process 1 times out on round 0, starts round 1 and sgnds 1) to all. All processes
except process 0 get this message and start round 1. Then process 3 times out on rounds
1 and 2, starts round 3 and send3K, 3) to all. All processes except process 0 get

that message and start round 3; process 0, however, remains in round 0 (because all
messages from higher rounds are delayed). Then process 2 becomes accessible. All
processes except 0 remain in round 3 for a long time, while 0 remains in round 0 for a
long time. All processes except 0 then progressively time out on radirds. . until

they start rounch + 2, say at timef. Meanwhile, process 0 receives the ¢ldK, 1)
message, advances to round 1, timeouts on round 1 and starts round 2 at(&he
Demote stage. Note that at time, process 2 is the leader because all processes are in

a round congruent t@ modulon. Moreover, 2 has been accessible for a long time.
Unfortunately, process 2 stops being the leader when process 0 rec@ikes) and

starts round 3.

Summary of bad scenarios Essentially, scenario 1 is problematic because a single
process may (1) time out on the current round, (2) send a message to move to a higher
round and then (3) die. This message may be delayed and may demote the leader long in
the future. On the other hand, scenario 2 is problematic because a process may become
a leader while processes are in different rounds; after the leader is elected, a process in
a lower round may switch its leader by moving to a higher round.

Our new algorithm, shown in Fig. 2, avoids the above problems. To prevent problem
scenario 1, when a process times out on rokiné sends a(STOP, k) message to
k mod n before starting the next round. Whénmod n receives such a message, it
abandons rounk and starts rounél + 1. To see why this prevents scenario 1, note that,
before process 2 sendSTART, 1) to 1, it sendg.STOP,0) to 0. Soon after process
0 becomes accessible, it receives such a message and abandons round 0.

To avoid problem scenario 2, when a process starts réuinao longer setéeader
to k£ mod n. Instead, it sets it ta_ and waits until it receives twoOK, k) messages
from k mod n. Only then it sets leader tomod n. This guarantees thatif mod n is
accessible and some process setder to k mod n, then all processes have received
at least ond OK, k) and hence have started roukdin this way, all processes are in
the same roundl.



Code for each procegs

1 procedure StartRound(s) { executed upon start of a new rouhd

2 if p# s modn

3 then send(START, s) to s mod n { wake up the new leader candidate

4 T s { update current roundl

5 leader «— L { demote previous leader but do not elect leader quitg yet
6 restart timer

7 oninitialization:
8 StartRound(0)

9 start tasks 0 and 1

w0 taskO: { leader/candidate sen@K everyd time }
1 loop forever

12 if p = r mod n and have not senfOK, r) within § then send(OK , r) to all

13 task 1:

14 upon receive(OK, k) with k = r do { current leader/candidate is actiye
15 if leader = L and received at least tW@K, k) messages

16 then leader — k mod n { now elect leade}
17 restart timer

18 upon timer > 26 do { timeout on current leader/candidgte
19 send(STOP,r) tor mod n { stop current leader/candidafe
20 StartRound (r + 1) { start next round
21 upon receive(STOP, k) with & > r do { current leader abdicates leadership
22 StartRound (k + 1) { start next round
23 upon receive(OK, k) or (START, k) with k > r do

24 StartRound (k) { jump to roundk }

Fig. 2. 3-stable algorithm for2 with reliable links.

Theorem 2. Consider a system with reliable links. Assume some process is eventually
accessible. Figure 2 is a 3-stable communication-efficient algorithm for (2.

6 Stable (2 with Message Losses

In our previous algorithm, we assumed that links do not lose messages, but in many
systems this is not the case. We now modify our algorithms to deal with message losses.
First note that ifall messages can be lost, there is hot much we can do, so we assume
there is at least one eventually accessible progesfiat means that is correct and

there is a time after which the links to and frgndo not drop messages and are timely
(see Sect. 2).



6.1 Expiring Links

So far, our model allowed links to deliver messages that have been sent long in the past.
This behavior is undesirable because an out-of-date message can demote a leader that
has been good recently. To solve this problem, we now use links that discard messages
older tharv — we call themexpiring links. Such links can be easily implemented from
“plain” lossy links if processes have approximately synchronized, drift-free clocks, by
using timestamps to expire old messages. We now make these ideas more precise.
Informal definition. Expiring links are lossy links that automatically drop old mes-
sages. To model such links, we change the property “No late delivery in good periods”

of lossy links (Sect. 2) to require no late delivettyall times, not just when the link is

good. More precisely, an expiring link— ¢ satisfies the following properties:

— (No late delivery): If p sendsn to ¢ by timet — § thenq does not receive: aftert.

— (No creation or duplication): (same as before) Proceggeceives a message
from p at most once, and only jf previously sentn to q.

— (No loss in good periods): (same as before) I§ sendsm to ¢ at timet — § and
p — ¢ is good during time$ — 4, t] theng eventually receives: from p.

Implementation. If processes have perfectly synchronized clocks, we can easily im-
plement expiring links from plain lossy links as follows: (1) the sender timestamps
before sending it and (2) the receiver checks the timestamp and discards messages older
thané. This idea also works when processes haaynchronized, drift-free clocks,
though the resulting link will have a parameter that i€¢ larger than they of the

original links. It is also possible expire messages even if clocks are not synchronized,
provided they are drift-free or have a bounded drift, as we show in the full paper
[ADGFTO1].

Henceforth, we assume that all links are expiring links (this holds for all’'dafgo-

rithms that tolerate message losses).

6.2 O(n)-Stable 2

Figure 3 shows affin + 4)-stable algorithm for? that works despite message losses.
The algorithm is similar to our previous algorithm that assumes reliable links (Fig. 2),
with only three differences: the first one is that in linepaends the§ TART message

to all processes, not just tomod n. The second difference is that there areSi®P
messages. And the last difference is the addition of lines 21 and 22; without these two
lines, the algorithm would not implemef (it is not hard to construct a scenario in
which the algorithm fails).

This new algorithm i) (n)-stable rather tha@®(1)-stable. To see why, consider the
following scenario. Initially all processes are in round 0. At tidde+ 1 the following
happens: (1) process 2 times out on round 0 and attempts to S&NdR T, 1) to all,
but crashes during the send and only sends to process 3 and (2) process 0 becomes ac-
cessible. Attime3d + 1, process 3 receivé$START, 1) and tries to sendSTART, 1)
to all, but crashes and only sends to process 4. And so on. Then atdimeé, process
0 is the leader but it receivéSTART, 1) from process: — 1 and demotes itself, even
though it has been accessible durjgd+ 1, né + 1].



Code for each procegs

1 procedure StartRound(s) { executed upon start of a new rouhd

2 if p # s mod n then send(START, s) to all { bring all to new round

3 T s { update current roundl

4 leader «— L { demote previous leader but do not elect leader quitg yet
5 restart timer

on initialization:
7 StartRound(0)

o

8 start tasks 0 and 1

s taskO: { leader/candidate sen@K everys time }
10 loop forever

1 if p = r mod n and have not senfOK, r) within § then send(OK, r) to all

2 task 1:

13 upon receive(OK, k) with k = r do { current leader/candidate is actiye
14 if leader = L and received at least W@K, k) messages

15 then leader — k mod n { now elect leade}
16 restart timer

17 upon timer > 26 do { timeout on current leader/candidgte
18 StartRound(r 4+ 1) { start next round
19 upon receive(OK, k) or (START, k) with k > r do

20 StartRound (k) { jump to roundk }
21 upon receive(OK, k) or (START, k) from ¢ with & < r do

22 send(START,r)to g { update process in old rounid

Fig. 3. (n + 4)-stable algorithm for? that tolerates message losses.

Theorem 3. Consider a system with message | osses (expiring links). Assume some pro-
cess is eventually accessible. Figure 3 is an (n + 4)-stable communication-efficient
algorithmfor 2.

6.3 O(1)-Stable 2

Our previous algorithm can tolerate message losses but it ig¥mly-stable. This can
be troublesome if the numberof processes is large. We now provide a better algorithm
that is6-stable. We manage to g@f{1)-stability by ensuring that a leader is not elected
if there are long chains of messages that can demote the leader in the future.

Our algorithm is shown in Fig. 4. It is identical to our previous algorithm, except
that there is a neWwALERT, k) message. This message is sent to all when a process
starts round.. When a process receives such a message from a higher round, the process
temporarily sets its leader variable tb for 66 time units. However, unlike with TART
message, the process does not advance to the higher round.



Code for each procegs

1 procedure StartRound(s) { executed upon start of a new rouhd

2 send(ALERT, s) to all

3 if p # s mod n then send(START, s) to all { bring all to new round:

4 T s { update current roundl

5 leader «— L { demote previous leader but do not elect leader quitg yet
6 restart timer

7 oninitialization:
8 StartRound(0)

9 start tasks 0 and 1

w0 taskO: { leader/candidate sen@K everyd time }
1 loop forever

12 if p = r mod n and have not senfOK, r) within § then send(OK , r) to all

13 task 1:

14 upon receive(OK, k) with k = r do { current leader/candidate is actiye
15 if leader = L and received at least tW@K, k) messages

16 and did not receivéALERT, k') with k' > k within 66

17 then leader — k mod n { now elect leade}
18 restart timer

19 upon timer > 26 do { timeout on current leader/candidgte
20 StartRound (r + 1) { start next round

21 upon receive(OK, k) or (START, k) with k > r do
22 StartRound (k) { jump to roundk }

23 upon receive(OK, k) or (START, k) from ¢ with & < r do
24 send(START,r) to g { update process in old rounid

2 upon receive(ALERT, k) with k > r do
2 leader — L { suspend current leadér

Fig. 4. 6-stable algorithm for? that tolerates message losses.

Theorem 4. Consider a systemwith message |osses (expiring links). Assume some pro-
cess is eventually accessible. Figure 4 is a 6-stable communi cation-efficient algorithm
for (2.

7 Stable (2 with Constant Election Time

In some applications, it is important to have a snebdttion time — the time to elect

a new leader when the system is leaderless. This time is inevitably large if there are
crashes or slow links during the election. For instance, if an about-to-be leader crashes
right before being elected, the election has to start over and the system will continue to
be leaderless. Slow links often cause the same effect.



20 send(ALERT,r + 1) to all

20.1 send(PING,r)to all { ask who is alive}

20.2 wait for 26 time or until receivd OK , k) or (START, k) with k > r

20.3 if received( OK, k) or (START, k) with k£ > r then return

20.4 S «— {q: received(PONG,r) fromq } { responsive processgs
{ we assume that responds to itself immediately, sbis never }

20.5 k < smallestt’ > r such thatt’ mod n € S { round of next responsive procefs

20.6 StartRound (k) { start next round

20.7 upon receive(PING, k) from ¢ do
20.8 send(PONG, k) to g

Fig. 5.Improving the election time in the algorithm of Fig. 4.

It is possible, however, to ensure small election time dugomy periods — peri-
ods with no slow links or additional crashes. In such periods, the election time of our
previous algorithms is proportional iy the number of crashes so far. This is because
processes may go throughrounds trying to elect processes who are long dead. With
a simple modification, however, it is possible to do much better and achieve a constant
election time (independent gf). The basic idea is that, when a process wants to start
a new round, it first queries all processes to determine who is alive. Then, instead of
starting the next round, the process skips all rounds of unresponsive processes. Using
this idea, we can get éstable algorithm with an election time 68, as follows: we
take the algorithm of Fig. 4 and replace its line 20 with the code shown in Fig. 5.

Theorem 5. Consider a system with message | osses (expiring links). Assume some pro-
cessis eventually accessible. If we replace line 20 in Fig. 4 with the code in Fig. 5 we
obtain a 6-stable communication-efficient algorithm for (2. Its election timeis 95 when
there are no slow links or additional crashes.

8 Leader Election with View Numbers

It may be useful to tag leaders withveew number such that there is at most one leader
per view number and eventually processes agree on the view number of the leader. More
precisely, we define a variant ¢f, which we callf2 ", in which each process outputs
a pair(p,v) or L, wherep is a process and is a number2* guarantees that (1) if
some process outpufs, v) and some process outpyis v) thenp = ¢ and (2) there
exists a correct procegsa numbemw, and a time after which, for every alive process
p outputs(¢, v).

It turns out that oun? algorithms can be made to output a view number with no
modifications: they can simply output the current roun8y doing that, it is not hard
to verify that our algorithms actually implemeft*.

8 The same idea can be applied to get a constant election with our other algorithms.



9 An Efficient Algorithm for (P

Recall that, at each alive procgsghe eventually perfect failure detectoP outputs a
set of trusted processes, such that there is a time after which thepsmirtfiins process

q if and only if ¢ is correct. We now give an algorithm fa@yP that is both robust
and efficient: In contrast to previous implementationg)@f, our algorithm works in
systems where only bidirectional links are required to be eventually timely, and there
is a time after which only: bidirectional links carry messages.

Our algorithm, shown in Fig. 6, tolerates message losses with expiring links. It is
based on the algorithm in Fig. 3, and the difference is that (1) there ard BEBT
messages and (2) there is a mechanism to get thieutof trusted processes OfP:

When processes recei@K, they sendACK to the leader, and the leader s#isst to

the set of processes from which it receivd@K recently. The leader then sends its

trust to other processes, by piggybacking it in th§ messages. Upon receivi@iK, a

process; checks if the leadersust containsg. If so, the process sets its ownust to

the leader’s. Else, the process notices that the leader has made a mistake, and so it starts
the next round.

We assume that if a process sends a message to itself, that message is received and
processed immediately.

Theorem 6. Consider a systemwith message |osses (Iossy links). Assume some process
is eventually accessible. Figure 6 is an algorithm for ¢ P. With this algorithm, there is
a time after which only n bidirectional links carry messages.
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Code for each procegs
procedure StartRound(s) { executed upon start of a new rouhd
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1
2
3 TS
4
5
6

7 oninitialization:
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13
14
15
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16 task 1:
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19 else

20
21
22

trust < tr
send(ACK,r)tor mod n
restart timer

23 upon timer > 26 do { timeout on current leader

24 StartRound(r + 1) { start next round

25 upon receive( OK , k, tr) or (START, k) with k > r do

26 if received( OK , *, x) then send(ACK, k) to k mod n

27 StartRound (k) { jump to roundk }
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29 send(START,r)toq
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