
Stable Leader Election
(Extended Abstract)

Marcos K. Aguilera1, Carole Delporte-Gallet2, Hugues Fauconnier2, and Sam Toueg3

1 Compaq Systems Research Center, 130 Lytton Ave, Palo Alto, CA, 94301, USA
Marcos.Aguilera@compaq.com

2 LIAFA, Université D. Diderot, 2 Place Jussieu, 75251, Paris Cedex 05, France
{cd,hf}@liafa.jussieu.fr

3 DIX, École Polytechnique, 91128 Palaiseau Cedex, France
sam@lix.polytechnique.fr

Abstract. We introduce the notion ofstable leader election and derive several
algorithms for this problem. Roughly speaking, a leader election algorithm is sta-
ble if it ensures that once a leader is elected, it remains the leader for as long
as it does not crash and its links have been behaving well, irrespective of the
behavior of other processes and links. In addition to being stable, our leader
election algorithms have several desirable properties. In particular, they are all
communication-efficient, i.e., they eventually use onlyn links to carry messages,
and they are robust, i.e., they work in systems where only the links to/from some
correct process are required to be eventually timely. Moreover, our best leader
election algorithm tolerates message losses, and it ensures that a leader is elected
in constant time when the system is stable. We conclude the paper by applying the
above ideas to derive a robust and efficient algorithm for the eventually perfect
failure detector�P .

1 Introduction

1.1 Motivation and Background

Failure detection is at the core of many fault-tolerant systems and algorithms, and the
study of failure detectors has been the subject of intensive research in recent years. In
particular, there is growing interest in developing failure detector implementations that
are efficient, timely, and accurate [VRMMH98,LAF99,CTA00,FRT00,LFA00b].

A failure detector of particular interest isΩ [CHT96]. At every processp, and at
each timet, the output ofΩ at p is a single process, sayq. We say thatp trusts q to be
up at time t. Ω ensures that eventually all correct processes trusts thesame process and
that this process iscorrect.

Note that a failure detectorΩ can also be thought of as a leader elector: The process
currently trusted to be up byp, can be thought of as the current “leader” ofp, andΩ
ensures that eventually all processes have the same leader.

An Ω leader election is useful in many settings in distributed systems. For exam-
ple, some algorithms use it to solve consensus in asynchronous systems with failures
[Lam98,MR00,LFA00a] (in fact,Ω is the weakest failure detector to solve consen-
sus [CHT96]). Electing a leader can also be useful to solve a set of tasks efficiently



in distributed environments [DHW98]. Even thoughΩ is strong enough to solve hard
problems such as consensus, we will see that it is weak enough to admit efficient im-
plementations.

Our main goal here is to propose efficient algorithms forΩ in partially synchronous
systems with process crashes and message losses. To illustrate this problem, consider
the following simple implementation ofΩ [Lam98,DPLL97]. Assume that processes
may crash, butall links are eventually timely, i.e., there is a time after which all mes-
sages sent take at mostδ time to be received. In this system, one can implementΩ as
follows:

1. Every processp periodically sends an OK message to all, and maintains a set of
processes from which it received an OK recently.1

2. The output ofΩ atp is simply the smallest process currently inp’s set.

Note that the set of processes thatp builds in part (1) is eventually equal to the set
of all correct processes. Thus part (1) actually implements aneventually perfect failure
detector ♦P [CT96]. So, in the above algorithm, we implementΩ by first implementing
♦P and then outputting the smallest process in the set of processes trusted by♦P .
This implementation ofΩ has several drawbacks:

1. The system assumptions required by the algorithm are too strong. In fact, this algo-
rithm works only ifall links are eventually timely. Intuitively, however, one should
be able to find a leader in systems where only the links to and from some cor-
rect process are eventually timely. In other words, while this algorithm requiresn 2

eventually timely links, we would like an algorithm that works even if there are
only n eventually timely links (those to and from some correct process).

2. The algorithm is not communication-efficient. In this algorithm, every process sends
an OK message to all processes, forever. That is, all then2 links carry messages,
in both directions, forever. Intuitively, this is wasteful: once a correct process is
elected as a leader, it should be sufficient for it to periodically send OK messages
to all processes (to inform them that it is still alive and so they can keep it as their
leader), and all other processes can keep quiet. In other words, after an election
is over, no more thann links should carry messages (those links from the elected
leader to the other processes). All the other links should become quiescent. We say
that a leader election algorithm iscommunication-efficient if there is a time after
which it uses only unidirectionaln links.

3. The election is not stable. In this algorithm, processes can demote their current
leader and elect a new leader for no real reason: even if the current leader has not
crashed and its links have been timely for an (arbitrarily) long time, the leader can
still be demoted at any moment by an extraneous event. To see this, suppose process
2 is trusted forever by♦P (because it is correct and all its links are timely) and that
it is the current leader (because it is the smallest process currently trusted by♦P ).
If ♦P starts trusting process 1 (this can occur if the links from process 1 become

1 “Recent” means within∆ from the last OK received. If processes send OK everyη then
∆ = δ + η. If δ and η are not known,p sets∆ by incrementing it for every mistake it
makes [CT96].



timely), then 2 loses the leadership and 1 is elected. If later 1 is suspected again,
2 regains the leadership. So 2 loses the leadership each time 1 becomes “good”
again,even though 2 keeps behaving well and remains trusted forever by all the
processes! This is a serious drawback, because leadership changes are quite costly
to most applications that rely on a leader. Thus, we are seeking astable leader
election algorithm. Roughly speaking, such an algorithm ensures that once a leader
is elected, it remains the leader for as long as it does not crash and its links have
been behaving well, irrespective of the behavior of other processes or links.

Our main goal here is to give algorithms forΩ (i.e., leader election algorithms) that are
communication-efficient, stable, and that work in systems where only the links to and
from some correct process are required to be eventually timely, as explained above. In
addition, we want an algorithm forΩ that can elect a leader quickly when the system
“stabilizes”, i.e., it has a smallelection time.

We achieve our goal progressively. We first present an algorithm forΩ that is
communication-efficient. This algorithm is simple, however it has the following draw-
backs: (a) it is not stable, (b) it assumes that messages are not lost and (c) its worst-case
election time is proportional ton,2 even when the system is stable. We next modify this
algorithm to achieve stability. Then we change it so that it works despite message losses.
Finally, we modify it to achieve constant election time when the system “stabilizes”. It
is worth noting that our algorithms are self-stabilizing.

We conclude the paper by using our techniques to give an algorithm for♦P that is
both robust and efficient: In contrast to previous implementations of♦P , our algorithm
works in systems where onlyn bidirectional links are required to be eventually timely,
and there is a time after which onlyn bidirectional links carry messages. This algorithm
for ♦P works despite message losses.

1.2 Related Work

The simple implementation ofΩ described above is mentioned in several works (e.g.,
[Lam98,DPLL97]). Such an implementation, however, requires strong systems assump-
tions, is not communication-efficient, and is not stable. Larrea et al. give an algorithm
for Ω that is communication-efficient, but it requires strong systems assumptions, and
is not stable [LFA00b]. An indirect way to implementΩ is to first implement an even-
tually strong failure detector♦S [CT96] and then transform it intoΩ using the algo-
rithms in [Chu98]. But such implementations also have drawbacks. First, the known
implementations of♦S are either not communication-efficient [CT96,ACT99,ACT00]
or they require strong system assumptions [LAF99,LFA00b]. Second, theΩ that we get
this way is not necessarily stable.

To the best of our knowledge, all prior implementations of♦P require thatO(n 2)
links to be eventually timely. Larrea et al propose a communication-efficient transfor-
mation ofΩ to ♦P , but it requires all links to be eventually timely and it does not
tolerate message losses [Lar00].

2 Actually, it is proportional to the maximum number of failures.



1.3 Summary of Contributions

The contributions of the paper are the following:

– We introduce the notion ofstable leader election and describe the first leader elec-
tion algorithm that is simultaneously stable and communication-efficient and re-
quires onlyn eventually timely bidirectional links.

– We modify our algorithm to work with message losses, first when processes have
approximately synchronized clocks, and then when clocks are drift-free or have
bounded drift.

– We show how to achieve constant election time during good system periods.
– We give an algorithm for♦P that is both robust and efficient: it works in systems

where onlyn bidirectional links are required to be eventually timely, and there is a
time after which onlyn bidirectional links carry messages.

1.4 Roadmap

This paper is organized as follows. In Sect. 2 we describe our model. In Sect. 3, we
define the problem of stable and message-efficientΩ leader election. In Sect. 4, we give
a simple algorithm forΩ, and then modify it in Sect. 5 to make it stable. In Sect. 6, we
give algorithms forΩ that work despite message losses. Then, in Sect. 7, we explain
how to obtainΩ with a constant election time when the system stabilizes. In Sect. 8
we discuss view numbers. Finally, in Sect. 9, we give a new algorithm for♦P that
guarantees that, there is a time after which, onlyn bidirectional links carry messages.

Because of space limitations in this extended abstract, we have omitted all technical
proofs. They can be found in [ADGFT01].

2 Informal Model

We consider a distributed system withn ≥ 2 processesΠ = {0, . . . , n − 1} that can
communicate with each other by sending messages through a set of linksΛ. We assume
that the network is fully connected, i.e.,Λ = Π × Π . The link from processp to
processq is denoted byp −→ q. The system is partially synchronous in that (1) links
are sometimes timely (good) and sometimes slow, (2) processes have drift-free clocks
(which may or may not be synchronized) and (3) there is an upper boundB on the time
a process takes to execute a step. For simplicity, we assume thatB = 0, i.e., processes
execute a step instantaneously, but it is easy to modify our results for anyB ≥ 0.
At each step a process can (1) receive a message, (2) change its state and (3) send a
message. The value of a variable of a process at timet is the value of that variable after
the process takes a step at timet.

Processes and process failure patterns.Processes can fail by crashing, and crashes
are permanent. A process failure pattern is functionFP that indicates, for each timet,
what processes have crashed byt. We say thatprocess p is alive at time t if p �∈ FP (t).
We say processp is correct if it is always alive.

Link behavior pattern. A link behavior pattern is a functionFL that determines,
for each timet, which links are good att. The guarantees provided by links when they



are good are specified by axiomatic links properties. These properties, given below,
depend on whether the link is reliable or lossy.

Reliable links. Some of our basic algorithms require reliable links. Such links do
not create, duplicate or drop messages. The link may sometimes be good and sometimes
slow. If a process sends a message through a link and the link remains good forδ (δ is
a system parameter known by processes) then the recipient gets the message withinδ.
More precisely, a reliable linkp −→ q ∈ Λ satisfies the following properties:

– (No creation or duplication): Processq receives a messagem from p at most once,
and only ifp previously sentm to q.

– (No late delivery in good periods): If p sendsm to q by timet − δ andp −→ q is
good during times[t − δ, t] thenq does not receivem after timet.

– (No loss): If p sendsm to q thenq eventually receivesm from p.3

Lossy links.Like reliable links, lossy links do not create or duplicate messages and
may be slow or not. However, unlike reliable links, they may drop messages when they
are not good. A lossy linkp −→ q ∈ Λ satisfies the following properties:

– (No creation or duplication): Same as above.
– (No late delivery in good periods): Same as above.
– (No loss in good periods): If p sendsm to q at time t − δ andp −→ q is good

during times[t − δ, t] thenq eventually receivesm from p.

Connectivity. In this paper, we focus on implementingΩ (defined below). It is easy
to show that this is impossible if links are never good. We thus assume that there exists
at least one process whose links are eventually good. More precisely, we say that a
processp is accessible at time t if it is alive at timet and all links to and fromp are
good at timet.4 We say thatp is eventually accessible if there exists a timet such thatp
is accessible at every time aftert.5 We assume that there exists at leastone process that
is eventually accessible.

3 Stable Leader Election

3.1 Specification ofΩ

We consider a weak form of leader election, denotedΩ, in which each processp has
a variableleader p that holds the identity of a process or⊥.6 Intuitively, eventually all
alive processes should hold the identity of the same process, and that process should be
correct. More precisely, we require the following property:

3 For convenience, in our model dead processes “receive” messages that are sent to them (but of
course they cannot process such messages).

4 For convenience, we assume that a process is not accessible at timest < 0.
5 Note that eventually-forever accessible would be a more precise name for this property, but it

is rather cumbersome.
6 The original definition ofΩ does not allow the output to be⊥. We allow it here because it is

convenient for processes to know when the leader elector has not yet selected a leader.



– There exists a correct process� and a time after which, for every alive processp,
leaderp = �.

If at time t, leaderp contains the same process� for all alive processesp, then we
say that� is leader at time t. Note that a processp never knows ifleaderp is really the
leader at timet, or not. A process only knows thateventually leaderp is leader. This
guarantee seems rather weak, but it is actually quite powerful: it can be used to solve
consensus in asynchronous systems [CHT96].

3.2 Communication-efficiency

An algorithm forΩ is communication-efficient if there is a time after which it uses only
n unidirectional links. All ourΩ algorithms are communication-efficient. Actually, if
we discount messages from a process to itself, our algorithms use onlyn − 1 links,
which is optimal [LFA00b].

3.3 Stability

A change of leadership often incurs overhead to an application, which must react to
deal with the new leader. Thus, we would like to avoid switching leaders as much as
possible, unless there is a good reason to do so. For instance, if the leader has died
or has been inaccessible to processes, it must be replaced. An algorithm that changes
leaderonly in those circumstances is calledstable. More precisely, ak-stable algorithm
guarantees that in every run,

– if p is leader at timet andp is accessible during times[t−kδ, t+1] thenp is leader
at timet + 1.

Here,k is a parameter that depends on the algorithm; the smaller thek, the better the
algorithm because it provides a stronger stability property. We introduced parameterk
because no algorithm can be “instantaneously” stable (0-stable) and1-stable algorithms
have serious drawbacks, as we show in the full paper [ADGFT01]. Our algorithm for
reliable links is3-stable while our best algorithm for lossy links is6-stable.

4 Basic Algorithm for Ω

Figure 1 shows an algorithm forΩ that works in systems with reliable links. This algo-
rithm is simple and communication-efficient but not stable — we will later modify it to
get stability. Intuitively, processes execute in roundsr = 0, 1, 2, . . . , where variabler
keeps the process’s current round. To start a roundk, a process (1) sends(START , k)
to a specially designated process, called the “leader of roundk”; this is just process
k mod n, (2) setsr to k, (3) sets the output ofΩ to k mod n and (4) starts a timer
— a variable that is automatically incremented at each clock tick. While in roundr,
the process checks if it is the leader of that round (task 0) and if so sends(OK , r) to



Code for each processp:
1 procedureStartRound (s) { executed upon start of a new round}
2 if p �= s mod n then send(START , s) to s mod n { wake up new leader}
3 r ← s { update current round}
4 leader ← s mod n { output ofΩ }
5 restart timer

6 on initialization:
7 StartRound(0 )
8 start tasks 0 and 1

9 task 0: { leader sendsOK everyδ time}
10 loop forever
11 if p = r mod n and have not sent(OK , r) within δ then send(OK , r) to all

12 task 1:
13 upon receive(OK , k) with k = r do { current leader is active}
14 restart timer

15 upon timer > 2δ do { timeout on current leader}
16 StartRound (r + 1) { start next round}
17 upon receive(OK , k) or (START , k) with k > r do
18 StartRound(k) { jump to roundk }

Fig. 1.Basic algorithm forΩ with reliable links.

all everyδ time.7 When a process receives an(OK , k) for the current round (r = k),
the process restarts its timer. If the process does not receive(OK , r) for more than2δ
time, it times out on roundr and starts roundr + 1. If a process receives(OK , k) or
(START , k) from a higher round (k > r), the process starts that round.

Intuitively, this algorithm works because it guarantees that (1) if the leader of the
current round crashes then the process starts a new round and (2) processes eventually
reach a round whose leader is a correct process that sends timely(OK , k) messages.

Theorem 1. Consider a system with reliable links. Assume some process is eventually
accessible. Figure 1 is a communication-efficient algorithm for Ω.

5 Stable Algorithm for Ω

The algorithm of Fig. 1 implementsΩ but it is not stable because it is possible that (1)
some processq is accessible for an arbitrarily long time, (2) all alive processes haveq

7 In this and other algorithms, we chose the sending period to be equal to the network delay
δ. This arbitrary choice was made for simplicity of presentation only. In general, the sending
period can be set to any valueη, though, in this case, one needs to modify the algorithms
slightly, e.g., by adjusting the time out periods. The choice ofη affects the quality of service
of the failure detector [CTA00], such as how fast a leader is demoted if it crashes.



as their leader at timet, but (3)q is demoted at timet + 1. This could happen in two
essentially different ways:
Problem scenario 1.Initially all processes are in round 0 and so process 0 is the leader.
All links are good (timely), except the links to and from process2, which are very slow.
Then at time2δ + 1, process2 times out on round 0 and starts round 1, and so 0 loses
leadership. Moreover, 2 sends(START , 1) to process 1. At time2δ + 2, process 2
crashes and process 0 becomes accessible. Message(START , 1) is delayed until some
arbitrarily large timeM 
 2δ + 2. At time M , process 1 receives(START , 1) and
starts round1, and thus process 0 is no longer leader.

In this scenario, process 0 becomes the leader right after process 2 crashes, since
all alive processes are then in round 0 and hence have 0 as their leader. Unfortunately
0 is demoted at timeM , even though it has been accessible to all processes during the
arbitrarily long period[2δ + 2, M ].
Problem scenario 2.We divide this scenario in two stages.(A) Setup stage. Initially
process 1 times out on round 0, starts round 1 and sends(OK , 1) to all. All processes
except process 0 get this message and start round 1. Then process 3 times out on rounds
1 and 2, starts round 3 and sends(OK , 3) to all. All processes except process 0 get
that message and start round 3; process 0, however, remains in round 0 (because all
messages from higher rounds are delayed). Then process 2 becomes accessible. All
processes except 0 remain in round 3 for a long time, while 0 remains in round 0 for a
long time. All processes except 0 then progressively time out on rounds3, 4, . . . until
they start roundn + 2, say at timet. Meanwhile, process 0 receives the old(OK , 1)
message, advances to round 1, timeouts on round 1 and starts round 2 at timet. (B)
Demote stage. Note that at timet, process 2 is the leader because all processes are in
a round congruent to2 modulon. Moreover, 2 has been accessible for a long time.
Unfortunately, process 2 stops being the leader when process 0 receives(OK , 3) and
starts round 3.
Summary of bad scenarios.Essentially, scenario 1 is problematic because a single
process may (1) time out on the current round, (2) send a message to move to a higher
round and then (3) die. This message may be delayed and may demote the leader long in
the future. On the other hand, scenario 2 is problematic because a process may become
a leader while processes are in different rounds; after the leader is elected, a process in
a lower round may switch its leader by moving to a higher round.

Our new algorithm, shown in Fig. 2, avoids the above problems. To prevent problem
scenario 1, when a process times out on roundk, it sends a(STOP , k) message to
k mod n before starting the next round. Whenk mod n receives such a message, it
abandons roundk and starts roundk+1. To see why this prevents scenario 1, note that,
before process 2 sends(START , 1) to 1, it sends(STOP , 0) to 0. Soon after process
0 becomes accessible, it receives such a message and abandons round 0.

To avoid problem scenario 2, when a process starts roundk, it no longer setsleader
to k mod n. Instead, it sets it to⊥ and waits until it receives two(OK , k) messages
from k mod n. Only then it sets leader tok mod n. This guarantees that ifk mod n is
accessible and some process setsleader to k mod n, then all processes have received
at least one(OK , k) and hence have started roundk. In this way, all processes are in
the same roundk.



Code for each processp:
1 procedureStartRound (s) { executed upon start of a new round}
2 if p �= s mod n
3 then send(START , s) to s mod n { wake up the new leader candidate}
4 r ← s { update current round}
5 leader ← ⊥ { demote previous leader but do not elect leader quite yet}
6 restart timer

7 on initialization:
8 StartRound(0 )
9 start tasks 0 and 1

10 task 0: { leader/candidate sendsOK everyδ time}
11 loop forever
12 if p = r mod n and have not sent(OK , r) within δ then send(OK , r) to all

13 task 1:
14 upon receive(OK , k) with k = r do { current leader/candidate is active}
15 if leader = ⊥ and received at least two(OK , k) messages
16 then leader ← k mod n { now elect leader}
17 restart timer

18 upon timer > 2δ do { timeout on current leader/candidate}
19 send(STOP , r) to r mod n { stop current leader/candidate}
20 StartRound (r + 1) { start next round}
21 upon receive(STOP , k) with k ≥ r do { current leader abdicates leadership}
22 StartRound (k + 1) { start next round}
23 upon receive(OK , k) or (START , k) with k > r do
24 StartRound(k) { jump to roundk }

Fig. 2. 3-stable algorithm forΩ with reliable links.

Theorem 2. Consider a system with reliable links. Assume some process is eventually
accessible. Figure 2 is a 3-stable communication-efficient algorithm for Ω.

6 StableΩ with Message Losses

In our previous algorithm, we assumed that links do not lose messages, but in many
systems this is not the case. We now modify our algorithms to deal with message losses.
First note that ifall messages can be lost, there is not much we can do, so we assume
there is at least one eventually accessible processp. That means thatp is correct and
there is a time after which the links to and fromp do not drop messages and are timely
(see Sect. 2).



6.1 Expiring Links

So far, our model allowed links to deliver messages that have been sent long in the past.
This behavior is undesirable because an out-of-date message can demote a leader that
has been good recently. To solve this problem, we now use links that discard messages
older thanδ — we call themexpiring links. Such links can be easily implemented from
“plain” lossy links if processes have approximately synchronized, drift-free clocks, by
using timestamps to expire old messages. We now make these ideas more precise.
Informal definition. Expiring links are lossy links that automatically drop old mes-
sages. To model such links, we change the property “No late delivery in good periods”
of lossy links (Sect. 2) to require no late deliveryat all times, not just when the link is
good. More precisely, an expiring linkp −→ q satisfies the following properties:

– (No late delivery): If p sendsm to q by timet− δ thenq does not receivem aftert.
– (No creation or duplication): (same as before) Processq receives a messagem

from p at most once, and only ifp previously sentm to q.
– (No loss in good periods): (same as before) Ifp sendsm to q at time t − δ and

p −→ q is good during times[t − δ, t] thenq eventually receivesm from p.

Implementation. If processes have perfectly synchronized clocks, we can easily im-
plement expiring links from plain lossy links as follows: (1) the sender timestampsm
before sending it and (2) the receiver checks the timestamp and discards messages older
than δ. This idea also works when processes haveε-synchronized, drift-free clocks,
though the resulting link will have aδ parameter that is2ε larger than theδ of the
original links. It is also possible expire messages even if clocks are not synchronized,
provided they are drift-free or have a bounded drift, as we show in the full paper
[ADGFT01].
Henceforth, we assume that all links are expiring links (this holds for all ourΩ algo-
rithms that tolerate message losses).

6.2 O(n)-StableΩ

Figure 3 shows an(n + 4)-stable algorithm forΩ that works despite message losses.
The algorithm is similar to our previous algorithm that assumes reliable links (Fig. 2),
with only three differences: the first one is that in line 2,p sends theSTART message
to all processes, not just tos mod n. The second difference is that there are noSTOP
messages. And the last difference is the addition of lines 21 and 22; without these two
lines, the algorithm would not implementΩ (it is not hard to construct a scenario in
which the algorithm fails).

This new algorithm isO(n)-stable rather thanO(1)-stable. To see why, consider the
following scenario. Initially all processes are in round 0. At time2δ + 1 the following
happens: (1) process 2 times out on round 0 and attempts to sends(START , 1) to all,
but crashes during the send and only sends to process 3 and (2) process 0 becomes ac-
cessible. At time3δ + 1, process 3 receives(START , 1) and tries to send(START , 1)
to all, but crashes and only sends to process 4. And so on. Then at timenδ + 1, process
0 is the leader but it receives(START , 1) from processn − 1 and demotes itself, even
though it has been accessible during[2δ + 1, nδ + 1].



Code for each processp:
1 procedureStartRound (s) { executed upon start of a new round}
2 if p �= s mod n then send(START , s) to all { bring all to new round}
3 r ← s { update current round}
4 leader ← ⊥ { demote previous leader but do not elect leader quite yet}
5 restart timer

6 on initialization:
7 StartRound(0 )
8 start tasks 0 and 1

9 task 0: { leader/candidate sendsOK everyδ time}
10 loop forever
11 if p = r mod n and have not sent(OK , r) within δ then send(OK , r) to all

12 task 1:
13 upon receive(OK , k) with k = r do { current leader/candidate is active}
14 if leader = ⊥ and received at least two(OK , k) messages
15 then leader ← k mod n { now elect leader}
16 restart timer

17 upon timer > 2δ do { timeout on current leader/candidate}
18 StartRound (r + 1) { start next round}
19 upon receive(OK , k) or (START , k) with k > r do
20 StartRound(k) { jump to roundk }
21 upon receive(OK , k) or (START , k) from q with k < r do
22 send(START , r) to q { update process in old round}

Fig. 3. (n + 4)-stable algorithm forΩ that tolerates message losses.

Theorem 3. Consider a system with message losses (expiring links). Assume some pro-
cess is eventually accessible. Figure 3 is an (n + 4)-stable communication-efficient
algorithm for Ω.

6.3 O(1)-StableΩ

Our previous algorithm can tolerate message losses but it is onlyO(n)-stable. This can
be troublesome if the numbern of processes is large. We now provide a better algorithm
that is6-stable. We manage to getO(1)-stability by ensuring that a leader is not elected
if there are long chains of messages that can demote the leader in the future.

Our algorithm is shown in Fig. 4. It is identical to our previous algorithm, except
that there is a new(ALERT , k) message. This message is sent to all when a process
starts roundk. When a process receives such a message from a higher round, the process
temporarily sets its leader variable to⊥ for 6δ time units. However, unlike with aSTART
message, the process does not advance to the higher round.



Code for each processp:
1 procedureStartRound (s) { executed upon start of a new round}
2 send(ALERT , s) to all
3 if p �= s mod n then send(START , s) to all { bring all to new round}
4 r ← s { update current round}
5 leader ← ⊥ { demote previous leader but do not elect leader quite yet}
6 restart timer

7 on initialization:
8 StartRound(0 )
9 start tasks 0 and 1

10 task 0: { leader/candidate sendsOK everyδ time}
11 loop forever
12 if p = r mod n and have not sent(OK , r) within δ then send(OK , r) to all

13 task 1:
14 upon receive(OK , k) with k = r do { current leader/candidate is active}
15 if leader = ⊥ and received at least two(OK , k) messages
16 and did not receive(ALERT , k′) with k′ > k within 6δ
17 then leader ← k mod n { now elect leader}
18 restart timer

19 upon timer > 2δ do { timeout on current leader/candidate}
20 StartRound (r + 1) { start next round}
21 upon receive(OK , k) or (START , k) with k > r do
22 StartRound(k) { jump to roundk }
23 upon receive(OK , k) or (START , k) from q with k < r do
24 send(START , r) to q { update process in old round}
25 upon receive(ALERT , k) with k > r do
26 leader ← ⊥ { suspend current leader}

Fig. 4.6-stable algorithm forΩ that tolerates message losses.

Theorem 4. Consider a system with message losses (expiring links). Assume some pro-
cess is eventually accessible. Figure 4 is a 6-stable communication-efficient algorithm
for Ω.

7 StableΩ with Constant Election Time

In some applications, it is important to have a smallelection time — the time to elect
a new leader when the system is leaderless. This time is inevitably large if there are
crashes or slow links during the election. For instance, if an about-to-be leader crashes
right before being elected, the election has to start over and the system will continue to
be leaderless. Slow links often cause the same effect.



20 send(ALERT , r + 1) to all
20. 1 send(PING, r) to all { ask who is alive}
20. 2 wait for 2δ time or until receive(OK , k) or (START , k) with k > r
20. 3 if received(OK , k) or (START , k) with k > r then return
20. 4 S ← {q: received(PONG, r) from q } { responsive processes}

{ we assume thatp responds to itself immediately, soS is never∅ }
20. 5 k ← smallestk′ > r such thatk′ mod n ∈ S { round of next responsive process}
20. 6 StartRound (k) { start next round}
20. 7 upon receive(PING, k) from q do
20. 8 send(PONG , k) to q

Fig. 5. Improving the election time in the algorithm of Fig. 4.

It is possible, however, to ensure small election time duringgood periods — peri-
ods with no slow links or additional crashes. In such periods, the election time of our
previous algorithms is proportional tof , the number of crashes so far. This is because
processes may go throughf rounds trying to elect processes who are long dead. With
a simple modification, however, it is possible to do much better and achieve a constant
election time (independent off ). The basic idea is that, when a process wants to start
a new round, it first queries all processes to determine who is alive. Then, instead of
starting the next round, the process skips all rounds of unresponsive processes. Using
this idea, we can get a6-stable algorithm with an election time of9δ, as follows: we
take the algorithm of Fig. 4 and replace its line 20 with the code shown in Fig. 5.8

Theorem 5. Consider a system with message losses (expiring links). Assume some pro-
cess is eventually accessible. If we replace line 20 in Fig. 4 with the code in Fig. 5 we
obtain a 6-stable communication-efficient algorithm for Ω. Its election time is 9δ when
there are no slow links or additional crashes.

8 Leader Election with View Numbers

It may be useful to tag leaders with aview number such that there is at most one leader
per view number and eventually processes agree on the view number of the leader. More
precisely, we define a variant ofΩ, which we callΩ+, in which each process outputs
a pair(p, v) or ⊥, wherep is a process andv is a number.Ω+ guarantees that (1) if
some process outputs(p, v) and some process outputs(q, v) thenp = q and (2) there
exists a correct process�, a numberv� and a time after which, for every alive processp,
p outputs(�, v�).

It turns out that ourΩ algorithms can be made to output a view number with no
modifications: they can simply output the current roundr. By doing that, it is not hard
to verify that our algorithms actually implementΩ +.

8 The same idea can be applied to get a constant election with our other algorithms.



9 An Efficient Algorithm for ♦P

Recall that, at each alive processp, the eventually perfect failure detector♦P outputs a
set of trusted processes, such that there is a time after which the set ofp contains process
q if and only if q is correct. We now give an algorithm for♦P that is both robust
and efficient: In contrast to previous implementations of♦P , our algorithm works in
systems where onlyn bidirectional links are required to be eventually timely, and there
is a time after which onlyn bidirectional links carry messages.

Our algorithm, shown in Fig. 6, tolerates message losses with expiring links. It is
based on the algorithm in Fig. 3, and the difference is that (1) there are noALERT
messages and (2) there is a mechanism to get the listtrust of trusted processes of♦P :
When processes receiveOK, they sendACK to the leader, and the leader setstrust to
the set of processes from which it receivedACK recently. The leader then sends its
trust to other processes, by piggybacking it in theOK messages. Upon receivingOK, a
processq checks if the leader’strust containsq. If so, the process sets its owntrust to
the leader’s. Else, the process notices that the leader has made a mistake, and so it starts
the next round.

We assume that if a process sends a message to itself, that message is received and
processed immediately.

Theorem 6. Consider a system with message losses (lossy links). Assume some process
is eventually accessible. Figure 6 is an algorithm for ♦P . With this algorithm, there is
a time after which only n bidirectional links carry messages.

References

[ACT99] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure detector for
quiescent reliable communication and consensus in partitionable networks.Theo-
retical Computer Science, 220(1):3–30, June 1999.

[ACT00] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the
crash-recovery model.Distributed Computing, 13(2):99–125, April 2000.

[ADGFT01] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable leader
election. Technical Report 2001/04, LIAFA, Universit´e D. Diderot, 2 Place Jussieu,
75251, Paris Cedex 05, France, 2001.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus.Journal of the ACM, 43(4):685–722, July 1996.

[Chu98] F. Chu. ReducingΩ to 	W . Information Processing Letters, 67(6):298–293,
September 1998.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for asynchronous systems.
Journal of the ACM, 43(2):225–267, March 1996.

[CTA00] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure de-
tectors. InInternational Conference on Dependable Systems and Networks (DSN
2000), pages 191–200, New York, June 2000. A full version of this paper will
appear in the IEEE Transactions on Computers.

[DHW98] C. Dwork, J.Y. Halpern, and O. Waarts. Performing work efficiently in the presence
of faults. SIAM Journal on Computing, 27(5):1457–1491, 1998.

[DPLL97] R. De Prisco, B. Lampson, and N. Lynch. Revisiting the Paxos algorithm. In
Proceedings of the 11th Workshop on Distributed Algorithms(WDAG), pages 11–
125, Saarbr¨ucken, September 1997.



Code for each processp:
1 procedureStartRound(s) { executed upon start of a new round}
2 if p �= s mod n then send(START , s) to all
3 r ← s { update current round}
4 leader ← s mod n
5 trust ← Π { trust all initially }
6 restart timer

7 on initialization:
8 StartRound(0 )
9 start tasks 0 and 1

10 task 0: { leader updatestrust and sendsOK everyδ time}
11 loop forever
12 if p = r mod n and have not sent(OK , r, ∗) within δ then
13 if p has been in roundr for at least2δ time then
14 for eachq ∈ trust s.t.p did not receive(ACK , r) from q in the last2δ time do trust ← trust \ {q}
15 send(OK , r, trust) to all

16 task 1:
17 upon receive(OK , k, tr) with k = r do { current leader is active}
18 if p �∈ tr then StartRound(r + 1) { leader does not trustp, sop starts new round}
19 else
20 trust ← tr
21 send(ACK , r) to r mod n
22 restart timer

23 upon timer > 2δ do { timeout on current leader}
24 StartRound(r + 1) { start next round}
25 upon receive(OK , k, tr) or (START , k) with k > r do
26 if received(OK , ∗, ∗) then send(ACK , k) to k mod n
27 StartRound(k) { jump to roundk }
28 upon receive(OK , k, tr) or (START , k) from q with k < r do
29 send(START , r) to q

Fig. 6. An efficient algorithm for�P .

[FRT00] C. Fetzer, M. Raynal, and F. Tronel. A failure detection protocol based on a lazy
approach. Research Report 1367, IRISA, November 2000.

[LAF99] M. Larrea, S. Arévalo, and A. Fern´andez. Efficient algorithms to implement un-
reliable failure detectors in partially synchronous systems. InProceedings of the
13th International Symposium on Distributed Algorithms(DISC99), pages 34–48,
Bratislava, September 1999.

[Lam98] L. Lamport. The part-time parliament.ACM Transactions on Computer Systems,
16(2):133–169, 1998.

[Lar00] M. Larrea, November 2000. Personal communication.
[LFA00a] M. Larrea, A. Fern´andez, and S. Ar´evalo. Eventually consistent failure detec-

tors. InBrief Annoucement the 14th International Symposium on Distributed Al-
gorithms(DISC00), Toledo, October 2000.

[LFA00b] M. Larrea, A. Fern´andez, and S. Ar´evalo. Optimal implementation of the weakest
failure detector for solving consensus. Inin Proceedings of the 19th IEEE Sym-
posium on Reliable Distributed Systems, SRDS 2000, pages 52–59, Nurenberg,
Germany, October 2000.

[MR00] A. Mostefaoui and M. Raynal. Leader-based consensus. Research Report 1372,
IRISA, December 2000.

[VRMMH98] R. Van Renesse, Y. Minsky, and M. M. Hayden. A gossip-based failure detection
service. InProceedings of Middleware ’98 (Sept. 1998), September 1998.


