
Thrifty Generic Broadcast?

Marcos Kawazoe Aguilera1, Carole Delporte-Gallet2, Hugues Fauconnier2, and

Sam Toueg1

1 DIX, �Ecole Polytechnique, 91128 Palaiseau Cedex, France,

aguilera,sam@lix.polytechnique.fr
2 LIAFA, Universit�e D. Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France,

cd,hf@liafa.jussieu.fr

Abstract. We consider the problem of generic broadcast in asynchronous

systems with crashes, a problem that was �rst studied in [12]. Roughly

speaking, given a \conict" relation on the set of messages, generic broad-

cast ensures that any two messages that conict are delivered in the same

order; messages that do not conict may be delivered in di�erent order.

In this paper, we de�ne what it means for an implementation generic

broadcast to be \thrifty", and give corresponding implementations that

are optimal in terms of resiliency. We also give an interesting application

of our results regarding the implementation of atomic broadcast.

1 Introduction

Atomic broadcast is a well-known building block of fault-tolerant distributed

applications (e.g., see [7, 4, 9, 8, 10, 3, 2]). Informally, this communication primi-

tive ensures that all messages broadcast are delivered in the same order. In a

recent paper, Pedone and Schiper noted that for some applications some mes-

sages do not \conict" with each other, and hence they can be delivered by

di�erent processes in di�erent orders [12]. For such applications, the broadcast

communication primitive does not need to order all messages; it must order only

the conicting ones. An example given in [12] consists of read and write mes-

sages broadcast to replicated servers, where read messages do not conict with

each other, and hence do not have to be ordered. Intuitively, one may want to

avoid ordering the delivery of messages unless it is really necessary: such ordering

may be expensive, or even impossible unless one uses oracles such as as failure

detectors, and these can be unreliable.

In view of the above, Pedone and Schiper proposed a generalized version of

atomic broadcast, called generic broadcast . Informally, given any conict rela-

tion de�ned over the set of messages, if two messages m and m
0 conict, then

generic broadcast ensures that they are delivered in the same order.1 Messages

that do not conict are not required to be ordered. Note that if the conict rela-

tion includes all the pairs of messages, generic broadcast coincides with atomic

? Research partially supported by NSF grants CCR-9711403.
1 The conict relation is a parameter of generic broadcast. We assume that it is sym-

metric and non-reexive.

broadcast. On the other hand, if the conict relation is empty, generic broadcast

reduces to reliable broadcast.

How can one implement a generic broadcast primitive? A trivial way is to

use atomic broadcast to broadcast every message that we want to gbroadcast.2

This ensures that all messages are ordered, including non-conicting ones. Such

an implementation is unsatisfactory, and goes against the motivation for intro-

ducing generic broadcast in the �rst place. To avoid this trivial implementation,

and in order to characterize \good" implementations, Pedone and Schiper intro-

duced the notion of strictness. Roughly speaking, an implementation of generic

broadcast is strict if it has at least one execution in which two processes deliver

two non-conicting messages in a di�erent order. The notion of strictness is in-

tended to capture the intuitive idea that the total order delivery of messages

has a cost, and this cost should be paid only when necessary. As Pedone and

Schiper point out in [13], however, the strictness requirement is not su�cient

to characterize good implementations of generic broadcast. Intuitively, this is

because there is a strict implementation that �rst orders all the messages, in-

cluding non-conicting ones, and then selects two non-conicting messages and

delivers them in di�erent orders. Even though such an implementation is strict,

it goes against the motivation behind generic broadcast.

In this paper, we reconsider the question of what it means for an implemen-

tation of generic broadcast to be good, and we propose new de�nitions. We �rst

note that in asynchronous systems with crash failures (the systems considered

in [12] and here), generic broadcast cannot be implemented without the help

of an \oracle" that can be used to order the delivery of messages that conict.

This oracle could be a \box" that solves atomic broadcast or consensus; or it

could be a failure detector that can be used to implement such a box. In the

�rst case, this oracle is expensive; in the second case, it can be unreliable and

its mistakes can slow down the delivery of messages.3 In either case, one should

avoid the use of the oracle whenever possible. Thus, a good implementation of

generic broadcast is one that takes advantage of the fact that only conicting

messages need to be ordered, and uses its oracle only when there are conicting

messages that are actually broadcast.

This leads us to the following de�nition. Roughly speaking, an implementa-

tion of generic broadcast is non-trivial w.r.t. an oracle, if it satis�es the following

property: if all the messages that are actually broadcast do not conict with each

other, then the oracle is never used. A non-trivial implementation, however, is

still unsatisfactory: even in a run where there is only one broadcast that con-

icts with a previous one, such an implementation is allowed use its oracle an

2 Henceforth, gbroadcast and gdeliver are the two primitives associated with generic

broadcast. Similarly, abroadcast and adeliver are associated with atomic broadcast.
3 Even though one can implement failure detectors that are fairly accurate in prac-

tice [14, 6], they may have \bad" periods of time when they make too many mistakes

to be useful. For example, from [5] there is an atomic broadcast algorithm that never

deliver messages out of order, but message delivery is delayed if/when the algorithm

happens to rely on the failure detector during one of its bad periods.

unlimited number of times. This motivates our second de�nition. An implemen-

tation of generic broadcast is thrifty w.r.t. an oracle if it is non-trivial and it

also satis�es the following property: if there is a time after which the messages

broadcast do not conict with each other, then there is a time after which the

oracle is not used. It is easy to see that non-trivial implementations and thrifty

ones are necessarily strict in the sense of [12].

In this paper, we consider implementations of generic broadcast that use

atomic broadcast as the oracle. Atomic broadcast is a natural oracle for the task

of totally ordering conicting messages. Furthermore, any implementation that is

thrifty w.r.t. atomic broadcast can be transformed into an implementation that

is thrifty w.r.t. consensus. It can also be transformed into an implementation

that is thrifty w.r.t. 3S, the weakest failure detector that can be used to solve

generic broadcast (this last transformation assumes that a majority of processes

is correct).

We present two implementations of generic broadcast: one is non-trivial and

the other is thrifty. The non-trivial implementation is simple and illustrates some

of our basic techniques; the thrifty implementation is more complex and builds

upon the simple implementation. Both implementations work for asynchronous

systems with n processes where up to f < n=2 may crash, which is optimal.

Since both implementations are also strict, this improves on the resiliency of the

strict implementation given in [12] which tolerates up to f < n=3 crashes.

We continue the paper with an interesting use of thrifty implementations of

generic broadcast. Speci�cally, we show how they can be used to derive \sparing"

implementations of atomic broadcast, as we now explain. First note that in

asynchronous systems with failures, any implementation of atomic broadcast

requires the use of an external oracle, and (just as with generic broadcast) it

is better to avoid relying on this oracle whenever possible. For example, if the

oracle is a failure detector, relying on this oracle during one of its \bad" period

can delay the delivery of messages. So we would like an implementation of atomic

broadcast that uses the oracle sparingly. How can we do so?

Suppose a process atomically broadcast m and then m
0. No oracle is needed

to ensure that m and m0 are delivered in the same order everywhere: FIFO order

can be easily enforced with sequence numbers assigned by the sender. Similarly,

suppose two atomic broadcast messages happen to be causally related4, e.g.,

m is adelivered by a process before it abroadcasts m0. Then, we can order the

delivery of m and m
0 without any oracle (this can be done with message pig-

gybacking or \vector clocks"; see for example [10]). Thus, an implementation

of atomic broadcast can reduce its reliance on the oracle, by restricting its use

to the ordering of broadcast messages that are concurrent. We say that an im-

plementation of atomic broadcast is sparing w.r.t. an oracle, if it satis�es the

following property: If there is a time after which the messages broadcast are

pairwise causally related, then there is a time after which the oracle is not used.

4 We say that two messages are causally related or concurrent, if their broadcast events

are causally related or concurrent, respectively, in the sense of [11, 10].

We conclude the paper by showing how to transform any implementation of

atomic broadcast that uses some oracle, into one that is sparing w.r.t the same

oracle. To do so, we use a thrifty implementation of generic broadcast and vector

clocks.

As a �nal remark, note that Pedone and Schiper use message latency as a way

to evaluate the e�ciency of generic broadcast implementations. In \good" runs

with no failures and no conicting messages, their generic broadcast algorithm

ensures that every message is delivered within 2� (assuming � is the maximum

message delay). In this paper, our focus was not on optimizing the latency of

messages in these good runs, but rather on reducing the dependency on the oracle

whenever possible. These two goals, however, are not incompatible. In fact, we

can modify our thrifty implementations of generic broadcast to also achieve a

small message latency in good runs. Speci�cally, we have an implementation

that assumes f < n=3 and ensures a message delivery within 2� in such runs (as

in [12]). We also have an implementation that works for f < n=2 and ensures

message delivery within 3� in good runs. It is worth noting that even in runs

with failures and conicting messages, the message delivery times of 2� and 3�,

respectively, are eventually achieved provided there is a time after which the

messages broadcast are not conicting.

In summary, this paper considers the problem of generic broadcast in asyn-

chronous systems with crashes, a problem that was �rst studied in [12]. We �rst

propose alternative de�nitions of \good" implementations of generic broadcast

(the previous de�nition in terms of \strictness" had some drawbacks). Roughly

speaking, we consider an implementation to be good if it does not rely on any

oracle when the messages that are broadcast do not conict. We then give two

such implementations (with atomic broadcast as its oracle): one does not use

the oracle in runs where no messages conict, and the other one stops using

the oracle if conicting broadcasts cease. Both implementations are optimal in

terms of resiliency; they tolerate up to f < n=2 process crashes (an improvement

over [12]). We then use our results to give \sparing" implementations of atomic

broadcast, i.e., implementations that stop using their oracle if concurrent broad-

casts cease. Finally, we show how to transform any implementation of atomic

broadcast into a sparing one.

In this extended abstract, we omit the proofs (they are given in the full paper

[1]).

2 Informal Model

We consider asynchronous distributed systems. To simplify the presentation of

our model, we assume the existence of a discrete global clock. This is merely a

�ctional device: the processes do not have access to it. We take the range � of

the clock's ticks to be the set of natural numbers N.

The system consists of a set of n processes, � = f1; 2; : : : ; ng and an or-

acle. Processes are connected with each other through reliable asynchronous

communication channels. Up to f processes can fail by crashing. A failure pat-

tern indicates which processes crash, and when, during an execution. Formally,

a failure pattern F is a function from � to 2� , where F (t) denotes the set of

processes that have crashed through time t. Once a process crashes, it does not

\recover", i.e., 8t : F (t) � F (t + 1). We de�ne crashed (F) =
S
t2� F (t) and

correct(F) = � � crashed (F). If p 2 crashed (F) we say p crashes (in F) and if

p 2 correct(F) we say p is correct (in F).

A distributed algorithm A is a collection of n deterministic automata (one

for each process in the system). The execution of A occurs in steps as follows.

For every time t 2 � , at most one process takes a step; moreover, every correct

process takes an in�nite number of steps. In each step, a process (1) may send a

message to a process; (2) queries the oracle (the query may be ?); (3) receives
an answer from the oracle (possibly ?); (4) receives a message (possibly ?); and
(5) changes state. We say that a process uses the oracle at time t if it performs

a non-? query at time t.

An oracle history H is a sequence of quadruples (p; t; i; o), where p is a pro-

cess, t is a time (t is monotonically increasing in H), i is the query of p at time

t, and o is the answer of the oracle to p at time t. We assume that if no pro-

cess ever uses the oracle (all queries in H are ?) then the oracle never gives

any answer (all answers in H are ?). An oracle O is function that takes a fail-

ure pattern F and returns a set O(F) of oracle histories5. Oracles of interest

include failure detectors [5], an atomic broadcast black-box, and a consensus

black-box. For example, an atomic broadcast black-box can be modeled as an

oracle that accepts \broadcast(m)" queries, and outputs \deliver(m)" answers,

where the queries/answers satisfy the usual speci�cation of atomic broadcast

(see Section 2.2).

2.1 Reliable broadcast

Intuitively, reliable broadcast ensures that processes agree on the set of messages

that they deliver. More precisely, reliable broadcast is de�ned in terms of two

primitives: rbroadcast(m) and rdeliver (m). We say that process p broadcasts

message m if p invokes rbroadcast(m). We assume that every broadcast message

m includes the following �elds: the identity of its sender, denoted sender(m), and

a sequence number, denoted seq(m). These �elds make every message unique.

We say that q delivers message m if q returns from the invocation of rdeliver (m).

Primitives rbroadcast and rdeliver satisfy the following properties:6

Validity : If a correct process broadcasts a messagem, then it eventually delivers

m.
Uniform Agreement : If a process delivers a messagem, then all correct processes

eventually deliver m.
Uniform Integrity : For every messagem, every process deliversm at most once,

and only if m was previously broadcast by sender(m).

5 We assume this set allows any process to make any query at any time.
6 All the broadcast primitives that we de�ne in this paper are uniform [10]. To abbre-

viate the notation, we drop the word \uniform" from the various broadcast types.

Validity and Uniform Agreement imply that if a correct process broadcasts

a message m, then all correct processes eventually deliver m.

2.2 Atomic broadcast

Intuitively, atomic broadcast ensures that processes agree on the order they de-

liver messages. More precisely, atomic broadcast is de�ned in terms of primitives

abroadcast(m) and adeliver (m) that must satisfy the Validity, Uniform Agree-

ment and Uniform Integrity properties above, and the following property:

Uniform Total Order : If some process delivers message m before message m0,

then a process delivers m0 only after it has delivered m.7

2.3 Generic broadcast

Generic broadcast is parametrized by a conict relation (denoted �) de�ned over
the set of messages; this relation is assumed to be symmetric and non-reexive.

Informally, generic broadcast ensures that if two messages m and m
0 conict,

then they are delivered in the same order. Messages that do not conict are not

required to be ordered. More precisely, generic broadcast is de�ned in terms of

the conict relation (given as a parameter) and two primitives: gbroadcast(m)

and gdeliver (m) that must satisfy the Validity, Uniform Agreement and Uniform

Integrity properties above, and the following property:

Uniform Generalized Order : If messages m and m
0 conict and some process

delivers m before m0, then a process delivers m0 only after it has delivered

m.

If the conict relation includes all the pairs of messages, generic broadcast co-

incides with atomic broadcast; if the conict relation is empty, generic broadcast

reduces to reliable broadcast.

3 Thrifty implementations

Let A be an implementation of generic broadcast that can use an oracle X , and

let Runs(A) be the set of runs of A. Let gbcast msgs(r) be the set of messages

gbroadcast in r and gbcast msgs(r ; [t ;1)) be the set of messages gbroadcast in

r at or after time t.

De�nition 1. We say that A is non-trivial w.r.t. oracle X if, when no con-

icting messages are gbroadcast, X is not used. More precisely: 8r 2 Runs(A);
[8m;m

0 2 gbcast msgs(r);m 6� m
0]) X is not used in r.

De�nition 2. We say that A is thrifty w.r.t. X if it is non-trivial w.r.t. X

and it guarantees the following property: if there is a time after which messages

gbroadcast do not conict with each other, then eventually X is no longer used.

More precisely: 8r 2 Runs(A); [9t;8m;m
0 2 gbcast msgs(r; [t;1));m 6� m

0])
9t0; X is not used in r after time t

0
.

7 In [10], Uniform Total Order is a weaker property.

4 A non-trivial implementation of generic broadcast

We now give a non-trivial implementation of generic broadcast for asynchronous

systems with a majority of correct processes. The implementation, given in Fig-

ure 1, uses atomic broadcast as an oracle, and reliable broadcast as a subroutine

(reliable broadcast can be easily implemented in asynchronous systems with pro-

cess crashes without the use of oracles). In this implementation, C(m) denotes

the set fmg [fm0 : m0 conicts with mg.
To gbroadcast a message m, the basic idea is that processes go through two

rounds of messages, and then the broadcaster p decides to either rbroadcast m

(in which case the oracle is not used) or abroadcast m (in which case the oracle

is used). More precisely, to gbroadcast a message m, p sends (m; first) to all

processes, where first is a tag to distinguish di�erent types of messages. When

a process receives (m; first), it adds m to its set seen of messages, and checks if

m conicts with any messages in seen. If it does, it sends (m;bad; second) to all

processes; else, it sends (m;good; second). When a process receives a message

of form (m; �; second) from n� f processes, it adds m to its seen set, and then

checks if a majority of second messages are good, and if its seen set has no

messages conicting with m. If so, the process adds m to its set possibleRB, and

then sends (m; possibleRB \ C(m);third) to p | the process that gbroadcast

m | where possibleRB \ C(m) is the subset of messages in possibleRB that

either conict with m or is equal to m (note that possibleRB \ C(m) can be

empty, it can contain m, and it can contain messages distinct from m). When p

receives messages of the form (m; poss ;third) from n�f processes, it checks if a

majority of them has m it its poss set. If so, p rbroadcastsm; else, p abroadcasts

m, together with the union of all poss sets received. When a process rdelivers

m, it gdelivers m if it has not done so previously. When a process adelivers

(m; prec), it gdelivers all messages in prec (if it has not done so already), and

then gdelivers m.

In this implementation, each process keeps two local variables: seen and pos-

sibleRB. The �rst one keeps the set of gbroadcast messages that the process

has seen so far, and the second keeps the set of gbroadcast messages that are

possibly reliably broadcast.

Theorem 1. Consider an asynchronous system with a majority of correct pro-

cesses (n > 2f). The algorithm in Figure 1 is a non-trivial implementation of

generic broadcast that uses atomic broadcast as an oracle.

Observation: In asynchronous systems with n � 2f , there are no non-trivial

implementations of generic broadcast w.r.t. any oracle X .

5 A thrifty implementation of generic broadcast

We now give a thrifty implementation of generic broadcast that uses atomic

broadcast as an oracle. It works in asynchronous systems in which a majority

of processes is correct. This implementation is given in Figure 2, and builds

1 For every process p:

2 initialization:
3 seen ;; possibleRB ;

4 to gbroadcast(m): send (m; first) to all processes

5 upon receive(m;first) from q:
6 seen seen [fmg
7 if seen has no messages conicting with m
8 then send (m;good; second) to all processes
9 else send (m; bad; second) to all processes

10 upon receive(m;�; second) from n � f processes for the �rst time:
11 seen seen [fmg
12 good fr : received (m;good; second) from rg
13 if jgoodj > n=2 and seen has no messages conicting with m
14 then possibleRB possibleRB [fmg
15 send (m;possibleRB \ C(m); third) to sender(m)

16 upon receive(m;�; third) from n� f processes for the �rst time:
17 R fr : received (m; �; third) from rg
18 for each r 2 R do poss[r] M s.t. received (m;M; third) from r
19 if jr : m 2 poss[r]j > n=2 then rbroadcast(m)
20 else abroadcast(m;[r2Rposs[r])

21 upon rdeliver(m): if m not gdelivered then gdeliver(m)

22 upon adeliver(m; prec):
23 for each m0

2 prec do

24 if m0 not gdelivered then gdeliver(m0)
25 if m not gdelivered then gdeliver(m)

Fig. 1. Non-trivial implementation of generic broadcast with an atomic broadcast oracle

upon the non-trivial implementation given in Section 4. In this implementation,

C(M) =M [fm0 : m0 conicts with some m 2Mg, and C(m) = fmg[fm0 : m0

conicts with mg.

Each process p keeps four variables: seen, possibleRB , stable and adel . seen

is the set of gbroadcast messages that p has seen but has not yet adelivered or

rdelivered. possibleRB is the set of gbroadcast messages that can be rbroadcast,

but were not yet adelivered or rdelivered. adel is the set of messages that p has

adelivered. stable is a set of pairs (m;B), where m is a message and B is a set of

messages. Intuitively, (m;B) 2 stable means that p has adelivered or rdelivered

m, and p must gdeliver all messages in B before it gdelivers m. We denote by

�1 the projection on the �rst component of a tuple or of a set of tuples. That

is, �1((m;B)) is m and �1(stable) is the set of m such that (m;B) 2 stable, for

some B.

To gbroadcast a message m, a process p sends (m; first) to all processes.

Upon receipt of such a message, a process q adds m to its seen set, if m is not

in �1(stable). Then q sends to all processes a second message containing m,

together with seen, and those elements of stable whose �rst component either

conicts with some message in seen [fmg or belongs to seen [fmg. When a

process q receives (m; s; st ; second), it adds to seen those elements in s that are

not in �1(stable), and it adds st to stable . When q collects secondmessages from

n�f processes, it checks if seen contains m and no messages conicting with m,

and if so, q adds m to possibleRB . Then, q sends to p | the gbroadcaster of m

| a third message containing m, seen, possibleRB and those elements in stable

whose �rst component either conicts with some message in seen[fmg or belongs
to seen [fmg. When p receives a third message for m from n� f processes, it

checks if a majority of them have m in their third components and if m is not

in �1(stable). If so, p rbroadcasts m, together with those messages in �1(stable)

that conict with m. Else, p abroadcasts m, together with (1) the so-called ush

set, which contains those messages that are in the seen sets of a majority of

processes, (2) the so-called prec set, which contains those messages that are in

the possibleRB set of some process and that either conict with a message in

ush[fmg or belong to ush[fmg, (3) those messages in �1(stable) that either

conict with a message in ush [prec [fmg or belong to ush [prec [fmg. We

assume that, before p abroadcasts (m;ush; prec; : : :), p chooses some arbitrary

ordering for the messages in ush and prec, which will be known to any process

that adelivers (m;ush; prec; : : :).

When a process q rdelivers (m; before), it removes m from possibleRB and

from seen, and adds (m; before) to stable . Then, q looks for elements (m0; B) in

stable such that m0 has not been gdelivered and all messages in B have been

gdelivered. If q �nds such an element, q gdelivers m0.

When q adelivers (m;ush; prec; before), it removes fmg [prec [ush from

possibleRB and from seen, and adds adel to before . Then, q iterates over the

ordered elements of prec. For each element m0 of prec, q adds to stable the tuple

(m0; B), where B is the elements in before that conict with m
0. The intuition

here is that (m0; B) 2 stable means that p must gdeliver m0 after p gdelivers all

elements in B. Then, in a similar fashion, q iterates over the ordered elements

of ush, to add each of them to stable. Next, q adds m to stable and adds

fmg [ush [prec to adel . Finally, q looks for elements (m0; B) in stable such

that m0 has not been gdelivered and all messages in B have been gdelivered. If

q �nds such an element, q gdelivers m0.

Theorem 2. Consider an asynchronous system with a majority of correct pro-

cesses (n > 2f). The algorithm in Figure 2 is a thrifty implementation of generic

broadcast that uses atomic broadcast as an oracle.

6 A sparing implementation of atomic broadcast

As we explained in the introduction, we would like to solve atomic broadcast

with an algorithm that does not rely on an oracle whenever possible. Since no

oracle is needed to order the delivery of causally related messages, we would

like the atomic broadcast algorithm to stop using the oracle when messages are

causally related.

More precisely, we say thatmessage m immediately causally precedes message

m
0
and denote m !1

m
0 if either (1) some process p abroadcasts m and then

abroadcasts m0 or (2) some process p adelivers m and then abroadcasts m0.

Thus, !1 is a relation on the set of messages. Let ! be the transitive closure

1 For every process p:

2 initialization:

3 seen ;; possibleRB ;; stable ;; adel ;

4 to gbroadcast(m): send (m; first) to all processes

5 upon receive(m;first) from q:
6 if m 62 �1(stable) then seen seen [fmg
7 send (m; seen; fX 2 stable : �1(X) 2 C(seen [fmg)g; second) to all processes

8 upon receive(m;s; st; second) from q:
9 seen seen [(s n �1(stable)); stable stable [st

10 if received messages of the form (m; �; �; second) from n� f processes for the �rst time then

11 if m 62 �1(stable) then seen seen [fmg
12 if seen \ C(m) = fmg then possibleRB possibleRB [fmg
13 send (m; seen; possibleRB; fX 2 stable : �1(X) 2 C(seen [fmg)g; third) to sender(m)

14 upon receive(m;�; �; �; third) from n� f processes for the �rst time:

15 R fr : received (m; �; �; �; third) from rg
16 for each r 2 R do

17 s[r] M , where M is the set such that p received (m;M; �; �; third) from r
18 poss[r] M , where M is the set such that p received (m; �;M; �; third) from r
19 stable stable [M , where M is the set such that p received (m; �; �;M; third) from r
20 if jr : m 2 poss[r]j > n=2 and m 62 �1(stable) then rbroadcast(m;�1(stable) \ C(m))
21 else if m 62 �1(stable) then
22 ush fm0 : m0

6= m ^ jq : m0
2 s[q]j > n=2g

23 prec [r2Rposs[r] \ C(ush [fmg)
24 abroadcast(m;ush; prec; �1(stable) \C(ush [prec [fmg))

/* in the abroadcast message above, sets ush and prec are ordered, arbitrarily */

25 upon rdeliver(m; before):
26 possibleRB possibleRB n fmg; seen seen n fmg
27 stable stable [f(m; before)g
28 while 9(m0; B) 2 stable s.t. m0 not gdelivered and all messages in B have been gdelivered

29 do gdeliver(m0)

30 upon adeliver(m;ush; prec; before):
31 possibleRB possibleRB n (fmg [prec [ush); seen seen n (fmg [prec [ush)

32 before before [adel

33 for each m0
2 prec do stable stable [f(m0; C(m0) \ before)g; before before [fm0

g

34 for each m0
2 ush do stable stable [f(m0; C(m0) \ before)g; before before [fm0

g

/* the for each loops above iterate in the order of the ordered sets prec and ush */
35 stable stable [f(m;C(m) \ before)g; adel adel [fmg [ush [prec

36 while 9(m0; B) 2 stable s.t. m0 not gdelivered and all messages in B have been gdelivered

37 do gdeliver(m0)

Fig. 2. Thrifty implementation of generic broadcast with an atomic broadcast oracle

of !1. We say that m is causally related to m
0 if either m! m

0 or m0 ! m. If

m and m0 are not causally related, we say that m and m
0
are concurrent. These

de�nitions are based on [11].

Let AX be an implementation of atomic broadcast that uses an oracle X .

De�nition 3. We say that AX
is sparing w.r.t. oracle X if it guarantees

the following property: if there is a time after which messages abroadcast are

pairwise causally related, then eventually X is no longer used. More precisely:

8r 2 Runs(AX); [9t;8m;m
0 2 gbcast msgs(r; [t;1));m ! m

0 _ m
0 ! m])

9t0; X is not used in r after time t
0
.

In this section, we show how to transform any implementation of atomic

broadcast that uses some oracle X , into an implementation that is sparing w.r.t

to X . As a �rst step, we show how to transform any implementation of generic

broadcast that is thrifty w.r.t. oracleX , into an implementation of atomic broad-

cast that is sparing w.r.t. X . This is achieved through the algorithm in Figure 3.

In this algorithm, seq denotes the number of messages that p has abroadcast

so far, while ndel [q] is the number of messages from q that p has adelivered so far.

Intuitively, ts is a vector timestamp for messages such that if ts is the timestamp

of m, then ts[j] is the number of messages from process j that causally precede

m. We can show that if m causally precedes m0 and their timestamps are ts and

ts
0, respectively, then ts � ts

0.

To abroadcast a messagem, process p �rst obtains a new vector timestamp ts

form, by copying the vector ndel to ts, and then changing ts[p] to a new sequence

number. Then p gbroadcasts m with its timestamp ts. Upon gdeliver of (m; ts),

a process q copies ts to prec, and changes prec[sender (m)] to ts[sender (m)]� 1.

Intuitively, prec represents the number of messages from each process that q

must adeliver before q can adeliver m. Then q appends (m; prec) to L, and then

searches for the �rst message (m0; prec0) in L with prec
0 � ndel .8 If it �nds such

a message, it adelivers m0, increments ndel [sender (m0)] by one, and removes

(m0; prec0) from L.

Theorem 3. Consider an asynchronous system with at least one correct process.

If we plug-in an implementation of generic broadcast that is thrifty w.r.t. oracle

X into the algorithm in Figure 3, then we obtain an implementation of atomic

broadcast that is sparing w.r.t. oracle X.

As we now explain, we can use this result to transform any implementation

AX of atomic broadcast that uses an oracle X , into an implementation AX
sparing

that is sparing w.r.t. X . To do so, we �rst replace the atomic broadcast oracle

in Figure 2 with AX , and thus obtain an implementation GX
thrifty

of generic

broadcast that is thrifty w.r.t. X . We then use the transformation in Figure 3

to transform GX
thrifty

to AX
sparing

| an implementation of atomic broadcast that

is sparing w.r.t. X (by Theorem 3).

Theorem 4. Given any implementation of atomic broadcast that uses some or-

acle X, we can transform it to one that is sparing w.r.t. X.

8 We say that a vector v1 � v2 if for every q 2 �, v1[q] � v2[q].

1 For every process p:

2 initialization:
3 seq 0 /* # of messages abroadcast by p */

4 L ; /* ordered set with message to adeliver */
5 for each q 2 � do ndel[q] 0

/* ndel [q] = # of messages from q that p has adelivered */

6 de�ne (m; ts) � (m0; ts0) i� ts 6� ts
0 and ts

0
6� ts

/* conict relation for generic broadcast */

7 to abroadcast(m):
8 seq seq + 1; ts ndel; ts[p] seq /* get new timestamp */
9 gbroadcast(m; ts) /* with � as the conict relation */

10 upon gdeliver(m; ts):
11 prec ts; prec[sender(m)] ts[sender(m)]� 1

12 L L � (m; prec) /* append (m; prec) to L */

13 while 9(m0; prec0) 2 L such that prec0 � ndel do

14 (m0; prec0) �rst element in L such that prec0 � ndel

15 adeliver(m0)

16 ndel [sender(m0)] ndel [sender(m0)] + 1

17 L L n (m0; prec0)

Fig. 3. Transforming thrifty generic broadcast into sparing atomic broadcast

7 Low-latency thrifty implementations of generic

broadcast

It is easy to see that the generic broadcast implementations in Figures 1 and 2

guarantee that in \good" runs with no failures and no conicting messages, ev-

ery message is delivered within 4�, where � is the maximum network message

delay.9 It turns out that we can decrease this latency to 3� with some simple

modi�cations to the algorithms. Moreover, if we assume that n > 3f (i.e., more

than two-thirds of the processes are correct) then we can further reduce the la-

tency to 2�. With the thrifty implementation, this latency is eventually achieved

even in runs with failures and conicting messages, provided that there is a time

after which the messages gbroadcast are not conicting.

Reducing the message latency to 3�. To achieve a latency of 3� in good

runs, we modify the implementation in Figure 1 as follows: (1) processes should

send the third message to all processes in line 15, (2) instead of rbroadcasting a

messagem in line 19, a process p sends a message telling all processes to \deliver

m", and then p gdelivers m, and (3) upon the receipt of a \deliver m" message

for the �rst time, a process relays this \deliver m" message to all processes and

gdelivers m. With this modi�cation, it is easy to see that in good runs, every

gbroadcast message is gdelivered within 3�.

Theorem 5. With the modi�cations above, the algorithm in Figure 1 ensures

that, in runs with no failures and no conicting messages, every gbroadcast mes-

sage is gdelivered within 3�, where � is the maximum network message delay.

9 This assumes a reasonable implementation of reliable broadcast, which is used as a

subroutine in these implementations.

We can modify the thrifty implementation in Figure 2 in a similar manner:

(1) processes send the third message to all processes in line 13, (2) instead of

rbroadcasting a message in line 20, a process sends a \deliver (m;�1(stable) \
C(m))" message to all processes, sets variable before to �1(stable) \ C(m), and

then executes the code in lines 26{29, and (3) upon the receipt of message

\deliver (m; before)" for the �rst time, a process relays this \deliver" message to

all processes, and executes the code in lines 26{29.

Theorem 6. With the modi�cations above, the algorithm in Figure 2 ensures

that if there is a time after which the messages gbroadcast are not conicting,

eventually every gbroadcast message is gdelivered within 3�, where � is the max-

imum network message delay.

Reducing the message latency to 2� when n > 3f . To achieve a latency

of 2� in good runs, we assume that n > 3f (instead of n > 2f). With this

assumption, Figure 4 gives a non-trivial implementation of generic broadcast.

The implementation is a simpli�cation of the one in Figure 1, and uses atomic

broadcast as the oracle.

1 For every process p:

2 initialization:

3 seen ;; good ;

4 to gbroadcast(m): send (m; first) to all processes

5 upon receive(m;first) from q:
6 seen seen [fmg
7 if seen \ C(m) = fmg then good good [fmg
8 send (m; good \ C(m); second) to all processes

9 upon receive(m;�; second) from n � f processes for the �rst time:

10 R fr : received (m; �; second) from rg
11 for each r 2 R do g[r] M s.t. received (m;M; second) from r
12 if jfr : g[r] = fmggj > 2n=3 then send (m; deliver) to all processes; gdeliver(m)

13 else if p = sender(m) then

14 poss fm0
6= m : jfr : m0

2 g[r]gj > n=3g
15 abroadcast(m;poss)

16 upon receive(m;deliver) from some process:
17 if m not gdelivered then send (m;deliver) to all processes; gdeliver(m)

18 upon adeliver(m; prec):
19 for each m0

2 prec do

20 if m0 not gdelivered then gdeliver(m0)
21 if m not gdelivered then gdeliver(m)

Fig. 4. Low-latency non-trivial implementation of generic broadcast

Theorem 7. Consider an asynchronous system with n > 3f . The algorithm in

Figure 4 is a non-trivial implementation of generic broadcast that uses atomic

broadcast as an oracle. In runs with no failures and no conicting messages, ev-

ery gbroadcast message is gdelivered within 2�, where � is the maximum network

message delay.

Figure 5 gives a thrifty implementation of generic broadcast with a latency

of 2� in good runs. The implementation is a simpli�cation of the one in Figure 2,

and uses atomic broadcast as the oracle.

Note that, in line 18, process p sends a message to itself. We did this to

avoid repetition of code; p should not really send a message to itself, but rather

execute the code in lines 24{28.

1 For every process p:

2 initialization:

3 seen ;; good ;; stable ;; adel ;

4 to gbroadcast(m): send (m; first) to all processes

5 upon receive(m;first) from q:
6 if m 62 �1(stable) then seen seen [fmg
7 if m 62 �1(stable) and seen \ C(m) = fmg then good good [fmg
8 send (m; seen; good; fX 2 stable : �1(X) 2 C(seen [fmg)g; second) to all processes

9 upon receive(m;ss; �; st; second) from q:
10 seen seen [(ss n �1(stable)); stable stable [st

11 if received messages of the form (m; �; �; �; second) from n� f processes for the �rst time then
12 R fr : received (m; �; �; �; second) from rg
13 for each r 2 R do

14 s[r] M , where M is the set such that p received (m;M; �; �; second) from r
15 g[r] M , where M is the set such that p received (m; �;M; �; second) from r
16 if m 62 �1(stable) then seen seen [fmg
17 if jr : m 2 g[r]j > 2n=3 and m 62 �1(stable)
18 then send (m;�1(stable) \C(m); deliver) to p
19 else if m 62 �1(stable) and p = sender(m) then

20 ush fm0 : m0
6= m ^ jq : m0

2 s[q]j > 2n=3g
21 prec fm0 : m0

6= m ^ jq : m0
2 g[q]j > n=3g

22 abroadcast(m;ush; prec; �1(stable) \ C(ush [prec [fmg))
/* in the abroadcast message above, sets ush and prec are ordered, arbitrarily */

23 upon receive(m;before; deliver) from some process for the �rst time:
24 send (m; before; deliver) to all processes
25 good good n fmg; seen seen n fmg
26 stable stable [f(m; before)g
27 while 9(m0; B) 2 stable s.t. m0 not gdelivered and all messages in B have been gdelivered

28 do gdeliver(m0)

29 upon adeliver(m;ush; prec; before):
30 good good n (fmg [prec [ush); seen seen n (fmg [prec [ush)
31 before before [adel

32 for each m0
2 prec do stable stable [f(m0; C(m0) \ before)g; before before [fm0

g

33 for each m0
2 ush do stable stable [f(m0; C(m0) \ before)g; before before [fm0

g

/* the for each loops above iterate in the order of the ordered sets prec and ush */
34 stable stable [f(m;C(m) \ before)g; adel adel [fmg [ush [prec

35 while 9(m0; B) 2 stable s.t. m0 not gdelivered and all messages in B have been gdelivered

36 do gdeliver(m0)

Fig. 5. Low-latency thrifty implementation of generic broadcast with an atomic broadcast oracle

Theorem 8. Consider an asynchronous system with n > 3f . The algorithm

in Figure 5 is a thrifty implementation of generic broadcast that uses atomic

broadcast as an oracle. If there is a time after which the messages gbroadcast

are not conicting, eventually every gbroadcast message is gdelivered within 2�,

where � is the maximum network message delay.

References

1. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic

broadcast. Technical Report (to appear), DIX, �Ecole Polytechnique, Palaiseau,

France, 2000.

2. G. Alvarez, F. Cristian, and S. Mishra. On-demand fault-tolerant atomic broadcast

protocol. In Proceedings of the Fifth IFIP International Conference on Dependable

Computing for Critical Applications, Sept. 1995.

3. Y. Amir, P. Moser, L.E. Melliar-Smith, D. Agarwal, and P. Ciarfella. The

totem single-ring ordering and membership protocol. ACM Trans. Comput. Syst.,

13(4):311{342, Nov. 95.

4. K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures.

ACM Trans. Comput. Syst., 5(1):47{76, Feb. 1987.

5. T. D. Chandra and S. Toueg. Unreliable failure detectors for asynchronous systems.

J. ACM, 43(2):225{267, Mar. 1996.

6. W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure

detectors. In Proceedings of the First International Conference on Dependable

Systems and Networks (also FTCS-30), June 2000.

7. F. Cristian, H. Aghili, H. R. Strong, and D. Dolev. Atomic broadcast: From

simple message di�usion to Byzantine agreement. In Proceedings of the Fifteenth

International Symposium on Fault-Tolerant Computing, pages 200{206, June 1985.

8. D. Dolev, S. Kramer, and D. Malki. Early delivery totally ordered multicast in

asynchronous environment. In IEEE Proceedings of the 23th International Symp

on Fault-tolerant computing (FTCS-23), pages 544{553, June 1993.

9. A. Gopal, R. Strong, S. Toueg, and F. Cristian. Early-delivery atomic broadcast

(extended abstract). In Proceedings of the Ninth ACM Symposium on Principles

of Distributed Computing, pages 297{309, Aug. 1990.

10. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts

and related problems. Technical Report TR 94-1425, Cornell University, Dept. of

Computer Science, Cornell University, Ithaca, NY 14853, May 1994.

11. L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558{565, July 1978.

12. F. Pedone and A. Schiper. Generic broadcast. In Proceedings of the 13th Interna-

tional Symposium on Distributed Computing (DISC'99, formerly WDAG), Sept.

1999.

13. F. Pedone and A. Schiper. Generic broadcast. Technical Report SSC/1999/012,
�Ecole Polytechnique F�ed�erale de Lausanne, Switzerland, Apr. 1999.

14. R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.

In Proceedings of Middleware'98, Sept. 1998.

