
CORRECTING FUNCTIONAL ERRORS in hard-

ware designs can be very costly, thus placing

stringent requirements on functional validation.

Moreover, validation is so complex that, even

though it consumes the most computational

resources and time, it is still the weakest link in

the design process. Ensuring functional correct-

ness is the most difficult part of designing a hard-

ware system.

Progress in formal verification techniques has

partially alleviated this problem. However, auto-

mated methods invariably involve exhaustive

analysis of a large state space and are therefore

constrained to small portions of a design.

Methods that scale to systems of practical size

require either formal, hierarchical design descrip-

tions with clean, well-defined interfaces or con-

siderable human effort after the design is

completed. Either way, applying these methods

to complex circuits with multiple designers is dif-

ficult. Software simulation’s computational

requirements, on the other hand, scale well with

system size. For this reason, and perhaps because

of its intuitive appeal, simulation remains the

most popular functional validation method.

Nevertheless, validation based on simulation

can be only partially complete. To address this

incompleteness, simulation-based semiformal

methods have been developed. These methods

exert better control over simulation by using var-

ious mechanisms to produce input stimuli and

evaluate simulation results. Validation cover-

age, however vague the concept, is essential for

evaluating and guiding such combinations of

simulation-based and formal techniques. The

ideal is to achieve comprehensive validation

without redundant effort. Coverage metrics help

approximate this ideal by

� acting as heuristic measures that quantify

verification completeness, and

� identifying inadequately exercised design

aspects and guiding input stimulus gener-

ation.

Coverage analysis can be instrumental in allo-

cating computational resources and coordi-

nating different validation techniques.1,2

Although coverage-based techniques are

routinely applied successfully to large industri-

al designs,3-5 increasing design complexities

have led to renewed interest in this area. In this

article, we summarize existing work on cover-

Coverage Metrics for
Functional Validation of
Hardware Designs

Formal Verification

2

Software simulation remains the primary means of

functional validation for hardware designs.

Coverage metrics ensure optimal use of simulation

resources, measure the completeness of validation,

and direct simulations toward unexplored areas of

the design. This article surveys the literature, and

discusses the experiences of verification

practitioners, regarding coverage metrics.

Serdar Tasiran

Compaq Systems Research Center
Kurt Keutzer

University of California, Berkeley

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

age metrics, report on industrial experiences in

using them, and identify the strengths and

weaknesses of each metric class and of cover-

age-based validation in general.

Coverage analysis: imprecise but
indispensable

One principal use of coverage analysis is to

measure the validation effort’s adequacy and

progress. Ideally, increasing the coverage

should increase confidence in the design’s cor-

rectness. Direct correspondence between cov-

erage metrics and error classes should ensure

that complete coverage with respect to a met-

ric will detect all possible errors of a certain

type. The lack of well-established formal char-

acterization for design errors makes ascertain-

ing such correspondence difficult. Unlike

manufacturing testing, where practical experi-

ence has shown that stuck-at faults are a good

proxy for actual manufacturing defects, no

canonical error model achieves the same for

common design errors.3 Design errors are less

localized and more difficult to characterize,

making it difficult to establish a formal error

model—a common denominator—for even

subsets of design bugs. As a result, there is, at

most, an intuitive or empirical connection

between coverage metrics and bugs, and the

particular choice of metrics is as often motivat-

ed by ease of definition and measurement as

by correspondence with actual errors.

Designers typically use a set of metrics to

measure simulation-based validation progress,

starting with simple metrics that require little

effort and gradually using more sophisticated

and expensive ones. Giving a formal meaning to

“more sophisticated” also proves difficult. Even

if metric M1 subsumes metric M2, the input stim-

uli that achieve complete M1 coverage are not

necessarily any better at detecting bugs than

input stimuli that achieve complete M2 coverage.

(Metric M1 subsumes metric M2 if and only if, on

any design when a set of input stimuli S achieves

100% M1 coverage, S also achieves 100% M2 cov-

erage.) To make matters worse, a practically use-

ful, formal way of comparing coverage metrics

has not yet been devised.6 Except for trivial

cases, no metric is provably superior to another.

In the absence of useful formal relationships

between coverage metrics, a comparative mea-

sure of “good at uncovering bugs” also needs to

be established intuitively or empirically.

Despite these drawbacks, coverage metrics

are indispensable tools for simulation-based val-

idation. Input stimuli guided by coverage infor-

mation commonly detect more bugs than

conventional simulation and handwritten,

directed tests.3-5 Moreover, coverage metrics pro-

vide more measures of verification adequacy

than bug detection statistics alone.7 At the cur-

rent state of the art, no set of metrics has

emerged as a de facto standard of how much

simulation is enough. However, as design

groups accumulate experience with certain

metrics applied to particular design classes, cri-

teria are evolving to assess how much simula-

tion is not enough.8 It is in this capacity, in

addition to guiding simulation input generation,

that coverage metrics have found their most

widespread use. Because metrics play a crucial

role in functional validation, extensive studies

are needed to correlate classes of bugs and cov-

erage metrics. Despite some preliminary work,3,9

progress in this area is far from satisfactory. Few

design groups today feel confident that they

have a comprehensive set of metrics.

Besides corresponding well with design

errors, another important requirement for cov-

erage metrics is ease of use:

� The overhead of measuring a coverage met-

ric should be tolerable.

� Generating input stimuli that improve cov-

erage should be possible with reasonable

effort.

� Only a minimal modification to existing val-

idation tools and flows should be required.

Most design teams have invested consider-

able time and money in existing simulators,

simulation analysis tools, and test suites.

Unfortunately, direct correlation with design

errors and ease of use are somewhat conflict-

ing requirements. The former often calls for

more designer input for defining coverage

goals, more effort for stimulus generation to

achieve coverage, and more overhead for cov-

erage measurement. Each coverage metric is a

compromise.

3July–August 2001

Classification of coverage metrics
Hardware designs are described by myriad

representation formats at various abstraction lev-

els. Each format accentuates a particular design

aspect and offers unique insight into structure

and functionality. Therefore, we classify valida-

tion coverage metrics on the basis of the descrip-

tion format for which they are defined.

Code coverage
Code coverage metrics, largely derived from

metrics used in software testing, identify which

structure classes in the hardware description

language (HDL) code to exercise during simu-

lation. The simplest such structure is a line or a

block of code (a sequence of lines with no con-

trol branches). More sophisticated code-based

metrics used in hardware verification are

branch, expression, and path coverage. These

metrics involve the control flow through the

HDL code during simulation and are best

described by the control flow graph (CFG) cor-

responding to that code. Control statements

(the statements from which control can jump

to one of several places) constitute the branch-

ing points in the CFG—for example, if, case,

or while statements. Consider the following

Verilog fragment:

1: always @(oneHot or a or b or c)

2: begin case (oneHot)

3: 3’b001: z <= a;
4: 3’b010: z <= b;
5: 3’b100: z <= c;
6: default: z <= 1’bx;
7: endcase

8: if (a | b)

9: d = d1 + d2;

10: else

11: d = d1 – d2;

12: end

13: end

The if statement on line 8 has (a | b) as

the control expression. Branch coverage

requires exercising each possible direction from

a control statement. For the if statement, lines

9 and 11 must both be executed during a simu-

lation run. Similarly, for the case statement, lines

3, 4, and 5 must be executed. A more sophisti-

cated metric, expression coverage, requires

exercising all the possible ways that an expres-

sion can yield each value. For instance, for the

control expression (a | b), in addition to the

case where a = 0 and b = 0, we must exer-

cise the two separate cases where the expres-

sion gives 1 because a = 1 and b = 1.

Path coverage refers to paths in the CFG. For

instance, in the Verilog example, the branch of

the case statement on line 4 followed by the

else branch of the if statement defines one

path through the CFG. Exercising all paths may

be impossible (because of while statements,

for instance), so a representative subset may be

chosen.10 For example, verification engineers

can use the linearly independent paths (a set

of paths through a CFG such that each path

contains at least one edge not included in any

other path) borrowed from software testing to

select a subset of paths approximately the size

of the CFG. Selecting the subset of paths is a

heuristic, design-dependent process.

Measuring code coverage requires little

overhead, and because of the ease of inter-

preting coverage results, these metrics are use-

ful for writing test cases to improve coverage.

Almost all design groups use some form of

code coverage, and many commercial, propri-

etary tools exist for measuring and interpreting

it. However, unlike the case with software,

achieving complete code coverage for hard-

ware is a minimum requirement. More impor-

tant, hardware designs are highly concurrent.

More than one code fragment is active at a

time, thus fundamentally distinguishing HDL

code from sequential software. Code coverage

metrics do not address this essential hardware

characteristic. Consequently, requiring com-

plete code coverage for hardware, although

necessary, is far from sufficient.

Metrics based on circuit structure
The simplest circuit-structure-based metric is

toggle coverage: Each binary node in the circuit

must switch from 0 to 1 or 1 to 0 at some point

during the simulation. This metric identifies

physical portions of the circuit that are not

properly exercised.5 Separating circuits into data

path and control, as shown in Figure 1, is useful

for defining more sophisticated metrics in this

Formal Verification

4 IEEE Design & Test of Computers

class. In the data path portion, registers deserve

special attention during validation. Each regis-

ter must be initialized, loaded, and read from,

and each feasible register-to-register path must

be exercised. (Exercising some physical paths

connecting registers may not be logically possi-

ble.) Counters often cause errors in the data

path, so designers should check whether coun-

ters are reset and whether they reach their min-

imum and maximum values. The control and

status signals at the data-path and control inter-

face characterize the communication that takes

place between these two circuit parts.

Exercising all combinations of assignments to

these signals can help uncover bugs.11

Metrics based on the circuit structure, like

code coverage metrics, are easy to measure

and intuitive to interpret. For test generation,

knowing the structures that are not exercised is

usually sufficient. However, unlike simpler

code coverage metrics, exercising certain struc-

tures or combinations of signals might not be

possible, and deriving this information accu-

rately and automatically is difficult. The com-

mon solution is to ask for user input, but this

approach may be time consuming and error

prone. Eliminating false negatives (coverage

warnings about structures that cannot be exer-

cised) is the greatest challenge facing auto-

mated tools. As with code coverage,

circuit-structure-based metrics provide a lower

bound on the amount of required simulation.

Metrics defined on finite state machines
Metrics based on code and net lists are

defined on static, structural representations;

hence their ability to quantify and pose require-

ments on sequential behavior is limited. Metrics

defined on state transition graphs are more

powerful in this regard. These metrics require

state, transition, or limited path coverage on a

finite state machine (FSM) system representa-

tion; see the control FSM of the Viper processor

in Figure 2 (page ??), for an example. Some

control portions are better represented by a col-

lection of interacting FSMs. In this case, using

metrics defined for multiple FSMs makes sense.

For instance, the pair-arcs metric requires exer-

cising all feasible pairs of transitions for each

pair of controller FSMs. In a system with two

Viper processors, one pair arc would corre-

spond to one processor making the transition

from the exec state to the wr_mem state, while

the other makes the transition from start to

fetch1.

Because FSM descriptions for complete sys-

tems are prohibitively large, these metrics must

be defined on smaller, more abstract FSMs. We

classify FSMs into two broad categories:

� Hand-written FSMs that capture the behav-

ior of the design at a high level.

� FSMs automatically extracted from the

design description. Typically, after a set of

state variables is selected, the design is pro-

jected onto this set to obtain an abstract FSM

(see Figure 2).

Metrics in the first category are less depen-

dent on implementation details and encapsu-

late the design intent more succinctly. However,

constructing the abstract FSM and maintaining it

as the design evolves takes considerable effort.

Moreover, there is no guarantee that the imple-

5July–August 2001

Control

Data path

S2

S3

S4

S6

S5

Sinit

Figure 1. Separation of data path and

control for metrics based on net lists.

mentation will conform to the high-level model.

Despite these drawbacks, specifying the system

from an alternative viewpoint is an effective

method for exposing design flaws. Experience

shows that using test scenarios targeted at

increasing this kind of coverage has detected

many difficult-to-find bugs.5,13

The state variables of the abstract FSMs for

metrics in the second category can be selected

manually or with heuristics. Shen and Abraham

present a heuristic technique for extracting the

control state variable that changes most fre-

quently, called the primary control state.12,14

They compute an FSM reflecting the transitions

of the primary control state variable and require

coverage of all paths of a certain length in this

FSM. (Arcs in this FSM are marked by condi-

tions on the inputs and state variables in the

fan-in of the primary control state.) Even small

processors have a large number of such paths,

but because each simulation run is short, the

cost is tolerable. Kantrowitz and Noack use

transition coverage on a hand-constructed

abstract model of the system, as well as cache

interface logic.5 Others select important, close-

ly coupled control state variables based on the

design’s architecture.13,15,16

Selecting abstract FSMs requires compro-

mising between the amount of information that

goes into the FSMs and the ease of using the

coverage information. The relative benefits of

the choice of FSMs and the metrics defined on

them are design dependent. Increasing the

amount of detail in the FSMs increases the cov-

erage metric’s accuracy but makes interpreting

the coverage data more difficult. If the abstract

FSM is large, attaining high coverage with

respect to the more sophisticated metrics like

path coverage is difficult. Nevertheless, design-

ers may need to consider paths rather than only

states or transitions to ensure that important

sequences of behavior are exercised. On the

other hand, for designs with a lot of concurrent

control where rare FSM interactions can cause

difficult-to-find bugs, simple metrics that refer

to groups of controller FSMs may be more

appropriate.

The biggest challenge with state-space-based

metrics is writing coverage-directed tests.

Determining whether certain states, transitions,

or paths can be covered may be difficult. The

FSMs’ state variables may be deep in the design,

and achieving coverage may require satisfying

several sequential constraints. Moreover, inspect-

ing and evaluating the coverage data may be dif-

ficult, especially if the FSMs are automatically

extracted. Some automated approaches involve

sequential testing techniques.17 Others establish

a correspondence between coverage data and

input stimuli using pattern matching on previous

simulation runs.12 The capacity of automated

methods is often insufficient for handling cover-

age-directed pattern generation on practical

designs, whereas the user may need to under-

stand the entire design to generate the necessary

inputs. Nevertheless, state-space-based metrics

are invaluable for identifying rare, error-prone

execution fragments and FSM interactions that

may be overlooked during simulation, thus jus-

tifying the high cost of test generation.

Ultimately, carefully choosing abstract FSMs can

alleviate many of the problems mentioned.

Functional coverage
This category consists of metrics that refer

directly to the computation performed by a sys-

tem rather than its structure. Functionality-based

metrics are typically specific to a family of

designs and have the form of carefully con-

structed lists of error-prone execution scenarios

and functionality fragments.3,9 During simula-

tion, each scenario and functionality fragment

must be exercised. Larger execution fragments,

such as certain instruction sequences for

processors or transaction sequences on a bus,

may need to be exercised several times.9

Coverage tools then report the number of times

each such case is exercised.

Error-prone scenarios are either specified

manually (for example, all pairs of concurrent

transactions) or synthesized by tools that search

for some predetermined structures in a net list

or RTL code (for example, to exercise pipeline

hazards, back-to-back instructions that use the

same resources). For each case identified, a

monitor (a piece of code that runs along with

the simulator) is constructed. Designers use a

custom language or a test-bench authoring tool

to specify this monitor. During simulation, the

monitor’s state indicates whether the error-

Formal Verification

6 IEEE Design & Test of Computers

prone case was exercised and whether an error

was detected. Monitors can look for simple

errors, such as transitions to an illegal state in an

FSM, or more complicated event sequences,

such as violations of a bus protocol.

An assertion that annotates the design

description can be considered a special case

of a monitor. Regardless of the validation

methodology, user-defined monitors are

extremely helpful because they capture design

intent expressed at the implementation level

and assumptions about the design’s environ-

ment. Both of these are missing from high-level

specifications and are difficult to address using

generic structural coverage metrics.4,5,18

Following the terminology Grinwald et al.9

use, we classify metrics that refer to functional-

ity fragments as either snapshot or temporal

tasks. Snapshot tasks are conditions on the vari-

able values in a single clock cycle, such as the

number and locations of instructions in a

processor’s branch unit. Temporal tasks involve

a series of conditions spanning several (not

necessarily consecutive) clock cycles—for

example, a 3-to-6-clock-cycle sequence con-

taining an instruction-interrupt-instruction pat-

tern in a microprocessor. Coverage tasks, like

error-prone scenarios, are defined with a cus-

tom language or a test-bench authoring tool

that has temporal operators (mechanisms to

specify behavior in future or past clock cycles)

and support for the operations (such as arith-

metic or logic operations) that the design per-

forms.9 Code that checks coverage tasks can

track the number of exercised times states,

state-event or state-command combinations, or

event sequences, and this information can help

direct later simulations.5 To decrease the num-

ber of cases to test, designers commonly group

functionally similar events or instructions.

Some state-space-based metrics can also be

considered functionality-based metrics: Each

state in the abstract machine specifies a snap-

shot task, and each path requiring coverage

constitutes a temporal task. The projection of

the circuit behavior to the state machine

defines the coverage tasks.

For a small minority of designs, such as

those that conform to standard interfaces like

bus protocols, commercial test suites are avail-

able. For the remaining majority, however, the

designer must thoroughly understand the

design to define effective functionality-based

metrics.3 Useful metrics are the fruit of accu-

mulated experience with a family of designs. As

such, metrics referring to functionality frag-

ments are highly design dependent, and defin-

ing and implementing them requires significant

manual effort and expertise. This is especially

true for parameterized designs that can have

many configurations.5,19

Test generation targeting functional metrics

is also more complex than test generation for

structural coverage metrics. Because the metrics’

constraints span several clock cycles and are not

necessarily localized in HDL code or the circuit

net list, automated test generation is difficult. The

difficulty is compounded if a coverage task

involves a certain interleaving of, or timing con-

straint between, events from different modules

or external sources. Although this approach

catches more of the difficult-to-find bugs than

most other approaches, the effort involved in

generating tests is daunting. Therefore, directed

tests guided by functionality coverage metrics

consume only a minority of simulation cycles.

7July–August 2001

start

halt

fetch1

fetch2

fetch3

execwr_mem

wr_io

Figure 2. The control finite state machine for the Viper

microprocessor. Source: Journal of Electronic Testing: Theory

and Application.12 Reprinted with permission.

An alternative approach to deriving func-

tional coverage tasks is to specify them while

developing the design’s test plan. Functional

coverage in this case involves a self-checking

test suite that monitors whether the system is

behaving as intended.4,5 However, self-check-

ing tests are not well-suited for directing test

generation toward unexpected corner cases

(rarely exercised scenarios that may escape the

designer’s attention).

Because they focus on the probable sources

of error as determined by either experience or

intuition, functionality-based metrics constitute

the most direct attempt at tailoring coverage to

particular types of bugs. Unlike other metrics,

complete coverage of functional tasks provides

a list of cases guaranteeing the design’s behav-

ior. For complex systems, a suite of functional

coverage metrics is indispensable to the vali-

dation process, and this valuable intellectual

property can be transferred onto newer-gener-

ation designs.

Other emerging metrics
Here we discuss three important attributes

of coverage metrics that are not fundamentally

tied to the description format on which they are

defined: error models, observability, and

applicability to specifications.

Error (fault) models
Each coverage metric has an underlying

error, or fault, model. In some instances, this

connection is obvious, such as with toggle-cov-

erage or stuck-at faults, assertions, and assertion

violations. In other cases, the error model is not

made explicit, and only a loose connection

exists between the metric and the errors it is

intended to catch. For instance, a coverage met-

ric requiring that certain instruction sequences

be exercised may be intended to catch all erro-

neous behavior of a pipeline’s interlock logic.

Some coverage metrics are defined directly

by reference to an error model. These fault-

based metrics mimic mutation coverage for

software testing and manufacturing testing of

hardware. Fault-based metrics model a hypo-

thetical design error by a small local mutation

in a design description format such as a net list,

HDL code fragment, or state transition diagram.

A simulation run has detected a fault if that sin-

gle fault causes the design to behave different-

ly than it would without the fault. Fault

coverage, therefore, is the percentage of faults

that the test suite would have detected.

Examples of fault models include gate (or

input) omission, insertion, and substitution;20

modification of outputs or next states for a given

input;21 minor modifications to HDL code;22 and

bus single-stuck line errors.23 The major weak-

ness of these metrics is that the fault models are

motivated more by ease of definition and use

than actual correspondence to design errors.

Moreover, ease of measurement usually neces-

sitates additional restrictions, such as the single-

fault assumption22 or the assumption that faults

are not masked later in the simulation run.21 The

connection with design errors is made either

intuitively21 or on the basis of limited experi-

mental data.22 Despite these shortcomings,

design fault coverage is instrumental because it

provides a fine-grained measure of how ade-

quately a design is exercised. Although each

design fault error model may be simplistic and

local in nature, exploring the design’s behavior

in sufficient detail to detect all hypothetical

errors can help discover actual design errors.

Observability
In a simulation-based validation framework,

the system’s implementation-level model runs

in parallel with a reference model described at

a different abstraction level or with monitors

and assertions that check for certain behavior

in the implementation.5 The implementation

model’s variables that are checked against

required behavior in this manner are observed

variables. Although the remaining variables’

values are easily visible during simulation, cor-

rect behavior is not specified, and determining

by inspection whether these variables are

behaving correctly is difficult. Hence, they are

called unobserved variables. A discrepancy

from desired behavior is detected during simu-

lation only if an observed variable takes on a

value that conflicts with the value specified by

the reference model. Therefore, a unit of a

design’s structure or functionality delineated by

a metric should be considered covered if and

only if it is exercised and a hypothetical dis-

Formal Verification

8 IEEE Design & Test of Computers

crepancy originating in that unit causes an

incorrect value in an observed variable.

The observability requirement does not

mean that a portion of the design must behave

incorrectly during simulation or that the design

must be simulated with an artificially injected

error. The only requirement is that the portion

must affect the value of an observable variable

in some clock cycle. Thus, designers are

assured that had there been an error in that por-

tion, the framework would have detected it. It

is also important to distinguish between unob-

servable and unobserved errors. An unobserv-

able error is one that no simulation run can

detect. If all variables that are crucial to the

design’s functionality are observable, then in

the worst case, unobservable errors will cause

performance penalties but not incorrect behav-

ior. An unobserved error, however, could prop-

agate to an observable variable during a

simulation run. The fact that we have excited

but not observed the error merely indicates that

we have not driven the design with the appro-

priate inputs to propagate the error to an

observed variable. Not taking observability into

account can result in an artificially high read-

ing of coverage and a false sense of security. In

an extreme case, designers could end up exer-

cising entire design portions without checking

their behavior. Consider the following example:

i = j + k;

x = c ∗ i;

if (a > 0)

o = x;

else

o = 0;

Suppose the circuit portion that computes i

has an error. If the inputs to the simulator are

such that whenever i has an error, c = 0 or

a < 0, and o is the only variable that gets com-

pared with the reference model during simula-

tion, the error in i will never be detected.

Few coverage metrics make explicit refer-

ence to the notion of observability. Noteworthy

exceptions include a state-space-based met-

ric,21 an observability-based code coverage

metric,22,24 and an observed-variable-based met-

ric.25 The state-space-based metric22 has require-

ments to ensure that a transition tour of an

abstract state machine uncovers all output and

transition errors in the implementation. The

requirements specify what part of the state must

be visible to the reference model. With the

observability-based code coverage metric,22,24

each assignment is tagged in HDL code, and

each tag must propagate to an observed vari-

able during simulation. Thus, an observability

requirement augments the code coverage met-

ric. The observed-variable-based metric25 eval-

uates the completeness of a set of formally

verified properties in terms of an observed vari-

able. Even when a design’s state space is

searched exhaustively, the tested properties’

comprehensiveness must be quantified. This

scheme considers a state covered if changing

the value of an observed variable affects the

truth of one of the properties being checked. In

all three examples, evidence shows that a met-

ric integrating some notion of observability is a

superior measure of validation quality.22,24,25

Metrics applied to specifications
Following the convention in software testing

literature, we call metrics defined on the

description of a systems’ implementation model-

based metrics. Such metrics are weak at detect-

ing missing functionality. Because a design’s

specification encapsulates the required func-

tionality, metrics defined on specifications are

better suited for this purpose. Assuming formal

specifications exist, it makes sense to apply or

generalize model-based coverage metrics to

specifications as well.3 For example, obtaining

full coverage for executable specifications must

be a minimum requirement. If the specification

is in the form of a collection of FSMs, it is rea-

sonable to apply, in increasing order of sophis-

tication, metrics that are defined on FSMs. In

addition, some software coverage metrics that

are difficult to apply at the implementation

level, such as domain or mutation coverage,

may be applied to specifications.3

Ideally, a specification should encapsulate

only the design functionality and none of the

implementation details. In this way, the speci-

fication gives a checklist of exercisable behav-

iors obtained independently from the design

structure. For certain design families, measur-

9July–August 2001

ing simulation coverage on various forms of

specifications is common. For others, no for-

mal, executable specifications exist, and spec-

ification coverage is measured informally.

Formal specifications let verification engineers

automatically measure coverage during each

simulation and obtain statistics about various

aspects of the specification.

Specification-based metrics alone may not

exercise a design thoroughly. Because the spec-

ification is not aware of implementation choic-

es and optimizations, two simulation runs that

look equivalent according to the specification

may exercise different portions of the imple-

mentation. Therefore, model- and specification-

based metrics should complement each other.

FUNCTIONAL VALIDATION of hardware designs

relies heavily on software simulation. A suite of

coverage metrics is vital for the success of sim-

ulation-based validation. Even when formal,

exhaustive methods are applied to larger design

portions, coverage metrics are necessary to

check the comprehensiveness of the properties

and quantify the validation effort in general.

For most reasonable definitions of coverage

metrics, the effort invested in deriving the met-

rics and measuring them pays off in the form of

better error detection. The value of increased

confidence in the design’s correctness almost

always outweighs the overhead of measuring

coverage. Because this confidence depends on

the connection between bug classes and cov-

erage metrics, this connection must be estab-

lished more concretely, through extensive

studies correlating the two. This is the area

where future research is most needed. Another

research direction for which there is great prac-

tical demand is providing automation for func-

tionality-based metrics. In addition to tools that

aid input generation, an investigation of met-

rics characteristics that simplify input genera-

tion would also be beneficial. �

Acknowledgments
We thank Laurent Arditi (Texas Instruments),

Lisa Noack (Compaq), Carl Pixley (Motorola),

and Moshe Sananes (Intel) for sharing their expe-

rience with coverage metrics.

References
1. C.N. Ip, “Simulation Coverage Enhancement

Using Test Stimulus Transformation,” Proc.

IEEE/ACM Int’l Conf. Computer-Aided Design,

Digest of Technical Papers, IEEE Press, Piscat-

away, N.J., 2000, pp. 127-133.

2. P.-H. Ho et al., “Smart Simulation Using Collabo-

rative Formal and Simulation Engines,” Proc.

IEEE/ACM Intl. Conf. Computer-Aided Design,

Digest of Technical Papers, IEEE Press, Piscat-

away, N.J., 2000, pp. 120-126.

3. L. Fournier, A. Koyfman, and M. Levinger, “Devel-

oping an Architecture Validation Suite: Applica-

tion to the PowerPC Architecture,” Proc. 36th

Design Automation Conf., ACM Press, New York,

1999, pp. 189-194.

4. S. Taylor et al., “Functional Verification of a Multi-

ple-Issue, Out-of-Order, Superscalar Alpha

Processor—the DEC Alpha 21264 Microproces-

sor,” Proc. 35th Design Automation Conf., ACM

Press, New York, 1998, pp. 638-643.

5. M. Kantrowitz and L.M. Noack, “I’m Done Simulat-

ing; Now What? Verification Coverage Analysis and

Correctness Checking of the DECchip 21164 Alpha

Microprocessor,” Proc. 33rd Design Automation

Conf., ACM Press, New York, 1996, pp. 325-330.

6. H. Zhu, P.V. Hall, and J.R. May, “Software Unit

Test Coverage and Adequacy,” ACM Computing

Surveys, vol. 29, no. 4, Dec. 1997, pp. 366-427.

7. Y. Malka and A. Ziv, “Design Reliability-Estimation

through Statistical Analysis of Bug Discovery

Data,” Proc. 35th Design Automation Conf., ACM

Press, New York, 1998, pp. 644-649.

8. L. Arditi and G. Clave, “A Semi-formal Methodolo-

gy for the Functional Validation of an Industrial

DSP System,” Proc. IEEE Int’l Symp. Circuits and

Systems, IEEE Press, Piscataway, N.J., 2000,

pp. 205-208.

9. R. Grinwald et al., “User Defined Coverage—A

Tool Supported Methodology for Design Verifica-

tion,” Proc. 35th Design Automation Conf., ACM

Press, New York, 1998, pp. 158-163.

10. R. Vemuri and R. Kalyanaraman, “Generation of

Design Verification Tests from Behavioral VHDL

Programs Using Path Enumeration and Constraint

Programming,” IEEE Trans. Very Large Scale

Integration (VLSI) Systems, vol. 3, no. 2, June

1995, pp. 201-214.

11. R.C. Ho and M.A. Horowitz, “Validation Coverage

Analysis for Complex Digital Designs,” Proc. Int’l

Formal Verification

10 IEEE Design & Test of Computers

Conf. Computer-Aided Design, ACM Press, New

York, 1996, pp. 322-325.

12. J. Shen and J.A. Abraham, “An RTL Abstraction

Technique for Processor Microarchitecture Valida-

tion and Test Generation,” J. Electronic Testing:

Theory and Application, vol. 16, nos. 1-2, Feb.

1999, pp. 67-81.

13. M. Benjamin et al., “A Study in Coverage-Driven

Test Generation,” Proc. 36th Design Automation

Conf., ACM Press, New York, 1999, pp. 970-975.

14. J. Shen and J.A. Abraham, “Verification of

Processor Microarchitectures,” Proc. 17th IEEE

VLSI Test Symp., IEEE CS Press, Los Alamitos,

Calif., 1999, pp. 189-194.

15. D. Moundanos, J.A. Abraham, and Y.V. Hoskote,

“A Unified Framework for Design Validation and

Manufacturing Test,” Proc. Int’l Test Conf., IEEE

CS Press, Los Alamitos, Calif., 1996, pp. 875-884.

16. S. Ur and Y. Yadin, “Micro Architecture Coverage

Directed Generation of Test Program,” Proc. 36th

Design Automation Conf., ACM Press, New York,

1999, pp. 175-180.

17. D. Moundanos, J.A. Abraham, and Y.V. Hoskote,

“Abstraction Techniques for Validation Coverage

Analysis and Test Generation,” IEEE Trans. Com-

puters, vol. 47, no. 1, Jan. 1998, pp. 2-13.

18. S. Ur and A. Ziv, “Off-the-Shelf vs. Custom Made

Coverage Models, Which Is the One for You?”

Proc. Software Testing, Analysis, and Review

(STAR 98), CD-ROM, Software Quality Engineer-

ing, Orange Park, Fla., 1998.

19. M. Puig-Medina, G. Ezer, and P. Konas, “Verifica-

tion of Configurable Processor Cores,” Proc. 37th

Design Automation Conf., ACM Press, New York,

2000, pp. 426-431.

20. D.V. Campenhout et al., “High-Level Design Veri-

fication of Microprocessors Via Error Modeling,”

ACM Trans. Design Automation of Electronic Sys-

tems, vol. 3, no. 4, Oct. 1998, pp. 581-599.

21. A. Gupta, S. Malik, and P. Ashar, “Toward Formal-

izing a Validation Methodology Using Simulation

Coverage,” Proc. 34th Design Automation Conf.,

ACM Press, New York, 1997, pp. 740-745.

22. S. Devadas, A. Ghosh, and K. Keutzer, “An Observ-

ability-Based Code Coverage Metric for Functional

Simulation,” Proc. 33rd Design Automation Conf.,

ACM Press, New York, 1996, pp. 418-425.

23. D.V. Campenhout, T. Mudge, and J.P Hayes,

“High-Level Test Generation for Design Verifica-

tion of Pipelined Microprocessors,” Proc. 36th

Design Automation Conf., ACM Press, New York,

1999, pp. 185-188.

24. F. Fallah, S. Devadas, and K. Keutzer, “OCCOM:

Efficient Computation of Observability-Based

Code Coverage Metrics for Functional

Simulation,” Proc. 35th Design Automation Conf.,

ACM Press, New York, 1998, pp. 152-157.

25. Y. Hoskote et al., “Coverage Estimation for Symbol-

ic Model Checking,” Proc. 36th Design Automation

Conf., ACM Press, New York, 1999, pp. 300-305.

Serdar Tasiran is a
research scientist at Compaq
Systems Research Center.
His research interests span
all areas of computer-aided
design—particularly valida-

tion, formal verification, and logic synthesis. His
most recent work focuses on coverage-directed
validation of microprocessors. Tasiran has a BS
in electrical engineering from Bilkent University;
and an MS and PhD, both in electrical engineer-
ing and computer sciences from the University of
California, Berkeley. He is a member of the IEEE.

Kurt Keutzer is a professor
of electrical engineering and
computer science at the Uni-
versity of California, Berkeley,
where he also serves as
associate director of the

Gigascale Silicon Research Center. His research
interests span a wide number of areas in comput-
er-aided design. Keutzer has a BS in mathemat-
ics from Maharishi International University, and an
MS and PhD in computer science from Indiana
University. He is a Fellow of the IEEE.

Direct questions or comments about this
article to Serdar Tasiran, Compaq Systems
Research Center, 130 Lytton Ave., Palo Alto, CA
94301; serdar.tasiran@compaq.com.

For further information on this or any other com-

puting topic, please visit our Digital Library at

http://computer.org/publications/dlib.

11July–August 2001

