
BIT-REPLICATION METHOD FOR UP-
MULTIPLYING

Robert A. Ulichney Shiufun Cheung

CRL 97/9
January 97

__

Cambridge Research Laboratory

The Cambridge Research Laboratory was founded in 1987 to advance the state of the art in both core
computing and human-computer interaction, and to use the knowledge so gained to support the Company's
corporate objectives. We believe this is best accomplished through interconnected pursuits in technology
creation, advanced systems engineering, and business development. We are actively investigating scalable
computing; mobile computing; vision-based human and scene sensing; speech interaction; computer-
animated synthetic persona; intelligent information appliances; and the capture, coding, storage, indexing,
retrieval, decoding, and rendering of multimedia data. We recognize and embrace a technology creation
model which is characterized by three major phases:

Freedom: The lifeblood of the Laboratory comes from the observations and imaginations of our research
staff. It is here that challenging research problems are uncovered (through discussions with customers,
through interactions with others in the Corporation, through other professional interactions, through
reading, and the like) or that new ideas are born. For any such problem or idea, this phase culminates in the
nucleation of a project team around a well-articulated central research question and the outlining of a
research plan.

Focus: Once a team is formed, we aggressively pursue the creation of new technology based on the plan.
This may involve direct collaboration with other technical professionals inside and outside the Corporation.
This phase culminates in the demonstrable creation of new technology which may take any of a number of
forms—a journal article, a technical talk, a working prototype, a patent application, or some combination of
these. The research team is typically augmented with other resident professionals—engineering and
business development—who work as integral members of the core team to prepare preliminary plans for
how best to leverage this new knowledge, either through internal transfer of technology or through other
means.

Follow-through: We actively pursue taking the best technologies to the marketplace. For those
opportunities which are not immediately transferred internally and where the team has identified a
significant opportunity, the business development and engineering staff will lead early-stage commercial
development, often in conjunction with members of the research staff. While the value to the Corporation
of taking these new ideas to the market is clear, it also has a significant positive impact on our future
research work by providing the means to understand intimately the problems and opportunities in the
market and to more fully exercise our ideas and concepts in real-world settings.

Throughout this process, communicating our understanding is a critical part of what we do, and
participating in the larger technical community—through the publication of refereed journal articles and the
presentation of our ideas at conferences—is essential. Our technical report series supports and facilitates
broad and early dissemination of our work. We welcome your feedback on its effectiveness.

Robert A. Iannucci, Ph.D.
Director

Abstract

Bit-Replication Method for Up-Multiplying

Robert A. Ulichney & Shiufun Cheung

January 1997

This technical report describes a simple and efficient method for expanding q -bit integer values
to m -bit integer values (m q>) by means of bit replication. First, we show that the optimal
number of repetitions is given by ceiling{ / }m q and that the method is equivalent to
multiplication by the ideal gain when m q/ is an integer. We then demonstrate that, in the case
where m q/ is not an integer, truncating the fraction bits to the right of the decimal point will lead
to zero average error. The report also includes two suggestions for implementing the bit-
replication process, both of which have a vast complexity advantage over a multiplier. Two
examples are given at the end to illustrate the bit-replication process in action.

 Digital Equipment Corporation 97

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of the Cambridge Research Laboratory of Digital Equipment Corporation in Cambridge,
Massachusetts; an acknowledgment of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for any other purpose
shall require a license with payment of fee to the Cambridge Research Laboratory. All rights reserved.

CRL Technical reports are available on the CRL's web page at
http://www.crl.research.digital.com.

Digital Equipment Corporation
Cambridge Research Laboratory

One Kendall Square, Building 700
Cambridge, Massachusetts 02139

5

Introduction
There are several applications where the set of values within a particular range needs to be

operated on at a larger, or higher-precision, range. In particular, we will consider the case where
a q -bit integer input level Li with values from the range

Li
q∈ −{ , , , , }0 1 2 2 1K

is to be scaled to a m -bit integer output level Lo with values from the range

Lo
m∈ −{ , , }0 2 1K .

This can be achieved by performing a multiplication by an ideal gain,

G
m

q
=

−
−

2 1

2 1

followed by rounding to the nearest integer:

L G Lo i= ×Round{ } .

In this paper we will show that this ideal method can be closely approximated with a much
simpler implementation of bit replication. We will also determine the optimal number of bits to
replicate for minimum error.

Series Expansion
For any real numbers a and b , where b is not equal to 0 or 1, the follow expression is valid:

a
b

a
b

a b
b

−
−

= + −
−

1
1

1
1

(/)
.

This expression can itself be used to expand the rightmost term further:

(/) (/)a b
b

a
b

a b
b

−
−

= + −
−

1
1

1
12

2

.

Recursively repeating this expansion N times results in the series:

a
b

a
b

a b
bi

N

i

N−
−

= + −
−











=
∑1

1

1

11

(/)
.

In our case, using a m= 2 and b q= 2 , the ideal gain can be expressed as

G m iq

i

N m Nq

q= +
−

−








−

=

−

∑2
2 1

2 11

.

From this, we define the approximate gain to be

6

$G m iq

i

N

= −

=
∑2

1

,

and the gain-error to be

E
m Nq

q= −
−

−1 2

2 1
.

For the purpose of analysis, let us assume that the output level Lo can be a real number (instead of
an integer) and the rounding operation is unnecessary. The data scaling will therefore be
implemented as follows:

L G Lo i= ×$.

Under these assumptions, the gain-error E is proportional to the error in the output level.

Bit Replication
We can show that multiplication by the approximate gain $G can be implemented simply as a

replication of the input level bits. Since each term in $G is a power of 2, multiplication is
equivalent to a shift of the input. Note also that the shifts corresponding to successive terms
differ by q spaces, which is the same as the number of bits in the input. This means that there is
no overlap of bits and no addition is necessary. Consider the example of converting a 3-bit input
(q = 3) to an 8-bit output (m = 8). In Figure 1 the values of the 3 input bits are “A”, “B”, and
“C” as shown. If the sum was carried out to 5 terms or repeat periods (N = 5), the output value
would have the bit values as indicated. This bit replication extends into the fraction bits to the
right of the decimal point.

Figure 1. Example of scaling a 3-bit input value to 8 bits
using the approximate gain $G with N = 5 .

CBA .CBA CBA CBA

N=3 N=4N=2N=1

CBAInput Value:

Output Value: CBA

N=5

7

The weighting of the bit values in this representation is shown in Figure 2. Multiplying an
input by the approximate gain will result in a real number with an integer part and a fraction part.
Although the goal is to generate a m -bit integer output value, it may be useful to keep additional
fraction bits for intermediate computations of the output value for higher accuracy.

In the next sections two aspects of the bit-replication process will be optimized in terms of
minimizing the error. First, the optimal value of N is determined. Then for cases where the last
repeat periods have both integer and fraction bits (as in the third period of Figure 1) the
contribution of the fraction bits to the accuracy of the output level is found.

Optimization of Repeat Periods
The optimal number of repeat periods N can be determined simply by solving for the value

of N that minimizes E . E is zero exactly once when m Nq− = 0 , so the optimal value should
be

N m q= / .

The problem is that N can only take on integer values so this result will only occur when q is
an exact multiple of m . However, if this condition does hold, the error is identically zero, and bit
replication yields a perfectly scaled output level.

For the case where ()m q/ is not an integer, the solution for the optimum N is more
involved. In Figure 3 E is plotted as a function of N . The graph reveals two candidate integer
values for N on either side of the point ()m q/ : N LO is the nearest integer less than ()m q/ and
NHI is the nearest integer greater than ()m q/ . Since the denominator of E is constant with
respect to N , we can consider the equivalent problem of minimizing the function

β = −−2 1m Nq .

Figure 2. Representation of a real number with binary digits.

2m-1 22 21 20… …. 2-1 2-32-2

integer
part

fraction
part

8

For N m q< / , β increases monotonically with decreasing N because the exponent

()m Nq− becomes increasingly positive. This exponent is a positive integer, so the smallest β
can be is 1.

For N m q> / , β increases monotonically with increasing N because the exponent

()m Nq− becomes increasingly negative. (E asymptotically approaches 1 2 1/ ()q − .) The
exponent ()m Nq− is a negative integer, so β < 1 .

Therefore, of the two candidates, N LO and NHI , the value of N that minimizes E is NHI .
This is the nearest integer larger than the non-integer value ()m q/ , or equivalently,

N m q= ceiling{ / } .

Contribution of Fraction Bits
Consider the case of q = 5 and m = 8 . The optimal number of repeat periods is

N = =ceiling{ / }8 5 2 .

For a 5-bit input, the output is as shown in Figure 4. There are 2 fraction bits for this particular
example. In all cases, the number of fraction bits due to repeating bits by the optimum N periods
is

N

| E |

m/q

Nq>mNq<m

0

Minimum
error

NLO NHI

Figure 3. Absolute error as a function of N .

9

b Nq m= − .

Note that there are no fraction bits for the error-free case where ()m q/ is an integer.

In the following, we derive the average contribution of the fraction bits over all possible input
levels. Since the fraction bits are simply the b least significant bits of each input level Li , they
will take on the values { , , , , }0 1 2 2 1K b − in a periodic fashion as Li increases. Note that there will
be 2q b− complete periods in the range of Li . The average contribution of the fraction bits over all
Li is therefore the same as the average contribution over one single period.

Let the value of the fraction bits be i and the contribution of the fraction bits to the output be
F . We can then write

F
i
b=

2

and the average contribution of the fraction bits to the output is therefore given by

∑
−

=

=
12

0 22

1
b

i
bb

i
F .

Using the fact that

i M
M

i

M

=
−





=

−

∑ 1

20

1

the above expression simplifies to

F
b

=
− −1 2

2
.

Next, we derive the average output error due to the gain-error over all possible input levels.
Using the change of variables b Nq m= − , we can rewrite the gain-error to be

E
b

q
=

−
−

−1 2

2 1
.

Figure 4. Scaling a 5-bit number to an 8-bit number with N = 2 repeat periods.

CBA .AED DCB E

CBAInput Value:

Output Value:

 Fraction bits

ED

10

For each input level Li , the output error e is E Li× . The average output error is then given by

e L
q i

b

q
L

b

i

q

= −
−









 = −−

=

− −

∑1
2

1 2
2 1

1 2
20

2 1

.

For our example of q = 5 and m = 8 , the contribution of the fraction bits F and output error e
are plotted in Figure 5.

It is very interesting to note that for all cases,

e F= .

By this we can conclude that zero average error can be achieved by always truncating the fraction
bits! Using our example of q = 5 and m = 8 .again, the output error is plotted in Figure 6 for the
cases of no fraction bits used, one fraction bit used, and both fraction bits used. The average
errors are 0.000, 0.250, and 0.375 (= − −() /1 2 22) respectively.

Implementation
We have proved that multiplication of a q -bit input level Li by the ideal gain

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Input

O
u

tp
u

t

Error

Fraction Bits

Figure 5.Output error as a function of input,
and the contribution of fraction bits to the output value.

11

G
m

q
=

−
−

2 1

2 1

can be achieved with zero average error by simply replicating the input bits from the most
significant part of the m -bit output register to the least significant part. Using additional fraction
bits for intermediate computation can only increase average error.

The most straightforward hardware implementation of this bit replication method is the wired

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Input

E
rr

o
r

(l
sb

)

2 fraction bits

1 fraction bit

No Fraction bits

Figure 6.Output error as a function of number of fraction bits retained.

Figure 7. Wired implementation.

CBA CBA BA

CBA

Output Register:

Input Register:

12

approach as illustrated in Figure 7. In this figure we use the case of q = 3 and m = 8 as an
example. “A”, “B”, and “C” represent input bit values.

Another implementation can use shift registers as depicted in Figure 8. The input register
performs a circular shift left into an output shift register as shown. The operation is complete
after m shifts.

Either case has a tremendous complexity advantage over a multiplier.

Examples
We will end this document by using two examples to illustrate the bit-replication process in

action. The first example is the case of q = 5 and m = 8 . In Table 1, we show, for each possible
input level, the actual output level and its difference from the ideal output level. Note that the
average error over all possible input levels is zero. Table 2 shows the case of q = 4 and m = 12 .
In this case, m q/ is an integer, so the bit-replication gives the exact answer and the error is zero
for all input levels.

Figure 8. Shift-register implementation

13

Input L i Output L o Ideal Error
00000 (0) 00000000 (0) 0.00 0.00
00001 (1) 00001000 (8) 8.23 -0.23
00010 (2) 00010000 (16) 16.45 -0.45
00011 (3) 00011000 (24) 24.68 -0.68
00100 (4) 00100001 (33) 32.90 0.10
00101 (5) 00101001 (41) 41.13 -0.13
00110 (6) 00110001 (49) 49.35 -0.35
00111 (7) 00111001 (57) 57.58 -0.58
01000 (8) 01000010 (66) 65.81 0.19
01001 (9) 01001010 (74) 74.03 -0.03
01010 (10) 01010010 (82) 82.26 -0.26
01011 (11) 01011010 (90) 90.48 -0.48
01100 (12) 01100011 (99) 98.71 0.29
01101 (13) 01101011 (107) 106.94 0.06
01110 (14) 01110011 (115) 115.16 -0.16
01111 (15) 01111011 (123) 123.39 -0.39
10000 (16) 10000100 (132) 131.61 0.39
10001 (17) 10001100 (140) 139.84 0.16
10010 (18) 10010100 (148) 148.06 -0.06
10011 (19) 10011100 (156) 156.29 -0.29
10100 (20) 10100101 (165) 164.52 0.48
10101 (21) 10101101 (173) 172.74 0.26
10110 (22) 10110101 (181) 180.97 0.03
10111 (23) 10111101 (189) 189.19 -0.19
11000 (24) 11000110 (198) 197.42 0.58
11001 (25) 11001110 (206) 205.65 0.35
11010 (26) 11010110 (214) 213.87 0.13
11011 (27) 11011110 (222) 222.10 -0.10
11100 (28) 11100111 (231) 230.32 0.68
11101 (29) 11101111 (239) 238.55 0.45
11110 (30) 11110111 (247) 246.77 0.23
11111 (31) 11111111 (255) 255.00 0.00

average error 0.00

Table 1: The Input Levels, the Output Levels, and the Errors
for the Case of q = 5 and m = 8

14

Input L i Output L o Ideal Error
0000 (0) 000000000000 (0) 0.00 0.00
0001 (1) 000100010001 (273) 273.00 0.00
0010 (2) 001000100010 (546) 546.00 0.00
0011 (3) 001100110011 (819) 819.00 0.00
0100 (4) 010001000100 (1092) 1092.00 0.00
0101 (5) 010101010101 (1365) 1365.00 0.00
0110 (6) 011001100110 (1638) 1638.00 0.00
0111 (7) 011101110111 (1911) 1911.00 0.00
1000 (8) 100010001000 (2184) 2184.00 0.00
1001 (9) 100110011001 (2457) 2457.00 0.00
1010 (10) 101010101010 (2730) 2730.00 0.00
1011 (11) 101110111011 (3003) 3003.00 0.00
1100 (12) 110011001100 (3276) 3276.00 0.00
1101 (13) 110111011101 (3549) 3549.00 0.00
1110 (14) 111011101110 (3822) 3822.00 0.00
1111 (15) 111111111111 (4095) 4095.00 0.00

average error 0.00

Table 2: The Input Levels, the Output Levels, and the Errors
for the Case of q = 4 and m = 12

B
it-R

ep
licatio

n
 M

eth
o

d
 fo

r U
p

-M
u

ltip
lyin

g
R

obert A
. U

lichney
S

hiufun C
heung

C
R

L
 97/9

Januray 97

