
Elementary Microarchitecture Algebra:

Top-Level Proof of Pipelined Microarchitecture

John Matthews and John Launchbury

Oregon Graduate Institute,

P.O. Box 91000, Portland OR 97291-1000, USA

fjohnm,jlg@cse.ogi.edu
http://www.cse.ogi.edu/PacSoft/Hawk

Abstract. This is a companion note to Elementary Microarchitecture Alge-

bra [1] and outlines an algebraic simpli�cation proof of the pipelined microar-

chitecture described in that paper.

1 Transforming the Microarchitecture

The laws presented in Elementary Microarchitecture Algebra [1], as well as others

introduced in this note, can be used for aggressively restructuring microarchitectures

while retaining behavioral equivalence. The example we present here contains three

levels of forwarding logic, resolves hazards by stalling the pipeline, and performs

branch speculation. The block diagram for this microarchitecture is shown in Figure 1.

branch_misp

regFile alu memkillICache

hazard

Fig. 1. Microarchitecture before simpli�cation

By just using algebraic laws, we have been able to reduce most of the complex-

ity leaving essentially an unpipelined microarchitecture. We have implemented some

of the algebraic laws as a rewrite system in Isabelle. The proof proceeds in stages,

according to the geometric goal we are pursuing in each stage.



2 Retiming Stage

We �rst remove all delay circuits from the main pipeline path, starting at the earliest

stage in the pipeline. We accomplish this by repeatedly applying the time-invariance

law, and by splitting delays along wires through the circuit duplication and feedback

rotation laws.

branch_misp

regFile alu memkillICache

hazard

Fig. 2. Split delay circuit after regFile, using the circuit duplication law

We would now like to move a delay through the kill circuit, but we can't, since

the top input to kill does not have a delay circuit. To place a delay on kill's

top input, we will need to move delay circuits through the branch misp and hazard

circuits. This is possible because branch misp and hazard are pure combinational

circuits that preserve default values (The default value for Booleans is False) and

are therefore time-invariant.

branch_misp

regFile alu memkillICache

hazard

Fig. 3. Split delay circuit after alu, using the feedback-rotation law

branch_misp

regFile alu memkillICache

hazard

Fig. 4. Split twice the delay circuit leading to branch misp and ICache, using two applica-

tions of the circuit-duplication law



hazardbranch_misp

regFile alu memkillICache

Fig. 5. Move delay circuits through the branch misp and hazard circuits, using the corre-

sponding time-invariance laws

We can similarly move these delay circuits through the or and and circuits (even

though one of the and inputs is inverted), since these combinational circuits preserve

the default False Boolean value. Finally, we can move the original delay circuit

through the kill circuit, since kill is a combinational circuit and all of its inputs

have delays.

hazardbranch_misp

regFile alu memkillICache

Fig. 6. Move delay circuits through the or and and circuits, using the circuit-duplication

law and the corresponding time-invariance laws

hazardbranch_misp

regFile alu memkillICache

Fig. 7.Move delay circuits through the kill circuit, using the corresponding time-invariance

laws



hazardbranch_misp

regFile alu memkillICache

Fig. 8. Split the delay circuit after the kill circuit, using the circuit duplication law

Once again, we can't move the delay circuit past the bypass circuit, since the

other input to the bypass does not contain a delay. Fortunately, the other input

originates at the delay circuit that is after the mem circuit, so we can split that delay

and move it to the bypass input.

hazardbranch_misp

regFile alu memkillICache

Fig. 9. Split the delay circuit after the mem circuit, using the feedback rotation law

hazardbranch_misp

regFile alu memkillICache

Fig. 10. Split the bottom-most delay circuit, using the circuit duplication law



hazardbranch_misp

regFile alu memkillICache

Fig. 11. Split the bottom-most delay circuit again, using the circuit duplication law

We can now move our wandering delay through the two bypass circuits, since

bypasses are time-invariant, and they both have delay circuits on all inputs.

hazardbranch_misp

regFile alu memkillICache

Fig. 12. Move the delay circuit before the �rst bypass circuit through the �rst and second

bypasses, using the corresponding time-invariance laws

hazardbranch_misp

aluregFile memkillICache

Fig. 13. Move the delay circuit through the alu circuit using the corresponding time-

invariance law



hazardbranch_misp

aluregFile memkillICache

Fig. 14. Split the delay circuit after the alu circuit using the feedback-rotation law

Now we just have to move the two delay circuits before the third bypass circuit

to the end of the pipeline. Fortunately, both bypass and mem are time-invariant.

hazardbranch_misp

aluregFile memkillICache

Fig. 15. Move the delay circuit through the third bypass circuit using the corresponding

time-invariance law

hazardbranch_misp

alu memregFile killICache

Fig. 16. Move the delay circuit through the mem circuit using the corresponding time-

invariance law



hazardbranch_misp

alu memregFile killICache

Fig. 17. Split the delay circuit after the mem circuit, using the corresponding feedback-

rotation law

hazardbranch_misp

alu memregFile killICache

Fig. 18. Split the delay circuit below the mem circuit, using the corresponding circuit dupli-

cation law

hazardbranch_misp

alu memregFile killICache

Fig. 19. Move the delay circuit through the last bypass circuit, using the corresponding

time-invariance law



hazardbranch_misp

alu memregFile killICache

Fig. 20. Move the delay circuit through the mem circuit, using the corresponding time-

invariance law

We'll keep moving this last delay a bit, to set up for the hazard-bypass law later

on.

hazardbranch_misp

alu memregFile killICache

Fig. 21. Split the delay circuit after the mem circuit, using the feedback-rotation law

hazardbranch_misp

alu memregFile killICache

Fig. 22. Split the bottom-rightmost delay circuit, using the circuit duplication law

3 Move Control Wires Stage

In this stage we move all wires not directly involved with forwarding logic to either

before or after all of the bypass circuits. This is to enable the hazard-bypass laws,

which we apply in a later step. We move the wires by inserting projection circuits and

using the corresponding projection-commutativity laws. While we're at it, we'll also

insert proj ctrl circuits on the inputs to the hazard circuit, so that we can later on

move the register �le next to the �rst bypass.



branch_misp

proj_branch_info

branch_misp

proj_branch_info

ICache ICache

Fig. 23. Projection insertion laws for proj branch info

The wire we want to move in this case is the feedback wire after the alu circuit,

which becomes the input to branch misp and ICache. The projection that allows us

to move the wire is called proj branch info. On each clock cycle, proj branch info

examines the opcode �eld of its input transaction. If it is a branch instruction, then

it outputs a transaction with the same opcode, destination register name, destination

value, and speculative branch target PC �elds as the input transaction, but with all

other �elds (including source-operand register name �elds) set to their default val-

ues1. If the transaction is not a branch instruction, then proj branch info outputs

nopTrans. Since the ICache and branch misp circuits only examine branch instruc-

tions, and in fact only those �elds that proj branch info lets through to its output,

then proj branch info really is an input projection of these two circuits (Figure 23).

We thus insert these projections and move them towards the alu circuit.

hazardbranch_misp

alu mem

proj_branch_info

proj_branch_info

regFile killICache

Fig. 24. Insert proj branch info projection on the inputs to ICache and branch misp, using

the corresponding projection laws from Figure 23

1 Our ISA architecture hard-wires register R0 to zero, so R0 serves as the default value for

register names



hazardbranch_misp

alu mem

proj_branch_infoproj_branch_info

regFile killICache

Fig. 25. Move proj branch info past the left-most delay, using the corresponding time-

invariance law

To continue moving the proj branch info projection, we apply the circuit dupli-

cation law in reverse, merging the two projections into one.

hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Fig. 26. Merge the two instances of proj branch info, using the circuit duplication law in

reverse

At this point we can't move the proj branch info circuit any further, since we

cannot insert a proj branch info circuit on the wire leading to the second bypass

without changing the functionality of the pipeline. What we do instead is split the

delay that is to the right of the projection, using the feedback rotation law (and

split the feedback wire while we're at it). Once we have duplicated the delay, we can

continue moving proj branch info down towards the alu circuit.



hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Fig. 27. Split the delay circuit ahead of proj branch info

hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Fig. 28. Move the proj branch info circuit past the delay circuit using the corresponding

time-invariance law

Now that proj branch info is at the output of the alu circuit, we can use

projection-invariance laws to move the projection to the end of the pipeline. Projection-

invariance laws act somewhat like commutativity laws, and state that the output of

a projection is unchanged when its input signal is moved across another circuit. Fig-

ure 29 shows some of the laws for proj branch info. In particular, we can move the

projection past the third bypass circuit and the mem execution unit of Figure 28, since

neither of these circuits alter a transaction's branch information.

proj_branch_info

mem mem

proj_branch_info

proj_branch_info proj_branch_info

Fig. 29. Projection-invariance laws for proj branch info



hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Fig. 30. Move proj branch info past the third bypass and mem circuit, using the projection

invariance laws from Figure 29

To prepare for a future stage,

hazard

proj_ctrl proj_ctrl

hazard

Fig. 31. proj ctrl projection insertion law

we will also add proj ctrl pro-

jections to the inputs of the

hazard circuit. The proj ctrl

circuit passes the opcode, source

register name, and destination

register name �elds of its in-

put transaction through unchanged, but zeros-out all other �elds. Since the hazard

circuit only examines these control �elds, then the projection insertion law shown in

Figure 31 is valid.

hazardbranch_misp

alu mem

proj_branch_info

proj_ctrl proj_ctrl

regFile killICache

Fig. 32. Add proj ctrl projections to the inputs of the hazard circuit using the correspond-

ing projection-insertion laws (Figure 31), and move the right-most proj ctrl circuit past

the delay using the corresponding time-invariance law



4 Propagate Hazard Information Stage

At this point we would like to start removing bypass circuits using the hazard-bypass

law. But this law can only be applied when there are no hazards between the a�ected

stages. So we generate a no-hazard projection at the end of the dispatch stage (which

is justi�ed by a projection-absorption law applicable to the kill-circuit complex in

that stage), and then move it between the �rst and second bypass circuits.

The no haz projection

hazard

no_haz

hazard

killkill

Fig. 33. Generalized no haz projection insertion law

insertion law we use at this

stage is a slight generaliza-

tion of the one discussed

in the paper, and is shown

in Figure 33. This gener-

alized law holds since the

kill circuit is still guaran-

teed to \squash" all potential hazards, and in fact may squash other transactions as

well. We use this law to insert a no haz circuit after the kill circuit in the microar-

chitecture.

hazardbranch_misp

proj_ctrl proj_ctrl

alu mem

proj_branch_info

regFile killICache no_haz

Fig. 34. Insert a no haz projection after the kill circuit, using the projection insertion law

shown in Figure 33

As mentioned in the paper, the no haz projection commutes with bypass cir-

cuits. One can see this by noting that bypass never changes the transaction �elds

that no haz examines. Thus no haz will squash the same transactions regardless of

whether it is placed before or after the bypass. If no haz does squash a transaction

by replacing it with nopTrans, then bypass will not modify the squashed transaction,

since nopTrans contains no source operands. The no haz circuit acts like an identity

on transactions it does not squash, so again it does not matter whether it is placed

before or after the bypass circuit in this case.



hazardbranch_misp

proj_ctrl proj_ctrl

alu mem

proj_branch_info

no_hazregFile killICache

Fig. 35. Commute no haz with the �rst bypass, using the corresponding projection commu-

tativity law (we also reroute the mem stage feedback wire)

We will next swap the

proj_ctrl

regFile

proj_ctrl

regFile

regFile kill kill regFile

Fig. 36. register �le commutativity laws

register �le with the kill

circuitry using the two laws

shown in Figure 36, so that

the register �le is closer to

the bypass circuits we want

to eliminate. The �rst law

holds since the register �le

does not modify a trans-

action's control �elds. It is

easy to show that the sec-

ond law holds by perform-

ing a case analysis on the

Boolean input into kill: If the input is true at a given clock cycle, then both the

left-hand and right-hand circuits output nopTrans. If the input is false, then the

kill circuit acts as an identity, so the outputs in both circuits are identical.

alu mem

proj_branch_info

no_haz

proj_ctrl

branch_misp hazard

regFile kill

proj_ctrl

ICache

Fig. 37. Commute the �rst proj ctrl projection with the register �le, using the �rst law of

Figure 36



alu mem

proj_branch_info

no_haz

proj_ctrl

branch_misp hazard

proj_ctrl

kill regFileICache

Fig. 38. Commute the register �le with the kill circuit, using the second law of Figure 36

alu mem

proj_branch_info

no_haz

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

ICache

Fig. 39. Commute the second proj ctrl projection with the register �le, using the �rst law

of Figure 36

5 Remove Forwarding Logic Stage

We are now in a position to start removing bypass circuits. The �rst bypass circuit

can be removed immediately, due to the register-bypass law:

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

alu mem

proj_branch_info

no_hazICache

Fig. 40. Use the register-bypass law to remove the left-most bypass and the delay circuit

below it



We can now apply the hazard-bypass law to remove the bypass circuit just prior

to the memory unit.

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

alu mem

proj_branch_info

no_hazICache

Fig. 41. Remove the right-most bypass circuit using the hazard-bypass law

Next, we can swap the

regFile no_haz no_haz regFile

Fig. 42. register �le commutes with hazard projection

no haz projection with the

register �le (Figure 42), since

the register �le never alters

its input's control �elds, and

since the internal state of

the register �le is only af-

fected by its writeback input, not its data input. Once we have swapped the two

components, we can remove the no haz projection by applying the law in Figure 33.

branch_misp hazard

proj_ctrl

kill

proj_ctrl

alu mem

proj_branch_info

regFileno_hazICache

Fig. 43. Swap the register �le with no haz, using the commutativity law in Figure 42



branch_misp hazard

proj_ctrl

kill

proj_ctrl

alu mem

proj_branch_info

regFileICache

Fig. 44. Remove no haz, using the no haz projection insertion law (Figure 33) in reverse

branch_misp hazard

proj_ctrl

kill

proj_ctrl

alu mem

proj_branch_info

regFileICache

Fig. 45. Merge the delay feeding into the remaining bypass circuit with the right-bottom-

most delay, using the circuit-duplication law in reverse.

branch_misp hazard

proj_ctrl

kill

proj_ctrl

regFile alu mem

proj_branch_info

ICache

Fig. 46. Remove the last bypass circuit, using the register-bypass law



6 Cleanup Stage

The pipeline has now been simpli�ed as much as possible, except that there are still

some extra delay components as well as several unnecessary projection circuits. We

merge delay components, then move the projection circuits back to their places of

origin and remove them using the projection laws in the opposite direction.

branch_misp hazard

proj_ctrl

kill

proj_ctrl

regFile alu mem

proj_branch_info

ICache

Fig. 47. Swap the proj branch info projection with the delay next to it, using the corre-

sponding time-invariance law.

branch_misp hazard

proj_ctrl

kill

proj_ctrl

proj_branch_info

regFile alu memICache

Fig. 48. Merge the three forking delay circuits after the mem circuit, using the feedback

rotation law in reverse.

We would like to remove as many delay circuits as possible when simplifying

microarchitectures, and there is a way we can merge the delay leading into the

hazard circuit with the delay after the mem unit. Neither the alu nor the mem units

ever modify the control �elds of a transaction, so proj ctrl commutes with both of

them (Figure 49).



proj_ctrl proj_ctrl

proj_ctrl

alu

mem mem

alu

proj_ctrl

Fig. 49. More proj ctrl projection invariance laws

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Fig. 50. Move the right-most proj ctrl circuit past the register �le, using the �rst law of

Figure 36

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Fig. 51. Move the right-most proj ctrl circuit past the alu, using the �rst law in Figure 49

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Fig. 52. Move the right-most proj ctrl circuit past the mem, using the second law in Fig-

ure 49



branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Fig. 53. Swap the right-most proj ctrl circuit with the delay, using the corresponding

time-invariance law

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Fig. 54. Merge the delay after the mem unit with the delay below the right-most proj ctrl,

using the feedback rotation law in reverse

All that remains now is to absorb the projection circuits back into the circuits

they were created from.

branch_misp hazard

kill regFile alu mem

proj_branch_info

ICache

Fig. 55. Remove proj ctrl circuits, using the projection insertion law of Figure 33 in reverse



branch_misp hazard

kill regFile alu mem

proj_branch_info

proj_branch_info

ICache

Fig. 56. Split the proj branch info projection, using the circuit duplication law

branch_misp hazard

kill regFile alu mem

proj_branch_info

proj_branch_info

ICache

Fig. 57. Swap the left-most proj branch info projection with the delay circuit below it,

using the corresponding time-invariance law

After removing the proj branch info projections, we come to the �nal microar-

chitecture in Figure 58. This circuit still outputs exactly the same transaction values,

cycle-for-cycle, as the microarchitecture in Figure 1, but is considerably less complex.

We can now apply conventional techniques to verify that this microarchitecture is a

valid implementation of the ISA.

branch_misp

kill

hazard

regFileICache alu mem

Fig. 58. Remove the proj branch info projections, using the projection insertion laws of

�gure 23 in reverse

References

1. Matthews, J., and Launchbury, J. Elementary microarchitecture algebra. In CAV

'99, International Conference on Computer-Aided Veri�cation (Trento, Italy, July 1999).


