
Top-level Re�nement in Processor Veri�cation

Sava Krsti�c, Byron Cook, John Launchbury, and John Matthews

Oregon Graduate Institute

fkrstic, byron, jl, johnmg@cse.ogi.edu

Abstract. We provide a framework for the speci�cation and veri�ca-

tion of high-performance processors. As an example, we give a high-level

speci�cation and correctness proof for a processor that uses speculation,

register renaming, superscalar out-of-order execution, and resolution of

memory dependencies. The speci�cations of its three concurrently oper-

ating units are very general and can be re�ned independently, so that

our proof covers a whole family of microarchitectures. Abstract treat-

ment of data, representation of on-the-y instructions as transactions,

and a history table containing the full information of a processor's run

are the main features of the proof.

1 Introduction

A variety of formal veri�cation tools are now in use in various phases of hardware
design; [2, 8, 17] are but a few notable examples. At the microarchitectural level,
however, the real use of veri�cation is limited, mostly due to the immaturity
of the available techniques. Indeed, proving the correctness of a combination
of aggressive strategies to resolve inter-instruction dependencies is extremely
di�cult. Still, it is an important veri�cation aspect because microarchitectural
defects can impact a large fraction of the design and so are hard to �x. Engineers
close to current processor design teams inform us that designers purposefully
forgo promising optimizations because they cannot guarantee the optimizations
preserve correctness.

Following the top-down approach, we address the question of specifying and
verifying processors at a high level. On a worked out example, we show how to
abstract the speci�cation as much as possible in order to clearly and concisely
specify a complex microarchitecture with the following package of features: spec-
ulation, register renaming, superscalar out-of-order execution with in-order re-
tirement, and resolution of memory dependencies. We present only the essentials
of the microarchitecture, just enough to make the correctness proof possible. The
lower-level details are left to further re�nement.

Our example is based on an executable processor model expressed using
Hawk, a speci�cation language with stream transformer semantics [7, 15]. This
example microarchitecture is close to Intel's PentiumPro [10] and AMD's K6 [20].
It is partitioned into three major units for which we provide independent ax-
iomatic speci�cations. We show that the visible output computed by this mi-
croarchitecture is equivalent to that of a simple reference machine implementing

the instruction set architecture. This approach exhibits a very desirable form
of modularity where the three units can be independently re�ned further with-
out a�ecting global correctness. Moreover, since the units are to a large extent
underspeci�ed, our proof covers a whole family of microarchitectures that can
signi�cantly vary in implementation details.

To write the speci�cations and organize the proof, we use a small number
of concepts and structures of a general nature. For example, our correctness
criterion can be used for any model with in-order retirement. Next, transactions
(a formalized notion of partially computed instructions) seem to be just the
right microarchitectural abstraction that provides uniformity in the description
of the data path. Transactions come with a natural partial order (progress in
computation of an instruction) that enhances their expressiveness and can be
e�ectively used in reasoning. The proof itself revolves around a history table

which contains all crucial information about a single run of a processor.

After a brief discussion of related work, the rest of the paper is organized by
sections, as follows: we specify a reference machine, introduce transactions and
(informally) our processor model, describe the correctness criterion, explain the
history table and the structure of the proof, and give formal speci�cations of the
three processor components. The full de�nition of the history table and a proof
of the correctness theorem are relegated to the Appendix.

2 Related Work

The complexity of veri�ed processor models described in the literature varies,
largely in connection with the level of proof automation. Highly automated meth-
ods show a promising trend of consistent increase of applicability, including im-
pressive recent proofs of out-of-order execution [5, 16]. Still, the models veri�ed
by these methods are rather limited. This paper belongs to the other end of the
spectrum: our processor model is one of the most complex, but at the price of
having been speci�ed in a rather unconstraned mathematical style, and veri�ed
by a pencil-and-paper proof. The same can be said of the work of Arvind and
Shen [4], whose appealing processor model is de�ned as a term-rewriting sys-
tem. While our speci�cations allow re�nement in the most obvious sense, it is

not clear how the correctness result of [4] that relies on being able to apply the
rewrite rules in any order would translate to a lower-level implementation that
lacks that property.

With Pnueli and Arons [18] we share the insistence on maximal abstraction
and modularity stemming from specifying the processor as a simple composition
of concurrent subsystems. There is also some similarity in the correctness crite-
rion, based on the idea of re�nement. Their model, however, assumes a restricted
instruction set, without branches and memory instructions.

The correctness criterion adopted in most processor veri�cation papers is the
\commutative diagram" condition of Burch and Dill [6], or some version thereof
(cf. [4, 12, 14, 19]). Along with [18], we avoid dealing with explicit synchroniza-
tion and abstraction functions that match the states of the veri�ed processor

2

with the states of the reference machine. Instead, our criterion requires that the
two sequences of retired instructions arising from running the same program on
the two machines are equivalent.

Dealing with memory instructions combined with out-of-order execution has
only recently come into the scope of processor veri�cation e�orts; cf. [4, 12, 19].
Our execution unit allows multiple re�nements with arbitrarily sophisticated
treatment of memory operations (load bypassing, for example).

A remarkably detailed model, including a treatment of exceptions, is veri�ed
by Sawada and Hunt [19] using a methodology which has many similarities to our
work. The key structure they use, the Microarchitectural Execution Trace Table,
contains entries that are much like our transactions. This table represents the
current computational state of the processor like a row of our history table does.
A global invariant relates the table with the corresponding microarchitectural
state. Since it references most of the state elements, this invariant presents a
di�cult proof obligation, which unfortunately is only briey discussed in [19].

Our paper promotes hierarchical veri�cation by providing a very general
and non-deterministic model and a straightforward reduction to veri�cation of
components. At this level, the assume-guarantee style takes a simple form: all
that the components assume of the environment are type-correct values on their
input wires; cf. [11].

3 Standard machine (ISA)

Our reference model is an abstract standard machine, de�ned as a state machine
whose states consist of values for the program counter, register �le and memory.
Most of the common instruction set architectures are instances of it when we
ignore the treatment of external exceptions.

De�nition 1. Given a state (pc; rf; mem), the standard machine (executing a

�xed program pgm) makes a transition to the state (pc0; rf0; mem0) de�ned by the

following set of equalities.

I = pgm(pc)

(opcode; rSources; rDest) = decode(I)

rOps = rf(rSources)

(mSource; mDest) = getAddr(opcode; rOps)

mOp = mem(mSource)

(pc0; rRes; mRes) = compute(pc; opcode; rOps; mOp)

rf
0 =

�
rf[rDest 7! rRes] if rDest 2 Reg

rf if rDest = ()

mem
0 =

�
mem[mDest 7! mRes] if mDest 2 Addr

mem if mDest = ()

The function decode extracts the opcode, source registers and the destina-
tion register from an instruction. The function getAddr computes the addresses

3

mSource for loads and mDest for stores. Finally, the results of compute are the
new value for the program counter and the values to be written back to the
register �le or memory.

The standard machine is totally data-insensitive. It uses abstract basic types
IAddr, Instr,Opcode,Value,Reg andAddr, and the rest is typed as follows:

pc: IAddr; pgm: IAddr! Instr; rf:Reg! Value; mem:Addr! Value

decode : Instr! Opcode;RegSeq;Reg]

getAddr : Opcode;ValueSeq! Addr];Addr]

compute : IAddr;Opcode;ValueSeq;Value] ! IAddr;Value];Value]

where we follow the convention to write product types using commas and func-
tion types using arrows. The notation Type] is a shorthand for the sum type
Type+ f()g, where the element () indicates a value that does not need compu-
tation. For example, the �rst component of the result of getAddr is () unless the
�rst argument is the opcode of a load instruction. Note that our de�nition allows
a single instruction to have the combined behavior of a branch, alu-instruction,
load and store, if desired. Particular instructions may of course choose to only
implement a subset of this functionality.

4 An example processor

When reasoning about the execution process of complex processors one nor-
mally thinks of instructions as entities that come into being at a certain cycle
and evolve thereafter. Transactions formalize this notion of partially computed
instructions. Informally, a transaction is a package of information which (di-
rectly or indirectly) contains the identity of the unique (static) instruction it is
associated with plus various data extracted from the processor's state that are
relevant for the execution of that instruction.

Guided by the standard machine speci�cation, we de�ne a standard transac-

tion as a record with the following eleven �elds:

instr : Instr rDest : Reg]

opcode : Opcode mSource;mDest : Addr]

rSources : RegSeq npc : IAddr

rOps : ValueSeq mOp; rRes;mRes : Value]

We assume that all our basic types contain a value ?, indicating an uncom-
puted value. We will also use the notation rOpi(T) for the i

th member of the
sequence rOps(T). The functions decode, getAddr and compute treat ? as an
argument in a lazy fashion: a component of their result is ? only if some crucial
arguments needed for computation of that result are ?.

A natural idea, introduced in [3] and paradigmatic for the Hawk speci�cation
language [15], is to use transactions as a unifying concept in microarchitectural
speci�cations. Transactions are passed along wires and manipulated by processor

4

components. In addition to the above standard �elds, any speci�c microarchitec-
ture adds �elds appropriate for the description of its execution algorithm. Our
example processor adds �ve new �elds: the instruction address addr, the spec-

ulative next program counter spc, the name (alias) name, the register providers

rProvs and the most recent store mrSt:

addr; spc : IAddr rProvs : NameOptSeq

name : Name mrSt : NameOpt

The �elds rProvs and mrSt will record dependencies among instructions. Here
NameOpt = Name + fnoneg is the type of an optional name �eld, where
none serves to indicate the lack of dependency.

ORDERING EXECUTIONFETCH
UNIT

rf

xpc

pc

mem

lingering

dequeued

flush

fetched

rpc computed

prepared

writemem

UNITUNIT

mature

young

executing

pc; xpc : IAddr rpc : IAddr]

rf : Reg! Value fetched; dequeued; prepared : TransSeq

mature; young : TransSeq computed : TransSet

mem : Addr! Value flush; writemem : Bool

executing; lingering : TransSet

Fig. 1. Top-level speci�cation with the types of wires (right) and state components

(left). Thick wires represent transaction sets or sequences. At each cycle, units update

their state and output wires depending on the values on their input wires and state

elements at the previous cycle.

The processor consists of three major units and seven wires as depicted in
Fig. 1. The fetch unit provides multiple instructions at each cycle. This unit
outputs along the fetched wire transactions with �lled in �elds instr, addr and
spc. The fetching of instructions begins at the address pc if the current value
of rpc (requested program counter) is (); otherwise rpc is used. The fetching
proceeds by unconstrained speculation.

The ordering unitmaintains the sequential programming model of the ISA by
using a queue made by concatenating the sequences mature and young (Fig. 2). It
takes a pre�x of the sequence fetched to form a transaction sequence enqueued
to be added to the back of the queue. The transactions of fetched that do not

5

belong to the chosen pre�x are discarded. Each transaction added to the queue
gets its name �eld �lled in, unique in the queue. The mature part of the queue
corresponds to transactions already sent to the execution unit. Transactions
in prepared are taken from the beginning of the young part of the queue and
possibly also from enqueued; they all have their rOps, rProvs and mrSt �elds �lled
in. The elements of rOps obtain values from rf when there is no dependency
on previous transactions; if there are dependencies, they are recorded in the
elements of rProvs, which contain the names of the transactions that will provide
the appropriate values when computed. The �eld mrSt contains the name of
the last preceding store in the queue; it is used only by loads and stores for
future resolution of dependencies among them. The mature part of the queue is
updated by transactions arriving along the computed wire, then a pre�x of the
resulting sequence consisting entirely of complete transactions is retired, that is,
sent along the dequeued wire while updating rf. When a retired transaction is
a mispredicting branch, then the queue is emptied, the Boolean wire flush is
asserted and rpc set equal to the address of the last retired transaction. The
wire rpc is also given a non-trivial value when not all fetched transactions are
enqueued. In this case the rpc is set to the spc of the last enqueued transaction.

mature young enqueued

dequeued mature’ young’

fetched

mature young enqueued

mature’ young’

fetched

dequeued

prepared prepared

Fig. 2. Two possible scenarios for the relationship between transaction sequences in-

volved in a transition of the ordering unit. The inputs are fetched, mature and young,

and the outputs are dequeued, prepared, mature0 and young0. The sequences are

aligned so that if two transactions are on the same vertical line, then the higher one is

less than or equal to the lower (in the progress ordering de�ned below).

The execution unit is an out-of-order component that computes the results
rRes and mRes of transactions contained within it and determines which of these
transactions are mispredicting (by computing npc for each and comparing it with
spc). It may also execute a memory store if the value on the wire writemem indi-
cates that it is right time to do so. A number of completed transactions are sent
out along the computed wire, while placing them in the set lingering, where
each of them will remain intact until the moment when an equally named trans-
action comes along the prepared wire and takes its place. When a transaction
is sent to computed (or sooner), the values in its result �elds are forwarded to
all other transactions in executing. There are no requirements on the number
of transactions executed at each cycle and the only requirement on the order of
their execution is that the data-ow order is respected.

6

5 Correctness criterion

One can slightly extend the de�nition of the standard machine so that at each
cycle it outputs a complete transaction (corresponding to the instruction com-
pleted at that cycle). A run of the standard machine then de�nes a sequence of
\retired" transactions from which the corresponding sequence of states of the
standard machine can easily be reconstructed.

A transition of a complex processor cannot, in general, be associated with a
unique transaction, but with a sequence, possibly empty, of transactions retired
on that transition. So, suppose P is a processor and denote by �n the sequence
of transactions retired by P on its nth cycle. Concatenating these sequences we
obtain �1 = �1�2 � � � : Replacing every transaction in �1 with the corresponding
standard transaction (which amounts to ignoring its \non-standard" �elds), we
obtain a sequence of standard transactions �std

1
, which, if P does implement the

standard machine, should be identical to the appropriate execution sequence of
the standard machine. This gives us the following correctness criterion.

De�nition 2. A processor P is correct with respect to the standard machine if
for any given program pgm and a state �0 of the standard machine, there exists

an initial state of P such that the execution of pgm on P produces a sequence of

retired transactions �1 with the associated sequence �std
1

equal to the execution

sequence de�ned by the program pgm and the initial state �0.

The notion of the execution sequence is made precise below, after a brief
elaboration of the type of transactions.

5.1 The progress ordering of transactions

We de�ne the progress ordering � on the set of transactions so that T1 � T2

will mean that T2 is a computationally more advanced (\closer to retirement")
version of T1. The relation � is the product of 16 partial orders (all denoted
�)|one for each record component. These component orders are de�ned as
follows. For each basic type (including Name), we make ? the smallest element
and all other elements, including (), incomparable. In NameOpt, none is the

largest element. Finally, two sequences are comparable if and only if they have
the same length and the elements of one of them are all less than or equal to the

corresponding elements of the other.
The partial order just introduced allows us to de�ne the notion of intrinsic

consistency of transactions. Intuitively, a transaction is consistent if the contents
of its �elds do not contradict any of the equations occurring in the de�nition
of the standard machine. Of these equations, the ones that do not involve the
components of the machine state (program counter, register �le and memory)
give rise to consistency criteria:

hopcode(T); rSources(T); rDest(T)i � decode(instr(T))

hmSource(T);mDest(T)i � getAddr(opcode(T); rOps(T))

7

hnpc(T); rRes(T);mRes(T)i � compute(addr(T); opcode(T); instr(T); rOps(T);mOp(T))

By de�nition, a transaction is consistent if its �elds satisfy these inequalities. We
de�ne Trans to be the set of all consistent transactions. Note that consistency
of a transaction depends entirely on the contents of its \standard" �elds and
that all strictly increasing chains in the poset (Trans;�) are of �nite length.

Maximal transactions with respect to the ordering � will be called complete;
a transaction is complete if none of its �elds is ?, and mrSt and all component
�elds of rProvs are none.

5.2 Execution sequences

For every transition of the standard machine there is an associated complete
standard transaction. To de�ne it, just use the left-hand sides of the equations
in De�nition 1. Thus, together with every run of the standard machine, one
can consider the corresponding transaction sequence hT1; T2; : : :i, where Ti cor-
responds to the ith transition. Characterizing properties of such sequences are
collected in De�nition 3 below.

If � is a (�nite or in�nite) sequence of transactions or standard transactions
and T a transaction in � , we de�ne the ith register provider of T to be the
transaction U of � which precedes T and has the property that rSourcei(T) =
rDest(U), while rSourcei(T) 6= rDest(V) for all transactions V between U and T .
Similarly, we de�ne U to be the store provider of T if T is a load and U is the
last store among the transactions that precede T in � and satisfy mSource(T) =
mDest(U).

De�nition 3. An in�nite sequence � = hT1; T2; : : :i is an execution sequence
corresponding to the program pgm and the initial state (pcinit; rfinit; meminit) if
every Tm is a complete transaction and

instr(Tm) =

�
pgm(pcinit) if m = 0
pgm(npc(Tm�1)) if m > 0

rOpi(Tm) =

�
rRes(Tk) if Tk is the ith register provider for Tmin �

rfinit(rSourcei(Tm)) if Tm does not have an ith provider in �

mOp(Tm) =

�
mRes(Tk) if Tk is the store provider for Tm in �

meminit(mSource(Tm)) if Tm does not have a store provider in �

6 History Table (Structuring the proof)

Reasoning about the execution of processors can be conveniently organized
around a history table. Two simple observations are behind its de�nition. First,
if I1; I2; : : : is the sequence of instructions considered by the processor during
a run, then each transaction T found anywhere in the processor at any time is
associated with a unique fetched instruction Ij ; we say that j is the ordinal of T .
The second observation is that there are only �nitely many essentially di�erent

8

execution patterns for an instruction and that one can de�ne a �nite transition
diagram describing those patterns. Each node of this transaction ow diagram

� corresponds to a distinguished \pipeline stage" and will be called a status.
A history table is de�ned for every run of the processor. At the nth row

and the ith column of the table one �nds a pair H i
n = (T;X), where T is the

transaction that represents the state of computation of Ii at the n
th cycle and

X is the status of that computation. Formally, H i
n is de�ned in terms of the set

of transactions with ordinal i which are present in the processor at the nth cycle,
and the values of \control" variables at that cycle; normally, T is the maximal of
those transactions and the status X corresponds to the set of locations in which
they are found.

fetched executing computed ripe dequeuedyoung prepared

ignored squashed

Fig. 3. Transaction ow diagram � . The transitions to squashed occur only when

flush = true.

For our example processor, � is given in Fig. 3. The top row represents
the execution patterns of successfully completed instructions. Looping at young
means waiting to be sent to the execution unit; the loops at executing and
ripe have similar meaning. The status ripe corresponds to the set of complete
transactions contained in mature. The �nal statuses ignored and squashed are
for transactions aborted because of the overow in the ordering unit (inability

to enqueue all fetched transactions) and misprediction, respectively.
The rows of the history table are �nite; the length of the nth row is equal

to the total number of fetched instructions in the �rst n cycles. All columns
stabilize: for each i, we have H i

n+1 = H
i
n for all large n. This follows since both

Trans and � are posets in which strictly increasing chains are �nite. We de�ne
the limit row H1 as the sequence of the limit values of columns: H i

1
= limnH

i
n.

For any n � 1, denote by �n the sequence of transactions occurring in
the nth row Hn of H . Let also �Dn denote the sequence consisting of only those
transactions occuring in Hn whose corresponding status component is dequeued.
The correctness of the processor can then be restated as follows.

Theorem. �D
1

is an execution sequence.

In view of De�nition 3, this presents us with four proof obligations.

9

��
��
��
��

��
��
��
��

����������
������������
�������
�������
�������
�������

��������
��������
��������
��������

����������������
��������
��������
��������
��������

����
����
����
����

�����
�����
�����
�����

���
���
���

���
���
���

��
��
��

��
��
��

���������������� ��
��
��
��

active

squashed

ignored

fetched

dequeued

Fig. 4. Seven consecutive rows in the middle of a history table. The second depicts a

cycle when only part of the fetched transactions is enqueued. The �rst misprediction is

seen in the fourth row; transactions fetched at this cycle are ignored at the next, when

also, due to the misprediction, the fetching unit was unable to output. (\Active" stands

for statuses that are neither initial nor �nal and reects the queue in the ordering unit.)

Proposition 1. The sequence �D
1

is in�nite.

Proposition 2. If U and T are two consecutive elements of �D
1
, then npc(U) =

addr(T). Also, the value or the addr �eld of the �rst transaction of �D
1

id pcinit.

Proposition 3. Let T be a transaction in �D
1
. If U is the rth register provider

of T in �D
1
, then rOpr(T) = rRes(U), and if T does not have an rth provider in

�
D
1
, then rSourcesr(T) = rfinit(rSourcer(T)).

Proposition 4. Let T be a transaction in �
D
1
. If U is the store provider of T

in �D
1
, then mOp(T) = mRes(U), and if T does not have a store provider in �D

1
,

then mOp(T) = meminit(mSource(T)).

The proof of Proposition 1 uses the liveness conditions of components. The
major results one needs to establish are the in�nity of the sequences of fetched
and enqueued transactions, and the absence of livelock, expressed as the state-
ment that all locations in H1 are �nal. Proving the remaining three propositions
involves a rather straightforward but tedious chasing around the history table.

7 Formal speci�cation

Staying close to the Hawk speci�cation style, we model processors and their
components as state machines, which use sets of input wires, output wires, and
states, each wire and each piece of state having a prescribed type. The machine
is then de�ned by a function whose arguments are the values for input wires
and states, and whose results are values for the output wires and states in the
next clock cycle. Consequently, the machine acts as a signal transformer: for any
given signals (in�nite sequences) of inputs and initial values of states, it produces
uniquely determined signals of outputs.

An axiomatic speci�cation of a state machine could consist of a list of its
input, output and state variables, an initial condition, an invariance condition,
and a liveness condition. Without making these notions precise, we note that an

10

invariant is a propositional formula written in terms of input variables, output
variables, state variables and primed state variables, and a liveness condition is
a property of signals expressible by a suitable formula in temporal logic.

Again without going into technicalities, state machines can be composed by
identifying each output wire of the constituent machines with some (zero or
more) input wires. At the level of signals, which is how it is done in Hawk,
composition amounts to writing a system of equations, each corresponding to a
component machine.

The input, output and state variables of the three components of our proces-
sor can be read o� from Fig. 1, which also tells how the wires are joined to give a
speci�cation of the processor as a composition of its components. The formulas
for speci�cations of components are given below, after introducing notational
conventions.

The values pgm, pcinit, rfinit and meminit are constants.

We restrict the type TransSeq to \uniquely named" sequences: if two trans-
actions in a sequence have names x and y, none of which is ?, then x 6= y.
The concatenation of sequences � and � is denoted �=k�. A partial order on
the set of transaction sequences is de�ned by � � � if and only if j�j = j�j and
�[i] � �[i] for every i. A transaction is mispredicting if its spc and npc �elds are
not equal, and none is equal to ?. A transaction is decoded if none of its �elds
opcode, rSources, rDest contains ?. A transaction is independent if its mrSt and
and rOps �elds are maximal (the �rst is none and the second does not contain
?). A transaction T depends on another transaction U if rProvi(T) = name(U)
or mrSt(T) = name(U). If T is a transaction in a transaction sequence �, then
the most recent store of T in � is the last store in � that precedes T . Finally,
if A is a transaction set and T is a transaction, then the store chain of T in A
is the maximal sequence hSk; : : : ; S1i with the properties mrSt(T) = name(S1)
and mrSt(Si) = name(Si+1) for 1 � i < k.

Transaction sets have the property that di�erent elements of a set have dis-
tinct names; we use the type TransSet = (Name�f?g)! Trans] to represent
such sets. For A and B in TransSet, we denote by A [B the union of A and
B with A having the higher priority; that is, if A and B both have a transac-
tion named x, then the transaction named x of A [B is that of A. (This union
operation is associative, but not commutative.) The notation A � B means by
de�nition that A(x) � B(x) for every x 2 Name. Note that there is a canonical
map TransSeq! TransSet, so every transaction sequence can be regarded as
a transaction set.

For rf 2 Reg ! Value, mem 2 Addr ! Value, v 2 Value, r 2 Reg and
a 2 Addr, the values of the updated register �les and memories are denoted
by rf[r 7! v] and mem[a 7! v]. Note the role of ? in updating functions: if
rf

0 = rf[? 7! v], then rf
0(r) = ? for every r, but if rf0 = rf[r 7! ?] then

rf
0(s) = rf(s) for every s 6= r. Updating of a register �le and memory by a

transaction is de�ned by

rf � T =

�
rf[rDest(T) 7! rRes(T)] if rDest(T) 2 Reg
rf if rDest(T) = ()

11

mem � T =

�
mem[mDest(T) 7! mRes(T)] if mDest(T) 2 Addr
mem if mDest(T) = ()

The results rf � � and mem � � of updating rf and mem by a �nite transaction
sequence � are then de�ned in a straightforward manner.

Fetching Unit

Let pc-rpc = pc if rpc = (); otherwise pc-rpc = rpc.

Fetch-Init. The initial values of pc and fetched are pcinit and hi respectively.

Fetch-Inv 1. instr(T) = pgm(addr(T)), for every transaction T occurring in

fetched.

Fetch-Inv 2 (Speculation). If fetched = hT1; : : : ; Tki, then addr(T1) = pc-rpc,

and addr(Ti+1) = spc(Ti) for every i 2 f1; : : : ; k � 1g.

Fetch-Inv 3 (Next PC). pc0 = spc(T) if T is the last transaction of fetched,

and pc
0 = pc-rpc if fetched = hi.

Fetch-Inv 4 (Empty �elds). A �eld of a transaction in fetched has a value

di�erent from ? if and only if that �eld is instr, spc or addr.

Fetch-Liv. The formula rpc 6= () _ fetched 6= hi is true in�nitely often.

Ordering Unit

Denote queue = mature=kyoung.

Ord-Init. The initial values of xpc, rf, queue, flush, prepared and rpc are

pcinit, rfinit, hi, false, hi and () respectively.

Ord-Inv 1 (Naming). All transactions in queue have distinct names.

Ord-Inv 2 (Queue). Let mature
� be the sequence obtained from mature by

replacing every transaction in it with an equally named transaction of computed,

if it exists. If flush = true then queue
0 = prepared = hi and dequeued is a

pre�x of mature
�. If flush = false, then there exists a pre�x enqueued of

fetched such that

young=k enqueued � prepared=kyoung0;

mature
�=k prepared = dequeued=kmature0:

Ord-Inv 3 (Enqueueing). If T is the �rst transaction of enqueued, then addr(T) =
xpc. Finally, if queue = hi and xpc = addr(T), where T is the �rst transaction

of fetched, then enqueued 6= hi.

Ord-Inv 4 (Preparation). Let T be a transaction in prepared. Then

12

1. T is decoded, rRes(T) = ?, and T 2 mature
0.

2. hrOpi(T); rProvi(T)i = h?; name(U)i if U is the ith register provider of T in

queue
0, and hrOpi(T); rProvi(T)i = hrf

0(rSourcei(T));nonei if T does not

have the ith register provider in queue
0.

3. mrSt(T) = name(S) if S is the most recent store for T in queue
0, and

mrSt(T) = none if this most recent store does not exist. The value of

mOp(T) is ? or (), depending on whether T is a load or not.

Ord-Inv 5 (Dequeueing). All transactions of dequeued are complete and none

of them, except possibly the last one, is mispredicting.

Ord-Inv 6 (Register File). rf0 = rf � dequeued.

Ord-Inv 7 (Flush). flush = true if and only if the last transaction in dequeued

is mispredicting.

Ord-Inv 8 (Enabling a memory write). writemem = true if and only if

the �rst transaction of queue0 is an incomplete store.

Ord-Inv 9 (Requested PC).

rpc =

8<
:

npc(D) if flush = true

addr(E) if flush = false and jenqueuedj < jfetchedj

() otherwise

;

where D is the last transaction of dequeued and E = fetched(jenqueuedj+1).

Ord-Inv 10 (Expected PC).

xpc
0 =

8<
:
rpc if rpc 6= ()
spc(T) if rpc = () and enqueued 6= hi

xpc otherwise

;

where T is the last transaction of enqueued.

Ord-Liv. If the �rst transaction of queue is complete, then eventually dequeued 6=
hi. If mature = hi and young 6= hi, then eventually prepared 6= hi.

Execution Unit

Exec-Init. The initial value of mem is meminit, and ; is the initial value of

executing, lingering and computed.

Exec-Inv 1 (Flushing). If flush = true, then executing
0 = lingering

0 =
; and mem

0 = mem.

Exec-Inv 2 (Contents). The sets executing and lingering are disjoint. If

flush = false then

executing[prepared[lingering� executing
0
[lingering

0
: (1)

13

If T is an element of the left-hand side of (1) and T
0 is the corresponding

element of the right-hand side, we will say that T 0 is the descendant of T . Note
that the only transactions of executing[lingering without a descendant are
members of lingering whose name occurs in a transaction of prepared.

Exec-Inv 3 (Lingering). Assume flush = false. Then all transactions in

lingering are complete and no transaction in executing depends on any trans-

actions of lingering. Also, a transaction belongs to lingering
0 if and only if

it either belongs to computed, or is a descendant of a transaction in lingering.

If L is a load in executing[prepared and � is the store chain of L in this
set, then

mOp(L) � (mem � �)(mSource(L)) (LC)

is a condition that should be satis�ed by the execution unit. Note that the value
on the right-hand side is ? if mDest(S) = ? for some S in �. If mDest(S) 6= ? for
all S in �, then the value on the right-hand side is either (1) mRes(S), where S is
the last transaction in � with mDest(S) = mSource(L), or (2) mem(mSource(L)),
if no such S exists.

Exec-Inv 4 (Load Correctness). If L0 is the descendant of a load L which

satis�es the condition (LC), then L0 satis�es (LC) too.

Exec-Inv 5 (Forwarding). If T 0 is the descendant of T , then hrProvi(T
0); rOpi(T

0)i =
hrProvi(T); rOpi(T)i, or hrProvi(T

0); rOpi(T
0)i = hnone; rRes(U)i, where U 2

executing[lingering, rProvi(T) = name(U), and rRes(U) 6= ?.

Exec-Inv 6 (Memory). 1. If mem0 6= mem, then writemem = true and mem0 =
mem � S, where S is a complete store in executing.

2. If computed contains a store S, then mem
0 = mem � S and writemem= true.

Exec-Inv 7 (Most Recent Store). If T 0 and U 0 are descendants of T and U ,

and if mrSt(T) = name(U), then mrSt(T 0) = name(U 0) unless U 0
2 computed or

T is a load with mOp(T) 6= ?.

Exec-Liv. Let T be an independent transaction in executing. If T is a store,

assume also that writemem= true. Then eventually flush = true or name(T)
occurs among names of transactions in computed.

8 Conclusions

In an attempt to bring the power of veri�cation closer to the complexity of com-
mercial processors, we have speci�ed a general microarchitectural design and
proved its correctness. Our axiomatization can be satis�ed by a family of mi-
croarchitectures; therefore, it retains a good deal of exibility as the structure
of the individual components is developed. Since each component is speci�ed
independent of other components, the implementation and proof of components
can be carried out independently. Furthermore, our speci�cations and proof are

14

independent of many considerations that a�ect performance. For example, we
do not need to set the number and latencies of subunits of our execution units,
the width of instruction-carrying wires, the accuracy of branch prediction etc.
Therefore, many design decisions based on simulation may be made without ad-
versely a�ecting the global correctness proof. Note also that the wires present in
our top-level speci�cation are just what is necessary for interunit communica-
tion. The units are free to communicate through extra channels; for example, an
extra wire allows implementation of a branch target bu�er within the fetching
unit.

Most of the advantages of our approach come as a consequence of using a
severely minimized axiomatization. This approach is not quite common, proba-
bly because coming up with a reasonably complete set of invariants for an algo-
rithm is generally di�cult. Considerable skill is required to extract the axioms,

but in a limited domain, such as that of hardware design, it could be feasible. We
plan to explore the axiomatics for hardware components and develop a library
of speci�cations and typical proofs.

We intend to construct various re�nements of our component speci�cations
and thus to show that our axiomatizations can be related to speci�c microarchi-
tectures. We have already developed executable PentiumPro-like speci�cations
in Hawk using the same structure described here (see [1]); we plan to prove
the correctness of these executable models by checking their three units satisfy
our axioms. Transactions, as we have demonstrated, are a useful microarchitec-
tural abstraction, but they also come with a substantial overhead that should
be eliminated in lower-level re�nements. We plan to develop a methodology for
shrinking the interfaces of our top-level speci�cations.

We expect that further research will con�rm that reasoning around the his-
tory table is a promising proof technique, applicable to pipeline designs in gen-
eral. Also left to further research is rewriting our axiomatics in a more stringent
speci�cation style, and mechanization of the proofs.

Acknowledgments. For their contributions to this research, we thank Mark
Aagaard, Borislav Agapiev, Robert Jones, and John O'Leary of Intel Strategic
CAD Labs; Tito Autrey, Nancy Day, Dick Kieburtz and Thomas Nordin of OGI;
and Arvind of MIT.

The authors are supported by Intel Strategic CAD Labs and Air Force Ma-
terial Command (F19628-93-C-0069). John Matthews receives support from a
graduate research fellowship with the National Science Foundation.

References

[1] Hawk Web page: http://www.cse.ogi.edu/PacSoft/Hawk/.

[2] M. Aagaard, R. Jones, and C.-J. Seger. Combining theorem proving and trajectory

evaluation in an industrial environment. In 35th Design Automation Conference

(DAC '98), pages 538{541. Association for Computing Machinery, 1998.

15

[3] M. Aagaard and M. Leeser. Reasoning about pipelines with structural hazards. In

Second International Conference on Theorem Provers in Circuit Design, volume

901 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[4] Arvind and X. Shen. Design and veri�cation of processors using term rewriting

systems. IEEE Micro, 1999. to appear.

[5] S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking

with uninterpreted functions for out-of-order processor veri�cation. In [9], pages

369{386.

[6] J. Burch and D. Dill. Automatic veri�cation of pipelined microprocessor con-

trol. In Computer Aided Veri�cation, volume 818 of Lecture Notes in Computer

Science, pages 68{70. Springer-Verlag, 1994.

[7] B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar microprocessors

with Hawk. In Workshop on Formal Techniques for Hardware and Hardware-like

Systems, Marstrand, Sweden, June 1998.

[8] �A. P. Eir�iksson. The formal design of 1M-gate ASICs. In [9], pages 49{63.

[9] G. Gopalakrishnan and P. Windley, editors. Formal Methods in Computer-

Aided Design (FMCAD '98), volume 1522 of Lecture Notes in Computer Science.

Springer-Verlag, 1998.

[10] L. Gwennap. Intel's P6 uses decoupled superscalar design. Microprocessor Report,

9(2):9{15, 1995.

[11] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee:

Methodology and case studies. In [13], pages 440{451.

[12] R. Hosabbettu, M. Srivas, and G. Gopalakrihnan. Decomposing the proof of

correctness of pipelined microprocessors. In [13], pages 122{134.

[13] A. J. Hu and M. Y. Vardi, editors. Computer Aided Veri�cation (CAV '98),

volume 1427 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[14] R. B. Jones, J. U. Skakkebaek, and D. L. Dill. Reducing manual abstraction in

formal veri�cation of out-of-order execution. In [9], pages 2{17.

[15] J. Matthews, J. Launchbury, and B. Cook. Specifying microprocessors in Hawk.

In 1998 International Conference on Computer Languages, pages 90{101. IEEE

Computer Society, 1998.

[16] K. McMillan. Veri�cation of an implementation of Tomasulo's algorithm by com-

positional model checking. In [13], pages 110{121.

[17] J. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the

correctness of the kernel of the AMD K86. IEEE Transactions on Computers,

47(9):913{926, 1998.

[18] A. Pnueli and T. Arons. Veri�cation of data-insensitive circuits: An in-order-

retirement study. In [9], pages 351{568.

[19] J. Sawada and W. Hunt. Processor veri�cation with precise exceptions and spec-

ulative execution. In [13], pages 135{146.

[20] B. Shiver and B. Smith. The Anatomy of a High-Performance Microprocessor: A

Systems Perspective. IEEE Computer Society, 1998.

16

A Appendix: Correctness Proof

In Sect. 6 we gave a brief and incomplete description of the history table as-
sociated to a run of our processor model. A precise de�nition is given below
in Subsect. A.3. In particular, we prove that the columns of the history table
stabilize (Lemma 12), so that the sequence �1 of limit values is de�ned. Recall
that the sequence �D

1
is obtained by removing from �1 all transactions whose

corresponding status is not dequeued. We prove that this sequence is equal to

the concatenation of all sequences of transactions dequeued by our processor in
the run being considered (Lemma 16). Thus the correctness of the processor can
indeed be expressed as in Theorem stated in Sect. 6. We repeat it here:

Theorem. �D
1

is an execution sequence.

We also repeat the four Propositions which, in view of De�nition 3, imply
the theorem.

Proposition 1. The sequence �D
1

is in�nite.

Proposition 2. If U and T are two consecutive elements of �D
1
, then npc(U) =

addr(T). Also, the value or the addr �eld of the �rst transaction of �D
1

id pcinit.

Proposition 3. Let T be a transaction in �D
1
. If U is the rth register provider

of T in �D
1
, then rOpr(T) = rRes(U), and if T does not have an rth provider in

�
D
1
, then rSourcesr(T) = rfinit(rSourcer(T)).

Proposition 4. Let T be a transaction in �
D
1
. If U is the store provider of T

in �D
1
, then mOp(T) = mRes(U), and if T does not have a store provider in �D

1
,

then mOp(T) = meminit(mSource(T)).

The proofs of the propositions are given in Subsections A.5{A.8. The de�ni-
tion and some basic properties of the history table are given in Subsection A.3.
The �rst two subsections contain notational preliminaries and key lemmas about
the relationships among the processor's components.

A.1 Terminology

Regular and singular cycles. For a given run of the processor, the value
of any state variable v at the cycle n (n � 1) will be denoted by v

n. De�ne
n to be regular or singular depending on whether flush

n is false or true.
Note that n is singular if and only if dequeuedn is non-empty and the last
transaction in it is mispredicting (Ord-Inv 5). Note also that if n is singular,
then queue

n, executingn+1 and executing
n+1 are empty, by Ord-Inv 2 and

Exec-Inv 1 respectively. As a consequence, we have that two consecutive numbers
cannot be both singular.

17

Locations. Let us use the term location for the four wires (fetched, prepared,
computed, dequeued) and the four state elements (young, mature, executing,
lingering) that serve as transaction holders in our processor's speci�cation.
In addition to these, we will also consider a few more de�ned \locations",
some of which have previously been de�ned or just mentioned. First we have
queue

n = mature
n=kyoungn and contents

n = executing
n + lingering

n, the
full contents of the ordering and the execution units respectively. Then we have
enqueued

n, a pre�x of fetchedn, de�ned when n is regular and with properties
given in Ord-Inv 2 and Ord-Inv 3. We de�ne enqueuedn = hi when n is singular.
Furthermore, we de�ne ignored

n by fetched
n = enqueued

n=kignoredn when
n is regular, and ignored

n = hi when n is singular. ripen is the transaction set
consisting of complete transactions in mature

n. Finally, when n is regular, we
de�ne squashed

n = hi, and when n is singular, we de�ne squashed
n to be the

su�x of queuen�1=kfetchedn�1 of length complementary to jdequeuednj.

Note that the nine location names are used to name the nodes of the trans-
action diagram � in Fig. 3. If X and Y are two nodes of � we will write X � Y

if X = Y or there exists a sequence of arcs in � leading from X to Y . There are
no non-trivial cycles in � , so this is a partial order relation.

Ancestors and ordinals. A simple fundamental observation is that any trans-
action present in the processor at any cycle in any of the eight basic locations
except fetched has a uniquely determined immediate ancestor among transac-
tions present in the processor at the previous cycle. Note, however, that it is
not realistic to assume that this relationship is \one-to-one". For example, in
the model we are considering, each transaction in prepared

n wire has a copy of
itself saved in mature

n and each transaction in executing
n or computedn also

has a copy of its ancestor waiting in mature
n. Choosing a unique \descendant"

of a fetched instruction in all subsequent cycles is tantamount to the de�nition

of the history table; see A.3.

Since the initial value X1 is empty for every X 6= fetched, it follows that
starting with any transaction T belonging to a location X

n one can de�ne a
sequence of transactions in which each is the immediate ancestor of the previous
one and which terminates at a transaction T0 belonging to fetched

k for some
k � n. This T0 is a uniquely de�ned progenitor of T . The ordinal of T is de�ned to
be the ordinal of T0 in the sequence all-fetched= fetched

1=kfetched2=k � � �
of all fetched transactions.

It remains to give a precise de�nition of immediate ancestors. So suppose X
is a basic location, X 6= fetched, and T 2 X

n. We de�ne the ancestor T 0 of T
and its location Y n�1. Consider �rst the possibilites executing, lingering and
computed for X . If n�1 is regular, then T 0 and Y are found from the inequality

executing
n�1

[prepared
n�1

[lingering
n�1

� contents
n (2)

of Exec-Inv 2. If n�1 is singular, then executing
n, lingeringn and computed

n

are empty, so there is nothing to de�ne. Turning to the possibilities young,

18

mature, prepared and dequeued for X , we obtain the corresponding T 0 and Y
easily from the relations

young
n�1=k enqueuedn � prepared

n=k youngn; (3)

mature
�=k preparedn = dequeued

n=k maturen: (4)

of Ord-Inv 2, provided that n is regular. And if n is singular, then prepared
n,

mature
n and young

n are empty (Ord-Inv 2) so there is nothing to do for them,
while for dequeuedn we have that it is a pre�x of a sequence mature

�, where
each member of mature� belongs to either maturen�1 and computed

n�1.
Note that in all cases we have T 0 � T .

A.2 Between processor units

From the informal speci�cation of the ordering unit (Sect. 4) we expect that
transactions in mature

n should fall into four well-de�ned classes: for each T in
mature

n, T is either complete and waiting for its turn to be dequeued, or there is
a unique transaction associated (by name) with T in prepared

n, executingn, or
computed

n. Lemma 2 below con�rms this basic relationship between the contents
of the ordering and the execution units. Lemmas 3 and 4 state two important
relationships between what comes in and what goes out. They refer to the ex-
ecution unit and the ordring unit respectively, but neither can be derived from
the axiomatics of a single unit.

First we need to extend our notation about transaction sets. Transaction sets
are disjoint if their domains are disjoint as sets; we will write A+B for A[B in
the case when we know A and B are disjoint. De�ne A nB to be the restriction
of A on the set di�erence of the domains of A and B. De�ne A to be a subset of
B if A(x) = B(x) whenever A(x) 6= (). We will write A� B for A nB when we
know that A is a subset of B.

Lemma 1. If n and n� 1 are regular, then

executing
n�1

[prepared
n�1

� executing
n + computed

n
:

Proof. Since n is regular, Exec-Inv 2 implies

(executingn�1[preparedn�1)+(lingeringn�1npreparedn�1) � executing
n+lingeringn:

Since n� 1 is regular, Exec-Inv 3 implies

lingering
n = computed

n + (lingeringn�1 n preparedn�1):

The lemma immediately follows from these relations.

Lemma 2. For every regular n, the sets ripe
n, computedn, executingn and

prepared
n are disjoint, and

mature
n
� ripe

n + computed
n + executing

n + prepared
n
: (5)

Moreover, the corresponding elements on the two sides have the same ordinal.

19

Proof. The proof is by induction. Since the initial values of all the sets involved
are empty, the initial case is true. The induction step splits into two cases,
depending on whether n� 1 is regular or not.

Assume �rst n � 1 is not regular. By Ord-Inv 2, we have mature
n�1 =

young
n�1 = hi and then prepared

n = dequeued
n=kmaturen. This implies

mature
n = prepared

n because all transactions in dequeued
n are complete and

so cannot occur in prepared
n, which (by Ord-Inv 4) contains only incomplete

transactions. It remains only to prove that the sets ripe
n, computed

n and
executing

n are empty. For ripe
n it is true because all elements of maturen

are incomplete. The other two are subsets of contentsn which is empty by
Exec-Inv 1.

Assume now that n� 1 is regular. By Ord-Inv 2, we have

mature
� + prepared

n = dequeued
n + mature

n
; (6)

where mature� is obtained by replacing every transaction in mature
n�1 with an

equally named transaction of computedn�1. By induction hypothesis, all names
of computedn�1 occur among names of maturen�1, so we have

mature
� = computed

n�1 + (maturen�1 n computedn�1): (7)

Combining (6) and (7), and the induction hypothesis in the form

mature
n�1

n computed
n�1

� ripe
n�1 + executing

n�1 + prepared
n�1

;

we obtain

dequeued
n + mature

n
� computed

n�1 + ripe
n�1 + executing

n�1

+ prepared
n�1 + prepared

n
: (8)

Observe now that ripen�1+computed
n�1 is the set of complete transactions in

mature
�; this follows from (7), the fact that all transactions in computed

n�1 are
complete, and the induction hypothesis implying that the complete transactions
in mature

n�1
ncomputed

n are precisely those of ripen�1. Since no transaction of
prepared

n is complete (Ord-Inv 4) and all transactions of dequeuedn are com-
plete (Ord-Inv 5), it follows from (6) that the same set of complete transactions
of mature� can also be written as dequeuedn + ripe

n. Thus, (8) rewrites into

dequeued
n + mature

n
� dequeued

n + ripe
n + executing

n�1

+ prepared
n�1 + prepared

n
;

and the desired result follows immediately from Lemma 1.
It remains to go back and check that the ordinals are the same for any two

correspondind members of the two sides of any equality and inequality that was
used in the proof. This is done by a straighforward inspection.

Lemma 3. If n and n� 1 are regular, then

executing
n�1 + prepared

n�1
� executing

n + computed
n
:

20

Proof. This is a strengthening of Lemma 1; that preparedn�1 and execn�1 are
disjoint is a part of Lemma 2.

Lemma 4. If n and n� 1 are regular, then

computed
n + ripe

n = dequeued
n+1 + ripe

n+1 (9)

and all transactions of this set belong to lingering
n+1.

Proof. The equation is proved in the course of proving Lemma 2. As in the proof

of Lemma 1, we have

lingering
n = computed

n + (lingeringn�1 n preparedn�1);

so all we need to prove is that ripen is a subset of lingeringn�1npreparedn�1.

Arguing by induction, the problem reduces to showing that the sets ripen and
prepared

n�1 are disjoint. Indeed, by Exec-Inv 2 and Exec-Inv 3, every trans-
action in prepared

n�1 has a descendant in executing
n or computedn, and by

Lemma 2, these two sets are disjoint from ripe
n.

A.3 De�nition of the history table

The top row of Fig. 3 depicts all possible paths through selected processor lo-
cations that a normally completed transaction can have, form fetching through
retiring. A transition from X to Y in most cases should be interpreted as \it is
possible that a transaction in Xn has a corresponding transaction in Y n+1". The
diagram also suggests that all transactions in Xn should have a corresponding
transaction in some Y n+1 for some Y , the target node of an arc coming from X .
\Corresponding" here means having the same ordinal, i.e., being related to the
same fetched instruction. Our goal is to de�ne the history of execution of any
fetched instruction, so we would like to de�ne \transitions" (T;X) ; (T 0; Y)
with (T 0; Y) uniquely determined by (T;X). When more than one such transition
is possible, we select the right one according to the values of \control variables"
(flush in our case).

Transaction ow. The subgraphs of � de�ned in Figs. 5{7 represent the trans-
action ow between cycles n and n + 1, depending on whether these numbers
are regular or singular. The following lemma states this in precise terms.

Lemma 5. Let n � 2 and

�n =

(
�rr if both n� 1 and n are regular

�rs if n is singular

�sr if n� 1 is singular

and let

Inn = f(T;X) j T 2 X
n�1 and X is the source of an arrow of �ng;

Outn = f(T 0; Y) j T 0 2 Y n and Y is the target of an arrow of �ng:

21

fetched executing computed ripe dequeuedyoung prepared

ignored squashed

Fig. 5. �rr.

fetched executing computed ripe dequeuedyoung prepared

ignored squashed

Fig. 6. �rs.

fetched executing computed ripe dequeuedyoung prepared

ignored squashed

Fig. 7. �sr.

22

Then the relation \have the same ordinal" de�nes a bijection �n: Inn ! Outn.

Moreover, if �n(T;X) = (T 0; Y), then X and Y are joined by an arrow in �n,

and, in the cases �n = �rr and �n = �sr, T � T
0.

Proof. We claim that if n+ 1 is regular, then

young
n=kfetchedn � prepared

n+1=kyoungn+1=kignoredn+1; (10)

and if both n and n+ 1 are regular, then

prepared
n + executing

n
� executing

n+1 + computed
n+1

; (11)

computed
n + ripe

n = dequeued
n+1 + ripe

n+1
: (12)

Indeed, (10) follows from (3) and fetched
n = enqueued

n+1=kignoredn+1, and
(11) and (12) follow from Lemma 3 and Lemma 4 respectively. The case of
the lemma when �n = �rr immediately follows from these relations. Since
young

n = hi when n is singular, the case �n = �rs follows from (10) alone.
Finally, in the case when �n = �sr we have that squashed

n+1 is the suf-
�x of maturen=k youngn=k fetchedn of length complementary to the length of
dequeued

n+1 and that dequeued
n+1 is a pre�x of mature�, the sequence ob-

tained by updating mature
n with transactions of computedn. The lemma now

easily follows from Lemma 2.

History table. Recall the de�nition of ordinals of transactions. In particular,
transactions in the sequence all-fetched = fetched

1=kfetched2=k � � � have
distinct ordinals. For every i � 1, we de�ne the nascency rank nr(i) to be
the number n such that fetched

n contains a transaction with ordinal i. (If
all-fetched is �nite, then nr(i) would be de�ned only for i � jall-fetchedj,
but we will prove that all-fetched is in�nite, so nr is de�ned for every positive
integer.)

De�nition 4. For a given run of the processor and every n and i such that

n � nr(i) de�ne H i
n inductively as follows:

1. If n = nr(i), then H i
n = (T; fetched), where T is the transaction in fetched

n

whose ordinal is i.

2. If H i
n�1 = (T;X) and X is a �nal location, then H i

n = H
i
n�1.

3. If H i
n�1 = (T;X) and X is not �nal, then H i

n = �n�1(H
i
n�1).

The history table H is the table whose element belonging to the nth row and the

i
th column is H i

n.

The sequence of elements occuring in the nth row of H will be denoted by
Hn. The transaction and the status components of H i

n will be denoted T i
n and

X
i
n respectively. The sequence of transaction components of Hn will be denoted

�n and the sequence of the status components of Hn will be denoted �n.

Lemma 6. The de�nition of the history table is correct.

23

Proof. The only thing that needs to be checked is that if H i
n�1 = (T;X) and X

is not �nal, then (T;X) belongs to Inn, the domain of �n. If X = fetched, then
this is obvious. Otherwise, (T;X) = �n�1(T

0
; X

0), so (T;X) 2 Outn�1. Thus,
X is a target of an arrow in �n�1 and (by inspection of the eight possibilities
for �n�1 and �n) it follows that X is a source of an arrow of �n, �nishing the
proof.

A.4 Basic properties of the history table

Lemma 7. If H i
n is de�ned then

1. X i
n � X

i
n+1;

2. T i
n � T

i
n+1, provided X

i
n+1 6= squashed.

Proof. The proof follows immediately from De�nition 4 and Lemma 5.

Lemma 8. All elements of Outn occur in Hn.

Proof. The proof is obtained by strengthening the last argument in the proof of
Lemma 6 by using bijectivity of �n.

Note that the statuses related to the execution unit (prepared, executing,
computed) do not occur in Hn when n is singular, so that the descendancy
relation of Sect. 7 is not exactly reected in the history table. In transitions
between regular cycles, however, the descendancy in the execution unit can be
seen in the table, as stated in the following lemma, easily derived from de�nitions.

Lemma 9. If n and n+ 1 are both regular and X i
n is prepared or executing,

then T i
n+1 is the descendant of T i

n (in the sense of Sect. 7).

Let Act denote the set consisting of the �ve nodes of � that are neither
initial nor �nal. Let activen be the sequence obtained from �n by removing all
transactions whose corresponding location is not in Act.

Lemma 10. For every n, queuen � active
n. Moreover, if n is regular, then

active
n is the sequence obtained by replacing every transaction in mature

n with

an equally named transaction in the set computedn + executing
n.

Proof. Suppose �rst n is singular. Since queue
n = hi, we need to show that

active
n = hi too. Indeed, all elements of Outn are of the form (T;X), where X

is either dequeued or squashed (Fig. 6), and by De�nition 4, the status of all
elements in the nth row of H is �nal.

Suppose now n is regular. By Lemma 8, if X 2 Act and T 2 X
n, then

(T;X) occurs in Hn. Then, by Lemma 2, there exists a bijection T 7! T
0 between

elements of activen and queue
n such that T 0 � T . All that remains to prove is

that the elements of queuen = mature
n=kyoungn have increasing ordinals, and

that follows easily from the de�nitions of ancestors and ordinals.

24

Now we can derive an often used lemma that guarantees existence of regular
number intervals.

Lemma 11. If X i
n < dequeued and nr(i) < m < n, then m is regular.

Proof. Since m > nr(i), we have X i
m > fetched. Since m < n, we have X i

m <

dequeued (Lemma 7). Thus, X i
m 2 Act and so activen 6= hi. Since queuen = hi

when n is singular (Ord-Inv 2), the result follows from Lemma 10.

The following is a stabilization lemma for columns of the history table.

Lemma 12. For every i, the sequence H i
n is eventually constant.

Proof. Let H i
n = (Tn; Xn). By Lemma 7 Xn � Xn+1 in � . Since � is �nite and

the only cycles in it are loops at nodes, it follows that the sequence Xn stabilizes
at n0, say. Let X be its limit value. If X is �nal, then, again by De�nition 4,
H

i
n stabilizes as well. The remaining possibility is that X is young, executing

or ripe. By Lemma 11, all numbers greater than n0 are regular. By Lemma 5,
we then have Tn � Tn+1 for all n > n0. By de�nition of progress ordering,
all strictly increasing chains of transactions are �nite, so the sequence Tn is
eventually constant.

The cycle at which the sequence H i
n assumes its stable value will be denoted

sr(i), the stabilization rank. The limit row H1 is the sequence of stable val-
ues: H i

1
= limnH

i
n. The sequence of transactions and the sequence of statuses

occurring in H1 will be denoted �1 and �1.

Lemma 13. The sequence dequeued
n+1 is a pre�x of activen.

Proof. By Ord-Inv 2, dequeuedn+1 is a pre�x of mature�, the sequence ob-
tained by replacing transactions in mature

n with equally named transactions
of computedn. When n is singular, dequeuedn+1 is empty because mature

n is
empty. When n is regular, the corollary follows from Lemma 10.

Let �+n be the sequence obtained from �n by deleting all members whose
corresponding status is ignored. Let also �DSn be the sequence obtained from �n

by keeping only its members whose status is dequeued or squashed.

Lemma 14. �+n = �
DS
n =kactiven=kfetchedn:

Proof. The proof is by induction. Assume �+n has the given form. By De�nition 4,
fetched

n+1 is a su�x of �+n+1. The pre�x �DSn remains intact in �

+

n+1, by the
same de�nition.

By Lemma 13, dequeuedn+1 occurs as a pre�x in active
n and so, by De�ni-

tion 4, it will occur at the corresponding places in �n+1. Therefore, the sequence
�
DS
n =k dequeuedn+1 is a pre�x of �+n+1. Now, if n+1 is regular, then, for each T

i
n of

active
n which does not occur in the pre�x dequeued

n+1, we have X i
n+1 2 Act

(diagram �rr or �sr, though in the latter case there are no such elements T i
n).

25

Also, if T i
n is in fetched

n, then X
i
n+1 2 Act or X i

n+1 = ignored. This �n-
ishes the proof if n + 1 is regular. If n + 1 is singular, then for every T

i
n in

active
n=k fetchedn that does not belong to the pre�x dequeued

n+1, one has
X

i
n+1 = squashed (diagram �rs).

As an immediate consequence of this lemma and its proof, we obtain the
following.

Lemma 15. For every n > 1, �DSn = �
DS
n�1=k dequeued

n=k squashedn. If n is

singular, then �DSn = �
+
n .

Lemma 16. �Dn = dequeued
1=k � � �=kdequeuedn and �Dn is a pre�x of �D

1
.

Proof. By induction, using Lemma 15.

Let �+n be the sequence obtained from �n by deleting all members equal to
ignored.

Lemma 17. For every n, the sequence �+n regarded as a string, belongs to the

set de�ned by the regular expression

fdequeued; squashedg
�
fexecuting; computed; ripeg

�
fpreparedg

�
fyoungg

�
ffetchedg

�
:

Moreover, if n is singular, then the regular expression can be restricted to

fdequeued; squashedg
�
ffetchedg

�
:

Proof. The lemma follows from Lemma 15 and a simple observation that the
sequence preparedn=k ignoredn is a su�x of queuen that occurs also as a su�x

in active
n (see Lemma 10).

All transactions in fetched
n have maximal values in their �elds instr, addr

and spc, and the �eld name is maximal in transactions of youngn. In prepared
n,

all transactions have maximal values in their �elds opcode, rSources and rDest.
In computed

n transactions are complete and so have maximal values in all �elds.
Combining these observations with Lemma 7, we obtain the following lemma,
often used without being explicitly mentioned.

Lemma 18. Fix i, let p; q � nr(i) and denote H i
p = (Tp; Xp), H

i
q = (Tq ; Xq).

1. �eld(Tp) = �eld(Tq) 6= ? for any �eld 2 finstr; addr; spcg

2. If p; q > nr(i), then name(Tp) = name(Tq) 6= ?.

3. If prepared � Xp; Xq � dequeued, then �eld(Tp) = �eld(Tq) 6= ? for any

�eld 2 fopcode; rSources; rDestg

4. If computed � Xp; Xq � dequeued, then Tp = Tq.

26

Lemma 19. If i � j, then nr(i) � nr(j). If i � j and Xj
1

6= ignored, then

sr(i) � sr(j).

Proof. The �rst statement is an immediate consequence of the de�nition of nr.
For the second statement, if X i

1
= ignored, then sr(i) = nr(i)+ 1 and sr(i) <

sr(j) easily follows. The interesting case, when neither of X i
1
; X

j
1

is ignored,
follows from Lemma 16.

Lemma 20. Suppose i < j and X i
n; X

j
n 2 Act. Then X

j
1

= dequeued implies

that X i
1

= dequeued.

Proof. Suppose the lemma is not true. By Lemma 17, we must have X i
n =

squashed. Consequently, sr(i) is singular. By Lemma 19, n < sr(i) � sr(j).
Lemma 11 discards all but the possibility sr(i) = sr(j). This, however, contra-
dicts the de�nition of squashedn (dequeued transactions precede transactions
squashed at the same cycle).

A.5 Proof of Proposition 1

Lemma 21. 23 fetched 6= hi:

Proof. Assume the contrary: 32 fetched = hi. It follows then from (10) that
32 prepared = hi. Then (11) implies 32 computed = hi, and then (12) implies
32 dequeued = hi. Now from Ord-Inv 9 we deduce 32 rpc = () and reach a

contradiction with Fetch-Liv.

Lemma 22. 23 queue 6= hi:

Proof. Assume, on the contrary, that 32 queue = hi. Then, by Ord-Inv 2,
32 dequeued = hi and then, by Ord-Inv 7, 32 flush = false. Also by Ord-
Inv 2, 32 enqueued = hi. By Lemma 21, there exists i such that fetchedi 6= hi,
while queuek = enqueued

k = dequeued
k = hi and flush

k = false for all k � i.
Let x = rpc

i+1. By Ord-Inv 9, x 6= (), while rpc
i+1 = () for all k > i + 1. By

Ord-Inv 10, xpck = x for all k > i. Now let j be the smallest number greater
than i such that fetchedj 6= hi; it exists by Lemma 21. We have pc-rpci+1 = x

and, by repeated application of Fetch-Inv 3, pc-rpcj = x as well. If T is the �rst
transaction of fetchedj , then addr(T) = x (Fetch-Inv 2), and then Ord-Inv 3
implies that enqueuedj+1 6= hi, which is a contradiction.

Lemma 23. All locations occurring in the entries of H1 are �nal.

Proof. Since each of fetched, prepared and computed can occur at most once
in any given column of the history table, none of them can occur in �1. We
need to eliminate the possibility of occurrences of young, executing and ripe.
Assuming the contrary, let k be the smallest integer such that Xk

1
= X is one of

these three and letm = sr(k). ThenHk
1

= (T;X) for some T and, by Lemma 10,
queue

n begins with a transaction Tn such that Tn � T , for all n > m.

27

Case 1: X = young. Now we have young
m
6= hi and so mature

n = hi for all
n � m. This implies prepared

n = hi for all n � m, directly contradicting
Ord-Liv.

Case 2: X = ripe. We have dequeued
n = hi for all n � m. By Lemma 2, Tm

equals T and so is complete. This again contradicts Ord-Liv.

Case 3: X = executing. Note �rst that, by Ord-Inv 8, writememm = true if
T is a store; indeed, Tn is a store and is not complete since that would imply
X = ripe. Secondly, by Lemma 11, all numbers greater than m are regular.
Thirdly, since executingn and computed

n are disjoint, name(T) does not occur
in computed

n for any n � m. These three facts, combined with Exec-Liv imply
that T is not independent. Thus, we have (1) rOpi(T) = ? for some i, or (2)
mrSt(T) 6= none. Since m = sr(k) and Xk

m = computed, it follows that Xk
m�1 =

prepared.

If (1) holds, then by Ord-Inv 4, there exists U in queue
m�1 such that

rProvi(T
k
m�1) = name(U). If (2) holds, then, again by Ord-Inv 4, there exists

U in queue
n such that mrSt(T k

m�1) = name(U). In both cases we have that
T
k
m�1 depends on T

j
n for some j < k. Since j < k and all numbers greater than

n are regular, we have Xj
1

= dequeued and so there exists n such that T j
n is

in computed
n. Then T j

n also occurs in lingering
n (Exec-Inv 3). By Lemma 18,

name(T j
n) = name(T

j
m�1), so T

k
n = T depends on T

j
n, contradicting the ax-

iom that a transaction in executing
n cannot depend on any transaction in

lingering
n (Exec-Inv 3).

Proof of Proposition 1. If i is the ordinal of a transaction in queue
n, Lemma 23

implies that X i
1

is either dequeued or squashed. It follows then from Lemma 22
that �1 contains in�nitely many entries equal to dequeued or squashed. In
other words, the sequence �DS

1
is in�nite. By Lemma 15, this sequence is the

concatenation of all sequences dequeuedn=k squashedn. Since dequeued
n
6= hi

whenever squashedn 6= hi (by de�nition of squashed and Ord-Inv 7), it follows
that dequeuedn 6= hi for in�nitely many values for n, and therefore �D

1
is in�nite.

A.6 Proof of Proposition 2

Let T i
1

and T
j
1

be two consecutive elements of �D
1
. We need to prove that

npc(T i
1
) = addr(T j

1
). Let m = sr(i), n = sr(j), m0 = nr(i), and n0 = nr(j); by

Lemma 19, we have m � n and m0
� n

0.

First we show that every p between m and n (if it exists) is regular. Assume
the contrary: there exists a singular p such that m < p < n. Then dequeued

p
6=

hi, by Ord-Inv 5. Thus, there exists l such that sr(l) = p and X l
1

= dequeued.
By Lemma 19, it follows that i < l < j, contradicting the assumption that T i

1

and T j
1

are consecutive in �D
1
.

Assume �rst that T i
1

is not mispredicting; the other case will be considered
separately. Since now npc(T i

1
) = spc(T i

1
), all we need to show is spc(T i

1
) =

addr(T j
1
). If m0 = n

0 then T i
m0 and T

j
m0 are members of fetchedm

0

and both be-

long to enqueued
m0

+1. Using Lemma 20, we deduce that these two transactions

28

must be consecutive in fetched
m0

.Therefore, spc(T i
m0) = addr(T j

m0), by Fetch-

Inv 2. Now assume n0 > m
0. Then T i

m0+1
is the last element of enqueuedm

0
+1,

T

j
n0+1

is the �rst element of enqueuedn
0
+1, and enqueued

r = hi for all r between
m
0 + 1 and n

0 + 1 (if there are any such r). We claim that all r between m
0

and n
0 are regular. We know that all numbers between m

0 and m are regular
(Lemma 11), and that all numbers between m and n are regular (proved above).
Thus, the claim fails only if m is singular and n0 > m. Then T i

m would be the
last transaction in dequeued

m (because n > m now and dequeued
r = hi for all r

between m and n), contradicting the assumption that T i
1

is not mispredicting.

We can conclude that xpcm
0
+1 = spc(T i

m0) from Ord-Inv 10, that xpcm
0
+1 =

� � � = xpc
n0

(also from Ord-Inv 10), and that xpc
n0

= addr(T
j
n0+1

) from Ord-

Inv 3. This �nishes the proof in the case when T i
1

is not mispredicting.

Assume �nally that T i
1

is mispredicting. It follows from Ord-Inv 5 that m is
singular and also that xpcm+1 = npc(T i

m) (Ord-Inv 9 and Ord-Inv 10). It follows
also that n0 � m; otherwise T j

m would exist and would be in active
m, which is

absurd because this sequence must be empty since m is singular.

It follows that T j
n0+1

is the �rst element of enqueuedn
0
+1 and that enqueuedr =

hi for every r between m and n0+1. We already know that the numbers between
m and n0 + 1 are all regular, and it follows from the Ord-Inv axioms, similarly
as in the previous case, that xpcm+1 = � � � = xpc

n0
+1 = addr(T j

n0+1
).

We also need to prove that addr(T 1
1
) = pcinit. We do have pc1 = pcinit by

Fetch-Init. Let n = nr(1). By Fetch-Inv 2, addr(T 1
n) = pc

n�1. Since addr(T 1
1
) =

addr(T 1
n) (Lemma 18), it su�ces to check that pcn�1 = pc

1. In view of Fetch-
Inv 3, this reduces to proving rpc

m = () for 1 � m < n � 1. The last claim is
a consequence of Ord-Inv 9 and simple facts flushm = false and queue

m = hi

for all m < n� 2.

A.7 Proof of Proposition 3

Lemma 24. For every reg 2 Reg and n � 1,

rf
n(reg) =

�
rRes(T) if T is the last element in �Dn such that rDest(T) = reg

rfinit(reg) if such T does not exist
:

Proof. The proof follows from Lemma 16 and Ord-Inv 6.

Denote by ��n the sequence obtained from �n by removing all its elements � in
such that X i

n is ignored or squashed.

Lemma 25. Let prepared � X
i
m; X

i
n � dequeued. If m < n and T j

n is the rth

register provider of T i
n in ��n, then T

j
m is the rth provider of T i

m in �
�

m. Also, if

T
i
n does not have the rth register provider in ��n, then T

i
m does not have the rth

provider of in ��m.

29

Proof. We prove only the �rst assertion of the lemma. The proof of the second
is analogous.

Since X i
m � X

i
n and Xj

m � X
j
n, neither of X

i
m; X

j
m is ignored or squashed,

so T i
m; T

j
m are in ��m. By Lemma 18, rSourcer(T

i
m) = rSourcer(T

i
n) and rDest(T j

m) =
rDest(T j

n). Thus, rSourcer(T
i
m) = rDest(T j

m).

Suppose now k is such that j < k < i, T k
m is in �

�

m, and rSourcer(T
i
m) =

rDest(T k
m). Again, by Lemma 18, we have rSourcer(T

i
n) = rDest(T k

n), so T
k
n does

not belong to ��n . Thus, X
k
n is ignored or squashed. The only possibility for

X
k
n = ignoredwould be thatm = n�1 andXk

m = fetched, but that contradicts
Lemma 17. If Xk

n = squashed, then it would follow that there exists p such that
T
k
p belongs to squashedp. This would imply that T i

p belongs to squashed
p, which

is not true.

Proof of Proposition 3. Suppose T and U are transactions in �D
1

such that U is
the rth register provider of T . Let i and j be the ordinals of T and U respectively.
Denote H i

k = (Tk; Xk) and H
j
k = (Uk; Yk). Let n = sr(i) and letm be the unique

integer such that Xm = prepared. From Lemma 11 we have that every k such
that m � k < n is regular.

By Lemma 16, Un is the rth provider of Tn in �Dn . Then, by Lemma 25, Um

is the rth provider of Tm in ��m. By Lemma 17, Ym � prepared. Note also that,
being an element of preparedm, Tm belongs to queue

m.

Case 1: Ym = dequeued. By Lemma 17, Tm does not have an rth register provider
in active

m. It follows, using Lemma 10, that Tm does not have an rth provider
in queue

m. Let reg = rSourcer(Tm). By Ord-Inv 4, reg 6= ? and rOpr(Tm) =
rf

m(reg). Since Um is the rth provider of Tm in ��m, it follows that Um is the
last transaction in �Dm whith rDest �eld equal to reg. It follows from Lemma 24
that rOpr(Tm) = rRes(Um) and so rSources(T) = rRes(U), as required.

Case 2: Ym 6= dequeued. Now Ym belongs to active
m. Since Um is the rth

provider of Tm in ��m, it follows that Um is the rth provider of Tm in active
m as

well. From Lemma 10 we deduce that U 0

m is the rth provider of Tm in queue
m,

where U 0

m � Um. It follows from Ord-Inv 4 that rOpr(Tm) = ? and rProvr(Tm) =
name(U 0

m), which immediately implies rProvr(Tm) = name(Um).

Since Tm � � � � � Tn, rOp(Tm) = ? and rOp(Tn) 6= ?, there exists a unique
number p such that m � p < n, rOp(Tp) = ?, and rOp(Tp+1) 6= ?. Since

Tp is incomplete, it belongs to executing
p or preparedp. From Lemma 9 we

conclude that Tp+1 is the descendant of Tp. Furthermore, Exec-Inv 5 implies that
there exists a transaction V in executing

p
[lingering

p such that rProvr(Tp) =
name(U) and rOpr(Tp+1) = rRes(V) 6= ?. It follows that name(V) = name(Um).
We claim that V = Up, which then implies rOpr(T) = rOpr(Tp+1) = rRes(Up) =
rRes(U), �nishing the proof.

Suppose the claim is not true. Then Up cannot belong to active
p because

this sequence contains V and cannot contain two transactions with the same
name. It follows that Xj

p = dequeued, so there exists q such that p < q � m

and Uq is in computed
q and so in lingering

q . Since Tq belongs to executing
q

30

and rProvr(Tq) = name(Uq), it follows that Tq depends on Uq. This contradicts
Exec-Inv 3, �nishing the proof of the claim.

Tm

Tn

Tp

j i

m

p

n U

m

pU

n

U

q

Fig. 8. Transactions involved in the resolution of a register dependency (Case 2 of the

proof of Proposition 3).

We also need to prove rOpr(T) = rfinit(rSourcer(T)) in the case when T =
T
i
1
does not have the rth register provider in �D

1
. Let againm be the integer such

thatXm = prepared. By Lemma 25, T i
m does not have the rth provider in ��m. As

in Case 1 above, we obtain rOpr(T
i
m) = rf

m(reg), where reg = rSourcer(T
i
m).

Using Lemma 24, we deduce rfm(reg) = rfinit(reg), �nishing the proof.

A.8 Proof of Proposition 4

Lemma 26. Every load in prepared
n+executingn satis�es the condition (LC).

Proof. By Ord-Inv 4, the mOp �eld of every load in prepared
n is ?, so (LC) is

true for such loads. Furthermore, every load in executing
n is a descendant of a

load in preparedn�1[executingn�1, so by induction on n and using Exec-Inv 4,
it follows that these loads also satisfy (LC).

Lemma 27. If computedn contains a store, then this store is the �rst transac-

tion in active
n.

Proof. Suppose the lemma is not true and pick the minimal n that provides a
counter-example. Suppose T i

n is a store in computed
n and T j

n is the �rst trans-
action in active

n, and j < i. Pick i so that i� j is smallest.
Let U be the �rst transaction of queuen. By Lemma 10 U � T

j
n. By By

Exec-Inv 6, writememn = true and by Ord-Inv 8, U is an incomplete store.
Using Lemma 17, we conclude that T j

n belongs to executing
n.

Let m be such that T i
m belongs to prepared

m. By Lemma 19, T j
m belongs

to active
m and so, by Ord-Inv 4, mrSt(T i

m) = name(T k
m) for some k such that

31

j � k < i. Since mrSt(T i
n) 6= mrSt(T i

m), it follows from Exec-Inv 7 that for some
p such that m < p � n one has T k

p in computed
p.

Since T j
n is in executing

n, T j
p is not in computed

p, so k 6= j. Thus, T k
p is a

store in computed
p and is not a �rst transaction in active

p. By minimality of
n, we have p = n and then a contradiction with the minimality assumption on
i.

Corollary 28. If activen contains a complete store, then it is its �rst transac-

tion. If dequeuedn contains a store, then it contains only one and it is its �rst

transaction.

Proof. The �rst statement is an immediate consequence of Lemma 28. For the
second, use also Lemma 13

Corollary 29. If memn+1 6= mem
n then the �rst transaction S in active

n is a

complete store in executing
n and mem

n+1 = mem
n
� S.

Proof. The proof follows directly from Exec-Inv 6 and Corollary 28.

Lemma 30. If computedn + ripe
n contains a store S, then mem

n = mem
n
� S.

Proof. Suppose S = T
i
n. Then, for some m � n, T i

m = S is in computed
m, and

so, by Exec-Inv 6, memm = mem
m�1

� S. Therefore, memm � S = mem
m. For every

p such that m < p � n, T i
p is in ripe

p and is the �rst transaction in active
p.

It follows from Corollary 29, that mem
p = mem

m for all such p. In particular,
mem

n = mem
m and the lemma follows.

Lemma 31. For every n, memn = meminit � �
D
n or mem

n = meminit � �
D
n � S, where

S is a store and is a �rst transaction of activen.

Proof. We argue by induction. The initial case is clearly true. For the induction
step, suppose �rst that memn = meminit � �

D
n . If dequeued

n+1 is non-empty and
contains no store, then mem

n+1 = mem
n by Lemma 29, and meminit � �

D
n+1 =

meminit � �
D
n � dequeued

n+1 = meminit � �
D
n+1 is clear. If dequeuedn+1 contains a

store S, then by Lemma 28, dequeuedn+1 begins with S and contains no other
stores. Being an element of dequeuedn+1, S belongs to computed

n or ripe
n

(Eq. 12), so by Lemma 29, memn+1 = mem
n. On the other hand, Lemma 30

implies mem
n = mem

n
� S and so mem

n = mem
n
� dequeued

n+1 = meminit � �
D
n+1.

Finally, if dequeuedn+1 is empty, then �
D
n+1 = �

D
n and both mem

n+1 = mem
n

and mem
n+1

6= mem
n are possible. The desired result in the �rst case follows

immediately, and in the second case it follows from Lemma 29.

Assume now the second possibility for the inductive hypothesis: memn =
meminit ��

D
n �S, where S is a store and is a �rst transaction of activen. Lemma 29

implies memn+1 = mem
n. If dequeuedn+1 is empty, the result immediately follows.

If dequeuedn+1 is non-empty, then it begins with S and contains no other stores,
so mem

n+1 = mem
n = meminit � �

D
n � S = meminit � �

D
n � dequeued

n+1 = meminit �

�
D
n+1.

32

Lemma 32. If T is a load or store in prepared
n + executing

n and U is

the most recent store of T in active
n, then either (1) U is in prepared

n +
executing

n and mrSt(T) = name(U), or (2) U is in computed
n + ripe

n (and

therefore is the �rst transaction in active
n) and mrSt(T) = none.

Proof. Let T i
n = T and T j

n = U . Let m be such that T i
m is in prepared

m. Then
T
j
m is in active

m and so mrSt(T i
m) = name(T k

m), where T
k
m is the most recent

store for T i
m in active

m. We claim that k = j. Otherwise, using Exec-Inv 7 we
would obtain T k

p in computed
p for some p � n, contradicting Corollary 28. The

lemma now follows from Exec-Inv 7 and Corollary 28.

Corollary 33. Let T be a load or store in prepared
n + executing

n and let �

be the store chain of T in this set. Then � is equal to the sequence of stores in

prepared
n + executing

n that precede T in active
n.

Lemma 34. Let L be a load in prepared
n + executing

n and let be the pre-

�x of activen consisting of transactions preceding L. Then mOp(L) � (memn �
)(mSource(L)).

Proof. By Lemma 26, mOp(L) � (memn � �)(mSource(L)), where � is the store
chain of L in prepared

n + executing
n. Let 0 be the sequence obtained by

deleting from all transactions which are not stores. Clearly, memn � = mem
n
� 0.

By Corollary 28, all transactions in 0 are in prepared
n + computed

n, except
possibly the �rst store (say, S), which may belong to computed

n + ripe
n. By

Lemma 33, we have 0 = � in the �rst case, and 0 = hSi=k� in the second. By
Lemma 30, memn � � = mem

n
� 0, �nishing the proof.

Lemma 35. Let � and � be transaction sequences such that � � �. Let mem be

an element of type IAddr! Value and addr an element of type IAddr. Then

(mem � �)(addr) � (mem � �)(addr).

Proof. By direct examination.

Proof of Proposition 4. Suppose L is a load in �
D
1
. Let � be the pre�x of �D

1

consisting of transactions that precede L. We will prove that mOp(L) = (meminit �

�)(mSource(L)). It is easy to see that this would imply Proposition 4.
Let i and be such that L = T

i
1

and and let n be the largest number such
that T i

n is in prepared
n + executing

n. Thus, T i
n+1 is in computed

n+1 and it
follows from Exec-Inv 7 that mOp(T i

n) 6= ?. Thus, mOp(T i
n) = mOp(L) and

mSource(T i
n) = mSource(L).

From Lemma 34 we then obtain mOp(L) � (memn �)(mSource(L)), where
is the pre�x of activen consisting of transactions preceding L. By Lemma 31,
mem

n is equal to either meminit � �
D
n or meminit � �

D
n �S, where the store S is the �rst

transaction of activen. Since is a pre�x of activen (and L is not a store), it
follows that memn � = meminit � �

D
n � .

By Lemma 20, all transactions of are eventually dequeued. Thus, �Dn =k �

�. Using Lemma 35, we �nally obtain mOp(L) � (meminit ��)(mSource(L)), which
must be equality because mOp(L) 6= ?.

33

