
Specifying superscalar microprocessors in Hawk

Byron Cook, John Launchbury, and John Matthews

fbyron,jl,johnmg@cse.ogi.edu

Oregon Graduate Institute

Abstract. Hawk is a language for the speci�cation of microprocessors

at the microarchitectural level. In this paper we use Hawk to specify a
modern microarchitecture based on the Intel P6 with features such as

speculation, register renaming, and superscalar out-of-order execution.

We show that parametric polymorphism, type-classes, higher-order func-
tions, lazy evaluation, and the state monad are key to Hawk's concision

and clarity.

1 Introduction

As the performance of cutting edge microprocessors increases, so too does their

microarchitectural complexity. For example:

� A superscalar processor that fetches multiple instructions must cache in-

structions that cannot be immediately executed.

� A processor with out-of-order execution must usually record the original

instruction sequence for exception handling.

� A processor that renames registers must allocate and then recycle virtual

register names.

While today's hardware description languages (HDLs) su�ce for simple mi-

croarchitectures, the features of modern designs are di�cult to specify without

a richer language. Hawk is a speci�cation language based on Haskell [15] that,

for the following reasons, provides a strong foundation for a new generation of

HDLs:

� Parametric polymorphismallows generic speci�cations to be used in di�erent

contexts.

� Type-classes provide a convenient mechanism for abstracting over instruction

sets, register sets, and microarchitectural components.

� Higher-order functions enable a designer to structure speci�cations in elegant

and concise ways.

� Lazy evaluation naturally supports the simulation of multiple mutually de-

pendent streams of instructions and data.

� The state monad facilitates a disciplined style when specifying components

with mutable state.

In this paper we explore a Hawk speci�cation of a microarchitecture based

on the Intel P6 [4]. We give an overview of the top-level design, and describe in

detail our speci�cation of the Reorder Bu�er. The purpose of this paper is to

show that complexmicroarchitectures can be formally speci�ed in a clear, concise

and intelligible way that facilitates understanding, design review, simulation, and

veri�cation.

We assume the reader is familiar with the basic concepts of functional lan-

guages and microarchitectural design (such as branch prediction and pipelining).

For an in-depth introduction to Haskell, read Hudak, Peterson, and Fasel's tuto-

rial [5]. For more information on microarchitectures, refer to Johnson's textbook

[6].

The remainder of this paper is organized as follows: in Section 2 we introduce

an architecture; in Section 3, we provide an introduction to Hawk; in Section 4

we use Hawk to specify the architecture; and in Section 5 we highlight how the

features of Hawk are used in the speci�cation.

2 A modern microarchitecture

2.1 Machine instruction notation

Throughout this paper we use the following notation for machine instructions:

r1 <- r2 + r3

The register r1 is the destination register or destination operand. Registers r2

and r3 are source registers.
When the contents of a register is known we may choose to pair the register

name and its value:

r1 <- (r2,5) + r3

In this case, 5 is a source register value.
When an instruction's destination register value has been computed, we de-

note this by pairing the destination register with its value:

(r1,8) <- (r2,5) + (r3,3)

We sometimes refer to a destination register value as the instruction's value.

2.2 Superscalar microarchitectures

In general, superscalar architectures employ aggressive strategies to resolve inter-

instruction dependencies and mask the latency of memory accesses. These in-

clude speculative execution, the use of virtual register names, and out-of-order

instruction issue. The internal microarchitectures often resemble that of a data-

ow processor using speculative parallel evaluation. They are thus able to exploit

instruction level parallelism to execute sequential, scalar programs.

Alias
Table
(RAT)

Other Execution Units

Reservation
Station (RS)

Subtraction
Unit

Unit
Addition

File
(RF)

Register

Register

r1
r2
r3
r4
r5

r1
r2
r3
r4
r5

v6

v5

v4

v3

v2

v1

Reorder Buffer (ROB)

Instruction Fetch
Unit (IFU)

One Cycle Delay

Instruction Queue (IQ)

Fig. 1. Microarchitecture

The focus of this paper is on the speculative, superscalar, out-of-order, regis-

ter renaming microarchitecture shown in Fig. 1. In the remainder of this section

we provide an informal introduction to the architecture.

A Reorder Bu�er (ROB) maintains the sequential programming model of

an architecture while instructions are executed out-of-order and in parallel else-

where in the processor. In Fig. 1 the ROB is shown as the composite of a circular

Instruction Queue, a Register Alias Table, and a Register File for the real register

set.

The Instruction Queue (IQ) stores instructions in the order in which they

are received from the Instruction Fetch Unit (IFU). The IQ also behaves like a

register �le for the virtual register set, where the instruction's position in the IQ

is its virtual register name.

The Register Alias Table (RAT) is an array of virtual register names indexed

by the real register set. For a given real register name, r, the RAT contains

either the location of the youngest instruction in the IQ using r as a destina-

tion operand; or nothing, if no instruction in the ROB contains the destination

operand r. For example, if the instruction r5 <- r2 + r3 is placed into position

v1 of the IQ (as in Fig. 2), then the real register r5 is aliased in the RAT to the

virtual register v1. If r4 <- r5 + r2 is then inserted into the IQ (Fig. 3), its

reference to r5 is updated to v1, and r4 is aliased to v2 in the RAT.

r4
r5

r5 <- r2 + r3
v1

v1

v2

v3

Fig. 2. Inserting r5 <- r2 + r3 into the ROB

r4
r5

r5 <- r2 + r3

r4 <- v1 + r2

v2
v1

v3

v2

v1

Fig. 3. Inserting r4 <- r5 + r2 into the ROB

Each instruction, after it has been placed into the ROB, is passed onto the

Reservation Station (RS) to be executed. The RS is a data-
ow circuit that can

execute instructions out-of-order and in parallel. Upon completion in the RS, an

instruction's value is returned to the ROB and forwarded to other instructions

still in the RS.

2.3 Retiring instructions

An instruction is retired from the ROB when it is at the front of the IQ and its

value has been calculated. To retire an instruction in location v with destination

operand r, the ROB must write the instruction's value to position r in the

Register File, and remove the alias from the RAT if r is still aliased to v.

Why isn't r always aliased to v? Consider the scenario in Fig. 4, where the

ROB contains two instructions with r5 as their destination operand. The virtual

register v1 is no longer an alias of r5 in the RAT. When retiring the instruction

from v1, the alias in the r5 position of the RAT should not be removed. Doing so

would remove the unrelated alias from r5 to v3. However, in Fig. 5, because only

r1
r2
r3
r4
r5

v2

v3

v3

v2

v1 (r5,0) <- ...

(r3,3) <- ...

(r5,1) <- ...

Fig. 4. IQ contains two instructions that alter r5

one instruction contains the destination operand r5, r5 remains aliased to v1.

In this case, when retiring instruction v1 from the IQ, the alias at the position

r5 in the RAT should be erased.

r1
r2
r3
r4
r5

v3

v2

v1

v3

v2

v1
(r5,0) <- ...

(r3,3) <- ...

(r1,1) <- ...

Fig. 5. IQ contains one instruction that alters r5

2.4 Example

To illustrate the microarchitecture in action, we trace the execution of a four
instruction program:

r2 <- r1 + r3

r4 <- r4 + r2

r2 <- r1 + r1

r1 <- r5 - r3

Rather than demonstrating the potential performance of the microarchitecture,

this example is tailored to show the amount of bookkeeping that the processor

must maintain.

In Fig. 6, execution begins in Cycle 1 with the fetch of four instructions, the

last of which requires a di�erent execution unit. In Cycle 2 the fetched instruc-

tions are inserted into the IQ. Source register references are modi�ed in one of

two ways. Either the operand is replaced with a virtual register reference if it

is aliased in the RAT, or the register's value is �lled in from the Register File.

During Cycle 3 the �rst and last instructions are executed in parallel. In Cycle

4 the ROB begins retiring instructions based on their position in the instruction

sequence. Although the �rst and last instructions have both completed, to main-

tain the sequential programming model, only the �rst instruction can be retired.

The last instruction remains in the ROB until its predecessors have all been

retired. In Cycle 5, v2 is computable because the value of v1 has been forwarded

to the source operand. In Cycle 6, because instruction v2 has completed, the

remaining instructions are retired.

3 The Hawk speci�cation language

This section introduces concepts and abstractions used in Hawk. At the risk of

incompleteness, we will rely on the reader's intuition to �ll in the meanings of

functions and syntax that are not described.

3.1 Signals

A signal represents a wire, where at each clock cycle the value of a signal may
change. For example, a signal could alternate between True and False. Or a
signal might contain a series of primes numbers. Informally, we can think of a
signal as an in�nite sequence where the clock cycle is the index:

toggle = True, False, True, False, True, False,

primes = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

Like the synchronous language Lustre [3], Hawk provides a built-in signal
type and functions to construct and manipulate them. The function constant,
from Fig. 7, returns a signal that does not change over time:

constant 5 = 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

The function before delays a signal with a list of initial values1:

[-1,0] `before` primes = -1, 0, 2, 3, 5, 7, 11,

1
`before` denotes that before is used as an in�x operator

r4 <- r4 + r2

r2 <- r1 + r1

r1 <- r5 - r3

r2 <- r1 + r3

r1
r2
r3
r4
r5

r1
r2
r3
r4
r5

0
3
5
3
4

r2 <- (r1,0) + (r3,5)

r4 <- (r4,3) + v1

r2 <- (r1,0) + (r1,0)

r1 <- (r5,4) - (r3,5)

v6

v5

v4

v3

v2

v1

v4
v3

v2

Cycle 1 Cycle 2

r1
r2
r3
r4
r5

r1
r2
r3
r4
r5

0
3
5
3
4

r2 <- (r1,0) + (r3,5)

r4 <- (r4,3) + v1

r2 <- (r1,0) + (r1,0)

r1 <- (r5,4) - (r3,5)

v1 <- 0 + 5

v2 <- 3 + v1

v3 <- 0 + 0

v4 <- 4 - 5

0 + 5

4 - 5

v6

v5

v4

v3

v2

v1

v4
v3

v2

r1
r2
r3
r4
r5

r1
r2
r3
r4
r5

0

5
3
4

r2 <- (r1,0) + (r1,0)

v3 <- 0 + 0

0 + 0

5

v2 <- 3 + 5

r4 <- (r4,3) + (v1,5)

(r1,-1)

v6

v5

v4

v3

v2

v1

v4
v3

v2

Cycle 3 Cycle 4

r1
r2
r3
r4
r5

r1
r2
r3
r4
r5

0

5
3
4

5

v2 <- 3 + 5

r4 <- (r4,3) + (v1,5)

(r1,-1)

(r2,0)

3 + 5

v6

v5

v4

v3

v2

v1 v2

v3
v4

r1
r2
r3
r4
r5

r1
r2
r3
r4
r5

5

4
8

0
-1

v6

v5

v4

v3

v2

v1

Cycle 5 Cycle 6

Fig. 6. Example execution trace

constant :: a -> Signal a

delay :: a -> Signal a -> Signal a

before :: [a] -> Signal a -> Signal a

bundle :: (Signal a,Signal b) -> Signal (a,b)

unbundle :: Signal (a,b) -> (Signal a, Signal b)

lift :: (a -> b) -> Signal a -> Signal b

Fig. 7. Type signature of primitive Signal functions

The function bundle takes a pair of signals and returns a signal of pairs:

bundle (primes,toggle) = (2,True), (3,False),

The function lift applies its argument to each value in a signal:

lift f primes = f 2, f 3, f 5, f 7, f 11,

Conditional statements are overloaded for signaled expressions. For example:
if toggle then primes

else constant 0
= 2, 0, 5, 0, 11,

Later in this paper we use the function delay, which is de�ned in terms of
before:

delay x s = [x] `before` s

So, for example:

delay 6 primes = 6, 2, 3, 5, 7, 11, 13, 17,

3.2 Transactions

Transactions [1] formalize the notation of instructions introduced in Subsec-

tion 2.1. A transaction is a machine instruction grouped together with its state.

This state might include:

� Operand values.

� A
ag indicating that the instruction has caused an exception.

� A predicted jump target, if the instruction is a branch.

� Other obscure information, such as predicted operand values if we choose to

implement value locality [12] optimizations.

Transactions are provided as a library of functions, written in Hawk, for
creating and modifying transactions. For example, bypass takes two transactions
and builds a new transaction where the values from the destination operands of
the �rst transaction are forwarded to the source operands of the second. If i is
the transaction:

(r4,8) <- (r2,4) + (r1,4)

and j is the transaction:

r10 <- (r4,6) + (r1,4)

then bypass i j produces the transaction:

r10 <- (r4,8) + (r1,4)

In our experience, speci�cations that operate on transactions are more con-

cise than those that treat instructions and state separately. When designed in

this style, a processor fetches a transaction containing only the machine instruc-

tion which is later re�ned by the various microarchitectural components until

the destination operand value is calculated. Transactions are an example of a

user-de�ned abstraction designed to aid the development of a complex microar-

chitecture. The concept of an instruction's local state as it acquires its operands,

is executed, and �nally retired, is the essential concept of a superscalar processor.

Transactions also aid the veri�cation process because they make explicit much

of the state needed to prove correctness. In lower-level speci�cations this data

has to be inferred from the context.

4 Specifying the microarchitecture

Fig. 8 contains the top-level Hawk speci�cation of the microarchitecture in Fig. 1.
Using lazy evaluation, a Hawk simulation will solve the speci�cation's system
of mutually dependent equations, producing a computational simulation. The
components of the microprocessor are modeled as functions from input signals
to output signals. For example, as Fig. 9 illustrates, the ROB is a component
with two inputs and four outputs. The inputs and outputs may each represent
very wide connections | perhaps enough to move numerous transactions in a
single cycle. The arguments and results of the function rob from Fig. 8,

(retired,ready,n,err) = rob 6 (fetched,computed)

except for the size parameter, correspond to those in Fig. 9.

4.1 Top-level structural speci�cation

In Fig. 8 the �rst equation speci�es how transactions are fetched from the in-
struction memory, mem:

(instrs,npc) = ifu 5 mem pc err ([5,5] `before` n)

The Instruction Fetch (IFU) function, ifu, uses its �rst parameter, 5, to deter-

mine the maximum number of transactions to fetch at each cycle. The IFU re-

trieves consecutive transactions beginning at the program counter, pc. Initially,

during the �rst and second cycles, 5 transactions are fetched. In later cycles

feedback from the ROB, n, is used to determine the number of transactions to

fetch.
Execution begins with the transaction at location 256 in the instruction

memory. After the �rst cycle, the value of pc depends on the location of the

processor mem = retired

where

(instrs,npc) = ifu 5 mem pc err ([5,5] `before` n)

pc = delay 256 (if err then lastpc retired else npc)

fetched = delay [] (annotate instrs)

(retired,ready,n,err) = rob 6 (fetched, computed)

computed = rs (6,execUnits) (delay False err,delay [] ready)

memU = mob fetched retired

execUnits = [addU,subU,jmpU,intU,fltU,memU]

Fig. 8. Top-level microprocessor speci�cation

previously fetched transaction, and the possibility of a mispredicted branch or
exception. In the event of a mispredicted branch or exception, the signal err is
set, and the pc comes from the last retired transaction:

pc = delay 256 (if err then lastpc retired else npc)

For simplicity we employ a naive branch prediction algorithm | all branch
transactions are simply assumed to jump to the next consecutive transaction.
The function annotate places this guess into the state of branch transactions:

fetched = delay [] (annotate instrs)

The Reservation Station (RS) function, rs, is parameterized on its size and
execution units:

computed = rs (6,execUnits) (delay False err,delay [] ready)

During the initialization of rs, the execution units are clustered together with

a function. The execution units can be pipelined or blocking. Execution units

can also complete in multiple clocks. The RS accepts two input signals: an error

ag and transactions from the ROB. The transactions computed contains the

transactions that are complete and ready to be updated in the ROB.

4.2 ROB speci�cation

Whereas the top-level speci�cation of the microarchitecture is easily constructed

as a purely functional application of components, the ROB is more complicated.

Certainly the ROB could be speci�ed in the applicative style used in Fig. 8.

However, at a higher level of abstraction, the ROB can be thought of as a circuit

Computed
Instructions
from RS

ROB

Fetched
Instructions

Retired
Instructions

Instructions

Branch
Prediction
Miss

Space Available

for the RS

Fig. 9. Inputs and outputs of the ROB

that sequences destructive updates on mutable components. Our approach in

this paper is to specify the ROB in a behavioral style using imperative language

features. In Fig. 10, the speci�cation of the ROB is provided in the state monad

and then encapsulated with Hawk's state thread encapsulation construct runST

[9]. The advantage of using runST is that the language guarantees that rob

neither depends on nor alters mutable state in other components or an outside

environment [10]. We can therefore treat the ROB as a pure function that, on a

given input, always returns the same output.
In Fig. 10, during the beginning of the simulation, the ROB constructs its

mutable sub-components (much of this work would be fabricated into the pro-
cessor):

q <- IQ.new n

rat <- RAT.new

rf <- RF.new

At each cycle the ROB takes the fetched and computed signals signals

cycle(fetched,computed)

and performs the following tasks:

� Update the computed transactions in the queue. For each transaction in the
computed list, the function update obtains the virtual register reference from
the destination register, and uses it as the index when updating the queue:

update q computed

� Insert the fetched transactions into the queue (see Subsection 4.3):

instrs <- insert rat q rf fetched

� Find transactions from the front of the queue that are ready to be retired. If
a retired transaction was a mispredicted branch or raised an exception, then
only retire the transactions before it (see Subsection 4.4):

(retired,err) <- retire rat q rf

� If a retired transaction was a mispredicted branch or raised an exception,
then clear the IQ and RAT:

if err then do {q.clear; rat.clear}

� Measure the capacity of the queue for the IFU:

capacity <- q.space

� If a retired transaction was mispredicted or raised an exception then do not
send fetched transactions to the RS:

let ready = if err then [] else instrs

� Return the retired transactions, the transactions ready to pass onto the RS,
the measured capacity, and the error
ag:

return (retired,ready,capacity,err)

rob n (fetched,computed)

= runST (

do { q <- IQ.new n

; rat <- RAT.new

; rf <- RF.new

; cycle(fetched,computed)

{ update q computed

; instrs <- insert rat q rf fetched

; (retired,err) <- retire rat q rf

; if err then do {q.clear; rat.clear}

; capacity <- q.space

; let ready = if err then [] else instrs

; return (retired,ready,capacity,err)

}

}

)

Fig. 10. ROB behavioral speci�cation

insert rat q rf instrs

= foreach t in instrs

do { (reg,alias) <- q.assignAddr (head (getDestRegs t))

; src <- mapM (rat.replace) (getSource t)

; rat.write reg alias

; dest <- mapM (rat.replace) (getDest t)

; new <- regRead q rf (trans dest (getOp t) src)

; q.enQueue new

; return new

}

Fig. 11. Insertion speci�cation

4.3 Inserting new instructions

Fig. 11 contains the speci�cation of the function insert. When inserting new

transactions into the ROB, insert takes a list of transactions, instrs, and

performs the following actions:

� Calculate the new position in the queue for the transaction:

(reg,alias) <- q.assignAddr (head (getDestRegs t))

� Substitute references to real registers with virtual registers in the source
operands:

src <- mapM (rat.replace) (getSource t)

� Update the RAT:

rat.write reg alias

� Substitute the reference from the real destination register to the virtual
destination register:

dest <- mapM (rat.replace) (getDest t)

� Read real register references:

new <- regRead q rf (trans dest op src)

� Enqueue the transactions:

q.enQueue new

� Return the updated transactions:

return new

retire rat q rf

= do { perhaps <- q.deQueueWhile complete

; let (retired,err) = hazard findErr perhaps

; mapM (writeOut rf rat) retired

; return (retired,err)

}

where findErr t = jmpMiss o exceptionRaised

jmpMiss t = do { x <- getPC t

; y <- getSpecPC t

; return (x /= y)

}

`catchEx` False

writeOut rf rat t =

do { let [Reg (Virtual vr real) (Val x)] = getDest t

; rf.write real x

; a <- rat.read real

; do { v <- a ; guard (v == vr) ; return (rat.remove real) }

`catchEx` return ()

}

Fig. 12. Retirement speci�cation

4.4 Retiring instructions

Fig. 12 contains the speci�cation of the function retire. When retiring trans-

actions from the ROB, retire performs the following actions:

� Remove transactions from the front of the queue until a transaction is found
that has not been computed:

perhaps <- q.deQueueWhile complete

� If a branch was mispredicted or an exception was raised then ignore all of
the transactions after that transaction:

let (retired,err) = hazard findErr perhaps

� Write the values of the destination registers to the Register File :

mapM (writeOut rf rat) retired

� Return the retired transactions and a
ag indicating a branch miss or raised
exception:

return (retired,err)

5 Conclusions

The design of correct superscalar microarchitectures is di�cult. The language of

discourse must be powerful enough to describe a wide range of processors, and

concise enough that designers can maintain intellectual control of their work.

Moreover, the language must scale to the designs of the future. In this sec-

tion we highlight how polymorphism, type-classes, higher-order functions, lazy

evaluation and the state monad improve the concision, clarity, and perhaps the

provability of our speci�cation.

5.1 Polymorphism

Many of Hawk's library functions are polymorphic. For example, delay accepts
an argument of type a (where a could be any type), a signal of a, and returns a
new signal of a:

delay :: a -> Signal a -> Signal a

In Fig. 8, delay is used on both Booleans and lists of transactions:

(delay False error, delay [] ready)

Without parametric polymorphism, a delay function would be required for each

speci�c type. In many speci�cation languages, because the types that can be

passed through signals are limited, ad hoc solutions are usually su�cient. How-

ever, signals in Hawk are unrestricted and therefore must be accompanied by

truly polymorphic functions.

5.2 Type-classes

The RAT, used in Fig. 10, is abstracted over the register set used in the under-
lying machine language. For example, the function RAT.new is of type:

RAT.new :: Register r => ST s (RAT s r v)

This reads \for any type r that is a register set, RAT.new constructs a new RAT
indexable by r". Because r is an instance of Register, the variables minBound
and maxBound are overloaded to the smallest and largest values of r:

minBound :: Register r => r

maxBound :: Register r => r

RAT.new uses minBound and maxBound to determine the size of the constructed

RAT.

Without type-classes, the RAT would either be useful for only one particular

register type, or a number of extra parameters (such as the bounds and compar-

ison functions) would need to be passed to the functions rob, RAT.new, insert,

etc. Type-classes allow us to easily adapt the RAT to other machine languages,

such as IA-64 or PowerPC.

5.3 Higher-order functions

Higher-order functions allow designs to be parameterized in new and powerful

ways. For example, in Fig. 8 the RS is parameterized over a list of execution units.

At the start of a simulation, the RS builds a single execution unit by clustering

the list of circuits. When testing various microarchitectural con�gurations, the

designer can easily modify the execution units at the top-level.
We might also want to abstract the RS on the scheduling function:

computed = rs (6,cluster,[addU,subU,jmpU,mltU])

(delay False error,delay [] ready)

This way we might use the same RS speci�cation in many instantiations with

di�erent con�gurations of scheduling functions and execution units.

5.4 Lazy evaluation

Without Hawk's lazy semantics we would not be able to write the dependent
equations in Fig. 8. Consider the simple clock circuit in Fig. 13. The design is

delay

1

clock

0

+

Fig. 13. Clock circuit

easily speci�ed as a Hawk expression where the value depends on itself:

clock = delay 0 (clock + 1)

In a strict semantics, the meaning of this expression would be unde�ned.

5.5 Encapsulated state

While maintaining the mathematically consistent features of Hawk, such as poly-

morphism and lazy evaluation, the state monad adds the ability to use mutable

state directly rather than encoding state with delays and other lower level sig-

nal constructs. The use of runST facilitates the safe integration of imperative

speci�cations in an applicative framework.

6 Future work

Currently, using the Glasgow Haskell Compiler, the simulator derived from the

speci�cation in this paper retires 800 instructions per second when executed on

a UltraSPARC-1 processor. We hope that to improve performance using domain

speci�c optimizations or compilation to better simulation packages.

We have not su�ciently explored the synthesis and analysis of Hawk spec-

i�cations. Although Hawk is at a higher level of abstraction than mainstream

HDLs from our initial results we believe that, within limits, automatic synthesis

is feasible.

We have just completed a correctness proof of a microarchitecture based on

this paper in which the ROB, RS, and IFU are speci�ed axiomatically [8]. We

now hope to prove that the ROB, RS, and IFU presented here implement the

axioms.

We hope to use Hawk formally to verify the correctness of microprocessors

with a mechanical theorem prover (for example, Isabelle [14]). A theorem proving

environment for Hawk must have support for manipulating higher-order func-

tions and polymorphic types.

7 Related work

Ruby [7] is a speci�cation language based on relations, rather than functions.

Relations can describe more circuits than functions. Much of Ruby's emphasis

is on circuit layout. Ruby provides combinators to specify where circuits are

located in relation to each other and to external wires. Hawk's emphasis is on

circuit correctness, so we do not address layout issues.

Lava is a Haskell library for the speci�cation of Field Programmable Gate

Arrays. Lava is intended to be used at a lower level of abstraction than Hawk.

Like Ruby, Lava speci�cations focus much attention on issues related to layout.

Like Hawk, Lustre [3] and the other reactive synchronous languages (Signal,

Esterel, Argos, etc) provide mechanisms for constructing expressions over time-

varying domains. However, research on these languages has emphasised reactive

features rather than the issues addressed in this paper.

The Haskell library Hydra [13] allows modeling of gates at several levels of

abstraction, ranging from implementations of gates using CMOS and NMOS

pass-transistors, up to abstract gate representations using lazy lists to denote

time-varying values. Hydra is similar to Hawk in many respects. However com-

posite signal types, such as signals of integers, must be constructed as tuples or

lists of Boolean signals. This restriction severely limits Hydra's application to

the domain of complex microarchitectures.

HML [11] is a hardware modelling language based on ML. It supports higher-

order functions and polymorphic types, allowing many of the same abstraction

techniques that are used in Hawk. On the other hand, HML is not lazy, so it does

not easily allow the dependent circuit speci�cations that are key in specifying

microarchitectures in Hawk. Also, HML does not clearly separate its imperative

and functional features.

MHDL [2] is a hardware description language for describing analogmicrowave

circuits, and includes an interface to VHDL. Though it tackles a very di�erent

area of the hardware design spectrum, like Hawk, MHDL is essentially an ex-

tended version of Haskell. The MHDL extensions have to do with physical units

on numbers, and universal variables to track frequency, time, etc.

8 Acknowledgements

For their contributions to this research, we thank Borislav Agapiev, Mark Aa-

gaard, John O'Leary, Robert Jones, Todd Austin, and Carl Seger of Intel Cor-

poration; Elias Sinderson and Neil Nelson of The Evergreen State College; Dick

Kieburtz, Je� Lewis, Sava Krsti�c, Walid Taha, and Andrew Tolmach of the Ore-

gon Graduate Institute; Simon Peyton-Jones of the University of Glasgow; and

the members of BWERT.

This research was supported by Intel and Air Force Material Command

(F19628-93-C-0069). John Matthews is supported by a fellowship from the Na-

tional Science Foundation.

Note: This paper appears in the proceedings of the 1998 Workshop on Formal

Techniques for Hardware (Marstrand, Sweden)

References

1. Aagaard, M., and Leeser, M. Reasoning about pipelines with structural haz-

ards. In Second International Conference on Theorem Provers in Circuit Design

(Bad Herrenalb, Germany, Sept. 1994).
2. Barton, D. Advanced modeling features of MHDL. In International Conference

on Electronic Hardware Description Languages (Jan. 1995).
3. Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. Lustre: A declarative

language for programming synchronous systems. In Symposium on Principles of

Programming Languages (Munich, Germany, Jan. 1987).
4. Gwennap, L. Intel's P6 uses decoupled superscalar design. Microprocessor Report

9, 2 (1995).

5. Hudak, P., Peterson, J., and Fasel, J. A gentle introduction to Haskell.

Available at www.haskell.org, Dec. 1997.
6. Johnson, M. Superscalar Microprocessor Design. Prentice Hall, 1991.
7. Jones, G., and Sheeran, M. Circuit design in Ruby. In Formal Methods for

VLSI Design, J. Staunstrup, Ed. North-Holland, 1990.
8. Krsti�c, S., Cook, B., Launchbury, J., and Matthews, J. A correctness proof

of a speculative, superscalar, out-of-order, renaming micro-architecture. Submitted

to 1998 Formal Methods in Computer Aided Design, Apr. 1998.
9. Launchbury, J., and Jones, S. P. Lazy functional state threads. In Programming

Languages Design and Implementation (Orlando, Florida, 1994), ACM Press.
10. Launchbury, J., and Sabry, A. Monadic state: Axiomatization and type

safety. In International Conference on Functional Programming (Amsterdam, The
Netherlands, June 1997).

11. Li, Y., and Leeser, M. HML: An innovative hardware design language and its

translation to VHDL. In Conference on Hardware Design Languages (June 1995).
12. Lipasti, M. H. Value Locality and Speculative Execution. PhD thesis, Department

of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,

PA, 1997.
13. O'Donnell, J. From transistors to computer architecture: Teaching functional cir-

cuit speci�cation in Hydra. In Symposium on Functional Programming Languages

in Education (July 1995).
14. Paulson, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994.

15. Peterson, J., and et al. Report on the programming language Haskell: A non-

strict, purely functional language, version 1.4. Available at www.haskell.org, Apr.
1997.

