
Recursive Function De�nition

over Coinductive Types

John Matthews

Oregon Graduate Institute,

P.O. Box 91000, Portland OR 97291-1000, USA

johnm@cse.ogi.edu

http://www.cse.ogi.edu/~johnm

Abstract. Using the notions of unique �xed point, converging equiva-

lence relation, and contracting function, we generalize the technique of

well-founded recursion. We are able to de�ne functions in the Isabelle

theorem prover that recursively call themselves an in�nite number of

times. In particular, we can easily de�ne recursive functions that oper-

ate over coinductively-de�ned types, such as in�nite lists. Previously in

Isabelle such functions could only be de�ned corecursively, or had to op-

erate over types containing \extra" bottom-elements. We conclude the

paper by showing that the functions for �ltering and attening in�nite

lists have simple recursive de�nitions.

1 Well-founded recursion

Rather than specify recursive functions by possibly inconsistent axioms, several

higher order logic (HOL) theorem provers[3, 9, 12] provide well-founded recursive

function de�nition packages, where new functions can be de�ned conservatively.

Recursive functions are de�ned by giving a series of pattern matching reduction

rules, and a well-founded relation.

For example, the map function applies a function f pointwise to each element

of a �nite list. This function can be de�ned using well-founded recursion:

map :: (�! �)! � list ! � list

map f [] = []

map f (x#xs) = (f x)# (map f xs)

The �rst rule states that map applied to the empty list, denoted by [], is equal

to the empty list. The second rule states that map applied to a list constructed

out of the head element x and tail list xs, denoted by x#xs , is equal to the list

formed by applying f to x and map f to xs recursively.

To de�ne a function using well-founded recursion, the user must also supply

a well-founded relation on one of the function's arguments1. A well-founded

1 Some well-founded recursion packages only allow single-argument functions to be

de�ned. In this case one can gain the e�ect of multi-argument curried functions by

tupling.



relation (<) is a relation with the property that there exists no in�nite sequence

of elements x1; x2; x3; x4; : : : such that

: : : < x4 < x3 < x2 < x1

For each reduction rule, the recursive de�nition package checks that every

recursive call on the right-hand side of the rule is applied to a smaller argument

than on the left-hand side, according to the user supplied well-founded relation.

In the case of map, we can supply the well-founded relation

xs < ys � length xs < length ys

which is true when the number of elements in the relation's left-hand list argu-

ment is less than the number of elements in the relation's right-hand argument.

The de�nition of map contains only one recursive rule, and it is easy to prove

that the xs argument of the recursive call of map is smaller than the (x#xs)

argument on the left-hand side of the rule, according to this relation. In general,

well-founded relations ensure that there are no in�nite chains of nested recursive

calls.

2 Coinductive types and corecursive functions

Although well-founded recursion is a useful de�nition technique, there are many

recursive de�nitions that fall outside its scope. For instance, there is a non-

inductive type of lazy lists in the Isabelle[9] theorem prover, denoted by � llist ,

that is the set of all �nite and in�nite lists of type �. The function lmap over

this type is uniquely speci�ed by the following recursive equations2:

lmap f [] = []

lmap f (x#xs) = (f x)# (lmap f xs)

One cannot de�ne lmap using well-founded recursion since the length of an

in�nite list does not decrease when you take its tail. In fact, the expression

lmap f (x1#x2#x3# : : :) can be unfolded using the above rules to an in�nite

chain of recursive calls:

lmap f (x1#x2#x3# :::)

=

(f x1)# (lmap f (x2#x3# :::))

=

(f x1)# (f x2)# (lmap f (x3# :::))

=

(f x1)# (f x2)# (f x3)# (lmap f (:::))

=

...

2 Isabelle uses a di�erent syntax for lazy lists than for �nite lists. In this paper we use

the same syntax for both types.



De�ning functions corecursively

The � llist type is an example of a coinductive type. Although there is no general

induction principle for coinductive types, one can use principles of coinduction

to show that two coinductive values are equal, and one can build coinductive

values using corecursion.

In Isabelle's theory of lazy lists[10], for instance, one builds potentially in�nite

lists through the llist corec operator, which has type � ! (� ! unit + (� �

�))! (� llist). The llist corec operator uniquely satis�es the following recursion

equation:

llist corec b g =

�
[]; if g b = Inl ()

(x#(llist corec b0 g)); if g b = Inr (x; b0)

The llist corec operator takes as arguments an initial value b and a function g.

When g is applied to b, it either returns Inl (), indicating that the result list

should be empty, or the value Inr (x; b0), where x represents the �rst element of

the result list, and b0 represents the new initial value to build the rest of the list

from. Function g is called iteratively in this fashion, constructing a potentially

in�nite list.

Using llist corec, we can de�ne lmap corecursively as follows:

lmap f xs � llist corec xs (map head f)

where

map head :: (�! �)! � llist ! (unit + (� � � llist))

map head f xs � case xs of

[] ) Inl ()

j (x#xs
0) ) Inr (f x; xs 0)

One can then prove by coinduction that this de�nition satis�es lmap's recursive

equations. Needless to say, this is not the most intuitive speci�cation of lmap, and

most people would prefer to specify such functions using recursion, if possible.

In the remainder of the paper we will present a framework for de�ning functions

such as lmap recursively.

3 Solving recursive equations

The basic steps required in this framework to show that a set of recursive equa-

tions is well de�ned are as follows:

{ Express the recursive equations as a �xed point of a functional F .

{ Show that for any two di�erent potential solutions supplied to F , F maps

them to two potential solutions that are closer together, in a suitable sense.

{ Invoke the main result (Sect. 4.3) to show that the above property of F is

suÆcient to guarantee that there is a unique solution to the original set of

recursive equations.

In this section we deal with the �rst step.



3.1 Unique �xed points

We convert a system of pattern matching recursive equations into a functional

form by employing a standard technique from domain theory[4, 15]. We start by

recasting the equations as a single recursive equation using argument destructors

or nested case-expressions. For example, the recursive equations de�ning the

lmap function are equivalent to the following single recursive equation:

lmap f l = case l of

[] ) []

j (x#xs) ) (f x)# (lmap f xs)

Given f , we can reify this pattern of recursion into a non-recursive functional

F of type (� llist ! � llist)! (� llist ! � llist) that takes a function parameter

lmap f :

F lmap f = �l : case l of

[] ) []

j (x#xs) ) (f x)# (lmap f xs).

Using the recursive equations for lmap, it is easy to show that lmap f = F (lmap f).

The value lmap f is called a �xed point of F . In general, an element x of type �

is a �xed point of a function g of type � ! � if x = g x. A function may have

many �xed points, or none at all. Considering g as a functional representation

of a system of recursive equations, each �xed point of g represents a valid solu-

tion to the system. If the function g has exactly one �xed point x, then we can

think of g as de�ning the value x. We use Hilbert's description operator (") to

formalize this notion in HOL:

�x :: (�! �)! �

�x g � "x : x = g x ^ (8 y z : y = g y ^ z = g z �! y = z)

The expression �x g represents the unique �xed point of g, when one exists. If g

does not have a unique �xed point, then �x g denotes an arbitrary value.

3.2 Properties of unique �xed points

As an aside, several nice properties hold when one can establish that a system

of recursive equations has a unique solution. For example, unique �xed points

can sometimes \absorb" functions applied to other �xed points.

Lemma 1 Given functions F : � ! �, G : � ! �, f : � ! �, and value x : �,

such that x is a (not necessarily unique) �xed point of F , G has a unique �xed

point, and f Æ F = G Æ f , then f x = �xG.

Unique �xed points can also be \rotated", in the following sense:

Lemma 2 If the composition of two functions g : � ! � and h : � ! � has

a unique �xed point �x (g Æ h), then h Æ g also has a unique �xed point, and

�x (g Æ h) = g (�x (h Æ g)).



Although we will not use Lemma 1 or Lemma 2 in the remainder of the

paper, lemmas such as these are useful for manipulating systems of recursive

equations as objects in their own right.

4 Converging equivalence relations and contracting

functions

While unique �xed points are a useful de�nition mechanism, it can be diÆcult

to show that they exist for a given function. A direct proof usually involves

constructing an explicit �xed point witness using other de�nition techniques,

such as corecursion or well-founded recursion. Little e�ort seems to be saved.

We propose an alternative proof technique, based on concepts from domain

theory[4, 15] and topology[1, 11] where one builds a collection of ever-closer ap-

proximations to the desired �xed point, and shows that the limit of these ap-

proximations exists, is a �xed point of the function under consideration, and is

unique. The approximation process can be parameterized to some extent, and

reused across multiple de�nitions that are \similar" enough. Furthermore these

parameterized approximations can be composed hierarchically, yielding more

powerful approximation techniques.

4.1 Converging equivalence relations

To make the notion of approximation precise, we need a way of stating how

\close" two potential approximations are to each other. One approach would be

to de�ne a suitable metric space[1] and use the corresponding distance function,

which returns either a rational or real number, given any two elements in the

domain of the metric space. However, proving that a series of approximations

converges to a limit point often requires one to reason about exponentiation

and division over a theory of rationals or reals. An alternative way to measure

\closeness", which we call a converging equivalence relation (CER), instead only

involves reasoning about well-founded sets, such as the set of natural numbers,

or the set of �nite lists. In many cases we can prove a unique �xed point exists

by performing a simple induction over the natural numbers, something which all

of the current HOL theorem provers support well.

A converging equivalence relation consists of:

{ A type �, called the resolution space

{ A type � , called the target space

{ A well-founded, transitive relation (<) over type �, called a resolution or-

dering

{ A three-argument predicate (�) of type (� ! � ! � ! bool ), called an

indexed equivalence relation. Given an element i of type �, and two elements

x and y of type � , we denote the application of (�) to i, x and y as (x
i
� y),

and if this value is true, then we say that x and y are equivalent at resolution

i.



The resolution ordering (<) and indexed equivalence relation (�) must satisfy

the properties in Fig. 1, for arbitrary i; i0 : �; x; y; z : � ; and f : � ! � . Ax-

ioms (1), (2), and (3) state that (�) must be an equivalence relation at each

resolution i. Axiom (4) states that if a resolution i has no lower resolutions, then

(�) treats all target elements as equivalent at that resolution. Such resolutions

are called minimal. There is always at least one minimal resolution (and per-

haps more than one), since (<) is well-founded. Axiom (5) states that if two

elements are equivalent at a particular resolution, then they are equivalent at all

lower resolutions. Thus higher resolutions impose �ner-grained, but compatible,

partitions of the target space than lower resolutions do. Although no particu-

lar resolution may distinguish all elements, (6) states that if two elements are

equivalent at all resolutions, then they are in fact equal.

x
i
� x (1)

x
i
� y �! y

i
� x (2)

x
i
� y ^ y

i
� z �! x

i
� z (3)

(8j ::(j < i)) �! x
i
� y (4)

x
i0

� y ^ i < i
0

�! x
i
� y (5)

(8j : x
j
� y) �! x = y (6)

(8j; j
0

: j < j
0

< i �! (f j)
j
� (f j

0

)) �! (9z : 8j < i : z
j
� (f j)) (7)

(8j; j
0

: j < j
0

�! (f j)
j
� (f j

0

)) �! (9z : 8j : z
j
� (f j)) (8)

Fig. 1. The CER axioms. Each of these axioms must hold for arbitrary i, x, y, and f .

Axioms (7) and (8) deal with \limits" of approximations. First some termi-

nology: a function f : �! � from the space of resolutions to the target space of

elements is called an approximation map. An approximation map f is convergent

up to resolution i if for all resolutions j and j0 such that j < j0 < i, then (f j)

is equivalent at resolution j to (f j0). Note that it is possible for (f i) itself not

to be equivalent to any of the lower-resolution (f j)'s. An approximation map

f is globally convergent if for all resolutions j and j0 such that j < j0, then

(f j)
j
� (f j0).

Axiom (7) states that if f is locally convergent up to resolution i, then

there exists a limit-like element z that is equivalent at each resolution j < i to

the corresponding (f j) approximation (there may be multiple such elements).

Axiom (8) states that if f is globally convergent, then there exists a limit element

z that is equivalent to each approximation (f j) at resolution j.



4.2 Examples of converging equivalence relations

Discrete CER The simplest useful CER has as a resolution space a two-element

type containing the values ? and >, with (? < >), and a target space � with

(�) de�ned such that (x
?

� y) � True, and (x
>

� y) � (x = y). Axioms (1)

through (6) are easy to verify. Axiom (7) holds for any element. The limit element

satisfying (8) is f >.

Lazy list CER We can construct a converging equivalence equation for com-

paring coinductive lists by comparing the �rst i elements of two lazy lists l1 and

l2 at a given resolution i. To perform the comparison, we make use of the ltake

function, with type nat ! � llist ! � list . The expression (ltake n xs) returns

a �nite list consisting of the �rst n elements of xs . If xs has fewer than n el-

ements, then ltake returns the whole of xs. The ltake function can be de�ned

by well-founded recursion on its numeric argument with the following recursive

equations:
ltake 0 xs = []

ltake (n+ 1) [] = []

ltake (n+ 1) (x# xs) = x#(ltake n xs)

We then de�ne the lazy list CER with the natural numbers as the resolution

space, (� llist) as the target space, the usual ordering on the natural numbers

for (<), and (�) de�ned as follows:

xs
i
� ys � (ltake i xs = ltake i ys):

Axioms (1) through (3) hold trivially. The only minimal resolution in this CER

is 0, and since (ltake 0xs) = [], then (4) holds. If two lazy lists are equal up to

the �rst i positions, then they are equal up to any i0 < i position, so (5) holds.

Axiom (6) reduces to the Take Lemma[10], which can be proved by coinduction.

Axioms (7) and (8) require us to construct appropriate limit elements, given

an approximation map. Both limit elements can be constructed by a single func-

tion, which we call llist diag . For a given approximation map f , the limit el-

ements may be of in�nite length, so we de�ne llist diag by corecursion, using

llist corec:

llist diag f � llist corec 0 (nthElem f)

where

nthElem f n �

�
Inl (); if ldrop n (f(n+ 1)) = []

Inr (x; n+ 1); if ldrop n (f(n+ 1)) = (x# xs)

The helper function nthElem uses the ldrop function on lazy lists. The ldrop

function has type nat ! (� llist) ! (� llist), and (ldrop i xs) removes the �rst

i elements from xs, returning the remainder. Like ltake , it is de�ned by well-

founded recursion on its numeric argument:

ldrop 0 xs = xs

ldrop (n+ 1) [] = []

ldrop (n+ 1) (x# xs) = ldrop n xs



The overall action of llist diag is to construct a so-called diagonal list from

the approximation map f , where the nth element of the result list is drawn from

the nth element of approximation f (n+ 1), if the nth element exists. If the nth

element does not exist (i.e., the length of f (n+1) is less than n), then the result

list is terminated at that point.

It turns out that for any CER whose (<) relation is the less-than ordering

on the natural numbers, the following property implies both (7) and (8):

8f : (8i : (f i)
i
� (f (i+ 1))) �! (9x :8i : x

i
� (f i)):

With some work, one can show that this property holds for the lazy list CER

by supplying llist diag f as the existential witness element for x.

4.3 Contracting functions

In the theory of metric spaces, a contracting function is a function F such that

for any two points x and y, F x is closer to F y than x is to y, given a suitable

distance function. Banach's theorem states that all contracting functions over

suitable metric spaces have unique �xed points. We can de�ne an analogous

notion over a CER:

De�nition 1 A function F is contracting over a CER given by (<) and (�) if

for all resolutions i and target elements x and y,

(8i0 < i : x
i0

� y) �! (F x)
i
� (F y):

Intuitively a function is contracting if, given two elements x and y that are

close enough together at all lower resolutions i0 < i to satisfy the CER, but are

potentially too far away at resolution i, then F maps them to two elements that

are now close enough at resolution i.

For example, the function consZero xs � (0#xs) is contracting over the lazy

list CER, since given any i and two lazy lists xs and ys,

(8i0 < i : ltake i0 xs = ltake i0 ys) �! ltake i (consZero xs) = ltake i (consZero ys):

The main result of this paper is as follows:

Theorem A contracting function F over a CER has a unique �xed point.

The proof is discussed in Sect. 7. For now, we would like to apply this theo-

rem to de�ne some simple recursive functions over lazy lists.

4.4 Recursive de�nitions over coinductive lists

To begin with, we can simplify the de�nition of a contracting function F over a

CER when the (<) relation of that CER is the less-than relation over the natural

numbers. In this case, De�nition 1 reduces to

8 i x y : x
i
� y �! (F x)

i+1
� (F y): (9)



Specializing this formula for the lazy list CER, we have that F is contracting on

lazy lists if

8 i x y : ltake i x = ltake i y �! ltake (i+ 1) (F x) = ltake (i+ 1) (F y): (10)

De�ning iterates Let us establish that the following recursive equation, de�ned

over x and f , has a unique solution, and is thus a de�nition:

iterates = (x#(lmap f iterates)) (11)

This equation builds the in�nite list [x; f x; f (f x); : : :]. We �rst de�ne the non-

recursive functional F that characterizes this equation:

F iterates
0
� (x#(lmap f iterates

0)):

and then show that it is a contracting function. To do this we rely on (10),

and assume we have two arbitrary lazy lists xs and ys such that ltake i xs =

ltake i ys. We now need to show that ltake (i + 1) (F xs) = ltake (i + 1) (F ys).

Using a process of equational simpli�cation we are able to reduce the goal to the

assumption, as follows:

ltake (i+ 1) (F xs) = ltake (i+ 1) (F ys)

, ltake (i+ 1) (x#(lmap f xs)) = ltake (i+ 1) (x#(lmap f ys))

, ltake i (lmap f xs) = ltake i (lmap f ys)

( ltake i xs = ltake i ys

The simpli�cation relies on the following facts, each proved by induction on i:

(ltake (i+ 1) (z# xs) = ltake (i+ 1) (z# ys)), (ltake i xs) = ltake i ys)

(ltake i (lmap f xs) = ltake i (lmap f ys)( (ltake i xs = ltake i ys)

These facts illustrate a nice property of this proof: We did not have to expand

the de�nitions of (#) or lmap during the simpli�cation process, relying instead

on an abstract characterization of their behavior with respect to ltake . This

turns out to be the case for many functions, even recursive ones de�ned by

contracting functions. In general we can often incrementally de�ne recursive

functions and prove properties about how they behave with respect to (�),

without having to expand the de�nitions of functions making up the body of the

recursive de�nition.

5 Composing converging equivalence relations

The lazy list CER allows us to give recursive de�nitions of individual lazy lists,

but we are often more interested in recursively de�ning functions that transform

lazy lists. Fortunately, there are several CER combinators that allow us to build

CERs over complex types, if we have CERs that operate on the corresponding

atomic types.



Local and global limits When constructing a new CER C 0 out of an existing

CER C, we usually have to show (7) and (8) hold for C 0 by invoking (7) and

(8) for C, to create the necessary limit witness elements. To make this process

explicit, we use Hilbert's description operator (") to create functions that return

these witness elements3, given an appropriate approximation mapping f :

local limit :: (�! �)! �! �

local limit f i � ("z :8j < i : z
j
� (f j)) (12)

global limit :: (�! �)! �

global limit f � ("z :8j : z
j
� (f j)) (13)

We can use (7) and (8) to prove the basic properties we want local limit and

global limit to have for any CER given by (<) and (�):

(8j; j0 : j < j0 < i �! (f j)
j
� (f j0)) �! (8j < i : (local limit f i)

j
� (f j))

(8j; j0 : j < j0 �! (f j)
j
� (f j0)) �! (8j : (global limit f)

j
� (f j))

Function-space CER The functions local limit and global limit allow us to

concisely specify the limit elements of CER combinators. For example, given a

CER C from resolution space � to target space � given by (<) and (�), we can

construct a new function-space over C CER with the same resolution ordering

(<), and a new indexed equivalence relation (�0) with type

� ! (� ! �) ! (� ! �) ! bool , de�ned as

g
i

�
0 h � 8x : (g x)

i
� (hx):

The limit elements satisfying (7) and (8) can be given as

local limit fun f i � (�x : local limit (�i : f i x) i)

global limit fun f � (�x : global limit (�i : f i x))

Given these limit-producing functions, is relatively easy to show that the function-

space over C CER satis�es the CER axioms.

5.1 De�ning recursive functions with the function-space CER

De�ning lmap We can apply the function-space CER to de�ne lmap recur-

sively. The recursion equations for lmap are:

lmap f [] = []

lmap f (x#xs) = (f x)# (lmap f xs)
3 This is merely a convenience. The CER properties can be shown with a little more

work in Isabelle using (7) and (8) directly.



We translate the equations into a non-recursive form (parameterized over f)

F lmap0 � (�xs : case xs of

[] ) []

j (y# ys)) (f y)# (lmap0 ys)):

We then need to show that �xF is the unique �xed point of F by proving

that F is a contracting function on the function-space over lazy lists CER.

By (9) we must show for arbitrary resolution i and functions g and h, that

(g
i

�0 h �! (F g)
(i+1)

�0 (F h)). Expanding de�nitions, we obtain

g
i

�
0 h �! (F g)

(i+1)

�
0 (F h)

, (8 xs : g xs
i
� h xs) �! (8 xs : (F g xs)

(i+1)
� (F h xs))

, (8 xs : ltake i (g xs) = ltake i (h xs)) �!

(8 xs : ltake (i+ 1) (F g xs) = ltake (i+ 1) (F h xs)):

So, to prove F is contracting we take an arbitrary resolution i and two arbitrarily

chosen functions g and h such that (8 xs : ltake i (g xs) = ltake i (h xs)), and show

for an arbitrary xs that ltake (i + 1) (F g xs) = ltake (i + 1) (F h xs). There are

two cases to consider:

case xs = []:

ltake (i+ 1) (F g []) = ltake (i+ 1) (F h [])

, ltake (i+ 1) [] = ltake (i+ 1) []

, True.

case xs = (y#ys):

ltake (i+ 1) (F g (y#ys)) = ltake (i+ 1) (F h (y#ys))

, ltake (i+ 1) ((f y)# (g ys)) = ltake (i+ 1) ((f y)# (h ys))

, ltake i (g ys) = ltake i (h ys)

, True fby assumptiong.

Given the de�nition of F and basic lemmas about ltake, Isabelle's high-level

simpli�cation tactics allow the above proof to be carried out in two steps. The

proof completes in about a second on a 266MHz Pentium II.

De�ning lappend We can apply the function-space CER combinator repeat-

edly, to prove that multi-argument curried functions have unique �xed points.

As a concrete example, the curried function lappend has type � llist ! � llist !

� llist . It takes two lazy list arguments xs and ys and returns a new list consist-

ing of the elements of xs followed by the elements of ys . The recursive equations

for lappend are

lappend [] ys = ys

lappend (x#xs) ys = (x# lappend xs ys)



To prove that these equations have a unique solution, we apply the function-

space CER combinator to the lazy list CER to obtain a new CER C 0. We then

apply the function-space CER combinator again to C 0, obtaining a new CER

C 00 with the usual less-than relation on nat for (<) and the following indexed

equivalence relation (�00):

g
i

�
00 h � (8 xs ys : ltake i (g xs ys) = ltake i (h xs ys)):

Next, we convert the recursive equations for lappend into a non-recursive function

F :

F lappend
0
� (�xs ys : case xs of

[] ) ys

j (x# xs
0) ) (x#(lappend 0 xs 0 ys))).

By (9) we must show for arbitrary resolution i and functions g and h, that

(8 xs ys : ltake i (g xs ys) = ltake i (h xs ys)) �!

(8 xs ys : ltake (i+ 1) (F g xs ys) = ltake (i+ 1) (F h xs ys)):

So we take arbitrary i, xs , and ys , and prove

ltake (i+ 1) (F g xs ys) = ltake (i+ 1) (F h xs ys)

assuming we have (8 xs ys : ltake i (g xs ys) = ltake i (h xs ys)). There are two

cases to consider, depending on whether xs is empty or not:

case xs = []:

ltake (i+ 1) (F g [] ys) = ltake (i+ 1) (F h [] ys)

, ltake (i+ 1) ys = ltake (i+ 1) ys

, True.

case xs = (x#xs
0):

ltake (i+ 1) (F g (x#xs
0) ys) = ltake (i+ 1) (F h (x#xs

0) ys)

, ltake (i+ 1) (x#(g xs 0 ys)) = ltake (i+ 1) (x#(h xs 0 ys))

, ltake i (g xs 0 ys) = ltake i (h xs 0 ys)

, True fby assumptiong.

Thus we can conclude that lappend has a unique �xed point de�nition. We were

able to carry out this proof in Isabelle in three steps, again taking about a second

of CPU time.

5.2 Other CER combinators

CER combinators can also be de�ned over product and sum types. The lazy list

CER can be generalized to work over any coinductive type that has a notion

of depth, such as coinductive trees. A more powerful function-space CER is

discussed in Sect. 6.



5.3 Demonstrating equality between coinductive elements

Converging equivalence relations can also be useful in showing that two elements

of a target space are equal. Axiom (6) (restated below) says that to show two

target elements x and y are equal, one simply needs to show they are equivalent

at all resolutions j

(8j : x
j
� y) �! x = y:

We can often demonstrate that x and y are equivalent at all resolutions by well-

founded induction, since (<) is a well-founded relation. For example, given two

arbitrary lazy lists ys and zs, we can prove the following lemma about lappend

by (simple) induction on i, followed by a case split on xs :

Lemma 3

8xs : ltake i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys zs)):

The proof takes four steps in Isabelle. Given (6) instantiated to the lazy list CER,

we can then easily show in one Isabelle step that lappend (lappend xs ys) zs =

lappend xs (lappend ys zs).

6 De�ning functions with unbounded look-ahead

The functions we have de�ned so far examine their arguments by performing at

most one pattern match on a lazy list before producing an element of a result

list. However, there is a class of functions that can examine a potentially in�nite

amount of their argument lists before deciding the next element to output. An

example is the lazy �lter function of type (� ! bool) ! � llist ! � llist , which

takes a predicate P and a lazy list xs, and returns a lazy list of the same type

consisting only of those elements of xs satisfying P . A candidate set of recursion

equations for this function might be

l�lter P [] = []

l�lter P (x#xs) = l�lter P xs; if :(P x)

l�lter P (x#xs) = x#(l�lter P xs); if P x

Sadly, this intuitively appealing set of equations does not completely de�ne

l�lter . If l�lter is given an in�nite list xs, none of whose elements satisfy P ,

then the above equations do not specify what the result list should be. The

l�lter function is free to return any value at all in this case. In other words, the

equations do not have a unique solution.

Happily we can remedy the situation as follows: We de�ne by induction over

nat a predicate �rstPelemAt of type (� ! bool) ! � llist ! nat ! bool . The

expression (�rstPelemAt P xs i) is true if xs has at least (i + 1) elements and i



is the position of the �rst element of xs satisfying P . We can then de�ne the

predicate never of type (�! bool)! � llist ! bool as

never P xs � 8 i ::(�rstPelemAt P xs i)

which is true when there are no elements in xs satisfying P . If we modify the

initial recursive equations as follows:

l�lter P xs = [], if never P xs

l�lter P (x#xs) = l�lter P xs; if :(never P xs) ^ :(P x)

l�lter P (x#xs) = x#(l�lter P xs); if P x

then the set of equations does indeed have a unique solution. This function is not

computable, since the predicate never can scan an in�nite number of elements,

but it is nevertheless mathematically valid in HOL. The CERs described above

are not powerful enough to prove this, but we can de�ne a well-founded function-

space CER combinator that is. Given a CER C with (<) of type �! �! bool

and (�) with type � ! � ! � ! bool , and another well-founded transitive

relation (�) of type � ! � ! bool , we de�ne our new CER C 0 with (<0) and

(�0) as follows:

(<0) :: (� � �)! (� � �)! bool

(�0) :: (� � �)! (� ! �)! (� ! �)! bool

(a0; t0) <0 (a; t) � a0 < a _ (a0 = a ^ t0 � t)

g
(a;t)

�0 h � 8 a0 t0 : (a0; t0) �0 (a; t) �! (g t0)
a0

� (h t0)

It is a fair amount of work to show that C 0 is in fact a CER, and space constraints

force us to elide the details.

Intuitively, however, C 0 allows us to generalize well-founded recursion in the

following way: A well-founded recursive function is forced to have its argument

decrease in size on every recursive call. With C 0, the function being de�ned is

allowed a choice; it can either decrease the size of its argument when making a

recursive call, or not decrease its argument size but then make sure the element

it is returning is \larger" than the element returned from its recursive call.

In the case of functions returning lazy lists, a \larger" lazy list is one that

looks just like the lazy list returned by the recursive call, but with at least one

extra element added to the front.

For us to use C 0 on l�lter , we need to specify a suitable well-founded transitive

relation (�). The relation we choose is one that holds when the �rst element

satisfying P occurs sooner on the left-hand argument than on the right-hand

argument:

xs � ys � �rstPelem P xs < �rstPelem P ys

where

�rstPelem P xs = 0; if never P xs

= 1 + ("i :�rstPelemAt P xs i), otherwise



We arbitrarily decide that a list containing no P -elements is �-smaller than any

list with at least one P -element.

When analyzing the revised recursive equations for l�lter , if xs has no P -

elements then we return immediately, otherwise xs has to have at least one

P -element. If that element is not at the head of the list, then the tail of the list

is �-smaller than xs . If the �rst P -element is at the head of xs, then the tail of

the list is not �-smaller than xs , but the output list has one more element than

the list returned by the recursive call. Thus we informally conclude that l�lter

is uniquely de�ned.

We have also proved this fact formally in Isabelle. After inductively proving

various simple lemmas about �rstPelemAt , never , and �rstPelem, we were able

to prove that l�lter is uniquely de�ned in �ve steps. We �rst translated the

recursive equations above into a contracting function F . We used C 0 prove that

F is contracting, �rst by expanding the de�nition of F and simplifying, and

then by performing a case analysis (no induction required!) on whether the nat

component of the current resolution was equal to zero. It took Isabelle two

seconds to perform the proof.

Although we had to prove lemmas about �rstPelemAt , never , and �rstPelem ,

the proofs are not hard and it turns out we can reuse these results when de�ning

other functions that perform unbounded search on lazy lists. For example, the

latten function takes a lazy list of lazy lists, and attens all of the elements

into a single lazy list. The latten function can also be uniquely de�ned using

never :

latten xss = [], if never (�xs :xs 6= []) xss

latten (xs#xss) = lappend xs (latten xss); otherwise

The proof proceeds in Isabelle exactly as it does for l�lter except that we perform

one additional case analysis on whether xs = []. The proof takes three seconds

to complete.

7 Proof of the main result

Although the proof of the main theorem is too lengthy to describe here, we will

provide a rough outline. Given a CER with resolution space �, target space � ,

well-founded relation (<), indexed equivalence relation (�), and an arbitrary

contracting function F of type � ! � , the technique will be to construct an

approximation map apx F that converges globally to the desired �xed point. We

then prove that this �xed point is unique by showing that any two �xed points

of F are equal.

The function apx of type (� ! �) ! � ! � that builds an approximation

map from a contracting function is de�ned by well-founded recursion on (<) as

follows:

apx F i � F (local limit (cut (apx F ) i) i)

where

cut f i x � if x < i then f x else arbitrary .



At each resolution i, the function apx uses local limit to obtain the best

possible approximation of �xF , given the approximations it has already com-

puted at all lower resolutions4. The result of calling local limit may still not

be close enough at resolution i, so apx maps the local limit through F , which

will bring the result close enough. The helper function cut is used to ensure

that the recursive call to apx F is only made at lower resolutions than i, ensur-

ing well-foundedness. If local limit attempts to invoke cut (apx F ) i at any other

resolution, then cut returns an arbitrary element instead.

Once we have proved by well-founded induction that apx is well de�ned,

the next step is to establish that apxF is convergent up to each resolution i.

To do this we prove several lemmas, such as: if an approximation mapping f

converges up to a local limit element z at resolution i, and also converges up to

a local limit element z0 at the same resolution, then z and z0 are equivalent at all

resolutions i0 < i. With this, and the fact that F is contracting, we can show that

if x
i
� y, then F x

i
� F y. We then eventually show for all resolutions i that if

apx F converges up to local limit element apx F i at resolution i, then apx F i
i
�

F (apx F i). This lemma is the key to showing by well-founded induction over i

that apxF does in fact converge up to apx F i at resolution i, and is also used

to show that global limit (apx F )
i
� F (global limit (apx F )) at each resolution i,

and are thus equal by (6). This result establishes that a �xed point exists for

F . We then show that any two �xed points x and y of F are equivalent at all

resolutions by well-founded induction, and thus are equal, again by (6).

8 Conclusion

Related work The support for and application of well-founded induction and

general coinduction has seen wide acceptance in the HOL theorem proving com-

munity. The well-founded de�nition package TFL used in HOL98 and Isabelle

was written by Slind[13]. It can handle nested pattern matching in rule def-

initions, nested recursion in function bodies, and generates custom induction

rules for each de�nition[14]. The PVS theorem prover[12] also uses well-founded

induction as a basic de�nitional principle. A general theory of inductive and

coinductive sets in Isabelle was developed by Paulson[10], based on least and

greatest �xed points of monotone set-transforming functions, as well as a pack-

age for de�ning new inductive and coinductive sets by user-given introduction

rules. The package avoids syntactic restrictions in the introduction rules by rea-

soning about each rule's underlying set-transformer semantics.

A coinductive theory of streams (in�nite-only lists) was developed byMiner[7]

in the PVS theorem prover. Miner used this theory to model synchronous hard-

ware circuits as corecursively-de�ned stream transformers. Using coinduction, he

was able to optimize the implementation of a fault-tolerant clock synchronization

circuit and a oating-point division circuit.

4 Here the de�nition of local limit using Hilbert's choice operator seems essential.



A well-known alternative to coinductive types is the mathematical frame-

work of pointed complete partial orders and continuous functions, also known as

domain theory[4, 15]. This theory is supported by the HOLCF[8] object-logic in

Isabelle, and also allows one to de�ne in�nite data structures such as lazy lists

and trees. A wide variety of functions over these structures can then be recur-

sively de�ned. The primary disadvantage of this approach is that one must add

\extra" bottom-elements to the structures being de�ned. These extra elements

are used to indicate that a function is non-terminating on its arguments. For ex-

ample, the lazy �lter function l�lter can be de�ned recursively in HOLCF, but

the expression l�lter P xs returns ? instead of [] when xs is an in�nite list con-

taining no elements satisfying P . Also, only so-called admissible predicates can

be reasoned about inductively in domain theory, and it can be quite challeng-

ing to prove that a desired predicate is admissible. A comparison of the HOLCF

approach to several other encodings of lazy lists is presented by Devillers et al[2].

The theory of topology[1, 11] provides another well-established de�nition

mechanism. The notions of Cauchy sequences, complete metric spaces, and con-

tractions inspired much of this work. We have not worked out the exact rela-

tionship between converging equivalence relations and Cauchy metric spaces;

although one can construct a distance function for every nat-indexed CER, it

is not clear that distance functions can always be constructed for more complex

resolution spaces. Also, the conditions under which a function F is contracting in

a CER seem to be less restrictive than the corresponding conditions in a metric

space. More importantly from a veri�cation perspective, well-founded induction

seems easier to apply in current theorem provers than does the continuous math-

ematics required for metric spaces.

Current and future work We are currently using CERs to specify and reason

about processor microarchitectures as recursively de�ned stream transformers.

This work is part of the Hawk project[6], which is developing a domain-speci�c

functional language for specifying, simulating, and reasoning about such mi-

croarchitectures at a high level of abstraction. We have been able to use CERs

and the unique �xed point lemmas in Sect. 3.2 to develop a domain-speci�c mi-

croarchitecture algebra[5] in Isabelle, which we use to verify Hawk speci�cations.

Although we have de�ned CERs over streams and lazy lists, many structures

in language semantics and process algebras can be seen as coinductive trees. It

would be interesting to de�ne some of these structures recursively and reason

about them inductively, as we did for lappend in Sect. 5.3.

9 Acknowledgements

We wish to thank Byron Cook, Sava Krsti�c, and John Launchbury for their

valuable contributions to this research. We are also grateful for the anonymous

referees' helpful suggestions. The author is supported by a graduate research

fellowship with the National Science Foundation, and grants from the Air Force

Material Command (F19628-93-C-0069) and Intel Strategic CAD Labs.



References

1. Buskes, G., and van Rooij, A. Topological Spaces: from distance to neighborhood.

UTM Series. Springer, New York, 1997.

2. Devillers, M., Griffioen, D., and M�uller, O. Possibly in�nite sequences

in theorem provers: A comparative study. In Theorem Proving in Higher Order

Logics: 10th International Conference, TPHOLs '97 (Murray Hill, NJ, Aug. 1997),

vol. 1275 of LNCS, Springer-Verlag, pp. 89{104.

3. Gordon, M. J. C., and Melham, T. F. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.

4. Gunter, C. A. Semantics of Programming Languages: Structures and Techniques.

Foundations of Computing Science. The MIT Press, 1992.

5. Matthews, J., and Launchbury, J. Elementary microarchitecture algebra. To

appear in CAV99, International Conference on Computer Aided Veri�cation, July

1999.

6. Matthews, J., Launchbury, J., and Cook, B. Specifying microprocessors

in Hawk. In IEEE International Conference on Computer Languages (Chicago,

Illinois, May 1998), pp. 90{101.

7. Miner, P. Hardware Veri�cation Using Coinductive Assertions. PhD thesis, In-

diana University, 1998.

8. M�uller, O., Nipkow, T., v. Oheimb, D., and Slotosch, O. HOLCF = HOL

+ LCF. To appear in Journal of Functional Programming, 1999.

9. Paulson, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994.

10. Paulson, L. C. Mechanizing coinduction and corecursion in higher-order logic.

Journal of Logic and Computation 7, 2 (Apr. 1997), 175{204.

11. Rudin, W. Principles of Mathematical Analysis, 3 ed. McGraw-Hill, 1976.

12. Rushby, J., and Stringer-Calvert, D. W. J. A less elementary tutorial for

the PVS speci�cation and veri�cation system. Tech. Rep. SRI-CSL-95-10, SRI

International, Menlo Park, CA, June 1995. Revised, July 1996.

13. Slind, K. Function de�nition in higher order logic. In Ninth international Confer-

ence on Theorem Proving in Higher Order Logics TPHOL (Turku, Finland, Aug.

1996), J. Von Wright, J. Grundy, and J. Harrison, Eds., vol. 1125 of Lecture Notes

in Computer Science, Springer Verlag, pp. 381{398.

14. Slind, K. Derivation and use of induction schemes in higher-order logic. Lecture

Notes in Computer Science 1275 (1997), 275{290.

15. Tennent, R. D. Semantics of Programming Languages. Prentice Hall, New York,

1991.


