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Chapter 1

Introduction

Modern processor microarchitectures can be incredibly complex. Although exact �gures

are kept secret, it can safely be said that leading manufacturers employ dozens if not

hundreds of design and veri�cation engineers for each new generation of processor. As

semiconductor process improvements continue to deliver an exponentially increasing bud-

get of transistors, processor architects are able to employ ever more sophisticated imple-

mentation techniques to increase the amount of useful work performed per clock cycle.

Some standard examples of performance increasing optimizations are:

� Pipelining. Analogous to automobile assembly lines, operations that take more

than one clock cycle to complete are often divided into stages. Each stage completes

its work in one clock cycle. By connecting the stages with pipeline registers, multiple

instances of complex operations can be processed per clock cycle.

� Superscalar execution. Multiple instructions are fetched per clock cycle. Dupli-

cated execution units such as ALUs execute the fetched instructions concurrently.

� Caching. Long-latency communication between the processor and main memory is

minimized by storing past results in local caches for faster access.

� Out-of-order execution. Fetched instructions are dynamically analyzed to deter-

mine which instructions are independent of each other. Independent instructions are

executed according to when a compatible execution unit is available, even though

this may cause the operations to be performed in a di�erent order than speci�ed by

the program.

1
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� Speculation. The results of time-consuming operations are opportunistically pre-

dicted. The processor uses the predicted result immediately, and simultaneously

starts computing the real result of the operation. The processor then checks whether

the prediction is correct once the operation completes. If the prediction is con�rmed,

the processor has saved time by parallelizing the operation. If the prediction is in-

correct, the processor rolls back its internal state and then uses the correct result.

Not only does each of these techniques incur a substantial amount of design complex-

ity, cutting edge processor designs combine them to achieve further speedups. In fact,

creating and verifying these designs is a signi�cant proportion of the total microprocessor

development lifecycle. As the number of possible gates in future microprocessors increases

exponentially, so too does design complexity.

It is now common for a commercial microprocessor design e�ort to take two years

or more, as engineers resolve all of the possible interactions between microarchitectural

features while trying to meet performance, area, power, and heat dissipation goals.

Resolving all of these issues while trying to complete the project as quickly as possible

almost always results in design defects, some of which may slip through testing e�orts and

end up in released products. Of course, similar defects routinely occur with large commer-

cial software products. But whereas software faults can be easily �xed by downloading

patches through the internet, a microprocessor defect may require the entire device to

be replaced. These mistakes can become exceedingly expensive, both �nancially and in

lowered customer con�dence. Such mistakes have also become more widely publicized in

recent years, as personal computers are increasingly sold to mass consumer markets.

1.1 Hardware description languages

One way to gain intellectual control over design complexity is to employ a formal modeling

language. Such a language can provide several bene�ts. For example, Ashenden[4] notes

that assuming the language has appropriate supporting tools, an architect can:

� Describe and understand the required behavior and attributes of a system

unambiguously.
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� Communicate these requirements to others precisely.

� Test the system by simulating it.

� Formally verify the system with respect to desired properties.

� Automatically synthesize implementations from the description.

Of course, most description languages are not designed to support all of the above

activities, at least initially. For example, the VHDL hardware description language[4] has

a large set of language features for specifying circuits behaviorally. A user can simulate

any behavioral VHDL description, but must describe circuits using a strict subset of these

features to automatically synthesize a circuit implementation. On the other hand, low-

level languages designed to describe circuits at the gate and transistor level are harder to

simulate eÆciently.

In practice, a design engineer will typically work with multiple speci�cation languages

during a processor development lifecycle. In the early stages, the designer is more con-

cerned with functional correctness and the performance tradeo�s between alternative mi-

croarchitectural features at the granularity of individual clock cycles. Thus the design

engineer is likely to use a high-level behavioral speci�cation language, such as behavioral

VHDL, or even C. As the overall design is solidi�ed, lower level structural considerations,

such as size and layout constraints, power consumption budgets, and sub-clock-cycle tim-

ing issues often encourage or require the engineer to develop circuit designs that can be

directly synthesized and analyzed at the gate or transistor level.

1.1.1 Goals of the Hawk language

At the Oregon Graduate Institute we have been interested in developing high-level do-

main speci�c programming languages based on structuring principles derived from typed

functional programming languages. In particular, the Hawk project has been developing

a behavioral speci�cation language for processor microarchitectures. Our goal is to build

a language that lets architects specify designs at a higher level of abstraction than can

be done with current behavioral hardware speci�cation languages. To achieve this we
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intend to use language features that promote concision, modularity, and reusability in

speci�cations.

� Concision. Just as a program written in a higher level language such as C is easier

for humans to understand and modify than the same program written in assembly

language, so too do microarchitectures become more comprehensible as speci�cations

are made more concise and abstract. Ideally we would like our speci�cation language

to be as concise as the high-level block diagrams that architects currently use to

express microarchitectures.

� Modularity. Given the number of people required to design modern processor

microarchitectures, it is essential to be able to decompose a large speci�cation into

separate units, with well-de�ned interfaces between them. In this way individual

architects can concentrate on a portion of the overall microarchitecture, without

having to understand the entire design in full detail.

� Reusability. Once a speci�cation language has the ability to separate design ele-

ments into modular units, a natural next step is to try to reuse commonly occuring

design units by de�ning them once and then referring to the de�nition at each point

of use. By eliminating redundant de�nitions, the overall size of the speci�cation is

reduced, and defects caused by creating incompatible versions of the same design

element are prevented.

However, we don't want our speci�cation language to be so abstract that it is not

executable. To gain con�dence in a design's correctness and evaluate performance tradeo�s

an architect may need to simulate a microarchitecture on a wide variety of programs. It

is not uncommon for a microprocessor simulator to execute billions of instructions on a

given design.

In addition to concrete simulation, we would also like to simulate microarchitectures

in Hawk symbolically. A symbolic simulator allows the user to execute a design with some

of the inputs given as symbolic variables (or more generally expressions), rather than as

concrete values. The simulator then executes the design with the symbolic inputs and
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returns the result as a symbolic expression. In this way a single symbolic test run can

replace a whole family of concrete test runs. A good introduction to symbolic simulation

techniques for processors is given by Moore[67], who uses the ACL2 theorem prover to

symbolically simulate a small processor at the instruction set architecture level. Symbolic

simulation can sometimes detect errors simply because the returned expression \looks

strange", i.e. is much larger or more complex than what was expected. This strategy was

used by Greve[31] to detect microcode errors in a direct execution Java processor. Day,

Lewis, and Cook[19] have developed a version of Hawk that supports symbolic simulation

and have used it to symbolically simulate the data 
ow of a superscalar out-of-order

microarchitecture.

To gain even more con�dence in the correctness of a Hawk speci�cation an architect

should be able to turn to formal veri�cation, where a mathematical proof demonstrates

that a design satis�es desired correctness properties on all possible inputs. Since the design

being veri�ed can be quite large, this approach only becomes practical when the proof is

carried out with the help of automated tools, such as model checkers and theorem provers.

Constructing proofs requires formalizing both the design and the underlying speci�cation

language in some mathematical logic, such as set theory or higher order logic. This is not

a trivial endeavor, and speci�cation languages with complex or ill-de�ned semantics can

substantially increase the amount of human and machine time necessary to complete the

proof.

1.2 Thesis statement

Hawk was created as a typed functional programming language in order to provide a

good balance between abstraction and expressiveness, executability, and ease of formal

reasoning. In particular, this dissertation aims to show that:

� The concepts underlying lazy functional programming languages, particularly Haskell

and its Hawk extensions, allow one to specify microarchitectures concisely, modu-

larly, and reusably, while retaining the ability to simulate them on concrete test

cases.
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� Using equational reasoning principles, one can develop a microarchitecture algebra,

whose laws enjoy the same degree of concision, modularity, and reusability as the

microarchitecture speci�cation.

� Such algebraic laws can be used to verify the correctness of pipelined microarchitec-

tures.

� The Hawk speci�cation language can be naturally formalized in higher order logic,

and thus veri�cation steps can be checked by a theorem prover.

This thesis can be thought of as a case study supporting a larger agenda: To demon-

strate that the equational reasoning principles underlying lazy functional languages, and

speci�cally the Haskell programming language, provide a good foundation for developing

domain-speci�c algebras. The hope is that such algebras increase one's understanding of

the domains, and can be used to formally verify desired properties of speci�cations.

1.3 Synopsis

Part of the content of this thesis is made up of re-edited and expanded versions of three

published papers and a technical report, all written primarily by this author. These papers

introduce Hawk as a speci�cation language[55], describe how algebraic reasoning can be

used to simplify and verify pipelined microarchitectures[53, 54], and show how to de�ne

recursive functions, such as Hawk circuits, over coinductive types[52].

Accordingly, we begin the dissertation by introducing Hawk as a microarchitecture

speci�cation language embedded within Haskell. We then state equational laws that hold

of microarchitectural components, such as register �les and ALUs, and use them to incre-

mentally simplify a pipelined microarchitecture. Finally, we formalize a subset of Hawk

in higher order logic and prove a representative set of these microarchitecture laws, using

a combination of equational reasoning and induction over time.

The de�nition of mutually recursive functions over in�nite streams is the most chal-

lenging aspect of Hawk's formalization, since such de�nitions are not directly supported

in current theorem provers. We develop a generalization of well-founded recursion, called
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Converging Equivalence Relations, that allows these de�nitions to be added conservatively

in a straightforward and modular fashion.

The remaining chapters of this thesis are as follows:

Chapter II: Introduction to Hawk

This chapter introduces Hawk as a speci�cation language. We introduce a simple pipelined

microarchitecture and specify it �rst in Hawk at the register transfer level (RTL) and then

with transactions, an abstract datatype for representing the complete microarchitectural

state associated with an instruction. We show that the language features of Hawk com-

bined with transactions as a structuring principle lead to a concise and understandable

speci�cation.

Chapter III: Microarchitecture algebra

Next, we informally introduce our algebra of microarchitectural components by describing

the components that comprise a more complex reference architecture than the one intro-

duced in Chapter 2. We describe how these components are modeled in Hawk and state

the laws that hold among them.

Several of the laws contain projection circuits. Projections are not used in either the

pipelined or the reference microarchitectures, but are instead artifacts of the veri�cation

process. We motivate the usefulness of projections, and describe the conditions under

which they can appear in microarchitecture laws.

Once the necessary laws have been introduced, we show how they can be used to

simplify the pipelined microarchitecture. This simpli�cation is presented graphically.

Chapter IV: Formalizing Hawk in higher order logic

In this chapter we introduce Higher Order Logic (HOL) and the Isabelle theorem prover

brie
y and informally. We use HOL to formalize Hawk and the microarchitecture algebra,

and Isabelle to check the proofs. Since Hawk is a purely applicative functional language,

many aspects of the language can be modeled directly in higher order logic itself. However,

dealing with recursive Hawk de�nitions is more diÆcult. The standard semantics for
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Hawk is domain theoretic, with recursive de�nitions modeled by least �xpoints. Although

Isabelle has an object logic (HOLCF) that provides some support for reasoning about

domains, there is much more support for \pure" HOL. For example, there is no syntactic

support in HOLCF for pattern-matching function de�nitions or pointed numeric domains.

We thus focus on techniques for modeling Hawk directly in HOL.

There is no natural \information order" among elements in pure HOL, and so there

is no notion of a least �xpoint. However, it turns out that well-formed recursive Hawk

de�nitions have unique �xpoints, and can therefore be uniquely de�ned using Hilbert's

choice operator. It is a well known result of topology that unique �xpoints can be found

for contracting functions in complete metric spaces. Intuitively, a metric space is a set of

elements and an associated distance metric over pairs of elements. The distance metric

returns a real-valued number indicating how far apart the two elements are. A contracting

function over this metric space, when applied to each of a pair of elements, returns a

corresponding pair of elements that is \closer" to each other than the original elements

are. Banach's theorem states that contracting functions do in fact have unique �xpoints.

It is possible to de�ne suitable distance metrics for Hawk streams, and show that

recursive Hawk de�nitions over these streams are contracting functions. However, this of-

ten requires reasoning about division and exponentiation over real-valued domains, which

relatively few theorem provers support well. Instead we adopt a di�erent approach.

Chapter V: Converging equivalence relations

We develop an alternative framework, called Converging Equivalence Relations (CERs),

for proving the uniqueness of �xpoint de�nitions. We develop analogs of metric spaces

and contracting functions that do not require the use of continuous mathematics. Instead,

reasoning proceeds by well-founded induction over discrete domains such as the natural

numbers, which are well supported by all of the HOL-based theorem provers.

This chapter describes CERs with proofs of the key results. We demonstrate that this

technique can be mostly automated by Isabelle's higher-order tableau proof package.



9

Chapter VI: Verifying the microarchitecture laws

In this chapter we develop some techniques to simplify the proofs of the individual laws

of Chapter 3, and use them to verify representative examples. We �rst develop a simple

theory of transactions, and make the somewhat surprising observation that although the

type system of Hawk is very useful in catching errors when constructing Hawk speci�ca-

tions, it can be annoyingly restrictive when verifying laws about transaction �elds. The

statements of these theorems quantify over all of the �elds in a transaction, which violates

the HOL restriction that all quanti�ers must range over elements of the same type. We

develop a mechanism of �rst class �eld names to overcome this diÆculty.

We use a combination of inductive reasoning over time and �rst class �eld names

to prove two representative microarchitecture laws: a commutativity law between ALU

and delay components, and a law that allows one to remove bypass circuits connected to

register �les.

Chapter VII: Retrospective

We conclude by analyzing the strengths and weaknesses of Hawk we encountered during

the course of the dissertation. In particular, we discuss the relative merits of the functional

basis of Hawk, the use of transactions, and the value of algebraic reasoning in the context

of the Isabelle theorem prover.

We also discuss the usefulness of de�ning functions by converging equivalence rela-

tions, compared to de�ning them co-recursively. The CER framework provides a general

method of de�ning recursive functions over a wide range of types, including coinductively

de�ned types such as in�nite lists and trees. The dissertation concludes by outlining future

research directions.



Chapter 2

Introduction to Hawk

The Hawk language is designed for building executable speci�cations of processor mi-

croarchitectures. Currently Hawk is an embedded language (i.e. a set of libraries) within

Haskell, a strongly-typed functional language with powerful abstraction capabilities, such

as lazy (demand-driven) evaluation, �rst-class functions, and parametric polymorphism

[35] [76].

2.1 The Hawk library

We start with a simple example that introduces several functions used in later examples.

Consider the resettable counter circuit of Figure 2.1.

The reset wire is Boolean valued, while the other wires are integer valued. Of course,

in silicon, integer-valued wires are represented by a vector of Boolean wires, but as a

design abstraction, a Hawk user may choose to use a single wire. The circuit counts (and

outputs) the number of clock cycles since reset was last asserted.

2.1.1 Signals

Notice that there is no explicit clock in the diagram. Rather, each wire in the diagram

carries a signal (integer or boolean valued) which is an implicitly clocked value. The

output of a circuit only changes between clock cycles. We build signals using an abstract

type constructor called Signal. As a mental model we could think of a value of type

Signal a as a function from non-negative integers to values of type a, as is often done in

the hardware veri�cation community[62, 92].

10
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Select

Constant 0

Increment

control
output

ifTrue

ifFalse

reset

Delay

init

input

0

Figure 2.1: Resettable Counter. A simple circuit that counts the number of clock cycles

between reset signals.

type Signal a = (Int -> a)

We can sample a signal s at a given clock cycle n simply by evaluating s applied1 to n.

Alternatively a signal could be thought of as an in�nite stream of values hx0; x1; x2; : : :i.

Clearly the two views are interchangeable. In either case circuits are represented as func-

tions from signals to signals.

In the resettable counter example above, the constant 0 circuit outputs zero on every

clock cycle. The select component chooses between its inputs on each clock cycle depending

on the value of reset. If reset is asserted on a given cycle (has value true), then the output

is equal to select 's top input, in this case zero. If reset is not asserted, then its output is

the value of its bottom input. In either case, select 's output is the output of the entire

circuit, as well as the input to the increment component, which simply adds 1 to its input.

The output of increment is fed into the delay component. A delay component outputs

whatever was on its input in the previous clock cycle: it \delays" its input by one cycle

(delay circuits occur often enough that we draw them specially, as shaded horizontal or

1Function application in Hawk is written using juxtaposition, so that f applied to x and y is written

as f x y
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vertical bars). However, on the �rst clock cycle of the simulation there is no previous

input, so on the �rst cycle delay outputs whatever is on its init input, which is zero in

this circuit.

2.1.2 Components

The components used in the resettable counter are trivial examples of the sorts of things

provided by the Hawk library, but let's look at a speci�cation of each component in turn.

The simplest component is constant

constant :: a -> Signal a

The constant function takes an input of any type a, and returns an output of type

Signal a, that is, a sequence of values of type a. For every clock cycle, (constant x)

always has the same value x. Functions such as constant that can operate over more

than one type are called polymorphic.

The next component is select:

select :: Signal Bool -> Signal a -> Signal a -> Signal a

This declares select to be a function. In a Hawk declaration, anything to the left of

an arrow is an argument to a function. Thus, the expression (select bs xs ys), where

bs is a Boolean signal, and xs and ys are signals of type a, will return an output signal

of type a. The values of the output signal are drawn from xs and ys, decided each clock

tick by the corresponding value of bs. For example, if

bs = <True,False,True,False,...>,

xs = <x1,x2,x3,x4,...>,

ys = <y1,y2,y3,y4,...>

then (select bs xs ys) is equal to the signal <x1,y2,x3,y4,...>.

Hawk treats functions as �rst-class values, allowing them to be passed as arguments

to other functions or returned as results. First-class functions allow us to specify a generic

lift primitive, which \lifts" a normal function from type a to type b into a function over

the corresponding signal types:

lift :: (a -> b) -> Signal a -> Signal b
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The expression (lift f xs), where xs = <x1,x2,x3,...>, is equal to the signal

<f x1, f x2, f x3, ...>.

The increment component is de�ned in terms of lift:

increment :: Signal Int -> Signal Int

increment xs = lift (+ 1) xs

Given the xs input signal, increment adds one to each component of xs and returns the

result.

The delay component is more interesting:

delay :: a -> Signal a -> Signal a

This function takes an initial value of type a, and an input signal of type Signal a,

and returns a value of type Signal a (the input arguments are in reverse order from

the diagram). At clock cycle zero, the expression (delay initVal xs) returns initVal.

Otherwise the expression returns whatever value xs had at the previous clock cycle. This

function can thus propagate values from one clock cycle to the next.

2.1.3 Using the components

Once we have de�ned primitive signal components like the ones above, we can de�ne the

resettable counter:

resetCounter :: Signal Bool -> Signal Int

resetCounter reset = output

where next = delay 0 (increment output)

output = select reset (constant 0) next

The resetCounter de�nition takes reset as a Boolean signal, and returns an integer

signal. The reset signal is passed into select. On every clock cycle where reset returns

True, select outputs 0, otherwise it outputs the result of the next signal. On the �rst

clock cycle next outputs 0, and thereafter outputs the result of whatever (increment

output) was on the previous clock cycle. The output of the whole circuit is the output

of the select function, here called output. Notice that output is used twice in this
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function: once as the input to increment, and once as the result of the entire function.

This corresponds to the fact that the output wire in Figure 1 is split and used in two

places. Whenever a wire is duplicated in this fashion, we must use a where statement in

Hawk to name the wire.

2.1.4 Recursive de�nitions

There is something else curious about the output variable. It is being used recursively in

the same place it is being de�ned! Most languages only allow such recursion for functions

with explicit arguments. In Hawk, one can also recursion to de�ne data-structures and

functions with implicit arguments, such as the one above.

If we didn't have this ability, we would have had to de�ne resetCounter as follows:

resetCounter reset = output

where next t = (delay 0 (increment output)) t

output t = (select reset (constant 0) next) t

Every time we have a cycle in a circuit, we would have to create a local recursive

function, passing an explicit time parameter. This breaks the abstraction of the Signal

ADT. In fact, in the real implementation of signals, we don't use functions at all. We use

in�nite lists instead. Each element of the list corresponds to a value at a particular clock

cycle; the �rst list element corresponds to the �rst clock cycle, the second element to the

second clock cycle, and so on. By storing signals as lazy lists, we compute a signal value

at a given clock cycle only once, no matter how many times it is subsequently accessed.

Haskell allows recursive de�nitions of abstract data structures because it is a lazy

language, that is, it only computes a part of a data structure when some client code

demands its value. It is lazy evaluation that allows Haskell to simulate in�nite data

structures, such as in�nite lists.

2.1.5 Other embedded Haskell languages

Hardware domains

The Hawk team is not the �rst to take advantage of Haskell as a platform for embed-

ding domain speci�c languages, or even languages for modeling hardware. For example,
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O'Donnell[70] has developed a Haskell library called Hydra that models hardware gates

at several levels of abstraction, ranging from implementations of gates using CMOS and

NMOS pass-transistors, up to abstract gate representations using lazy lists to denote

time-varying values. Hydra has been used to teach advanced undergraduate courses on

computer design, in which students use Hydra eventually to design and test a simple mi-

croprocessor. Hydra is similar to Hawk in many ways, including the use of higher-order

functions and lazy lists to model signals. However, Hydra does not allow users to de�ne

more structured signal types, such as signals of integers or signals of transactions. In

Hydra, these composite types have to be built up as tuples or lists of Boolean signals.

While this limitation does not cause problems in an introductory computer architecture

course, structured signal types signi�cantly reduce speci�cation complexity for more real-

istic microprocessor speci�cations.

More recently, the Lava hardware description language has been designed. It also

models gate and word level hardware circuits within Haskell. The original version of

Lava[9] modeled circuits with a specialmonadic syntax, however a later version[14] de�nes

circuits using standard Haskell expression form, in the same manner as Hawk. Modern

Lava has many other similarities to Hawk: Both model signals as �rst class entities, use

polymorphism and higher-order functions to model generic wiring patterns, and model

circuits with feedback as recursively-de�ned signals. Lava is discussed in more detail in

Section 2.4.

MHDL[6] is a hardware description language for describing analog microwave circuits,

and includes an interface to VHDL. Though it tackles a very di�erent part of the hardware

design spectrum, like Hawk, MHDL is essentially an extended version of Haskell, although

it is not technically an embedded language. The MHDL extensions have to do with

physical units on numbers, and universal variables to track frequency and time etc.

Other domain speci�c languages

Haskell has successfully been used to specify other domains. For example, Haskell com-

pared favorably in an experiment comparing several prototyping languages[34]. The ap-

plication domain involved modeling the Geometric Region Server module, which tracks
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the regions surrounding ships and planes in a military theatre. The module is required to

answer such questions as when an enemy plane will enter a friendly ship's weapons range,

or whether a plane has entered a commercial airspace corridor. Experts in each of several

languages including Haskell, C++, Awk, and GriÆn wrote a prototype program based on

the same requirements document. The Haskell solution was considered the most concise

and understandable of all the submitted entries. The authors claim their major success

factors were: their heavy use of higher-order functions, Haskell's simple syntax, and the

availability of powerful list-manipulating primitives in the standard Haskell library.

Fran[23] is a Haskell library that models interactive multimedia animations. The au-

thors provide ADTs for time-varying behaviors, events, and interactions between behav-

iors and events. Unlike Hawk, Fran's model of time is continuous. Also, a Fran function

can examine the values of future events, while Hawk signals only depend on current and

past signal values. This non-monotonicity of time in Fran requires a more sophisticated

time-interval analysis than is required for Hawk.

2.2 A simple microprocessor

In the microarchitecture domain, the Hawk libraries make essential use of Haskell's fea-

tures. As a test of Hawk's capabilities, the Hawk team has speci�ed and simulated several

versions of the DLX microprocessor described in Hennessy and Patterson's widely used

textbook[33]. The Hawk team chose to model the DLX because it is well known, and

has excellent tool support. Several DLX simulators exist, as well as a version of the Gnu

C compiler that generates DLX assembly instructions. The processor includes the most

common instructions found in commercial RISC processors.

The DLX architecture is too complex to explain in �ne detail in an introductory

chapter. Instead, for pedagogical purposes we show how to specify a simple microprocessor

called SHAM (Simple HAwk Microprocessor). We begin with the simplest possible SHAM

architecture (unpipelined), and then add features: pipelining, and a memory-cache. A

corresponding annotated Hawk speci�cation of the DLX itself can be found at the Hawk

web page[44].
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Figure 2.2: Unpipelined version of SHAM.

The unpipelined SHAM diagram is shown in Figure 2.2. The microprocessor consists

of an ALU and a register �le. The ALU recognizes three operations: ADD, SUB, and INC.

The ADD and SUB operations add and subtract, respectively, the contents of the two ALU

inputs. The INC operation causes the ALU to increment its �rst input by one and output

the result. The register �le contains eight integer registers, numbered RO through R7.

Register R0 is hardwired to the value zero, so writes to R0 have no e�ect. The register �le

has one write-port and two read-ports. The write-port is a pair of wires; the register to

update, called writeReg, and the value being written, called writeContents. The input to

each read-port is a wire carrying a register name. The contents of the named read-port

registers are output every cycle along the wires contentsA and contentsB. If a register is

written to and read from during the same clock cycle, the newly written value is re
ected

in the read-port's output, at least abstractly. This is consistent with the behavior of most

modern microprocessor register �les.

SHAM instructions are provided externally; in our drive for simplicity there is no notion

of a program counter. Each instruction consists of an ALU operation, the destination
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register name, and the two source register names. For each instruction the contents of

the two source registers are loaded into the ALU's inputs, and the ALU's result is written

back into the destination register.

2.2.1 Unpipelined SHAM speci�cation

Let us assume we have already speci�ed the register �le and ALU, with the signatures

below:

data Reg = R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7

regFile :: Signal Reg -> Signal Reg ->

(Signal Reg, Signal Int) ->

(Signal Int, Signal Int)

data Cmd = ADD | SUB | INC

alu :: Signal Cmd -> Signal Int -> Signal Int -> Signal Int

The regFile speci�cation takes two read-port inputs, a write-port input, and returns

the corresponding read-port outputs. The alu speci�cation takes a command signal and

two input signals, and returns a result signal. Given these signatures and the previous

de�nition of delay, it is easy in Hawk to specify an unpipelined version of SHAM:

sham1 :: (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> (Signal Reg,Signal Int)

sham1 (cmd,destReg,srcRegA,srcRegB) = (destReg',aluOutput')

where

(aluInputA,aluInputB) = regFile srcRegA srcRegB (destReg',aluOutput')

aluOutput = alu cmd aluInputA aluInputB

aluOutput' = delay 0 aluOutput

destReg' = delay R0 destReg

The de�nition of sham1 takes a tuple of signals representing the stream of instructions,

and returns a pair of signals representing the sequence of register assignments generated

by the instructions. The �rst three lines in the body of sham1 read the source register

values from the register �le and perform the ALU operation. The next two lines delay the
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destination register name and ALU output, in e�ect returning the values of the previous

clock cycle. The delayed signals become the write-port for the register �le. It is necessary

to delay the write-port since modi�cations to the register �le logically take e�ect for the

next instruction, not the current one.

2.2.2 Pipelining

Suppose we wanted to increase SHAM's performance by doubling the clock frequency. We

will assume that, while sham1 could perform both the register �le and ALU operations

within one clock cycle, with the increased frequency it will take two clock cycles to perform

both functions serially. We use pipelining to increase the overall performance. While the

ALU is working on instruction n, the register �le will be writing the result of instruction

n� 1 back into the appropriate register, and simultaneously reading the source registers

of instruction n+ 1.

But now consider a sequence of instructions such as:

R2 <- R1 ADD R3

R4 <- R2 SUB R5

When the ADD instruction is in the ALU stage, the SUB instruction is in the register-fetch

stage. But one of the registers that is being fetched (R2), has not been written back into

the register �le yet, because the ALU is still calculating the result. The SUB instruction

will read an out-of-date value for R2. This is an example of a data hazard, where naive

pipelining can produce a result di�erent from the unpipelined version of a microprocessor.

To resolve this hazard, we will �rst add bypass logic to the pipeline. Later we will abstract

away from this added complexity.

Figure 2.3 contains the diagram of a pipelined version of SHAM with bypass logic. By

the time the source operands to the SUB instruction (R2 and R5) are ready to be input into

the ALU, the up-to-date value for R2 is stored in the delay circuit between the ALU and

the register �le's write-port. The bypass logic uses this stored value of R2 as the input to

the ALU, rather than the out-of-date value read from the register �le. The bypass logic

examines the incoming instructions to determine when this is necessary. The following

code contains the Hawk speci�cation:
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Figure 2.3: Pipelined SHAM. Since the register �le and the ALU each now take one clock

cycle to complete, we now need extra Delay circuits. The Delay circuits in turn require

us to add Select circuits to act as bypasses. The logic controlling the Select circuits is not

shown.
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sham2 :: (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> (Signal Reg,Signal Int)

sham2 (cmd,destReg,srcRegA,srcRegB) = (destReg'',aluOut')

where

(valueA,valueB) = regFile srcRegA srcRegB (destReg'',aluOut')

valueA' = delay 0 valueA

valueB' = delay 0 valueB

destReg' = delay R0 destReg

cmd' = delay ADD cmd

aluInputA = select validA valueA' aluOut'

aluInputB = select validB valueB' aluOut'

aluOut = alu cmd' aluInputA aluInputB

aluOut' = delay 0 aluOut

destReg'' = delay R0 destReg'

--- Control logic ---

validA = delay True (noHazard srcRegA)

validB = delay True (noHazard srcRegB)

noHazard :: Signal Reg -> Signal Bool

noHazard srcReg = sigOr (sigEqual destReg' (constant R0))

(sigNotEqual destReg' srcReg)

The data 
ow portion of the code is grouped according to pipeline stages:

� The �rst line after the where keyword reads the contents of the source registers from

the register �le.

� The next four lines delay the source register contents, the ALU command, and the

destination register name by one cycle.

� The two select commands decide whether the delayed values should be bypassed.

The decision is made by the Boolean signals validA and validB, which are de�ned

in the control logic section.
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� The next line performs the ALU operation.

� The last two lines in the data-
ow section delay the ALU result and the destination

register. The delayed result, called aluOut', is written back into the register �le in

the register named by destReg'', as indicated in the �rst two lines of the section.

The control logic section determines when to bypass the ALU inputs. The signals validA

and validB are set to True whenever the corresponding ALU input is up-to-date. The

de�nition of these signals uses the function noHazard, which tests whether the previous

instruction's destination register name matches a source register name of the current

instruction. If they do, then the function returns False. The exception to this is when

the destination register is R0. In this case the ALU input is always up-to-date, so noHazard

returns True.

2.2.3 Transactions

The de�nition of sham2 highlights a diÆculty of many such speci�cations. Although the

data 
ow section is relatively easy to understand, the control logic section is far from

satisfactory. In fact, it often takes nearly as many lines of Hawk code to specify the

control logic as it does to specify the data 
ow, and mistakes in the control logic may

not be easy to spot. We need a more intuitive way of de�ning control logic sections in

microprocessors.

We use a notion of transactions within Hawk to specify the state of an entire instruction

as it travels through the microprocessor (similar in spirit to Aagaard and Leeser [1]). A

transaction holds an instruction's source operand values, the ALU command, and the

destination operand value. Transactions also record the register names associated with

the source and destination operands:

data Transaction = Trans DestOp Cmd SrcOp SrcOp

type DestOp = Operand

type SrcOp = Operand

type Operand = (Reg,Value)
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data Value = Unknown | Val Int

An operand is a pair containing a register and its value. Values can either be \un-

known" or they can be known, e.g. Val 7.

For example, the instruction (R3 <- R2 ADD R1), when it has completed, would be

encoded as shown below (assume that register R2 holds the value 3, and R1 holds 4):

Trans (R3,Val 7) ADD (R2,Val 3) (R1,Val 4)

This expression states that register R3 should be assigned the value 7 as a result of

adding the contents of register R2 and R1.

Not all of the register values in a transaction are known in the early stages of the

pipeline. When a register name does not have an associated value yet, it is assigned the

value Unknown. For example, if the above instruction had not reached the ALU stage yet,

then the corresponding transaction would be:

Trans (R3,Unknown) ADD (R2,(Val 3)) (R1,(Val 4))

Figure 2.4 shows how a transaction's values are �lled in as it 
ows through the pipeline.

2.2.4 Transaction structure

In general, the Transaction datatype contains four sub�elds. The �rst �eld holds the

destination register name and its current state. The state of a register indicates the

current value for the register at a given stage of the pipeline. Possible state values are

Unknown, or (Val k). The second �eld is the instruction's ALU operation, in this case

the ADD command. The third and fourth �elds hold the source operand register names

and their corresponding states. In this example, it holds the names and states for the

source operands R2 and R1. If an instruction has less than two source operands, the extra

operand �elds are set to a default value of (R0, Val 0).

The instruction (R3 <- R2 ADD R1), before it enters the SHAM pipeline, is encoded

as the transaction:

Trans (R3,Unknown) ADD (R2,Unknown) (R1,Unknown)
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Figure 2.4: A transaction as it 
ows through the pipeline. As the transaction progresses,

its operands become more re�ned.

At this point, none of the register values are known.

2.2.5 Changes to handle transactions

We change the regFile and alu functions so that they take and return transactions:

regFile :: Signal Transaction ->

Signal Transaction ->

Signal Transaction

alu :: Signal Transaction ->

Signal Transaction

Because the register �le needs to both write new values to the CPU registers and

read values from them, the regFile function takes a read transaction and a writeback
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transaction as inputs. The function �rst examines the destination register �eld of the

writeback transaction and updates the corresponding register in the register �le. It then

outputs the read transaction, modi�ed so that all of the source register �elds contain

current values from the register �le. For example, suppose regFile is applied to the

completed write-transaction (the second source operand is not used here):

Trans (R1,Val 4) INC (R1,Val 3) (R0,Val 0)

and uses as its read transaction

Trans (R3,Unknown) ADD (R2,Unknown) (R1,Unknown)

If we further assume that register R1 is assigned 20 and R2 is assigned 3 before regFile's

application, then regFile will update R1 to contain 4 from the writeback transaction, and

will output a new transaction that is identical to the read transaction, except that all of

the source registers have been assigned current values from the register �le:

Trans (R3,Unknown) ADD (R2,Val 3) (R1,Val 4)

The revised alu function takes a transaction whose source operands have values, per-

forms the appropriate operation, and outputs a modi�ed transaction whose destination

�eld has been �lled in. Thus if the ADD transaction above were given to alu, it would

return:

Trans (R3,Val 7) ADD (R2,Val 3) (R1,Val 4)

2.2.6 Unpipelined SHAM

Using transactions, the unpipelined version of SHAM is even easier to specify than it was

before.

sham1Trans :: Signal Transaction ->

Signal Transaction

sham1Trans instr = aluOutput'

where

aluInput = regFile instr aluOutput'

aluOutput = alu aluInput
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aluOutput' = delay nop aluOutput

nop = Trans (R0,Val 0) ADD (R0,Val 0) (R0,Val 0)

But the real bene�t of transactions comes from specifying more complex micro-architectures,

as we shall see next.

2.2.7 SHAM2 with transactions

Transactions are designed to contain the necessary information for concisely specifying

control logic. The control logic needs to determine when an instruction's source operand

is dependent on another instruction's destination operand. To calculate the dependency,

the source and destination register names must be available. The transaction carries these

names for each instruction. Because of this additional information, bypass logic is easily

modeled with following combinator:

bypass :: Signal Transaction ->

Signal Transaction ->

Signal Transaction

At any cycle, the bypass function usually just outputs its �rst argument. Sometimes,

however, the second argument's destination operand name matches one or more of the

�rst argument's source operand names. In this case, the matching source operand's state

values are updated to equal the destination operand state value. The updated version of

the �rst argument is then returned.

So if at clock cycle n the �rst argument to bypass is:

Trans (R4,Unknown) ADD (R3,Val 12) (R2,Val 4)

and the second argument at cycle n is:

Trans (R3,Val 20) SUB (R8,Val 2) (R11,Val 10)

then because R3 in the second transaction's destination �eld matches R3 in the �rst transac-

tion's source �eld, the output of bypass will be an updated version of the �rst transaction:

Trans (R4,Unknown) ADD (R3,Val 20) (R2,Val 4)
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Figure 2.5: bypass circuit

One special case to bypass's functionality is when a source register is R0. Since R0 is a

constant register, it does not get updated.

Bypasses arise frequently enough in pipeline block-level diagrams that we draw them

specially, as diamonds with the update input (i.e. the second argument) connected to

either the top or the bottom, as shown in Figure 2.5.

The pipelined version of SHAM with bypass logic is now straightforward. Notice that

no explicit control logic is needed, as all the decisions are taken locally in the bypass

operations.

SHAM2Trans :: Signal Transaction -> Signal Transaction

SHAM2Trans instr = aluOutput'

where

readyInstr = regFile instr aluOutput'

readyInstr' = delay nop readyInstr

aluInput = bypass readyInstr' aluOutput'

aluOutput = alu aluInput

aluOutput' = delay nop aluOutput

The �rst line takes instr and �lls in its source operand �elds from the register �le. The

�lled-in transaction is delayed by one cycle in the second line. In the third line bypass is

invoked to ensure that all of the source operands are up-to-date. Finally the transaction

result is computed by alu and delayed one cycle so that the destination operand can be

written back to the register �le.

2.2.8 Hazards

There are some microprocessor hazards that cannot be handled through bypassing. For

example, suppose we extended the SHAM architecture to process load and store instruc-

tions:
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R3 <- MEM[R2]

MEM[R5] <- R2

The �rst instruction above is a load instruction; it loads the contents of the address pointed

to by R2 into R3. The second instruction is a store; it stores the contents of R2 into the

address pointed to by R5. A block diagram of the extended SHAM architecture is shown

in Figure 2.6. There is now a load/store pipeline stage after the ALU stage. However,

this introduces a new problem. Suppose SHAM executes the following two instructions in

sequence:

R2 <- MEM[R1]

R4 <- R2 ADD R3

These two instructions have a data hazard, just as before, but we can not use bypassing to

resolve it. Bypassing depends on having a value to bypass at the beginning of a clock cycle,

but R2's value won't be known until the end of the cycle, after the memory contents have

been retrieved from the memory cache. To resolve this hazard, we have to stall the pipeline

at the register-fetch stage. When the �rst instruction has reached the end of the ALU

stage, the second instruction will have reached the end of the register-fetch stage. At this

point the delay circuits between the register-fetch stage and the ALU stage are overridden;

on the next clock cycle they instead output the equivalent of a no-op instruction. The

register-fetch stage itself re-reads the second instruction on the next clock cycle. In e�ect,

the pipeline stall inserts a no-op instruction between the two instructions involved in the

hazard:

R2 <- MEM[R1]

NOP

R4 <- R2 ADD R3

Now when the ADD instruction is about to be processed by the ALU, the load instruction

has already completed the memory stage. R2's value is held in the pipeline registers after

the memory stage, so bypass logic can be used to bring the ALU's input up-to-date. In

order to stall correctly, we have to re-read the second instruction. Thus stalling reduces

the performance of the pipeline.
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Figure 2.6: Block diagram of extended SHAM pipeline. Each Pipeline Register circuit is

made up of multiple Delay and Select circuits. The Select circuits are used for bypassing,

ensuring that the source operands are up-to-date.
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2.2.9 Hawk speci�cation of extended SHAM

In this section we will give more evidence of the simplifying power of transactions by

specifying the extended SHAM architecture. The load/store extension signi�cantly com-

plicates the control logic for the SHAM architecture. We shall see that transactions hold

up well when we must add stalling logic to the pipeline.

To start, we need to add the commands LOAD and STORE to the Cmd type:

data Cmd = ADD | SUB | INC | LOAD | STORE

We also need to de�ne some additional Hawk circuits. The �rst circuit, kill, takes a kill

signal and a signal of transactions. On each clock cycle, the kill component returns its

transaction input unchanged, unless the kill signal is asserted, in which case it returns the

nop transaction:

kill :: Signal Bool -> Signal Transaction -> Signal Transaction

kill ks inp = select ks (constant nop) inp

The isLoadTrans circuit returns True whenever its argument signal is a load transaction:

isLoadTrans :: Signal Transaction -> Signal Bool

isLoadTrans ts = lift isLoad ts

where

isLoad (Trans _ cmd _ _) = (cmd == LOAD)

Although we previously passed SHAM instructions as parameters, we now need to call a

function, instrCache, to explicitly retrieve them:

instrCache :: Signal Bool -> Signal Transaction

Since the pipeline can stall, we need a way to ask for the same instruction two cycles in a

row. The instrCache function takes a Boolean signal and returns the current transaction.

Whenever the argument signal is True, then on the next cycle instrCache returns the

same transaction as it did for the current clock cycle. Otherwise, it returns the next

transaction as normal.

We also need a circuit that actually performs the loads and stores:

mem :: Signal Transaction -> Signal Transaction
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On those clock cycles where the input transaction is anything but a load or store transac-

tion, the mem function simply returns the transaction unchanged. On loads, mem updates

the destination operand of the input transaction, based on the input load address. On

stores, mem updates its internal memory array according to the address and contents given

in the input transaction. The destination operand value is set to zero.

We also de�ne a new Hawk function, transHazard, that returns True whenever its two

transaction arguments would cause a hazard, if the �rst transaction preceded the second

transaction in a pipeline:

transHazard :: Signal Transaction -> Signal Transaction -> Signal Bool

The extended Hawk speci�cation using transactions is given below:

SHAM3Trans :: Signal Transaction

SHAM3Trans = memOut'

where

-- register-fetch stage --

instr = instrCache loadHzd

readyInstr = regFile instr memOut'

readyInstr' = delay nop (kill loadHzd readyInstr)

-- ALU stage --

aluIn = bypass (bypass readyInstr' memOut') aluOut'

aluOut = alu aluIn

aluOut' = delay nop aluOut

-- memory stage --

memIn = bypass aluOut' memOut'

memOut = mem memIn

memOut' = delay nop memOut

----- Control logic -----

loadHzd = sigAnd (isLoadTrans readyInstr')

(transHazard readyInstr' readyInstr)

The register-fetch stage retrieves the instruction and �lls in its source operands from the

register �le. The register-fetch pipeline register delays the transaction by one clock cycle,
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although if there is a load hazard, the register instead outputs a nop transaction on the

next cycle. The ALU stage �rst updates the source operands of the stored transaction with

the results of the two preceding transactions (memOut' and aluOut') by invoking bypass

twice. It then performs the corresponding ALU operation, if any, on the transaction and

stores it in the ALU-stage pipeline register. The memory stage again updates the stored

transaction with the immediately preceding transaction, performs any required memory

operation, and stores the transaction. The stored transaction is written back to the register

�le on the next clock cycle. The control logic section determines whether a load hazard

exists for the current transaction, that is, whether the immediately preceding transaction

was a load instruction that is in hazard with the current transaction.

As we can see, the body of the speci�cation remains manageable. The small control

logic section to detect load hazards is straightforward and is a minority of the overall

speci�cation. In contrast, an equivalent speci�cation of this pipeline where the components

of each transaction were explicitly represented contained over three times as many source

lines. The lower-level speci�cation's control section was almost as large as the data
ow

section, and not nearly as intuitive.

2.2.10 Extending transactions to other microarchitectures

The essential idea behind transactions is to pass all of the microarchitectural state asso-

ciated with a particular instruction in a single data structure as the instruction traverses

the pipeline. This implies that more transaction �elds may have to be created for more

sophisticated pipelines. For example, the pipelined microarchitecture of Chapter 3 per-

forms branch speculation, where the instruction fetching component predicts the address

of the next instruction to be executed after a branch, called the branch target. This allows

the pipeline to continue fetching and executing instructions even though the actual branch

target won't be known until the ALU component has computed it in a later pipeline stage.

If the prediction is incorrect, the pipeline must discard the transactions corresponding to

instructions it had fetched after the branch, and start fetching the correct branch successor

instructions instead.

For pipelines containing branch speculation the predicted branch target is part of the
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microarchitectural state associated with the branch, and is therefore stored within the

branch's transaction structure. This turns out to be quite useful when the actual branch

target is calculated by the ALU component, since it can be compared to the speculated

branch target to determine if a misprediction occurred.

Other microarchitectural features such as virtual register tags, predication bits, excep-

tion status 
ags, etc. may also require modi�cations to the transaction type. Haskell's

type class mechanism can be used to create structured families of transaction types that

can be instantiated to particular microarchitectures, depending on what state needs to be

associated with a given instruction. The use of type classes in Hawk to abstract over mi-

croarchitecture features is presented in Cook et al[18]. We do not follow this approach in

the thesis, however, since we will be dealing with a �xed set of microarchitectural features.

2.2.11 Transactions in other modeling languages

We are not alone in noting the usefulness of transactions to regularize interfaces between

microarchitecture components. In particular, �Onder and Gupta have used a similar con-

cept of instruction contexts as a core datatype in UPFAST, an imperative microarchitec-

ture simulation language [72]. Instruction contexts are allocated as mutable records as

instructions are fetched. They are then passed along by components, which can imper-

atively update context �elds, if desired. A context is deallocated when it is no longer

needed.

Transactions have also been used by others to structure microarchitecture veri�cations,

and their use for this purpose is discussed in Section 3.3.1.

2.3 Modeling the DLX

Using techniques comparable to those described in this chapter the Hawk team has mod-

eled several DLX architectures:

� An unpipelined version, where each instruction executes in one cycle.

� A pipelined version where branches cause a one-cycle pipeline stall.
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� A more complex pipelined version with branch prediction and speculative execution.

Branches are predicted using a one-level branch target bu�er. Whenever the guess

is correct, the branch instruction incurs no pipeline stalls. If the guess is incorrect,

the pipeline stalls for two cycles.

� An out-of-order, superscalar microprocessor with speculative execution. The mi-

croarchitecture contains a reorder bu�er, register alias table, reservation station,

and multiple execution units. Mispredicted branches cause speculated instructions

to be aborted, with execution resuming at the correct branch successor. Cook et

al[18] present an overview of this microarchitecture and its implementation in Hawk.

The microarchitectural speci�cation for the unpipelined DLX is written in a quarter

page of uncommented source code, not including the reusable component de�nitions; the

most complicated pipelined version takes up just over half a page.

2.3.1 Executing the model

We used the Gnu C compiler that generates DLX assembly to test our speci�cations on

several programs2. These test cases include a program that calculates the greatest common

divisor of two integers, and a recursive procedure that solves the towers of Hanoi puzzle.

We have not made detailed simulation performance measurements on these pipeline

speci�cations. In general we do not expect the current implementation of Hawk to break

simulation-speed records. At the moment Hawk is a set of libraries written in a general-

purpose lazy functional language, which imposes some performance costs. The transaction

library also performs some run-time tests that would be \compiled-away" in a lower-level

pipeline speci�cation. We hope to increase Hawk's simulation eÆciency in the future by

investigating domain-speci�c compilation techniques, such as partially evaluating a Hawk

microarchitecture with respect to the program it is simulating and the output signals being

sampled. Performance could also be greatly improved by employing custom memory

2Thanks are due to Byron Cook for developing the DLX assembly to Hawk translator, and for inte-

grating it with the Gnu C compiler
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allocation algorithms that take into account the fact that most Hawk programs only

reference a small \window" of a signal at any given clock cycle.

2.4 Other hardware modeling languages

Currently the hardware modeling language that is the most similar to Hawk is Lava,

introduced in Section 2.1.5. However, a major point of departure from Hawk is Lava's

ability to treat signal descriptions as �rst class values. In Hawk, a signal is simply a

sequence of values, and there is no way to di�erentiate between two signal descriptions

that happen to generate the same sequence. For example, the following two Hawk circuits

are observationally equivalent:

toggle :: Signal Bool

toggle = delay False (sigNot toggle)

toggle' :: Signal Bool

toggle' = genDelays False

where

genDelays :: Bool -> Signal Bool

genDelays b = delay b (genDelays (not b))

The �rst Hawk de�nition, toggle, describes a simple toggling circuit implemented by a

feedback loop (sigNot is an inverter over boolean signals). A circuit could be naturally

synthesized from this description using a single inverter and delay component. The second

de�nition, toggle', makes use of the recursively-de�ned genDelays function to describe

an in�nite number of delay components with alternating initial value parameters. Each

delay component takes the rest of its values from the next delay component to be gen-

erated. The toggle' circuit description is not realizable in hardware, yet both toggle

and toggle' generate the same sequence of values <False, True, False, ...> and are

therefore equal in Hawk.

Lava can detect that these two circuit descriptions are di�erent. Lava accomplishes

this by extending the Haskell language slightly with a form of non-updatable reference[13].

Lava references act much like ordinary references in impure functional languages such
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as ML, except that they are \read-only". Once initialized, a Lava reference cannot be

modi�ed. Lava references di�er from applicative data structures in that a newly created

reference is distinct from any already existing reference, even if they both refer to the

same value. Lava has an equality operator on references that can test whether its two

reference parameters are in fact the same reference.

A Lava signal is then a reference to the Lava component whose output generates the

signal. A Lava component is a record containing a �eld for the component's name, such

as "delay" or "not", a �eld for each static component parameter, such as the initial

value parameter for a delay component, and a �eld for each of the the component's input

signals. By performing equality tests on Lava signals, a Lava program can distinguish

toggle from toggle', since the �rst circuit generates only two unique references, one

each for the delay and sigNot components, while the second circuit (lazily) generates an

unbounded number of references.

Given a Lava description of a circuit, one can write a Lava function that generates its

corresponding behavior as an in�nite list. Lava also allows users to generate non-standard

interpretations of circuits such as netlists and state-machine descriptions. Generation of

non-standard interpretations is a powerful Lava capability. Lava has circuit interpretations

that

� synthesize VHDL code.

� generate circuit formulas that can be checked by several veri�cation tools, such as

Gandalf[89], NP-tools[78], and Otter[56].

Unfortunately, Lava's ability to generate non-standard circuit interpretations comes at the

price of giving up pattern-matching over signal elements. Haskell currently has a �xed

interpretation of pattern-matching expressions which is incompatible with Lava's explicit

signal representations. For example, it is quite convenient in Hawk to de�ne an instruction

opcode as an algebraic datatype (see Section 7.1.1) and then de�ne components such as

the ALU in terms of functions that pattern match on the opcode constructors. While the

same functionality can be de�ned in Lava by bundling existing signal types and performing
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tests through nested conditional expressions3, the resulting code is often more verbose and

less easy to read.

Given the current state of the Haskell language, one has to choose between being

able to de�ne non-standard circuit interpretations versus de�ning signal transformers by

pattern matching. Each has signi�cant advantages. Since Hawk is primarily a behavioral

speci�cation language, we chose the latter.

Custom-designed languages

Of course, Haskell is not the only possible platform for designing hardware description

languages. Most, but not all, hardware modeling languages are designed \from scratch",

giving designers complete control, and responsibility, over the syntax, semantics, and

tooling infrastructure of the language.

For example, Daisy[36] and �FP[38] are examples of early hardware speci�cation lan-

guages based on higher order functional languages. Daisy as originally developed in John-

son's dissertation is a lazy untyped functional language where circuits are speci�ed as

recursive signal equations, as they are in Hawk. The semantics of recursive de�nitions

is given in terms of domain-theoretic least �xed points, rather than unique �xed points

as used in this dissertation (unique �xed points are introduced in Section 4.5). Domain

theoretic semantics are arguably more complex to reason about in a theorem prover than

Hawk's higher order logic semantics, but have the advantage of allowing circuit equiva-

lences to be proved directly via an elegant technique called �xpoint induction.

�FP is a combinator-based language. Whereas Daisy and Hawk allow arbitrary recur-

sive signal forms, in �FP all recursion is expressed through a set of higher order recursive

combinator functions. In addition, �FP circuit components are connected via function

composition, without explicitly naming the interface signals. Two advantages of such

point-free speci�cation languages are the simplicity of the language and supporting tools,

3Lava also has the ability to de�ne new abstract signal types, with an associated set of abstract signal

primitives. Each circuit interpretation must provide a de�nition of the primitives if it is to interpret circuits

containing the abstract signal type.
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and the ability to specify layout directives. �FP's layout combinators allow circuit de-

signers to state in high-level terms where circuit components should be realized on silicon.

These directives are more diÆcult to implement in languages like Hawk that allow com-

ponents to be interconnected arbitrarily.

The Ruby[39] hardware description language is a successor to �FP. Created by Jones

and Sheeran, Ruby is a combinator language based on relations, rather than functions.

Circuit speci�cations in Ruby can be more general than in Hawk, in that relations can

describe more circuits than functions can. For example, a Ruby circuit can directly model

a bi-directional wire between two circuits C and D , such as a bus, where information 
ows

from C to D on some clock cycles, and from D to C on others. Hawk's functional basis

requires all wires to be uni-directional. A bi-directional wire between circuits C and D

in Hawk must be modeled as two signals, one signal returned as an output from C and

passed as an input to D , and the other returned from D and passed into C .

Ruby can also model a nondeterministic circuit, whose outputs are not uniquely de-

termined by its inputs. Ruby's support for nondeterminism enables a form of design by

re�nement, which we discuss in Section 7.1.5.

Most of the published Ruby examples specify circuits that operate at the gate and word

level, and particularly circuits that contain �ne-grained regular structure, such as systolic

arrays. Such circuits generally process collections of fairly simple forms of data, such

as vectors of booleans and numbers. Hawk has emphasized modeling the more complex,

but less regular datatypes that typify microarchitecture component interfaces. Thus Hawk

programs can declare algebraic datatypes and de�ne circuits by pattern-matching, features

which Ruby lacks.

Ruby's emphasis on circuit layout is another example of the di�erent set of design

goals between the two languages. Ruby has combinators to specify where circuits are

located in relation to each other and to external wires. Hawk's emphasis is on behavioral

correctness, so Hawk circuits do not contain layout information.

There are many other languages for specifying hardware circuits at varying levels of

abstraction. The most widely used such languages are Verilog and VHDL. Both of these

languages are well suited for their roles as general-purpose, large-scale hardware design
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languages with �ne-grained control over many circuit properties. Both of these languages

are more general than Hawk in that they can model asynchronous as well as synchronous

circuits, and can synthesize (a subset of) circuit descriptions into a form suitable for

fabricating in silicon. However, Verilog and VHDL are large languages with complex

event-simulation semantics, which makes circuit veri�cation much more diÆcult (see, for

example, Gordon[30] for the challenges in formally verifying Verilog circuits). Also, neither

of these languages supports higher level abstraction features as well as Hawk, such as

polymorphically-typed circuits and higher-order circuit combinators.

As part of Intel Corporation's Forte circuit veri�cation environment, the lazy func-

tional language Lifted-FL[2, 3] is used as a meta-language for describing abstract circuit

models, circuit properties, and circuit veri�cation algorithms. Lifted-FL extends the bool

datatype to contain symbolic boolean expressions, which are represented as ordered binary

decision diagrams[17] (BDDs). Synthesized gate-level circuit descriptions can be imported

as Lifted-FL data structures from several conventional net-list �le formats. Once imported,

the circuits can be symbolically simulated and veri�ed. The simulation and veri�cation

algorithms are written in Lifted-FL at a high level of abstraction, due in part to the

language's support for higher order functions and algebraic datatypes, but also due to

its intrinsic support for symbolic boolean expressions. Lifted-FL has been used to verify

impressively large circuits, including several 
oating-point ALU cores[71].

HML[48, 49] is a hardware modeling language based on the functional language ML.

ML also has higher-order functions and static polymorphic type checking, allowing many

of the same abstraction techniques that are used in Hawk, with similar safety guarantees.

HML follows the tradition of VHDL and Verilog in expressing circuit modules in a rela-

tional style, where output signals become extra parameters, rather than returned values

as in Hawk. The goal of HML is also rather di�erent from Hawk, concentrating on circuits

that can be immediately realized by translation to VHDL.



Chapter 3

Microarchitecture algebra

3.1 Introduction

We now turn from specifying and simulating microarchitectures written in Hawk to de-

veloping a method for verifying them. This thesis approaches the veri�cation task al-

gebraically, by discovering behavior-preserving transformations for Hawk components.

Transformational laws are well known in digital hardware, and form the basis of logic

simpli�cation and minimization, and of many retiming algorithms. Traditionally, these

laws occur the gate level: de Morgan's law being a classic example. In this chapter we

examine whether corresponding transformational laws hold at the microarchitectural level.

A priori, there is no reason to think that large microarchitectural components should

satisfy any interesting algebraic laws, as they are constructed from thousands of individual

gates. Boundary cases could easily remove any uniformity that has to exist for simple

laws to be present. Yet we have found that when microarchitectural units are presented

as transaction processors, many powerful laws appear. Moreover, as we demonstrate in

this chapter, these laws by themselves are powerful enough to allow us to show equivalence

of pipelined and non-pipelined microarchitectures.

We have used this algebraic approach to simplify a pipelined microarchitecture that

uses forwarding, branch speculation and pipeline stalling for hazards. The resulting

pipeline is very similar to the reference machine speci�cation (i.e. no forwarding logic),

while still retaining cycle-accurate behavior with the original implementation pipeline.

The top-level transformation proof is simple enough to be carried out on paper, and can

also be automated to some extent using Isabelle's higher-order rewriting tactics.

40
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stall

regFileIn aluIn memIn

writeback

writeback
regFile alu memICache

False

Figure 3.1: One-stage pipeline.

Interestingly, both circuits and laws can be expressed diagrammatically. A paper

proof (transformation using equivalence laws) proceeds as a series of microarchitecture

block diagrams, each an incrementally transformed version of the last. The laws often

have a geometric 
avor to them, such as laws to swap two components with each other,

or laws to absorb one component into another. We �nd this diagrammatic approach an

excellent way to communicate proofs.

The most time-consuming part of this technique has been discovering the local behavior-

preserving laws. It is our experience that these laws are much easier to discover when using

transactions to increase the level of abstraction. Not only do transactions reduce the size

of microarchitecture speci�cations, they also provide enough \auxiliary" state information

to make law-discovery practical.

The rest of the chapter discusses many of the laws we have discovered. We then show

their use by applying the laws in a proof of equivalence between two microarchitectures.

3.2 Reference microarchitecture

Figure 3.1 shows the diagram of a simple non-pipelined microarchitecture built out of

transaction signal processors. The components are the same as those used in the SHAM3Trans

microarchitecture in Sections 2.2.5 and 2.2.9, but have been augmented to handle branch

instructions. In particular, the alu component computes target addresses for branch

transactions, and the iCache examines completed branch transactions to determine when

to change its internal PC. The textual Hawk description is shown in Figure 3.2: Like

its SHAM3Trans counterpart, the iCache component produces new transactions, based

on the value of the current program counter and the contents of program memory (the

instruction-set architectures we consider have separate address spaces for instructions and
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referenceMA = writeback

where

regFileIn = iCache (constant False) writeback

aluIn = regFile regFileIn writeback

memIn = alu aluIn

memOut = mem memIn

writeback = delay nop memOut

Figure 3.2: Hawk code for reference microarchitecture

data). Both the current PC and the instruction memory contents are internal to iCache.

The instruction cache takes on its writeback input the completed transaction from the

previous clock cycle. It examines each writeback transaction for branches that have been

taken. When it �nds such an instruction, it modi�es its internal PC accordingly and starts

fetching transactions from the branch target address. The iCache has as output a signal

of transactions representing the newly-fetched instructions. Each transaction's source and

destination operand values are initialized to zero, since the iCache doesn't know what

values they should have1. The other pipeline components will �ll in these �elds with their

correct values. The iCache has a second input, called stall, which is a signal of Boolean

values. On clock cycles where stall is asserted, the iCache will output the same trans-

action as it did on the previous clock cycle. In this simple microarchitecture, stall is

always false. In more complex pipelines, the stall signal is typically asserted when the

pipeline needs to stall due to a branch misprediction.

For more complex pipelines, we also allow the iCache to perform branch prediction,

based on an internal branch target bu�er. When performing branch prediction, the iCache

will also annotate branch instruction transactions with the predicted branch target PC.

A branch misp component (not shown in Figure 3.1) can locally compare the predicted

branch target with the actual branch target to determine if a branch misprediction has

occurred. For branch predicting microarchitectures the iCache updates its internal PC on

all mispredicted branches, once they are received on the writeback input, rather than on

1The SHAM3Trans version of the iCache component returned Unknown for the uninitialized operand

values. This version of iCache will instead simply zero out the operand value �elds, to simplify the proofs

given in Chapter 6
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Figure 3.3: Universal circuit-duplication law

taken branches.

3.3 Algebraic reasoning and the microarchitecture laws

With any algebraic reasoning there need to be some ground rules. We take as fundamental

the notion of referential transparency or, in hardware terms, a circuit duplication law. Any

circuit whose output is used in multiple places is equivalent to duplicating the circuit itself,

and using each output once. This law is shown graphically in Figure 3.3. Because of the

declarative nature of our speci�cation language, every circuit satis�es this law. That is, it

is impossible within Hawk for a speci�cation of a component to cause hidden side-e�ects

observable to any other component speci�cation. In many speci�cation languages this law

does not hold universally. For example, duplicating a circuit that incremented a global

variable on every clock cycle would cause the global variable to be incremented multiple

times per clock period, breaking behavioral equivalence. Hawk circuits can still be stateful,

but all stateful behavior must be local and/or expressed using feedback.

3.3.1 Algebraic reasoning

Referential transparency is what allows us to use algebraic reasoning e�ectively in Hawk,

and is based on the referentially-transparent semantics of Haskell. In general, algebraic

techniques for transforming functional programs are routinely used for equivalence check-

ing and veri�cation [7, 8, 43] and for compilation and optimization [26, 77]. Much of the

work in this thesis can be seen as an extension of these ideas.

We have also been in
uenced by the algebraic techniques used in the relational hardware-

description language Ruby[84] (Ruby is described in Section 2.4). Sizeable Ruby circuits

have been successfully derived and veri�ed through algebraic manipulation[37, 40], and a
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formal semantics of a dependently-typed subset of Ruby, called T-Ruby, has been mech-

anized within Isabelle's Zermelo-Fraenkel set theory logic[79]. On top of the formal se-

mantics, the T-Ruby design system[85] has been built as a set of tools to algebraically

transform Ruby expressions and translate hardware-realizable T-Ruby circuits into struc-

tural VHDL. The rewrite rules are veri�ed within Isabelle's theory of T-Ruby circuits.

What distinguishes our work is our focus on microarchitectural units as objects of

study in their own right, whereas the Ruby research has emphasized circuits at the gate

level. Hawk's model of time is also somewhat di�erent than Ruby's. Hawk uses natural

numbers as time indexes, while Ruby uses integers. One place where this di�erence shows

up is the fact that Ruby delay components form a bijection on signals, while Hawk delay

components do not (they are injective, however). The bijectiveness of Ruby's delay com-

ponents make it somewhat simpler to retime circuits in that language. Another important

di�erence is Hawk's greater emphasis on proving circuits equivalent by performing induc-

tion over time, as occurs in Chapter 6. Ruby's integer-indexed signals do not permit this

form of reasoning.

Transactions

Transactions are a key concept in allowing us to discover and formulate many of the

algebraic laws of microarchitectural components. As we noted in Chapter 2, the usefulness

of transactions for veri�cation has been noticed before. Here we observe their uses in

veri�cation. For example, Aagaard and Leeser used transactions to specify and verify

hierarchical networks of pipelines[1]. Further, Sawada and Hunt use an extended form of

transactions in their veri�cation of a speculative out-of-order microarchitecture [82]. Each

transaction records two snapshots of the entire ISA state, before and after the instruction

is executed. In their work, however, transactions are not part of the microarchitecture

itself, but are constructed separately for veri�cation purposes.

In our work, transactions form a fundamental basis for algebraic laws over microar-

chitectural components. The next few sections introduce many such laws, some of which

are speci�c to particular combinations of components, while others are quite widely ap-

plicable. Each instantiation of a law needs to be proved with respect to the speci�cation
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Figure 3.4: feedback rotation law
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Figure 3.5: time-invariance law.

of the circuit components involved. We do not verify the individual laws in this chapter,

but several are proved correct using induction and equational reasoning in Chapter 6.

3.3.2 Delay laws

The delay circuit is a fundamental building block of clocked circuits, especially when

combined with feedback. A feedback variant of the circuit duplication law shown in

Figure 3.4, called the feedback rotation law, allows circuits to be split along feedback

wires. This law is not universal, but it is valid for any circuit that does not contain

zero-delay cycles.

Happily, all of the laws we discuss, including the feedback rotation law itself, preserve a

well-formedness property: if a circuit contains no zero-delay cycles, then any transformed

circuit will also have no zero-delay cycles.

The time-invariance law (Figure 3.5) is also widely applicable. A circuit is time-

invariant if one can retime the circuit by removing the delays from all the inputs of the

circuit and placing new delays (with possibly di�erent initial value parameters) on the

circuit's outputs. All combinatorial circuits are time-invariant, and so are many stateful

circuits like the register �le and memory cache. Interestingly, the iCache is not as it can

track the passage of time since initialization.

We use the above laws extensively to remove pipeline stages. If a pipeline stage is

time-invariant, then we can move the pipeline registers (represented as delay circuits)
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Figure 3.6: bypass circuit idempotence law

regFileregFile

Figure 3.7: register-bypass law

from before the pipeline stage to afterwards. If subsequent pipeline stages are also time-

invariant then we can repeat the process, eventually moving all of the delay circuits to the

end of the pipeline. However, forwarding logic between pipeline stages must still access

the appropriate time-delayed outputs of later pipeline stages. The feedback-rotation law

polices this, and ensures that the appropriate time-delay is kept by forcing delays to be

inserted on all feedback wires to the forwarding circuits. We will see examples of this

enforcement in Section 3.4.

The movement of delay components is an application of a technique called retiming [45,

83, 86]. A circuit is retimed when the delay components of the circuit are repositioned,

while the functional components are left unchanged, Typically, circuits are retimed to

reduce the clock cycle time. In contrast, we shall retime circuits as part of a simpli�cation

process. In fact, we often use the time invariance law to increase cycle time!

3.3.3 Bypasses and bypass laws

The purpose of bypass components as de�ned in Section 2.2.7 is to ensure that results

computed in later pipeline stages are available to earlier pipeline stages in time to be

used. Bypass circuits have many nice properties. Not only are they time-invariant and

obey a kind of idempotence (Figure 3.6), but they also interact closely with register �les

and various execution units.
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exec2exec1no_haz

exec1no_haz

Figure 3.8: hazard-bypass law

Register �le - bypass law

The fundamental interaction between a bypass and register �le is shown in Figure 3.7.

We call this the register-bypass law, and it is used repeatedly in eliminating forwarding

logic when simplifying pipelines. The law states that we can delay writing a value into the

register �le, so long as we also take the value to be written and forward it to the output,

in case that register was being read on the same clock cycle.

Hazard - bypass law

Another bypass law permits the removal of bypasses between execution units. It is often

the case that after retiming all delay circuits to the end of a pipeline, two execution units

in a pipeline (such as an ALU unit and a Load/Store unit) are connected with one-cycle

feedback loops. Each bypass circuit is forwarding the outputs of an execution unit to the

inputs of that same execution unit, one clock cycle later.

If the upstream pipeline stages can guarantee that there is no hazard between successive

transactions, then the double feedback is equivalent to the single feedback circuit shown

at the bottom of Figure 3.8. This (conditional) identity is called the hazard-bypass law.

To be more concrete, suppose exec1 is the ALU and exec2 the memory cache. Then

an ALU-mem hazard arises if a transaction which loads a register value from memory is

immediately followed by an ALU operation which requires that register's value (this is the

same hazard as the one presented in Section 2.2.9). Under these circumstances the two

feedback loops would give di�erent results. Under all other circumstances the two circuits
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Figure 3.9: Hazard-squashing logic guarantees no hazards

are equivalent. We express this conditional equivalence using the no haz component. It

is an example of a projection component and is discussed in the next section.

3.3.4 Projection laws

Many laws, like the hazard-bypass law above, require that the input signals satisfy certain

properties, and commonly, we may know that the output signal of a given component

always satis�es a particular property. We can capture this knowledge of properties using

signal projections.

A signal projection is a component with one input and one output. As long as the

input signal satis�es the property of interest, the component acts like an identity function,

returning the input signal unchanged. However, if the input does not satisfy the property

we are interested in, the projection component modi�es the input signal in some arbitrary

way so that the property is satis�ed.

Let us consider an example. For the hazard-bypass law we are interested in expressing

the absence of ALU-mem hazards in a transaction signal. We reify this property as a

no haz projection. On each clock cycle, the no haz component compares the current

input transaction with the previous input transaction. If there is no ALU-mem hazard

between the two transactions, then the current transaction is output unchanged. If a

hazard does exist, then no haz will instead output nopTrans, which is guaranteed not to

generate a hazard (since nopTrans contains no source operands).

Where do projections come from? After all, they are not the sort of component that

microarchitectural designers introduce in the normal course of events.

Fig 3.9 provides an example of a law which \generates" a projection. The hazard-

squashing logic guarantees that its output contains no hazards, and this is expressed in
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that the circuit is unchanged when the no haz component is inserted on its output.

(The hazard component outputs a Boolean on each clock cycle stating whether its two

input transactions constitute a hazard. The kill component takes a transaction signal

and a Boolean signal as inputs. On each clock cycle, if the Boolean input is false, then

kill outputs its input transaction unchanged. If the Boolean input is true, then kill

outputs a nopTrans, e�ectively \killing" the input transaction.)

To be useful, a projection component needs to be able to migrate from a source circuit

that produces it (such as the circuit in Figure 3.9) to a target circuit that needs the

projection to enable an algebraic law (such as the hazard-bypass law). Thus a projection

component must be able to commute with the intervening circuits between the source and

the target circuit. Well-designed projections commute with many circuits. For instance,

the no haz projection commutes with bypass, alu, mem, and regFile components. It also

commutes with delay components (that is, no haz is time-invariant).

Projections are also convenient for expressing the fact that a component only uses

some of the �elds of an input transaction. For instance, the hazard component only looks

at the opcode, source, and destination register name �elds of its two input transactions.

We can create a projection called proj ctrl that sets every other �eld of a transaction to

a default value, and prove a law stating that the hazard component is unchanged when

proj ctrl is added to any of its inputs. We can then show that proj ctrl commutes

with other components, such as bypasses and delays. This allows us to move the input

wires to hazard across these other components, which is sometimes necessary to enable

other laws. Similarly, the proj branch info projection allows us to move iCache and

branch misp component inputs.

3.4 Transforming the microarchitecture

The laws we have been discussing can be used for aggressively restructuring microarchi-

tectures while retaining equivalence. We have used them to simplify several pipelined

microarchitectures with a view to veri�cation. The example we present here contains

three levels of forwarding logic, resolves hazards by stalling the pipeline, and performs
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Figure 3.10: Microarchitecture before simpli�cation

branch speculation. The block diagram for this microarchitecture is shown in Figure 3.10.

By using just algebraic laws, we have been able to reduce most of the complexity, leaving

essentially an unpipelined microarchitecture.

Our approach to pipeline simpli�cation has echoes of the Unpipelining approach[46] of

Levitt and Olukotun. Unpipelining is a veri�cation technique where a pipelined microar-

chitecture, speci�ed as a state machine, is incrementally transformed into a functionally-

equivalent unpipelined microarchitecture. Unpipelining proceeds by repeatedly merging

the last stage of a pipeline into the next to last stage, producing a microarchitecture

with one less stage on each iteration. On each iteration, the two microarchitectures are

proven equivalent by induction over time. This is similar to our approach, except that

we use transactions to encapsulate and reuse many of the veri�cation steps, and we only

need to prove the equivalence of the portion of the microarchitecture being transformed,

rather than the entire microarchitecture, on each iteration. On the other hand, Levitt and

Olukotun's implementation of unpipelining is much more automated than our work up to

now, and can completely reduce a pipelined implementation to an unpipelined reference

machine.

The simpli�cation of the microarchitecture in Figure 3.10 proceeds in �ve goal-directed

stages: Retiming, moving control wires, propagating hazard information, removing for-

warding logic, and cleanup. The stages are chosen somewhat arbitrarily, and are fairly

speci�c to this microarchitecture. They nevertheless help to organize the top-level proof

into subgoals. Each stage is described as we come to it in the simpli�cation, and achieves

the preconditions necessary to apply key microarchitecture laws in the next stage. The

retiming stage is described next.
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3.4.1 Retiming stage

We �rst remove all delay circuits from the main pipeline path, starting at the earliest

stage in the pipeline. We accomplish this by repeatedly applying the time-invariance law,

and by splitting delays along wires through the circuit duplication and feedback rotation

laws.

branch_misp

regFile alu memkillICache

hazard

Figure 3.11: Split delay circuit after regFile, using the circuit duplication law

We would now like to move a delay through the kill circuit, but we can't, since the

top input to kill does not have a delay circuit. To place a delay on kill's top input,

we will need to move delay circuits through the branch misp and hazard circuits. This

is possible because branch misp and hazard are pure combinational circuits that preserve

default values (The default value for Booleans is False) and are therefore time-invariant.

branch_misp

regFile alu memkillICache

hazard

Figure 3.12: Split delay circuit after alu, using the feedback-rotation law
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branch_misp

regFile alu memkillICache

hazard

Figure 3.13: Split twice the delay circuit leading to branch misp and iCache, using two

applications of the circuit-duplication law

hazardbranch_misp

regFile alu memkillICache

Figure 3.14: Move delay circuits through the branch misp and hazard circuits, using the

corresponding time-invariance laws

We can similarly move these delay circuits through the or and and circuits (even

though one of the and inputs is inverted), since these combinational circuits preserve the

default False Boolean value. Finally, we can move the original delay circuit through the

kill circuit, since kill is a combinational circuit and all of its inputs have delays.

hazardbranch_misp

regFile alu memkillICache

Figure 3.15: Move delay circuits through the or and and circuits, using the circuit-

duplication law and the corresponding time-invariance laws
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hazardbranch_misp

regFile alu memkillICache

Figure 3.16: Move delay circuits through the kill circuit, using the corresponding time-

invariance laws

hazardbranch_misp

regFile alu memkillICache

Figure 3.17: Split the delay circuit after the kill circuit, using the circuit duplication

law

Once again, we can't move the delay circuit past the bypass circuit, since the other

input to the bypass does not contain a delay. Fortunately, the other input originates at

the delay circuit that is after the mem circuit, so we split that delay and move it to the

bypass input.

hazardbranch_misp

regFile alu memkillICache

Figure 3.18: Split the delay circuit after the mem circuit, using the feedback rotation law
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hazardbranch_misp

regFile alu memkillICache

Figure 3.19: Split the bottom-most delay circuit, using the circuit duplication law

hazardbranch_misp

regFile alu memkillICache

Figure 3.20: Split the bottom-most delay circuit again, using the circuit duplication law

We can now move our wandering delay through the two bypass circuits, since bypasses

are time-invariant, and they both have delay circuits on all inputs.

hazardbranch_misp

regFile alu memkillICache

Figure 3.21: Move the delay circuit before the �rst bypass circuit through the �rst and

second bypasses, using the corresponding time-invariance laws
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hazardbranch_misp

aluregFile memkillICache

Figure 3.22: Move the delay circuit through the alu circuit using the corresponding

time-invariance law

hazardbranch_misp

aluregFile memkillICache

Figure 3.23: Split the delay circuit after the alu circuit using the feedback-rotation law

Now we just have to move the two delay circuits before the third bypass circuit to

the end of the pipeline. Fortunately, both bypass and mem are time-invariant.

hazardbranch_misp

aluregFile memkillICache

Figure 3.24: Move the delay circuit through the third bypass circuit using the corre-

sponding time-invariance law
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hazardbranch_misp

alu memregFile killICache

Figure 3.25: Move the delay circuit through the mem circuit using the corresponding

time-invariance law

hazardbranch_misp

alu memregFile killICache

Figure 3.26: Split the delay circuit after the mem circuit, using the corresponding feedback-

rotation law

hazardbranch_misp

alu memregFile killICache

Figure 3.27: Split the delay circuit below the mem circuit, using the corresponding circuit

duplication law
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hazardbranch_misp

alu memregFile killICache

Figure 3.28: Move the delay circuit through the last bypass circuit, using the correspond-

ing time-invariance law

hazardbranch_misp

alu memregFile killICache

Figure 3.29: Move the delay circuit through the mem circuit, using the corresponding

time-invariance law

We'll keep moving this last delay a bit, to set up for the hazard-bypass law later on.

hazardbranch_misp

alu memregFile killICache

Figure 3.30: Split the delay circuit after the mem circuit, using the feedback-rotation law
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hazardbranch_misp

alu memregFile killICache

Figure 3.31: Split the bottom-rightmost delay circuit, using the circuit duplication law

3.4.2 Move control wires stage

In this stage we move all wires not directly involved with forwarding logic to either before or

after all of the bypass circuits. This is to enable the hazard-bypass laws, which we apply in

a later step. We move the wires by inserting projection circuits and using the corresponding

projection-commutativity laws. While we're at it, we'll also insert proj ctrl circuits on

the inputs to the hazard circuit, so that we can later on move the register �le next to the

�rst bypass.

branch_misp

proj_branch_info

branch_misp

proj_branch_info

ICache ICache

Figure 3.32: Projection insertion laws for proj branch info

The wire we want to move in this case is the feedback wire after the alu circuit,

which becomes the input to branch misp and iCache. The projection that allows us

to move the wire is called proj branch info. On each clock cycle, proj branch info

examines the opcode �eld of its input transaction. If it is a branch instruction, then
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it outputs a transaction with the same opcode, destination register name, destination

value, and speculative branch target PC �elds as the input transaction, but with all other

�elds (including source-operand register name �elds) set to their default values2. If the

transaction is not a branch instruction, then proj branch info outputs nopTrans. Since

the iCache and branch misp circuits only examine branch instructions, and in fact only

those �elds that proj branch info lets through to its output, then proj branch info

really is an input projection of these two circuits (Figure 3.32). We thus insert these

projections and move them towards the alu circuit.

hazardbranch_misp

alu mem

proj_branch_info

proj_branch_info

regFile killICache

Figure 3.33: Insert proj branch info projection on the inputs to iCache and

branch misp, using the corresponding projection laws from Figure 3.32

hazardbranch_misp

alu mem

proj_branch_infoproj_branch_info

regFile killICache

Figure 3.34: Move proj branch info past the left-most delay, using the corresponding

time-invariance law

2Our ISA architecture hard-wires register R0 to zero, so R0 serves as the default value for register names
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To continue moving the proj branch info projection, we apply the circuit duplication

law in reverse, merging the two projections into one.

hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Figure 3.35: Merge the two instances of proj branch info, using the circuit duplication

law in reverse

At this point we can't move the proj branch info circuit any further, since we can-

not insert a proj branch info circuit on the wire leading to the second bypass without

changing the functionality of the pipeline. What we do instead is split the delay that

is to the right of the projection, using the feedback rotation law (and split the feedback

wire while we're at it). Once we have duplicated the delay, we can continue moving

proj branch info down towards the alu circuit.

hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Figure 3.36: Split the delay circuit ahead of proj branch info
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hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Figure 3.37: Move the proj branch info circuit past the delay circuit using the corre-

sponding time-invariance law

Now that proj branch info is at the output of the alu circuit, we can use projection-

invariance laws to move the projection to the end of the pipeline. Projection-invariance

laws act somewhat like commutativity laws, and state that the output of a projection

is unchanged when its input signal is moved across another circuit. Figure 3.38 shows

some of the laws for proj branch info. In particular, we can move the projection past

the third bypass circuit and the mem execution unit of Figure 3.37, since neither of these

circuits alter a transaction's branch information.

proj_branch_info

mem mem

proj_branch_info

proj_branch_info proj_branch_info

Figure 3.38: Projection-invariance laws for proj branch info
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hazardbranch_misp

alu mem

proj_branch_info

regFile killICache

Figure 3.39: Move proj branch info past the third bypass and mem circuit, using the

projection invariance laws from Figure 3.38

hazard

proj_ctrl proj_ctrl

hazard

Figure 3.40: proj ctrl projection insertion law

To prepare for a future stage, we will also add proj ctrl projections to the inputs of

the hazard circuit. The proj ctrl circuit passes the opcode, source register name, and

destination register name �elds of its input transaction through unchanged, but zeros-

out all other �elds. Since the hazard circuit only examines these control �elds, then the

projection insertion law shown in Figure 3.40 is valid.

hazardbranch_misp

alu mem

proj_branch_info

proj_ctrl proj_ctrl

regFile killICache

Figure 3.41: Add proj ctrl projections to the inputs of the hazard circuit using the

corresponding projection-insertion laws (Figure 3.40), and move the right-most proj ctrl

circuit past the delay using the corresponding time-invariance law
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3.4.3 Propagate hazard information stage

At this point we would like to start removing bypass circuits using the hazard-bypass law.

But this law can only be applied when there are no hazards between the a�ected stages.

So we generate a no-hazard projection at the end of the dispatch stage (which is justi�ed

by a projection-absorption law applicable to the kill-circuit complex in that stage), and

then move it between the �rst and second bypass circuits.

hazard

no_haz

hazard

killkill

Figure 3.42: Generalized no haz projection insertion law

The no haz projection insertion law shown in Figure 3.42 is a slight generalization of

the law discussed in Section 3.3.4. This generalized law holds since the kill circuit is

still guaranteed to \squash" all potential hazards, and in fact may squash other trans-

actions as well. We use this law to insert a no haz circuit after the kill circuit in the

microarchitecture.

hazardbranch_misp

proj_ctrl proj_ctrl

alu mem

proj_branch_info

regFile killICache no_haz

Figure 3.43: Insert a no haz projection after the kill circuit, using the projection insertion

law shown in Figure 3.42

The no haz projection commutes with bypass circuits. One can see this by noting

that bypass never changes the transaction �elds that no haz examines. Thus no haz

will squash the same transactions regardless of whether it is placed before or after the

bypass. If no haz does squash a transaction by replacing it with nopTrans, then bypass
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will not modify the squashed transaction, since nopTrans contains no source operands.

The no haz circuit acts like an identity on transactions it does not squash, so again it

does not matter whether it is placed before or after the bypass circuit in this case.

hazardbranch_misp

proj_ctrl proj_ctrl

alu mem

proj_branch_info

no_hazregFile killICache

Figure 3.44: Commute no haz with the �rst bypass, using the corresponding projection

commutativity law (we also reroute the mem stage feedback wire)

proj_ctrl

regFile

proj_ctrl

regFile

regFile kill kill regFile

Figure 3.45: register �le commutativity laws

We will next swap the register �le with the kill circuitry using the two laws shown in

Figure 3.45, so that the register �le is closer to the bypass circuits we want to eliminate.

The �rst law holds since the register �le does not modify a transaction's control �elds. It

is easy to show that the second law holds by performing a case analysis on the Boolean

input into kill: If the input is true at a given clock cycle, then both the left-hand and

right-hand circuits output nopTrans. If the input is false, then the kill circuit acts as

an identity, so the outputs in both circuits are identical.
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alu mem

proj_branch_info

no_haz

proj_ctrl

branch_misp hazard

regFile kill

proj_ctrl

ICache

Figure 3.46: Commute the �rst proj ctrl projection with the register �le, using the �rst

law of Figure 3.45

alu mem

proj_branch_info

no_haz

proj_ctrl

branch_misp hazard

proj_ctrl

kill regFileICache

Figure 3.47: Commute the register �le with the kill circuit, using the second law of

Figure 3.45

alu mem

proj_branch_info

no_haz

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

ICache

Figure 3.48: Commute the second proj ctrl projection with the register �le, using the

�rst law of Figure 3.45
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3.4.4 Remove forwarding logic stage

We are now in a position to start removing bypass circuits. The �rst bypass circuit can

be removed immediately, due to the register-bypass law:

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

alu mem

proj_branch_info

no_hazICache

Figure 3.49: Use the register-bypass law to remove the left-most bypass and the delay

circuit below it

We can now apply the hazard-bypass law to remove the bypass circuit just prior to

the memory unit.

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

alu mem

proj_branch_info

no_hazICache

Figure 3.50: Remove the right-most bypass circuit using the hazard-bypass law

regFile no_haz no_haz regFile

Figure 3.51: register �le commutes with hazard projection

Next, we can swap the no haz projection with the register �le (Figure 3.51), since the

register �le never alters its input's control �elds, and since the internal state of the register
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�le is only a�ected by its writeback input, not its data input. Once we have swapped the

two components, we can remove the no haz projection by applying the law in Figure 3.42.

branch_misp hazard

proj_ctrl

kill

proj_ctrl

alu mem

proj_branch_info

regFileno_hazICache

Figure 3.52: Swap the register �le with no haz, using the commutativity law in Figure 3.51

branch_misp hazard

proj_ctrl

kill

proj_ctrl

alu mem

proj_branch_info

regFileICache

Figure 3.53: Remove no haz, using the no haz projection insertion law (Figure 3.42) in

reverse

branch_misp hazard

proj_ctrl

kill

proj_ctrl

alu mem

proj_branch_info

regFileICache

Figure 3.54: Merge the delay feeding into the remaining bypass circuit with the right-

bottom-most delay, using the circuit-duplication law in reverse.



68

branch_misp hazard

proj_ctrl

kill

proj_ctrl

regFile alu mem

proj_branch_info

ICache

Figure 3.55: Remove the last bypass circuit, using the register-bypass law

3.4.5 Cleanup stage

The pipeline has now been simpli�ed as much as possible, except that there are still some

extra delay components as well as several unnecessary projection circuits. We merge delay

components, then move the projection circuits back to their places of origin and remove

them using the projection laws in the opposite direction.

branch_misp hazard

proj_ctrl

kill

proj_ctrl

regFile alu mem

proj_branch_info

ICache

Figure 3.56: Swap the proj branch info projection with the delay next to it, using the

corresponding time-invariance law.
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branch_misp hazard

proj_ctrl

kill

proj_ctrl

proj_branch_info

regFile alu memICache

Figure 3.57: Merge the three forking delay circuits after the mem circuit, using the feedback

rotation law in reverse.

We would like to remove as many delay circuits as possible when simplifying microar-

chitectures, and there is a way we can merge the delay leading into the hazard circuit

with the delay after the mem unit. Neither the alu nor the mem units ever modify the

control �elds of a transaction, so proj ctrl commutes with both of them (Figure 3.58).

proj_ctrl proj_ctrl

proj_ctrl

alu

mem mem

alu

proj_ctrl

Figure 3.58: More proj ctrl projection invariance laws

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Figure 3.59: Move the right-most proj ctrl circuit past the register �le, using the �rst

law of Figure 3.45
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branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Figure 3.60: Move the right-most proj ctrl circuit past the alu, using the �rst law in

Figure 3.58

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Figure 3.61: Move the right-most proj ctrl circuit past the mem, using the second law in

Figure 3.58

branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Figure 3.62: Swap the right-most proj ctrl circuit with the delay, using the correspond-

ing time-invariance law
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branch_misp hazard

proj_ctrl

kill regFile alu mem

proj_branch_info

proj_ctrl

ICache

Figure 3.63: Merge the delay after the mem unit with the delay below the right-most

proj ctrl, using the feedback rotation law in reverse

All that remains now is to absorb the projection circuits back into the circuits they

were created from.

branch_misp hazard

kill regFile alu mem

proj_branch_info

ICache

Figure 3.64: Remove proj ctrl circuits, using the projection insertion law of Figure 3.42

in reverse

branch_misp hazard

kill regFile alu mem

proj_branch_info

proj_branch_info

ICache

Figure 3.65: Split the proj branch info projection, using the circuit duplication law
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branch_misp hazard

kill regFile alu mem

proj_branch_info

proj_branch_info

ICache

Figure 3.66: Swap the left-most proj branch info projection with the delay circuit below

it, using the corresponding time-invariance law

3.4.6 Final pipeline

After removing the proj branch info projections, we come to the �nal microarchitecture

in Figure 3.67. This circuit still outputs exactly the same transaction values, cycle-for-

cycle, as the microarchitecture in Figure 3.10, but is considerably less complex.

branch_misp

kill

hazard

regFileICache alu mem

Figure 3.67: The �nal pipeline, after removing the proj branch info projections using

the projection insertion laws of �gure 3.32 in reverse

3.4.7 Verifying the �nal microarchitecture

We can now apply conventional state machine-based techniques to verify that the �nal

microarchitecture is a valid implementation of its instruction set architecture. Such a

veri�cation was recently carried out by Day, Aagaard, and Cook[20] for the microarchi-

tecture of Figure 3.67. Using alternate de�nitions of the Hawk primitives they were able

to automatically translate the Hawk microarchitecture description to an observationally

equivalent state machine representation. They then used the pipeline 
ushing methodol-

ogy of Burch and Dill[11] to complete the veri�cation.
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Pipeline 
ushing method

In the Burch and Dill approach an implementation microarchitecture represented as a state

machine is shown to satisfy an instruction set architecture (ISA), also represented as a state

machine, by constructing an abstraction function that maps the implementation machine's

internal state to the internal state of the ISA machine. To verify the implementation

machine it must be shown that an abstraction function F maps the initial state of the

implementation machine to the corresponding ISA machine's initial state, and that given

any reachable implementation machine state s and current input inp, that

F (Next impl s inp) = NextISA (F s) inp (3.1)

where Nextimpl and NextISA are the next-state transition functions of the implementation

and ISA state machines, respectively.

The abstraction function F is constructed by 
ushing the implementation machine.

That is, F examines the implementation machine's internal state to determine which in-

structions have been issued to the pipeline but have not completed yet, and calculates

what the �nal architectural state (i.e. the contents of user-visible registers and memory)

would be when those instructions are completed, assuming no new instructions were is-

sued. F can be de�ned semi-automatically by augmenting Nextimpl with an extra boolean

parameter called 
ush . If 
ush is set then Nextimpl does not issue a new instruction to

the pipeline, but does continue to process in-
ight instructions. F is then constructed

by iterating the augmented Nextimpl transition function (with 
ush set to true) until all

in-
ight instructions have completed. For pipelined architectures, the number of iterations

is bounded by the number of pipeline stages.

Day, Aagaard, and Cook constructed an appropriate abstraction function F by aug-

menting the generated Hawk microarchitecture state machine in this fashion. They then

used the automated veri�cation tool SVC[5] to verify that F satis�ed equation (3.1). This

equation is only required to hold for reachable states, that is, implementation machine

states obtainable from some series of next-state transitions from the initial state. The

authors constructed a predicate P characterizing the set of reachable states, which they

gave to SVC as an assumption. They veri�ed that P did in fact characterize the set of
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reachable states using McMillan's SMV[58] model checker.

Bene�t of algebraic simpli�cation

While the authors could have used pipeline 
ushing to verify the original pipelinedmicroar-

chitecture of Figure 3.10, they claim that the simpli�ed microarchitecture of Figure 3.67

is less complex, making it more amenable to automated veri�cation.



Chapter 4

Formalizing Hawk in higher order logic

To ensure the correctness of the Hawk transformations we described in Chapter 3, we

need to work within a formal semantics for Hawk programs. That is, we need to have an

unambiguous mathematical interpretation of what a given Hawk program means, as well

as a notion of what it means for two Hawk programs to be equivalent.

Since we are mainly concerned with verifying the correctness of microarchitectural

laws, rather than fully modeling the Hawk language itself, we have chosen to formalize

only a subset of the language. In particular, we have chosen those features of Hawk that

can be directly interpreted as elements of higher order logic, as supported by the Isabelle

theorem prover. This precludes us from using some of Hawk's more advanced features,

such as multi-parameter type classes and nested de�nitions. Fortunately, the circuits and

transformations we consider can be adequately expressed without these features, and in

return we gain the full bene�t of Isabelle's proof machinery, including its type checker,

parser, pretty-printer, and higher-order uni�cation tactics.

Section 4.1 gives a brief and informal account of higher order logic, and assumes the

reader is familiar with �rst order predicate calculus, and the basic concepts associated

with typed functional languages, especially the notions of �rst-class functions and Hindley-

Milner type polymorphism. It borrows heavily from material by Melham[64], as well as

Gordon and Melham's introduction to another higher order logic theorem prover[29] (also

called HOL), the Isabelle reference manual[74], and the chapter on higher order logic in

Isabelle's object logics manual[69]. The reader should consult these sources for a more

thorough introduction.

75
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4.1 Elements of higher order logic

Higher order logic is a logic of functions. The traditional bifurcation between terms

and formulas made in predicate calculus is not present in higher order logic. Instead all

operators, including quanti�ers and propositional connectives, are represented by (possibly

higher order) functions. To avoid logical inconsistencies, a type discipline is imposed on

terms, based on a restricted form of Hindley-Milner polymorphism1.

The use of higher order functions as a �rst class construct signi�cantly reduces the

number of primitive axioms and inference rules in HOL. Many of the primitive syntactic

forms in predicate calculus, such as quanti�ers and most of the logical operators, are

actually derived operators in HOL.

As a result, the kernel of a theorem prover implementing higher order logic can be quite

small, as little as a few hundred lines of code in a functional programming language. This

has the happy consequence of reducing the likelihood of defects occurring in the overall

theorem prover implementation, provided that all proof steps are checked by the kernel.

4.1.1 Terms

Higher order logic terms are built from the following four syntactic entities:

� Constants. Examples are True, False , 0, and Suc (the function that takes a number

n and returns n + 1).

� Variables. Elements of this category are drawn from an in�nite set of variable

names V. Variables can be bound inside function de�nitions, in contrast to constants,

which cannot.

� Function applications. Applications are written using juxtaposition (i.e. by sep-

arating the function from the argument it is being applied to with spaces). Thus

the application of the Suc function to the number 3 is written as Suc 3.

1The main restriction being that only top-level expressions can be given universal types. Thus the term

let id = (� x : x) in (id id) is not typeable in higher order logic, however the top-level constant de�nition

id = (� x : x) is typeable with type 0a ) 0a, as is the top-level expression id id .
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� �-abstractions. This category corresponds to anonymous functions in a functional

programming language. A �-abstraction denotes a function of one parameter. An ex-

ample is the function that increments a number by two, written as (�x : Suc (Suc x )).

To improve readability, most higher order logic theorem provers allow the user to

declare that a given two-argument function constant should be parsed and printed as an

in�x operator. Thus the term (+ 1 (+ 3 6)) can be more conveniently read and written

as (1 + 3 + 6). To further reduce the number of parentheses needed one can express an

operator's associativity and its precedence with respect to other operators. For example,

if the user has declared an annotation stating that the multiplication operator has higher

precedence than the addition operator, then one can write terms such as (+ (� 1 2) (� 8 3))

in the more familiar form of (1 � 2 + 8 � 3).

Higher order logic is a \total" language, with a meaning de�ned for every well-typed

term. Constants evaluate to themselves, and the meaning of an application of a �-

abstraction to an argument is given by substitution. Thus the term (� x : x + x ) (2 � 3)

is logically equivalent to (2 � 3) + (2 � 3). Notice that the argument expression (2 � 3)

is substituted as is, without �rst \evaluating" it. One can also substitute expressions con-

taining a mixture of free variables and constants. Substitution in such cases is capture-

avoiding, meaning that bound variables in nested �-abstractions will be renamed if they

clash with free variables in the argument being substituted.

4.1.2 Types and type operators

Every HOL term is associated with a type. To begin with, Isabelle HOL assumes an

in�nite set of type variables T V (whose elements are typically written 0a, 0b, etc), as

well as the primitive type constants bool and nat , corresponding to a two-element set of

booleans and the set of natural numbers, respectively.

More complex types can be constructed through the use of type operators. The ap-

plication of a type operator to one or more types is written in post�x form. The only

primitive type operator in HOL is fun, the function-space operator, which given a domain

type � and range type � as arguments, denotes the type of functions from � to �. The
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Isabelle theorem prover provides an in�x syntax for the fun operator, so that (�; �) fun

can be more conveniently read and written as � ) �. The in�x form is right-associative,

so that � ) � ) � is the same as � ) (� ) �). Isabelle also provides several theories

containing derived type operators, such as set and list .

Type polymorphism

It is often the case that a term can be assigned more than one type. For example,

the function that returns True regardless of its argument, (� x : True), could have type

bool ) bool , but could also have type nat ) bool or type (bool ) bool) ) bool . In fact,

for any type � , the function above could have type � ) bool . Rather than restricting

such terms to a single type, one can instead assign them a polymorphic type, using type

variables. Thus one could associate the type 0a ) bool to the term, where 0a is a variable

drawn from T V . By default the Isabelle theorem prover infers the most general such type

when constructing terms.

4.1.3 Primitive constants

Pure higher order logic contains only three primitive constants: Implication, equality, and

the Hilbert "-operator (also called choice). The constants and their type signatures are

shown in Figure 4.1. The meaning of implication and equality correspond to their intuitive

meanings in other classical logics: A! B is true if and only if either A is false or B is

true (or both). The term x = y is true exactly when x is logically equivalent to y .

The third primitive constant is somewhat similar to the axiom of choice in set theory.

Given a function P of type � ) bool , then Eps P denotes some element x of type � such

that P x is true. No other information about x is known. If no such element exists (i.e. P

is equal to (� x : False)), then Eps P denotes a �xed, arbitrary element of type � . To make

choice expressions more readable, they are often written in an alternate syntax using the

" symbol, so that if E is a boolean-valued expression possibly containing occurrences of

x , then Eps (� x : E ) is written as " x : E , and pronounced as \some x such that E holds

(if any)".
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Table 4.1: The primitive constants of HOL

Constant Name Type Notation

implication ! bool ) bool ) bool P ! Q

equality = 0a ) 0a ) bool x = y

choice Eps ( 0a ) bool)) 0a " x : P x

Table 4.2: Some derived constants in Isabelle HOL

Constant Name Type Notation

truth True bool True

falsity False bool False

negation Not bool ) bool :P

conjunction And bool ) bool ) bool P ^Q

disjunction Or bool ) bool ) bool P _Q

universal

quanti�er

All ( 0a ) bool) ) bool 8 x : P x

existential

quanti�er

Ex ( 0a ) bool) ) bool 9 x : P x

unique

existence

Ex1 ( 0a ) bool) ) bool 9! x : P x

function

composition

Comp ( 0a ) 0b)) ( 0c ) 0a)) 0c ) 0b f Æ g

conditional If bool ) 0a ) 0a ) 0a if P then x else y

let Let 0a ) ( 0a ) 0b)) 0b let x=e in f x

4.1.4 De�ned constants

Surprisingly, the above three constants are enough to allow all of the traditional predicate

calculus quanti�ers and Boolean connectives to be de�ned as derived constants. The

names, types and syntax of the derived constants are given in Figure 4.2.

4.1.5 Inference rules and proofs

Most of the axioms and inference rules of higher order logic correspond to those for pred-

icate calculus. Rather than present them all, in Figure 4.1 we show the additional rules

needed to support equality, functions, and choice. Each rule assumes that its constituent

terms are well-formed and that all free variables among the predicates are consistently

typed. In the rules the letters P and Q stand for boolean-valued terms, R stands for a
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P ! Q Q! P

P = Q
(= I)

P = Q P

Q
(= E)

a = a
(re
)

a = b

b = a

(sym) a = b b = c

a = c
(trans)

a = b

(�x: a) = (�x: b) (abs)y
f = g a = b

f a = g b
(comb)

(�x: a) = (�y: a[y=x]) (� conv )[ ((�x: a) b) = a[b=x] (� conv)
f x = g x

f = g
(ext)�

R a

R (Eps R) (" I)

Figure 4.1: Inference rules speci�c to higher order logic. y(abs) holds if x is not free in

the assumptions. [(� conv ) holds if y is not free in a. �(ext) holds if x is not free in the

assumptions, f , or g.

predicate term (i.e. a function-valued term returning a boolean), a, b, and c stand for

terms of any type, x and y stand for variables of any type, and f and g stand for functions.

The intended meaning is that if all of the terms above the bar are provably true, then the

predicate below the bar is provably true. If no terms are displayed above the bar, then

the conclusion holds unconditionally, and is an axiom.

Proofs

A proof in higher order logic is carried out by \pasting together" existing inference rules

and theorems into a tree-like structure. The root of the tree contains the statement being

proved, and the leaves contain axioms or pre-proven theorems. The intermediate nodes

consist of inference rule instantiations. The root of the proof is drawn at the bottom of

the tree, and the leaves at the top. For example, the theorem g ((� x : f x ) a) = g (f a)

has the following natural deduction proof:

g = g
(re
 ) (� x: f x) a = f a

(� conv )

g ((� x: f x) a) = g (f a)
(comb)
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Derived rules

One can also build new inference rules in natural deduction style by constructing proofs

with undischarged premises. For example, the following derived rule, which we call

(� expand ), is often useful:

(�x: P ) a

P [a=x]
(� expand )

The rule states that boolean terms already shown to be true can be �-expanded at the

top-level. This rule is valid, since it is the pasting together of rules already known to be

valid:

(�x: P ) a = P [a=x]
(� conv)

(�x: P ) a

P [a=x]
(= E)

Notice that the premise (�x: P ) a of the derived rule occurs as an undischarged premise

of the pasting. Any use of (� conv) can always be replaced by the corresponding sequence

of existing rules.

The converse of this derived rule is also useful

P [a=x]

(�x: P ) a
(� contr )

which has a similar derivation. One can use derived inference rules to shorten proofs. For

example, we can use (� expand ) and (� contr ) to show2 that ("x: x = z) = z for free

variable z as follows:

z = z
(re
 )

(�x: x = z) z
(� contr )

(�x: x = z) (Eps (�x: x = z))
(" I)

Eps (�x: x = z) = z

(� expand )

Without (� expand ) and (� contr ) the proof takes three extra steps and is too large to

easily �t on this page.

2Remember that ("x : x = z) is syntactic sugar for Eps (�x : x = z)
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4.1.6 Type de�nitions

While in theory the primitive bool and nat types and the function space type operator

are enough to construct any type of interest, in practice it is often useful to de�ne new

types and type operators that are characterized by abstract value constructors and prop-

erties only. Higher order logic theorem provers such as Isabelle provide a type de�nition

mechanism to de�ne new abstract types and type operators safely, by constructing them

as subtypes of existing types.

To de�ne a new type, the user speci�es a name T for the new type, a type expression

� composed from existing types, and a membership predicate P :: � ) bool indicating

which elements of � should represent elements of the new type. The user also has to

exhibit a theorem stating that P holds for at least one element of � , since all types in

higher order logic must be non-empty3. The type de�nition package then generates a new

type constant with name T , a pair of functions Rep T :: T ) � and Abs T :: � ) T ,

and the following axioms:

8 (x :: T ): P (Rep T x )

8 (x :: T ): Abs T (Rep T x ) = x

8 (y :: �): P y ! Rep T (Abs T y) = y

The axioms state that Abs T and Rep T comprise an isomorphism between the elements

of the new type and the domain of P . This isomorphism allows the user to prove abstract

properties about elements of T in terms of its representation elements of type � . Once

these properties have been proven, the user never need refer to the representation elements.

We demonstrate this by example.

The prod type operator

As well as types, the user can de�ne new type operators through the same mechanism by

parameterizing the type expression � with type variables. The number of type variables

in the type expression � determines the number of arguments to the type operator.

3Non-emptiness is required so that the choice operator (") always denotes a meaningful value.
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For example, the ( 0a; 0b) prod type operator, written as ( 0a �
0b), takes two types 0a

and 0b as arguments, and constructs the type of all ordered pairs (x :: 0a; y :: 0b) drawn

from the argument types. We can characterize this type abstractly in terms of three

functions

pair :: 0a ) 0b ) ( 0a �
0b)

fst :: ( 0a �
0b)) 0a

snd :: ( 0a �
0b)) 0b

and three axioms:

(Fst) 8 x y : fst (pair x y) = x

(Snd) 8 x y : snd (pair x y) = y

(ProdEq) 8 (p :: ( 0a �
0b)) q : (p = q) = (fst p = fst q ^ snd p = snd q)

Following Melham[63] we can de�ne the ( 0a �
0b) type operator by specifying the oper-

ator name as prod , the type expression as 0a ) 0b ) bool , and the membership predicate

P as

P � � f : 9 x y : 8 a b: f a b = (a = x ^ b = y)

P f holds for a function f :: 0a ) 0b ) bool when f x y is true for exactly one pair of

elements x :: 0a and y :: 0b. Thus the function f represents the abstract pair (x ; y). The

theorem

P (� x y : x = (" x : False) ^ y = (" y : False))

demonstrates that P holds for at least one element of the representation type.

Once the theorem prover has admitted prod as a new type operator, we can de�ne the

functions pair , fst , and snd as follows:

pair � � x y : Abs prod (� a b: a = x ^ b = y)

fst � � p: " x : 9 y : (Rep prod p) x y

snd � � p: " y : 9 x : (Rep prod p) x y
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From these de�nitions and the generated isomorphism axioms, we can prove the abstract

prod axioms (Fst), (Snd), and (ProdEq) as theorems. Once proved, it is no longer neces-

sary to explicitly refer to the de�nitions of pair , fst , and snd .

4.1.7 Datatypes

Using similar tricks to the prod type de�nition above, it is relatively straightforward,

though tedious, to create an abstract unit type, as well as type operators for sums, lists,

and trees. Structured types such as these are useful enough that several theorem provers

have implemented datatype de�nition packages, which allow the user to concisely specify

a broad class of inductively structured types and automatically prove their abstract prop-

erties as theorems. These packages are patterned after the datatype declaration forms

common to typed functional languages such as ML and Haskell.

A datatype declaration consists of a new type name Ty , possibly parameterized by

type variables 0a1 : : :
0an , and a �nite list of constructor speci�cations. Each constructor

speci�cation consists of a new name Ci and a list of argument types ti;1 : : : ti;ki .

datatype ( 0a1; : : : ;
0an ) Ty = C1 t1;1 : : : t1;k1 j

C2 t2;1 : : : t2;k2 j

: : :

Cm tm;1 : : : tm;km

Each ti;j can either be an existing type, one of the type variables 0a1 : : :
0an , or the

newly-declared type ( 0a1; : : : ;
0an) Ty .

Given such a datatype declaration, the Isabelle datatype package automatically gen-

erates a new type de�nition for Ty and a new constant de�nition for each constructor:

C1 :: t1;1 ) : : :) t1;k1 ) (0a1; : : : ;
0an) Ty

C2 :: t2;1 ) : : :) t2;k2 ) (0a1; : : : ;
0an) Ty

: : :

Cm :: tm;1 ) : : :) tm;km ) (0a1; : : : ;
0an) Ty
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The package also generates a series of theorems about the constructors, including the fact

that no two constructors ever return the same element of Ty , that each constructor of one

or more arguments is an injective function, and that together the constructors comprise

all of the elements of Ty .

In addition, the package generates a structural induction theorem, allowing the user

to prove global properties of the new type. The structural induction theorem states

that a predicate P :: (0a1; : : : ;
0an) Ty ) bool holds for all elements of Ty if for each

constructor Ci , the term P (Ci xi;1 : : : xi;ki ) holds for all xi;1; : : : ; xi;ki . In proving that

P (Ci xi;1 : : : xi;ki ) holds, it is assumed that P xi;j already holds for each argument xi;j of

type (0a1; : : : ;
0an) Ty .

List datatype

As an example, the type of �nite 0a lists can be de�ned by the following datatype decla-

ration

datatype 0a list =Nil j

Cons 0a ( 0a list)

with Nil representing the empty list and Cons x xs representing the list constructed from

head element x :: 0a and tail list xs :: 0a list . Thus the list [1; 2; 3] of the �rst three

positive natural numbers is represented by the expression Cons 1 (Cons 2 (Cons 3 Nil)) of

type nat list .

From the list datatype declaration, the datatype package generates the following in-

formation:

� A new type operator de�nition with name 0a list ,

� Constant de�nitions for the constructors

Nil :: 0a list

Cons :: 0a ) 0a list ) 0a list

� A theorem stating that Nil and Cons always return separate 0a list elements
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8 x xs: Nil 6= Cons x xs

� A theorem stating that Cons is an injective function

8 x y xs ys: (Cons x xs = Cons y ys) = (x = y ^ xs = ys)

� A theorem stating that together Nil and Cons generate all the elements of type

0a list

8 (xs :: 0a list): xs = Nil _ (9 y ys: xs = Cons y ys)

� A structural induction theorem for proving global properties of 0a list elements.

8 (P :: 0a list ) bool) (xs :: 0a list):

P Nil ^ (8 y ys: P ys ! P (Cons y ys)) ! P xs

The 0a list type could alternatively be de�ned directly in terms of existing types, using

the type de�nition package. However, it would be quite a bit of work to manually verify

the necessary list properties.

Soundness of datatype de�nitions

When generating a new datatype de�nition, a theorem prover could simply create the

needed datatype properties as axioms. However in practice most datatype packages con-

struct new datatypes conservatively by invoking the theorem prover's underlying type de�-

nition facility. A representation predicate for the datatype and a set of function de�nitions

corresponding to the datatype constructors is fashioned such that the desired datatype

properties can be proven by the package as theorems. In this way the consistency of the

logic is guaranteed to be preserved.

4.2 The Isabelle theorem prover

Many of the proofs in this thesis have been checked by the generic theorem prover Isabelle

(which we have already referred to in passing). Rather than supporting a single logic, a
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generic theorem prover is designed to support several logics by instantiating custom provers

from a reusable set of program modules. This is based on the observation that many

components of a theorem prover, such as parsing, pretty printing, theory management,

rewriting tactics, etc. do not particularly depend on the actual logic used. Building a

theorem prover able to tackle large veri�cation tasks requires a substantial amount of

infrastructure, so it is bene�cial to reuse common tools when possible. Isabelle has been

instantiated for several logics, including Zermelo-Fraenkel set theory[22], higher order

logic, and domain theory.

4.2.1 Certifying proofs in Isabelle

Isabelle is derived from the Cambridge LCF system and follows the LCF approach to cer-

tifying proofs4. In this approach the user interface to the theorem prover is an interactive

read-eval-print loop to the programming language ML. Axioms and theorems are repre-

sented as elements of an abstract data type called thm. The inference rules of higher order

logic are represented as ML functions that return elements of type thm. The premises of

an inference rule become parameters of the associated ML function.

The user creates new theorems by calling ML procedures, either interactively or from a

batch �le. The static type system of ML ensures that only the axioms and thm-returning

functions of the thm abstract data type can be used to build new theorems. However,

the user can automate common patterns of inference by de�ning ML procedures, called

tactics, that use existing thm functions and values. These tactics are themselves �rst class

thm-returning functions that can be used to build even more powerful tactics, and so on.

In this way very high level tactics that perform thousands of primitive inferences can be

invoked to certify large proofs securely. To illustrate this approach, we provide a few of

Isabelle's axioms and inference rules for higher order logic. In these examples we represent

Isabelle terms as strings for readability. In practice terms are built from an algebraic ML

datatype cterm.

4The LCF systems have had a profound in
uence on the design of both higher order logic theorem

provers and modern typed functional languages. Gordon[27] provides an historical account of LCF and

the theorem provers in
uenced by it.
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"True" : thm

"(x::'a) = x" : thm

"(P::bool --> Q) --> (Q -->P) --> (P = Q)" : thm

beta_conversion : cterm -> thm

transitive : thm -> thm -> thm

The �rst three expressions are axioms. The fourth expression is a function corresponding to

the (� conv) inference rule. Given a cterm of the form "(�x. a) b", the beta conversion

function returns a thm of the form "(�x. a) b = a[b/x]". The function dynamically

checks that its cterm argument is a lambda abstraction applied to an argument, and

that the cterm is well-typed according to the type rules of higher order logic. If these

conditions do not hold then beta conversion raises an exception instead of returning.

The transitive function corresponds to the (trans) inference rule. It takes two equational

thm arguments of the form "a = b" and "b = c", respectively. The function checks that

both arguments are in fact equations, and that they have the common term b. If the

checks succeed then transitive returns the theorem "a = c".

4.2.2 Higher level tactics

Proofs are constructed by connecting inference rules, axioms and theorems together in

some focused way. Patterns of proof construction are called tactics.

Isabelle provides a wealth of tactics, ranging from the primitive inference rules ex-

ported by the thm abstract data type to tactics that rewrite a theorem according to a list

of already-proven equations5, perform prolog-style proof search, and allow the user to in-

teractively prove theorems in a goal-directed fashion. Such high level tactics are essential

to carry out veri�cations of any reasonable size. For example the function

simplify : simpset -> thm -> thm

5Isabelle also provides a primitive rewriting tactic as part of the thm abstract data type for eÆciency
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is one of Isabelle's rewriting tactics. It takes a simpset, which is a collection of equation

theorems indexed by the structure of their left hand sides for rapid pattern matching,

and a thm to rewrite against. It repeatedly rewrites the theorem using the the equations

stored in the simpset as left-to-right rewrite rules until no more equations match any of

the theorem's subterms. The simplify function then returns the reduced theorem.

Readability of Isabelle proofs

One disadvantage of the LCF approach to certifying theorems is that the structure of the

proof itself is not evident, as it is in an English description. Even proofs carried out using

primitive tactics contain very little readable proof structure. For example, the primitive

proof of the theorem (" x : x = t) = t is given as the following ML expression in Isabelle:

refl RS (read_instantiate [("P","(%x. x = ?t)")] selectI)

For this reason we will present subsequent higher order logic proofs in English, rather than

as Isabelle expressions.

4.3 Embedding Hawk

Given a formal mathematical basis such as higher order logic, there are two common

methods for formalizing a programming language such as Hawk within the logic, termed

shallow embedding and deep embedding [10].

Shallow embeddings

In a shallow embedding programming language elements are modeled directly as cor-

responding elements within higher order logic. Thus programming language types are

modeled as types within the logic, programming language numbers as logical numbers,

programming language functions as logical functions, and so on.

A shallow embedding works well when the language features being modeled are already

present within the logic. In this case all of the logical rules for type checking and proving

equality of expressions can be used as is. A disadvantage is that there are typically many

more logical functions than there are programming language functions. For example, it is
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relatively easy in higher order logic to specify the function that solves the halting problem.

These \extra" functions usually make it impossible to prove global properties about the

programming language being modeled. Another disadvantage occurs with respect to the

type system of a language. One often wants to prove global properties of the form \for

all types � , every program of type � has property X. . . ". In many cases proofs of such

properties require the use of case analysis or induction over all types, but typically this

cannot be done within the logic (though see V�olker[91]).

Deep embeddings

A deep embedding consists of one or more inductively de�ned datatypes representing the

abstract syntax of the programming language, and a meaning function (or more generally

a relation) that maps syntactic elements to logical (semantic) elements. In e�ect, one

builds an interpreter for the language being embedded. One way to determine whether an

embedding of a language is shallow or deep is to ask how programming language variables

are modeled. In a shallow embedding, language variables become variables of the logic;

in a deep embedding, language variables become constants of the datatypes representing

the abstract syntax.

A deep embedding allows one to prove global properties by induction over the datatypes

representing the abstract syntax of the language. For example, a deep embedding can often

be used to prove that all programs in the language are computable, or that all well-typed

programs never generate runtime type errors.

Another advantage of a deep embedding is its ability to model language features not

present in the logic. For instance, the Haskell programming language has a sophisticated

notion of overloading based on type classes. While the higher order logic employed by

Isabelle implements single parameter type classes, it does not have support for Haskell's

multi-parameter or constructor classes. These advanced type class features can only be

modeled in Isabelle through a deep embedding.

The primary disadvantage of deep embeddings is the low level at which the language

is speci�ed, and the lack of built in theorem proving support for even the simplest op-

erations. All type checking, parsing, pretty-printing, �-conversion and �-conversion of
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functions, and evaluation of expressions has to be programmed into the theorem prover

as part of the embedding. A well-developed theorem prover like Isabelle has a great deal

of specialized code for performing inference over its native logic, such as specialized uni�-

cation and rewriting tactics, heuristically guided proof search routines, and so on. These

routines either cannot be used on deeply embedded expressions, or have to be manu-

ally re�tted. Also, since embedded language expressions are encoded as abstract syntax

datatypes within the logic, there is an extra level of interpretive overhead when calling

inference routines on them.

Embedding Hawk

In this thesis we are primarily interested in proving equivalence between speci�c microar-

chitecture components, rather than demonstrating global properties over all possible Hawk

programs. In addition, almost the entire subset of Haskell's features that are needed to

implement these components are already present in higher order logic. For these reasons

we have pursued a shallow embedding of Hawk.

4.4 Modeling recursive de�nitions

The one critical feature of Hawk that higher order logic does not directly support is the

ability to de�ne recursive values, such as signals.

In general, a recursive de�nition is given by one or more equations, with the function

(or value) being de�ned on the left hand side of each equation and an expression, possibly

containing an instance of the function being de�ned, on the right hand side.

Unlike most programming languages, Isabelle does not normally allow users to create

arbitrary recursive de�nitions, since doing so could easily lead to false theorems. For

instance, suppose that Isabelle allowed the following recursive function de�nition:

f :: nat! nat

f x = f x+ 1

Isabelle would then add the above equation as a new theorem. But we could then
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subtract f x from both sides to conclude that 0 = 1 is also a theorem, which is clearly

inconsistent.

4.4.1 Axiomatic de�nitions

Isabelle does allow the user to assume the truth of an arbitrary Boolean formula by

declaring it as a new axiom of a theory. Using this facility, the user could create a new

theory and specify a recursive Hawk de�nition as a series of equational axioms. It would

then be the user's responsibility to show outside of the logic that all of the axioms are

consistent. However, since we want to ensure a high level of con�dence in the correctness of

our microarchitecture laws, we would prefer a mechanism that could be veri�ed completely

within the logic, and thus be checked by Isabelle itself.

4.4.2 Well-founded recursion

Rather than specify recursive functions by possibly inconsistent axioms, Isabelle and sev-

eral other higher order logic (HOL) theorem provers[29, 73, 81] provide well-founded re-

cursive function de�nition packages, where new functions can be de�ned conservatively.

Recursive functions are de�ned by giving a series of pattern matching reduction rules, and

a well-founded relation.

For example, the map function applies a function f pointwise to each element of a

�nite list. This function can be recursively de�ned in Isabelle by the following equations:

map :: (�! �)! � list ! � list

map f [] = []

map f (x#xs) = (f x)# (map f xs)

The �rst rule states that map applied to the empty list, denoted by [], is equal to the

empty list. The second rule states that map applied to a list constructed out of the head

element x and tail list xs, denoted by x#xs, is equal to the list formed by applying f to

x and map f to xs recursively.
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To de�ne a function using well-founded recursion, the user must also supply a well-

founded relation on one of the function's arguments6. A well-founded relation (<) is a

relation with the property that there exists no strictly decreasing in�nite sequence of

elements x1; x2; x3; x4; : : :.

Given a well-founded relation the recursive de�nition package checks each reduction

rule, ensuring every recursive call on the right-hand side of the rule is applied to a smaller

argument than on the left-hand side, according to the relation.

In the case of map, we can supply the well-founded relation

xs < ys � length xs < length ys

The relation holds when the number of elements in the relation's left-hand list argument

is less than the number of elements in the relation's right-hand argument. The de�nition

of map contains only one recursive rule, and it is easy to prove that the xs argument of

the recursive call of map is smaller than the (x#xs) argument on the left-hand side of the

rule, according to this relation. In general, well-founded relations ensure that there are

no in�nite chains of nested recursive calls.

4.4.3 Coinductive types and corecursive functions

Although well-founded recursion is a useful de�nition technique, there are many recursive

de�nitions that fall outside its scope (including most of the recursively de�ned circuits in

Hawk). For instance, there is a non-inductive type of lazy lists in the Isabelle[73] theorem

prover, denoted by � llist , that is the set of all �nite and in�nite lists of type �. The

function lmap over this type is uniquely speci�ed by the following recursive equations7:

lmap f [] = []

lmap f (x#xs) = (f x)# (lmap f xs)

lmap cannot be de�ned using well-founded recursion since the length of an in�nite list

does not decrease upon taking its tail. In fact, the expression

6Some well-founded recursion packages only allow single-argument functions to be de�ned. In this case

one can gain the e�ect of multi-argument curried functions by tupling.
7Isabelle uses a di�erent syntax for lazy lists than for �nite lists. In this dissertation we use the same

syntax for both types.
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lmap f (x1#x2#x3# : : :) can be unfolded using the above rules to an in�nite chain of

recursive calls:

lmap f (x1#x2#x3# :::)

=

(f x1)# (lmap f (x2#x3# :::))

=

(f x1)# (f x2)# (lmap f (x3# :::))

=

(f x1)# (f x2)# (f x3)# (lmap f (:::))

=

...

De�ning functions corecursively

The � llist type is an example of a coinductive type. Although there is no general induction

principle for coinductive types, one can use principles of coinduction to show that two

coinductive values are equal, and one can build coinductive values using corecursion.

In Isabelle's theory of lazy lists[75], for instance, potentially in�nite lists are built

through the llist corec operator, which has type � ! (� ! unit + (� � �)) ! (� llist).

The llist corec operator uniquely satis�es the following recursion equation:

llist corec b g =

8
><
>:

[]; if g b = Inl ()

(x#(llist corec b0 g)); if g b = Inr (x; b0)

The llist corec operator takes as arguments an initial value b and a function g. When g is

applied to b, it either returns Inl (), indicating that the result list should be empty, or the

value Inr (x; b0), where x represents the �rst element of the result list, and b
0 represents

the new initial value to build the rest of the list from. Function g is called iteratively in

this fashion, constructing a potentially in�nite list.

Using llist corec, we can de�ne lmap corecursively as follows:

lmap f xs � llist corec xs (map head f)

where



95

map head :: (�! �)! � llist ! (unit + (� � � llist))

map head f xs � case xs of

[] ) Inl ()

j (x#xs 0) ) Inr (f x; xs 0)

We could then prove by coinduction that this de�nition satis�es lmap's recursive equations.

Needless to say, this is not the most intuitive speci�cation of lmap, and most people would

prefer to specify such functions using recursion, if possible. More importantly, corecursive

de�nitions do not match the recursive style of Hawk speci�cation we have developed so

far.

4.5 De�ning recursive functions as �xed points

In the remainder of this chapter and continuing in Chapter 5 we will present a more

general approach that will allow us to de�ne functions such as lmap recursively. The basic

steps required in our framework to prove that a set of recursive equations is well de�ned

in higher order logic are as follows. The use must:

� Express the recursive equations as a �xed point of a functional F .

� Show that for any two di�erent potential solutions supplied to F , F maps them to

two potential solutions that are closer together, in a suitable sense.

� Invoke the main result (Section 5.3) to show that the above property of F is suÆcient

to guarantee that there is a unique solution to the original set of recursive equations.

In this section we deal with the �rst step.

4.5.1 Unique �xed points

We can convert a system of pattern matching recursive equations into a functional form

by employing a standard technique from domain theory[32, 90]. We start by recasting

the equations as a single recursive equation using argument destructors or nested case-

expressions. For example, the recursive equations de�ning the lmap function are equivalent

to the following single recursive equation:
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lmap f l = case l of

[] ) []

j (x#xs) ) (f x)# (lmap f xs)

Given f , we can reify this pattern of recursion into a non-recursive functional F of

type (� llist ! � llist)! (� llist ! � llist) that takes a function parameter lmap f :

F lmap f = �l : case l of

[] ) []

j (x#xs) ) (f x)# (lmap f xs).

Using the recursive equations for lmap, it is easy to show that lmap f = F (lmap f). The

value lmap f is called a �xed point of F . In general, an element x of type � is a �xed point

of a function g of type �! � if x = g x. A function may have many �xed points, or none

at all. Considering g as a functional representation of a system of recursive equations, each

�xed point of g represents a valid solution to the system. If the function g has exactly

one �xed point x, then we can think of g as de�ning the value x. We use Hilbert's choice

operator (") to formalize this notion in HOL:

�x :: (�! �)! �

�x g � "x : x = g x ^ (8 y z : y = g y ^ z = g z �! y = z)

The expression �x g represents the unique �xed point of g, when one exists. If g does not

have a unique �xed point, then �x g denotes an arbitrary value.

4.5.2 Properties of unique �xed points

As an aside, several nice properties hold when one can establish that a system of recursive

equations has a unique solution. For example, unique �xed points can sometimes \absorb"

functions applied to other �xed points.

Lemma 1 Given functions F : � ! �, G : � ! �, f : � ! �, and value x : �, such

that x is a (not necessarily unique) �xed point of F , G has unique �xed point �xG, and

f Æ F = G Æ f , then f x = �xG.
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Proof: We have f x = f (F x) = G (f x). Thus f x is a �xed point of G. Since G's �xed

point is unique, then f x = �xG 2

Unique �xed points can also be \rotated", in the following sense:

Lemma 2 If the composition of two functions g : � ! � and h : �! � has a unique �xed

point �x (g Æ h), then h Æ g also has a unique �xed point, and �x (g Æ h) = g (�x (h Æ g)).

Proof: We �rst note that h (�x (g Æ h)) = h ((g Æ h) (�x (g Æ h))) = (h Æ g) (h (�x (g Æ h))).

Thus h (�x (g Æ h)) is a �xed point of h Æ g. Next, suppose that x is an arbitrarily chosen

�xed point of h Æ g. Then g x = g ((h Æ g)x) = (g Æ h) (g x). Thus g x is a �xed point of

g Æ h. Since g Æ h has a unique �xed point, then g x = �x (g Æ h). Applying h to both sides

of this equation, we have h (g x) = h (�x (g Æ h)). Since x is a �xed point of h Æ g, we can

reduce the above equation to x = h (�x (g Æ h)), which demonstrates that the �xed point

of h Æ g is unique. Using the de�nition of �x, we have �x (h Æ g) = h (�x (g Æ h)). Applying

g to both sides of this equation and using the unique �xed point property of g Æ h, we

conclude that g(�x (h Æ g)) = �x (g Æ h) 2

Although we will not use Lemma 1 or Lemma 2 explicitly, they justify many of the

graphical transformations that have been undertaken in Chapter 3. In the next chapter

we will show how to �nd unique �xed point solutions to recursive function de�nitions in

a manner that can be semi-automated in Isabelle.



Chapter 5

Converging equivalence relations

While unique �xed points are a useful de�nition mechanism, it can be diÆcult to show

that they exist for a given function. A direct proof usually involves constructing an explicit

�xed point witness using other de�nition techniques, such as corecursion or well-founded

recursion. Little e�ort seems to be saved.

We propose an alternative proof technique, based on concepts from domain theory[32,

90] and topology[12, 80] where one builds a collection of ever-closer approximations to

the desired �xed point, and shows that the limit of these approximations exists, is a �xed

point of the function under consideration, and is unique. The approximation process can

be parameterized to some extent, and reused across multiple de�nitions that are \similar"

enough. Furthermore these parameterized approximations can be composed hierarchically,

yielding more powerful approximation techniques.

5.1 De�nition

To make the notion of approximation precise, we need a way of stating how \close" two

potential approximations are to each other. One approach would be to de�ne a suitable

metric space[12] and use the corresponding distance function, which returns either a ratio-

nal or real number, given any two elements in the domain of the metric space. However,

proving that a series of approximations converges to a limit point often requires reasoning

about exponentiation and division over a theory of rationals or reals. An alternative way

to measure \closeness", which we call converging equivalence relations (CER), instead only

involves reasoning about well-founded sets, such as the set of natural numbers, or the set

98
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of �nite lists. In many cases we can prove a unique �xed point exists by performing a sim-

ple induction over the natural numbers, something which all of the current HOL theorem

provers support well.

A converging equivalence relation consists of:

� A type �, called the resolution space

� A type � , called the target space

� A well-founded, transitive relation (<) over type �, called a resolution ordering

� A three-argument predicate (�) of type (� ! � ! � ! bool), called an indexed

equivalence relation. Given an element i of type �, and two elements x and y of type

� , we denote the application of (�) to i, x and y as (x
i
� y), and if this value is true,

then we say that x and y are equivalent at resolution i.

The resolution ordering (<) and indexed equivalence relation (�) must satisfy the prop-

erties in Fig. 5.1, for arbitrary i; i
0 : �; x; y; z : � ; and f : � ! � . Axioms (5.1), (5.2),

and (5.3) state that (�) must be an equivalence relation at each resolution i. Axiom (5.4)

states that if a resolution i has no lower resolutions, then (�) treats all target elements

as equivalent at that resolution. Such resolutions are called minimal. There is always

at least one minimal resolution (and perhaps more than one), since (<) is well-founded.

Axiom (5.5) states that if two elements are equivalent at a particular resolution, then

they are equivalent at all lower resolutions. Thus higher resolutions impose �ner-grained,

but compatible, partitions of the target space than lower resolutions do. Although no

particular resolution may distinguish all elements, (5.6) states that if two elements are

equivalent at all resolutions, then they are in fact equal.

Axioms (5.7) and (5.8) deal with \limits" of approximations. First some terminology:

a function f : �! � from the space of resolutions to the target space of elements is called

an approximation map. An approximation map f is convergent up to resolution i if for all

resolutions j and j
0 such that j < j

0
< i, then (f j) is equivalent at resolution j to (f j0).

Note that it is possible for (f i) itself not to be equivalent to any of the lower-resolution
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x

i
� x (5.1)

x

i
� y �! y

i
� x (5.2)

x

i
� y ^ y

i
� z �! x

i
� z (5.3)

(8j ::(j < i)) �! x

i
� y (5.4)

x

i0

� y ^ i < i
0
�! x

i
� y (5.5)

(8j : x
j
� y) �! x = y (5.6)

(8j; j0 : j < j
0
< i �! (f j)

j
� (f j0)) �! (9z :8j < i : z

j
� (f j)) (5.7)

(8j; j0 : j < j
0
�! (f j)

j
� (f j0)) �! (9z :8j : z

j
� (f j)) (5.8)

Figure 5.1: The CER axioms. Each of these axioms must hold for arbitrary i, x, y, and f .

(f j)'s. An approximation map f is globally convergent if for all resolutions j and j
0 such

that j < j
0, then (f j)

j
� (f j0).

Axiom (5.7) states that if f is convergent up to resolution i, then there exists a limit-like

element z that is equivalent at each resolution j < i to the corresponding (f j) approx-

imation (there may be multiple such elements). Axiom (5.8) states that if f is globally

convergent, then there exists a limit element z that is equivalent to each approximation

(f j) at resolution j.

5.2 Examples

5.2.1 Discrete CER

The simplest useful CER has as a resolution space a two-element type containing the values

? and >, with (? < >), and a target space � with (�) de�ned such that (x
?
� y) � True,

and (x
>
� y) � (x = y). Axioms (5.1) through (5.6) are easy to verify. Axiom (5.7) holds

for any element. The limit element satisfying (5.8) is f >.

5.2.2 Lazy list CER

We can construct a converging equivalence equation for comparing coinductive lists by

comparing the �rst i elements of two lazy lists l1 and l2 at a given resolution i. To perform
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the comparison, we make use of the ltake function, with type nat! � llist ! � list . The

expression (ltake n xs) returns a �nite list consisting of the �rst n elements of xs . If xs

has fewer than n elements, then ltake returns the whole of xs . The ltake function can be

de�ned by well-founded recursion on its numeric argument with the following recursive

equations:

ltake 0 xs = []

ltake (n+ 1) [] = []

ltake (n+ 1) (x# xs) = x#(ltake n xs)

We then de�ne the lazy list CER with the natural numbers as the resolution space, (� llist)

as the target space, the usual ordering on the natural numbers for (<), and (�) de�ned

as follows:

xs
i
� ys � (ltake i xs = ltake i ys):

Axioms (5.1) through (5.3) hold trivially. The only minimal resolution in this CER is

0, and since (ltake 0xs) = [], then (5.4) holds. If two lazy lists are equal up to the �rst

i positions, then they are equal up to any i
0
< i position, so (5.5) holds. Axiom (5.6)

reduces to the Take Lemma[75], which can be proved by coinduction.

Axioms (5.7) and (5.8) require us to construct appropriate limit elements, given an

approximation map. Both limit elements can be constructed by a single function, which

we call llist diag . For a given approximation map f , the limit elements may be of in�nite

length, so we de�ne llist diag by corecursion, using llist corec:

llist diag f � llist corec 0 (nthElem f)

where

nthElem f n �

8
><
>:

Inl (); if ldrop n (f(n+ 1)) = []

Inr (x; n+ 1); if ldrop n (f(n+ 1)) = (x# xs)

The helper function nthElem uses the ldrop function on lazy lists. The ldrop function

has type nat! (� llist)! (� llist), and (ldrop i xs) removes the �rst i elements from xs ,

returning the remainder. Like ltake , it is de�ned by well-founded recursion on its numeric
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f  7    = [x0,     x1,     x2,     x3,     x4]

f  6    = [x0,     x1,     x2,     x3,     x4]

(b)

f  0    = . . .

f  1    = [x0,        . . .

f  2    = [x0,     x1,        . . .

f  3    = [x0,     x1,     x2,        . . .

f  4    = [x0,     x1,     x2,     x3,        . . .

f  5    = [x0,     x1,     x2,     x3,     x4,       . . .

(a)

f  0    = . . .

f  1    = [x0,        . . .

f  2    = [x0,     x1,        . . .

f  3    = [x0,     x1,     x2,        . . .

f  4    = [x0,     x1,     x2,     x3,        . . .

f  5    = [x0,     x1,     x2,     x3,     x4,        . . .

f  6    = [x0,     x1,     x2,     x3,     x4,     x5,        . . .

f  7    = [x0,     x1,     x2,     x3,     x4,     x5,     x6,        . . .

Figure 5.2: The llist diag function constructs a limit list from an approximation map. In

(a) the approximation map converges to a �nite list; In (b) to an in�nite list.

argument:

ldrop 0 xs = xs

ldrop (n+ 1) [] = []

ldrop (n+ 1) (x# xs) = ldrop n xs

The overall action of llist diag is to construct a so-called diagonal list from the approx-

imation map f , where the nth element of the result list is drawn from the nth element of

approximation f (n+ 1), if the nth element exists. If the nth element does not exist (i.e.,

the length of f (n+1) is less than n), then the result list is terminated at that point. This

process is shown in Fig. 5.2. There are two possible cases. In Fig. 5.2-a, we see that the

approximation map f converges to the �nite list [x0; x1; x2; x3; x4]. In Fig. 5.2-b, the

approximation map f is converging to the in�nite list [x0; x1; x2; x3; x4; x5; x6; : : :]

It turns out that for any CER whose (<) relation is the less-than ordering on the

natural numbers, the following property implies both (5.7) and (5.8):

8f : (8i : (f i)
i
� (f (i+ 1))) �! (9x :8i : x

i
� (f i)):

With some work, one can show that this property holds for the lazy list CER by supplying

llist diag f as the existential witness element for x.

5.3 Contracting functions and the CER �xpoint theorem

In the theory of metric spaces, a contracting function is a function F such that for any

two points x and y, F x is closer to F y than x is to y, given a suitable distance function.
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Banach's theorem states that all contracting functions over suitable metric spaces have

unique �xed points. We can de�ne an analogous notion over a CER:

De�nition 1 A function F is contracting over a CER given by (<) and (�) if for all

resolutions i and target elements x and y,

(8i0 < i : x

i0

� y) �! (F x)
i
� (F y):

Intuitively, a function is contracting if, given two elements x and y that are close enough

together at all lower resolutions i0 < i to satisfy the CER, but are potentially too far

away at resolution i, then F maps them to two elements that are now close enough at

resolution i.

For example, the function consZero xs � (0#xs) is contracting over the lazy list CER,

since given any i and two lazy lists xs and ys,

(8i0 < i : ltake i0 xs = ltake i0 ys) �! ltake i (consZero xs) = ltake i (consZero ys):

The main result of this chapter is as follows:

CER Fixpoint Theorem A contracting function F over a CER has a unique �xed

point.

The proof is discussed in Sect. 5.9. For now, we would like to apply this theorem to

de�ne some simple recursive functions over lazy lists.

5.4 Recursive de�nitions over coinductive lists

To begin with, we can simplify the de�nition of a contracting function F over a CER when

the (<) relation of that CER is the less-than relation over the natural numbers. In this

case, De�nition 1 reduces to

8 i x y : x
i
� y �! (F x)

i+1
� (F y): (5.9)

Specializing this formula for the lazy list CER, we have that F is contracting on lazy lists

if

8 i x y : ltake i x = ltake i y �! ltake (i+ 1) (F x) = ltake (i+ 1) (F y): (5.10)
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5.4.1 De�ning iterates

Let us establish that the following recursive equation, de�ned over x and f , has a unique

solution, and is thus a de�nition:

iterates = (x#(lmap f iterates)) (5.11)

This equation builds the in�nite list [x; f x; f (f x); : : :]. We �rst de�ne the non-recursive

functional F that characterizes this equation:

F iterates 0 � (x#(lmap f iterates 0)):

and then show that it is a contracting function. To do this we rely on (5.10), and assume

we have two arbitrary lazy lists xs and ys such that ltake i xs = ltake i ys . We now need

to show that ltake (i + 1) (F xs) = ltake (i + 1) (F ys). Using a process of equational

simpli�cation we are able to reduce the goal to the assumption, as follows:

ltake (i+ 1) (F xs) = ltake (i+ 1) (F ys)

, ltake (i+ 1) (x#(lmap f xs)) = ltake (i+ 1) (x#(lmap f ys))

, ltake i (lmap f xs) = ltake i (lmap f ys)

( ltake i xs = ltake i ys

The simpli�cation relies on the following facts, each proved by induction on i:

(ltake (i+ 1) (z# xs) = ltake (i+ 1) (z# ys)) , (ltake i xs) = ltake i ys)

(ltake i (lmap f xs) = ltake i (lmap f ys) ( (ltake i xs = ltake i ys)

These facts illustrate a nice property of this proof: We did not have to expand the def-

initions of (#) or lmap during the simpli�cation process, relying instead on an abstract

characterization of their behavior with respect to ltake . This turns out to be the case for

many functions, even recursive ones de�ned by contracting functions. In general we can

often incrementally de�ne recursive functions and prove properties about how they behave

with respect to (�), without having to expand the de�nitions of functions making up the

body of the recursive de�nition.
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5.5 Composing converging equivalence relations

The lazy list CER allows us to give recursive de�nitions of individual lazy lists, but

we are often more interested in recursively de�ning functions that transform lazy lists.

Fortunately, there are several CER combinators that allow us to build CERs over complex

types, if we have CERs that operate on the corresponding atomic types.

Local and global limits

When constructing a new CER C
0 out of an existing CER C, we usually have to show

(5.7) and (5.8) hold for C 0 by invoking (5.7) and (5.8) for C, to create the necessary limit

witness elements. To make this process explicit, we use Hilbert's choice operator (") to

create functions that return these witness elements1, given an appropriate approximation

mapping f :

local limit :: (�! �)! �! �

local limit f i � ("z :8j < i : z

j
� (f j)) (5.12)

global limit :: (�! �)! �

global limit f � ("z :8j : z
j
� (f j)) (5.13)

We can use the axiom of choice for HOL, as well as (5.7) and (5.8) to prove the basic

properties we want local limit and global limit to have for any CER given by (<) and (�):

(8j; j0 : j < j
0
< i �! (f j)

j
� (f j0)) �! (8j < i : (local limit f i)

j
� (f j)) (5.14)

(8j; j0 : j < j
0
�! (f j)

j
� (f j0)) �! (8j : (global limit f)

j
� (f j)) (5.15)

Function-space CER

The functions local limit and global limit allow us to concisely specify the limit elements

of CER combinators. For example, given a CER C from resolution space � to target space

1This is merely a convenience. The CER properties can be shown with a little more work in Isabelle

using (5.7) and (5.8) directly.
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� given by (<) and (�), we can construct a new function-space over C CER with the

same resolution ordering (<), and a new indexed equivalence relation (�0) with type

� ! (� ! �) ! (� ! �) ! bool, de�ned as

g

i

�
0
h � 8x : (g x)

i
� (hx):

The limit elements satisfying (5.7) and (5.8) can be given as

local limit fun f i � (�x : local limit (�i : f i x) i)

global limit fun f � (�x : global limit (�i : f i x))

Given these limit-producing functions, it is relatively easy to show that the function-space

over C CER satis�es the CER axioms. As an example of the kind of reasoning involved,

we prove that local limit fun satis�es (5.7).

Lemma 3 Given a CER (<;�), approximation map f of type � ! (� ! �), and (�0)

de�ned as above, then if (8j; j0 : j < j
0
< i �! (f j)

j

�
0 (f j0)),

then 8j : local limit fun f i
j

�
0 (f j).

Proof: Given the de�nition of (�0) and local limit fun, we must show for arbitrary x

and j that local limit f i x
j
� f j x. Let f 0 � �i : f i x. Then f

0 is an approximation map

of type �! � . Thus we need to show that local limit f 0 i
j
� f

0
j. By de�nition of (�0) and

the premise of the lemma, we have (8j; j0; x: j < j
0
< i �! (f j x)

j
� (f j0 x)). Applying

the de�nition of f 0, we have (8j; j0: j < j
0
< i �! (f 0 j)

j
� (f 0 j0)). By (5.14) we have

8j < i: local limit f 0 i
j
� (f 0 j), as desired. 2

5.5.1 De�ning recursive functions with the function-space CER

De�ning lmap

We can apply the function-space CER to de�ne lmap recursively. The recursion equations

for lmap are:

lmap f [] = []

lmap f (x#xs) = (f x)# (lmap f xs)
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We translate the equations into a non-recursive form (parameterized over f)

F lmap
0
� (�xs : case xs of

[] ) []

j (y# ys) ) (f y)# (lmap
0 ys)):

We then need to show that �xF is the unique �xed point of F by proving that F is a

contracting function on the function-space over lazy lists CER. By (5.9) we must show for

arbitrary resolution i and functions g and h, that (g
i

�
0
h �! (F g)

(i+1)

�
0 (F h)). Expand-

ing de�nitions, we obtain

g

i

�
0
h �! (F g)

(i+1)

�
0 (F h)

, (8 xs : g xs
i
� h xs) �! (8 xs : (F g xs)

(i+1)
� (F h xs))

, (8 xs : ltake i (g xs) = ltake i (h xs)) �!

(8 xs : ltake (i+ 1) (F g xs) = ltake (i+ 1) (F h xs)):

So, to prove F is contracting we take an arbitrary resolution i and two arbitrarily chosen

functions g and h such that (8 xs : ltake i (g xs) = ltake i (h xs)), and show for an arbitrary

xs that ltake (i+ 1) (F g xs) = ltake (i+ 1) (F h xs). There are two cases to consider:

case xs = []:

ltake (i+ 1) (F g []) = ltake (i+ 1) (F h [])

, ltake (i+ 1) [] = ltake (i+ 1) []

, True.

case xs = (y#ys):

ltake (i+ 1) (F g (y#ys)) = ltake (i+ 1) (F h (y#ys))

, ltake (i+ 1) ((f y)# (g ys)) = ltake (i+ 1) ((f y)# (h ys))

, ltake i (g ys) = ltake i (h ys)

, True fby assumptiong.
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Given the de�nition of F and basic lemmas about ltake, Isabelle's high-level simpli�cation

tactics allow the above proof to be carried out in two steps. The proof completes in about

a second on a 266MHz Pentium II.

De�ning lappend

We can apply the function-space CER combinator repeatedly, to prove that multi-argument

curried functions have unique �xed points. As a concrete example, the curried function

lappend has type � llist ! � llist ! � llist . It takes two lazy list arguments xs and ys

and returns a new list consisting of the elements of xs followed by the elements of ys . The

recursive equations for lappend are

lappend [] ys = ys

lappend (x#xs) ys = (x# lappend xs ys)

To prove that these equations have a unique solution, we apply the function-space CER

combinator to the lazy list CER to obtain a new CER C
0. We then apply the function-

space CER combinator again to C
0, obtaining a new CER C

00 with the usual less-than

relation on nat for (<) and the following indexed equivalence relation (�00):

g

i

�
00
h � (8 xs ys : ltake i (g xs ys) = ltake i (h xs ys)):

Next, we convert the recursive equations for lappend into a non-recursive function F :

F lappend 0 � (�xs ys : case xs of

[] ) ys

j (x# xs 0) ) (x#(lappend 0 xs 0 ys))).

By (5.9) we must show for arbitrary resolution i and functions g and h, that

(8 xs ys : ltake i (g xs ys) = ltake i (h xs ys)) �!

(8 xs ys : ltake (i+ 1) (F g xs ys) = ltake (i+ 1) (F h xs ys)):

So we take arbitrary i, xs , and ys , and prove

ltake (i+ 1) (F g xs ys) = ltake (i+ 1) (F h xs ys)

assuming we have (8 xs ys : ltake i (g xs ys) = ltake i (h xs ys)). There are two cases to

consider, depending on whether xs is empty or not:
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case xs = []:

ltake (i+ 1) (F g [] ys) = ltake (i+ 1) (F h [] ys)

, ltake (i+ 1) ys = ltake (i+ 1) ys

, True.

case xs = (x#xs 0):

ltake (i+ 1) (F g (x#xs 0) ys) = ltake (i+ 1) (F h (x#xs 0) ys)

, ltake (i+ 1) (x#(g xs 0 ys)) = ltake (i+ 1) (x#(h xs 0 ys))

, ltake i (g xs 0 ys) = ltake i (h xs 0 ys)

, True fby assumptiong.

Thus we can conclude that lappend has a unique �xed point de�nition. We were able to

carry out this proof in Isabelle in three steps, again taking about a second of CPU time.

5.5.2 Other CER combinators

CER combinators can also be de�ned over product and sum types. The lazy list CER

can be generalized to work over any coinductive type that has a notion of depth, such as

coinductive trees. A more powerful function-space CER is discussed in Sect. 5.7.

5.6 Demonstrating equality between coinductive elements

Converging equivalence relations can also be useful in showing that two elements of a target

space are equal. Axiom (5.6) (restated below) says that to show two target elements x

and y are equal, one simply needs to show they are equivalent at all resolutions j

(8j : x
j
� y) �! x = y:

We can often demonstrate that x and y are equivalent at all resolutions by well-founded

induction, since (<) is a well-founded relation. For example, given two arbitrary lazy lists

ys and zs, we can prove the following lemma about lappend .

Lemma 4 8xs : ltake i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys zs)):
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Proof

case i = 0:

Take xs to be an arbitrary lazy list. Then

ltake i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys zs))

, ltake 0 (lappend (lappend xs ys) zs) = ltake 0 (lappend xs (lappend ys zs))

, [] = []

, True.

case i = (k + 1):

Induction hypothesis:

Assume (8xs : ltake k (lappend (lappend xs ys) zs) =

ltake k (lappend xs (lappend ys zs)))

Take xs to be an arbitrary lazy list. Then

ltake i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys zs))

, (ltake (k + 1) (lappend (lappend xs ys) zs) =

ltake (k + 1) (lappend xs (lappend ys zs)))

subcase xs = []:

, (ltake (k + 1) (lappend (lappend [] ys) zs) =

ltake (k + 1) (lappend [] (lappend ys zs)))

, (ltake (k + 1) (lappend ys zs) =

ltake (k + 1) (lappend ys zs))

, True.

subcase xs = (x# xs 0):

, (ltake (k + 1) (lappend (lappend (x# xs 0) ys) zs) =

ltake (k + 1) (lappend (x# xs 0) (lappend ys zs)))

, (ltake (k + 1) (lappend (x#(lappend xs 0 ys)) zs) =

ltake (k + 1) (x#(lappend xs 0 (lappend ys zs))))



111

, (ltake (k + 1) (x#(lappend (lappend xs 0 ys) zs)) =

ltake (k + 1) (x#(lappend xs 0 (lappend ys zs))))

, (ltake k (lappend (lappend xs 0 ys) zs) =

ltake k (lappend xs 0 (lappend ys zs)))

, True fby induction hypothesisg.

This proof took four steps in Isabelle, and relied on the following facts about lappend ,

each proved in two steps by expanding lappend 's recursive de�nition once and simplifying:

lappend [] ys = ys

lappend (x#xs) ys = x#(lappend xs ys)

Given Lemma 4 and CER axiom (5.6) instantiated to the lazy list CER, we can then easily

show in one Isabelle step that lappend (lappend xs ys) zs = lappend xs (lappend ys zs).

5.7 De�ning functions with unbounded look-ahead

The list-processing functions de�ned so far examine their arguments by performing at most

one pattern match on a lazy list before producing an element of a result list. However, there

is a class of functions that can examine a potentially in�nite amount of their argument

lists before deciding the next element to output. An example is the lazy �lter function

of type (� ! bool) ! � llist ! � llist , which takes a predicate P and a lazy list xs , and

returns a lazy list of the same type consisting only of those elements of xs satisfying P . A

candidate set of recursion equations for this function might be

l�lter P [] = []

l�lter P (x#xs) = l�lter P xs; if :(P x)

l�lter P (x#xs) = x#(l�lter P xs); if P x

Sadly, this intuitively appealing set of equations does not completely de�ne l�lter . If l�lter

is given an in�nite list xs , none of whose elements satisfy P , then the above equations do

not specify what the result list should be. The l�lter function is free to return any value

at all in this case. In other words, the equations do not have a unique solution.
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Happily, however, we can remedy the situation as follows: We de�ne by induction over

nat a predicate �rstPelemAt of type (� ! bool) ! � llist ! nat! bool. The expression

(�rstPelemAt P xs i) is true if xs has at least (i + 1) elements and i is the position of

the �rst element of xs satisfying P . We can then de�ne the predicate never of type

(�! bool)! � llist ! bool as

never P xs � 8 i ::(�rstPelemAt P xs i)

which is true when there are no elements in xs satisfying P . If we modify the initial

recursive equations as follows:

l�lter P xs = [], if never P xs

l�lter P (x#xs) = l�lter P xs; if :(never P xs) ^ :(P x)

l�lter P (x#xs) = x#(l�lter P xs); if P x

then the set of equations does indeed have a unique solution. This function is not com-

putable, since the predicate never can scan an in�nite number of elements, but it is

nevertheless mathematically valid in HOL. We can de�ne a well-founded function-space

CER combinator that is powerful enough to prove this. Given a CER C with (<) of type

�! �! bool and (�) with type �! � ! � ! bool, and another well-founded transitive

relation (�) of type � ! � ! bool, we de�ne our new CER C
0 with (<0) and (�0) as

follows:

(<0) :: (� � �)! (� � �)! bool

(�0) :: (� � �)! (� ! �)! (� ! �)! bool

(a0; t0) <0 (a; t) � a
0
< a _ (a0 = a ^ t

0
� t)

g

(a;t)

�
0
h � 8 a

0
t
0
: (a0; t0) �0 (a; t) �! (g t0)

a0

� (h t0)

It is a fair amount of work to show that C 0 is in fact a CER, so we elide the details.

Intuitively C
0 allows us to generalize well-founded recursion in the following way: A

well-founded recursive function is forced to have its argument decrease in size on every

recursive call. With C 0, the function being de�ned is allowed a choice; it can either decrease
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the size of its argument when making a recursive call, or not decrease its argument size

but then make sure the element it is returning is \larger" than the element returned from

its recursive call.

In the case of functions returning lazy lists, a \larger" lazy list is one that looks just

like the lazy list returned by the recursive call, but with at least one extra element added

to the front.

For us to use C 0 on l�lter , we need to specify a suitable well-founded transitive relation

(�). The relation we choose is one that holds when the �rst element satisfying P occurs

sooner on the left-hand argument than on the right-hand argument:

xs � ys � �rstPelem P xs < �rstPelem P ys

where

�rstPelem P xs = 0; if never P xs

= 1 + ("i :�rstPelemAt P xs i), otherwise

We arbitrarily decide that a list containing no P -elements is �-smaller than any list with

at least one P -element.

When analyzing the revised recursive equations for l�lter , if xs has no P -elements then

we return immediately, otherwise xs has to have at least one P -element. If that element

is not at the head of the list, then the tail of the list is �-smaller than xs. If the �rst

P -element is at the head of xs, then the tail of the list is not �-smaller than xs , but the

output list has one more element than the list returned by the recursive call. Thus we

informally conclude that l�lter is uniquely de�ned.

We have also proved this fact formally in Isabelle. After inductively proving various

simple lemmas about �rstPelemAt , never , and �rstPelem , we were able to prove that

l�lter is uniquely de�ned in �ve steps. We �rst translated the recursive equations above

into a contracting function F . We used C
0 prove that F is contracting, �rst by expanding

the de�nition of F and simplifying, and then by performing a case analysis (no induction

required!) on whether the nat component of the current resolution was equal to zero. It

took Isabelle two seconds to perform the proof.
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Although we had to prove lemmas about �rstPelemAt , never , and �rstPelem , the

proofs are not hard and it turns out we can reuse these results when de�ning other func-

tions that perform unbounded search on lazy lists. For example, the l
atten function takes

a lazy list of lazy lists, and 
attens all of the elements into a single lazy list. The l
atten

function can also be uniquely de�ned using never :

l
atten xss = [], if never (�xs :xs 6= []) xss

l
atten (xs#xss) = lappend xs (l
atten xss); otherwise

The proof proceeds in Isabelle exactly as it does for l�lter except that we perform one

additional case analysis on whether xs = []. The proof takes three seconds to complete.

5.8 Generalizing well-founded recursion

This section discusses how WFFun, the well-founded function space CER of Section 5.7

can be used to show that well-founded recursive function de�nitions have unique solutions.

WFFun is parameterized by two arguments: A well-founded relation (�) and a base

CER C. In Section 5.7, C was used to allow the function f being de�ned to call itself

recursively on arguments that were not strictly (�)-smaller, provided that in this case f

also returned a \larger" (i.e. more de�ned) result than the result of the recursive call. C

was used to measure the de�nedness of the returned results.

In contrast, a well-founded function de�nition can call itself recursively on only strictly

(�)-smaller arguments, but no requirements are placed on the function's return value.

These requirements can be met in the CER framework by instantiating C to the discrete

CER of Section 5.2.1. The discrete CER has only two resolutions, ? and >, corresponding

to completely unde�ned values and completely de�ned values, respectively.

To show that a �xed point functional F of type (�) �)) (�) �) is contracting on

the instantiated WFFun CER, it is suÆcient to show that F satis�es the following formula

for all i of type � and functions g and h of type �) � :

(8 j: j � i! g j = h j)! F g i = F h i
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In words, the formula states that when calling the recursive function at resolution i, the

result only depends on recursive calls made at (�)-smaller values. That is, we can replace

every recursive call in the body of the function being de�ned by a call to another function

that only agrees with the \true" recursive function at arguments smaller than i, without

changing the result of the overall expression. But this will be true if in fact the function

is well-founded, since such functions only make recursive calls at smaller arguments.

From a theorem proving point of view, the formula above is particularly well suited

to Isabelle's conditional rewriting tactics. In trying to show the formula holds for F , the

rewriter will automatically convert the antecedent into a conditional rewrite rule, and

then attempt to simplify the consequent. All applications of g in the left hand side of the

consequent will be rewritten in terms of h by the added rewrite rule, provided the rewriter

can show that g's argument is (�)-smaller than i. If it succeeds, then the left hand side

will be syntactically equal to the right hand side, and the formula will simplify to the

constant True.

5.9 Proof of the CER �xpoint theorem

5.9.1 Outline

Given a CER with resolution space �, target space � , well-founded transitive relation (<),

indexed equivalence relation (�), and an arbitrary contracting function F of type � ! � ,

our technique will be to construct an approximation map apx F that converges globally

to the desired �xed point. We then prove that this �xed point is unique by showing that

any two �xed points of F are equal.

The function apx of type (� ! �)! �! � that builds an approximation map from a

contracting function is de�ned by well-founded recursion on (<).

apx F i = F (local limit (apx F ) i) (5.16)

At each resolution i, the function apx uses local limit to obtain the best possible

approximation of �xF , given the approximations it has already computed at all lower
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resolutions2. The result of calling local limit may still not be close enough at resolution i,

so apx maps the local limit through F , which will bring the result close enough. Isabelle's

theory of well-founded functions ensures that the recursive instance of apx F in the body

of the de�nition is only applied to strictly smaller resolutions than i.

Once we have proved by well-founded induction that apx is well de�ned, we then

establish that apx F is convergent up to each resolution i, and that apx F i

i
� F (apx F i).

This will allow us to show that global limit (apx F )
i
� F (global limit (apx F )) at each

resolution i, and are thus equal by (5.6). This result establishes that a �xed point exists

for F . We then show that any two �xed points x and y of F are equivalent at all resolutions

by well-founded induction, and thus are equal, again by (5.6).

5.9.2 Converging approximation maps

We assume throughout this treatment that (<) and (�) are arbitrary predicates satisfying

the CER axioms, and that F is a contracting function over this CER. We do not bother

to state these properties as premises of the lemmas and theorems below.

Our �rst task is to develop a theory of converging approximation maps, which will

allow us to show in Section 5.9.3 that apx is globally convergent. To do this we need to

de�ne some terms.

De�nition 2 Two elements x and y of type � are equivalent up to resolution i if x
j
� y

for all j < i.

Note that x and y do not have to be equivalent at resolution i itself to be equivalent up to

resolution i.

De�nition 3 Given an element x of type � and an approximation mapping f of type

�! � , then x is a local limit at resolution i of f if x
j
� (f j), for all j < i.

Local limits imply local convergence:

Lemma 5 If x is a local limit at resolution i of f , then f is convergent up to

resolution i.

2Here the de�nition of local limit using Hilbert's choice operator seems essential.
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Proof: Assuming arbitrary k < j < i, we must show (f k)
k
� (f j). Since x is a local

limit at resolution i of f , then (f j)
j
� x, and (f k)

k
� x. Since k < j, then by (5.5) we

have (f j)
k
� x. Since (

k
�) is an equivalence relation, then (f k)

k
� (f j) 2

Lemma 6 Given an approximation map f and resolution i, if for all i0 < i it is the case

that f i0 is a local limit at resolution i
0 of f , then f is convergent up to resolution i.

Proof: Assuming arbitrary k < j < i, we must show (f k)
k
� (f j). By assumption we

have that f j is a local limit at resolution j of f . That is, 8j0 < j : f j

j0

� f j
0. In particular,

f j

k
� f k, which is equal by (5.2) to (f k)

k
� (f j). 2

Lemma 7 If x and y are both local limits at resolution i of f , then x and y are equivalent

up to resolution i.

Proof: We must show for arbitrary j < i that x
j
� y. This holds since x

j
� (f j) and

y

j
� (f j) by assumption, and since (

j
�) is an equivalence relation. 2

Lemma 8 If f is locally convergent up to resolution i, then local limit f i is a local limit

at resolution i of f .

Proof: By (5.7) we know there exists some element z such that 8j < i : z

j
� (f j). By Def-

inition 5.12 we have that local limit f i = ("z :8j < i : z

j
� (f j)). By the axiom of choice

for HOL, we can conclude that 8j < i : (local limit f i)
j
� (f j). That is, local limit f i is a

local limit at resolution i of f 2

Lemma 9 If f is globally convergent, then global limit f is a global limit of f .

Proof: By (5.8) we know there exists some element z such that 8i : z
i
� (f i). By Def-

inition 5.13 we have that global limit f = ("z :8i : z
i
� (f i)). By the axiom of choice for

HOL, we can conclude that 8i : global limit f
i
� (f i). That is, global limit f is a global

limit of f 2
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Lemma 10 If x
i
� y, and G is a contracting function, then Gx

i
� Gy.

Proof: If x
i
� y, then x is equivalent to y at all lower resolutions, by (5.5). Thus x

and y are equivalent up to resolution i. Thus by the de�nition of contracting function,

Gx

i
� Gy. 2

Lemma 11 If x is a local limit at resolution i of f , and G is a contracting function, then

Gx is a local limit at resolution i of G Æ f .

Proof: Given arbitrary j < i, we must show that Gx

j
� G (f j). By assumption we have

x

j
� f j. Then by Lemma 10 we have Gx

j
� G (f j), as desired. 2

5.9.3 Properties of apx

Before we can establish that apx F converges to the desired �xed point of F , we need to

show that apx is a valid well-founded recursive de�nition. We will accomplish this using

Isabelle's theory of well-founded relations, which contains a general recursion operator,

wfrec, with type

(� � �) set ! ((�! �)! (�! �))! �! �

The theory contains a theorem stating that if (<) is a well-founded relation, then wfrec

satis�es the following law:

wfrec (<)H a = H (cut (wfrec (<)H) a) a

where

cut f i x � if x < i then f x else arbitrary

The helper function cut is used to ensure that recursive calls to wfrec (<)H are only

made at (<)-smaller values than a, ensuring well-foundedness. If H attempts to invoke

wfrec (<)H with any other value, then cut returns a �xed arbitrary element instead. We

can then de�ne apx as follows:
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apx F i � wfrec (<)H i

where

H apx 0 i � F (local limit apx 0 i)

This non-recursive version of apx satis�es Isabelle's requirements for de�nitions. We

now need to prove (5.16) as a lemma.

Lemma 12 apx F i = F (local limit (apx F) i)

Proof:

apx F i

= fDef. of apxg

wfrec (<)H i

= fwfrec lawg

H (cut (wfrec (<)H) i) i

= fDef. of apx in reverseg

H (cut (apx F ) i) i

= fDef. of Hg

F (local limit (cut (apx F ) i) i)

= fDef. of local limitg

F ("z :8j < i : z

j
� ((cut (apx F ) i) j))

= fDef. of cut , and j < i in the body of the universal quanti�erg

F ("z :8j < i : z

j
� (apx F j))

= fDef. of local limitg

F (local limit (apx F ) i) 2

We now proceed to show that apx F globally converges to the unique �xed point of F .

Lemma 13 If (apx F i) is a local limit at resolution i of apx F , then apx F i

i
� F (apx F i)

Proof: We have that apx F is convergent up to resolution i by Lemma 5. By Lemma 8

local limit (apx F ) i is also a local limit at resolution i of apx F . Therefore local limit (apx F ) i
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and apx F i are convergent up to resolution i. By the de�nition of contracting func-

tion, we have F (local limit (apx F ) i)
i
� F (apx F i). By Lemma 12, this is equal to

apx F i

i
� F (apx F i) 2

Lemma 14 For all resolutions i, apx F i is a local limit at resolution i to apx F .

Proof: By well-founded induction on i. Thus we assume for all j < i that apx F j is a

local limit at resolution j to apx F . By the induction hypothesis and Lemma 6 we have

that apx F is convergent up to resolution i. By Lemma 8 we have local limit (apx F ) i is

a local limit at resolution i of apx F . By Lemma 11 we have that F (local limit (apx F ) i)

is a local limit at resolution i of F Æ apx F . This means that apx F i is a local limit at

resolution i of F Æ apx F , by Lemma 12.

To show that apx F i is a local limit at resolution i of apx F , we need to show for arbi-

trary j < i that apx F i

j
� apx F j. Since apx F i is a local limit at resolution i of F Æapx F ,

then apx F i

j
� F (apxF j). By the induction hypothesis and Lemma 13 we have that

apx F j

j
� F (apx F j). Since (

j
�) is an equivalence relation, we have apx F i

j
� apx F j, as

desired 2

Lemma 15 For all resolutions i, apx F i

i
� F (apx F i)

Proof: By Lemmas 13 and 14 2

Lemma 16 apx F is globally convergent.

Proof: Given arbitrary i and j such that i < j, we must show that apx F i

i
� apx F j.

But this follows immediately from Lemma 14 and De�nition 3 2

Lemma 17 global limit (apx F ) = F (global limit (apx F )).
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Proof: Given an arbitrary resolution i, we have that global limit (apx F )
i
� apx F i,

by Lemma 9 and Lemma 16. We also have F (global limit (apx F ))
i
� F (apx F i), by

Lemma 10. By Lemma 15 we have apx F i

i
� F (apx F i). Since (

i
�) is an equivalence

relation, we can conclude that global limit (apx F )
i
� F (global limit (apx F )). Since i was

arbitrarily chosen, the above equivalence holds for all resolutions i. Therefore the two

values are equal, by (5.6) 2

This demonstrates that F has a �xed point. All that remains is to show that the �xed

point is unique.

Lemma 18 If x = F x and y = F y for contracting function F , then x = y.

Proof: To show x = y it suÆces to show for arbitrary i that x
i
� y, by (5.6). We shall

demonstrate this by well-founded induction on i. Thus we assume that x
j
� y, for all

resolutions j < i. By the induction hypothesis and the de�nition of contracting function

we have that F x

i
� F y. Since F x = x and F y = y, we conclude that x

i
� y. 2

5.10 Applying CERs to Hawk circuits

The CER framework was originally developed to conservatively de�ne recursive Hawk

circuit de�nitions in higher order logic. Section 6.6.2 gives an example, where the internal

state of a register �le component is de�ned as a (higher order) recursive signal transformer

called envs. Section 6.6.2 proves that envs uniquely satis�es its de�ning equation by

creating a CER for signals and then demonstrating that the envs is contracting on the

function space over signals CER.

5.11 Related work

The support for and application of well-founded induction and general coinduction has

seen wide acceptance in the HOL theorem proving community. The well-founded de�nition

package TFL used in HOL98 and Isabelle was written by Slind[88]. It can handle nested
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pattern matching in rule de�nitions, nested recursion in function bodies, and generates

custom induction rules for each de�nition[87]. The PVS theorem prover[81] also uses

well-founded induction as a basic de�nitional principle. A general theory of inductive and

coinductive sets in Isabelle was developed by Paulson[75], based on least and greatest

�xed points of monotone set-transforming functions, as well as a package for de�ning

new inductive and coinductive sets by user-given introduction rules. The package avoids

syntactic restrictions in the introduction rules by reasoning about each rule's underlying

set-transformer semantics.

Paulson's Isabelle theories were applied by Frost[25] to formalize the static and dy-

namic semantics of a small functional language and prove that the two semantics were

consistent with each other. Recursive functions are represented by in�nitely nested envi-

ronments, requiring consistency to be proved by coinduction. The underlying ideas of the

language and proof, as well as the concept of coinduction as a variant of �xpoint induction,

were introduced by Milner and Tofte[65].

A coinductive theory of streams (in�nite-only lists) was developed by Miner[66] in the

PVS theorem prover. Miner used this theory to model synchronous hardware circuits as

corecursively-de�ned stream transformers. Using coinduction, he was able to optimize

the implementation of a fault-tolerant clock synchronization circuit and a 
oating-point

division circuit. In several cases a subcircuit was replaced by an optimized subcircuit, and

the correctness of the replacement depended on non-trivial environmental assumptions in

the surrounding circuit. Coinduction was used to verify the environmental assumptions

and to show that the subcircuits were equivalent under the assumed environment.

A well-known alternative to coinductive types is the mathematical framework of pointed

complete partial orders and continuous functions, also known as domain theory[32, 90].

This theory is supported by the HOLCF[68] object-logic in Isabelle, and also allows one

to de�ne in�nite data structures such as lazy lists and trees. A wide variety of functions

over these structures can then be recursively de�ned. The primary disadvantage of this

approach is that one must add \extra" bottom-elements to the structures being de�ned.

These extra elements are usually used to indicate non-termination. For example, a lazy

�lter function l�lter that removes all elements of a lazy list xs not satisfying a predicate P
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can be de�ned recursively in HOLCF, but the expression l�lter P xs returns ? instead of

[] when xs is an in�nite list containing no elements satisfying P . In contrast, Section 5.7

introduces a CER powerful enough to de�ne an l�lter that returns [] in this case. Also, only

so-called admissible predicates can be reasoned about inductively in domain theory, and

it can be quite challenging to prove that a desired predicate is admissible. A comparison

of the HOLCF approach to several other encodings of lazy lists is presented by Devillers

et al[21].

Topology[12, 80] provides another well-established de�nition mechanism. The notions

of Cauchy sequences, complete metric spaces, and contractions inspired much of this work.

We have not worked out the exact relationship between converging equivalence relations

and Cauchy metric spaces; although one can construct a distance function for every nat-

indexed CER, it is not clear that distance functions can be always be constructed for more

complex resolution spaces. Also, the conditions under which a function F is contracting

in a CER seem to be less restrictive than the corresponding conditions in a metric space.

More importantly from a veri�cation perspective, well-founded induction seems easier

to apply in current theorem provers than does the continuous mathematics required for

metric spaces.



Chapter 6

Verifying the microarchitecture laws

Converging equivalence relations allow us to formally specify Hawk circuits as recursive

equations over signals. We can use these equations to reason about Hawk components,

and in particular prove the validity of the microarchitecture laws used in Chapter 3.

Many of the laws are localized enough that one can consider verifying them automat-

ically by some kind of decision procedure. Since most decision procedures for hardware

equivalence checking are based on state-machine transducer formalisms, a natural ap-

proach would be to �rst translate the left and right hand sides of the microarchitecture

law being veri�ed into state machine transducers, and then verify that the two transducers

are observationally equivalent. Algorithms for performing such equivalency veri�cations

on �nite state machines have been extensively studied, including techniques based on Bi-

nary Decision Diagrams[17] and St�almarck's Method[50]. In fact, several commercial tools

now exist for performing equivalency checking on large hardware circuits.

These techniques cannot immediately be used on Hawk circuits, since the lack of a

priori bounds on the size of words or the number of registers used in Hawk microarchitec-

tures means that typical Hawk components translate into in�nite state, instead of �nite

state, transducers. Fortunately, signi�cant progress has also been made on checking the

equivalence of in�nite state machine transducers, using symmetry reduction[15, 24] and

abstraction[16] techniques. Usually these techniques require some manual intervention,

although often less than that required for pure theorem proving-based approaches.

However, in keeping with our theme of exploring algebraic methods for performing

microarchitecture veri�cation, we have chosen to continue verifying the individual laws

themselves using a combination of equational reasoning and induction.

124



125

The equivalence proofs themselves can be quite large, even given the relatively simple

component de�nitions needed to specify the pipeline of Chapter 3. It is not that the proofs

are mathematically sophisticated, but rather that the components process large amounts

of disparate data, namely the �eld values of transactions. The aim of this chapter is to give

a 
avor of the kind and amount of reasoning involved in proving two transaction-processing

components behaviorally equivalent, and to present some techniques for reducing the size

of the associated proof. Since even the \reduced" proofs of these laws can be quite lengthy

we only sketch a couple of examples in this chapter: the alu time invariance law and the

registerFile-bypass law.

6.1 A theory of transactions

The main source of proof complexity results from the large number of �elds that a transac-

tion contains, and the fact that the �eld values are of di�erent types. A typical equivalence

proof of two transaction-processing components F and G will involve a series of cases, one

for each transaction �eld, showing that the two circuits output identical �eld values. Many

of the cases will be symmetric with respect to each other, di�ering only in the name of

the �eld mentioned in the proof and the �eld's type. To reduce the amount of redundancy

in such proofs this section will present a theory of transactions where transaction �elds

themselves are logical objects, and can be quanti�ed over. In this way a symmetric group

of cases in a proof can be reduced to a single proof parameterized over the symmetrically-

used �eld names.

We begin by precisely de�ning what a transaction is in higher order logic. Intuitively a

transaction is a record containing all of the �elds that a microarchitecture uses to process

one instruction. The set of �elds needed depends on the instruction set architecture

and the complexity of the microarchitecture implementing it. For the branch-predicting

microarchitecture we consider in this thesis, we require the following �elds:

� destRegFld :: Reg

The destination register name.

� destValFld :: Word
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The destination register contents.

� opcodeFld :: Opcode

The operation the transaction is to perform.

� s1RegFld :: Reg

The �rst source operand register name.

� s1ValFld :: Word

The �rst source operand register contents.

� s2RegFld :: Reg

The second source operand register name.

� s1ValFld :: Word

The second source operand register contents.

� specPCFld :: Word

The speculative next address to fetch. This value is set by the branch target predic-

tion bu�er in the instruction cache. If the ALU calculates the actual next address

for a branch instruction to be di�erent from the speculative next address, then a

branch misprediction has occurred.

� nextPCFld :: Word

The actual next address to fetch. Initialized by the instruction cache to the address

following the address the transaction was fetched from. On branch instructions, the

ALU will set this �eld to the actual branch target address.

6.1.1 Transaction as an abstract datatype

There are many di�erent ways in higher order logic to create such records. Rather than

�x a particular model, we de�ne a new type called Trans , with a function for constructing

a transaction given initial values for each �eld, and a series of accessor functions, one for

each transaction �eld.
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mkTrans 0 :: Reg )Word ) Opcode ) Reg )Word )

Reg )Word )Word )Word ) Trans

dstReg 0 :: Trans ) Reg

dstValName 0 :: Trans )Word

opcode 0 :: Trans ) Opcode

s1Reg 0 :: Trans ) Reg

s1Val 0 :: Trans )Word

s2Reg 0 :: Trans ) Reg

s2Val 0 :: Trans )Word

specPC 0 :: Trans )Word

nextPC 0 :: Trans )Word

We will follow the convention that functions that take or return transactions or transaction

�elds will have a (0) appended to their name (as opposed to functions that operate on

signals of transactions).

6.1.2 Transaction laws

There are two properties we want elements of the transaction type to satisfy. First, it

must be the case that each �eld accessor function retrieves the same value as was used to

construct that �eld of the transaction:

dstReg 0 (mkTrans 0 dstReg dstValName opc s1Reg

s1Val s2Reg s2Val specPC nextPC ) = dstReg

dstValName 0 (mkTrans 0 dstReg dstValName opc s1Reg

s1Val s2Reg s2Val specPC nextPC ) = dstValName

...

nextPC 0 (mkTrans 0 dstReg dstValName opc s1Reg

s1Val s2Reg s2Val specPC nextPC ) = nextPC

Second, it must be the case that two transactions are equal exactly when all of their �elds

are equal:
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(tr1 = tr2) = (dstReg 0 tr1 = dstReg 0 tr2 ^

dstValName 0 tr1 = dstValName 0 tr2 ^

opcode 0 tr1 = opcode 0 tr2 ^

s1Reg 0 tr1 = s1Reg 0 tr2 ^

s1Val 0 tr1 = s1Val 0 tr2 ^

s2Reg 0 tr1 = s2Reg 0 tr2 ^

s2Val 0 tr1 = s2Val 0 tr2 ^

specPC 0 tr1 = specPC 0 tr2 ^

nextPC 0 tr1 = nextPC 0 tr2)

To prevent the possibility of logical inconsistencies, we use Isabelle's type de�nition

package to de�ne Trans and derive the appropriate laws as theorems. In our de�nitions, we

de�ne a transaction simply as a tuple of its �elds, mkTrans 0 as a function that constructs a

tuple from its �eld arguments, and the �eld accessors as the appropriate tuple projections.

Another choice would have been to use Isabelle's datatype package.

From the two transaction properties above we can show that mkTrans 0 can construct

any valid transaction tr by using the transaction accessors on tr itself.

(tr = mkTrans 0 (dstReg 0 tr) (dstValName 0 tr) (opcode 0 tr)

(s1Reg 0 tr) (s1Val 0 tr) (s2Reg 0 tr) (s2Val 0 tr)

(specPC 0 tr) (nextPC 0 tr))

= fsecond transaction property; use let expression to share common subtermsg

(let tr2 = mkTrans 0 (dstReg 0 tr) (dstValName 0 tr) (opcode 0 tr)

(s1Reg 0 tr) (s1Val 0 tr) (s2Reg 0 tr) (s2Val 0 tr)

(specPC 0 tr) (nextPC 0 tr)
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in dstReg 0 tr = dstReg 0 tr2 ^

dstValName 0 tr = dstValName 0 tr2 ^

opcode 0 tr = opcode 0 tr2 ^

s1Reg 0 tr = s1Reg 0 tr2 ^

s1Val 0 tr = s1Val 0 tr2 ^

s2Reg 0 tr = s2Reg 0 tr2 ^

specPC 0 tr = specPC 0 tr2 ^

nextPC 0 tr = nextPC 0 tr2)

= fexpand let expression; �rst transaction propertyg

(dstReg 0 tr = dstReg 0 tr ^

dstValName 0 tr = dstValName 0 tr ^

opcode 0 tr = opcode 0 tr ^

s1Reg 0 tr = s1Reg 0 tr ^

s1Val 0 tr = s1Val 0 tr ^

s2Reg 0 tr = s2Reg 0 tr ^

specPC 0 tr = specPC 0 tr ^

nextPC 0 tr = nextPC 0 tr)

= flogicg

True

Thus we know that transactions contain no \hidden" �elds.

6.1.3 Derived transaction operators

Many of the Hawk components take existing transactions and construct new transactions

from them that change just a few �elds. We can simplify the de�nitions of these com-

ponents by de�ning a series of transaction updaters, each of which takes a transaction

�eld value and an existing transaction and returns a new transaction just like the original

except with the appropriate �eld updated:

setDstReg 0 :: Reg ) Trans ) Trans

setDstReg 0 reg tr =
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mkTrans 0 reg (dstValName 0 tr) (opcode 0 tr) (s1Reg 0 tr) (s1Val 0 tr)

(s2Reg 0 tr) (s2Val 0 tr) (specPC 0 tr) (nextPC 0 tr)

setDstVal 0 :: Word ) Trans ) Trans

setDstVal 0 val tr =

mkTrans 0 (dstReg 0 tr) val (opcode 0 tr) (s1Reg 0 tr) (s1Val 0 tr)

(s2Reg 0 tr) (s2Val 0 tr) (specPC 0 tr) (nextPC 0 tr)
...

setNextPC 0 :: Word ) Trans ) Trans

setNextPC 0 pc tr =

mkTrans 0 (dstReg 0 tr) (dstValName 0 tr) (opcode 0 tr) (s1Reg 0 tr) (s1Val 0 tr)

(s2Reg 0 tr) (s2Val 0 tr) (specPC 0 tr) pc

We can derive several useful laws for these functions. Taking the setDstReg 0 function as

a representative example, we can show for an arbitrary transaction tr that the updater

does in fact update the appropriate �eld:

dstReg 0 (setDstReg 0 reg tr)

= fde�nition of setDstReg 0g

dstReg 0 (mkTrans 0 reg (dstValName 0 tr) (opcode 0 tr) (s1Reg 0 tr) (s1Val 0 tr)

(s2Reg 0 tr) (s2Val 0 tr) (specPC 0 tr) (nextPC 0 tr))

= f�rst transaction propertyg

reg

It is also the case that none of the other �elds are modi�ed, for example the opcode �eld:

opcode 0 (setDstReg 0 reg tr)

= fde�nition of setDstReg 0g

opcode 0 (mkTrans 0 reg (dstValName 0 tr) (opcode 0 tr) (s1Reg 0 tr) (s1Val 0 tr)

(s2Reg 0 tr) (s2Val 0 tr) (specPC 0 tr) (nextPC 0 tr))

= f�rst transaction propertyg

opcode 0 tr
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We can similarly show that all of the other transaction �elds remain unchanged.

6.2 Exploiting symmetry in transaction �elds

We would like to prove this last property as a general theorem. We can de�ne (outside of

higher order logic) the set of �eld accessors

A � fdstReg
0
; dstV alName

0
; opcode

0
; : : :g

and the set of �eld updaters

U � fsetDstReg
0
; setDstV al

0
; opcode

0
; : : :g

and de�ne a bijection update : A! U that maps each �eld accessor to its corresponding

�eld updater. Thus update(dstReg 0) = setDstReg 0, update(dstValName 0) = setDstVal 0,

and so on. We would like to prove the following fact in higher order logic:

8 t 2 Trans; 
d 2 A; 
d 0 2 A; x 2 dom(
d 0):


d 6= 
d 0 ! 
d (update(
d 0) x t) = 
d t

That is, if we update a �eld of a transaction and then examine a di�erent �eld of the

result, it should be the same as the original transaction's �eld. While we can prove that

every instance of the above formula is true, the type system of higher order logic is too

restrictive to allow us to prove the formula itself as a theorem. We cannot even construct

the set A in higher order logic, since the elements of A are of di�erent types.

Since any given microarchitectural component only modi�es a few transaction �elds,

it would be nice if we could prove something like the above statement as a theorem and

avoid having to re-prove that each of the other �elds of the transaction returned by the

component is unchanged. For example, the alu component only modi�es the dstValName

and nextPC �elds. We would like to prove the following formula

8 t 2 Trans;n 2 Time; 
d 2 A � fdstValName 0; nextPC 0
g: 
d (alu t n) = 
d (t n)

but we run into similar problems. As it stands we have to instead prove each instance of

this formula as a separate theorem.
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6.2.1 First class �eld names

We can work around HOL's inability to quantify over types by using a well-known tech-

nique from the typed functional programming community.

Instead of trying to de�ne the set A of transaction accessors directly, we will de�ne

a new datatype of accessor names, called FieldNm , all of whose elements have the same

type:

datatype Operand = Dst j Src1 j Src2

datatype FieldNm = RegNm Operand j ValNm Operand j

opcodeNm j specPCNm j nextPCNm

Note that the RegNm and ValNm constructors have been parameterized by their operand

location. Thus, for example, RegNm Dst is the name of the destination register �eld, and

ValNm Src1 is the name of the �eld holding the �rst source operand register contents. We

will also de�ne a uniform datatype for holding the contents of a �eld:

datatype FieldValue = RegValue 0 Reg jWordValue 0 Word jOpcodeValue 0 Opcode

We can now create a single parameterized �eld accessor function that takes a �eld name

and a transaction and returns the appropriate �eld contents as a FieldValue .

�eld 0 :: FieldNm ) Trans ) FieldValue

�eld 0 nm t =



133

case nm of

(RegNm Dst) ) RegValue 0 (dstReg 0 t)

j (ValNm Dst) ) WordValue 0 (dstValName 0 t)

j opcodeNm ) OpcodeValue 0 (opcode 0 t)

j (RegNm Src1) ) RegValue 0 (s1Reg 0 t)

j (ValNm Src1) ) WordValue 0 (s1Val 0 t)

j (RegNm Src2) ) RegValue 0 (s2Reg 0 t)

j (ValNm Src2) ) WordValue 0 (s2Val 0 t)

j specPCNm ) WordValue 0 (specPC 0 t)

j nextPCNm ) WordValue 0 (nextPC 0 t)

end

We would like to create a parameterized �eld updater function in a similar fashion

update 0 :: FieldNm ) FieldValue ) Trans ) Trans

but the primitive �eld updaters do not take FieldValue elements as parameters. To

solve this problem we de�ne a series of type cast functions, one for each constructor in

FieldValue. We use Hilbert's choice operator to perform the cast. If the casting functions

are given a FieldValue element that does not correspond to the type they are casting to,

then the choice operator will return an arbitrary element of the correct type.

castToReg 0 :: FieldValue ) Reg

castToReg 0 fv = (" r : fv = RegValue 0 r)

castToWord 0 :: FieldValue )Word

castToWord 0 fv = (" w : fv = WordValue 0 w)

castToOpcode 0 :: FieldValue ) Opcode

castToOpcode 0 fv = (" opc: fv = OpcodeValue 0 opc)

We also de�ne a predicate indicating whether a FieldValue element is compatible with a

given FieldNm :
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validFieldType :: FieldNm ) FieldValue ) bool

validFieldType nm fv =

case fv of

(RegValue 0 r) ) (nm = (RegNm Dst) _

nm = (RegNm Src1) _

nm = (RegNm Src2))

j (WordValue 0 w) ) (nm = (ValNm Dst) _

nm = (ValNm Src1) _

nm = (ValNm Src2) _

nm = specPCNm _

nm = nextPCNm)

j (OpcodeValue 0 opc) ) nm = opcodeNm

end

We use the casting functions to de�ne the parameterized �eld updater:

update 0 :: FieldNm ) FieldValue ) Trans ) Trans

update 0 nm v =

case nm of

(RegNm Dst) ) setDstReg 0 (castToReg 0 v)

j (ValNm Dst) ) setDstVal 0 (castToWord 0 v)

j opcodeNm ) setOpcode 0 (castToOpcode 0 v)

j (RegNm Src1) ) setS1Reg 0 (castToReg 0 v)

j (ValNm Src1) ) setS1Val 0 (castToWord 0 v)

j (RegNm Src2) ) setS2Reg 0 (castToReg 0 v)

j (ValNm Src2) ) setS2Val 0 (castToWord 0 v)

j specPCNm ) setSpecPC 0 (castToWord 0 v)

j nextPCNm ) setNextPC 0 (castToWord 0 v)

end
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6.2.2 Generalized �eld laws

Variants of the previous formulas (that couldn't be stated in higher order logic) can now

be proved as theorems

validFieldType nm x ! �eld 0 nm (update 0 nm x t) = x

nm 6= nm 0
! �eld 0 nm (update 0 nm 0 x t) = �eld 0 nm t

8 nm =2 f(ValNm Dst); nextPCNmg: �eld 0 nm (alu t n) = �eld 0 nm (t n)

The second transaction property can also be stated much more concisely as

(s = t) = (8 nm: �eld 0 nm s = �eld 0 nm t)

Theorems such as these will substantially reduce the amount of work we need to do to prove

the desired microarchitecture laws. More importantly, the corresponding Isabelle proof

scripts will require signi�cantly fewer changes whenever new transaction �elds are added

to the transaction ADT. This is because many of the lemmas are implicitly parameterized

over a range of �eld names. Proof steps using those lemmas will automatically cover the

new �eld names. For example, uses of the lemma

8 nm =2 f(ValNm Dst); nextPCNmg: �eld 0 nm (alu t n) = �eld 0 nm (t n)

will remain valid even after new transaction �elds are added to a microarchitecture, pro-

vided the alu component does not modify the �elds.

However, we still use the original typed transaction operators for specifying Hawk

circuits, to take advantage of Isabelle's strong type checking. Once we have a well-typed

circuit description, we invoke Isabelle's rewriting tactics to automatically transform it into

a form that uses �eld 0 and update 0 operations.

The rewriting tactics require a list of already-proven equational theorems that are

treated as rewrite rules. We therefore prove such equations for each �eld accessor and

updater. For example, we prove the equational theorem for the dstReg 0 accessor as follows:

dstReg 0 t = castToReg 0 (�eld 0 (RegNm Dst) t)
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= fde�nition of �eld 0 applied to (RegNm Dst)g

dstReg 0 t = castToReg 0 (RegValue 0 (dstReg 0 t))

= fde�nition of castToReg 0g

dstReg 0 t = (" r : RegValue 0 (dstReg 0 t) = RegValue 0 r)

= fRegValue 0 is injectiveg

dstReg 0 t = (" r : dstReg 0 t = r)

= f8y : ("x : y = x ) = yg

dstReg 0 t = dstReg 0 t

=

True

These equational theorems can also be proved automatically using Isabelle's rewriting

tactics.

6.3 Lifting the transaction theory to signals

Since Hawk circuits operate on streams of transactions, we �nd it convenient to de�ne

lifted versions of the primitive transaction operators.

mkTrans :: Reg )Word ) Opcode ) Reg )Word )

Reg )Word )Word )Word ) Trans

mkTrans = lift9mkTrans 0

dstReg :: Signal Trans ) Signal Reg

dstReg = lift dstReg 0

dstValName :: Signal Trans ) Signal Word

dstValName = lift dstValName 0

...

setDstReg :: Signal Reg ) Signal Trans ) Signal Reg
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setDstReg = lift2 setDstReg 0

setDstVal :: Signal Word ) Signal Trans ) Signal Word

setDstVal = lift setDstVal 0

...

Similarly, the laws governing the transaction operators can also be \lifted" to correspond-

ing laws about the stream-oriented operators. For example, the lifted version of the second

transaction property for the dstReg 0 accessor becomes

dstReg (mkTrans dstReg dstValName opc s1Reg

s1Val s2Reg s2Val specPC brPC ) = dstReg

6.4 Proof of alu time-invariance for nop

We can now de�ne microarchitecture components using the abstract transaction opera-

tions. For example, suppose we are de�ning the alu transaction-processing component.

Assume that we have already de�ned the following two functions:

arithCore :: Opcode )Word )Word )Word

branchCore :: Opcode )Word )Word )Word )Word

Given an opcode describing an arithmetic operation and the values of the two source

operands, arithCore performs the corresponding arithmetic operation. The branchCore

function takes an opcode specifying a branch instruction, the values of the two source

operands, and the value for the next program counter, and performs the appropriate

branch calculation. For instance, if brIfZero is the opcode value for the \branch if zero"

instruction, then branchCore brIfZero test addr next returns addr if test is equal to zero,

otherwise it returns next . We leave unspeci�ed what arithCore and branchCore return

when given inappropriate opcodes.

Suppose we also have the two functions isArithOp and isBranchOp, both of type

Opcode ) bool . The isArithOp function returns true when given an arithmetic opcode,

and isBranchOp returns true when given a branch opcode.
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We assume that the nop transaction is neither an arithmetic instruction nor a branch

instruction:

isArithOp (opcode 0 nop) = False

isBranchOp (opcode 0 nop) = False

Given these functions we can de�ne the alu component as follows:

alu 0 :: Trans ) Trans

alu 0 tr =

let opc = opcode 0 inp

s1v = s1Val 0 inp

s2v = s2Val 0 inp

dstv = if isArithOp opc

then arithCore opc s1v s2v

else (destVal 0 inp)

oldNextPC = nextPC 0 inp

nxtPC = if isBranchOp opc

then branchCore opc s1v s2v oldNextPC

else oldNextPC

in

setDstVal 0 dstv (setNextPC 0 nxtPC inp)

alu :: Signal Trans ) Signal Trans

alu = lift alu 0

Now suppose we want to prove that the alu circuit is time-invariant for nop. That

is, we want to prove that for any given transaction signal inp that alu (delay nop inp) is

equal to delay nop (alu inp).

In general, to prove that two signals s and t are equal, we need to prove that for each

time n the corresponding signal elements s n and t n are equal. (where we are considering
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a signal of type � to be a function from time to � .) Thus we must show for each time n that

the transaction alu (delay nop inp) n is equal to the transaction delay nop (alu inp) n.

We will generalize this statement and prove the following lemma.

Lemma 19 For all x of type � , f of type � ) �, and xs of type Signal � , then

lift f (delay x xs) = delay (f x ) (lift f xs)

Proof: We must show for all times n that

lift f (delay x xs) n = delay (f x ) (lift f xs) n

There are two cases to consider: The case where n = 0 and the case where n = k + 1,

for some time k :

case n = 0:

lift f (delay x xs) 0

= fde�nition of liftg

f (delay x xs 0)

= fde�nition of delayg

f x

= fde�nition of delayg

delay (f x ) (lift f xs) 0

case n = k + 1:

lift f (delay x xs) (k + 1)

= fde�nition of liftg

f (delay x xs (k + 1))

= fde�nition of delayg

f (xs k)

= fde�nition of liftg

lift f xs k

= fde�nition of delayg

delay (f x ) (lift f xs) (k + 1)
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2

Since alu = lift alu 0, we can use Lemma 19 to prove that alu is time-invariant for

nop, provided we show that alu 0 nop = nop. To do this we rely on the second property

of transactions, and prove that every �eld of alu 0 nop is equal to the corresponding �eld of

nop. Let aluModFields be the set fValNm Dst ; nextPCNmg. From the de�nition of alu 0

and the laws for the transaction �eld accessors and updaters we can derive the following

�eld laws:

nm =2 aluModFields ! �eld 0 nm (alu 0 t) = �eld 0 nm t

�eld 0 (ValNm Dst) (alu 0 t) =

if isArithOp (castToOpcode 0 (�eld 0 opcodeNm t))

then WordValue 0 (arithCore (castToOpcode 0 (�eld 0 opcodeNm t))

(castToWord 0 (�eld 0 (ValNm Src1) t))

(castToWord 0 (�eld 0 (ValNm Src2) t)))

else (�eld 0 (ValNm Dst) t)

�eld 0 nextPCNm (alu 0 t) =

if isBranchOp (castToOpcode 0 (�eld 0 opcodeNm t))

then WordValue 0 (branchCore (castToOpcode 0 (�eld 0 opcodeNm t))

(castToWord 0 (�eld 0 (ValNm Src1) t))

(castToWord 0 (�eld 0 (ValNm Src2) t))

(castToWord 0 (�eld 0 nextPC t)))

else (�eld 0 nextPCNm t)

Using these laws and the second property of transactions we can show that alu 0 preserves

every �eld of nop:

case nm =2 aluModFields :

�eld 0 nm (alu 0 nop) = �eld 0 nm nop
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case nm = (ValNm Dst):

�eld 0 (ValNm Dst) (alu 0 nop)

= falu' law for (ValNm Dst)g

(if isArithOp (castToOpcode 0 (�eld 0 opcodeNm nop))

then WordValue 0 (arithCore (castToOpcode 0 (�eld 0 opcodeNm nop))

(castToWord 0 (�eld 0 (ValNm Src1) nop))

(castToWord 0 (�eld 0 (ValNm Src2) nop)))

else (�eld 0 (ValNm Dst) nop))

= fcastToOpcode 0 (�eld 0 opcodeNm t) = opcode 0 tg

(if isArithOp (opcode 0 nop)

then WordValue 0 (arithCore (castToOpcode 0 (�eld 0 opcodeNm nop))

(castToWord 0 (�eld 0 (ValNm Src1) nop))

(castToWord 0 (�eld 0 (ValNm Src2) nop)))

else (�eld 0 (ValNm Dst) nop))

= fisArithOp (opcode 0 nop) = Falseg

�eld 0 (ValNm Dst) nop

case nm = nextPCNm:

�eld 0 nextPCNm (alu 0 nop)

= falu' law for nextPCNmg

(if isBranchOp (castToOpcode 0 (�eld 0 opcodeNm nop))

then WordValue 0 (branchCore (castToOpcode 0 (�eld 0 opcodeNm nop))

(castToWord 0 (�eld 0 (ValNm Src1) nop))

(castToWord 0 (�eld 0 (ValNm Src2) nop))

(castToWord 0 (�eld 0 nextPC nop)))

else (�eld 0 nextPCNm nop))

= fcastToOpcode 0 (�eld 0 opcodeNm t) = opcode 0 tg
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(if isBranchOp (opcode 0 nop)

then WordValue 0 (branchCore (castToOpcode 0 (�eld 0 opcodeNm nop))

(castToWord 0 (�eld 0 (ValNm Src1) nop))

(castToWord 0 (�eld 0 (ValNm Src2) nop))

(castToWord 0 (�eld 0 nextPC nop)))

else (�eld 0 nextPCNm nop))

= fisBranchOp (opcode 0 nop) = Falseg

�eld 0 nextPCNm nop

Notice that with the generalized �eld 0 laws we were able to prove equivalent all of the

�elds corresponding to the names not in aluModFields in one step.

6.5 Temporal reasoning

It is usually necessary to perform induction over time when proving equivalences of com-

ponents containing internal state, especially when the state-holding elements are part of a

feedback loop in the circuit. When performing such proofs, one often has to expose the in-

ternal state holding elements and prove properties of them directly. As an example, in the

next section we will use inductive reasoning over signals to prove the registerFile-bypass

law presented in Section 3.3.3.

6.6 Proving the registerFile-bypass law

We begin by de�ning the rf and bypass components in higher order logic, and then state

some lemmas about them that will be necessary to the overall proof.

6.6.1 De�nition of envs and rf components

The register �le used in the proof follows a write-before-read protocol. On every clock

cycle, the contents of the register �le are updated by the current value on the writeback

input before the �le contents are read and sent to the output.
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We also designate a special register, called R0, as a zero register. The contents of R0

are hardwired to zero in the instruction set architecture, and writes to R0 have no e�ect.

We also stipulate that the register name �elds of the nop transaction are set to R0:

regFieldNms = f(RegNm Dst); (RegNm Src1); (RegNm Src2)g

8 f 2 regFieldNms : �eld 0 f nop = RegValue 0 R0

The rf component is de�ned in terms of an auxiliary function called envs, which is

responsible for maintaining the register �le contents. The envs component outputs the

entire contents of the register �le on every clock cycle, which the rf component then

reads when constructing its output transaction. The contents of the register �le are

represented abstractly as a function of type Reg )Word , which we call an environment.

This representation allows the envs component to store the entire register �le in a single

delay component.

We de�ne envs below recursively, using the function space over signals CER. The

extEnv 0 helper function modi�es an environment by overwriting the contents of a given

register, provided it is not R0. The extEnv function does the same, but is lifted over

signals.

We also de�ne the polymorphic sApply function, which given a signal of functions and

a signal of arguments, applies each function to its corresponding argument and returns

the results as a signal. We use sApply in the rf de�nition to read the register �le contents

returned by envs on each clock cycle.

type Env = (Reg )Word)

extEnv 0 :: Reg )Word ) Env ) Env

extEnv 0 reg val env =

(� r : if r = R0 then 0 else if r = reg

then val

else (env r))

extEnv :: Reg Signal )Word Signal ) Env Signal ) Env Signal
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extEnv = lift3 extEnv 0

envs :: Trans Signal ) (Reg )Word) Signal

envs wb = extEnv (dstReg wb) (dstVal wb) (delay (� r : 0) (envs wb))

sApply :: ( 0a ) 0b) Signal ) 0a Signal ) 0b Signal

sApply = lift2 (� f x : f x )

rf :: Trans Signal ) Trans Signal ) Trans Signal

rf inp wb =

let registers = envs wb

s1v = sApply registers (s1Reg inp)

s2v = sApply registers (s2Reg inp)

in setS1Val s1v (setS2Val s2v inp)

6.6.2 Converging equivalence relations for signals

Like many stateful components in Hawk, the envs component is de�ned as a recursive

equation over signals. To ensure that this de�nition is consistent we need to demonstrate

that the equation has a unique solution. We do this by de�ning a converging equivalence

relation (CER) for signals, and then show that the �xpoint functional associated with

envs's de�nition is contracting.

Recalling Chapter 5, a CER contains four components: a resolution type �, a target

type � , a well-founded, transitive relation (<) of type �) �) bool called the resolution

ordering, and an indexed equivalence relation (�) of type �) � ) � ) bool . We can

de�ne a signal CER that is similar to the lazy list CER, with nat for the resolution type,

and the usual less-than ordering on the naturals for (<). The target type is the type of

signals, which we are modeling as functions indexed on the naturals, (nat ) 0a). The

indexed equivalence relation is de�ned as:

f

n
� g � (8 i: i < n! f i = g i)
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In other words, two signals f and g are equivalent at resolution n if their �rst n � 1

elements are equal.

The �rst six CER axioms are easy to verify with these de�nitions. The last two axioms

can be proved with the following existential witness elements, respectively:

local signal limit F i � F (i� 1)

global signal limit F � (� n: F (n+ 1) n)

Proofs of the last two CER axioms involve, at some point, choosing an arbitrary pair

of resolutions i and j such that j < i, and then performing a case analysis on whether

j = i� 1.

Equivalences for the lift primitives

The family of lift primitives lift , lift2, . . . , and the delay primitive can be abstractly char-

acterized as conditional equivalence laws that specify how they preserve the (�) relation.

These equivalences can be used to prove that cyclic circuits like envs are contracting,

without having to expand the de�nitions of the primitives.

The lift primitive is a combinational circuit, so its output value at any time n is

dependent on its input value at that same time value:

xs
n
� ys ! lift f xs

n
� lift f ys (6.1)

Proof: Assume the antecedent xs
n
� ys. Expanding the de�nition of (�), this is equivalent

to assuming (8 i: i < n! xs i = ys i). Expanding the de�nition of (�) on the consequent

side of the formula, we must show for arbitrary i < n that lift f xs i = lift f ys i. By

de�nition of lift this goal is equivalent to showing f (xs i) = f (ys i). But this is true

since xs i = ys i by assumption 2

By similar reasoning every liftk primitive can be characterized as

xs1
n
� ys1 ^ : : : ^ xsk

n
� ysk ! liftk f xs1 : : : xsk

n
� liftk f ys1 : : : ysk

The body of envs makes use of the auxiliary functions extEnv , dstReg , and dstValName .
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All of these auxiliaries are de�ned in terms of liftk primitives, and therefore obey the

following signal CER equivalences:

ws
n
� xs ^ ys

n
� zs ! extEnv ws ys

n
� extEnv xs zs

xs
n
� ys ! dstReg xs

n
� dstReg ys

xs
n
� ys ! dstV al xs

n
� dstV al ys

Equivalence for the delay primitive

The delay component is a contracting function for the signal CER, which accords with

the intuition that every feedback cycle in a well formed circuit de�nition must contain at

least one delay:

xs
n
� ys ! delay z xs

n+1
� delay z ys

Notice that the initial value parameters to both delay components have to be equal for

the equivalence to hold.

Proof: Assume the antecedent xs
n
� ys . This is equivalent to assuming (8 i: i < n !

xs i = ys i). Expanding (�) in the consequent, we must show for arbitrary i < n + 1

that delay z xs i = delay z ys i. If i = 0, this reduces by the de�nition of delay to

showing that z = z, which is true. If i > 0, then the consequent reduces to showing that

xs (i� 1) = ys (i� 1), which is true by assumption since i� 1 < n 2

Proving envs is contracting

Now that we have equivalences for all of the functions in the body of envs , we need to show

that the recursive de�nition of envs itself is consistent by showing that it is contracting

over some CER. Since the de�nition is parameterized on the argument wb, we show that

the �xpoint functional

F � (� envs
0
wb: extEnv (dstReg wb) (dstV al wb) (delay (� r: 0) (envs0 wb)))

derived from the recursion equation for envs is contracting on the function space over

signals CER de�ned in Section 5.5. This lifted CER still uses the (<nat) of the signal
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CER, so by (5.10) of Section 5.4 and the de�nition of (�) for the function space CER

combinator it suÆces to show for arbitrary resolution i and functions g and h that

(8 xs : g xs
i
� h xs) ! 8 xs : F g xs

i+1
� F h xs

We assume the antecedent (8 xs : g xs
i
� h xs) and prove the consequent for arbitrary xs

by applying the appropriate equivalences:

F g xs
i+1
� F h xs

= fDe�nition of Fg

extEnv (dstReg xs) (dstValName xs) (delay (� r : 0) (f xs))
i+1
�

extEnv (dstReg xs) (dstValName xs) (delay (� r : 0) (g xs))

( fEquivalence law for extEnvg

(dstReg xs)
i+1
� (dstReg xs) ^

(dstValName xs)
i+1
� (dstValName xs) ^

(delay (� r : 0) (f xs))
i+1
� (delay (� r : 0) (g xs))

= f(�) is re
exive at all resolutions by CER axiom (5:1)g

(delay (� r : 0) (f xs))
i+1
� (delay (� r : 0) (g xs))

( fEquivalence law for delay componentg

(f xs)
i
� (g xs)

= fAssumptiong

True

Demonstrating that recursive Hawk circuits like envs are contracting can usually be proved

within Isabelle in a couple of steps, by relying on Isabelle's high-level rewriting and tableau

decision procedures. The result of invoking the decision procedures is the recursive equa-

tion for envs proved as a certi�ed theorem.
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6.6.3 Properties of envs component

The core of the register �le-bypass veri�cation involves proving various properties of the

recursive envs function. There are �ve basic properties of envs needed in the top-level

proof. The �rst two envs properties state that R0 is a zero register.

envs wb n R0 = 0

dstReg 0 (wb (n + 1)) = R0 ! envs wb (n + 1) r = envs wb n r

The third envs property states that the environment returned by envs on a given clock

cycle has been updated correctly with respect to the current wb transaction.

dstReg 0 (wb n) 6= R0 ! envs wb n (dstReg 0 (wb n)) = dstValName 0 (wb n)

The fourth and �fth envs properties deal with register values that are not being written to

on the current cycle. The fourth property states that initially every register not currently

being written to is zeroed out.

r 6= dstReg 0 (wb 0) ! envs wb 0 r = 0

The �fth envs property states that at every cycle after the initial cycle, every register that

is not currently being written to is equal to the value it had on the previous cycle.

r 6= dstReg 0 (wb (n + 1)) ! envs wb (n + 1) r = envs wb n r

The above properties can be proved by unwinding the de�nitions of envs and its con-

stituents. For example, we prove the last property as follows:

Assume r 6= dstReg 0 (wb (n + 1)). Then

case r = R0:

envs wb (n + 1) R0

= fFirst property of envsg

0

= fFirst property of envsg
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envs wb n R0

case r 6= R0:

envs wb (n + 1) r

= fDe�nition of envsg

extEnv (dstReg wb)

(dstValName wb)

(delay (� r : 0) (envs wb)) (n + 1) r

= fDe�nitions of extEnv ,lift4,dstReg ,dstVal ,lift ,delayg

extEnv 0 (dstReg 0 (wb (n + 1)))

(dstValName 0 (wb (n + 1)))

(envs wb n) r

= fDe�nition of extEnv 0g

(if r = R0 then 0 else if r = (dstReg 0 (wb (n + 1)))

then (dstValName 0 (wb (n + 1)))

else (envs wb n r))

= fr 6= R0 ^ r 6= dstReg 0(wb(n + 1))g

envs wb n r

The last two properties of envs can be stated as a single theorem by using the delay

component.

r 6= dstReg 0 (wb n) ! envs wb n r = envs (delay nop wb) n r

The proof proceeds by induction on time values n, and a compound case analysis on the

values of r and wb:

Assume r 6= dstReg 0 (wb n). Then

case r = R0:

envs wb n R0

= fFirst envs propertyg

0
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= fFirst envs propertyg

envs (delay nop wb) n R0

case r 6= R0 ^ n = 0:

envs wb 0 r

= fAssumption and fourth envs propertyg

0

= fr 6= dstReg 0 (delay nop wb 0); fourth envs propertyg

envs (delay nop wb) 0 r

case r 6= R0 ^ n = (k + 1) ^ r = dstReg 0 (wb k), for some k :

envs wb (k + 1) r

= fAssumption and �fth envs propertyg

envs wb k r

= fThird envs propertyg

dstValName 0 (wb k)

= fDe�nition of delayg

dstValName 0 (delay nop wb (k + 1))

= fr = dstReg 0 (delay nop wb (k + 1)); Third envs propertyg

envs (delay nop wb) (k + 1) r

case r 6= R0 ^ n = (k + 1) ^ r 6= dstReg 0 (wb k), for some k :

Inductive hypothesis:

r 6= dstReg 0 (wb k) ! envs wb k r = envs (delay nop wb) k r .

Then

envs wb (k + 1) r

= fAssumption and �fth envs propertyg

envs wb k r

= find. hyp.g

envs (delay nop wb) k r
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= fr 6= dstReg 0 (delay nop wb (k + 1)); �fth envs propertyg

envs (delay nop wb) (k + 1) r

6.6.4 De�nition and properties of fvEnvs component

The registerFile-bypass proof makes heavy use of the �eld 0 function, which operates over

FieldValues . We can simplify the proof somewhat by introducing an alternate version of

the envs function, called fvEnvs, that returns environments of type FieldValue ) FieldValue.

The use of fvEnvs removes the need to insert cast operations when applying an environ-

ment to the RegValue 0 returned by a �eld 0 operation.

type FvEnv = FieldValue ) FieldValue

fvEnvs 0 :: Env ) FvEnv

fvEnvs 0 env = (� fv :WordValue 0 (env (castToReg 0 fv)))

fvEnvs :: Trans Signal ) FvEnv Signal

fvEnvs wb = lift fvEnvs 0 (envs wb)

The properties proved of envs carry over to fvEnvs. For example, the delay law for fvEnvs

becomes

(RegValue 0 r) 6= �eld 0 (RegNm Dst) (wb n) !

fvEnvs wb n (RegValue 0 r) = fvEnvs (delay nop wb) n (RegValue 0 r):

6.6.5 De�nition and properties of bypass component

All that remains before we tackle the main registerFile-bypass proof is to de�ne bypass

and derive its characteristic properties. The bypass component is de�ned in terms of the

auxiliary function bypassSelect , which performs the bypass operation on a single operand

value.

bypassSelect 0 :: Reg )Word ) Reg )Word )Word
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bypassSelect 0 inpReg inpWord wbReg wbWord =

if inpReg = R0 _ wbReg 6= inpReg

then inpWord

else wbWord

bypassSelect :: Reg Signal )Word Signal ) Reg Signal )Word Signal )

Word Signal

bypassSelect = lift4 bypassSelect 0

bypass :: Trans Signal ) Trans Signal ) Trans Signal

bypass input writeback =

let wbReg = dstReg writeback

wbVal = dstValName writeback

s1v = bypassSelect (s1Reg input) (s1Val input) wbReg wbVal

s2v = bypassSelect (s2Reg input) (s2Val input) wbReg wbVal

in setS1Val s1v (setS2Val s2v input)

The properties we derive from the de�nition of bypass are that the component does

not modify any input transaction �eld other than the two source operand values:

8 f =2 fValNm Src1; ValNm Src2g:

�eld 0 f (bypass inp wb n) = �eld 0 f (inp n)

and that bypass performs correctly on the source operand values:

8 i 2 fSrc1; Src2g:
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let inpReg = �eld 0 (RegNm i) (inp n)

wbReg = �eld 0 (RegNm Dst) (wb n)

in (( inpReg = (RegValue 0 R0) _ inpReg 6= wbReg !

�eld 0 (ValNm i) (bypass inp wb n) = �eld 0 (ValNm i) (inp n))

^

( inpReg 6= (RegValue 0 R0) ^ inpReg = wbReg !

�eld 0 (ValNm i) (bypass inp wb n) = �eld 0 (ValNm Dst) (wb n)))

These properties can be proved by expanding the de�nitions of bypass , bypassSelect , and

bypassSelect 0, and then performing a case analysis on the appropriate register name �elds

of inp and wb.

6.6.6 Proof of the microarchitecture law

Now that we have the needed fvEnvs and bypass properties, the top level proof itself is

relatively straightforward. The formal statement of the theorem is as follows:

bypass (rf inp (delay nop wb)) wb = rf inp wb

We prove these two signals equal by showing that they are equal at all time periods n, for

all transaction �elds f 2 FieldNm:

case f 2 FieldNm � f(ValNm Src1); (ValNm Src2)g:

�eld 0 f (bypass (rf inp (delay nop wb)) wb n)

= fbypass doesn't modify �eld f g

�eld 0 f (rf inp (delay nop wb) n)

= frf doesn't modify �eld f g

�eld 0 f (inp n)

= frf doesn't modify �eld f g

�eld 0 f (rf inp wb n)



154

case f = ValNm i ; for i 2 fSrc1; Src2g:

subcase �eld 0 (RegNm i) (inp n) = RegValue 0 R0:

�eld 0 (ValNm i) (bypass (rf inp (delay nop wb)) wb n)

= fSubcase assumption; bypass preserves zero registers of inputg

�eld 0 (ValNm i) (rf inp (delay nop wb) n)

= fSubcase assumption; rf preserves zero registers of transactionsg

WordValue 0 0

= fSubcase assumption; rf preserves zero registers of transactionsg

�eld 0 (ValNm i) (rf inp wb n)

subcase �eld 0 (RegNm i) (inp n) 6= RegValue 0 R0 ^

�eld 0 (RegNm i) (inp n) = �eld 0 (RegNm Dst) (wb n):

L:H:S: :

�eld 0 (ValNm i) (bypass (rf inp (delay nop wb)) wb n)

= frf preserves RegNm i �eld; bypass overwrite lawg

�eld 0 (ValNm Dst) (wb n):

R:H:S: :

�eld 0 (ValNm i) (rf inp wb n)

= fDe�nition of rf ; �eld and update lawsg

sApply (fvEnvs wb) (�eld (RegNm i) inp) n

= fLift lawsg

fvEnvs 0 wb n (�eld 0 (RegNm i) (inp n))

= fSubcase assumptions; third envs propertyg

�eld 0 (ValNm Dst) (wb n):

subcase �eld 0 (RegNm i) (inp n) 6= RegValue 0 R0 ^

�eld 0 (RegNm i) (inp n) 6= �eld 0 (RegNm Dst) (wb n):

�eld 0 (ValNm i) (bypass (rf inp (delay nop wb)) wb n)

= frf preserves RegNm i �eld; bypass no-overwrite lawg



155

�eld 0 (ValNm i) (rf inp (delay nop wb) n):

= fSubcase assumptions; rf delay lawg

�eld 0 (ValNm i) (rf inp wb n)

Thus, with some work we've been able to algebraically verify the important register �le

- bypass law. The other microarchitecture law proofs, especially those involving circuits

with cyclic state holding elements, use similar techniques. That is, the original circuits

are generalized to circuits where all internal state elements are visible. The generalized

circuits are proved equivalent by induction over time. The microarchitecture law then

holds as a special case. Section 7.5 of the next chapter discusses our e�orts to mechanize

the microarchitecture laws and pipeline simpli�cations.



Chapter 7

Retrospective

On page one of the 1988 textbook Introduction to Functional Programming, Bird and

Wadler[7] summarize one of the primary motivations behind using a pure functional lan-

guage as a means for creating executable speci�cations:

A characteristic feature of functional programming is that if an expression pos-

sesses a well-de�ned value, then the order in which a computer may carry out

the evaluation does not a�ect the outcome. In other words, the meaning of an

expression is its value and the task of the computer is simply to obtain it. It

follows that expressions in a functional language can be constructed, manip-

ulated and reasoned about, like any other kind of mathematical expression,

using more or less familiar algebraic laws. The result, as we hope to justify, is

a conceptual framework for programming which is at once very simple, very

concise, very 
exible and very powerful.

One can view this thesis as a case study for Bird and Wadler's programme, demonstrating

that functional speci�cation languages and algebraic reasoning can feasibly model domains

of a useful size, in this case pipelined processor microarchitectures. The rest of this chapter

evaluates the merits of this approach. In particular, we will examine the strengths and

weaknesses of

� Using a functional programming language as the basis of a high-level hardware de-

scription language.

� Transactions as a microarchitectural structuring principle.

156
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� The algebraic approach to pipeline transformation and veri�cation, and its mecha-

nization in Isabelle.

We will also discuss the usefulness of converging equivalence relations as a general mech-

anism for de�ning recursive values in higher order logic.

7.1 The functional basis of Hawk

This section discusses the bene�ts and limitations of Hawk's functional basis as we encoun-

tered them during the course of this thesis. Although the decision to make Hawk an em-

bedded language within Haskell imposed some restrictions, in general Haskell's collection

of functional language features allowed us to specify microarchitectures at an impressively

high level of abstraction.

7.1.1 Structured datatypes

Algebraic datatypes and pattern matching were used extensively when specifying the alu

and mem components of the DLX microarchitecture. The Haskell functions implementing

these components have to perform a series of tests on the opcode �eld to determine what

exact operation to perform. Even though the DLX architecture is built around a simpli�ed

RISC instruction set, the meaning of an opcode can still become quite involved. The Hawk

team used a hierarchical collection of algebraic datatypes to represent opcode values, and

used nested pattern matching to perform the necessary tests.

data Opcode = ExecOp AluOp

jMemOp LoadStoreOp

j : : :
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data AluOp = Add Signedness

j Sub Signedness

jMult Signedness

j Div Signedness

j And

j Or jXor

j ShiftLL j ShiftRL j ShiftRA

j Cmp Comparison

j : : :

data Signedness = Signed j Unsigned

data Comparison = LessThan

j LessEqual

jGreaterThan

jGreaterEqual

j Equal

j NotEqual

data LoadStoreOp = Load WordSize Signedness

j Store WordSize

jNOP

data WordSize = Byte j HalfWord j FullWord

In lower-level hardware description languages, these opcode values would simply be

laid out as a single bit-vector, or perhaps as an unstructured collection of scalar variables.

In this case, the designer of the alu and mem decoding logic would have to be careful to

select the correct bit�eld subranges or scalar variables using nested conditionals. Even

when using scalar variables it is often the case that the meaning of some variables depends

on the values contained in other variables. For example, a \wordsize" variable would

have no meaning if the arithmetic opcode variable is set to \Xor", since in the DLX the

exclusive-or operation is always performed at full word size.
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It is quite easy to make a mistake in such situations, even for instruction sets as simple

as the DLX. While Hawk's type system will catch incorrect pattern-match expressions au-

tomatically, lower level hardware languages typically do not enforce subrange boundaries,

nor do they provide any way to state that the interpretation of one variable is dependent

on the value held in another. In these languages such mistakes have to be debugged at

runtime. The situation becomes even worse when several designers are responsible for

decoding portions of the instruction.

7.1.2 Lazy evaluation

Formally we model signals as functions over time, but in a simulation implementation

Hawk signals are implemented as lazy in�nite lists. This design choice is essential if we

want to implement shared signal values eÆciently. Consider the following Hawk circuit

�b = delay 1 (lift2 (+) �b �b 0)

�b 0 = delay 1 �b

which calculates the Fibonacci sequence [1; 1; 2; 3; 5; : : :]. Notice that the �b signal is

referenced twice in a feedback loop: once as an argument to lift2, and once as an argument

to delay in the de�nition of �b 0. If we use lazy lists, Haskell's lazy evaluation strategy will

calculate a given element of this sequence once, if needed to evaluate a client expression,

and then store the result in memory, so that subsequent references to the element are

evaluated in constant time. What this means for the �b sequence is that it takes at most

O(n) accesses to compute the nth element of the signal, since lower-numbered �b elements

are e�ectively cached in the runtime heap.

On the other hand, if we had implemented signals as functions the optimized code

eventually generated by Haskell for �b would have looked something like this:

�b 0 = 1

�b 1 = 1

�b n = �b (n � 1) + �b (n � 2)

The two recursive calls to �b mean that every call to �b n takes O(2n) recursive calls to

evaluate. This exponential blowup in evaluation time happens whenever a shared signal
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is referenced in two or more places within a feedback loop, as �b is. In essence, Haskell's

lazy evaluation mechanism applied to lists automatically implements a form of dynamic

programming.

7.1.3 Higher order functions

Haskell's ability to manipulate functions as �rst class values not only allows us to con-

veniently map functions over signals through the lift primitives, it also allows common

wiring patterns to be encapsulated as higher order Hawk components. For example, Cook

et al[18] describe a parameterized reservation station component as part of a superscalar

out-of-order microarchitecture. The reservation station component station takes a signal

of unordered collections of transactions and sends each transaction to an appropriate ex-

ecution unit, if one is available. If no execution unit is available, the reservation station

stores the transaction in an internal reservation bu�er until an execution unit becomes

free.

To increase its generality the station component is parameterized on a list of execution

units execUnits , among other things. Each execution unit is a function that takes a reset

signal and a signal of transaction collections (each transaction collection is implemented

as a list of transactions). The execution unit returns two signals of transaction collections:

The �rst signal consists of transactions that the execution unit refused to process, either

because it is already processing a transaction or because the transaction is of the wrong

type. The second signal contains transactions that the execution unit has completed on

that clock cycle. The Hawk code for the reservation station component is sketched below:

type ExecUnit = Signal Bool ! Signal [Trans] ! (Signal [Trans];Signal [Trans])

station :: (Int ; [ExecUnit ])! (Signal Bool ; Signal [Trans]) ! Signal [Trans]

station (numReservations; execUnits) (reset ; inputTransactions) = : : :

Since the execution units are themselves functions, the station component is an example

of a higher order component. In practice it is quite useful to be able to vary the type

and number of execution units given to station , without having to change the reservation
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station's de�nition.

The top-level pipelined microarchitecture considered in this thesis did not have a reg-

ular enough structure to signi�cantly bene�t from exploiting the higher order features of

Hawk, other than using the lift primitives. We did use higher order functions to formally

model the contents of the register �le component in Section 6.6.1.

7.1.4 Static typing and polymorphism

The Hawk team has relied extensively on Haskell's static typing enforcement to quickly

catch coding mistakes when implementing microarchitectures. Without explicit type

checking, errors that normally took us seconds to �nd and �x could have taken minutes

or hours to debug at runtime. It is particularly easy in modeling to forget the di�erence

between a static value of type � and a dynamic signal whose elements are of type � . For

example, the following Hawk code is ill-typed, and is quickly rejected by the type checker:

select :: Signal Bool ! Signal �! Signal �! Signal �

resultReg :: Signal Reg

resultValid :: Signal Bool

�nalResult :: Signal Reg

�nalResult = select resultValid resultReg R0

The type error that Hugs 98 (a Haskell interpreter) prints out is:

ERROR (line 20): Type error in application

*** Expression : select resultValid resultReg R0

*** Term : R0

*** Type : Reg

*** Does not match : Signal a

The type checker is pointing out that in the de�nition of �nalResult , R0 is a static register

name, not a signal as required by select . If Hawk was a dynamically typed language, this

error would not have been detected until select was evaluated at a clock cycle where
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resultValid was false. If this is a rare occurrence, then it could be quite a while before the

bug is even detected.

Explicit type annotations have also been quite helpful as a form of machine-checked

documentation. Several of the microarchitectures in the Hawk library have been initially

designed by one person and then enhanced or maintained by another. We invariably �nd

that explicitly typed code is easier to understand by other team members.

While Haskell's polymorphic type system admits a wide range of useful programs while

automatically inferring general types for them, there are conceptually valid microarchitec-

ture designs that Haskell can only type check by adding explicit typecasts1. For example,

a module may be implementing a shared bus with a signal of heterogeneously-typed ele-

ments. At any given clock cycle the bus contains a single value of a �xed type, but the

type of the value can change from clock cycle to clock cycle. The information indicating

which type the value has may not even be part of the value itself. The type might in-

stead be communicated in a separate signal, or have been sent on the bus on an earlier

clock cycle. Currently a Hawk implementation of such a bus would require the designer

to create a new datatype containing a constructor for each type of value the bus may

transmit. The decision as to which constructor to use in a given clock cycle would have

to be gleaned from whatever source the type information is being communicated, even if

that source is in another module. The abstract Hawk designs we have created so far have

not exhibited these problems, but it may become an issue when trying to model industrial

microarchitectures \wire accurately".

7.1.5 Nondeterminism

The functional basis of Haskell causes Hawk circuits to be completely deterministic. For

any �xed set of inputs, a Hawk circuit will always evaluate to the same value. In con-

trast, several hardware and concurrency oriented speci�cation languages such as IOA[51],

Ruby[39], SMV[58], and TLA+[41] allow circuits to have nondeterministic behaviors.

Nondeterministic circuits can be used to model partial speci�cations. For instance,

1Haskell implements typecasting through a (currently experimental) universal type mechanism.
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the Hawk reference microarchitecture processes exactly one instruction per cycle, without

stalling. One could instead model a reference processor that nondeterministically stalls

zero or more clock cycles after processing an instruction. Any correctly designed pipelined

processor would exhibit a set of behaviors2 contained in the set of all reference processor

behaviors. The pipelined machine's behaviors would then be said to re�ne the reference

machine's behaviors.

The uniform treatment of speci�cations and implementations enabled by nondeter-

minism is considered by some to be an advantage of re�nement-oriented speci�cation

languages. Hawk does not support nondeterminism directly, but we can simulate non-

deterministic behaviors in Hawk through oracles, which are simply external parameters

indicating which nondeterministic choice to make. For example, the stuttering nats circuit

outputs the natural numbers in sequence, with possibly repeated elements:

stutterNats :: Signal Bool ! Signal Int

stutterNats stutter = out

where

out = delay 0 (select stutter out 0 (lift (+ 1) out))

out 0 = delay 0 out

The stutter parameter is a boolean signal indicating when to repeat the current value on

the next clock cycle. By varying the values of stutter we can simulate all of stutterNats

intended nondeterministic behaviors. If we wanted, we could go on to prove that constant 0

and the non-stuttering circuit nats both re�ne stutteringNats , by providing signals

constant True and constant False , respectively, as the witness oracles. That is, we prove

that

stutteringNats (constant True) = constant 0

and that

stutteringNats (constant False) = nats

2A pipelined processor speci�cation could also have nondeterministic components, such as the latency

of execution units or caches
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We can also use oracles to show that one nondeterministic Hawk circuit re�nes another.

For example, the circuit created by initially outputting 0 and then outputting the results

of stutteringNat delayed by one cycle, is a re�nement of the original stutteringNat circuit.

We state this formally by existentially quantifying the oracle parameter:

8 oracle: 9 oracle 0:

delay 0 (stutteringNats oracle) = stutteringNats oracle 0

We can prove this law by choosing oracle arbitrarily and then supplying a witness oracle

expression for oracle 0 in terms of oracle . The witness oracle we need to choose in this case

is delay True oracle .

In general, a separate oracle parameter must be created for every independent source

of nondeterminism in a circuit. This can become tedious for large, hierarchically speci�ed

circuits such as microarchitectures, and can make higher levels of the hierarchy hard to

read3.

On the other hand, a designer can explicitly create oracles in Hawk to exhibit speci�c

(and repeatable) nondeterministic behaviors of interest. In particular, a designer can

create executable re�nement mappings that test whether one hawk circuit re�nes another.

The designer �rst creates an oracle witness function in Hawk, then randomly generates

a series of oracles. The implementation circuit is simulated on each randomly generated

oracle, and the speci�cation circuit is simulated on the oracle produced by invoking the

witness function on the randomly generated oracle. If the witness function and the circuits

are correctly written, the two circuits should output the same signals.

A designer can even run these tests before a formal re�nement veri�cation is carried

out. Once the witness function has been thoroughly tested, it can be used directly in the

re�nement proof. In this way design engineers can assist in formal re�nement veri�cations

without having to become expert in the veri�cation tools.

3This can be ameliorated to some extent by passing a record of oracles as a single parameter, or through

the use of implicit parameters[47], an experimental Haskell feature for implementing dynamically scoped

variables.
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7.2 Transactions

Another major thrust of this thesis is the use of transactions as the central unit of commu-

nication between microarchitecture components. The notion of transactions as an abstract

data type is independent of any speci�c hardware design language, although Hawk's sup-

port for structured datatypes and polymorphism make the concept easier to express.

7.2.1 Verifying pipelines with transactions

One of the transaction structure's major design bene�ts is its ability to express com-

ponent interfaces uniformly, allowing designers to quickly interconnect microarchitecture

subsystems at the block-diagram level. Another is the fact that the logic controlling a

microarchitectural feature can usually be expressed in the component containing the data

being controlled.

In our experience these advantages have been crucial to discovering algebraic laws.

Take for example the bypass laws. If we were to express the bypass and delay components

used in this law directly at the word level then there would have been a natural temptation

to consolidate the logic controlling the bypass circuitry at the beginning of the pipeline,

when the source register names �rst become available (because then only a couple of bits

containing the results of the register name comparisons would have to be stored and sent

to the bypass selection circuits, rather than the several dozen bits currently needed to

send the register names themselves. Also, the logic needed to test whether the destination

register was R0 would not have been duplicated in each bypass component.).

Unfortunately, this premature commitment to implementation eÆciency can substan-

tially complicate law discovery. We were not able to �nd the bypass laws until the \extra"

control logic was localized to the data it was manipulating. Equally important was the

reduction in the number of top-level pipeline components enabled by transactions. Com-

ponents that are widely separated at the word level, such as the kill circuitry and the

last bypass circuit in the pipeline of Chapter 3 appear much closer when expressed as

transaction processors. This extra concision in speci�cation made it easier to discover the

hazard - bypass law, which spans multiple pipeline stages.
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7.2.2 Calculating space eÆcient pipelines

Transactions help in quickly prototyping processor microarchitectures and signi�cantly

aid algebraic reasoning. However, directly synthesizing a transaction-processing microar-

chitecture to silicon would result in a circuit containing many unnecessary wires and

state-holding elements, especially in later pipeline stages. We have performed some initial

experiments on transformations that remove this unnecessary structure.

The idea is to de�ne each microarchitecture component in terms of a core circuit and a

wrapper circuit. The core circuit implements the component's functionality. The wrapper

circuit is responsible for extracting the necessary transaction �elds to deliver to the core,

and packaging the results back up again as an output transaction. Transaction �elds not

needed by the core are passed through unmodi�ed.

Microarchitecture synthesis then proceeds by expanding the pipeline's components into

their constituent wrapper and core circuit de�nitions. A backwards dependency analysis

on the pipeline's output wires determines which core components are actually used. The

rest are unneeded and can be removed. A separate phase performs retiming and common

subcircuit analysis to eliminate duplicate components. An interesting future research

project would be to �nd out how eÆcient such a synthesized pipeline is relative to a

pipeline designed entirely at the word level.

7.3 Algebraic reasoning

Hawk is designed to be a language that supports high level reasoning as well as speci�-

cation. The algebraic reasoning developed in this thesis can be strati�ed into two essen-

tially separate tasks: Proving the local microarchitecture component laws, and simplifying

pipelines using those local laws.

7.3.1 Proving the component laws

Currently component law proofs seem to require quite a bit of veri�cation expertise. A

typical proof must perform induction over time and one or more case analyses on key

transaction �eld values. Components can have large or unbounded state spaces, making
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completely automated techniques like model checking infeasible. Often the de�nition of

a component needs to be generalized so that all values stored in internal delay circuits

become parameters or return values. This was seen in Section 6.6.1 when we had to de�ne

the rf component in terms of a more general envs component that returned the entire

contents of the register �le at each clock cycle.

In some ways it is disappointing that components have to be so carefully constructed in

order to get inductive proofs to succeed. Often the generalized components start looking

like the state machine transducers common to more imperative speci�cation languages.

Originally this seemed to be a disadvantage of Hawk's stream-transformer style of spec-

i�cation, but we now tend to think of it as a general problem in theorem proving. It

is often the case that recursively de�ned functions over an inductive domain have to be

generalized to prove properties of interest. This is true regardless of the inductive domain.

For multi-parameter functions the generalized form depends on which parameter is being

inducted over and is thus an artifact of the proof, not the de�nition.

We speculate that in many cases this generalization step can be automated, provided

the user speci�es which parameter to induct over. For example, it should be possible to

write an Isabelle tactic that automatically converts a �rst-order Hawk circuit description

into a state-machine transducer form, even if the circuit contains occurrences of other

recursively-de�ned circuits. If indeed such a tactic could be built then Hawk speci�cations

could be written in a more natural style, and converted only as necessary for temporal

induction proofs.

Higher order Hawk de�nitions are more of a challenge. There may not be an automatic

way to convert a function that recurses over more than one parameter, as higher order

components often do. In these cases the user would have to provide a conversion manually,

which would then be used by the automated tactic when translating �rst order circuits

containing the higher order component.
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Typed versus untyped veri�cation logics

Component proofs were also complicated by the type discipline imposed by higher order

logic. We often wanted to quantify over elements of disparate types, particularly trans-

action �eld values. The transactions considered in this thesis had three types of �elds:

Register names, words, and opcodes. More sophisticated microarchitectures could have

many more, such as exception 
ags, predication bits, thread identi�ers, etc. It is a hassle

having to create \universal" datatypes to inject these values into and coercion functions to

move back and forth between them. An excellent article by Lamport and Paulson[42] dis-

cusses similar such problems. They suggest that although typed programming languages

o�er signi�cant advantages, typed speci�cation languages may not be the best choice, at

least when it comes to carrying out formal correctness proofs. They make the following

points (among others):

� Untyped set theory is an extremely expressive formalism, and underlies most of

conventional mathematics.

� Simple type systems, such as the type system of higher order logic, signi�cantly

restrict the class of allowable speci�cations.

� Speci�cations containing \type errors" in untyped formalisms are quickly detected

when attempting correctness proofs.

� Features found in more complex type systems such as predicate subtyping usually

make type checking undecidable and can make it hard to modularize speci�cations.

None of them approaches the 
exibility of untyped set theory.

� In a mechanical veri�cation system, a typed formalism automates routine infer-

ences such as \if x is a nat and y is a nat, then x + y is a nat. However in a

programmable theorem prover like Isabelle's ZF set theory logic these kinds of in-

ferences can automated by writing a special \type-inference" tactic over the domain

of the speci�cation problem.
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� Most formal speci�cations are not formally veri�ed. Mechanical type checking can

help catch errors in these cases.

They go on to observe that perhaps the best approach is to create an untyped speci�cation

language with the ability to build domain-speci�c type systems at the user level. Spec-

i�cations could then be annotated and type-checked according to whatever type system

is appropriate for that domain. Since the underlying formalism is untyped, speci�cation

fragments annotated using di�erent type systems could be combined. Bogus type errors

could be resolved during formal veri�cation.

Our own experience with formally verifying typed Hawk speci�cations accords with

their observations. Of course, it is easy to take for granted those things higher order logic

does well and remember only the diÆculties. We plan to re-verify some of the component

laws in Isabelle's set theory formalism to get a more realistic sense of the tradeo�s involved.

Hawk is both a programming language and a speci�cation language. Even within the

Hawk team many more microarchitectures have been speci�ed and simulated in Hawk than

have been veri�ed. So, on balance, strong typing has been a de�nite win. However, there

is nothing preventing us specifying and simulating Hawk circuits in a typed language like

Haskell, and then verifying them in an untyped formalism. Translation between Hawk and

set theory could be automated, and inferred types can become set-membership constraints

in the translated formalism.

7.3.2 Simplifying the pipeline

Currently, proving local component laws requires substantial experience in logic and in-

ductive proof methods. Fortunately using the laws to simplify pipelines requires far less

training in formal methods. As we demonstrated in Chapter 3, pipeline simpli�cations

can be carried out graphically without resort to complex higher order reasoning or induc-

tive generalization. Microarchitects quickly understand simpli�cations we present, and

state that they would feel comfortable in applying the technique themselves. In fact, the

Hawk team has considered building a visual theorem prover that would allow designers to

carry out simpli�cations by selecting components and choosing from a menu of allowed
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transformations.

We have also found the microarchitecture laws to be fairly reusable when simplifying

variations in the pipeline's design. We originally veri�ed much simpler pipelines than the

one presented in Chapter 3. Over time we increased the sophistication of the pipelines,

and had to discover and prove new microarchitecture laws for the added components.

Previously discovered laws, however, still remained applicable for the most part. This was

true even when we added new transaction �elds, such as the �elds for carrying out branch

speculation.

It remains to be seen how many of the component laws will still apply when simplifying

more dynamic processor microarchitectures, such as those employing out of order execution

and superscalar instruction fetching. In the microarchitectures presented in this thesis, the

possible paths a transaction can take through a pipeline are limited, and closely correspond

to the pipeline's component structure. In contrast, the paths a transaction takes through

a modern out of order microarchitecture are much more determined by the structure of the

program being executed than the pipeline. It is unclear whether structural simpli�cation

techniques will be as e�ective on such data-driven processors.

7.4 Converging equivalence relations

The CER framework was developed in this thesis to solve a speci�c problem { showing

that recursively de�ned signals are well formed. Over time it has become clear that the

technique can be generalized to solve a wide range of recursive equations outside of the

context of Hawk, such as the noncomputable function de�nitions for �ltering and 
attening

in�nite lists. In fact, as shown in Section 5.8 a CER combinator can be de�ned that is

powerful enough to de�ne any well-founded recursive function.

It would be quite interesting to build a recursive function de�nition package based

on the CER framework. The package would be as expressive as existing packages for

well-founded functions, but could also de�ne non-well-founded functions as well.
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7.5 Mechanizing the veri�cation

We were able to automate within Isabelle many, but not all, of the paper-and-pencil

proofs performed for this work. Speci�cally, we successfully generated Isabelle proofs for

the following theories and components:

� Converging Equivalence Relations theory. This theory includes proofs of the

CER �xpoint theorem, the signal and lazy list CER axioms, and the CER combina-

tors. A descendant theory proves that the recursive equations de�ning the functions

iterates , lmap, lappend , l�lter , and l
atten have unique solutions.

� Recursive Hawk circuit de�nitions. Several Hawk circuits containing feedback

signals are de�ned in Isabelle by invoking the CER �xpoint theorem, including the

resettable counter circuit of Section 2.1, the envs circuit of Section 6.6.1, and several

pipelined microarchitectures.

� Microarchitecture component laws. Most of the time-invariance laws have

Isabelle proofs, as well as the feedback rotation law, the register �le - bypass law,

and the hazard - bypass law. We did not have time to prove the laws governing

the no haz and branch misp components. However, their proofs should not present

any diÆculties, now that a theory of �rst class �eld names has been developed (see

below).

� First class �eld names theory. The theory of transaction �eld names has only

recently been mechanized in Isabelle. The primary motivation for mechanizing this

theory is to make the microarchitecture component law proofs more robust in the

face of changes to the transaction datatype. Previously, whenever the transaction

type was extended by new �eld declarations, substantial portions of the component

law proofs would have to be modi�ed. It is, in fact, the main reason why the no haz

and branch misp laws have not yet been mechanized, since these components require

the addition of the specPCFld transaction �eld (which is not currently part of the

transaction datatype). Now that disparately-typed �elds can be quanti�ed over,

adding the specPCFld should be a much simpler matter.
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� Pipeline simpli�cation theory. To verify the top-level pipeline simpli�cation pre-

sented in Chapter 3 we axiomatized all of the microarchitecture laws in a separate

theory, and then used the laws as rewrite rules to simplify the pipelined microarchi-

tecture of Figure 3.10 to the reduced microarchitecture of Figure 3.67. We overcame

diÆculties with Isabelle's rewriting tactics by converting the microarchitecture laws

and pipeline to a di�erent form, described in Section 7.5.2.

7.5.1 Mechanizing the microarchitecture law proofs

The paper-and-pencil proofs of microarchitecture laws can be quite lengthy, even for simple

circuits such as the registerFile-bypass law. Fortunately many of the steps simply consist

of rewriting with respect to previously proven theorems. These steps can be automated

in theorem provers like Isabelle that can repeatedly simplify a subgoal with respect to a

list of equational theorems.

A more diÆcult part of proving microarchitectural laws is de�ning stateful components

in terms of appropriate auxiliary functions. The auxiliary functions of a component need

to be de�ned in such a way that all of the component's important internal states are

visible during the inductive proof. For the registerFile-bypass law, this involved de�ning

the auxiliary function envs, which exposed the internal state of the register �le contents.

It turns out that in many cases these auxiliary functions are essentially the component's

corresponding state machine transducers, as is the case for envs. The bene�t of such

transducer-like functions is that one can relate the value returned by the transducer in

the next clock cycle in terms of the inputs to the transducer in the next clock cycle and

values returned by the transducer in the current clock cycle. This is precisely the form of

relation needed when carrying out temporal induction.

7.5.2 Mechanizing the top level pipeline simpli�cation

Simplifyingmicroarchitectures algebraically in Isabelle has been problematic. Hawk pipeline

de�nitions consist of mutually-recursive signal de�nitions. Isabelle's rewriting tactics can

handle mutually-recursive pattern matching function de�nitions by only rewriting func-

tions that are applied to explicit constructors. This is exactly what is needed to prove the
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inductive properties used in the component laws, and Isabelle's sophisticated conditional

and higher order rewriting package is of great help there. Unfortunately Hawk signal

de�nitions at the pipeline level do not use pattern matching, and so naive rewriting often

loops. Instead, top level rewrite steps must currently be done one at a time.

Another diÆculty concerns expression sharing. In Isabelle let-expressions are just syn-

tactic sugar for function applications. Most Isabelle tactics do not support let-expressions

directly, requiring the user to expand them �rst. The problem with this is that all sharing

of sub-terms is lost during the expansion. Hawk microarchitectures contain signi�cant

signal sharing, and expanding them can increase the size of a pipeline by an order of mag-

nitude. This size increase also increases tactic execution time by an order of magnitude,

and makes the pipeline much harder to read during veri�cation.

One possible solution to both of these problems is to add support in Isabelle for

recursive let-expressions (letrecs), de�ned as unique �xed points. When simplifying letrecs,

later variable declarations could be rewritten in terms of earlier declarations automatically,

but not vice-versa. Special tactics could be de�ned to change the order of declarations in

a letrec if a di�erent rewriting order was desired. An earlier declaration would only be

expanded in a later declaration if it then enabled a rewrite rule to simplify the expanded

expression. New common subterms created during simpli�cation would be collected as

shared variable declarations.

Adding letrec support would not require changing Isabelle's trusted kernel of primi-

tive inference rules. It would require substantially modifying tactics written outside of

the kernel, such as the rewriter and tableau resolution tactics. Instead, we followed an

alternative approach that reuses more of Isabelle's existing infrastructure.

Conversion to relational form

To take advantage of Isabelle's existing tools for reasoning about formulas (terms of type

bool ), the microarchitecture laws and pipeline de�nition were �rst converted to relational

form. A Hawk circuit in relational form is represented as a predicate equality, rather than

a function. The equality is parameterized on both the input and the output signals of the

circuit, by representing the signals as free variables. The predicate equation is true exactly
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when the outputs equal the result of applying the circuit to the inputs. For example, the

relational form of the regFile circuit could be given in terms of the free output variable

out , and the free input variables inp and rb:

out = regFile inp wb

More complex circuits containing internal signals and recursion can be expressed in

relational form through the use of existential quanti�cation and conjunction. For instance,

recall the register �le - bypass law, presented again in Figure 7.1 with named internal wires.

regFile regFile
inp outinp

prevWb

wb

out

wb

rfOut

Figure 7.1: register �le - bypass law

The circuit on the left hand side of this law can be expressed as the following relation

on the free variables out , inp and wb:

(9 prevWb rfOut : prevWb = delay nop wb ^

rfOut = regFile inp prevWb ^

out = bypass rfOut wb)

The internal signal variable names prevWb and rfOut are bound by the existential quan-

ti�er, and thus are not visible in any enclosing context. Specifying circuits as relations in

this way is a commonly taken approach when verifying hardware designs in higher order

logic[28, 64].

The microarchitecture law of Figure 7.1 can now be expressed in higher order logic as

an equality between the two circuit relations:
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8 out inp wb:

(9 prevWb rfOut : prevWb = delay nop wb ^

rfOut = regFile inp prevWb ^

out = bypass rfOut wb)

=

(out = regFile inp wb)

Assuming that the pipeline to be simpli�ed is also expressed in relational form, then

the above equality (once proven) can be used as a rewrite rule, at least in principle. In

practice, Isabelle's current rewriting tactics are too restrictive to use such rules naturally.

In particular, the rewriting tactics will not apply existentially-quanti�ed rewrite rules

unless the order of the existential quanti�ers in the left hand side of the rewrite rule exactly

matches the order in the term being rewritten. Similarly, the order of each conjunct in

the rewrite rule must exactly match the order of the subject term's conjuncts.

To remedy this situation we developed a set of tactics that allow conjuncts and exis-

tential variables within Isabelle to be reordered on demand. We also developed tactics to

apply the circuit duplication and feedback - rotation laws in this relational setting. Once

the tactics were written, the pipeline was simpli�ed step by step. Unfortunately, each

step had to be carried out manually, requiring a total of 88 tactic invocations. However,

there is nothing in principle to prevent Isabelle's rewriting tactics from being generalized

to handle existentially quanti�ed conjunctions in rewrite rules. Upgrading the rewriting

tactics would dramatically reduce the number of manual simpli�cation steps required.

Justifying the conversion to relational form

The question still remains as to whether relational conversions are valid, as currently Hawk

microarchitecture laws are veri�ed as equations between values, not relations. Fortunately

the conversion can be justi�ed by the fact that all recursive Hawk circuits are de�ned as

unique �xed points.

To begin with, any recursive circuit in Hawk can be expressed as a function of a

projection p and a unique �xed point �x F
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circuit � �inputs : p (�x F )

by expressing the input signals of the circuit as parameters of the function (i.e. inputs),

and both the output and internal wires of the circuit as elements of a tuple, which becomes

the result of �x F . The function p then projects out only the output signals.

For example, the circuit shown in the left hand side of Figure 7.1 can be expressed as

� inp wb: p (�x F )

where

F = (� (out ; prevWb; rfOut) : ( bypass rfOut wb;

delay nop wb;

regFile inp prevWb))

p = (� (out ; prevWb; rfOut) : out)

Thus, any microarchitectural law can be written as an equation between two circuits of

the form:

(�i1 : : : in : p1 (�x F1)) = (�i1 : : : in : p2 (�x F2))

where F1 and F2 may contain occurrences of i1 : : : in. If F1 and F2 have unique �xed

points (possibly over di�erent types), then the above equation is provably equivalent in

higher order logic to

8 i1 : : : in out :

(9 tuple1: tuple1 = F1 tuple1 ^ out = p1 tuple1)

=

(9 tuple2: tuple2 = F2 tuple2 ^ out = p2 tuple2)

When this equation is expanded in terms of F1, F2, p1, and p2, and simpli�ed by the

following tuple equality rule

8x1 x2 y1 y2: ((x1; y1) = (x2; y2)) = (x1 = x2 ^ y1 = y2)
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the resulting reduced equation is in the required relational form.

Performing the same inferences in reverse order, two circuits that have been proven

equivalent in relational form can be converted to an equality between the same circuits ex-

pressed as unique �xed points. Thus microarchitecture pipelines that have been simpli�ed

relationally can be converted back into conventional Hawk expression form.

It is important to note that conversion to relational form may not be valid in general

when F1 and F2 do not have unique �xed points.

7.6 Conclusions and further research directions

In all, Hawk has proved to be an excellent platform for quickly specifying and reasoning

algebraically about pipelined microarchitectures at an abstract level. The strengths of

Hawk revolve around its abstraction capabilities and executability:

� Abstract and modular speci�cation. The combination of functional language

structuring principles with the domain-speci�c transaction ADT leads to remarkably

concise, yet understandable, pipelined microarchitecture descriptions. In particular,

transactions combined with mutual recursion at the stream level allow us to build

processor components as separate modules, then easily compose them at the top

level.

� Abstract and modular reasoning. At the same time, the simple semantics

underlying Hawk allows one to reason about source level hawk descriptions directly

as expressions in higher order logic. The equational laws we have derived for local

microarchitecture components are independent of context, and can thus be used in

a modular fashion. Hawk's equational theorems and proofs can also be displayed

visually, so that users do not need to be versed in the complexities of higher order

or temporal logic to follow them.

� Executability. Hawk is fully executable, so designers can test new designs on

concrete and symbolic inputs. One can even simulate �rst order Hawk microar-

chitectures visually. Hawk project members Thomas Nordin and Byron Cook have
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developed Visual Hawk, a graphical front end to the Hawk interpreter. In Visual

Hawk a designer can create circuit diagrams by dragging microarchitecture compo-

nents from a palette onto a canvas and then connecting them with wires. Each wire

represents a signal. The tool performs static type checking and input/output mode

analysis to ensure that wires are only connected between compatible component

ports. The designer can simulate microarchitecture circuits interactively, and then

double click on a wire to obtain a trace of all the values sent along it so far.

The executability of Hawk combined with good user interface support makes Hawk

a useful tool to designers even in the absence of formal veri�cation.

� Embedded language. Hawk is built upon and compatible with the general-

purpose programming language Haskell. Thus we immediately can make use of the

existing interpreters, compilers, programming texts, and user community associated

with Haskell.

Of course, Hawk is not perfect. The major weaknesses of Hawk and the algebraic method

uncovered during the course of this thesis involve simulation eÆciency and lack of automa-

tion when verifying Hawk circuits:

� EÆciency. Hawk's high level of abstraction comes at a cost. Current Hawk imple-

mentations run at two to three orders of magnitude more slowly than state of the art

imperative microarchitecture simulators. Much of this slowdown comes from using

a general purpose Haskell compiler, and the eÆciency of Hawk simulations could

be improved by at least two orders of magnitude by employing domain-speci�c

compilation techniques, such as converting streams into mutable variables, stati-

cally scheduling expression evaluation, monomorphizing polymorphic expressions,

and custom garbage collection. But it is unclear even with these optimizations how

closely we could approach the eÆciency of the very best hand-tuned microarchitec-

ture simulators.

� In�nite state spaces. Most Hawk components operate over unbounded datatypes.

For instance, the register �le component can have an in�nite number of registers.
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Each register can contain a word value of unbounded size. Similar generality is built

into other components, such as the instruction and data caches. Unfortunately, most

of the fully automatic model checking algorithms operate over �nite state spaces, and

thus can not be used directly. Theorem provers can easily handle in�nite state spaces,

but require a great deal of e�ort and expertise to use. In practice, this signi�cantly

limits the size of Hawk speci�cations that can be veri�ed in a reasonable amount

of time. However, a promising intermediate technology called compositional model

checking (discussed in the future work section below) may help reduce the amount

of manual intervention needed to prove microarchitecture laws.

� Hidden state. At the lowest level, local equational laws have to be proved by some

form of induction. Often one has to generalize the equation being proved to a bisim-

ulation relation that holds at all points in time, and relates values at the previous

time step to values at the current time step. With state machine formalisms, all of

these previous and current values can be referenced explicitly. Hawk components,

on the other hand, tend to hide previous values (which are the outputs of delay

circuits) deep within the component de�nitions. To build a suitable bisimulation in

Hawk, one has to parameterize initial arguments to delay circuits as arguments to

the entire component, or one has to construct auxiliary state observation functions

and de�ne the bisimulation in terms of these. In either case it is extra work that

does not need to be done with state machine oriented veri�cation.

From a generic theorem proving perspective this thesis' most widely applicable result is

the development of converging equivalence relations. The CER framework generalizes def-

inition by well-founded recursion, and may turn out to be a useful way to de�ne functions

over a broad range of coinductive data structures, such as in�nite lists, in�nite trees, and

cyclic graphs.
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Future work

The work described here can be extended in several directions. Besides increasing the

power of Isabelle by adding support for recursive let-expressions and CER-de�nable func-

tions, we also intend to complete the algebraic veri�cation of the pipeline of Chapter 3.

At the moment the pipeline cannot be simpli�ed to a reference machine because of the

extra nop transactions output when the pipeline stalls. It should however be possible to

simplify the pipeline to a stalling reference machine, where the reference machine's stalling

behavior is governed by an external oracle. By feeding the stalling control logic of the

pipelined machine as the reference machine's oracle, the two microarchitectures should

output exactly the same transactions. Given suitable additional component laws concern-

ing the instruction cache, it should be possible to prove the two processors equivalent

algebraically.

We also intend to automate component law proofs further by applying recent work

on abstract model checking, particularly the work of McMillan[57, 61, 59, 60] on verifying

in�nite state models. McMillan and the author have performed some preliminary experi-

ments on verifying component laws, with promising results. Abstract model checking was

able to reduce in�nite state space versions of the registerFile - bypass and hazard - bypass

laws down to a series of small �nite state model checking problems, which were then solved

automatically. It was necessary to add a few re�nement maps and manual annotations

stating which variables were used in a symmetric manner, but overall the approach seemed

much more automatic than the current inductive proofs carried out in Isabelle.
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