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Abstract

Modern microprocessors require an immense invest-

ment of time and e�ort to create and verify, from

the high-level architectural design downwards. We are

exploring ways to increase the productivity of design

engineers by creating a domain-speci�c language for

specifying and simulating processor architectures. We

believe that the structuring principles used in modern

functional programming languages, such as static typ-

ing, parametric polymorphism, �rst-class functions,

and lazy evaluation provide a good formalism for such

a domain-speci�c language, and have made initial

progress by creating a library on top of the functional

language Haskell. We have speci�ed the integer sub-

set of an out-of-order, superscalar DLX microproces-

sor, with register-renaming, a reorder bu�er, a global

reservation station, multiple execution units, and spec-

ulative branch execution. Two key abstractions of this

library are the signal abstract data type (ADT), which

models the simulation history of a wire, and the trans-

action ADT, which models the state of an entire in-

struction as it travels through the microprocessor.

1 Introduction

Modern microprocessor technologies have substan-

tially increased processor performance. For example,

pipelining allows a processor to overlap the execution

of several instructions at once. With superscalar exe-

cution, multiple instructions are read per clock cycle.

Out-of-order execution, where some instructions that

logically come after a given instruction may be ex-

ecuted before the given instruction, can also greatly
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increase processor speed [6]. All of these technologies

dramatically increase design complexity. In fact, cre-

ating and verifying these designs is a signi�cant pro-

portion of the total microprocessor development life-

cycle. As the number of possible gates in future micro-

processors increases exponentially, so too does design

complexity.

At OGI, we have developed the Hawk language

for building executable speci�cations of microproces-

sors, concentrating on the level of micro-architecture.

In the long term we plan for Hawk to be a stand-

alone language. In the meantime we have embedded

our language into Haskell, a strongly-typed functional

language with lazy (demand-driven) evaluation, �rst-

class functions, and parametric polymorphism [5] [12].

The library makes essential use of these features.

As an example, we have used Hawk to specify and

simulate the integer portion of a pipelined DLX

microprocessor[4]. The DLX is a complete micropro-

cessor and is a widely used model among researchers.

Several DLX simulators exist, as well as a version of

the Gnu C compiler that generates DLX assembly

instructions. The processor includes the most com-

mon instructions found in commercial RISC proces-

sors. Our speci�cation, including data and control

hazard resolution, is only two pages of Hawk code. A

non-pipelined version of the processor was speci�ed in

half of a page.

In this report, we introduce the concepts behind

Hawk. Rather than attempting a detailed explana-

tion of the whole of the DLX with all of its inherent

complexity, we have chosen to exhibit the techniques

on a considerably simpli�ed model. A corresponding

annotated speci�cation of the DLX itself can be found

in [13].

2 The Hawk Library

We start with a simple example that introduces sev-

eral functions used in later examples. Consider the

resettable counter circuit of Figure 1.

The reset wire is Boolean valued, while the other
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Figure 1: Resettable Counter. A simple circuit

that counts the number of clock cycles between

reset signals.

wires are integer valued. Of course, in silicon, integer-

valued wires are represented by a vector of Boolean

wires, but as a design abstraction, a Hawk user may

choose to use a single wire. The circuit counts (and

outputs) the number of clock cycles since reset was

last asserted.

2.1 Signals

Notice that there is no explicit clock in the diagram.

Rather, each wire in the diagram carries a signal (in-

teger or boolean valued) which is an implicitly clocked

value. The output of a circuit only changes between

clock cycles. We build signals using an abstract type

constructor called Signal. As a mental model we

could think of a value of type Signal a as a function

from integers to values of type a.

type Signal a = (Int -> a)

The integers denote the current time, measured as

the number of clock cycles since the start of the simu-

lation. Circuits and components of circuits are repre-

sented as functions from signals to signals. This view

of signals is used extensively in the hardware veri�ca-

tion community [9] [14]. Equivalently, we can think of

signals as in�nite sequences of values.

In the resettable counter example above, the

constant 0 circuit outputs zero on every clock cycle.

The select component chooses between its inputs on

each clock cycle depending on the value of reset. If

reset is asserted on a given cycle (has value true), then

the output is equal to select 's top input, in this case

zero. If reset is not asserted, then its output is the

value of its bottom input. In either case, select 's out-

put is the output of the entire circuit, as well as the

input to the increment component, which simply adds

1 to its input. The output of increment is fed into the

delay component. A delay component outputs what-

ever was on its input in the previous clock cycle: it

\delays" its input by one cycle. However, on the �rst

clock cycle of the simulation there is no previous in-

put, so on the �rst cycle delay outputs whatever is on

its init input, which is zero in this circuit.

2.2 Components

The components used in the resettable counter are

trivial examples of the sorts of things provided by the

Hawk library, but let's look at a speci�cation of each

component in turn.

The simplest component is constant

constant :: a -> Signal a

The constant function takes an input of any type

a, and returns an output of type Signal a, that is,

a sequence of values of type a. For every clock cycle,

(constant x) always has the same value x.

The next component is select:

select :: Signal Bool ->

Signal a ->

Signal a ->

Signal a

This declares select to be a function. In a
Hawk declaration, anything to the left of an ar-
row is a function argument. Thus, the expression
(select bs xs ys), where bs is a Boolean signal,
and xs and ys are signals of type a, will return an
output signal of type a. The values of the output sig-
nal are drawn from xs and ys, decided each clock tick
by the corresponding value of bs. For example, if

bs = <True,False,True,False,...>,

xs = <x1,x2,x3,x4,...>,

ys = <y1,y2,y3,y4,...>

then (select bs xs ys) is equal to the signal

<x1,y2,x3,y4,...>.

Hawk treats functions as �rst-class values, allowing

them to be passed as arguments to other functions

or returned as results. First-class functions allow us

to specify a generic lift primitive, which \lifts" a

normal function from type a to type b into a function

over the corresponding signal types:

lift :: (a -> b) -> Signal a -> Signal b



The expression (lift f xs), where

xs = <x1,x2,x3,...>, is equal to the signal

<f x1, f x2, f x3, ...>.

The increment component is de�ned in terms of

lift:

increment :: Signal Int -> Signal Int

increment xs = lift (+ 1) xs

Given the xs input signal, increment adds one to

each component of xs and returns the result.

The delay component is more interesting:

delay :: a -> Signal a -> Signal a

This function takes an initial value of type a, and

an input signal of type Signal a, and returns a value

of type Signal a (the input arguments are in reverse

order from the diagram). At clock cycle zero, the ex-

pression (delay initVal xs) returns initVal. Oth-

erwise the expression returns whatever value xs had at

the previous clock cycle. This function can thus prop-

agate values from one clock cycle to the next. Note

that delay is polymorphic, and can be used to delay

signals of any type.

2.3 Using the components

Once we have de�ned primitive signal components like

the ones above, we can de�ne the resettable counter:

resetCounter :: Signal Bool -> Signal Int

resetCounter reset = output

where

output =

select reset

(constant 0)

(delay 0 (increment output))

The resetCounter de�nition takes reset as a

Boolean signal, and returns an integer signal. The

reset signal is passed into select. On every clock cy-

cle where reset returns True, select outputs 0, oth-

erwise it outputs the result of the delay function. On

the �rst clock cycle delay outputs 0, and thereafter

outputs the result of whatever (increment output)

was on the previous clock cycle. The output of the

whole circuit is the output of the select function,

here called output. Notice that output is used twice

in this function: once as the input to increment, and

once as the result of the entire function. This corre-

sponds to the fact that the output wire in Figure 1 is

split and used in two places. Whenever a wire is dupli-

cated in this fashion, we must use a where statement

in Hawk to name the wire.

2.4 Recursive De�nitions

There is something else curious about the output vari-

able. It is being used recursively in the same place it is

being de�ned! Most languages only allow such recur-

sion for functions with explicit arguments. In Hawk,

one can also de�ne recursive data-structures and func-

tions with implicit arguments, such as the one above.

If we didn't have this ability, we would have had to

de�ne resetCounter as follows:

resetCounter reset = output

where

output time =

(select reset

(constant 0)

(delay 0 (increment output))) time

Every time we have a cycle in a circuit, we have to

create a local recursive function, passing an explicit

time parameter. This breaks the abstraction of the

Signal ADT. In fact, in the real implementation of

signals, we don't use functions at all. We use in�nite

lists instead. Each element of the list corresponds to a

value at a particular clock cycle; the �rst list element

corresponds to the �rst clock cycle, the second element

to the second clock cycle, and so on. By storing signals

as lazy lists, we compute a signal value at a given

clock cycle only once, no matter how many times it is

subsequently accessed.

Haskell allows recursive de�nitions of abstract data

structures because it is a lazy language, that is, it

only computes a part of a data structure when some

client code demands its value. It is lazy evaluation

that allows Haskell to simulate in�nite data structures,

such as in�nite lists.

3 A Simple Microprocessor

As we noted in the introduction, the DLX architec-

ture is too complex to explain in �ne detail in an in-

troductory report. Thus for pedagogical purposes we

show how to use similar techniques to specify a sim-

ple microprocessor called SHAM (Simple HAwk Mi-

croprocessor). We begin with the simplest possible

SHAM architecture (unpipelined), and then add fea-

tures: pipelining, and a memory-cache.

The unpipelined SHAM diagram is shown in Fig-

ure 2. The microprocessor consists of an ALU and a

register �le. The ALU recognizes three operations:

ADD, SUB, and INC. The ADD and SUB operations

add and subtract, respectively, the contents of the two

ALU inputs. The INC operation causes the ALU to in-

crement its �rst input by one and output the result.
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Figure 2: Unpipelined version of SHAM.

The register �le contains eight integer registers, num-

bered RO through R7. Register R0 is hardwired to the

value zero, so writes to R0 have no e�ect. The reg-

ister �le has one write-port and two read-ports. The

write-port is a pair of wires; the register to update,

called writeReg, and the value being written, called

writeContents. The input to each read-port is a wire

carrying a register name. The contents of the named

read-port registers are output every cycle along the

wires contentsA and contentsB. If a register is writ-

ten to and read from during the same clock cycle, the

newly written value is re
ected in the read-port's out-

put. This is consistent with the behavior of most mod-

ern microprocessor register �les.

SHAM instructions are provided externally; in our

drive for simplicity there is no notion of a program

counter. Each instruction consists of an ALU opera-

tion, the destination register name, and the two source

register names. For each instruction the contents of

the two source registers are loaded into the ALU's in-

puts, and the ALU's result is written back into the

destination register.

3.1 Unpipelined SHAM Speci�cation

Let us assume we have already speci�ed the register

�le and ALU, with the signatures below:

data Reg = R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7

regFile :: (Signal Reg, Signal Int) ->

Signal Reg ->

Signal Reg ->

(Signal Int, Signal Int)

data Cmd = ADD | SUB | INC

alu :: Signal Cmd -> Signal Int -> Signal Int ->

Signal Int

The regFile speci�cation takes a write-port input,

two read-port inputs, and returns the corresponding

read-port outputs. The alu speci�cation takes a com-

mand signal and two input signals, and returns a re-

sult signal. Given these signatures and the previous

de�nition of delay, it is easy in Hawk to specify an

unpipelined version of SHAM:

sham1 :: (Signal Cmd,Signal Reg,

Signal Reg,Signal Reg) ->

(Signal Reg,Signal Int)

sham1 (cmd,destReg,srcRegA,srcRegB) =

(destReg',aluOutput')

where

(aluInputA,aluInputB) =

regFile (destReg',aluOutput')

srcRegA srcRegB

aluOutput = alu cmd aluInputA aluInputB

aluOutput' = delay 0 aluOutput

destReg' = delay R0 destReg

The de�nition of sham1 takes a tuple of signals rep-

resenting the stream of instructions, and returns a pair

of signals representing the sequence of register assign-

ments generated by the instructions. The �rst three

lines in the body of sham1 read the source register val-

ues from the register �le and perform the ALU opera-

tion. The next two lines delay the destination register

name and ALU output, in e�ect returning the values of

the previous clock cycle. The delayed signals become

the write-port for the register �le. It is necessary to

delay the write-port since modi�cations to the regis-

ter �le logically take e�ect for the next instruction,

not the current one.

3.2 Pipelining

Suppose we wanted to increase SHAM's performance

by doubling the clock frequency. We will assume that,

while sham1 could perform both the register �le and

ALU operations within one clock cycle, with the in-

creased frequency it will take two clock cycles to per-

form both functions serially. We use pipelining to



increase the overall performance. While the ALU is

working on instruction n, the register �le will be writ-

ing the result of instruction n�1 back into the appro-

priate register, and simultaneously reading the source

registers of instruction n+ 1.

But now consider the following sequence of instruc-

tions, such as:

R2 <- R1 ADD R3

R4 <- R2 SUB R5

When the ADD instruction is in the ALU stage, the

SUB instruction is in the register-fetch stage. But one

of the registers that is being fetched (R2), has not been

written back into the register �le yet, because the ALU

is still calculating the result. The SUB instruction will

read an out-of-date value for R2. This is an example

of a data hazard, where naive pipelining can produce

a result di�erent from the unpipelined version of a

microprocessor. To resolve this hazard, we will �rst

add bypass logic to the pipeline, then later abstract

away from this added inconvenience.

Figure 3 contains the diagram of a pipelined version

of SHAM with bypass logic. By the time the source

operands to the SUB instruction (R2 and R5) are ready

to be input into the ALU, the up-to-date value for R2 is

stored in the delay circuit between the ALU and the

register �le's write-port. The bypass logic uses this

stored value of R2 as the input to the ALU, rather

than the out-of-date value read from the register �le.

The bypass logic examines the incoming instructions

to determine when this is necessary. The following

code contains the Hawk speci�cation:

sham2 :: (Signal Cmd,Signal Reg,

Signal Reg,Signal Reg)

->

(Signal Reg,Signal Int)

sham2 (cmd,destReg,srcRegA,srcRegB) =

(destReg'',aluOut')

where

(valueA,valueB) = regFile (destReg'',aluOut')

srcRegA srcRegB

valueA' = delay 0 valueA

valueB' = delay 0 valueB

destReg' = delay R0 destReg

cmd' = delay ADD cmd

aluInputA = select validA valueA' aluOut'

aluInputB = select validB valueB' aluOut'

aluOut = alu cmd' aluInputA aluInputB

aluOut' = delay 0 aluOut

destReg'' = delay R0 destReg'

--- Control logic ---

validA = delay True (noHazard srcRegA)

validB = delay True (noHazard srcRegB)

noHazard :: Signal Reg -> Signal Bool

noHazard srcReg =

sigOr (sigEqual destReg' (constant R0))

(sigNotEqual destReg' srcReg)

The �rst two lines after the where keyword read

the contents of the source registers from the register

�le. The next four lines delay the source register con-

tents, the ALU command, and the destination register

name by one cycle. The two select commands decide

whether the delayed values should be bypassed. The

decision is made by the Boolean signals validA and

validB, which are de�ned in the control logic section.

The next line performs the ALU operation. The last

two lines in the data-
ow section delay the ALU re-

sult and the destination register. The delayed result,

called aluOut', is written back into the register �le in

the register named by destReg'', as indicated in the

�rst two lines of the section.

The control logic section determines when to by-

pass the ALU inputs. The signals validA and validB

are set to True whenever the corresponding ALU in-

put is up-to-date. The de�nition of these signals uses

the function noHazard, which tests whether the pre-

vious instruction's destination register name matches

a source register name of the current instruction. If

they do, then the function returns False. The ex-

ception to this is when the destination register is R0.

In this case the ALU input is always up-to-date, so

noHazard returns True.

3.3 Transactions

The de�nition of sham2 highlights a di�culty of many

such speci�cations. Although the data 
ow section is

relatively easy to understand, the control logic section

is far from satisfactory. In fact, it often takes nearly as

many lines of Hawk code to specify the control logic

as it does to specify the data 
ow, and mistakes in

the control logic may not be easy to spot. We need a

more intuitive way of de�ning control logic sections in

microprocessors.

We use a notion of transactions within Hawk to

specify the state of an entire instruction as it trav-

els through the microprocessor (similar in spirit to
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Figure 3: Pipelined SHAM. Since the register �le and the ALU each now take one clock cycle to

complete, we now need Delay circuits. The Delay circuits in turn require us to add Select circuits

to act as bypasses. The logic controlling the Select circuits is not shown.

Aagaard and Leeser [1]). A transaction holds an in-

struction's source operand values, the ALU command,

and the destination operand value. Transactions also

record the register names associated with the source

and destination operands:

data Transaction = Trans DestOp Cmd [SrcOp]

type DestOp = Operand

type SrcOp = Operand

type Operand = (Reg,Value)

data Value = Unknown | Val Int

An operand is a pair containing a register and its

value. Values can either be \unknown" or they can be

known, e.g. Val 7.

For example, the instruction (R3 <- R2 ADD R1),

when it has completed, would be encoded as shown

below (assume that register R2 holds the value 3, and

R1 holds 4):

Trans (R3,Val 7) ADD [(R2,Val 3),(R1,Val 4)]

This expression states that register R3 should be

assigned the value 7 as a result of adding the contents

of register R2 and R1.

Not all of the register values in a transaction are

known in the early stages of the pipeline. When a

register name does not have an associated value yet,

it is assigned the value Unknown. For example, if the

above instruction had not reached the ALU stage yet,

then the corresponding transaction would be:

Trans (R3,Unknown) ADD [(R2,(Val 3)),(R1,Val 4))]

Figure 4 shows how a transaction's values are �lled

in as it 
ows through the pipeline.

3.4 Transaction structure

In general, the Transaction datatype contains three

sub�elds. The �rst �eld holds the destination register

name and its current state. The state of a register indi-

cates the current value for the register at a given stage

of the pipeline. Possible state values are Unknown, or

(Val k). The second �eld is the instruction's ALU

operation, in this case the ADD command. The third

�eld holds a list of source operand register names and

their corresponding states. In this example, it holds

the names and states for the source operands R2 and

R1.

The instruction (R3 <- R2 ADD R1), before it en-

ters the SHAM pipeline, is encoded as the transaction:
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pipeline. As the transaction progresses, its

operands become more re�ned.

Trans (R3,Unknown) ADD [(R2,Unknown),(R1,Unknown)]

At this point, none of the register values are known.

3.5 Changes to handle transactions

We change the regFile and alu functions so that they

take and return transactions:

regFile :: Signal Transaction ->

Signal Transaction ->

Signal Transaction

alu :: Signal Transaction ->

Signal Transaction

Because the register �le needs to both write new

values to the CPU registers and read values from

them, the regFile function takes a write-transaction

and a read-transaction as inputs. The function ex-

amines the destination register �eld of the write-

transaction and updates the corresponding register in

the register �le. It outputs the read-transaction, mod-

i�ed so that all of the source register �elds contain cur-

rent values from the register �le. For example, suppose

regFile is applied to the completed write-transaction:

Trans (R1,Val 4) INC [(R1,Val 3)]

and uses as the read transaction:

Trans (R3,Unknown) ADD [(R2,Unknown),(R1,Unknown)]

Further, assume that register R1 is assigned 20 and

R2 is assigned 3 before regFile's application. Then

regFile will update R1 to contain 4 from the write-

transaction, and will output a new transaction that

is identical to the read-transaction, except that all of

the source registers have been assigned current values

from the register �le:

Trans (R3,Unknown) ADD [(R2,Val 3),(R1,Val 4)]

The revised alu function takes a transaction whose

source operands have values, performs the appropriate

operation, and outputs a modi�ed transaction whose

destination �eld has been �lled in. Thus if the ADD

transaction above were given to alu, it would return:

Trans (R3,Val 7) ADD [(R2,Val 3),(R1,Val 4)]

3.6 Unpipelined SHAM

Using transactions, the unpipelined version of SHAM

is even easier to specify than it was before.

sham1Trans :: Signal Transaction ->

Signal Transaction

sham1Trans instr = aluOutput'

where

aluInput = regFile aluOutput' instr

aluOutput = alu aluInput

aluOutput' = delay nop aluOutput

nop = Trans (R0,Val 0) ADD [(R0,Val 0),(R0,Val 0)]

But the real bene�t of transactions comes from

specifying more complex micro-architectures, as we

shall see next.

3.7 SHAM2 with Transactions

Transactions are designed to contain the necessary in-

formation for concisely specifying control logic. The

control logic needs to determine when an instruction's

source operand is dependent on another instruction's

destination operand. To calculate the dependency, the



source and destination register names must be avail-

able. The transaction carries these names for each

instruction. Because of this additional information,

bypass logic is easily modeled with following combi-

nator:

bypass :: Signal Transaction ->

Signal Transaction ->

Signal Transaction

The bypass function usually just outputs its �rst

argument. Sometimes, however, the second argu-

ment's destination operand name matches one or more

of the �rst argument's source operand names. In this

case, the source operand's state values are updated to

match the destination operand state value. The up-

dated version of the �rst argument is then returned.

So if at clock cycle n the �rst argument to bypass

is:

Trans (R4,Unknown) ADD [(R3,Val 12),(R2,Val 4)]

and the second argument at cycle n is:

Trans (R3,Val 20) SUB [(R8,Val 2),(R11,Val 10)]

then because R3 in the second transaction's desti-

nation �eld matches R3 in the �rst transaction's source

�eld, the output of bypass will be an updated version

of the �rst transaction:

Trans (R4,Unknown) ADD [(R3,Val 20),(R2,Val 4)]

One special case to bypass's functionality is when a

source register is R0. Since R0 is a constant register, it

does not get updated. The pipelined version of SHAM

with bypass logic is now straightforward. Notice that

no explicit control logic is needed, as all the decisions

are taken locally in the bypass operations.

SHAM2Trans :: Signal Transaction ->

Signal Transaction

SHAM2Trans instr = aluOutput'

where

readyInstr = regFile aluOutput' instr

readyInstr' = delay nopTrans readyInstr

aluInput = bypass readyInstr' aluOutput'

aluOutput = alu aluInput

aluOutput' = delay nopTrans aluOutput

The �rst line takes instr and �lls in its source

operand �elds from the register �le. The �lled-in

transaction is delayed by one cycle in the second line.

In the third line bypass is invoked to ensure that all of

the source operands are up-to-date. Finally the trans-

action result is computed by alu and delayed one cycle

so that the destination operand can be written back

to the register �le.

3.8 Hazards

There are some microprocessor hazards that cannot

be handled through bypassing. For example, suppose

we extended the SHAM architecture to process load

and store instructions:

R3 <- MEM[R2]

MEM[R5] <- R2

The �rst instruction above is a load instruction;

it loads the contents of the address pointed to by R2

into R3. The second instruction is a store; it stores the

contents of R2 into the address pointed to by R5. A

block diagram of the extended SHAM architecture is

shown in Figure 5. There is now a load/store pipeline

stage after the ALU stage. However, this introduces a

new problem. Suppose SHAM executes the following

two instructions in sequence:

R2 <- MEM[R1]

R4 <- R2 ADD R3

These two instructions have a data hazard, just as

before, but we can not use bypassing to resolve it.

Bypassing depends on having a value to bypass at the

beginning of a clock cycle, but R2's value won't be

known until the end of the cycle, after the memory

contents have been retrieved from the memory cache.

To resolve this hazard, we have to stall the pipeline

at the register-fetch stage. When the �rst instruc-

tion has reached the end of the ALU stage, the second

instruction will have reached the end of the register-

fetch stage. At this point the delay circuits between

the register-fetch stage and the ALU stage are overrid-

den; on the next clock cycle they instead output the

equivalent of a no-op instruction. The register-fetch

stage itself re-reads the second instruction on the next

clock cycle. In e�ect, the pipeline stall inserts a no-op

instruction between the two instructions involved in

the hazard:

R2 <- MEM[R1]

NOP

R4 <- R2 ADD R3

Now when the ADD instruction is about to be pro-

cessed by the ALU, the load instruction has already

completed the memory stage. R2's value is held in the

pipeline registers after the memory stage, so bypass

logic can be used to bring the ALU's input up-to-

date. In order to stall correctly, we have to re-read

the second instruction. Thus stalling reduces the per-

formance of the pipeline.
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Figure 5: Block diagram of extended SHAM

pipeline. Each Pipeline Register circuit is

made up of multiple Delay and Select circuits.

The Select circuits are used for bypassing, en-

suring that the source operands are up-to-date.

3.9 Hawk Speci�cation of Extended

SHAM

In this section we will give more evidence of the simpli-

fying power of transactions by specifying the extended

SHAM architecture. The load/store extension signif-

icantly complicates the control logic for the SHAM

architecture. We shall see that transactions hold up

well when we must add stalling logic to the pipeline.

To start, we need to add the commands LOAD and

STORE to the Cmd type:

data Cmd = ADD | SUB | INC | LOAD | STORE

We also need to de�ne some additional Hawk cir-

cuits. The �rst circuit, defaultDelay, augments the

normal delay circuit so that when a stall hazard is

detected, the augmented circuit will output a default

value on the next clock cycle, rather than its current

input value:

defaultDelay :: Signal Bool -> a -> Signal a ->

Signal a

defaultDelay emitDefault default input =

delay default (select emitDefault

(constant default)

input)

The defaultDelay circuit uses delay to store values

between clock cycles. The value it stores for the next

clock cycle is default if emitDefault is equal to True

on the current cycle, otherwise it stores input. On

the �rst cycle of the simulation defaultDelay always

returns default.
The isLoadTrans circuit returns True whenever its

argument signal is a load transaction:

isLoadTrans :: Signal Transaction -> Signal Bool

isLoadTrans ts = lift isLoad ts

where

isLoad (Trans _ cmd _) = (cmd == LOAD)

Although we previously passed SHAM instruc-
tions as parameters, we now need to call a function,
instrCache, to explicitly retrieve them:

instrCache :: Signal Bool -> Signal Transaction

Since the pipeline can stall, we need a way to

ask for the same instruction two cycles in a row.

The instrCache function takes a Boolean signal

and returns the current transaction. Whenever the

argument signal is True, then on the next cycle

instrCache returns the same transaction as it did for

the current clock cycle. Otherwise, it returns the next

transaction as normal.
We also need a circuit that actually performs the

loads and stores:



mem :: Signal Transaction -> Signal Transaction

On those clock cycles where the input transaction is

anything but a load or store transaction, the mem func-

tion simply returns the transaction unchanged. On

loads, mem updates the destination operand of the in-

put transaction, based on the input load address. On

stores, mem updates its internal memory array accord-

ing to the address and contents given in the input

transaction. The destination operand value is set to

zero.

We also de�ne a new Hawk function, transHazard,

that returns True whenever its two transaction argu-

ments would cause a hazard, if the �rst transaction

preceded the second transaction in a pipeline:

transHazard :: Signal Transaction ->

Signal Transaction ->

Signal Bool

The extended Hawk speci�cation using transactions

is given below:

SHAM3Trans :: Signal Transaction

SHAM3Trans = memOut'

where

-- register-fetch stage --

instr = instrCache loadHzd

readyInstr = regFile memOut' instr

readyInstr' =

defaultDelay loadHzd nopTrans readyInstr

-- ALU stage --

aluIn = bypass (bypass readyInstr' memOut')

aluOut'

aluOut = alu aluIn

aluOut' = delay nopTrans aluOut

-- memory stage --

memIn = bypass aluOut' memOut'

memOut = mem memIn

memOut' = delay nopTrans memOut

----- Control logic -----

loadHzd =

sigAnd (isLoadTrans readyInstr')

(transHazard readyInstr'

readyInstr)

The register-fetch stage retrieves the instruction and

�lls in its source operands from the register �le. The

register-fetch pipeline register delays the transaction

by one clock cycle, although if there is a load hazard,

the register instead outputs a nop-instruction on the

next cycle. The ALU stage �rst updates the source

operands of the stored transaction with the results of

the two preceding transactions (memOut' and aluOut')

by invoking bypass twice. It then performs the cor-

responding ALU operation, if any, on the transaction

and stores it in the ALU-stage pipeline register. The

memory stage again updates the stored transaction

with the immediately preceding transaction, performs

any required memory operation, and stores the trans-

action. The stored transaction is written back to the

register �le on the next clock cycle. The control logic

section determines whether a load hazard exists for the

current transaction, that is, whether the immediately

preceding transaction was a load instruction that is in

hazard with the current transaction.

As we can see, the body of the speci�cation remains

manageable. The small control logic section to detect

load hazards is straightforward and is a minority of

the overall speci�cation. In contrast, an equivalent

speci�cation of this pipeline where the components of

each transaction were explicitly represented contained

over three times as many source lines. The lower-level

speci�cation's control section was almost as large as

the data
ow section, and not nearly as intuitive.

We feel the transaction ADT is close to the level

of abstraction design engineers use informally when

reasoning about microprocessor architectures.

4 Modelling the DLX

Using techniques comparable to those described in this

report we have modeled several DLX architectures:

� An unpipelined version, where each instruction

executes in one cycle.

� A pipelined version where branches cause a one-

cycle pipeline stall.

� A more complex pipelined version with branch

prediction and speculative execution. Branches

are predicted using a one-level branch target

bu�er. Whenever the guess is correct, the branch

instruction incurs no pipeline stalls. If the guess

is incorrect, the pipeline stalls for two cycles.

� An out-of-order, superscalar microprocessor with

speculative execution. The microarchitecture

contains a reorder bu�er, register alias table,

reservation station, and multiple execution units.

Mispredicted branches cause speculated instruc-

tions to be aborted, with execution resuming at

the correct branch successor.



The microarchitectural speci�cation for the un-

pipelined DLX is written in a quarter page of uncom-

mented source code; the most complicated pipelined

version takes up just over half a page.

4.1 Executing the model

We used the Gnu C compiler that generates DLX as-

sembly to test our speci�cations on several programs.

These test cases include a program that calculates the

greatest common divisor of two integers, and a recur-

sive procedure that solves the towers of Hanoi puzzle.

We have not made detailed simulation performance

measurements yet. Although we plan to test Hawk

on several benchmark programs, we do not expect to

break simulation-speed records. Hawk is built on top

of a lazy functional language, which imposes some per-

formance costs. Transactions also perform some run-

time tests that are \compiled-away" in a lower-level

pipeline speci�cation. While it would be nice to get

high performance, Hawk is primarily a speci�cation

language, and only secondarily a simulation tool. Our

main interest is in using Hawk to formally verify mi-

croarchitectures, while at the same time retaining the

ability to directly execute Hawk programs on concrete

test cases.

5 Related Work

There are several research areas that bear a relation

on this work, in particular, modeling speci�c appli-

cation domains with Haskell, and modeling hardware

in various programming languages. We will pick an

example or two from these two categories.

Haskell has been used to directly model hardware

circuits at the gate level. O'Donnell [10] has devel-

oped a Haskell library called Hydra that models gates

at several levels of abstraction, ranging from imple-

mentations of gates using CMOS and NMOS pass-

transistors, up to abstract gate representations using

lazy lists to denote time-varying values. Hydra has

been used to teach advanced undergraduate courses on

computer design, where students use Hydra to even-

tually design and test a simple microprocessor. Hydra

is similar to Hawk in many ways, including the use of

higher-order functions and lazy lists to model signals.

However, Hydra does not allow users to de�ne compos-

ite signal types, such as signals of integers or signals

of transactions. In Hydra, these composite types have

to be built up as tuples or lists of Boolean signals.

While this limitation does not cause problems in an

introductory computer architecture course, composite

signal types signi�cantly reduce speci�cation complex-

ity for more realistic microprocessor speci�cations.

There are many other languages for specifying

hardware circuits at varying levels of abstraction.

The most widely used such languages are Verilog and

VHDL. Both of these languages are well suited for

their roles as general-purpose, large-scale hardware de-

sign languages with �ne-grained control over many cir-

cuit properties. Both of these languages are more gen-

eral than Hawk in that they can model asynchronous

as well as synchronous circuits. However, Verilog and

VHDL are large languages with complex semantics,

which makes circuit veri�cation more di�cult. Also,

neither of these languages support polymorphic cir-

cuits, nor higher-order circuit combinators, as well as

Hawk.

The Ruby language, created by Jones and Sheeran

[7], is a speci�cation and simulation language based on

relations, rather than functions. Ruby is more general

than Hawk in that relations can describe more circuits

than functions can. On the other hand, existing Ruby

simulators require Ruby relations to be causal, i.e. to

be implementable as functions. Thus Hawk is equal

in expressive power to currently executable Ruby pro-

grams. In addition, much of Ruby's emphasis is on cir-

cuit layout. There are combinators to specify where

circuits are located in relation to each other and to

external wires. Hawk's emphasis is on behavioral cor-

rectness, so we do not need to address layout issues.

Two other languages that are strongly related are

HML [8] and MHDL[2]. HML is a hardware modeling

language based on the functional language ML. It also

has higher-order functions and polymorphic types, al-

lowing many of the same abstraction techniques that

are used in Hawk, with similar safety guarantees. On

the other hand, HML is not lazy, so does not easily al-

low the recursive circuit speci�cations that turned out

to be key in specifying micro-architectures. The goal

of HML is also rather di�erent from Hawk, concen-

trating on circuits that can be immediately realized

by translation to VHDL.

MHDL is a hardware description language for de-

scribing analog microwave circuits, and includes an

interface to VHDL. Though it tackles a very di�er-

ent part of the hardware design spectrum, like Hawk,

MHDL is essentially an extended version of Haskell.

The MHDL extensions have to do with physical units

on numbers, and universal variables to track frequency

and time etc.



6 Future Directions

We have just completed the speci�cation of a super-

scalar version of DLX, with speculative and out-of-

order instruction execution. The use of transactions

has scaled well to this architecture; it turns out that

superscalar components like reservation stations and

reorder bu�ers are naturally expressed as queues of

transactions.

Beyond this, we intend to push in a number of di-

rections.

� We hope to use Hawk to formally verify the cor-

rectness of microprocessors through the mechan-

ical theorem prover Isabelle [11]. Isabelle is well-

suited for Hawk; it has built-in support for manip-

ulating higher-order functions and polymorphic

types. It also has well-developed rewriting tac-

tics. Thus simpli�cation strategies for functional

languages like partial evaluation and deforesta-

tion [3] can be directly implemented.

We also expect that transactions will aid the veri-

�cation process. Transactions make explicit much

of the pipeline state needed to prove correctness.

In lower-level speci�cations this data has to be

inferred from the pipeline context.

� We are also working on a visualization tool which

will enable the microprocessor engineer to inspect

values passing along internal wires.

� We have made initial progress on formally

extracting stand-alone control logic from the

transaction-based models of pipelines. Stand-

alone control logic may be more amenable to con-

ventional synthesis techniques.
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