
Elementary Microarchitecture Algebra

John Matthews and John Launchbury

Oregon Graduate Institute,

P.O. Box 91000, Portland OR 97291-1000, USA

fjohnm,jlg@cse.ogi.edu
http://www.cse.ogi.edu/PacSoft/Hawk

Abstract. We describe a set of remarkably simple algebraic laws gov-

erning microarchitectural components. We apply these laws to incremen-

tally transform a pipeline containing forwarding, branch speculation and

hazard detection so that all pipeline stages and forwarding logic are re-

moved. The resulting unpipelined machine is much closer to the reference

architecture, and presumably easier to verify.

1 Introduction

Transformational laws are well known in digital hardware, and form the basis of

logic simpli�cation and minimization, and of many retiming algorithms. Tradi-

tionally, these laws occur the gate level: de Morgan's law being a classic example.

In this paper, we examine whether corresponding transformational laws hold at

the microarchitectural level.

A priori, there is no reason to think that large microarchitectural components

should satisfy any interesting algebraic laws, as they are constructed from thou-

sands of individual gates. Boundary cases could easily remove any uniformity

that has to exist for simple laws to be present. Yet we have found that when

microarchitectural units are presented in a particular way, many powerful laws

appear. Moreover, as we demonstrate in this paper, these laws by themselves are

powerful enough to allow us to show equivalence of pipelined and non-pipelined

microarchitectures.

We have used this algebraic approach to simplify a pipelined microarchi-

tecture that uses forwarding, branch speculation and pipeline stalling for haz-

ards. The resulting pipeline is very similar to the reference machine speci�cation

(i.e. no forwarding logic), while still retaining cycle-accurate behavior with the

original implementation pipeline. The top-level transformation proof is simple

enough to be carried out on paper, but we have mechanized enough of the theory

in the Isabelle theorem prover [20] to have veri�ed it semi-automatically, using

Isabelle's powerful rewriting engine.

Interestingly, both circuits and laws can be expressed diagrammatically. A

paper proof (transformation using equivalence laws) proceeds as a series of mi-

croarchitecture block diagrams, each an incrementally transformed version of the

last. The laws often have a geometric avor to them, such as laws to swap two



components with each other, or laws to absorb one component into another. We

�nd this diagrammatic approach an excellent way to communicate proofs.

For us, the most time-consuming part of this technique has been discovering

the local behavior-preserving laws. It is our experience that these laws are much

easier to discover when one uses the right level of abstraction. In particular,

we encapsulate all control and dataow information concerning a given instruc-

tion in the pipeline into an abstract data type called a transaction [1, 17]. We

have found that not only do transactions reduce the size of microarchitecture

speci�cations, they also provide enough \auxiliary" state information to make

law-discovery practical.

The rest of the paper gives a brief introduction to our speci�cation language,

and then discusses many of the laws we have discovered. We then show their use

by applying the laws in a proof of equivalence between two microarchitectures.

While space constraints prohibit us from giving the complete proof, the top-level

proof is sketched diagrammatically in [16].

2 Specifying a Pipelined Microarchitecture

We specify microarchitectures using the Hawk language [4, 17]. Hawk allows us

to express modern microarchitectures clearly and concisely, to simulate the mi-

croarchitectures, either directly with concrete values, or symbolically, and pro-

vides a formal basis for reasoning about their behavior at source-code level.

Currently Hawk is a set of libraries built on top of the pure functional language

Haskell, which is strongly typed, supports �rst-class functions, and in�nite data

structures, such as streams [8, 21]. It is this legacy that led us to look for trans-

formation laws in the �rst place: one often-cited bene�t of purely functional

programs is that they are amenable to veri�cation through equational reason-

ing. We wanted to see if such algebraic techniques scaled up to microarchitectural

veri�cation.

2.1 Hawk Signals

Hawk is a purely declarative synchronous speci�cation language, sharing a se-

mantic base similar to Lustre[7]. The basic data structure underlying Hawk is

the signal, which can be thought of as an in�nite sequence of values, one per

clock cycle, and circuits are pure functions from input signals to output signals.

The elements of a signal must belong to the same type.

We use a notion of transactions to specify the immediate state of an en-

tire instruction as it travels through the microprocessor [1]. A transaction is a

record with �elds containing the instruction's opcode, source register names and

values, and the destination register name and its value, plus any additional in-

formation, like the speculative branch target PC for each branching instruction.

A microarchitecture is a network of components, each of which processes signals

of transactions.



Figure 1 shows the diagram of a simple one-stage microarchitecture, built out

of transaction signal processors. Each component incrementally assigns values to

various transaction �elds, based on the component's internal state (if any) and

the values of transaction �elds assigned by earlier components. A textual Hawk

speci�cation of this circuit consists of set of mutually-recursive stream equations

between the components. However, in this paper we will represent Hawk circuits

as diagrams.

For example, the regFile

stall

regFileIn aluIn memIn

writeback

writeback
regFile alu memICache

False

Fig. 1. One-stage pipeline.

component has two transac-

tion signal inputs and one

transaction signal output. At

a given clock cycle, the �rst

input (called regFileIn in

Figure 1) contains a trans-

action whose opcode and reg-

ister name �elds have been initialized, but whose value �elds have all been zeroed

out. The second input (called writeback) contains the completed transaction

from the previous clock cycle. The regFile component �rst updates its internal

register �le state, based on the destination register name and value �elds of the

writeback input. It then �lls in the source operand value �elds of the regFileIn

transaction based on the corresponding operand register names and the updated

register �le, and outputs the �lled in transaction, all within the same clock cycle.

The alu component examines the opcode and source operand value �elds of

the transaction output by regFile. If the opcode is an ALU operation (which

include branch instructions), the alu component computes the appropriate re-

sult, assigns the result to the destination operand value �eld of the transaction,

and outputs the transaction along the memIn wire, again within the same (long)

clock cycle. If the opcode is not an ALU operation, the alu component outputs

the transaction unchanged.

The mem component behaves similarly for memory load and store operations.

Like the regFile component, the mem component has internal state, representing

the contents of data memory at each clock cycle. This state is updated and

referenced based on the transactions sent to the mem component. Just as with

the alu component, all memory and transaction updating occurs within the

same clock cycle. The mem component sends the completed transaction to a delay

component (represented in our diagrams as a shaded box), to make it available to

the ICache and regFile components in the next clock cycle. These transactions

also become the output of the entire microarchitecture, as is shown by the right-

most arrow. The initial value output by the delay component is the default

transaction nopTrans, which represents an \inert" transaction which behaves

like a NOP instruction, but does not a�ect the ICache's program counter.

The ICache component produces new transactions, based on the value of the

current program counter and the contents of program memory (the instruction-

set architectures we consider have separate address spaces for instructions and

data). Both the current PC and the instruction memory contents are internal



to ICache. The ICache takes on its writeback input the completed transaction

from the previous clock cycle. The ICache examines the transaction for branches

that have been taken. When it �nds such an instruction, it modi�es its internal

PC accordingly and starts fetching transactions from the branch target address.

The ICache has as output a signal of transactions representing the newly-fetched

instructions. Each transaction's source and destination operand values are ini-

tialized to zero, since the ICache doesn't know what values they should have.

The other pipeline components will �ll in these �elds with their correct values.

The ICache has a second input, called stall, which is a signal of Boolean values.

On clock cycles where stall is asserted, the ICache will output the same trans-

action as it did on the previous clock cycle. In this simple microarchitecture,

stall is always false. In more complex pipelines, the stall signal is typically

asserted when the pipeline needs to stall due to a branch misprediction.

For more complex pipelines, we also allow the ICache to perform branch

prediction, based on an internal branch target bu�er. When performing branch

prediction, the ICache will also annotate branch instruction transactions with the

predicted branch target PC. A branch misp component (not shown in Figure 1)

can locally compare the predicted branch target with the actual branch target

to determine if a branch misprediction has occurred.

3 Microarchitecture Laws

With any algebraic reasoning there

F
F

F

Fig. 2. Universal circuit-duplication

law

need to be some ground rules. We take

as fundamental the notion of referen-

tial transparency or, in hardware terms,

a circuit duplication law. Any circuit

whose output is used in multiple places

is equivalent to duplicating the circuit

itself, and using each output once. This law is shown graphically in Figure 2.

Because of the declarative nature of our speci�cation language, every circuit

satis�es this law. That is, it is impossible within Hawk for a speci�cation of a

component to cause hidden side-e�ects observable to any other component spec-

i�cation. In many speci�cation languages this law does not hold universally. For

example, duplicating a circuit that incremented a global variable on every clock

cycle would cause the global variable to be incremented multiple times per clock

period, breaking behavioral equivalence. Hawk circuits can still be stateful, but

all stateful behavior must be local and/or expressed using feedback.

The next few sections introduce many other laws, some of which are speci�c to

particular combinations of components, while others are quite widely applicable.

Each instantiation of a law needs to be proved with respect to the speci�cation

of the circuit components involved. We have found induction and bisimulation

to be the most useful ways of proving the laws in this paper, expressed as proofs

in Isabelle.



3.1 Delay Laws

The delay circuit is a fundamen-
F G GG F

Fig. 3. feedback rotation law

tal building block of clocked cir-

cuits, especially when combined with

feedback. A feedback variant of the

circuit duplication law shown in Fig-

ure 3, called the feedback rotation law, allows circuits to be split along feedback

wires. This law is not universal, but it is valid for any circuit that does not

contain zero-delay cycles (amongst others). Happily, all of the laws we discuss,

including the feedback rotation law itself, preserve a well-formedness property:

if a circuit contains no zero-delay cycles, then any transformed circuit will also

have no zero-delay cycles.

The time-invariance law (Fig-

F F

Fig. 4. time-invariance law.

ure 4) is also nearly universal. A

circuit is time-invariant if one can

retime the circuit by removing the

delays from all the inputs of the

circuit and placing new delays on

the circuit's outputs. Any combi-

natorial circuit that preserves de-

fault values is automatically time-invariant, but so are stateful circuits like the

register �le and memory cache. Interestingly, the ICache is not.

We use the above laws extensively to remove pipeline stages. If a pipeline

stage is time-invariant, then we can move the pipeline registers (represented

as delay circuits) from before the pipeline stage to afterwards. If subsequent

pipeline stage are also time-invariant, then we can repeat the process, eventually

moving all of the delay circuits to the end of the pipeline. However, forwarding

logic between pipeline stages must still access the appropriate time-delayed out-

puts of later pipeline stages. The feedback-rotation law polices this, and ensures

that the appropriate time-delay is kept by forcing delays to be inserted on all

feedback wires to the forwarding circuits.

3.2 Bypasses and Bypass Laws

The purpose of forwarding logic in a pipeline is to ensure that results computed

in later pipeline stages are available to earlier pipeline stages in time to be

used. Conceptually, the forwarding logic at each pipeline stage examines its

current instruction's source operand register names to see if they match a later

stage's destination operand register name. For every matching source operand,

the operand value is replaced with the result value computed by the later pipeline

stage. Non-matching source operands continue to use operand values given by

the preceding pipeline stage.



This conceptual logic can be implemented con-
update

inp out

Fig. 5. bypass circuit

cisely using transactions. A bypass circuit (Figure 5)

has two inputs, each a signal of transactions: The

�rst input (inp) contains the transactions from the

preceding pipeline stage. The second input (update)

contains the transactions from a subsequent pipeline

stage. The bypass circuit at each clock cycle com-

pares the source operand names of the current inp transaction with the desti-

nation operand names of the current update transaction. The output of bypass

is identical to inp, except that source operands matching update's destination

operand are updated. Bypasses arise frequently enough in pipeline speci�cations

that we draw them specially, as diamonds with the update input connected to

either the top or the bottom.

Bypass circuits have many nice

Fig. 6. bypass circuit idempotence law

properties. Not only are they time-

invariant and obey a kind of idem-

potence (Figure 6), but they also

interact closely with register �les

and various execution units.

The fundamental interaction be-

regFileregFile

Fig. 7. register-bypass law

tween a bypass and register �le is

shown in Figure 7. We call this the

register-bypass law, and it is used

repeatedly in eliminating forward-

ing logic when simplifying pipelines.

The law states that we can delay

writing a value into the register �le, so long as we also forward the value to be

written, in case that register was being read on the same clock cycle.

Initially we considered this law to be a theorem about register �les, and

accordingly we proved that it held for a number of di�erent implementations.

However, it is also tempting to view this law as an axiom of register �les. In

e�ect, by using the law repeatedly from right to left, we obtain a speci�cation

for how the register �le must behave for any time pre�x.

Hazard - Bypass Law Another bypass law permits the removal of bypasses

between execution units. It is often the case that after retiming all delay circuits

to the end of a pipeline, two execution units in a pipeline (such as an ALU

unit and a Load/Store unit) are connected with one-cycle feedback loops. Each

bypass circuit is forwarding the outputs of an execution unit to the inputs of

that same execution unit, one clock cycle later.

If the upstream pipeline stages can guarantee that there is no hazard between

successive transactions, then the double feedback is equivalent to the single feed-



back circuit shown at the bottom of Figure 8. This (conditional) identity is called

the hazard-bypass law.

To be more concrete, suppose

exec2

exec2exec1no_haz

exec1no_haz

Fig. 8. hazard-bypass law

exec1 is the ALU and exec2 the

memory cache. Then an ALU-mem

hazard arises if a transaction which

loads a register value from memory

is immediately followed by an ALU

operation which requires that reg-

ister's value. Under these circum-

stances the two feedback loops would

give di�erent results. Under all other

circumstances the two circuits are

equivalent. We express this condi-

tional equivalence using the no haz

component. It is an example of a

projection component and is discussed in the next section.

3.3 Projection Laws

Many laws, like the hazard-bypass law above, require that the input signals

satisfy certain properties, and commonly, we may know that the output signal

of a given component always satis�es a particular property. We can capture this

knowledge of properties using signal projections.

A signal projection is a component with one input and one output. As long

as the input signal satis�es the property of interest, the component acts like an

identity function, returning the input signal unchanged. However, if the input

does not satisfy the property we are interested in, the projection component

modi�es the input signal in some arbitrary way so that the property is satis�ed.

Let us consider an example. For the hazard-bypass law we are interested in

expressing the absence of ALU-mem hazards in a transaction signal. We reify

this property as a no haz projection. On each clock cycle, the no haz component

compares the current input transaction with the previous input transaction. If

there is no ALU-mem hazard between the two transactions, then the current

transaction is output unchanged. If a hazard does exist, then no haz will instead

output nopTrans, which is guaranteed not to generate a hazard (since nopTrans

contains no source operands).

Where do projections come from? After all, they are not the sort of compo-

nent that microarchitectural designers introduce just for fun.

Fig 9 provides an example of a law which \generates" a projection. The

hazard-squashing logic guarantees that its output contains no hazards, and this

is expressed in that the circuit is unchanged when the no haz component is

inserted on its output.

(The hazard component outputs a Boolean on each clock cycle stating whether

its two input transactions constitute a hazard. The kill component takes a

transaction signal and a Boolean signal as inputs. On each clock cycle, if the



Boolean input is false, then kill outputs its input transaction unchanged. If the

Boolean input is true, then kill outputs a nopTrans, e�ectively \killing" the

input transaction.)

To be useful, a pro-

hazard

kill

hazard

kill no_haz

Fig. 9. Hazard-squashing logic guarantees no haz-

ards

jection component needs

to be able to migrate from

a source circuit that pro-

duces it (such as the cir-

cuit in Figure 9) to a tar-

get circuit that needs the

projection to enable an

algebraic law (such as the

hazard-bypass law). Thus a projection component must be able to commute with

the intervening circuits between the source and the target circuit. Well-designed

projections commute with many circuits. For instance, the no haz projection

commutes with bypass, alu, mem, and regFile components. It also commutes

with delay components (that is, no haz is time-invariant).

Projections are also convenient for expressing the fact that a component

only uses some of the �elds of an input transaction. For instance, the hazard

component only looks at the opcode, source, and destination register name �elds

of its two input transactions. We can create a projection called proj ctrl that

sets every other �eld of a transaction to a default value, and prove a law stating

that the hazard component is unchanged when proj ctrl is added to any of

its inputs. We can then show that proj ctrl commutes with other components,

such as bypasses and delays. This allows us to move the input wires to hazard

across these other components, which is sometimes necessary to enable other

laws. Similarly, the proj branch info projection allows us to move ICache and

branch misp component inputs.

4 Transforming the Microarchitecture

The laws we have been discussing can be used for aggressively restructuring

microarchitectures while retaining equivalence. We have used them to simplify

several pipelined microarchitectures with a view to veri�cation. The example

we present here contains three levels of forwarding logic, resolves hazards by

stalling the pipeline, and performs branch speculation. The block diagram for

this microarchitecture is shown in Figure 10.

By using just algebraic laws, we have been able to reduce most of the com-

plexity, leaving essentially an unpipelined microarchitecture. We are currently

implementing the algebraic laws as a rewrite system in Isabelle. For this paper

we describe our top-level rewrite strategy informally.

Retiming We �rst remove all delay circuits from the main pipeline path. We

accomplish this by repeatedly applying the time-invariance law, and by splitting

delays along wires through the circuit duplication and feedback rotation laws.



branch_misp

regFile alu memkillICache

hazard

Fig. 10. Microarchitecture before simpli�cation

Move control wires Next, we move all wires not directly involved with for-

warding logic to either before or after all of the bypass circuits. This is to enable

the hazard-bypass laws, which we apply in a later step. We move the wires by in-

serting projection circuits and using the corresponding projection-commutativity

laws.

Propagate hazard information The hazard-bypass laws can only be ap-

plied when there are no hazards between the a�ected stages. So we generate a

no-hazard projection at the end of the dispatch stage (which is justi�ed by a

projection-absorption law applicable to the kill-circuit complex in that stage),

and then move it between the �rst and second bypass circuits. We also use addi-

tional properties of the proj ctrl, kill, and regFile circuits (discussed in [16])

to swap the hazard/kill complex with the register �le, so that the register-bypass

law can be used more readily in the next step of the simpli�cation. The circuit

in Figure 11 shows the microarchitecture after this step has been completed.

Notice that the ALU and memory units are now connected exactly as required

for an application of the hazard-bypass law.

alu mem

proj_branch_info

no_haz

branch_misp hazard

proj_ctrl

kill regFile

proj_ctrl

ICache

Fig. 11. Microarchitecture after the \propagate hazard information" step



Remove forwarding logic We can now apply the hazard-bypass law to remove

the bypass circuit just prior to the memory unit. We eliminate the other two

bypass circuits by applying the register-bypass law twice.

Cleanup The pipeline has now been simpli�ed as much as possible, except that

there are still some extra delay components as well as several unnecessary pro-

jection circuits. We merge delay components, then move the projection circuits

back to their places of origin and remove them using the projection laws in the

opposite direction.

branch_misp

kill

hazard

regFileICache alu mem

Fig. 12. Microarchitecture after simpli�cation

The �nal microarchitecture is shown in Figure 12. This circuit still outputs

exactly the same transaction values, cycle-for-cycle, as the microarchitecture in

Figure 10, but is considerably less complex. We can now apply conventional

techniques to verify that this microarchitecture is a valid implementation of the

ISA.

5 Discussion

5.1 Related work

Hawk is built on top of the pure functional language Haskell, where algebraic

techniques for transforming functional programs are routinely used for equiva-

lence checking and veri�cation [2, 3, 13] and for compilation and optimization [5,

12]. Much of our work can be seen as an extension of these ideas. Hawk itself is

very similar in avor to Lustre [6] except that in Lustre signals are accompanied

by additional clock information. The Hawk speci�cation style follows from the

work of Johnson[9], O'Donnell[18], and Sheeran[25].

We have also been inuenced by the algebraic techniques used in the re-

lational hardware-description language Ruby [24]. Sizeable Ruby circuits have

been successfully derived and veri�ed through algebraic manipulation [10, 11].

What distinguishes our work is our focus on microarchitectural units as objects

of study in their own right. The Ruby research has emphasized circuits at the

gate level.

In terms of veri�cation, our approach is most similar to two known tech-

niques, called retiming [14, 23, 26] and unpipelining [15]. A circuit is retimed



when the delay components of the circuit are repositioned, while the functional

components are left unchanged, e�ectively through repeated applications of the

time-invariance law. Typically, circuits are retimed to reduce the clock cycle

time. In contrast, we retime circuits as part of a simpli�cation process. In fact,

we often use the time invariance law to increase cycle time!

Unpipelining [15] is a veri�cation technique where a pipelined microarchitec-

ture, speci�ed as a state machine, is incrementally transformed into a functionally-

equivalent unpipelined microarchitecture. Unpipelining proceeds by repeatedly

merging the last stage of a pipeline into the next to last stage, producing a mi-

croarchitecture with one less stage on each iteration. On each iteration, the two

microarchitectures are proven equivalent by induction over time. This is simi-

lar to our approach, except that we use transactions to encapsulate and reuse

many of the veri�cation steps, and we only need to prove the equivalence of

the portion of the microarchitecture being transformed, rather than the entire

microarchitecture, on each iteration. On the other hand, Levitt and Olukotun's

implementation of unpipelining is much more automated than our work up to

now.

Transactions were a key concept in allowing us to discover and formulate

many of the algebraic laws of microarchitectural components. Unsurprisingly,

the usefulness of transactions has been noticed before. Aagaard and Leeser

used transactions to specify and verify hierarchical networks of pipelines [1],

and �Onder and Gupta have used a similar concept of instruction contexts as a

core datatype in UPFAST, an imperative microarchitecture simulation language

[19]. Further, Sawada and Hunt use an extended form of transactions in their

veri�cation of a speculative out-of-order microarchitecture [22]. Each transaction

records two snapshots of the entire ISA state, before and after the instruction

is executed. In their work, however, transactions are not part of the microarchi-

tecture itself, but are constructed separately for veri�cation purposes.

5.2 Next steps in microarchitecture algebra

As we have come to see it, the main principle of applying algebraic techniques

to microarchitectures is to use geometric reasoning to move and absorb circuits,

and to express that reasoning as local equalities whenever possible. Conditional

equalities can be expressed using projections.

Some care is required in the de�nition of basic components. We have striven

to design the component circuits to satisfy as rich a variety of algebraic laws as

possible, such as preserving default values, satisfying time-invariance, and so on.

Sometimes we hit on the correct de�nitions immediately, but more commonly

adapted the de�nitions over time admitting more and more laws. One example of

this is in pipeline registers. Initially, we used conditional delays to act as pipeline

registers, but since then have found it useful to separate clocked behavior from

functional behavior, enabling the two dimensions to be manipulated separately.

In some sense the components we now manipulate are not optimal in terms of

transistor counts. In particular, many units receive and propagate information

they are not interested in. However, much of this overhead can be removed



automatically through a similar set of rewrite laws built around more primitive

components than those presented in this paper. We plan to write this up in a

subsequent paper.

6 Acknowledgements

We wish to thank Borislav Agapiev, Carl Seger, Byron Cook, Sava Krstic, and

Thomas Nordin for their valuable contributions to this research. The authors

are supported by Intel Strategic CAD Labs and Air Force Material Command

(F19628-93-C-0069). John Matthews receives support from a graduate research

fellowship with the NSF.

References

1. Aagaard, M., and Leeser, M. Reasoning about pipelines with structural haz-

ards. In Second International Conference on Theorem Provers in Circuit Design

(Bad Herrenalb, Germany, Sept. 1994).

2. Bird, R., and Wadler, P. Introduction to Functional Programming. Prentice

Hall International Series in Computer Science. Prentice Hall, 1988.

3. Bird, R. S., and Moor, O. D. Algebra of Programming. Prentice Hall, 1996.

4. Cook, B., Launchbury, J., and Matthews, J. Specifying superscalar micro-

processors in Hawk. In FTH'98, Workshop on Formal Techniques for Hardware

and Hardware-like Systems (Marstrand, Sweden, June 1998).

5. Gill, A., Launchbury, J., and Peyton Jones, S. L. A Short Cut to De-

forestation. In FPCA'93, Conference on Functional Programming Languages and

Computer Architecture (Copenhagen, Denmark, June 1993), ACM Press, pp. 223{

232.

6. Halbwachs, N. Synchronous programming of reactive systems. Kluwer Academic

Pub., 1993.

7. Halbwachs, N., Lagnier, F., and Ratel, C. Programming and verifying real-

time systems by means of the synchronous data-ow programming language Lustre.

IEEE Transactions on Software Engineering, Special Issue on the Speci�cation and

Analysis of Real-Time Systems (September 1992).

8. Hudak, P., Peterson, J., and Fasel, J. A gentle introduction to Haskell.

Available at www.haskell.org, Dec. 1997.

9. Johnson, S. D. Synthesis of Digital Systems from Recursive Equations. ACM

Distinguished Dissertation Series. MIT Press, 1984.

10. Jones, G., and Sheeran, M. Collecting butteries. Tech. rep., Oxford University

Computing Laboratory, 1991.

11. Jones, G., and Sheeran, M. Designing arithmetic circuits by re�nement in

ruby. In Mathematics of Program Construction (1993), vol. 669 of LNCS, Springer

Verlag.

12. Jones, S. L. P., and Santos, A. L. M. A transformation-based optimiser

for Haskell. Science of Computer Programming 32, 1{3 (Sept. 1998), 3{47.

13. Launchbury, J. Graph algorithms with a functional avour. Lecture Notes in

Computer Science 925 (1995).

14. Leiserson, C. E., and Saxe, J. B. Retiming synchronous circuitry. Algorithmica

6 (1991), 5{35.



15. Levitt, J., and Olukotun, K. A scalable formal veri�cation methodology for

pipelined microprocessors. In 33rd Design Automation Conference (DAC'96) (New

York, June 1996), Association for Computing Machinery, pp. 558{563.

16. Matthews, J., and Launchbury, J. Elementary microarchitecture algebra: Top-

level proof of pipelined microarchitecture. Tech. Rep. CSE-99-002, Oregon Grad-

uate Institute, Computer Science Department, Portland, Oregon, Mar. 1999.

17. Matthews, J., Launchbury, J., and Cook, B. Specifying microprocessors

in Hawk. In IEEE International Conference on Computer Languages (Chicago,

Illinois, May 1998), pp. 90{101.

18. O'Donnell, J. From transistors to computer architecture: Teaching functional cir-

cuit speci�cation in Hydra. In Symposium on Functional Programming Languages

in Education (July 1995).

19. �Onder, S., and Gupta, R. Automatic generation of microarchitecture simulators.

In IEEE International Conference on Computer Languages (Chicago, Illinois, May

1998), pp. 80{89.

20. Paulson, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994.

21. Peterson, J., et al. Report on the programming language Haskell: A non-strict,

purely functional language, version 1.4. Available at www.haskell.org, Apr. 1997.

22. Sawada, J., and Hunt, W. A. Processor veri�cation with precise exceptions and

speculative execution. Lecture Notes in Computer Science 1427 (1998), 135{146.

23. Saxe, J., and Garland, S. Using Transformations and Veri�cations in Circuit

Design. Formal Methods in System Design 4, 1 (1994), 181{210.

24. Sharp, R., and Rasmussen, O. An introduction to Ruby. Teaching Notes ID{

U: 1995-80, Dept. of Computer Science, Technical University of Denmark, October

1995.

25. Sheeran, M. �FP, an Algebraic VLSI Design Language. PhD thesis, Program-

ming Research Group, University of Oxford, 1983.

26. Sheeran, M. Retiming and slowdown in Ruby. In The Fusion of Hardware Design

and Veri�cation (Glasgow, Scotland, July 1988), G.J. Milne, Ed., IFIP WG 10.2,

North-Holland, pp. 289{308.


