
A MUSIC SIMILARITY FUNCTION BASED ON SIGNAL ANALYSIS

BethLoganandAriel Salomon
�

CompaqComputerCorporation
CambridgeResearchLaboratory

OneCambridgeCenter
CambridgeMA 02142

USA.

ABSTRACT

Wepresentamethodto comparesongsbasedsolelyontheir
audio content. Our techniqueforms a signaturefor each
songbasedon K-meansclusteringof spectralfeatures.The
signaturescan thenbe comparedusing the EarthMover’s
Distance[1] which allows comparisonof histogramswith
disparatebins. Preliminaryobjective andsubjective results
on a databaseof over 8000songsareencouraging.For 20
songsjudgedby two users,on average2.5 out of thetop 5
songsreturnedwerejudgedsimilar. We alsofoundthatour
measureis robustto simplecorruptionof theaudiosignal.

1. INTRODUCTION

The advent of MP3 and other compressionalgorithmsis
changingthe world of music distribution. We are mov-
ing toward a future in which all the world’s musicwill be
ubiquitouslyavailable.Additionally, the‘unit’ of musichas
changedfrom thealbum to thesong. Thususerswill soon
beableto searchthroughvastdatabasesat thesonglevel.

Sincemusicwill notnecessarilybeproducedasalbums,
theconstructionof playlistswill beimportantin futuresys-
tems. Playlistsshouldideally list songsof a similar genre
that ‘fit together’. In this paper, we studythe playlist con-
structionproblemasthe problemof quickly andautomati-
cally finding musicsimilar to a favoredquerysong. Thus
we focus on the developmentof a techniqueto automati-
cally determinemusicsimilarity.

Thetraditionalandmostreliabletechniqueof determin-
ing music similarity is by hand. This is clearly infeasi-
ble for large quantitiesof music. Collaborative filtering
techniquesareanalternativeto solohand-classification(e.g.
[2]). Thesetechniquesproducepersonalrecommendations
by computingthe similarity betweenone person’s prefer-
encesandthoseof otherpeople. However, thesemethods�
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cannotquickly analyzenew music.Also, it maybedifficult
to obtainreliableinformationfrom users.

Many researchershavestudiedthemusicsimilarityprob-
lemby analyzingMIDI musicdata,musicalscoresor using
pitch-trackingto find a ‘melody contour’ for eachpieceof
music.Stringmatchingtechniquesarethenusedto compare
the transcriptionsfor eachsong(e.g. [3], [4], [5]). How-
ever, techniquesbasedon MIDI dataor scoresare limited
to musicfor which thisdataexistsin electronicform. Also,
only limited successhasbeenachieved for pitch-tracking
of polyphonicmusic[6] althoughrecentresultsshow much
promise[7].

Otherworkhasanalyzedthemusiccontentdirectly. Blum
et al. presentan indexing systembasedon matchingfea-
turessuchaspitch, loudnessor Mel-frequency cepstralco-
efficients(MFCCs)[8]. Footehasdesigneda musicindex-
ing systembasedon histogramsof MFCC featuresderived
from adiscriminatively trainedvectorquantizer[9].

In this paper, we build on the work of Foote to con-
structadistancemeasurebetweenmusicbasedsolelyonthe
musiccontent.We characterizesongsusinghistogramsof
MFCCfeaturesbut unlikeFoote,thebinsof ourhistograms
arelocal to eachsong.This implies that theacousticspace
for eachsongis efficiently ‘covered’with adequateresolu-
tion whereneeded.Converselyif pre-determinedbins are
used,somesongsmay have all their information concen-
tratedin oneor two binsandimportantdiscriminatingdetail
maybelost.

Ourtechniquehasmany similaritiesto anaudioretrieval
techniquedescribedin [10], althoughweuseK-meansclus-
tering ratherthanGaussianmixturemodelsto characterize
eachsong. We also study the problemof music retrieval
rather than the speech-in-audioretrieval problem studied
there.

Theorganizationof this paperis asfollows. In Section
2 we describeour distancemeasure.We thendescribehow
this canbe incorporatedinto a playlist generationsystem.
Next, we presentresultsof experiments.Finally we present
our conclusionsandsuggestionsfor futurework.



Figure 1: Top level diagramof the processof creatinga
signaturefor asong

2. SPECTRAL NOVELTY DISTANCE MEASURE

Our distancemeasurecapturesinformationaboutthe nov-
elty of the audiospectrum.Conceptually, this corresponds
to thetypeof instrumentsplaying, includingwhetherthere
is singing,whichappearsto berelatedto perceptualsimilar-
ity. For eachpieceof musicwecomputea‘signature’based
on spectralfeatures.We thencomparesignaturesusingthe
EarthMoversDistance(EMD) [1].

2.1. Obtaining the Spectral Signature

Theprocessto obtainaspectralsignaturefor apieceof mu-
sic is shown in Figure 1. The stepsare as follows. We
first divide the audio signal into frames. For eachframe,
we thenobtaina spectralrepresentation.Many representa-
tionsarepossiblesolongasadistancemeasureis available
to compareone frame to anothersuchthat frameswhich
soundsimilararecloseto eachother. In ourimplementation
we useMFCCs(e.g. [11]). Thesefeaturesareprevalentin
speechrecognitionapplications.They arebasedon thedis-
cretecosinetransformof the log amplitudeMel-frequency
spectrumandcanbecomparedusingtheEuclideandistance
measure.Otherspectralmeasuresmight includeusingthe
amplitudespectrumdirectly or a representationbasedon
MP3coefficients.

Givenasequenceof transformedframesfor agivensong,
we then cluster theseframesinto groupswhich are simi-
lar. Thenumberof clustersmaybefixedfor every song,in
which casestandardK-meansclusteringcanbe used[12].
Alternatively, thenumberof clusterschosencanbedepen-
denton thesong(e.g. [13]). Thesetof clusters,character-
izedby themean,covarianceandweightof eachclusteris
thendenotedthesignaturefor thesong.

2.2. Comparing Songs

We obtain a spectralsignaturefor every songof interest.
Theseneedonly be calculatedonceandstored. We then
comparethe signaturesfor two different songsusing the

EMD[1]. This distancemeasurecan comparehistograms
with disparatebins.

TheEMD calculatestheminimumamountof ‘work’ re-
quiredto transformonesignatureinto the other. Let
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Define E 
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reflectsthe costof moving probability mass(analogousto
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3. PLAYLIST GENERATION SYSTEM

In order to evaluateour distancemeasure,we have devel-
opeda systemto generateplaylistsfrom givenseedsongs.
Weuseanin-housedatabaseof over8000songsdrawnfrom
a wide rangeof styles.Eachsongin thedatabaseis labeled
with the genre,songname,album nameand artist name.
Thegenreis oneof thefollowing: Blues,Celtic, Classical,
Comedy, Country, Folk, Jazz,Newage, Rap,Rock, Sound-
track, Techno,VariousArtists,Vocal,World. To our knowl-
edgethis representsonethelargestdatabasesusedfor pub-
lishedcontent-basedmusicretrieval experiments.

For eachsong, we computea signaturebasedon K-
meansclusteringof framesof MFCCs. We startwith au-
dio sampledat 16kHzanddivide this signalinto framesof
25.6msoverlappedby 10ms.Wethenconverteachframeto
40 Mel-spectralcoefficientsandtake thelogarithmandthe
discretecosinetransformto obtain40 cepstralcoefficients.
Of these,only the first 13-30 areused. We disregard the



Nr. MFCC Averagedistance Averagedistance
Features betweenall songs betweensongs

on thesamealbum
12 0.56 0.28
19 0.65 0.35
29 0.70 0.38

Table1: Statisticsof thedistancemeasure

zerothcepstralcoefficient which containsmagnitudeinfor-
mation. Finally, we clusterthe sequenceof cepstralcoef-
ficientsinto 16 clustersusingstandardK-meansclustering.
Thissetof clustersis thesignaturefor thesong.

After computingthe signaturefor every song,we then
computethedistancesbetweenall songsusingtheEMD as
describedabove. For a givenseedsong,theplaylist is then
returnedas the W closestsongs. Clearly we could devise
betterschemesto determinetheplaylist,suchascombining
thescoresfrom severalquerysongsandincorporatinguser
feedback.This is thesubjectof ongoingwork.

4. EVALUATION

Our evaluationfocuseson themerit of our similarity mea-
sureratherthantheoverallqualityof playlistsreturned.We
reportinformationretrieval metricsandotherstatistics.

4.1. Distance Measure Statistics

Wefirstexaminesomegeneralstatisticsof ourdistancemea-
sure.Table1 shows theaveragedistancebetweensongsfor
theentiredatabaseover a rangeof differentMFCC param-
eterizations. We also show the averagedistancebetween
songson thesamealbum. Our measureis suchthatthedis-
tancebetweena songanditself is zero(i.e. we have a dis-
similarity measure).FromTable1 we seethatour measure
correctlyassignsasmallerdistanceto songsonthesameal-
bum which we expecton averageto be perceptuallymore
similar thanothersongsin thedatabase.

4.2. Objective Relevance

We now examinethe ‘goodness’or relevanceof thetop W
songsreturnedby our systemin responseto a querysong.
Becauseusertestsareexpensive andtime-consuming,we
first useobjectiveteststo tunetheparametersof oursystem
andidentify trendsthataretrueon averageover the whole
database.We examinethreeobjective definitionsof rele-
vance:songsof thesamestyle,songsby thesameartistand
songson the samealbum. For eachsongin our database,
we analyzetheclosest5, 10 and20 songsreturned.

Table2 shows theaveragenumberof songsreturnedby
our systemwhich have the samegenreasthe querysong.
We seethat themajority of songsreturnedare of thesame

Nr. MFCC Averagenumberof songsin thesamegenre
Features Closest5 Closest10 Closest20

12 3.43 6.53 12.4
19 3.44 6.57 12.5
29 3.36 6.44 12.3

Table 2: Averagenumberof closestsongswith the same
genreastheseedsong

Nr. MFCC Averagenumberof songsby thesameartist
Features Closest5 Closest10 Closest20

12 1.13 1.72 2.46
19 1.17 1.80 2.59
29 1.16 1.80 2.64

Table3: Averagenumberof closestsongsby thesameartist
astheseedsong

genreasthequerysong.Notethat this resultgivesonly an
indicationof theperformanceof oursystemsinceseveralof
ourgenrecategoriesoverlap(e.g. jazzandblues) andsongs
from bothcategoriesmight still beperceivedasrelevantby
a humanuser.

Tables3 and4 show similar resultswhererelevanceis
definedassongsby the sameartist andsongson the same
album. Fromthesetableswe seethat typically, aroundone
songby thesameartistor on thesamealbum is oneof the
top 5 closestsongs.

4.3. Subjective Relevance

Fromtheabove,it appearsthat19cepstralfeaturesgive the
bestretrieval performance.We thereforeconductusertests
with this configuration.Our testscomparea playlist gener-
atedby our systemto a playlist generatedat randomfrom
thesame8000songdatabase.

Two independentusersparticipatedin the test. They
were presentedwith playlists from 20 randomlyselected
songs. For eachsong,a randomlygeneratedplaylist and
the playlist generatedby our systemwaspresented.Users
wereinstructedto rateeachsongin theplaylist as‘similar’
or ‘not similar’ to thequerysong. Interestingly, bothusers
naturallyassumedaudiosimilarity ratherthansaylyric sim-
ilarity. Therewasgoodagreementbetweenthe usersasto
which songswere similar with only 12% of songsbeing
rateddifferently.

Nr. MFCC Averagenumberof songson thesamealbum
Features Closest5 Closest10 Closest20

12 0.84 1.21 1.61
19 0.86 1.26 1.68
29 0.81 1.21 1.69

Table4: Averagenumberof closestsongson the sameal-
bum astheseedsong



Algorithm AverageNumberof SimilarSongs
Closest5 Closest10 Closest20

Random 0.2 0.6 0.9
Proposed 2.5 4.7 8.2

Table5: Averagenumberof similar songsin playlistsgen-
eratedat randomandby our similarity measureas judged
by 2 userson 20 queries

Nr. MFCC % of timesoriginal songreturnedwithin:
Features Closest1 Closest5 Closest10

12 98.8 99.2 99.3
19 99.8 100.0 100.0
29 97.2 97.6 97.8

Table6: Percentageof timesthe original songis returned
asoneof theclosest1, 5 and10 songswhenthequeryis a
clippedversionof theoriginal

Theaveragenumberof similar songsfor the first 5, 10
and20 songsin the playlistsis shown in Table5. Despite
the preliminarynatureof our tests,the resultsarevery en-
couragingandconfirm what we have notedin many infor-
mal tests. On average,2.5 out of the top 5 songsreturned
weresimilar for our systemasopposedto 0.2out of 5 for a
randomplaylist generator.

4.4. Robustness to Corruption

Finally, we investigatethe robustnessof our distancemea-
sureto ‘clipping’ of songs.For all songsin our database,
weremovearandomsectionuniformly distributedbetween
0sand30sfrom a randomlyselectedplacein thesong.We
thencalculatethe signaturesfor eachsongasbefore. For
eachcorruptedsong,we useour measureto find the clos-
estsongsto this in thecleandatabase.Ideally, theoriginal
versionof eachcorruptedsongshouldbe the first songre-
turned. Table6 shows thepercentageof timestheoriginal
songis returnedasoneof the1,5 and10closestsongswhen
thecorruptedversionis usedasthequery. Weseethatthese
numbersarequitehigh indicatingthatourdistancemeasure
hassomerobustnessto this typeof corruption.

5. CONCLUSIONS AND FUTURE WORK

Wehavedescribedamethodto comparesongsbasedsolely
ontheiraudiocontent.Wehaveevaluatedourdistancemea-
sureon a databaseof over 8000 songs. Preliminaryob-
jective andsubjective resultsshow that our distancemea-
surepreservesmany aspectsof perceptualsimilarity. For 20
songsjudgedby two users,we saw thaton average2.5 out
of thetop5 songsreturnedareperceptuallysimilar. Wealso
saw that our measureis robust to simplecorruptionof the
audiosignal.

Ongoingwork is focusedin threemainareas.First, we
arestill refiningtheparametersof ourdistancemeasureover
all genresandinvestigatingtheeffectof differentclustering
techniquesto obtain the songsignatures.Second,we are
exploring themany heuristicsthatcanbeusedto selectthe
bestplaylist given a querysongor songs. Finally, we are
investigatingtheincorporationof otheraudioandnon-audio
baseddistancemeasuresinto oursongselectionscheme.
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