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ABSTRACT

Despitethe succes®f hiddenMarkov models(HMMs) andother
techniquegor speechrecognitionthereremainsawide perception
in the speechresearclcommunitythat new ideasare neededo
continueimprovementsin performance.This paperrepresents
contrikutionto this effort.

We describereliminaryexperimentsaisinganalternatve mod-
eling approachknown as factorial hidden Markov models (FH-
MMs). We presenthesemodelsasextensionof HMMs anddetail
a modificationto the original formulation which seemgto allow
a more naturalfit to speech.We presentexperimentalresultson
the phoneticallybalancedl IMIT databaseomparingthe perfor
manceof FHMMs with HMMs. We alsostudyalternatve feature
represetationthatmight be moresuitedto FHMMs.

1. INTRODUCTION

OverthelastdecadéiddenMarkov modelshave becomahedom-
inanttechnologyin speechiecognition.HMMs provide averyuse-
ful paradigmto modelthe dynamicsof speectsignals.They pro-
vide a solid mathematicatormulationfor the problemof learning
HMM parameterdrom speechobsenations. Furthermore effi-
cientand fast algorithmsexist for the problemof computingthe
mostlikely modelgivena sequencef obsenations.

Dueto their successtherehasrecentlybeensomeinterestin
exploring possibleextensionsgo HMMs. Theseincludefactorial
HMMs [5] andcoupledHMMs [2]. In this paperwe explore fac-
torial HMMs. Thesewere first introducedby Ghahramani5].
They attemptto extendHMMs by allowing themodelingof several
stochasticandomprocessekoselycoupled.FactoriaHMMSs can
be seenas both an extensionto HMMs or as a modelingtech-
niquein the Bayesianbelief networks[10] domain. In our work
we chooseo approactthemasextensiongo HMMs. Furtherde-
tail canbefoundin [9].

The paperis organizedasfollows. We startby describingthe
basictheoryof HMMs andthenfollow by presenting=HMMSs as
extensionsof these.A modificationto the original formulationis
then proposedwhich allows bettermodelingof speech.We de-
scribethen several experimentsdesignedo comparethe perfor
manceof FHMMs with traditionalHMMs. We endthis papemwith
our conclusionsaandsuggestion$or futurework.
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2. FACTORIAL HIDDEN MARK OV MODELS

FactorialhiddenMarkov modelswerefirst describedby Ghahra-
mani[5]. In his original work Ghahramanpresent&=HMMs and
introducesseveral methodsto efficiently learn their parameters.
Our focus, however, is on studyingthe applicability of FHMMs
to speechmodeling. Our goalis to studyFHMMSs asa viablere-
placemenfor HMMs.

2.1. Model Description

HiddenMarkov modelsare probabilisticmodelsdescribinga se-
qguenceof obsenationacousticvectorsY = {Y; : t =1,...,T}.
They arecharacterizedyy a hiddenstatesequencendan output
probabilitywhich depend®n the currentstate.

Theprobabilitydensityfunction(pdf) of Y giventhemodelX
is
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HereS isasequencef states{S;,t = 1,...,T}, P(S¢|Si—1) Is
thetransitionprobabilityfrom stateS,_, to statesS,, I1(.S;) is the
(prior) probabilityof beingin stateS; attimet = 1, andp(Y:|S:)
is thepdf of the obsenationvectorY; giventhestatesS;. p(Y:|S:)
is typically modeledasa Gaussiammixture. We assumehatthe
modelhask states.

In the speechcommunitya HMM is typically representeds
shavnin Figurel. Hereeachstateis shavn explicitly andthear
rows show allowabletransitionsbetweerstates HoweveraHMM
canalsoberepresentedsadynamicbeliefnetwork[10] asshavn
in Figure2. This alternatve representatioshavs the evolution of
the statesequencén time. Eachnoderepresentshe stateat each
time slice. This context switchto dynamicbelief networksallows
mary new modelingposibilitiessuchasFHMMs.

The factorial HMM arisesby forming a dynamicbelief net-
work composeddf several ‘layers’. This is shovn in Figure 3.
We seeherethateachlayerhasindependentlynamicsbut thatthe
obsenation vector dependsuponthe currentstatein eachof the
layers.Thisis achievedby allowing the statevariablein Equation
1to becomposef a collectionof states.Thatis, we now have a
‘meta-statevariableS; whichis composeaf M statesasfollows
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Figurel: Topologicalrepresentationf a HiddenMarkov Model
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Figure 2: Dynamic Belief Network representatiorof a Hidden
Markov Model

Herethesuperscripts thelayerindex with M beingthenumberof
layers.Thelayernatureof themodelarisesby only allowing tran-
sitionsbetweenstatesn the samelayer Werewe to allow unre-
strictedtransitionshetweerstatesve would have aregular HMM
with a K™x K™ transitionmatrix. Intermediatearchitecturesn
which somelimited transitionsbetweenstatesin differentlayers
areallowed have alsobeenpresentedh [2].

By dividing thestatesnto layersweform asystenthatmodels
severalprocessesvith looselycoupleddynamics.Eachlayerhas
similar dynamicsto a basichiddenMarkov modelbut the proba-
bility of anobsenationateachtime dependsiponthecurrentstate
in all of thelayers.For simplicity the numberof possiblestatesn
eachlayeris K. Thuswe have a systemthatrequiresM KxK
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Figure3: DynamicBelief Network representationf a Factorial
HiddenMarkov Model
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transitionmatrices.

2.1.1. Topological Equivalenceto a Basic HMM

Notice thata factorial HMM systemcould still be representeas
atraditionalHMM with a K™ x K™ transitionmatrix. For exam-
ple,consideatwo-layersystemwith threestateperlayer. Letthe
transitionmatricesfor layer1 andlayer2 be A; and A, respec-

tively.
ai b1 C1 as b2 C2
A = 0 di er Ay = 0 d2 e
0 0 1 0 0 1

Thetransitionmatrixfor theequivalentbasicHMM systemis built
by creatinga Cartesiarproductof thetwo originalmatricesA; and
Az
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resultingin a transitionmatrix with & = 9 states.As we can
seeanexplosionin thenumberof statesoccurs.For thisreasonas
notedin [5], it is preferabldo usethe M Kx K transitionmatrices
overtheequivalentk ¥ x K representatiosimply on computa-
tionalgrounds.

2.1.2. Posterior Probability Formulation

We now considetheprobabilityof theobsenationgiventhemeta-
state.As mentionedthis probability depend®n the currentstate
in all the layers. In Ghahramans original work, this probability
wasmodeledby a Gaussiamdf with a commoncovarianceand
the meanbeinga linear combinationof the statemeans.This pdf
isgivenby Equation3. Wereferto thismodelasa‘linear’ factorial
HMM.
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Herep™15%) is themeanof layer m giventhe meta-states, and
C isthecovariance Othersymbolsareaspreviously defined.

A problemwith this combinationtechniqueis thatis it not
extendibleto the multiple Gaussiarmixture. Neitheris it a very
naturalfit to speech.

We proposeacombinatiormethodthatassumeshatp(Y; |S:)
is the productof the (Gaussiandistributions of eachlayer We
referto this techniqueasthe ‘streamed’methodwith eachlayer
of the FHMM modelinga ‘stream’ of the obsenationvector This
methodis extendibleto multiple Gaussiarmixtures. This pdf is
definedby Equation4 below.
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Herethematrix M,,, partitionstheobsenationvectorinto streams.
For examplein atwo-layersystemwe have

Ox ) 6]
Ix ). (6)

Herelx is the K'x K identity matrix.

This formulation of the FHMM seemsa more naturalfit to
speechfeaturevectorssincetheseare often composedf several
streamf sub-\ectors.For example,a typical featurevectormay
consistof the cepstrum,delta cepstrum,seconddelta cepstrum,
andsometimesven enegy andits deriatives. If thesedifferent
stream$iave somavhatdecoupledlynamicghenafactorialHMM
couldbea logical alternatve to HMMs. Eachdistinctsub-\ector
streamcouldbe modeledby eachof thelayersin the FHMM.

The ideaof streamshasalreadybeenproposedn the speech
researclcommunity Recognitionengineslike SPHINX [8] and
HTK [11] allow similar formulationsin theirHMM systemsThe
differencebetweerour formulationandtheirsis thatthe streamed
FHMM allows moredecouplingof the streamsdynamics.

Notice that in Equation4 we shaw a single covarianceal-
thoughextendingthis formulationto usea differentcovariancefor
eachstreamor eachstatein eachstreamis straightforward.

Mo = (Ix
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3. ESTIMATION OF PARAMETERS

Theparametersf the FHMM areestimatedisingthe Estimation-
Maximizationalgorithm[3]. For further detailsrefer to [5] and

[9]-
4. EXPERIMENT AL RESULTS

Our experimentstesteda factorial HMM systemon a phoneme

classificatiotask. We usedhephoneticallybalanced IMIT database

[4]. Trainingwasperformednthe'sx’ and'si’ trainingsentences.
Thesecreateatrainingsetwith 3696utterance$rom 168different
speakers.250 sentence$rom the test setwere usedfor testing.
ThefactorialHMM hadtwo layersandthreestatesn eachlayer
The standard_ee phoneticclustering[7] wasusedresultingin 48
phonemeamodelswith thesebeingfurtherclusterediuringscoring
to 39 models.

A baselinesystemwasalsoimplemented.This wasa three-
stateleft-to-right HMM system Mixturesof Gaussiansvereused
to modelthe posteriorprobabilitiesof the obsenation given the
state.8 mixture componentsvereusedperstate.

We usedcepstrahnddelta-cepstrdeaturesierivedfrom 25.6ms
long window frames. The dimensionof the featurevectorwas24
(12 cepstraland12 deltacepstrafeatures).

4.1. Linear Factorial HMMs

Thefirst experimentinvestigatedhe performancef alinearfacto-
rial HMM. Theresultsareshown in Tablel. For this experiment,
themeansaandcovariancewereinitialized usingthe meanandco-
varianceof thepooledtrainingdata.

TheseresultsdemonstratéhatthelinearfactorialHMM mod-
els speechpoorly. A major problem hereis that there are not
enoughsystemparameterso form a good model. Adding more
layersor stateswould increasehe computationatompleity ex-
ponentiallywhile only providing smallmodelingadvantagesWe
thereforeturn our attentionto the streamed=HMM.

Model % Error
BaselineHMM 42.9
LinearFHMM 71.3

Tablel: ClassificatiorResults LinearFHMM vs HMM

Model Feature/ector % Error
BaselineHMM Cepstrumt+ DeltaCepstrum| 42.9
BaselineHMM Cepstrum 51.6
BaselineHMM DeltaCepstrum 62.3
StreamedHMM | Cepstrumt DeltaCepstrum| 46.3

Table2: ClassificatiorResults StreamedHMM vs HMM

4.2. StreamedFactorial HMMs

Theparameterfor eachstreamareinitializedusingregularHMMs
trainedon thefeaturef thecorrespondingtream.Table2 showvs
theresultswhenonelayermodelsthe cepstrunandtheothermod-
els the delta cepstrum. For completenesshe error ratesof the
HMMs trainedon the cepstrumand deltacepstrumonly are also
shavn. 8 mixturecomponentper statewereusedin all the mod-
els.

We canseethatwhile the streamedHMM producegeason-
ableresultsit is notableto improve uponthe basicHMM model.

A reasonfor this may be that thereis only an advantagein
usingthe FHMM if thelayersmodelprocessesvith differentdy-
namics. The cepstrumand delta cepstrumare highly correlated
hencaeit is to be expectedhatthey would have similar dynamics.

Wetherefordriedfeaturevectorshatwe expectedo besome-
whatmoredecorrelatedlt washopedthat perhapghe modeling
assumption®f FHMMs might be more adequateand provide an
edgeovertraditionalHMMs.

4.3. Subband-basedSpeechClassification

Recentlyresearcherbave considerednodelingpartial frequeny
bandsby separattHMMs and combiningthe probabilitiesfrom
theseat a suitablelevel (e.g.thephonemdevel) [1], [6]. Theidea
hasits rootsin modelsof humanauditory perception. Figure 4
shavsthe sub-bandnodel.
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Figure4: FeatureSub-bandClassificatiorModel



Model FeatureVector % Error
BaselineHMM Upper+ Lowerband | 46.9
BaselineHMM Upperband 66.7
BaselineHMM Lowerband 59.5
ParallelHMM Upper+ Lowerband | 45.6
StreamedHMM | Upper+ Lowerband | 48.3

Table3: ClassificatiorResults StreamedHMM

Examiningthisfigurewe canseethereis clearlyagreatdealof
scopdor researchvhenchosingthenumberof featuresub-groups
and the meging technique. We do not considertheseissuesin
ourwork. We have implementeda simpletwo-bandversionof the
sub-bandmodel using addition of the acousticlog likelihood at
thephonemdevel asthe meging technique We call this systema
‘parallel’ HMM.

The featurevectorsfor this systemwere derived as follows.
A traditionalmel-basedog spectrumvectorwith 40 components
wasgeneratedThelog spectrumwasdivided in two streamsthe
first onecontainingthe lower 20 componentsndthe secondone
containingthe the upper20 vectorcomponentsEachof the sub-
vectorswasrotatedby a DCT matrix of dimension20x12 genef
ating two cepstralvectorseachof dimension12. Eachof these
streamsf vectorswasthenmeannormalized.Delta featuresfor
theresultingtwo streamsavereproducedandappendedo them.

Table 3 shaws the resultsfor experimentsusing the banded
featurevectors. We presentresultsfor testsusing the baseline
HMMs, FHMMs, parallelHMMs andalsofor HMMs trainedon
only thelower or upperbandandtheir deltacoeficients.

The factorial HMM wasiinitialized as follows. Eachof the
layerswastrainedfirst usingtraditionalHMM techniquesThese
HMMs weretheinitial modelsusedby the FHMM trainingalgo-
rithm.

Againwe canseethatthereis noadvantagen usingtheFHMM
model.

5. DISCUSSION

Furtherwork is neededo concludef factorialHMMs area good
alternatve to HMMs. Sincethemajoradvantageofferedby these
modelsappearso betheirability to modelaprocessvhichis com-
posedof independentlyvolving sub-processethe choiceof fea-
turesis critical. If the featuresareindeedhighly correlatedfac-
torial HMMs do not seemto offer compellingadvantages.This
factis notedby Brand[2] who statesthat ‘conventionalHMMs

excelfor processethatevolve in lockstep;FHMMs aremeantfor

processethatevolve independently’.

We postulatéhoweveralongsimilarlinesas[6] thattherecould
besomeadvantagen usingtheFHMM framawvork to modelspeech
andnoiseif thesewereuncorrelatedAlternatively if sub-bandea-
tureswereusedthe FHMM could provide morerobustrecognition
in the caseof corruptionin onesub-band Furtherwork is needed
in this area.

The mostinterestingresearchdirectionhowever would be to
investigatehecombinatiorof traditionalspeecHeaturewith other
informationsuchasarticulatorpositionsor languagemodelsor lip
trackinginformation. The FHMM framewvork provides an inter
estingalternatve to combiningseveral featureswithout the need

to collapsetheminto a singleaugmentedeaturevector

It is importantto noticethatalternatve formulationscombin-
ing the informationfrom eachof the statesin the meta-stateare
possibleln thispapemwe have describedhelinearFHMM andthe
streamedHMM. Perhap®theralternatvescouldbe explored.

Ourconclusionthereforejs thatfurtherresearchs neededo
decidef algorithmicextensiongo HMMs suchasfactorialHMMs
or coupledHMMs offer a good alternatve to traditional HMM
techniques. The work in this paperonly represents very first
effort in this direction.

6. CONCLUSIONS

We have presentedactorialHMMs aspossibleextensionsof hid-
denMarkov models. Thesemodelswereinvestigatedn the con-
text of phonemeclassificatiorasa possiblereplacementor tradi-
tional HMMs. We have alsointroducedandexploredthe concept
of streamedactorialHMMs. Our experimentakesultsprovedin-
conclusve. In the experimentspresentedn this paper factorial
HMMs did not appeato offer ary advantageover regularHMMs
whentraditionalfeaturevectorswereused.We postulatethatthis
is becauseary modelingadwantageoffered by factorial HMMs
will only becomeevidentif lesscorrelatedfeaturesareused. We
concludethe papemwith suggestionor futurework.
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