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ABSTRACT

We develop a new sequential adaptation technique for
HMMSs based on an incremental variant of the EM al-
gorithm. The approach has little impact on the speed of
normal Viterbi decoding and in the case of mean adap-
tation only, is equivalent to incremental MAP adaptation
for a certain choice of priors.

We apply the technique to the ARPA HUB4 broadcast
news task. Here since the acoustic conditions change fre-
quently, it is advisable to ‘reset’ the adaptation process
periodically. However, for this task, the acoustic condi-
tions change so rapidly that it is difficult to obtain enough
information for adaptation between model resets. Many
existing adaptation schemes tackle this problem of data
sparsity by cleverly updating unseen mixture components.
We investigate an orthogonal strategy in which a set of
models, each representing a different acoustic condition,
is maintained and adapted. We show that small improve-
ments in performance are possible using this approach.

Keywords: sequential adaptation, online adaptation,
speech recognition, HMM.

1. INTRODUCTION

A major challenge currently facing developers of large vo-
cabulary speech recognition systems is how to quickly
adapt generic speech models to changing environments
and speakers. While numerous techniques exist (e.g. [1],
[2], [3]), many require additional training examples to
adapt to new conditions. This limits how quickly new
situations can be compensated for, as well as hindering
the development of real time systems.

Recently, there has been interest in sequential or online
adaptation techniques (e.g. [1]). These algorithms update
hidden Markov models (HMMs) using a very small num-
ber of adaptation utterances (of the order of one). They
are thus able to adapt quickly to changing conditions.

Since reliable estimates of model parameters cannot be
made from so few utterances, a method of including prior
information is necessary. For example, [1] includes ad-
ditional statistics in a Bayesian framework to form max-
imum a posteriori (MAP) estimates of the parameters.
The exact solution of the MAP incremental learning prob-
lem is intractable however leading to approximations.

In the next section we develop an alternative scheme
based on a sequential version of the Estimate-Maximize
(EM) algorithm. This leads to an approximate maximum
likelihood (ML) solution with prior information included
as accumulated sufficient statistics. It should be noted
that this algorithm is equivalent to the approximate MAP
scheme in some cases.

We investigate the application of our technique to the
broadcast news task. This task poses particular challenges
for online adaptation as the acoustic conditions change
very rapidly. Our aim is to improve recognition perfor-
mance with minimal impact on the time taken.

2. SEQUENTIAL ADAPTATION

‘We model speech using HMMs with model parameters A.
Given a sequence of speech observations O, the standard
procedure is to train the model parameters according to
a ML criteria. That is we choose A* to satisfy

X' = arg max[p(A0)] (1)

For HMMSs no closed-form solution exists to solve Equa-
tion 1 for A\* so the EM algorithm is typically employed.
This process consists of two repeated steps as follows:

E Step: Given A and O accumulate sufficient statistics S;
M Step: Choose X' to maximize E{logp(O|\)|), S}.

Note that here this algorithm has been expressed in a
slightly non-standard way so as to better introduce the
next section.

‘We now consider adaptation as an extension of this train-
ing process and adjust the model parameters to more
closely match (in the ML sense) new data as it is pre-
sented. Specifically we consider an incremental version of
the EM algorithm presented in [4].

E Step: For the utterance at time ¢, accumulate suffi-
cient statistics S. Combine these new statistics with
previously accumulated sufficient statistics ¢~ to
give S® using

8§ =8 44801 (2)

where 7 is a ‘forgetting factor’;
M Step: A®" = arg max, ;) E{log p(O[AM) AE~—D 51,
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Figure 1: Basic online adaptation algorithm

Here the forgetting factor 7 controls the speed of adap-
tation. This algorithm is exact if vy is the ratio of the
number of frames in the newly presented utterance to the
total number of frames used to train the model. For the
case of sequential adaptation of a large vocabulary system
however, this ratio approaches zero. Therefore we use an
inexact form of the algorithm.

A standard HMM models the posterior state observation
probabilities using mixtures of Gaussian densities with
diagonal covariance matrices. In this case, the sufficient
statistics consist of the mixture component occupation
counts, state transition counts, and for each mixture com-
ponent the sum and sum of squares.

Figure 1 shows the operation of the algorithm. As each
new speech utterance is presented, the current model is
used to decode it and to generate sufficient statistics.
These statistics are then used in conjunction with the
existing sufficient statistics to adapt the existing speech
model. This has only minimal impact on the speed of the
usual speech recognition process. We show unsupervised
adaptation. Supervised adaptation is also possible if ref-
erence transcriptions are available. Unless stated, all our
experiments perform unsupervised adaptation.

It should be noted that if the HMM states are modeled
by mixtures of Gaussians and if only the means of these
Gaussians are adapted, then the ML algorithm presented
here is equivalent to approximate MAP adaptation [1] for
a particular choice of priors. In this case 7 is analogous
to the ‘precision factor’ 7 in the previous work.

3. EXPERIMENTS

We examine the performance of our algorithm on the
ARPA HUB4 broadcast news task [5]. In nearly all cases,
we consider only mean adaptation so our technique is
equivalent to approximate MAP adaptation as mentioned.
This approach has been applied with success to small to
medium vocabulary tasks with substantial mismatch be-
tween the training and testing databases (e.g. [1], [6]).
For the large vocabulary system considered here however,
we use HMMs with many states to model the data. These
cover the acoustic space reasonably well so since our test
set is acoustically similar, we do not expect dramatic im-
provements in performance using our technique.

Our main concern in this paper is with the issues that
arise when running an online recognition system. We look

specifically at the problem of when to ‘reset’ the model
parameters. Although we could continue to update the
acoustic models indefinitely, this is inadvisable for two
reasons.

The first is that the the algorithm is not exact. It is there-
fore possible for the models to diverge, giving increasingly
worse performance. The second is that if the acoustic con-
ditions change dramatically, it may be preferable to start
from the initial models rather than those tuned to a more
specific condition. We describe our experiments in the
following sections.

3.1. Experimental Setup

We use the CRL Calista Large Vocabulary speech recog-
nition system for experiments. We train generic HMMs
on the HUB4e96 training set, modeling 13 dimensional
mel-cepstrum features augmented by the first and second
derivatives. We use 3-state triphone clustered continuous
Gaussian density HMMs. There are a total of 6000 states.
A standard trigram language model is used during recog-
nition. Our experiments study a one-pass system where
the adaptation step is considered to occur at the end of
the pass. We use the HUB4e97 evaluation test set.

We consider two different segmentations of the test set.
The first is based on the given transcriptions. The second
is generated using the CMU segmenter [7]. This chooses
segment boundaries based on differences in entropy be-
tween adjacent windows of the test set combined with a
silence threshold. We shall refer to these segmentations
as ‘perfect’ and ‘imperfect’ respectively. We also consider
‘perfect’ and ‘imperfect’ classification of the utterances
into speaker and environment classes. In the latter case,
we again use the tools provided by CMU.

3.2. Simple Resetting of Models

We first investigate a very simple strategy for resetting
the models during online adaptation. Here, we reset the
models after a set number of utterances have been ob-
served. Table 1 shows the results of this experiment for
models with 8 Gaussian mixture components per state.
Only the first 200 utterances of the perfect segmentation
of the test set are used. The baseline result, equivalent to
using a standard Viterbi decoder, is obtained when 7 is
unity. In this experiment, only the mean of each Gaussian
is adapted. We investigated adapting other parameters in
this and other sections of the work, and found either no
improvement or a degradation in performance.

These results indicate that the simple resetting strategy
is inadequate for this data set. We note also that the
choice of forgetting factor and resetting frequency are re-
lated: the longer the period between model resets, the less
aggressive forgetting factor can be tolerated.

3.3. Resetting on Acoustic Changes

If we imagine online adaptation as slowly tuning the
model parameters as more and more information is gath-
ered about a particular condition, then a reasonable strat-
egy for resetting the models is to reinitialize them when-



Reset Frequency | ~ | % Error
(utts)

- 1.00 26.2
100 0.95 26.1
0.90 27.6*

50 0.95 26.3
0.90 26.2

0.85 27.0*

25 0.90 26.1
0.80 26.1

0.70 26.4

Table 1: Recognition results for online mean adaptation
resetting the models periodically. Tested on the first 200
utterances of HUB4e97 using perfect segmentation. * in-
dicates a significant difference to the baseline result with
95% confidence.

ever the environment or speaker changes. As a first step
in this direction then, we conduct an artificial experiment
in which we use perfectly segmented and labeled utter-
ances. Every time the speaker or environmental condition
changes, the models are reset. The recognition results on
the full HUB4e97 test using models with 8 Gaussian mix-
ture components per state are shown in Table 2. Again
we only adapt the mean of each Gaussian.

From this table it is evident that the proposed adapta-
tion scheme gives no improvement whatsoever. We also
explored supervised adaptation and found it gave similar
results. Thus the lack of adaptation is not due to erro-
neous transcriptions.

The reason lies in the nature of the data. For this task, the
acoustic conditions change every few utterances. There is
therefore insufficient information to adapt the model be-
fore it is reset since many triphones are not seen. Severely
reducing 7y so that less prior information is included does
not solve this problem and in fact has a slight detrimen-
tal effect. We also explored resetting the model less often,
such as on a speaker sex or environment change and saw
no improvement.

To counteract the problem of insufficient information sev-
eral approaches are possible. The first is to adapt more
aggressively. Our algorithm only adapts the parame-
ters of observed mixture components. However, since the
problem of data sparsity is common to most adaptation
schemes, much work has focussed on adapting the param-
eters of the unobserved mixture components (e.g. [2], [3],
[8])- In these and other approaches, the general technique
is to adapt the parameters of unseen mixture components
according to the statistics of ‘similar’ observed mixture
components. There are many variations on the way to
identify similar components and how to use the informa-
tion from these.

A second and in many respects orthogonal way to include
more information is to maintain a set of models in par-
allel and adapt each of these sequentially as appropriate.
Conceptually this is similar to dividing the testing data
into sets with similar acoustics (such as speaker sets) and
running online adaptation on each of these. In an actual
online speech recognition system though, it is necessary

Y % Error
1.00 26.1
0.90 26.1
0.80 26.1
0.50 26.1
0.30 26.1
0.05 26.2
0.01 26.3*

Table 2: Recognition results for online mean adapta-
tion resetting the models on an environment or speaker
change. Tested on the full HUB4e97 test set with perfect
segmentation. * indicates a significant difference to the
baseline result with 95% confidence.
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Figure 2: Ounline adaptation using parallel models

to switch quickly between these models as the acoustic
conditions change. This scheme is shown in Figure 2. We
describe experiments with this system in the next section.

3.4. Parallel Model Adaptation

We first conduct an artificial experiment to investigate the
feasibility of this scheme. We use perfectly segmented test
data and assume that we can perfectly detect and classify
speaker and environment changes. We maintain models
for all classes with greater than two utterances in the test
set (about 60 models) and perform online mean adapta-
tion for these. The results of this experiment for models
with varying number of Gaussian mixture components are
shown in Table 3.

We see from these results that using more than one model
gives a significant improvement in performance. Although
the improvement is very minor, this must be balanced
against the fact that almost no extra computation time is
required to achieve it.

‘We now consider a less artificial experiment in which we
use the imperfect segmentation of the database and clas-
sify each segment as telephone or non-telephone speech,
then cluster these classifications further into speaker
classes [7]. We use a different parallel model for each
speaker class. This experiment is still artificial since the



Nr. Mix v | % Error
Components
8 1.00 26.1
8 0.90 | 25.9%
8 0.85 26.0*
16 1.00 24.7
16 0.90 24.5*
16 0.85 24.6

Table 3: Recognition results for online mean adaptation
using parallel models. Tested on the full HUB4e97 test
set with perfect segmentation. * indicates a significant
difference to the baseline result with 95% confidence.

Nr. Mix Parallel Models ¥ % Error
Comp.
16 - 1.00 25.4

speakers from clusters | 0.90 25.3
male/female/telephone | 0.90 25.3

Table 4: Recognition results for online mean adaptation
using parallel models. Tested on the full HUB4e97 test
set with imperfect segmentation.

clustering is performed in batch mode.

The second line of Table 4 shows the results of this exper-
iment and we see a similar improvement in performance
to the results in Table 3. We are unable to test the signif-
icance of these results as we do not have the correct tran-
scription for each segment. (We are using the matched
pairs test (e.g. [9]) which uses the difference in error rates
on independent utterances as the test statistic.)

For the algorithm to be fully online, the choice of which
model to use for recognition and adaptation must be made
‘on the fly’. We therefore now consider using parallel mod-
els based on classes determined from the training data,
using a Gaussian classifier to quickly classify each utter-
ance. The third line of Table 4 shows the results of such
an experiment using 3 models: a telephone model and
non-telephone male and female models. These models
are reset every 50 utterances. We see that even though
the segmentation and classification are imperfect, a small
improvement is still achieved.

‘We could also base the choice of parallel models on more
specific classes such as speaker or environment clusters
from the training set. Here an issue would be guaran-
teeing sufficient ‘coverage’ of all speakers and conditions.
Additionally, it may be desirable to start the adaptation
of each model from a less generic model. The exploration
of these issues is the subject of ongoing work.

4. CONCLUSIONS

‘We have developed a new sequential adaptation technique
for HMMs based on an incremental variant of the EM al-
gorithm. If only the mean of each Gaussian model is
adapted, the approach is equivalent to incremental MAP
adaptation for a certain choice of priors. We applied the
technique to online adaptation of the HUB4 broadcast
news task, investigating strategies for resetting the mod-
els. We found that for this task, the frequent changes in

acoustic conditions meant that it was difficult to obtain
enough information for adaptation between model resets.
Previous work has investigated schemes which sensibly
update unseen mixture components given limited data.
We investigated an orthogonal strategy in which a par-
allel set of models, each representing a different acoustic
condition was maintained and adapted. We showed that
small improvements in performance were possible using
this approach, even if the models were predetermined and
the model to use was selected imperfectly.

Although the improvements seen on this task were very
minor, we stress that our scheme has little impact on
the speed of a standard Viterbi decoder. Additionally,
the use of parallel models is a general technique that can
be applied to other online adaptation schemes, including
those which update more than just the mixture compo-
nents seen in the adaptation data.
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