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Abstract 

This paper describes an approach for combining phoneme and 
word recognition to produce an accurate N-best list of 
hypotheses. We run two decoding threads in parallel. The first 
performs phoneme recognition, while the other performs word 
recognition on the same recorded utterance. The output of the 
word recognition thread is returned as the most likely 
hypothesis, and the result of the phoneme recognition thread 
is used to lookup a list of words for the rest of the N-best list. 
The algorithm is simple to implement and efficient. In our 
evaluation, we found that this approach has similar 
performance to the classical lattice-based N-best search 
methods on isolated word recognition. This method has the 
potential to improve existing ASR systems or can be used in 
interactive multi-modal applications. 

1. Introduction 

Methods for finding multiple sentence or word hypotheses 
from a spoken utterance, or N-best list, have been thoroughly 
studied over the past years [1], [2], [3]. The field of 
applications for N-best lists is vast. They can be used to 
improve the performance of existing recognizers by 
narrowing the search space so that other, more 
computationally intensive algorithms can be applied.  Another 
possible application is for indexing spoken content in video or 
audio broadcast documents. Most systems use the best 
hypothesis generated by a large vocabulary word recognizer 
to produce an indexable transcription. It has been 
demonstrated that using additional alternate hypothesis from 
N-best lists may help to improve information retrieval 
precision [4]. Finally, N-best word lists can be used in 
interactive applications. A list of alternate choices can be 
displayed to the user when the system cannot disambiguate 
between several close word pronunciations. 

Classical N-best search methods use a two-pass 
algorithm: the first pass is a forward Viterbi search, which 
produces a word lattice. During the search, word hypotheses 
are evaluated based on the acoustic scores of a sub-word unit 
sequence and on the probability of the previous words (N-
grams). Hence, a lattice encodes alternate word hypothesis, 
possibly with different time segmentations, along with a 
probability score. At the end of the sentence, a backward 
search is applied for finding the N-best word hypotheses 
within the lattice. 

One advantage of these methods is that they use the 
utterance acoustics for building the lattice during the first 
pass. On the other hand, they consider different time 
segmentations for the same word, and therefore must apply 

pruning to remain computationally tractable. As a 
consequence, only a limited subset of the vocabulary can be 
extracted (N-best) and re-sorted. 

With the performance of speech recognition systems 
reaching a maximum, information fusion approaches have 
become more popular [5]. The general idea is that combining 
different techniques at the acoustic scoring level or decoding 
level may help to improve the accuracy of systems. In this 
spirit, we present here an algorithm that uses a fusion 
approach to compute an N-best list of words. Instead of using 
a lattice, we combine two recognition threads, one using sub-
word units (phonemes), and the other using words. Using a 
pronunciation distance metric, we then sort the whole 
vocabulary to create the N-best list. We show that our 
approach overcomes some of the problems of classical 
methods and appears to perform as well as these methods on 
our test set. 

The outline of the paper is as follows. In section 2, we 
describe our approach for combining word and phoneme 
recognition for resorting a vocabulary to generate an N-best 
list. In section 3, we present the experimental results. Finally, 
we present our conclusions and suggestions for future work. 

2. Word and phoneme recognition fusion 

The algorithm we implemented is intended for isolated word 
recognition and consists of three main stages, as illustrated in 
Figure 1. In the first stage, both word and phoneme 
recognition are performed on the recorded utterance. In the 
second stage, a phoneme confusion matrix is used with a 
standard string alignment algorithm to score every word in the 
vocabulary against the phoneme string returned by the first 
stage. The vocabulary is then sorted according to these scores. 
A similar procedure is described in [9]. In the final stage, the 
word recognition result from the first stage and the sorted 
vocabulary from the second stage are combined to form an 
arbitrarily large N-best list. 

The two aspects of this algorithm most important to its 
success are present in the second stage. First is the use of the 
phoneme confusion matrix.  While the word recognition result 
of the first stage utilizes specific acoustic information about 
the spoken utterance, the search does not have at its disposal 
information about the overall performance of the recognizer.  
It is this additional information that is provided by the 
phoneme confusion matrix.  Indeed, the fact that we achieve 
comparable performance to the standard lattice-based 
methods indicates that the information contained in the 
confusion matrix is at least as useful to N-best list generation 
as the acoustic information used in those methods. 



The second important aspect of the algorithm is the fact 
that we use the results of phoneme recognition to sort the 
vocabulary instead of using the results of word recognition.  
In fact, one could translate the result of word recognition into 
a phoneme string and then use this to sort the vocabulary.  

However, results given later in this paper prove this to be an 
inferior approach. If one uses this method, the acoustic 
representation of the utterance is, in a sense, quantized.  From 
this perspective, each word of the vocabulary is considered a 
codeword. As always happens with quantization, information 
is lost in this process. 

If one instead uses the result of phoneme recognition to 
sort the vocabulary, the size of the codebook is dramatically 
increased. Thus, the negative effects of quantization are 
reduced, and the performance of the system is increased. 
While in some applications reduction in quantization comes at 
a high price, in this algorithm we can achieve these gains with 
very little compromise in efficiency and no compromise in 
robustness. The details of our algorithm are described in the 
sections that follow. 

2.1. Phoneme and word recognition 

In the first part of the first stage, the speech decoder processes 
the recorded input speech into a sequence of phonemes. In 
this part it is important that the decoder has a reasonable 
degree of freedom to represent the acoustic content of the 
utterance. Thus, the constraints placed on this decoding pass 
can be domain specific but should be vocabulary independent.  
This is accomplished through the use of a phoneme-level 
language model trained on a large collection of in-domain 
utterances. 

For the second part of the first stage, word decoding is 
performed.  Here the decoder is given much less freedom than 
in the phoneme recognition pass. The output of the recognizer 
is constrained to be one of the words in the vocabulary. 

2.2. Sorting the vocabulary with a word pronunciation 
distance metric 

The second stage of the algorithm requires that the vocabulary 
be sorted according to how likely it is that each word was the 
one spoken, given the phoneme string returned by the first 
stage. To accomplish this, we define the distance between two 
words using a word pronunciation distance metric, which is 
defined as follows. 

),(),(),(

)(),(

)(),(

),(),(

min),(

0),(

1

1

11

00

nnnn

jinsji

idelji

jisubsji

ji

dpLPdpSDPS

dCdpS

pCdpS

dpCdpS

dpS

dpS

+=







î





+
+

+
=

=

−

−

−−  

 
Where: 

•  S(P,D) is the distance between word P and D; P is 
the decoded word, and D, the word from the 
vocabulary, 

•  S(pi,dj) is the score of phoneme string matching up 
to phoneme pi of P, and phoneme dj of D, 

•  Csubs(pi,dj) is the cost of substituting phoneme pi of 
P with phoneme dj of D, 

•  Cdel(pi) is the cost of deleting pi of P, 
•  Cins(dj) is the cost of inserting dj of D, 
•  LP(pn,dn) is the length penalty of decoded phoneme 

string pn matching pronunciation dn. 

Computing this metric uses a classical dynamic 
programming technique [6]. The insertion, deletion, and 
substitution costs are obtained from a pre-computed phoneme 
confusion matrix.  In addition to the cost of matching string P 
with D, a length penalty (LP) is applied. This is computed by 
evaluating the phoneme string length difference between the 
decoded phoneme string and the pronunciation from the 
dictionary.  

To complete the second stage, the phoneme sequence 
produced by the recognizer is compared to each word of the 
vocabulary using the distance metric described above.  The 
word pronunciation distance is then used to sort the whole 
vocabulary, the most likely word being placed at the top of 
the list. 

2.3. Fusion 

In the last stage of the algorithm, the N-best lists generated 
from phoneme and word recognition are combined to form 
the final result. We implemented and tested a simple fusion 
scheme that consists of concatenating the best hypothesis of 
word recognition with the top N-1 words from the sorted list 
produced by phoneme recognition. Alternate schemes may be 
used, but only this one has been tested. 

3. Experimental Results 

 We tested our method on a vocabulary of 9,000 names in 
which first and last names were aggregated into a single 
compound word. These names were actor names extracted 
from several weeks of a TV guide. The test set consisted of 50 
spoken queries: 25 names were popular actor names, 15 were 
picked randomly, and 10 were chosen because they could be 
easily confused with other names of the vocabulary. Sixteen 
American or English native speakers recorded the test set 
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Figure 1: System Overview 



using a simple push-to-talk interface, producing a total of 800 
utterances. 

The recognizer used in these experiments was derived 
from the CMU Sphinx-3 system [7]. It used 3 emitting-state 
Gaussian mixture HMMs to model triphones on a vocabulary 
of 49 phonemes, with 16 Gaussian mixtures per state. Our 
acoustic models were trained on mel-frequency cepstral 
coefficients (MFCC) generated from around 100 hours of the 
1997 and 1998 Broadcast News corpus provided by LDC [8]. 

The phoneme trigram language models for phoneme 
recognition are trained on a set of 10,000 proper names using 
a dictionary of word pronunciations. For proper names, the 
pronunciation was either looked up or produced by a lexical 
tree trained on the 64K most common English words. 

The phoneme confusion matrix used to compute the word 
distance metric was trained using the TIMIT corpus, a 
collection of 6,300 short, hand-labeled utterances. Training 
consisted of running phoneme recognition on all of the 
utterances, then aligning the hypothesized results with the 
hand transcription. The alignment routine used the same cost 
for deletion, insertion, and substitution, regardless of the 
phonemes involved.  Alternate approaches are possible for 
training the confusion matrix, including the use of phoneme 
classification [9], EM, or genetic algorithms [10]. 

3.1. Phoneme recognition and word lookup 

First we investigate a two-stage algorithm for computing the 
N-best list without fusion. The recognizer first generated a 
phoneme string from the utterance. This was done either by 
using the direct output of phoneme decoding or the 
pronunciation of the best word hypothesis. In the second 
stage, an N-best list is generated by sorting the entire 
vocabulary using the phoneme string from the first stage. This 
was described in section 2.3. 

Table 1 shows the N-best accuracy obtained for various 
values of N using the phoneme string generated from 
phoneme or word recognition. We define N-best accuracy as 
the proportion of utterances of the test set where the correct 
hypothesis is within the top N words. We see that using word 
recognition to generate the phoneme string provides 
drastically better recognition accuracy. However, we also 
notice that the word accuracy using word recognition does not 
increase significantly when comparing the 5 best to the 10 
best. 

N 1 1-5 1-10 1-50 1-200 
Phoneme  69.0% 83.4% 87.1% 93.6% 96.9% 

Word  85.3% 90.1% 90.6% 93.9% 95.6% 

Table 1: N-best accuracy using the phoneme string 
from phoneme or word recognition for the top 1 to 200 
for the 9K words vocabulary. 

For these experiments, we used the CMU pronouncing 
dictionary. For out-of-vocabulary words the pronunciation 
was generated automatically with letter to sound rules scripts 
provided with the CMU toolkit [11]. We also ran experiments 
using a dictionary where hand-generated alternate 
pronunciations were included. This led to an improvement of 
about 4% absolute error. These hand-generated 
pronunciations were inspired by listening to the utterances in 
the test set. Thus, it is unlikely that any automatic 
pronunciation generation system could achieve this kind of 
error rate improvement. However, the experiment does show 

that this type of two stage recognition system is highly 
sensitive to word pronunciations, as was shown in [9]. 

3.2. Phoneme and word recognition fusion 

We now investigate the fusion of the two-stage recognition 
with a single word recognition pass. This was motivated by 
the observation that the results of these two separate decoding 
phases were significantly uncorrelated. By combining the 
results with a simple scheme, we are able to achieve a 
considerable improvement, as shown in table 2 below. As 
described in section 2.3, the results are combined by using the 
result of the word recognition pass as the top word in the N-
best list. The rest of the list is filled in using the N-best list 
obtained from the phoneme hypothesis. 

N 1 1-5 1-10 1-50 1-200 
Fusion 85.3% 93.6% 95.1% 96.6% 98.0% 

Table 2: Fusion scheme between word recognition and 
the two-stage phoneme recognition, accuracy for the 
top 1 to 200 for the 9K words vocabulary. 

It appears that phoneme recognition allows the decoder 
some flexibility, while word recognition constrains the search 
to the word pronunciations in the dictionary. When the word 
recognition fails to find the best hypothesis, then the two-
stage algorithm with phoneme decoding allows recovery, as 
shown in figure 2. 

In figure 3, we observe that the fusion algorithm performs 
comparably to the conventional, two-pass, lattice-based N-
best search. This leads to two important conclusions. Firstly, 
the confusion matrix contains information at least as 
significant to N-best list generation as the information 
contained in the acoustic lattice generated by standard search 
algorithms. Exactly how correlated these two sources of 
information is unclear, however. Secondly, the phoneme 
string resulting from phoneme recognition provides enough 
utterance-specific acoustic information to generate an 
accurate N-best list. 

Another possible reason for our algorithm performing 
comparably to conventional methods is suggested by [12].   
The lattice-based method stores only the best segmentation of 
any particular phoneme. If a hypothesis exists that uses a 
slightly less probable segmentation of that phoneme, it is not 
considered.  Because of this, sequences like “AH P” and “AH 
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R P” will not both appear in an N-best list generated using a 
lattice-based method. Our algorithm does not have this 
drawback. 

The N-best lists created by this algorithm are different 
from those generated by conventional methods. Thus, they 
can potentially be used to augment lists built from word or 
phoneme based lattices. Other fusion schemes involving the 
word lattice (instead of the best word hypothesis), and 
phoneme lattice may lead to further improvements. These 
information fusion approaches can be exploited in multimedia 
indexing systems where information retrieval precision 
prevails. In these systems, the goal is not to produce a 
transcription, but instead generate enough keywords to allow 
efficient document retrieval. 

4. Conclusions and Future Work 

This paper studied a word and phoneme recognition fusion 
algorithm for generating arbitrary long N-best list of words. 
The method described performs as well as classical word 
lattice N-best methods while remaining simple to implement. 
The results show that we can achieve a precision of about 
93.6% within the top 5 on a medium sized vocabulary (9K 
words). This good performance allows its usage in interactive 
applications. 

In the future, we wish to explore several directions. 
Confidence scoring may be used at different levels. Phoneme 
confidence scores can be added to calculation of the word 
distance, accounting for the uncertainty of both phoneme 
recognition and pronunciation. Some preliminary experiments 
show some improvements. We believe that the quality of 
word pronunciation is critical in order to achieve good results. 
Adaptive pronunciation methods could help to adjust word 
pronunciation to common usage. The word distance metric 
can be improved by carefully scoring multiple phoneme 
deletions. Finally, the phoneme confusion matrix could be 
trained in a way that more accurately represents the behavior 
of the decoder. 
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