
N-best List Generation using Word and Phoneme Recognition
Fusion

Ernest Pusateri1 and JM Van Thong

Compaq Cambridge Research Laboratory
Cambridge, MA 02142 USA

pusateri@mit.edu, jm.vanthong@compaq.com

1 Ernest Pusateri is now affiliated with the MIT Spoken Language Systems Group, Cambridge, MA 02139, USA.

Abstract

This paper describes an approach for combining phoneme and
word recognition to produce an accurate N-best list of
hypotheses. We run two decoding threads in parallel. The first
performs phoneme recognition, while the other performs word
recognition on the same recorded utterance. The output of the
word recognition thread is returned as the most likely
hypothesis, and the result of the phoneme recognition thread
is used to lookup a list of words for the rest of the N-best list.
The algorithm is simple to implement and efficient. In our
evaluation, we found that this approach has similar
performance to the classical lattice-based N-best search
methods on isolated word recognition. This method has the
potential to improve existing ASR systems or can be used in
interactive multi-modal applications.

1. Introduction

Methods for finding multiple sentence or word hypotheses
from a spoken utterance, or N-best list, have been thoroughly
studied over the past years [1], [2], [3]. The field of
applications for N-best lists is vast. They can be used to
improve the performance of existing recognizers by
narrowing the search space so that other, more
computationally intensive algorithms can be applied. Another
possible application is for indexing spoken content in video or
audio broadcast documents. Most systems use the best
hypothesis generated by a large vocabulary word recognizer
to produce an indexable transcription. It has been
demonstrated that using additional alternate hypothesis from
N-best lists may help to improve information retrieval
precision [4]. Finally, N-best word lists can be used in
interactive applications. A list of alternate choices can be
displayed to the user when the system cannot disambiguate
between several close word pronunciations.

Classical N-best search methods use a two-pass
algorithm: the first pass is a forward Viterbi search, which
produces a word lattice. During the search, word hypotheses
are evaluated based on the acoustic scores of a sub-word unit
sequence and on the probability of the previous words (N-
grams). Hence, a lattice encodes alternate word hypothesis,
possibly with different time segmentations, along with a
probability score. At the end of the sentence, a backward
search is applied for finding the N-best word hypotheses
within the lattice.

One advantage of these methods is that they use the
utterance acoustics for building the lattice during the first
pass. On the other hand, they consider different time
segmentations for the same word, and therefore must apply

pruning to remain computationally tractable. As a
consequence, only a limited subset of the vocabulary can be
extracted (N-best) and re-sorted.

With the performance of speech recognition systems
reaching a maximum, information fusion approaches have
become more popular [5]. The general idea is that combining
different techniques at the acoustic scoring level or decoding
level may help to improve the accuracy of systems. In this
spirit, we present here an algorithm that uses a fusion
approach to compute an N-best list of words. Instead of using
a lattice, we combine two recognition threads, one using sub-
word units (phonemes), and the other using words. Using a
pronunciation distance metric, we then sort the whole
vocabulary to create the N-best list. We show that our
approach overcomes some of the problems of classical
methods and appears to perform as well as these methods on
our test set.

The outline of the paper is as follows. In section 2, we
describe our approach for combining word and phoneme
recognition for resorting a vocabulary to generate an N-best
list. In section 3, we present the experimental results. Finally,
we present our conclusions and suggestions for future work.

2. Word and phoneme recognition fusion

The algorithm we implemented is intended for isolated word
recognition and consists of three main stages, as illustrated in
Figure 1. In the first stage, both word and phoneme
recognition are performed on the recorded utterance. In the
second stage, a phoneme confusion matrix is used with a
standard string alignment algorithm to score every word in the
vocabulary against the phoneme string returned by the first
stage. The vocabulary is then sorted according to these scores.
A similar procedure is described in [9]. In the final stage, the
word recognition result from the first stage and the sorted
vocabulary from the second stage are combined to form an
arbitrarily large N-best list.

The two aspects of this algorithm most important to its
success are present in the second stage. First is the use of the
phoneme confusion matrix. While the word recognition result
of the first stage utilizes specific acoustic information about
the spoken utterance, the search does not have at its disposal
information about the overall performance of the recognizer.
It is this additional information that is provided by the
phoneme confusion matrix. Indeed, the fact that we achieve
comparable performance to the standard lattice-based
methods indicates that the information contained in the
confusion matrix is at least as useful to N-best list generation
as the acoustic information used in those methods.

The second important aspect of the algorithm is the fact
that we use the results of phoneme recognition to sort the
vocabulary instead of using the results of word recognition.
In fact, one could translate the result of word recognition into
a phoneme string and then use this to sort the vocabulary.

However, results given later in this paper prove this to be an
inferior approach. If one uses this method, the acoustic
representation of the utterance is, in a sense, quantized. From
this perspective, each word of the vocabulary is considered a
codeword. As always happens with quantization, information
is lost in this process.

If one instead uses the result of phoneme recognition to
sort the vocabulary, the size of the codebook is dramatically
increased. Thus, the negative effects of quantization are
reduced, and the performance of the system is increased.
While in some applications reduction in quantization comes at
a high price, in this algorithm we can achieve these gains with
very little compromise in efficiency and no compromise in
robustness. The details of our algorithm are described in the
sections that follow.

2.1. Phoneme and word recognition

In the first part of the first stage, the speech decoder processes
the recorded input speech into a sequence of phonemes. In
this part it is important that the decoder has a reasonable
degree of freedom to represent the acoustic content of the
utterance. Thus, the constraints placed on this decoding pass
can be domain specific but should be vocabulary independent.
This is accomplished through the use of a phoneme-level
language model trained on a large collection of in-domain
utterances.

For the second part of the first stage, word decoding is
performed. Here the decoder is given much less freedom than
in the phoneme recognition pass. The output of the recognizer
is constrained to be one of the words in the vocabulary.

2.2. Sorting the vocabulary with a word pronunciation
distance metric

The second stage of the algorithm requires that the vocabulary
be sorted according to how likely it is that each word was the
one spoken, given the phoneme string returned by the first
stage. To accomplish this, we define the distance between two
words using a word pronunciation distance metric, which is
defined as follows.

),(),(),(

)(),(

)(),(

),(),(

min),(

0),(

1

1

11

00

nnnn

jinsji

idelji

jisubsji

ji

dpLPdpSDPS

dCdpS

pCdpS

dpCdpS

dpS

dpS

+=







î





+
+

+
=

=

−

−

−−

Where:

• S(P,D) is the distance between word P and D; P is
the decoded word, and D, the word from the
vocabulary,

• S(pi,dj) is the score of phoneme string matching up
to phoneme pi of P, and phoneme dj of D,

• Csubs(pi,dj) is the cost of substituting phoneme pi of
P with phoneme dj of D,

• Cdel(pi) is the cost of deleting pi of P,
• Cins(dj) is the cost of inserting dj of D,
• LP(pn,dn) is the length penalty of decoded phoneme

string pn matching pronunciation dn.

Computing this metric uses a classical dynamic
programming technique [6]. The insertion, deletion, and
substitution costs are obtained from a pre-computed phoneme
confusion matrix. In addition to the cost of matching string P
with D, a length penalty (LP) is applied. This is computed by
evaluating the phoneme string length difference between the
decoded phoneme string and the pronunciation from the
dictionary.

To complete the second stage, the phoneme sequence
produced by the recognizer is compared to each word of the
vocabulary using the distance metric described above. The
word pronunciation distance is then used to sort the whole
vocabulary, the most likely word being placed at the top of
the list.

2.3. Fusion

In the last stage of the algorithm, the N-best lists generated
from phoneme and word recognition are combined to form
the final result. We implemented and tested a simple fusion
scheme that consists of concatenating the best hypothesis of
word recognition with the top N-1 words from the sorted list
produced by phoneme recognition. Alternate schemes may be
used, but only this one has been tested.

3. Experimental Results

 We tested our method on a vocabulary of 9,000 names in
which first and last names were aggregated into a single
compound word. These names were actor names extracted
from several weeks of a TV guide. The test set consisted of 50
spoken queries: 25 names were popular actor names, 15 were
picked randomly, and 10 were chosen because they could be
easily confused with other names of the vocabulary. Sixteen
American or English native speakers recorded the test set

Phoneme
Decoder

Phoneme
Dict.

Phoneme
LM

Word
Vocabulary

Acoustic
Models

Pronunciation
Generation

Final
N-best list

Word
Decoder

Word
Dictionary

Vocabulary
Lookup

Sorting
and

Fusion

Word
Vocabulary

Trigram Phone
LM Training

Figure 1: System Overview

using a simple push-to-talk interface, producing a total of 800
utterances.

The recognizer used in these experiments was derived
from the CMU Sphinx-3 system [7]. It used 3 emitting-state
Gaussian mixture HMMs to model triphones on a vocabulary
of 49 phonemes, with 16 Gaussian mixtures per state. Our
acoustic models were trained on mel-frequency cepstral
coefficients (MFCC) generated from around 100 hours of the
1997 and 1998 Broadcast News corpus provided by LDC [8].

The phoneme trigram language models for phoneme
recognition are trained on a set of 10,000 proper names using
a dictionary of word pronunciations. For proper names, the
pronunciation was either looked up or produced by a lexical
tree trained on the 64K most common English words.

The phoneme confusion matrix used to compute the word
distance metric was trained using the TIMIT corpus, a
collection of 6,300 short, hand-labeled utterances. Training
consisted of running phoneme recognition on all of the
utterances, then aligning the hypothesized results with the
hand transcription. The alignment routine used the same cost
for deletion, insertion, and substitution, regardless of the
phonemes involved. Alternate approaches are possible for
training the confusion matrix, including the use of phoneme
classification [9], EM, or genetic algorithms [10].

3.1. Phoneme recognition and word lookup

First we investigate a two-stage algorithm for computing the
N-best list without fusion. The recognizer first generated a
phoneme string from the utterance. This was done either by
using the direct output of phoneme decoding or the
pronunciation of the best word hypothesis. In the second
stage, an N-best list is generated by sorting the entire
vocabulary using the phoneme string from the first stage. This
was described in section 2.3.

Table 1 shows the N-best accuracy obtained for various
values of N using the phoneme string generated from
phoneme or word recognition. We define N-best accuracy as
the proportion of utterances of the test set where the correct
hypothesis is within the top N words. We see that using word
recognition to generate the phoneme string provides
drastically better recognition accuracy. However, we also
notice that the word accuracy using word recognition does not
increase significantly when comparing the 5 best to the 10
best.

N 1 1-5 1-10 1-50 1-200
Phoneme 69.0% 83.4% 87.1% 93.6% 96.9%

Word 85.3% 90.1% 90.6% 93.9% 95.6%

Table 1: N-best accuracy using the phoneme string
from phoneme or word recognition for the top 1 to 200
for the 9K words vocabulary.

For these experiments, we used the CMU pronouncing
dictionary. For out-of-vocabulary words the pronunciation
was generated automatically with letter to sound rules scripts
provided with the CMU toolkit [11]. We also ran experiments
using a dictionary where hand-generated alternate
pronunciations were included. This led to an improvement of
about 4% absolute error. These hand-generated
pronunciations were inspired by listening to the utterances in
the test set. Thus, it is unlikely that any automatic
pronunciation generation system could achieve this kind of
error rate improvement. However, the experiment does show

that this type of two stage recognition system is highly
sensitive to word pronunciations, as was shown in [9].

3.2. Phoneme and word recognition fusion

We now investigate the fusion of the two-stage recognition
with a single word recognition pass. This was motivated by
the observation that the results of these two separate decoding
phases were significantly uncorrelated. By combining the
results with a simple scheme, we are able to achieve a
considerable improvement, as shown in table 2 below. As
described in section 2.3, the results are combined by using the
result of the word recognition pass as the top word in the N-
best list. The rest of the list is filled in using the N-best list
obtained from the phoneme hypothesis.

N 1 1-5 1-10 1-50 1-200
Fusion 85.3% 93.6% 95.1% 96.6% 98.0%

Table 2: Fusion scheme between word recognition and
the two-stage phoneme recognition, accuracy for the
top 1 to 200 for the 9K words vocabulary.

It appears that phoneme recognition allows the decoder
some flexibility, while word recognition constrains the search
to the word pronunciations in the dictionary. When the word
recognition fails to find the best hypothesis, then the two-
stage algorithm with phoneme decoding allows recovery, as
shown in figure 2.

In figure 3, we observe that the fusion algorithm performs
comparably to the conventional, two-pass, lattice-based N-
best search. This leads to two important conclusions. Firstly,
the confusion matrix contains information at least as
significant to N-best list generation as the information
contained in the acoustic lattice generated by standard search
algorithms. Exactly how correlated these two sources of
information is unclear, however. Secondly, the phoneme
string resulting from phoneme recognition provides enough
utterance-specific acoustic information to generate an
accurate N-best list.

Another possible reason for our algorithm performing
comparably to conventional methods is suggested by [12].
The lattice-based method stores only the best segmentation of
any particular phoneme. If a hypothesis exists that uses a
slightly less probable segmentation of that phoneme, it is not
considered. Because of this, sequences like “AH P” and “AH

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1 2 3 4 5 6 7 8 9 10

Phoneme Recognition w/Lookup Fusion Method

Word Recognition w/Lookup

Figure 2: Comparison of the 3 different methods.

R P” will not both appear in an N-best list generated using a
lattice-based method. Our algorithm does not have this
drawback.

The N-best lists created by this algorithm are different
from those generated by conventional methods. Thus, they
can potentially be used to augment lists built from word or
phoneme based lattices. Other fusion schemes involving the
word lattice (instead of the best word hypothesis), and
phoneme lattice may lead to further improvements. These
information fusion approaches can be exploited in multimedia
indexing systems where information retrieval precision
prevails. In these systems, the goal is not to produce a
transcription, but instead generate enough keywords to allow
efficient document retrieval.

4. Conclusions and Future Work

This paper studied a word and phoneme recognition fusion
algorithm for generating arbitrary long N-best list of words.
The method described performs as well as classical word
lattice N-best methods while remaining simple to implement.
The results show that we can achieve a precision of about
93.6% within the top 5 on a medium sized vocabulary (9K
words). This good performance allows its usage in interactive
applications.

In the future, we wish to explore several directions.
Confidence scoring may be used at different levels. Phoneme
confidence scores can be added to calculation of the word
distance, accounting for the uncertainty of both phoneme
recognition and pronunciation. Some preliminary experiments
show some improvements. We believe that the quality of
word pronunciation is critical in order to achieve good results.
Adaptive pronunciation methods could help to adjust word
pronunciation to common usage. The word distance metric
can be improved by carefully scoring multiple phoneme
deletions. Finally, the phoneme confusion matrix could be
trained in a way that more accurately represents the behavior
of the decoder.

5. Acknowledgements

We thank Bhiksha Raj for his help with training the confusion
matrices, and for giving us his invaluable insight on the
decoding and training processes. We also thank Frederic
Dufaux and Shiufun Cheung for providing the test set.
Finally, we would like to thank Beth Logan for her insightful
comments while reviewing this paper.

6. References

[1] Austin S., Schwartz R., and Placeway P., “The Forward-
Backward Search Algorithm”, ICASSP’91, Vol. 1, pp
697, 1991, Toronto, Canada.

[2] Schwartz R., and Chow Y., “The N-best Algorithm: an
Efficient and Exact Procedure for Finding the N Most
Likely Sentence Hypotheses” , ICASSP’90, 1990,
Albuquerque, USA.

[3] Tran B-H., Seide F., Steinbiss V., “A Word Graph Based
N-best Search in Continuous Speech Recognition” ,
Proceedings of ICSLP 96.

[4] Siegler M., “ Integration of Continuous Speech
Recognition and Information Retrieval for Mutually
Optimal Performance”. Ph.D. Thesis, Carnegie Mellon
University, 1999.

[5] Ng K., “ Information Fusion for Spoken Document
Retrieval” . Proceedings of IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, 2000.

[6] Gusfield D., “Algorithms on Strings, Trees, and
Sequences” . Cambridge University Press.

[7] Placeway P., Chen S., Eskenazi M., Jain U., Parikh V.,
Raj B., Ravishankar M., Rosenfeld R., Seymore K.,
Siegler M., Stern R., and Thayer E., “The 1996 Hub-4
Sphinx-3 System”. In Proceedings of the 1997 DARPA
Speech Recognition Workshop, Chantilly, Virginia, 1997.

[8] Stern, R. M., “Specification of the 1996 Hub 4 Broadcast
News Evaluation” . In DARPA Speech Recognition
Workshop, 1997.

[9] Coletti P. and Federico M., “A two-stage speech
recognition method for information retrieval
applications” . Eurospeech, 1999.

[10] Ferrieux A. and Peillon S., “Phoneme-level indexing for
fast and vocabulary-independent voice/voice retrieval” .
Proceedings of the ESCA ETRW Workshop: Accessing
information in spoken audio, 1999.

[11] Pagel V., Lenzo K., and Black A. W., “Letter to sound
rules for accented lexicon compression” . In ICSLP’98,
Sydney, Australia, 1998.

[12] Fonollosa J. and Batlle E. “Combining Length
Restrictions and N-best Techniques in Multiple-Pass
Search Strategies” . Eurospeech, 1999.

80.00%

85.00%

90.00%

95.00%

100.00%

1 2 3 4 5 6 7 8 9 10

Fusion Method Lattice Based Method

Figure 3: Fusion method versus conventional
lattice-based N-best search.

