
Viterbi Search Visualization using Vista:

A Generic Performance Visualization Tool

Robert Halstead Jr., Benjamin Serridge�, Jean-Manuel Van Thong, and William Goldenthal

email: halstead@crl.dec.com, ben@mama-bear.lcs.mit.edu, jmvt@crl.dec.com, thal@crl.dec.com

Digital Equipment Corporation

Cambridge Research Lab

ABSTRACT

The capability to view detailed events taking place inside of a

speech search engine can be essential for reducing the compu-

tational complexity and enhancing the accuracy of a speech

recognition system. This paper describes a generic search

visualization and performance tuning tool, Vista, which per-

mits a user to interactively examine data within the search

module of a speech recognition system. Vista's key attributes

include the ability to display a large number of active search

paths simultaneously, to display data relevant to these paths,

and to update the paths and data as the search progresses

in time.

1. Introduction

Although conceptually straightforward, the development of a

speech recognition search engine is a complex process. Search

requires the integration of multiple sources of information

and the maintenance of a large number of hypotheses. All of

this is done within the framework of a lattice which incorpo-

rates pronunciation constraints and temporal information.

To e�ectively tune a search engine, it is important to gain

insight into a large number of details that are generally hid-

den within the system. It can be extremely valuable to the

developer to understand the dominant factors behind why a

particular path wins or loses, or at what time and for what

reasons a particular path (hypothesis) was pruned.

Despite the apparent simplicity of the Viterbi algorithm, it is

often extremely di�cult to gain insight into what is taking

place inside of a speech recognition search engine. This is

because the number of parameters and paths that might be

examined is potentially huge.

This is especially true for a segment-based search which is

inherently more complex than an HMM Viterbi search [1].

In an HMM search, all active paths can be examined by

only looking a single step back in time. A segment-based

search requires that segment start and end times be explicitly

�Currently a member of MIT's Spoken Language Systems

Group

hypothesized. Therefore, the terminal points of active paths

tend to exist at many di�erent times in the past.

Therefore, to understand and study the behavior of search

algorithms, we need tools that go beyond code debuggers or

the depiction of a single path [3]. With a visualization tool, it

is possible to determine how multiple active paths are inter-

acting with lattice points residing at the current time. Since

search needs to be implemented in a computationally e�-

cient manner, proper visualization can also provide insights

into implementing the search e�ciently.

This paper describes a search visualization tool, Vista,

which we utilize to gain insight into multiple aspects of our

segment-based search engine. Vista allows the user to exam-

ine any active path in the past, and displays all the relevant

scores which are used in computing a path's cost. Vista also

allows the user to step through the search at any pace de-

sired and actively updates its display after each step. The

next section describes Vista's architecture and original im-

plementation as a tool for viewing the execution of parallel

programs. Section 3 discusses the adaptation of Vista to the

domain of search and Section 4 describes Vista's capabili-

ties in detail. Future Vista extensions are in discussed in

Section 5.

2. The Architecture of Vista

Vista is a generic performance visualization tool origi-

nally designed for understanding the performance of paral-

lel programs [2]. Many other data-visualization programs

built for this purpose are specialized to particular parallel-

programming systems, but Vista aims to provide a useful set

of generic performance analysis and visualization modules,

plus an open infrastructure that enables the development

of customized performance analysis and visualization tools

both by interconnecting existing modules and by adding new

modules. In addition to communicating data sets between

modules, this infrastructure communicates view boundaries

and other interactively changing properties between mod-

ules, allowing data exploration from several di�erent but co-

ordinated viewpoints.



Modules' input and output data sets are represented using

SDF, a self-describing format that allows a 
exible represen-

tation of information. As a result, the information contained

in data sets is self-documenting and can be changed easily

without modifying Vista. Any desired information can be

dumped, including (in our application to search visualiza-

tion) acoustic-phonetic, duration, and language scores, ac-

cumulated path scores, etc.

A crucial and unique part of Vista's architecture is a set

of speci�ed conventions for using SDF to represent com-

mon types of performance data sets, such as event histories

and histograms. These conventions are speci�ed in terms of

generic concepts such as \time base" and \binary relation-

ship" rather than speci�c concepts such as \cycle count,"

\processor ID," and \send/receive pair." Because they sup-

port these generic concepts, Vista's modules are 
exible and

can be applied in many di�erent situations.

This architecture has proven to be 
exible enough that we

were able to apply it without modi�cation to the task of vi-

sualizing the operation of a Viterbi search engine. For this

purpose, only Vista's event-history data type was used. An

event history is a collection of events. Each event has an

event name and a set of named �elds, each of which con-

tains a numerical, character-string, or array value. An event

history has one or more time bases, which provide ways to ar-

range events in time, and one or more threading �elds, which

provide ways to group related events together into threads.

Events come in three 
avors:

� Transient events are not considered as changing the

state of any thread. The main item of interest about a

transient event is the time at which it occurred, along

with the auxiliary information recorded in the event's

�elds.

� State-changing events are viewed as changing the state

of the thread in which they occur. They are typically

displayed as changes in color, with the color change

marking the time when the event occurred.

� Interval events include both a starting and ending time

and are typically displayed as segments of color whose

beginning and ending points correspond to the interval's

starting and ending times.

Events can also contain arbitrary application-dependent in-

formation. Further information about the semantics and rep-

resentation of Vista's data set types can be found in an earlier

paper [2].

For our application, we used Vista's generic event-history

viewer. In a parallel-processing context, this viewer displays

threads of execution (de�ned as the sets of events contain-

ing the same value in the selected threading �eld) and in-

teractions between those threads (such as the creation of a

child thread by a parent thread). Each thread is displayed

as horizontal band of color. Transient events are displayed

as vertical lines that cross this band, while state-changing

and interval events are displayed as color changes within the

band. Binary relationships are thought of as involving a

\causer" and a \causee" thread and are displayed as arrows

pointing from the \causer" to the \causee."

Figure 1: Event history view of all paths active at frame

490. The dark sequences represent full or partially completed

word hypotheses. White boundaries (lines) correspond to the

transitions between phonetic units. The dark vertical lines

denote binary relationships representing the dependence be-

tween alternate hypotheses, that is, the point at which child

hypotheses split o� from a parent which represents a com-

mon past. Note that many hypotheses do not extend to

the current time. These hypotheses are still active, but are

\hanging" in the past, awaiting future phonetic units to con-

nect back to them. Duration constraints permit a path to be

pruned if it is determined that none of its allowed phonetic

transitions is still possible.

3. Applying Vista to Search

Viterbi search produces a tree describing all the possible

hypothesized sequences of phonetic units (phones). A path

within the tree describes a hypothesized sequence of phones

along with the starting and ending times of each hypothe-

sized phone. Two or more such paths may share a common

initial phone subsequence; we think of this situation as a

branch in which child paths branch from a common ancestor

path at the point where their phone sequences diverge. A

path may also become inactive, in other words, be pruned

out from further consideration by the search.

We are using Vista to monitor and debug a keyword spotting



Figure 2: A close-up view of a piece of the search lattice displayed in Figure 1. The cursor has been moved over an

instance of the phonetic unit [s]. Information related to this phone is displayed in a text window at the bottom of the �gure.

Transition information is obtained by moving the cursor to a transition point in the lattice.

application. This application has the capability to stop at

pre-speci�ed increments in time and dump a self-describing

�le that contains information relating to all active paths.

The active paths include paths which are \hanging" in the

sense that they terminate somewhere in the past. Thus, a

snapshot is obtained which describes the state of all relevant

hypotheses at the current time.

A correspondence between search paths and execution

threads allowed us to apply Vista's generic event-history

viewer, without modi�cation, for our purposes. In visual-

izing a search, each active path is mapped to a thread. A

branch point in the search then corresponds to creation of

new threads. As a time base, we use the frame number in

the input speech signal, so the phone boundaries and path

branch points will be displayed in terms of their positions

in the utterance being analyzed. In this way, the viewer

can display the search tree's large-scale structure in a highly

intuitive manner: see Figure 1.

Each hypothesized phone along a path is mapped to an in-

terval event giving the beginning and ending times that have

been hypothesized for that phone; di�erent colors are used

for intervals hypothesized to belong to garbage (�ller) words

and those hypothesized to belong to a keyword. Transient

events represent transitions between phones. The color of

a transition indicates whether or not it is at a boundary

between words. Finally, binary relationships are used to

represent points in time where paths branch. Each pho-

netic event includes information identifying which phone it

is, which word it belongs to, its duration, and relevant scores

of interest. Each transition event includes information iden-

tifying the left and right phones and the acoustic-phonetic

transition score.

Details about a particular event can be accessed by moving

the mouse to the corresponding point on the display, which

causes the self-describing record for that search node to be

displayed textually in a separate window pane as illustrated

at the bottom of Figure 2. We have also exploited Vista's

linking capabilities to connect it to an external spectrogram

viewer, providing a coordinated view of the search behavior

and the input speech signal.

4. Vista as a Microscope on Search

In practice, Vista is utilized as a type of \microscope" for

viewing the internal workings of the search engine. Vista's

event history viewer is used to view a snapshot of the search

lattice hypotheses at any given moment in time. Figure 1

shows a complete view of the search lattice at frame 490.

The view covers the period from frame 250 to frame 490

for an example utterance. A single frame corresponds to 5

milliseconds.

Note that all of the active paths extend to frames in the range

[415, 490]. This range corresponds to the maximum duration

of any phonetic unit in the pronunciation network. Paths

which terminate at points prior to this maximum duration

cannot possibly be extended, and are therefore pruned out

of the search. It is possible to narrow the active window in

time, displaying only active paths that are hanging within

a given time range. The paths are sorted by accumulated

score at the current frame, with the best path appearing at

the top.

Vista allows the user to dynamically adjust the view and

also to zoom in on any desired part of the lattice. This

capability permits the view in Figure 1 to be transformed

into the close-up view shown in Figure 2.

Information relative to a phone, a transition or a branch can

be displayed interactively by moving the cursor to the cor-

responding graphical element. A text window at the bottom

displays this information to the user.

An example of this can be seen in Figure 2 which shows the



Figure 3: View that results from setting the threading �eld to the phonetic unit option. Each instance of an individual

phonetic unit is shown in a given row. For example, the seventh row shows two instances where the phone [iy] has been

hypothesized within the keyword greasy. The top rows are reserved for hypothesized garbage units [ga], [gb], and [gc]. The

alignment of the units in time is maintained. The gaps in time are occupied by phonetic units which do not appear in this

zoomed view. The large-type labels have been added to the �gure to indicate the phonetic unit that corresponds to each

row.

information displayed when the cursor is moved over a pho-

netic unit. This information includes the phone name and its

lattice index, the word to which it belongs, its duration, time

boundaries, and associated acoustic-phonetic scores. When

the cursor is moved onto a phonetic transition, the display

shows the pair of phones, the transition score, the score in-

crement, and the best score.

Vista permits the same information to be displayed in various

di�erent organizations. The threading �eld can be changed

from the path ID to the index within the lattice, the pho-

netic units, or the words in the lexicon. The information is

then displayed such that the hypothesized phones or words

overlap in time. It is also possible to change the sort key. In

particular, the phones and words can be sorted by best score

or by label.

Figure 3 shows another view of the same search lattice and

time frame. This view is the result of changing the thread-

ing �eld to the phonetic unit option. Here, each instance

of a particular phonetic unit is shown along an individual

row. Now the hypothesized sequence of phones in time is

not explicitly shown. Instead, alternative overlapping pho-

netic hypotheses at di�erent points in time can be seen. The

units maintain their proper temporal alignments.

Finally, it is possible to utilize Vista to step through the

search process in time. This is currently accomplished by

dumping the contents of the self-describing �le at each point

in time when the search is to be examined. The result is

that the dynamics of the active paths can be displayed, but

the procedure is somewhat clumsy. It would be desirable for

Vista to support this mode of operation more smoothly.

5. Conclusions and Future Work

The Vista viewing tool provides a powerful method for exam-

ining the internal workings of a search engine. By combining

Vista with other tools such as a spectrogram viewer, the de-

veloper is able to obtain a comprehensive picture of a speech

system. This picture is an invaluable aid in tuning system

performance, understanding complex interactions that can

occur during search, and locating possible computational in-

e�ciencies.

In the future, we would like to enhance Vista's capabilities

by adding the ability to handle incremental updates. This

task is currently accomplished by dumping the complete tree

description at each step into a �le. This enhancement would

allow us to interactively track the structure of the search tree

as it evolves over time.

6. REFERENCES

1. W. Goldenthal. Statistical Trajectory Models for Phonetic

Recognition. PhD thesis, Massachusetts Institute of Tech-

nology, Department Of Aeronautics and Astronautics,

September 1994.

2. R. Halstead. Self-describing �les + smart modules = par-

allel program visualization. Springer-Verlag Lecture Notes

in Computer Science, 907:253{283, November 1994.

3. Zissman M.A. Seward D.C. Graphical analysis of hid-

den markov models, speech recognition experiments. MIT

Lincoln Lab Technical Report 1009, October 1995.


