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ABSTRACT

The goal of this work is to use phonetic recognition to

drive a synthetic image with speech. Phonetic units are

identi�ed by the phonetic recognition engine and mapped

to mouth gestures, known as visemes, the visual counter-

part of phonemes. The acoustic waveform and visemes

are then sent to a synthetic image player, called FaceMe!

where they are rendered synchronously. This paper pro-

vides background for the core technologies involved in this

process and describes asynchronous and synchronous pro-

totypes of a combined phonetic recognition/FaceMe! sys-

tem which we use to render mouth gestures on an ani-

mated face.

1. Introduction

This paper addresses the problem of driving an animated

face using audio data. We present a phonetic recognition

system as a front-end process to generate visemes, the vi-

sual analog of phonemes. The paper provides background

for the core phonetic recognition technology, based on Sta-

tistical Trajectory Modeling [1] and the core FaceMe! an-

imation technology. It then describes asynchronous and

synchronous web-based prototypes of combined phonetic

recognition/FaceMe! systems.

We believe that facial animation is important because

the emergence of the web has provided new compelling

opportunities for human-computer interaction. The sys-

tems we describe are useful for applications such as Inter-

net chat, very-low bandwidth virtual video-conferencing,

and an enhanced animated audio player. Section 2. gives

background on the history of facial gesture synthesis and

describes the FaceMe! technology. Section 3. describes

the STM approach to phonetic recognition and discusses

the details of our implementation for facial animation. Fi-

nally, Section 4. discusses existing and planned prototypes

and summarizes the state of this work.

2. Facial Gesture Synthesis

A sequence of phonemes, created by a speech synthesizer

and aligned to their visual compliments called visemes

(the visual analog of phonemes), provides su�cient con-

text to create a real-time image of a talking human face.

In a previous implementation [2] the phoneme stream

is generated from the DECtalk formant-based text-to-

speech synthesizer. However, binding the technology to

text-to-speech results in the following limitations:

1. Applications can be driven from text only and

2. The audio synthesis sounds far from natural, result-

ing in an audio visual dichotomy between the �delity

of the image and the naturalness of the synthesized

speech.

Audio Server

D/A
Waveform
 Buffer

Face Generator,
Synchronization
and Phonetic Index

Viseme Table

Mouth
Deformations

Display

Server
Time

phoneme timing
stream

Figure 1: Speech synchronization for FaceMe!

To overcome these two limitations it is necessary to

drive facial gestures from real speech. This technique

is called lip-synchronization and has been the subject

of prior investigation [3, 4, 5, 6]. To date the best ap-

proaches execute a limited phonetic recognition system

where broad phonetic categorizations are computed from

linear-prediction speech models or neural networks [3, 4].

While the results are superior to that produced from

simple volume metrics, the underlying recognition re-

mains primitive. In our system we use a complete high-

performance phonetic recognizer.

By replacing the text-to-speech component of DECface

and allowing a stream of phoneme timing symbols to be

passed to the core engine of DECface, we can generate



Figure 2: The plugin version of FaceMe! with a mapped

image of a gorilla.

a real-time talking face with real speech. First, the pho-

netic recognition engine analyses the acoustic waveform

to produce a phonetic stream. Then, the phonetic units

are mapped to their corresponding visemes.

At each update time the current mouth posture is com-

puted from two visemes and a timing marker. The timing

marker computes an interpolated position using a non-

linear cosine that provides the appearance of acceleration

and deceleration that is consistent with a physical system.

This implementation is depicted in Figure 1. A plugin

version of the FaceMe! player is shown in Figure 2.

3. Phonetic Recognition

3.1. Statistical Trajectory Models

Digital's core phonetic and continuous speech recognition

engines utilize segment-based technology. The front-end

includes segmentation technology which works directly on

the time waveform [7]. Acoustic-phonetic model construc-

tion and scoring is accomplished by Statistical Trajectory

Modeling (STM) technology [1]. STM utilizes a segment{

based framework to capture the dynamical behavior and

statistical dependencies of the acoustic attributes used to

represent the speech waveform. The approach is based

on the creation of a track for each phonetic unit. The

track serves as a model of the dynamic trajectories of

the acoustic attributes over the segment. The statistical

framework for scoring incorporates the auto- and cross-

correlation properties of the track error over time, within

a segment.

The acoustic{phonetic models used in this work are con-

structed for individual phonetic units and their transi-

tions. Transition models enhance system performance by

utilizing the acoustic information that spans adjacent seg-

ments. Transition models are well-suited for the STM ap-

proach because the transition regions are highly dynamic

since the articulators are generally in motion during this

interval.

To create the transition models, tracks were generated for

each of the phonetic transitions found in the training cor-

pus. Since the number of phonetic transitions is large,

tracks were then clustered bottom{up in an unsupervised

manner (see [1] for details on this clustering procedure).

Clustering ceased when there was enough data to robustly

estimate each track. After the transition tracks were es-

timated, clustering was resumed to determine the �nal

clusters for estimating Gaussian p.d.f.'s, again using ro-

bust parameter estimation as a stopping criterion. This

process results in most of the Gaussians being shared by

multiple tracks. During the recognition process, the tran-

sition scores and (internal) segment scores are combined

with a-priori and durational probabilities to determine the

score for each hypothesized segment.

3.2. Experimental Results

The viseme recognition experiments were based on the

timit acoustic{phonetic speech corpus [9]. The primary

data sets we used were the NIST designated training set

consisting of 462 speakers, and a 50 speaker development

set selected from a subset of the remaining speakers who

are not in the NIST \core" test set. The eight \sx" and

\si" utterances for each speaker were used for both train-

ing and test. The acoustic-phonetic models were con-

structed using the ten MFCC-based features which op-

timized performance on a prior classi�cation task. Due

to the incorporation of temporal correlation information,

this resulted in a 30 dimensional statistical representation.

A single full covariance Gaussian was used to represent the

error p.d.f. for each acoustic-phonetic model. The models

were trained on the 462 speaker timit training set.

For this task, the purpose of the phonetic models was to

maximize the viseme recognition accuracy for a given set

of viseme classes. Using a larger number of viseme classes

increases the animation �delity which is ultimately achiev-

able during rendering. The process for computing the

viseme accuracy consists of performing phonetic recogni-

tion and then mapping the output of the recognizer and

the timit (hand-annotated) labels to a consistent set of

visemes for comparison.

The number of phonetic models is an additional variable

which e�ects the �delity of the rendering. Several sets of

phonetic models were constructed, ranging from a maxi-



Viseme Recognition Accuracy on timit

# of Phone # of Viseme Classes

Models 42 25 15 9

42 62.9% 66.7% 72.3% 74.0%

25 N/A 63.7% 69.3% 72.3%

13 N/A N/A 69.3% 71.0%

Table 1: Viseme recognition accuracy as a function of

the number of phonetic models created. The models were

created using a maximum of 42 acoustic-phonetic units

and a minimum of �fteen (broad class) units. Phonetic

recognition was performed for each set of models, and the

resulting phones were then mapped to a set of visemes.

The greater the number of visemes used, the greater the

number of facial gestures available.

mum of 42 models to a minimum of �fteen. The accuracy

for each set of phonetic models and viseme classes is shown

in Table 1.

3.3. Discussion

The system we currently deploy uses 42 phonetic mod-

els. The recognized unit labels are mapped to a set of

25 visemes. Table 1 indicates that such a system has an

error rate of 33.3% which means that the resulting render-

ing should contain an incorrect mouth posture for one of

every three sounds. In practice however, we �nd that even

in noisy conditions the visual rendering appears highly ac-

curate and compelling. This would seem to indicate that

misrecognition of visemes which are visually \close" does

not have a signi�cant impact on the visual e�ect. As can

be seen in the table, the accuracy does in fact go up as

the number of viseme classes (and hence confusions) are

reduced. However, this accuracy increase does not appear

to tell the entire story.

Examination of the data appears to indicate that the ma-

jority of insertions and deletions do not have a signi�cant

adverse impact on the visual output. This appears to

be because many deletions occur when two acoustically

similar phonetic units are hypothesized as a single unit

by the recognizer. If the two acoustically similar units

also have similar mouth postures than the deletion may

not be noticeable. Likewise, if a single acoustic unit is

hypothesized to be two units which have similar mouth

postures, the impact on the animated rendering would

again be minimal. The implication is that only substitu-

tion errors, between visually distinct classes, signi�cantly

degrade the quality of the visual output. The substitution

rate using 25 visemes is approximately 12% for both the

42 and 25 phonetic model sets. We feel that this error

rate more closely re
ects the apparent error rate of the

system.

An additional point is that since only the viseme con-

tent is critical, the application works well in non-English

languages. We have found that in practice, the quality of

the rendering remains high for languages such as German,

French, and Japanese. It appears that even for acoustic-

phonetic units, which were not available in the training

corpus (which was American English), the correct viseme

is \close" to the viseme produced by mapping the pho-

netic output of the recognizer.

4. Prototypes and Future Work

Several prototypes based on these technologies have been

developed to explore the use of synchronized facial anima-

tion in di�erent domains including: Internet chat, anima-

tion, education, and entertainment. Each implementation

is based on combining elements of three technologies:

1. Audio data acquisition and transmission: The DIG-

ITAL Voice Plugin [10] is used to acquire audio and

transmit it in real time, or to bundle it as a �le.

2. Phonetic recognition: This is performed either on a

server or within a plugin on the client.

3. Facial rendering: This is accomplished with the

FaceMe! player. Executable, plugin, and ActiveX

versions of the player have been created.

This separation of technical components permits us to

combine any face with any voice.

An asynchronous version of the combined system has been

implemented which permits audio voice notes with facial

gesture annotations to be sent via email to a recipient.

Voice messages are recorded using the DIGITAL Voice

Plugin [10] embedded in a Web page. Instead of send-

ing the message directly to the recipient, the message is

posted to a Web server. The role of this intermediate

step is to process the audio �le to generate an annotated

audio �le. A CGI bin script gets the message, uses the

phonetic recognizer module to generate visemes and their

time alignments, and forwards them to the original recip-

ient of the message. The email messages are encoded as

multi-part MIME messages. Upon reception, the message

is played using the FaceMe player. This approach allows

for the separation of the audio part from its annotation.

Future implementations will include additional informa-

tion such as winking, frowning, and other facial gestures.

The synchronous version (see Figure 3) of the system al-

lows us to perform audio chat with facial animation. In

this con�guration, audio is processed on the sender side in

a streaming fashion. The phonetic recognition produces

the annotations \on the 
y" in real time. Both the audio

and the annotations are then sent through a socket con-

nection. Note that if desired, it is possible to compress the

audio at this point without impacting recognition accu-

racy. The recipient decompresses the audio (if necessary)

and plays it along with the facial gestures. The total la-

tency of the system is driven by bu�ering requirements

and averages under two seconds.



Figure 3: A synchronous architecture for Face2Face

All prototypes have been developed under Win32; the

phonetic recognition engine itself runs on either Win32 or

Alpha/Unix platforms. Phonetic recognition is performed

real time in streaming mode on an Intel PentiumPro based

machine. Average latency of the recognizer without ad-

versely impacting performance is typically 0.3 seconds.

The FaceMe! player operates in real-time on a 486/75

machine.

More synchronous applications include transforming

FaceMe! into a regular audio �le player, and full duplex

Internet chat. We are working to improve overall per-

formance of the system and implement new solutions to

fully take advantage of the phonetic recognition/FaceMe!

system capabilities.
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