
MIPS Technologies, Incorporated 1

❏ ANDES Advanced Superscalar Architecture
- Supports Four Instructions per Cycle
- Two Integer and Two Floating Point Execute

Instructions Plus One Load/Store per Cycle

❏ High Performance Design
- 200 MHz Internal Clock Rate
- 3.3 Volt Technology
- Out-of-Order Instruction Execution
- 128-bit Dedicated Secondary Cache Data Bus
- On-Chip Integer, FP, and Address Queues
- Five Separate Execution Units
- MIPS IV Instruction Set Architecture

❏ High Integration Chip-Set
- 32 KByte 2-way Set Associative, 2-way

Interleaved Data Cache with LRU Replacement
Algorithm

- 32 KByte 2-way Set Associative Instruction
Cache

- 64 Entry Translation Lookaside Buffer
- Dedicated Second Level Cache Support

❏ Second Level Cache Support
- Dedicated 128-bit Data Bus
- Generation of all necessary SSRAM signals
- 3.2 GBytes/second peak data transfer rate
- Up to 200 MHz SSRAM interface
- Programmable Clock Rate to SSRAM

❏ Compatible with Industry Standards
- ANSI/IEEE Standard 754-1985 for Binary

Floating Point Arithmetic
- MIPS III Instruction Set Compatible
- Conforms to MESI Cache Consistency Protocol
- IEEE Standard 1149.1/D6 Boundary Scan

Architecture

❏ Avalanche Bus System Interface
- Direct Connect to SSRAM
- Split Transaction Support
- Programmable Interface

mips
Open RISC Technology

R10000 MICROPROCESSOR

The R10000 Microprocessor from MIPS Technologies is a 4-way super-scalar architecture which fetches and decodes four
instructions per cycle. Each decoded instruction is appended to one of three instruction queues. Each queue can perform
dynamic scheduling of instructions. The queues determine the execution order based on the availability of the required
execution units. Instructions are initially fetched and decoded in order, but can be executed and completed out-of-order,
allowing the processor to have up to 32 instructions in various stages of execution. The impressive integer and floating
point performance of the R10000 Microprocessor makes it ideal for applications such as engineering workstations, scientific
computing, 3-D graphics workstations, database servers, and multi-user systems. The high throughput is achieved through
the use of wide, dedicated data paths, and large on- and off- chip caches.

The R10000 Microprocessor implements the MIPS IV instruction set architecture. MIPS IV is a superset of the MIPS III
instruction set architecture and is backward compatible. At a frequency of 200 MHz, the R10000 Microprocessor delivers
peak performance of 800 MIPS with a peak data transfer rate of 3.2 GBytes/second to secondary cache. The R10000
Microprocessor is available in a 599 CLGA package and is fabricated using a CMOS sub .35-micron silicon technology.

PRODUCT OVERVIEW

October, 1994



MIPS Technologies, Incorporated 2

1 MODERN COMPUTING CHALLENGES

The current generation of today’s microprocessor
architectures outperform their earlier counterparts by
orders of magnitude. Such radical increases in
performance, speed, and transistor count from generation
to generation, often separated by only a few years, can
seem overwhelming to the casual observer. In many cases
speeds and transistor counts have increased by an order of
magnitude just since the late 1980’s.

Although current microprocessor designs vary greatly,
there are many commonalities between them. Each one
performs address generation, each contains arithmetic
logic units, register files, and a system interface. Most have
on-chip caches, a translation lookaside buffer (TLB), and
almost all current architectures have on-chip floating point
units.

Many different design techniques have been used to
perform these basic functions, but the sheer nature and
existence of these functions and the need to perform them
lend themselves to inherent problems that must be
overcome. This section discusses some of the common
computing challenges faced by all microprocessor
designers. Section two discusses some of the techniques
used to overcome these challenges. Section 3 discusses how
the MIPS R10000 microprocessor implements the
techniques discussed in section 2.

1.1 MEMORY AND SECONDARY CACHE LATENCIES

Early microprocessors had to fetch instructions directly
from memory. Historically, memory access times have
lagged far behind the data-rate requirements of the
processor. After issuing a request for data the processor
was forced to wait long periods of time for the data to
return. This severely hampered the processor’s ability to
operate efficiently at the speeds for which it was designed.

The implementation of off-chip secondary cache memory
systems have helped to alleviate this problem. A cache
memory system is comprised of a small amount of
memory, normally 32K-256 KBytes, which contains a block
of memory addresses comprising a small section of main
memory. Cache memory has much faster access times and
can deliver data to the processor at a much higher rate than
main memory.

On-chip cache memory systems can greatly improve
processor performance because they allow accesses to be
completed often times in one cycle. The performance
improvements of on-chip cache systems have caused many
architectures to dedicate increasing amounts of space and
logic to cache design. In many current designs the cache
system requires as much as 50% of the total die.
Performance is highest when the application is able to run
within the cache. However, when the application is too
large to fit into the cache performance decreases
significantly. Figure 1 shows the relationship between
application performance and size.
The on-chip cache contains a range of addresses which

Figure 1 Application Performance versus Size

Application Size

A
pp

lic
at

io
n 

P
er

fo
rm

an
ce

Desktop
Productivity

SPEC
Benchmarks

Traditional
Microprocessor

R10000

Database
Decision Support

Technical
Scientific

Application is too
large to fit in cache



MIPS Technologies, Incorporated 3

comprise a subset of those addresses in the secondary
cache. In turn, the secondary cache contains a range of
addresses which comprise a subset of those addresses in
main memory. Figure 2 shows the relationship between
caches in a typical computer system.

As beneficial as on-chip cache systems are to processor
performance, current semiconductor technology and
available transistor counts limit cache size. Currently 64
KBytes (32K Data, 32K Instruction) is a large on-chip cache
requiring several million transistors to implement.

The limiting size factors regarding on-chip caches place
increasing importance on secondary cache systems, where
cache size is only limited by the market into which the
product is being sold. However, cache memory is not
without its limitations.

The access times of most currently available RAM devices
are long relative to processor cycle times and force the
memory system designer to find ways to hide them.
Interleaving the cache system is one way to accomplish
this. Interleaved cache memory systems allow processor
memory requests to be overlapped. Both cache and main
memory can be interleaved. Two and four way interleaving
is common in memory systems. Increasing the amount of
interleaving allows the ability to hide more of the access
and recovery times of each bank, but increased complexity
is required to support them. Refer to section 2.3 for a
further discussion of memory interleaving.

1.2 DATA DEPENDENCIES

In a computer program, instructions are fetched from the
instruction cache, decoded, and executed. The
corresponding data is often fetched from a register,
manipulated within an ALU, and the result placed either in

the same register or perhaps in another register.

If the next instruction in the sequence requires the result of
the previous instruction before it can execute, a data
dependency occurs. For instructions which require many
cycles to complete, performance can be adversely impacted
as the execution of the second instruction must wait until
the first instruction has completed and the result written to
the register. Some dependencies can be eliminated simply
by re-arranging the program so that the result of a given
instruction is not used by the next few instructions.

Out-of-order execution using register renaming helps to
alleviate the data dependency problem. Register renaming
is explained in section 2.1.

1.3 BRANCHES

All computer programs contain branches. Some branches
are unconditional, meaning that the program flow is
interrupted as soon as the branch instruction is executed.
Other branches are conditional, meaning that the branch is
taken only if certain conditions are met. Program flow
interruption is inherent to all computer software and the
microprocessor hardware has little choice but to deal with
branches in the most efficient way possible.

When a branch is taken, the new address at which the
program is to resume may or may not reside in the
secondary cache. The latency is increased depending on
where the new instruction block is located. Since the access
times of the main memory and secondary cache are far
greater than the on-chip cache, as shown in figure 2,
branching can often degrade processor performance.

The branching problem is further compounded in super-
scalar machines where multiple instructions are fetched

Figure 2 Memory Relationships in a Typical Computer System

CPU

On-Chip Cache
8--64 KBytes
(Typical) Secondary

Cache
32--256 KBytes

(Typical)

Main Memory

1--64 MBytes
(Typical)

Increasing Memory Latency



MIPS Technologies, Incorporated 4

every cycle and progress through stages of a pipeline
toward execution. At any given time, depending on the
size of the pipeline, numerous instructions can be in
various stages of execution. When a conditional branch
instruction is executed it is not known until many cycles
later when the instruction is actually executed whether or
not the branch should have been taken.

Implementation of branching is an important architectural
problem. To improve performance many current
architectures incorporate branch prediction circuitry, which
can be implemented in a number of ways. Section 2.2
discusses some commonly used branch prediction
techniques.

2 TOLERATING MEMORY LATENCY

As explained in section 1, memory latency reduction is a
critical issue in increasing processor performance. This
section discusses some of the common architectural
techniques used to reduce memory latency.

2.1 High Bandwidth Secondary Cache Interface

The ideal secondary cache interface would be one where
the cache receives a data request from the processor and
would always be able to return data in the following clock.
This is referred to as a true zero wait state cache. In order to
design a secondary cache which can approach zero wait
state performance, the design of the processor’s system
interface must be designed such that data can be
transferred at the maximum rate allowed.

The address and data busses of most processor’s interface
to the entire computer system. Any number of different
devices can be accessed by the processor at any given time.

Whenever an on-chip cache miss occurs, an address is
driven out onto the bus and the secondary cache is
accessed, transferring the requested data to the on-chip
cache.

If an on-chip cache miss occurs in a shared bus system, and
the processor is using the external bus to read or write
some other device, the access to secondary cache must wait
until the external data and address busses are free. This can
take many cycles depending on the peripheral being
accessed.

In a dedicated bus system the data, address, and control
busses for the secondary cache are separate from those
which interface to the rest of the system. These busses
allow secondary cache accesses to occur immediately
following an on-chip cache miss, regardless of what else is
happening in the system.

Figure 3 shows a block diagram of both a shared and
dedicated secondary cache interface. Refer to section 3.9 for
more information on the dedicated secondary cache
interface of the R10000 microprocessor.

2.2 Block Accesses

When an on-chip cache miss occurs there is normally a
programmable number of bytes which are transferred each
time the secondary cache is accessed. This number is
referred to as the cache line size. Thirty-two bytes is a
common line size for many current architectures.

The number of accesses required to perform a line fill
depends on the size of the external data bus of the
processor. For example, a processor with a 64 bit data bus
interfacing to a 64-bit wide memory and performing a 32
byte (256 bits) cache line fill would require four secondary
cache accesses to fetch all of the data. To accomplish this
the processor must generate 4 separate addresses and drive

Figure 3 Dedicated Secondary Cache Bus Interface

Main
Memory

I/O

CPU

Data
Control
Address

Shared Cache Bus Interface

Secondary
Cache

Int

Main
Memory

I/O

CPU

SysData
SysControl

SysAddress

Dedicated Cache Bus Interface

Secondary
Cache

Int

CacheData
CacheCntrl
CacheAddr



MIPS Technologies, Incorporated 5

each one out onto the external address bus, along with the
appropriate control signals.

Block access mode allows the processor to generate only
the beginning address of the sequence. The remaining
three addresses are generated either by cache control logic,
or within the cache RAM itself. The R10000 microprocessor
system interface supports block accesses.

2.3 Interleaved Memory

Interleaving is a design technique used to increase memory
bandwidth. The concept of interleaving can be applied
both to secondary cache and main memory.

The simplest memory system has one bank of memory. If
the memory is accessed some amount of time must elapse
before the memory can be accessed again. This time
depends both on the system design as well as the speed of
the memory devices being used. Having multiple banks
allows for bank accesses to be overlapped. The ability to
overlap bank accesses helps to hide these inherent memory
latencies and becomes increasingly important as the
amount of data requested increases.

A typical interleaved memory system consists of even and
odd banks. For example, the processor places a request for
data at an even address. The memory controller then
initiates a cycle to the even bank. Once the address has
been latched by the memory control logic, the processor is
free to generate a new address, often times in the next
clock. If the new address is to the odd bank of memory, the
memory access can begin immediately as the odd bank is
currently idle. By the time the access time to the even bank
has elapsed and the corresponding data has been returned,
the odd bank is also ready to return data. Zero wait state
performance can potentially be achieved as long as
sequential accesses to the same bank are kept to a
minimum.

Two-way and four-way interleaved memory systems are
the most common. The number of banks and the data

bandwidth of each is often determined by the processor.
For example, if the cache line size of the processor is 32
bytes, this means that each time a memory access is
initiated 32 bytes must be returned to the processor. Since
32 bytes = 256 bits, a common approach is to have four
banks of 64 bits each. This scheme would require a
processor with a 64-bit data bus in order to alleviate any
external multiplexing of data. Each bank is accessed in an
order determined by the processor. Section 3.1 discusses
the interleaving characteristics of the R10000
microprocessor.

2.4 Non-Blocking Cache

In a typical implementation, the processor executes out of
the cache until a cache miss is taken. A number of cycles
elapse before data is returned to the processor and placed
in the on-chip cache, allowing execution to resume. This
type of implementation is referred to as a blocking cache
because the cache cannot be accessed again until the cache
miss is resolved.

Non-blocking caches allow subsequent cache accesses to
continue even though a cache miss has occurred. Locating
cache misses as early as possible and performing the
required steps to solve them is crucial in increasing overall
cache system performance. Figure 4 shows an example of
how a blocking and non-blocking cache would react to
multiple cache misses.

The major advantage of a non-blocking cache is the ability
to stack memory references by queuing up multiple cache
misses and servicing them simultaneously. The sooner the
hardware can begin servicing the cache miss, the sooner
data can be returned.

2.5 Prefetch

Prefetching of instructions is a technique whereby the
processor can request a cache block prior to the time it is
actually needed. The prefetch instruction must be

Figure 4 Multiple Misses in a Blocking and Non-Blocking Cache

Blocking Cache - Operations are performed serially

A1 - - - - - - - - D1 D1 D1 D1 A2 - - - - - - - - D2 D2 D2 D2

Address Cache is Blocked Data Address Cache is Blocked Data

Latency 1 Latency 2

Non-Blocking Cache - Operations are overlapped

A1 - - D1 D1 D2 D2 D2 D2

Address Cache is not Blocked Data Data

Latency 2

A2 - - - - - D1 D1

Latency 1



MIPS Technologies, Incorporated 6

integrated as part of the instruction set and the appropriate
hardware must exist to execute the prefetch instruction.

For example, assume the compiler is progressing
sequentially through a segment of code. The compiler can
make the assumption that this sequence will continue
beyond the range of addresses available in the on-chip
cache and issue a prefetch instruction which fetches the
next block of instructions in the sequence and places them
in the secondary cache. Therefore, when the processor
requires the next sequence, the block of instructions exist in
the secondary cache or a special instruction buffer as
opposed to main memory and can be fetched by the
processor at a much faster rate. If for some reason the block
of instructions is not needed, the area in the secondary
cache or the buffer is simply overwritten with other
instructions.

Prefetching allows the compiler to anticipate the need for a
given block and place it as close to the CPU as possible.

DATA DEPENDENCY

Two common techniques are used to reduce the negative
performance impact of data dependencies. Each of these is
discussed below.

2.6 Register Renaming

Register renaming distinguishes between logical registers,
which are referenced within instruction fields, and physical
registers, which are located in the hardware register file.
Logical registers are dynamically mapped into physical
register numbers using mapping tables which are updated
after each instruction is decoded. Each new result is written
into a new physical register. However, the previous
contents of each logical register is saved and can be
restored in case its instruction must be aborted following
an exception or an incorrect branch prediction.

As the processor executes instructions a myriad of
temporary register results are generated. These temporary
values are stored in register files along with permanent
values. The temporary values become new permanent
values when the corresponding instructions graduates. An
instruction graduates when all previous instructions have
been successfully completed in program order.

The programmer is aware of only logical registers. The
implementation of physical registers is hidden. Logical
register numbers are dynamically mapped into physical
register numbers. The mapping is implemented using
mapping tables which are updated after each instruction is
decoded. Each new result is written into a physical register.
However, until the corresponding instruction graduates,
the value is considered temporary.

Register renaming simplifies data dependency checks. In a
machine which can execute instructions out-of-order,
logical register numbers can become ambiguous as the
same register may be assigned a succession of different
values. But because physical register numbers uniquely
identify each result, dependency checking becomes
unambiguous. Section 3.6. discusses how the R10000
microprocessor implements register renaming.

2.7 Out-of Order Execution

In a typical pipelined processor which executes
instructions in-order, each instruction depends on the
previous instruction which produced its operands.
Execution cannot begin until those operands become valid.
If the operands required to execute a given instruction are
not valid, the pipeline stalls until those operands become
valid. Because instructions execute in order, stalls usually
delay all subsequent instructions.

In an in-order superscalar machine where multiple
instructions are fetched each cycle, several consecutive
instructions can begin execution simultaneously if all of
their corresponding operands are valid. However, the
processor stalls at any instruction whose operands are not
valid.

In an out-of-order superscalar machine each instruction is
eligible to begin execution as soon as its operands become
available regardless of the original instruction sequence.
The hardware effectively re-arranges instructions in order
to keep the various execution units busy. This process is
called dynamic issuing. Section 3.6.1 discusses the out-of-
order implementation used in the R10000 microprocessor.

BRANCH PREDICTION

As stated in section 1.3, branches interrupt the pipeline
flow. Therefore, branch prediction schemes are needed to
minimize the number of interruptions. Branches occur
frequently, averaging about one out of every six
instructions. In super-scalar architectures where more than
one instruction at a time is fetched, branch prediction
becomes increasingly important. For example, in a four-
way super-scalar architecture, where four instructions per
cycle are fetched, a branch instruction can be encountered
every other clock.

Most branch prediction schemes use algorithms which
keep track of how a conditional branch instruction
behaved the last time it was executed. For example, if the
branch history circuit shows that the branch was taken the
last time the instruction was executed, the assumption



MIPS Technologies, Incorporated 7

could be made that it will be taken again. A hardware
implementation of this assumption would mean that the
program would vector to the new target address and that
all subsequent instruction fetches would occur at the new
address. The pipeline now contains a conditional branch
instruction fetched from some address, and numerous
instructions fetched afterward from some other address.
Therefore, all instructions fetched between the time the
branch instruction is fetched and the time it is executed are
said to be speculative. That is, it is not known at the time
they are fetched whether or not they will be completed. If
the branch was predicted incorrectly, the instructions in the
pipeline must be aborted.

Many architectures implement a branch stack which saves
alternate addresses. If the branch is predicted to be not-
taken, the address of the actual branch instruction is saved.
If the branch is predicted to be taken, the address
immediately following the branch instruction is saved.
Section 3.4 discusses the branch mechanism of the R10000
microprocessor.

3 R10000 PRODUCT OVERVIEW

The R10000 Microprocessor implements many of the
techniques mentioned above. This section discusses some
of these features. Figure 5 shows a block diagram of the
R10000 microprocessor.

3.1 PRIMARY DATA CACHE

The primary data cache of the R10000 Microprocessor is
32K bytes in size and is arranged as two identical 16K-byte
banks. The cache is two-way interleaved. Each of the two
banks is two-way set associative. Cache line size is 32 bytes.
The data cache is virtually indexed and physically tagged. The
virtual indexing allows the cache to be indexed in the same
clock in which the virtual address is generated. However,
the cache is physically tagged in order to maintain
coherency with the secondary cache.

3.2 SECONDARY DATA CACHE

The secondary cache interface of the R10000
Microprocessor provides a 128-bit data bus which can
operate at a maximum of 200 MHz, yielding a peak data
transfer rate of 3.2 GBytes/second. All of the standard
Synchronous Static RAM interface signals are generated by
the processor. No external interface circuitry is required.
The minimum cache size is 512K Bytes. Maximum cache
size is 16 MBytes. Secondary cache line size is
programmable at either 64 or 128 bytes.

3.3 INSTRUCTION CACHE

The instruction cache is 32K Bytes and is two-way set
associative. Instructions are partially decoded before being
placed in the instruction cache. Four extra bits are
appended to each instruction to identify which execution
unit the instruction will be dispatched to. The instruction
cache line size is 64 bytes.

3.4 BRANCH PREDICTION

The branch unit of the R10000 Microprocessor can decode
and execute one branch instruction per cycle. Since each
branch is followed by a delay slot, a maximum of two
branch instructions can be fetched simultaneously, but only
the earlier one will be decoded in a given cycle.

A branch bit is appended to each instruction during
instruction decode. These bits are used to locate branch
instructions in the instruction fetch pipeline.

The path a branch will take is predicted using a branch
history RAM. This two-bit RAM keeps track of how often
each particular branch was taken in the past. The two-bit
code is updated whenever a final branch decision is made.

Any instruction fetched after a branch instruction is
speculative, meaning that it is not known at the time these
instructions are fetched whether or not they will be
completed. The R10000 Microprocessor allows up to 4
outstanding branch predictions which can be resolved in
any order.

Special on-chip branch stack circuitry contains an entry for
each branch instruction being speculatively executed. Each
entry contains the information needed to restore the
processor’s state if the speculative branch is predicted
incorrectly. The branch stack allows the processor to restore
the pipeline quickly and efficiently when a branch mis-
prediction occurs.

3.5 QUEUEING STRUCTURES

The R10000 Microprocessor contains three instruction
queues. These queues dynamically issue instructions to the
various execution units. Each queue uses instruction tags
to track instructions in each execution pipeline stage. Each
queue performs dynamic scheduling and can determine
when the operands that each instruction needs are
available. In addition, the queues determine the execution
order based on the availability of the corresponding
execution units. When the resources become available the
queue releases the instruction to the appropriate execution



MIPS Technologies, Incorporated 8

unit.

3.5.1 Integer Queue

The integer queue contains 16 entries and issues instructions
to the two integer arithmetic logic units. Integer
instructions are written into empty queue entries and up to
four entries may be written each cycle. Integer Instructions
remain in the queue until being issued to an ALU.

3.5.2 Floating Point Queue

The floating point queue contains 16 entries and issues
instructions to the floating-point adder and floating-point
multiplier execution units. Floating Point instructions are
written into empty queue entries and up to four entries
may be written each cycle. Instructions remain in the queue
until being issued to an execution unit. The floating-point
queue also contains multiple-pass sequencing logic for

instructions such as the multiply-add. This instruction is
dispatched first to the multiply unit, then passed directly to
the adder unit.

3.5.3 Address Queue

The address queue issues instructions to the Load-Store unit
and contains 16 entries. The queue is organized as a
circular FIFO (first-in first-out) buffer. Instructions can be
issued in any order, but must be written to or removed
from the queue in sequential order. Up to four instructions
can be written every cycle. The FIFO maintains the
programs original instruction sequence so that memory
address dependencies may be computed easily.

An issued instruction may fail to complete because of a
memory dependency, a cache miss, or a resource conflict.
In these cases the address queue must re-issue the
instruction until it is completed.

Figure 5 R10000 Microprocessor Block Diagram

E
xt

er
na

l A
ge

nt
o

r
C

lu
st

er
 C

on
tr

ol
le

r

System Interface Secondary Cache Ctlr

32K-bytes
Data Cache

2/way Set Associative
2 Banks

128-bit refill or writeback

64-bit load or store

32K-bytes
Instruction Cache

2/way Set Associative

Unaligned access

128-bit refill

Four 32-bit instr. fetch

B
ra

nc
h 

U
ni

t

R
eg

is
te

r 
M

ap
pi

ng
In

st
ru

ct
io

n 
D

ec
od

e

Up to 4 R10000 Microprocessors

Queue
Integer ALU 1

Queue
Address

Queue
Flt.Pt.

R
eg

is
te

rs
64

 F
lt.

P
t.

ALU 2

Adder

Multiplier

Adr.Calc.

TLB

R
eg

is
te

rs
64

 In
te

ge
r

Secondary Cache

Synchronous Static RAM

128+9

26+7

Sec. Cache

19+way SC Address

Tag

Data

Addr Addr

16-word blocks
8-word blocks

R10000

S
ys

te
m

 B
u

s:
 6

4
-b

it 
d

a
ta

, 
8

-b
it 

ch
e

ck
, 

1
2

-b
it 

co
m

m
a

n
d

R
e

st
 o

f 
W

o
rl
d

Switch

C
lo

ck
s

(512K to 16 M-byte)

(4M-byte cache requires
ten 256Kx18-bit RAM chips)

may be directly connected.



MIPS Technologies, Incorporated 9

3.6 REGISTER RENAMING

Dependencies between instructions can degrade the
overall performance of the processor. Register renaming is
a technique used to determine these dependencies between
instructions and provide for precise exception handling.
When a register is renamed the logical registers which are
referenced in an instruction are mapped to physical
registers using a mapping table. A logical register is
mapped to a new physical register whenever it is the
destination of an instruction. Hence when an instruction
puts a new value in a logical register, that logical register is
renamed to use the new physical register. However, the
previous value remains in the old physical register. Saving
the old register value allows for precise exception
handling.

While each instruction is renamed, its logical register
numbers are compared to determine the dependencies
between the four instructions being decoded during the
same cycle.

3.6.1 Mapping Tables

The instruction mapping scheme implemented in the
R10000 microprocessor consists of a mapping table, an
active list, and a free list. Separate mapping tables and free
lists are provided for integer and floating-point
instructions. To maintain sequential ordering of
instructions, only one active list exists which contains both
integer and floating-point instructions.

The R10000 Microprocessor contains 64 physical registers.
At any given time each physical register value is contained

within one of these lists. Figure 6 shows a block diagram of
the integer instruction mapping scheme.

Instructions are fetched from the instruction cache and
placed in the mapping table shown in figure 6. At any
given time each of the 64 physical registers is located in one
of these three blocks.

The active list maintains a listing of all 32 instructions in
the pipeline at any given time. This list is always in order.
The instructions in the queues can be executed out-of-
order, but before the value can be stored as final, the result
must be stored in order as determined by the active list.
Once the value is stored it becomes obsolete and is no
longer active. The logical destination can then be returned
to the free list.

Each instruction can be uniquely identified by its location
within the active list. A 5-bit value called the instruction’s
tag accompanies each instruction and allows it to be easily
located within the 32-instruction active list so that it can be
marked as done when the instruction graduates

When a value is taken from the free list it is passed to the
mapping table and the mapping table updated. The
particular register value now contains the current value of
an operand. The old value from the mapping table is then
placed on the active list. The value remains on the active
list until the instruction graduates, meaning that it has
been completed in program order. An instruction can
graduate only after it and all previous instructions have
been successfully completed. Once an instruction has
graduated, all previous values are lost.

The R10000 Microprocessor contains 64 physical registers
and 32 logical registers. The active list can contain a

Figure 6 Integer Instruction Mapping Scheme Block Diagram

INTEGER MAPPING TABLE

ACTIVE LIST

FREE LIST

FROM INSTRUCTION CACHE

Old Physical
Destination

Instruction has
Graduated

TO
QUEUES

(Four Instructions)



MIPS Technologies, Incorporated 10

maximum of 32 values. The free list can also contain a
maximum of 32 values. If the active list is full there could
be 32 committed values and 32 temporary values, hence
the need for 64 physical registers.

3.7 EXECUTION UNITS

The R10000 Microprocessor contains five execution units
which operate independently of one another. There are two
integer arithmetic logic units (ALU), two primary floating-
point units, (including two secondary FP units which
handle long-latency instructions such as divide and square
root) and a load/store unit for address calculationx.

3.7.1 Integer ALU’s

There are two integer ALU’s in the R10000 Microprocessor
defined as ALU1 and ALU2. Integer ALU operations, with
the exception of the multiply and divide operations,
execute with a 1-cycle latency and a 1-cycle repeat rate.

Both ALU’s perform standard add, subtract, and logical
operations. These operations complete in one cycle. ALU1
handles all branch and shift instructions, while ALU2
handles all multiply and divide operations using iterative
algorithms. Integer multiply and divide instructions place
their results in the EntryHi and EntryLo registers.

During multiply operations other single-cycle instructions
can be executed within ALU2 while the multiplier is busy.
However, once the multiplier has finished, ALU2 is busy
for two cycles while the result is stored in two registers. For
divide operations which have extra long latencies ALU2 is
busy for the duration of the operation.

Integer multiply operations generate a double-precision
product. For single-precision operations the result is sign-
extended to 64 bits before being placed in the EntryHi and
EntryLo registers. Double-precision latencies are
approximately twice that of single precision. Refer to table
1.

3.7.2 Floating-Point Units

The R10000 Microprocessor contains two primary floating
point units. The adder unit handles add operations and the
multiply unit handles multiply operations. In addition,
two secondary floating point units exist which handle
long-latency operations such as divide and square root.

Addition, subtraction, and conversion instructions have a
2-cycle latency and a 1-cycle repeat rate and are handled
within the adder unit. Instructions which convert integer
values to single-precision floating point values have a 4-
cycle latency as they must pass through the adder twice.

The adder is busy during the second cycle after the
instruction is issued.

All floating-point multiply operations execute with a 2-
cycle latency and a 1-cycle repeat rate and are handled
within the multiplier unit. The multiplier performs
multiply operations. The floating-point divide and square
root units perform calculations using iterative algorithms.
These units are not pipelined and cannot begin another
operation until the current operation is completed. Thus,
the repeat rate approximately equals the latency. The ports
of the multiplier are shared with the divide and square root
units. A cycle is lost at the beginning of the operation (to
fetch the operand) and at the end (to store the result).

The floating point multiply-add operation, which occurs
frequently, is computed using separate multiply and add
operations. The multiply-add instruction (MADD) has a 4-
cycle latency and a 1-cycle repeat rate. The combined
instruction improves performance by eliminating the
fetching and decoding of an extra instruction.

The divide and square root units use separate circuitry and
can be operated simultaneously. However, the floating-
point queue cannot issue both instructions during the same
cycle.

Table 1 shows the latency and repeat rates for the integer
and floating point units.

3.8 LOAD/STORE UNITS AND THE TLB

The Load/Store unit consists of the address queue, address
calculation unit, translation lookaside buffer (TLB), address
stack, store buffer, and primary data cache. The Load/Store
unit performs load, store, prefetch, and cache instructions.

All load or store instructions begin with a 3-cycle sequence
which issues the instruction, calculates its virtual address,
and translates the virtual address to physical. The address
is translated only once during the operation. The data
cache is accessed and the required data transfer is
completed provided there was a primary data cache hit.

If there is a cache miss, or if the necessary shared register
ports are busy, the data cache and data cache tag access
must be repeated after the data is obtained from either the
secondary cache or main memory.

The TLB contains 64 entries and translates virtual
addresses to physical addresses. The virtual address can
originate from either the address calculation unit or the
program counter (PC).

Revised: 1/8/97



MIPS Technologies, Incorporated 11

3.9 SECONDARY CACHE INTERFACE

Secondary cache support for the R10000 Microprocessor is
provided by an internal secondary cache controller with a
dedicated secondary cache port. A dedicated 128-bit bus
transfers data at the 200 MHz internal operating frequency
of the R10000 CPU, yielding a maximum secondary cache
data transfer rate of 3.2 GBytes/second. The R10000
Microprocessor also provides a 64-bit system interface data
bus.
The secondary cache is implemented as two-way set
associative. Maximum cache size is 16 MBytes. Minimum
cache size is 512 KBytes. Transfer width is 128 bits, or (4)
32-bit words. Consecutive cycles are used to transfer larger
blocks of data as shown below.

-- Four word accesses (128 bits) are used for the CACHE
instruction.
-- Eight word accesses (256 bits) are used for primary data
cache refills & write backs.
-- Sixteen word accesses (512 bits) are used for primary
instruction cache refills; and SCache refills & write backs (if
SCache line size is selected to be 16Words).
-- Thirty-two word accesses (1024 bits) are used for
secondary cache refills & write backs (if SCache Line Size is
selected to be 32 words).

3.10 SYSTEM INTERFACE

The system interface of the R10000 Microprocessor
provides a gateway between the R10000 and its associated
secondary cache, and the rest of the computer system. The
system interface operates at the frequency of SysClk being
supplied to the processor. The programmability of the
system interface allows for clock speeds of 200, 133, 100, 80,
67, 57, and 50 MHz. All system interface outputs, as well as
all inputs, are clocked on the rising edge of SysClk,
allowing the system interface to run at the highest possible
clock frequency.

In most microprocessor systems only one system
transaction can occur at any given time. The R10000
Microprocessor supports a split-level bus transaction
protocol. Split-transaction allows additional processor and
external requests to be issued while waiting for a previous
response. A maximum of four outstanding transactions at
any given time are supported (see below).

3.10.1 Multi-Processor Support

Two configurations of multi-processor systems can be
implemented using the R10000 microprocessor. One way is
to have a dedicated external agent interface to each

Instruction Latency Repeat Rate
Integer Add, Subtract, Logical Op’s, branches 1 1
Integer Load/Store (primary cache hit) 2 1
Integer Multiply (single precision) 5 (Lo) - 6 (Hi) 6
Integer Multiply (double precision) 9 (Lo) -10 (Hi) 10
Integer Divide (single precision) 34 (Lo) - 35 (Hi) 35
Integer Divide (double precision) 66 (Lo) - 67 (Hi) 67
Integer to FP conversion (single precision) 4 1
Floating Point Add, Subtract, Conversion, Logical
operations

2 1

Floating Point Load/Store 3 1
Floating Point Multiply (double precision) 2 1
Floating Point Multiply-Add 2/4 1
Floating Point Divide (single precision) 12 14
Floating Point Divide (double precision) 19 21
Floating Point Square Root (single precision) 18 20
Floating Point Square Root (double precision) 33 35
Floating Point Reciprocal Square Root (single prec.) 30 20
Floating Point Reciprocal Square Root (double prec.) 52 35

Table 1: Instruction Latencies and Repeat Rates

Table 1: Revised on September 1, 1995



MIPS Technologies, Incorporated 12

processor. The external agent is typically an ASIC which
provides a gateway to the memory and I/O subsystems. In
this type of configuration the processors do not interface
directly together but rather through each external agent.
Although this implementation is commonly used, cost as
well as overall system complexity are increased due to the
fact that at least one external agent must accompany each
processor.

The R10000 microprocessor provides pin support for a
cluster bus configuration. In a cluster configuration up to
four R10000 CPU’s may be connected together via a cluster
bus. Only one external agent is then required to interface to
other system resources. Each processor interfaces to the
same external agent. The cluster-bus implementation
reduces not only the complexity but the number of ASIC’s,
and hence the cost of the system by requiring only one
external agent per four processors.

In addition to the 64-bit multiplexed address/data bus, a 2-
bit state bus is provided which is used for issuing processor

coherency state responses. Also, a 5-bit system response
bus is used by the external agent for issuing external
completion responses. Figure 7 shows a block diagram of a
cluster bus configuration.

Figure 7 Multi-processor System using the Cluster Bus

Secondary Cache Secondary Cache

Secondary Cache Interface

R10000

System Interface

Secondary Cache Interface

R10000

System Interface

Cluster Bus

Cluster
Coordinator

Duplicate Tags

To Other System Resources


