The OpenGL® Graphics System:

A Specification
(Version 1.2b2 - DRAFT (January 2, 1998))

Mark Segal
Kurt Akeley

FEditor (version 1.2): Jon Leech
FEditor (version 1.1): Chris Frazier

DRAFT Version 1.2 - Jan. 2, 1998

Copyright (© /992-1998 Silicon Graphics, Inc.

This document contains unpub/rshecl information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a trademark of Silicon Graphics, Inc.

DRAFT Version 1.2 - Jan. 2, 1998

Contents

1 Introduction 1
1.1 Comments on the OpenGL 1.2 Draft Specification 1
1.2 What is the OpenGL Graphics System? 2
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 Our View oo o e 3

2 OpenGL Operation 4
2.1 OpenGL Fundamentals 4
2.2 GL State e 6
2.3 GL Command Syntax 7
2.4 Basic GL Operation 0. 9
2.5 GL Errorso o e 11
2.6 Begin/End Paradigm 12

2.6.1 Begin and End Objects 15
2.6.2 Polygon Edges 18
2.6.3 GL Commands within Begin/End 19
2.7 Vertex Specification o000 19
2.8 Vertex Arrayso o 21
2.9 Rectangles 28
2.10 Coordinate Transformations 28
2.10.1 Controlling the Viewport 30
2.10.2 Matrices L Lo 31
2.10.3 Normal Transformation 34
2.10.4 Generating Texture Coordinates 36
201 Clipping . .« « « v o v i e 38
2.12 Current Raster Position 40
2.13 Colors and Coloring 41
2.13.1 Lighting 44
i

DRAFT Version 1.2 - Jan. 2, 1998

CONTENTS

2.13.2
2.13.3
2.13.4
2.13.5
2.13.6
2.13.7
2.13.8
2.13.9

Lighting Parameter Specification
ColorMaterial
Lighting State
Color Index Lighting
Clamping or Masking
Flatshading 0o
Color and Texture Coordinate Clipping
Final Color Processing

3 Rasterization

3.1

3.3 Points

3.4

3.5

3.6

3.7
3.8

Invariance e
3.2 Antialiasingo

3.3.1

Line Segments o

3.4.1
3.4.2
3.4.3

Basic Line Segment Rasterization
Other Line Segment Features
Line Rasterization State

Polygons

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6

Basic Polygon Rasterization
Stippling
Antialiasing oo o
Options Controlling Polygon Rasterization
Depth Offset
Polygon Rasterization State

Pixel Rectangles

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5

Pixel Storage Modes
The Imaging Subset
Pixel Transfer Modes
Rasterization of Pixel Rectangles
Pixel Transfer Operations

Bitmaps e
Texturing e

3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7

Texture Image Specification
Alternate Texture Image Specification Commands

Texture Parameters
Texture Wrap Modes
Texture Minification
Texture Magnification
Texture State and Proxy State

DRAFT Version 1.2 - Jan. 2, 1998

ii

48
51
52
52
53
54
55
55

CONTENTS

3.8.8 Texture Objects
3.8.9 Texture Environments and Texture Functions
3.8.10 Texture Application
3.9 ColorSum e
3.10 Fog . . . o o o e
3.11 Antialiasing Application
4 Per-Fragment Operations and the Framebuffer
4.1 Per-Fragment Operations
4.1.1 Pixel Ownership Test
4.1.2 Scissor test o
4.1.3 Alphatest L o o
4.1.4 Stencil test o o
4.1.5 Depth buffer testo,
416 Blending. o o
4.1.7 Dithering o o oo
4.1.8 Logical Operation
4.2 Whole Framebuffer Operations
4.2.1 Selecting a Buffer for Writing
4.2.2 Fine Control of Buffer Updates
4.2.3 Clearing the Buffers
4.2.4 The Accumulation Buffer
4.3 Drawing, Reading, and Copying Pixels
4.3.1 Writing to the Stencil Buffer
4.3.2 Reading Pixels L o,
4.3.3 Copying Pixels o000
4.3.4 Pixel Draw/Read state.
5 Special Functions
5.1 Evaluators
5.2 Selection
5.3 Feedback
5.4 Display Lists o
5.5 Flush and Finish
5.6 Hints e
6 State and State Requests
6.1 Querying GL State oL,
6.1.1 Simple Queries
6.1.2 Data Conversions« . o v v v v o

DRAFT Version 1.2 - Jan. 2, 1998

iii

133
136
136
139
139
141

142
143
143
144
144
145
146
147
150
151
151
152
153
154
156
157
157
157
163
163

165
165
171
173
176
180
180

CONTENTS

6.1.3
6.1.4
6.1.5
6.1.6
6.1.7

Enumerated Queries
Texture Queries

Color Matrix Query

Color Table Query
6.1.8 Convolution Query
6.1.9 Histogram Query
6.1.10 Minmax Query
6.1.11 Pointer and String Queries
6.1.12 Saving and Restoring State

6.2
6.2.1

A Invariance
Al
A2
A3
A4

Repeatability
Multi-pass Algorithms
Invariance Rules

What All This Means
B Corollaries

C Version 1.1
C.1 Vertex Array
C.2 Polygon Offset
C.3 Logical Operation
C.4 Texture Image Formats
C.5 Texture Replace Environment
C.6
C.7 Copy Texture and Subtexture

C.8 Texture Objects

C.9 Other Changes

C.10 Acknowledgements

D Version 1.2
D.1
D.2
D.3
D.4
D.5
D.6

Three-Dimensional Texturing

BGRA Pixel Formats
Packed Pixel Formats

Separate Specular Color
Texture Coordinate Edge Clamping

Stipple Query

State Tables
Imaging Subset State - To Be Completed

Texture Proxies

Normal Rescaling

iv

183
185
186
186
187
187
188
189
190
191
193
193

219
219
220
220
222

223

226
226
227
227
227
227
228
228
228
228
229

DRAFT Version 1.2 - Jan. 2, 1998

CONTENTS v

D.7 Texture Level of Detail Control 233
D.8 Vertex Array Draw Element Range 233
D.9 Imaging Subseto 233
D.9.1 Color Tables 233
D.9.2 Convolution, 234
D.9.3 Color Matrix 234
D.9.4 Pixel Pipeline Statistics 235
D.9.5 Constant Blend Color 235
D.9.6 New Blending Equations 235
D.10 Acknowledgements 235
Index of OpenGL Commands 236

DRAFT Version 1.2 - Jan. 2, 1998

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

5.1
5.2

Block diagram of the GL. 9
Creation of a processed vertex from a transformed vertex and

current values. Lo oL L o 13
Primitive assembly and processing. 13
Triangle strips, fans, and independent triangles. 16
Quadrilateral strips and independent quadrilaterals. 17
Vertex transformation sequence. 28
Current raster position. o o oL 41
Processing of colors. o oo Lo 41
ColorMaterial operation. 51
Rasterization. L o oo 57
Rasterization of non-antialiased wide points. 61
Rasterization of antialiased wide points. 61
Visualization of Bresenham’s algorithm. 64
Rasterization of non-antialiased wide lines. 67
The region used in rasterizing an antialiased line segment. . . 69
Operation of DrawPixels. 89
Selecting a subimage from an image 93
A bitmap and its associated parameters. 111
A texture image and the coordinates used to accessit. 119
Per-fragment operations. oL oL 143
Operation of ReadPixels. 157
Operation of CopyPixels. 163
Map Evaluation. L 000 167
Feedback syntax. Lo oo 177

vi

DRAFT Version 1.2 - Jan. 2, 1998

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15

3.16

GL command suffixes o 0o oo
GL datatypes o
Summary of GL errors o o oL
Vertex array sizes (values per vertex) and data types
Variables that direct the execution of Interleaved Arrays.

Component conversions 0oL
Summary of lighting parameters.
Correspondence of lighting parameter symbols to names. . . .
Polygon flatshading color selection.

PixelStore parameters pertaining to one or more of Draw-

Pixels, TexImagelD, TexImage2D, and TexImage3D. .
PixelTransfer parameters.
PixelMap parameters.
Color table names. oo o oL
DrawPixels and ReadPixels types
DrawPixels and ReadPixels formats.
Swap Bytes Bit ordering. o o oL
Packed pixel formats.. L.
UNSIGNED BYTE formats. Bit numbers are indicated for each

component. Lo L oL
UNSIGNED_SHORT formats
UNSIGNED_INT formats
Packed pixel field assignments
Color table lookup. oo 0oL
Computation of filtered color components.
Conversion from RGBA pixel components to internal texture,

table, or filter components. L.
Correspondence of sized internal formats to base internal for-

vii

DRAFT Version 1.2 - Jan. 2, 1998

76
78

LIST OF TABLES viii

3.17
3.18
3.19

4.1

4.2

4.3
4.4
4.5

4.6
4.7

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Texture parameters and their values. 125
Replace and modulate texture functions. 137
Decal and blend texture functions. 138
Values controlling the source blending function and the source

blending values they compute. f = min(A4,,1— A4). 149
Values controlling the destination blending function and the

destination blending values they compute. 149

Arguments to LogicOp and their corresponding operations. . 152
Arguments to DrawBuffer and the buffers that they indicate.153
PixelStore parameters pertaining to Read Pixels, GetTex-
ImagelD, GetTexImage2D, GetTexImage3D, GetCol-
orTable, GetConvolutionFilter, GetSeparableFilter, GetH-

istogram, and GetMinmax. 159
ReadPixels index masks. 161
ReadPixels GI. Data Types and Reversed component con-

version formulas. 0oL oo oo 162
Values specified by the target to Mapl. 166
Correspondence of feedback type to number of values per vertex.175
Texture, table, and filter return values. 186
Attribute groupso L oo 192
State variable types o oo oo 194
GL Internal begin-end state variables (inaccessible) 195
Current Values and Associated Data 196
Vertex Array Datao o oo 197
Transformation state o oL 198
Coloring e 199
Lighting (see also Table 2.7 for defaults) 200
Lighting (cont.) o L 201
Rasterization L. 202
Texture Objects o o 203
Texture Objects (cont.) 204
Texture Environment and Generation 205
Pixel Operations o o oL 206
Framebuffer Control 207
Pixels . . . o . 208
Pixels (cont.) Lo 209
Pixels (cont.) Lo 210

DRAFT Version 1.2 - Jan. 2, 1998

LIST OF TABLES ix

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

Pixels (cont.) L 211
Pixels (cont.) L 212
Evaluators (GetMap takes a map name) 213
Hints o o o 214
Implementation Dependent Values 215
More Implementation Dependent Values 216
Implementation Dependent Pixel Depths 217
Miscellaneous oL 218

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has
at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms.

1.1 Comments on the OpenGL 1.2 Draft Specifi-
cation

This document is a draft of the OpenGL 1.2 specification. Effort has been
made to mark changes relative to the OpenGL 1.1 specification. New or
modified text is usually indicated by change bars in the margin. New or
modified table entries are usually indicated by the symbol &. However, this
is only a rough guide. Some changes remain unmarked by bars, and some
bars are present in places where no changes have been made since the 1.1
specification - particularly imbedded figures.

Changes in the first draft (November, 1997) of the spec are indicated
by light gray change bars such as seen in the previous paragraph. Changes
between the first and second draft (January, 1998) are indicated by black
change bars. This draft is released for public comment; it will become
obsolete in February, 1998. Please direct comments by email to

oglspec@oddhack.engr.sgi.com
Include the version number (1.2b2) as well as the section and page number
your comment applies to.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 1. INTRODUCTION 2

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, specifically color images
of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a frame-
buffer. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such
as when antialiasing or texturing is enabled) relies on the existence of a
framebuffer. Further, some of OpenGL is specifically concerned with frame-
buffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specifi-
cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebuffer.
For the most part, OpenGL provides an immediate-mode interface, mean-
ing that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-
text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others affect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user’s
two- or three-dimensional model space to the two-dimensional screen. There
are also calls to effect direct control of the framebuffer, such as reading and
writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the opera-
tion of graphics hardware. If the hardware consists only of an addressable
framebuffer, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 1. INTRODUCTION 3

dimensional lines and polygons to sophisticated floating-point processors
capable of transforming and computing on geometric data. The OpenGL
implementor’s task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This
state controls how objects are drawn into the framebuffer. Some of this
state is directly available to the user: he or she can make calls to obtain its
value. Some of it, however, is visible only by the effect it has on what is
drawn. One of the main goals of this specification is to make OpenGL state
information explicit, to elucidate how it changes, and to indicate what its
effects are.

1.5 Owur View

We view OpenGL as a state machine that controls a set of specific draw-
ing operations. This model should engender a specification that satisfies
the needs of both programmers and implementors. It does not, however,
necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the specified methods, but
there may be ways to carry out a particular computation that are more
efficient than the one specified.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a
framebuffer (and reading values stored in that framebuffer). There is no
support for other peripherals sometimes associated with graphics hardware,
such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Each mode
may be changed independently; the setting of one does not affect the settings
of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other
GL operations described by sending commands in the form of function or
procedure calls.

Primitives are defined by a group of one or more vertices. A vertex
defines a point, an endpoint of an edge, or a corner of a polygon where
two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is
processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive fits within a specified region; in this case vertex data may be
modified and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received,
although there may be an indeterminate delay before the effects of a com-
mand are realized. This means, for example, that one primitive must be

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 5

drawn completely before any subsequent one can affect the framebuffer. It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-
eral, the effects of a GL command on either GL. modes or the framebuffer
must be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the
command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no effect on the
GL (unless the same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D
and 2D graphics. This includes specification of such parameters as trans-
formation matrices, lighting equation coefficients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-
eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL. commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted
and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is “network-
transparent.” A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state. A client may choose to connect to
any one of these contexts. Issuing GL. commands when the program is not
connected to a context results in undefined behavior.

The effects of GL. commands on the framebuffer are ultimately controlled
by the window system that allocates framebuffer resources. It is the window
system that determines which portions of the framebuffer the GL may access
at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to configure the
framebuffer or initialize the GL. Similarly, display of framebuffer contents
on a CRT monitor (including the transformation of individual framebuffer
values by such techniques as gamma correction) is not addressed by the GL.
Framebuffer configuration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window
system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we
specify ideal behavior instead of actual behavior for certain GL operations.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 6

In cases where deviation from the ideal is allowed, we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL
(by gl, GL_, and GL, respectively in C) to reduce name clashes with other
packages. The prefixes are omitted in this document for clarity.

Floating-Point Computation

The GL must perform a number of floating-point operations during the
course of its operation. We do not specify how floating-point numbers are
to be represented or how operations on them are to be performed. We require
simply that numbers’ floating-point parts contain enough bits and that their
exponent fields are large enough so that individual results of floating-point
operations are accurate to about 1 part in 10°. The maximum representable
magnitude of a floating-point number used to represent positional or normal
coordinates must be at least 2°2; the maximum representable magnitude for
colors or texture coordinates must be at least 2'Y. The maximum repre-
sentable magnitude for all other floating-point values must be at least 232,
-0 =02 = 0 for any non-infinite and non-NaN z. 1.2 =2 -1 = z.
t4+0=0+2 = 2. 0° = 1. (Occasionally further requirements will be speci-
fied.) Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL. command
that requires floating-point data. The result of providing a value that is not
a floating-point number to such a command is unspecified, but must not
lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL. command yields
predictable results, while providing a NaN or an infinity yields unspecified
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspecified result but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state
variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 7

function. Although we describe the operations that the GL performs on the
framebuffer, the framebuffer is not a part of GL state.

We distinguish two types of state. The first type of state, called GL
server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the
GL client. Unless otherwise specified, all state referred to in this document
is GL server state; GL client state is specifically identified. Fach instance of
a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server
state.

While an implementation of the GL. may be hardware dependent, this
discussion is independent of the specific hardware on which a GL is imple-
mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands
perform the same operation but differ in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for
describing commands and their arguments.

GL commands are formed from a name followed, depending on the par-
ticular command, by up to 4 characters. The first character indicates the
number of values of the indicated type that must be presented to the com-
mand. The second character or character pair indicates the specific type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
floating-point, or double-precision floating-point. The final character, if
present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two specific
examples come from the Vertex command:

void Vertex3f(float z, float y, float z) ;
and
void Vertex2sv(short v/2]) ;

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form!

'The declarations shown in this document apply to ANSI C. Languages such as C++

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 8

‘ Letter ‘ Corresponding GL Type

b byte

S short

i int

f float

d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types.
Refer to Table 2.2 for definitions of the GL types.

rtype Name{e1234}{c b s i f d ub us ui}{ev}
([args] T argl , ..., T argN [, args]);

rtype is the return type of the function. The braces ({}) enclose a series
of characters (or character pairs) of which one is selected. ¢ indicates no
character. The arguments enclosed in brackets ([args ,] and [, args]) may
or may not be present. The N arguments arg! through argN have type T,
which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments’ type is given explic-
itly). If the final character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is fixed). If the final
character is v, then only argl is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).
For example,

void Normal3{fd}(T arg) ;
indicates the two declarations

void Normal3f(float argl, float arg2, float arg3) ;
void Normal3d(double argl, double arg?2, double arg?) ;

while

and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 9

void Normal3{fd}v(T arg) ;
means the two declarations

void Normal3fv(float arg/3]) ;
void Normal3dv(double arg[3]) ;

Arguments whose type is fixed (i.e. not indicated by a suffix on the
command) are of one of 14 types (or pointers to one of these). These types
are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL
on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most
commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are effectively sent through a processing
pipeline.

The first stage provides an eflicient means for approximating curve and
surface geometry by evaluating polynomial functions of input values. The
next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they finally alter the framebuffer.
These operations include conditional updates into the framebuffer based
on incoming and previously stored depth values (to effect depth buffering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations, eventually causing a block of pixels to be written to the frame-
buffer; values may also be read back from the framebuffer or copied from
one portion of the framebuffer to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 10
‘ GL Type | Minimum Number of Bits ‘ Description ‘
boolean 1 Boolean
byte 8 signed 2’s complement binary
integer
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary
integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary
integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to
0,1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to
0,1]

Table 2.2: GL data types. GL types are not C types. Thus, for example,
GL type int is referred to as GLint outside this document, and is not
necessarily equivalent to the C type int. An implementation may use more
bits than the number indicated in the table to represent a GL type. Correct
interpretation of integer values outside the minimum range is not required,

however.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 11

. Display
List
Per-Vertex
> Y Operations Rasteriz— Per-
- i -
Evaluator Primitive ation >Fragm9nt ' Framebuffer
Assembly Operations
! J
Texture
Memory
- Y . Pixel
Operations [
Figure 2.1. Block diagram of the GL.

organize the various operations of the GL. Objects such as curved surfaces,
for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered
errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError(void) ;

is used to obtain error information. FEach detectable error is assigned a
numeric code. When an error is detected, a flag is set and the code is
recorded. Further errors, if they occur, do not affect this recorded code.
When GetError is called, the code is returned and the flag is cleared,
so that a further error will again record its code. If a call to GetError
returns NO_ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-
code pairs. In this case, after a call to GetError returns a value other
than NO_ERROR each subsequent call returns the non-zero code of a distinct
flag-code pair (in unspecified order), until all non-NO_ERROR codes have been

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 12

returned. When there are no more non-NO_ERROR error codes, all flags are
reset. This scheme requires some positive number of pairs of a flag bit and
an integer. The initial state of all flags is cleared and the initial value of all
codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set,
results of GL operation are undefined only if OUT_OF MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has
no effect on GL state or framebuffer contents. If the generating command
returns a value, it returns zero. If the generating command modifies values
through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in
the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every
GL command. First, if a command that requires an enumerated value is
passed a symbolic constant that is not one of those specified as allowable for
that command, the error INVALID ENUM results. This is the case even if the
argument is a pointer to a symbolic constant if that value is not allowable
for the given command. Second, if a negative number is provided where an
argument of type sizei is specified, the error INVALID VALUE results. Finally,
if memory is exhausted as a side effect of the execution of a command, the
error OUT_OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-
nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated
line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addi-
tion, a current normal, current texture coordinates, and current color may
be used in processing each vertex. Normals are used by the GL in light-
ing calculations; the current normal is a three-dimensional vector that may
be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive.

Primary and secondary colors are associated with each vertex (see sec-

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 13

Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of | Yes
range
INVALID OPERATION || Operation illegal in current | Yes
state
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK _UNDERFLOW Command would cause a stack | Yes
underflow
QUT _OF MEMORY Not enough memory left to ex- | Unknown
ecute command
STABLE TOO LARGE || The specified table is too large | Yes

Table 2.3: Summary of GL. errors

tion 3.9). These associated colors are either based on the current color
or produced by lighting, depending on whether or not lighting is enabled.
Texture coordinates are similarly associated with each vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to
produce a processed vertez.

The current values are part of GL state. Vertices and normals are trans-
formed, colors may be affected or replaced by lighting, and texture coordi-
nates are transformed and possibly affected by a texture coordinate genera-
tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors
are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex’s coordinates, the current normal, the current edge
flag, and the current texture coordinates. Because color assignment is done
vertex-by-vertex, a processed vertex comprises the vertex’s coordinates, its
assigned colors, and its texture coordinates.

Figure 2.3 shows the sequence of operations that builds a primitive
(point, line segment, or polygon) from a sequence of vertices. After a primi-
tive is formed, it is clipped to a viewing volume. This may alter the primitive

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION

14

Vertex

Coordinates In

[

vertex / normal
- .
= transformation
Current
-
Normal Ll
Current lighting Q|
-
Color T - T
o(
Current
Texture texgen | texture
matrix
Coords —| T

Figure 2.2. Association of current
boxes represent GL state.

Transformed
Coordinates

Processed
Vertex
Out
Associated
Data

(Colors & Texture
Coordinates)

values with a vertex. The heavy lined

—

—

Figure 2.3. Primitive assembly and processing.

Point culling;
Line Segment
Coordinates o Point, . or Polygon
Line Segment, or o ippi
Processed g Clipping
Verti Polygon
ertices ,osociated (Primitive) >
Data Assembly Color
Processing
A
Begin/End
State

Rasterization

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 15

by altering vertex coordinates, texture coordinates, and colors. In the case
of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices defining a primitive to be rasterized have texture coordinates
and colors associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for
each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands
are

void Begin(enum mode) ;
void End(void) ;

There is no limit on the number of vertices that may be specified between
a Begin and an End.

Points. A series of individual points may be specified by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous
and following points.

Line Strips. A series of one or more connected line segments is specified
by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE STRIP. In this case, the first vertex specifies
the first segment’s start point while the second vertex specifies the first
segment’s endpoint and the second segment’s start point. In general, the
ith vertex (for 7 > 1) specifies the beginning of the ith segment and the end
of the ¢ — 1st. The last vertex specifies the end of the last segment. If only
one vertex is specified between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean flag indicating if the current vertex is
the first vertex.

Line Loops. Line loops, specified with the LINE LOOP argument value to
Begin, are the same as line strips except that a final segment is added from
the final specified vertex to the first vertex. The additional state consists of
the processed first vertex.

Separate Lines. Individual line segments, each specified by a pair of
vertices, are generated by surrounding vertex pairs with Begin and End

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 16

when the value of the argument to Begin is LINES. In this case, the first
two vertices between a Begin and End pair define the first segment, with
subsequent pairs of vertices each defining one more segment. If the number
of specified vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used differently: a vertex holding the first
vertex of the current segment, and a boolean flag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line
segments are specified in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or filling its interior. A polygon described with
fewer than three vertices does not generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL.
If a specified polygon is nonconvex when projected onto the window, then
the rendered polygon need only lie within the convex hull of the projected
vertices defining its boundary.

The state required to support polygons consists of at least two processed
vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices
arrive, before all of them have been specified. The order of the vertices is sig-
nificant in lighting and polygon rasterization (see sections 2.13.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges. A triangle strip is specified by giving a series of defining ver-
tices between a Begin/End pair when Begin is called with TRIANGLE STRIP.
In this case, the first three vertices define the first triangle (and their order is
significant, just as for polygons). Each subsequent vertex defines a new tri-
angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE_STRIP
has been supplied to Begin, produces no primitive. See Figure 2.4.

The state required to support triangle strips consists of a flag indicating
if the first triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
will be replaced with the next vertex. After a Begin (TRIANGLE STRIP),
the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the first vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 17

NN INY

(a) (b) (c)

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that in (a) and (b) triangle edge ordering is determined by the first
triangle, while in (c) the order of each triangle’s edges is independent of the
other triangles.

exception: each vertex after the first always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are specified by placing ver-
tices between Begin and End when the value of the argument to Begin
is TRIANGLES. In this case, The 3¢+ 1st, 3¢ 4+ 2nd, and 3¢+ 3rd vertices (in
that order) determine a triangle for each ¢ = 0,1,...,n— 1, where there are
3n+ k vertices between the Begin and End. k is either 0, 1, or 2; if k is not
zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3¢ and vertex B is vertex 3¢ + 1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-
sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD STRIP. If the m vertices between the Begin
and End are vy, ..., v,, where v; is the jth specified vertex, then quad ¢ has
vertices (in order) vy, vaiq1, Vaits, and vgipe with ¢ = 0,...,|m/2|. The
state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the first new vertex) of
the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 18

2 -t 5 =3 6 -’
A A A A
_ Yo y _ Yy Lo y
1 3 5 1 4 5 8
(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices specified for a quadrilateral strip between Begin and
End is odd, the final vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips ex-
cept that each group of four vertices, the 45+ 1st, the 454+ 2nd, the 45+ 3rd,
and the 45 + 4th, generate a single quad, for j = 0,1,...,n — 1. The total
number of vertices between Begin and End is 4n + &k, where 0 < k < 3; if
k is not zero, the final k vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, trian-
gle fan, separate triangle set, quadrilateral strip, or separate quadrilateral
set, is flagged as either boundary or non-boundary. These classifications
are used during polygon rasterization; some modes affect the interpreta-
tion of polygon boundary edges (see section 3.5.4). By default, all edges are
boundary edges, but the flagging of polygons, separate triangles, or separate
quadrilaterals may be altered by calling

void EdgeFlag(boolean flag) ;
void EdgeFlagv(boolean *flag) ;

to change the value of a flag bit. If flag is zero, then the flag bit is set to
FALSE; if flag is non-zero, then the flag bit is set to TRUE.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 19

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair
begins an edge. If the edge flag bit is TRUE, then each specified vertex begins
an edge that is flagged as boundary. If the bit is FALSE, then induced edges
are flagged as non-boundary.

The state required for edge flagging consists of one current flag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled
polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coor-
dinates, and texture coordinates (Vertex, Color, Index, Normal, Tex-
Coord), the ArrayElement command (see section 2.8), the EvalCoord
and EvalPoint commands (see section 5.1), commands for specifying light-
ing material parameters (Material commands; see section 2.13.2), display
list invocation commands (CallList and CallLists; see section 5.4), and
the EdgeFlag command. Executing any other GL. command between the
execution of Begin and the corresponding execution of End results in the
error INVALID OPERATION. Executing Begin after Begin has already been
executed but before an End is executed generates the INVALID OPERATION
error, as does executing End without a previous corresponding Begin.

Execution of the commands En-
ableClientState, DisableClientState, PushClientAttrib, PopClien-
tAttrib, EdgeFlagPointer, TexCoordPointer, ColorPointer, Ind-
exPointer, NormalPointer, VertexPointer, Interleaved Arrays, and
PixelStore, is not allowed within any Begin/End pair, but an error may
or may not be generated if such execution occurs. If an error is not gener-
ated, GL operation is undefined. (These commands are described in sections
2.8, 3.6.1, and Chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords) ;
void Vertex{234}{sifd}v(T coords) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 20

A call to any Vertex command specifies four coordinates: z, vy, z, and w.
The 2 coordinate is the first coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the # and y coordinates; the z coordinate is
implicitly set to zero and the w coordinate to one. Vertex3 sets z, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,
allowing the specification of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-
fined behavior.

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoord{1234}{sifd}(T coords) ;
void TexCoord{1234}{sifd}v(T coords) ;

specify the current homogeneous texture coordinates, named s, ¢, r, and g¢.

The TexCoord1 family of commands set the s coordinate to the provided

single argument while setting ¢ and r to 0 and ¢ to 1. Similarly, TexCoord2

sets s and ¢ to the specified values, r to 0 and ¢ to 1; TexCoord3 sets s, t,

and r, with ¢ set to 1, and TexCoord4 sets all four texture coordinates.
The current normal is set using

void Normal3{bsifd}(T coords) ;
void Normal3{bsifd}v(T coords) ;

Byte, short, or integer values passed to Normal are converted to floating-
point values as indicated for the corresponding (signed) type in Table 2.6.

Finally, there are several ways to set the current color. The GL stores
both a current single-valued color index, and a current four-valued RGBA
color. One or the other of these is significant depending as the GL is in color
index mode or RGBA mode. The mode selection is made when the GL is
initialized.

The command to set RGBA colors is

void Color{34}{bsifd ubusui}(T components) ;
void Color{34}{bsifd ubusui}v(T components) ;

The Color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer
color components (R, G, B, and A) to floating-point values is discussed in
section 2.13.)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 21

Versions of the Color command that take floating-point values accept
values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.13 on colors and
coloring). Values outside [0, 1] are not clamped.

The command

void Index{sifd ub}(T index) ;
void Index{sifd ub}v(T indez) ;

updates the current (single-valued) color index. It takes one argument, the
value to which the current color index should be set. Values outside the
(machine-dependent) representable range of color indices are not clamped.

The state required to support vertex specification consists of four
floating-point numbers to store the current texture coordinates s, ¢, r, and
g, three floating-point numbers to store the three coordinates of the current
normal, four floating-point values to store the current RGBA color, and
one floating-point value to store the current color index. There is no notion
of a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial

value of ¢ is one. The initial current normal has coordinates (0,0, 1). The
initial RGBA color is (R, G,B,A) = (1,1, 1,1). The initial color index is 1.

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in
almost any format, but their use requires many command executions to spec-
ify even simple geometry. Vertex data may also be placed into arrays that
are stored in the client’s address space. Blocks of data in these arrays may
then be used to specify multiple geometric primitives through the execution
of a single GL command. The client may specify up to six arrays: one each
to store edge flags, texture coordinates, colors, color indices, normals, and
vertices. The commands

void EdgeFlagPointer(sizei stride, void *pointer) ;

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer) ;

void ColorPointer(int size, enum type, sizei stride,
void *pointer) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 22

‘ Command ‘ Sizes ‘ Types
VertexPointer 2,3,4 | short, int, float, double
NormalPointer 3 byte, short, int, float, double
ColorPointer 34 byte, ubyte, short, ushort, int,

uint, float, double

IndexPointer 1 ubyte, short, int, float, double
TexCoordPointer | 1,2,3,4 | short, int, float, double
EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

void IndexPointer(enum type, sizel stride,
void *pointer) ;

void NormalPointer(enum ftype, sizei stride,
void *pointer) ;

void VertexPointer(int size, enum fype, sizei stride,
void *pointer) ;

describe the locations and organizations of these arrays. For each com-
mand, type specifies the data type of the values stored in the array. Because
edge flags are always type boolean, EdgeFlagPointer has no type argu-
ment. size, when present, indicates the number of values per vertex that
are stored in the array. Because normals are always specified with three
values, NormalPointer has no size argument. Likewise, because color in-
dices and edge flags are always specified with a single value, IndexPointer
and EdgeFlagPointer also have no size argument. Table 2.4 indicates
the allowable values for size and type (when present). For type the values
BYTE, SHORT, INT, FLOAT, and DOUBLE indicate types byte, short, int, float,
and double, respectively; and the values UNSIGNED BYTE, UNSIGNED _SHORT, and
UNSIGNED_INT indicate types ubyte, ushort, and uint, respectively. The er-
ror INVALID VALUE is generated if size is specified with a value other than
that indicated in the table.

The one, two, three, or four values in an array that correspond to a single
vertex comprise an array element. The values within each array element are
stored sequentially in memory. If stride is specified as zero, then array
elements are stored sequentially as well. Otherwise pointers to the ¢th and
(¢ 4+ 1)st elements of an array differ by stride basic machine units (typically

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 23

unsigned bytes), the pointer to the (i + 1)st element being greater. For each
command, pointer specifies the location in memory of the first value of the
first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array) ;
void DisableClientState(enum array) ;

with array set to EDGE FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
INDEX _ARRAY, NORMAL_ARRAY, or VERTEX ARRAY, for the edge flag, texture coor-
dinate, color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i) ;

For each enabled array, it is as though the corresponding command from sec-
tion 2.7 or section 2.6.2 were called with a pointer to element . For the ver-
tex array, the corresponding command is Vertex[size|[type]v, where sizeis
one of [2,3,4], and type is one of [s,i,f,d], corresponding to array types short,
int, float, and double respectively. The corresponding commands for
the edge flag, texture coordinate, color, color index, and normal arrays are
EdgeFlagv, TexCoord[size][type]v, Color[size|[type]v, Index[type]v,
and Normal[type]v, respectively. If the vertex array is enabled, it is as
though Vertex[size][type]v is executed last, after the executions of the
other corresponding commands.

Changes made to array data between the execution of Begin and the
corresponding execution of End may affect calls to ArrayElement that are
made within the same Begin/End period in non-sequential ways. That is,
a call to ArrayElement that precedes a change to array data may access
the changed data, and a call that follows a change to array data may access
original data.

The command

void DraWArrays(enum mode, int first, sizei count) ;

constructs a sequence of geometric primitives using elements first through
first+count —1 of each enabled array. mode specifies what kind of primitives
are constructed; it accepts the same token values as the mode parameter of
the Begin command. The effect of

DrawArrays (mode, first, count) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 24

is the same as the effect of the command sequence

if (mode or count is invalid)
generate appropriate error
else {
int i;
Begin(mode) ;
for (i=0; 1 < count ; i++)
ArrayElement (first+ 1) ;
EndQ);

}

with one exception: the current edge flag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution of
DrawArrays, if the corresponding array is enabled. Current values corre-
sponding to disabled arrays are not modified by the execution of DrawAr-
rays.

The command

void DraWElements(enum mode, sizei count, enum type,
void *indices) ;

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED SHORT, or UNSIGNED_INT, indicating that the values in indices are
indices of GL type ubyte, ushort, or uint respectively. mode specifies
what kind of primitives are constructed; it accepts the same token values as
the mode parameter of the Begin command. The effect of

DrawElements (mode, count, type, indices) ;
is the same as the effect of the command sequence

if (mode, count, or type is invalid)
generate appropriate error

else {
int i;
Begin(mode) ;
for (i=0; 1 < count ; i++)

ArrayElement (indices[i]) ;

EndQ);

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 25

with one exception: the current edge flag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution
of DrawElements, if the corresponding array is enabled. Current val-
ues corresponding to disabled arrays are not modified by the execution of
DrawElements.

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices) ;

is a restricted form of DrawElements. mode, count, type, and indices
match the corresponding arguments to DrawElements, with the additional
constraint that all values in the array indices must lie between start and end
inclusive.

Implementations denote recommended maximum amounts of vertex and
index data, which may be queried by calling GetIntegerv with the symbolic
constants MAX_ELEMENTS VERTICES and MAX_ELEMENTS_INDICES. If end —start+1
is greater than the value of MAX_ELEMENTS VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end]
be referenced. However, the implementation may partially process unused
vertices, reducing performance from what could be achieved with an optimal
index set.

The error INVALID VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding
call to DrawElements. It is an error for indices to lie outside the range
[start,end], but implementations may not check for this. Such indices will
cause implementation-dependent behavior.

The command

void InterleavedArrays(enum format, sizei stride,
void *pointer) ;

efficiently initializes the six arrays and their enables to one of 14 configura-
tions. format must be one of 14 symbolic constants: V2F, V3F, C4UB_V2F,
C4UB_V3F, C3F_V3F, N3F_V3F, C4F N3F_V3F, T2F_V3F, T4F_V4F, T2F_C4UB_V3F,
T2F_C3F_V3F, T2F_N3F_V3F, T2F_C4F N3F_V3F, or T4F_C4F N3F_V4F.

The effect of

Interleaved Arrays(format, stride, pointer) ;

is the same as the effect of the command sequence

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 26

‘ format ‘ et ‘ €c ‘ €n ‘ St ‘ S¢ ‘ Sy ‘ t. ‘ Pe ‘ Pn ‘ Pu s
V2F False | False | False 2 0 2f
V3F False | False | False 3 0 3f
C4UB_V2F False | True | False 4 | 2 | UNSIGNED BYTE | 0 c c+2f
C4UB_V3F False | True | False 4 | 3 | UNSIGNED BYTE | 0 c c+3f
C3F_V3F False | True | False 313 FLOAT 0 3f 6f
N3F_V3F False | False | True 3 0 3f 6f
C4F N3F _V3F False | True | True 413 FLOAT 0 |4f 7f 10f
T2F_V3F True | False | False | 2 3 2f 5f
T4F _VAF True | False | False | 4 4 4f 8f
T2F _C4AUB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED BYTE | 2f r+2f | c+5f
T2F _C3F_V3F True | True | False | 2 | 3 | 3 FLOAT 2f 5f 8f
T2F _N3F_V3F True | False | True | 2 3 2f 5f 8f
T2F_C4F N3F V3F | True | True | True | 2 | 4 | 3 FLOAT 2f | 6f 9f 12f
T4F_C4F N3F V4F | True | True | True | 4 | 4 | 4 FLOAT Af | 8fF || 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f
is sizeof (FLOAT). ¢ is 4 times sizeof (UNSIGNED BYTE), rounded up to
the nearest multiple of f. All pointer arithmetic is performed in units of
sizeof (UNSIGNED BYTE).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 27

if (format or stride is invalid)
generate appropriate error
else {
int str;
set ey, €, €n, Sty Sey Sus ey Pes Pry Pu, and s as a function
of Table 2.5 and the value of format.
str = stride;
if (str is zero)
str = s;
DisableClientState (EDGE_FLAG_ARRAY);
DisableClientState (INDEX_ARRAY);
if (ep) {
EnableClientState (TEXTURE_COORD _ARRAY) ;
TexCoordPointer (s;, FLOAT, str, pointer);
} else {
DisableClientState (TEXTURE_COORD _ARRAY);
}

if (e.) {
EnableClientState (COLOR_ARRAY);
ColorPointer(s,, t., str, pointer + p.);
} else {
DisableClientState (COLOR_ARRAY);
}

if (en) {
EnableClientState (NORMAL _ARRAY);
NormalPointer (FLOAT, str, pointer + p,);
} else {
DisableClientState (NORMAL _ARRAY);
}

EnableClientState (VERTEX_ARRAY);
VertexPointer (s,, FLOAT, str, pointer + p,);

}

The client state required to implement vertex arrays consists of six
boolean values, six memory pointers, six integer stride values, five symbolic
constants representing array types, and three integers representing values
per element. In the initial state the boolean values are each disabled, the
memory pointers are each null, the strides are each zero, the array types are
each FLOAT, and the integers representing values per element are each four.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 28

2.9 Rectangles

There is a set of GL. commands to support efficient specification of rectangles
as two corner vertices.

void Rect{sifd}(T z7, Tyl, Tz2, Ty2) ;
void Rect{sifd}v(T v1/2], T v2/2]) ;

Each command takes either four arguments organized as two consecutive
pairs of (z,y) coordinates, or two pointers to arrays each of which contains
an z value followed by a y value. The effect of the Rect command

Rect ($17 Y1, T2, y2) 5
is exactly the same as the following sequence of commands:

Begin (POLYGON) ;
Vertex2(x,y1);
Vertex2(xq, y1);
Vertex2(xq, y9) ;
Vertex2(xq, y9);

EndQ);

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their
coordinates are used to produce an image in the framebuffer. We begin
with a description of how vertex coordinates are transformed and how this
transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these coordinates to
vield eye coordinates. Then another matrix, called the projection matrix, is
applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
final viewport transformation is applied to convert these coordinates into
window coordinates.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 29

Normalized

Object Model-View Eye Projection Device
>

Perspective
Division

Coordinates Matrix Coordinates Matrix Coordinates Coordinates

Viewport Window
Transformation

Coordinates

Figure 2.6. Vertex transformation sequence.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of z, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4 x 4.
xO
Yo

o
wO
matrix is M, then the vertex’s eye coordinates are found as

If a vertex in object coordinates is given by and the model-view

xe xO
ve | —ar | ¥
Ze ZO
w6 wO

Similarly, if P is the projection matrix, then the vertex’s clip coordinates
are

xC xe
ve | _ p| ve
ZC Ze
wC w6

The vertex’s normalized device coordinates are then

Tq xc/wc
Yd = yc/wc
Zq ZeJWe

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 30

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and
height in pixels, p, and p,, respectively, and its center (o;,0,) (also in
xw
pixels). The vertex’s window coordinates, (yw) , are given by
Zw

Ty (pz/2)xq + 0
(yw) = ((py/2)yd + 0y) :
Zy [(f =n)/2]za+ (n+ [)/2

The factor and offset applied to z; encoded by n and f are set using
void DepthRange(clampd n, clampd f) ;

Each of n and fare clamped to lie within [0, 1], as are all arguments of type
clampd or clampf. z,, is taken to be represented in fixed-point with at least
as many bits as there are in the depth buffer of the framebuffer. We assume
that the fixed-point representation used represents each value k/(2™ — 1),
where k£ € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a
string of all ones).

Viewport transformation parameters are specified using

void Viewport(int z, int y, sizei w, sizei h) ;

where z and y give the and y window coordinates of the viewport’s lower-
left corner and w and h give the viewport’s width and height, respectively.
The viewport parameters shown in the above equations are found from these
values as 0, = 2 +w/2 and oy = y+ h/2; p, = w, p, = h.

Viewport width and height are clamped to implementation-dependent
maximums when specified. The maximum width and height may be found
by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either w or &
is negative.

The state required to implement the viewport transformation is 6 inte-
gers. In the initial state, wand h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. o, and o, are set to
w/2 and h/2, respectively. n and f are set to 0.0 and 1.0, respectively.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 31

2.10.2 Matrices

The projection matrix and model-view matrix are set and modified with
a variety of commands. The affected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode(enum mode) ;

which takes one of the pre-defined constants TEXTURE, MODELVIEW,

COLOR_MATRIX, or PROJECTION as the argument value. TEXTURE is described

later in section 2.10.2, and COLOR MATRIX is described in section 3.6.3. If

the current matrix mode is MODELVIEW, then matrix operations apply to the

model-view matrix; if PROJECTION, then they apply to the projection matrix.
The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(T m/[16]) ;
void MultMatrix{fd}(T m/[16]) ;

LoadMatrix takes a pointer to a 4 X 4 matrix stored in column-major order
as 16 consecutive floating-point values, i.e. as

ay as ag a3

az ag daip a4

as ar dajp dis

as ag diz die
(This differs from the standard row-major C ordering for matrix elements. If
the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to.
MultMatrix takes the same type argument as Load Matrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product. If C'is the current matrix and M is the matrix pointed
to by MultMatrix’s argument, then the resulting current matrix, C’, is

C'=C-M.
The command

void LoadIdentity(void) ;

effectively calls LoadMatrix with the identity matrix:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 32

1 0 0 0
01 0 0
0 01 0
0 0 0 1

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-
trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotate{fd}(T#, Tz, Ty, Tz) ;

gives an angle of rotation in degrees; the coordinates of a vector v are given
by v = (z y 2)T. The computed matrix is a counter-clockwise rotation about
the line through the origin with the specified axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The
matrix is thus

0 —Z/ y/
=1 7 0 -z
-y 2 0

R = uu® + cos 61 — uuT) + sin 6S.

then

The arguments to
void Translate{fd}(Tz, Ty, T z) ;

give the coordinates of a translation vector as (z y z)7. The resulting matrix
is a translation by the specified vector:

1 0 0 =
01 0 y
0 0 1 =z
0 0 0 1

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 33

void Scale{fd}(Tz, Ty, Tz);

produces a general scaling along the z-, y-, and z- axes. The corresponding

matrix is
0 0

oo o R
oo O
_ o o

0
z
0
For

void Frustum(double /, double r, double b, double ¢,
double n, double f) ;

the coordinates (I & — n)T and (r t — n)T specify the points on the near
clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)7). f
gives the distance from the eye to the far clipping plane. If either n or f is
less than or equal to zero, [is equal to r, b is equal to ¢, or n is equal to f,
the error INVALID VALUE results. The corresponding matrix is

2o o 0
0o A 0
0o 0 -1 0

void Ortho(double [/, double r, double b, double ¢,
double n, double f) ;

describes a matrix that produces parallel projection. (I b —n)T and (rt —n)T
specify the points on the near clipping plane that are mapped to the lower-
left and upper-right corners of the window, respectively. fgives the distance
from the eye to the far clipping plane. If [is equal to r, b is equal to ¢, or n
is equal to f, the error INVALID VALUE results. The corresponding matrix is

2

r—I

0

_r+l
r—{
i+b
t—b

o o
|

|
ety
+
3

3
[y

—n

0
2
T—b
0 0
0 0

=T
—

There is another 4 x4 matrix that is applied to texture coordinates. This
matrix is applied as

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 34

E
3
z
z

My Mg Mi2 Mis q

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32
model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix(void) ;

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void) ;

pops the top entry off of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix off a stack with only one entry generates the error STACK _UNDERFLOW;
pushing a matrix onto a full stack generates STACK_OVERFLOW.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, a stack of at least two
4 x 4 matrices for each of COLOR MATRIX, PROJECTION, and TEXTURE with as-
sociated stack pointers, and a stack of at least 32 4 X 4 matrices with an
associated stack pointer for MODELVIEW. Initially, there is only one matrix on
each stack, and all matrices are set to the identity. The initial matrix mode
is MODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state
affect normals. Before use in lighting, normals are transformed to eye co-
ordinates by a matrix derived from the model-view matrix. Rescaling and

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 35

normalization operations are performed on the transformed normals to make
them unit length prior to use in lighting. Rescaling and normalization are
controlled by

void Enable(enum target) ;
and
void Disable(enum target) ;

with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M, then the normal is transformed to eye
coordinates by:

(n,” ny nt ¢)=(n, ny n, (])-1\4_1

x
where, if Z are the associated vertex coordinates, then
w
0, w =0,
x
7=93 -(ny ny n)|y (2.1)
z
- , w#0
x
Implementations may choose instead to transform | y | to eye coordi-
z

nates using

(ny' ny nt)=(ny ny n) M, T

where M, is the upper leftmost 3x3 matrix taken from M.
Rescale multiplies the transformed normals by a scale factor
(nx// ny// nZ//) — f (ng;/ ny/ nz’)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is com-
puted as (m;; denotes the matrix element in row ¢ and column j of M~
numbering the topmost row of the matrix as row 1 and the leftmost column
as column 1)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 36

1
© Vma 2+ mag? 4 mas?
Note that if the normals sent to GL. were unit length and the model-view
matrix uniformly scales space, then rescale makes the transformed normals

unit length.
Alternatively, an implementation may chose f as

1
2 2 2
\/nx/ + ny/ +n.’

recomputing f for each normal. This makes all non-zero length normals
unit length regardless of their input length and the nature of the model-
view matrix.

After rescaling, the final transformed normal used in lighting, n;, is
computed as

f=

ng=mx*(n," n,” n'")
If normalization is disabled, then m = 1. Otherwise
1
\/nx//2 + ny//Q + nZ//Q

Because we specify neither the floating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-
conditioned (nearly singular) model-view matrix M. In case of an exactly
singular matrix, the transformed normal is undefined. If the GL implementa-
tion determines that the model-view matrix is uninvertible, then the entries

m =

in the inverted matrix are arbitrary. In any case, neither normal transfor-
mation nor use of the transformed normal may lead to GL interruption or
termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates. The command

void TexGen{ifd}(enum coord, enum pname, T param) ;
void TexGen{ifd}v(enum coord, enum pname, T params) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 37

controls texture coordinate generation. coord must be one of the constants
S, T, R, or Q, indicating that the pertinent coordinate is the s, ¢, r, or ¢
coordinate, respectively. In the first form of the command, param is a sym-
bolic constant specifying a single-valued texture generation parameter;in the
second form, params is a pointer to an array of values that specify texture
generation parameters. pname must be one of the three symbolic constants
TEXTURE_GEN_MODE, OBJECT PLANE, or EYE_PLANE. If pname is TEXTURE _GEN_MODE,
then either params points to or param is an integer that is one of the symbolic
constants OBJECT_LINEAR, EYE_LINEAR, or SPHERE MAP.

If TEXTURE_GEN_MODE indicates OBJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = P1%o + p2Yo + P32 + PaWs.

To, Yo, Zo, and w, are the object coordinates of the vertex. pq,...,pq4 are
specified by calling TexGen with prname set to 0BJECT PLANE in which case
params points to an array containing pq,...,ps. There is a distinct group of
plane equation coefficients for each texture coordinate; coord indicates the
coordinate to which the specified coefficients pertain.

If TEXTURE_GEN_MODE indicates EYE_LINEAR, then the function is

g = Pz + Phye + phze + plhwe

where
(py Py ps Ph)=(p1 p2 ps pa) M7

Te, Ye, Ze, and w, are the eye coordinates of the vertex. pq,...,ps are
set by calling TexGen with pname set to EYE_PLANE in correspondence with
setting the coeflicients in the 0BJECT PLANE case. M is the model-view matrix
in effect when pq,..., py are specified. Computed texture coordinates may
be inaccurate or undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen
with TEXTURE_GEN MODE indicating SPHERE MAP can simulate the reflected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates
are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-
formation to eye coordinates, by n’. Let r = (r, r, 7,)T7 the reflection
vector, be given by

r=u-2nn"u,

and let m = 2\/7‘920 + rZ + (r.+ 1)2. Then the value assigned to an s coor-

dinate (the first TexGen argument value is S) is s = r,/m + 1; the value

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 38

assigned to a t coordinate is t = ry/m + % Calling TexGen with a co-
ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID _ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,
TEXTURE GEN.R, or TEXTURE GEN_Q (each indicates the corresponding texture
coordinate). When enabled, the specified texture coordinate is computed
according to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP specifica-
tion, depending on the current setting of TEXTURE_GEN MODE for that coordi-
nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-
valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state
has the texture generation function disabled for all texture coordinates. The
initial values of p; for s are all 0 except p; which is one; for ¢ all the p; are
zero except po, which is 1. The values of p; for r and ¢ are all 0. These values
of p; apply for both the EYE_ LINEAR and OBJECT LINEAR versions. Initially all
texture generation modes are EYE LINEAR.

2.11 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the wview
volume is defined by

—We S Te S We

—We S Ye S We .

—We S Ze S We

This view volume may be further restricted by as many as n client-defined
clip planes to generate the clip volume. (n is an implementation dependent
maximum that must be at least 6.) Each client-defined plane specifies a
half-space. The clip volume is the intersection of all such half-spaces with
the view volume (if there no client-defined clip planes are enabled, the clip
volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enum p, double eqnfj]) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 39

The value of the first argument, p, is a symbolic constant, CLIP PLANE:, where
¢ is an integer between 0 and n — 1, indicating one of n client-defined clip
planes. egnis an array of four double-precision floating-point values. These
are the coefficients of a plane equation in object coordinates: py, p2, p3, and
pa (in that order). The inverse of the current model-view matrix is applied
to these coeflicients, at the time they are specified, yielding

(Pt Py P Ph)=(p1 P2 b3 pa) M7}
(where M is the current model-view matrix; the resulting plane equation is
undefined if M is singular and may be inaccurate if M is poorly-conditioned)
to obtain the plane equation coefficients in eye coordinates. All points with
eye coordinates (. Y. Zze we)T that satisfy

(b oy P | | >0

lie in the half-space defined by the plane; points that do not satisfy this
condition do not lie in the half-space.

Client-defined clip planes are enabled with the generic Enable com-
mand and disabled with the Disable command. The value of the argument
to either command is CLIP_PLANE; where 7 is an integer between 0 and n;
specifying a value of ¢ enables or disables the plane equation with index 1.
The constants obey CLIP_PLANE; = CLIP_PLANEO + 1.

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume.

This clipping produces a value, 0 <t < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates
are Py and Py, then ¢ is given by

P =t(P, + (1—1)P,.

The value of ¢t is used in color and texture coordinate clipping (sec-
tion 2.13.8).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 40

If the primitive is a polygon, then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-
gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume’s boundary. Thus, clipping may
require the introduction of new vertices into a polygon. Edge flags are asso-
ciated with these vertices so that edges introduced by clipping are flagged
as boundary (edge flag TRUE), and so that original edges of the polygon that
become cut off at these vertices retain their original flags.

If it happens that a polygon intersects an edge of the clip volume’s
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have w,. values of differing signs
may generate multiple connected components after clipping. GL implemen-
tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of w, > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coefficients (p| p, pt pf) (or a
number of similarly specified clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respecified with co-
efficients (—p{ —p, —pt —p}) (and correspondingly for any other clip
planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

The state required for clipping is at least 6 sets of plane equations (each
consisting of four double-precision floating-point coefficients) and at least 6
corresponding bits indicating which of these client-defined plane equations
are enabled. In the initial state, all client-defined plane equation coefficients
are zero and all planes are disabled.

2.12 Current Raster Position

The current raster position is used by commands that directly affect pixels in
the framebuffer. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster
position, however, shares some of the characteristics of a vertex.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 41

The state required for the current raster position consists of three window
coordinates x,,, ¥, and z,, a clip coordinate w, value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and texture
coordinates. It is set using one of the RasterPos commands:

void RasterPos{234}{sifd}(T coords) ;
void RasterPos{234}{sifd}v(T coords) ;

RasterPos4 takes four values indicating z, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only z, y, and z with w implicitly set
to 1 (or only z and y with z implicitly set to 0 and w implicitly set to 1).

The coordinates are treated as if they were specified in a Vertex com-
mand. The z, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-
rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace
the color and texture coordinates stored in the current raster position’s as-
sociated data. The distance from the origin of the eye coordinate system
to the vertex as transformed by only the current model-view matrix re-
places the current raster distance. This distance can be approximated (see
section 3.10).

The transformed coordinates are passed to clipping as if they represented
a point. If the “point” is not culled, then the projection to window coor-
dinates is computed (section 2.10) and saved as the current raster position,
and the valid bit is set. If the “point” is culled, the current raster position
and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires five single-precision floating-point
values for its z,, yu, and z, window coordinates, its w. clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0,0,0, 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1,1,1,1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

2.13 Colors and Coloring

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 42

|
o ag |——
Rasterpos In — Clip | Project : I
|

|
Raster |
C Vertex/Normal I Position I
urrent ™ Transformation |- I !
Normal - * : I
|
' Raster I
R | Distance .|
Current - Lighting] I I
Color [9 : :
Associated I
L\ ——o_| Texture | Data _>:
Current L o Texgen T Matrix > |
c Te()j(_ture | Current :
oordinates : Raster |
| Position :

Figure 2.7. The current raster position and how it is set.

Figure 2.8 2 diagrams the processing of colors before rasterization. In-
coming colors arrive in one of several formats. Table 2.6 summarizes the
conversions that take place on R, G, B, and A components depending on
which version of the Color command was invoked to specify the compo-
nents. As a result of limited precision, some converted values will not be
represented exactly. In color index mode, a single-valued color index is not
mapped.

Next, lighting, if enabled, produces either a color index or primary and
secondary colors. If lighting is disabled, the current color index or color
is used in further processing (the current color is the primary color, and
the secondary color is (0,0,0,0)). After lighting, RGBA colors are clamped
to the range [0,1]. A color index is converted to fixed-point and then its
integer portion is masked (see section 2.13.6). After clamping or masking,
a primitive may be flatshaded, indicating that all vertices of the primitive
are to have the same color. Finally, if a primitive is clipped, then colors
(and texture coordinates) must be computed at the vertices introduced or

28plit this figure into RGBA and color index diagrams, and add a path for the secondary
color. We need to be clear that there’s only one color in the current GL state, but two
colors associated with the vertex being processed (though this may change if explicit
specification of the secondary color is later introduced as an extension).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION

43

Colop, Mask to

Index [0.0, 2”_1]

o | Clamp to

reaa | [0.0, 1.0]

Flatshade?

n_
[0,2"-1] Convert to
Color float
Index o
[0.0,2"-1] T Y
K Convert to
[0,2K-1] —® [0.0,1.0] 5 Current | Current
T 1 RGBA Color
RGBA Color Index
K14 ok_ Convert to
[-27-1.25-1] [-1.0,1.0]
[0.0,1.0] -
Lighting [*©
Color
Clipping
Color
index y Roea A
Convert to Convertto | . ______ ,
fixed—point fixed—point Primitive :
\Tl Clipping
Figure 2.8. Processing of colors. When LIGHTING is enabled, RGBA refers
to both the primary and secondary RGBA colors generated by lighting. = is
the number of bits in a color index. See Table 2.6 for the interpretation of &.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 44

‘ GL Type ‘ Conversion ‘

ubyte c/(28 - 1)

byte (2c+1)/(28 - 1)
ushort c/(216 - 1)
short (2¢+1)/(21% - 1)
uint c/(2°* - 1)

int (2c+1)/(22 - 1)
float c

double c

Table 2.6: Component conversions. Color, normal, and depth components,
(¢), are converted to an internal floating-point representation, (f), using the
equations in this table. All arithmetic is done in the internal floating point
format. These conversions apply to components specified as parameters to
GL commands and to components in pixel data. The equations remain the
same even if the implemented ranges of the GL data types are greater than
the minimum required ranges. (Refer to table 2.2)

modified by clipping.

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accom-
plished by applying an equation defined by a client-specified lighting model
to a collection of parameters that can include the vertex coordinates, the
coordinates of one or more light sources, the current normal, and parameters
defining the characteristics of the light sources and a current material. The
following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.13.5.)
Lighting may be in one of two states:

1. Lighting Off. In this state, the current color is assigned to the vertex
primary color. The secondary color is (0,0,0,0).

2. Lighting On. In this state, the vertex primary and secondary colors
are computed from the current lighting parameters.

Lighting is turned on or off using the generic Enable or Disable commands
with the symbolic value LIGHTING.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 45

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real,
or boolean. A color parameter consists of four floating-point values, one
for each of R, G, B, and A, in that order. There are no restrictions on the
allowable values for these parameters. A position parameter consists of four
floating-point coordinates (z, y, z, and w) that specify a position in object
coordinates (w may be zero, indicating a point at infinity in the direction
given by 2, y, and z). A direction parameter consists of three floating-point
coordinates (z, y, and z) that specify a direction in object coordinates. A
real parameter is one floating-point value. The various values and their
types are summarized in Table 2.7. The result of a lighting computation is
undefined if a value for a parameter is specified that is outside the range
given for that parameter in the table.

There are n light sources, indexed by i = 0,...,n—1. (n is an implemen-
tation dependent maximum that must be at least 8.) Note that the default
values for d.;; and s, differ for ¢ = 0 and ¢ > 0.

Before specifying the way that lighting computes colors, we introduce
operators and notation that simplify the expressions involved. If ¢; and
cz are colors without alpha where ¢; = (r1,91,b1) and c2 = (r2, g2, b2),
then define ¢; *x ¢g = (r17r2, 9192, b1b2). Addition of colors is accomplished
by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If dy and d; are directions, then
define

d; ® dy; = max{d; - d,,0}.

(Directions are taken to have three coordinates.) If Py and Py are (homoge-

neous, with four coordinates) points then let P;Py be the unit vector that
points from Py to Py. Note that if Py has a zero w coordinate and Py has

non-zero w coordinate, then P{P5 is the unit vector corresponding to the
direction specified by the z, y, and z coordinates of Ps; if Py has a zero w

coordinate and P9 has a non-zero w coordinate then P{P5 is the unit vector
that is the negative of that corresponding to the direction specified by P;.

If both Py and P5 have zero w coordinates, then ITP; is the unit vector
obtained by normalizing the direction corresponding to Py — Pjy.

If d is an arbitrary direction, then let d be the unit vector in d’s direction.
Let [|P1P2|| be the distance between P; and P;. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.
Let P. be the eyepoint ((0,0,0,1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color ¢,,; and a

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 46
‘ Parameter H Type ‘ Default Value ‘ Description
Material Parameters
A color (0.2,0.2,0.2,1.0) | ambient color of material
de color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm real 0.0 specular exponent (range:
(0.0, 128.0])
A, real 0.0 ambient color index
d,, real 1.0 diffuse color index
Sim real 1.0 specular color index
Light Source Parameters
acy; color (0.0,0.0,0.0,1.0) | ambient intensity of light ¢
d.; (¢ =0) color (1.0,1.0,1.0,1.0) | diffuse intensity of light 0
d.; (¢ > 0) color (0.0,0.0,0.0,1.0) | diffuse intensity of light ¢
s.i(1 = 0) color (1.0,1.0,1.0,1.0) | specular intensity of light 0
sqi(1 > 0) color (0.0,0.0,0.0,1.0) | specular intensity of light ¢
P position | (0.0,0.0,1.0,0.0) | position of light i
Sdii direction | (0.0,0.0,—1.0) | direction of spotlight for light
i
Spli real 0.0 spotlight exponent for light ¢
(range: [0.0,128.0])
Crli real 180.0 spotlight cutoff angle for
light ¢ (range: [0.0,90.0],
180.0)
kos real 1.0 constant attenuation factor
for light i (range: [0.0,00))
kq; real 0.0 linear attenuation factor for
light i (range: [0.0,00))
koy real 0.0 quadratic attenuation factor

for light i (range: [0.0,00))

Lighting Model Parameters

as color (0.2,0.2,0.2,1.0) | ambient color of scene

Ups boolean FALSE viewer assumed to be at
(0,0,0) in eye coordinates
(TRUE) or (0,0, 00) (FALSE)

L Yo enum SINGLE_COLOR controls computation of
colors

ths boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color
components is (—o0, 400).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION

47

secondary color c,... The values of ¢,,; and c,.. depend on the light model
color control, ccs. If ¢y = SINGLE_COLOR, then the equations to compute c,,;

and c,.. are

Cpri

CSSC

|

|

eCT)’L

aCT)’L * aCS

n—1
Z (att;)(spot;) [acm * ac
= B |
+ (Il oV pjz)dcm * dclz
+ (fz)(n ®© hi)srmscm * Scli]
(0,0,0)

If ¢.s = SEPARATE SPECULAR_COLOR, then

Cpri

CSSC

where

|

|

eCT)’L

aCT)’L * aCS

n—1

Z (att;)(spot;) [acm * ac

= 5 |
+ (Il © A\ plz)dcm * dclz]

n—1

Z(atti)(spoti)(fi)(n ® fli)s”"scm * Sei

=0

fi = {1, n@_fﬁph’#o,
0,

otherwise,

o _fﬁ,li 1+ _fﬁ, Ups = TRUE,
Z _fﬁpu +(0 0 1), wp, = FALSE,

1

att; = koi 4 k1l [VPpiil| + kasl [VP i

1.0, otherwise,

DRAFT Version 1.2 - Jan. 2, 1998

7 if Ppyi’s w#0,

(2.2)

(2.4)

CHAPTER 2. OPENGL OPERATION 48

(Ppu_/I © 8415)°™, €y # 180.0, Ppli_/I © 8q1i > cos(epy;)

spot; = 0.0, Crli 75 180.0, Ppli_/: ® 8 < COS(C,,H),(Q'5)
1.0, ¢ = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with
d.,. A is always associated with the primary color ¢,,;; ¢4 has no alpha
component. Results of lighting are undefined if the w. coordinate (w in eye
coordinates) of V is zero.

Lighting may operate in two-sided mode (t,s = TRUE), in which a front
color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with —n. If {,, = FALSE,
then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line
segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon’s signed
area computed in window coordinates. One way to compute this area is

il S o
“=3 ; rl Pt — 2yl (2.6)

where 2, and y?, are the 2 and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and ¢ & 1 is (¢ 4+ 1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace(enum dir) ;

Setting dir to ¢CW (corresponding to counter-clockwise orientation of the
projected polygon in window coordinates) indicates that if @ < 0, then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if @ > 0, then the front color is selected. If dir is cW, then
a is replaced by —a in the above inequalities. This requires one bit of state;
initially, it indicates CCW.

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.7). Sets

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 49

of lighting parameters are specified with

void Material{if}(enum face, enum pname, T param) ;
void Material{if}v(enum face, enum pname, T params) ;
void Light{if}(enum light, enum pname, T param) ;
void Light{if}v(enum light, enum pname, T params) ;
void LightModel{if}(enum pname, T param) ;

void LightModel{if}v(enum pname, T params) ;

pname is a symbolic constant indicating which parameter is to be set (see
Table 2.8). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of
values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If
param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT_AND BACK, indicating that the property name of the front or back ma-
terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHT:, indicating that light ¢ is to have the
specified parameter set. The constants obey LIGHT: = LIGHTO + 7.

Table 2.8 gives, for each of the three parameter groups, the correspon-
dence between the pre-defined constant names and their names in the light-
ing equations, along with the number of values that must be specified with
each. Color parameters specified with Material and Light are converted
to floating-point values (if specified as integers) as indicated in Table 2.6
for signed integers. The error INVALID VALUE occurs if a specified lighting
parameter lies outside the allowable range given in Table 2.7. (The sym-
bol “o00” indicates the maximum representable magnitude for the indicated
type.)

The current model-view matrix is applied to the position parameter indi-
cated with Light for a particular light source when that position is specified.
These transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the
upper leftmost 3x3 portion of the model-view matrix. That is, if M, is the
upper left 3x3 matrix taken from the current model-view matrix M, then
the spotlight direction

dl’
dy
dZ

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION

‘ Parameter H Name ‘ Number of values ‘
Material Parameters (Material)
e AMBIENT 4
d... DIFFUSE 4
A, Ao AMBIENT _AND DIFFUSE 4
Sem SPECULAR 4
€ EMISSION 4
Srm SHININESS 1
Gy Ay S, COLOR_INDEXES 3
Light Source Parameters (Light)
a; AMBIENT 4
d.; DIFFUSE 4
Scli SPECULAR 4
P POSITION 4
S SPOT_DIRECTION 3
S0 SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT _ATTENUATION 1
kl LINEAR _ATTENUATION 1
kz QUADRATIC ATTENUATION 1
Lighting Model Parameters (LightModel)
Acs LIGHT _MODEL_AMBIENT 4
Vps LIGHT_MODEL LOCAL_VIEWER 1
Tps LIGHT MODEL_TWO_SIDE 1
&Ces LIGHT _MODEL_COLOR_CONTROL 1

Table 2.8:

50

Correspondence of lighting parameter symbols to names.
AMBIENT_AND DIFFUSE is used to set a.,, and d.,, to the same value.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 51

Current
Color

Color*() ==========" - To subsequent vertex operations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

.KO’ Front Ambient |y To lighting equations

Material*(FRONT,AMBIENT) =======s====sssfuaacnns »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

’Ko. Front Diffuse ——— 70 lighting equations

Material"(FRONT,DIFFUSE) ===============f==raun »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

’Ko. Front Specular | To lighting equations

Material*(FRONT,SPECULAR) ~ =============p====== =0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

.KO’ Front Emission |, To lighting equations

Material*(FRONT,EMISSION) ~ =======sssssssasuanns »0 Color

""" > State values flow along this path only when a command is issued

= State values flow continuously along this path

Figure 2.9. ColorMaterial operation. Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode. Only the front material properties are included in this
figure. The back material properties are treated identically.

is transformed to

d’. d;

d, | =M, | d,

d’. d.

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHT: (¢ is in the range 0 to n — 1, where n is the
implementation-dependent number of lights). If light ¢ is disabled, the ith
term in the lighting equation is effectively removed from the summation.

2.13.3 ColorMaterial

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 52

It is possible to attach one or more material properties to the current
color, so that they continuously track its component values. This behavior
is enabled and disabled by calling Enable or Disable with the symbolic
value COLOR_MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode) ;

face is one of FRONT, BACK, or FRONT_AND BACK, indicating whether the front
material, back material, or both are affected by the current color. mode
is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT_AND DIFFUSE and
specifies which material property or properties track the current color. If
mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of e.,,
Acm, dem O Sy, respectively, will track the current color. If mode is
AMBIENT _AND DIFFUSE, both a., and d., track the current color. The re-
placements made to material properties are permanent; the replaced values
remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that
particular value. When COLOR MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial (FRONT, AMBIENT)

while COLORMATERIAL is enabled sets the front material a.,, to the value of
the current color.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the
front color should be computed, at least 8 bits to indicate which lights are
enabled, a five-valued variable indicating the current ColorMaterial mode,
a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all
lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT_AND_BACK and AMBIENT_AND_DIFFUSE,
and both lighting and COLOR MATERIAL are disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 53

material parameters. First, the RGBA diffuse and specular intensities of
light ¢ (d.; and s, respectively) determine color index diffuse and specular
light intensities, dj; and sy; from

di; = (.30)R(dch’) + (.59)G(dch’) + (.11)B(dch’)

and

Sy = (.30)R(SCH) + (.59)G(SCH) + (.11)B(SCH).

R(x) indicates the R component of the color x and similarly for G/(x) and
B(x).
Next, let

s=>_(att;)(spot;)(s;)(f;)(n ® hy)*rm
=0
where att; and spot; are given by equations 2.4 and 2.5, respectively, and f;
and h; are given by equations 2.2 and 2.3, respectively. Let s’ = min{s, 1}.
Finally, let

d= Zn:(mi) (spot:) (dyi) (n © VByy).

Then color index lighting produces a value ¢, given by
c=apy +d(1—) (dp — an) + 5 (sm — an).

The final color index is
¢ = min{e, s, }.

The values a,,, d,, and s, are material properties described in Tables 2.7
and 2.8. Any ambient light intensities are incorporated into a,,. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of ¢;; and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting.

The values @, d,, and s, are set with Material using a pname of
COLOR_INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-
ditional state consists of three floating-point values. These values have no

effect on RGBA lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), both primary and secondary colors
are clamped to the range [0, 1].

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 54

Primitive type of polygon ¢ Vertex

single polygon (i = 1) 1
triangle strip 142
triangle fan 142
independent triangle 31
quad strip 21+ 2
independent quad 4q

Table 2.9: Polygon flatshading color selection. The colors used for flatshad-
ing the ith polygon generated by the indicated Begin/End type are derived
from the current color (if lighting is disabled) in effect when the indicated
vertex is specified. If lighting is enabled, the colors are produced by lighting
the indicated vertex. Vertices are numbered 1 through n, where n is the
number of vertices between the Begin/End pair.

For a color index, the index is first converted to fixed-point with an
unspecified number of bits to the right of the binary point; the nearest
fixed-point value is selected. Then, the bits to the right of the binary point
are left alone while the integer portion is masked (bitwise ANDed) with
2" — 1, where n is the number of bits in a color in the color index buffer
(buffers are discussed in chapter 4).

2.13.7 Flatshading

A primitive may be flatshaded, meaning that all vertices of the primitive are
assigned the same color index or the same primary and secondary colors.
These colors are the colors of the vertex that spawned the primitive. For a
point, these are the colors associated with the point. For a line segment, they
are the colors of the second (final) vertex of the segment. For a polygon, they
come from a selected vertex depending on how the polygon was generated.
Table 2.9 summarizes the possibilities.
Flatshading is controlled by

void ShadeModel(enum mode) ;

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode
is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, flatshading is turned on. ShadeModel thus requires one bit of state.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 55

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are
clipped. Those colors associated with a vertex that lies within the clip
volume are unaffected by clipping. If a primitive is clipped, however, the
colors assigned to vertices produced by clipping are clipped colors.

Let the colors assigned to the two vertices Py and Py of an unclipped
edge be ¢; and cz. The value of ¢ (section 2.11) for a clipped point P is
used to obtain the color associated with P as

c=tey + (1 —t)cq.

(For a color index color, multiplying a color by a scalar means multiplying
the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar. Both primary and secondary colors are treated
in the same fashion.) Polygon clipping may create a clipped vertex along an
edge of the clip volume’s boundary. This situation is handled by noting that
polygon clipping proceeds by clipping against one plane of the clip volume’s
boundary at a time. Color clipping is done in the same way, so that clipped
points always occur at the intersection of polygon edges (possibly already
clipped) with the clip volume’s boundary.

Texture coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies in [0, 1]) is converted
(by rounding to nearest) to a fixed-point value with m bits. We assume
that the fixed-point representation used represents each value k/(2™ — 1),
where k € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the
corresponding component of the framebuffer. If the framebuffer does not
contain an A component, then m must be at least 2 for A. A color index
is converted (by rounding to nearest) to a fixed-point value with at least as
many bits as there are in the color index portion of the framebuffer.
Because a number of the form k/(2™ — 1) may not be represented exactly
as a limited-precision floating-point quantity, we place a further requirement
on the fixed-point conversion of RGBA components. Suppose that lighting
is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When
these conditions are satisfied, an RGBA component must convert to a value

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 2. OPENGL OPERATION 56

that matches the component as specified in the Color command: if m is less
than the number of bits & with which the component was specified, then the
converted value must equal the most significant m bits of the specified value;
otherwise, the most significant b bits of the converted value must equal the
specified value.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as
color and depth. Thus, rasterizing a primitive consists of two parts. The
first is to determine which squares of an integer grid in window coordinates
are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the
next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebuffer. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment’s associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations
also refer to a fragment’s center, which is offset by (1/2,1/2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not affected by the actual aspect ratio of the grid squares. Display of
non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simplifies antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled.
Points may be given differing diameters and line segments differing widths.
A point, line segment, or polygon may be antialiased.

57

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION

58

Point
Rasterization

From
Primitive
Assembly

Line
Rasterization

Polygon
Rasterization

DrawPixels — 31

Pixel
Rectangle
Rasterization

Bitmap — %

Bitmap
Rasterization

Texturing
Color Sum
Fog —
Fragments

Figure 3.1. Rasterization.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 59

3.1 Invariance

Consider a primitive p’ obtained by translating a primitive p through an
offset (2,y) in window coordinates, where z and y are integers. As long
as neither p’ nor p is clipped, it must be the case that each fragment f’
produced from p’ is identical to a corresponding fragment f from p except
that the center of f’ is offset by (z,y) from the center of f.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways de-
pending on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are
left unaffected, but the A value is multiplied by a floating-point value in
the range [0, 1] that describes a fragment’s screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebuffer.

In color index mode, the least significant b bits (to the left of the binary
point) of the color index are used for antialiasing; b = min{4, m}, where
m is the number of bits in the color index portion of the framebuffer. The
antialiasing process sets these b bits based on the fragment’s coverage value:
the bits are set to zero for no coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed
are difficult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebuffer are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the
coverage value computed for a fragment of some primitive may depend on
the primitive’s relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment’s grid square.
Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity. The square is called a fragment square and has
lower left corner (z,y) and upper right corner (z + 1,y + 1). We recognize

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 60

that this simple box filter may not produce the most favorable antialiasing
results, but it provides a simple, well-defined model.

A GL implementation may use other methods to perform antialiasing,
subject to the following conditions:

1. If fy and f; are two fragments, and the portion of f; covered by some
primitive is a subset of the corresponding portion of f; covered by
the primitive, then the coverage computed for f; must be less than or
equal to that computed for fs.

2. The coverage computation for a fragment f must be local: it may
depend only on f’s relationship to the boundary of the primitive being
rasterized. It may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-
ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies
along window edges.

In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeoff.

3.3 Points
The rasterization of points is controlled with
void PointSize(float size) ;

size specifies the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT_SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its z, and 1y,
coordinates (recall that the subscripts indicate that these are z and y window
coordinates) to integers. This (z,y) address, along with data derived from
the data associated with the vertex corresponding to the point, is sent as a
single fragment to the per-fragment stage of the GL.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 61

The effect of a point width other than 1.0 depends on the state of
point antialiasing. If antialiasing is disabled, the actual width is deter-
mined by rounding the supplied width to the nearest integer, then clamping
it to the implementation-dependent maximum non-antialiased point width.
Though this implementation-dependent value cannot be queried, it must
be no less than the implementation-dependent maximum antialiased point
width, rounded to the nearest integer value, and in any event no less than
1. If rounding the specified width results in the value 0, then it is as if the
value were 1. If the resulting width is odd, then the point

(09) = (2] + 50 Ll + 5)

is computed from the vertex’s z,, and y,,, and a square grid of the odd width
centered at (z,y) defines the centers of the rasterized fragments (recall that
fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

(0,9) = (L + 5 Lo+ 50

2
the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (z,y). See figure 3.2.

All fragments produced in rasterizing a non-antialiased point are as-
signed the same associated data, which are those of the vertex corresponding
to the point, with texture coordinates s, t, and r replaced with s/q, t/q, and
r/q, respectively. If ¢ is less than or equal to zero, the results are undefined.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point’s
(%4, yu) (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corre-
sponding fragment square (but see section 3.2). This value is saved and
used in the final step of rasterization (section 3.11). The data associated
with each fragment are otherwise the data associated with the point being
rasterized, with texture coordinates s, ¢, and r replaced with s/q, t/¢q, and
r/q, respectively. If ¢ is less than or equal to zero, the results are undefined.

Not all widths need be supported when point antialiasing is on, but
the width 1.0 must be provided. If an unsupported width is requested, the
nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 62

e e bt -t X - B it b il
i XK K- K- 45 S
i XXX 2 b
TTETTTYTTTYTTTATTTYTT T 0.5 Vo
05 15 25 35 45 55 05 15 25 35 45 55
Odd Width Even Width
Figure 3.2. Rasterization of non-antialiased wide points. The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region. The dotted grid lines lie on half-integer coordinates.

dependent. The range and gradations may be obtained using the query
mechanism described in Chapter 6. If, for instance, the width range is from
0.1 to 2.0 and the gradation width is 0.1, then the widths 0.1,0.2,...,1.9,2.0
are supported.

3.3.1 DPoint Rasterization State

The state required to control point rasterization consists of the floating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled
by several variables. Line width, which may be set by calling

void LineWidth(float width) ;

with an appropriate positive floating-point width, controls the width of ras-
terized line segments. The default width is 1.0. Values less than or equal

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION

63

6.0 T

50 : : : :
T S o

NEEN @ N

gy W
% ¥ | b B

3.0

7 ./
;|
4

2.0

.......

1.0

............................

Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the specified width.
The X marks indicate those fragment centers produced by rasterization. A
fragment’s computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 64

to 0.0 generate the error INVALID VALUE. Antialiasing is controlled with En-
able and Disable using the symbolic constant LINE SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that
sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
z-major or y-major. x-major line segments have slope in the closed inter-
val [—1, 1]; all other line segments are y-major (slope is determined by the
segment’s endpoints). We shall specify rasterization only for z-major seg-
ments except in cases where the modifications for y-major segments are not
self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with
center at window coordinates x; and yy, define a diamond-shaped region
that is the intersection of four half planes:

Ry ={(z,y) [|lo —asl+]y—ysl <1/2.}

Essentially, a line segment starting at p, and ending at pp produces those
fragments f for which the segment intersects Ry, except if p; is contained
in Ry. See figure 3.4.

To avoid difficulties when an endpoint lies on a boundary of Ry we (in
principle) perturb the supplied endpoints by a tiny amount. Let p, and
py have window coordinates (z4,y,) and (23, ys), respectively. Obtain the
perturbed endpoints p/, given by (24,y,) — (¢, €%) and pj given by (25, yp) —
(¢, €%). Rasterizing the line segment starting at p, and ending at p, produces
those fragments f for which the segment starting at p/ and ending on pj
intersects Ry, except if pj is contained in Ry. ¢ is chosen to be so small
that rasterizing the line segment produces the same fragments when § is
substituted for ¢ for any 0 < § < e.

When p, and py lie on fragment centers, this characterization of frag-
ments reduces to Bresenham’s algorithm with one modification: lines pro-
duced in this description are “half-open,” meaning that the final fragment
(corresponding to pp) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only
once rather than twice (as would occur with Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may
be difficult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 65

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line
segment 1s shown. A diamond shaped region of height 1 is placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

1. The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either x or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ
from that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the
same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either z-major (both left-to-right or both right-to-left) or y-major
(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-
ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment
center be given by p, = (24,y4) and let p, = (24, y4) and pp = (@1, ys). Set

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 66

(Pr — Pa) - (Pb — Pa)
Py — Pall?

(Note that t = 0 at p, and ¢t = 1 at p;.) The value of an associated datum
f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, ¢, or r texture coordinate (the depth
value, window z, must be found using equation 3.3, below), is found as

(1 =) fa/wa +tfo/wy
(1 =ty /wq + tay /wy
where f, and f, are the data associated with the starting and ending end-
points of the segment, respectively; w, and wy are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. a, = ap = 1
for all data except texture coordinates, in which case o, = ¢, and a, = ¢
(g, and g, are the homogeneous texture coordinates at the starting and end-
ing endpoints of the segment; results are undefined if either of these is less
than or equal to 0). Note that linear interpolation would use

f=0=t)fu/au+thi/aw. (3.3)

t =

(3.1)

f=

(3.2)

The reason that this formula is incorrect (except for the depth value) is
that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to find the corresponding value when
interpolated in eye space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion effects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFFig. We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 67

defines a line stipple. patternis an unsigned short integer. The line stipple is
taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is
used to modify the effective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1,256]. Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The
masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b= [s/r| mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced
otherwise. The bits of p are numbered with 0 being the least significant and
15 being the most significant. The initial value of s is zero; s is incremented
after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending
point). s is reset to 0 whenever a Begin occurs, and before every line
segment in a group of independent segments (as specified when Begin is
invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning
of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding
the supplied width to the nearest integer, then clamping it to the
implementation-dependent maximum non-antialiased line width. Though
this implementation-dependent value cannot be queried, it must be no
less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than 1. If
rounding the specified width results in the value 0, then it is as if the value
were 1.

Non-antialiased line segments of width other than one are rasterized
by offsetting them in the minor direction (for an z-major line, the minor
direction is y, and for a y-major line, the minor direction is) and replicating
fragments in the minor direction (see figure 3.5). Let w be the width rounded
to the nearest integer (if w = 0, then it is as if w = 1). If the line segment has
endpoints given by (¢, yo) and (21, y1) in window coordinates, the segment

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 68

width = 2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments
are shown. The heavy line segment is the one specified to be rasterized; the
light segment is the offset segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.

with endpoints (2, yo— (w—1)/2) and (21, y; — (w—1)/2) is rasterized, but
instead of a single fragment, a column of fragments of height w (a row of
fragments of length w for a y-major segment) is produced at each z (y for
y-major) location. The lowest fragment of this column is the fragment that
would be produced by rasterizing the segment of width 1 with the modified
coordinates. The whole column is not produced if the stipple bit for the
column’s x location is zero; otherwise, the whole column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. Two of the edges
are parallel to the specified line segment; each is at a distance of one-half the
current width from that segment: one above the segment and one below it.
The other two edges pass through the line endpoints and are perpendicular
to the direction of the specified line segment. Coverage values are computed
for each fragment by computing the area of the intersection of the rectangle
with the fragment square (see figure 3.6; see also section 3.2). Equation 3.2
is used to compute associated data values just as with non-antialiased lines;
equation 3.1 is used to find the value of t for each fragment whose square

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 69

Figure 3.6. The region used in rasterizing and finding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

is intersected by the line segment’s rectangle. Not all widths need be sup-
ported for line segment antialiasing, but width 1.0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the
last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where “fragment” is replaced
with “rectangle.” Each rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).

2

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating
whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or off. In addition, during rasterization, an integer stipple
counter must be maintained to implement line stippling. The initial value
of the line width is 1.0. The initial value of the line stipple is F'F'FFig (a

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 70

stipple of all ones). The initial value of the line stipple repeat count is one.
The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-
lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is
controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON SMOOTH. The analog
to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is
back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.6 of section 2.13.1 (including the
possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace(enum mode) ;

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if
either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained
by taking the z and y window coordinates of the polygon’s vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-
tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 71

side of a common edge (with identical endpoints) on which a fragment cen-
ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments
in a triangle. Define barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and ¢, each in the range [0, 1],
with @ + b+ ¢ = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle’s boundary as

P = apa + bpy + cpe,

where p,, py, and p. are the vertices of the triangle. a, b, and ¢ can be found
as
_ Alppepe) _ Alppape) — _ Alppapy)
CApapepe)’ T Alpaprpe)’ T A(papope)’
where A(Imn) denotes the area in window coordinates of the triangle with
vertices [, m, and n.
Denote a datum at p,, psy, or p. as f,, fp, or f., respectively. Then the
value f of a datum at a fragment produced by rasterizing a triangle is given

by

afa/wa + bfb/wb + Cfc/wc
a, [wy + bay fwy, + cafw,

f=

(3.4)

where w,, wy and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and ¢ are the barycentric coordinates of the fragment for which the data
are produced. o, = a = o, = 1 except for texture s, t, and r coordinates,
for which ay = ¢4, a» = @, and a. = ¢. (if any of q,, ¢, or ¢. are less
than or equal to zero, results are undefined). a, b, and ¢ must correspond
precisely to the exact coordinates of the center of the fragment. Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment’s center.

Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa/aa + bfb/ab + Cfc/ac;

this may yield acceptable results for color values (it must be used for depth
values), but will normally lead to unacceptable distortion effects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon’s vertices can be used

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 72

to obtain the value assigned to each fragment produced by the rasterization
algorithm. That is, it must be the case that at every fragment

f=>aif;
=1

where n is the number of vertices in the polygon, f; is the value of the f at
vertex 7; for each 7 0 < a; < 1 and > "4 a; = 1. The values of the a; may
differ from fragment to fragment, but at vertex ¢, a; = 0,5 # 7 and a; = 1.

One algorithm that achieves the required behavior is to triangulate a
polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satisfies the restrictions (in this case,
the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple(ubyte *pattern) ;

pattern is a pointer to memory into which a 32 x 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given
in section 3.6.4 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format
were COLOR_INDEX. The unpacked values (before any conversion or arithmetic
would have been performed) are bitwise ANDed with 1 to obtain a stipple
pattern of zeros and ones.

If z,, and y,, are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern (z,, mod 32, y,, mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 73

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment’s square. A coverage
value is computed at each such fragment, and this value is saved to be applied
as described in section 3.11. An associated datum is assigned to a fragment
by integrating the datum’s value over the region of the intersection of the
fragment square with the polygon’s interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment’s center may be
used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not. The polygon point sampling rule defined in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonMode(enum face, enum mode) ;

face is one of FRONT, BACK, or FRONT _AND_BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,
respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the
beginning of the first rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to
the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
affect only the final rasterization of polygons: in particular, a polygon’s
vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-

tively, apply.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 74

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon
may be offset by a single value that is computed for that polygon. The
function that determines this value is specified by calling

void PolygonOffset(float factor, float units) ;

factor scales the maximum depth slope of the polygon, and units scales an
implementation dependent constant that relates to the usable resolution of
the depth buffer. The resulting values are summed to produce the polygon
offset value. Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

=)

where (2, Yu, Zu) is a point on the triangle. m may be approximated as
0z 0z
w| |9z } (3.6)

0ty | | Y
If the polygon has more than three vertices, one or more values of m may be
used during rasterization. Each may take any value in the range [min,maz],
where min and maz are the smallest and largest values obtained by evaluat-
ing Equation 3.5 or Equation 3.6 for the triangles formed by all three-vertex
combinations.

The minimum resolvable difference r is an implementation constant. It
is the smallest difference in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth buffer.
All pairs of fragments generated by the rasterization of two polygons with
otherwise identical vertices, but z,, values that differ by r, will have distinct
depth values.

The offset value o for a polygon is

9

m:max{

o= m* factor + r * units. (3.7)

m is computed as described above, as a function of depth values in the range
[0,1], and o is applied to depth values in the same range.

Boolean state values POLYGON OFFSET_POINT, POLYGON OFFSET LINE, and
POLYGON OFFSET FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state val-
ues are enabled and disabled as argument values to the commands Enable

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 75

and Disable. If POLYGON_OFFSET_POINT is enabled, o is added to the depth
value of each fragment produced by the rasterization of a polygon in POINT
mode. Likewise, if POLYGON_OFFSET_LINE or POLYGON OFFSET FILL is enabled, o
is added to the depth value of each fragment produced by the rasterization
of a polygon in LINE or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by
clamping after offset addition is performed (preferred), or by clamping the
vertex values used in the rasterization of the polygon.

3.5.6 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-
tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode
setting for each of front and back facing polygons, whether point, line, and
fill mode polygon offsets are enabled or disabled, and the factor and bias
values of the polygon offset equation. The initial stipple pattern is all ones;
initially stippling is disabled. The initial setting of polygon antialiasing is
disabled. The initial state for PolygonMode is FILL for both front and
back facing polygons. The initial polygon offset factor and bias values are
both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command (described in section 3.6.4).
Some of the parameters and operations governing the operation of Draw-
Pixels are shared by ReadPixels (used to obtain pixel values from the
framebuffer) and CopyPixels (used to copy pixels from one framebuffer
location to another); the discussion of ReadPixels and CopyPixels, how-
ever, is deferred until Chapter 4 after the framebuffer has been discussed
in detail. Nevertheless, we note in this section when parameters and state
pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in client mem-
ory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebuffer (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,
PixelTransfer, and PixelMap.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 76

‘ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘
UNPACK_SWAP BYTES boolean FALSE TRUE/FALSE
UNPACK LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK _ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS | integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8

SUNPACK IMAGE HEIGHT | integer 0 [0, 00)
SUNPACK SKIP IMAGES | integer 0 [0, 00)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPix-
els, TexImagelD, TexImage2D, and TexImage3D.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of
these commands is issued. This may differ from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStore{if}(enum pname, T param) ;

pname is a symbolic constant indicating a parameter to be set, and param
is the value to set it to. Table 3.1 summarizes the pixel storage parameters,
their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a floating-point value may be
used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0.0 and TRUE otherwise, while if the
parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the
passed value is 0 and TRUE otherwise, while if the parameter is a floating-
point value, then the passed value is converted to floating-point.

3.6.2 The Imaging Subset

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 77

Some pixel transfer and per-fragment operations are only made available in
GL implementations which incorporate the optional imaging subset. The
imaging subset includes both new commands, and new enumerants allowed
as parameters to existing commands. If the subset is supported, all of these
calls and enumerants must be implemented as described later in the GL spec-
ification. If the subset is not supported, calling any of the new commands
generates the error INVALID OPERATION, and using any of the new enumer-
ants generates the error INVALID ENUM. The individual operations available
only in the imaging subset are described in section 3.6.3, except for blending
features, which are described in chapter 4. They include:

1. Color tables, including all commands and enumerants described in
subsections Color Table Specification, Alternate Color Table
Specification Commands, Color Table State and Proxy State,
Color Table Lookup, Post Convolution Color Table Lookup,
and Post Color Matrix Color Table Lookup, as well as the query
commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in
subsections Convolution Filter Specification, Alternate Con-
volution Filter Specification Commands, and Convolution, as
well as the query commands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in
subsections Color Matrix Specification and Color Matrix Trans-
formation, as well as the simple query commands described in sec-
tion 6.1.6.

4. Histogram and minmax, including all commands and enumerants de-
scribed in subsections Histogram Table Specification, Histogram
State and Proxy State, Histogram, Minmax Table Specifica-
tion, and Minmax, as well as the query commands described in sec-
tion 6.1.9 and section 6.1.10.

5. The sub-
set of blending features described by BlendEquation, BlendColor,
and the BlendFunc modes CONSTANT _COLOR, ONE_MINUS_CONSTANT _COLOR,
CONSTANT _ALPHA, and ONE_MINUS_CONSTANT ALPHA. These are described
separately in section 4.1.6.

The imaging subset is supported only if the GL_EXTENSIONS string in-
cludes the substring "ARB_imaging". Querying GL_EXTENSIONS is described in
section 6.1.11.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 78

‘ Parameter Name ‘ Type | Initial Value ‘ Valid Range ‘

MAP_COLOR boolean FALSE TRUE /FALSE

MAP _STENCIL boolean FALSE TRUE /FALSE
INDEX_SHIFT integer 0 (—00, 00)
INDEX_OFFSET integer 0 (—00, 00)
2 _SCALE float 1.0 (—00, 00)
DEPTH_SCALE float 1.0 (—00, 00)
x BIAS float 0.0 (—00, 00)
DEPTH_BIAS float 0.0 (—00, 00)
&POST_CONVOLUTION .z _SCALE | float 1.0 (—00, 00)
&POST_CONVOLUTION_ x BIAS float 0.0 (—00, 00)
&POST_COLOR MATRIX x_SCALE | float 1.0 (—00, 00)
&POST_COLOR_MATRIX x_BIAS float 0.0 (—00, 00)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

If the imaging subset is not supported, the related pixel transfer opera-
tions are not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 3.6.4),
ReadPixels (section 4.3.2), and CopyPixels (section 4.3.3) at the time
when one of these commands is executed (which may differ from the time
the command is issued). Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value) ;

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters
that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist
as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.
The pixel map lookup tables are set with

void PixelMap{ui us f}v(enum map, sizei size, T values) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 79

‘ Map Name H Address ‘ Value ‘ Init. Size ‘ Init. Value
PIXEL MAP_I_TO.I || color idx color idx 1 0
PIXEL_MAP S_TOS || stencil idx | stencil idx 1 0
PIXEL MAP_I_TOR || color idx R 1 0.0
PIXEL MAP_I_TOG || color idx G 1 0.0
PIXEL MAP_I_TOB || color idx B 1 0.0
PIXEL MAP_I_TOA || color idx A 1 0.0
PIXEL_MAP R_TOR R R 1 0.0
PIXEL_MAP G_TO G G G 1 0.0
PIXEL _MAP B_TOB B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 3.3: PixelMap parameters.

map is a symbolic map name, indicating the map to set, size indicates the
size of the map, and values is a pointer to an array of size map values.
The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depend-
ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is specified. An entry giving a
color component value is converted according to table 2.6. An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The
various tables and their initial sizes and entries are summarized in table 3.3.
A table that takes an index as an address must have stze = 2" or the error
INVALID_VALUE results. The maximum allowable size of each table is imple-
mentation dependent, but must be at least 32 (a single maximum applies
to all tables). The error INVALID_VALUE is generated if a size larger than the
implemented maximum, or less than one, is given to PixelMap.

Color Table Specification
Color lookup tables are specified with

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, void *data) ;

target must be one of the regular color table names listed in table 3.4 to
define the table. A prozy table name is a special case discussed later in

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 80

‘ Table Name H Type

COLOR_TABLE regular
POST_CONVOLUTION_COLOR_TABLE
POST_COLOR_MATRIX _COLOR_TABLE

PROXY_COLOR_TABLE proxy
PROXY_POST_CONVOLUTION_COLOR_TABLE
PROXY_POST_COLOR MATRIX_COLOR_TABLE

Table 3.4: Color table names. Regular tables have associated image data.
Proxy tables have no image data, and are used only to determine if an image
can be loaded into the corresponding regular table.

this section. width, format, type, and data specify an image in memory with
the same meaning and allowed values as the corresponding arguments to
DrawPixels (see section 3.6.4), with height taken to be 1. The formats
STENCIL_INDEX and DEPTH_COMPONENT are not allowed.

The specified image is taken from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the
four COLOR_TABLE_SCALE parameters, biased by the four COLOR_TABLE BIAS pa-
rameters, and clamped to [0,1]. These parameters are set by calling Col-
orTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format specified by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The color lookup table is redefined to have width entries, each with the
specified internal format. The table is formed with indices 0 through width—
1. Table location i is specified by the ¢th image pixel, counting from zero.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE TO0 LARGE is generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
T params) ;

target must be a regular color table name. pnameis one of COLOR_TABLE SCALE
or COLOR_TABLE BIAS. params points to an array of four values: red, green,

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 81

blue, and alpha, in that order.

A GL implementation may vary its allocation of internal component
resolution based on any ColorTable parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. Allocations must be invariant; the same allocation must be
made each time a color table is specified with the same parameter values.
These allocation rules also apply to proxy color tables, which are described
later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the
framebuffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enum target, enum internalformat,
int z, int y, sizei width) ;

defines a color table in exactly the manner of ColorTable, except that table
data are taken from the framebuffer, rather than from client memory. target
must be a regular color table name. z, y, and width correspond precisely to
the corresponding arguments of CopyPixels (refer to section 4.3.3); they
specify the image’s width and the lower left (z,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly
as if these arguments were passed to CopyPixels with argument type set to
COLOR and height set to 1, stopping after pixel transfer processing is complete.
Subsequent processing is identical to that described for ColorTable, be-
ginning with scaling by COLOR_TABLE SCALE. Parameters target, internalfor-
mat and width are specified using the same values, with the same meanings,
as the equivalent arguments of ColorTable. format is taken to be RGBA.
Two additional commands,

void ColorSubTable(enum target, sizei start, sizei count,
enum format, enum type, void *data) ;

void CopyColorSubTable(enum target, sizei start, int z,
int y, sizei count) ;

respecify only a portion of an existing color table. No change is made to the
internalformat or width parameters of the specified color table, nor is any
change made to table entries outside the specified portion. target must be a
regular color table name.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 82

ColorSubTable arguments format, type, and data match the corre-
sponding arguments to ColorTable, meaning that they are specified using
the same values, and have the same meanings. Likewise, CopyColorSub-
Table arguments z, y, and count match the z, y, and width arguments of
CopyColorTable. Both of the ColorSubTable commands interpret and
process pixel groups in exactly the manner of their ColorTable counter-
parts, except that the assignment of R, G, B, and A pixel group values to
the color table components is controlled by the internalformat of the table,
not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSub-
Table specify a subregion of the color table starting at index start and
ending at index start + count — 1. Counting from zero, the nth pixel group
is assigned to the table entry with index count+n. The error INVALID VALUE
is generated if start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For
each of the three tables, there is an array of values. Each array has associated
with it a width, an integer describing the internal format of the table, six
integer values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the table, and two groups of four
floating-point numbers to store the table scale and bias. Each initial array
is null (zero width, internal format RGBA, with zero-sized components). The
initial value of the scale parameters is (1,1,1,1) and the initial value of the
bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color
lookup tables are maintained. Each proxy table includes width and internal
format state values, as well as state for the red, green, blue, alpha, lumi-
nance, and intensity component resolutions. Proxy tables do not include
image data, nor do they include scale and bias parameters. When Col-
orTable is executed with target specified as one of the proxy color table
names listed in table 3.4, the proxy state values of the table are recomputed
and updated. If the table is too large, no error is generated, but the proxy
format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corre-
sponding regular table name (COLOR_TABLE is the regular name corresponding
to PROXY_COLOR_TABLE, for example), the proxy state values are set exactly as
though the regular table were being specified. Calling ColorTable with a
proxy target has no effect on the image or state of any actual color table.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 83

There is no image associated with any of the proxy targets. They can-
not be used as color tables, and they must never be queried using GetCol-
orTable. The error INVALID ENUM is generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum target, enum internalfor-
mat, sizel width, sizei height, enum format, enum type,
void *data) ;

target must be CONVOLUTION 2D. width, height, format, type, and data specify
an image in memory with the same meaning and allowed values as the
corresponding parameters to DrawPixels. The formats STENCIL INDEX and
DEPTH_COMPONENT are not allowed.

The specified image is extracted from memory and processed just as
if DrawPixels were called, stopping after the final expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the four
two-dimensional CONVOLUTION_FILTER _SCALE parameters and biased by the
four two-dimensional CONVOLUTION FILTER BIAS parameters. These parame-
ters are set by calling ConvolutionParameterfv as described below. No
clamping takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format specified by (or derived from)
internalformat, in the same manner as for TexImage2D!.

The red, green, blue, alpha, luminance, and/or intensity components of
the pixels are stored in floating point, rather than integer format. They form
a two-dimensional image indexed with coordinates ¢, j such that ¢ increases
from left to right, starting at zero, and j increases from bottom to top, also
starting at zero?. Image location i, j is specified by the Nth pixel, counting
from zero, where

N =i+ jxwidth

The error INVALID VALUE is generated if width or height is greater than
the maximum supported value. These values are queried with GetCon-
volutionParameteriv, setting target to CONVOLUTION 2D and pname to
MAX_CONVOLUTIONWIDTH or MAX_CONVOLUTION HEIGHT, respectively.

'This is identical to ColorTable language.
?Redo like the TexImage2D description?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 84

The scale and bias parameters for a two-dimensional filter are specified
by calling

void ConvolutionParameter{if}v(enum target,
enum pname, T params) ;

with target CONVOLUTION_2D. pname is one of CONVOLUTION_FILTER_SCALE or
CONVOLUTION FILTER BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target, enum internalfor-
mat, sizei width, enum format, enum type, void *data) ;

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional
counterparts. date must point to a one-dimensional image, however.

The image is extracted from memory and processed as if Con-
volutionFilter2D were called with a height of 1, except that it is
scaled and biased by the one-dimensional CONVOLUTION FILTER_SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are specified ex-
actly as the two-dimensional parameters, except that ConvolutionParam-
eterfv is called with target CONVOLUTION_1D.

The image is formed with coordinates ¢ such that ¢ increases from left to
right, starting at zero. Image location i is specified by the ith pixel, counting
from zero.

The error INVALID VALUE is generated if width is greater than the
maximum supported value. This value is queried using GetConvo-
lutionParameteriv, setting target to CONVOLUTION 1D and pname to
MAX_CONVOLUTION WIDTH.

Special facilities are provided for the definition of two-dimensional sep-
arable filters — filters whose image can be represented as the product of
two one-dimensional images, rather than as full two-dimensional images. A
two-dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalfor-

mat, sizel width, sizei height, enum format, enum type,
void *row, void *column) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 85

target must be SEPARABLE 2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points
to a width pixel wide image of the specified format and type. column points
to a height pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convo-
lutionFilter1D were called separately for each, with the resulting retained
images replacing the current two-dimensional separable filter images®, ex-
cept that each image is scaled and biased by the two-dimensional separable
CONVOLUTION_FILTER_SCALE and CONVOLUTION FILTER_BIAS parameters. These
parameters are specified exactly as the one-dimensional and two-dimensional
parameters, except that ConvolutionParameteriv is called with target
SEPARABLE_2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken
directly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target, enum inter-
nalformat, int z, int y, sizei width, sizei height) ;

defines a two-dimensional filter in exactly the manner of ConvolutionFil-
ter2D, except that image data are taken from the framebuffer, rather than
from client memory. target must be CONVOLUTION_2D. z, y, width, and height
correspond precisely to the corresponding arguments of CopyPixels (refer
to section 4.3.3); they specify the image’s width and height, and the lower
left (z,y) coordinates of the framebuffer region to be copied. The image
is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR, stopping after pixel transfer
processing is complete.

Subsequent processing is identical to that described for Convolution-
Filter2D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, width, and height are specified using the same values,
with the same meanings, as the equivalent arguments of ConvolutionFil-
ter2D. format is taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target, enum inter-
nalformat, int z, int y, sizei width) ;

®Clause is not found for other filter types.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 86

defines a one-dimensional filter in exactly the manner of ConvolutionFil-
terlD, except that image data are taken from the framebuffer, rather than
from client memory. target must be CONVOLUTION_1D. z, y, and width cor-
respond precisely to the corresponding arguments of CopyPixels (refer to
section 4.3.3); they specify the image’s width and the lower left (z,y) coor-
dinates of the framebuffer region to be copied. The image is taken from the
framebuffer exactly as if these arguments were passed to CopyPixels with
argument type set to COLOR and height set to 1, stopping after pixel transfer
processing is complete.

Subsequent processing is identical to that described for Convolution-
Filter1D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, and width are specified using the same values, with
the same meanings, as the equivalent arguments of ConvolutionFilter2D.
format is taken to be RGBA.

Convolution Filter State

The required state for convolution filters includes a one-dimensional image
array, two one-dimensional image arrays for the separable filter, and a two-
dimensional image array. The two-dimensional array has associated with
it a height. Each array has associated with it a width, an integer describ-
ing the internal format of the table, and six integer values describing the
resolutions of each of the red, green, blue, alpha, luminance, and intensity
components of the table. Each filter (one-dimensional, two-dimensional,
and two-dimensional separable) also has associated with it two groups of
four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal
format RGBA, with zero-sized components). The initial value of all scale
parameters is (1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode to COLORMATRIX causes the matrix operations de-
scribed in section 2.10.2 to apply to the top matrix on the color matrix stack.
All matrix operations have the same effect on the color matrix as they do
on the other matrices.

Histogram Table Specification
The histogram table is specified with

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 87

void Histogram(enum target, sizei width, enum internal-
format, boolean sink) ;

target must be HISTOGRAM if a histogram table is to be specified. target
value PROXY HISTOGRAM is a special case discussed later in this section. width
specifies the number of entries in the histogram table, and internalformat
specifies the format of each table entry. sink specifies whether pixel groups
will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution of Histogram, the specified his-
togram table is redefined to have width entries, each with the specified inter-
nal format. The entries are indexed 0 through width — 1. Each component
in each entry is set to zero. The values in the previous histogram table, if
any, are lost.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of 2. The error TABLE TOO_LARGE is generated if the specified histogram
table is too large for the implementation. The error INVALID ENUM is gener-
ated if internalformat is not one of the values accepted by the correspond-
ing parameter of TexImage2D, or is 1, 2, 3, 4, INTENSITY, INTENSITY4,
INTENSITYS8, INTENSITY12, or INTENSITY16.

A GL implementation may vary its allocation of internal component
resolution based on any Histogram parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. In particular, allocations must be invariant; the same allocation
must be made each time a histogram is specified with the same parameter
values. These allocation rules also apply to the proxy histogram, which is
described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which
is associated a width, an integer describing the internal format of the his-
togram, five integer values describing the resolutions of each of the red,
green, blue, alpha, and luminance components of the table, and a flag in-
dicating whether or not pixel groups are consumed by the operation. The
initial array is null (zero width, internal format RGBA, with zero-sized com-
ponents). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy his-
togram table is maintained. It includes width, internal format, and red,
green, blue, alpha, and luminance component resolutions. The proxy table

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 88

does not include image data or the flag. When Histogram is executed
with target set to PROXY_HISTOGRAM, the proxy state values are recomputed
and updated. If the histogram array is too large, no error is generated, but
the proxy format, width, and component resolutions are set to zero. If the
histogram table would be accomodated by Histogram called with target
set to HISTOGRAM, the proxy state values are set exactly as though the ac-
tual histogram table were being specified. Calling Histogram with target
PROXY HISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY_ HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The
error INVALID_ENUM results if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enum target, enum internalformat,
boolean sink) ;

target must be MINMAX. internalformat specifies the format of the table en-
tries. sink specifies whether pixel groups will be consumed by the minmax
operation (TRUE) or passed on to final conversion (FALSE).

The error INVALID ENUM is generated if internalformat is not one of the
values accepted by the corresponding parameter of TexImage2D, or is 1, 2,
3, 4, INTENSITY, INTENSITY4, INTENSITYS, INTENSITY12, or INTENSITY16.* The
resulting table always has 2 entries, each with values corresponding only to
the components of the internal format.

The state necessary for minmax operation is a table containing two
elements® (the first element stores the minimum values, the second stores
the maximum values), an integer describing the internal format of the ta-
ble, and a flag indicating whether or not pixel groups are consumed by the
operation. The initial state is a minimum table entry set to the maximum
representable value and a maximum table entry set to the minimum repre-
sentable value. Internal format is set to RGBA and the initial value of the flag
is false.

*Because the internal type is floating point, it’s likely that internalformat should be
restricted to base internal formats, as defined in table 3.15.
® Make sure these aren’t confused with vertex array elements - need a glossary?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 89

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
figure 3.7. We describe the stages of this process in the order in which they
occur.

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum f{ype, void *data) ;

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel
rectangle to be drawn. data is a pointer to the data to be drawn. These
data are represented with one of seven GL data types, specified by type.
The correspondence between the twenty type token values and the GL data
types they indicate is given in table 3.5. If the GL is in color index mode
and format is not one of COLOR_INDEX, STENCIL_INDEX, or DEPTH_COMPONENT,
then the error INVALID OPERATION occurs. If type is BITMAP and format is
not COLOR_INDEX or STENCIL_INDEX then the error INVALID_ENUM occurs. Some
additional constraints on the combinations of format and type values that
are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (GL data types int
and uint), or floating point values (GL data type float). These elements
are grouped into sets of one, two, three, or four values, depending on the
Sformat, to form a group. Table 3.6 summarizes the format of groups obtained
from memory; it also indicates those formats that yield indices and those
that yield components.

By default the values of each GL data type are interpreted as they would
be specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES
is enabled, however, then the values are interpreted with the bit orderings
modified as per table 3.7. The modified bit orderings are defined only if the
GL data type ubyte has eight bits, and then for each specific GL data type
only if that type is represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the first element of the first group
of the first row pointed to by the pointer passed to DrawPixels. If the

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION

90

byte, short, int, or float pixel
data stream (index or component)

convert
to [0,1]

convert
L to RGB

shift
and offset

index to RGBA index to index
lookup lookup

color table
lookup

convolution color table
cale and bias lookup

post color table histogram
convolution lookup

color matrix
cale and bias

clamp mask to
to [0,1] @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL
1s in RGBA mode, color index pixels otherwise. Operations in dashed boxes
may be enabled or disabled. RGBA and color index pixel paths are shown;
depth and stencil pixel paths are not shown.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 91

type Parameter Corresponding SSpecial
Token Name GL Data Type | Interpretation

UNSIGNED BYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
FLOAT float No
SUNSIGNED BYTE 3.3 2 ubyte Yes
&UNSIGNED BYTE 2_3_3 REV ubyte Yes
SUNSIGNED SHORT 5 6 5 ushort Yes
&UNSIGNED _SHORT 5_6_ 5_REV ushort Yes
&UNSIGNED SHORT 4 4 4 4 ushort Yes
&UNSIGNED _SHORT 4 4 4 4 REV ushort Yes
&UNSIGNED SHORT 5 55 1 ushort Yes
&UNSIGNED _SHORT_1 .5 55 REV ushort Yes
&UNSIGNED INT 8 8.8.8 uint Yes
&UNS IGNED_INT 8_8_8_8_REV uint Yes
&UNSIGNED_INT_10_10_10_2 uint Yes
&UNSIGNED_INT_2_10_10_10_REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the
corresponding GL data types. Refer to table 2.2 for definitions of GL data
types. Special interpretations are described near the end of section 3.6.4.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 92

Format Name H Element Meaning and Order ‘ Target Buffer ‘

COLOR_INDEX Color Index Color
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
RED R Color
GREEN G Color

BLUE B Color
ALPHA A Color

RGB R, G, B Color

RGBA R, G, B, A Color
&BGR B, G, R Color
$BGRA B, G, R, A Color
LUMINANCE Luminance Color
LUMINANCE ALPHA Luminance, A Color

Table 3.6: DrawPixels and ReadPixels formats. The second column gives
a description of and the number and order of elements in a group. Unless
specified as an index, formats yield components.

Element Size | Default Bit Ordering | Modified Bit Ordering
8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements when UNPACK_SWAP BYTES is
enabled. These reorderings are defined only when GL data type ubyte has
8 bits, and then only for GL. data types with 8, 16, or 32 bits. Bit 0 is the
least significant.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 93

value of UNPACK ROW_LENGTH is not positive, then the number of groups in
a row is width; otherwise the number of groups is UNPACK ROW LENGTH. If p
indicates the location in memory of the first element of the first row, then
the first element of the Nth row is indicated by

p+ Nk (3.8)

where N is the row number (counting from zero) and k is defined as

nl s> a,
k:{ a/s[snl/a] s<a (3:9)

where n is the number of elements in a group, [is the number of groups
in the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of
GL ubytes, of an element. If the number of bits per element is not 1, 2, 4,
or 8 times the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-
eters: UNPACK ROW_LENGTH, UNPACK_SKIP ROWS, and UNPACK SKIP_PIXELS. Before
obtaining the first group from memory, the pointer supplied to DrawPixels
is effectively advanced by (UNPACK_SKIP PIXELS)n + (UNPACK_SKIP ROWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory
(without advancing the pointer), after which the pointer is advanced by k
elements. height sets of width groups of values are obtained this way. See
figure 3.8.

Calling DrawPixels with a fype of UNSIGNED BYTE 3 3.2,
UNSIGNED BYTE 2_3_3_REV, UNSIGNED_SHORT 56.5, UNSIGNED_SHORT 5_6_5_REV,
UNSIGNED_SHORT 4.4 4 4, UNSIGNED _SHORT 4. 4.4 4 REV, UNSIGNED_SHORT 5 5.5_1,
UNSIGNED_SHORT_1.5_5 5 _REV, UNSIGNED_INT_8_8_8_8, UNSIGNED_INT 8_8_8_8 _REV,
UNSIGNED_INT_10_10_10_2, or UNSIGNED INT 2 _10_10_10 REV is a special case in
which all the components of each group are packed into a single unsigned
byte, unsigned short, or unsigned int, depending on the type. The number of
components per packed pixel is fixed by the type, and must match the num-
ber of components per group indicated by the format parameter, as listed in
table 3.8. The error INVALID OPERATION is generated if a mismatch occurs.
This constraint also holds for all other functions that accept or return pixel
data using type and format parameters to define the type and format of that
data.

Bitfield locations of the first, second, third, and fourth components of
each packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each
bitfield is interpreted as an unsigned integer value. If the base GL type is

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 94

A
Y

ROW_LENGTH

SKIP_PIXELS

SKIP_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated param-
eter names are prefixed by UNPACK_ for DrawPixels and by PACK_ for
ReadPixels.

type Parameter GL Data | Number of Matching
Token Name Type Components | Pixel Formats
UNSIGNED BYTE 3_3_2 ubyte 3 RGB
UNSIGNED BYTE 2_3_3 REV ubyte 3 RGB
UNSIGNED SHORT 5. 6.5 ushort 3 RGB
UNSIGNED SHORT 5_6 5 _REV ushort 3 RGB
UNSIGNED _SHORT 4 4 4 4 ushort 4 RGBA,BGRA
UNSIGNED _SHORT 4 4. 4 4 REV ushort 4 RGBA,BGRA
UNSIGNED SHORT 5 65 5_1 ushort 4 RGBA,BGRA
UNSIGNED_SHORT_1.65 5 5 REV ushort 4 RGBA,BGRA
UNSIGNED_INT 8 888 uint 4 RGBA,BGRA
UNSIGNED_INT_ 8_8_8_8_REV uint 4 RGBA,BGRA
UNSIGNED_INT_10_10_10_2 uint 4 RGBA,BGRA
UNSIGNED_INT 2_10_10_10_REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 95

supported with more than the minimum precision (e.g. a 9-bit byte) the
packed components are right-justified in the pixel.

Components are normally packed with the first component in the most
significant bits of the bitfield, and successive component occupying progres-
sively less significant locations. Types whose token names end with REV
reverse the component packing order from least to most significant loca-
tions. In all cases, the most significant bit of each component is packed in
the most significant bit location of its location in the bitfield.

UNSIGNED BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED BYTE 2_3_3_REV:

7 6 5 4 3 2 1 0

‘ 3rd ‘ 2nd ‘ 1st Component ‘

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each com-
ponent.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION

UNSIGNED_SHORT_ 5_6_5:

96

15 14 13 12 11 10 9 8 7 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5_REV:
15 14 13 12 11 10 9 8 7 3 2 1 0
3rd 2nd 1st Component
UNSIGNED _SHORT 4 4 4 4:
15 14 13 12 11 10 9 8 7 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED _SHORT 4 4 4 4 REV:
15 14 13 12 11 10 9 8 7 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNED_SHORT 5.5 5_1:
15 14 13 12 11 10 9 8 7 3 2 1 0
1st Component 2nd 3rd ‘ 4th ‘
UNSIGNED_SHORT_1 .5 5 5 REV:
15 14 13 12 11 10 9 8 7 3 2 1 0
‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.10: UNSIGNED_SHORT formats

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 97

UNSIGNED_INT 8_8_8_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_INT_ 8_8_8_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_10_10_10_2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNED_INT 2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.11: UNSIGNED_INT formats

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 98
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments

The assignment of component to fields in the packed pixel is as described
in table 3.12

Byte swapping, if enabled, is performed before the component are ex-
tracted from each pixel. The above discussions of row length and image
extraction are valid for packed pixels, if “group” is substituted for “compo-
nent” and the number of components per group is understood to be one.

Calling DrawPixels with a type of BITMAP is a special case in which the
data are a series of GL ubyte values. Each ubyte value specifies 8 1-bit ele-
ments with its 8 least-significant bits. The 8 single-bit elements are ordered
from most significant to least significant if the value of UNPACK LSB_FIRST is
FALSE; otherwise, the ordering is from least significant to most significant.
The values of bits other than the 8 least significant in each ubyte are not
significant.

The first element of the first row is the first bit (as defined above) of the
ubyte pointed to by the pointer passed to DrawPixels. The first element
of the second row is the first bit (again as defined above) of the ubyte at
location p + k, where k is computed as

o[

There is a mechanism for selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the first element from mem-
ory, the pointer supplied to DrawPixels is effectively advanced by
UNPACK _SKIP ROWS * k& ubytes. Then UNPACK SKIP PIXELS 1-bit elements are
ignored, and the subsequent width 1-bit elements are obtained, without ad-

(3.10)

vancing the ubyte pointer, after which the pointer is advanced by k ubytes.
height sets of width elements are obtained this way.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 99

Conversion to floating-point

This step applies only to groups of components. It is not performed on
indices. Each element in a group is converted to a floating-point value
according to the appropriate formula in table 2.6 (section 2.13).

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a
group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE ALPHA, then
each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the first original element into each of the first three
new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group
is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer opera-
tions are performed equivalently during the drawing, copying, and reading of
pixels, and during the specification of texture images (either from memory or
from the framebuffer), they are described separately in section 3.6.5. After
the processing described in that section is completed, groups are processed
as described in the following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index
to the left of the binary point by 2" — 1, where n is the number of bits in an
index buffer. For RGBA components, each element is clamped to [0, 1]. The
resulting values are converted to fixed-point according to the rules given in
section 2.13.9 (Final Color Processing).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 100

For a depth component, an element is first clamped to [0, 1] and then
converted to fixed-point as if it were a window z value (see section 2.10.1,
Controlling the Viewport).

Stencil indices are masked by 2" — 1, where n is the number of bits in
the stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom(float z,, float z,) ;

Let (z,p,y,p) be the current raster position (section 2.12). (If the current
raster position is invalid, then DrawPixels is ignored®.) If a particular
group (index or components) is the nth in a row and belongs to the mth
row, consider the region in window coordinates bounded by the rectangle
with corners

(@rp + 22m, Yrp + 2ym) and (2 + 2 (4 1), Yrp + 2y (M + 1))

(either z, or z, may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-
respondence with this particular group of elements.

A fragment arising from a group consisting of color data takes on the
color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position’s associated data. A frag-
ment arising from a depth component takes the component’s depth value;
the color and texture coordinates are given by those associated with the
current raster position. In both cases texture coordinates s, ¢, and r are re-
placed with s/q, t/q, and r/q, respectively. If ¢ is less than or equal to zero,
the results are undefined. Groups arising from DrawPixels with a format
of STENCIL_INDEX are treated specially and are described in section 4.3.1.

3.6.5 Pixel Transfer Operations

The GL defines four kinds of pixel groups:

1. RGBA component: Fach group comprises four color components: red,
green, blue, and alpha.

5 The interaction with histogram and minmax needs to be thought through carefully -
do histogram and minmax take place anyway? How about for scissored pixels?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 101

2. Depth component: Fach group comprises a single depth component.
3. Color index: Each group comprises a single color index.
4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of
certain kinds; if an operation is not applicable to a given group, it is skipped.
Future versions of GL may define additional pixel transfer operations.

Arithmetic on Components

This step applies only to RGBA component and depth component groups.
Each component is multiplied by an appropriate signed scale factor:
RED SCALE for an R component, GREEN_SCALE for a G component, BLUE_SCALE
for a B component, and ALPHA SCALE for an A component, or DEPTH_SCALE
for a depth component. Then the result is added to the appropriate signed
bias: RED_BIAS, GREEN_BIAS, BLUE_BIAS, ALPHA BIAS, or DEPTH_BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index
is a floating-point value, it is converted to fixed-point, with an unspecified
number of bits to the right of the binary point. Indices that are already
integers remain so; any fraction bits in the resulting fixed-point value are
zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX_OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if
MAP_COLOR is FALSE. First, each component is clamped to the range [0, 1].
There is a table associated with each of the R, G, B, and A component
elements: PIXEL MAP R TOR for R, PIXEL MAP G TO G for (G, PIXEL MAP B TO B
for B, and PIXEL MAP A TO A for A. Each element is multiplied by an integer
one less than the size of the corresponding table, and, for each element, an
address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 102

Color Index Lookup

This step applies only to color index groups. If the GL command that
invokes the pixel transfer operation requires that RGBA component pixel
groups be generated, then a conversion is performed at this step. RGBA
component pixel groups are required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL MAP_I_TOR,
PIXEL MAP_I_TO_G, PIXEL MAP_I_TO_B, and PIXEL MAP_I_TO_A. Each of these ta-
bles must have 2" entries for some integer value of n (n may be different
for each table). For each table, the index is first rounded to the nearest
integer; the result is ANDed with 2" — 1, and the resulting value used as an
address into the table. The indexed value becomes an R, G, B, or A value,
as appropriate. The group of four elements so obtained replaces the index,
changing the group’s type to RGBA component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXELMAP_I_TO.I table (otherwise, the
index is not looked up). Again, the table must have 2" entries for some
integer n, and the integer part of the index is ANDed with 2" — 1, producing
a value. This value addresses the table, and the value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point
value with unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP_STENCIL is enabled,
then the index is looked up in the PIXELMAP_S_TO.S table (otherwise, the
index is not looked up). The table must have 2" entries for some integer n,
and the integer part of the index is ANDed with 2" — 1, producing a value.
This value addresses the table, and the value in the table replaces the index.
The floating-point table value is first rounded to a fixed-point value with
unspecified precision.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 103

Base Internal Format‘ R ‘ G ‘ B ‘ A ‘

ALPHA Ay
LUMINANCE Ly | Ly | Ly
LUMINANCE_ALPHA Ly | Ly | Ly | Ay
INTENSITY L L | L L
RGB R, | Gy | By
RGBA R, |Gy | By | Ay

Table 3.13: Color table lookup. R, Gy, By, A¢, Ly, and I; are color table
values that are assigned to pixel components R, GG, B, and A depending on
the table format. When there is no assignment, the component value is left
unchanged by lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is
only done if COLOR_TABLE is enabled. If a zero-width table is enabled, no
lookup is performed.

The internal format of the table determines which components of the
group will be replaced (see table 3.13). The components to be replaced
are converted to indices by clamping to [0, 1], multiplying by an integer
one less than the width of the table, and rounding to the nearest integer.
Components are replaced by the table entry at the index.

The required state is one bit indicating whether color table lookup is
enabled or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D is
enabled, the one-dimensional convolution filter is applied only to the im-
age passed to TexImagelD, CopyTexImagelD, and CopyTexSubIm-
agelD. If CONVOLUTION 2D is enabled, the two-dimensional convolution fil-
ter is applied only to the two-dimensional images passed to DrawPixels,
CopyPixels, ReadPixels, TexImage2D, TexSubImage2D, CopyTex-
Image2D, and” CopyTexSubImage2D. If SEPARABLE 2D is enabled, and
CONVOLUTION_2D is disabled, the separable two-dimensional convolution filter
is applied only to these same images.

7 This list is not yet complete.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 104

‘ Base Filter Format ‘ R ‘ G ‘ B A
ALPHA R, G, B, As x Ay
LUMINANCE RsxLy | GsxLy | Bgx Ly | As
LUMINANCE_ALPHA RsxLy | GsxLy | Byx Ly | Asx Ay
INTENSITY Rsxly | Gsxly | BsxIy | Asx Iy
RGB Rsx Ry | Gsx Gy | Bgx By | A
RGBA Rsx Ry | Gsx Gy | Bsx By | Asx Ay

Table 3.14: Computation of filtered color components depending on filter
image format. C' % F indicates the convolution of image component C' with
filter F.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components:
red, green, blue, and alpha, denoted in the equations below as R;, G, Bj,
and A;. Filter pixels may be stored in one of five formats, with 1, 2, 3, or
4 components. These components are denoted as Ry, Gy, By, Ay, Ly, and
Iy in the equations below. The result of the convolution operation is the
4-tuple R,G,B,A. Depending on the internal format of the filter, individual
color components of each source image pixel are convolved with one filter
component, or are passed unmodified. The rules for this are defined in
table 3.14.

The convolution operation is defined differently for each of the three
convolution filters. The variables W; and H refer to the dimensions of the
convolution filter. The variables W, and H, refer to the dimensions of the
source pixel image.

The convolution equations are defined as follows, where ' refers to the
filtered result, C'y refers to the one- or two-dimensional convolution filter,
and Clpy and Creppymn refer to the two one-dimensional filters comprising
the two-dimensional separable filter. C’ depends on the source image color
(s and the convolution border mode as described below. ., the filtered
output image, depends on all of these variables and is described separately
for each border mode. The pixel indexing nomenclature is decribed in the
Convolution Filter Specification subsection of section 3.6.3.

One-dimensional filter:

W, -1
Ol = Z Ci[i" + n] * Cy[n]

n=0

Two-dimensional filter:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 105

Wi—1 Hjy—1
Cl' 5= (Z_:)(Z_: VOl + n, j" 4+ m] + Cgln, m]

Two-dimensional separable filter:

Wi—1 Hi-1
Cl, = (Z)(Z VO + m, §" + m] * Crowln] * Cootumn[m]

n=0 m=0

If W; of a one-dimensional filter is zero, then CTi] is always set to zero.
Likewise, if either Wy or H of a two-dimensional filter is zero, then CT¢, j]
is always set to zero.

The convolution border mode for a specific convolution filter is specified
by calling

void ConvolutionParameter{if}(enum target, enum pname,
T param) ;

where target is the name of the filter, pname is CONVOLUTION_BORDER _MODE,
and param is one of REDUCE, IGNOREBORDER, CONSTANT BORDER®, or
REPLICATE_BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE
are reduced by W; — 1 and Hy — 1, respectively. If this reduction would
generate a resulting image with zero or negative width and/or height, the
output is simply null, with no error generated. The coordinates of the
image that results from a convolution with border mode REDUCE are zero
through W, — Wy in width, and zero through H, — H in height. In cases
where errors can result from the specification of invalid image dimensions,
it is these resulting dimensions that are tested, not the dimensions of the
source image. (A specific example is TexImagelD and TexImage2D,
which specify constraints for image dimensions. Even if TexImagelD or
TexImage2D is called with a null pixel pointer, the dimensions of the
resulting texture image are those that would result from the convolution of
the specified image).

8 We haven’t reached closure on the specification of border modes IGNORE_BORDER
and CONSTANT _BORDER.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 106

When the border mode is REDUCE, C equals the source image color C
and C, equals the filtered result C.

For the remaining border modes, define C', = |W;/2] and C}, = |Hy/2].
The coordinates (C'y,, C}) define the center of the convolution filter.

Border Mode IGNORE_BORDER

If the convolution border mode is IGNORE BORDER, the output image has the
same dimensions as the source image. The convolution filter is moved around
the source image so that its center passes over every pixel in the source
image. At each location, the sum of products is computed and the result
is written in the destination image at the location that corresponds to the
pixel location where the convolution filter is centered. However, the sum of
products is not computed for any pixel where the convolution filter extends
beyond one of the edges of the source image. Instead, for these locations,
the pixel value from the source image is copied to the destination image.
For a one-dimensional filter, the result color is defined by

g | ClimCul 0<i=Cy <o (W -1)
rt = O], otherwise

For a two-dimensional or two-dimensional separable filter, the result
color is defined by

Cli = Cy,j—Chl, OSZ'—Cw<W5—(Wf—1),
Cliy 4] = 0<j—Ch<H,—(Hf—1)
Csli, 71, otherwise

Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT BORDER, the output image has
the same dimensions as the source image. The result of the convolution is
the same as if the source image were surrounded by pixels with the same
color as the current convolution border color. Whenever the convolution fil-
ter extends beyond one of the edges of the source image, the constant-color
border pixels are used as input to the filter. The current convolution border
color is set by calling ConvolutionParameterfv or ConvolutionParam-
eteriv with pname set to CONVOLUTION BORDER COLOR and params containing
four values that comprise the RGBA color to be used as the image border.
Integer color components are interpreted linearly such that the most positive

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 107

integer maps to 1.0, and the most negative integer maps to -1.0. Floating
point color components are not clamped when they are specified.
For a one-dimensional filter, the result color is defined by

Chli] = Cli = C]
where C[i'] is defined as

cly= ¢ Gl 0= 7 < W,
Cle, otherwise
and (', is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result
color is defined by

Cr[7’7]] = C[l - vaj - Ch]
where C[¢, j'] is defined as

g Cs[t', 7], 0<¢d <W,,0<j <H
roen sl 3 > sy Y 5
Cl 7= { Cy, otherwise

Border Mode REPLICATE_BORDER

The convolution border mode REPLICATE BORDER also produces an output
image with the same dimensions as the source image. The behavior of this
mode is identical to that of the IGNORE BORDER mode except for the treatment
of pixel locations where the convolution filter extends beyond the edge of
the source image. For these locations, it is as if the outermost one-pixel
border of the source image was replicated. Conceptually, each pixel in the
leftmost one-pixel column of the source image is replicated (', times to
provide additional image data along the left edge, each pixel in the rightmost
one-pixel column is replicated (), times to provide additional image data
along the right edge, and each pixel value in the top and bottom one-pixel
rows is replicated to create Cj, rows of image data along the top and bottom
edges. The pixel value at each corner is also replicated in order to provide
data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

Cli] = Cli — Cu)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 108

where C[i'] is defined as

Cli'] = Cs[clamp(d', W)

and the clamping function clamp(val, maz) is defined as

0, val < 0
clamp(val, maz) = ¢ wval, 0 < wal < mazx
mazx — 1, wval >= maz

For a two-dimensional or two-dimensional separable filter, the result
color is defined by

Cr[7’7]] = C[l - vaj - Ch]
where C[¢, j'] is defined as

Cli, j'] = Cslelamp(i', W), clamp(j', Hy)]

After convolution, each component of the resulting image is scaled by
the corresponding PixelTransfer parameters: POST_CONVOLUTION RED SCALE
for an R component, POST_CONVOLUTION_GREEN_SCALE
for a G component, POST_CONVOLUTION BLUE SCALE for a B component, and
POST_CONVOLUTION ALPHA SCALE for an A component. The result is added
to the cor-
responding bias: POST_CONVOLUTIONRED BIAS, POST_CONVOLUTION_GREEN_BIAS,
POST_CONVOLUTION BLUE_BIAS, or POST_CONVOLUTION_ALPHA BIAS.

The required state is three bits indicating whether each of one-
dimensional, two-dimensional, or separable two-dimensional convolution is
enabled or disabled, an integer describing the current convolution border
mode, and four floating-point values specifying the convolution border color.
In the initial state, all convolution operations are disabled, the border mode
is REDUCE, and the border color is (0,0,0,0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST_CONVOLUTION_COLOR_TABLE. The post convo-
lution table is defined by calling ColorTable with a target argument of
POST_CONVOLUTION_COLOR_TABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in section 3.6.5.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 109

The required state is one bit indicating whether post convolution table
lookup is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. FEach transformed component is multi-
plied by an appropriate signed scale factor: POST_COLOR_MATRIX RED SCALE
for an R component, POST_COLOR MATRIX_GREEN_SCALE
for a G component, POST_COLOR_MATRIX BLUE SCALE for a B component, and
POST_COLOR_MATRIX_ALPHA SCALE for an A component. The result is added to
a signed bias: POST_COLOR _MATRIX RED BIAS, POST_COLOR _MATRIX_GREEN_BIAS,
POST_COLOR_MATRIX BLUE BIAS, or POST_COLOR _MATRIX_ALPHA _BIAS. The result-
ing components replace each component of the original group.

That is, if M. is the color matrix, a subscript of s represents the scale
term for a component, and a subscript of b represents the bias term, then
the components

R

G

B

A

are transformed to

R R, 0 0 0 R Ry
G"| [0 G 0O 0 G Gy
l=1lo o B ol|™|B|T|B
A’ 0 0 0 A, A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST_COLOR _MATRIX _COLOR_TABLE. The post color
matrix table is defined by calling ColorTable with a target argument of
POST_COLOR_MATRIX_COLOR_TABLE. In all other respects, operation is identical
to color table lookup, as defined in section 3.6.5.

The required state is one bit indicating whether post color matrix lookup
is enabled or disabled. In the initial state, lookup is disabled.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 110

Histogram

This step applies only to RGBA component groups. Histogram operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant HISTOGRAM.

If the width of the table is non-zero, then indices R;, G;, B;, and A;
are derived from the red, green, blue, and alpha components of each pixel
group (without modifying these components) by clamping each component
to [0, 1], multiplying by one less than the width of the histogram table, and
rounding to the nearest integer. If the format of the HISTOGRAM table includes
red or luminance, the red or luminance component of histogram entry R;
is incremented by one. If the format of the HISTOGRAM table includes green,
the green component of histogram entry G; is incremented by one. The blue
and alpha components of histogram entries B; and A; are incremented in
the same way. If a histogram entry component is incremented beyond its
maximum value, its value becomes undefined; this is not an error ?

If the Histogram sink parameter is FALSE, histogram operation has no
effect on the stream of pixel groups being processed. Otherwise, all RGBA
pixel groups are discarded immediately after the histogram operation is
completed. Because histogram precedes minmax, no minmax operation is
performed. No pixel fragments are generated, no change is made to texture
memory contents ¥ and no pixel values are returned.

Minmax

This step applies only to RGBA component groups. Minmax operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant MINMAX.

If the format of the minmax table includes red or luminance, the red
component value replaces the red or luminance value in the minimum table
element if and only if it is less than that component. Likewise, if the format
includes red or luminance and the red component of the group is greater
than the red or luminance value in the maximum element, the red group
component replaces the red or luminance maximum component. If the for-
mat of the table includes green, the green group component conditionally
replaces the green minimum and/or maximum if it is smaller or larger, re-
spectively. The blue and alpha group components are similarly tested and

® However, we may want to define 32-bit internal component formats, since there’s no
way to detect if overflow occurs.

1% We haven’t defined whether or not texture state is affected, however. Can we vagueify
this section?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 111

replaced, if the table format includes blue and/or alpha. The internal type
of the minimum and maximum component values is floating point — there
are no semantics defined for the treatment of group component values that
are outside the representable range of the minimum and maximum values.!!

If the Minmax sink parameter is FALSE, minmax operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel
groups are discarded immediately after the minmax operation is completed.
No pixel fragments are generated, no change is made to texture memory
contents, and no pixel values are returned.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of

fragments to be produced. Each of these fragments has the same associated

data. These data are those associated with the current raster position.
Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xp,, float .,
float ay;, float ys , ubyte *data) ;

w and h comprise the integer width and height of the rectangular bitmap,
respectively. (240, Uo) gives the floating-point z and y values of the bitmap’s
origin. (@, yp;) gives the floating-point 2 and y increments that are added
to the raster position after the bitmap is rasterized. data is a pointer to a
bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to
the procedure given in section 3.6.4 for DrawPixels: it is as if the width and
height passed to that command were equal to w and h, respectively, the type
were BITMAP, and the format were COLOR_INDEX. The unpacked values (before
any conversion or arithmetic would have been performed) are bitwise ANDed
with 1 to obtain a stipple pattern of zeros and ones. See figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the cur-
rent raster position is invalid (the valid bit is reset), the bitmap is ignored.
Otherwise, a rectangular array of fragments is constructed, with lower left
corner at

(@i, yn) = ([2rp — Too s [Yrp — Yo)

"This entire confusing paragraph could be replaced with a nice table. 1 also don’t care
for the "no semantics defined” bit - why can’t we define clamping of component values to
the table range?

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 112

v

% 120 A s

A
Y

Figure 3.9. A bitmap and its associated parameters. zp; and yp; are not
shown.

and upper right corner at (zy+w,yy + h) where w and h are the width and
height of the bitmap, respectively. Fragments in the array are produced if
the corresponding bit in the bitmap is 1 and not produced otherwise. The
associated data for each fragment are those associated with the current raster
position, with texture coordinates s, ¢, and r replaced with s/q, t/q, and r/q,
respectively. If ¢ is less than or equal to zero, the results are undefined. Once
the fragments have been produced, the current raster position is updated:

(Zrps Yrp) < (Xrp + Tois Yrp + Ybi)-

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a specified image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of
an image at the location indicated by a fragment’s (s,t,r) coordinates to
modify the fragment’s primary RGBA color. Texturing does not affect the
secondary color.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 113

Texturing is specified only for RGBA mode; its use in color index mode
is undefined.

The GL provides a means to specify the details of how texturing of a
primitive is effected. These details include specification of the image to be
texture mapped, the means by which the image is filtered when applied
to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

3.8.1 Texture Image Specification

The command

void TexImage3D(enum target, int level, enum internalfor-
mat, sizei width, sizei height, sizei depth, int border,
enum format, enum type, void *data) ;

is used to specify a three-dimensional texture image. target must be either
TEXTURE_3D, or PROXY_TEXTURE 3D in the special case discussed in section 3.8.7.
format, type, and data match the corresponding arguments to DrawPixels
(refer to section 3.6.4); they specify the format of the image data, the type
of those data, and a pointer to the image data in host memory. The formats
STENCIL_INDEX and DEPTH_COMPONENT are not allowed!2.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles '3, Each rectangle is a two-dimensional image, whose size
and organization are specified by the width and height parameters to TexIm-
age3D. The values of UNPACK ROW_LENGTH and UNPACK_ALIGNMENT control the
row-to-row spacing in these images in the same manner as DrawPixels. If
the value of the integer parameter UNPACK_IMAGE HEIGHT is not positive, then
the number of rows in each two-dimensional image is height; otherwise the
number of rows is UNPACK_IMAGE HEIGHT. Each two-dimensional image com-
prises an integral number of rows, and is exactly adjacent to its neighbor
images.

The mechanism for selecting a sub-volume of a three-dimensional image
relies on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from

2Need to add a note that convolution may affect the final size of texture images -
where?

13 Need to add a three-dimensional analog to figure 3.8, showing how the three-
dimensional packing parameters affect the host memory layout.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 114

memory. Then depth two-dimensional images are processed, each having a
subimage extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping
just before final conversion. Each R, G, B, and A value so generated is
clamped to [0, 1].

Components are then selected from the resulting R, G, B, and A values
to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.15 summarizes the mapping of R, G, B, and
A values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the six base
internal format symbolic constants listed in table 3.15, or as one of the sized
internal format symbolic constants listed in table 3.16. Specifying a value for
internalformat that is not a base internal format or a sized internal format
generates the error INVALID VALUE.

The internal component resolution is the number of bits allocated to
each value in a texture image. If internalformat is specified as a base in-
ternal format, the GL stores the resulting texture with internal component
resolutions of its own choosing. If a sized internal format is specified, the
mapping of the R, G, B, and A values to texture components is equivalent
to the mapping of the corresponding base internal format’s components, as
specified in table 3.15, and the memory allocation per texture component is
assigned by the GL to match the allocations listed in table 3.16 as closely
as possible. (The definition of closely is left up to the implementation. Im-
plementations are not required to support more than one resolution for each
base internal format.)

A GL implementation may vary its allocation of internal component res-
olution based on any TexImage3D, TexImage2D (see below), or TexIm-
agelD (see below) parameter (except target), but the allocation must not be
a function of any other state, and cannot be changed once it is established.
Allocations must be invariant; the same allocation must be made each time a
texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.7.

The image itself (pointed to by data) is a sequence of groups of values.
The first group is the lower left back corner of the texture image. Subsequent
groups fill out rows of width width from left to right; height rows are stacked
from bottom to top forming a single two-dimensional image slice; and depth
slices are stacked from back to front. When the final R, G, B, and A compo-
nents have been computed for a group, they are assigned to components of
a texel as described by table 3.15. Counting from zero, each resulting Nth
texel is assigned internal integer coordinates (¢, j, k), where

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 115

Base Internal Format ‘ RGBA Values | Internal Components

ALPHA A A
LUMINANCE R L
LUMINANCE_ALPHA R,A LA
INTENSITY R 1

RGB R,G,B R,G.B
RGBA R,G,BA R.G.B,A

Table 3.15: Conversion from RGBA pixel components to internal texture,
table, or filter components. See section 3.8.9 for a description of the texture
components R, G, B, A, L, and I.

i = (N mod width) — b,

Jj= (LwidthJ mod height) — b

N
k=
(Lwidth X hetght

and by is the specified border width. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a fixed-
point value with n bits, where n is the number of bits of storage allocated to
that component in the image array. We assume that the fixed-point repre-
sentation used represents each value k/(2" — 1), where k € {0,1,...,2" -1},
as k (e.g. 1.0 is represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number.
Levels of detail are discussed below, under Mipmapping. The main texture
image has a level of detail number of 0. If a level-of-detail less than zero is
specified, the error INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The signifi-
cance of borders is described below. The border width affects the required
dimensions of the texture image: it must be the case that

| mod depth) — bs

w, = 2" + 2b, (3.11)

hy = 2™ + 2b, (3.12)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 116
Sized Base R G B A L 1
Internal Format Internal Format | bits | bits | bits | bits | bits | bits
ALPHA4 ALPHA 4
ALPHAS ALPHA &

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16

LUMINANCE4 LUMINANCE 4
LUMINANCES LUMINANCE &
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4_ALPHA4 LUMINANCE_ALPHA 4 4
LUMINANCES_ALPHA2 LUMINANCE_ALPHA 2 6
LUMINANCES_ALPHAS LUMINANCE_ALPHA & &
LUMINANCE12 ALPHA4 LUMINANCE_ALPHA 4 12
LUMINANCE12 ALLPHA12 | LUMINANCE_ALPHA 12 12
LUMINANCE16 ALLPHA16 | LUMINANCE_ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITYS8 INTENSITY &
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3_G3_B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGBS RGB & & &

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5_A1 RGBA 5 5 5 1

RGBAS RGBA & & & &

RGB10_A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal for-
mats, and desired component resolutions for each sized internal format.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 117

dy, = 2" + 2b, (3.13)

for some integers n, m, and [, where wy, h,, and ds are the specified image
width, height, and depth. If any one of these relationships cannot be satisfied,
then the error INVALID VALUE is generated.

Currently, the maximum border width b; is 1. If b, is less than zero, or
greater than b, then the error INVALID VALUE is generated.

The maximum allowable width or height'* of an image is an implemen-
tation dependent function of the level-of-detail and internal format of the
resulting image array. It must be at least 287! 4 2p, for image arrays of
level-of-detail 0 through k, where & is the log base 2 of MAX_TEXTURE SIZE,
lod is the level-of-detail of the image array, and b; is the maximum border
width. It may be zero for image arrays of any level-of-detail greater than k.
The error INVALID VALUE is generated if the specified image is too large to
be stored under any conditions.

Section 3.8.7 describes a query mechanism to determine the maximum
dimensions of a texture array of a specific level of detail and internal for-
mat. In order to allow the client to meaningfully query the maximum image
array sizes that are supported, an implementation must not allow an image
array of level 1 or greater to be created if a complete set of image arrays
consistent with the requested array could not be supported. The definition
of a complete set of image arrays is provided below, under Mipmapping.

The command

void TexImage2D(enum target, int level, int internalfor-
mat, sizei width, sizei height, int border, enum format,
enum f{ype, void *data) ;

is used to specify a two-dimensional texture image. target must be ei-
ther TEXTURE_2D, or PROXY_TEXTURE 2D in the special case discussed in sec-
tion 3.8.7. The other parameters match the corresponding parameters of
TexImage3D, except that internalformat may (for backwards compatibil-
ity with the 1.0 version of the GL) also take on the integer values 1, 2, 3, and
4, which are equivalent to symbolic constants LUMINANCE, LUMINANCE ALPHA,
RGB, and RGBA respectively!®.

4 But not depth; MAX_TEXTURE_SIZE only applies to one- and two-dimensional texture
images.

5 As a consequence, parameter internalformat of TexImage2D and TexImagelD is
of type int, not type enum.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 118

For the purposes of decoding the texture image, TexImage2D is equiv-
alent to calling TexImage3D with corresponding arguments and depth of
1, except that

e The depth of the image is always 1 regardless of the value of border.

e Convolution will be performed on the image (possibly changing its
width and height) if SEPARABLE 2D or CONVOLUTION_2D is enabled.

e UNPACK_SKIP_IMAGES is ignored.
Finally, the command

void TexImagelD(enum target, int level, int internalfor-
mat, sizei width, int border, enum format, enum type,
void *data) ;

is used to specify a one-dimensional texture image. target must be ei-
ther TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.8.7.)

For the purposes of decoding the texture image, TexImagelD is equiv-
alent to calling TexImage2D with corresponding arguments and height of
1, except that

e The height of the image is always 1 regardless of the value of border.

e Convolution will be performed on the image (possibly changing its
width) only if CONVOLUTION_1D is enabled.

An image with zero width, height (TexImage2D and TexImage3D
only), or depth (TexImage3D only) indicates the null texture. If the null
texture is specified for level-of-detail zero, it is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL’s internal memory. This copying effectively places the
decoded image inside a border of the maximum allowable width b; whether
or not a border has been specified (see figure 3.10) 6.
border smaller than the maximum allowable width has been specified, then

If no border or a

the image is still stored as if it were surrounded by a border of the maximum
possible width. Any excess border (which surrounds the specified image,
including any border) is assigned unspecified values. A two-dimensional

16 Pigure 3.10 needs to show a three-dimensional texture image.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 119

texture has a border only at its left, right, top, and bottom ends, and a
one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the
texture array. A three-dimensional texture array has width, height, and
depth

Wy = 2" + th
ht - 2m —|—2bt
dt - 21 —|—2bt

where b; is the maximum allowable border width and n, m, and [are defined
in equations 3.11, 3.12, and 3.13. A two-dimensional texture array has depth
dy = 1, with height h; and width w; as above, and a one-dimensional texture
array has depth dy = 1, height h; = 1, and width w; as above.

An element (7,7, k) of the texture array is called a texzel (for a two-
dimensional texture, k is irrelevant; for a one-dimensional texture, j and
k are both irrelevant). The texture value used in texturing a fragment is
determined by that fragment’s associated (s,?,r) coordinates, but may not
correspond to any actual texel. See figure 3.10.

If the data argument of TexImagelD, TexImage2D, or TexImage3D
is a null pointer (a zero-valued pointer in the C implementation), a one-,
two-, or three-dimensional texture array is created with the specified target,
level, internalformat, width, height, and depth, but with unspecified image
contents. In this case no pixel values are accessed in client memory, and
no pixel processing is performed. Errors are generated, however, exactly as
though the data pointer were valid.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be speci-
fied using image data taken directly from the framebuffer, and rectangular
subregions of existing texture images may be respecified.

The command

void CopyTexImage2D(enum target, int level, enum in-
ternalformat, int =z, int y, sizeil width, sizei height,

int border) ;

defines a two-dimensional texture array in exactly the manner of TexIm-
age2D, except that the image data are taken from the framebuffer rather

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION

120

5.0 e e IRkl Inh bl Iehhhiehy el Inhihietl (rhhlef Ishiehiehll (Nl
4
1.0 oo f————— T T T 11"
3
2i a
t v . ; L
'y {oP
0.0 oo e —————————————
_15
-10 bbb b b L
-1 0 1 2 3 i 4 5 6 7 8
-1.0 u 9.0
0.0 S 1.0
Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. « and 3, values used in blending
adjacent texels to obtain a texture value, are also shown.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 121

than from client memory. Currently, target must be TEXTURE_2D. z, y, widlh,
and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image’s width and height,
and the lower left (z,y) coordinates of the framebuffer region to be copied.
The image is taken from the framebuffer exactly as if these arguments were
passed to CopyPixels, with argument type set to COLOR, stopping after pixel
transfer processing is complete. Subsequent processing is identical to that
described for TexImage2D, beginning with clamping of the R, G, B, and
A values from the resulting pixel groups. Parameters level, internalformat,
and border are specified using the same values, with the same meanings, as
the equivalent arguments of TexImage2D, except that internalformat may
not be specified as 1, 2, 3, or 4. An invalid value specified for internalfor-
mat generates the error INVALID ENUM. The constraints on width, height, and
border are exactly those for the equivalent arguments of TexImage2D.
The command

void CopyTexImagelD(enum target, int level, enum inter-
nalformat, int z, int y, sizei width, int border) ;

defines a one-dimensional texture array in exactly the manner of TexIm-
agelD, except that the image data are taken from the framebuffer, rather
than from client memory. Currently, target must be TEXTURE_1D. For the
purposes of decoding the texture image, CopyTexImagelD is equivalent
to calling CopyTexImage2D with corresponding arguments and height of
1, except that the height of the image is always 1, regardless of the value
of border. level, internalformat, and border are specified using the same val-
ues, with the same meanings, as the equivalent arguments of TexImagelD),
except that internalformat may not be specified as 1, 2, 3, or 4. The con-
straints on width and border are exactly those of the equivalent arguments
of TexImagelD.
Six additional commands,

void TexSublmage3D(enum target, int level, int zoff-
set, int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, void *data) ;

void TexSublmage2D(enum target, int level, int zoff-
set, int yoffset, sizei width, sizei height, enum format,
enum f{ype, void *data) ;

void TexSubImagelD(enum farget, int level, int zoffset,
sizei width, enum format, enum type, void *data) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 122

void CopyTexSublmage3D(enum target, int level,
int wxoffset, int yoffset, int zoffset, int =z, int vy,
sizei width, sizei height) ;

void CopyTexSublmage2D(enum target, int level,
int zoffset, int wyoffset, int =z, int y, sizei width,
sizei height) ;

void CopyTexSublmagelD(enum target, int level,
int zoffset, int z, int y, sizei width) ;

respecify only a rectangular subregion of an existing texture array. No
change is made to the internalformat, width, height, depth, or border pa-
rameters of the specified texture array, nor is any change made to texel
values outside the specified subregion. Currently the target arguments of
TexSublImagelD and CopyTexSublImagelD must be TEXTURE_1D, the
target arguments of TexSubImage2D and CopyTexSublmage2D must
be TEXTURE 2D, and the target arguments of TexSubImage3D and Copy-
TexSubImage3D must be TEXTURE 3D. The level parameter of each com-
mand specifies the level of the texture array that is modified. If level is
less than zero or greater than the base 2 logarithm of the maximum texture
width or height, the error INVALID VALUE is generated.

TexSublmage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that
they are specified using the same values, and have the same meanings. Like-
wise, TexSublmage2D arguments width, height, format, type, and data
match the corresponding arguments to TexImage2D, and TexSublIm-
agelD arguments width, format, type, and data match the corresponding
arguments to TexImagelD.

CopyTexSublmage3D and CopyTexSublmage2D arguments z, v,
width, and height match the corresponding ar-
guments to CopyTexImage2D!”. CopyTexSubImagelD arguments z,
y, and width match the corresponding arguments to CopyTexIlmagelD.
Each of the TexSubImage commands interprets and processes pixel groups
in exactly the manner of its TexImage counterpart, except that the assign-
ment of R, G, B, and A pixel group values to the texture components is
controlled by the internalformat of the texture array, not by an argument
to the command.

Arguments zoffset, yoffset, and zoffset of TexSublmage3D and Copy-
TexSublImage3D specify the lower left texel coordinates of a width-wide

7 There is no CopyTexImage3D command.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 123

by height-high by depth-deep rectangular subregion of the texture array. The
height argument associated with CopyTexSublmage3D is always 1, be-
cause framebuffer memory is two-dimensional - only a portion of a single s, ¢
slice of a three-dimensional texture is replaced by CopyTexSublmage3D.

Negative values of zoffset, yoffset, and zoffset correspond to the coor-
dinates of border texels, addressed as in figure 3.10. Taking wg, hg, ds,
and b, to be the specified width, height, depth, and border width of the
texture array, (not the actual array dimensions wy, hy, dy, and b;), and tak-
ing z, ¥, z, w, h, and d to be the zoffset, yoffset, zoffset, width, height, and
depth argument values, any of the following relationships generates the error
INVALID VALUE:

x < —b,
T+ w > ws — by
y < —bs
y4+h>hs —bs
z < —b,
z+d>dg — b

(Recall that dy, ws, and h, include twice the specified border width b;.)
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i, j, k], where

i =2+ (n mod w)

j=y+ (=] mod h)

w
n

k= S
*+ amns height

| mod d

Arguments zoffset and yoffset of TexSubImage2D and CopyTex-
SubImage2D specify the lower left texel coordinates of a width-wide by
height-high rectangular subregion of the texture array. Negative values of
zoffset and yoffset correspond to the coordinates of border texels, addressed
as in figure 3.10. Taking ws, hs, and bs; to be the specified width, height,
and border width of the texture array, (not the actual array dimensions wy,
he, and by), and taking z, y, w, and h to be the zoffset, yoffset, width, and
height argument values, any of the following relationships generates the error
INVALID VALUE:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 124

x < —b,
T+ w > ws — by
y < —bs
y4+h>hs —bs

(Recall that ws and h include twice the specified border width bs.) Counting
from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =2+ (n mod w)
j=y+ (=] mod h)

The zoffset argument of TexSublmagelD and CopyTexSublIm-
agelD specifies the left texel coordinate of a width-wide subregion of the
texture array. Negative values of zoffset correspond to the coordinates of
border texels. Taking w; and b, to be the specified width and border width
of the texture array, and z and w to be the zoffset and width argument val-
ues, either of the following relationships generates the error INVALID VALUE:

x < —b,
T+ w > w; — by
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i], where

i =2+ (n mod w)

3.8.3 Texture Parameters

Various parameters control how the texture array is treated when applied
to a fragment. FEach parameter is set by calling

void TexParameter{if}(enum farget, enum pname,
T param) ;

void TexParameter{if}v(enum {target, enum pname,
T params) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 125

‘ Name ‘ Type ‘ Legal Values
TEXTURE WRAP_S integer | CLAMP, &CLAMP_TO_EDGE, REPEAT
TEXTURE WRAP_T integer | CLAMP, &CLAMP_TO_EDGE, REPEAT
STEXTURE WRAP R integer | CLAMP, CLAMP_TO_EDGE, REPEAT
TEXTURE MIN FILTER | integer | NEAREST,
LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,
TEXTURE MAG FILTER | integer | NEAREST,
LINEAR
TEXTURE_BORDER_COLOR | 4 floats | any 4 values in [0, 1]
TEXTURE PRIORITY float | any value in [0, 1]
STEXTURE_MIN_LOD float any value
STEXTURE_MAX_LOD float any value
STEXTURE BASE LEVEL | integer | any non-negative integer
STEXTURE MAX LEVEL | integer | any non-negative integer

Table 3.17: Texture parameters and their values.

target is the target, either TEXTURE_1D, TEXTURE 2D, or TEXTURE_3D. pname is
a symbolic constant indicating the parameter to be set; the possible con-
stants and corresponding parameters are summarized in table 3.17. In the
first form of the command, param is a value to which to set a single-valued
parameter; in the second form of the command, params is an array of pa-
rameters whose type depends on the parameter being set. If the values for
TEXTURE BORDER_COLOR are specified as integers, the conversion for signed in-
tegers from table 2.6 is applied to convert the values to floating-point. Each
of the four values set by TEXTURE BORDER_COLOR is clamped to lie in [0, 1].

3.8.4 Texture Wrap Modes

If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE WRAPR is set to REPEAT, then
the GL ignores the integer part of s, t, or r coordinates, respectively, using
only the fractional part. (For a number f, the fractional part is f — [f],
regardless of the sign of f; recall that the floor function truncates towards
—00.) CLAMP causes s, t, or r coordinates to be clamped to the range [0, 1].

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 126

The initial state is for all of s, ¢, and r behavior to be that given by REPEAT.
CLAMP _TO_EDGE clamps texture coordinates at all mipmap levels such that
the texture filter never samples a border texel. The color returned when
clamping is derived only from texels at the edge of the texture image.
When used with a NEAREST or a LINEAR filter, texture coordinates are
clamped to the range [min, maxz]. The minimum value is defined as

1
2N
where N is the size of the one-, two-, or three-dimensional texture image in
the direction of clamping. The maximum value is defined as

min =

maxr =1 — main

so that clamping is always symmetric about the [0, 1] mapped range of a
texture coordinate.

CLAMP_TO_EDGE performs no clamping when filters other than NEAREST or
LINEAR are used.

3.8.5 Texture Minification

Applying a texture to a primitive implies a mapping from texture image
space to framebuffer image space. In general, this mapping involves a recon-
struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebuffer space, then a filtering, followed fi-
nally by a resampling of the filtered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one
of two simple filtering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebuffer space is deemed to
magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor p(z,y) and the level of detail pa-
rameter A(z,y), defined as

/\/(xv y) = 10g2[lo($7 y)]

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 127

TEXTURE MAX_LOD A’ > TEXTURE MAX_LOD

\— A TEXTURE MIN_LOD < A’ < TEXTURE_MAX_LOD (3.14)
~] TEXTUREMINLOD A\ < TEXTURE_MIN_LOD '
unde fined TEXTURE MIN_LOD > TEXTURE_MAX_1OD

If A(z,y) is less than or equal to the constant ¢ (described below in
section 3.8.6) the texture is said to be magnified; if it is greater, the texture
is minified.

The initial values of TEXTUREMIN_LOD and TEXTURE_MAX_LOD are -1000 and
1000 respectively, so they do not interfere with the normal operation of
texture mapping. They may be respecified for a specific texture by calling
TexParameter][if].

Let s(z,y) be the function that associates an s texture coordinate with
each set of window coordinates (z,y) that lie within a primitive; define
t(z,y) and r(z,y) analogously. Let u(z,y) = 2"s(xz,y), v(z,y) = 2™t(z,y),
and w(z,y) = 2'r(z,y), where n, m, and [are as defined by equations 3.11,
3.12, and 3.13 with w;, hg, and ds equal to the width, height, and depth
of the texture level specified by TEXTURE BASE LEVEL. For a one-dimensional
texture, define v(z,y) = 0 and w(z,y) = 0; for a two-dimensional texture,
define w(z,y) = 0. For a polygon, p is given at a fragment with window
coordinates (z,y) by

- G VB G ()

(3.15)

where du/dx indicates the derivative of u with respect to window z, and
similarly for the other derivatives.
For a line, the formula is

where Az = 23 — 21 and Ay = y — y; with (21,y1) and (22, y2) being the
segment’s window coordinate endpoints and [= \/Axz? + Ay?. For a point,

pixel rectangle, or bitmap, p = 1.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 128

While it is generally agreed that equations 3.15 and 3.16 give the best
results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal p with a function f(z,y)
subject to these conditions:

1. f(x,y) is continuous and monotonically increasing in each of |Ju/0z|,

|0u/dy|, |0v/ 0|, |0v/dyl, |dw/dx], and |Ow/dy

2. Let
_ {@_u @}
m, = max a2l oy
v oz |’ |0y
_ {‘@_w @_w}
My, = max 97 | oy .

Then max{my, m,, my} < f(z,y) < my + my, + my,.

When A indicates minification, the value assigned to TEXTURE MIN _FILTER
is used to determine how the texture value for a fragment is selected. When
TEXTURE MIN FILTER is NEAREST, the texel nearest (in Manhattan distance)
to that specified by (s,t,r) is obtained. This means the texel at location
(7,7, k) becomes the texture value, with ¢ given by

. |, s <1,

(Recall that if TEXTUREWRAP_S is REPEAT, then 0 < s < 1.) Similarly, j is
found as

.:{Lm, t<1, (3.18)

2m 1, t=1.

and £ is found as

w|, r <1,
k:{gil T (3.19)

For a one-dimensional texture, j and & are irrelevant; the texel at location
1 becomes the texture value. For a two-dimensional texture, k is irrelevant;
the texel at location (i,j) becomes the texture value.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 129

When TEXTURE MIN FILTER is LINEAR, a 2 X 2 X 2 cube of texels is selected.
This cube is obtained by first clamping texture coordinates as described
above under Texture Wrap Modes (if the wrap mode for a coordinate is
CLAMP or CLAMP_TO EDGE) and computing

i |u —1/2] mod 2", TEXTURE_WRAP_S is REPEAT,
7 [u-1/2], otherwise

.) |v—1/2] mod 2, TEXTUREWRAP_T is REPEAT
Jo= lv—1/2], otherwise
and
b — |w — 1/2| mod 2!, TEXTURE WRAP R is REPEAT
O7) |w-1/2], otherwise
Then
. (f0 + 1) mod 2", TEXTURE.WRAP_S is REPEAT,
L= g+ 1, otherwise
.} (jo+1) mod 2™, TEXTUREWRAP_T is REPEAT,
= Jo+ 1, otherwise
and
b (ko + 1) mod 2', TEXTURE WRAP R is REPEAT,
7Y ko + 1, otherwise
Let

a = frac(u — 1/2)
g = frac(v — 1/2)
v = frac(w — 1/2)

where frac(z) denotes the fractional part of .
For a three-dimensional texture, the texture value 7 is found as

T = (1=a)(l=B)(1 =) Tigjoko + (1 = B)(L = 7)Ti1joko
+ (1= a)B(L = ¥)Tigjike + @B(L =) Tipj1ko
+ (1=) (1= B)¥Tigjoks + (1 = B)¥Tirjohy
+ (1= @) BYTigj by + OBYTi ik

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 130

where ;51 is the texel at location (7, j, k) in the three-dimensional texture
image.
For a two-dimensional texture,

T= (1 - a)(l - ﬁ)Tiojo + 04(1 - ﬁ)Tiljo + (1 - O‘)ﬁTiojl + O‘ﬁTiljl (3'20)

where 7;; is the texel at location (7, j) in the two-dimensional texture image.
And for a one-dimensional texture,

T=(1-a)r, +am,

where 7; is the texel at location 7 in the one-dimensional texture.

If any of the selected 7;;%, 75, or 7; in the above equations refer to a
border texel with ¢ < —b,, 7 < —bs, k < —bg, © > w, — b, j > hy — by,
or j > ds — bs, then the border color given by the current setting of
TEXTURE BORDER _COLOR is used instead of the unspecified value or values. The
RGBA values of the TEXTURE BORDER _COLOR are interpreted to match the tex-
ture’s internal format in a manner consistent with table 3.15.

Mipmapping

TEXTURE_MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, and LINEARMIPMAP LINEAR each require the use of
a mipmap. A mipmap is an ordered set of arrays representing the same
image; each array has a resolution lower than the previous one. If the
texture, excluding its border has dimensions 2" x 27 x 2! then there are
max{n, m,!} + 1 mipmap arrays. The first array is the original texture with
dimensions 27 x 27 x 2!, Each subsequent array has dimensions

o(t—1)xo(j—1)xo(k-1)

where the dimensions of the previous array are

o(t) X o(3) X o(k)

and
(a) = 27 x>0
=11 z<o0

until the last array is reached with dimension 1 x 1 x 1.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 131

Each array in a mipmap is defined using TexImage3D, TexIm-
age2D, CopyTexImage2D, TexImagelD, or CopyTexImagelD; the
array being set is indicated with the level-of-detail argument level. Level-
of-detail numbers proceed from 0 for the original texture array through
p = max{n, m,l} with each unit increase indicating an array of half the
dimensions of the previous one as already described. If texturing is enabled
(and TEXTURE_MIN FILTER is one that requires a mipmap) at the time a prim-
itive is rasterized and if the set of arrays 0 and TEXTURE BASE LEVEL through
¢ = min{p, TEXTURE MAX LEVEL} is incomplete, based on the dimensions of
array 0, then it is as if texture mapping were disabled. The set of arrays
0 and TEXTURE BASE LEVEL through ¢ is incomplete if the internal formats of
all the mipmap arrays were not specified with the same symbolic constant,
if the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTUREMAX LEVEL < TEXTURE_BASE_LEVEL, or if TEXTURE_BASE_LEVEL > p.
Array levels k where 0 < k < TEXTURE BASE LEVEL or k > ¢ are insignificant.

The initial values of TEXTURE BASE_LEVEL and TEXTURE_MAX_LEVEL are 0
and 1000 respectively, so they do not interfere with the normal operation of
texture mapping. They may be respecified for a specific texture by calling
TexParameter[if]. The error INVALID VALUE is generated if either value is
negative.

The mipmap is used in conjunction with the level of detail to approxi-
mate the application of an appropriately filtered texture to a fragment. Let
¢ be the value of A at which the transition from minification to magnification
occurs (since this discussion pertains to minification, we are concerned only
with values of A where A > ¢). For NEAREST MIPMAP NEAREST, if ¢ < A < 0.5
then the mipmap array with level-of-detail of TEXTURE BASE_LEVEL is selected.
Otherwise, the dth mipmap array is selected when

1 1
d— 3 < TEXTURE BASE LEVEL + A < d + 3

as long as

TEXTURE BASE LEVEL + 1 < d < ¢

If TEXTURE BASE LEVEL + A > ¢ + %, then the gth mipmap array is selected.
The rules for NEAREST are then applied to the selected array.

The same mipmap array selection rules apply for LINEAR MIPMAP NEAREST
as for NEAREST MIPMAP NEAREST, but the rules for LINEAR are applied to the
selected array.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 132

For NEAREST MIPMAP LINEAR, the level d — 1 and the level d mipmap
arrays are selected, where d — 1 < TEXTUREBASE LEVEL + A < d, unless
TEXTURE BASE LEVEL + A > ¢, in which case the ¢th mipmap array is used for
both arrays. The rules for NEAREST are then applied to each of these arrays,
yielding two corresponding texture values 74_; and 74. The final texture
value is then found as

T = [1 — frac(A)]rq—1 + frac(A)74.

LINEAR MIPMAP LINEAR has the same effect as NEAREST MIPMAP LINEAR except
that the rules for LINEAR are applied for each of the two mipmap arrays to
generate 74_1 and 4.

3.8.6 Texture Magnification

When A indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible val-
ues for TEXTURE_MAG FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER (equations 3.17, 3.18, and 3.19 are used);
LINEAR behaves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.20 is
used). The level-of-detail TEXTURE BASE LEVEL texture array is always used
for magnification.

Finally, there is the choice of ¢, the minification vs. magnification switch-
over point. If the magnification filter is given by LINEAR and the minification
filter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then ¢ =
0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise ¢ = 0.

3.8.7 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First,
there are the three sets of mipmap arrays (one-, two-, and three-dimensional)
and their number. Each array has associated with it a width, height (two-
or three-dimensional only), and depth (three-dimensional only), a border
width, an integer describing the internal format of the image, and six inte-
ger values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the image. FEach initial texture
array is null (zero width, height, and depth, zero border width, internal
format 1, with zero-sized components). Next, there are the two sets of tex-
ture properties; each consists of the selected minification and magnification
filters, the wrap modes for s, ¢ (two- and three-dimensional only), and r

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 133

(three-dimensional only), the TEXTURE BORDER_COLOR, and the priority associ-
ated with each set of properties. (See subsection 3.8.8.) In the initial state,
the value assigned to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the
value for TEXTURE MAG FILTER is LINEAR. s, t, and r wrap modes are all set to
REPEAT. The priority is set to 1. TEXTURE_BORDER_COLOR is (0,0,0,0).

In addition to the one-, two-, and three-dimensional sets of image ar-
rays, partially instantiated one- two-, and three-dimensional sets of proxy
image arrays are maintained. Each proxy array includes width, height (two-
and three-dimensional arrays only), depth (three-dimensional arrays only),
border width, and internal format state values, as well as state for the red,
green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties.
When TexImage3D is executed with target specified as PROXY_TEXTURE 3D,
the three-dimensional proxy state values of the specified level-of-detail are
recomputed and updated. If the texture array is too large, no error is gen-
erated, but the proxy width, height, depth, border width, and component
resolutions are set to zero. If the texture array would be accommodated by
TexImage3D called with target set to TEXTURE_3D, the proxy state values
are set exactly as though the actual image array were being specified. No
pixel data are transferred or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way
when TexImagelD is executed with target specified as PROXY_TEXTURE_1D,
or TexImage2D is executed with target specified as PROXY_TEXTURE_2D.

There is no image associated with any of the proxy textures. Therefore
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, and PROXY_TEXTURE_3D cannot be used
as textures, and their images must never be queried using GetTexImage.
The error INVALID ENUM is generated if this is attempted. Likewise, there
is no nonlevel-related state associated with a proxy texture, and GetTex-
Parameteriv or GetTexParameterfv may not be called with a proxy
texture target. The error INVALID ENUM. is generated if this is attempted.

3.8.8 Texture Objects

In addition to the default textures TEXTURE_1D, TEXTURE 2D, and TEXTURE_3D
named one-, two-, and three-dimensional texture objects can be created and
operated upon. The name space for texture objects is the unsigned integers,
with zero reserved by the GL.

A texture object is created by binding an unused name to TEXTURE_1D,
TEXTURE 2D, or TEXTURE_3D. The binding is effected by calling

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 134

void BindTexture(enum target, uint texture) ;

with target set to the desired texture target and tezture set to the unused
name. The resulting texture object is a new state vector, comprising all
the state values listed in subsection 3.8.7, set to the same initial values. If
the new texture object is bound to TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D
respectively, it is and remains a one-, two-, or three-dimensional texture
until it is deleted.

BindTexture may also be used to bind an existing texture object to
either TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D. The error INVALID OPERATION
is generated if an attempt is made to bind a texture object of different
dimensionality than the specified target. If the bind is successful no change
is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which
it is bound affect the bound object, and queries of the target to which it
is bound return state from the bound object. If texture mapping of the
dimensionality of the target to which a texture object is bound is enabled,
the state of the bound texture object directs the texturing operation.

In the initial state, TEXTURE_1D, TEXTURE 2D, and TEXTURE_3D have one-
, two-, and three-dimensional texture state vectors associated with them.
In order that access to these initial textures not be lost, they are treated
as texture objects all of whose names are 0. The initial one-, two-, or
three-dimensional texture is therefore operated upon, queried, and applied
as TEXTURE_1D, TEXTURE_2D, or TEXTURE 3D respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *fextures) ;

textures contains n names of texture objects to be deleted. After a texture
object is deleted, it has no contents or dimensionality, and its name is again
unused. If a texture that is currently bound to one of the targets TEXTURE_1D,
TEXTURE 2D, or TEXTURE 3D is deleted, it is as though BindTexture had been
executed with the same target and texture zero. Unused names in textures
are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *fextures) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 135

returns n previously unused texture object names in textures. These names
are marked as used, but they acquire texture state and a dimensionality
only when they are first bound, just as if they were unused.

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher performance.
A texture object that is currently part of the working set is said to be
restdent. The command

boolean AreTexturesResident(sizei n, uint *textures,
boolean *residences) ;

returns TRUE if all of the n texture objects named in textures are resident, or
if the implementation does not distinguish a working set. If at least one of
the texture objects named in texturesis not resident, then FALSE is returned,
and the residence of each texture object is returned in residences. Otherwise
the contents of residences are not changed. If any of the names in textures is
not the name of a texture object, FALSE is returned, the error INVALID VALUE
is generated, and the contents of residencesare indeterminate. The residence
status of a single bound texture object can also be queried by calling Get-
TexParameteriv or GetTexParameterfv with target set to the target
to which the texture object is bound, and pname set to TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is cur-
rently resident, not whether it could not be made resident. An implemen-
tation may choose to make a texture object resident only on first use, for
example. The client may guide the GL implementation in determining which
texture objects should be resident by specifying a priority for each texture
object. The command

void PrioritizeTextures(sizei n, uint *lextures,
clampf *priorities) ;

sets the priorities of the n texture objects named in textures to the values
in priorities. Each priority value is clamped to the range [0,1] before it is
assigned. Zero indicates the lowest priority, with the least likelihood of being
resident. One indicates the highest priority, with the greatest likelihood of
being resident. The priority of a single bound texture object may also be
changed by calling TexParameteri, TexParameterf, TexParameteriv,
or TexParameterfv with target set to the target to which the texture
object is bound, pname set to TEXTURE_PRIORITY, and param or params
specifying the new priority value (which is clamped to the range [0,1] before
being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or default textures.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 136

3.8.9 Texture Environments and Texture Functions

The command

void TexEnv{if}(enum target, enum pname, T param) ;
void TexEnv{if}v(enum target, enum pname, T params) ;

sets parameters of the texture environment that specifies how texture values
are interpreted when texturing a fragment. target must currently be the
symbolic constant TEXTURE ENV. pname is a symbolic constant indicating the
parameter to be set. In the first form of the command, param is a value
to which to set a single-valued parameter; in the second form, params is a
pointer to an array of parameters: either a single symbolic constant or a
value or group of values to which the parameter should be set. The pos-
sible environment parameters are TEXTURE_ENV_MODE and TEXTURE_ENV_COLOR.
TEXTURE_ENV_MODE may be set to one of REPLACE, MODULATE, DECAL, or BLEND:;
TEXTURE ENV_COLOR is set to an RGBA color by providing four single-precision
floating-point values in the range [0, 1] (values outside this range are clamped
toit). If integers are provided for TEXTURE_ENV_COLOR, then they are converted
to floating-point as specified in table 2.6 for signed integers.

The value of TEXTURE_ENV_MODE specifies a texture function. The result
of this function depends on the fragment and the texture array value. The
precise form of the function depends on the base internal formats of the
texture arrays that were last specified. In the following two tables, R, Gy,
By, and Ay are the primary color components of the incoming fragment;
R;, Gy, By, Ay, Ly, and I; are the filtered texture values; R., G, B., and A,
are the texture environment color values; and R,, G, B,, and A, are the
primary color components computed by the texture function. All of these
color values are in the range [0, 1]. The REPLACE and MODULATE texture func-
tions are specified in table 3.18, and the DECAL and BLEND texture functions
are specified in table 3.19.

The state required for the current texture environment consists of the
four-valued integer indicating the texture function and four floating-point
TEXTURE ENV_COLOR values. In the initial state, the texture function is given
by MODULATE and TEXTURE_ENV_COLOR is (0,0,0,0).

3.8.10 Texture Application

Texturing is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constants TEXTURE_1D, TEXTURE_2D, or

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION

Base REPLACE MODULATE
Internal Format | Texture Function | Texture Function
ALPHA R, = Ry R, = Ry

G, =Gy G, =Gy

B, = By B, = By
A, = Ay A, = Ar A
LUMINANCE R, =L; R, =R¢L;
(or 1) G, =1L Gy =GyLy
B, =L; B, = By¢L,

A, = Ay A, = Ay
LUMINANCE_ALPHA R, =L; R, =R¢L;
(or 2) G, =1L Gy =GyLy
B, =L; B, = By¢L,
A, = Ay A, = Ar A

INTENSITY R, =1 R, =R;l;
G, =1; G, =Gl

B, =1 B, = Byl

A, =1, A, = Af]t
RGB R, = R; R, = R;R;
(or 3) G, =G G, = GGy
B, = B; B, = B;B;

A, = Ay A, = Ay
RGBA R, = R; R, = R;R;
(or 4) G, =G G, = GGy
B, = B; B, = B;B;
A, = Ay A, = Ar A

Table 3.18: Replace and modulate texture functions.

DRAFT Version 1.2 - Jan. 2, 1998

137

CHAPTER 3. RASTERIZATION 138

Base DECAL BLEND
Internal Format Texture Function Texture Function
ALPHA undefined R, =Ry
G, =Gy
B, = By
A, = ArA,
LUMINANCE undefined R, =Rs(1—L¢) + RcLy
(or 1) Gy =Gs(1— L)+ G Ly
B, = Bf(1 - L)+ B.L;
A, = Ay
LUMINANCE_ALPHA undefined R, =Rs(1—L¢) + RcLy
(or 2) Gy =Gs(1— L)+ G Ly
B, = Bf(1 - L)+ B.L;
A, = ArA,
INTENSITY undefined R, =Rs(1 - L)+ R.1I
Gy, =Gl - 1It) + Gl
B, = Bs(1 - L) + B.1I;
Ay, =Af(1 - L)+ ALy
RGB R, = R: R, = Rs(1 — R¢) + R.R:
(or 3) G, =Gy Gy, =Gy(1—-Gy) + GGy
B, = B; B, = By(1 — B;) + B.B;
A, = Ay A, = Ay
RGBA R,=Rf(1—-A¢)+ RiAy | Ry = Rs(1 — Ry) + R.Ry
(or 4) Gy =Gl = A) + G A | Gy =G — Gy) + GGy
B, =By(1—- Ay)+ BA; | B, =By(1—-B;) + B.B;
AU = Af Au = AfAt

Table 3.19: Decal and blend texture functions.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 139

TEXTURE_3D to enable the one-, two-, or three-dimensional texture, respec-
tively. If both two- and one-dimensional textures are enabled, the two-
dimensional texture is used. If the three-dimensional and either of the
two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-
tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.5 and 3.8.6. This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment’s primary R, G, B, and A values.
These are the color values passed to subsequent operations. Other data
associated with the incoming fragment remain unchanged, except that the
texture coordinates may be discarded.

The required state is three bits indicating whether each of one-, two-, or
three-dimensional texturing is enabled or disabled. In the initial state, all
texturing is disabled.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary
color ¢,,; (which texturing, if enabled, may have modified) and a secondary
color cg.. The components of these two colors are summed to produce a
single post-texturing RGBA color ¢. The components of ¢ are then clamped
to the range [0, 1].

Color sum has no effect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing
color using a blending factor f. Fogis enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f=exp(—d-z), (3.21)
f=exp(—(d-z)?),or (3.22)
f= Z:z (3.23)

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 140

(z is the eye-coordinate distance from the eye, (0,0,0,1) in eye coordinates,
to the fragment center). The equation, along with either d or e and s, is
specified with

void Fog{if}(enum pname, T param) ;
void Fog{if}v(enum pname, T params) ;

If prname is FOG_MODE, then param must be, or params must point to an integer
that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.21, 3.22, or 3.23, respectively, is selected for the fog calculation (if,
when 3.23 is selected, e = s, results are undefined). If pname is FOG DENSITY,
FOG_START, or FOG_END, then param is or params points to a value that is d,
s, or e, respectively. If d is specified less than zero, the error INVALID VALUE
results.

An implementation may choose to approximate the eye-coordinate dis-
tance from the eye to each fragment center by |z.|. Further, f need not
be computed at each fragment, but may be computed at each vertex and
interpolated as other data are.

No matter which equation and approximation is used to compute f, the
result is clamped to [0, 1] to obtain the final f.

[is used differently depending on whether the GL is in RGBA or color
index mode. In RGBA mode, if C, represents a rasterized fragment’s R, G,
or B value, then the corresponding value produced by fog is

€= fCo+(1- f)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R,
G, B, and A values of ('; are specified by calling Fog with pname equal to
FOG_COLOR; in this case params points to four values comprising C'y. If these
are not floating-point values, then they are converted to floating-point using
the conversion given in table 2.6 for signed integers. Each component of C'y
is clamped to [0, 1] when specified. If if is a color index, then a single value
specifies 1¢. Its integer part is masked with 2" — 1, where n is the number
of bits in a color index framebuffer.
In color index mode, the formula for fog blending is

=i+ (1= f)ig

where 4, is the rasterized fragment’s color index and 7y is a single-precision
floating-point value. (1 — f)i; is rounded to the nearest fixed-point value
with the same number of bits to the right of the binary point as ¢,. In this

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 3. RASTERIZATION 141

case, iy is set by calling Fog with pname set to FOG_INDEX and param being
or params pointing to the single floating-point value that is ¢;. Finally, the
integer portion of [is masked (bitwise ANDed) with 2" — 1, where n is the
number of bits in a color in the color index buffer (buffers are discussed in
chapter 4).

The state required for fog consists of a three valued integer to select the
fog equation, three floating-point values d, e, and s, an RGBA fog color and
a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, F0GMODE is EXP, d = 1.0, e = 1.0, and
s =0.0; Cy =(0,0,0,0) and ¢y = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized
fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment’s alpha
(A) value to yield a final alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 4

Per-Fragment Operations
and the Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional
array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the
framebuffer is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GL implementation or
context.

Corresponding bits from each pixel in the framebuffer are grouped to-
gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical buffers. These are the color,
depth, stencil, and accumulation buffers. The color buffer actually consists
of a number of buffers: the front left buffer, the front right buffer, the back
left buffer, the back right buffer, and some number of auziliary buffers. Typ-
ically the contents of the front buffers are displayed on a color monitor while
the contents of the back buffers are invisible. (Monoscopic contexts display
only the front left buffer; stereoscopic contexts display both the front left
and the front right buffers.) The contents of the auxiliary buffers are never
visible. All color buffers must have the same number of bitplanes, although
an implementation or context may choose not to provide right buffers, back
buffers, or auxiliary buffers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B,
and, optionally, A unsigned integer values. The number of bitplanes in each
of the color buffers, the depth buffer, the stencil buffer, and the accumulation
buffer is fixed and window dependent. If an accumulation buffer is provided,

142

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER143

Fragment Pixel . Alpha
> € - Scissor
+ Ownership > Test
Associated Test Test (RGBA Only)
Data

Depth buffer - Stencil —————————
Test Test

Framebuffer 4} Framebuffer J

p| Blending —® Dithering | Logicop — 1O

(RGBA Only) Framebuffer

Figure 4.1. Per-fragment operations.

Framebuffer Framebuffer

it must have at least as many bitplanes per R, G, and B color component
as do the color buffers.
The initial state of all provided bitplanes is undefined.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (2, yu)
modifies the pixel in the framebuffer at that location based on a number of
parameters and conditions. We describe these modifications and tests, dia-
grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (2.,¥,) in the frame-
buffer is currently owned by the GL (more precisely, by this GL context). If
it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the
subsequent per-fragment operations are applied to the fragment. This test

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER144

allows the window system to control the GL’s behavior, for instance, when
a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (2., y,,) lies within the scissor rectangle defined
by four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height) ;

If left < z,, < left+ width and bottom < y,, < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.
The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR_TEST. When disabled, it is as if the scissor test always passes.
If either width or height is less than zero, then the error INVALID VALUE is
generated. The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the
GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the
next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment’s alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc(enum func, clampf ref) ;

Sfuncis a symbolic constant indicating the alpha test function; refis a refer-
ence value. refis clamped to lie in [0, 1], and then converted to a fixed-point
value according to the rules given for an A component in section 2.13.9. For
purposes of the alpha test, the fragment’s alpha value is also rounded to
the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning
pass the fragment never, always, if the fragment’s alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not
equal to the reference value, respectively.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER145

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value
to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil buffer at location (., y,) and
a reference value. The test is controlled with

void StencilFunc(enum func, int ref, uint mask) ;
void StencilOp(enum sfail, enum dpfail, enum dppass) ;

The test is enabled or disabled with the Enable and Disable commands, us-
ing the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

refis an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0,2° — 1], where s is the number of bits
in the stencil buffer. func is a symbolic constant that determines the stencil
comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test
passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked
stored value in the stencil buffer. The s least significant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The
ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass. sfail
indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERQ, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of
increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same
symbolic values are given to indicate the stencil action if the depth buffer
test (below) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-
cilOp, and a bit indicating whether stencil testing is enabled or disabled.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER146

In the initial state, stenciling is disabled, the stencil reference value is zero,
the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil buffer, no
stencil modification can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth buffer test

The depth buffer test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth buffer
value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modified as indicated below as if the depth buffer
test passed. If enabled, the comparison takes place and the depth buffer and
stencil value may subsequently be modified.
The comparison is specified with

void DepthFunc(enum func) ;

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer test
passes never, always, if the incoming fragment’s z,, value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal
to the depth value stored at the location given by the incoming fragment’s
(%, Y) coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The
stencil value at the fragment’s (., y,,) coordinates is updated according to
the function currently in effect for depth buffer test failure. Otherwise, the
fragment continues to the next operation and the value of the depth buffer
at the fragment’s (z,,, y,,) location is set to the fragment’s z,, value. In this
case the stencil value is updated according to the function currently in effect
for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the
function is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER147

4.1.6 Blending

Blending combines the incoming fragment’s R, G, B, and A values with the
R, G, B, and A values stored in the framebuffer at the incoming fragment’s
(%, Yw) location.

This blending is dependent on the incoming fragment’s alpha value and
that of the corresponding currently stored pixel. Blending applies only in
RGBA mode; in color index mode it is bypassed. Blending is enabled or
disabled using Enable or Disable with the symbolic constant BLEND. If it
is disabled, or if logical operation on color values is enabled (section 4.1.8),
proceed to the next stage.

In the following discussion, C refers to the source color for an incoming
fragment, Cy refers to the destination color at the corresponding framebuffer
location, and C. refers to a constant color in the GL state. Individual
RGBA components of these colors are denoted by subscripts of s, d, and ¢
respectively.

Destination (framebuffer) components are taken to be fixed-point values
represented according to the scheme given in section 2.13.9 (Final Color Pro-
cessing), as are source (fragment) components. Constant color components
are taken to be floating point values.

Prior to blending, each fixed-point color component undergoes an implied
conversion to floating point. This conversion must leave the values 0 and
1 invariant. Blending computations are treated as if carried out in floating
point.

The commands that control blending are

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha) ;

void BlendEquation(enum mode) ;

void BlendFunc(enum src, enum dst) ;

Using BlendColor

The constant color C. to be used in blending is specified with BlendColor.
The four parameters are clamped to the range [0, 1] before being stored.
The constant color can be used in both the source and destination blending
factors.

BlendColor is an imaging subset feature (see section 3.6.2), and is only
allowed when the imaging subset is supported.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER148

Using BlendEquation
Blending capability is defined by the blend equation. BlendEquation mode
FUNC_ADD defines the blending equation as
C=0C,54+C;D
where C; and C; are the source and destination colors, and S and D are
quadruplets of weighting factors as specified by Blend Func.
If mode is FUNC_SUBTRACT, the blending equation is defined as
C=0,5-C4D

If mode is FUNC_ REVERSE_SUBTRACT, the blending equation is defined as

C=0C4D—-Cs8

If mode is MIN, the blending equation is defined as

C = min(Cs, Cy)

Finally, if mode is MAX, the blending equation is defined as

C = maz(Cs,Cy)

The blending equation is evaluated separately for each color component
and the corresponding weighting factors.

BlendEquation is an imaging subset feature (see section 3.6.2). If
the imaging subset is not available, then blending always uses the blending
equation FUNC_ADD.

Using BlendFunc

BlendFunc src indicates how to compute a source blending factor, while
dst indicates how to compute a destination factor. The possible arguments
and their corresponding computed source and destination factors are sum-
marized in Tables 4.1 and 4.2. Addition or subtraction of quadruplets means
adding or subtracting them component-wise.

The computed source and destination blending quadruplets are applied

to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER149

‘ Value ‘ Blend Factors ‘

ZERO (0,0,0,0)

ONE (1,1,1,1)

DST_COLOR (Rq, G4, Bg, Ag)

ONE_MINUS DST COLOR (1,1,1,1) — (Ra, G4, Ba, Aq)
SRC_ALPHA (As, As, As, As)
ONE_MINUS_SRC_ALPHA (1,1,1,1) — (As, As, Ag, Ag)
DST_ALPHA (Ag, Adq, Ad, Ag)

ONE_MINUS DST_ALPHA (1,1,1,1) — (Aq, Ag, Ag, Ag)
S CONSTANT_COLOR (R., G, Be, Ac)

&ONE_MINUS CONSTANT COLOR | (1,1,1,1) — (R, G., B, A.)
SCONSTANT _ALPHA (Acy Acy Acy Ar)

&ONE_MINUS CONSTANT ALPHA | (1,1,1,1) — (A, A, Ac, Al)
SRC_ALPHA SATURATE (f. . 1)

Table 4.1: Values controlling the source blending function and the source
blending values they compute. f = min(A4,,1— Ag).

‘ Value ‘ Blend factors

ZERO (0,0,0,0)

ONE (1,1,1,1)

SRC_COLOR (Rs, sy Bs, As)

ONE_MINUS SRC_COLOR (1,1,1,1) — (Rs, G, Bs, As)
SRC_ALPHA (As, A, Ag, As)
ONE_MINUS_SRC_ALPHA (1,1,1,1) — (As, As, Ag, Ag)
DST_ALPHA (Ag, Aq, Ady Ag)

ONE_MINUS DST_ALPHA (1,1,1,1) — (Aq, Ag, Ag, Ag)
SCONSTANT _COLOR (R., G, Be, Ac)
&ONE_MINUS_CONSTANT COLOR | (1,1,1,1) — (R., G, Be, Ac)
SCONSTANT _ALPHA (Ac, Acy Ay Al)
&ONE_MINUS_CONSTANTALPHA | (1,1,1,1) — (A, 4. Ag, Al)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER150

blending quadruplets be S and D, respectively. Then a quadruplet of values
is computed using the blend equation specified by BlendEquation. Each
floating-point value in this quadruplet is clamped to [0, 1] and converted
back to a fixed-point value in the manner described in section 2.13.9. The
resulting four values are sent to the next operation.
BlendFunc arguments CONSTANT COLOR, ONE_MINUS_CONSTANT_COLOR, |

CONSTANT ALPHA, and ONE_MINUS_CONSTANT ALPHA are imaging subset features
(see section 3.6.2), and are only allowed when the imaging subset is provided.

Blending State

The state required for blending is an integer indicating the blending equa-
tion, two integers indicating the source and destination blending functions,
four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blending
equation is FUNC_ADD. The initial blending functions are ONE for the source
function and ZERO for the destination function. The initial constant blend
color is (R, G, B, A) = (0,0,0,0). Initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing
(section 4.2.1) using each buffer’s color for Cy. If a color buffer has no A
value, then Ay is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-
sider the value of any of the color components as a fixed-point value with m
bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebuffer; call each such value ¢. For each ¢,
dithering selects a value ¢; such that ¢; € {max{0, [c¢] — 1}, [¢]} (after this
selection, treat ¢ as a fixed point value in [0,1] with m bits). This selec-
tion may depend on the x,, and ¥, coordinates of the pixel. In color index
mode, the same rule applies with ¢ being a single color index. ¢ must not be
larger than the maximum value representable in the framebuffer for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment’s z
and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a fixed-point value with as many bits as there are in the
corresponding component in the framebuffer; a color index is rounded to the
nearest integer representable in the color index portion of the framebuffer.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER151

Dithering is enabled with Enable and disabled with Disable using the
symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color
or index values and the color or index values stored at the corresponding
location in the framebuffer. The result replaces the values in the framebuffer
at the fragment’s (z,y) coordinates. The logical operation on color indices
is enabled or disabled with Enable or Disable using the symbolic constant
INDEX LOGIC.OP. (For compatibility with GL version 1.0, the symbolic con-
stant LOGIC_OP may also be used.) The logical operation on color values is
enabled or disabled with Enable or Disable using the symbolic constant
COLOR_LOGICOP. If the logical operation is enabled for color values, it is as if
blending were disabled, regardless of the value of BLEND.
The logical operation is selected by

void LogicOp(enum op) ;

op is a symbolic constant; the possible constants and corresponding opera-
tions are enumerated in Table 4.3. In this table, s is the value of the incoming
fragment and d is the value stored in the framebuffer. The numeric values
assigned to the symbolic constants are the same as those assigned to the
corresponding symbolic values in the X window system.

Logical operations are performed independently for each color index
buffer that is selected for writing, or for each red, green, blue, and alpha
value of each color buffer that is selected for writing. The required state is
an integer indicating the logical operation, and two bits indicating whether
the logical operation is enabled or disabled. The initial state is for the logic
operation to be given by COPY, and to be disabled.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebuffer. This section describes operations
that control or affect the whole framebuffer.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER152

Argument value | Operation
CLEAR 0

AND sAd
AND_REVERSE sA-d
COPY s
AND_INVERTED s Ad
NOOP d

XOR s xor d

OR svd

NOR —(sVd)
EQUIV —(s xor d)
INVERT —-d
OR_REVERSE sV -d
COPY_INVERTED -8
OR_INVERTED -sVd
NAND —(sAd)
SET all 1’s

Table 4.3: Arguments to LogicOp and their corresponding operations.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are
written. This is accomplished with

void DrawBuffer(enum buf) ;

bufis a symbolic constant specifying zero, one, two, or four buffers for writ-
ing. The constants are NONE, FRONT_LEFT, FRONT RIGHT, BACK_LEFT, BACK RIGHT,
FRONT, BACK, LEFT, RIGHT, FRONT _AND_BACK, and AUXO through AUXn, where n+41
is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffers front_left,
Sfront_right, back_left, and back_right, and to the auziliary buffers. Argu-
ments other than AUX: that omit reference to LEFT or RIGHT refer to both left
and right buffers. Arguments other than AUX: that omit reference to FRONT
or BACK refer to both front and back buffers. AUX: enables drawing only to
auxiliary buffer 7. Each AUX: adheres to AUX: = AUXO0 + 7. The constants and
the buffers they indicate are summarized in Table 4.4. If DrawBuffer is
is supplied with a constant (other than NONE) that does not indicate any of

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER153

symbolic front | front | back | back | aux
constant left | right | left | right | 2
NONE

FRONT_LEFT)

FRONT RIGHT .

BACK_LEFT .

BACK RIGHT .
FRONT] .

BACK ° .
LEFT .

RIGHT

FRONT_AND _BACK °) °

AUXz .

Table 4.4: Arguments to DrawBuffer and the buffers that they indicate.

the color buffers allocated to the GL context, the error INVALID OPERATION
results.

Indicating a buffer or buffers using DrawBuffer causes subsequent pixel
color value writes to affect the indicated buffers. If more than one color
buffer is selected for drawing, blending and logical operations are computed
and applied independently for each buffer. Calling DrawBuffer with a
value of NONE inhibits the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts
include both left and right buffers. Likewise, single buffered contexts include
only front buffers, while double buffered contextsinclude both front and back
buffers. The type of context is selected at GL initialization.

The state required to handle buffer selection is a set of up to 4 + n bits.
4 bits indicate if the front left buffer, the front right buffer, the back left
buffer, or the back right buffer, are enabled for color writing. The other n
bits indicate which of the auxiliary buffers is enabled for color writing. In
the initial state, the front buffer or buffers are enabled if there are no back
buffers; otherwise, only the back buffer or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical
framebuffers after all per-fragment operations have been performed. The
commands

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER154

void IndexMask(uint mask) ;
void ColorMask(boolean r, boolean g, boolean b,
boolean a) ;

control the color buffer or buffers (depending on which buffers are currently
indicated for writing). The least significant n bits of mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index buffer (or buffers) is
written; where a 0 appears, the bit is not written. This mask applies only in
color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color buffer or buffers. r, g, b, and « indicate
whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all
bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.

The depth buffer can be enabled or disabled for writing z,, values using

void DepthMask(boolean mask) ;

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is
disabled. In the initial state, the depth buffer is enabled for writing.
The command

void StencilMask(uint mask) ;

controls the writing of particular bits into the stencil planes. The least
significant s bits of mask comprise an integer mask (s is the number of bits
in the stencil buffer), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and
a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular
buffer to the same value. The argument to

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER155

void Clear(bitfield buf) ;

is the bitwise OR of a number of values indicating which buffers
are to be cleared. The values are COLOR_BUFFERBIT, DEPTH BUFFER_BIT,
STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accu-
mulation buffer (see below), respectively. The value to which each buffer is
cleared depends on the setting of the clear value for that buffer. If the mask
is not a bitwise OR of the specified values, then the error INVALID VALUE is
generated.

void ClearColor(clampf r, clampf g, clampf b, clampf a) ;

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped to [0, 1] and converted to fixed-point according to
the rules of section 2.13.9.

void ClearIndex(float index) ;

sets the clear color index. index is converted to a fixed-point value with
unspecified precision to the left of the binary point; the integer part of this
value is then masked with 2 — 1, where m is the number of bits in a color
index value stored in the framebuffer.

void ClearDepth(clampd d) ;

takes a floating-point value that is clamped to the range [0, 1] and con-
verted to fixed-point according to the rules for a window z value given in
section 2.10.1. Similarly,

void ClearStencil(int s) ;

takes a single integer argument that is the value to which to clear the stencil
buffer. sis masked to the number of bitplanes in the stencil buffer.

void ClearAccum(float r, float g, float b, float a) ;

takes four floating-point arguments that are the values, in order, to which
to set the R, G, B, and A values of the accumulation buffer (see the next
section). These values are clamped to the range [—1, 1] when they are spec-

ified.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER156

When Clear is called, the only per-fragment operations that are applied
(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also effective. If
a buffer is not present, then a Clear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, the stencil buffer, and the accumulation buffer. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the
stencil buffer and accumulation buffer clear values are all 0. The depth
buffer clear value is initially 1.0.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one
for each of R, G, B, and A. The accumulation buffer is controlled exclusively
through the use of

void Accum(enum op, float value) ;

(except for clearing it). op is a symbolic constant indicating an accumula-
tion buffer operation, and value is a floating-point value to be used in that
operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

The accumulation buffer operations apply identically to every pixel, so
we describe the effect of each operation on an individual pixel. Accumulation
buffer values are taken to be signed values in the range [—1, 1]. Using ACCUM
obtains R, G, B, and A components from the buffer currently selected for
reading (section 4.3.2). Each component, considered as a fixed-point value
in [0,1]. (see section 2.13.9), is converted to floating-point. Each result is
then multiplied by value. The results of this multiplication are then added
to the corresponding color component currently in the accumulation buffer,
and the resulting color value replaces the current accumulation buffer color
value.

The LOAD operation has the same effect as ACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being
added to them.

The RETURN operation takes each color value from the accumulation
buffer, multiplies each of the R, G, B, and A components by value, and
clamps the results to the range [0, 1] The resulting color value is placed
in the buffers currently enabled for color writing as if it were a fragment
produced from rasterization, except that the only per-fragment operations
that are applied (if enabled) are the pixel ownership test, the scissor test |

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER157

(section 4.1.2), and dithering (section 4.1.7). Color masking (section 4.2.2) |
is also applied.

The MULT operation multiplies each R, G, B, and A in the accumulation
buffer by value and then returns the scaled color components to their corre-
sponding accumulation buffer locations. ADD is the same as MULT except that
value is added to each of the color components.

The color components operated on by Accum must be clamped only if
the operation is RETURN. In this case, a value sent to the enabled color buffers
is first clamped to [0, 1]. Otherwise, results are undefined if the result of an
operation on a color component is out of the range [—1,1]. If there is no "
accumulation buffer, or if the GL is in color index mode, Accum generates
the error INVALID_OPERATION.

No state (beyond the accumulation buffer itself) is required for accumu-
lation buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a
block of pixels from one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation of DrawPixels was described in section 3.6.4, except if the
Sformat argument was STENCIL INDEX. In this case, all operations described for
DrawPixels take place, but window (z, y) coordinates, each with the corre-
sponding stencil index, are produced in lieu of fragments. Fach coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing
the texture, fog, and antialiasing application stages of rasterization. Each
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebuffer, subject
to the current setting of StencilMask.
The error INVALID OPERATION results if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER158

RGBA pixel color index pixel
data in data in

convert
to [0,1]

scale shift
and bias and offset

index to RGBA ndex to index
lookup

color table
lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

convert
RGBto L

mask to
@"-1)

byte, shor;, int, or float pixel
data stream (index or component)

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be
enabled or disabled. RGBA and color index pixel paths are shown; depth
and stencil pixel paths are not shown.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER159

‘ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

PACK_SWAP BYTES | boolean FALSE TRUE /FALSE

PACK LSB_FIRST boolean FALSE TRUE /FALSE
PACK_ROW_LENGTH integer 0 [0, 00)
PACK SKIP_ROWS integer 0 [0, 00)
PACK_SKIP PIXELS | integer 0 [0, 00)
PACK_ALIGNMENT integer 4 1,2,4,8
&PACK IMAGE HEIGHT | integer 0 [0, 00)
SPACK_SKIP_IMAGES | integer 0 [0, 00)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetTex-
ImagelD, GetTexImage2D, GetTexImage3D, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, and Get-
Minmax.

Pixels are read using

void ReadPixels(int z, int y, sizei width, sizei height,
enum format, enum type, void *data) ;

The arguments after z and y to ReadPixels correspond to those of Draw-
Pixels. The pixel storage modes that apply to ReadPixels and other
commands that query images (see section 6.1) are summarized in Table 4.5.

Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth
buffer. If there is no depth buffer, the error INVALID OPERATION occurs.
If the format is STENCIL_INDEX, then values are taken from the stencil
buffer; again, if there is no stencil buffer, the error INVALID OPERATION occurs.
For all other formats, the buffer from which values are obtained is one of
the color buffers; the selection of color buffer is controlled with Read Buffer.
The command

void ReadBuffer(enum src) ;

takes a symbolic constant as argument. The possible values are FRONT LEFT,
FRONT_RIGHT, BACK_LEFT, BACKRIGHT, FRONT, BACK, LEFT, RIGHT, and AUXO
through AUXn. FRONT and LEFT refer to the front left buffer, BACK refers
to the back left buffer, and RIGHT refers to the front right buffer. The other

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER160

constants correspond directly to the buffers that they name. If the requested
buffer is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBuffer is FRONT if there is no back buffer and BACK
otherwise.

ReadPixels obtains values from the selected buffer from each pixel with
lower left hand corner at (z + ¢,y + j) for 0 < ¢ < width and 0 < j <
height; this pixel is said to be the ith pixel in the jth row. If any of these
pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are undefined. Results are also undefined
for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected buffer, regardless of how those
values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE ALPHA, then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained
is 1.0. If format is COLOR_INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is
not DEPTH_COMPONENT or STENCIL_INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format
is neither STENCIL_INDEX nor DEPTH COMPONENT. The R, G, B, and A values
form a group of elements. Each element is taken to be a fixed-point value
in [0, 1]] with m bits, where m is the number of bits in the corresponding
color component of the selected buffer (see section 2.13.9).

Conversion of Depth values

This step applies only if format is DEPTH_COMPONENT. An element is taken to
be a fixed-point value in [0,1] with m bits, where m is the number of bits in
the depth buffer (see section 2.10.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in
section 3.6.5. After the processing described in that section is completed,
groups are processed as described in the following sections.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER161

‘ type Parameter ‘ Index Mask ‘

UNSIGNED BYTE | 2% — 1

BITMAP 1
BYTE 21— 1
UNSIGNED_SHORT | 2™ — 1
SHORT |
UNSIGNED_INT | 2°? —1
INT 231 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not
masked.

Conversion to L

This step applies only to RGBA component groups, and only if the format
is either LUMINANCE or LUMINANCE ALPHA. A value L is computed as

L=R+G+B

where R, G, and B are the values of the R, G, and B components. The
single computed L. component replaces the R, G, and B components in the

group.

Final Conversion

For an index, if the type is not FLOAT, final conversion consists of masking
the index with the value given in Table 4.6; if the type is FLOAT, then the
integer index is converted to a GL float data value.

For an RGBA color, if the type is not FLOAT then each component is first I
clamped to [0,1]. Then the appropriate conversion formula from table 4.7
is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from mem-
ory for DrawPixels. That is, the ith group of the jth row (corresponding
to the ith pixel in the jth row) is placed in memory just where the ¢th group
of the jth row would be taken from for DrawPixels. See Unpacking un-
der section 3.6.4. The only difference is that the storage mode parameters
whose names begin with PACK_ are used instead of those whose names be-
gin with UNPACK_. If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE,

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER162

type Parameter GL Data Type | Component
Conversion Formula
UNSIGNED BYTE ubyte c=28-1)f
BYTE byte =[28-1)f-1]/2
UNSIGNED SHORT ushort c=02%-1)f
SHORT short c=[2°-1)f-1]/2
UNSIGNED INT uint c=02"2-1)f
INT int c=[(2*-1)f-1]/2
FLOAT float c=f
SUNSIGNED BYTE_3.3_2 ubyte c=02N - 1)f
SUNSIGNED BYTE 2_3_3 REV ubyte c=02N - 1)f
&UNSIGNED SHORT 5.6.5 ushort c=02N - 1)f
SUNSIGNED SHORT.5_6_5 REV ushort c=02V - 1)f
&UNSIGNED SHORT 4.4 4 4 ushort c=02V - 1)f
&UNSIGNED SHORT 4.4 4 4 REV ushort c=02V - 1)f
SUNSIGNED SHORT 5.5 5_1 ushort c=02V - 1)f
SUNSIGNED SHORT_1.5_5_5 REV ushort c=02V - 1)f
&UNSIGNED INT 8.8.8.8 uint c=02N - 1)f
SUNSIGNED INT 8_8_8_8 REV uint c=02N - 1)f
SUNSIGNED INT_10.10.10.2 uint c=02N - 1)f
SUNSIGNED INT_2_10_10_10 REV uint c=02N - 1)f
Table 4.7: Reversed component conversions - used when component data
are being returned to client memory. Color, normal, and depth components
are converted from the internal floating-point representation (f) to a datum
of the specified GL data type (¢) using the equations in this table. All arith-
metic is done in the internal floating point format. These conversions apply
to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even
if the implemented ranges of the GL data types are greater than the mini-
mum required ranges. (See Table 2.2.) Equations with N as the exponent
are performed for each bitfield of the packed data type, with N set to the
number of bits in the bitfield.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER163

only the corresponding single element is written. Likewise if the format is
LUMINANCE ALPHA, RGB, or BGR, only the corresponding two or three elements
are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebuffer to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels(int z, int y, sizei width, sizei height,
enum f{ype) ;

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,
indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The first four arguments have the same interpretation
as the corresponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate),
then subjected to the pixel transfer operations described in section 3.6.5,
just as if ReadPixels were called with the corresponding arguments. If the
type is STENCIL or DEPTH, then it is as if the format for ReadPixels were
STENCIL_INDEX or DEPTH_COMPONENT, respectively. If the type is COLOR, then if
the GL is in RGBA mode, it is as if the format were RGBA, while if the GL
is in color index mode, it is as if the format were COLOR_INDEX.

The groups of elements so obtained are then written to the framebuffer
just as if DrawPixels had been given width and heitght, beginning with
final conversion of elements. The effective format is the same as that already

described.

4.3.4 Pixel Draw/Read state

The state required for pixel operations consists of the parameters that are

set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of Read Buffer,

an integer, is also required, along with the current raster position (sec- [
tion 2.12). State set with PixelStore is GL client state.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER164

RGBA pixel color index pixel
data from framebuffer } data from framebuffer
convert
to [0,1]

scale shift
and bias and offset
ndex to RGBA * index to index
lookup ' lookup

color table
lookup

convolution color table
scale and bias lookup

post . color table histogram
convolution lookup

color matrix
scale and bias

RGBA pixel color index pixel
data to framebuffer data to framebuffer

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be
enabled or disabled. Index-to-RGBA lookup is currently never performed.
RGBA and color index pixel paths are shown; depth and stencil pixel paths
are not shown.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily
into any of the preceding chapters. This functionality consists of evalua-
tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-
ization), display lists (used to designate a group of GL commands for later
execution by the GL), flushing and finishing (used to synchronize the GL
command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-
ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not affected by the use
of evaluators.

Consider the R*-valued polynomial p(u) defined by

p(u) = Zj:Bf(u)RZ (5.1)

with R; € R and
B} (u) = (n) u'(1—u)",

1

the ith Bernstein polynomial of degree n (recall that 0° =1 and () = 1).
Each R; is a control point. The relevant command is

165

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 166

MAP1_TEXTURE_COORD_1 s texture coordinate
MAP1_TEXTURE_COORD_2
MAP1_TEXTURE_COORD_3

MAP1_TEXTURE_COORD_4

s, t texture coordinates

s, t, r texture coordinates

‘ target ‘ k ‘ Values
MAP1_VERTEX_3 3 | z, y, z vertex coordinates
MAP1 VERTEX 4 4 | z, y, z, w vertex coordinates
MAP1_INDEX 1 | color index
MAP1_COLOR 4 41 R,G, B, A
MAP1 NORMAL 3 | z, y, z normal coordinates
1
2
3
4

s, t, r, ¢ texture coordinates

Table 5.1: Values specified by the target to Mapl. Values are given in the
order in which they are taken.

void Mapl{fd}(enum type, T uy, T uz, int stride, int order,
T points) ;

type is a symbolic constant indicating the range of the defined polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n + 1; The error INVALID VALUE is generated
if order is less than one or greater than MAX _EVAL_ORDER. points is a pointer
to a set of n+ 1 blocks of storage. Each block begins with k single-precision
floating-point or double-precision floating-point values, respectively. The
rest of the block may be filled with arbitrary data. Table 5.1 indicates how
k depends on type and what the k£ values represent in each case.

stride is the number of single- or double-precision values (as appropriate)
in each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

uy and ug give two floating-point values that define the endpoints of the
pre-image of the map. When a value «’ is presented for evaluation, the

formula used is .
I u — Uy
u) = p(—).
p'(u) p(u2 _—
The error INVALID_VALUE results if «; = us.
Map?2 is analogous to Map1, except that it describes bivariate polyno-

mials of the form

p(u0) = 35 B (w) Bl (0)Rs;.

1=0 7=0

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 167

Integers Reals
Vertices
k [uq,u,] N I
EvalMesh » 1 Actb [0,1] ¢ TER ormals .
EvalPoint | [0,1] Texture Coordinates
vyval Colors
MapGrid Map
EvalCoord

Figure 5.1. Map Evaluation.

The form of the Map2 command is

void Map2{fd}(enum target, T uy, T uz, int ustride,
int worder, T vy, T vy, int vstride, int vorder, T points) ;

target is a range type selected from the same group as is used for Mapl,
except that the string MAP1 is replaced with MAP2. points is a pointer to
(n 4+ 1)(m + 1) blocks of storage (uorder = n+4 1 and vorder = m + 1; the
error INVALID VALUE is generated if either worder or vorder is less than one
or greater than MAX_EVAL_ORDER). The values comprising R;; are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past
the first value pointed to by points. uy, us, vy, and vy define the pre-image
rectangle of the map; a domain point (u/,v’) is evaluated as

w—u v -1y

1:)/(?L/7 U/) — p , .
U — Uy V22— U1

The evaluation of a defined map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if uy is equal to ug, or if vy is equal to vs.

Figure 5.1 describes map evaluation schematically; an evaluation of en-
abled maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}(T arg) ;
void EvalCoord{12}{fd}v(T arg) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 168

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The
argument is the value (or a pointer to the value) that is the domain coor-
dinate, u’. EvalCoord2 causes evaluation of the enabled two-dimensional
maps. The two values specify the two domain coordinates, v’ and v’, in that
order.

When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,
it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important difference. The difference is that when an
evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current values
are used). The order of the effective commands is immaterial, except that
Vertex (for vertex coordinate evaluation) must be issued last. Use of eval-
uators has no effect on the current color, normal, or texture coordinates. If
ColorMaterial is enabled, evaluated color values affect the result of the
lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indi-
cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1_TEXTURE_COORD_1 and MAP1_TEXTURE_COORD.2),
then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2_VERTEX_3 or MAP2 VERTEX 4 is enabled, then the
normal to the surface is computed. Analytic computation, which sometimes
yields normals of length zero is one method which may be used. If auto-
matic normal generation is enabled, then this computed normal is used as
the normal associated with a generated vertex. Automatic normal gener-
ation is controlled with Enable and Disable with symbolic the constant
AUTO_NORMAL. If automatic normal generation is disabled, then a correspond-
ing normal map, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map are enabled, then no normal is sent
with a vertex resulting from an evaluation (the effect is that the current
normal is used).

For MAP VERTEX 3, let q = p. For MAP_VERTEX 4, let q = (2/w, y/w, z/w),
where (z,y,z,w) = p. Then let

ou v’

Then the generated analytic normal, n, is given by n = m/||m)||.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 169

The second way to carry out evaluations is to use a set of commands
that provide for efficient specification of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The first step is to define
a grid in the domain. This is done using

void MapGrid1{fd}(int n, Tu}, Tu}) ;
for a one-dimensional map or

void MapGrid2{fd}(int n,, T u}, T 4}, int n,, T v{,
Tvh) ;

for a two-dimensional map. In the case of MapGridl u} and u), describe
an interval, while n describes the number of partitions of the interval. The
error INVALID_VALUE results if n < 0. For MapGrid2, (u},v}) specifies one
two-dimensional point and (u}, v}) specifies another. n, gives the number of
partitions between u} and u), and n, gives the number of partitions between
v] and vj. If either n, <0 or n, <0, then the error INVALID_VALUE occurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMeshl(enum mode, int p;, int p;) ;

mode is either POINT or LINE. The effect is the same as performing the fol-
lowing code fragment, with Au’ = (u}, — u})/n:

Begin (type) ;
for ¢ = p; to py step 1.0
EvalCoord1 (i * Au' + u});
EndQ);

where EvalCoord1f or EvalCoord1ld is substituted for EvalCoordl as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type
is LINE STRIP. The one requirement is that if either ¢ = 0 or ¢ = n, then the
value computed from i * Au’ 4 u} is precisely u} or u), respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p;, int p;, int ¢,
int q2) ;

mode must be FILL, LINE, or POINT. When mode is FILL, then these commands
are equivalent to the following, with Au' = (v} — u})/n and Av' = (v} —

op)/m:

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 170

for i = ¢; to g2 — 1 step 1.0
Begin (QUAD_STRIP) ;
for j = p; to p; step 1.0
EvalCoord2(j * Au' + u) , i * Av' + v]);
EvalCoord2(j * Au' + u| , (i+1) *x Av' + v]);
EndQ);

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = ¢ to ¢y step 1.0
Begin (LINE_STRIP) ;
for j = p; to p; step 1.0
EvalCoord2(j * Au' + u) , ¢ *x Av' + v]);
End () ;;
for ¢ = p; to py step 1.0
Begin (LINE_STRIP) ;
for j = ¢, to g2 step 1.0
EvalCoord2(i * Au' +) , j * Av' + v]);
EndQ);

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin (POINTS) ;
for i = ¢ to ¢y step 1.0
for j = p; to p; step 1.0
EvalCoord2(j * Au' + u) , i * Av' + v]);
EndQ);

Again, in all three cases, there is the requirement that 0 * Au' + u) = o},
n* Au' +uf = uly, 0x Av' + v] = o], and m x Av' + v] = v).
An evaluation of a single point on the grid may also be carried out:

void EvalPointl(int p) ;

Calling it is equivalent to the command
EvalCoord1(p * Au' + u});

with Au’ and) defined as above.
void EvalPoint2(int p, int q) ;

is equivalent to the command

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 171

EvalCoord2(p * Au' + u} , ¢ * Av' + v]);

The state required for evaluators potentially consists of 9 one-
dimensional map specifications and 9 two-dimensional map specifications,
as well as corresponding flags for each specification indicating which are en-
abled. Each map specification consists of one or two orders, an appropriately
sized array of control points, and a set of two values (for a one-dimensional
map) or four values (for a two-dimensional map) to describe the domain.
The maximum possible order, for either u or v, is implementation dependent
(one maximum applies to both u and v), but must be at least 8. Each con-
trol point consists of between one and four floating-point values (depending
on the type of the map). Initially, all maps have order 1 (making them con-
stant maps). All vertex coordinate maps produce the coordinates (0,0,0,1)
(or the appropriate subset); all normal coordinate maps produce (0,0, 1);
RGBA maps produce (1,1,1,1); color index maps produce 1.0; texture co-
ordinate maps produce (0,0,0,1); In the initial state, all maps are disabled.
A flag indicates whether or not automatic normal generation is enabled for
two-dimensional maps. In the initial state, automatic normal generation is
disabled. Also required are two floating-point values and an integer number
of grid divisions for the one-dimensional grid specification and four floating-
point values and two integer grid divisions for the two-dimensional grid
specification. In the initial state, the bounds of the domain interval for 1-D
is 0 and 1.0, respectively; for 2-D, they are (0,0) and (1.0, 1.0), respectively.
The number of grid divisions is 1 for 1-D and 1 in both directions for 2-D. If
any evaluation command is issued when no vertex map is enabled, nothing
happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is defined by the current model-
view and perspective matrices.

Selection works by returning an array of integer-valued names. This
array represents the current contents of the name stack. This stack is con-
trolled with the commands

void InitNames(void) ;

void PopName(void) ;
void PushName(uint name) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 172

void LoadName(uint name) ;

InitNames empties (clears) the name stack. PopName pops one name
off the top of the name stack. PushName causes name to be pushed
onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-
ror INVALID OPERATION. Popping a name off of an empty stack generates
STACK _UNDERFLOW; pushing a name onto a full stack generates STACK_OVERFLOW.
The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebuffer. The
GL is placed in selection mode with

int RenderMode(enum mode) ;

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER
is the default, corresponding to rendering as described until now. SELECT
specifies selection mode, and FEEDBACK specifies feedback mode (described
below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer) ;

buffer is a pointer to an array of unsigned integers (called the selection
array) to be potentially filled with names, and n is an integer indicating the
maximum number of values that can be stored in that array. Placing the GL
in selection mode before Select Buffer has been called results in an error of
INVALID OPERATION as does calling SelectBuffer while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates pro-
duced by a RasterPos command intersects the clip volume (section 2.11)
then this primitive (or RasterPos command) causes a selection hit. In the
case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,
then a hit record is written into the selection array.

A hit record consists of the following items in order: a non-negative
integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 173

with the bottommost element first. The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the
clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0,1]) are each multiplied by
232 _ 1 and rounded to the nearest unsigned integer to obtain the values
that are placed in the hit record. No depth offset arithmetic (section 3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer
into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as
much of the record as fits in the array is written and an overflow flag is set.

Selection mode is exited by calling RenderMode with an argument
value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array
and resets the SelectBuffer pointer to its last specified value. Values are
not guaranteed to be written into the selection array until RenderMode
is called. If the selection array overflow flag was set, then RenderMode
returns —1 and clears the overflow flag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a
minimum and maximum depth value, and several flags. One flag indicates
the current RenderMode value. In the initial state, the GL is in the RENDER
mode. Another flag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This flag is reset upon entering
selection mode and whenever a name stack manipulation takes place. One
final flag is required to indicate whether the maximum number of copied
names would have been exceeded. This flag is reset upon entering selection
mode. This flag, the address of the selection array, and its maximum size
are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling
RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 174

ments are written to the framebuffer. Instead, information about primitives
that would have been rasterized is fed back to the application using the GL.
Feedback is controlled using

void FeedbackBuffer(sizei n, enum type, float *buffer) ;

bufferis a pointer to an array of floating-point values into which feedback in-
formation will be placed, and rnis a number indicating the maximum number
of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBuffer has been made, or if a call to FeedbackBuffer
is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or
bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to fill the array (if there is any room left at
all). The first block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-
lowed by values that describe the primitive’s vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons
with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). z, y, and z
coordinates returned by feedback are window coordinates; if w is returned,
it is in clip coordinates. No depth offset arithmetic (section 3.5.5) is per-
formed on the z values. In the case of bitmaps and pixel rectangles, the
coordinates returned are those of the current raster position.

The texture coordinates and colors returned are these resulting from the
clipping operations described in Section 2.13.8. The colors returned are
the primary colors.

The ordering rules for GL. command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL
state and the values to be written to the feedback buffer completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK. When called while in feedback mode,

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 175

‘ Type ‘ coordinates ‘ color ‘ texture | total values
2D T,y - - 2
3D T, Y, 2 - - 3
3D_COLOR T, Y, 2 k - 3+ k
3D_COLOR_TEXTURE | z, ¥, 2 k 4 T+ k
4D _COLOR_TEXTURE | 2, ¥y, 2, W k 4 S+ k

Table 5.2: Correspondence of feedback type to number of values per vertex.
kis 1 in color index mode and 4 in RGBA mode.

RenderMode returns the number of values placed in the feedback array
and resets the feedback array pointer to be buffer. The return value never
exceeds the maximum number of values passed to FeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be
written than the specified maximum number of values, then the value is not
written and an overflow flag is set. In this case, RenderMode returns —1
when it is called, after which the overflow flag is reset. While in feedback
mode, values are not guaranteed to be written into the feedback buffer before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-
ber of vertices. A vertex is fed back as some number of floating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-
tween feedback buffer and the number of values returned for each vertex.

The command
void PassThrough(float token) ;

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering
of any PassThrough commands with respect to primitive specification is
maintained by feedback. PassThrough may not occur between Begin and
End. It has no effect when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the
maximum number of values that may be placed there, and the feedback type.
An overflow flag is required to indicate whether the maximum allowable
number of feedback values has been written; initially this flag is cleared.
These state variables are GL client state. Feedback also relies on the same

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 176

mode flag as selection to indicate whether the GL is in feedback, selection,
or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The GL may be instructed to process
a particular display list (possibly repeatedly) by providing a number that
uniquely specifies it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains
to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the
client state in effect at that time applies to the command. Only server state
is affected when the command is executed. As always, pointers which are
passed as arguments to commands are dereferenced when the command is
issued. (Vertex array pointers are dereferenced when the commands Ar-
rayElement, DrawArrays, or DrawElements are accumulated into a
display list.)
A display list is begun by calling

void NewList(uint n, enum mode) ;

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during
display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE_AND _EXECUTE then
commands are executed as they are encountered, then placed in the display
list. If » = 0, then the error INVALID VALUE is generated.

After calling NewList all subsequent GI. commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList(void) ;

occurs, after which the GL returns to its normal command execution state.
It is only when EndList occurs that the specified display list is actually asso-
ciated with the index indicated with NewList. The error INVALID OPERATION
is generated if EndList is called without a previous matching NewList,
or if NewList is called a second time before calling EndList. The error
OUT_OF MEMORY is generated if EndList is called and the specified display list
cannot be stored because insufficient memory is available. In this case GL

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:

POINT_TOKEN vertex
line-segment:

LINE_TOKEN vertex vertex

LINE RESET_TOKEN vertex vertex
polygon:

POLYGON_TOKEN n polygon-spec
polygon-spec:

polygon-spec vertex

vertex vertex vertex
bitmap:

BITMAP _TOKEN vertex

177

pixel-rectangle:
DRAW PIXEL _TOKEN vertex
COPY_PIXEL _TOKEN vertex
passthrough:
PASS_THROUGH_TOKEN f

vertex:
2D:

Ir
3D:

Frr
3D_COLOR:

f f f color
3D_COLOR_TEXTURE:

f f f color tex
4D_COLOR_TEXTURE:

f f f [color tex
color:

Trrr

/
tex:

Trrr

Figure 5.2: Feedback syntax. f is a floating-point number. n is a floating-

point integer giving the number of vertices in a polygon.

The symbols

ending with _TOKEN are symbolic floating-point constants. The labels under
the “vertex” rule show the different data returned for vertices depending
on the feedback type. LINE_TOKEN and LINE RESET_TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line

segment.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 178

implementations of revision 1.1 or greater insure that no change is made to
the previous contents of the display list, if any, and that no other change
is made to the GL state, except for the state changed by execution of GL
commands when the display list mode is COMPILE_AND_EXECUTE.

Once defined, a display list is executed by calling

void CallList(uint n) ;

n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued
without using a display list. If n» = 0, then the error INVALID VALUE is
generated.

The command

void CallLists(sizei n, enum type, void *lists) ;

provides an efficient means for executing a number of display lists. n is
an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of offsets. Each offset is constructed as
determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, or FLOAT indicating
that the array pointed to by listsis an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or floats, respectively. In this
case each offset is found by simply converting each array element to an
integer (floating point values are truncated). Further, type may be one of
2_BYTES, 3_BYTES, or 4 BYTES, indicating that the array contains sequences of
2, 3, or 4 unsigned bytes, in which case each integer offset is constructed
according to the following algorithm:

of fset + 0

fori=1tobd
of fset «— of fset shifted left 8 bits
of fset «— of fset 4 byte

advance to next byte in the array

bis 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.

Each of the n constructed offsets is taken in order and added to a display
list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

void ListBase(uint base) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 179

to specify the offset.

Indicating a display list index that does not correspond to any display
list has no effect. CallList or CallLists may appear inside a display list. (If
the mode supplied to NewList is COMPILE_AND_EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists’
constituent commands, is placed in the list under construction.) To avoid
the possibility of infinite recursion resulting from display lists calling one
another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s) ;

returns an integer n such that the indices n,...,n + s — 1 are previously
unused (i.e. there are s previously unused display list indices starting at n).
GenLists also has the effect of creating an empty display list for each of
the indices n,...,n+s—1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList(uint list) ;

returns TRUE if [ist is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range) ;

where [ist is the index of the first display list to be deleted and range is
the number of display lists to be deleted. All information about the display
lists is lost, and the indices become unused. Indices to which no display list
corresponds are ignored. If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not
compiled into the display list but are executed immediately. These are:
IsList, GenLists, DeleteLists, FeedbackBuffer, SelectBuffer, Ren-
derMode, VertexPointer, NormalPointer, ColorPointer, Index-
Pointer, TexCoordPointer, EdgeFlagPointer, Interleaved Arrays,
EnableClientState, DisableClientState, PushClientAttrib, Pop-
ClientAttrib, ReadPixels, PixelStore, GenTextures, DeleteTex-
tures, AreTexturesResident, IsTexture, Flush, Finish, as well as
IsEnabled and all of the Get commands (see Chapter 6).

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 180

TexImage3D, TexImage2D, TexImagelD, Histogram, and Col-
orTable are
executed immediately when called with the corresponding proxy arguments
PROXY_TEXTURE_3D, PROXY_TEXTURE_2D, PROXY_TEXTURE_1D, PROXY HISTOGRAMN, and
PROXY_COLOR_TABLE, PROXY_POST_CONVOLUTION_COLOR_TABLE, or
PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display
list creation, an index is required to indicate the current display list being
defined. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.
One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are
currently in use as display list indices. In the initial state, no indices are in
use.

5.5 Flush and Finish
The command
void Flush(void) ;

indicates that all commands that have previously been sent to the GL must
complete in finite time.
The command

void Finish(void) ;

forces all previous GL. commands to complete. Finish does not return until
all effects from previously issued commands on GL client and server state
and the framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is specified using

void Hint(enum target, enum hint) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 5. SPECIAL FUNCTIONS 181

target is a symbolic constant indicating the behavior to be controlled, and
hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired
quality of parameter interpolation; POINT_SMOOTH HINT, indicating the desired
sampling quality of points; LINE_SMOOTH HINT, indicating the desired sampling
quality of lines; POLYGON_SMOOTH HINT, indicating the desired sampling quality
of polygons; and FOG HINT, indicating whether fog calculations are done per
pixel or per vertex. hint must be one of FASTEST, indicating that the most
efficient option should be chosen; NICEST, indicating that the highest quality
option should be chosen; and DONT_CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-
tation may ignore them entirely.

DRAFT Version 1.2 - Jan. 2, 1998

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2.
Most state is set through the calls described in previous chapters, and can
be queried using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The
values of these state variables can be obtained using a set of Get commands.
There are four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data) ;
void GetIntegerv(enum value, int *data) ;
void GetFloatv(enum value, float *data) ;
void GetDoublev(enum value, double *data) ;

The commands obtain boolean, integer, floating-point, or double-precision
state variables. value is a symbolic constant indicating the state variable to

return. data is a pointer to a scalar or array of the indicated type in which
to place the returned data. In addition

boolean IsEnabled(enum value) ;

can be used to determine if value is currently enabled (as with Enable) or

disabled.

182

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 183

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the
type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a floating-point or integer value converts to FALSE if
and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted
as either 1 or 0, and a floating-point value is rounded to the nearest integer,
unless the value is an RGBA color component, a DepthRange value, a
depth buffer clear value, or a normal coordinate. In these cases, the Get
command converts the floating-point value to an integer according the INT
entry of Table 4.7; a value not in [—1, 1] converts to an undefined value.
If GetFloatv is called, a boolean value is interpreted as either 1.0 or 0.0,
an integer is coerced to floating-point, and a double-precision floating-point
value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that
it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are
returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed to Mapl. Map2
returns R;; in the [(uorder)i + jlth block of values (see page 167 for i, j,
uorder, and R;;).

6.1.3 Enumerated Queries

1

Other commands exist to obtain state variables that are identified by a
category (clip plane, light, material, etc.) as well as a symbolic constant.
These are

void GetClipPlane(enum plane, double eqnf4]) ;

void GetLight{if}v(enum light, enum value, T data) ;
void GetMaterial{if}v(enum face, enum value, T data) ;
void GetTexEnv{if}v(enum env, enum value, T data) ;
void GetTexGen{if}v(enum coord, enum value, T data) ;

'This section used to be named Indexed Queries. The name is still awkward.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 184

void GetTexParameter{if}v(enum target, enum value,
T data) ;

void GetTexLevelParameter{if}v(enum target, int lod,
enum value, T data) ;

void GetPixelMap{ui us f}v(enum map, T data) ;

void GetMap{ifd}v(enum map, enum value, T data) ;

GetClipPlane always returns four double-precision values in egn; these
are the coefficients of the plane equation of plane in eye coordinates (these
coordinates are those that were computed when the plane was specified).

GetLight places information about value (a symbolic constant) for light
(also a symbolic constant) in data. POSITION or SPOT_DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed
when the position or direction was specified).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter
are similar to GetLight, placing information about value for the target indi-
cated by their first argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE_ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-
TexGen, EYE LINEAR coefficients are returned in the eye coordinates that
were computed when the plane was specified; OBJECT LINEAR coeflicients are
returned in object coordinates.

For GetTexParameter and GetTexLevelParameter, target must
currently be TEXTURE_1D, TEXTURE 2D, or TEXTURE 3D, indicating the currently
bound one-, two-, or three-dimensional texture object, or PROXY_TEXTURE_1D,
PROXY_TEXTURE 2D, or PROXY_TEXTURE 3D, indicating the one-, two-, or three-
dimensional proxy state vector. wvalue is a symbolic value indicat-
ing which texture parameter is to be obtained. The lod argument to
GetTexLevelParameter determines which level-of-detail’s state is re-
turned. If the lod argument is less than zero or if it is larger than
the maximum allowable level-of-detail then the error INVALID VALUE oc-
curs. Queries of TEXTURE RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE BLUE_SIZE,
TEXTURE_ALPHA SIZE, TEXTURE_LUMINANCE SIZE, and TEXTURE_INTENSITY_SIZE
return the actual resolutions of the stored image array components, not
the resolutions specified when the image array was defined. Queries of
TEXTUREWIDTH, TEXTURE_HEIGHT, TEXTURE DEPTH, and TEXTURE_BORDER return
the width, height, depth, and border as specified when the image ar-
ray was created. The internal format of the image array is queried as
TEXTURE_INTERNAL _FORMAT, or as TEXTURE_COMPONENTS for compatibility with

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 185

GL version 1.0.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and
value must be one of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage(enum tez, int lod, enum format,
enum fype, void *img) ;

is used to obtain texture images. It is somewhat different from the other get
commands; texis a symbolic value indicating which texture is to be obtained.
TEXTURE_1D indicates a one-dimensional texture, TEXTURE 2D indicates a two-
dimensional texture, and TEXTURE_3D indicates a three-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.6, type
is a pixel type from Table 3.5, and img is a pointer to a block of memory.

GetTexImage obtains component groups from a texture image with
the indicated level-of-detail. The components are assigned among R, G, B,
and A according to Table 6.1, starting with the first group in the first row,
and continuing by obtaining groups in order from each row and proceeding
from the first row to the last, and from the first image to the last for three-
dimensional textures. These groups are then packed and placed in client
memory. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as
if the image were two-dimensional, except that the additional pixel storage
state values PACK_IMAGE HEIGHT and PACK_SKIP_IMAGES are applied. The cor-
respondence of texels to memory locations is as defined for TexImage3D
in section 3.8.1.

The row length, number of rows, image depth, and number of images
are determined by the size of the texture image (including any borders).
Calling GetTexImage with lod less than zero or larger than the maxi-
mum allowable causes the error INVALID VALUE . Calling GetTexImage with
format of COLOR_INDEX, STENCIL_INDEX, or DEPTH_COMPONENT causes the error
INVALID _ENUM.

The command

boolean IsTexture(uint texture) ;

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 186

!
vs)
o

‘ Base Internal Format ‘ R ‘
0

ALPHA
LUMINANCE (or 1) L
LUMINANCE ALPHA (or 2) | L;
INTENSITY I

RGB (or 3)

RGBA (or 4)

.

o

o

S
.
o

sSSP i PN

W W ool

o

QQOOOO

.

R
R

S
.

Table 6.1: Texture, table, and filter return values. R;, G;, B;, A;, L;, and I;
are components of the internal format that are assigned to pixel values R,
G, B, and A. If a requested pixel value is not present in the internal format,
the specified constant value is used.

returns TRUE if texture is the name of a texture object. If texture is zero, or is
a non-zero value that is not the name of a texture object, or if an error condi-
tion occurs, IsTexture returns FALSE. A name returned by GenTextures,
but not yet bound, is not the name of a texture object.

6.1.5 Stipple Query

The command
void GetPolygonStipple(void *pattern) ;

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height
and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR_INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set to
the appropriate variable name. The top matrix on the color matrix stack is
returned by GetFloatv called with pname set to COLORMATRIX. The depth
of the color matrix stack, and the maximum depth of the color matrix stack,
are queried with GetIntegerv, setting pname to COLOR MATRIX STACK DEPTH
and MAX_COLOR_MATRIX_STACK DEPTH respectively.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 187

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table) ;

target must be one of the regular color table names listed in table 3.4. format
and type accept the same values as do the corresponding parameters of
GetTexImage. The one-dimensional color table image is returned to client
memory starting at table. No pixel transfer operations are performed on
this image, but pixel storage modes that are applicable to ReadPixels are
performed. Color components that are requested in the specified format,
but which are not included in the internal format of the color lookup table,
are returned as zero. The assignments of internal color components to the
components requested by format are described in Table 6.1.
The functions

void GetColorTableParameter{if}v(enum target,
enum pname, T params) ;

are used for integer and floating point query.

target must be one of the regular or proxy color table names listed
in table 3.4. pname is one of COLOR.TABLE SCALE, COLOR_TABLE BIAS,
COLOR_TABLE_FORMAT, COLOR_TABLE WIDTH, COLOR_TABLE RED_SIZE,
COLOR_TABLE_GREEN_SIZE, COLOR_TABLE BLUE_SIZE, COLOR_TABLE_ALPHA SIZE,
COLOR_TABLE_LUMINANCE SIZE, or COLOR_TABLE_INTENSITY_SIZE. The value of
the specified parameter is returned in params.

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the com-
mand

void GetConvolutionFilter(enum target, enum format,
enum fype, void *image) ;

target must be CONVOLUTION_1D or CONVOLUTION_2D. format and type accept the
same values as do the corresponding parameters of GetTexImage. The
one-dimensional or two-dimensional images is returned to client memory
starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable filter image are queried using

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 188

void GetSeparableFilter(enum target, enum format,
enum fype, void *row, void *column, void *span) ;

target must be SEPARABLE 2D. format and type accept the same values as
do the corresponding parameters of GetTexImage. The row and column
images are returned to client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping
are identical to those of GetTexImage.

The functions

void GetConvolutionParameter{if}v(enum target,
enum pname, T params) ;

are used for integer and floating point query. target must be CONVOLUTION_1D,
CONVOLUTION_2D, or SEPARABLE 2D. pname is one of CONVOLUTION_BORDER_COLOR,
CONVOLUTION_BORDER MODE,

CONVOLUTION FILTER_SCALE, CONVOLUTIONFILTER BIAS, CONVOLUTION_FORMAT,
CONVOLUTION WIDTH, CONVOLUTION_HEIGHT, MAX_CONVOLUTIONWIDTH, or
MAX_CONVOLUTION HEIGHT. The value of the specified parameter is returned
in params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset, enum for-
mat, enum type, void* values) ;

target must be HISTOGRAM. reset and format accept the same values as do
the corresponding parameters of GetTexImage. The one-dimensional his-
togram table image is returned to values. Pixel processing and component
mapping are identical to those of GetTexImage.

If reset is TRUE, each component counter that is actually returned is reset
to zero. Counters that are not returned are not modified 2. No counters are
modified if reset is FALSE.

Calling

void ResetHistogram(enum target) ;

2 We may want to change this so that all counters are zeroed whether or not they’re
returned.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 189

resets all counters of all elements of the histogram table to zero. target must
be HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with
zero entries.

The functions

void GetHistogramParameter{if}v(enum target,
enum pname, T params) ;

are used for integer and floating point query. target must be HISTOGRAM
or PROXY HISTOGRAM. pname is one of HISTOGRAM_FORMAT, HISTOGRAM WIDTH,
HISTOGRAM RED_SIZE, HISTOGRAM_GREEN_SIZE,
HISTOGRAM BLUE_SIZE, HISTOGRAM_ALPHA SIZE, or HISTOGRAM LUMINANCE SIZE.
pname may be HISTOGRAM SINK only for target HISTOGRAM. The value of the
specified parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enun target, boolean reset, enum format,
enum fype, void* values) ;

target must be MINMAX. reset and format accept the same values as do the
corresponding parameters of GetTexImage. A one-dimensional image of
width 2 is returned to values. Pixel processing and component mapping are
identical to those of GetTexImage.

If reset is TRUE, each minimum value that is actually returned is reset to
the maximum representable value, and each maximum value that is returned
is reset to the minimum representable value. Minimum and maximum values
that are not returned are not modified . No values are modified if reset is
FALSE.

Calling

void ResetMinmax(enum target) ;

resets all minimum and maximum values of target to to their maximum and
minimum representable values, respectively, target must be MINMAX.
The functions

The previous footnote for GetHistogram reset behavior applies here as well.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 190

void GetMinmaxParameter{if}v(enum target,
enum pname, T params) ;

are used for integer and floating point query. target must be MINMAX. pname
is MINMAX FORMAT or MINMAX SINK. The value of the specified parameter is
returned in params.

6.1.11 Pointer and String Queries

The command
void GetPointerv(enum pname, void **params) ;

obtains the pointer or pointers named pname in the array
params. The possible values for pname are SELECTION BUFFER_POINTER,
FEEDBACK BUFFER_POINTER, VERTEX_ARRAY POINTER, NORMAL_ARRAY POINTER,
COLOR_ARRAY POINTER, INDEX_ARRAY POINTER, TEXTURE_COORD_ARRAY POINTER,
and EDGE FLAG_ARRAY POINTER. Each returns a single pointer value.

Finally,

ubyte *GetString(enum name) ;

returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,
and EXTENSIONS. The format of the RENDERER and

strings is implementation dependent. The EXTENSIONS string contains a
space separated list of extension names (The extension names themselves do
not contain any spaces); the VERSION string is laid out as follows:

<version number><space><vendor-specific information >

The version number is either of the form major_number.minor_number or
major_number.minor_number.release_number, where the numbers all have
one or more digits. The vendor specific information is optional. However, if
it is present then it pertains to the server and the format and contents are
implementation dependent.

GetString returns the version number (returned in the VERSION string)
and the extension names (returned in the EXTENSIONS string) that can be
supported on the connection. Thus, if the client and server support different
versions and/or extensions, a compatible version and list of extensions is
returned.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS 191

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. The PushAt-
trib, PushClientAttrib, PopAttrib and PopClientAttrib commands
are used for this purpose. The commands

void PushAttrib(bitfield mask) ;
void PushClientAttrib(bitfield mask) ;

take a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack. PushAttrib uses a server at-
tribute stack while PushClient Attrib uses a client attribute stack. Each
constant refers to a group of state variables. The classification of each vari-
able into a group is indicated in the following tables of state variables. The
error STACK OVERFLOW is generated if PushAttrib or PushClient Attrib is
executed while the corresponding stack depth is MAX_ATTRIB_STACK DEPTH or
MAX_CLIENT_ATTRIB_STACK DEPTH respectively. The commands

void PopAttrib(void) ;
void PopClientAttrib(void) ;

reset the values of those state variables that were saved with the last cor-
responding PushAttrib or PopClientAttrib. Those not saved remain
unchanged. The error STACK UNDERFLOW is generated if PopAttrib or Pop-
Client Attrib is executed while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic
constant names and stacks.

When PushAttrib is called with TEXTURE BIT set, the priorities, border
colors, filter modes, and wrap modes of the currently bound texture objects,
as well as the current texture bindings and enables, are pushed onto the
attribute stack. (Unbound texture objects are not pushed or restored.)
When an attribute set that includes texture information is popped, the
bindings and enables are first restored to their pushed values, then the bound
texture objects’ priorities, border colors, filter modes, and wrap modes are
restored to their pushed values.

The depth of each attribute stack is implementation dependent but must
be at least 16. The state required for each attribute stack is potentially 16
copies of each state variable, 16 masks indicating which groups of variables
are stored in each stack entry, and an attribute stack pointer. In the initial
state, both attribute stacks are empty.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS

Stack Attribute Constant

server | accum-buffer ACCUM_BUFFER BIT
server color-buffer COLOR_BUFFER BIT
server current CURRENT BIT
server | depth-buffer DEPTH_BUFFER BIT
server enable ENABLE BIT
server eval EVAL BIT

server fog FOG BIT

server hint HINT BIT

server lighting LIGHTING BIT
server line LINEBIT

server list LISTBIT

server pixel PIXEL MODE BIT
server point POINT BIT

server polygon POLYGON BIT
server | polygon-stipple POLYGON STIPPLE BIT
server scissor SCISSOR_BIT
server | stencil-buffer STENCIL BUFFER BIT
server texture TEXTURE BIT
server transform TRANSFORM BIT
server viewport VIEWPORT BIT
server ALL_ATTRIBBITS
client vertex-array CLIENT VERTEX_ARRAY BIT
client pixel-store CLIENT PIXEL_STORE BIT
client select can’t be pushed or pop’d
client feedback can’t be pushed or pop’d
client ALL _CLIENT_ATTRIB_BITS

Table 6.2: Attribute groups

DRAFT Version 1.2 - Jan. 2, 1998

192

CHAPTER 6. STATE AND STATE REQUESTS 193

In the tables that follow, a type is indicated for each variable. Table 6.3
explains these types. The type actually identifies all state associated with
the indicated description; in certain cases only a portion of this state is
returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is
returned, with parameters describing lights, where only the value pertaining
to the selected light is returned; with textures, where only the selected
texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a “-” in the attribute column
indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClient Attrib,
PopAttrib, or PopClient Attrib).

6.2 State Tables

The tables on the following pages indicate which state variables are ob-
tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands — the one that is most appropriate given
the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv,
Getlntegerv, GetFloatv, and GetDoublev. State variables for which
any other command is listed as the query command can be obtained only
by using that command.

6.2.1 Imaging Subset State - To Be Completed

Some state is only needed when the imaging subset (see section 3.6.2 is
provided. This state will be enumerated here in the February draft.

DRAFT Version 1.2 - Jan. 2, 1998

CHAPTER 6. STATE AND STATE REQUESTS

‘ Type code ‘ Explanation

B Boolean
C Color (floating-point R, G, B, and A values)
o) Color index (floating-point index value)
T Texture coordinates (floating-point s, ¢, r, ¢
values)
N Normal coordinates (floating-point z, y, =z
values)
V Vertex, including associated data
Z Integer
zZt Non-negative integer
Ziy Zgw | k-valued integer (k+ indicates k is minimum)
R Floating-point number
Rt Non-negative floating-point number
Rlof] Floating-point number in the range [a, b]
RF k-tuple of floating-point numbers
P Position (z, y, z, w floating-point coordinates)
D Direction (z, y, z floating-point coordinates)
M 4 x 4 floating-point matrix
1 Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)
n X type | n copies of type type (n* indicates n is
minimum)

Table 6.3: State variable types

DRAFT Version 1.2 - Jan. 2, 1998

194

195

CHAPTER 6. STATE AND STATE REQUESTS

aIowW 10 ‘g
‘1 0 :durys penb ur rejy

- 19% 08 S9DT1IOA JO IoqUUINN - - v -
UOTOTLIISUOD Iopun

- 197 penb oY) Jo soOIHILA - - AXE -
1oyutod xoyrea

- 197 q/v duns o[3uery, - - ey -
aIowW 10 ‘T
‘0 :durys o[3ueriy ur Iej

- 19% 08 S9DT1IOA JO IoqUUINN - - €7 -
drrs s[8uerry
pug/urdoq ® ur

- 197 SOOT1I9A OM] SNOTASI] - - AXT -
saoguoa-uobfijod

- 197 Jo Ioquuny - - 7 -
uo3Atod puy/uideg

- 197 JO OPTISUI $9DT1I0A - - AXU -

— e Ioyunoo opddrys oury — _ 7 -
doog sur puy /utdeg

- 197 ® JO XO)I0A SITq - - A -
1810 91} st

- 1°9°¢ | oj48a-2u) JT s99RIIPUL - - g -
oul| puy /urdog

- 197 UT X9)I9A SNOTASIJ - - A -
100[qo pus /utdaq

- 197 §99BOIPUL ‘() 7 USYA 0 - Ty -

NIy D9G uotydiIosa(] onfeA puwr) odAl, onyea 1o
[enyruy PH

Table 6.4. GL Internal begin-end state variables (inaccessible)

DRAFT Version 1.2 - Jan. 2, 1998

196

CHAPTER 6. STATE AND STATE REQUESTS

JUDLIND 7297 e o8pH | on4jg AURS[00g)9 g DVIA 8DAHE
1q
JURIIND AN pirea uonysod 1998y | 9ndf AURS[00g)9 g AITYA”NOLLISOd HHLS VH INEEEAD
uorysod
I9)Sel)M POJRIOOSS®
JUSIIND AN S9YRUIPI00D 21NXT, | T°0°0°0 AYeO[995 N SAHOO0N dYALXEL HELSVE LNEYHEND
uotyisod I9)sed [)rm
JURIIND Z1'CZ | porerosse Xopul 10[0)) 1 Ajeol 195 15e) XEANT HELEVE LNEHE 0D
‘AJ989)Ur)en)
uotysod Iopsel
JURIIND AN M pajerosse 10[00) | TT°T°T Aeo[195 o) HOTOO HHILEVY LNHEHHAD
‘AJ989)uUr)en)
JURIIND Z1'C | eoue)sIp I9gsel JuaLIn) 0 ARO[195 Y HONVISIT dHLSVE LNEHHAD
JUSIIND 1'% | worpsod 1egser quoriny) | 1°0°0°0 AYeO[995 val NOILISOd dELSVY LNAEHND
X9)I0A
18B] [}IM PI)RIDOSS®
— 97 §9)BUIPIOOD 2IMIXI], - — L -
XOI9A SB[[[IIM
- 97 Ppojernosse Xopul 10[0)) - — 15e) -
X9}I9A }8B]
— 97 M PaJeIDosse I0[0)) - — o) -
JURIIND 1T [ewIou juwaxIny) | 100 ARO[195 N TYWHON LNEHHAD
S9)BUTPIOOD
JUSIIND A 2Inx9y quexiny) | 1°0°00 AYeO[995 N SAHO0D HYNLXEL INEYEND
JURIIND 1T Xopul I0[0D JUaIIN,) 1 Aeo[195 15e) XEANT LNEHEOD
‘AJe89jurlen
JUDIIND A I0[0o quexIny) | 171 AYeo[995) HOTOD LNEYYND
‘AJe89jurlen
oMLY 99§ uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enyruy PH

Current Values and Associated Data

Table 6.5.

DRAFT Version 1.2 - Jan. 2, 1998

197

CHAPTER 6. STATE AND STATE REQUESTS

Aeire-xoI0A | {7 Kelre Seff 98ps o) 0} IJUIOJ 0 AJI2)UIOJ)95) A HALNIOd™ AVHE Y DV TA- 8D Jd
Aeire-xoI0A | {7 sBe[) 98pe UsamIaq SPLIIG 0 AJDZ9jU)en) 7 HATYLS AVHYV DV 1A a0 dd
Aeire-xoI0A | {7 s[qeus Aeire Sep o8pH | o5pg PeIqeuwy ST g AVHYV DVTI @DAd
Aeire
Aeire-xoI0A | {7 91eUIPIOOD 2IMIXd) 9} 0} ISJUIO] 0 AJI2)UIOJ)95) A HALNIOd™ AVIHYV AHO0O HINILXAL
Aeire-xoI0A | {7 S9)BUIPIOOD IN)XD) UMD IPLIYG 0 AJDZ9jU)en) 7 HATHLE AVHHV QY000 AUNLXAL
Aeire-xoI0A | {7 §9)BUIPIOOD 2IN)xX9} Jo odAT, | L¥0Td | Ade8ojurien) 74 AL AVHEY QHOO0D @UAIXAL
Aeire-xoI0A | {7 Justs]e 1od so)RUIPIOO) ¥ AJDZ9jU)en) 7 AZIS AVHEY QU000 EHAIXAL
Aeire-xoI0A | {7 s[qeus ArIIe 9)RUIPIOOD 2INIXST, | 25D PeIaeuygsI g AVEIYV QHO00 AUALXAL
Aeire-xoI0A | {7 Aelre Xopul o1} 0} ISJUIOJ 0 AJI2)UIOJ)95) A HALNIOd™ AVHYV XEANI
Aeire-xoI0A | {7 SOOTPUL U92M]aq SPTIIG 0 AJDZ9jU)en) 7 FATE LS AVII Y- XAANI
Aeire-xoI0A | {7 sootpul Jo odAT, | 1V01d | ATe30jur)en) /4 HdAL AVHYV XEANI
Aeire-xoI0A | {7 s[qeus Aelle Xopuy | asipg PeIaeuygsI g AVEIV XTANI
Aeire-xoI0A | {7 Aelre 10[0D 97} 0} ILjUIO] 0 AJI2)UIOJ)95) A UALNIOd AVHEY H0TOD
Aeire-xoI0A | {7 SIO[0D U92M)9q SPLI)S 0 AJDZ9jU)en) 7 AAIELS AVEEYV HOTOD
Aeire-xoI0A | {7 syusuodurod 10700 Jo odAT, | LV0Td | Ade8ojurien) 87 AdAL AVHEV HOTOD
Aeire-xoI0A | {7 Xo110A 1ad s10[0) ¥ AJDZ9jU)en) 7 AZIS AVHEY H0TOD
Aeire-xoI0A | {7 s[qeus Avire I0[00) | 25D PeIaeuygsI g AVEIVH0TOD
Aeire-xoI0A | {7 Aelre [eULION 91} 0} IDJUIOJ 0 AJI2)UIOJ)95) A HALNIOd AVHUV TYIWION
Aeire-xoI0A | {7 S[RULIOU U22MJ2(SPII}G 0 AJDZ9jU)en) 7 AATE LS AVHUYV TYIWION
Aeire-xoI0A | {7 §9)BUIPIOOD [eULIOU Jo odAT, | LV0OTd | ATeS0jur)en) Gz AL AVHEV TYIWNHON
Aeire-xoI0A | {7 s[qeus Aelle [eULION | 29§D PeIaeuygsI g AVEIV ITVINHON
Aeire-xoI0A | {7 Aelre X9)I0A 91} 0 IOJUIOJ 0 AJI2)UIOJ)95) A HALNIOd™ AVHE V- XTIHTA
Aeire-xoI0A | {7 SOOTISA USOM)O(OPLI)G 0 AJDZ9jU)en) 7 AATE LS AVHU YV XATIITA
Aeire-xoI0A | {7 S9)BUIPIOOD Xo1104 Jo odAT, | LY0QTd | ATo30jur)en) 74 AdAL AVHEV XTIHTA
Aeire-xoI0A | {7 X91I0A Iod $99eUIPIOO)) ¥ AJDZ9jU)en) W7 AZIST AVHE V- XTIHTA
Aeire-xoI0A | {7 s[qeus Avire Xo)I0A | 2950 PeIaeuygsI g AVEIV XTIHTA
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[etyuyg 149

Table 6.6. Vertex Array Data

DRAFT Version 1.2 - Jan. 2, 1998

198

CHAPTER 6. STATE AND STATE REQUESTS

porqeus
olqeus/wIojsuel) | 1'% oue[d Surddrp 1esn U 8D PeIqeuwy ST gX %9 PNV dIT0
SJUSIOIJO0D
urIofsueI) 11°% sue[d Surddrp 1080 0°0°0°0 oue[JdIip 105 pd X * 9 ANV Id dITD
Jo/uo 3urressal
olqeus/wLIofsuel) | €°0[°% [EULIOU JUSLIN) 8D PeIaeuygsI g TYIWHON @TVOSHM
Jo/uo uorjezijeuriou
olqeus/wLIofsuel) | €°0[°% [EULIOU JUSLIN) 8D PeIaeuygsI g HZITVINYON
ULIOJSURIY Al opow XIIjeW juUslIn’) | MAIATIAOH | AJdeSojurlen) 74 HAOW XTULY N4
1oyutod
- Al Jor)s XLIJRUL 9IN)Xa], T AJDZ9jU)en) 7 HLdE@ MOVLS EHALXAL
1yutod oeys
- Al Xujew uotyoalorg T AJDZ9jU)en) 7 HLJET MDVLS NOILOEL Odd
1yutod oeys
- Al XLIJRUI MOIA-[OPOA T AJDZ9jU)en) 7 HLJET MOVLS MEIATEAON
1oyutod
- ¢9e Jor)Ss XLIjRW I0[0)) T AJDZ9jU)en) 7 HILdAT MDVLE XIYLYIW H0TOD N
Iej
pr0dmora 1017 23 Ieou afued jdo(T 10 AYeO[995 LY X ADONVY HLJIAA
U)X
jr0dmata 1017 23 urduio podmatp | (]G 998 AJo8ojurlen) 7 X} LHOdMAIA
_ AN Jor)S XLIJRUL 9INIXST, £y1yuepy ARO[195 S X %7 XIYLYIN 8¥NLXEL
Joes
. AN XLI9eW Uoljos[o1] £y1yuepy ARO[195 2 X * T XIYLYIN NOILDELOHd
Joes
. AN XLIJRUI MOIA-[OPOIA £y1yuepy ARO[195 IV X * 28 XYLV MEIATEAON
_ ege Jor)s XLIJRU 10[0)) £y1yuepy ARO[195 S X %7 XTHLVITHOTOD S
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enyruy PH

Table 6.7. Transformation state

DRAFT Version 1.2 - Jan. 2, 1998

199

CHAPTER 6. STATE AND STATE REQUESTS

Suny31y 1e1e 3uryjes [PPOIAPPRYS | HIOOHS | AtoSojurien) W7 TEAOW @AVHS
olqeua/30} | OT'¢ pe[qeus So0j jtonay, | asg PeIaeuygsI g D0d
80J 01°¢ opow 804 dxd AJDZ9jU)en) 74 HAON DOJ
80J or'e pus 80J resury 071 ARO[195 g ANT DOd
80J or'e 1Ie)S S0J IRaUIT 00 ARO[195 g IdVISDOod
Ly1suap
80J or'e 80J Terjusuodxi 071 ARO[195 g ALIENTT DOJ
80J 01°¢ Xopul 804 0 ARO[195 I XEANI DOJ
80J 01°¢ I0[00 800 | 0°0°0°0 ARO[195 o) EleliteloptaleXs
9INqLINY "09¢§ uoryduiose(] onfeA puur’y dAT, onjea Jox)
[enmg D

Table 6.8. Coloring

DRAFT Version 1.2 - Jan. 2, 1998

200

CHAPTER 6. STATE AND STATE REQUESTS

Suny31y T¢1'7 [013U0D 10[0)) HOT0D ATONIS AI939juUT)eD) 7 TOYINOO HOTOO™ THIOI LHOITe
SuryysI|
Suny31y T¢1'7 popls-om) 98N s AURD[OO}O5) g HALSTOMI TEAON LHDIT
Suny31y T¢1'7 [BOO] ST JoMOTA s AURD[OO}O5) g YAMAIATYOOT TEAOIN LHDI'T
10709
Suny31y T¢1'7 SUdDS JUSIQUIY (01'2°0°202°0) AYRO[195 o) LNEIENY TEAON LHDIT
[eTIoyRTI
Jo quouodxoe
Suny31y T¢1'7 Te[noadg 00 AJ[RLISIRIAII9D) | Y X T SSANINIHS
10709
Suny3I T'ere YR QATSSTUTY (01°0°0°0°0°0°0) AJeLISIRINIOD) |) X G NOTSSInd
1070 [elIS}eW
SunysI T'ere e[noadg (01°0°0°0°0°0°0) AJeLISIRINIOD) |) X G HVINouds
10709
Suny3I T'ET'E | [eloyew ssnyr (01'8°0'8°0°8°0) AJeLISIRINIOD) |) X G gsnddrd
1070 [elIS}eW
SunysI T'ET% juRIquIY (012°0'2020) AJ[RLIRIAIOD) |) X G LNALdNY
surypes)
10[00 £q
Suny31y ¢'e1'z | porepye (s)eorg MOV QN LNOYA AI939juUT)eD) 74 OV TVIMELYIN HOTOD
10709
JUSLIND SUTHORI)
sorpredoad
Suny31y eer [etIore N | ASNAAIC ANY INIIGHY | AJo8ajurlen) S7 YALANVEVI TVIELVITHOTOD
po[qeus
ST Suryoed)
olqeus/SunysL | ¢¢1°7 IO[OD JT oM, s PeIqeuy sy g TVIHELVITHOTOD
poqeue sI
olqeus/SunysL | 1°¢1°7 SuryyS31[J1 onay, s PeIaeuygsI g DNILHDIT
9MQLINY BELS uorydrosa(g ONTeA puwn) odAT, onTeA JoY)
[erjruy PH

Table 6.9. Lighting (see also Table 2.7 for defaults)

DRAFT Version 1.2 - Jan. 2, 1998

201

CHAPTER 6. STATE AND STATE REQUESTS

SuTyy31] XopuI I0[0D

Suny31y 1°¢1'% I0] s pue ‘Wp ‘Wp I°T°0 AJ[RLIDIRIAIION) | Y X € X SEXHANTHOTOD
olqeus/SunySi | ['ET'g | PA[qeue ¢ 18I Ji ondy, 5|0 Pa[qeuy ST gx*8 'LHEDIT
SunysI TET'E | 2 ysiyjo 93ue jodg 0°081 APYSITIOD LU X *8 dd0LND"LOdS
AN
Suny31y 1¢1'% Jo jusuodxe Jy31jodg 00 AJIY31TI05) LU X %8 ININOIXT LOdS
AN
SunysI 1¢1°¢ | Jo uormpaap yqsmodg | (0°1-0°0°0°0) AJISITION ax *8 NOLLOGHIA 1048
10700]
Suny31y 1¢1'% ‘usjje dSljrIpRN]) 00 AJIY31TI05) +H X xR NOILVANELLY DILVIavad
Suny31y 1¢1'% I070R] "UI)Je IRSUIT 00 AJIY31TI05) +H X * 8 NOILVANALLY dVHANIT
Suny31y 1¢1'% 1070R] "uUIYje JURISUO) 01 AJIY31TI05) +H X xR NOILVANELLY LNVLSNOD
SunyS3I €1 2SI Jo wonisod | (0°0°0°T°0°0°0°0) | AJIYSITIOND d**8 NOILISOd
AN
Suny31y 1¢1'% Jo Kjtsudqur rejnoadg G’z 998 AJIY31TI05) X *Q YV IN0HEdS
AN
Suny31y 1¢1'% JO AyIsuojur osnyI(] G’z 998 AJIY31TI05) X *Q HSNAAIA
AN
SunysI 16rg | Jo Aysusyuryusrqury | (0°7°0°0°0°0°0°0) | AJIYSITIOD DX * 8 LNATENY
NIy 296 uoryduiose(] onfeA puur)) odAT, onfea 19x)
[eTyTu] 1°H

Table 6.10. Lighting (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

202

CHAPTER 6. STATE AND STATE REQUESTS

olqeua/uodLjod | z'¢'¢ | o[qeus ojddiys uo3Ljog | 2spg PeIqeuwy ST g H@T1ddILS NODATOd
orddnys-uo3Lod | ¢'¢ o1ddrys uo84104 s, 1 srddiyguo34jogrsn 7 -
UOT)eZIID)SRI
opou TIId 0]
olqeua/uodLjod | ¢¢¢ s[qeus jesyo UoSA[od | aspd PeIaeuygsI g T LASAIOT NOD ATOd
UOT)eZIID)SRI
opou gNIT 0]
olqeua/uodLjod | ¢¢¢ s[qeus jesyo UoSA[od | aspd PeIaeuygsI g ENIT LHSIA0"NODATOM
UOT)eZIID)SRI
opour LNIOd 10]
olqeun/uodLjod | ¢'¢¢ s[qeus jesyo UoSA[od | aspd PeIaeuygsI g INIOd LASAA0"NODATOM
uo3£jod ¢ce selq Jaso UoSA[0q 0 AYeO[995 Yy SIINA™LHESII0TNODATOd
uo3£jod ¢ce I070%] 1980 U0SA[0q 0 AYeO[995 Yy HOLOVA LASIA0 NODATOd
(spoeq 23 JU0Iy) pow
uo3£jod ¥ee uoryezLR)sel nuodLog | TIId AJDZ9jU)en) €7 X G AAON NODATOd
uo
olqeua/uodLjod | ¢¢ urserferyue uoSA[od | 9snd PeIaeuygsI g HIOOWS NODATOM
101ETPUT MDD/ MD
uo3£jod 1¢e oorJu0l] UOSA[Od | MID AJDZ9jU)en) A OV LNOYA
suodA[od
uo3£jod 1°G'¢ | Sumej yoeq/quol) ([0 | AOVE AJDZ9jU)en) 74 HAOW EDVI 110D
porqeus
olqeus/uodLjod | 1°¢¢ surqno uoSA[od | aspg PeIaeuygsI g OV TTOD
o[qeua /our| e s[qeus o1ddrys sury | asipg PeIaeuygsI g ATddILS ENIT
our| Zrve yeodor ojddrys oury 1 AJDZ9jU)en) +7 IVHEdEY 8TddILS ENIT
oul| e orddrys surg s.1 AJDZ9jU)en) W7 NYELLYd ETddILS ENIT
o[qeua /our| ve uo SUISBI[RT)UR QUL | 3507 PeIaeuygsI g HILOOWS ENIT
oul| ve IpTas Uty 01 ARO[195 d HLAIM ENIT
oqeua/qutod e uo Jurseifeljue o | 9507 PeIaeuygsI g HIOOWS LNIOJ
jutod e 9ZIS JUIOJ 01 ARO[195 d AZIS"INIOJ
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enyruy PH

Table 6.11. Rasterization

DRAFT Version 1.2 - Jan. 2, 1998

203

CHAPTER 6. STATE AND STATE REQUESTS

UOT)N[OST AYISUSIUT

_ QC §,2 98RWI 2INIX9Y) (T 0 J0JOMWRIR J[OADTXOL)0D) | 7 X U HZ18” ALISNALNI #90LXEL
UOTIN[OSDI 2DUBUTUIN]

_ QC §,2 98RWI 2INIX9Y) (T 0 I0)OWRIR J[OATXILI0D) | L7 X U HZISEONVNINAT HY0LXEL
uotynjosal eydre

- Q¢ §,2 98RWI 2INIX9Y) (T 0 I0)OWRIR J[OATXILI0D) | L7 X U HZIS VHATV #90LXEL
UoTIN[osal aN[q

- Q¢ §,2 98RWI 2INIX9Y) (T 0 I0)OWRIR J[OATXILI0D) | L7 X U HZISENTE HY0LXAL
UOTIN[OSDI U913

- Q¢ §,2 98RWI 2INIX9Y) (T 0 TO)OWRIR J[OATXILI0D) | 47 X U HZ1S NHEYD HYALXAL
UOTIN[OSaI Pal

- Q¢ §,2 98RWI 2INIX9Y) (T 0 I0)OWRIR J[OATXILI0D) | L7 X U HZ1S AgY @HALXAL

1eULI0} 98B WI [eUIDUl (SINENOdWOD HYNLXEL)

- Q¢ §,2 98RWI 2INIX9Y) (T 1 I9)oTIRIR J[PASTXOL,195) | &y X u IVIWEOA TYNHALNI #H0LXEL
[I1pm Ioploq payads

- Q¢ §,2 98RWI 2INIX9Y) (T 0 J0JOMWRIR J[OADTXOL)0D) | 7 X U HEqHOd HYNLXAL
yydep poyroads

- Q¢ §,2 98RWI 2IN1X9) (¢ 0 I0)OWRIR J[OATXILI0D) | L7 X U HIdET GUNLXE Ll
Y381y poyads

- Q¢ §,2 98RWI 2IN1X9) (7 0 I0)OWRIR J[OATXILI0D) | L7 X U IHOIHH @HALXAL
[Ipis payroads

- Q¢ §,2 98RWI 2INIX9Y) (T 0 I0)OWRIR J[OATXILI0D) | L7 X U HIAIM EY0LXEL
Lpo

- Q¢ 1€ 93BT 2IN)XaY ([T | ¢ 998 a8ewW X9, 195 I Xu T gUNLXA L
a@r 34nIXaL o1

2IN}X9) K¢ punoq 109lqo aInyxay, 0 AJDZ9jU)en) L7 X¢€ =D NIANIE H4 0 LX A Lep
€ 10 ‘Z ‘T SL @ ‘po[qeud

olqeua/oanyxo) | 0T°8°¢ | SI SULIN)Xd) ([JL O], | 95D PeIaeuygsI gxe T gUNLXA L

NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[entug PO

Table 6.12. Texture Objects

DRAFT Version 1.2 - Jan. 2, 1998

204

CHAPTER 6. STATE AND STATE REQUESTS

[oA9] Aelre

2IN)X9Y Q¢ 9IM)Xo]) WINUITXRA 0001 AJIojouree JXoJ,195) Y Xu THAET XVINAUNL XL

2IN)X9Y Q¢ KLelle oIN)xo) osey 0 AJIojouree JXoJ,195) Y Xu THAET @S VE AU 0LXA LEP
[Teop

2IN)X9Y Q¢ JO [9AS] WINTUIXRA 0001 AJIojouree JXoJ,195) Y Xu AOT XVINAUNLXA Ll
[Teop

2IN)X9Y Q¢ JO [PAS] WINWITUIY | (00T~ | AJIelomaRIRJXST,195) Y Xu QOT NIN HH0LXA Lep

2IN)X9Y K¢ £OUSPISSI 2INIXAT, | 25D | AlI9)oUIRIRJXSJ,195) g X 1T INEAISHY @HALXAL

2IN)X9Y Q'g¢e | Luoud 1oalqo aInyxay, 1 AJI12WRIRIXILIPD) | [X 44 ALTHOIHd BHALXAL

2IN)X9Y Q¢ Y opowt deim 2InIXa], | LVAJAY | Jojourete JXo],195) €7 X 41 YT d VUM EUNLXE Lo

2IN)X9Y Q¢ I opowr deim aInyxa], | I¥AJAY | Jo)oMIRIRIXS],19D) €7 X 4¢ 17 dVEM HENLXEL

2IN)X9Y Q¢ G opouwr derm 2In)xa], | IVEdAY | Jo)oWIRIRIXST,195) €7 X ,¢ S AVHM HYNLXEL
uorouUNnj

2IN)X9Y 0°'Q°¢ | UOoIjeOYIUSEW 2INIXS], | R'¢ 998 JI9jourete JXoL, 195 °7 X 4% ML DV @Y ALXEL
uorouUNnj

2IN)X9Y CRe UOTYeDYTUTII 9INYXS], | R'¢ 998 JI9jourete JXoL, 195 97 X 1% HELTIA NI Y0 LXEL

2IN)X9Y Q¢ I0[0D Iopioq 2ImIXaT, | 0°0°0°0 JI9jourete JXoL, 195 DX 4T HOTOD HEAYOd HYNLXAL

oMLY 99§ uotydiIosa(] onfeA puw) odAT, onfeA 1o
[entug PO

Table 6.13. Texture Objects (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

205

CHAPTER 6. STATE AND STATE REQUESTS

O pue
4 ‘T, ‘g 10}) ue8xay

2IN1X91 TO0T'G I0J pesn womouny | YYANIT HAH | ATUSDXaJ3195) | €7 X § HAOW NHD EINLXHL
(O pue 'y
‘L ‘S 10J) SIUSIOYJ0D
2INX97 ¥01°2 Teaur] 109[qo ueB8xay, T 01°C 998 AJUDDXOTJ0D) | Y X ANVIL LOELd0
(O pue ‘g
‘LS .Hob SIUDIDLYJO0D
2INX97 7'01°z | uoryenbs oued us8xay, 7077 908 AJUODXOL 0D | Y X | ANV I HAH
(DY LS
Eo_@:o\o;ﬁaa ¥01°2 ST &v po[qeus UsSxa], 8D PeIqeuwy ST g X¥ T"NHO HHALXEL
I0[0D
2INIX) 6'8°¢ JUSUIUOIIAUD 9INIXT, 0°0°0°0 AJAUGXOT,)95)) HOTOO ANT HINLXAL
uorouUNnj
2IN1X91 6'%¢ uotyeotfdde aInjxa], LY INA0H ATAU[XS],195) 74 HAOW ANT HHALXAL
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[erptuf D

Table 6.14. Texture Environment and Generation

DRAFT Version 1.2 - Jan. 2, 1998

206

CHAPTER 6. STATE AND STATE REQUESTS

Iopng-1070d TV uotpounj do o130 Ad0D AJDZ9jU)en) 917 FAOW O™ DIDOT
olqeus/wyYng-10[0d | ' T'F | po[qeus do o130] 10[0)) s PeIqeuwy ST g dOTDIDOTHOTOD
olqeus/wyng-10[00 | §'T'F | Ppolqeus do o13o[xepu s PeIqeuwy ST g (do"DIDOTTD 0°T4) JO"DIDOT XAANI
olqeus/wyng-10[0> | LT} polqeus ULy andJ, PeIqeuwy ST g HAHLIIA

Iopng-1070d 9TV JO[0D PUS[q JURISUO!) 0°0°0°0 ARO[195 o) MOTOO ANATAM

Iopng-1070d 9TV uotyenbe Sutpus|g | @@y oNNd | ATe3ejurjen) Gz NOLLY DA ANATd e

uorouUNnj

Iopng-1070d 9TV UOT)euI}sop SUIpus|yg 0Y4dZ AJDZ9jU)en) tly Lsa anaTaem

uorouUNnj

Iopng-1070d 9TV 90Inos FuTpus|yg ANO AJDZ9jU)en) €17 ous aNaTae
olqeua/wyng-10[0> | 9T} polqeus Surpusrg s PeIqeuwy ST g aNaig

uorouUNnj

oyng-yjdep STV 1899 Iognq ypda(l SSHT AJDZ9jU)en) 87 ONAJI HIJIEA
olqeus/wynqg-yidop | ¢'T'% porqeus rognqg yjda(g 8D PeIaeuygsI g LSEI HIJIEA

uorjoe ssed
oyng-[ouogs VIV opgnqg yidep [oUL3S daay AJDZ9jU)en) 97 SSVd HLJI @ SSVITIONALS
UoTOR [TeJ
oyng-[ouogs VIV opgnqg yidep [oUL3S daay AJDZ9jU)en) 97 TIVI HLdAA SSVJTIONELS
oyng-[ouogs VIV UOTOR [TR] [IOU)G daay AJDZ9jU)en) 97 TV TIONELS
oyng-[ouogs PTF | on[ea adouaIsjel [IOUL1S 0 AJDZ9jU)en) 7 AT TIONALS
oyng-[ouogs VIV JseW [IOU91S s.1 AJDZ9jU)en) 7 NSV EATVA TIONTLS
oyng-[ouogs VIV uorOUNJ [IOU3S SAVMTYV | Axo8ojurjon) 87 ONAITIONELS
olqeus/wYNq-[ouals | F1'F polqeus Surous)g s PeIqeuwy ST g LSEI TIONTLS
onyeA

Iopng-1070d Ty ooURIRfRI 3891 eydly 0 AJDZ9jU)en) Iy AEY LSEL VHITY

Iopng-1070d Ty uorpounj 1899 eyd[y | SAVMIV | ATeS9jurjen) 87 ONAT LSEL VHATV
olqeus/wyng-10[0> | ¢ T} porqeus 3150y eydy 8D PeIaeuygsI g ISEI VHITY

JOSSIOS 1Y X0Qq I0SSOG | Z'T'F 998 | AISS0U)9N) | 7 X | XOa g0SSIOS
o[qeuo/ 108S10S TV po[qeus SULIossIOg s PeIqeuwy ST g LSAI HOSSIOS
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o

[enyruy PH

Table 6.15. Pixel Operations

DRAFT Version 1.2 - Jan. 2, 1998

207

CHAPTER 6. STATE AND STATE REQUESTS

onjeA JIeoao

ppgng-wmooe | €°7'F Iopnqg UOTR[NUWNIDY 0 ARO[195 LY X T || #aTvaavaTo manov
nppng-[ous)s | ¢ oNJeA Ie9D [DU)S 0 Axo80)ur)en) W7 A0TYA IVETO TIONELS
onyeA
opng-ypdep | €7'F Tesd Teyng yjda(l 1 AJDZ9jU)en) d A0TYAIVETO HLJE]
(epour xapurt 10[00)
IDPNQ-I0[00 | €'7'F | onpea Ies[d Iaynq I0[0)) 0 AYRO[195 0D ANTYA IVETO XTANI
(opowr yerHY) onfea
ynq-I10702 | ¢'7'¥ Ieo[d Ioynqg Io[o)) | 0000 AYeO[995) FNTVAIVETO HOTOD
ST IM
nppng-[ous)s | 7' opng [ous)g s.1 Axo80)ur)en) W7 MSYVINELIIIM TIONTLS
uriim 10j
opng-ypdep | 77'¥ porqeus 1oyng yjda(g an.J, AURS[00g)9 g MSYWEIIIM HLIEA
Vio'g
_YNQ-10[00 | Z'Z'F | ‘Y ‘so[qeus 9j1Im I0[0)) an.J, Aues[ooqlen) | g X ¥ MSYINELIIIM EOTOD
DYNQ-I0[00 | Z'Z'F | Seuwe)lim Xopul I0[0)) s.1 AJDZ9jU)en) W7 MSYINA LT M XA QNI
SurmeIp
Dpgng-10100 | T'%'F I0J pojosles sioynyg | ['z'F 298 | Adedejurlon) *0Tz HELINEG MVHEQ
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enyruy PH

Table 6.16. Framebuffer Control

DRAFT Version 1.2 - Jan. 2, 1998

208

CHAPTER 6. STATE AND STATE REQUESTS

LINHHNDITY A0Vd

s101s-Toxid | ¢'f JO anfeA ¥ Axo80)ur)en) W7 INENNDITY MOVd
STAXId dIMS ¥DVd
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 STAXId dINS OVd
SMOY dINS HDVd
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 SMOY™dINSTIDYd
HIONAT MOY ADVd
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 HIONET MO IDVd
SADVHI dIMS ¥DVd
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) 4 SHDVINT dINS MOV
IHDIAH IDVHI ¥DVd
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 LHDIAH @DVINI MDVJep
LSYIA ST MDVd
s101s-Toxid | ¢'f Jo onfeA | aspg | AueoroOgIon) g LUl dST 0V
SALAT dVMS HDVd
s101s-Toxid | ¢'f Jo onfeA | aspg | AueoroOgIon) g SELAL dVMS MOV
INAWNDITV MDVdNN
s101s-Toxid | ¢'f JO anfeA ¥ Axo80)ur)en) W7 INENNDITY OVINA
STAXId dIMS HOVdNA
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 STAXIdINS MOVINA
SMOY dINS ADVdNN
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 SMOY dINS MOVINA
HIONAT MOY ADVdNN
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) 4 HIONET MO MOVINA
SADVHI dIMS HOVdNA
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 SHDVINT dIMS MOVANG
IHDIAH DVHI DVdNQA
s101s-Toxid | ¢'f JO anfeA 0 Axo80)ur)en) W7 LHDIAH ADYWIMOVINN P
LSYIA ST MDVdNN
s101s-Toxid | ¢'f Jo onfeA | aspg | AueoroOgIon) g LSUIIdST 3M0VdNA
SALAT dVAS HADVdNA
s101s-Toxid | ¢'f Jo onfeA | aspg | AueoroOgIon) g SELAE dVMS MOVIND
oMLy 09§ uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enmg D

Pixels

Table 6.17.

DRAFT Version 1.2 - Jan. 2, 1998

209

CHAPTER 6. STATE AND STATE REQUESTS

SOLIJUS 9[(RY} I0[0D AJIojourere
- ¢'9'¢ | oy pordde s1ogoej seig | 0‘0°0°0 | -PIqRLIOC[ODIDD) oH X € SVIEATEVIHOTOD
SOLIYUD 9[(®) I0[0D O} AJIojourere
_ ege porjdde siojoey ofeog | 1117 | -°[qeL 0[O0 195 v X G HIVOS HTAVIHOTOD®
ALISNALNI
10 ‘DNYNIHNT
‘YHdTY ‘E07Td ‘NIFYD
‘qay ST T {uol)n[osal AlID)oUIRIR
— e'g'e | juouodurod s[qe) I0[0)) 0 -O[qRLI0[0DIOD) | L7 X & X X9 AZIS & T VI HOTODY
Ipra AlID)oUIRIR
— cge peyads ,sa[qe) 10[0)) 0 -9[qeL 100D 195 +7 XEXT HIAIM GTaVIHOTOONw
1eULI0) 9FeUII AlID)oUIRIR
— cge [eUIS)UL S9[qe} I0[0)) | vdHy -9[qeL 100D 195 thy X ¢ X LY W04 ETE VI H0TODN
— cge so[qe) 1010y | figdwas a[qeLI0[0D 195 JXe ATAVIHOTODN
ouop st dnyooj
9[qe) I0[0D XLIJRUI
olqeus/pxid | ¢9¢ I0[00 9sod JU oniT, | aspd PeIaeuygsI g ATV HOTOD XTHLY W HOTOD LSO J4p
ouop st dnyooj
9[qe) I0[0D UOIJN[OAUOD
olqeus/pxid | ¢9¢ psod Jronay, | aspg PeIaeuygsI g ATV M0TOD NOLLATOANOD LSO J4p
ouop st dnyooj
olqeus/pxid | ¢9¢ 9[qe) I0[0D JU ond], | aspd PeIaeuygsI g ATAVIHOTODN
HLJAQ 10 ‘YHJTY ‘dn71d
‘NIIYD ‘@dy Jo ouo
exid o ST T QYIE ¥ JO oanfeA 0 ARO[195 Yy svia e
HLJAQ 10 ‘YHdTY
‘40T ‘NAIYD ‘qIY
exid o ST T 'TYDS T JO anfeA 1 ARO[195 Yy AIVOS™®
[oxid e | 18S440 XIANTI Jo onfep 0 AJDZ9jU)en) 7 LHSALO™XTANT
[oxid o LATHS XAANI JO onfep 0 AJDZ9jU)en) 7 LATHS XHANT
poddew a1e
[oxid o son[eA [OUL)S JT oNIT, | 250 AURS[00g)9 g TIONALS dVIN
poddew
[oxid o oI SIO[0D JU oNdT, | asnd AURS[00g)9 g HOTOO dVIN
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[etyuyg 149

Table 6.18.:Pixels(cornL38

DRAFT Version 1.2 - Jan. 2, 19

210

CHAPTER 6. STATE AND STATE REQUESTS

Sy AlID)oUIRIR
_ o I9)[IJ UOTIN[OATO) 0 -UOIIN[OATU0DIOD) | 7 X T LHDIEH NOLLNTOANOD &
Ipra AlID)oUIRIR
_ o I9)[IJ UOTIN[OATO) 0 ~UOIIN[OATUO0DIOD) | L7 X & HIAIM NOILATOANOD &S
1eULIO} [RUIS)UL AlID)oUIRIR
- ey I9)[IJ UOTIN[OATO) YEHY |-UOIIN[OAU0)ION) | eVy X ¢ LYWHOI NOLLOATOANOD &
SOLIYUS
I9)[IJ UOIIN[OATUOD AJIojourere
[oxid ¢'9'¢ | o3 peridde s1ojoey serg | 0°0°0°0 |-uonIn[oAuoDIOn | LY X & SVIEHHLTIL NOILATOANO D&
SOLIYUS
I9)[IJ UOIIN[OATUOD O} AJIojourere
[oxid ege porjdde siojoeg ofeog | 1'I°[] [-uomnjoauonien | Yy X ¢ HTVOS HAL T NOTLATOANO DS
opowt AlID)oUIRIR
[oxid oY I9pIOQ UOIIN[OAUO)) | HIAQHY |-UOIIN[OAUO)IOD) | V7 X ¢ EAOW HEAYOE” NOTLATOANODES
I0[0D AJIojourere
[oxid ey Iopioq uomnjoauo)) | (‘0‘0‘Q |-uommioAuo)eny |) X ¢ HOTOD HEAYOE NOILATOANO DM
1Y IO
- ¢9e uorynjoauod s[qeredsq | figdwo -o[qeaedoglon) I X7z NOILATOANODSS
1031
- ege SI9Y[Y uorn[oAuo’) | fizdwa |-UOIIN[OAUO)))OK) I Xz NOLLATOANODM®
SuOp ST UOIJN[OAUOD
ojqeun/pxid | ¢g¢ (17 o[qeledss Jroniay, | asnd PeIaeuygsI g AT ATAVEVJESep
suop st
olqeus/pxId | ¢'9'¢ | UOINOAUOD (JZ JL NI, | 28D PeIaeuygsI g dT NOILNTOANODW
suop st
olqeus/pxid | ¢'9'¢ | uONOAUOD (JT JL NI, | 2§D PeIaeuygsI g d1"NOILNTOANODW
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enmg D

Table 6.19. Pixels (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

211

CHAPTER 6. STATE AND STATE REQUESTS

sdnoi8 [oxid semumsuoo AlID)oUIRIR
- e'g'e | SurumrelISolsty Jr onay, | osredq -ure1309SIH195) g MNISINVIDOLSTHEP
HONVNINWNT 10 ‘YHdTY
‘209 ‘NITYD ‘qAy ST X
‘uorynjosal jueuodurod AlID)oUIRIR
— cge 9[qe) weldo)sty 0 -WRIS0ISIHIOD | 17 X T X G AZIS T NVUDOLSTH®
1eULIO} [RUIS)UL AlID)oUIRIR
— cge 9[qe) WRISOISTH | VgHY | -urexdo)sTfiar) vy X g LYWYOL NVUDOLSIHEP
AlID)oUIRIR
— e'9'e | UIpms o[qe) weldo)styg 0 -ure1309SIH195) 17 X7 HIAIM WVIDOLSTHE®
— cge s[qe) wreidoysty | figdwa ure1309)STE 195 I WYYDOLSIHEP
po[qeus st
ojqeua/pxid | ¢'9'¢ | Surrwrerdolsty Ju ond, | oseq PeIaeuygsI g WYYDOLSIHEP
YHJ'IY 10 ‘3014 ‘NITHD
‘gay st @ .XLIjeul
IO[0D I99Je SI010%]
[oxid ege selq juouoduro) 0 AYeO[995 Yy SVIE & XTHLVICHOTOD LEOd o
YHJ'IY 10 ‘3014 ‘NITHD
‘gay st @ .XLIjeul
IO[0D I99Je SI010%]
exid cge sTeos qusuoduro)) 1 AYRO[195 g ATYDS 2 XIMLYIN HOTOD LSO
YHJTV 10 ‘ENTE ‘NIFYD
‘qgy ST T [UOT)N[OATOD
I9)Je S1010%]
exid cge selq justoduno)) 0 AYRO[195 g SYIE @ NOLLATOANOD LSO J4p
YHJ'IY 10 ‘3014 ‘NITHD
‘qgy ST T [UOT)N[OATOD
I9)Je S1010%]
exid cge sTeos qusuoduro)) 1 AYRO[195 g ATYDS & NOILNTOANOD LSOJee
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[erptuf PO

Table 6.20. Pixels (cont.)

DRAFT Version 1.2 - Jan. 2, 1998

212

CHAPTER 6. STATE AND STATE REQUESTS

exid o Iopnq 9oInos peay ey 908 AJDZ9jU)en) 74 HALING AVEH
— o T 9[qe} Jo 971§ 1 AJDZ9jU)en) 7 AZIS T
€'¢°l9eL
woj oureu deur e
ST 7 {89[®) UOI)e[SURI}
- £v deN[PXId Xopu] 8.0 deNeXIJI9D | ZX *3E X G i
€'¢°l9eL
woj oureu deur e
ST 7 {89[®) UOI)e[SURI}
- £v deNPXId VEDY 8.0 deNeXIJ19D | Y X *3¢ X 8 i
exid o I0}o®] Wo0Z fi 01 ARO[195 Yy ATNOOZ
exid o I0}OR] WIOOZ 01 ARO[195 Yy X NOOZ
sdnoi8 [ex1d sewnsuod AlID)oUIRIR
— cge XeWUIW JT 9N, osTe -XRUIUIA 195) g MNIS™XVIUNIING®
1eULI0) AlID)oUIRIR
— €°0'¢ | JeUIojul S[qe} XBUWIUIJA vaony -XRUIUIA 195) (ad74 LYWHO4™XVINNING®
- £9¢ ofqey xewrurpy | (wururun) (NN IN) XBUWUTIA[19]) ull XVININGp
porqeus
olqeun/pxid | ¢g¢ ST XBUIUTUTL JT 9N, osTe PeIaeuygsI g XVINNING®
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
[eT3tu] D

Table 6.21. Pixels (cont.)
DRAFT Version 1.2 - Jan. 2, 1998

213

CHAPTER 6. STATE AND STATE REQUESTS

porqeus
UOoT)eIouss [RULIOU
olqeua/[ead | T°G olpewIoNN® JU NI, | 2sng | Porqeuds] g TVINYON 0LAV
[eA® 1¢ SUOISIAIP PU3 pg 11 AYeO[995 174 XT SINEWPTES ATED ZdVI
[eA® 1¢ SUOISIATP PUS P 1 AYeO[995 7 SINEWPES ATD TdVI
[eas 1°¢ syutodpus pusd pz | T°0T'0 | Areol 112D U XV NIVINO @ ardo™edVIN
[eA® 1¢ syutodpus pus p 10 AYeO[995 Y X7 NIVINO @ Qg9 TdV I
od £ dewr
olqeua/[ead | T°G st 7 :so[qeus dewt pg | aspg | porqeuds] g X6 *"ZdVIL
od £ dewr
olqeua/[ead | T°G st 7 :so[qeus dewt pT | aspg | parqeuds] g X6 T TdVI
- 1¢ syutodpus urewop pg | 1°G 99s | ajdeA1oH YU XEX6 NIVINOQ
- 1¢ syutodpus urewop py | 1°G 99s | aAjdeA1oH YU XTX6 NIVINOQ
- 1¢ syutod [o1quod pg | 1°G 998 | AJdRIA[1I9D) | H X *{X *Q X § 44800
- 1¢ syutod Jo1quod pT | 1°G 998 | ajde1on WX %8 X6 44800
- 1°G siopio dew pg 1M Ardepjon 87 X7 X6G qaqd0
- 1°G Iopio deur py 1 Ardepjon *87 X 6 qaqd0
MLy D9G uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enmg D

Table 6.22. Evaluators (GetMap takes a map name)

DRAFT Version 1.2 - Jan. 2, 1998

214

CHAPTER 6. STATE AND STATE REQUESTS

g 9¢ jurg o4 | HYVD LNOJ | Ate3ajurion £z LNTEDOd

Juty 9'G juty yloows uoAog | A4V ILNO(| Atedojurien) 74 INIH HLOOWS NODATOM

Juty 9'G Jury qoows aul | VO ILNOJ | ATa82jurlon) 74 INIH HLOOWS ENIT

Juty 9'G Jury groows o | AUVO ILNOO | Ate8ojurjen 74 INIH HLOOWS LNIOd

urg

Juty 9'G UOT1091100 9A1P0dsIog | AUV INOJ | ATo39jurien 74 INIH NOLLOHHHOO HALLOEdSHAd

MLy 09§ uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enyruy PH

Table 6.23. Hints

DRAFT Version 1.2 - Jan. 2, 1998

215

CHAPTER 6. STATE AND STATE REQUESTS

Jor)S 2INLIYYR JUST[D

— 9 oy} Jo yjdop wnuirxe 971 AJDZ9jU)en) 7 HLJdA@TMOVLE LIV LNAITO XVIA
Jor)S 9NLIYIR ISAISS
— 9 oy} Jo yjdop wnuirxe 971 AJDZ9jU)en) 7 HLJA@MOVIE dIM LIV XVIN
SUOTISUSWIP
— 107°% 120dMOTA WNWIXRY | [°(]'¢ 998 | Ar8ojur)en | 47 x ¢ SWIA THOJMHATAXVIN
Iopio erwouf[od
— 16 JOJen[RAD TUNWIXE Q AJDZ9jU)en) 7 MATUOTVAT XVIN
urysou [eo
— s 9s1] Aedsip wnuixe ¥9 AJDZ9jU)en) 7 DONILSEN LEIT XVIN
qidep yoeys sureu
— A" UOT}O9[9S WINUITXR A ¥9 AJDZ9jU)en) 7 HLJA@TIOVLS ENVN XVIN
olqel
uorje[suer) dejyExIg
— ege ® JO 9ZIS WINUIIXRA e AJDZ9jU)en) 7 HTAVL dVIN TAXId X VIT
'8¢ UOIIO9G
— Q¢ Ul UOISSNOSIP 91} 99§ ¥9 AJDZ9jU)en) 7 HZIS HYALXEL XVIN
£y
x ut uotsaid [oxtdqns
— ¢ JO $11q JO IoquIny] ¥ AJDZ9jU)en) 7 SLIgTEXIdANs
Jor)S XLIYRUI
aIn)xa) Jo yjdep
— Z20T'%Z Ioquuinu WNWIXe z AJDZ9jU)en) 7 HLJdA@TIOVLE HHALXEL XVIN
qidep yoeys Xurpet
— Z20T'%Z uotoaloid mwnuwrxey z AJDZ9jU)en) 7 HLJA@TIOVLE NOILOEL OYd X VIN
yydop yoeys
— Z20T'%Z MOTA-[9POUW WINWITXB A e AJDZ9jU)en) 7 HLJA@TIOVLE MEIATEAOIN XVIN
yydop yoeys
— €'9°¢ | XLIjRW IO[0D WINWIXRA z AJDZ9jU)en) 7 HILdET MDVLE XIILY N HOTOD X VN
soueld Surddro 1esn
— 11°% JO IoQqUUNU WINTUTX. A 9 AJDZ9jU)en) 7 SANVIL IITO XVIN
SLE
— 1¢1'% JO IoQqUUNU WINTUTX. A Q AJDZ9jU)en) 7 SLHDITXVIN
NIy ET uotydiIosa(] onfeA puw) odAT, onfeA 1o
UINUITUTIA D

Table 6.24. Implementation Dependent Values

DRAFT Version 1.2 - Jan. 2, 1998

216

CHAPTER 6. STATE AND STATE REQUESTS

S90I}.IoA

sjyuouI
-o[gedueyymer(q
JO ISqUINT WINUITXBUL
- Q7 POPULWIIIONY] - Axo80)ur)en) 7 SEOILHEA"SINENATE XVIee
S901pUl
sjyuouI
-o[gedueyymer(q
JO ISqUINT WINUITXBUL
- Q7 POPULWIIIONY] - Axo80)ur)en) 7 SEOIANT SINENETE X Ve
1991 UOTIN[OATUOD
- e JO 1Sy WnwIxe - ALIOJOWRIRJUONN[OAUOD 0D | 7 X { || LHOIEH NOILATOANOO XV
1991 UOTIN[OATUOD
- e JO YIPIM WNWITXe - ALIOJOWRIRJUONN[OAUOD)OD) | 7 X ¢ || HLAIM NOILATOANOO XVINE
Lyurenueld
- e [IPIM SUI] PoSeI[eIjuY - AYRO[195 Yy ALIMVIANVEO HIAIM ENIT
S)PIA OUI] Posel[erjue
- ve Jo (17 oy of) o8uey ‘1 AYRO[195 LU X7 DNV HLAIM ENIT
Lyurenueld
- ce ozis jutod poserfeniuy - AYRO[195 Y ALIMVIANVED EZIS LNIOJ
sozts jutod poserferjue
_ oo Jo (17 oy of) o8uey ‘1 AYRO[195 LU XT ADNVH HZIS LNIOJ
1SIXo SIojnq
- 9 JYSLL 23 9J9 JU ondf, - AURD[OO}O5) g OHUALS
1SIXo SIojnq
- 1% Joeq 2y JUOIJ JI 9N, - AURD[OO}O5) g HELINGETEN0A
SOXOpUI 91098
- N4 SI9PNQ I0J02 JT oNIJ, - AURD[OO}O5) g A0 XEANI
(31 21098
- N4 SI9PNQ I0J02 JT oNIJ, - AURD[OO}O5) g HAOW vEDY
sIognq
- 1% AIeI[IXNe JO IoqUUNN 0 Axo80)ur)en) 7 SHEALNEG XAV
9NQLIIY 99 uorydrosa(g ONTeA puwn) odAT, onTeA JoY)
TUMTITUTIA 149

Table 6.25. More Implementation Dependent Values

DRAFT Version 1.2 - Jan. 2, 1998

217

CHAPTER 6. STATE AND STATE REQUESTS

YHJ'IY 0 ‘40714 ‘NATYD
‘qay st &v 1uouoduod

Iofng uorne[numnosoe

— % T Ul $11q JO Ioquuny - AJDZ9jU)en) W7 SIIE" T WNDOV
soue[d

— % [Dua9s Jo Isquuny - AJDZ9jU)en) W7 SIIE TIDONELS
soue[d 1aynq

— % qidep Jo equuny - AJDZ9jU)en) 7 SIIE HILIAA
XIANI 10 ‘VHJTY
‘40T ‘NAIYD ‘qIY
Jo ouo st x ‘quouodurod
Isgnq I0[0d

— % T Ul $11q JO Ioquuny - AJDZ9jU)en) 7 sLiE e
MY 99§ uotydiIosa(] onfeA puw) odAT, onfeA 1o
[entug PO

Table 6.26. Implementation Dependent Pixel Depths

DRAFT Version 1.2 - Jan. 2, 1998

218

CHAPTER 6. STATE AND STATE REQUESTS

JOdIo wﬂﬁ—UEOQwo.H.HOU

- Gz ® ST 2191} JT oNIT, | 9SDT — gxu -
- Gz (8)apoo 10115 JULIIN) 0 JIOIIG] 1OX) 87 X U -
Yoeqposy | g¢ od £y yoeqposg az AJDZ9jU)en) Gz AL HALINEIOVEATTL
Yoeqposy | g¢ 9ZIs Ionq JOeqPosg 0 AJDZ9jU)en) 7 AZISHELINEI0OVaaaad
1oyutod
Yoeqposy | g¢ opng Joeqpaoq 0 AJI2)UIOJ)95) A HALNIOd HEJINE-30Vaadad
109[0s A" 9ZIS I9]JN(UOI}09]g 0 AJDZ9jU)en) 7 AZISHEINE NOILOT TS
1oyutod
109[0s A" Iopnq UoIR[RY 0 AJI2)UIOJ)95) A UALNIOd HEJINE NOILOTTES
- A" 3ur))es opOJAIOpPULY | YAANIY | AdoZojurlen) 74 IO IAANTT
- A" yydop yoeys owreyN 0 AJDZ9jU)en) 7 HIJET MOVIS ANVN
1oyutod
- 9 Jor)s 9InqLIjje JULI[) 0 AJDZ9jU)en) 7 HLJET MOVIS aI9IIV INAITO
- 9 yorys oynquiyje juar) | Aydure — VX *97 -
1oyutod
- 9 Jor)s 9InqLIjje IOAIG 0 AJDZ9jU)en) 7 HIJET JIOVIS aIMLLY
- 9 yorys 9qnqLijje IoArdg [Aydure — VX *97 -
suou JI pauyepun
‘UoTONIISUOD Iopun
- s 9s1] Aeydsip Jo opoA 0 AJDZ9jU)en) 7 FAOIT LEIT
suou Jt
() {UOTIOTLIISUOD Iopun
- s 9s1] Aeqdsip jo Iequunu 0 AJDZ9jU)en) 7 XTANT LSIT
9ST1] s asesI'T Jo FuIeg 0 AJDZ9jU)en) 7 ASVeE LSIT
MY 99§ uotydiIosa(] onfeA puw) odAT, onfeA 1o
[enyruy PH

Table 6.27. Miscellaneous

DRAFT Version 1.2 - Jan. 2, 1998

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee
an exact match between images produced by different GL. implementations.
However, the specification does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix
is to identify and provide justification for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebuffer state vector, and for
any GL command, the resulting GL and framebufler state must be identical
whenever the command is executed on that initial GL and framebufler state.

One purpose of repeatability is avoidance of visual artifacts when a
double-buffered scene is redrawn. If rendering is not repeatable, swapping
between two buffers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon
changed in position might differ at every pixel. Such a difference, while
within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

219

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX A. INVARIANCE 220

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a different GL mode vec-
tor, to eventually produce a result in the framebuffer. Examples of these
algorithms include:

e “Erasing” a primitive from the framebuffer by redrawing it, either in
a different color or using the XOR logical operation.

e Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity
of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement significantly constrains a parallel implementation of the GL.
Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something
that may be very difficult to achieve (for example, if the hardware does
floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to
port to OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given
GL command, the resulting GL and framebuffer state must be identical each
time the command is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use
of any other state value is not affected by the change):

Required:

o Iramebuffer contents (all bitplanes)

o The color buffers enabled for writing

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX A. INVARIANCE 221

Strongly

The values of matrices other than the top-of-stack matrices
Scissor parameters (other than enable)

Writemasks (color, index, depth, stencil)

Clear values (color, index, depth, stencil, accumulation)
Current values (color, index, normal, texture coords, edgeflag)
Current raster color, index and texture coordinates.

Material properties (ambient, diffuse, specular, emission, shini-
ness)

suggested:

Matriz mode

Matriz stack depths

Alpha test parameters (other than enable)
Stencil parameters (other than enable)

Depth test parameters (other than enable)
Blend parameters (other than enable)

Logical operation parameters (other than enable)
Pizel storage and transfer state

Fvaluator state (except as it affects the vertex data generated by
the evaluators)

Polygon offset parameters (other than enables, and except as they
affect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state val-

ues marked with e in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments

are also invariant with respect to

Required:

Current values (color, color index, normal, texture coords, edge-
flag)

Current raster color, color index, and texture coordinates
Material properties (ambient, diffuse, specular, emission, shini-
ness)

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX A. INVARIANCE 222

Rule 3 The arithmetic of each per-fragment operation is invariant except
with respect to parameters that directly control it (the parameters that control
the alpha test, for instance, are the alpha test enable, the alpha test function,
and the alpha test reference value).

Corollary 3 Images rendered into different color buffers sharing the same
Sframebuffer, either simultaneously or separately using the same command
sequence, are pivel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak
repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine.

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when
blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because floating point values may be represented using different formats
in different renderers (hardware and software), many OpenGL state values
may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

DRAFT Version 1.2 - Jan. 2, 1998

Appendix B

Corollaries

The following observations are derived from the body and the other ap-
pendixes of the specification. Absence of an observation from this list in no

way impugns its veracity.

1.

The CURRENT RASTER_TEXTURE_COORDINATES must be maintained cor-
rectly at all times, including periods while texture mapping is not
enabled, and when the GL is in color index mode.

. When requested, texture coordinates returned in feedback mode are

always valid, including periods while texture mapping is not enabled,
and when the GL is in color index mode.

. The error semantics of upward compatible OpenGL revisions may

change. Otherwise, only additions can be made to upward compat-
ible revisions.

. GL query commands are not required to satisfy the semantics of the

Flush or the Finish commands. All that is required is that the
queried state be consistent with complete execution of all previously
executed GL commands.

Application specified point size and line width must be returned as
specified when queried. Implementation dependent clamping affects
the values only while they are in use.

Bitmaps and pixel transfers do not cause selection hits.

. The mask specified as the third argument to StencilFunc affects the

operands of the stencil comparison function, but has no direct effect on

223

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX B. COROLLARIES 224

10.

11.

12.

13.

14.

15.

the update of the stencil buffer. The mask specified by StencilMask
has no effect on the stencil comparison function; it limits the effect of
the update of the stencil buffer.

. Polygon shading is completed before the polygon mode is interpreted.

If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

A display list is just a group of commands and arguments, so errors
generated by commands in a display list must be generated when the
list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not
change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster
color can be queried, however, regardless of the color mode of the GL
context.

A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to
change that material property via Material calls have no effect.

Material and ColorMaterial can be used to modify the RGBA ma-
terial properties, even in a color index context. Likewise, Material
can be used to modify the color index material properties, even in an

RGBA context.

There is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-
terized in FILL mode, and the fragments generated by the rasterization
of “narrow” polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the
object coordinate system is right-handed; (2) the only commands used
to manipulate the model-view matrix are Scale (with positive scaling
values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX B. COROLLARIES 225

16.

17.

18.

19.

20.

is less than the far value for DepthRange. If these conditions are all
satisfied, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

ColorMaterial has no effect on color index lighting.

(No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,
and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),
and the state of the the coordinate transfomations is identical when
A, B, C, and D are specified). Then, when the fragments produced
by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.

OpenGL state continues to be modified in FEEDBACK mode and in
SELECT mode. The contents of the framebuffer are not modified.

The current raster position, the user defined clip planes, the spot direc-
tions and the light positions for LIGHT:, and the eye planes for texgen
are transformed when they are specified. They are not transformed
during a PopAttrib, or when copying a context.

Dithering algorithms may be different for different components. In
particular, alpha may be dithered differently from red, green, or blue,
and an implementation may choose to not dither alpha at all.

DRAFT Version 1.2 - Jan. 2, 1998

Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was
released on 1 July 1992. Version 1.1 is upward compatible with version 1.0,
meaning that any program that runs with a 1.0 GL implementation will also
run unchanged with a 1.1 GL implementation. Several additions were made
to the GL, especially to the texture mapping capabilities, but also to the
geometry and fragment operations. Following are brief descriptions of each
addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer com-
mands than were previously necessary. Six arrays are defined, one each
storing vertex positions, normal coordinates, colors, color indices, texture
coordinates, and edge flags. The arrays may be specified and enabled inde-
pendently, or one of the pre-defined configurations may be selected with a
single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was
to improve the efficiency of the transfer; especially to allow direct memory
access (DMA) hardware to be used to effect the transfer. The additions
match those of the EXT vertex_array extension, except that static array data
are not supported (because they complicated the interface, and were not
being used), and the pre-defined configurations are added (both to reduce
subroutine count even further, and to allow for efficient transfer of array
data).

226

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 227

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an afline function of the window
coordinate depth slope of the polygon. Shifted depth values allow copla-
nar geometry, especially facet outlines, to be rendered without depth buffer
artifacts. They may also be used by future shadow generation algorithms.

The additions match those of the EXT_polygon offset extension, with two
exceptions. First, the offset is enabled separately for POINT, LINE, and FILL
rasterization modes, all sharing a single affine function definition. (Shifting
the depth values of the outline fragments, instead of the fill fragments, allows
the contents of the depth buffer to be maintained correctly.) Second, the
offset bias is specified in units of depth buffer resolution, rather than in the
[0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the frame-
buffer using a logical operation, just as color index fragments are in GL
version 1.0. Blending is disabled during such operation because it is rarely
desired, because many systems could not support it, and to match the se-
mantics of the EXT blend logic_op extension, on which this addition is loosely

based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather
than a simple count of components. The internal format is represented as
a single enumerated value, indicating both the organization of the image
data (LUMINANCE, RGB, etc.) and the number of bits of storage for each image
component. Clients can use the internal format specification to suggest the
desired storage precision of texture images. New base formats, ALPHA and
INTENSITY, provide new texture environment operations. These additions
match those of a subset of the EXT_texture extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be specified only indirectly

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 228

in GL version 1.0, which required that client specified “white” geometry
be modulated by a texture. GL version 1.1 allows such replacement to be
specified explicitly, possibly improving performance. These additions match
those of a subset of the EXT_texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum
texture image sizes as a function of some other texture parameters, especially
of the internal image format. Clients may use the proxy query mechanism
to tailor their use of texture resources at run time. The proxy interface is
designed to allow such queries without adding new routines to the GL inter-
face. These additions match those of a subset of the EXT_texture extension,
except that implementations return allocation information consistent with
support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as
from client memory, and rectangular subregions of texture arrays can be
redefined either from client or framebuffer memory. These additions match
those defined by the EXT_copy_texture and EXT_subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a
single object. Such treatment allows for greater implementation efficiency
when multiple arrays are used. In conjunction with the subtexture capabil-
ity, it also allows clients to make gradual changes to existing texture arrays,
rather than completely redefining them. These additions match those of the
EXT texture object extension, with slight additions to the texture residency
semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 229

2. Texture coordinates s, ¢, and r are divided by ¢ during the rasterization
of points, pixel rectangles, and bitmaps. This division was documented
only for lines and polygons in the 1.0 version.

3. The line rasterization algorithm was changed so that vertical lines on
pixel borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were
combined into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel
in the texture array. This behavior was unspecified in the 1.0 version,
and was incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if
ColorMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs

Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D’Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics

Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM

Phil Huxley, 3Dlabs

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX C. VERSION 1.1 230

Dale Kirkland, Intergraph

Hock San Lee, Microsoft

Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM

Tim Misner, SunSoft

Jeremy Morris, 3Dlabs

Israel Pinkas, Intel

Bimal Poddar, IBM

Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel

Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft

Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs

Linas Vepstas, IBM

Andy Vesper, Digital Equipment
Henri Warren, Megatek

Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

DRAFT Version 1.2 - Jan. 2, 1998

Appendix D

Version 1.2

OpenGL version 1.2, released on 777, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1,
meaning that any program that runs with a 1.1 GL implementation will
also run unchanged with a 1.2 GL. implementation.

Several additions were made to the GL, especially to texture mapping ca-
pabilities and the pixel processing pipeline. Following are brief descriptions
of each addition.

D.1 Three-Dimensional Texturing

three-dimensional textures can be defined and used. In-memory formats for
three-dimensional images, and pixel storage modes to support them, are also
defined. The additions match those of the EXT_texture3D extension.

One important application of three-dimensional textures is rendering
volumes of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Specifically, it pro-
vides a component order matching file and frame buffer formats common on
Windows platforms. The additions match those of the EXT bgra extension.

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The fields with the packed pixel

231

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 232

are not proper machine types, but the pixel as a whole is. Thus the pixel
storage modes and their unpacking counterparts all work correctly with
packed pixels.

The additions match those of the EXT_packed_pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,
while resulting in the same unit normals.

The additions are based on the EXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of
emissive, ambient and diffuse terms of the usual GL lighting equation, and
a secondary color consisting of the specular term. Only the primary color
is modified by the texture environment; the secondary color is added to
the result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather
than surface properties.

The additions match those of the EXT_separate_specular_color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly
the range [0, 1]. When a texture coordinate is clamped using this algorithm,
the texture sampling filter straddles the edge of the texture image, taking
half its sample values from within the texture image, and the other half from
the texture border. It is sometimes desirable to clamp a texture without
requiring a border, and without using the constant border color.

A new texture clamping algorithm, CLAMP_TO EDGE, clamps texture co-
ordinates at all mipmap levels such that the texture filter never samples a
border texel. When used with a NEAREST or a LINEAR filter, the color returned
when clamping is derived only from texels at the edge of the texture image.

The additions match those of the SGIS_texture edge_clamp extension.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 233

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter A are added.
One constraint clamps A to a specified floating point range. The other limits
the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

Together these constraints allow a large texture to be loaded and used
initially at low resolution, and to have its resolution raised gradually as more
resolution is desired or available. Image array specification is necessarily in-
tegral, rather than continuous. By providing separate, continuous clamping
of the A parameter, it is possible to avoid "popping” artifacts when higher
resolution images are provided.

The additions match those of the SGIS_texture lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the
range of vertices referred to by the index set is added. Implementations can
take advantage of this additional information to process vertex data without
having to scan the index data to determine which vertices are referenced.
The additions match those of the EXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image pro-
cessing applications, and may not be present in all GL implementations.
The are collectively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel trans-
fer process, providing additional lookup capabilities beyond the existing
lookup. The key difference is that the new lookup tables are treated as
one-dimensional images with internal formats, like texture images and con-
volution filter images. Thus the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal for-
mat ALPHA modifies only the A component of each pixel group, leaving the
R, G, and B components unmodified.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 234

Three independent lookups may be performed: prior to convolution;
after convolution and prior to color matrix transformation; after color matrix
transformation and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in
addition to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing
the entire table. The affected portions may be specified either from host
memory or from the framebuffer.

The
additions match those of the EXT_color table and EXT_color _subtable ex-
tensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the
first color table lookup in the pixel transfer process. The convolution kernels
are themselves treated as one- and two-dimensional images, which can be
loaded from application memory or from the framebuffer.

The convolution framework is designed to accommodate three-
dimensional convolution, but that API is left for a future extension.

The additions
match those of the EXT_convolution and HP_convolution border modes ex-
tensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the
pixel transfer path. The matrix operates on RGBA pixel groups, using the
equation

' = MC,

where

C =

= QO

and M is the 4 x 4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased
by a programmed amount. Color matrix multiplication follows convolution.

DRAFT Version 1.2 - Jan. 2, 1998

APPENDIX D. VERSION 1.2 235

The color matrix can be used to reassign and duplicate color components.
It can also be used to implement simple color space conversions.
The additions match those of the SGI_color matrix extension.

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values
(histogram) and that track the minimum and maximum color component
values (minmax) are performed at the end of the pixel transfer pipeline. An
optional mode allows pixel data to be discarded after the histogram and/or
minmax operations are completed. Otherwise the pixel data continues on
to the next operation unaffected.

The additions match those of the EXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be
defined. A typical usage is blending two RGB images. Without the constant
blend factor, one image must have an alpha channel with each pixel set to
the desired blend factor.

The additions match those of the EXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and des-
tination components may be used.

Two of the new equations produce the minimum (or maximum) color
components of the source and destination colors. Taking the maximum is
useful for applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation,
but produce the difference of its left and right hand sides, rather than the
sum. Image differences are useful in many image processing applications.

The additions match those of the EXT blendminmax and
EXT_blend_subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing
a cross section of the computer industry.
Add list of people here

DRAFT Version 1.2 - Jan. 2, 1998

Index of GL calls

z_BIAS, 78, 209
z_SCALE, 78, 209

2D, 175, 177, 218

2 BYTES, 178

3D, 175, 177
3D_COLOR, 175, 177
3D_COLOR_TEXTURE, 175, 177
3 BYTES, 178
AD_COLOR_TEXTURE, 175, 177
A BYTES, 178

1,117,121, 132, 137, 138, 186, 203
2, 117, 121, 137, 138, 186, 203

3, 117, 121, 137, 138, 186, 203

4, 117, 121, 137, 138, 186

ACCUM, 156

Accum, 156, 157

ACCUM_BUFFER_BIT, 155, 192

ADD, 156, 157

ALL_ATTRIB_BITS, 192

ALL_CLIENT_ATTRIB_BITS,
192

ALPHA, 78, 92, 103, 104, 115,
116, 137, 138, 160, 161,
186, 209, 211, 217, 227,
233

ALPHA12, 116

ALPHAT16, 116

ALPHAA4, 116

ALPHAS, 116

ALPHA _BIAS, 101

ALPHA SCALE, 101

ALPHA_TEST, 144

AlphaFunc, 144

ALWAYS, 144-146, 206

AMBIENT, 50, 52

AMBIENT_AND DIFFUSE, 50,
52

AND, 152

AND_INVERTED, 152

AND _REVERSE, 152

AreTexturesResident, 135, 179

ArrayElement, 19, 23, 24, 176

AUTO_NORMAL, 168

AUXz4, 152, 153

AUXn, 152, 159

AUXO0, 152, 159

BACK, 49, 52, 70, 73, 152, 153,
159, 160, 184, 202

BACK_LEFT, 152, 153, 159

BACK_RIGHT, 152, 153, 159

Begin, 12, 15-20, 23, 24, 28, 54,
62, 67, 70, 73, 169, 170,
175

BGR, 92, 160, 163

BGRA, 92, 94, 98, 160, 231

BindTexture, 134

BITMAP, 72, 89, 91, 98, 111, 161,
186

Bitmap, 111

BITMAP_TOKEN, 177

BLEND, 136, 138, 147, 151

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

BlendColor, 77, 147

BlendEquation, 77, 147, 148, 150

BlendFunc, 77, 147, 148, 150

BLUE, 78, 92, 160, 161, 209, 211,
217

BLUE_BIAS, 101

BLUE_SCALE, 101

BYTE, 22, 91, 161, 162, 178

C3F_V3F, 25, 26

CAF _N3F_V3F, 25, 26

CAUB_V2F, 25, 26

CAUB_V3F, 25, 26

CallList, 19, 178, 179

CallLists, 19, 178, 179

can’t be pushed or pop’d, 192

CCW, 48, 202

CLAMP, 125, 129

CLAMP_TO_EDGE, 125, 126,
129, 232

CLEAR, 152

Clear, 155, 156

ClearAccum, 155

ClearColor, 155

ClearDepth, 155

ClearIndex, 155

ClearStencil, 155

CLIENT_PIXEL_STORE_BIT,
192

CLIENT_VERTEX_ARRAY _BIT,
192

CLIP_PLANE, 39

CLIP_PLANEO, 39

ClipPlane, 38

COEFF, 185

COLOR, 81, 85, 86, 121, 163

Color, 19-21, 42, 56

Color3, 20

Color4, 20

COLOR_ARRAY, 23, 27

237

COLOR_ARRAY_POINTER, 190
COLOR_BUFFER_BIT, 155, 192
COLOR_INDEX, 72, 89, 92, 102,

111, 160, 163, 185, 186
COLOR_INDEXES, 50, 53
COLOR_LOGIC_OP, 151
COLOR_MATERIAL, 52
COLOR_MATRIX, 31, 34, 86, 186
COLOR_-MATRIX_STACK_DEPTH,

186
COLOR_TABLE, 80, 82, 103
COLOR_TABLE_ALPHA SIZE,

187
COLOR_TABLE_BIAS, 80, 187
COLOR_TABLE_BLUE_SIZE,

187
COLOR_TABLE_FORMAT, 187
COLOR_TABLE_GREEN SIZE,

187
COLOR_TABLE_INTENSITY _SIZE,

187
COLOR_TABLE_LUMINANCE_SIZE,

187
COLOR_TABLE_RED_SIZE, 187
COLOR_TABLE_SCALE, 80, 81,

187
COLOR_TABLE_WIDTH, 187
ColorMask, 154
ColorMaterial, 51, 52, 168, 224,

229
ColorPointer, 19, 21, 22, 27, 179
ColorSubTable, 81, 82
ColorTable, 79, 81-83, 108, 109,

180
ColorTableParameter, 80
ColorTableParameterfv, 80
Colorub, 55
Colorui, 55
Colorus, 55
COMPILE, 176, 224

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

COMPILE_AND _EXECUTE,

176, 178, 179

CONSTANT_ALPHA, 77, 149,
150

CONSTANT _ATTENUATION,
50

CONSTANT_BORDER, 105, 106

CONSTANT_COLOR, 77, 149,
150
CONVOLUTION_ID, 84, 86, 103,
118, 187, 188
CONVOLUTION_2D, 83-85, 103,
118, 187, 188
CONVOLUTION_BORDER_COLOR,
106, 188
CONVOLUTION_BORDER_MODE,
105, 188
CONVOLUTION_FILTER_BIAS,
83-85, 188
CONVOLUTION_FILTER_SCALE,
83-86, 188

CONVOLUTION_FORMAT, 188
CONVOLUTION_HEIGHT, 188
CONVOLUTION_WIDTH, 188
ConvolutionFilter1D, 84-86
ConvolutionFilter2D, 83-86
ConvolutionParameter, 84, 105
ConvolutionParameterfv, 83, 84,
106
ConvolutionParameteriv, 85, 106
COPY, 151, 152, 206
COPY_INVERTED, 152
COPY_PIXEL_TOKEN, 177
CopyColorSubTable, 81, 82
CopyColorTable, 81, 82
CopyConvolutionFilter1D, 85
CopyConvolutionFilter2D, 85
CopyPixels, 75, 78, 81, 85, 86, 103,
121, 157, 163, 164, 174
CopyTexImagelD, 103, 121, 122,

238
131
CopyTexImage2D, 103, 119, 121,
122, 131
CopyTexImage3D, 122
CopyTexSublmagelD, 103, 122,
124
CopyTexSublmage2D, 103, 122,
123

CopyTexSublmage3D, 122, 123
CULL_FACE, 70

CullFace, 70

CURRENT_BIT, 192

CURRENT_RASTER_TEXTURE_COORDINATES,

223
CW, 48

DECAL, 136, 138

DECR, 145

Deletelists, 179

DeleteTextures, 134, 179

DEPTH, 163, 209

DEPTH_BIAS, 78, 101

DEPTH_BUFFER_BIT, 155, 192

DEPTH_COMPONENT, 80, 83,
89, 92, 113, 159, 160, 163,
185

DEPTH_SCALE, 78, 101

DEPTH_TEST, 146

DepthFunc, 146

DepthMask, 154

DepthRange, 30, 183, 225

DIFFUSE, 50, 52

Disable, 35, 38, 39, 44, 51, 52, 60,
64, 67, 70, 72, 75, 108-
110, 136, 139, 144-147,
151, 167, 168

DisableClientState, 19, 23, 27, 179

DITHER, 151

DOMAIN, 185

DONT_CARE, 181

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

DOUBLE, 22

DRAW _PIXEL_TOKEN, 177

DrawArrays, 23, 24, 176

DrawBuffer, 152, 153

DrawElements, 24, 25, 176, 233

DrawPixels, 72, 75, 76, 78, 80, 83,
89-94, 98, 100, 103, 111,
113, 114, 157, 159, 161,
163, 174

DrawRangeElements, 25, 216

DST_ALPHA, 149

DST_COLOR, 149

EDGE FLAG_ARRAY, 23, 27

EDGE FLAG_ARRAY_POINTER,
190

EdgeFlag, 18, 19

EdgeFlagPointer, 19, 21, 22, 179

EdgeFlagv, 18

EMISSION, 50, 52

Enable, 35, 38, 39, 44, 51, 52, 60,
64, 67, 70, 72, 74, 108-
110, 136, 139, 144-147,
151, 167, 168, 182

ENABLE_BIT, 192

EnableClientState, 19, 23, 27, 179

End, 12, 15-20, 23, 24, 28, 54, 62,
70, 73, 169, 170, 175

EndList, 176

EQUAL, 144-146

EQUIV, 152

EVAL_BIT, 192

EvalCoord, 19, 167, 168

EvalCoord1, 168-170

EvalCoord1d, 169

EvalCoord1f, 169

EvalCoord2, 168, 170, 171

EvalMeshl, 169

EvalMesh2, 169, 170

EvalPoint, 19

239

EvalPoint1, 170

EvalPoint2, 170

EXP, 140, 141, 199

EXP2, 140

EXT _bgra, 231

EXT_blend _color, 235
EXT_blend _logic_op, 227
EXT_blend _minmax, 235
EXT_blend _subtract, 235

EXT _color_subtable, 234

EXT _color_table, 234

EXT _convolution, 234

EXT copy_texture, 228
EXT_draw_range_elements, 233
EXT _histogram, 235

EXT _packed _pixels, 232

EXT _polygon_offset, 227

EXT _rescale_normal, 232

EXT _separate_specular_color, 232
EXT _subtexture, 228

EXT _texture, 227, 228

EXT _texture3D, 231
EXT_texture_object, 228

EXT _vertex_array, 226
EXTENSIONS, 190
EYE_LINEAR, 37, 38, 184, 205
EYE_PLANE, 37

FALSE, 18, 19, 46-48, 76, 78, 87,
88, 98, 101, 110, 111, 135,
159, 183, 186, 188, 189

FASTEST, 181

FEEDBACK, 172-174, 225

FEEDBACK_BUFFER_POINTER,
190

FeedbackBuffer, 174, 175, 179

FILL, 73-75, 169, 202, 224, 227

Finish, 179, 180, 223

FLAT, 54, 224

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

FLOAT, 22, 26, 27, 91, 161, 162,
178, 197

Flush, 179, 180, 223

FOG, 139

Fog, 140, 141

FOG_BIT, 192

FOG_COLOR, 140

FOG_DENSITY, 140

FOG_END, 140

FOG_HINT, 181

FOG_NDEX, 141

FOG_MODE, 140, 141

FOG_START, 140

FRONT, 49, 52, 70, 73, 152, 153,
159, 160, 184

FRONT_AND_BACK, 49, 52, 70,
73, 152, 153

FRONT_LEFT, 152, 153, 159

FRONT_RIGHT, 152, 153, 159

FrontFace, 48, 70

Frustum, 32, 33, 224

FUNC_ADD, 148, 150, 206

FUNC_REVERSE_SUBTRACT,
148

FUNCSUBTRACT, 148

GenLists, 179
GenTextures, 134, 179, 186
GEQUAL, 144-146
Get, 30, 179, 182, 183
GetBooleanv, 182, 183, 193
GetClipPlane, 183, 184
GetColorTable, 83, 159, 187
GetColorTableParameter, 187
GetConvolutionFilter, 159, 187
GetConvolutionParameter, 188
GetConvolutionParameteriv, 83,
84
GetDoublev, 182, 183, 193
GetError, 11

240

GetFloatv, 182, 183, 186, 193
GetHistogram, 88, 159, 188, 189
GetHistogramParameter, 189
Getlntegerv, 25, 182, 183, 186, 193
GetLight, 183, 184
GetMap, 184, 185
GetMaterial, 183, 184
GetMinmax, 159, 189
GetMinmaxParameter, 190
GetPixelMap, 184, 185
GetPointerv, 190
GetPolygonStipple, 186
GetSeparableFilter, 159, 188
GetString, 190
GetTexEnv, 183, 184
GetTexGen, 183, 184
GetTexImage, 133, 185, 187189
GetTexImagelD, 159
GetTexImage2D, 159
GetTexImage3D, 159
GetTexLevelParameter, 184
GetTexParameter, 184
GetTexParameterfv, 133, 135
GetTexParameteriv, 133, 135
GL_EXTENSIONS, 77
GREATER, 144-146
GREEN, 78, 92, 160, 161, 209,
211, 217
GREEN_BIAS, 101
GREEN_SCALE, 101

Hint, 180

HINT_BIT, 192

HISTOGRAM, 87, 88, 110, 188,
189

Histogram, 87, 88, 110, 180

HISTOGRAM_ALPHA SIZE, 189

HISTOGRAM_BLUE_SIZE, 189

HISTOGRAM_FORMAT, 189

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

HISTOGRAM_GREEN _SIZE,

189
HISTOGRAM_LUMINANCE _SIZE,

189
HISTOGRAM_RED SIZE, 189
HISTOGRAM _SINK, 189
HISTOGRAM _WIDTH, 189
HP _convolution_border_modes,

234

IGNORE_BORDER, 105-107

INCR, 145

INDEX, 217

Index, 19, 21

INDEX_ARRAY, 23, 27

INDEX_ARRAY_POINTER, 190

INDEX_LOGIC_OP, 151

INDEX_OFFSET, 78, 101, 209

INDEX_SHIFT, 78, 101, 209

IndexMask, 154

IndexPointer, 19, 22, 179

InitNames, 171, 172

INT, 22, 91, 161, 162, 178

INTENSITY, 87, 88, 103, 104,
115, 116, 137, 138, 186,
209, 227

INTENSITY12, 87, 88, 116

INTENSITY16, 87, 88, 116

INTENSITY4, 87, 88, 116

INTENSITYS, 87, 88, 116

Interleaved Arrays, 19, 25, 26, 179

INVALID_ENUM, 12, 13, 38, 49,
77, 83, 87-89, 121, 133,
185

INVALID_OPERATION, 13, 19,
77, 89, 93, 134, 153, 157,
159, 160, 172, 174, 176

INVALID_VALUE, 12, 13, 22, 25,
30, 33, 49, 60, 64, 76, 78—
80, 82-84, 87, 114, 115,

241

117, 122-124, 131, 135,
140, 144, 155, 166, 167,
169, 176, 178, 184, 185

INVERT, 145, 152

IsEnabled, 179, 182, 193

IsList, 179

IsTexture, 179, 185, 186

KEEP, 145, 146, 206

LEFT, 152, 153, 159

LEQUAL, 144-146

LESS, 144-146, 206

Light, 49, 50

LIGHT4, 49, 51, 225

LIGHTO, 49

LIGHT_MODEL_AMBIENT, 50

LIGHT_MODEL_COLOR_CONTROL,
50

LIGHT_MODEL_LOCAL_VIEWER,
50

LIGHT_MODEL_TWO_SIDE, 50

LIGHTING, 43, 44

LIGHTING_BIT, 192

LightModel, 49, 50

LINE, 73-75, 169, 170, 202, 227

LINE_BIT, 192

LINE_LOOP, 15

LINE_RESET_TOKEN, 177

LINE_.SMOOTH, 64

LINE.SSMOOTH_HINT, 181

LINE_STIPPLE, 67

LINE_STRIP, 15, 169

LINE_-TOKEN, 177

LINEAR, 125, 126, 129, 131-133,
140, 232

LINEAR_ATTENUATION, 50

LINEAR_MIPMAP_LINEAR,
125, 130, 132

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

LINEAR_MIPMAP _NEAREST,
125, 130, 131

LINES, 16, 67

LineStipple, 66

LineWidth, 62

LIST_BIT, 192

ListBase, 178, 180

LOAD, 156

Loadldentity, 31

LoadMatrix, 31

LoadName, 172

LOGIC_OP, 151

LogicOp, 151, 152

LUMINANCE, 92, 99, 103, 104,
115-117, 137, 138, 160,
161, 186, 209, 211, 227

LUMINANCE12, 116

LUMINANCE12_ALPHA12, 116

LUMINANCE12_ALPHA4, 116

LUMINANCE16, 116

LUMINANCE16_ALPHA16, 116

LUMINANCEA4, 116

LUMINANCE4_ALPHAA4, 116

LUMINANCE6_ALPHA2, 116

LUMINANCES, 116

LUMINANCES_ALPHAS, 116

LUMINANCE_ALPHA, 92, 99,
103, 104, 115-117, 137,
138, 160, 161, 163, 186

Mapl, 166, 167, 183
MAP1.COLOR_4, 166
MAP1_INDEX, 166
MAP1_NORMAL, 166
MAPI_TEXTURE_COORD_I,
166, 168
MAPI_TEXTURE_COORD_2,
166, 168
MAPI_TEXTURE_COORD_3,
166

242

MAPI_TEXTURE_COORD 4,
166
MAP1_VERTEX_3, 166
MAP1_VERTEX 4, 166
Map2, 166, 167, 183
MAP2_VERTEX_3, 168
MAP2_VERTEX 4, 168
MAP_COLOR, 78, 101, 102
MAP STENCIL, 78, 102
MAP_VERTEX_3, 168
MAP_VERTEX 4, 168
MapGrid1, 169
MapGrid2, 169
Material, 19, 49, 50, 53, 224
MatrixMode, 31
MAX, 148
MAX_ATTRIB_STACK_DEPTH,
191
MAX_CLIENT_ATTRIB_STACK_DEPTH,
191
MAX_COLOR_MATRIX_STACK_DEPTH,
186
MAX_CONVOLUTION_HEIGHT,
83, 188
MAX_CONVOLUTION_WIDTH,
83, 84, 188
MAX_ELEMENTS_INDICES, 25
MAX_ELEMENTS_VERTICES,
25
MAX_EVAL_ORDER, 166, 167
MAX_TEXTURE_SIZE, 117
MIN, 148
MINMAX, 88, 110, 189, 190
Minmax, 88, 111
MINMAX _FORMAT, 190
MINMAX_SINK, 190
MODELVIEW, 31, 34
MODULATE, 136, 137
MULT, 156, 157
MultMatrix, 31, 32

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

N3F_V3F, 25, 26

NAND, 152

NEAREST, 125, 126, 128, 131,
132, 232

NEAREST_MIPMAP_LINEAR,
125, 130, 132, 133

NEAREST _MIPMAP _NEAREST,
125, 130-132

NEVER, 144-146

NewList, 176, 179

NICEST, 181

NO_ERROR, 11, 12

NONE, 152, 153

NOOP, 152

NOR, 152

Normal, 19, 20

Normal3, 8, 9, 20

Normal3d, 8

Normal3dv, 9

Normal3f, 8

Normal3fv, 9

NORMAL_ARRAY, 23, 27

NORMAL_ARRAY _POINTER,
190

NORMALIZE, 35

NormalPointer, 19, 22, 27, 179

NOTEQUAL, 144-146

OBJECT_LINEAR, 37, 38, 184
OBJECT_PLANE, 37
ONE, 149, 150, 206
ONE_MINUS_CONSTANT_ALPHA,
77, 149, 150
ONE_MINUS_CONSTANT_COLOR,
77, 149, 150
ONE_MINUS_DST_ALPHA, 149
ONE_MINUS_DST_COLOR, 149
ONE_MINUS_SRC_ALPHA, 149
ONE_MINUS_SRC_COLOR, 149
OR, 152

243

OR_INVERTED, 152
OR_REVERSE, 152

ORDER, 185

Ortho, 32, 33, 224
OUT_OF_MEMORY, 12, 13, 176

PACK_ALIGNMENT, 159, 208
PACK.IIMAGE HEIGHT, 159,

185, 208
PACK_LSB_FIRST, 159, 208
PACK_ROW_LENGTH, 159, 208
PACK_SKIP_IMAGES, 159, 185,

208
PACK_SKIP_PIXELS, 159, 208
PACK_SKIP_ROWS, 159, 208
PACK_SWAP_BYTES, 159, 208
PASS_THROUGH_TOKEN, 177
PassThrough, 175

PERSPECTIVE_.CORRECTION_HINT,

181
PIXEL.MAP_A_TO_A, 79, 101
PIXEL.MAP_B_TO_B, 79, 101
PIXEL_MAP_G_TO_G, 79, 101
PIXEL.MAP_I_TO_A, 79, 102
PIXEL_MAP_1_TO_B, 79, 102
PIXEL.MAP_1.TO_G, 79, 102
PIXEL.MAP__TO_, 79, 102
PIXEL.MAP_I1_TO_R, 79, 102
PIXEL_MAP_R_TO_R, 79, 101
PIXEL.MAP_S_TO-S, 79, 102
PIXEL_MODE_BIT, 192
PixelMap, 75, 78, 79, 163
PixelStore, 19, 75, 76, 78, 159,

163, 179
PixelTransfer, 75, 78, 108, 163
PixelZoom, 100
POINT, 73-75, 169, 170, 202, 227
POINT_BIT, 192
POINT_SMOOTH, 60
POINT_SMOOTH_HINT, 181

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

POINT_TOKEN, 177

POINTS, 15, 169

PointSize, 60

POLYGON, 16, 19

POLYGON_BIT, 192

POLYGON_OFFSET _FILL, 74,
75

POLYGON_OFFSET_LINE, 74,
75

POLYGON_OFFSET_POINT,
74,75

POLYGON_SMOOTH, 70

POLYGON_SMOOTH_HINT,
181

POLYGON_STIPPLE, 72

POLYGON_STIPPLE_BIT, 192

POLYGON_TOKEN, 177

PolygonMode, 69, 73, 75, 172, 174

PolygonOffset, 74

PolygonStipple, 72

PopAttrib, 191, 193, 225

PopClientAttrib, 19, 179, 191, 193

PopMatrix, 34

PopName, 171, 172

POSITION, 50, 184

POST_COLOR_MATRIX_z_BIAS,
78

POST_COLOR_MATRIX_z _SCALE,

78

244

POSTJJSEOR@MAJTHX_GREEBLSCALE,
POSTJjgiOR@MAJTHX_REILBLA&
POSTJ&giOR@MAJTHX_REILSCALE,
POSTiﬁSiVOLUﬁWON;xinAS7
POSTliiNVOLUTTON;aSCALE,
POSTJjgNVOLUTKRLALPHAiHA&
POSDC%EVOLUTKHLALPHASCALE
POSTJ§SEVOLUHTON;BLUEJHAS,
POST1§§§VOLUHqON;BLUELSCALE,
POSTJ§SEVOLUUTON;COLOR_TABLE,
80, 108
POST_CONVOLUTION_GREEN _BIAS,
POSTi§§§VOLUiTON;GR£EDLSCALE,
POSTJ&SEVOLUUTON;REDJHAS,
POSDC%EVOLUTKRLREDSCALE
108

POST_COLOR_MATRIX_ALPHA _BIAS PrioritizeTextures, 135

109

PROJECTION, 31, 34

POST_COLOR_MATRIX_ALPHA_SCALFROXY_COLOR_TABLE, 80, 82,

109

180

POST_COLOR_MATRIX_BLUE_BIAS, PROXY_HISTOGRAM, 87, 88,

109

180, 189

POST_COLOR_MATRIX_BLUE_SCALEPROXY_POST_COLOR_MATRIX_COLOR_TABLE,

109

80, 180

POST_COLOR_MATRIX_COLOR_TABIHROXY_POST_CONVOLUTION_COLOR_TABLE,

80, 109

80, 180

POST_COLOR_MATRIX_GREEN_BIASPROXY_TEXTURE_1D, 118,

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

133, 180, 184

PROXY_TEXTURE2D, 117,
133, 180, 184

PROXY_TEXTURE.3D, 113,
133, 180, 184

PushAttrib, 191, 193

PushClientAttrib, 19, 179, 191,
193

PushMatrix, 34

PushName, 171, 172

Q, 37, 38, 184

QUAD_STRIP, 17

QUADRATIC_ATTENUATION,
50

QUADS, 18, 19

R, 37, 38, 184

R3_.G3.B2, 116

RasterPos, 41, 172, 224

RasterPos2, 41

RasterPos3, 41

RasterPos4, 41

ReadBuffer, 159, 160, 163

ReadPixels, 75, 76, 78, 91, 92, 94,
103, 157-161, 163, 179,
185-187

Rect, 28, 70

RED, 78, 92, 160, 161, 209, 211,
217

RED_BIAS, 101

RED_SCALE, 101

REDUCE, 105, 106, 108, 210

RENDER, 172, 173, 218

RENDERER, 190

RenderMode, 172-175, 179

REPEAT, 125, 126, 128, 129, 133,
204

REPLACE, 136, 137, 145

REPLICATE_BORDER, 105, 107

245

RESCALE_NORMAL, 35

ResetHistogram, 188

ResetMinmax, 189

RETURN, 156, 157

RGB, 92, 94, 98, 103, 104, 115—
117, 137, 138, 160, 163,
186, 227

RGB10, 116

RGB10_A2, 116

RGB12, 116

RGB16, 116

RGB4, 116

RGB5, 116

RGB5_A1, 116

RGBS, 116

RGBA, 81, 82, 85-88, 92, 94, 98,
103, 104, 115-117, 137,
138, 160, 163, 186, 209,
210

RGBA12, 116

RGBA16, 116

RGBA2, 116

RGBA4, 116

RGBAS, 116

RIGHT, 152, 153, 159

Rotate, 32, 224

S, 37, 184

Scale, 32, 33, 224

Scissor, 144

SCISSOR_BIT, 192

SCISSOR_TEST, 144

SELECT, 172, 173, 225

SelectBuffer, 172, 173, 179

SELECTION_BUFFER_POINTER,
190

SEPARABLE 2D, 85, 103, 118,
188

SeparableFilter2D, 84

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

SEPARATE_SPECULAR_COLOR,
47

SET, 152

SGl_color_matrix, 235

SGIS_texture_edge_clamp, 232

SGIS_texture_lod, 233

ShadeModel, 54

SHININESS, 50

SHORT, 22, 91, 161, 162, 178

SINGLE_COLOR, 46, 47, 200

SMOOTH, 54, 199

SPECULAR, 50, 52

SPHERE_MAP, 37, 38

SPOT_CUTOFF, 50

SPOT_DIRECTION, 50, 184

SPOT_EXPONENT, 50

SRC_ALPHA, 149

SRC_ALPHA _SATURATE, 149

SRC_COLOR, 149

STACK_.OVERFLOW, 13, 34,
172, 191

STACK_UNDERFLOW, 13, 34,
172, 191

STENCIL, 163

STENCIL_BUFFER_BIT, 155,
192

STENCIL_INDEX, 80, 83, 89, 92,
100, 113, 157, 159, 160,
163, 185

STENCIL_TEST, 145

StencilFunc, 145, 223

StencilMask, 154, 157, 224

StencilOp, 145, 146

T, 37, 184
T2F_C3F_V3F, 25, 26
T2F_C4F N3F_V3F, 25, 26
T2F_C4UB_V3F, 25, 26
T2F_N3F_V3F, 25, 26
T2F_V3F, 25, 26

246

T4F_C4F N3F_V4F, 25, 26

T4F_V4F, 25, 26

TABLE_TOO_LARGE, 13, 80, 87

TexCoord, 19, 20

TexCoord1, 20

TexCoord2, 20

TexCoord3, 20

TexCoord4, 20

TexCoordPointer, 19, 21, 22, 27,
179

TexEnv, 136

TexGen, 36-38

TexImage, 122

TexImagelD, 76, 103, 105, 114,
117-119, 121, 122, 131,
133, 180

TexImage2D, 76, 83, 87, 88, 103,
105, 114, 117-119, 121,
122, 131, 133, 180

TexImage3D, 76, 113-115, 117-
119, 122, 131, 133, 179,
185

TexParameter, 124

TexParameter[if], 127, 131

TexParameterf, 135

TexParameterfv, 135

TexParameteri, 135

TexParameteriv, 135

TexSublmage, 122

TexSublmagelD, 121, 122, 124

TexSublmage2D, 103, 121-123

TexSublmage3D, 121, 122

TEXTURE, 31, 34

TEXTURE_zD, 203

TEXTURE_1D, 118, 121, 122,
125, 133, 134, 136, 184,
185

TEXTURE 2D, 117, 121, 122,
125, 133, 134, 136, 184,
185

DRAFT Version 1.2 - Jan. 2, 1998

INDEX

TEXTURE_3D, 113, 122, 125,
133, 134, 139, 184, 185
TEXTURE_ALPHA SIZE, 184
TEXTURE_BASE_LEVEL, 125
127, 131, 132
TEXTURE_BIT, 191, 192
TEXTURE_BLUE_SIZE, 184
TEXTURE_BORDER, 184
TEXTURE_.BORDER_COLOR,
125, 130, 133
TEXTURE_.COMPONENTS, 184
TEXTURE_.COORD_ARRAY,
23, 27

247

TEXTURE_PRIORITY, 125, 135
TEXTURE_RED _SIZE, 184
TEXTURE_RESIDENT, 135
TEXTURE_WIDTH, 184
TEXTURE_WRAP_R, 125, 129
TEXTURE_-WRAP_S, 125, 128,
129
TEXTURE_-WRAP_T, 125, 129
TRANSFORM_BIT, 192
Translate, 32, 224
TRIANGLE_FAN, 17
TRIANGLE_STRIP, 16
TRIANGLES, 17, 19

TEXTURE_.COORD_ARRAY_POINTERTRUE, 18, 19, 40, 46-48, 76, 78,

190
TEXTURE_DEPTH, 184
TEXTURE_ENV, 136, 184
TEXTURE_ENV_COLOR, 136
TEXTURE_ENV_MODE, 136
TEXTURE_GEN_MODE, 37, 38
TEXTURE_GEN_Q, 38
TEXTURE_GEN_R, 38
TEXTURE_GEN.S, 38
TEXTURE_GEN_T, 38
TEXTURE_GREEN SIZE, 184
TEXTURE_HEIGHT, 184
TEXTURE_INTENSITY SIZE,
184
TEXTURE_INTERNAL_FORMAT,
184
TEXTURE_LUMINANCE SIZE,
184
TEXTURE_MAG_FILTER, 125,
132, 133
TEXTUREMAX_LEVEL, 125
131
TEXTURE_MAX_LOD, 125, 127
TEXTUREMIN_FILTER, 125,
128-133
TEXTURE_MIN_LOD, 125, 127

87, 88, 135, 154, 159, 179,
183, 186, 188, 189

UNPACK_ALIGNMENT, 76, 93,

113, 208
UNPACK_IMAGE_HEIGHT, 76,
113, 208
UNPACK_LSB_FIRST, 76, 98,
208
UNPACK_ROW_LENGTH, 76,
93, 113, 208
UNPACK_SKIP_IMAGES, 76,
113, 118, 208
UNPACK_SKIP_PIXELS, 76, 93,
98, 208
UNPACK_SKIP_ROWS, 76, 93,
98, 208
UNPACK_SWAP_BYTES, 76, 89,
92, 208

UNSIGNED_BYTE, 22, 24, 26,
91, 95, 161, 162, 178

UNSIGNED_BYTE_2_3_3_REV,
91, 93-95, 162

UNSIGNED_BYTE_3.3.2, 91, 93—
95, 162

DRAFT Version 1.2 - Jan. 2, 1998

INDEX 248

UNSIGNED_INT, 22, 24, 91, 97, VIEWPORT BIT, 192
161, 162, 178

UNSIGNED_INT_10_10_102, 91, XOR, 152
93, 94, 97, 162

UNSIGNED_INT_2_10_10_10_REV, ZERO, 143, 149, 150, 206

91, 93, 94, 97, 162
UNSIGNED_INT_8.8.8.8, 91, 93,
94, 97, 162
UNSIGNED_INT 8.8 8 8_REV,
91, 93, 94, 97, 162
UNSIGNED_SHORT, 22, 24, 91,
96, 161, 162, 178
UNSIGNED_SHORT_1.5_5_5_REV,
91, 93, 94, 96, 162
UNSIGNED_SHORT 4444, 91,
93, 94, 96, 162
UNSIGNED_SHORT 4.4 4 4 REV,
91, 93, 94, 96, 162
UNSIGNED_SHORT 5.5_5_1, 91,
93, 94, 96, 162
UNSIGNED_SHORT 5.6.5, 91,
93, 94, 96, 162
UNSIGNED_SHORT_5_6_5_REV,
91, 93, 94, 96, 162

V2F, 25, 26

V3F, 25, 26

VENDOR, 190

VERSION, 190

Vertex, 7, 19, 20, 41, 168

Vertex2, 20, 28

Vertex2sv, 7

Vertex3, 20

Vertex3f, 7

Vertex4, 20

VERTEX_ARRAY, 23, 27

VERTEX_ARRAY _POINTER,
190

VertexPointer, 19, 22, 27, 179

Viewport, 30

DRAFT Version 1.2 - Jan. 2, 1998

