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Abstract

We present an algorithm for real-time level of detail reduction an
display of high-complexity polygonal surface data. The algorith
uses a compact and efficient regular grid representation, and e
ploys a variable screen-space threshold to bound the maximum
ror of the projected image. A coarse level of simplification is pe
formed to select discrete levels of detail for blocks of the surfa
mesh, followed by further simplification through repolygonaliza
tion in which individual mesh vertices are considered for remova
These steps compute and generate the appropriate level of de
dynamically in real-time, minimizing the number of rendered poly
gons and allowing for smooth changes in resolution across ar
of the surface. The algorithm has been implemented for appro
mating and rendering digital terrain models and other height field
and consistently performs at interactive frame rates with high ima
quality.

1 INTRODUCTION

Modern graphics workstations allow the display of thousands
shaded or textured polygons at interactive rates. However, ma
applications contain graphical models with geometric complexi
still greatly exceeding the capabilities of typical graphics hardware.
This problem is particularly prevalent in applications dealing wit
large polygonal surface models, such as digital terrain modeli
and visual simulation.

In order to accommodate complex surface models while still
maintaining real-time display rates, methods for approximating t
polygonal surfaces and using multiresolution models have been
proposed [13]. Simplification algorithms can be used to genera
multiple surface models at varying levels of detail, and techniqu
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Figure 1: Terrain surface tessellations corresponding to project
geometric error thresholds of one (left) and four (right) pixels.

are employed by the display system to select and render the app
priate level of detail model.

In this paper we present a new level of detail display algorithm
that is applicable to surfaces that are represented as uniform
gridded polygonal height fields. By extending the regular grid rep
resentation to allow polygons to be recursively combined whe
appropriate, a mesh with fewer polygons can be used to repres
the height field (Figure 1). Such small, incremental changes to t
mesh polygonalization provide for continuous levels of detail and
near optimal tessellation for any given viewpoint. The algorithm i
characterized by the following set of features:

� Large reduction in the number of polygons to be rendered.
Typically, the surface grid is decimated by several orders o
magnitude with no or little loss in image quality,accommo-
dating interactive frames rates for smooth animation.

� Smooth, continuous changes between different surface
levels of detail. The number and distribution of rendered
polygons change smoothly between successive frames,
fording maintenance of consistent frame rates.

� Dynamic generation of levels of detail in real-time. The
need for expensive generation of multiresolution model
ahead of time is eliminated, allowing dynamic changes to th
surface geometry to be made with little computational cost.

� Support for a user-specified image quality metric.The al-
gorithm is easily controlled to meet an image accuracy leve
within a specified number of pixels. This parameterization a
lows for easy variation of the balance between rendering tim
and rendered image quality.

Related approaches to polygonal surface approximation a
multiresolution rendering are discussed in the next section. T
following sections of the paper describe the theory and procedur
necessary for implementing the real-time continuous rendering a
gorithm. We conclude the paper by empirically evaluating the a
gorithm with results from its use in a typical application.
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2 RELATED WORK

A large number of researchers have developed algorithms
approximating terrains and other height fields using polygon
meshes. These algorithms attempt to represent surfaces wit
given number of vertices, or within a given geometric error metri
or in a manner that preserves application specific critical featur
of the surface. Uniform grid methods or irregular triangulation
are employed to represent the surfaces, and techniques includ
hierarchical subdivisions and decimations of the mesh are used
simplification and creation of multiresolution representations.

Much of the previous work on polygonalization of terrain
like surfaces has concentrated on triangulated irregular netwo
(TINs). A number of different approaches have been developed
create TINs from height fields using Delaunay and other triangu
tions [9, 10, 19], and hierarchical triangulation representations ha
been proposed that lend themselves to usage in level of detail al
rithms [3, 4, 18]. TINs allow variable spacing between vertices o
the triangular mesh, approximating a surface at any desired leve
accuracy with fewer polygons than other representations. Howev
the algorithms required to create TIN models are generally comp
tationally expensive, prohibiting use ofdynamically created TINs
at interactive rates.

Regular grid surface polygonalizations have also been imp
mented as terrain and general surface approximations [2, 7]. S
uniform polygonalizations generally produce many more polygo
than TINs for a given level of approximation, but grid represent
tions are typically more compact. Regular grid representations a
have the advantage of allowing for easier construction of a multip
level of detail hierarchy. Simply subsampling grid elevation value
produces a coarser level of detail model, whereas TIN models g
erally require complete retriangulation in order to generate multiple
levels of detail.

Other surface approximation representations include hybrids
these techniques, and methods that meet application specific c
ria. Fowler and Little [9] construct TINs characterized by certai
“surface specific” points and critical lines, allowing the TIN rep
resentation to closely match important terrain features. Doug
[5] locates specific terrain features such as ridges and channel
a terrain model database, and represents the surface with line
ments from these “information rich” features. This method gene
ates only a single surface approximation, however, and is not ea
adapted to produce multiresolution models. Gross et al. [12] use
a wavelet transform to produce adaptive surface meshing from u
form grid data, allowing for local control of the surface level o
detail. This technique, however, has not yet proven to yield inte
active frame rates. The general problem of surface simplificati
has been addressed with methods for mesh decimation and o
mization [14, 20], although these techniques are not suitable
on-the-fly generation of multiple levels of detail.

The issue of “continuous” level of detail representations for mo
els has been addressed both for surfaces and more general mo
ing. Taylor and Barret [22] give an algorithm for surface polygona
ization at multiple levels of detail, and use “TIN morphing” to pro
vide for visually continuous change from one resolution to anoth
Many visual simulation systems handle transitions between mu
ple levels of detail by alpha blending two models during the tra
sition period. Ferguson [8] claims that such blending techniqu
between levels of detail may be visually distracting, and discuss
a method of Delaunay triangulation and triangle subdivision whic
smoothly matches edges across areas of different resolution.

3 MOTIVATION

The algorithm presented in this paper has been designed to me
number of criteria desirable for a real-time level of detail (LOD
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algorithm for height fields. These characteristics include:

(i) At any instant, the mesh geometry and the components th
describe it should be directly and efficiently queryable, a
lowing for surface following and fast spatial indexing of both
polygons and vertices.

(ii) Dynamic changes to the geometry of the mesh, leading to r
computation of surface parameters or geometry, should n
significantly impact the performance of the system.

(iii) High frequency data such as localized convexities and conca
ities, and/or local changes to the geometry, should not have a
widespread global effect on the complexity of the model.

(iv) Small changes to the view parameters (e.g. viewpoint, vie
direction, field of view) should lead only to small changes i
complexity in order to minimize uncertainties in prediction
and allow maintenance of (near) constant frame rates.

(v) The algorithm should provide a means of bounding the loss
image quality incurred by the approximated geometry of th
mesh. That is, there should exist a consistent and direct re
tionship between the input parameters to the LOD algorith
and the resulting image quality.

Note that some applications do not require the satisfaction of
of these criteria. However, a polygon-based level of detail alg
rithm that supports all of these features is clearly of great impo
tance in areas such as terrain rendering, which often requires b
high frame rates and high visual fidelity, as well as fast and freque
queries of a possibly deformable terrain surface. Our algorithm su
cessfully achieves all of the goals listed above.

Most contemporary approaches to level of detail managem
fail to meet at least one of these five criteria. TIN models, for e
ample, do not in general meet the first two criteria. Generation
even modest size TINs requires extensive computational effort. B
cause TINs are non-uniform in nature, surface following (e.g. fo
animation of objects on the surface) and intersection (e.g. for colli-
sion detection, selection, and queries) are hard to handle efficien
due to the lack of a spatial organization of the mesh polygons. T
importance of (ii) is relevant in many applications, such as gam
and military applications, wheredynamic deformations of the mesh
occur, e.g. in the form of explosions.

The most common drawback of regular grid representations
that the polygonalization is seldom optimal, or even near optim
Large, flat surfaces may require the same polygon density as sm
rough areas do. This is due to the sensitivity to localized, high fr
quency data within large, uniform resolution areas of lower com
plexity. (Most level of detail algorithms require that the mesh i
subdivided into rectangular blocks of polygons to allow for fas
view culling and coarse level of detail selection.) Hence, (iii) i
violated as a small bump in the mesh may force higher resoluti
data than is needed to describe the remaining area of a block. T
problem may be alleviated by reducing the overall complexity an
applying temporal blending, or morphing, between different leve
of detail to avoid “popping” in the mesh [16, 22].

Common to typical TIN and regular grid LOD algorithms is the
discreteness of the levels of detail. Often, only a relatively sma
number of models for a given area are defined, and the difference
the number of polygons in successive levels of detail may be qu
large. When switching between two levels of detail, the net chan
in the number of rendered polygons may amount to a substan
fraction of the given rendering capacity, and may cause rapid flu
tuations in the frame rate.

Many LOD algorithms fail to recognize the need for an erro
bound in the rendered image. While many simplification meth
ods are mathematically viable, the level of detail generation a
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selection are often not directly coupled with the screen-space er
resulting from the simplification. Rather, these algorithms cha
acterize the data with a small set of parameters that are used
conjunction with viewpoint distance and view angle to select wh
could be considered “appropriate” levels of detail. Examples
such algorithms include TIN simplification [9], feature (e.g. peak
ridges, and valleys) identification and preservation [5, 21], and fr
quency analysis/transforms such as wavelet simplification [6, 1
These algorithms often do not provide enough information to d
rive a tight bound on the maximum error in the projected image.
image quality is important and “popping” effects need to be min-
imized in animations, the level of detail selection should be bas
on a user-specified error tolerance measured in screen-space,
should preferably be done on a per polygon/vertex basis.

The algorithm presented in this paper satisfies all of the abo
criteria. Some key features of the algorithm include: flexibility an
efficiency afforded by a regular grid representation; localized pol
gon densities due to variable resolution withineach block; screen-
space error-driven LOD selection determined by a single thresho
and continuous level of detail, which will be discussed in the fo
lowing section.

3.1 Continuous Level of Detail

Continuous level of detail has recently been used to describe a
riety of properties [8, 18, 22], some of which are discussed belo
As mentioned in (iii) and (iv) above, it is important that the com
plexity of the surface geometry changes smoothly between cons
utive frames, and that the simplified geometry doesn' t lead to ga
or popping in the mesh. In a more precise description of the te
continuity in the context of multiresolution height fields, the con
tinuous function, its domain, and its range must be clearly define
This function may be one of the following:

(i) The elevation functionz(x;y;t), wherex;y;t 2R. The parame-
ter t may denote time, distance, or some other scalar quant
This function morphs (blends) the geometries of two discre
levels of detail defined on the same area, resulting in a v
tually continuous change in level of detail over time, or ove
distance from the viewpoint to the mesh.

(ii) The elevation functionz(x;y)with domainR2. The functionz
is defined piecewise on a per block basis. When discrete lev
of detail are used to represent the mesh, two adjacent blo
of different resolution may not align properly, and gaps alon
the boundaries of the blocks may be seen. The elevationz
on these borders will not be continuous unless precautions
taken to ensure that such gaps are smoothed out.

(iii) The polygon distribution functionn(v;A). For any given area
A � R2, the number of polygons used to describe the ar
is continuous with respect to the viewpointv.1 Note thatA
does not necessarily have to be a connected set. Since
image ofn is discrete, we define continuity in terms of the
modulus of continuityω(δ;n). We say thatn is continuous iff
ω(δ;n)! ε, for someε� 1, asδ! 0. That is, for sufficiently
small changes in the viewpoint, the change in the number
polygons overA is at most one. As a consequenceof a contin
uous polygon distribution, the number of rendered polygon
(after clipping),n(v), is continuous with respect to the view-
point.

Note that a continuous level of detail algorithm may possess one
more of these independent properties (e.g. (i) does not in gene

1This vector may be generalized to describe other view dependent
rameters, such as view direction and field of view.
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imply (iii), and vice versa). Depending on the constraints inheren
in the tessellation method, criterion (iii) may or may not be satisfi-
able, but a small upper boundεmax on ε may exist. Our algorithm,
as presented here, primarily addresses definition (iii), but has be
designed to be easily extensible to cover the other two definition
(the color plates included in this paper reflect an implementatio
satisfying (ii)).

4 SIMPLIFICATION CRITERIA

The surface simplification process presented here is best describ
as a sequence of two steps: a coarse-grained simplification of t
height field mesh geometry that is done to determine which dis
crete level of detail models are needed, followed by a fine-graine
retriangulation of each LOD model in which individual vertices are
considered for removal. The algorithm ensures that no errors a
introduced in the coarse simplification beyond those that would b
introduced if the fine-grained simplification were applied to the en
tire mesh. Both steps are executed for each rendered frame, and
evaluations involved in the simplification are done dynamically in
real-time, based on the location of the viewpoint and the geomet
of the height field.

The height field is described by a rectilinear grid of points ele
vated above thex-y plane, with discrete sampling intervals ofxres
andyres. The surface corresponding to the height field (before sim
plification) is represented as a symmetric triangle mesh. The sma
est mesh representable using this triangulation, theprimitive mesh,
has dimensions 3�3 vertices, and successively larger meshes ar
formed by grouping smaller meshes in a 2�2 array configuration
(see Figure 2). For any levell in this recursive construction of the
mesh, the vertex dimensionsxdim andydim are 2l +1. For a certain
leveln, the resulting mesh is said to form ablock, or a discrete level
of detail model. A set of such blocks of fixed dimensions 2n+1 ver-
tices squared, describes the height field dataset, where the bound
rows and columns between adjacent blocks are shared. While t
dimensions of all blocks are fixed, the spatial extent of the block
may vary by multiples of powers of two of the height field sampling
resolution, i.e. the area of a block is 2m+nxres�2m+nyres wherem
is some non-negative integer. Thus, lower resolution blocks can b
obtained by discarding every other row and column of four highe
resolution blocks. We term these decimated vertices thelowest level
verticesof a block (see Figure 2c). Aquadtreedata structure [17]
naturally lends itself to the block partitioning of the height field
dataset described above.
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Figure 2: (a, b) Triangulation of uniform height fields of dimen-
sions 3�3 and 5�5 vertices, respectively. (c) Lowest level vertices
(unfilled). (d) Block quadrants.
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In the following sections, we describe the different simplificatio
steps. We begin by deriving a criterion for the fine-grained (verte
based) simplification. The coarse-grained (block-based) level
detail selection is then described in terms of the former.

4.1 Vertex-Based Simplification

In the fine-grained simplification step, many smaller triangles a
removed and replaced with fewer larger triangles. Conceptually,
the beginning of each rendered frame, the entire height field data
at its highest resolution is considered. Wherever certain conditio
are met, atriangle/co-triangle pair(4al ;4ar ) is reduced to one
single triangle4al �4ar , and the resulting triangle and its co-
triangle (if one exists) are considered for further simplification i
a recursive manner. In thex-y plane withxres= yres, a triangle/co-
triangle pair is defined by the two congruent right triangles obtain
by bisecting a larger isosceles right triangle. Recursive bisecti
of the resulting two triangles yields lower level triangle/co-triangl
pairs. Triangle/co-triangle pairs within a block are descended fro
the four triangular quadrants of the block, defined by the bloc
boundary and its diagonals (see Figure 2d). For arbitrary heig
field resolutions, the square mesh is simply stretched in either
mension while retaining the vertex connections. Figure 2a and
illustrate the lowest level pairs, whereeach pair has been assigne
a unique letter.

The conditions under which a triangle pair can be combine
into a single triangle are primarily described by the amount
change in slope between the two triangles. For triangles4ABE
and4BCE, with A, B, andC in a plane perpendicular to thex-y
plane, the slope change is measured by the vertical (z axis) distance
δB = jBz�

Az+Cz
2 j, i.e. the maximum vertical distance betwee

4ACE=4ABE�4BCEand the triangles4ABEand4BCE (see
Figure 3). This distance is referred to as vertexB'sdelta value. As
the delta value increases, the chance of triangle fusion decrea
By projecting thedelta segment, defined byB and the midpoint of
AC, onto the projection plane, one can determine the maximum p
ceived geometric (linear) error between the merged triangle and
corresponding sub-triangles. If this error is smaller than a giv
threshold,τ, the triangles may be fused. If the resulting triangl
has a co-triangle with error smaller than the threshold, this pair
considered for further simplification. This process is applied recu
sively until no further simplification of the mesh can be made. No
that this scheme typically involves a reduction of an already sim
plified mesh, and the resulting errors (i.e. the projected delta s
ments) are not defined with respect to the highest resolution me
but rather relative to the result of the previous iteration in the simp
fication process. However, empirical data indicates that the effe
of this approximation are negligible (see Section 7).

We now derive a formula for the length of the projected del
segment. Letv be the midpoint of the delta segment,2 and define
v+ = v+

�
0 0 δ

2

�
, v� = v�

�
0 0 δ

2

�
. Let e be the

viewpoint andx̂, ŷ, ẑ be the orthonormal eye coordinate axes ex
pressed in world coordinates. Furthermore, letd be the distance
from e to the projection plane, and defineλ to be the number of
pixels per world coordinate unit in the screenx-y coordinate sys-
tem. (We assume that the pixel aspect ratio is 1:1.) The subscr
eyeandscreenare used to denote vectors represented ineye coordi-
nates(after the view transformation) andscreen coordinates(after
the perspective projection), respectively. Using these definition
the following approximations are made:

� When projecting the vectorsv+ andv�, their midpointv is al-
ways assumed to be in the center of view, i.e. along�ẑ. This

2One may safely substitute the vertex associated with the delta segm
for its midpoint.
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Figure 3: Geometric representation of delta values.δB = 4,
δD = 2:5, δF = 1:5, δH = 0.

approximation is reasonable as long as the field of view is rel-
atively small, and its effect is that the projected delta segments
that represent the errors in the triangle simplification become
relatively smaller at the periphery of the screen, where less de
tail is then used—an artifact that is often acceptable as human
visual perception degrades toward the periphery.

� We assumev+eyez ' v�eyez ' veyez in the perspective divi-

sion 1
�veyez

. This is a fair assumption because, in general,

δ� jje�vjj = �veyez.

According to the first approximation, the viewing matrix is then:

M =

2
66664

x̂x ŷx
ex�vx
jje�vjj 0

x̂y ŷy
ey�vy

jje�vjj 0

x̂z ŷz
ez�vz
jje�vjj 0

�e� x̂ �e� ŷ �e� e�v
jje�vjj 1

3
77775

with x̂ andŷ perpendicular toe� v at all times. This definition of
M leads to the following equalities:

v+eye�v�eye = v+M �v�M

= δ
h

x̂z ŷz
ez�vz

jje�vjj 0
i

x̂2
z+ ŷ2

z = 1�
�

ez�vz

jje�vjj

�2

The length of the projected delta segment is then described by th
following set of equations:

δscreen = jjv+screen�v�screenjj

=
dλ
q

(v+eyex�v�eyex)
2+(v+eyey�v�eyey)

2

�veyez

=
dλ
q

(δx̂z)
2+(δŷz)

2

jje�vjj

=
dλδ

r
1�

�
ez�vz

jje�vjj

�2

jje�vjj

=
dλδ

q
(ex�vx)2+(ey�vy)2

(ex�vx)2+(ey�vy)2+(ez�vz)2 (1)
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For performance reasons,δ2
screen is compared toτ2 so that the

square root can be avoided:

d2λ2δ2
�
(ex�vx)2+(ey�vy)2

�
�
(ex�vx)2+(ey�vy)2+(ez�vz)2

�2 � τ2

An equivalent inequality that defines the simplification condition
reduces to a few additions and multiplications:

δ2
�
(ex�vx)

2+(ey�vy)
2
�
�

κ2
�
(ex�vx)

2+(ey�vy)
2+(ez�vz)

2
�2

(2)

whereκ = τ
dλ is a constant. Wheneverex = vx andey = vy, i.e.

when the viewpoint is directly above or below the delta segme
the projection is zero, and the triangles are coalesced. The pr
ability of satisfying the inequality decreases asez approachesvz,
or when the delta segment is viewed from the side. This mak
sense, intuitively, as less detail is required for a top-down view
the mesh (assuming a monoscopic view), while more detail is ne
essary to accurately retain contours and silhouettes in side vie
The geometric interpretation of the complement of Equation 2 is
“bialy”—a solid circular torus with no center hole—centered atv,
with radiusr = dλδ

2τ (see Figure 4). The triangles associated withv
can be combined provided that the viewpoint is not contained in t
bialy.

Figure 4: Geometric representation (and its cross-section) of
boundary of Equation 2.

4.2 Block-Based Simplification

Complex datasets may consist of millions of polygons, and it is
clearly too computationally expensive to run the simplification pro
cess described in the previous section on all polygon vertices
each individual frame. By obtaining a conservative estimate
whether certain groups of vertices can be eliminated in a block, t
mesh can often be decimated by several factors with little compu
tional cost. If it is known that the maximum delta projection of a
lowest level vertices in a block falls withinτ, those vertices can im-
mediately be discarded, and the block can be replaced with a low
resolution block, which in turn is considered for further simplifica
tion. Accordingly, a large fraction of the delta projections can b
avoided.

The discrete level of detail selection is done by computing th
maximum delta value,δmax, of the lowest level vertices for each
block. Given the axis-aligned bounding box of a block andδmax,
one can determine, for a given viewpoint, whether any of the
vertices have delta values large enough to exceed the threshoτ.
If none of them do, a lower resolution model may be used. W
can expand on this idea to obtain a more efficient simplificatio
algorithm. By usingτ, the view parameters, and the constrain
provided by the bounding box, one can compute the smallest de
valueδl that, when projected, can exceedτ, as well as the largest
delta valueδh that may project smaller thanτ. Delta values between
these extremes fall in anuncertainty interval, which we denote by
,
-

s

-
s.

e

r

e
-

r

a

Iu = (δl ;δh], for which Equation 2 has to be evaluated. Vertice
with delta values less thanδl can readily be discarded without fur-
ther evaluation, and conversely, vertices with delta values larg
thanδh cannot be removed. It would obviously be very costly t
computeIu by reversing the projection to get the delta value whos
projection equalsτ for every single vertex within the block, but one
can approximateIu by assuming that the vertices are dense in th
bounding box of the block, and thus obtain a slightly larger super
of Iu. From this point on, we will useIu to denote this superset.

To find the lower boundδl of Iu, the point in the bounding box
that maximizes the delta projection must be found. From Equ

tion 1, definer =
q

(ex�vx)2+(ey�vy)2 andh= ez�vz. We seek

to maximize the functionf (r;h) = r
r2+h2 subject to the constraints

r2+h2� d2 andv2 B, whered is the distance from the viewpoint
to the projection plane andB is the set of points contained in the
bounding box, described by the two vectors

bmin =
�

bminx bminy bminz

�
bmax =

�
bmaxx bmaxy bmaxz

�
We solve this optimization problem by constrainingr , such that
d2� h2 � r2

min � r2 � r2
max (r andh are otherwise independent).

Clearly, then,h2 has to be minimized which is accomplished by
settingh= hmin= jez�clamp(bminz;ez;bmaxz)j, where

clamp(xmin;x;xmax) =

8<
:

xmin if x< xmin
xmax if x> xmax
x otherwise

In the x-y plane, definermin to be the smallest distance from�
ex ey

�
to the rectangular slice (including the interior) of the

bounding box defined by
�

bminx bminy

�
and

�
bmaxx bmaxy

�
,

and definermax to be the largest such distance. Via partial differ
entiation with respect tor , the maximumfmaxof f (r;h) is found at
r = h. If no v exists under the given constraints that satisfiesr = h,
r is increased/decreased untilv 2 B, i.e. r = clamp(rmin;h; rmax).

The upper bound,δh, is similarly found by minimizingf (r;h).
This is done by setting h = hmax= maxfjez�bminzj; jez�bmaxzjg.
fmin is then found when eitherr = rmin or r = rmax, whichever yields
a smallerf (r;h).

The bounds onIu can now be found using the following equa
tions:

δl =
τ

dλ fmax
(3)

δh =

8<
:

0 if τ = 0
τ

dλ fmin
if τ > 0 and fmin > 0

∞ otherwise
(4)

After computation ofIu, δmax is compared toδl , and if smaller,
a lower resolution level of detail block is substituted, and the pr
cess is repeated for this block. Ifδmax> δl , it may be that a higher
resolution block is needed. By maintainingδ�max = maxifδmaxig,
the largestδmax of all higher resolution blocks (orblock descen-
dants) for the given area,δ�max is compared toδl for the current
block, and if greater, four higher resolution blocks replace the cu
rent block. As mentioned earlier, this implicit hierarchical organ
zation of blocks is best represented by a quadtree, where each b
corresponds to a quadnode.

4.3 Vertex Dependencies

As pointed out in Section 4.1, triangle fusion can occur only whe
the triangles in the triangle pair appear on the same level in t
triangle subdivision. For example, in Figure 2b,4el �4er and
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4 fl �4 fr cannot be coalesced unless the triangles in both pa
(4el ;4er ) and(4 fl ;4 fr ) have been fused. The triangles can b
represented by nodes in a binary expression tree, where the sm
est triangles correspond to terminal nodes, and coalesced trian
correspond to higher level, nonterminal nodes formed by recurs
application of the� operator (hence the subscriptsl andr for “left”
and “right”). Conceptually, this tree spans the entire height fie
dataset, but can be limited to each block.

Another way of looking at triangle fusion is as vertex remova
i.e. when two triangles are fused, one vertex is removed. We c
this vertex thebase vertexof the triangle pair. Each triangle pair ha
a co-pair associated with it,3 and the pair/co-pair share the sam
base vertex. The mapping of vertices to triangle pairs, or the no
associated with the operators that act on the triangle pairs, res
in a vertex tree, wherein each vertex occurs exactly twice; onc
for each triangle pair (Figures 5g and 5h). Hence, each vertex
two distinct parents (or dependents)—one in each of two bina
subtreesT0 andT1—as well as four distinct children. If any of the
descendants of a vertexv are included in the rendered mesh, s
is v, and we say thatv is enabled. If the projected delta segmen
associated withv exceeds the thresholdτ, v is said to beactivated,
which also implies thatv is enabled. Thus, theenabledattribute of
v is determined by

activated(v)_

enabled(le f tT0(v))_

enabled(rightT0(v))_

enabled(le f tT1(v))_

enabled(rightT1(v))) enabled(v)

An additional vertex attribute,locked, allows theenabledflag to be
hardwired to eithertrue or false, overriding the relationship above
This may be necessary, for example, when eliminating gaps
tween adjacent blocks if compatible levels of detail do not exi
i.e. some vertices on the boundaries of the higher resolution bl
may have to be permanently disabled. Figures 5a–e show the
pendency relations between vertices level by level. Figure 5f sho
the influence of an enabled vertex over other vertices that directly
indirectly depend on it. Figures 5g and 5h depict the two possi
vertex tree structures within a block, where intersections have b
separated for clarity.

To satisfy continuity condition (ii) (see Section 3.1), the a
gorithm must consider dependencies that cross block bounda
Since the vertices on block boundaries are shared between a
cent blocks, these vertices must be referenced uniquely, so tha
dependencies may propagate across the boundaries. In most im
mentations, such shared vertices are simply duplicated, and th
redundancies must be resolved before or during the simplificat
stage. One way of approaching this is to access each vertex v
pointer, and discard the redundant copies of the vertex before
block is first accessed. Another approach is to ensure that the
tributes of all copies of a vertex are kept consistent when upda
(e.g.enabledandactivatedtransitions) occur. This can be achieve
by maintaining a circular linked list of copies for each vertex.

5 ALGORITHM OUTLINE

The algorithm presented here describes the steps necessary t
lect which vertices should be included for rendering of the me
In Section 5.1, we describe how the mesh is rendered once the
tex selection is done. A discussion of appropriate data structure
presented in Section 6. Using the equations presented in prev

3Triangle pairs with base vertices on the edges of the finite dataset
an exception.
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Figure 5: (a–e) Vertex dependencies by descending levels (left
right, top to bottom). An arc fromA to B indicates thatB depends
on A. (f) Chain of dependencies originating from the solid vertex
(g, h) Symmetric binary vertex trees (the arcs in (g) correspond
(f)). (i) Triangulation corresponding to(f).

sections, the algorithm is summarized by the pseudocode belo
Unless qualified with superscripts, all variables are assumed to b
long to the current frame and block.

MAIN ()
1 for each framen
2 for eachactive blockb
3 computeIu (Equations 3 and 4)
4 if δmax� δl
5 replaceb with lower resolution block
6 else ifδ�max> δl
7 replaceb with higher resolution blocks
8 for eachactive blockb
9 determine ifb intersects the view frustum

10 for eachvisible blockb
11 I0 (δn�1

l ;δn
l ]

12 I1 (δn
h;δ

n�1
h ]

13 for eachvertexv with δ(v) 2 I0
14 activated(v) false
15 UPDATE-VERTEX(v)
16 for eachvertexv with δ(v) 2 I1
17 activated(v) true
18 UPDATE-VERTEX(v)
19 for eachvertexv with δ(v) 2 Iu
20 EVALUATE -VERTEX(v)
21 for eachvisible blockb
22 RENDER-BLOCK(b)

UPDATE-VERTEX(v)
1 if :locked(v)
2 if :dependencyi(v) 8i
3 if enabled(v) 6= activated(v)
4 enabled(v) :enabled(v)
5 NOTIFY(parentT0(v);branchT0(v);enabled(v))
6 NOTIFY(parentT1(v);branchT1(v);enabled(v))
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EVALUATE -VERTEX(v)
1 if :locked(v)
2 if :dependencyi(v) 8i
3 activated(v) :Equation 2
4 if enabled(v) 6= activated(v)
5 enabled(v) :enabled(v)
6 NOTIFY(parentT0(v);branchT0(v);enabled(v))
7 NOTIFY(parentT1(v);branchT1(v);enabled(v))

NOTIFY(v;child;state)
1 if v is a valid vertex
2 dependencychild(v) state
3 if :locked(v)
4 if :dependencyi(v) 8i
5 if :activated(v)
6 enabled(v) false
7 NOTIFY(parentT0(v);branchT0(v), false)
8 NOTIFY(parentT1(v);branchT1(v), false)
9 else

10 if :enabled(v)
11 enabled(v) true
12 NOTIFY(parentT0(v);branchT0(v), true)
13 NOTIFY(parentT1(v);branchT1(v), true)

The termactive blockrefers to whether the block is currently
the chosen level of detail for the area it covers. All blocks initiall
haveIu set to[0;∞), and so do blocks that previously were inactive
When deactivating vertices with delta values smaller thanδl , the in-
tervalI0 � [0;δl ] is traversed. By inductive reasoning, vertices wit
deltas smaller than the lower bound ofI0 must have been deacti-
vated in previous frames. Similarly,I1 is used for vertex activation.
In quadtree implementations, the condition on line 4 inMAIN may
have to be supplemented; the condition δmax� δl should also hold
for the three neighboring siblings ofb beforeb can be replaced.

If a vertex's enabled attribute changes, all dependent ver
tices must be notified of this change so that their correspond
dependencyflags are kept consistent with this change. The proc
dureUPDATE-VERTEXchecks ifenabled(v)has changed, and if so,
notifiesv's dependents by callingNOTIFY. If the enabledflag of a
dependent in turn is modified,NOTIFY is called recursively. Since
line 2 in NOTIFY necessarily involves a change of adependencybit,
there may be a transition inenabled(v) from true to falseon line 6
providedactivated(v) is falseas the vertex is no longer dependen
The evaluation of Equation 2 on line 3 inEVALUATE -VERTEX can
be deferred if any of the vertex'sdependencyflags are set, which is
of significant importance as this evaluation is one of the most co
putationally expensive parts of the algorithm. Note that there m
be a one-frame delay before theactivatedattribute is corrected due
to this deferral if the child vertices are evaluated after the depend
vertex (line 2 ofEVALUATE -VERTEX and lines 4–5 ofNOTIFY).
The functionbranchT(v) refers to the field of the parent in treeT
that reflects theenabledfield of vertexv. Note that a check has
to be made (line 1 inNOTIFY) whether a vertex is “valid” as some
vertices have fewer than two dependents (e.g. boundary vertices

5.1 Mesh Rendering

Once the vertex selection is made, a triangle mesh must be form
that connects the selected vertices. This mesh is defined by sp
fying the vertices encountered in a pre-order descent of the bin
vertex trees. The recursive stopping condition is a false enabled
attribute. To efficiently render the mesh, a triangle mesh grap
ics primitive, such as the one supported by IRIS GL and OpenG
[11, 15], may be used. For each specified vertexv, the previous two
vertices andv form the next triangle in the mesh. At certain points
the previous two vertices must be swapped via aswaptmesh()
g

-

t

.

d
i-

y

-

call (IRIS GL), or aglVertex() call (OpenGL). A copy of the
two-entry graphics vertex buffer,my-bu f f er, is maintained explic-
itly to allow the decision as to when to swap the entries to be made
The most recent vertex in this buffer is indexed byptr.

The following pseudocode describes the mesh rendering algo
rithm. Each of the four triangular quadrantsqi are rendered in coun-
terclockwise order, with the first vertex in each quadrant coinciden
with the last vertex in the previous quadrant (see Figure 2d). Hence
a single triangle mesh can be used to render the entire block. Th
indicesqil , qit , andqi r correspond to the left, top, and right vertex
indices of quadrantqi , respectively, with the “top” index being the
center of the block. The block dimensions are 2n+1 squared.

RENDER-BLOCK(b)
1 enter triangle mesh mode
2 render vertexvq0l

3 my-bu f f erptr q0l
4 previous-level 0
5 for eachquadrantqi in blockb
6 if previous-level is even
7 toggleptr
8 else
9 swap vertices in graphics buffer

10 render vertexvqi l

11 my-bu f f erptr qi l
12 previous-level 2n+1
13 RENDER-QUADRANT(qil ;qi t ;qi r ;2n)
14 render vertexvq0l

15 exit triangle mesh mode

RENDER-QUADRANT(il ; it ; ir ; level)
1 if level> 0
2 if enabled(vit)

3 RENDER-QUADRANT(il;
il+ir

2 ; it ; level�1)
4 if it 62my-bu f f er
5 if level+ previous-level is odd
6 toggleptr
7 else
8 swap vertices in graphics buffer
9 render vertexvit

10 my-bu f f erptr it
11 previous-level level
12 RENDER-QUADRANT(it;

il+ir
2 ; ir ; level�1)

The indexil+ir
2 corresponds to the (base) vertex that in thex-y plane

is the midpoint of the edgevil vir . Sincemy-bu f f er reflects what
vertices are currently in the graphics buffer, line 9 inRENDER-
BLOCK and line 8 inRENDER-QUADRANT could be implemented
with aglVertex() call, passing the second most recent vertex in
my-bu f f er.

6 DATA STRUCTURES

Many of the issues related to the data structures used with this a
gorithm have purposely been left open, as different needs may d
mand totally different approaches to their representations. In on
implementation—the one presented here—as few as six bytes p
vertex were used, and as many as 28 bytes per vertex were need
in another. In this section, we describe data structures that will b
useful in many implementations.

For a compact representation, the vertex elevation is discretize
and stored as a 16-bit integer. A minimum of six additional
bits per vertex are required for the various flags, including the
enabled, activated, and fourdependencyattributes. Optionally,
the locked attribute can be added to these flags. The theoreti
cal range of delta values becomes[0;216� 1] in steps of1

2. We
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elect to store eachδ in “compressed” form as an 8-bit integerδ̂
in order to conserve space by encapsulating the vertex structur
a 32-bit aligned word. We define the decompression function

δ = 1
2b(1+ δ̂)1+δ̂2=(28

�1)2
�1c.4 This exponential mapping pre-

serves the accuracy needed for the more frequent small deltas, w
allowing large delta values to be represented, albeit with less ac
racy. The compression function is defined as the inverse of the
compression function. Both functions are implemented as look
tables.

To accommodate tasks such as rendering and surface followi
the vertices must be organized spatially for fast indexing. In Se
tion 4.2, however, we implied that vertices within ranges of del
values could be immediately accessed. This is accomplished by c
ating an auxiliary array of indices, in which the entries are sorte
on the corresponding vertices' delta values. Each entry uniqu
references the corresponding vertex(i; j) via an index into the ar-
ray of vertex structures. For each possible compressed delta va
within a block, there is a pointer (index)pδ̂ to a bin that contains
the vertex indices corresponding to that delta value. The 28 bins
are stored in ascending order in a contiguous, one-dimensional
ray. The entries in bini are then indexed bypi; pi +1; : : : ; pi+1�1
(pi = pi+1 implies that bini is empty). For block dimensions up
to 27+1, the indices can be represented with 16 bits to save spa
which in addition to the 32-bit structure described above, results
a total of six bytes storage per vertex.

7 RESULTS

To show the effectiveness of the polygon reduction and display
gorithm, we here present the results of a quantitative analysis of
number of polygons and delta projections, frame rates, compu
tion and rendering time, and errors in the approximated geome
A set of color plates show the resulting wireframe triangulations
and textured terrain surfaces at different stages of the simplific
tion and for different choices ofτ. Two height field datasets were
used in generating images and collecting data: a 64 km2 area digital
elevation model of the Hunter-Liggett military base in California
sampled at 2�2 meter resolution, and 1 meter height (z) resolution
(Color Plates 1a–c and 2a–c); and a 1�1 meter resolution, 14 km2

area of 29 Palms, California, with az resolution of one tenth of a
meter (Color Plates 3a–d). The vertical field of view is 60� in all
images, which were generated on a two-processor, 150 MHz S
Onyx RealityEngine2 [1], and have dimensions 1024�768 pixels
unless otherwise specified.

We first examine the amount of polygon reduction as a functio
of the thresholdτ. A typical view of the Hunter-Liggett terrain was
chosen for this purpose, which includes a variety of features su
as ridges, valleys, bumps, and relatively flat areas. Figure 6 sho
four curves drawn on a logarithmic scale (vertical axis). The to
horizontal line,n0(τ) = 13� 106, shows the total number of poly-
gons in the view frustum before any reduction method is applie
The curve second from the top,n1(τ), represents the number of
polygons remaining after the block-based level of detail selecti
is done. The number of polygons rendered,n2(τ), i.e. the remain-
ing polygons after the vertex-based simplification, is shown by t
lowest solid curve. As expected, these two curves flatten out aτ
is increased. The ration0(τ)=n2(τ) ranges from about 2 (τ = 0) to
over 6,000 (τ = 8). Of course, atτ = 0, only coplanar triangles are
fused. The ration1(τ)=n2(τ) varies between 1.85 and 160 over th
same interval, which clearly demonstrates the advantage of refin
each uniform level of detail block.

We pay special attention to the data obtained atτ = 1, as this
threshold is small enough that virtually no popping can be seen

4This results in an upper bound2
16
�1

2 for the delta values.
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τ displacement
mean median max std. dev. > τ (%)

0.000 0.00 0.00 0.00 0.00 0.00
0.125 0.03 0.00 0.52 0.05 6.41
0.250 0.06 0.00 0.85 0.09 4.52
0.500 0.11 0.04 1.56 0.15 3.14
1.000 0.21 0.07 2.88 0.29 2.61
2.000 0.42 0.13 5.37 0.59 2.84
4.000 0.88 0.23 10.41 1.24 3.27
8.000 1.38 0.19 16.69 2.08 1.38

Table 1: Screen-space error in simplified geometry.

animated sequences, and the resulting surfaces, when textured, are
seemingly identical to the ones obtained with no mesh simplific
tion. Color Plates 1a–c illustrate the three stages of simplificati
at τ = 1. In Color Plate 1c, note how many polygons are require
for the high frequency data, while only a few, large polygons a
used for the flatter areas. For this particular threshold,n0(1)=n2(1)
is slightly above 200, whilen1(1)=n2(1) is 18. The bottommost,
dashed curve in Figure 6 represents the total number of delta val
that fall in the uncertainty interval per frame (Section 4.2). Not
that this quantity is generally an order of magnitude smaller th
the number of rendered polygons. This is significant as the eva
ations associated with these delta values constitute the bulk of
computation in terms of CPU time. This also shows the advanta
of computing the uncertainty interval, as out of the eight millio
vertices contained in the view frustum, only 14,000 evaluations
Equation 2 need to be made whenτ = 1.

Threshold (pixels)

100

1000

10000

100000

1000000

10000000

100000000

0 2 4 6 8

Polygons before
simplification

Polygons after block-
based simplification

Polygons after vertex-
based simplification

Delta projections

Figure 6: The number of polygons (n0, n1, n2, from top to bottom)
as a function ofτ. The bottom curve shows the number of time
Equation 2 was evaluated per frame.

In order to evaluate the errors due to the simplification, the poin
on the polygonal surface of the simplified mesh that have been d
placed vertically, as well as the remaining triangle vertices, are p
spective projected to screen-space and compared to the project
of the original set of vertices. Optimally, each such screen coor
nate displacement should fall within the threshold distanceτ. How-
ever, this constraint may in certain cases be violated due to the
proximations discussed in Section 4.1. Table 1 was compiled
each mesh after vertex-based simplification was applied, and
surface points were correlated with the original eight million ve
tices shown in Color Plate 1a. The table summarizes the me
median, maximum, and standard deviation of the displacements
number of pixels, as well as the fraction of displacements that e
ceedτ. In all cases, the average pixel error is well belowτ. It can
be seen that the approximations presented in Section 4.1 do not
nificantly impact the accuracy, as the fraction of displacements th
exceedτ is typically less than five percent.

Color Plates 2a–c illustrate a checkerboard pattern draped o
the polygonal meshes from Color Plates 1a–c. Qualitatively, these
images suggestlittle or no perceivable loss in image quality for a
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threshold of one pixel, even when the surface complexity is reduc
by a factor of 200.

Figure 7 demonstrates the efficiency of the algorithm. The com
putation time associated with the delta projections (lines 10–20
MAIN , Section 5) is typically only a small fraction of the render
ing time. This data was gathered for the views shown in Col
Plates 3a–d.

Threshold (pixels)

T
im

e 
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s)

1
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1000

10000

0 1 2 3 4 5 6 7 8

Delta projection time Rendering time Total time

Figure 7: Rendering and evaluation times and their sum as functio
of τ.

Figure 8 shows how the quantities in Figure 6, as well as t
frame rate vary with time. The data collection for 3,230 frames w
done over a time period of 120 seconds, with the viewpoint follow
ing a circular path of radius 1 km over the Hunter-Liggett datase
The terrain was rendered as a wireframe mesh in a 640�480 win-
dow, with τ = 2 pixels. It can be seen that the number of rendere
polygons does not depend on the total number of polygons in t
view frustum, but rather on the complexity of the terrain intersecte
by the view frustum. As evidenced by the graph, a frame rate of
least 20 frames per second was sustained throughout the two m
utes of fly-through.

Frame

10

100

1000

10000

100000

1000000

10000000
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Figure 8: Time graph of (a) total number of polygons in view
frustum, (b) number of polygons after block-based simplificatio
(c) number of polygons after vertex-based simplification, (d) num
ber of delta projections, and (e) frames per second.

8 CONCLUSION

We have presented a height-field display algorithm based on re
time, per vertex level of detail evaluation, that achieves intera
tive and consistent frame rates exceeding twenty frames per s
ond, with only a minor loss in image quality. Attractive features
attributed to regular grid surface representations, such as fast g
metric queries, compact representation, and fast mesh rendering
d
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s
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e

t
n-

l-

c-
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re

retained. The concept of continuous level of detail allows a polyg
distribution that is near optimal for any given viewpoint and frame
and also yields smooth changes in the number of rendered po
gons. A single parameter that can easily be changed interactiv
with no incurred cost, determines the resulting image quality, a
a direct relationship between this parameter and the number of r
dered polygons exists, providing capabilities for maintaining con-
sistent frame rates. The algorithm can easily be extended to han
the problem of gaps between blocks of different levels of detail,
well as temporal geometry morphing to further minimize poppin
effects.
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2b. After block−based LOD
      1,179,690 polygons

2c. After vertex−based LOD
      64,065 polygons

2a. Before simplification
      13,304,214 polygons

3a.  τ = 0.5,  62,497 polygons 3b.  τ = 1.0,  23,287 polygons

3c.  τ = 2.0,  8,612 polygons 3d.  τ = 4.0,  3,385 polygons

1a. 1b. 1c.


