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ABSTRACT

Highly detailed geometric models are rapidly becoming common-
place in computer graphics. These models, often represented as
complex triangle meshes, challenge rendering performance, trans-
mission bandwidth, and storage capacities. This paper introduces
the progressive mesh (PM) representation, a new scheme for storing
and transmitting arbitrary triangle meshes. This efficient, loss-
less, continuous-resolution representation addresses several practi-
cal problems in graphics: smooth geomorphing of level-of-detail
approximations, progressive transmission, mesh compression, and
selective refinement.

In addition, we present a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh. The goal
of this optimization procedure is to preserve not just the geometry
of the original mesh, but more importantly its overall appearance
as defined by its discrete and scalar appearance attributes such as
material identifiers, color values, normals, and texture coordinates.
We demonstrate construction of the PM representation and its ap-
plications using several practical models.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations.

Additional Keywords: mesh simplification, level of detail, shape interpo-
lation, progressive transmission, geometry compression.

1 INTRODUCTION

Highly detailed geometric models are necessary to satisfy a grow-
ing expectation for realism in computer graphics. Within traditional
modeling systems, detailed models are created by applying ver-
satile modeling operations (such as extrusion, constructive solid
geometry, and freeform deformations) to a vast array of geometric
primitives. For efficient display, these models must usually be tes-
sellated into polygonal approximations—meshes. Detailed meshes
are also obtained by scanning physical objects using range scanning
systems [5]. In either case, the resulting complex meshes are ex-
pensive to store, transmit, and render, thus motivating a number of
practical problems:
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� Mesh simplification: The meshes created by modeling and scan-
ning systems are seldom optimized for rendering efficiency, and
can frequently be replaced by nearly indistinguishable approx-
imations with far fewer faces. At present, this process often
requires significant user intervention. Mesh simplification tools
can hope to automate this painstaking task, and permit the port-
ing of a single model to platforms of varying performance.

� Level-of-detail (LOD) approximation: To further improve ren-
dering performance, it is common to define several versions of a
model at various levels of detail [3, 8]. A detailed mesh is used
when the object is close to the viewer, and coarser approxima-
tions are substituted as the object recedes. Since instantaneous
switching between LOD meshes may lead to perceptible “pop-
ping”, one would like to construct smooth visual transitions,
geomorphs, between meshes at different resolutions.

� Progressive transmission: When a mesh is transmitted over a
communication line, one would like to show progressively better
approximations to the model as data is incrementally received.
One approach is to transmit successive LOD approximations,
but this requires additional transmission time.

� Mesh compression: The problem of minimizing the storage
space for a model can be addressed in two orthogonal ways.
One is to use mesh simplification to reduce the number of faces.
The other is mesh compression: minimizing the space taken to
store a particular mesh.

� Selective refinement: Each mesh in a LOD representation cap-
tures the model at a uniform (view-independent) level of detail.
Sometimes it is desirable to adapt the level of refinement in se-
lected regions. For instance, as a user flies over a terrain, the
terrain mesh need be fully detailed only near the viewer, and
only within the field of view.

In addressing these problems, this paper makes two major con-
tributions. First, it introduces the progressive mesh (PM) repre-
sentation. In PM form, an arbitrary mesh M̂ is stored as a much
coarser mesh M0 together with a sequence of n detail records that
indicate how to incrementally refine M0 exactly back into the orig-
inal mesh M̂ = Mn. Each of these records stores the information
associated with a vertex split, an elementary mesh transformation
that adds an additional vertex to the mesh. The PM representation
of M̂ thus defines a continuous sequence of meshes M0

;M1
; : : : ;Mn

of increasing accuracy, from which LOD approximations of any de-
sired complexity can be efficiently retrieved. Moreover, geomorphs
can be efficiently constructed between any two such meshes. In
addition, we show that the PM representation naturally supports
progressive transmission, offers a concise encoding of M̂ itself, and
permits selective refinement. In short, progressive meshes offer an
efficient, lossless, continuous-resolution representation.

The other contribution of this paper is a new simplification pro-
cedure for constructing a PM representation from a given mesh
M̂. Unlike previous simplification methods, our procedure seeks
to preserve not just the geometry of the mesh surface, but more
importantly its overall appearance, as defined by the discrete and
scalar attributes associated with its surface.
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2 MESHES IN COMPUTER GRAPHICS

Models in computer graphics are often represented using triangle
meshes.1 Geometrically, a triangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K;V), where K is a simplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = fv1; : : : ;vmg is the set of vertex positions defining
the shape of the mesh in R3. More precisely (cf. [9]), we construct
a parametric domain jKj � R

m by identifying each vertex of K with
a canonical basis vector of Rm, and define the mesh as the image
�V(jKj) where �V : Rm ! R

3 is a linear map.

Often, surface appearance attributes other than geometry are also
associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, a trivial shader function may involve simple look-up within
a specified texture map.

Many scalar attributes are often associated with a mesh, including
diffuse color (r; g; b), normal (nx; ny; nz), and texture coordinates
(u; v). More generally, these attributes specify the local parameters
of shader functions defined on the mesh faces. In simple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuities in the scalar fields, and because adjacent
faces may have different shading functions, it is common to associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v; f ) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

We express a mesh as a tuple M = (K;V;D; S) where V specifies
its geometry, D is the set of discrete attributes df associated with
the faces f = fj; k; lg 2 K, and S is the set of scalar attributes s(v;f )

associated with the corners (v; f ) of K.

The attributes D and S give rise to discontinuities in the visual
appearance of the mesh. An edge fvj; vkg of the mesh is said to be
sharp if either (1) it is a boundary edge, or (2) its two adjacent faces
fl and fr have different discrete attributes (i.e. dfl 6= dfr ), or (3) its
adjacent corners have different scalar attributes (i.e. s(vj;fl) 6= s(vj;fr)

or s(vk;fl) 6= s(vk;fr)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION

3.1 Overview
Hoppe et al. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M̂ by a much simpler one.
Their optimization algorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations: edge collapse, edge split, and edge swap.

We have discovered that in fact a single one of those transforma-
tions, edge collapse, is sufficient for effectively simplifying meshes.
As shown in Figure 1, an edge collapse transformation ecol(fvs; vtg)

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.
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Figure 1: Illustration of the edge collapse transformation.
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Figure 2: (a) Sequence of edge collapses; (b) Resulting vertex
correspondence.

unifies 2 adjacent vertices vs and vt into a single vertex vs. The ver-
tex vt and the two adjacent faces fvs; vt; vlg and fvt; vs; vrg vanish
in the process. A position vs is specified for the new unified vertex.

Thus, an initial mesh M̂ = Mn can be simplified into a coarser
mesh M0 by applying a sequence of n successive edge collapse
transformations:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0
:

The particular sequence of edge collapse transformations must be
chosen carefully, since it determines the quality of the approximating
meshes Mi

; i < n. A scheme for choosing these edge collapses is
presented in Section 4.

Let m0 be the number of vertices in M0 , and let us label the vertices
of mesh Mi as Vi = fv1; : : : ; vm0+ig, so that edge fvsi ; vm0+i+1g is
collapsed by ecoli as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj in Mi as vi

j.

A key observation is that an edge collapse transformation is in-
vertible. Let us call that inverse transformation a vertex split, shown
as vsplit in Figure 1. A vertex split transformation vsplit(s; l; r; t;A)
adds near vertex vs a new vertex vt and two new faces fvs; vt; vlg and
fvt; vs; vrg. (If the edge fvs; vtg is a boundary edge, we let vr = 0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions vs

and vt of the two affected vertices, the discrete attributes dfvs;vt;vlg

and dfvt;vs;vrg of the two new faces, and the scalar attributes of the
affected corners (s(vs;�), s(vt;�), s(vl;fvs;vt;vlg), and s(vr;fvt;vs;vrg)).

Because edge collapse transformations are invertible, we can
therefore represent an arbitrary triangle mesh M̂ as a simple mesh
M0 together with a sequence of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

where each record is parametrized as vspliti(si; li; ri;Ai). We call
(M0

; fvsplit0; : : : ; vsplitn�1g) a progressive mesh (PM) representa-
tion of M̂.

As an example, the mesh M̂ of Figure 5d (13,546 faces) was
simplified down to the coarse mesh M0 of Figure 5a (150 faces) using



6,698 edge collapse transformations. Thus its PM representation
consists of M0 together with a sequence of n = 6698 vsplit records.
From this PM representation, one can extract approximating meshes
with any desired number of faces (actually, within �1) by applying
to M0 a prefix of the vsplit sequence. For example, Figure 5 shows
approximating meshes with 150, 500, and 1000 faces.

3.2 Geomorphs
A nice property of the vertex split transformation (and its inverse,
edge collapse) is that a smooth visual transition (a geomorph) can be
created between the two meshes Mi and Mi+1 in Mi vspliti

�! Mi+1. For
the moment let us assume that the meshes contain no attributes other
than vertex positions. With this assumption the vertex split record
is encoded as vspliti(si; li; ri;Ai = (vi+1

si ;v
i+1
m0+i+1)). We construct a

geomorph MG(�) with blend parameter 0���1 such that MG(0)
looks like Mi and MG(1) looks like Mi+1—in fact MG(1)=Mi+1—by
defining a mesh

MG(�) = (Ki+1
;VG(�))

whose connectivity is that of Mi+1 and whose vertex positions lin-
early interpolate from vsi 2Mi to the split vertices vsi ;vm0+i+12Mi+1:

v
G
j (�) =

�
(�)vi+1

j + (1��)vi
si ; j 2 fsi;m0 +i+1g

v
i+1
j = vi

j ; j =2 fsi;m0 +i+1g

Using such geomorphs, an application can smoothly transition from
a mesh Mi to meshes Mi+1 or Mi�1 without any visible “snapping”
of the meshes.

Moreover, since individual ecol transformations can be transi-
tioned smoothly, so can the composition of any sequence of them.
Geomorphs can therefore be constructed between any two meshes
of a PM representation. Indeed, given a finer mesh Mf and a coarser
mesh Mc, 0 � c < f � n, there exists a natural correspondence
between their vertices: each vertex of Mf is related to a unique an-
cestor vertex of Mc by a surjective map Ac obtained by composing a
sequence of ecol transformations (Figure 2b). More precisely, each
vertex vj of Mf corresponds with the vertex vAc(j) in Mc where

Ac(j) =

�
j ; j � m0 + c

Ac(sj�m0�1) ; j > m0 + c :

(In practice, this ancestor information Ac is gathered in a forward
fashion as the mesh is refined.) This correspondence allows us to
define a geomorph MG(�) such that MG(0) looks like Mc and MG(1)
equals Mf . We simply define MG(�) = (Kf

; VG(�)) to have the
connectivity of Mf and the vertex positions

v
G
j (�) = (�)vf

j + (1��)vc
Ac(j) :

So far we have outlined the construction of geomorphs between
PM meshes containing only position attributes. We can in fact
construct geomorphs for meshes containing both discrete and scalar
attributes.

Discrete attributes by their nature cannot be smoothly interpo-
lated. Fortunately, these discrete attributes are associated with
faces of the mesh, and the “geometric” geomorphs described above
smoothly introduce faces. In particular, observe that the faces of
Mc are a proper subset of the faces of Mf , and that those faces of
Mf missing from Mc are invisible in MG(0) because they have been
collapsed to degenerate (zero area) triangles. Other geomorphing
schemes [10, 11, 17] define well-behaved (invertible) parametriza-
tions between meshes at different levels of detail, but these do not
permit the construction of geomorphs between meshes with differ-
ent discrete attributes.

Scalar attributes defined on corners can be smoothly interpolated
much like the vertex positions. There is a slight complication in
that a corner (v; f ) in a mesh M is not naturally associated with
any “ancestor corner” in a coarser mesh Mc if f is not a face of
Mc. We can still attempt to infer what attribute value (v; f ) would
have in Mc as follows. We examine the mesh Mi+1 in which f is
first introduced, locate a neighboring corner (v; f 0) in Mi+1 whose
attribute value is the same, and recursively backtrack from it to a
corner in Mc. If there is no neighboring corner in Mi+1 with an
identical attribute value, then the corner (v; f ) has no equivalent in
Mc and we therefore keep its attribute value constant through the
geomorph.

The interpolating function on the scalar attributes need not be
linear; for instance, normals are best interpolated over the unit
sphere, and colors may be interpolated in a color space other than
RGB.

Figure 6 demonstrates a geomorph between two meshes M175 (500
faces) and M425 (1000 faces) retrieved from the PM representation
of the mesh in Figure 5d.

3.3 Progressive transmission
Progressive meshes are a natural representation for progressive
transmission. The compact mesh M0 is transmitted first (using
a conventional uni-resolution format), followed by the stream of
vspliti records. The receiving process incrementally rebuilds M̂ as
the records arrive, and animates the changing mesh. The changes
to the mesh can be geomorphed to avoid visual discontinuities. The
original mesh M̂ is recovered exactly after all n records are received,
since PM is a lossless representation.

The computation of the receiving process should be balanced
between the reconstruction of M̂ and interactive display. With a
slow communication line, a simple strategy is to display the current
mesh whenever the input buffer is found to be empty. With a
fast communication line, we find that a good strategy is to display
meshes whose complexities increase exponentially. (Similar issues
arise in the display of images transmitted using progressive JPEG.)

3.4 Mesh compression
Even though the PM representation encodes both M̂ and a continu-
ous family of approximations, it is surprisingly space-efficient, for
two reasons. First, the locations of the vertex split transformations
can be encoded concisely. Instead of storing all three vertex indices
(si; li; ri) of vspliti, one need only store si and approximately 5 bits
to select the remaining two vertices among those adjacent to vsi .

2

Second, because a vertex split has local effect, one can expect signif-
icant coherence in mesh attributes through each transformation. For
instance, when vertex vi

si is split into vi+1
si and vi+1

m0+i+1, we can predict
the positions vi+1

si and vi+1
m0+i+1 from v

i
si , and use delta-encoding to

reduce storage. Scalar attributes of corners in Mi+1 can similarly be
predicted from those in Mi. Finally, the material identifiers dfvs;vt;vlg

and dfvt;vs;vrg of the new faces in mesh Mi+1 can often be predicted
from those of adjacent faces in Mi using only a few control bits.

As a result, the size of a carefully designed PM representation
should be competitive with that obtained from methods for com-
pressing uni-resolution meshes. Our current prototype implementa-
tion was not designed with this goal in mind. However, we analyze
the compression of the connectivity K, and report results on the com-
pression of the geometry V . In the following analysis, we assume
for simplicity that m0 = 0 since typically m0 � n.

A common representation for the mesh connectivity K is to list
the three vertex indices for each face. Since the number of vertices
is n and the number of faces approximately 2n, such a list requires
6dlog2(n)en bits of storage. Using a buffer of 2 vertices, gener-
alized triangle strip representations reduce this number to about

2On average, vsi has 6 neighbors, and the number of permutations P6
2 =30

can be encoded in dlog2(P6
2)e=5 bits.



(dlog2(n)e+2k)n bits, where vertices are back-referenced once on
average and k ' 2 bits capture the vertex replacement codes [6].
By increasing the vertex buffer size to 16, Deering’s generalized
triangle mesh representation [6] further reduces storage to about
( 1

8dlog2(n)e+8)n bits. Turan [16] shows that planar graphs (and
hence the connectivity of closed genus 0 meshes) can be encoded
in 12n bits. Recent work by Taubin and Rossignac [15] addresses
more general meshes. With the PM representation, each vspliti re-
quires specification of si and its two neighbors, for a total storage of
about (dlog2(n)e+5)n bits. Although not as concise as [6, 15], this
is comparable to generalized triangle strips.

A traditional representation of the mesh geometry V requires
storage of 3n coordinates, or 96n bits with IEEE single-precision
floating point. Like Deering [6], we assume that these coordinates
can be quantized to 16-bit fixed precision values without significant
loss of visual quality, thus reducing storage to 48n bits. Deering is
able to further compress this storage by delta-encoding the quantized
coordinates and Huffman compressing the variable-length deltas.
For 16-bit quantization, he reports storage of 35:8n bits, which
includes both the deltas and the Huffman codes. Using a similar
approach with the PM representation, we encode V in 31n to 50n bits
as shown in Table 1. To obtain these results, we exploit a property
of our optimization algorithm (Section 4.3): when considering the
collapse of an edge fvs; vtg, it considers three starting points for
the resulting vertex position vn: fvs;vt;

vs+vt
2 g. Depending on the

starting point chosen, we delta-encode either fvs�vn;vt�vng or
fvs+vt

2 �vn;
vt�vs

2 g, and use separate Huffman tables for all four
quantities.

To further improve compression, we could alter the construction
algorithm to forego optimization and let vn 2 fvs;vt;

vs+vt
2 g. This

would degrade the accuracy of the approximating meshes some-
what, but allows encoding of V in 30n to 37n bits in our examples.
Arithmetic coding [19] of delta lengths does not improve results
significantly, reflecting the fact that the Huffman trees are well bal-
anced. Further compression improvements may be achievable by
adapting both the quantization level and the delta length models
as functions of the vsplit record index i, since the magnitude of
successive changes tends to decrease.

3.5 Selective refinement
The PM representation also supports selective refinement, whereby
detail is added to the model only in desired areas. Let the application
supply a callback function REFINE(v) that returns a Boolean value
indicating whether the neighborhood of the mesh about v should
be further refined. An initial mesh Mc is selectively refined by
iterating through the list fvsplitc; : : : ; vsplitn�1g as before, but only
performing vspliti(si; li; ri;Ai) if

(1) all three vertices fvsi ; vli ; vrig are present in the mesh, and

(2) REFINE(vsi ) evaluates to TRUE.

(A vertex vj is absent from the mesh if the prior vertex split that
would have introduced it, vsplitj�m0�1, was not performed due to
the above conditions.)

As an example, to obtain selective refinement of the model within
a view frustum, REFINE(v) is defined to be TRUE if either v or any
of its neighbors lies within the frustum. As seen in Figure 7a,
condition (1) described above is suboptimal. The problem is that a
vertex vsi within the frustum may fail to be split because its expected
neighbor vli lies just outside the frustum and was not previously
created. The problem is remedied by using a less stringent version
of condition (1). Let us define the closest living ancestor of a vertex
vj to be the vertex with index

A0(j) =

�
j ; if vj exists in the mesh

A0(sj�m0�1) ; otherwise
The new condition becomes:

(1’) vsi is present in the mesh (i.e. A0(si) = si) and the vertices vA0 (li)

and vA0 (ri) are both adjacent to vsi .

As when constructing the geomorphs, the ancestor information A0

is carried efficiently as the vsplit records are parsed. If conditions
(1’) and (2) are satisfied, vsplit(si;A0(li);A0(ri);Ai) is applied to the
mesh. A mesh selectively refined with this new strategy is shown in
Figure 7b. This same strategy was also used for Figure 10. Note that
it is still possible to create geomorphs between Mc and selectively
refined meshes thus created.

An interesting application of selective refinement is the transmis-
sion of view-dependent models over low-bandwidth communication
lines. As the receiver’s view changes over time, the sending process
need only transmit those vsplit records for which REFINE evaluates
to TRUE, and of those only the ones not previously transmitted.

4 PROGRESSIVE MESH CONSTRUCTION

The PM representation of an arbitrary mesh M̂ requires a sequence
of edge collapses transforming M̂ = Mn into a base mesh M0.
The quality of the intermediate approximations Mi

; i < n depends
largely on the algorithm for selecting which edges to collapse and
what attributes to assign to the affected neighborhoods, for instance
the positions vi

si .

There are many possible PM construction algorithms with vary-
ing trade-offs of speed and accuracy. At one extreme, a crude and
fast scheme for selecting edge collapses is to choose them com-
pletely at random. (Some local conditions must be satisfied for an
edge collapse to be legal, i.e. manifold preserving [9].) More so-
phisticated schemes can use heuristics to improve the edge selection
strategy, for example the “distance to plane” metric of Schroeder
et al. [14]. At the other extreme, one can attempt to find approx-
imating meshes that are optimal with respect to some appearance
metric, for instance the Edist geometric metric of Hoppe et al. [9].

Since PM construction is a preprocess that can be performed off-
line, we chose to design a simplification procedure that invests some
time in the selection of edge collapses. Our procedure is similar to
the mesh optimization method introduced by Hoppe et al. [9], which
is outlined briefly in Section 4.1. Section 4.2 presents an overview
of our procedure, and Sections 4.3–4.6 present the details of our
optimization scheme for preserving both the shape of the mesh and
the scalar and discrete attributes which define its appearance.

4.1 Background: mesh optimization
The goal of mesh optimization [9] is to find a mesh M = (K;V)
that both accurately fits a set X of points xi 2 R

3 and has a small
number of vertices. This problem is cast as minimization of an
energy function

E(M) = Edist(M) + Erep(M) + Espring(M) :

The first two terms correspond to the two goals of accuracy and
conciseness: the distance energy term

Edist(M) =
X

i

d2(xi; �V (jKj))

measures the total squared distance of the points from the mesh,
and the representation energy term Erep(M) = crepm penalizes the
number m of vertices in M. The third term, the spring energy
Espring(M) is introduced to regularize the optimization problem. It
corresponds to placing on each edge of the mesh a spring of rest
length zero and tension �:

Espring(M) =
X

fj;kg2K

�kvj � vkk
2
:
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Figure 3: Illustration of the paths taken by mesh optimization using
three different settings of crep.

The energy function E(M) is minimized using a nested optimiza-
tion method:

� Outer loop: The algorithm optimizes over K, the connectivity
of the mesh, by randomly attempting a set of three possible
mesh transformations: edge collapse, edge split, and edge swap.
This set of transformations is complete, in the sense that any
simplicial complex K of the same topological type as K̂ can
be reached through a sequence of these transformations. For
each candidate mesh transformation, K ! K0, the continuous
optimization described below computes EK0 , the minimum of
E subject to the new connectivity K0. If �E = EK0 � EK is
found to be negative, the mesh transformation is applied (akin to
a zero-temperature simulated annealing method).

� Inner loop: For each candidate mesh transformation, the algo-
rithm computes EK0 = minV Edist(V) + Espring(V) by optimizing
over the vertex positions V . For the sake of efficiency, the algo-
rithm in fact optimizes only one vertex positionvs, and considers
only the subset of points X that project onto the neighborhood
affected by K ! K0. To avoid surface self-intersections, the
edge collapse is disallowed if the maximum dihedral angle of
edges in the resulting neighborhood exceeds some threshold.

Hoppe et al. [9] find that the regularizing spring energy term
Espring(M) is most important in the early stages of the optimization,
and achieve best results by repeatedly invoking the nested optimiza-
tion method described above with a schedule of decreasing spring
constants �.

Mesh optimization is demonstrated to be an effective tool for mesh
simplification. Given an initial mesh M̂ to approximate, a dense set
of points X is sampled both at the vertices of M̂ and randomly over
its faces. The optimization algorithm is then invoked with M̂ as the
starting mesh. Varying the setting of the representation constant crep

results in optimized meshes with different trade-offs of accuracy and
size. The paths taken by these optimizations are shown illustratively
in Figure 3.

4.2 Overview of the simplification algorithm
As in mesh optimization [9], we also define an explicit energy metric
E(M) to measure the accuracy of simplified meshes M = (K;V;D; S)
with respect to the original M̂, and we also modify the mesh M
starting from M̂ while minimizing E(M).

Our energy metric has the following form:

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M) :

The first two terms, Edist(M) and Espring(M) are identical to those
in [9]. The next two terms of E(M) are added to preserve attributes
associated with M: Escalar(M) measures the accuracy of its scalar
attributes (Section 4.4), and Edisc(M) measures the geometric ac-
curacy of its discontinuity curves (Section 4.5). (To achieve scale
invariance of the terms, the mesh is uniformly scaled to fit in a unit
cube.)
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Figure 4: Illustration of the path taken by the new mesh simplifica-
tion procedure in a graph plotting accuracy vs. mesh size.

Our scheme for optimizing over the connectivity K of the mesh
is rather different from [9]. We have discovered that a mesh can
be effectively simplified using edge collapse transformations alone.
The edge swap and edge split transformations, useful in the context
of surface reconstruction (which motivated [9]), are not essential
for simplification. Although in principle our simplification algo-
rithm can no longer traverse the entire space of meshes considered
by mesh optimization, we find that the meshes generated by our
algorithm are just as good. In fact, because of the priority queue
approach described below, our meshes are usually better. Moreover,
considering only edge collapses simplifies the implementation, im-
proves performance, and most importantly, gives rise to the PM
representation (Section 3).

Rather than randomly attempting mesh transformations as in [9],
we place all (legal) candidate edge collapse transformations into
a priority queue, where the priority of each transformation is its
estimated energy cost �E. In each iteration, we perform the trans-
formation at the front of the priority queue (with lowest �E), and
recompute the priorities of edges in the neighborhood of this trans-
formation. As a consequence, we eliminate the need for the awk-
ward parameter crep as well as the energy term Erep(M). Instead, we
can explicitly specify the number of faces desired in an optimized
mesh. Also, a single run of the optimization can generate several
such meshes. Indeed, it generates a continuous-resolution family of
meshes, namely the PM representation of M̂ (Figure 4).

For each edge collapse K ! K0, we compute its cost �E =
EK0 � EK by solving a continuous optimization

EK0 = min
V;S

Edist(V) + Espring(V) + Escalar(V; S) + Edisc(V)

over both the vertex positions V and the scalar attributes S of the
mesh with connectivity K0. This minimization is discussed in the
next three sections.

4.3 Preserving surface geometry (Edist +Espring)
As in [9], we “record” the geometry of the original mesh M̂ by
sampling from it a set of points X. At a minimum, we sample a
point at each vertex of M̂. If requested by the user, additional points
are sampled randomly over the surface of M̂. The energy terms
Edist(M) and Espring(M) are defined as in Section 4.1.

For a mesh of fixed connectivity, our method for optimizing the
vertex positions to minimize Edist(V)+Espring(V) closely follows that
of [9]. Evaluating Edist(V) involves computing the distance of each
point xi to the mesh. Each of these distances is itself a minimization
problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k
2 (1)

where the unknown bi is the parametrization of the projection of
xi on the mesh. The nonlinear minimization of Edist(V) + Espring(V)
is performed using an iterative procedure alternating between two
steps:



1. For fixed vertex positions V , compute the optimal parametriza-
tions B = fb1; : : : ;bjXjg by projecting the points X onto the
mesh.

2. For fixed parametrizations B, compute the optimal vertex posi-
tions V by solving a sparse linear least-squares problem.

As in [9], when considering ecol(fvs; vtg), we optimize only one
vertex position, vi

s. We perform three different optimizations with
different starting points, vi

s = (1��)vi+1
s +(�)vi+1

t for � = f0; 1
2 ; 1g,

and accept the best one.

Instead of defining a global spring constant � for Espring as in [9],
we adapt � each time an edge collapse transformation is considered.
Intuitively, the spring energy is most important when few points
project onto a neighborhood of faces, since in this case finding the
vertex positions minimizing Edist(V) may be an under-constrained
problem. Thus, for each edge collapse transformation considered,
we set � as a function of the ratio of the number of points to the
number of faces in the neighborhood.3 With this adaptive scheme,
the influence of Espring(M) decreases gradually and adaptively as the
mesh is simplified, and we no longer require the expensive schedule
of decreasing spring constants.

4.4 Preserving scalar attributes (Escalar)
As described in Section 2, we represent piecewise continuous scalar
fields by defining scalar attributes S at the mesh corners. We now
present our scheme for preserving these scalar fields through the
simplification process. For exposition, we find it easier to first
present the case of continuous scalar fields, in which the corner
attributes at a vertex are identical. The generalization to piecewise
continuous fields is discussed shortly.

Optimizing scalar attributes at vertices Let the original
mesh M̂ have at each vertex vj not only a position vj 2 R

3 but
also a scalar attribute vj 2 R

d. To capture scalar attributes, we
sample at each point xi 2 X the attribute value xi 2 R

d . We would
then like to generalize the distance metric Edist to also measure the
deviation of the sampled attribute values X from those of M.

One natural way to achieve this is to redefine the distance metric
to measure distance in R3+d:

d2((xi xi);M(K;V;V)) = min
bi2jKj

k(xi xi) � (�V(bi) �V(bi))k
2
:

This new distance functional could be minimized using the iterative
approach of Section 4.3. However, it would be expensive since
finding the optimal parametrization bi of each point xi would re-
quire projection in R3+d, and would be non-intuitive since these
parametrizations would not be geometrically based.

Instead we opted to determine the parametrizations bi using only
geometry with equation (1), and to introduce a separate energy term
Escalar to measure attribute deviation based on these parametriza-
tions:

Escalar(V) = (cscalar)
2
X

i

kxi � �V(bi)k
2

where the constant cscalar assigns a relative weight between the scalar
attribute errors (Escalar) and the geometric errors (Edist).

Thus, to minimize E(V;V) = Edist(V) + Espring(V) + Escalar(V), our
algorithm first finds the vertex position vs minimizing Edist(V) +
Espring(V) by alternately projecting the points onto the mesh (ob-
taining the parametrizations bi) and solving a linear least-squares
problem (Section 4.1). Then, using those same parametrizations

3The neighborhood of an edge collapse transformation is the set of faces
shown in Figure 1. Using C notation, we set � = r < 4 ? 10�2 : r <

8 ? 10�4 : 10�8 where r is the ratio of the number of points to faces in the
neighborhood.
bi, it finds the vertex attribute vs minimizing Escalar by solving a
single linear least-squares problem. Hence introducing Escalar into
the optimization causes negligible performance overhead.

Since �Escalar contributes to the estimated cost �E of an edge
collapse, we obtain simplified meshes whose faces naturally adapt
to the attribute fields, as shown in Figures 8 and 11.

Optimizing scalar attributes at corners Our scheme for op-
timizing the scalar corner attributes S is a straightforward gener-
alization of the scheme just described. Instead of solving for a
single unknown attribute value vs, the algorithm partitions the cor-
ners around vs into continuous sets (based on equivalence of corner
attributes) and for each continuous set solves independently for its
optimal attribute value.

Range constraints Some scalar attributes have constrained
ranges. For instance, the components (r; g; b) of color are typically
constrained to lie between 0 and 1. Least-squares optimization may
yield color values outside this range. In these cases we clip the op-
timized values to the given range. For least-squares minimization
of a Euclidean norm at a single vertex, this is in fact optimal.

Normals Surface normals (nx; ny; nz) are typically constrained to
have unit length, and thus their domain is non-Cartesian. Optimizing
over normals would therefore require minimization of a nonlinear
functional with nonlinear constraints. We decided to instead simply
carry the normals through the simplification process. Specifically,
we compute the new normals at vertex vi

si by interpolating between
the normals at vertices vi+1

si and vi+1
m0+i+1 using the � value that re-

sulted in the best vertex position vi
si in Section 4.3. Fortunately,

the absolute directions of normals are less visually important than
their discontinuities, and we have a scheme for preserving such
discontinuities, as described in the next section.

4.5 Preserving discontinuity curves (Edisc)
Appearance attributes give rise to a set of discontinuity curves on the
mesh, both from differences between discrete face attributes (e.g.
material boundaries), and from differences between scalar corner
attributes (e.g. creases and shadow boundaries). As these discon-
tinuity curves form noticeable features, we have found it useful to
preserve them both topologically and geometrically.

We can detect when a candidate edge collapse would modify the
topology of the discontinuity curves using some simple tests on
the presence of sharp edges in its neighborhood. Let sharp(vj; vk)
denote that an edge fvj ; vkg is sharp, and let #sharp(vj) be the number
of sharp edges adjacent to a vertex vj. Then, referring to Figure 1,
ecol(fvs; vtg) modifies the topology of discontinuity curves if either:

� sharp(vs; vl) and sharp(vt; vl), or
� sharp(vs; vr) and sharp(vt; vr), or
� #sharp(vs) � 1 and #sharp(vt) � 1 and not sharp(vs; vt), or
� #sharp(vs) � 3 and #sharp(vt) � 3 and sharp(vs; vt), or
� sharp(vs; vt) and #sharp(vs) = 1 and #sharp(vt) 6= 2, or
� sharp(vs; vt) and #sharp(vt) = 1 and #sharp(vs) 6= 2.

If an edge collapse would modify the topology of discontinuity
curves, we either disallow it, or penalize it as discussed in Sec-
tion 4.6.

To preserve the geometry of the discontinuity curves, we sample
an additional set of points Xdisc from the sharp edges of M̂, and define
an additional energy term Edisc equal to the total squared distances
of each of these points to the discontinuity curve from which it was
sampled. Thus Edisc is defined just like Edist, except that the points
Xdisc are constrained to project onto a set of sharp edges in the mesh.
In effect, we are solving a curve fitting problem embedded within
the surface fitting problem. Since all boundaries of the surface are
defined to be discontinuity curves, our procedure preserves bound-



ary geometry more accurately than [9]. Figure 9 demonstrates the
importance of using the Edisc energy term in preserving the material
boundaries of a mesh with discrete face attributes.

4.6 Permitting changes to topology of dis-
continuity curves

Some meshes contain numerous discontinuity curves, and these
curves may delimit features that are too small to be visible when
viewed from a distance. In such cases we have found that strictly
preserving the topology of the discontinuity curves unnecessarily
curtails simplification. We have therefore adopted a hybrid strat-
egy, which is to permit changes to the topology of the discontinu-
ity curves, but to penalize such changes. When a candidate edge
collapse ecol(fvs; vtg) changes the topology of the discontinuity
curves, we add to its cost �E the value jXdisc;fvs;vtgj � kvs � vtk

2

where jXdisc;fvs;vtgj is the number of points of Xdisc projecting onto
fvs; vtg. That simple strategy, although ad hoc, has proven very
effective. For example, it allows the dark gray window frames of
the “cessna” (visible in Figure 9) to vanish in the simplified meshes
(Figures 5a–c).

Table 1: Parameter settings and quantitative results.

Object Original ^M Base M0 User param. jXdiscj V Time
m0 + n #faces m0 #faces jXj�(m0+n) ccolor

bits
n mins

cessna 6,795 13,546 97 150 100,000 - 46,811 46 23
terrain 33,847 66,960 3 1 0 - 3,796 46 16
mandrill 40,000 79,202 3 1 0 0.1 4,776 31 19
radiosity 78,923 150,983 1,192 1,191 200,000 0.01 74,316 37 106
fandisk 6,475 12,946 27 50 10,000 - 5,924 50 19

5 RESULTS

Table 1 shows, for the meshes in Figures 5–12, the number of
vertices and faces in both M̂ and M0. In general, we let the simpli-
fication proceed until no more legal edge collapse transformations
are possible. For the “cessna”, we stopped at 150 faces to obtain a
visually aesthetic base mesh. As indicated, the only user-specified
parameters are the number of additional points (besides the m0 + n
vertices of M̂) sampled to increase fidelity, and the cscalar constants
relating the scalar attribute accuracies to the geometric accuracy.
The only scalar attribute we optimized is color, and its cscalar con-
stant is denoted as ccolor. The number jXdiscj of points sampled from
sharp edges is set automatically so that the densities of X and Xdisc

are proportional.4 Execution times were obtained on a 150MHz
Indigo2 with 128MB of memory.

Construction of the PM representation proceeds in three
steps. First, as the simplification algorithm applies a sequence
ecoln�1 : : : ecol0 of transformations to the original mesh, it writes
to a file the sequence vsplitn�1 : : : vsplit0 of corresponding in-
verse transformations. When finished, the algorithm also writes
the resulting base mesh M0. Next, we reverse the order of the
vsplit records. Finally, we renumber the vertices and faces of
(M0

; vsplit0 : : : vsplitn�1) to match the indexing scheme of Sec-
tion 3.1 in order to obtain a concise format.

Figure 6 shows a single geomorph between two meshes M175 and
M425 of a PM representation. For interactive LOD, it is useful to
select a sequence of meshes from the PM representation, and to
construct successive geomorphs between them. We have obtained

4We set jXdiscj such that jXdiscj=perim = c(jXj=area)
1
2 where perim is

the total length of all sharp edges in ^M, area is total area of all faces, and
the constant c = 4:0 is chosen empirically.
good results by selecting meshes whose complexities grow expo-
nentially, as in Figure 5. During execution, an application can adjust
the granularity of these geomorphs by sampling additional meshes
from the PM representation, or freeing some up.

In Figure 10, we selectively refined a terrain (grid of 181�187
vertices) using a new REFINE(v) function that keeps more detail
near silhouette edges and near the viewer. More precisely, for the
faces Fv adjacent to v, we compute the signed projected screen areas
faf : f 2 Fvg. We let REFINE(v) return TRUE if

(1) any face f 2 Fv lies within the view frustum, and either

(2a) the signs of af are not all equal (i.e. v lies near a silhouette
edge) or

(2b)
P

f2Fv
af > thresh for a screen area threshold thresh = 0:162

(where total screen area is 1).

6 RELATED WORK

Mesh simplification methods A number of schemes con-
struct a discrete sequence of approximating meshes by repeated
application of a simplification procedure. Turk [17] sprinkles a
set of points on a mesh, with density weighted by estimates of lo-
cal curvature, and then retriangulates based on those points. Both
Schroeder et al. [14] and Cohen et al. [4] iteratively remove vertices
from the mesh and retriangulate the resulting holes. Cohen et al. are
able to bound the maximum error of the approximation by restricting
it to lie between two offset surfaces. Hoppe et al. [9] find accurate
approximations through a general mesh optimization process (Sec-
tion 4.1). Rossignac and Borrel [12] merge vertices of a model
using spatial binning. A unique aspect of their approach is that the
topological type of the model may change in the process. Their
method is extremely fast, but since it ignores geometric qualities
like curvature, the resulting approximations can be far from opti-
mal. Some of the above methods [12, 17] permit the construction
of geomorphs between successive simplified meshes.

Multiresolution analysis (MRA) Lounsbery et al. [10, 11]
generalize the concept of multiresolution analysis to surfaces of
arbitrary topological type. Eck et al. [7] describe how MRA can
be applied to the approximation of an arbitrary mesh. Certain
et al. [2] extend MRA to capture color, and present a multireso-
lution Web viewer supporting progressive transmission. MRA has
many similarities with the PM scheme, since both store a simple base
mesh together with a stream of detail records, and both produce a
continuous-resolution representation. It is therefore worthwhile to
highlight their differences:

Advantages of PM over MRA:

� MRA requires that the detail terms (wavelets) lie on a domain
with subdivision connectivity, and as a result an arbitrary initial
mesh M̂ can only be recovered to within an � tolerance. In
contrast, the PM representation is lossless since Mn = M̂.

� Because the approximating meshes Mi
; i<n in a PM may have

arbitrary connectivity, they can be much better approximations
than their MRA counterparts (Figure 12).

� The MRA representation cannot deal effectively with surface
creases, unless those creases lie parametrically along edges of
the base mesh (Figure 12). PM’s can introduce surface creases
anywhere and at any level of detail.

� PM’s capture continuous, piecewise-continuous, and discrete ap-
pearance attributes. MRA schemes can represent discontinuous
functions using a piecewise-constant basis (such as the Haar ba-
sis as used in [2, 13]), but the resulting approximations have
too many discontinuities since none of the basis functions meet
continuously. Also, it is not clear how MRA could be extended
to capture discrete attributes.



Advantages of MRA over PM:

� The MRA framework provides a parametrization between
meshes at various levels of detail, thus making possible multires-
olution surface editing. PM’s also offer such a parametrization,
but it is not smooth, and therefore multiresolution editing may
be non-intuitive.

� Eck et al. [7] construct MRA approximations with guaranteed
maximum error bounds to M̂. Our PM construction algorithm
does not provide such bounds, although one could envision using
simplification envelopes [4] to achieve this.

� MRA allows geometry and color to be compressed indepen-
dently [2].

Other related work There has been relatively little work in
simplifying arbitrary surfaces with functions defined over them.
One special instance is image compression, since an image can be
thought of as a set of scalar color functions defined on a quadrilat-
eral surface. Another instance is the framework of Schröder and
Sweldens [13] for simplifying functions defined over the sphere.
The PM representation, like the MRA representation, is a general-
ization in that it supports surfaces of arbitrary topological type.

7 SUMMARY AND FUTURE WORK

We have introduced the progressive mesh representation and shown
that it naturally supports geomorphs, progressive transmission, com-
pression, and selective refinement. In addition, as a PM construction
method, we have presented a new mesh simplification procedure de-
signed to preserve not just the geometry of the original mesh, but
also its overall appearance.

There are a number of avenues for future work, including:

� Development of an explicit metric and optimization scheme for
preserving surface normals.

� Experimentation with PM editing.

� Representation of articulated or animated models.

� Application of the work to progressive subdivision surfaces.

� Progressive representation of more general simplicial complexes
(not just 2-d manifolds).

� Addition of spatial data structures to permit efficient selective
refinement.

We envision many practical applications for the PM representa-
tion, including streaming of 3D geometry over the Web, efficient
storage formats, and continuous LOD in computer graphics appli-
cations. The representation may also have applications in finite
element methods, as it can be used to generate coarse meshes for
multigrid analysis.
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(a) Base mesh M0 (150 faces) (b) Mesh M175 (500 faces) (c) Mesh M425 (1,000 faces) (d) Original ^M =Mn (13,546 faces)
Figure 5: The PM representation of an arbitrary mesh ^M captures a continuous-resolution family of approximating meshes M0

: : :Mn = ^M.

(a) � = 0:00 (b) � = 0:25 (c) � = 0:50 (d) � = 0:75 (e) � = 1:00
Figure 6: Example of a geomorph MG(�) defined between MG(0)

:

=M175 (with 500 faces) and MG(1)=M425 (with 1,000 faces).

(a) Using conditions (1) and (2); 9,462 faces (b) Using conditions (1’) and (2); 12,169 faces
Figure 7: Example of selective refinement within the view frustum (indicated in orange).

(a) ^M (200�200 vertices) (b) Simplified mesh (400 vertices)
Figure 8: Demonstration of minimizing Escalar: simplification of a mesh with trivial geometry (a square) but complex scalar attribute field.
( ^M is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)



Figure 9: (a) Simplification without Edisc Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

Figure 11: Simplification of a radiosity solution; left: original mesh (150,983 faces); right: simplified mesh (10,000 faces).

(a) ^M (12,946 faces) (b) M75 (200 faces) (c) M475 (1,000 faces)

(d) � = 9:0 (192 faces) (e) � = 2:75 (1,070 faces) (f) � = 0:1 (15,842 faces)
Figure 12: Approximations of a mesh ^M using (b–c) the PM representation, and (d–f) the MRA scheme of Eck et al. [7]. As demonstrated,
MRA cannot recover ^M exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.


