Open Watcom Debugger

User’s Guide

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Table of Contents

111070 18 Tox o] IR

@Y= oV L= YOS
000 I g 11 (o [0 Tox o o TR
L2 NEW FEALUIES ...ttt e ettt e e et e e e aae e e e ateeeebeeeeesseseesseesanteseeneeesseneans

O O L= 1 < = o T
1. 2.2 REVEISE EXECULION ...oeoviivieieitiectectteete et ettt st sae s sbe et st e eabesbeenbesbaenbeeneennes
I = o T
1.2.4 StaCk UNWINAINGooveiiiiiiiceie et st e e neens
1.2.5 SImplified Breakpointscccoceiirirenenene e sre e
1.2.6 CoNtext SENSILIVE IMIENUScoouvieciieciieeciee ettt ettt et ree e be e eneeenre e e
LL2.7 BULTONS ..ottt e ettt ettt e e et e e aa e e e s abe e e entae e sneeeesabeeeenseeesanes
1.3 COMMON MENU ITEMS ...ttt et et e e e eare e e sbe e e eneeeenneas

Preparing a Program t0 DE DEDUGGETooveiriiiieee e e

2 Preparing a Program to be DEDUGOETccooveiiiiicice e
2.1 Compiler Debugging OPLIONSccvecuevieieeieeeieees s te et te e seesaeae e e ese e saesresreseesreeas
2.2 Linker DebUgQiNG OPLIONScoueiviriirieieieeeeeeee ettt s sre st s b e e e ene e
2.3 DEDUGGES SELLINGS ...ververieiterterie ittt sttt sttt sb bt sae st s b e s be b besbese e e et e e e e eneeneeneereas

SLATING thE DEDUGGESveeeteeetiieeiereet ettt ettt e e b et bbbt bt e bt s bt e bt e e bt b e s e b e e e e e s

3 SHaArting UpP the DEDUGOESeiveuirieiirieeeieresie ettt st sttt ettt sttt ene
3.1 Open Watcom Debugger Command LiNEcocoveeeeeeeerere e e se e
3.2 COMMON SWILCHES ... e e et
3.3 DOS and WiIindoWS OPLiONSccceiveeieiieiieiieieieeieeieees e e etes e e sreste e sre et saesses e eesaensensnns
3.4 DOS SPECITIC OPLIONS ...ttt sttt ettt et ae bbb b e e e
3.5 WiNdows SPECITiC OPLIONSoiueiiiriiieieeeeeeeeeeeier ettt et s
3.6 LINUX OPLIONS ...eieieiiiie ettt sttt ettt s b et st se et b e se e e e e e e et eaeeseeaesbesbesaesaesbeseeseens
3.7 QNX OPLIONS ..ottt sttt sttt et e b e e bbb bbbt bbbt st e et
BB ENVIrONMENE VariallEScoviiieiiiieecee ettt e ere s

3.8.1 WD EnVironment Variablecccooveciiieiicieeceece et
3.8.2 WD Environment Variable in LiNUXcccoeveiieiecieieceecteceecreeee e e
3.8.3 WD Environment Variable in QNXccooiivieiiiieniee et

Open Watcom Debugger ENVIFONMENTocoiiiiiiiiiiniesie ettt b e s be st e e ne e

4 The Open Watcom Debugger ENVIFONMENTooiiiiiiieeieieireeesiese st
4.1 DEDUGGEr WINUOWSeeiiiieiinieesteeete sttt et e bt es st b et b e b e b e b seebeseene e

g T TV T o (o Y @11 (o) OSSR

4.1.2 The CUITent WINAOWccciereeieieeeeeeeee et ee e see e e

4.1.3 Controlling the Size and Location of WIindOWSccceveereineiennnieneeneenes

4.1.3. 1 MOVING WINAOWSccvereierieiirieiiisiesieseesieieee e ssese e sne e seesseeenes

4.1.3.2 RESIZING WINAOWSc.eovviieiiiieiesieseeie e seeeeseses e ste e ssesne e e snesaeneesaens

4.1.3.3 Z00mMiNG WINCOWScceeuieiirieriecese et se et

4.1.3.4 Context Sensitive POp-UP MENUSccoiririenenenenesese e

4.1.35 TEXE SEIECHION ..ccvieceiecieeee e

[

A AR OWWWW

10
11

13

15
15
16
18
19
20
20
21
21
22
22
22

23

25
25
25
26
26
26
26
26
26
27
27

Table of Contents

4.3 TheToolbarcccceevveeveeiieennns
A4A4ADiIalOgS .oovvieeieie e
4.5 Acceleratorscoovvveneeiiveeineenns

4.5.1 Default Accelerators ...

4.5.2 Turbo EMUIEtion ACCEIGIELOSeeeiieeieieeeei e eeeee ettt eee e st e e s eae s s saeessebeeeeans

46 TheFleMenucccceeevvevenene,
4.6.1 The Options Dialog

4.6.2 The Window OptionS DIialOgcccceeeeereiinisieiesesesieseesseseeseeessese e sre e e snennas
4.6.2.1 The Assembly OPLiONScccccveeeiirieeeeire e
4.6.2.2 The Variabl@S OpLioNScceererierirere e
4.6.2.3 The @ OPLIONScueiviriiriirierie ettt e
4.6.2.4 The Functions and GlobalS OptioNnsccoeveeerierienienienienesese e
4.6.2.5 The ModUIES OPLIONSc.covcuirieirieinieeeeese e

4.7 TheCode Menucccccvveeueeennnene
4.8 TheDataMenucccccvveeuveenenns
4.9 TheWindow Menu
4,10 The Action Menucueeuee.e.
411 TheHelpMenuccccevevevennee
4,12 The Status Window
4.13 TheLog Window
4.14 The Accelerator Window

Navigating Through aProgramcccceeeeeveennne.

5 Navigating Through a Program
5.1 The SearchMenuccccccvvenne.

5.1.1 Entering Search Strings

5.2 The Source Window
5.3TheFileWindowccccoeeue..
5.4 The Modules Window
5.5 The Globals Window
5.6 The Functions Window
5.7 The Images Window

Controlling Program EXeCutionc.cccceeevvivrennns

6 Controlling Program Execution
6.1 TheRun Menucccceeeeeruenene
6.2 TheUndo Menuccceeeeuennee.
6.3 The Replay Window
6.4 The CalsWindow
6.5 The Thread Window

Examining and Modifying the Program State

7 Examining and Modifying the Program SEateccccceeeiieiinine i

7.1 Variable and Watch Windows ...

7.2 The Memory and Stack WINCOWSccoiiiiiiiieieeeeeenieecre e e

7.2.1 Following Linked Lists

43
43

45
46
47
48
49

51

53
53

56
57
57

59

61
61
65
67

Table of Contents

7. 2.2 TrAVEISING ATTAYS .ooueieiieiiteie e seeee et e et eae st ae et s be b e e b et e b se e b e b e e e e eneeneeneene 68

BIEAKPIOINES ...ttt ettt bbbt b e e b e s e b e e bt s e bt e Rt R Rt bRt bt b e b e b e b e e nnne 69
o T = T oo 1o OSSR 71

8.1 How to Use Breakpoints during a Debugging SESSIONcccccveveeieveereeenenesesesese e 71

8.1.1 Setting SIMPIe BreakpOintSccccvceveiieieieiisesieseeseesie e seeesese e sre e see e ssesnens 72

8.1.2 Clearing, Disabling, and Enabling Breakpointscccccocvvevevevcicieececeeeeenns 72

8.2 ThE BIEaK IMEBNUoeiiiie ittt bbbt e et e et ebesbenae b 72

8.3 The Break WINAOWccoiiiiiiieiie ettt st st 74

8.4 The Breakpoint DIialOgccccoeeeeirereeierere sttt et ae e sbe b e e e 75

ASSEMDIY LEVE DEDUGGING ..ttt sttt ettt b e st s b e e b e bbbt sa et st e e st e e ebe e ebe e 79
S IANCS = el o A=Y= I T o U oo 1 oo 81

9.1 The CPU REGISLEr WINUOWocveieiiiieriesieeeee sttt sttt s n e enenns 81

9.2 The ASSEMBIY WINAOW ...c.veeiicicieececee sttt resnesrennas 82

9.3 The /O POrS WINAOWeoeiiiieiieeeieeierierie sttt et sb b s see s 83

9.4 The FPU ReQISIErS WINUOWceiiiieieieieeieee ettt e st e 84

9.5 The MMX REGISIEIS WINUOWc.eiiiiiiiieereeteee st st 84

9.6 The XMM ReGISLES WINUOWcuiiieiiriiirieisieinieesieee et 85

RS (011N D= oW o o] oo RSSO 87
TR (= 4 aTo (=] D= o0 o [0 1 0o TSR 89

LO. 1 OVEIVIBIW .ottt ettt et st sa et se st e s st s e s b e et e e e b e e e be e ebe st ebesbenestenensenensenes 89

10.2 LinK DESCIIPLIONScueiuiriieiieierie sttt sttt sttt s be b bbbt se s e e e e 93

10.2.2 NOV (NOVEI SPX) .ottt st snene s 93

10.2.2 NET (NEBIOS) ...oivciieeeieeesiee sttt ettt st st st sttt 94

10.2.3 PAR (Parall€l) ...ceoeceieiieieieie sttt s e 94

10.2.4 SER (SEHaAl) eovveeereririerireeieiere sttt sttt ettt 95

10.2.5 WIN (Windows 3.x/9x Virtual DOSMaching)ccccoevniineineiieiieeee 96

10.2.6 NMP (NAMEA PIPES) ...ooeeviieiirieierieesie ettt sttt 97

10.2.7 VDM (Virtual DOSMBaChINE)ccevereeeeieeeeeese st 98

10.2.8 TCP/IP (INternet PACKELS)ccveeeeeireiisiesiesieseese e seeee et s see s 99

10.3 Specifying Files on Remote and Local Machingsccoccvviveieninie e 100

Interrupting A RUNNING PIOGIaIMcouiiiiiiie ettt st s se e e e e s b e bt sbesbe e sbe b es 103
11 Interrupting @ RUNNING PrOGraMcoiiiiiiiiierieie sttt ettt 105

L0 0 OVEIVIBIW .eeeeeie ettt ettt ettt e te e e e e e e e eneeseeneesesaeseesaenbeseeseenseseneeneeneeneenennenns 105

02 I 0 1 USSRt 105

R Y YT o (0 T L T OSSPSR 105

11.4 WIindows NT, WINAOWS 95c.cciiiiiiririiriee sttt st s sbeseese s 105

S 1 TR 106

LL1B NEIWEIE ..ottt ettt s et e et et et e e b et e s e st eb e st e s e tesensanensanen 106

A T TSRS 106

LLB QINX ittt ettt e et e e st e st st e st b et b e e et et R et et et eRe A eRe et e Rt R et et ne b e e enenenn 106

Table of Contents

Operating SYSLEM SPECITICSeoueiuiriiiiitiitere ettt b et e bbb e se e e et e e e e eseene e st sbesbesaesnens 107
12 Operating SYStEM SPECITICScverveeirieiirieirieiri ettt nn e 109
12.1 Debugging 32-bit DOS Extender AppliCatioNSccceoivieerieiinieireereseese e 109
12.1.1 Debugging CauseWay 32-bit DOS Extender Applicationscccvevveeninne. 110

12.1.2 Debugging DOS/4AG(W) 32-bit DOS Extender Applicationsccoceceveeenenne 110

12.1.3 Debugging Phar Lap 32-bit DOS Extender Applicationscccocveevvvvvreennene 110

12.2 Debugging aNOVEIL NLIMocuiiiiecee ettt eneas 111
12.3 Debugging Graphics APPlICALIONSccovecueiieiecicieeeecee e st e 111
12.4 Debugging Windows 3.X APPIICALIONSccceeriiiiiirerenerere e 112
12.5 Debugging Dynamic Link LiDraries ... 112
12.6 Disabling Use of 386/486 DebUg REJISIENScoiiiiiiiirieieie e 113
12.7 Debugging UNOEr LINUXccceereeeieeirieesieesiee sttt st 113
12.7.1 Search Order for Open Watcom Debugger Support Filesunder Linux 113

12.8 Debugging Under QNX ...ttt ettt s 114
12.8.1 Debugging Under QNX Using the Postmortem Dump FaCilitycccoceeeeene. 114

12.8.2 Search Order for Open Watcom Debugger Support Filesunder QNX 116
EXPIESSIONS ...ttt ettt sttt sttt bttt et eh e e a e e heeh e e b e Rt eh e eb e SR e SR e R e b e eE et e AR et e e e a e e Rt et e Rt ebenRenaeerenrs 117
13 Open Watcom Debugger EXpression Handlingcoccoeeereiinenene e 119
G T80 I 1 oo [FTox o o [P 119
13.2 General Rules of EXpression Handling ... s 119
13.3 Language Independent Variables and CONStANEScccveereeieriennenenenireseese e 120
13.3.1 SYMDOI NBMES ...t s 120

13.3. 2 LINE NUMDESS ..ot 122

13.3.3 CONSLANES ...veeeeireeeirrceerreer et e 123
13.3.3.1 Integer CONSLANESoccveiieiiiie it sne e 123

13.3.3.2 REAl CONSLANLSceerieerereerereerereerereeie st seere e 124

13.3.3.3 Complex Constant (FORTRAN ONlY)cccovirinineieneeree e 124

13.3.3.4 Character Constant (C ONlY)cccceoererireniiene e 125

13.3.3.5 Character String Constant (FORTRAN ONly)ccoceeveeneeneenieenee 125

13.3. 4 MemMOry REFEIENCEScocviieiireeiereeee sttt 125

13.3.5 Predefined Debugger Variables ... 126

13.3.6 REQISIEr AQQrEOALESoeeveeeterieierieteriete ettt sttt s b e e b e e saeneas 126

13.4 Operators for the C GIramMMalrcccccevereniesese et e e re e sre e seenes 127
13.4.1 Assignment Operators for the C Grammarcccceveveeeeeveeiesreneneseseseseeseenens 128

13.4.2 Logical Operatorsfor the C Grammarccccceceeeeieveseseseseeseseeseeseeeseseenens 129

13.4.3 Bit Operators for the C GramMarccoeverererieneeiereeeeesese et 129

13.4.4 Relational Operators for the C Grammarcocevereeeeeerrenienenene e 130

13.4.5 Arithmetic/Logical Shift Operatorsfor the C Grammarccccoceeevereniennene 130

13.4.6 Binary Arithmetic Operators for the C Grammarc.ccoceveveeneennenieeneenens 130

13.4.7 Unary Arithmetic Operators for the C Grammarcccoeeeveeenenenenesienenenennene 131

13.4.8 Special Unary Operators for the C Grammarc.ccceveveennenneneeseeeseeeee 131

13.4.9 Binary Address Operator for the C Grammarccoceceveereieneennnniensenennes 133
13.4.10 Primary Expression Operators for the C Grammarccccceeeeveeeeriereenenenenns 133

13.5 Operators for the CH+ GIramMMarccccceeceeieeieeieeerere et e e sreens 134
13.5.1 Ambiguity Resolution in the C++ Grammarccocceceeeveveeceevesieeiesesese e 135

13.5.2 The "this" Operator for the C++ Grammarccccoeeeeeeierienienenene e 136

13.5.3 "operator" Functionsin the C++ Grammarcccoeeeeeierreeienieniene e 136

13.5.4 Scope Operator "::" for the C++ Grammarcccccereeeeeerienienenene e 136

Vi

Table of Contents

13.5.5 Constructor/Destructor Functionsin the C++ Grammarccccoeeverereeeieenne 137

13.6 Operators for the FORTRAN Grammarccccocoeeoirierienenene e seeseses e e ssesees 137
13.6.1 Assignment Operators for the FORTRAN Grammarccccoeeevevenenenenenenens 139

13.6.2 Logica Operators for the FORTRAN Grammarcccoceeveeeneneneneseresenennene 139

13.6.3 Bit Operators for the FORTRAN Gramimarccoceceererenenenesenesenesesesenene 140

13.6.4 Relational Operators for the FORTRAN Grammarccoceeeveereeneerienenienens 140

13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN Grammarc.ce.e... 140

13.6.6 Concatenation Operator for the FORTRAN Grammarccccceceveveerveeniennenns 140

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammarccccceeeveeveenenn. 141

13.6.8 Unary Arithmetic Operators for the FORTRAN Grammarccccceceveenennene 141

13.6.9 Specia Unary Operators for the FORTRAN Grammarccoceeeveneeeencennenn 142
13.6.10 Binary Address Operator for the FORTRAN Grammarcccoceeevereneennene 142
13.6.11 Primary Expression Operators for the FORTRAN Grammarccccceeueee. 142

N o] 1< 0o o= SRS 143
FAN D T= o180 o (= g o 4101 [o P 145
YN RS g1 t= QL= T o] TP 145
A.2 COMMENG SUMIMEY ...oevieiieeieeteeteeie e s e steseestesae s e ssae e e aesteessesseenseeseensesssessesnneseesnsessen 146
A2 L ACCEIEIEIE ..ottt e e e 146

A2 2 BIEBK .oouecviicieiete ettt n et s tenen 147

AL2B Call bbb bbb e 148

AL2A CAPLUME .ottt ettt ettt sttt s et et ne e tenas 150

A 2.5 CONFIGRITE et 150

A 2B DISPIAY et 150

F N 0 L@ I (o g) TSR 151

ALZB ERIOL ..ottt bbb ettt r bt r e e 151

F N B e o 1] TSR 152

F N (0 T o TSP 153
N N | TSRS 153
N 2 o TR 153

A2 LS HEID oottt ne s nenen 154
N @ T TSP 154
0 15 N U 154

A 216 INVOKE (OF <) oottt ettt n e 155
N I o (o) TSP 155

A2 LB MOITY oot 155
AL2LONEW oottt et naenen 156

F 2 O = N | | SRS 156

F A = T o1 A (o]) TS SRSS 158

A L2.22 QUIT ooeeiiieieiete ettt ettt et st n e aenentenen 160

A 223 RECOM ..ottt sttt st nn b 160

A 224 REGISLEN ...ttt ettt bbbt e bt e a et ne sttt ne e e et 160

A 225 REMEIK (OF) oottt 160

E A = TN 160
AL2.27 SHOW ettt e er e 161

F N S (] o SRS 162
A.2.29 STACKPOS SINEEXPIS ...ouveeeeeeieeeeeeeeeee sttt e e sa e e e e sresnesnesreneas 162

A 230 SYSEM (OF 1) i 162

F e I == o [(o PR 162

F R V2 I - ol TSRS 162

vii

Table of Contents

2 1 B U1 To (o RSSO 163

A L2BAVIBIW ettt ettt ettt b et ne st nentenen 163

A 235 WHILE .ottt nenen 163

F e SRV 1 g Lo TR 163

B. Predefined SYMDOIS ..o 167
C. Wiring For Remote DEDUGOING ...veoviiiieeie ettt et renne s 173
C.1 Serial Port Wiring CONSIAErationScccevverierieieenieiieeeeeesesesre e sresrestesaeseesessesessessenses 173

C.2 Paralel Port Wiring CoNSIAErationscccveceeveieeseiiesieeie e evesteesse e s e e snesee e enesnean 173

D. Remote File Operations (DOS, OS/2 ONlY) ...coeiiiiiiriiiine et 177
D.1 RFX COMIMANGSeouiiuiiiiriiiiisiesiesiestesiesee e e see et ssessestesbesaesaestesbestensansensenseneesesnessessessees 177

D.2 Set CUIrent DIV - AFVE!oiiieieeee ettt enens 178

D.3 Change Directory - CHDIR, CDccooiiiiriiinieneeie ettt 178

D.4 COPY FIlES - COPY ...ttt sttt eb 179

D.5 LiSt DIr€CLOrY = DIR ..ottt sttt et et s e ene s s srestesaesneneenaeneens 180

D.6 Erase File - ERASE, DELcccoiiiiieree ettt sttt st 181

D.7 EXIt frOM REX - EXIT oottt sttt et st 181

D.8 Make Directory - MKDIR, MD ..ottt 182

D.9 Rename - RENAME, RENccccoiiiiiiiieiseeseee ettt sttt 182

D.10 Remove Directory - RMDIR, RDoouiiiiiieeeeereeenerere e e 183

D.11 Display File CONtentS - TYPEcoiiiieiieeseesereeiesesr st 184

D.12 RFX SAMPIE SESSIONcueiveuiiieiiiieieteietesestesee e see s tesae e e st e st seste e ste e sbe e steseeteseesesnns 185

viii

List of Figures

Figure 1. The DeDUGOEr WINTOWcoiiiiiiieieiieiestise et sttt a et b et e bt e st e e e e e e e e et eneeaeeaesbesbesaeseeneas 27
Figure 2. A TYPICEI DIBIOQ -....coueeterieriiiiinierie ettt ettt s e e b se b e bese e e e s e e ae e st eheeaesaeebeebesbese e besbeseeneenseneeneaneas 28
Figure 3. THE OPtIONS DIAI0OQ .. .ccveeetereeiereeieriete sttt sttt b ettt se et sa bt se bbbt b et e b e e eb e e ebeneebeseebeseene e 32
Figure 4. The Window OptionNS DIBlOgccccereirieirieirieirieisiesiese sttt bbbttt sne s 33
FIgUre 5. TRELOG WINTOWiiiiiieiiiiieesieee ettt sttt b et b e eb e e b e e bt s e bt sb et b st sb et et et e e ebe e 37
Figure 6. The ACCEIEIaIOr WINTOWccccirieiirieiirieiirie ettt sttt b et b bbb n e ntenes 38
Figure 7. ENtering @ SEACH SIIMNQoovoieeieeesese s s e ste e e e se e e e ressesae st besae s e e e aeneeneenaeneeseesesnessesrensesenseenses 43
Figure 8. The SOUICE WINAOWceiiiiiiieiieitisiese e seee e e sttt st st e e te e s e e e e e e e e eseesesaessesteseeseenteseeseensnnsenseneanens 44
Figure 9. The MOAUIES WINGOWccueiuieiiiiiccte ettt e s st sre st st e sa e e e e eseeseeseeseetestesaestenteseeseentan 46
Figure 10. The GIODAIS WINUOWccuiiiieiecieeiecieeste ettt s te e te st e e s s e beeaaesbeeaaesaeesssneessesneessesneessesnsansenns 47
Figure 11. The FUNCEONS WINGOWc.oiiiiiiiiieite sttt b e st b bbb e e e e e et eaeebesaeenesbe e 48
Figure 12. The IMagES WINUOWc.coiiiiiiiiieie ettt ettt b e b e bt s e e se e b et et e e e seeaeeaeebesbesaesbesbeseeseennan 49
Figure 13. The REPIAY WINTOWc.oiviiiiiiitiieieeet ettt b et n e bbb n s 56
Figure 14. The CallS WINTOWcccouiieireeieriet ettt st s b e s b e bbbt b et b e e b e seebese b e seebesnene e 57
Figure 15. The Threat WINGOW ..ottt bbbkttt e et b et bbb n s 57
Figure 16. The Watch and Variable WINGOWccooueiriirieineses st 61
Figure 17. The MeMOIY WINGOWc.ccieiiiieeesie st stes e st e eseese e e s e sesresse s s stesteseess e e ntenaeneenaeneeseesessessessensesenssnnses 65
Figure 18. The Break WINUOWcccviiiieiiiieseseeseee et e sttt sae e tesa e s e e e e e eseesessessesteseeseentesaeseensensensensanens 74
Figure 19. The Breakpoint DIialOgcccccueiieieeieieiesisiesiestes e steseeeesee e e e e e s tessestestesrestesbesteseensenaesseneessssessessessesaesrenses 75
Figure 20. The CPU REQISIEr WINUOWcc.eeiiiieeie et st ee et e s et eseesteesaesteeaesaeeaesaeeseesneensesseensessaessesnsansenns 8l
Figure 21. The ASSEMDIY WINGOWc.oiiiiiiiieie ettt eb e a e b st sttt e e e e e et e aeebesaesaeebennas 82
Figure 22. The /O WINAOWoiuiiie ettt ettt ae b s et eb e s b e s b s e et e bese e e e s e e e e eneenesnenaeas 83
Figure 23. The FPU REGISIEIS WINUOWooviiirieiirieiirieirtesei ettt bbb 84
Figure 24. The MMX REGISIEIS WINTOWc..cueiiiiriiiriiiiiiisieee ettt sttt e 84
Figure 25. The XMM REGISIErS WINTOWc..ouiiiiiiriiiriiiriiinieee ettt 85
Figure 26. Serial POrt WiIriNg SChEME ..ottt 173
Figure 27. Watcom Cable Wiring SChEMEocviiii e s en e er e 174
Figure 28. LapLink Cable WiIring SChEMEociiiiiiice ettt sttt st enenne s 175
Figure 29. Flying Dutchman Cable Wiring SChEMEcovoviiieiicececsen et sttt s enea 175

Introduction

Introduction

1 overview

1.1 Introduction

The Open Watcom Debugger is a powerful debugging tool that helps you analyse your programs and find
out why they are not behaving as you expect. It allows you to single step through your code, set break
points based on complex conditions, modify variables and memory, expand structures and classes and much
more. With the debugger you can debug programs that run on the following platforms:

* DOS

* CauseWay DOS Extender
* Tenberry Software DOS/AG Extender
* Phar Lap DOS Extender

» Windows 3.x

» Windows NT/2000/XP

* Windows 9x

* 16 and 32-hit 0S/2

* GNU/Linux

*QNX 4

* QNX 6 (Neutrino)

* Novell NetWare

1.2 New Features

The latest version of the debugger contains many new features that you should know about.

1.2.1 User Interface

The debugger’ s user interface has been redesigned. There are GUI versions of the debugger that run under
Windows 3.x, Windows NT/2000/X P, Windows 9x, and 32-bit OS/2. There are also character mode
versions that run under DOS, Windows 3.x, OS/2, Linux and QNX 4. All versions share acommon user
interface incorporating powerful features like context sensitive menus, eliminating the need for command
oriented debugging.

1.2.2 Reverse Execution

The debugger keeps a history of your interactions that modify the state of the program you are debugging.
Thisincludes the effects of statementsin your program that you trace. The size of this history islimited
only by available memory. Undo and Redo allow you to step backward and forward through this history.
This allows you to reverse the effects of tracing over simple statementsin your program. Y ou can also
reverse any accidental interactions that affect your program'’s state. See "The Undo Menu" on page 54.

New Features 3

Introduction

1.2.3 Replay

The debugger keeps ahistory of all interactions that affect the execution of your program such as setting
break points and tracing. Replay allows you to restart the application and run the application back to a
previous point. Thisis particularly useful when you accidentally trace over acall. Thisreplay information
may be saved to afilein order to resume a debugging session at alater date. See "The Replay Window" on
page 56.

1.2.4 Stack Unwinding

Y ou can navigate up and down the program’s call stack to see where the currently executing routine was
called from. Asyou do this, al other windows in the debugger update automatically. Local variablesin
the calling routines will be displayed along with their correct values. See"The Undo Menu" on page 54.

1.2.5 Simplified Breakpoints

The debugger alows you to set breakpoints when code is executed or datais modified. These breakpoints
may be conditional based on an expression or a countdown. Simple breakpoints are created with a
keystroke or single mouse click. More complex breakpoints are entered using adialog. See"The
Breakpoint Dialog" on page 75.

1.2.6 Context Sensitive Menus

Context sensitive menus are present in each debugger window. To use them, you select an item from the
the screen using the right mouse button. A menu containing alist of actions appropriate for that item is
displayed. Y ou can use this capability to perform actions such as displaying the value of an expression
which you have selected from the source window.

1.2.7 Buttons

The debugger contains small buttons that appear on the left side of some windows. These buttons are
shortcuts for the most common operations. For example, you can set and clear a breakpoint by clicking on
the button to the left of asourceline.

1.3 Common Menu Items

The debugger’ s context sensitive menus contain many useful menu items. Each of these items behave
differently depending upon the selected item. A description of some of the commonly found menu items
follows:

I nspect Inspect displays the selected item. The debugger determines how to best display the
selected item based on itstype. If you inspect avariable or an expression, the debugger
opens anew window showing itsvalue. If you inspect afunction, the debugger positions
the source code window at the function definition. If you inspect a hexadecimal address
from the assembly window, a window showing memory at that address is opened, and so
on. Experimenting with inspect will help you learn to use the debugger effectively.

4 Common Menu Iltems

Overview

Modify

New

Delete

Source

Assembly

Functions

Watch

Break

Globals

Show

Type

Modify lets you change the selected item. Y ou will normally be prompted for a new value.
For example, select the name of a variable from any window and choose Modify to change
itsvalue.

New adds another item to alist of items displayed in awindow. For example, choosing
New in the Break Point window lets you create a new breakpoint.

Delete removes the selected item from the window. For example, you can use Delete to
remove a variable from the Watches window.

Source displays the source code associated with the selected item. The debugger will
reposition the source code window at the appropriate line. Selecting a module name and
choosing Source will display the modul€’ s source code.

Assembly positions the assembly code window at the code associated with the selected
item.

Functions shows alist of all functions associated with the selected item or window. For
example, choose Functions in the source window to see alist of all functions defined in that
module.

Watch adds the selected variable or expression to the Watches window. This allows you to
watch its value change as the program runs. Note that thisis not a watchpoint. Execution
will not stop when the variable changes. See the chapter entitled "Breakpoints' on page
71 for information about setting watchpoints.

Break sets a breakpoint based on the selected item. If avariableis selected, the program
will stop when the variableis modified. If afunction is selected, the program will stop
when the function executes.

Globals shows alist of global variables associated with the selected item.

Show will present a cascaded menu that let’ s you show things related to the selected item.
For example, you can use Line from the Show menu in the source code window to see the
line number of the selected line.

Type will present a cascaded menu that allows you to change the display type of the
window or selected item.

Common Menu ltems 5

Introduction

6 Common Menu ltems

Preparing a Program to be Debugged

Preparing a Program to be Debugged

2 Preparing a Program to be Debugged

Before you can debug a program, you must put debugging information into the code.

There are three different formats of debugging information that can be put into the code — "Watcom",
"DWARF" or "CodeView". Starting with version 11.0 (and continuing in the Open Watcom 1.0 and later
compilers), the default format is"DWARF". In earlier releases, the default was "Watcom". Although the
debugger supports all three formats, it is best if you allow the default format to be generated.

To produce an executable that has debugging information, you need to:

1. specify the correct compiler options when you compile, and
2. gpecify the correct linker options when you link.

During development, use the d2 option of the compiler and use the debug all directive at the beginning of
your linker command line or at the beginning of your linker directive file. Thiswill ensure that maximum
debugging information is available during your debugging session. Change to the d1 option when you need
to create a distribution version of your product. Thisis necessary since the d2 option disables most
compiler optimizations, whereas d1 will not affect the quality of generated code. During production, you
can use the linker' s symfile option to put the d1 debugging information into a separate file. Thisletsyou
distribute a production quality executable yet still have the luxury of source line debugging when bugs are
reported.

2.1 Compiler Debugging Options

do The dO option will generate no debugging information. Thisisthe default option.
dl The d1 option will generate debugging information for global symbols and line numbers.
di+ The d1+ option will generate debugging information for global symbols and line numbers,

and typing information for local structs and arrays.

d2 The d2 option will generate the most debugging information that is normally needed,
including global information, line numbers, types, and local variables.

d2i The d2i option isidentical to d2 but does not permit inlining of functions. This option can
result in larger object and/or executable files (we are discussing both "code" and "file" size
here).

d2t The d2t option isidentical to d2 but does not include type name debugging information.
This option can result in smaller object and/or executable files (we are discussing "file" size
here).

d3 The d3 option will generate all debugging information generated by d2. In addition, it will

generate information about all types defined in a compilation unit, regardless of whether
they are used in that compilation unit. Thisoption will create very large objects and

Compiler Debugging Options 9

Preparing a Program to be Debugged

executablefiles. Do not useit unless you want to have access to types that have no
variables associated with them.

2.2 Linker Debugging Options

Thelinker isthe tool that puts together a complete program and sets up the debugging information for all
the modulesin the executablefile. Thereisalinker directive that tellsthe linker when it should include
debugging information from the modules.

The directive you should use in the general caseis:

DEBUGALL

This directive will include all debugging information in the default format. Y ou should always use this
directive except in the rare cases when you need debugging information in aformat other than the default.

For "DWARF" format debugging information, the directiveis:
DEBUG DWARF

For "Watcom" format debugging information, there are two levels of debugging information that you
should collect during the link. They are:

DEBUG WATCOM LINES global names, source line numbers
DEBUG WATCOM ALL global names, source line numbers, local variables, typing information

Linker DEBUG directives are position dependent so you must make sure that the directive precedes the
object files and libraries that require debugging information.

For instance, if the file "mylink.Ink" contained:

#

invoke with: wink @ylink
#

file main

debug watcom | i nes
file input, output
debug wat com al
file process

then the files input and output will have global names and source line information available during
debugging. All debugging information in the file processis available during debugging. No informationis
available for main except global names.

If you use a DEBUG directive anywhere, all files, including main, will have global name information.

10 Linker Debugging Options

Preparing a Program to be Debugged

2.3 Debugger Settings

Y ou may encounter problems if the debugger does not know where to find the source code associated with
your executable. The name of the source file included in the debugging information is the path and the
original name from the compiler’s command line. If the original filename is no longer valid (i.e., you have
moved the source to another directory), you must tell the debugger where to find the source files by
choosing Source Path from the File menu.

Debugger Settings 11

Preparing a Program to be Debugged

12 Debugger Settings

Starting the Debugger

Starting the Debugger

14

3 Starting Up the Debugger

The following topics are discussed:
* "Open Watcom Debugger Command Line"
* "Common Switches" on page 16

* "DOS and Windows Options" on page 18

"DOS Specific Options" on page 19

* "Windows Specific Options" on page 20

"Linux Options" on page 20

"QNX Options' on page 21

* "Environment Variables' on page 21

3.1 Open Watcom Debugger Command Line

There are severa versions of the debugger.

binmiwd.exe Thisisthe DOS character-mode debugger.

binwiwdc.exe Thisisthe Windows 3.x character-mode debugger.
binmiwdw.exe Thisisthe Windows 3.x windowed (GUI) debugger.
binnt\wd.exe Thisisthe Windows NT/9x character-mode debugger.
binnt\wdw.exe Thisisthe Windows NT/9x windowed (GUI) debugger.
binp\wd.exe Thisisthe OS/2 character-mode debugger.

binp\wdw.exe Thisisthe OS/2 windowed (GUI) debugger.

wd Thisisthe name of the debugger used on UNIX platforms.

See the sections entitled " Operating System Specifics' on page 109 and "Remote Debugging” on page 89
for information on which version to select for your situation.

On the debugger command line, you can specify options that you want to use during your debugging

session. Acceptable option short forms are indicated in capital letters. For example, the /TRap option may
be shortened to /tr.

Open Watcom Debugger Command Line 15

Starting the Debugger

3.2 Common Switches

The following switches are applicable to all operating systems.

/TRap=trap_file[;trap_parm]

/LInes=n

/COlumns=n

/Invoke=file

/NOI nvoke

/NOMouse

specifies an executable helper program that the debugger uses to control the application
being debugged, or to communicate across aremote link. Itiscalled a"trap file" since the
interrupts used for debugging are sometimes called "traps*. Thetrap option selects the
appropriate trap file to use. This option must be specified when remote debugging,
debugging DOS extender applications or debugging OS/2 exception handlers.

The remote trap files themsel ves have startup parameters. Thisis specified following the
semi-colon. See "Remote Debugging" on page 89. Normally you do not have to specify a
trap file. If you do not specify the trap option, the default trap file that supports local
debugging isloaded. There are several exceptions.

1. Todebug aCauseWay 32-bit application, you must use /TRAP=CW.

2. Todebug a Tenberry Software 32-bit DOS/AG(W) application, you must use
/TRAP=RS.

3. Todebug aPhar Lap 32-bit application, you must use /TRAP=PLS

4. Todebug an OS/2 exception handler, you must use /TRAP=STD 2 which tells
the debugger to catch exceptions only on the second chance (normally it would
be the debugger that traps the exception).

5. Todebug an OS/2 16-bit application under Phar Lap’s RUN286 DOS extender,
you must use /TRAP=STD16.

controls the number of lines used by a character mode debugger. The number of lines
available depends on the operating system and your video card. The values 25, 43 and 50
are often supported.

controls the number of columns used by a character mode debugger. The number of
columns available depends on the operating system and your video card. If your system
does not support the requested number of columns, this option isignored

may be used to specify an aternate name for the debugger configuration file which isto be
used at start-up time. The default file nameis"WD.DBG". Debugger configuration files
arefound in the current directory or one of the directoriesin your PATH.

specifies that the default debugger configuration file is not to be invoked.
requests that the debugger ignore any attached mouse. This may be necessary if you are

trying to debug mouse events received by your application. This option ensures that the
debugger will not interfere with the mouse.

/DYnamic=number

specifies the amount of dynamic storage that the debugger isto set aside for its own use on
startup. The default amount that is set aside is 500K bytes. The larger the amount, the less
memory will be available for the application to be debugged. You only need to use this
option if the debugger runs out of memory, or is causing your application to run out of
memory. |f you are using the remote debugging feature, the debugger will use as much
available memory as available.

16 Common Switches

Starting Up the Debugger

/NOEXxports

specifies that no exports (system symbols) should be loaded. It helpsto speed up load time
when debugging remotely and marginally so when debugging locally.

/LOcalinfo=local_file

/DOwnload

/REMotefiles

isused primarily, but not exclusively, in conjunction with the remote debugging
capabilities of the debugger. It causes the debugger to use one or more local files as
sources of debugging information if the right conditions are met. When the debugger
observes that an executable file or Dynamic Link Library (DLL) is being |oaded with the
same name (i.e., the path and extension have been stripped) as one of the /localinfo files,
then the named local file is used as a source of debugging information. The named file can
be an executable file, aDLL file (.dll), asymbolic information file (.sym), or any other file
with debugging information attached.

Example:

wd /local =c:\dlIs\nydll.sym/local =c:\ exes\ nyexe. exe /tr=par nyexe

In the above example, the debugger would obtain debugging information for any
executable or DLL called myexe or mydl | fromc: \ exes\ nyexe. exe or

c:\dl I s\ mydl | . symrespectively. Note that no path searching is done for loca files.
The debugger tries to open the file exactly as specified in the localinfo option.

See the section entitled "Remote Debugging” on page 89 for an explanation of remote
debugging.

specifies that executable file to be debugged is to be downloaded to the task machine from
the debugger machine. The debugger searches for the executable file in the local path, and
downloads it to the debug server’s current working directory on the remote machine before
starting to debug. Debugging information is not downloaded, but is obtained locally, asin
the localinfo option. Note: Only the executable is downloaded; any required DLLs must
be present on the remote machine. Downloading isrelatively fast if you are using one of
the TCP/IP (TCP) or Netware (NOV) remote links. Be sure to specify the file extension if
itisnot ".exe".

Example:
wd /tr=nov;john /downl oad sanpl e. exe
wd /tr=nov;john /downl oad sanple.nlm

The debugger does not erase the file when the debugging session ends. So if you debug the
application again, it will check the timestamp, and if the file is up-to-date, it doesn’t bother
re-downloading it.

See the section entitled "Remote Debugging” on page 89 for an explanation of remote
debugging.

is used in conjunction with the remote debugging capabilities of the debugger. It causesthe
debugger to look for all source files and debugger files on the remote machine. When
remotefilesis specified, all debugger files (except "trap" files) and application source files
are opened on the task machine rather than the debugger machine. The trap file must be
located on the debugger machine.

The PATH environment variable on the task machineis aways used in locating executable
image files. When remotefilesis specified, the debugger also uses the task machine's
PATH environment variable to locate debugger command files. See the section entitled
"Remote Debugging” on page 89 for an explanation of remote debugging. See the section

Common Switches 17

Starting the Debugger

entitled " Specifying Files on Remote and Local Machines' on page 100 for an explanation
of remote and local file names.

/NOFpu requests that the debugger ignore the presence of a math coprocessor.

/NOSYmbols requests that the debugger omit all debugging information when loading an executable
image. Thisoption isuseful if the debugger detects and triesto load debugging
information which is not valid.

/Dlp=dipname used to |oad a non-default Debug Information Processor (DIP). This option is generally not
needed since the debugger loads all DIPs that it finds by default. See "The Images
Window" on page 49.

3.3 DOS and Windows Options

The following switches apply to the DOS (binw\wd) and Windows 3.x character-mode (binw\wdc)
debuggers. Refer to the sections called "DOS Specific Options' on page 19 and "Windows Specific
Options' on page 20 for more switches relating to these environments.

/Monochrome When two display devices are present in the system, this option indicates that the
Monochrome display isto be used as the debugger’ s output device, leaving the Color
display for the application to use. Use this option in conjunction with the Two option
described below.

/Coalor, /Colour
When two display devices are present in the system, this option indicates that the Colour
display isto be used as the debugger’ s output device. This option isused in conjunction
with the Two option described below.

/Egad3 When an Enhanced Graphics Adapter (EGA) is present, 43 lines of output are displayed by
a character mode debugger.

/Vgas0 When aVideo Graphics Array (VGA) is present, 50 lines of output are displayed by a
character mode debugger.

/Overwrite specifies that the debugger’ s output can overwrite program output. In this mode, the
application and the debugger are forced to share the same display area.

Do not use this option if you wish to debug a DOS graphics-mode application.

/Two specifies that a second monitor is connected to the system. |f the monitor type
(Monochrome, Color, Colour, Ega43, Vga50) is not specified then the monitor that is not
currently being used is selected for the debugger’ s screen. |f the monitor typeis specified
then the monitor corresponding to that type is used for the debugger’s screen. This option
may be used when debugging a DOS graphics-mode application on the same machine
and a second monitor is available.

18 DOS and Windows Options

Starting Up the Debugger

3.4 DOS Specific Options

Use the following switches for the DOS debuggers. For more DOS options, refer to the section called
"DOS and Windows Options’ on page 18.

/Page

specifies that page O of screen memory isto be used for the application’s screen and that
page 1 of screen memory should be used for the debugger’ s screen. This option may be
selected when using a graphics adapter such asthe CGA, EGA or VGA. Using the Page
option resultsin faster switching between the application and debugger screens and makes
use of the extra screen memory available with the adapter. Thisisthe default display
option. Do not use thisoption if you wish to debug a DOS graphics-mode application.

specifies that the application’ s screen memory and the debugger’ s screen memory are to be
swapped back and forth using asingle page. The debugger allocates an areain its own data
space for the inactive screen. This reduces the amount of memory available to the
application. It also takes more time to switch between the application and debugger
screens. This option MUST be used when debugging a DOS graphics-mode application
and a second monitor is not available.

The default display options are;

1. If you have atwo display system, the debugger uses both displays with the
program output appearing on the active monitor and the debugger output
appearing on the alternate monitor. In other words, the Two option is selected by
default.

2. If you have one of the CGA, EGA or VGA graphics adaptersinstalled in your
system then the debugger selects the Page option by default.

3. Under dl other circumstances, the debugger selects the Swap option by default.

/CHecksize=number

specifies the minimum amount of storage, in kilobytes, that the debugger isto provideto
DOS for the purpose of spawning a program while the debugger is active. Thisoption is
useful when the application that is being debugged uses up most or all of available
storage, leaving insufficient memory to spawn secondary programs. In order to provide
the regquested amount of free memory to DOS, the debugger will checkpoint as much of the
application as required.

Checkpointing involves temporarily storing a portion of the memory-resident application
on disk and then reusing the part of memory that it occupied for the spawned program.
When the spawned program terminates, the checkpointed part of the application is restored
to memory.

The default amount isOK bytes. In this case, the spawned program may or may not be run
depending on how much free storage is available to DOS to run the program.

Warning: If the application being debugged installs one or more interrupt handlers,
the use of this option could hang your system. Y our system could lock up
if the debugger checkpoints a portion of the application’s code that contains
an interrupt handler.

INOCHarremap

turns off the character re-mapping that the DOS debugger uses for displaying dialogs and
window frames. Use this option when trying to debug in an environment where

DOS Specific Options 19

Starting the Debugger

character remapping is not available. Windowed DOS boxes under OS/2 do not support
character re-mapping.

/NOGraphicsmouse
Turn off the graphics mouse emulation code that makes the mouse cursor look like an

arrow instead of ablock. Usethisoption if the mouse cursor appearsas4 linedrawing
charactersinstead of an arrow.

3.5 Windows Specific Options

Use the following switches for the Windows character-mode debugger. Refer to the section called "DOS
and Windows Options' on page 18 for more Windows options.

/Fastswap specifies that Windows 3.x screen memory and the debugger’ s screen memory are to be
swapped back and forth using atechnique that is faster than the default method of screen
swapping but not guaranteed to work for all video adapters. This option appliesto

Windows 3.x only. By default, the Windows 3.x version of the debugger uses a more
conservative (and slower) method that works with all video adapters.

3.6 Linux Options

Y ou can use the following switch for the Linux debugger.

-Console=console_spec
specifies the virtual console to use for debugger windows. This may be a console number
asin the following example.

Example:
-consol e=2

Y ou may aso use afull device name.

Example:
-consol e=/dev/tty

In this case, the debugger will use that device for itsinput and output. The
debugger/application screen flipping features will be disabled.

Y ou can aso optionally follow the device name with a colon and aterminal type.

Example:
-con=/dev/tty: vt 240

Thiswill let the debugger know what kind of terminal it'stalking to so it can initialize the
user interface appropriately.

-COlumns=n specifies the number of columns of the screen/window that the debugger should attempt to
establish.

20 Linux Options

Starting Up the Debugger

-XConfig=string
specifies a set of X Windows configuration options to pass to xterm. The following
exampl e sets the xterm font sizeto 12 point.

Example:
-xc=-fs -xc=12

3.7 QNX Options

Y ou can use the following switch for the QNX debugger.

-Console=console_spec
specifies the virtual console to use for debugger windows. This may be a console number
asin the following example.

Example:
-consol e=2

Y ou may also use afull device name.

Example:
-consol e=// 23/ dev/ser1

In this case, the debugger will use that device for itsinput and output. The
debugger/application screen flipping features will be disabled.

Y ou can also optionally follow the device name with a colon and aterminal type.

Example:
-con=/dev/ttypl: vt 240

Thiswill let the debugger know what kind of terminal it'stalking to so it can initialize the
user interface appropriately.

-COlumns=n specifies the number of columns of the screen/window that the debugger should attempt to
establish.

-XConfig=string
specifies a set of X Windows configuration options to pass to xqsh.

3.8 Environment Variables

Y ou can use the WD environment variable to specify default options to be used by the debugger. Once you
have defined the environment variable, those options are used each time you start the debugger.

Environment Variables 21

Starting the Debugger

3.8.1 WD Environment Variable

If the specification of an option involvesthe use of an "=" character, use the "#" character in its place. This
isrequired by the syntax of the"SET" command. Options found in the environment variable are processed
before options specified on the command line. The following example illustrates how to define default
options for the debugger:

Example:
C>set wd=/ swap/ | i nes#50

3.8.2 WD Environment Variable in Linux
The following example illustrates how to define default options for the debugger under Linux:

Example:
$ export WD="-rows=50 -col s=100"

Under Linux, care must be taken to specify the environment variable name entirely in uppercase letters.

3.8.3 WD Environment Variable in QNX

The following example illustrates how to define default options for the debugger under QNX:

Example:
$ export "WD=-nof pu -consol e=3"

Under QNX, care must be taken to specify the environment variable name entirely in uppercase letters.

22 Environment Variables

Open Watcom Debugger Environment

Open Watcom Debugger Environment

24

4 The Open Watcom Debugger Environment

This chapter describes the interactions you need in order to use the debugger.

4.1 Debugger Windows

The debugger displaysitsinformation in windows. Both the character and the GUI-based debuggers use
similar conventions for window manipulation.

4.1.1 Window Controls

Each window has the following controls

Minimize, Maximize, Restore

Close

System Menu

Scroll Bars

Title

Buttons

Y ou can control the size of each window using the Minimize, Maximize, and Restore
buttons. The buttons appear on the top right corner of the window. The Minimize buttonis
the down arrow. When you click on the down arrow, the window becomes an icon at the
bottom of the screen. The Maximize button is the up arrow. When you click on the up
arrow, the window fills the whole screen. The Restore button appears only when the
window is maximized. Itisan up and down arrow. Click on the Restore button to put the
window back to its original size.

Each window has a Close button in the top left corner. Double-click on this button to close
the window.

The System Menu contains menu items that operate on the window. It contains:

* Restore
* Move
* Size
* Minimize
* Maximize
Y ou can activate the System Menu of the main window by clicking once on the System

Menu button (top, left-hand corner) or by typing ALT-Space. For Microsoft Windows, you
can type AL T-Hyphen to activate a child window’ s System Menu.

Windows that contain information that cannot fit in the window have scroll bars. Use the
scroll bars to reposition the window so the information you want to seeisvisible. The
small box in the scroll bar indicates the current scroll position in the window.

Each window istitled so that you know what information it contains. Thetitle appearsin
the bar at the top of the window.

Many windows have small buttons on the left hand side. These buttons are short forms for
performing the most common operations.

Debugger Windows 25

Open Watcom Debugger Environment

4.1.2 The Current Window

The current window is the one whose title bar is coloured. Press CTRL-TAB to move from window to
window.

4.1.3 Controlling the Size and Location of Windows
The following window operations are possible.
« "Moving Windows"
* "Resizing Windows"
* "Zooming Windows"
« "Context Sensitive Pop-up Menus'

* "Text Selection” on page 27

4.1.3.1 Moving Windows
To move awindow, click in the Title bar and drag it to anew location. Y ou can aso choose Move from the

System Menu and use the cursor keys to reposition the window, pressing ENTER when the window isin
the right spot.

4.1.3.2 Resizing Windows

In the GUI-based version of the debugger, you can resize awindow’ swidth, height, or both. Refer to the
system documentation for details.

In the character-based version of the debugger, you can only resize awindow from the corners. Movethe
cursor to any corner of the window. Click and drag the mouse to resize the window.

Y ou can aso choose Size from the System Menu to change the size of awindow. Use the cursor keysto
resize the window, press ENTER when the window is theright size.

4.1.3.3 Zooming Windows

Choose Zoom from the Window menu to toggle a window between its maximized and normal sizes.

4.1.3.4 Context Sensitive Pop-up Menus

The debugger has context sensitive pop-up menus for each window in the application. You can access the
menu either by pressing the right mouse button in the window or by typing the period (.) key. You can
then choose a menu item by typing the highlighted character or by clicking the mouse on it.

If you have memorized the highlighted menu character, you can bypass the menu and activate the menu

item directly by pressing the CTRL key in conjunction with that character. The itemsthat appear in the
menu depend on the current window. These menus are described in detail throughout this document.

26 Debugger Windows

The Open Watcom Debugger Environment

Note The Action item in the main menu isidentical to the the context sensitive pop-up menu for

the current window and may be used instead of pop-up menus.

For more information on the choices presented in the pop-up menus, see the section entitled "Variable and
Watch Windows' on page 61.

4.1.3.5 Text Selection

Some windows, such as the Source and Assembly windows, allow you to select text. For example, you
might want to select a variable name or expression. Menu itemswill act on the selected item.

Y ou can select text with either the left or right mouse button. If you use the right button, the pop-up menu
appears when you release the button. With the keyboard, hold SHIFT while using the cursor keys. You

can select asingle character and the debugger will automatically extend the selection to include the entire
surrounding word.

4.2 Menus

At the top of the debugger window are a number of menu items. Y ou can select a menu item with the
mouse or by pressing ALT and the highlighted character from the menu title.

Many menu items have accelerators or keyboard equivalents. They appear to the right of the menu item.

Asyou learn the debugger, take time to learn the accelerators. They will help you to use the debugger more
effectively.

4.3 The Toolbar

¥ Dpen Watcom Debugger Jis = |I:II5I
File Rum Break Code Dats Undo Search Window Action Help

Ti[{‘}'IP}I{"}‘I«[-»[3%

] =01 x|
_argv = argv; |
#endif
#endif r
& FrontEndInit{ FALSE);
@ atexit{ ResetHandlers);
#if defined(__ CMS__)
[* skip command name at the start */ :'
i [m] B3N« watche =100 x| T =loix
B cinfo -
BRcintmain|
E cmacl b
B cmac? -
0 Ml B3 | N o
|

Figure 1. The Debugger Window

The Toolbar 27

Open Watcom Debugger Environment

The Toolbar appears under the menu in the GUI-based debugger. The buttonsin the Toolbar are equivalent
to menu selections. There are eight buttonsin the toolbar. Listed from left to right, they are:

» Go from the Run menu

* Step Over from the Run menu

* Trace | nto from the Run menu

» Until Return from the Run menu

» Undo from the Undo menu

» Redo from the Undo menu

» Unwind Stack from the Undo menu
» Rewind Stack from the Undo menu
» Home from the Undo menu

See the sections entitled "The Run Menu" on page 53 and "The Undo Menu" on page 54 for details.

4.4 Dialogs

=
~Addiess—— ~Conditon———— Bieak On-
Imain+DHDDDDDDD.-’-\ ebyx == 42 {+ Execute
1 Byte
— Countdown- FTotalHite———————— [2Bptes
| 0 Reset I 4 Bytes
—Execute When Hit
I Resume {¥ Enabled
—Walue
puzh ebx
ok I Clear Symbol. . Cancel

Figure 2. A Typical Dialog

Dialogs appear when you choose a menu item that does not perform an immediate action. They allow you
to make choices and set options. The dialogs contain the following:

Edit fields These are fields in which you can type information.
Buttons Y ou can click on buttons to perform actions.

Default button The default button in adialogis highlighted. Y ou can select this button by pressing
ENTER.

28 Dialogs

The Open Watcom Debugger Environment

Cancel All dialogs contain a cancel button. Choose the Cancel button or press ESC to leave a
dialog without saving or implementing changes you have made to the dialog.

Check Boxes Check boxes are used to control settings in the debugger. Click on thefield, or TAB to it
and press SPACE to toggle the option between on and off.

Radio Buttons Radio buttons present a set of mutually exclusive choices. Click on aradio button to turn it
on or press TAB to move to the group of radio buttons and use the cursor keysto select a
radio button. If this does not work, use the accelerator key to turn on the desired radio
button. Only one radio buttonison at all times. When you select a different radio button,
the currently selected oneis turned off.

List boxes A list box contains alist of applicable items.
Drop-down List boxes

A drop down list box isalist that does not appear on the screen until you click on the down
arrow on the right of the box. Y ou may then select from alist of options.

4.5 Accelerators

Accelerators are keys that you can pressin place of selecting a menu item or typing commands. The
debugger comes with a standard set of accelerators that you can view by choosing Accelerators from the
Window menu.

If you are used to the CodeView debugger, you should be comfortable with the Open Watcom Debugger’s
default set of accelerators. If you are used to using Turbo Debugger, you can select accelerators which are

similar to its accelerator definitions. To select Turbo accelerators, choose Accelerator from the Window
menu then select TD Keys from the Action menu.

4.5.1 Default Accelerators

The default accelerators are:

/ Search/Find...

ALT-/ Search/Next

CTRL-\ Search/Next

? add a new expression to the Watch window
F1 invoke help facility

F2 Data/Registers

F3 toggle between source level and assembly level debugging
F4 Window/Application

F5 Run/Go

F6 Window/Next

F7 Run/Run to Cursor

F8 Run/Trace Into

F9 Break/Toggle

F10 Run/Step Over

SHIFT-F9 add a new item to the Watch window
CTRL-F4 close the current window

Accelerators 29

Open Watcom Debugger Environment

CTRL-F5 restore the current window to its normal size
CTRL-F6 rotate the current window
CTRL-F9 minimize the current window
CTRL-F10 maximize the current window
ALT-F10 display the floating pop-up menu for the current window
CTRL-TAB rotate the current window
CTRL-LEFT Undo/Undo

CTRL-RIGHT Undo/Redo

CTRL-UP Undo/Unwind Stack
CTRL-DOWN Undo/Rewind Stack
CTRL-BACKSPACE Undo/Home

ALT-1 Data/l ocals

ALT-2 Data/Watches

ALT-3 Code/Source

ALT-4 File/View...

ALT-5 Data/Memory at...

ALT-6 Data/Memory at...

ALT-7 Data/Registers

ALT-8 Data/80x87 FPU

ALT-9 File/Command...

CTRL-z Window/Zoom

SPACE Run/Step Over

. display the floating pop-up menu for the current window
: File/Command...

= Search/Match

n Search/Next

N Search/Previous

u Undo/Undo

U Undo/Redo

b Break/At Cursor

e Data/Memory at...

g Run/Execute to...

h move cursor |eft one

i Run/Trace Into

j move cursor down one

k move Cursor up one

I move cursor right one

t Break/Toggle

X Run/Next Sequential

4.5.2 Turbo Emulation Accelerators

The Turbo emulation accelerators are:

F2 Break/Toggle

F3 Code/Modules

F4 Run/Run to Cursor
F5 Window/Zoom

F6 Window/Next

F7 Run/Trace Into

F8 Run/Step Over

30 Accelerators

The Open Watcom Debugger Environment

F9
ALT-F2
ALT-F3
ALT-F4
ALT-F5
ALT-F7
ALT-F8
ALT-F9
ALT-F10
CTRL-F2
CTRL-F4
CTRL-F7

Run/Go

Break/New...

close the current window
Undo/Undo

Window/Application

trace one assembly instruction
Run/Until Return

Run/Execute to...

activate the pop-up menu for the current window
Run/Restart

open a new Watch window

add a new item to the Watch window

4.6 The File Menu

The File menu contains items that allow you to perform file operations, such as:

Open Start debugging a new program, or to restart the current program with new arguments.

View Display afilein awindow.

Command Enter adebugger command. For a description of debugger commands, refer to the section
entitled "Debugger Commands' on page 145.

Options Set the global debugging options. For afull description of these options, refer to the
section entitled "The Options Dialog" on page 32.

Window Options
Set the options for the debugger’ s various windows. For afull description of these options,
refer to the section entitled "The Window Options Dialog" on page 33.

Save Setup Save the debugger’ s current configuration. This saves the positions and sizes of all
windows aswell as all options and settings. By default, thisinformation is saved into the
fileset up. dbg, however, you can save this information into another file to create
alternate debugger configurations.

Load Setup Load aconfiguration previously saved using Save Setup.

Source Path Modify the list of directories which will be searched when the debugger is searching for
source files.

System The menu item appears only in the character-based version of the debugger. It spawns a
new operating system shell.

Exit Close the debugger.

The File Menu 31

Open Watcom Debugger Environment

4.6.1 The Options Dialog

options_____ x|

[~ Auto configuration save
v “arring Bell

I Implicit Irvake

¥ Recursion Check

¥ Screen Flip on Ezecution
v lgnore Case

Default B adix I‘I 1]
Double Click mS |3DD

Ok I Defaults | Cancel I

Figure 3. The Options Dialog
The Options dialog allows you to change the following settings:

Auto configuration save When this option is on, the debugger automatically saves its configuration upon
exit.

Warning Bell When this option is on, the debugger will beep when awarning or error is issued.

Implicit Invoke If this option is on, the debugger will treat an unknown command as the name of a
command file and automatically try to invoke it. If thisoption is off, you must use the
invoke command to invoke a command file.

Under UNIX, aconflict is possible when Invoke ison. A path specified for acommand file
name is confused with the short form of the DO command (/). A similar problem occurs
under DOS, 0S/2, Windows 3.x, Windows NT, or Windows 95 when a drive specifier
forms part of the file name.

Recursion Check Use this option to control the way tracing over recursive function callsis handled. When
this option is on, and you trace over afunction call, the debugger will not stop if the
function executes recursively.

Screen flip on execution Use this option to control whether the debugger automatically flips the display to
the application’s screen upon execution. Leave thisoption on if you are using the
character mode debugger to debug a Windows 3.x application.

Ignorecase This option controls whether or not caseisignored or respected when the debugger is
searching for a string.

Default Radix Use this option to define the default radix used by the debugger. The debugger associates a
radix with each action automatically. For example, if you are asked to enter an address, the
debugger assumes base 16. If you double click on a decimal value, you will be prompted
for adecimal replacement value but there are occasions when the debugger must use the

32 The File Menu

The Open Watcom Debugger Environment

default radix. 1f you add an arbitrary expression to the Watches window, the default radix
is used when interpreting that expression. Y ou can specify any radix between 2 and 36.

Double click mS This option sets the amount of time in milliseconds allowed between two clicks for the
debugger to accept it asadouble click. Enter alarger value if you are having trouble with

double clicks.

4.6.2 The Window Options Dialog

T —
—Azzembly- - Globalz
v Show Source [~ Tuped
v Hexadecimal
—File
~Warigbles Tab Interval |3
[+ Pratected
v Private - Functionz
[~ 'whole Expression [~ Typed
[Functions
[~ Inherited ~Modules
[Compiler [~ Show Al
v Members
[Static
(] 4 I Defaults | Canicel |

Figure 4. The Window Options Dialog

Use the Window Options dialog to define options related to the debugger’ s various windows. All of these
options appear in a dialog when you choose Window Options from the File menu.

The Window Options dialog allows you to set options for the following windows:

» Source
* Modules

* Functions
* Assembly

» Watches
* Locals

* File Vari
* Globals
* Variable

ables

4.6.2.1 The Assembly Options

The Assembly options alow you to define how your assembly code appears. Y ou can set the following

options:

The File Menu 33

Open Watcom Debugger Environment

Show Source Turn on thisoption if you want source code intermixed with assembly code.

Hexadecimal Turn on thisoption if you want immediate operands and values to be displayed in
hexadecimal.

4.6.2.2 The Variables Options

Use the Variable options to set display options and to specify which members of a class you want displayed
when a structure or classis expanded. You can set:

Protected Display protected membersin expanded classes.
Private Display private membersin expanded classes.
Whole Expression
Turn this option on to show the whole expression used to access fields and array elements

instead of just the element number or field name itself.

Functions Display C++ member functionsin expanded classes.

Inherited Display inherited members in expanded classes.
Compiler Display the compiler-generated members. Y ou will usually not want this option turned on.
Members Display members of the’this' pointer asif they were local variables declared within the

member function.

Static Display static members.

4.6.2.3 The File Options

Y ou can set the display width of atab in the File options section. This value defaults to 8 spaces.

4.6.2.4 The Functions and Globals Options

For both Functions and Global Variables windows, you can turn on the Typed Symbols option. This
restricts the list of symbolsto those that are defined in modules compiled with full debugging information
(d2 option).

4.6.2.5 The Modules Options

Y ou can turn on Show All to alow the Modules window to display all modulesin your program, not just
those which have been compiled with the d2 option.

34 The File Menu

The Open Watcom Debugger Environment

4.7 The Code Menu

The Code menu allows you to display windows that show different information related to your code. It
contains the following items:

Source

Modules

Functions

Calls

Assembly

Threads

I mages

Replay

Open the Source window. It shows source code at the currently executing location. See
"The Source Window" on page 44.

Display asorted list of modules contained in the current program. See"The Modules
Window" on page 46.

Open asorted list of all functionsin the program. See "The Functions Window" on page
48.

Open the Call History window. Thiswindow displays the program’s call stack. See"The
Calls Window" on page 57.

Open the Assembly window. It shows assembly code at the currently executing location.
See "The Assembly Window" on page 82.

Open alist of al threadsin your program and their current state. See "The Thread
Window" on page 57.

Open alist of the executable images which are related to the program being debugged.
Thisincludes alist of all loaded DLLs. See"The Images Window" on page 49.

Open the program execution Replay window. Thiswindow allows you to restart your
application and replay your debugging session to any point. See "The Replay Window" on
page 56.

4.8 The Data Menu

The Data menu contains a number of windows that you can open to view the state of your program’s data.
It contains the following items:

Watches

Locals

File Variables

Globals

Open aWatches window. Y ou can add and delete variables from the Watches window and
use it to evaluate complex expressions and perform typecasting. See "Variable and Watch
Windows" on page 61.

Open aLocaswindow. It displaysthelocal variables of the currently executing function.
See "Variable and Watch Windows" on page 61.

Open aFile Variableswindow. It contains alist of variables defined at file scope in the
current module. See "Variable and Watch Windows" on page 61.

Open a sorted sorted list of all global variablesin your program. Values are not displayed
since it would make this window very expensive to update, but you can select variables
from this window and add them to a Watches window. See"The Globals Window" on

page 47.

The Data Menu 35

Open Watcom Debugger Environment

Registers

Displaysthe CPU registers and their values. See"The CPU Register Window" on page 81.

FPU Registers Displaysthe FPU registers and their values. See"The FPU Registers Window" on page 84.

MMX Registers

Displaysthe MM X (multi-media extension) registers and their values. See"The MMX
Registers Window" on page 84.

XMM Registers

Stack

I/O Ports

Memory at...

Log

Displaysthe XMM (SSE) registers and their values. See "The XMM Registers Window"
on page 85.

Displays memory at the stack pointer. See"The Memory and Stack Windows" on page 65.

Open awindow that lets you manipulate the I/O address space of the machine. See"The
I/O Ports Window" on page 83.

Display memory at a given address. See"The Memory and Stack Windows" on page 65.

Displays debugger messages and the output from debugger commands. See"The Log
Window" on page 37.

4.9 The Window Menu

The Window menu allows you to control and arrange the windows on your screen.

The Window menu contains the following items:

Application

To Log

ToFile

Zoom

Next

Accelerator

Switch to the output screen of the application. Press any key to return to the debugger.

Save the current window’ s contents to the log window. Open the Log window to seethe
contents.

Save the contents of the current window to afile. Y ou must enter afile name and choose
the drive and directory to which you want to save the information. Thisisuseful for
comparing program state between debugging sessions.

Change the size of the current window. Zoom toggles the current window between its
normal and maximum sizes.

Rotate through the windows, choosing a new current window.

Open the Accelerator window. Thiswindow allows you to inspect and modify the
debugger’ s keyboard shortcut keys.

36 The Window Menu

The Open Watcom Debugger Environment

4.10 The Action Menu

Most windows in the debugger have a context sensitive pop-up menu. The Action menu will contain the
same menu items as the current window’ s pop-up menu. It may be used as an alternative to the pop-up
menus. As an alternative to selecting text with the right mouse button and using the pop-up menu, you can
select text with the left mouse button or keyboard and use the Action menu. For more information on the
choices presented in the pop-up menus, see the section entitled "Variable and Watch Windows" on page 61.

4.11 The Help Menu

The Help menu contains items that let you use the on-line help facility. They are:

Contents Show the main table of contents of the on-line help information. Thisis equivaent to
pressing F1.

On Help Display help about how to use the on-line help facility. Thismenu itemisnot availablein
character-mode versions of the debugger.

Search Search the on-line help for atopic. This menu item isnot available in character-mode
versions of the debugger.

About Display the "about box". It contains the copyright and version information of the debugger.

4.12 The Status Window

The Status window appears at the bottom of the debugger screen. Asyou drag the mouse over amenu
item, descriptive text about that menu item appears in the toolbar. M essages about the current status of the
program and debugger warning messages also appear in the Status window.

4.13 The Log Window

=10l x|
A DLL has been loaded: "ntdlldII'

A DLL has been loaded: "USER32.dIl'

A DLL has been loaded: '"KERNEL3Z2 dIl'

A DLL has been loaded: 'GDI32.dII'

A new task has been loaded

Break on execute: main{cintmain{@49)

Break on execute: cmemmgri@initPermArea+0x0000000E{cmemmgr@72)

his is the log window

Figure5. The Log Window

The Log Window 37

Open Watcom Debugger Environment

Choose Log from the Data menu to see the Log window. The Log window displays several different types
of messages, including:

* status messages such as break point notification
* warning and error messages
» output from debugger commands

Y ou can send the contents of any window to the Log window by selecting To Log from the Window menu.
This allows you to save awindow’s contents and review it later.

4.14 The Accelerator Window

-loixd
Eile Run Ereak Code Data Undo: Search Window Action Help
=0l

Key Name Window Action type Definition il

Watches Popup Menu Delete

CTRL-z All Main Menu Window/Zoom

CTRLA Source Main Menu Search/Next

All Main Menu Run/Step Over

: All Command Window Popug

f All Main Menu SearchfFind...

: All Main Menu File/Command

= All Main Menu SearchfMatch

? All Command display watch:

N All Main Menu SearchfPrevio

U All Main Menu Undo/Redo

b All Main Menu Break/Mew.. .

e All Main Menu DatafMemory i
Al H
|

Figure 6. The Accelerator Window

The Accelerator window allows you to control the accelerators or keyboard equivalents used by the
debugger. Choose Accelerator from the Window menu to open this window. The window displays 4 items
relating to each accelerator definition. They are the key name, the window to which the accelerator applies,
the type of action that the accelerator defines, and the specifics of that action.

Accelerators may either apply to all windows or to a specific window. Y ou could define F2 to perform a
different action depending upon which window is current. Accelerators which apply to all windows will
have awindow type of all.

An accelerator can define one of three action types. They are:

pop-up Activate a pop-up menu item in the current window.
menu Activate an item from the main menu.
command Perform an arbitrary debugger command.

38 The Accelerator Window

The Open Watcom Debugger Environment

Y ou can modify an element of an accelerator definition by double-clicking on it, or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following menu items:

Modify

Delete
TD Keys

WD Keys

Change the currently selected element of an accelerator assignment. If the key nameis
selected, the you will be prompted to type anew key. If the window nameis selected, you
will be presented with alist of possible window classes. If the action type or details are
selected, you will be presented with amenu in order to pick the menu item which will be
attached to the accelerator.

Add anew accelerator assignment. Y ou will be prompted for all details.

Delete the selected accelerator.

Use an approximation of Borland Turbo Debugger’ s accelerators.

Use the default set of accelerators. If you are familiar with CodeView, you will be
comfortable with these key assignments.

The Accelerator Window 39

Open Watcom Debugger Environment

40 The Accelerator Window

Navigating Through a Program

Navigating Through a Program

42

5 Navigating Through a Program

This section describes how to use the debugger to browse through your program.

5.1 The Search Menu

The Search menu allows you to search awindow for agiven string. It contains the following items:

Find Search the current window for the first appearance of agiven string. Y ou will be prompted
for the string. See "Entering Search Strings".

Next Find a subsequent occurrence of a search string.
Previous Find a previous occurrence of a search string.

All Modules Thiswill search through the source code of all the modules contained in your program for a
given string. See "Entering Search Strings'.

Match Find a string in a sorted window by incremental matching. Once you select match, the text
you type appears in the status window, and the window you are searching repositions itsel f
as you type each character. Press ESC to leave this mode.

5.1.1 Entering Search Strings

Enter Search String |

These are
ather ztrings
|"ver searched for

[Regular Expression Edit ... |

¥ lanore Case:

Hest I Erevinusl Cancel |

Figure 7. Entering a search string
When you choose Find from the Search menu or All Modules from the Search menu, you must enter the

search string that you are looking for and set the parameters for the search. The Search screen consists of
the following items:

The Search Menu 43

Navigating Through a Program

Enter Search String
Enter the string to be found in this edit box. The larger list below shows other strings that
you have searched for during this debugging session. Y ou can select these by clicking on
them or by using the up and down arrow keys. The most recent search string appears at the
top of thelist.

Regular Expression
Check thisbox if the string is to be interpreted as aregular expression. Y ou can click on
the Edit button to edit the set of regular expression characters that will be used. For a
description of regular expressions, see the Editor manual.

IgnoreCase Check thisbox if you want the debugger to match the search string regardless of case.

5.2 The Source Window

[EIE ES

¢ woid SymsPurge() |
LABELPTR label;

= label = LabelHead;

¢ while{ label 1= NULL) {

& LabelHead = label->next_label;

@ CMemFree(label };

¢ label = LEbelHead:

* 1
/' Enumlnit();
/i PurgeTags(TagHead):

¢ TagHead = NULL; |
/i PurgeTags({ DeadTags): i

Figure 8. The Source Window

The Source window displays your program’s source code. Asyou trace through your program, it
repositions itself at the currently execution location. If you have an Assembly window open, the Source
and Assembly windows will always be positioned at the same code. If you scroll in one, the other follows.

Source lines that have code associated with them have a button at the |eft of the screen. You can click on
this button to set, disable and clear break points.

Y ou can Inspect any item displayed in the source window by double-clicking on it, or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following pop-up menu items:

| nspect Inspect the selected item in an appropriate window. Y ou can select function names,
variable names, or any valid expression.

Run to Cursor Resume program execution until the selected line is executed.

Break Add a breakpoint based on the selected text. If avariableis selected, the program will stop
when its value changes. If afunction name is selected the program will stop when that
function is executed. Thisdoes not set a break at the current line. Use Toggle from the
Break menu or At Cursor from the Break menu to set a breakpoint at the current line.

44 The Source Window

Navigating Through a Program

Enter Function
Resume program execution until the selected function is entered.

Watch Add the selected item to the Watches window for further inspection or modification.
Find Search for other occurrences of the selected string in the Source window.
Home Reposition the window to show the currently executing location. The cursor will move to

the next line of the program to be executed.

Show/Assembly
Show the assembly code associated with the selected line.

Show/Functions
Show thelist of all functions contained in the source file.

Show/Address Reposition the window at a new address. Y ou will be prompted for an expression.
Normally you would type a function name but you can type any expression that resolves to
acode address. For example, you might type the name of avariable that contains a pointer
to afunction. See "Open Watcom Debugger Expression Handling" on page 119.

Show/Module Show the code for a different module. Y ou will be prompted for itsnamein adialog. Asa
shortcut, you can type the beginning of a module name and click the Module... button.
Thiswill display alist of all modules that start with the text you typed.

Show/Line Moveto adifferent sourceline. You can also find out what line you arelooking at. The
edit field will be initialized with the current line number.

5.3 The File Window

A File window is Similar to a source window except that it displays afile which is not part of the program
being debugged. Menu items related to execution such as Break from the pop-up menu are not available.

The Modules Window 45

Navigating Through a Program

5.4 The Modules Window

il
cfmem |
cfmul

cfold?

cftof

cfutil —J
cgaux
cgen?
cgetch
cinfo

[cintmain
cmacl
cmac?
cmacadd

=

Figure 9. The Modules Window

The Modules window displays alist of the modules that make up the current program. To open the
M odules window, choose Modules from the Code menu.

Three items are displayed for each module. At the left, there isabutton. You can click the mouse on it to
see the source or assembly associated with the module. This can also be accomplished by double-clicking
on the module name or cursoring to it and pressing ENTER. Next isthe module name. Third, if the

moduleis contained in an executable image other than the one being debugged, is the name of that image.

Since this window is sorted Match from the Search menu can be used to find amodule. Choose Match
from the Search menu (or press =) and begin typing the name of the module.

Press the right mouse button to access the following pop-up menu items:

Source Show the source code associated with the selected module.
Assembly Show the assembly code associated with the selected module.

Functions Show thelist of all functions contained in this module.
Break All Set a breakpoint at each function in this module.

Clear All Delete all breakpoints which are set at addresses with this module. This does not affect
break-on-write break points.

Show All Toggle between showing all modules and just modules which were compiled with full
debugging information (d2). This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these settings, they
will not be saved between debugging sessions. To change an option permanently, see "The
Window Options Dialog" on page 33.

46 The Modules Window

Navigating Through a Program

5.5 The Globals Window

roobat =T
zseti@_tzFlag -
_tzname

_UnhandledExceptionFilter{@4
_VirtualAlloc@16
_VirtualFree({®12
_¥irtualQuery@12
_WideCharToMultiByte(®32
_WriteFile{@20

dosret@_xlat
386rgtbl@ABCDReqgs
generate@abortCG ~|

Figure 10. The Globals Window

5

Y ou can open the Globals window by choosing Globals from the Data menu. Thiswindow displays the
names of all global variables defined in the program. Y ou can add a variable to the Watches window by
double-clicking onit, or cursoring to it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:
Watch Add the selected variable to the Watches window.
Raw Memory Display the memory associated with the selected variable.

Typed Symbols
Toggle between showing all symbols and just those defined in modules compiled with the
d2 option. Variables from the C/C++ library and assembly code are suppressed. This
menu item sets options on a per-window basis, overriding the global settings. When you
use the menu item to change these settings, they will not be saved between debugging

sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

The Functions Window 47

Navigating Through a Program

5.6 The Functions Window

£ Funckions

cfold2@ArithmeticType
BoolConstExpr
CastConstValue
CastFloatValue
cfold2 @ConstantlLeaf
DoConstFold
DoFloatOp

DoOp32

DoOpb4

DoSignedOp
DoSignedOpb4
DolUnSignedOp

L EeEELOELEES

=10 x|

=

Figure 11. The Functions Window

The Functions window can display alist of all functions contained in a module, executable image or
program. To theleft of each function nameis a button. Y ou can click on these buttons to set and clear
breakpoints at the various functions. This can aso be accomplished by double-clicking on the function

name or cursoring to afunction and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

Break Set a breakpoint at the selected function. A dialog will appear so that you can fill in
detailed breakpoint information. For more information, refer to the section entitled "The

Breakpoint Dialog" on page 75.

Source Show the source code for the selected function.

Assembly Show the assembly code associated with the selected function.

Typed Symbols

Toggle between showing all symbols and just those defined in modules compiled with the
d2 option. Variables from the C/C++ library and assembly code are suppressed. This
menu item sets options on a per-window basis, overriding the global settings. When you
use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page

33.

48 The Images Window

Navigating Through a Program

5.7 The Images Window

M=
Executable File Debug Information Debug Information Type
wccldbd exe wccl8bd sym DWARF

ntdll.dll ntdll.dll EXPORTS

USER3Z.dIl USER3Z.dll EXFORTS

KERNEL32 dll KERNEL32 dll EXPORTS

GDI32.dil GDiI32.dll EXPORTS

2 i

Figure 12. The Images Window

Choose | mages from the Code menu to open the Images window. It displaysalist of executable images
associated with the program that you are currently debugging. Executable images include the program
executable, DLLs (Windows, OS/2 and Windows NT), and NLMs (NetWare). Thiswindow displaysthe
name of the executable image, the name of the symbolic debugging information file (if available), and the
debugging information type.

Different debugging information types are generated by different compilers.

Vaid information types are:

DWARF Thisinformation is generated by the Open Watcom compilers.
Watcom Thisinformation is optionally generated by the Open Watcom compilers.
CodeView In addition to Open Watcom compilers, severa other products, including Microsoft’s, can

generate CodeView style information.

MAPSYM Thisinformation is generated by Microsoft’s or IBM’'s MAPSY M utility. MAPSYM
processes linker map file and outputs a.sym file. Symbol filesin MAPSY M format are
often available for OS/2 system DLLs. MAPSY M files only contain information about
global symboals, but usually provide much more detail than just exports information.

EXPORTS Thisinformation is contained in the executable file itself, and is used by the operating
system. Under OS/2, Windows and Windows NT, DLLs have export tables which define
the names and addresses of entry points. Exportsinformation lets you see the names of
system entry pointsand APIs. Novell NLMs also have entry point tables. In addition, they
may have Novell style debugging information, created with Novell’ s linker (NLMLINK) or
using the Open Watcom Linker’s "debug novell" option. Thisinformation is made
available to the debugger.

Y ou can add new debugging information to an image by double-clicking on the image name or cursoring to
it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

The Images Window 49

Navigating Through a Program

New Symbols Add symbolic debugging information for the selected image. Thisisuseful if you know
that a separate debug information file contains the appropriate debugging information that
was not found by the debugger.

Delete Symbols
Delete any symbolic debugging information associated with the selected image.

Modules Show alist of modules contained in the selected image.
Functions Show alist of functions contained in the selected image.

Globals Show alist of all global variables contained in the selected image.

50 The Images Window

Controlling Program Execution

Controlling Program Execution

52

6 Controlling Program Execution

This section describes how you can control the execution of your program as you debug it.

6.1 The Run Menu

The Run menu controls how your program executes. It contains the following items.

Go

Run to Cursor

Executeto

Step Over

Tracelnto

Next Sequential

Until Return

Skip to Cursor

Start or resume program execution. Execution resumes at the current location and will not
stop until a breakpoint is encountered, an error occurs, or your program terminates.

Resume program execution until it executes the location of the cursor in the Source or
Assembly window. Execution will stop before the cursor position if a breakpoint is
encountered or an error occurs.

Resume program execution until it executes a specified address. Y ou will be prompted to
enter an address. It can be the name of afunction or an expression that resolves to a code
address. See "Open Watcom Debugger Expression Handling" on page 119. In the dialog,
you can click the Symbols... button as a shortcut. Y ou can type apartial symbol name like
f 0o and the Symbol button will show you alist of symbolsthat start with f 00. You can
then choose one of these symbols by clicking on it or hitting ENTER. Note that the first
time you use the Symbols... in adebugging session, it will take awhile as the debugger
sorts the symbol table for the program.

If your program encounters a breakpoint or an error occurs before the specified addressis
executed, your request to stop at the given addressisignored.

Trace a single source or assembly line depending on whether the source or assembly
window is current. Step Over will not step into any function calls.

Thisissimilar to Step Over except that it will step into any function calls.

Run until the program executes the next sequential source line or assembly instruction.
Thisisuseful if the program is executing the last statement in aloop and you wish to
execute until the loop terminates. When using this command, be sure that the execution
path will eventually execute the next statement or instruction. |f execution failsto reach
this point then the program may continue to execute until completion. This situationislike
setting a breakpoint at a statement or assembly instruction which will never be executed
and then issuing a GO command. In this situation, the application would execute until an
error occurred or another breakpoint was encountered.

Resume program execution until the currently executing function returns. Execution
terminates prior to thisif an error occurs or a breakpoint is encountered.

Reposition the instruction pointer at the cursor position, "skipping" all instructionsin
between. When you continue execution, the program continues from thispoint. Thisis

The Run Menu 53

Controlling Program

Execution

Restart

Debug Startup

Save

Restore

useful if you want to skip an offending line or re-execute something. Use this menu item
with caution. If you skip to an instruction which isnot in the current function or skip to
code that expects a different program state, your program could crash.

Restart your program from the beginning. All breakpointsin your program will be
preserved. Breakpointsin DLLswill not be preserved.

Restart your program from the beginning but stop before system initiaization. Normally
the debugger puts you at the main (fmain, winmain, etc.) entry point in your application.
This option will allow you to break much earlier in the initialization process. Thisfeature
isuseful for debugging run-time startup code, initializers, and constructors for static C++
objects.

For DOS, Windows 3.x and Netware, the debugger will put you at the assembly entry point
of your application (i.e., it doesn’t run the "progstart" hook).

Windows 3.x runs each DLL's startup code as it loads it, and the static DLLs are really
loaded by the run-time startup code, so, to debug the startup code for a statically linked
Windows 3.x DLL, you need to do the following.

1. Select Debug Startup from the Run menu.

2. Select On Image Load from the Break menu. Type the name of the DLL in
which you are interested.

3. Sdect Go from the Run menu

For OS/2 and Windows NT, the debugger will put you at a point after all DLLs have been
loaded, but before any DLL initialization routines are called. This enables you to set
breakpointsin your statically referenced DLL’s startup code.

If you have hard-coded int3 instructionsin your DLL startup, the debugger will skip them,
unless you use Debug Startup from the Run menu.

All breakpointsin your program will be preserved. Breakpointsin DLLswill not be
preserved.

Save the current debugging session to afile. The file contains commands that will allow
the debugger to play your debugging session back to its current point in alater session. See
"The Replay Window" on page 56.

Restore a saved debugging session. If you run the program with different input or if the
program is a multi-threaded application, this option may not work properly since external
factors may have affected program execution. See"The Replay Window" on page 56.

6.2 The Undo Menu

The debugger keeps an execution history as you debug your program. This history is accessible using the
Undo menu. The effect of program statements as you single step through your program are recorded. All

interactions that

allow you to modify the state of your program including modifying variable values,

changing memory and registers are also recorded. Undo and Redo let you browse backward and forward

54 The Undo Menu

Controlling Program Execution

through this execution history. Asyou use these menu items, all recorded effects are undone or redone, and
each of the debugger’ s windows are updated accordingly.

Y ou can resume program execution at any previous point in the history. The program history has no size
restrictions aside from the amount of memory available to the debugger, so theoretically you could single
step through your entire program and then execute it in reverse. There are severa practical problems that
get in the way of this. When you single step over acall or interrupt instruction, or let the program run
normally, the debugger has no way of knowing what kind of side effects occurred. No attempt is made to
discover and record these side effects, but the fact that you did step over acall isrecorded. If youtry to
resume program execution from a point prior to a side effect, the debugger will give you athe option to
continue or back out of the operation. Use caution if you choose to continue. If an important side effect is
duplicated, you program could crash. Of course reversing execution over functions with no side effectsis
harmless, and can be a useful debugging technique. If you have accidentally stepped over a call that does
have a side effect, you can use Replay to restore your program state.

Unwind and Rewind move the debugger’s state up and down the call stack. Like Undo, all windows are
updated as you browse up and down the stack, and you can resume execution from a point up the call stack.
A warning will beissued if you try resuming from apoint up the call stack since the debugger cannot
completely undo the effects of the call.

Unwind is particularly useful when your program crashes in aroutine that does not contain debugging
information. strcpy() isagood example of this. Y ou can use Unwind to find the call site and inspect the
parameters that caused the problem.

Theruntime library detects certain classes of errors and diagnoses them as fatal runtime errors. If this
occurs when you are debugging, the debugger will be activated and the error message will be displayed.
For example, throwing an exception in C++ without having a catch in placeis afatal runtime error. In C,
the abort() and assert() functions are fatal errors. When this happens, you will be positioned in an internal
Clibrary call. You can use Unwind to find the point in your source code that initiated the error condition.
When Unwind and Undo are used in conjunction, Undo is the primary operation and Unwind is secondary.
Y ou can Undo to a previous point in the history and then Unwind the stack. If you Unwind the stack first
and then use Undo, the Unwind has no effect.

If you modify the machine state in any way when you are browsing backward through the execution
history, all forward information from that point is discarded. If you have browsed backward over aside
effect the debugger will give you the option of canceling any such operation.

The Undo menu contains the following items.

Undo Browse backwards through the program execution history.

Redo Browse forward through the program execution history.

Unwind Stack Move up the call stack onelevel.

Rewind Stack Move down the call stack one level.

Home Return to the currently executing location, reversing the effects of all Undo and Unwind
operations.

The Undo Menu 55

Controlling Program Execution

6.3 The Replay Window

=1of x|
DbgBreakPoint+0x00000001: ret new/program wcc386d. exe ‘\tmphoi
main: int main[] trace/source/over
main+0x0000000E - FromtEndinit{ FALSE); tace/sourcefover
main+0x00000015: atexit[RezetHandlers]J; hreak/zet findex 1. funmapped fsy
main+0x00000015: atexit[{ ResetHandlers): go

cgen2{@Definel abels+0x0000001C: if{ Labellndex =07 { race/souicefover

cgenZ@D efinel abelz+0x00000069: race/source/into

KN 3

Figure 13. The Replay Window

Choose Replay from the Code menu to open the Replay window. Thiswindow displays each of the steps
that you have performed during this debugging session that might have affected program flow. There are
three items displayed in the replay window. First isthe address the program was executing when you took
some action that could affect the program. These actions include setting break points, tracing and
modifying memory. Second is the source or assembly code found at that address. Third isacommand in
the debugger’ s command language that will duplicate the action you took. The most common use for
Replay iswhen you accidentally step over afunction call, or the program unexpectedly runs to completion.
If this happens, you can open the replay window, and replay you debugging session up to any point prior to
the last action you took.

There are specia cases where replay will not perform as expected. Sincereplay is essentially the same as
playing your keystrokes and mouse interactions back to the debugger, your program must behave
identically on a subsequent run. Any keyboard or mouse interaction that your program expects must be
entered the same way. If your program expects an input file, you must run it on the same data set. Y our
program should not behave randomly or handle asynchronous events. Finally, your program should not be
multi-threaded. If you have just been tracing one thread, your program will replay correctly, but multiple
threads may not be scheduled the same way on a subsequent run.

Y ou can replay program execution to any point by double clicking on that line or by cursoring to it and
pressing ENTER. Select any line and press the right mouse button to see the following pop-up menu items:

Goto Replay the program until it returns to the selected level in the replay history.
Source Position the source window at the selected line.
Assembly Show the assembly code for the selected line.

56 The Calls Window

Controlling Program Execution

6.4 The Calls Window

__MNTMain:
__CMain:
main:
FrontEnd:

call near ptr __CMain

call near ptr main

ret = FrontEnd({ &argv[0]);
DoCCompile{ cmdline);

ccmain{@DoCCompile: DoCompile();

DoCompile:

cgen2{@GenModuleCodree = GenOptimizedCode(tree);
cgen2@GenOptimized(EmitNodes(LinearizeTree({ tree->right });
cgen2@EmitNodes:

GenModuleCode();

EndFunction{ node);

cgen2{@EndFunction: CGReturn{ NULL, dtype };
CGReturn: BGReturn{ name. new_tipe };
BGReturn: Generate{ TRUE };
Generate: FindReferences():
FindReferences: SearchDefUse();

varusage{@SearchDeflUse{ name->i.index, blk, EMFTY);

op = DeAlias{ op

=101 x|

Figure 14. The Calls Window

Choose Calls from the Code menu menu to display the Calls window. Thiswindow displays the program’s
call stack. Each line contains the name of the function that was executing, and the source or assembly code
at the call site. Y ou can use Unwind and Rewind to obtain this information, but the calls windows will

show you the entire call stack.

Y ou can Unwind to any point in the call stack by double-clicking on aline, or by cursoring to it and
pressing ENTER. Select aline and press the right mouse button to access the following pop-up menu

items:

Unwind

Break

Goto

Unwind the stack to the level of the selected code. Thisis equivalent to using Unwind
from the Undo menu or Rewind from the Undo menu.

Set a breakpoint at the return from the selected call.

Execute until the program returns from the selected call.

6.5 The Thread Window

iofx
Thread-1D State priority

00003330 runnable]

00003370 current 0

A i

Figure 15. The Thread Window

The Thread Window 57

Controlling Program Execution

Choose Thread from the Code menu to display Thread window. Thiswindow displays the system ID of
each thread, the state of the thread, and under some operating systems, system specific information about
the thread including its name and scheduling priority. The state of each thread can be:

current

runnable

frozen

dead

Thisisthe thread that was running when the debugger was entered. It isthe thread that hit
abreak point or error. When you trace through the application, only the current thread is
allowed to run.

This thread will be allowed to run whenever you let your program run, but will not run
when you trace the program.

This thread will not be allowed to run when you resume your program.

Under some operating systems, threads that have been terminated still show up in thelist of
threads. A dead thread will never execute again.

Y ou can make any thread current by double clicking on it or cursoring to it and pressing ENTER. All other
debugger windows update accordingly. Pressthe right mouse button to access the following pop-up menu

items;

Switch to

Freeze

Thaw

Make the selected thread current.
Change the state of the selected thread to be frozen. Y ou cannot freeze the current thread.

Change the state of the selected thread to be runnable.. The current thread is always
runnable.

58 The Thread Window

Examining and Modifying the Program
State

Examining and Modifying the Program State

60

/ Examining and Modifying the Program State

The following topics are discussed:
* "Variable and Watch Windows"

* "The Memory and Stack Windows" on page 65

7.1 Variable and Watch Windows

=10l

& argv [array]
& |: HE]*[D] ;\;mp\crash.c 2
= L 1] NULL
= buffer 0x00890AD3
len 14
ret E]

Figure 16. The Watch and Variable Window
Windows that display variables comein several different varieties. They are:

* Locals

* File Variables
» Watches

e Variable

They are collectively called variable windows. Y ou use the same interactionsin all variable windows to
display, modify and browse your variables and data structures. The only difference between these windows
are the variables that they display. The valuesin each window are updated as you trace through your
program. The windows display the following information:

Locals Contains the list of variables which are local to the current routine. Choose Locals from
the Data menu to open this window.

File Variables Containsalist of all variables which are defined at file scope in the current module. This
includes external and static symbols. Choose File Variables from the Data menu to open
this window.

Watches The Watches windows allows you to add and del ete variables and expressions. In other
windows you can choose Watch from the pop-up menu. Thiswill open the watches
window add the text which is selected in another window to the watches window. You can
use New from the pop-up menu to add any expression to the Watches window. Once

Variable and Watch Windows 61

Examining and Modifying the Program State

entered, you can choose Edit from the pop-up menu to edit the expressions or typecast the
variables.

Variable Thisis another instance of a Watches window. A variable window is created when you
select avariable or expression in awindow and use | nspect from the pop-up menu.

Each line of avariable window has three elements. On the left isabutton. The button changes depending
on the type of the variable or expression. it changes based on the type of the item:

structs (classes) (unions) Structures may be opened and closed by clicking on the button at the left. When
you open a structure or class, one line is added to the window for each field of the structure.
These new lines are indented. If you click on the button again, the structure is closed and
the window isreturned to its original state.

arrays Like structs, arrays may be opened and closed. When you open an array, one lineis added
to the window for each element of the array. The debugger will display at most 1000
elements of an array. If it contains more you can use Type/Array... to open different
ranges. Multi dimensional arrays are treated like an array of arrays. When you open the
first dimension, the lines that are added will also be arrays which you can open.

pointers When the variable is a pointer, you can click on the button and the debugger will follow the
pointer and change the line to represent the item which is the result of the pointer reference.
For example, if you have a pointer to an integer and click on the button, the integer value
will be displayed. The button then changes to indicate so that you can undo the operation
by clicking on it again.

In the case of pointers to pointers, clicking on the button will follow the pointers one level
each time you click on the button until a non-pointer value isreached. Clicking on the
button at this point will undo take you back to the original state. When the pointer points to
astruct, the structure will automatically be opened when you click on the button. If a
pointer isreally an array, you can use Type/Array... from the pop-up menu to open it as an

array.

Next comes the name of the variable, field or array element being displayed. Finaly, thevalueis
displayed. If theitem being displayed isnot a scalar item, the value displayed is an indication thet it isa
complex datatype. If the value changes when you run your program, it will be highlighted. If avariable
goes out of scope, or a pointer value becomes invalid, the value will be displayed as question marks.

Y ou can modify avariable' s value by double clicking on the value field, or by cursoring to it and pressing
enter. Double clicking or pressing enter on the name field is equivalent to clicking on the button. Pressthe
right mouse button to access the following pop-up menu items:

Modify... Modify the value of the selected item.

Break Set a breakpoint so that execution stops when the selected item’ s value changes. Thisisthe
same as setting a breakpoint on the object. See "Breakpoints' on page 71.

| nspect Open anew Variable window containing the selected item. If the item is a compound
object (array, class, or structure), it will be opened automatically.

Watch Add the selected item to the Watch window.

62 Variable and Watch Windows

Examining and Modifying the Program State

Show/Raw Memory

Display raw memory at the address of this variable. Thisletsyou examine the actual
binary representation of avariable.

Show/Pointer Memory

Display the memory that the item pointsto. Thisis useful when you have a pointer to a
block of memory that does not have a type associated with it.

Show/Pointer Code

New

FieldOnTop

Display the code that the variable pointsto. If theitem being displayed is apointer to
function, you can use this menu item to see the definition of that function.

Display the type of the variable in an information message box. Select "OK" to dismissthe
information box and resume debugging.

Open adialog box in which you can edit an expression in the Watch window. Thisis
useful for typecasting variables or evaluating expressions. See "Open Watcom Debugger
Expression Handling" on page 119.

Add anew variable or expression to the window. Y ou will be prompted for the expression
to add.

Delete the selected item from the window.

Display the value of this member at the top of the structure/class. Y ou can selectively add
or remove items from the list that is displayed "on top". For example, say you have a
struct Poi nt displayed as:

[-] point
X 10
y 30

other "asdf"

If you toggle FieldOnTop for both x and y then poi nt would be displayed like this:

[-] point { 10, 30 }
X 10
y 30
ot her "asdf"

Furthermore, if you closed the struct (or pointer to struct) then you would see:
[+] point { 10, 30 }

This carries to structs containing structs (and so on) as shown in the following struct
containing two Poi nt structures.

[-] rect { { 10, 10 }, { 30, 30 } }

top_left { 10, 10 }
bot _right { 30, 30 }

Variable and Watch Windows 63

Examining and Modifying the Program State

If you closeit, then you will see:
[+4] rect { { 10, 10}, { 30, 30} }

Class/Show Functions
Display function members of thisobject. If thisoption is not selected, no functions are
displayed. This option worksin conjunction with other Class selections to display
"Inherited", "Generated”, "Private” and "Protected” functions.

Class/Show I nherited
Display inherited members of thisobject. To seeinherited functions, you must also select
Class/Show Functions.

Class/Show Generated
Display compiled-generated members of this object. To see generated functions, you must
also select Class/Show Functions.

Class/Show Private
Display private members of thisobject. To see private functions, you must also select
Class/Show Functions.

Class/Show Protected
Display protected members of this object. To see protected functions, you must also select
Class/Show Functions.

Class/Show Static
Display static members of this object.

Type/Hex Change the value to be displayed in hexadecimal.
Type/Decimal Change the value to be displayed in decimal.

Type/Character
Change the value to be displayed as a single character constant. This useful when you have
aone byte variable that really contains a character. The debugger will often display it asan
integer by default.

Type/String The debugger automatically detects pointers to strings in the variable windows and displays
the string rather than the raw pointer value. In the string is not null terminated, contains
non-printable characters, or is not typed as a pointer to ' char’, this mechanism will not
work. Type/String overrides the automatic string detecting and displays the pointer as a
string regardless of itstype.

Type/Pointer Thiswill undo the effects of Type/String or Type/Array. It will also let you see the raw
pointer value when the debugger has automatically displayed a pointer to char as a string.

Type/Array... Usethis menu item to display apointer asif it were an array, or to display ranges of an
array’s elements. You will be prompted for the first and last element to display.

Options/Whole Expression

Select this option to show the whole expression used to access fields and array elements
instead of just the element number or field name itself.

64 Variable and Watch Windows

Examining and Modifying the Program State

Options/Expand 'this
Do not display members of the 'this' pointer asif they were local variables declared within
the member function.

7.2 The Memory and Stack Windows

-i0i x|
00018 : 62 00640C1DD VarDeclEquals+08x000006181 2|
8= 00408C19D: OC 8B 45 F4 E8 71 F9 FF FF 85 CO 75 682 EB 1D E8 . E..q..... u....
8x0048C1AD: 2B 68 01 00 8B 4D F4 OF B7 5D FC 8B 55 FO 31 CO +h...M...]..U.1.
8x0048C1BD: E8 7C F7 FF FF E8 15 68 01 80 EB OC OF B7 55 FC .|..... ho..... u.

8= 00406C1CD: 8B 45 FO E8 DA F6 FF FF EB 33 E8 00 68 01 80 E8 .E....... 3..h...
ox@e40c100: 5 B8 03 086 89 C3 B9 91 00 66 00 OF BY 55 FC 8B _._._......... u..
8x0048C1ED: 45 FO E8 4 9F 03 00 89 CA E8 45 2n 04 00 E8 48 E..N...... Ex__.@
8:004BC1FD: 3A 04 B0 B8 OB OD 0O OA E8 F4 B3 81 BB C9 5F S5E =
0x@8840C26D: 59 5B C3 73 69 67 6E 65 64 20 63 68 61 72 08 6C Y[.signed char.l |
8= 00408C21D: 6F 6E 67 28 64 6F 75 62 6C 65 28 5F 43 6F 6D 78 ong double _Comp
08x0040C22D: 6C 65 78 80 2F 2F 23 6C 69 6E 65 20 22 25 73 22 1lex.//#line "%s"
8xAB4AC23D: 20 25 75 @A @B 5F 6E 6F 5F 6E 61 6D 65 5F @@ 3C Ju.. no_name_.<
BxB04AC24D: 75 66 69 65 6C 64 3E BB 75 6E 73 69 67 6E 65 64 ufield>.unsigned
BxBB4BC25D: 208 69 6FE 74 B8 7B 2E 2E 2E 7D B8 75 6E 73 69 67 int.{...}.unsig
8x0048C26D: GE 65 64 20 6C 6F 6E 67 08 64 6F 75 62 6C 65 28 ned long.double
BxAB4AC27D: 5F 49 6D 61 67 69 6E 61 72 79 8@ 66 6C 6F 61 74 Imaginary.float
0x08840C28D: 26 5F 49 6D 61 67 69 6E 61 72 79 @8 6C 6F 6E 67 _Imaginary.long ~|

Figure 17. The Memory Window

Use the Memory window or the Stack window to examine memory in raw form. To open a Memory
window, choose Memory At from the Data menu. The Enter Memory Address dialog appears. Enter the
memory address and press Return to see the Memory window. Y ou can also use one of the Show/Pointer
Memory or Show/Raw Memory itemsin avariable window to display the memory associated with a
variable.

The Stack Window always shows the memory at the stack pointer. It is moved as your program executes to
track the top of the stack. The stack pointer location will be at the top of the window. The location of the
BP or EBP register will also beindicated. Choose Stack from the Data menu to open the Stack window.

Y ou can modify memory by double-clicking on avalue in the Memory or Stack window, or by cursoring to
it and pressing enter. Y ou will be prompted for a new value.

Memory windows allow you to follow data structures in the absence of debugging information. The
Follow menu items will reposition the memory window to the address that is found under the cursor. The
Repeat and Previousitemswill let you repeat afollow action. This makesit ssmpleto follow linked lists.
Press the right mouse button to access the following pop-up menu items:

Modify Modify the value at the selected address. Y ou will be prompted for anew value. You
should enter the value in the same radix as the window is currently displaying. You are not
limited to typing constants values. Y ou can enter an arbitrary expression to be used for the
new value.

Break on Write
Set a breakpoint to stop execution when the selected value changes. See "Breakpoints' on

page 71.

The Memory and Stack Windows 65

Examining and Modifying the Program State

Near Follow

Far Follow

Displays the memory that the selected memory points to, treating it as a near pointer. The
new offset to be displayed will be xxxx where xxxx is the word under the cursor.
DGROUP will be used as the segment if it can belocated. The program’sinitial stack
segment will be used otherwise. When you are debugging a 16-bit or 32-bit application,
the appropriate word size is used.

Displays the memory that the selected memory pointsto, treating it as afar pointer. The
new address to be displayed will be the the segment and offset found at the cursor location.
Note that pointers are stored in memory with the offset value first and the segment value
second.

Segment Follow

Cursor Follow

Repeat

Previous

Home

Assembly

Type/Byte

Type/Word

Display the segment that the selected memory points to, treating it as a segment selector.
The new address to be displayed will be xxxx:0 where xxxx is the two byte word under the
Cursor.

Make the selected position the new starting address in the window. This meansthat the
first byte in the memory window will become the byte that the cursor was pointing to. This
isuseful for navigating through an array when no debugging information is available.

Repeat the previous Follow operation. The new address that will be used is at the same
offset relative to the beginning of the window as it wasin the origina Follow operation.
Repeating a pointer or segment follow isalinked list traversal. Repeating a Cursor Follow
operation advancesto the next element in an array.

Back out of a Follow or Repeat operation. Thiswill display the memory window you were
previously viewing. Essentialy, this undoes a Follow operation. Y ou can back all the way
out to the first memory location you were examining.

Undo all Follow and Repeat operations. Thiswill take you back to the very first location
window you were examining. It isequivalent to using Previous repeatedly.

Scroll the window backward through memory by the size of the displayed memory items.

Scroll the window forward through memory by the size of the displayed memory items.

Position the window at a new address. Y ou will be prompted to type in a new address.
You can type an arbitrary expression. See "Open Watcom Debugger Expression Handling"
on page 119. If you type the name of avariable, the address of that variable isused. If the
expression you type does not contain a segment value DGROUP will be used as the
segment if it can belocated. The program’sinitial stack segment will be used otherwise.

Position the assembly window to the address of the memory under the cursor. Thisis
useful if you have incorrectly displayed a pointer as data and wish to look at the code
instead.

Display as hexadecimal bytes.

Display as hexadecimal 16-bit words.

66 The Memory and Stack Windows

Examining and Modifying the Program State

Type/Dword Display as hexadecimal 32-bit words.
Type/Qword Display as hexadecimal 64-bit words.
Type/Char Display as signed 8-bit integers.
Type/Short Display as signed 16-bit integers.
Type/Long Display as signed 32-hit integers.
Type/__int64 Display as signed 64-bit integers.

Type/Unsigned Char
Display as unsigned 8-bit integers.

Type/Unsigned Short
Display as unsigned 16-bit integers.

Type/Unsigned Long
Display as unsigned 32-hit integers.

Type/Unsigned __int64
Display as unsigned 64-bit integers.

Type/0:16 Pointer
Display as 16-bit near pointers (16-bit offset).

Type/16:16 Pointer
Display as 32-hit far pointers (16-bit segment, 16-hit offset).

Type/0:32 Pointer
Display as 32-bit near pointers (32-bit offset).

Type/16:32 Pointer
Display as 48-bit far pointers (16-bit segment, 32-bit offset).

Type/Float Display as 32-hit floating-point values.
Type/Double Display as 64-bit floating-point values.
Type/Extended Float

Display as 80-bit floating-point values.

7.2.1 Following Linked Lists

Use the memory window to display the memory address of the first node of your linked list. Move to the
"next" field of your structure and use the Near (or Far) Follow command. The next node of your linked list
will be displayed. Now by using the Repeat command you can traverse the linked list.

The Memory and Stack Windows 67

Examining and Modifying the Program State

7.2.2 Traversing Arrays

Display the memory address of your array. Select the first byte of the second element of your array then
use the Cursor Follow command to move the second element of your array to the beginning of the memory
window. By using the Repeat command you can traverse your array.

68 The Memory and Stack Windows

Breakpoints

Breakpoints

70

8 Breakpoints

The Open Watcom Debugger uses the single term breakpoint to refer to the group of functions that other
debuggers often call breakpoints, watchpoints, and tracepoints.

A breakpoint istraditionally defined as a place in your program where you want execution to stop so that
you can examine program variables and data structures. A watchpoint causes your program to be executed
one instruction or source line at atime, watching for the value of an expression to become true. Do not
confuse a watchpoint with the watch window. A tracepoint causes your program to be executed one
instruction or source line at atime, watching for the value of certain program variables or
memory-referencing expressions to change.
In the Open Watcom Debugger:

* Break-on-execute refers to the traditional breakpoint

* Break-on-write refers to the traditional tracepoint

* A traditional watchpoint is a break-on-execute or break-on-write that is coupled with a condition
The Open Watcom Debugger unifies these three concepts by defining three parts to a breakpoint:

« the location in the program where the breakpoint occurs

» the condition under which the breakpoint is triggered

« the action that takes place when the breakpoint triggers

Y ou can specify a countdown, which means that a condition must be true a designated number of times
before the breakpoint is triggered.

When a breakpoint is triggered, several things can happen:
* program execution is stopped (a breakpoint)
* an expression is executed (code splice)
* agroup of breakpointsis enabled or disabled
In this chapter, you will learn about the breakpoint including how to set simple breakpoints, conditional

breakpoints, and how to set breakpoints that watch for the exact moment when a program variable,
expression, or data object changes value.

8.1 How to Use Breakpoints during a Debugging Session

The following topics are discussed:
* "Setting Simple Breakpoints' on page 72

* "Clearing, Disabling, and Enabling Breakpoints" on page 72

How to Use Breakpoints during a Debugging Session 71

Breakpoints

8.1.1 Setting Simple Breakpoints

When debugging, you will often want to set afew simple breakpoints to make your program pause
execution when it executes certain code. Y ou can set or clear a breakpoint at any location in your program
by placing the cursor on the source code line and selecting Toggle from the Break menu or by clicking on
the button to the left of the source line. Y ou can set breskpoints in the assembly window in asimilar
fashion. Setting a break-on-write breakpoint is equally simple. Select the variable with the right mouse
button and choose Break from the pop-up menu.

Break points have three states. They are:

* enabled
* disabled
* cleared (non-existent)

The button for an enabled break point isastop sign or [!]. The button for a disabled break point isagrey
stop signor[.]. A greendiamond or [] appears when no breakpoint exists at the given line. The same
buttons also appear in the Assembly window and the Break window to indicate the status of a break point.

Note; Some linesin your program do not contain any machine code to execute and therefore, you
cannot set a breakpoint on them. The compiler does not generate machine code for
comments and some C constructs. All lines of code in your program that can have a
breakpoint on them have a button to the left of the source line. Y ou can click on them to
change their current status.

8.1.2 Clearing, Disabling, and Enabling Breakpoints
Choosing Toggle from the Break menu (F9) toggles between the three different breakpoint states:

* enabled
* disabled
» cleared (non-existent)

8.2 The Break Menu

Y ou can use the Break menu to control your breakpoints. Operations including creating new breakpoints,
changing a breakpoint’s status, and viewing alist of all break points.

Toggle Change the status of the breakpoint at the current line in the source or assembly window.
The status alternates between enabled, disabled and cleared. The button on the source or
assembly line will be updated to reflect the status of the breakpoint.

Note: Disabled and cleared breakpoints are not the same. If you disable a
breakpoint, you can re-enable it and retain the information about the
breakpoint (i.e., conditions, countdown, and actions). When you clear a
breakpoint, you lose all information about the breakpoint. If you disable a
breakpoint, and press F9 twice to enable, you will lose the information
about the breakpoint because you cleared it before you re-enabled it. To
enable a disabled breakpoint without losing the breakpoint information, use
the Breakpoint Option dialog or the Breakpoint window.

72 The Break Menu

Breakpoints

At Cursor

New

Set a breakpoint at the current line in the source or assembly window. If the current line
does not contain any executable code, the breakpoint is set on the closest preceding line of
code that does contain executable code. When you choose At Cursor, the Breakpoint
dialog appears.

This allows you to create any type of breakpoint using adialog. Y ou must specify the
addressin the dialog.

On Image Load...

Cause program execution to stop when an executable image (DLL) is dynamically |oaded.
The menu item is only available when debugging an Win32 or OS/2 executable. A
dialogue will appear allowing you to add and delete image names from the list. Y ou only
need to type a substring of the actual image name. Y ou can identify thefile
"C\PATH\IMAGE.DLL" with any substring, for example"IMAGE", "IMAGE.DLL" or
"ATH\IMAGE.DLL". Caseisignored in theimage names.

On Debug Message

View All

Clear All

Disable All

Enable All

Save

Restore

When checked, cause program execution to stop whenever Windows 3.1, Windows NT, or
Windows 95 prints a debug string. A debug string is printed whenever the application or
debug Kernel calls the OutputDebugString function. Thisoptionistoggled each timeit is
selected from the Break menu.

Open the breakpoint window. Thiswindow will show alist of al breakpoints. You can
use the window to create, delete and modify breakpoints.

Clear al breakpoints.
Disable all breakpoints, but do not delete them.
Enable all breakpoints that are disabled.

Save all breakpoint information to afile. Thisisuseful when you are creating complicated
breakpoints. Y ou can save and restore them in alater debugging session.

Restore a set of breakpoints that were saved by using Save from the Break menu.

The Break Window 73

Breakpoints

8.3 The Break Window

=1olx|
@ BatchLink_: SemReadDone = OpenSemaphore{ SEMAPHORE
@ GUIGetAbsRect : hwnd = GUIGetParentFrameHYND({ wnd };

@ GUIEnableControl_: if{ control 1= (HWNDINULL

@ : GetClassName{ hwnd. buff. CLASS _LENGTH + 1);
@ guissel@GUISelect _: msg = MLM_GETSEL;

@ GUISetEditSelect : bool GUISetEditSelect{ qui_window *wnd. unsigne
@ RtlQuerylnformationAcl: push ebp

@ DbgUiConnectToDbag: push ebp

A 2

Figure 18. The Break Window

The Break window displays each breakpoint and its status. It appears when you select the View All from
the Break menu A breakpoint button appears at the left of each line. Y ou can click on this button to enable
and disable a breakpoint. Unlike the source and assembly windows, the button will not clear the
breakpoint. Next appears the address of the breakpoint. Finally, for break-on-execute breakpoints, the
source or assembly code at the break point location is displayed. For break-on-write breakpoints, the
current value of the location is displayed in hex.

Y ou can modify any break point by double clicking on it, or by cursoring to it and pressing enter. The
Breakpoint Options dialog will appear to allow you to modify the break point. Press the right mouse button
to access the following pop-up menu items:

Modify

New

Delete
Enable
Disable

Source

Assembly

Change the definition of the selected breakpoint. The Breakpoint dialog will appear.
Add anew breakpoint. An empty Breakpoint dialog will appear. Y ou must specify the
address of the new Breakpoint. Refer to the section entitled "The Breakpoint Dialog" on
page 75 for adescription of the itemsin the which appear in the dialog.

Delete the selected breakpoint.

Enable the selected breakpoint.

Disable the selected breakpoint.

Display the source code associated with the break point. This operation only makes sense
for break-on-execute breakpoints.

Display the assembly code associated with the selected line. This operation only makes
sense for break-on-execute breakpoints.

74 The Break Window

Breakpoints

8.4 The Breakpoint Dialog

Break Point x|

= Address —Conditioh————————— ~ Break On-
{main+0x00000004 | | |ebx == 42 (¥ Execute
-1 Byte
— Countdown- ~TotalHits——————— | 2 Bytes
I 0 Reset I 4 Bytes

= Execute When Hit

I~ PBesume ¥ Enabled

~Walue

puzh ebx

k. I Clear Syrbol.. Cancel

Figure 19. The Breakpoint Dialog

The breakpoint dialog appears when you select At Cursor from the Break menu or New from the Break
menu and whenever you attempt to modify abreak point. It allows you to define the breakpoint and set all
of its conditions. A description of the itemsin the dialog follows.

Address

This edit field displays the address tag associated with the selected breakpoint.

When you choose At Cursor thisfield already contains an address that describes the line of
code that the cursor ison. The format of the addresstag is synbol +of f set where
synbol isthe name of the nearest function and of f set isdistance in bytes past that
symbol where the break point is defined. It isnormally best NOT to edit thisfield. To
change the line of source code, leave the dialog, move the cursor to where you want the
breakpoint, and use the At Cursor command again.

When you choose New, thisfield isempty. Y ou can type any valid address expression in
thisfield. It can be the name of afunction, global variable. Refer to the section entitled
"Open Watcom Debugger Expression Handling" on page 119 for more information about
address expressions. In the dialog, you can click the Symbols... button as ashortcut. You
can type apartial symbol name like f 0o and the Symbol button will show you alist of
symbolsthat start with f 0o. Y ou can then choose one of these symbols by clicking on it
or hitting ENTER. Note that the first time you use the Symbols... in adebugging session,
it will take awhile as the debugger sorts the symbol table for the program.

The Breakpoint Dialog 75

Breakpoints

Condition

Note: Be careful when using local (stack) variables for a break-on-write
breakpoint. Assoon as execution |eaves the scope of the variable, the
memory will change at random since the variable does not really exist any
more and the memory will be used for other variables. Also, if execution
enters that variable's scope again, the variable may not have the same
memory address.

Use thisfield to enter a conditions that must be met before a breakpoint will trigger. The
condition can be an arbitrary debugger expression. These include statementsin the
language you are debugging. A valid example for the C languageis i ==

Break on Execute

Check thisfield to create a break-on-execute breakpoints. If you choose Execute, be sure
that the address field contains a code address (function name or code line number) and not
avariable address. Variable are never executed. If the address field names avariable, the
breakpoint will never trigger.

Break on 1 Byte/2 Bytes/4 Bytes...

Countdown

Total Hits

Reset

Check one of these fields to create break-on-write breakpoints. If you choose one of these
options, be sure that the Address field contains a variable address and not a code address.
A code address will never be written to, so the breakpoint will never trigger. The size of
the memory location is defined by the checkbox you use as follows:

1 Byte The breakpoint will trigger only when the first byte of the memory address
iswritten to.

2 Bytes The breakpoint will trigger when either of the first two bytes at the memory
address are written to.

4 Bytes The breakpoint will trigger if any of thefirst four bytes of the memory
address are written to.

etc. The breakpoint will trigger if any of thefirst "n" bytes of the memory

address are written to.

Use thisfield to enter the number of times an address must be hit before the breakpoint
triggers. Every time the breakpoint conditions are met, the countdown decreases by one.
The breakpoint will trigger only after the countdown is at zero. Once the countdown
reaches zero, the breakpoint will trigger each time the conditions are met. |f you have also
set a condition, the countdown will only decrease by one when the condition is true.

Thisfield displays the total number of times an address has been hit. Thisincludesthe
times the breakpoint does not trigger because a condition failed or the countdown has not
yet hit zero.

Click on this button to reset the Total Hitsfield to zero.

Execute when Hit

Usethisfield to enter a debugger command. When the breakpoint is triggered, the
debugger will execute thiscommand. Y ou can use this field to execute arbitrary C
statements, change a variable or register, or even set other breakpoints. For a more detailed
description of commands that can be entered in this field, refer to the section called
"Debugger Commands" on page 145. If you want to use thisfield to execute a statement in
the language you are debugging, you need to use a DO command in front of the statement.
For example, you could enter DO i = 10 to have the value of 10 assigned to i each time
the breakpoint triggered.

76 The Breakpoint Dialog

Breakpoints

Resume Check thisfield if you want the program to resume execution after the Execute when Hit
command has been completed. This capability can be used to patch your code.

Enabled Thisfield displays the current status of the breakpoint. If it is checked, the breakpoint is
enabled. If it isunchecked, the breakpoint is disabled.

Value For Break-on-Execute breakpoints this field displays the source line or the assembly line at
which the break point is defined. For Break-on-Write breakpoints, this field displays the
memory contents.

Clear Click on the clear button to clear the breakpoint and close the dialog.

The Breakpoint Dialog 77

Breakpoints

78 The Breakpoint Dialog

Assembly Level Debugging

Assembly Level Debugging

80

9 Assembly Level Debugging

This chapter addresses the following assembly language level debugging features:
* "The CPU Register Window"

* "The Assembly Window" on page 82

"The I/O Ports Window" on page 83

"The FPU Registers Window" on page 84

"The MM X Registers Window" on page 84

* "The XMM Registers Window" on page 85

9.1 The CPU Register Window

¥ CPU registers {Pentium 4 /Xeon) i I]
EAX: 00000000 EBX: 00000108 ECX: 0012FEAA4
EDX: 00890138 ESI: 00000000 EDI: 00000000
EBP: D012FEYC ESP: 0012FEG4 EIP: 004016C7

EFL: Doonoz2oz C: 0 P: 0
A 0 P 0 S: 0
I: 1 D:] 0:]
D5: 0023 ES: 0023 F5: 0038
GS5: 0000 55: 0023 CS5: 0018

Figure 20. The CPU Register Window

Y ou can open the CPU Register window by choosing Register from the Data menu. The register names
and values are displayed in thiswindow. Asyou execute your program, registers that have changed since
the last trace or breakpoint will be highlighted.

Y ou can modify aregister value by double clicking on the value, or by cursoring to it and pressing ENTER.
Press the right mouse button to access the following pop-up menu items:

Modify Change the value of the selected register.

I nspect Open a Memory window displaying the memory contents of the address specified by the
register. If asegment register is selected, memory at offset 0 in the segment will be
displayed.

Hex Toggles the register window display format between hexadecimal and decimal.

Extended Displays the Extended 386 register set. This menu item sets options on a per-window
basis, overriding the global settings. When you use the menu item to change these settings,

The CPU Register Window 81

Assembly Level Debugging

they will not be saved between debugging sessions. To change an option permanently, see
"The Window Options Dialog" on page 33.

9.2 The Assembly Window

=T

Eile Runm Break ©Code Data Undo Search Window Ackion Help

REIE

001B:0040102F main+0000001F]

¢ D040101F push ebp

¢ 00401020 mov ebp.esp

¢ 00401022 sub esp.00000008
floatf=1;

@ oo401028 mov dword ptr -08[ebp].3F800000 0023:0006FE74=3I
f=173.14;

2 0040102F fild dword ptr -08[ebp] 0023:0006FE74=3F800000

¢ 00401032 fdiv qword pir 0040300C 0023:0040300C=40091EB8E_ |

=00401038 fstp dword ptr-08[ebp] 0023:0006FE74=3F800000
printf{ "%4gin". 1);

<€ 00401038 fild dword ptr -08[ebp] 0023:0006FE74=3F800000

¢ 0040103E sub esp.00000008

2 00401011 fstp gword ptr [esp] 0023:0006FE74=000001083F80(

2 00401044 mov eax. 00409004

¢ 00401049 push eax

¢ 0040104A call near ptr printf_ <

Al _'I_I

Break on execute: main+0000001 8{fp(@5)

Figure 21. The Assembly Window

Y ou can open the Assembly window by choosing Assembly from the Code menu. Y ou can Inspect an item
in by double-clicking onit, or by cursoring to it and pressing ENTER. Press the right mouse button to
access the following pop-up menu items:

I nspect When you selecting a memory address, register or operand and use Inspect, the debugger
opens a Memory Window displaying the selected memory address.

Break If acode addressis selected this command will set a break-on-execute breakpoint at the
selected code address. If avariable addressis selected, this command will set a
break-on-write breakpoint on the selected address. this does not set a break at the current
line. Use Toggle from the Break menu or At Cursor from the Break menu to set a
breakpoint at the current line.

Enter Function
Resume program execution until the selected function is executed.

Show/Source Display the source code associated with the selected assembly line.

Show/Functions
Show thelist of all functions defined in the current module.

Show/Address Reposition the window at a new address. Y ou will be prompted for an expression.
Normally you would type a function name but you can type any expression that resolves to

82 The Assembly Window

Assembly Level Debugging

acode address. For example, you might type the name of avariable that contains a pointer
to afunction. See"Open Watcom Debugger Expression Handling" on page 119.

Show/Module...
Show a different module. Y ou will be prompted for itsname in adialog. Asashortcut,
you can type the beginning of a module name and click the Module... button. Thiswill
display alist of all modules that start with the text you typed.

Home Reposition the window to the currently executing location. The cursor will move to the
next line of the program to be executed.

No source Toggle the Assembly window display between only assembly code and assembly code
intermixed with source lines. This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these settings, they
will not be saved between debugging sessions. To change an option permanently, see "The
Window Options Dialog" on page 33.

Hex Toggle the Assembly window display between hexadecimal and decimal. This menu item
sets options on a per-window basis, overriding the global settings. When you use the menu

item to change these settings, they will not be saved between debugging sessions. To
change an option permanently, see "The Window Options Dialog" on page 33.

9.3 The I/0 Ports Window

SI=TE

@l 0x03DA B0
2l 0x03C2 06
ez 0x0400

Figure 22. The 1/0 Window

Use the I/O window to manipulate |/O ports. Thisisonly supported when the operating system allows
application software to use IN and OUT instructions. 1/0 ports can be added to the window, and typed asa
byte, word (2 bytes) or dword (4 bytes). Use New from the pop-up menu to add a new port to the window.
Once you have done this, four items will appear on the line. First appears the read button which appears as
an open book, or [r]. Second appears the write button. It isapencil or [w]. Third appears the port address,
and finally the value. When you first enter a port address the value appears as question marks. The
debugger does not automatically read or write the value since this can have side effects. In order to read
the displayed value from the port, click on the read button. To write the displayed value back, click on the
write button. Y ou can change the value by double clicking on it, or by cursoring to it and pressing ENTER.
Press the right mouse button to access the following pop-up menu items:

Modify Change the selected item. Y ou can change either the value field or the addressfield. This
does not write the value back to the port. Y ou must choose Write to write to the port.

New Add anew line to the window. Y ou can have several 1/O ports displayed at once.

The I/O Ports Window 83

Assembly Level Debugging

Delete Delete the selected line from the window.

Read Read the displayed value from the port.

Write Write the displayed value to the port.

Type Change the display type of the value. The size of this type determines how much is read

from or written to the I/O port.

9.4 The FPU Registers Window

¥ FPU registers {Pentium 4,/%eon) ___I_El_lll
ST(0): +2.340000000000000000E+0001 TAG(0): Valid ie: 0 st 7 im: 1 status: 3820

ST(1): ?222227979292929292029909007 TAG(1): Empty de: 0 c0: 0 dm: 1 control: 127F

ST(2): ?7272727979292929292290900° TAG(2): Empty ze: 0 cl: 0 zm: 1 pc: double

ST(3): ?292292922922029009109000°7? TAG(3): Empty oe: 0 c2: 0 om: 1 rc: nearest

ST(4): ?72?722279792929292929290900° TAG(4): Empty ue: 0 c3: 0 um: 1 ic: affine

ST(B): ?2727279792929292920290900° TAG(5): Empty pe: 1 pm: 1 iptr: 0x001B:0x00401455
ST(6): ?27272792929292929292020900° TAG(6): Empty sf: 0 iem: 0 optr: 0x0023:0x0006FD38
ST(7): ?727222797929292929202090900° TAG(7): Empty es: 0

Figure 23. The FPU Registers Window

Choose FPU Registers from the Data menu to open the FPU window. Thiswindow displays the current
value and status of all the FPU registers. If you are debugging a program that uses Intel 8087 emulation,
this window display the contents of the emulator’ s dataarea. Y ou can change a value by double-clicking
on, it or by cursoring to it and pressing ENTER. Press the right mouse button to access the following
pop-up menu items:

Modify Change the value of the selected register, or bit. Y ou will be prompted for a new value,
unless you are modifying abit. A bit will toggle between 0 and 1.

Hex Toggle the FPU window display between hexadecimal and floating-point display. This
menu item sets options on a per-window basis, overriding the global settings. When you
use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

9.5 The MMX Registers Window

_ioix
b? bb b5 b4 b3 b? b1 bl
MMO: -69 51 51 51 51 51 48 1]
Mi1: O 0 1] 1] 1] 0 1] a
MMZ2: 0 0] 0 0 0] 0
MM3: 0 0 1] 1] 1] 0 1] 1]
Mi4: 0 0 1] a 1] 0 1] a
M5 0 0] 0 0 0] 0
MMb: O 1} 1] 1] 1] 0 1] 1]
MM7: -bb -6 32 0] 0 1] a

Figure 24. The MMX Registers Window

84 The MMX Registers Window

Assembly Level Debugging

Choose MM X Registers from the Data menu to open the MM X window. Thiswindow displays the current
values of all the MMX registers. Y ou can change a value by double-clicking on, it or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following pop-up menu items:

Modify

I nspect

Hex

Signed

Byte
Word
Dword
Qword

Float

Change the value of the selected register component. Y ou will be prompted for a new
value. The same action can be performed by pressing ENTER or double-clicking as
described above.

Thisitem has no function in the MM X register window.

Toggle the MMX register window display between hexadecimal and floating-point display.
This menu item sets options on a per-window basis, overriding the global settings. When
you use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

Toggle the display of the contents of the MM X registers as sighed or unsigned quantities.
When "signed" is enabled, each byte, word, doubleword or quadword is displayed asa
signed quantity. When "signed" is disabled, each byte, word, doubleword or quadword is
displayed as an unsigned quantity.

Display the contents of the MM X registers as a series of 8 bytes.

Display the contents of the MM X registers as a series of 4 words.

Display the contents of the MM X registers as a series of 2 doublewords.

Display the contents of the MM X registers as single quadwords.

Display the contents of the MM X registers as a series of 2 IEEE single-precision
floating-point values.

9.6 The XMM Registers Window

=loix]
q q0

XKMMO: +1.58861484013581E-279 +0.00000000000000E +000 ie: 0 im: 1

XMK1: +0.00000000000000E+000 +2.49329757282763E-310 de: 0 dm: 0

XMM2: +0.00000000000000E+000 +0.00000000000000E+000 ze: 0 zm: 0

XMM3: +0.00000000000000E+000 +0.00000000000000E +000 oe: 0 om: O

XMM4: +0.00000000000000E+000 +0.00000000000000E+000 ue: 0 um: 0

XMM5: +0.00000000000000E+000 +0.00000000000000E+000 pe: 0 pm: O

XMME: +5.18299565769760E-318 +0.00000000000000E +000 fe: 0 e nearest
XMM7: +0.00000000000000E+000 +0.00000000000000E+000 daz: 0 mxcsr: 00000080
1 1! 2l

Figure 25. The XMM Registers Window

Choose XMM Registers from the Data menu to open the XMM window. Thiswindow displays the current
values of all the XMM registers, as well as the contents of XMM status registers. Y ou can change avalue
by double-clicking on, it or by cursoring to it and pressing ENTER. Press the right mouse button to access
the following pop-up menu items:

The XMM Registers Window 85

Assembly Level Debugging

Modify

I nspect

Hex

Signed

Byte
Word
Dword
Qword

Float

Double

Change the value of the selected register component. Y ou will be prompted for a new
value. The same action can be performed by pressing ENTER or double-clicking as
described above.

Thisitem has no function in the XMM register window.

Toggle the XMM register window display between hexadecimal and floating-point display.
This menu item sets options on a per-window basis, overriding the global settings. When
you use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

Toggle the display of the contents of the XMM registers as signed or unsigned quantities.
When "signed" is enabled, each byte, word, doubleword or quadword is displayed asa
signed quantity. When "signed" is disabled, each byte, word, doubleword or quadword is
displayed as an unsigned quantity.

Display the contents of the XMM registers as a series of 16 bytes.

Display the contents of the XMM registers as a series of 8 words.

Display the contents of the XMM registers as a series of 4 doublewords.

Display the contents of the XMM registers as a series of 2 quadwords.

Display the contents of the XMM registers as a series of 4 single-precision floating-point
values.

Display the contents of the XMM registers as a series of 2 double-precision floating-point
values.

86 The XMM Registers Window

Remote Debugging

Remote Debugging

88

10 Remote Debugging

10.1 Overview

Remote debugging allows you to run the debugger on one side of a communication link and the application
being debugged on the other. Remote debugging is required when there is not enough memory to run both
the debugger and the application on the same machine. Remote debugging may also be required for
debugging graphical applications.

The DOS debugger runsin protected mode (above the 1M mark), with a small memory footprint in the first
640k. Newer operating systems such as OS/2 and Windows NT/9x have eliminated the 640k barrier, so
thereislittle need for remote debugging due to memory limitations alone. However, remote debugging is
often helpful when debugging graphical or interactive application where the debugger interferes with the
user application. Remote debugging is also required to debug Novell NetWare applications, or specialized
embedded systems that cannot run the entire debugger.

There are many different communication links supported. Some communicate between two machines. In
this case an external communication medium is used. Some links communicate between two operating
systems shells on the same machine. In either case, the concepts are the same.

While remote debugging, you may want to reference afile that is found on one machine or the other. See
the section entitled " Specifying Files on Remote and Local Machines' on page 100 for details about remote
and locd file names.

The debugger is broken down into 4 parts.

The Debugger Thisisthe portion of the debugger that contains the user interface. It isthe largest part of
the debugger. Its nameis either WD.EXE, WDW.EXE or WDC.EXE

The Debug Kernel The debugger interprets your requests and sends low level requests to the debug kernel.
Itisasmall executable that is dynamically loaded by the debugger or a remote debug
server and used to control your application. It can be called STD.TRP, STD.DLL,
RSI.TRP or PLS.TRP

Remote Trap Files— These are versions of the debug kernel file that take requests and send them across a
communications link to aremote debug server. You choose atrap file using the debugger’s
"trap" option. See"Common Switches' on page 16. Trap files have a 3 |etter file name
that represents the name of the communications layer being used. Thefile extensionis
TRPorDLL.

Remote Debug Servers— These executable files receive requests from a communications link and pass
them to a debug kernel. Remote debug server names al start with ???SERV. Thefirst 3
letters represent the communication layer being used and correspond to the trap file that is
used on the other side of the link.

In the following examples,

Overview 89

Remote Debugging

A>cndl
B>cnd2

indicates that cnd1 isto be run on one machine and cnd?2 isto be run on the other.

A normal non-remote debugging session just uses the user interface and the debug kernel. All components
run on the same machine. This simple debugging session would be started with the command:

A>wd app

R + o Fommm oo + ST +
| WD. EXE | | STD. TRP | | APP. EXE |
| Il | | I
| VA | | I
| || | | |
Fomm e e oo - R S, + Fomm - o - +

Debugging a Tenberry Software DOS/4GW (32-bit extended DOS) application is the same except you must
use a different trap file to control the application.

A>wd /trap=rsi app

A remote debugging session adds a remote debug server and aremote trap file aswell. For example, using
the paralléel port to debug between two machines would be accomplished using the following components:

A>par serv
B>wd /tr=par app

R T +
| WD.EXE | | PAR TRP |
| Il |
| VA |
| |1 |
SR + oo m e m oo +

+-- parallel --+

| cabl e
+I -------- T + T +
PARSERV		STD.TRP		APP. EXE
. EXE /!				
VA				
	1			
SR + oo m e m oo + Fomm e - +

In order to start the above remote debugging session, you must follow these steps.

1. Connect the two machines with aparalel cable. See "Wiring For Remote Debugging" on page
173.

90 Overview

Remote Debugging

N

Start the remote debug server (PARSERV) on one machine.

3. Start the debugger with the option "/trap=PAR" on the other machine. This causes the debugger
to load the remote trap file (PAR). Thiswill communicate across the remote link to

PARSERV .EXE, which will in turn communicate with the debug kernel (STD) in order to debug
the application.

The rest of the debugger command lineisidentical to the command you would type if you were debugging
the application locally.

Y ou must start the remote debug server first. If you do not, the remote trap file will not be able to establish
acommunication link and the debugger will refuse to start.

It isimportant to realize that the application to be debugged must reside on the debug server machine. 1t
must be possible for the debug server to locate the application to be debugged. 1t can be in the current
working directory of the debugger server machine, or in the PATH, or a path to locate the application on
the debug server machine can be specified on the debugger command line. Alternatively, you can ask the
debugger to download the application to the debug server machine if the application resides on the
debugger machine.

A>par serv
B>wd /down /tr=par app

See the description of the "download" option in the section entitled "Common Switches' on page 16.

If you are remote debugging a 32-bit application, you must use the correct trap file on the remote debug
server side of thelink. The trap file specification must come first before any other arguments on the
command line.

A>serserv /tr=rsi
B>wd /tr=ser app

R R +
| WD.EXE | | SER TRP |
| Il |
| VA |
| |1 |
R + e e m o +
I

+--- serial ---+

| cabl e
+I -------- R + U +
| SERSERV | | RSI.TRP | | APP. EXE |
| . EXE /1l | | [
| VA | | |
| |1 | | |
R + e e m o + Fom e - +

Following is an example of an internal remote link. This example shows you how to use the OS/2 version
of the debugger to debug a DOS application.

Overview 91

Remote Debugging

92

e R +
| WD.EXE | | NVP.DLL |
| Il |
| VA |
| (I |
Fommmmm——a- S +
|
+-- OS/2 NP APl --+
+I -------- S S + oo +
| NVPSERV | | STD.DLL | | APP. EXE |
| .EXE /| |/ | | |
| VA | | I
| |1 | | I
. S + e e oo +

The communication medium employed in this caseis OS2 Named Pipes.

The debugger provides the following remote link capabilities:

NOV

NET

PAR

SER

WIN

NMP

VDM

TCP

Communication

Thislink uses Novell’s SPX layer for communication. Supported under DOS, OS/2,
Windows 3.x, Windows NT/2000/XP and NetWare.

Thislink uses NetBIOS to communicate. If your network software supports NetBIOS, you
can use thislink. Supported under DOS, OS/2, Windows 3.x, and NetWare.

This link supports communication using the parallel or printer port. Several different cable
configurations are supported. See "Wiring For Remote Debugging" on page 173.
Supported under DOS, 0S/2, Windows 3.x, Windows 9x, Windows NT/2000/XP,
NetWare, Linux and QNX 4.

Thislink uses a serial port to communicate. Rates of up to 115K BAUD are supported.
See "Wiring For Remote Debugging” on page 173. Supported under DOS, OS/2, Windows
9%, Windows NT/2000/XP and QNX 4.

Thislink will communicate between two Windows DOS boxes. Supported under Windows
3.x and Windows 9x (for DOS applications only).

Thislink will use Named Pipes to communicate internally between OS/2 sessions. 0S/2,
DOS and Win-OS/2 sessions are supported. |f your network supports Named Pipes, and
you have at least one OS/2 machine on the network, you can communicate between 0OS/2,
DOS and Windows 3.x machines on the network. Supported under OS/2 (DOS, OS/2 and
Windows 3.x applications).

Thislink isasubset of the NMP link. It issupported under OS/2 and Windows NT. The
application being debugged must be a DOS or seamless Win-OS/2 application. Supported
under OS/2 and Windows NT (DOS, OS/2 and Windows 3.x applications).

Thislink will use TCP/IP to communicate internally or over a network between sessions.
Supported under DOS, 0S/2, Windows 9x, Windows NT/2000/X P, Linux and QNX.

parameters may be passed to the remote trap file and the remote server. They are passed to

the remote trap file by following the name of the trap file with a semi-colon and the parameter. For

example:

Overview

Remote Debugging

A>serserv 2.4800

passes the parameter 2.4800 to the remote debug server. To pass the same parameter to the remote trap file,
use:

B>wd /tr=ser;2.4800 app
These link parameters are specific to each remote link and are described in the following section.
Each of the debug servers can accept an optional "Once" parameter. The "Once" parameter is used by the
Open Watcom Integrated Development Environment. Usually, a server stays running until terminated by

theuser. If the"Once" option is specified, the remote server will terminate itself as soon as the debugger
disconnects from it.

10.2 Link Descriptions

The following communication links are described:

"NOV (Novell SPX)"

"NET (NetBIOS)" on page 94

"PAR (Parallel)" on page 94

"SER (Seria)" on page 95

"WIN (Windows 3.x/9x Virtual DOS Machine)" on page 96

"NMP (Named Pipes)" on page 97

"VDM (Virtual DOS Machine)" on page 98

"TCP/IP (Internet Packets)" on page 99

10.2.1 NOV (Novell SPX)

Thislink communicates over aNovell Network. 1n order to use thislink, you must have a NetWare
requester installed on both machines. Be sure that it is configured to include the SPX option. Consult your
NetWare documentation for details.

The parameter to thislink is an arbitrary name to be used for the connection. This allows multiple network
users users to remote debug simultaneously. The default nameisNovLink. If the remote server will not
start, try specifying a different name for the link. The following example shows how to use the default link
parameters:

A>novserv
B>wd /tr=nov app

The following example shows how to hame "john" as alink parameter:

Link Descriptions 93

Remote Debugging

A>novserv john
B>wd /tr=nov;john app

10.2.2 NET (NetBIOS)

Thislink communicates over NetBIOS. In order to use thislink, you must have NetBIOS installed on both
machines. Consult your network documentation for details.

The parameter to thislink is an arbitrary name to be used for the connection. This allows multiple network
users users to remote debug simultaneously. The default name is NetLink. The following example shows
how to use the default link parameters.

A>net serv
B>wd /tr=net app

The following example shows how to use the name "tammy" as alink parameter.

A>net serv tammy
B>wd /tr=net;tamy app

10.2.3 PAR (Parallel)

Thislink communicates over the parallel port. Three different cable types may be used. They are called
the LapLink, Flying Dutchman, and Watcom cables. Although the Watcom cable will communicate
considerably faster than the other two, we have found it to be unreliable on some printer cards. See
"Wiring For Remote Debugging" on page 173.

The parameter to thislink is a number from 1 to 3 or the letter "p" followed by a hexadecimal printer 1/0
port address. Thistells the software which parallel port the cable is connected to (LPT1, LPT2, LPT3).
The default is 1. The parameter used on each side of the link depends on which printer port the cableis
plugged into on that machine. It need not be the same on both sides. The following example shows how to
debug across a parallel cable plugged into printer port 3 on one machine and port 2 on the other.

A>parserv 3
B>wd /tr=par;2 app

As an aternative, you can specify aport addressto use. It isless convenient than specifying a port number
but will work on systems like OS/2 where the actual 1/0 port address cannot be obtained from the system.
The following example shows how to debug across a parallel cable plugged into I/O port 0x378 on one
machine and port 2 on the other.

A>parserv p378
B>wd /tr=par;2 app

Windows NT Note: Under Windows NT/2000/XP you must have the dbgport.sys device driver installed
and loaded on your machine before the host debugger will be able to access the parallel port. Toinstal this
file manually, first copy it from %WATCOM %\binnt\dbgport.sys to %WINDOW SY%\system32\drivers.
Once the file has been copied, run the %WATCOM %\binnt\dbginst.exe program to install the device driver
and activateit. Y ou will need to have system administrator permissionsin order to be able to run the
dbginst.exe program. Once these two steps are done, the parallel port debugger can work. Note also that if
you wish to do parallel port debuging on atarget machine running Windows NT/2000/XP, you will need to
follow the same set of steps on the target machine as well.

94 Link Descriptions

Remote Debugging

If you are going to debug a DOS extender application, then you must also specify atrap file to the server
program. The trap file must be specified before the port number. The following example shows how to
debug a 32-bit DOS/AGW application across a parallel cable plugged into printer port 2 on one machine
and port 3 on the other.

A>parserv /tr=rsi 2
B>wd /tr=par;3 app

The"RSI" trap fileis specified for DOS/AG(W) applications. Y ou can specify other trap files for the other
DOS extenders (e.g., "CW" for CauseWay). Do not forget to include other required files in the path.

Ccw Both "CWSTUB.EXE" and the loader help file "CWHELP.EXE" must also be located in
one of the directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging CauseWay 32-bit DOS Extender Applications' on page 110 for more
information on debugging applications that use the CauseWay DOS extender.

RS Both "DOSAGW.EXE" and the loader help file "RSIHELP.EXP"' must also be located in
one of the directorieslisted in the DOS PATH environment variable. Seethe section
entitled "Debugging DOS/4G(W) 32-bit DOS Extender Applications’ on page 110 for
more information on debugging applications that use the DOS/AGW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP",
and "PEDHELP.EXP" must be located in one of the directories listed in the DOS PATH
environment variable. See the section entitled "Debugging Phar Lap 32-bit DOS Extender
Applications' on page 110 for more information on debugging applications that use the
Phar Lap DOS extender.

10.2.4 SER (Serial)

Thislink communicates over the serial port. See the appendix entitled "Wiring For Remote Debugging” on
page 173 for wiring details. The debugger and server will automatically synchronize on a communications
speed. They may communicate at rates as high as 115kB. The DOS and OS/2 "mode" command or the
QNX "stty" commands need not be used.

The parameter to this link takes the form
port nunber.baud_rate

port _nunber isanumber from 1 to 3 indicating which seria port the cable is connected to. The default
isl.

baud_r at e isthe maximum BAUD rate at which to communicate. If you already know the maximum
BAUD rate at which the two machines will communicate, this parameter will speed up the connection time
by eliminating some of the synchronization protocol.

baud_r at e may be any of 115200, 57600, 38400, 19200, 9600, 4800, 2400, or 1200. It may be
shortened to thefirst 2 digits.

A special BAUD rate of Oisaso alowed. This should be used if the serial port has been pre-assigned
using the "mode" or "stty" commands. The pre-assigned BAUD rateis used and the BAUD rate
negotiation is avoided. Thiswill allow you to debug over a modem.

The following example shows how to debug across a serial cable using default settings:

Link Descriptions 95

Remote Debugging

A>serserv
B>wd /tr=ser app

The following example shows how to debug across a serial cable using seria port 2 on each machine
setting the maximum BAUD rate to 9600:

A>serserv 2.9600
B>wd /tr=ser;2.9600 app

QNX 4 Note: Under QNX 4, anode id may be specified followed by a commaiif the serial port is not
located on the current node. The command "serserv 3,1.9600" would use the device
/[3/dev/serl at aBAUD rate of 9600. Alternatively, you can specify a device such as
/dev/foobar. To specify the maximum line speed, you can specify something like
/dev/foobar.56. Of course, you can also include a node id such as //5/dev/foobar.

A>serserv [/ 3/ dev/ser2.9600
B>wd /tr=ser;//5/dev/ser2.9600 app

If you are going to debug a DOS extender application, then you must also specify atrap file to the server
program. The trap file must be specified before the port number and BAUD rate. The following example
shows how to debug a 32-bit DOS/AGW application across a serial cable using serial port 1 on one machine
and serial port 2 on the other machine setting the maximum BAUD rate to 9600 for each:

A>serserv /tr=rsi 1.9600
B>wd /tr=ser;2.9600 app

The"RSI" trap fileis specified for DOS/AG(W) applications. Y ou can specify other trap files for the other
DOS extenders (e.g., "CW" for CauseWay). Do not forget to include other required files in the path.

Ccw Both "CWSTUB.EXE" and the loader help file "CWHELP.EXE" must also be located in
one of the directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging CauseWay 32-bit DOS Extender Applications' on page 110 for more
information on debugging applications that use the CauseWay DOS extender.

RS Both "DOSAGW.EXE" and the loader help file "RSIHELP.EXP"' must also be located in
one of the directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging DOS/4G(W) 32-bit DOS Extender Applications' on page 110 for
more information on debugging applications that use the DOS/AGW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP",
and "PEDHELP.EXP" must be located in one of the directories listed in the DOS PATH
environment variable. See the section entitled "Debugging Phar Lap 32-bit DOS Extender
Applications' on page 110 for more information on debugging applications that use the
Phar Lap DOS extender.

10.2.5 WIN (Windows 3.x/9x Virtual DOS Machine)

Thislink communicates between 2 Windows DOS boxes. In order to use thislink, you must have
Windows 3.x or Windows 95 installed on your machine. 'Y ou must run Windows 3.x in enhanced mode.
Y ou must aso include the "device" specification listed below in the [386Enh] section of your
"SYSTEM.INI" file (thisline is usually added during the Open Watcom software installation process).

DEVI CE=C: \ WATCOM BI NW WDEBUG. 386

96 Link Descriptions

Remote Debugging

In order for thislink to work properly, you must ensure that this link runsin a DOS box that has
background execution enabled.

The parameter to thislink is an arbitrary name to be used for the connection. This alows you to have
multiple remote debug sessions active simultaneously. The default nameisWinLink. The following
examples show how to use the default name or specify a link name using the Windows 3.x/95 VDM link.

A>W nserv
B>wd /tr=win app

A>W nserv whats_in_a_nane
B>wd /tr=win;whats_in_a_nanme app

The following examples show how to debug a 32-bit extended DOS application using the Windows 3.x/95
VDM link.

A>W nserv /tr=rsi
B>wd /tr=win app

A>wi nserv /tr=rsi whats_in_a nane
B>wd /tr=win;whats_in_a_nanme app

The"RSI" trap fileis specified for DOS/AG(W) applications. Y ou can specify other trap files for the other
DOS extenders (e.g., "CW" for CauseWay). Do not forget to include other required files in the path.

cw Both "CWSTUB.EXE" and the loader help file "CWHELP.EXE" must also be located in
one of the directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging CauseWay 32-bit DOS Extender Applications' on page 110 for more
information on debugging applications that use the CauseWay DOS extender.

RS Both "DOSAGW.EXE" and the loader help file "RSIHELP.EXP" must also be located in
one of the directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging DOS/4G(W) 32-hit DOS Extender Applications' on page 110 for
more information on debugging applications that use the DOS/4AGW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP",
and "PEDHEL P.EXP" must be located in one of the directories listed in the DOS PATH
environment variable. See the section entitled "Debugging Phar Lap 32-bit DOS Extender
Applications' on page 110 for more information on debugging applications that use the
Phar Lap DOS extender.

10.2.6 NMP (Named Pipes)

The named pipes link allows you to communicate between any two sessions on an OS/2 machine. Y ou can
also debug remotely between DOS, Windows 3.x and OS/2 machinesif you have installed remote named
pipe support on these machines. See your network documentation for details on remote named pipes.

In order to use named pipes, you must first run the NMPBIND program. This may run any OS/2 machine
on the network. It can be run detached, by putting the following line into your OS/2 CONFIG.SY S.

RUN=C: \ WATCOM BI NP\ NIVPBI ND. EXE

Link Descriptions 97

Remote Debugging

If you run NMPSERVW under Win-0OS/2, it must be run as a seamless Windows session. Thisisdueto
the fact that full screen Win-OS/2 sessions may not get any processor time when they are not in the
foreground.

The parameter to thislink can take the following forms:

nane
nane@machi ne

nane isan arbitrary name to be used for the connection. This allows you to have multiple remote debug
sessions active simultaneously. The default nameis NMPLink.

nmachi ne isthe name of the machine on which the NMPBIND program is running. This allows you to use
remote named pipes.

The following example shows you how to use the named pipe link between two sessions on the same OS/2
machine.

A>nnpserv
B>wd /tr=nnp app

The following example assumes that there is a machine named HAL with a remote named pipe server on
the network which is running NMPBIND.

A>nnpserv nyl i nk@al
B>wd /tr=nnp; nylink@al app

10.2.7 VDM (Virtual DOS Machine)

VDM isactualy alimited version of named pipes that does not require the NMPBIND program to be
running. It has several restrictions however.

1. It does not support network debugging.

2. Under OS/2, the debugger (user interface) must run in an OS/2 (not a DOS) session. The
debugger may aso be started under Windows NT but not Windows 95 since it does not support
named pipes.

3. Under OS2, the remote debug server must run in a seamless Win-OS/2 or a DOS session.

4. Under Windows NT, the remote debug server will be runin aWindows NT Virtua DOS
Machine.

5. Under Windows 95, the remote debug server can be started but since Windows 95 does not
support named pipesit will not work properly. Seethe section entitled "WIN (Windows 3.x/9x
Virtual DOS Machine)" on page 96 for an aternative.

6. If you are running VDM SERVW under Win-OS/2, it must be run as a seamless Windows
session. Thisisdueto the fact that full screen Win-OS/2 sessions may not get any processor
time when they are not in the foreground.

The parameter to thislink is an arbitrary name to be used for the connection. This allows you to have
multiple VDM debug sessions active simultaneously. The default nameis VDMLink. Thefollowing
exampl e shows how to use the VDM link:

A>vdnser v
B>wd /tr=vdm app

The following example shows how to use the VDM link specifying "brian" as the link name.

98 Link Descriptions

Remote Debugging

A>vdnserv brian
B>wd /tr=vdm brian app

10.2.8 TCP/IP (Internet Packets)

The TCP/IP link allows you to communicate between any two sessions using TCP/IP if you have installed
TCP/IP support. Y ou can a so debug remotely between OS/2 and Windows NT/95 machinesif you have
installed TCP/IP support on these machines. See your network documentation for details on installing
TCP/IP support. To use TCP/IP support under DOS, you need to configure the WATTCP client and install
a packet driver for your network card.

In order to use TCP/IP to remotely debug a program, you must start the TCPSERV server program first.

Example:
A>t cpserv
Socket port nunber: 3563
Open Watcom TCP/ I P Debug Server Version 1.8
&cpyrit 1988
Press 'q to exit

The server program displays an available socket port number on the screen.

Y ou may specify a TCP/IP "service" as an argument on the command line. TCPSERV will check the
TCP/IP serviceslist to find amatching service. If no argument is specified on the command line,
TCPSERYV uses "tcplink" as the service name. If no matching service nameisfound, TCPSERYV attempts
to convert the argument to a numeric port number and use that. If the argument can not be converted to a
number, port number 3563 is used.

The TCP/IP serviceslist is stored in different places depending on the operating system.
0s/2 d: \ TCPI P\ ETC\ SERVI CES depending on the drive where TCP/IPisinstalled
Linux and QNX / et c/ servi ces

Windows9x d: \ wi ndows\ SERVI CES depending on the drive and directory where Windows 95 is
installed

WindowsNT d: \ W NNT\ SYSTEM32\ DRI VERS\ ETC\ SERVI CES depending on the drive where
Windows NT isinstalled

Y ou will also need to know the Internet Protocol (IP) address of the machine running the TCPSERV
program. This can bein alphanumeric or numeric form (e.g., jdoe.watcom.on.ca or 172.31.0.99). With the
alphanumeric form, it is not necessary to specify the domain name portion if the two machines arein the
same domain.

To use the remote TCP/IP server, you must specify the TCP/IP trap file name to the debugger along with an
argument consisting of your |P address, optionally followed by a":" and the service name or socket port
number used by TCPSERYV. Y ou must also include the name of the application you wish to run and debug
on the remote machine.

Link Descriptions 99

Remote Debugging

Examplel:
A>t cpserv
B>wd /tr=tcp;jdoe app
or
B>wd /tr=tcp;172.31.0.99 app

Example2:
A>t cpserv 1024
B>wd /tr=tcp;jdoe: 1024 app
or
B>wd /tr=tcp;jdoe.watcom on. ca: 1024 app
or
B>wd /tr=tcp;172.31.0.99:1024 app

Example3:
A>t cpserv dbgservice
B>wd /tr=tcp;jdoe: dbgservice app
or
B>wd /tr=tcp;jdoe.watcom on. ca: dbgservi ce app
or
B>wd /tr=tcp;172. 31. 0. 99: dbgservi ce app

The TCP/IP remote debug service permits debugging of applications anywhere on the Internet. However,
response will vary with the distances involved.

10.3 Specifying Files on Remote and Local Machines

In order to identify files on either the local or remote machine, two special prefixes are supported.

@L The"@L" prefix is used to indicate that the file resides on the local machine (the one on
which the debugger is running).

@Q[d:][path]fil enane[.ext]

When "[path]" is not specified, the current directory of the specified drive of the local
machineis assumed. When "[d:]" is not specified, the current drive of the local machineis
assumed.

Example:
@OQUTPUT. LOG
@.D: \ CVDS
@.D: \ CVDS\ DATA. TP

@R The"@R" prefix is used to indicate that the file resides on the remote machine.
@ d:][path]fil enane[.ext]
When "[path]" is not specified, the current directory of the specified drive of the remote

machineis assumed. When "[d:]" is not specified, the current drive of the remote machine
is assumed.

100 Specifying Files on Remote and Local Machines

Remote Debugging

Example:
@RWYAPPL. DAT
@RD: \ PROGRAMS\ EXE\ MYAPPL. LNK
@R PROGRAMS\ SRC
@R PROGRAMB\ SRC\UI LI B. C

Thus afile may be identified in three different ways.

[d:][path]filenane[.ext]
@Q[d:][path]fil enane[.ext]
@I d:][path]filenane[.ext]

A file of the first form resides on either the local or remote machine depending on whether the current drive
isalocal or remote drive. A file of the second form always resides on the local machine. A file of the third
form always resides on the remote machine.

Notes:
1. Intheeach form, the omission of "[d:]" indicates the current drive.
[path] fil ename[. ext]
@[path]fil enang[.ext]
@ path]fil enang[.ext]

2. Intheeach form, the omission of "[path]" indicates the current path of the specified drive.

[d:]fil enane[.ext]
@Q/[d:]fil enane[.ext]
@[d:]fil enane[.ext]

Observe that if "[d:]" is omitted also then the following forms are obtained:

filenane[.ext]
@filename[.ext]
@f il enane[. ext]

3. The specia drive prefixes"@L" and "@R" cannot be used in your own application to reference
files on two different machines. These prefixes are recognized by the Open Watcom Debugger
only. Should the situation arise where one of your filenames begins with the same prefix ("@L",
"@l","@R" or "@r") then "@@" can be used. For example, if your wish to refer to the file on
disk called " @link@" then you could specify "@@Iink@". Note that "\@link@" would also
suffice.

Specifying Files on Remote and Local Machines 101

Remote Debugging

102 Specifying Files on Remote and Local Machines

Interrupting A Running Program

Interrupting A Running Program

104

11 Interrupting a Running Program

11.1 Overview

It is not unusual for your code to contain an endless loop that results in the program getting stuck in one
spot. Y ou then want to interrupt the program so that you can see where it’ s getting stuck. The processto
give control back to the debugger is different for each operating system.

11.2 DOS

Press the Print Screen key. Thiswill work if the program is stuck in aloop. If it has misbehaved in some
other way, Print Screen may have no effect since a misbehaved application may overwrite code, data, the
debugger, or operating system code.

When debugging with the CauseWay DOS extender, by default the running program can be interrupted by
pressing CTRL-ALT. Thekey combination is configurable in the CWHELP.CFG file (located in "BINW"
directory).

11.3 Windows 3.x

Press CTRL-ALT-F. Windows must be running in enhanced mode and the device WDEBUG.386 must be
installed the [386Enh] section of SY STEM.INI for thisto work. Y ou cannot interrupt a running program
under Win-OS/2.

11.4 Windows NT, Windows 95

If you are using the non-GUI version of the debugger, switch focus to the debugger screen and press
CTRL-BREAK.

If you are using the GUI-based version of the debugger or one of the remote debug servers, switch focusto
the debugger or debug server screen and click anywhere. When you switch to the debugger screen, you
will see a pop-up stating that:

The debugger cannot be used while the application is
running. Do you want to interrupt the application?

If you select "Yes', the debugger will attempt to interrupt the application. If you select "No", the debugger
will resume waiting for the application to hit a breakpoint or terminate.

If you select "Yes' and the debugger cannot interrupt the application, you can click on the debugger again
and it will display a pop-up asking:

Windows NT, Windows 95 105

Interrupting A Running Program

The debugger could not sucessfully interrupt your
application. Do you want to terminate the application?

If you select "Yes', the debugger will terminate your application. If you select "No", the debugger will
resume waiting for the program to hit a breakpoint or terminate.

Note: Under Windows 95, it is very difficult to interrupt a program that isin an infinite loop or
spending most of itstimein system API’s. Under Windows 95, you can only interrupt a
program that is responding to messages (or looping in its own thread code). If your
program is an infinite loop, interrupting the program will likely fail. The only option in this
caseis to terminate the program.

Thisis not an issue under Windows NT which has a superior debug API.

If you press CTRL-BREAK when the application has focus, you will terminate the application being
debugged rather than interrupting it.

11.5 0S/2

Use the program manager to switch focus to the debugger screen then press CTRL-BREAK. If you press
CTRL-BREAK when the application has focus, you will terminate the application being debugged rather
than interrupting it.

11.6 NetWare

On the NetWarefile server console, press AL T-ESCAPE while holding down both SHIFT keys. In some
instances, this may cause the system debugger to become active instead of the Open Watcom Debugger.

11.7 Linux

Switch focus to the debugger console and press CTRL-C. Alternatively, you may send any unhandled
signal to the application being debugged. Consult your Linux documentation for details.

11.8 QNX

Switch focus to the debugger console and press CTRL-BREAK. Alternatively, you may send any
unhandled signal to the application being debugged. Consult your QNX system documentation for details.

106 QNX

Operating System specifics

Operating System specifics

108

12 Operating System Specifics

This section discusses the following topics:

DOS Extender debugging
See the section entitled "Debugging 32-bit DOS Extender Applications".

NLM debugging
See the section entitled "Debugging aNovell NLM" on page 111.

Graphics programs
See the section entitled "Debugging Graphics Applications® on page 111.

Windows 3.x debugging
See the section entitled "Debugging Windows 3.x Applications" on page 112.

DLL debugging
See the section entitled "Debugging Dynamic Link Libraries* on page 112.

Disabling 386/486 debug registers
See the section entitled "Disabling Use of 386/486 Debug Registers' on page 113.

Linux debugging
See the section entitled "Debugging Under Linux" on page 113.

QNX debugging
See the section entitled "Debugging Under QN X" on page 114.

12.1 Debugging 32-bit DOS Extender Applications

The Open Watcom Debugger supports debugging of 32-bit applications devel oped with Open Watcom
C/C++(32), Open Watcom FORTRAN 77/32, and assembly language. A DOS extender must be used to
run the application. The following DOS extenders are supported.

CauseWay DOS Extender
apublic domain DOS extender included in the Open Watcom C/C++(32) and Open
Watcom FORTRAN 77/32 packages. Note that this DOS extender islargely compatible
with DOS/4GW and can often be used interchangeably.

DOS/4AGW aDOS extender from Tenberry Software, Inc. DOS/AGW is a subset of Tenberry
Software’s DOS/AG product. DOS/AGW is customized for use with Open Watcom
C/C++(32) and Open Watcom FORTRAN 77/32 and is included in these packages.

386|DOS-Extender
(version 2.2d or later) a DOS extender from Phar Lap Software, Inc.

Debugging 32-bit DOS Extender Applications 109

Operating System specifics

12.1.1 Debugging CauseWay 32-bit DOS Extender Applications

When using the CauseWay DOS extender, the "CWSTUB.EXE" file must be located in one of the
directorieslisted in the DOS PATH environment variable. The"CWSTUB.EXE" file will usually be
stored in the "BINW" directory of the Open Watcom compiler package. Y ou must aso use the TRap=CW
option. The"CW.TRP" filewill usually be stored in the "BINW" directory of the Open Watcom compiler
package. Y ou should ensure that this"BINW" directory isincluded in the DOS PATH environment
variable. Otherwise, you must specify the full path name for the trap file.

The help file "CWHELP.EXE" must also be located in one of the directorieslisted in the DOS PATH
environment variable. It will usually be stored in the "BINW" directory of the Open Watcom compiler
package.

Example:
Cwd /trap=cw hello
or
C>set wd=/trap#cw
Cwd hello

12.1.2 Debugging DOS/4G(W) 32-bit DOS Extender Applications

When using the Tenberry Software DOS extender, the "DOSAGW.EXE" or "DOSAG.EXE" file must be
located in one of the directorieslisted in the DOS PATH environment variable. The"DOSAGW.EXE" file
will usually be stored in the "BINW" directory of the Open Watcom compiler package. Y ou must also use
the TRap=RS option. The"RSI.TRP" file will usually be stored in the "BINW" directory of the Open
Watcom compiler package. Y ou should ensure that this"BINW" directory isincluded in the DOS PATH
environment variable. Otherwise, you must specify the full path name for the trap file.

The help file "RSIHEL P.EXP" must also be located in one of the directories listed in the DOS PATH
environment variable. It will usually be stored in the "BINW" directory of the Open Watcom compiler

package.
Example:
Cwd /trap=rsi hello
or
C>set wd=/trap#r si
Cwd hell o

12.1.3 Debugging Phar Lap 32-bit DOS Extender Applications

When using the Phar Lap Software, Inc. DOS extender, the "RUN386.EXE" (or "TNT.EXE"),
"DBGLIB.REX", "PLSHELP.EXP", and "PEDHELP.EXP" files must be located in one of the directories
listed in the DOS PATH environment variable. You must also use the TRap=PLSoption. The
"PLS.TRP", "PLSHELP.EXP" and "PEDHELP.EXP" fileswill usually be stored in the "BINW" directory
of the Open Watcom compiler package. Y ou should ensure that this"BINW" directory isincluded in the
DOS PATH environment variable. Otherwise, you must specify the full path name for the trap file.

Parameters are passed to the "RUN386" or "TNT" DOS extender using the TRap option. The entire

parameter must be placed within braces. The following example illustrates how to debug a Phar Lap
application passing the -maxreal switch to RUN386.EXE or TNT.EXE.

110 Debugging 32-bit DOS Extender Applications

Operating System Specifics

Example:

Cwd /trap=pls;{-maxreal 512} hello

or

C>set wd=/trap#pls; {- maxreal 512}
Cwd hello

12.2 Debugging a Novell NLM

Novell NLM’s may only be debugged remotely. Y ou must use either the serial, parallel, or Novell SPX
link. Thereare5 NLM’sdistributed in the Open Watcom package. The following table describes their use:

Net Ware 3.11/3.12 Net Ware 4. 01
Seri al serserv4.nlm
Par al | el parserv3.nlm parserv4.nlm
SPX novserv3. nlm novserv4. nl m

To start remote debugging, you load one of the above NLMs at the NetWare file server console. The
debugger is then invoked asin any remote debugging session. See the chapter entitled "Remote
Debugging" on page 89 for parameter details. See the appendix entitled "Wiring For Remote Debugging"
on page 173 for parallel/serial cable details.

For example, on a NetWare 4.01 server type: | oad novserv4

On aworkstation, type: WD /tr=nov nynlm

Debugging information for every running NLM is available. You can debug any NLM in the system asif it
were part of your application, aslong as you created it with debug information. 1f the NLM does not have
Watcom style debugging information, the debugger will attempt to use any debugging information created

by Novell’

slinker (NLMLINK).

12.3 Debugging Graphics Applications

When debugging a graphics application, there are a number of Open Watcom Debugger command line
options that could be specified depending on your situation.

1

If you only have one monitor attached to your system, use the Swap option. The Swap option
specifies that the application’ s screen memory and the debugger’ s screen memory are to be
swapped back and forth using a single page.

If you have two monitors attached to your system then the Two and Monochrome options should
be used. The Two option specifies that a second monitor is connected to the system. Note that if
the monitor type (Monochrome, Color, Colour, Ega43, Vga50) is not specified then the monitor
that is not currently being used is selected for the debugger’ s screen. If you specify
Monochrome then the monochrome monitor will be used for the debugger’ s screen.

If you are debugging the graphics application using a second personal computer and the remote
debugging feature of the Open Watcom Debugger then the choice of display and operation mode
for the Open Watcom Debugger isirrelevant. If one system is equipped with a graphics display
and the other with a monochrome display then you will undoubtedly use the system equipped
with the monochrome display to run the Open Watcom Debugger.

Debugging Graphics Applications 111

Operating System specifics

12.4 Debugging Windows 3.x Applications

Both a character mode and a GUI debugger are supplied that run in the Windows environment. Y ou must
choose which of these debuggers you are going to use. They both have advantages and disadvantages.
When your application is suspended, the GUI and character mode debuggers behave differently. The GUI
debugger allows other applications to continue running. The character mode debugger does not. Although
the GUI debugger has a much nicer looking user interface, you should not use it under some circumstances.
Y ou can always use the character mode debugger. Y ou should be aware of the following restrictions:

1. If you aretrying to debug an applications that uses DDE you should not use the GUI debugger.

2. Do not try to use the GUI debugger to debug system modal dialogs.

3. If you hit abreak-point in adialog callback procedure or in your window procedure when it is
receiving certain events (e.g., WM_MENUSELECT), the GUI debugger will lock input to itself.
When this happens, you will not be able to switch away from the debugger, and no other
application will repaint themselves. When this happens, pop-up menus will not draw correctly
and you will have to use the Action menu instead. Y ou should not try to quit the debugger when
itisinthis state.

4. Do not try to use either of the Windows debuggers in a seamless Win-OS/2 session.

If you find that the Windows debugger startstoo slowly, try using the DIp=DWARF option. This prevents
the debugger from searching each DLL in the system for debugging information. 1t will start up faster, but
you will not be able to see the name of the Windows API calls.

To start the Open Watcom Debugger, select the program group in which you have installed the Open
Watcom Debugger. One of the icons presented is used to start the debugger. Double-click on the Open
Watcom Debugger icon.

Y ou can make special versions of the Open Watcom Debugger icon using Properties from the File menu of
the Windows "Program Manager". For example, you can add any options you wish to the "Command
Line" field of the "Properties’ window. When you click on the newly created icon, the options specified in
the "Command Line" field are the defaults. Aslong as no executable file name was specified in the
"Command Line" field, the Open Watcom Debugger will present its prompt window. In the prompt
window, you can specify an executable file name and arguments.

If you are debugging the same program over and over again, you might wish to create an icon that includes
the name of the file you wish to debug in the "Command Line" field. Each timeyou click on that icon, the
Open Watcom Debugger is started and it automatically loads the program you wish to debug.

12.5 Debugging Dynamic Link Libraries

The debugger automatically detects all DLLs that your application references when it loads the application.
When your program loads a DLL dynamically, the debugger detects thisaswell. If you have created your
DLL with debugging information, you can debug it just asif it were part of your application. Evenif it
does not have debugging information, the debugger will process system information to make the DLL entry
point names visible. There are afew limitations:

1. Youcannot debug your DLL initialization code. Thisisthefirst routine that the operating
system runswhen it loadsthe DLL. Thisisnot normally a problem, since most DLLs do not do
much in the way of initialization.

2. WhenaDLL isloaded dynamically, its debugging information may not be available
immediately. Try tracing afew instructions and it will appear.

112 Debugging Dynamic Link Libraries

Operating System Specifics

3. If you restart an application, you will lose any break points that you had set in dynamically
loaded DLLs. Y ou need to trace back over the call to LoadModule or DOSL oadM odule and
re-set these break points.

12.6 Disabling Use of 386/486 Debug Registers

It may be necessary to prevent the Open Watcom Debugger from using the 386/486 Debug Registers (a
hardware feature used to assist debugging). This situation arises with certain DOS control programs that do
not properly manage Debug Registers. 1f the Open Watcom Debugger fails upon startup on a 386/486
system, it isagood indication that use of the Debug Registers must be disabled. With"STD.TRP", the trap
file parameter "d" may be specified to disable the use of Debug Registers. The following example
illustrates the specification of the "d" trap file parameter.

Example:
Cwd /trap=std;d cal endar

12.7 Debugging Under Linux

When the debugger starts up, it will attempt to open the initialization file . wdr ¢ provided that you have
not specified the Invoke command line option. It looks for thisfilein al the usual places (CWD,
WD_PATH, / opt / wat com wd). Thisfile normally contains your customization commands. If itis
found, it is processed as the default configuration file. Y ou would normally place thisfile in your home
directory.

If the file does not exist, the debugger then looks for the wd. dbg file.

If you do not want the debugger to usethe . wdr ¢ file then you can do one of two things — make sure that
it cannot be located (e.g., delete it) or use the Invoke command line option (you could specify the wd. dbg
file asthe target).

The supplied version of the wd. dbg file contains an "invoke" command referencing the file

set up. dbg. Thisfile, inturn, contains a"configfile" command and "invoke" commands referencing
other command files. The"configfile" command marks set up. dbg asthe default file name to use when
the debugger writes out the current configuration.

The following section entitled " Search Order for Open Watcom Debugger Support Files under Linux”
describes the search order for debugger files under Linux.

12.7.1 Search Order for Open Watcom Debugger Support Files under Linux

There are several supporting files provided with the Open Watcom Debugger. Thesefilesfall into five
categories.

1. Open Watcom Debugger command files (files with the ".dbg" suffix).
2. Open Watcom Debugger trap files (files with the ".trp" suffix).
3. Open Watcom Debugger parser files (fileswith the ".prs" suffix).

4. Open Watcom Debugger help files (files with the ".hip" suffix).

Debugging Under Linux 113

Operating System specifics

5. Open Watcom Debugger symbolic debugging information files (files with the ".sym™ suffix).
The search order for Open Watcom Debugger support filesis as follows:

the current directory,

the paths listed in the WD_PATH environment variable,

the path listed in the HOM E environment variable

the directory where Open Watcom Debugger was started from

"..;wd" directory relative to the directory where Open Watcom Debugger was started from, and,
finaly,

6. the"/opt/watcom/wd" directory.

agkrowdNPE

Y ou should note the following when using the remote debugging feature of the Open Watcom Debugger.
When the REMotefiles option is specified, the debugger aso attempts to locate the Open Watcom
Debugger’s support files (command files, trap files, etc.) on the task machine.

12.8 Debugging Under QNX

When the debugger starts up, it will attempt to open the initialization file . wdr ¢ provided that you have
not specified the Invoke command line option. It looks for thisfilein al the usual places (CWD,
WD_PATH, / usr/wat com <ver >/ wd, /usr/wat com wd). Thisfile normally containsyour
customization commands. If itisfound, it is processed as the default configuration file. Y ou would
normally place thisfilein your home directory.

If the file does not exist, the debugger then looks for the wd. dbg file.

If you do not want the debugger to use the . wdr ¢ file then you can do one of two things — make sure that
it cannot be located (e.g., delete it) or use the Invoke command line option (you could specify the wd. dbg
file asthe target).

The supplied version of the wd. dbg file contains an "invoke" command referencing the file

set up. dbg. Thisfile, inturn, containsa"configfile" command and "invoke" commands referencing
other command files. The"configfile" command marks set up. dbg as the default file name to use when
the debugger writes out the current configuration.

The following section entitled "Debugging Under QNX Using the Postmortem Dump Facility" describes
the use of the debugger with the Postmortem dump facility. The following section entitled " Search Order
for Open Watcom Debugger Support Files under QNX" on page 116 describes the search order for
debugger files under QNX.

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility

A limited form of debugging of an application that has terminated and produced a postmortem dump can be
done under QNX. In order to use this feature, you must start the QNX "dumper" program.

dumper [-d path] [-p pid] &

114 Debugging Under QNX

Operating System Specifics

dumper is the program name for the QNX postmortem dump program.

-d path The name of the directory in which postmortem dumps are written. If not specified, the
default is the user’ s home directory.

-p pid Save adump file for this process if it terminates for any reason. Do not save adump file
for any other process.

& must be specified so that the shell isrejoined.

Example:
$ dunper &
$ dunper -d /usr/fred/ dunp_area &

Whenever a program terminates abnormally, a dump of the current state of the program in memory is
written to disk. The dump file name is the same as the program name with a.dmp extension. For example,
if the program name is a.out then the dump will be written to the /home/userid/a.out.dmp file.

Y ou can use the -d option of the dumper program to force all dumpsinto a single directory rather than into
theinvoking user’s home directory.

The -p option lets you monitor a particular process. Y ou can run multiple copies of the dumper program,
each monitoring a different process.

If the Open Watcom Debugger was being used to debug the program at the time that it abnormally
terminated then the dump is written to the user’ s home directory provided that the -d option was not used.

To examine the contents of the postmortem dump, the Open Watcom Debugger may be used. The interface
between the Open Watcom Debugger and the postmortem dump is contained in a specia "trap" file. The
trap file is specified to the Open Watcom Debugger using the TRap option.

wd -TRap=pmd[;i] [:sym fil€] file_spec

wd is the program name for the Open Watcom Debugger.

-TRap=pmd[i] must be specified when debugging an application that has terminated and produced a
postmortem dump. The optional ";i" is specified when the modification date of the origina
program file does not match the information contained in the dumper file. It indicates that
the symbolic debugging information in the program file may be out-of-date. It instructs the
Open Watcom Debugger to ignore the date mismatch. Depending on the shell that you are
using, it may be necessary to place the option specification in quotation marksif you
include the optional ";i".

Example:
$ wd "-trap=pnd;i" nyapp

sym file isan optional symbolic information file specification. The specification must be preceded
by acolon (":"). When specifying a symbol file name, a path such as"//5/etc/" may be
included. For QNX, the default file suffix of the symbol fileis".sym".

file_spec isthe file name of the dumper file to be loaded into memory. When specifying afile name,
apath such as"//5/etc/" may beincluded. If apathisomitted, the Open Watcom Debugger

Debugging Under QNX 115

Operating System specifics

will first attempt to locate the file in the current directory and, if not successful, attempt to
locate the file in the default dumper directory: /usr/dumps.

Basically, the Open Watcom Debugger is fully functional when a postmortem dump is examined.
However, there are some operations which are not allowed. Among these are:

1

2.

Task execution cannot be restarted using Go from the Run menu.

A register can be modified for the purposes of expression evaluation. Y ou can choose Go from
the Run menu to restore the register contentsto their original postmortem state.

Memory cannot be modified.
Memory outside of regions owned by the program cannot always be examined.

1/O ports cannot be examined.

12.8.2 Search Order for Open Watcom Debugger Support Files under QNX

There are several supporting files provided with the Open Watcom Debugger. Thesefilesfall into five

categories.
1.
2.
3.
4.

5.

Open Watcom Debugger command files (files with the ".dbg" suffix).
Open Watcom Debugger trap files (files with the ".trp" suffix).

Open Watcom Debugger parser files (fileswith the ".prs" suffix).
Open Watcom Debugger help files (fileswith the ".hip" suffix).

Open Watcom Debugger symbolic debugging information files (files with the ".sym" suffix).

The search order for Open Watcom Debugger support filesis as follows:

AwWDdE

the current directory,

the paths listed in the WD_PATH environment variable,

the path listed in the HOM E environment variable, and, finally,
the "/usr/watcom/wd" directory.

Y ou should note the following when using the remote debugging feature of the Open Watcom Debugger.
When the REMotefiles option is specified, the debugger also attempts to locate the Open Watcom
Debugger’s support files (command files, trap files, etc.) on the task machine.

116 Debugging Under QNX

Expressions

Expressions

118

13 Open Watcom Debugger Expression Handling

13.1 Introduction

The Open Watcom Debugger is capable of handling awide variety of expressions. An expressionisa
combination of operators and operands selected from application variables and names, debugger variables,
and constants. Expressions can be used in alarge number of debugger commands and dialogs. For
example, the evaluated result of an expression may be displayed by choosing New from the pop-up menu in
the Watches window or by using the print command.

The appropriate syntax of an expression, i.e., the valid sequence of operators and operands, depends on the
grammar of the language that is currently established. The Open Watcom Debugger supports the grammars
of the C, C++, and FORTRAN 77 languages. A grammar is selected automatically by the debugger when
tracing the execution of modulesin an application. For example, part of an application may be written in
C, another part in C++, and another part in FORTRAN 77. The modules must have been compiled by one
of the Open Watcom C, C++ or FORTRAN 77 compilers. When tracing into a module written in one of
these languages, the debugger will automatically select the appropriate grammar. In addition to this
automatic selection, a particular grammar may be selected using the debugger Set L Anguage command.
The language currently selected can be determined using the SHow Set L Anguage command.

13.2 General Rules of Expression Handling

The debugger handles two types of expressions. The difference between the two types of expressionsis
quite subtle. Oneiscalled an "expression" and things operate as you would normally expect. Thistype of
expression isused for al "higher" level operations such as adding items to the Watches window. The other
typeiscalled an "address expression”. It is used whenever the debugger prompts for an address and in
lower level commands such Examine and Modify. If the notation for a particular command argument is
<address>, it isan address expression. If it endsin just "expr" then it isanormal expression. The
difference between the two forms lies in how they treat symbol names. In anormal expression the value of
asymbol isitsrvalue, or contents. In an address expression, the value of a symbal is (sometimes) its
Ivalue, or address.

Consider the following case. You have asymbol samat offset 100 and the word at that location contains
thevalue 15. If you enter saminto the watches window you expect the value 15 to be printed and since the
Watches window takes a normal expression that iswhat you get. Now let ustry it with the Breakpoint
diaog. Enter saminthe addressfield. The Breakpoint dialog uses the result of its expression asthe
address at which to set abreakpoint. The Breakpoint dialog takes an address expression, and an implicit
unary "&" operator is placed in front of symbols. The debugger has a set of heuristics that it applies to
determine whether it should use the rvalue or lvalue of a symbol.

General Rules of Expression Handling 119

Expressions

13.3 Language Independent Variables and Constants

The following sections describe conventions used in the debugger for identifying modules, variables, line
numbers, registers, etc.

13.3.1 Symbol Names

Regardless of the programming language that was used to code the modules of an application, the names of
variables and routines will be available to the debugger (provided that the appropriate symbolic debugging
information has been included with the application’s execution module). The debugger does not restrict the
way in which names are used in expressions. A name could represent a variable but it could al so represent
the entry point into aroutine.

The syntax of a symbol name reference is quite complicated.
[[[image] @][modul €] @] [routine_name.]symbol _name

Generally, an application will consist of many modules which were compiled separately. The current
image is the one containing the module which is currently executing. The current module isthe one
containing the source lines currently under examination in the Source or Assembly window. By default,
the Source window’ stitle line contains the current module name. The current routine is the one containing
the source line at which execution is currently paused.

The following are examples of references to symbol names.

Example:
synbol _nane
mai n
W nMai n
FMAI N
printf
LI B$G_OPEN
stdin

If the symbol does not exist in the current scope then it must be qualified with its routine name. Generally,
these are variables that are local to a particular routine.

Example:
routi ne_nane. synbol nane
main.curr_tine
mai n. tyne
SUBL. X
SUB2. X

If the symbol is not externally defined and it does not exist in the current module then it may be qualified
with its module name. In the C and C++ programming languages, we can define a variable that is global to
amodule but known only to that module ("static" storage class).

Example:
static char *NarrowTitle = { "Su Mo Tu W Th Fr Sa" };

In the above example, "NarrowTitle" is global to the module "calendar”. If the current moduleis not
"calendar” then the module name can be used to qualify the symbol as shown in the following example.

120 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

Example:
cal endar @NarrowTi t | e

If the symbol islocal to aroutine that is not in the current module then it must be qualified with its module
name and routine name.

Example:
nodul e_name@ out i ne_nane. synbol _nane
cal endar @i n. curr_tinme
cal endar @mi n. tyme
subs@UB1. X
subs@uB2. X

If the symbol islocal to an image that is not in the current executable then it must be fully qualified with
the image name.

Example:
prog_nane@® out i ne_nane
prog_nane@modul e_name@ out i ne_narme
prog_nane@modul e_name@ out i ne_name. synbol _nane
dl I _name@al endar @mi n. curr _tine
dl I _nanme@al endar @mi n. tyne
program@ubs @UBL. X
program@ubs @UB2. X

Thereisaspecial case for the primary executable image. Thisisthe name of the program you specified
when you started the debugger. Y ou can reference it by omitting the image name. The following examples
all refer to symbols in the primary executable image:

Example:
@\ nMai n
@modul e@\V nMai n
@ out i ne. symnbol

In the FORTRAN 77 programming language, all variables (arguments, local variables, COMMON block
variables) are available to the subprogram in which they are defined or referenced. The same symbol name
can be used in more than one subprogram. If itisalocal variable, it represents a different variable in each
subprogram. If it isan argument, it may represent a different variable in each subprogram. If itisa
variablein aCOMMON blaock, it represents the same variable in each subprogram where the COMMON
block is defined.

Language Independent Variables and Constants 121

Expressions

Example:
SUBRQUTI NE SUBL(X)
REAL Y
COWON / BLK/ Z

END

SUBROUTI NE SUB2(X)
REAL Y

COVMON / BLK/ Z

END

In the above example, "X" is an argument and need not refer to the same variablein the calling
subprogram.

Example:
CALL SuUB1(A)
CALL SuB2(B)

Thevariable "Y" isadifferent variable in each of "SUB1" and "SUB2". The COMMON block variable
"Z" refersto the same variable in each of "SUB1" and "SUB2" (different names for "Z" could have been
used). Toreferto"X","Y", or "Z" in the subprogram "SUBZ2", you would specify "SUB2.X", "SUB2.Y",
or "SUB2.Z". If "SUB2" wasin the module "MOD" and it is not the current module, you would specify
"MOD@sUB2.X", "MOD@SUB2.Y", or "MOD@SUB2.Z".

Note; Globa and local symbol name debugging information isincluded in an executable image if
you request it of the linker. However, local symbol information must be present in your
object files. The Open Watcom C, C++ and FORTRAN 77 compilers can include local
symbol debugging information in object files by specifying the appropriate compiler
option. See "Preparing a Program to be Debugged" on page 9.

13.3.2 Line Numbers

Regardless of the programming language that was used to code the modules of an application, line number
information identifying the start of executable statements will be available to the debugger (provided that
the appropriate symbolic debugging information has been included with the application’s execution
module). The debugger does not restrict the way in which line number references are used in expressions.
A line number represents the code address of an executable statement in aroutine. Not al line numbers
represent executabl e statements; thus some line numbers may not be valid in an expression. For example,
source lines consisting of comments do not represent executabl e statements.

The general format for aline number referenceis:
[[image] @] [module_name] @ decimal_digits

The following are examples of references to executable statements.

122 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

Example:
@36
@5
@1
@25
hel |l o@®
@ello®
prog@el | 0@
ot her prg@oodbye@®
puzzl e@0
cal endar @0
SUB1 @0

If the line number does not exist in the current module, it must be qualified with its module name. If it does
not exist in the current image, it must be qualified with the image name. Line numbers are not necessarily
unique. For example, an executable statement could occur at line number 20 in several modules. The
module name can always be used to uniquely identify the line 20 in which we are interested. In the above
examples, we explicitly refer to line 20 in the module "calendar". When the module name is omitted, the
current module is assumed.

Note; Line number debugging information isincluded in an executable image if you request it of
the linker. However, line number information must be present in your object files. The
Open Watcom C, C++ and FORTRAN 77 compilers can include line number debugging
information in object files by specifying the appropriate compiler option. See "Preparing a
Program to be Debugged” on page 9. Y ou can request line number debugging information
when assembling assembly language source files using Open Watcom Assembler The "d1"
option must be specified on the command line.

13.3.3 Constants

A constant can be arithmetic or character. Each constant has a data type associated with it. Arithmetic
constants consist of those constants whose data type is one of integer, real, or complex (FORTRAN only).
C treats character constants like arithmetic constants so they can be used in arithmetic expressions.
FORTRAN treats character constants as constants of type CHARACTER so they cannot be used in
arithmetic expressions.

13.3.3.1 Integer Constants

An integer constant isformed by a non-empty string of digits preceded by an optional radix specifier. The
digits are taken from the set of digits valid for the current radix. If the current radix is 10 then the digits are
"0’ through 9. If the current radix is 16 then the digitsare’ 0" through’9" and’A’ through'F or 'a
through 'f’. See"The Options Dialog" on page 32.

The following are examples of integer constants.

Example:
123
57DE
1423
345
34565788

Language Independent Variables and Constants 123

Expressions

Radix specifiers may be defined by the user, but two are predefined by the debugger. Ox may be defined to
be aradix specifier for hexadecimal (base 16) numbers. On may be defined to be aradix specifier for
decimal (base 10) numbers

Example:
0x1234 hexadeci mal
Onl1l234 deci mal
255 deci nal
Oxf f hexadeci mal
Ox1ADB hexadeci mal
0n200 deci mal
0x12f cO hexadeci mal

13.3.3.2 Real Constants

Wefirst define asimple real constant as follows. an optional sign followed by an integer part followed by
adecimal point followed by afractional part. The integer and fractional parts are non-empty strings of
digits. Thefractional part can be omitted.

A real constant has one of the following forms.

(1) A simple real constant.
2 A simplereal constant followed by an E or e followed by an optionally signed integer
constant.

The optionally signed integer constant that follows the E is called the exponent. The value of area
constant that contains an exponent is the value of the constant preceding the E multiplied by the power of
ten determined by the exponent.

The following are examples of real constants.

123. 764

0. 4352344
1423. 34E12
+345. E- 4

- 0. 4565788E3
2. E6

1234.

Note: The accepted forms of floating-point constants are a subset of that supported by the
FORTRAN 77 programming language. The debugger does not support floating-point
constants that begin with a decimal point (e.g., .4352344) or have no decimal point (e.g.,
2E6). However, both forms would be acceptable to a FORTRAN compiler. Also, the
debugger does not support double precision floating-point constants where "D" is used
instead of "E" for the exponent part (e.g., 2D6, 2.4352344D6). All floating-point constants
are stored internally by the debugger in double precision format.

13.3.3.3 Complex Constant (FORTRAN Only)

A complex constant consists of aleft parenthesis, followed by areal or integer constant representing the
real part of the complex constant, followed by a comma, followed by areal or integer constant representing
the imaginary part of the complex constant, followed by aright parenthesis.

124 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

Complex constants will be accepted when the debugger’ s currently established language is FORTRAN.
The language currently selected can be determined using the SHow Set L Anguage command.

13.3.3.4 Character Constant (C Only)

In the C and C++ programming languages, a character constant consists of an apostrophe followed by a
single character followed by an apostrophe. The apostrophes are not part of the datum. An apostrophein a
character datum represents one character, namely the apostrophe. A character constant must have length 1.

The following are examples of character constants.

yAy
yey

The C/C++ form of a character constant will be accepted when the debugger’s currently established
language is C or C++. The language currently selected can be determined using the SHow Set L Anguage
command.

13.3.3.5 Character String Constant (FORTRAN Only)

In the FORTRAN 77 programming language, a character constant consists of an apostrophe followed by
any string of characters followed by an apostrophe. The apostrophes are not part of the datum. If an
apostrophe is to appear as part of the datum it must be followed immediately by another apostrophe. Note
that blanks are significant. The length of the character constant is the number of characters appearing
between the delimiting apostrophes. Consecutive apostrophes in a character datum represent one character,
namely the apostrophe. A character constant must not have length O.

The following are examples of character constants.

" ABCDEFGL234567’
"There' ' s al ways tonorrow

The FORTRAN form of a character constant will be accepted when the debugger’ s currently established
language is FORTRAN.

13.3.4 Memory References
In addition to referring to memory locations by symbolic name or line number, you can also refer to them
using a combination of constants, register names, and symbol names. In the Intel 80x86 architecture, a

memory reference requires a segment and offset specification. When symbol names are used, these are
implicit. The general form of amemory referenceis:

[segment:]offset

When an offset is specified alone, the default segment value istaken from the CS, DS or SSregister
depending on the circumstances.

Language Independent Variables and Constants 125

Expressions

13.3.5 Predefined Debugger Variables

The debugger defines a number of symbols which have special meaning. These symbols are used to refer
to the computer’ s registers and other specia variables.

General Purpose Registers
eax, ax, al, ah, ebx, bx, bl, bh, ecx, cx, cl, ch, edx, dx, dl, dh

Index Registers
es, s, edi, di

Base Registers esp, sp, ebp, bp

I nstruction Pointer
ep,ip

Segmentation Registers
Cs, ds, es, fs, gs, ss

Flags Registers
fl, fl.o, fl.d, fl.i, fl.s, fl.z fl.a, fl.p, fl.c, €fl, efl.o, €fl.d, €fl.i, fl.s, €fl .z, fl.a, fl.p, €fl.c

8087 Registers st0, stl, st2, st3, st4, st5, st6, st7

8087 Control Word
CW, CW.iC, CW.IC, CW.pC, CW.iem, Cw.pm, CW.um, cw.om, cw.zm, cw.dm, cw.im

8087 Status Word
sw, Sw.b, sw.c3, sw.st, sw.c2, sw.cl, sw.c0, sw.es, Sw.sf, sw.pe, sw.ue, Sw.oe, Sw.ze, sw.de,
sw.ie

Miscellaneous Variables
dbg$32, dbg$bottom, dbgbp, dbgcode, dbg$cpu, dbgscetid, dog$data, dbg$etid, dbg$fpu,
dbgip, dbgleft, dbg$monitor, dog$ntid, dbgos, dbgpid, dbgSpsp, dbg$radix,
dbg$remote, dbg$right, dbgsp, dbgtop, dbgnil, dbgsrc, dbg$loaded

The debugger permits the manipulation of register contents and specia debugger variables (e.g., dbg$32)
using any of the operators described in this chapter. By default, these predefined names are accessed just
like any other variables defined by the user or the application. Should the situation ever arise where the
application defines a variable whose name conflicts with that of one of these debugger variables, the
module specifier _dbg may be used to resolve the ambiguity. For example, if the application defines a
variable called cs then _dbg@s can be specified to resolve the ambiguity. The"_dbg@" prefix indicates
that we are referring to a debugger defined symbol rather than an application defined symbol. See
"Predefined Symbols" on page 167.

13.3.6 Register Aggregates

There are times when a value may be stored in more than one register. For example, a 32-bit "long" integer
value may be stored in the register pair DX:AX. We require a mechanism for grouping registers to
represent a single quantity for use in expressions.

126 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

We define the term "register aggregate” as any grouping of registersto form asingle unit. An aggregateis
specified by placing register names in brackets in order from most significant to least significant. Any
aggregate may be specified aslong asit forms an 8, 16, 32 or 64-bit quantity. The following are examples
of some of the many aggregates that can be formed.

Example:
8- bit [al]
16-bi t [ah al]
16-bit [bl ah]
16-bit [ax]
32-bit [dx ax]
32-bit [dh dI ax]
32-bit [dh dI ah al]
32-bit [ds di]
64-bi t [ax bx cx dx]
64-bi t [edx eax] (386/ 486/ Penti um onl y)

In some cases, the specified aggregate may be equivalent to aregister. For example, the aggregates "[ah
al]" and "[ax]" are equivalent to "ax".

The default type for 8-bit, 16-bit, and 32-bit aggregates isinteger. The default type for 64-bit aggregatesis

double-precision floating-point. To force the debugger into treating a 32-bit aggregate as single-precision
floating-point, the type coercion operator "[float]" may be used.

13.4 Operators for the C Grammar

The debugger supports most C operators and includes an additional set of operators for convenience. The
Open Watcom C Language Reference manual describes many of these operators.

The syntax for debugger expressionsis similar to that of the C programming language. Operators are

presented in order of precedence, from lowest to highest. Operators on the same line have the same
priority.

Operators for the C Grammar 127

Expressions

Lowest Priority
Assi gnnment QOperators
= += -= *= [= OFE &= | = A= <<= >>S=
Logi cal Operators
|
&&
Bit Operators

AN

&
Rel ati onal Qperators
== | =
< <= < >=
Shift Operators
<< >>
Arithnetic Operators
+ -
* %
Unary QOperators
+ -~ 1 4+ - & * 0

si zeof unéry_expr
si zeof (type_nane)
(type_nane) unary_expr
[type_nane] unary_expr
?

Bi nary Address Operator

H ghest Priority
Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are supported. These
operators are used in identifying the object to be operated upon.

1 subscripting, substringing
0 function call
field selection
-> field selection using a pointer

The following sections describe the operators presented above.

13.4.1 Assignment Operators for the C Grammar
= Assignment: The value on theright is assigned to the object on the lft.

+= Additive assignment: The value of the object on the left is augmented by the value on the
right.

-= Subtractive assignment: The value of the object on the left is reduced by the value on the
right.

128 Operators for the C Grammar

Open Watcom Debugger Expression Handling

<<=

>>=

Multiplicative assignment: The value of the object on the left is multiplied by the value on
the right.

Division assignment: The value of the object on the left is divided by the value on the
right.

Modulus assignment: The object on the left is updated with MOD(left,right). Theresult is
the remainder when the value of the object on the left is divided by the value on theright.

Bit-wise AND: The hitsin the object on the left are ANDed with the bits of the value on
theright.

Bit-wiseinclusive OR: The bitsin the object on the left are ORed with the bits of the value
on theright.

Bit-wise exclusive OR: The bitsin the object on the left are exclusively ORed with the bits
of the value on the right.

Left shift: The bitsin the object on the left are shifted to the left by the amount of the value
on theright.

Right shift: The bitsin the object on the left are shifted to the right by the amount of the
value on theright. If the object on the left is described as unsigned, the vacated high-order
bits are zeroed. If the object on the left is described as signed, the sign bit is propagated
through the vacated high-order bits. The debugger treats registers as unsigned items.

13.4.2 Logical Operators for the C Grammar

&&

Logica conjunction: The logical AND of the value on the left and the value on theright is
produced. If either of the values on the left or right is equal to O then the result is O;
otherwisetheresult is 1.

Logica inclusive disunction: Thelogical OR of the value on the left and the value on the
right is produced. If either of the values on the left or right is not equal to O then the result
is1; otherwisetheresult is 0. If the value on the left is not equal to O then the expression
on theright is not evaluated (thisis known as short-circuit expression evaluation).

13.4.3 Bit Operators for the C Grammar

&

Bit-wise AND: The bits of the value on the | eft and the value on the right are ANDed.
Bit-wise OR: The bits of the value on the |eft and the value on the right are ORed.

Bit-wise exclusive OR: The bits of the value on the |eft and the value on the right are
exclusively ORed.

Operators for the C Grammar 129

Expressions

13.4.4 Relational Operators for the C Grammar

Equal: If the value on the left is equal to the value on the right then the result is 1;
otherwise the result is 0.

Not equal: If the value on the left is not equal to the value on the right then the result is 1;
otherwise theresult is 0.

Lessthan: If the value on theleft islessthan the value on the right then the result is 1,
otherwise the result is 0.

Lessthan or equal: If the value on theleft isless than or equal to the value on the right
then the result is 1; otherwise theresult is 0.

Greater than: If the value on the left is greater than the value on the right then the result is
1; otherwise theresult is 0.

Greater than or equal: If the value on the left is greater than or equal to the value on the
right then the result is 1; otherwise the result is 0.

13.4.5 Arithmetic/Logical Shift Operators for the C Grammar

<<

>>

Left shift: The bits of the value on the left are shifted to the left by the amount described
by the value on the right.

Right shift: The bits of the value on the left are shifted to the right by the amount described
by the value on theright. If the object on the left is described as unsigned, the vacated
high-order bits are zeroed. If the object on the left is described as signed, the sign bit is
propagated through the vacated high-order bits. The debugger treats registers as unsigned
items.

13.4.6 Binary Arithmetic Operators for the C Grammar

+

%

Addition: The value on theright is added to the value on the left.

Subtraction: The value on the right is subtracted from the value on the lft.
Multiplication: The value on the left is multiplied by the value on the right.

Division: The vaue on the left is divided by the value on the right.

Modulus: The modulus of the value on the left with respect to the value on theright is

produced. Theresult isthe remainder when the value on the | eft is divided by the value on
the right.

130 Operators for the C Grammar

Open Watcom Debugger Expression Handling

13.4.7 Unary Arithmetic Operators for the C Grammar

+

++

%

Plus: Theresult isthe value on the right.
Minus: The result is the negation of the value on the right.
Bit-wise complement: The result is the bit-wise complement of the value on the right.

Logical complement: If the value on theright is equal to O then theresult is 1; otherwise it
isO.

Increment: Both prefix and postfix operators are supported. If the object is on theright, it
ispre-incremented by 1 (e.g., ++x). If the object ison theleft, it is post-incremented by 1
(eg., x++).

Decrement: Both prefix and postfix operators are supported. |f the object is on the right, it
is pre-decremented by 1 (e.g., --x). If the object ison the left, it is post-decremented by 1

(eg., x--).

Address of: Theresult isthe address (segment:offset) of the object on theright (e.g.,
&main).

Points: The result isthe value stored at the location addressed by the value on the right
(e.g., *(ds:100), *string.loc). In the absence of typing information, a near pointer is
produced. If the operand does not have a segment specified, the default data segment
(DGROUP) is assumed.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS:0102) = 1240
(SS: 0104) = EEEE

Value at address. Theresult isthe value stored at the location addressed by the value on
theright (e.g., %(ds:100), %string.loc). In the absence of typing information, afar pointer
isproduced. If the operand does not have a segment specified, the default data segment
(DGROUP) is assumed.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS:0102) = 1240
(SS: 0104) = EEEE

Note that this operator is not found in the C or C++ programming languages.

13.4.8 Special Unary Operators for the C Grammar

sizeof unary_expression

Example:
si zeof tyne
si zeof (*tyme)

sizeof (type_name)

Operators for the C Grammar 131

Expressions

Example:
sizeof (struct tm)

(type_name) unary_expression The type conversion operator (type_name) is used to convert an item from
one type to another. The following describes the syntax of "type_name".

type_name::=type spec{["near" |"far" |"huge"]"*" }
type _spec ::=typedef _name

| "struct" structure tag

| "union" union_tag

| "enum" enum tag

| scalar_type{ scalar_type}
scalar_type::="char" |"int" | "float" | " double"

| "short" |"long" | "signed" | " unsigned"

Example:
(float) 4
(int) 3.1415926

[type_name] unary_expression Y ou can force the debugger to treat a memory reference as a particular type
of value by using atype coercion operator. A type specification is placed inside brackets as
shown above. The basic types are char (character, 8 bits), short (short integer, 16 bits),
long (long integer, 32 hits), float (single-precision floating-point, 32 bits), and double
(double-precision floating-point, 64 bits). Unless qualified by the short or long keyword,
the int type will be 16 bitsin 16-bit applications and 32 bits in 32-bit applications (386, 486
and Pentium systems). The character, short integer and long integer types may be treated
assigned or unsigned items. The default for the character type is unsigned. The default
for the integer typesis signed.

Example:
[char] (default unsi gned)
[signed char]
[unsi gned char]

[int] (default is signed)
[short] (default is signed)
[short int] (default is signed)
[signed short int]

[1ong] (default is signed)
[long int] (default is signed)

[signed | ong]
[unsigned |l ong int]
[float]

[doubl €]

Note that it is unnecessary to specify the int keyword when short or long are specified.
? Existencetest: The"?' unary operator may be used to test for the existence of a symbol.

Example:
?id

Theresult of thisexpressionis1if "id" isasymbol known to the debugger and O otherwise.

If the symbol does not exist in the current scope then it must be qualified with its module
name. Automatic symbols exist only in the current function.

132 Operators for the C Grammar

Open Watcom Debugger Expression Handling

13.4.9 Binary Address Operator for the C Grammar
Memory locations can be referenced by using the binary ":" operator and a combination of
constants, register names, and symbol names. In the Intel 80x86 architecture, a memory
reference requires a segment and offset specification. A memory reference using the ":"
operator takes the following form:
segment: of fset
The elements segment and offset can be expressions.
Example:
(ES): (DI +100)
(SS): (SP-20)
13.4.10 Primary Expression Operators for the C Grammar

11 Elements of an array can be identified using subscript expressions. Consider the following
3-dimensional array defined in the "C" language.

Example:
char *ProcessorType[2][4][2] =
{ { { "Intel 8086", "I ntel 8088" 1},
{ "Intel 80186", "Intel 80188" },
{ "Intel 80286", "unknown" },
{ "Intel 80386", "unknown" } 1},
{ { "NEC V30", "NEC V20" },
{ "unknown", "unknown" 1},
{ "unknown", "unknown" 1},
{ "unknown", "unknown" } } };

This array can be viewed as two layers of rectangular matrices of 4 rows by 2 columns.
The array elements are all pointersto string values.

By using a subscript expression, specific slices of an array can be displayed. To see only
the values of the first layer, the following expression can be issued.

Example:
processortype[0]

To see only thefirst row of thefirst layer, the following expression can be issued.

Example:
processortype[0][O]

To see the second row of the first layer, the following command can be issued.

Example:
processortype[0] [1]

To see the value of a specific entry in amatrix, all the indices can be specified.

Operators for the C Grammar 133

Expressions

0

Example:
processortype[0][0][0]
processortype[0][0][1]
processortype[0][1][0]

The function call operators appear to the right of a symbol name and identify afunction call
in an expression. The parentheses can contain arguments.

Example:
Cl ear Screen()
PosCursor(10, 20)
Line(15, 1, 30, '-', '+, '-")

The"." operator indicates field selection in astructure. In the following example, t yne2
isastructureand t m_year isafield in the structure.

Example:
tyme2. t m year

The"->" operator indicates field selection when using a pointer to a structure. Inthe
following example, t yre isthe pointer and t m_year isafield in the structure to which it
points.

Example:
tyme->t m year

13.5 Operators for the C++ Grammar

Debugger support for the C++ grammar includes all of the C operators described in the previous section
entitled "Operators for the C Grammar" on page 127. In addition to this, the debugger supports a variety of
C++ operators which are described in the C++ Programming Language manual.

Perhaps the best way to illustrate the additional capabilities of the debugger’s support for the C++ grammar
isby way of an example. The following C++ program encompasses the features of C++ that we will usein
our debugging example.

Example:
/1 DBG_EXAM C. C++ debuggi ng exanpl e program
struct BASE ({
int a;
BASE() : a(0) {}
~BASE() {}
BASE & operator =(BASE const &s)
{
a = s.a;
return *this;
}
virtual void foo()
{
a=1
}

134 Operators for the C++ Grammar

Open Watcom Debugger Expression Handling

struct DERI VED : BASE {
int b;
DERI VED() : b(0) {}
~DERI VED() {}
DERI VED & operator =(DERI VED const &s)
{
a = s.a;
b S. b;
return *this;

A |

e

virtual void foo()

{
a = 2;
b = 3;
}
virtual void foo(int)
{
}

3
voi d use(BASE *p)

p->foo();

voi d main()

DERI VED x;
DERI VED y:

use(&);
y =X
}

Compile and link this program so that the most comprehensive debugging information isincluded in the
executablefile.

13.5.1 Ambiguity Resolution in the C++ Grammar

Continuing with the example of the previous section, we can step into the call to use and up to the
p- >f oo() function call. Try to set a breakpoint at foo.

Y ou will be presented with awindow containing alist of "foo" functions to choose from since the reference
tof oo at this point isambiguous. Select the one in which you are interested.

Y ou may aso have observed that, in thisinstance, p isreally apointer to the variable x whichisa
DERI VED type. Todisplay al thefieldsof x, you can type cast it asfollows.

Example:
*(DERI VED *)p

Operators for the C++ Grammar 135

Expressions

13.5.2 The "this" Operator for the C++ Grammar

Continuing with the example of the previous sections, we can step into the call to f - >f oo() and up to the
b=3 statement. You can usethe "this" operator asillustrated in the following example.

Example:
this->a
*this

13.5.3 "operator" Functions in the C++ Grammar

Continuing with the example of the previous sections, we can set breakpoints at C++ operators using
expressions similar to the following:

Example:
operator =

DERI VED & operator =(DERI VED const &s)
{

a = s.a;
b = s.b;
return *this;

13.5.4 Scope Operator "::" for the C++ Grammar

We can use the scope operator "::" to identify what it is that we wish to examine. Continuing with the
example of the previous sections, we can enter an address like:

base: : foo

In some cases, this also helps to resolve any ambiguity. The example above permits us to set a breakpoint
at the source code for the function f 0o in the class BASE.

virtual void foo()

Here are some more interesting examples:

derived: : foo
derived:: operator =

Thefirst of these two examples contains an ambiguous reference so a prompt window is displayed to
resolve the ambiguity.

136 Operators for the C++ Grammar

Open Watcom Debugger Expression Handling

13.5.5 Constructor/Destructor Functions in the C++ Grammar

We can also examine the constructor/destructor functions of an object or class. Continuing with the
exampl e of the previous sections, we can enter expressions like:

Example:
base: : base
base: : ~base

The examples above permit us to reference the source code for the constructor and destructor functionsin
the class BASE.

13.6 Operators for the FORTRAN Grammar

The debugger supports most FORTRAN 77 operators and includes an additional set of operators for
convenience. The additional operators are patterned after those available in the C programming language.

The grammar that the debugger supportsis closeto that of the FORTRAN 77 language but there are afew
instances where space characters must be used to clear up any ambiguities. For example, the expression

1.eq.x

will result in an error since the debugger will form a floating-point constant from the "1." leaving the string
"eg.x". If weintroduce a space character after the "1" then we clear up the ambiguity.

1 .eq.X

Unlike FORTRAN, the parser in the debugger treats spaces as significant characters. Thus spaces must not
be introduced in the middle of symbol names, constants, multi-character operators like .EQ. or //, etc.

Operators are presented in order of precedence, from lowest to highest. Operators on the same line have
the same priority.

Operators for the FORTRAN Grammar 137

Expressions

Lowest Priority
Assi gnnment QOperators

= += -= *= [= OFE &= | = A= <<= >>S=
Logi cal Operators
CEQV. . NEQV.
. OR
. AND.
NOT

Bit Operators
I

AN

&
Rel ati onal QOperators
.EQ .NE. .LT. .LE .GI. .CE
Shift and Concat enation Operators
<< >> [/
Arithnetic Operators
+ -
* %
** (unsupport ed)
Unary Qperators
+

~ ++ - & * %
[type_nane] unary_expr
?

Bi nary Address Operator

H ghest Priority
Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are supported. These
operators are used in identifying the object to be operated upon.

0 subscripting, substringing, or function call
field selection
-> field selection using a pointer

The following built-in functions may be used to convert the specified argument to a particular type.

I NT() conversion to integer

REAL() conversion to real

DBLE() conversion to doubl e-precision
CVPLX() conversion to conpl ex

DCVPLX() conversion to doubl e-precision conpl ex

The following sections describe the operators presented above.

138 Operators for the FORTRAN Grammar

Open Watcom Debugger Expression Handling

13.6.1 Assignment Operators for the FORTRAN Grammar

<<=

>>=

Assignment: The value on theright is assigned to the object on the left.

Additive assignment: The object on the left is augmented by the value on the right.
Subtractive assignment: The object on the left is reduced by the value on the right.
Multiplicative assignment: The object on the left is multiplied by the value on the right.
Division assignment: The object on the left is divided by the value on the right.

Modulus assignment: The object on the left is updated with MOD(left,right). Theresultis
the remainder when the value of the object on the left is divided by the value on the right.

Bit-wise AND: The bitsin the object on the left are ANDed with the bits of the value on
theright.

Bit-wiseinclusive OR: The bitsin the object on the left are ORed with the bits of the value
on theright.

Bit-wise exclusive OR: The bitsin the object on the left are exclusively ORed with the bits
of the value on theright.

Left shift: The bitsin the object on the left are shifted to the left by the amount of the value
on theright.

Right shift: The bitsin the object on the left are shifted to the right by the amount of the
value on theright. If the object on the left is described as unsigned, the vacated high-order
bits are zeroed. If the object on the left is described as signed, the sign bit is propagated
through the vacated high-order bits. The debugger treats registers as unsigned items.

13.6.2 Logical Operators for the FORTRAN Grammar

EQV.

NEQV.

.OR.

AND.

.NOT.

Logical equivalence: Thelogical equivalence of the value on the left and the value on the
right is produced.

Logical non-equivalence: Thelogical non-equivalence of the value on the left and the
value on the right is produced.

Logical inclusive disiunction: Thelogical OR of the value on the |eft and the value on the
right is produced.

Logica conjunction: Thelogical AND of the value on the left and the value on theright is
produced.

Logical negation: Thelogical complement of the value on the right is produced.

Operators for the FORTRAN Grammar 139

Expressions

13.6.3 Bit Operators for the FORTRAN Grammar

| Bit-wise OR: The bits of the value on the left and the value on the right are ORed.

A Bit-wise exclusive OR: The bits of the value on the Ieft and the value on the right are
exclusively ORed.
& Bit-wise AND: The bits of the value on the | eft and the value on the right are ANDed.

13.6.4 Relational Operators for the FORTRAN Grammar

EQ. Equal: If the value on the left is equal to the value on the right then the result is 1;
otherwise the result is 0.

.NE. Not equal: If the value on the left is not equal to the value on the right then the result is 1;
otherwise the result is 0.

LT. Lessthan: If the value on the left isless than the value on the right then the result is 1
otherwise theresult is 0.

LE. Lessthan or equal: If the value on theleft isless than or equal to the value on the right
then the result is 1; otherwise the result is 0.

.GT. Greater than: If the value on the left is greater than the value on the right then the result is
1; otherwise theresult isO.

.GE. Greater than or equal: If the value on the left is greater than or equal to the value on the
right then the result is 1; otherwise the result is 0.

13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN Grammar

<< Left shift: The bits of the value on the left are shifted to the left by the amount described
by the value on theright.
>> Right shift: The bits of the value on the left are shifted to the right by the amount described

by the value on theright. If the object on the left is described as unsigned, the vacated
high-order bits are zeroed. If the object on the left is described as signed, the sign bit is
propagated through the vacated high-order bits. The debugger treats registers as unsigned
items.

13.6.6 Concatenation Operator for the FORTRAN Grammar

1 String concatenation: The concatenation of the character string value on the left and right
isformed.

140 Operators for the FORTRAN Grammar

Open Watcom Debugger Expression Handling

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar

+

%

* %

Addition: The value on theright is added to the value on the left.

Subtraction: The value on the right is subtracted from the value on the left.

Multiplication: The value on the left is multiplied by the value on the right.

Division: The vaue on the left is divided by the value on theright.

Modulus. The modulus of the value on the left with respect to the value on theright is
produced. Theresult isthe remainder when the value on the left is divided by the value on

the right.

Exponentiation: This operation is not supported by the debugger.

13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar

+

++

%

Plus: Theresult isthe value on theright.
Minus. Theresult isthe negation of the value on the right.
Bit-wise complement: The result is the bit-wise complement of the value on theright.

Increment: Both prefix and postfix operators are supported. If the object is on the right, it
ispre-incremented by 1 (e.g., ++x). If the object ison theleft, it is post-incremented by 1
(e.g., x++).

Decrement: Both prefix and postfix operators are supported. |f the object is on the right, it
is pre-decremented by 1 (e.g., --x). |If the object ison the left, it is post-decremented by 1

(eg., x--).

Address of: Theresult is the address (segment:offset) of the object on theright (e.g.,
&main).

Points: The result is the value stored at the location addressed by the value on the right
(e.g., *(ds:100), *string.loc). In the absence of typing information, the value on theright is
treated as a pointer into the default data segment (DGROUP) and a near pointer is
produced.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS:0102) = 1240
(SS: 0104) = EEEE

Value at address: The result is the value stored at the location addressed by the value on
theright (e.g., %(ds:100), %string.loc). In the absence of typing information, the value on
theright is treated as a pointer into the default data segment (DGROUP) and afar pointer is
produced.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS:0102) = 1240
(SS: 0104) = EEEE

Operators for the FORTRAN Grammar 141

Expressions

Note that this operator is not found in the FORTRAN 77 programming language.

13.6.9 Special Unary Operators for the FORTRAN Grammar

? Existencetest: The"?' unary operator may be used to test for the existence of a symbol.
?id

Theresult of thisexpressionis1if "id" isasymbol known to the debugger and O otherwise.
If the symbol does not exist in the current scope then it must be qualified with its module
name. Automatic symbols exist only in the current subprogram.

13.6.10 Binary Address Operator for the FORTRAN Grammar

Memory locations can be referenced by using the binary ":" operator and a combination of
constants, register names, and symbol names. In the Intel 80x86 architecture, a memory
reference requires a segment and offset specification. A memory reference using the":"
operator takes the following form:

segment: of fset
The elements segment and offset can be expressions.

Example:
(ES): (DI +100)
(SS): (SP-20)

13.6.11 Primary Expression Operators for the FORTRAN Grammar
0 Elements of an array can be identified using subscript expressions.

The"." operator indicates field selection in astructure. This operator is useful in mixed
language applications where part of the application iswritten in the C or C++ programming
language. Inthefollowing example, t yne2 isastructureand t m_year isafieldinthe
structure.

tynme2.tm year

-> The"->" operator indicates field selection when using a pointer to a structure. This
operator isuseful in mixed language applications where part of the application iswritten in
the C or C++ programming language. In the following example, t yrre isthe pointer and
t m_year isafield in the structure to which it points.

tyme- >t m year

142 Operators for the FORTRAN Grammar

Appendices

Appendices

144

Debugger Commands
'

A. Debugger Commands

This section describes the syntax of debugger commands as well as a description of each of the debugger
commands.

A.1 Syntax Definitions

A debugger command may contain any of the following syntax elements:

» A word in angle brackets, like <anything> is adefined term. Its definition will appear after the
syntax description of the command.

* [X] indicates that "Xx" is an optional item. It may or may not be included in the command.

* [X]y|z] indicates that on of X, y or z should be included in the command.

* [X [x[...]]] indicates that x may be repeated zero or more timesin the command.

» CApital indicates that ca,cap,capi,... are accepted short forms for the command " capital”.

* (GUI only) indicates that this command is only available in a GUI debugger.

* (character-based) indicates that this command is only available in a character mode debugger.

* <expr> indicates an expression. These may include any of the variables, etc in the program being
debugged, and are evaluated in the current program context. See "Open Watcom Debugger
Expression Handling" on page 119.

* <integer> is an integer constant

* <intexpr> is an an expression which evaluates to an integral value. See "Open Watcom Debugger
Expression Handling" on page 119.

» <command> is any debugger command or group of debugger commands.

Y ou can group debugger commands with braces and separate them with semi-colons. The resulting
compound command may be considered as an atomic command.

{ <command>; <command>; <conmand>}

* <address> is any expression which evaluatesto an address. See "Open Watcom Debugger
Expression Handling" on page 119.

* <string> is a string of text, optionally enclosed in braces. For example,

this_is_a_string
{so is this}

Syntax Definitions 145

Appendices

» <wndname> is the name of awindow. Valid window names (with acceptable short forms indicated
in capitals) are:

* ASsembly
* ALl

* BReak
 Calls

» Watch
*Flle

* FPu

* FUnctions
* FILEScope
* LOCals

* LOG

* MEmory

* MOdules

* Register

» SOurce

» STack

e Thread
*10

* Globals

» Variable

* Blnary

* IMage

» GLobalfunctions
» Accelerators
* TMPFile

* REPlay

e CUrrent

* <file> represents any valid operating system file name. For example,

c:\ aut oexec. bat

* <path> represents any valid operating system directory path. For example,

c:\diri\dir2

A.2 Command Summary

A summary of each command follows.

A.2.1 Accelerate

This command behaves as if amenu item from the main menu was sel ected:

Accel erate main <menu> {<menu_string>}

This command behaves as if the named menu item in the floating pop-up menu for the current window was
selected:

Accel erate {<nenu_string>}

146 Command Summary

Debugger Commands

<menu> the string appearing on the main menu bar (File, Run, Break, Code, etc)

<menu_string>
is enough of the text appearing in a menu to uniquely identify it.

For example:

accelerate main run {until return}

behaves asif "Until return” is selected from the run menu

accel erate {Hone}

behaves as if "home" were picked from the floating pop-up menu of the current window.

A.2.2 Break

This command prints alist of all breakpointsinto the log window:

Br eak

This command sets a break point. See the section entitled "Breakpoints' on page 71 for details about
breakpoint operation.

Break [|/Set|/Byte|/Wrd|/Dwrd|/Mdify]
<address> [{<do_command>} [{ <condition> } [<countdown>]]]

This command deactivates a breakpoint:

Br eak/ Deacti vat e <br ki d>

This command enables a breakpoint:

Br eak/ Acti vat e <brki d>

This command clears a breakpoint:

Br eak/ d ear <brki d>

This command toggles a breakpoint through the active/inactive/del eted states:

Br eak/ Toggl e <br ki d>

This command turns on the resume option in the breakpoint:

Br eak/ Resune <br ki d>

This command turns off the resume option in the breakpoint:

Br eak/ UnResune <br ki d>

The Break options are:

Command Summary 147

Appendices

/Set (default) the breakpoint triggers when <address> is executed

/Byte the breakpoint triggers when the byte at <address> is modified

/Word the breakpoint triggers when the word at <address> is modified

/DWord the breakpoint triggers when the double word at <address> is modified

/Modify the breakpoint triggers when integer at <address> is modified

<condition> an expression that must be true (non-zero value) before the breakpoint stops program
execution

<countdown> aninteger. The breakpoint will not stop program execution until <countdown> is
decremented to zero.

Note: If you specify both <condition> and <countdown>, <countdown>
decrements only when <condition> eval uates to true.
<do_command>
acommand that is executed each time the breakpoint stops program execution
<brkid> option can be three possible values:

<address> Perform the operation on breakpoint with the given address.
* Perform the operation on all breakpoints.

#<integer> Names a breakpoint by itsindex. Thisindex can be discovered on thetitle
line of the Breakpoint dialog.

Some examples of the break command and a description follow:

This command sets a breakpoint at "foo" the 20th time that i equals 10. When thisoccurs’doj7’ is
executed:

Break /Set foo {do j7} {i1l0} 20

This command clears the breakpoint at foo:

Break /d ear foo

This command activates breakpoint #1:

Break /Activate #1

This command deactivates all breakpoints:

Break /Deactivate *

A.2.3 Call

Use the Call command to call aroutine. The Call command options are:

Call [/Far|/Interrupt]|/Near]
<addr ess>
[([<parne[,<parne[...]111)] [/]|<printlist>]

This command calls the routine at <address> with parameters.

148 Command Summary

Debugger Commands

[Far Use afar cal instruction.
/Near Use anear call instruction.
/Interrupt Call theroutine asiif it were an interrupt handler.
<parm> is [/<location>] <expr>
<location> is[/|<regset>]
/ means to put the parm on the stack.
/<regset> means to put the parm into the named registers.

<regset> isaregister aggregate. See "Open Watcom Debugger Expression Handling" on
page 119.

<printlist> See the print command for details.

Some examples of the Call command follow: This command calls the function foo:

call foo

This command calls the function bar passing the parameters 1, 2, and 3:

call bar(1,2,3)

This command calls foo putting 1 on the stack, 2 in AX and 3 in CX:BX printing out the value of AX and
DX in decimal and hexadecimal respectively on return:

call /near foo(// 1, /ax 2, /[cx bx] 3) {% %} ax, dx

The Call command only uses very basic symbolic information - it's designed that way so that it can work
even when no symbolic information is available. This has anumber of implications. Thefirst isthat the
debugger pays no attention to any information on where parameters are stored. For example, in 32-bit
applications, unless explictly instructed otherwise, the first parm is placed in EAX, the second in EDX, and
so0 on (as defined by the "set call” command). That means that you have to do something like:

call foo(// &a, I/ 3)
to get things on to the stack. Thisleadsto a second, very important consideration.

The debugger has no idea of the memory model that the program is compiled in (recall that the 32-bit
compiler does support large memory models and far pointers, even if we don’t supply versions of the
librariesfor it). That means that the debugger has no idea on whether the address of a symbol should be far
or near. It always assumes far, since that never loses information. A far pointer would be truncated to a
near pointer when moved into a 32-bit register like EAX but not so when pushed onto the stack. In this
case,// &aand// 3 cause48-bit far pointersto be pushed onto the stack (they are actually pushed as 64
bits for alignment reasons). Thus the pointer to b isin the wrong place for the routine to access it
(assuming it is expecting near pointers) and thiswill likely cause atask exception. To avoid this problem
and properly pass arguments to the routine, you need to do the following:

call foo(// (void near *)&a, // (void near *)3)

This forces the debugger to push near pointers onto the stack.

Command Summary 149

Appendices

Similar considerations apply for the 16-bit case.

A.2.4 CAPture

Use the Capture command to execute a command and put the resulting program output into awindow. The
format of the command follows:

CAPt ur e <command>

For example, this command calls aroutine, foo, and puts its output into a debugger window.

capture call foo

A.2.5 COnfigfile

Configfile

Used by the debugger to save and restore the configuration. When "configfile" appearsin acommand file,
it identifies that file as the default configuration file. The debugger will overwrite the command file when
autosaving the current configuration. Also, the name of thisfile is displayed in the filename field when the
"Save Setup” dialog initially appears.

If more than one file is encountered containing the "configfile" command, the last one seen isused to
establish the configuration file name.

A.2.6 Display

The display command allows you to open any window. The general Display command is:

Di spl ay <wndnane> [/ Open|/C ose|/New{ /M ni m ze| / MAXi m ze| / Rest or €]
[<or d>, <or d>, <or d>, <or d>]

This command causes the debugger screen to repaint:

Di spl ay

This command displays the toolbar as either fixed (default) or floating:

Di spl ay TOQol bar [/ Open] [/FLoating/Fi xed] [<ord>]

This command closes the toolbar:

Di spl ay TQol bar [/ ose]

This command opens the status line;

Di splay Status [/ Open]

This command closes the status line:

Di splay Status /C ose

This command brings a window to the front:

Di spl ay <wndname>

150 Command Summary

Debugger Commands

The options for the Display command follow:
<ord> The height to be used for toolbar buttons.
<ord>,<ord><ord>,<ord>

These are the x and y coordinates of the top left corner, and the width and the height of the
window respectively. 0,0,10000,10000 is awindow covering the entire screen.

/Open Open a new window or resize an existing one.
/New Open a new window regardless of an existing one.
/Close Close the window.

/MInimize | conize the window.

IMAXimize Make the window full screen size.
/REstore Restore a window from a minimize or maximize.

Some examples of the display command follow: This command opens a register window in the top left
guarter of the screen:

di spl ay register /open 0,0, 5000, 5000

This command minimizes the source window if it is open:

di spl ay source /mnimze

A.2.7 DO (or/)

Use the DO command to evaluate an arbitrary C/C++ or FORTRAN expression. The format of the
command is:

DO <expr >

For example:

DOi = 10

A.2.8 ERror

Use the Error command to display a string as an error message. The format of the command is:

ERror <string>

For example:

error {An error has been detected}

Command Summary 151

Appendices

A.2.9 Examine

Use the Examine command to examine memory at a specific address.

Exam ne [/ <type>] [<address>] [,<follow> [, <len>]]

where "<type>" is one of

Byt e

Wor d

Dwor d

Qnor d

Char

Short

Long

__int64

Unsi gned_Char
Unsi gned_Short
Unsi gned_Long
Unsigned___int64
0: 16_Poi nt er
16: 16_Poi nter
0: 32_Poi nter
16: 32_Poi nter
FI oat

Doubl e

Ext ended_Fl oat

To show an assembly window at a specific address:

Exam ne / Assenbly [<address>]

To show a source window at a specific address

Exam ne / Source [<address>]

To add an address to the I/O window as a byte, word, or dword:

Examine [/1OByte| /| Onrd| /| ODword] [<address>]

The options for the Examine command follow:

[<type> where "<type>" isone of Byt e, Word, Dword, Qaord, Char, Short, Long,
__int64, Unsi gned_Char, Unsi gned_Short, Unsi gned_Long,
Unsigned___int64,0:16_Pointer, 16: 16_Poi nter, 0: 32_Poi nter,

16: 32_Poi nter, Fl oat, Doubl e, or Ext ended_Fl oat. Settheinitial display
type of the memory window.

/1OByte /I OWord /| ODword
Set the initial display type of the linein the I/0O window.

<address> the address to examine.

<follow> an expression which will be used if the memory window’ s Repeat function is chosen.
<len> an integer expression indicating the length of memory to examine.

For example, this command opens a memory window positioned at the address of "foo". The initia display
type will be 2 byte words. If the Repeat menu item is used, it will follow a near pointer 4 bytes past the
beginning of the window * (.+$). The window will display 16 bytes of data at atime:

152 Command Summary

Debugger Commands

exam ne /word foo, *(.+4), 16

A.2.10 Flip

Use the Flip command to configure screen flipping. See the section entitled " The Options Dialog" on page
32 for details

Flip ON
Flip OFf

A.2.11 FOnt

Use the Font command to set the font for the specified window. The command is:

FOnt <wndnane> <fonti nfo>
<wndname> the name of the affected window

<fontinfo> operating system specific font data.

A.2.12 Go

Use the Go command to start or continue program execution. Execution then resumes at the specified
address or at the location defined by the current contents of the CS:IP or CS:EIP register pair. The format
of the Go command is:

Go [/Until] [/Keep] [/Noflip] [[<start>]<stop>]

The options are:

/Until skips breakpoints until the specified stop address is reached.

/Keep allows you to keep a previous temporary breakpoint. If you keep the previous breakpoint
you cannot create a new one.

/Noflip keeps the debugger from flipping to the application’s screen.

<start> the <address> at which to start execution (optional).

<stop> the <address> at which to stop execution.

Some exampl es of the Go command are:

This command will resume execution until function "foo" is executed without flipping to the application
screen:

go /noflip foo

This command starts execution at "foo" and runs until "bar" is executed.

go foo, bar

Command Summary 153

Appendices

A.2.13 Help

Bring up the help screen:

Hel p

A.2.14 HOok

Use the Hook command to execute a command when a defined event occurs. The format of the Hook
command is:

HCOok <event > <command>
<event> can be any of the following:
PROGStart aprogram isloaded
PROGENd aprogram terminates
DLL Start aDLL isloaded
DLLENd aDLL isunloaded
EXECStart program execution is beginning
EXECENd program execution is stopped
Sourceinfo the current location being examined has debugging information
Assemblyinfo the current location being examined has no debugging information
Modulechange the current location being examined has changed modules

This exampl e causes the locals and source window to come to the front whenever a region with symbolic
debugging information is entered:

hook sourceinfo {display locals; display source}

A2.15IF

Use the If command to evaluate an expression and then, depending on the results, execute alist of
commands. Theformat of the If command is:

I F <expr> { <command> }
[ELSEIF <expr> { <command> } [ELSElIF <expr> { <command> } [...]]]
[ELSE { <conmand> }]

If the expression resultsin anon-zero value, the list of debugger commands contained after the | F

expression are executed. Otherwise, the list of commands that appear after the EL SEIF expression are
executed.

154 Command Summary

Debugger Commands

A.2.16 INvoke (or <)

Use the Invoke command to invoke a file containing a number of debugger commands. The format of the
Invoke command is:

I N\voke <file> [<string> [<string> [..

111
111

< <file> [<string> [<string> [..
<file> is the name of the command file to invoke.
<string> will be passed as a parameter. These parameters may be referenced in the command file as
<1>, <2>, etc.
A.2.17 Log (or >)

Use the Log command to send the Dialog window output to a specified file. The following commands start
logging to afile:

Log <file>
Log /Start <file>
> <file>

The following commands start appending log information to afile.

Log > <file>
>> <file>
Log / Append <fil e>

The following commands stop logging:

Log
>

A.2.18 MOdify

Use the Modify command to change memory at an address to the values specified by the list of expressions.

Mdi fy [/Byte|/Pointer|/Wrd|/Dword|/|1OByte|/lOMrd|/| ODword] <address>[,<expr>[...]]
The options for the modify command are;
/Byte /Pointer /Word /Dword Control the size of memory to be modified.
/1OByte /I OWord /| ODword Control the size of the I/O port to be modified.
<address> The address to modify.
<expr> The values to be placed in memory.

This command changes the 3 bytes at location "foo" to the values 1, 2 and 3:

nodi fy /byte foo 1,2,3

This command changes the 4 bytes at location "foo" to the value 12345678 hex:

nmodi fy /dword foo 0x12345678

Command Summary 155

Appendices

A.2.19 NEW

Use the New command to initialize various items. The format of the New command is:

NEW [<ar gs>]

NEW / Program [[: <synfile>] <progfile> [<args>]]
NEW / Restart [<args>]

NEW / STDI n <fil e>

NEW / STDQut <fil e>

NEW / SYnbol <file> [seg [,seg [...]]

<symfile> represents afile containing the symbolic information.

<progfile> represents the executable file.

<args> represent the arguments to be passed to the program.

/Restart Reload the current application and placeit into an initial state so that you may begin
execution again. The application may have already partially or completely executed.

/STDIn associate the standard input file handle with a particular file or device.

/STDOut associate the standard output file handle with a particular file or device.

/Symbol load additional symbolic debugging information and specify the mapping between the

linker addresses and the actual execution addresses.

A.2.20 PAint

Use the Paint command to define window or dialog colours. To define the colour for windows, use the
following command:

PAi nt [Status| <wndnane>] <wndattr> <col or> ON <col or>

To define the colour for dialogs in the character-based version of the debugger, use the following
command:

PAi nt Dl al og <dl gattr> <col or> ON <col or>

The paint options are as follows:

<wndattr> allows you to define the window attributes. Y ou can choose from the following items:
MEnu Plain menu text (character-based)
MEnu STandout menu accelerator key (character-based)
MEnu Disabled grayed menu item (character-based)
MEnu Active menu item under the cursor (character-based)
MEnu Active STandout menu accelerator key under the cursor (character-based)

MEnu Frame frame of the menu (character-based)

156 Command Summary

Debugger Commands

MEnu Disabled Active grayed menu item under the cursor (character-based)
Tltle Disabled anon active window’ stitle
Frame Active theframe of the active window (character-based)

Frame Disabled the frame an inactive window (character-based)

ICon anicon

Plain normal text within awindow
Active window text under the cursor
SElected window text being selected

STandout window text the debugger wishes to highlight

Active STandout window text the debugger wishes to highlight under the cursor

BUtton the gadgets on the | eft side of a window (character-based)
<dlgattr> option allows you to define the dialog attributes. The possible options are:

Plain normal text

Frame the dialog frame

SHadow the shadow of a button

BUtton Plain normal button text
BUtton STandout button accelerator key character
BUtton Active a button which has focus
BUtton Active STandout button accelerator key character of a button with focus
<color> Y ou can choose from the following colours:
* BLACk
*BLUe
* GREEnN
* Cyan
* Red
* MAgenta

* BROwn

Command Summary 157

Appendices

* White

* GREY

* GRAY

« BRIght BLUe

« BRIght GREEn
* BRIght Cyan

« BRIght Red

* BRIght MAgenta
* Yellow

* BRIght BROwn
* BRIght White

Some exampl es of the paint command follow:
paint all plain black on white

paints plain text black on white in all w ndows.
pai nt dial og button standout bright green on yell ow

A.2.21 Print (or ?)

Use the Print command to prompt for an expression and then print it to the log window. Use this command
to examine the values of variables and expressions. The Print command is:

Print [/Program [<printlist>]
Print /Wndow [<exprlist>]

/Window opens up awatch window containing the listed expressions.

/Program print the results to the application’s screen.

<printlist> is[<format>] [<exprlist>]

<exprlist> is[<expr> [,<expr>[...]]]

<format> isaprintf like format string. 1t consists of plain text intermixed with control sequences,

which will be substituted with values from the expression list. The control sequences are:

%i The corresponding argument is printed out as a signed decimal integer
value.

%d The corresponding argument is printed out as a signed decimal integer
value.

%u The corresponding argument is printed out as an unsigned decimal integer
value.

158 Command Summary

Debugger Commands

%X

%X

%0

%p

%cC

%s

%%

%f

%g

%G

%e

%E

%r

%a

%l

The corresponding argument is printed out as an unsigned hexadecimal
integer value. Letter digits are printed in lower case (&f).

The corresponding argument is printed out as an unsigned hexadecimal
integer value. Letter digits are printed in upper case (A-F).

The corresponding argument is printed out as an unsigned octal integer
value.

The corresponding argument is printed out as a pointer (segment;offset)
value in hexadecimal notation.

The corresponding argument is printed out as a single character value.

The corresponding argument is printed out as a C/C++ string value. The
argument must point to a string of characters terminated by a byte whose
valueis zero.

To print out a percentage symbol, the "%" must be doubled up (i.e., %%).

The corresponding argument is printed out in floating-point representation.
If the floating-point value has avery large or small magnitude, you should
useoneof "g", "G", "€" or "E" formatting.

The corresponding argument is printed out in floating-point representation.
Numbers of very large or small magnitude are printed out in scientific "E"
notation (e.g., 1.54352e+16). The exponent letter is printed in lower case.

The corresponding argument is printed out in floating-point representation.
Numbers of very large or small magnitude are printed out in scientific "E"
notation (e.g., 1.54352E+16). The exponent letter is printed in upper case.

The corresponding argument is printed out in scientific "E" notation (e.g.,
1.23456e+02). The exponent letter is printed in lower case.

The corresponding argument is printed out in scientific "E" notation (e.g.,
1.23456E+02). The exponent letter is printed in upper case.

The corresponding argument is printed out in the current default numeric
radix.

The corresponding argument is printed out as a symbol reference
(symbol_name+offset) when possible; otherwiseit is printed out as a
pointer (segment:offset) value in hexadecimal notation.

The corresponding argument is printed out as aline number reference
(module_name@line_number+offset) when possible; otherwise it is printed
out as a pointer (segment:offset) value in hexadecimal notation.

Some exampl es of the print command follow. This command prints the value of "i":

2?0

This command prints "decimal=100 hex=0x64":

Command Summary 159

Appendices

print {deci mal =% hex=%} 100, 100

This command opens a watch window and displays the value of argv[0]:

print/w ndow ar gv[0]

A.2.22 Quit

Use the Quit command to leave the debugger.

A.2.23 RECord

Use the Record command to add a command to the replay window. This command is for internal use only.
The format of the command is:

REcor d<expr > <conmmand>

A.2.24 Register

The format of the Register command is;

Regi st er <i ntexpr>

If intexpr is negative, thisis equivalent to using the menu item Undo/Undo -<intexpr> times. If intexpr is
positive, thisis equivalent to using the menu item Undo/Redo <intexpr> times.

A.2.25 REMark (or *)

Use the Remark command to enter lines of comments. The format of the command is:

REMar k <string>

A.2.26 Set

These commands are used internally by the debugger to save and restore the configuration. The syntax is:

160 Command Summary

Debugger Commands

Set AUt osave [ON| OFf]

Set ASsenbly [Lower| Upper] [CQutside|lnside] [Source| NOSource] [Hexadeci mal | Deci mal]
Set Variable [Entire|Partial] [CODe| NOCODe] [Nnherit|NO Nherit] [COVpiler| NOCOVi | er]
[PRI vat e] NOPRI vat e] [PRO ect ed| NOPROTect ed] [Menmber s| NOvenber s]

Set FUnctions [Typed| Al l]

Set GLobal s [Typed| Al l]

Set REG ster [Hexadeci mal | Deci mal] [Extended| Normal]

Set Fpu [Hexadeci nal | Deci nal]

Set Bell [ON OFf]

Set Call [/Far|/Interrupt|/Near] [([<location> [,<location>[...]]]) 1
Set Dclick <expr>

Set Inplicit [ON OFf]

Set | Nput <wndnane>

Set Radi x <expr>

Set RECursion [ON OFf]

Set SEarch [CASEl gnor e| CASEREspect] [Rx| NORx] <string>

Set SQurce [/Add] [<path> [<path>] [...]]]

Set SYnmbol [/Add|/Ignore|/Respect] [<Iookspec> [<l|ookspec> [...]]]

Set Tab <intexpr>

Set Level [Assenbly|M xed| Source]

Set LAnguage [CPP| C| FORTRAN]

Set SUpportroutine <string>

Set MAcro <wndnane> <key> <conmmand>

<location> see call command.

<lookspec> [/Ignore)/Respect] <string>

A.2.27 SHow

The Show commands are used internally by the debugger to save and restore its configuration. The syntax
is:

SHow Pai nt

SHow Di spl ay

SHow Font

SHow Set

SHow Set AUt osave
SHow Set ASsenbly
SHow Set Vari abl e
SHow Set FUncti ons
SHow Set GLobal s
SHow Set REG ster
SHow Set Fpu

SHow Set Bel |

SHow Set Cal |

SHow Set Dcli ck
SHow Set Inplicit
SHow Set | Nput
SHow Set Radi x
SHow Set RECursi on
SHow Set SEarch
SHow Set SCurce
SHow Set SYnbol
SHow Set Tab

SHow Set Level
SHow Set LAnguage
SHow Set MAcr o
SHow Set SUpportroutine
SHow Flip

SHow Hook

Command Summary 161

Appendices

A.2.28 SKip

Use the Skip command to set CS:EIP to a specific address. The format of the command is:

SKi p <address>

A.2.29 STackpos <intexpr>

The Stackpos command is the same as using Undo/Unwind. The <intexpr> alows you to define the
number of times to undo or unwind.

A.2.30 SYstem (or!)

Use the System command to spawn an operating shell to execute agiven string. The format of the system
command is:

SYstem [/ Renote| / Local] <string>
/Remote the shell is started on the program side of aremote debug link.

/Local the shell is started on the debugger side of aremote debug link.

A.2.31 THread (or ~)

Use the Thread command to manipulate the threads of execution of a multi-threaded application under
OS/2 or NetWare 386. The format of the Thread command is:

THread [/ Show / Freeze|/ Thaw / Change] [<t hreadi d>]

/Show display the status of the current thread.
[Freeze freeze athread and make it unrunnable.
[Thaw make a frozen thread runnable.
/Change to select a specific thread.

<threadid> is the identification number of the thread.

A.2.32 Trace

Use the Trace command to step through the execution of your program. The Trace command is:

Trace [/ Assenbly|/M xed|/ Source] [/Into|/Next|/COver]
/Assembly trace through your assembly code on instruction at atime.

/Mixed trace execution of the application one source statement at atime, or one instruction at a
time when no source text is available.

162 Command Summary

Debugger Commands

/Source

/Into

/Next

/Over

A.2.33 Undo

trace execution of the application one source statement at atime.

continue execution to the next statement or assembly instruction. If the current statement
or instruction invokes aroutine, then the next statement or instruction is the first one called
in the routing.

continue execution to the next statement or assembly instruction that immediately follows
the current statement or instruction in memory. If the current statement or instruction is
one that branches, be sure that the execution path eventually executed the statement or
instruction that follows. If the program does not executed this point, the program may
execute to completion.

continue execution to the next statement or assembly instruction. If the current statement
or instruction invokes a routine, then the next statement or instruction is the one that
follows the invocation of the routine.

The format of the Undo command is:

Undo <i nt expr>

If intexpr is positive, thisis equivalent to using the menu item Undo/Undo <intexpr> times. If intexpr is
negative, thisis equivalent to using the menu item Undo/Redo -<intexpr> times.

A.2.34 View

Use the View command to show afilein awindow. Theformat of the command is:

View [/Binary] [<file>| <nmodul e>]

/Binary

<file>

<module>

A.2.35 While

show the file contentsin binary.
the file to be shown.

the module to be shown. The default is the current module.

Use the While command to permit the execution of alist of commands while the specified expression is
true. The While command is:

Wi | e <expr> { <command> }

A.2.36 Window

This command operates on the current window. It is useful when defining accelerators that perform
window operations.

Command Summary 163

Appendices

WIndow CLose
close the window

WIndow CURSORStart
move the cursor to start of line

WIndow CURSORENd
move the cursor to end of line

WIndow CURSORDown
move the cursor down one line

WI ndow CURSORL eft
move the cursor |eft

WIndow CURSORRIght
move the cursor right

WIndow CURSORUp
move up oneline

WIndow Dump
dump the window to afile

Window Log dump the window to alog window

WIindow FINDNext
find the next occurrence of the current search string

WIndow FINDPrev
find the previous occurrence of the current search string

WIndow Next make another window the current window

WIndow PAGEDown
move the window down one page

WIndow PAGEUp
move the window up one page

WIndow POpup
show the window’ s floating pop-up menu

WIndow SEarch
search for agiven string

WIndow SCROLLDown
scroll the window down oneline

WIndow SCROLLUp
scroll the window up oneline

WIndow SCROLLTop
scroll the window to the very top

164 Command Summary

Debugger Commands

WIndow SCROL LBottom

scroll the window to the very bottom

WIndow TABL eft
move to the previous tabstop

WIndow TABRight
move to the next tabstop

WIndow MAXimize
maximize the window

WIndow MINimize
minimize the window

WIndow REStore
restore the window

Window Tlle tileall windows

WIndow CAscade
cascade al windows

WIndow PRevious
move to the previous window

Command Summary 165

Appendices

166 Command Summary

Predefined Symbols
|

B. Predefined Symbols

The Open Watcom Debugger defines a number of symbols which have special meaning. Each of the
registersis designated by aspecial name. Note that the registers listed here are applicable when the target
isan x86 platorm. For other platforms, the register set is different.

eax 32-bit EAX register (32-hit mode only)
ax 16-bit AX register

al 8-bit AL register

ah 8-bit AH register

ebx 32-bit EBX register (32-bit mode only)
bx 16-bit BX register

bl 8-bit BL register

bh 8-bit BH register

€cx 32-bit ECX register (32-bit mode only)
cX 16-bit CX register

cl 8-hit CL register

ch 8-hit CH register

edx 32-bit EDX register (32-bit mode only)
dx 16-bit DX register

d 8-bit DL register

dh 8-bit DH register

eip Instruction pointer register (32-bit mode only)
ip Instruction pointer register

€si Source index register (32-bit mode only)
s Source index register

edi Destination index register (32-bit mode only)
di Destination index register

esp Stack pointer register (32-bit mode only)
sp Stack pointer register

ebp Base pointer register (32-bit mode only)
bp Base pointer register

cs Code segment register

ds Data segment register

es Extra segment register

fs Segment register (32-bit mode only)

gs Segment register (32-bit mode only)

ss Stack segment register

fl Flags register

efl Flags register (32-bit mode only)

fl.flg_bit_name Individual bitsin Flags register
flg_bit_name : :: n CIl | n pIl | n aII | n zl | " SIl | n ill | " dll | n OIl
efl.flg_bit_name Individua bitsin Flags register

flg_bit_ name::="c" |"p" |"a" |"Z' |"s" |"i" |"d" |"0O"

Predefined Symbols 167

Appendices

The following table lists the full name for each of the flags register bits:

fl.o, fl.o overflow flag

fl.d, efl.d direction flag

fl.i, efl.i interrupt flag

fl.s, efl.s sign flag

fl.z, €fl.z zero flag

fl.a, efl.a auxiliary carry flag

fl.p, efl.p parity flag

fl.c, efl.c carry flag
S0 - st7 Numeric Data Processor registers (math coprocessor registers)
cw 8087 control word (math coprocessor control word)

cw.cw_bit_name Individual bitsin the control word

va_blt_name = n iCu | " rCu | " pcn | n ia.nu | " pmu |
n umu | " Omu | n ZlT]" | n dmu | " imu

The following table lists the full name for each of the control word hits:
Ccw.ic infinity control

0 = projective
1= &ffine

cw.rc rounding control (2 bits)

00 = round to nearest or even

01 = round down (towards negative infinity)
10 = round up (towards positive infinity)

11 = chop (truncate toward zero)

Ccw.pc precision control (2 bits)
00 = 24 bits
01 = reserved
10 = 53 hits
11 = 64 bits
cw.iem interrupt enable mask (8087 only)

0 = interrupts enabled
1 = interrupts disabled (masked)

cw.pm precision (inexact result) mask
cw.um underflow mask
cw.om overflow mask
cw.zm zero-divide mask
cw.dm denormalized operand mask
cw.im invalid operand mask

Sw 8087 status word (math coprocessor status word)

168 Predefined Symbols

Predefined Symbols

sw.sw_hit_name Individual bitsin the status word

mmO - mm7

xmmO - xmm7

sw_bit_name::= "b" ["c3" |["s" |"c2" ["cl" |
n COll | " %ll | " Srll | n pelI | " uell |
n OeII | " ZelI | " dell | n iell

The following table lists the full name for each of the status word bits:

sw.b busy
sw.c3 condition code bit 3
sw.st stack stop pointer (3 bits)

000 = register O is stack top
001 = register 1 is stack top
010 = register 2 is stack top

111 = register 7 is stack top

Sw.c2 condition code bit 2

sw.cl condition code bit 1

sw.cO condition code bit 0

Sw.es error summary (287, 387 only)
sw.sf stack fault (387 only)

sw.pe precision (inexact result) exception
sw.ue underflow exception

sw.oe overflow exception

sw.ze zero-divide exception

sw.de denormalized operand exception
sw.ie invalid operation exception
MMX registers

mmO.b0 - mmO.b7 MM X register component bytes
mmO.wO0 - mmO.w3 MM X register component words
mmO.d0 - mmO0.d1 MMX register component doublewords

XMM registers (SSE registers)

xmmaO.bO - xmmO0.b15 XMM register component bytes
xmmO.w0 - xmmO.w7 XMM register component words
xmmaO.dO - xmmO0.d3 XMM register component doublewords
xmmo0.q0 - xmmO0.q1 XMM register component quadwords

The debugger permits the manipulation of register contents using any of the operators described in the
following chapter. By default, these predefined names are accessed just like any other variables defined by
the user or the application. Should the situation ever arise where the application defines a variable whose
name conflicts with that of one of these debugger variables, the module specifier _dbg may be used to
resolve the ambiguity. For example, if the application defines avariable called cs then _dbg@s can be
specified to resolve the ambiguity. The"_dbg@" prefix indicates that we are referring to a debugger
defined symbol rather than an application defined symbol.

Predefined Symbols 169

Appendices

The flags register, the 8087 control word, and the 8087 status word can be accessed as awhole or by its
component status bits.

Example:
/fl.c=0
/ cw. une0
?sSw. oe

In the above example, the "carry" flag is cleared, the 8087 underflow mask of the control word is cleared,
and the 8087 overflow exception bit of the status word is printed.

The low order bit of the expression result is used to set or clear the specified flag.

Example:
fl.c=0x03a6

In the above example, the "carry" flag is cleared since the low order bit of the result isO.

Similarly, the MMX and XMM registers can be accessed as a whole or by their component bytes, words,
doublewords and quadwords (in the case of the 128-bit XMM registers).

Example:
/ m©D. bl1=1
?m0. dO

In the above example, the second byte of the first MM X register is set to 1, then the first doubleword of the
same register is printed.

The debugger aso defines some other special names.

dbg$32 This debugger symbol represents the mode in which the processor is running.
0 16-bit mode
1 32-bit mode
dbg$bp This debugger symbol represents the register pair SS:BP (16-bit mode) or SS:EBP (32-hit
mode).
Example:
? dbg$bp
dbg$code This debugger symbol represents the current code location under examination. The dot

address"." is either set to dbg$code or dbg$data, depending on whether you were last
looking at code or data.

dbg$cpu This debugger symbol represents the type of central processing unit which isin your
personal computer system.

Intel 8088, 8086 or compatible processor
Intel 80188, 80186 or compatible processor
Intel 80286 or compatible processor

Intel 80386 or compatible processor

WNEFLO

170 Predefined Symbols

Predefined Symbols

dbgsctid

dbg$data

dbgsetid

dbg$fpu

dbgsip

dbg$monitor

dbg$ntid

4 Intel 80486 or compatible processor
5 Intel Pentium processor

This debugger symbol represents the identification number of the current execution thread.
Under environments which do not support threading, the current thread ID isalways 1. The
current execution thread can be selected using the Thread window or the Thread command.

This debugger symbol represents the current data location under examination. The dot
address"." is either set to dbg$code or dbg$data, depending on whether you were last
looking at code or data.

This debugger symbol represents the identification number of the thread that was executing
when the debugger was entered. Under environments which do not support threading, the
executing thread 1D isalways 1.

This debugger symbol represents the type of numeric data processor (math coprocessor)
that isinstalled in your personal computer system.

An 80x87 emulator isinstalled

No coprocessor isinstalled

An Intel 8087 isinstalled

An Intel 80287 isinstalled

An Intel 80387 isinstalled

An Intel 80486 processor, supporting coprocessor instructions, is installed
An Intel Pentium processor, supporting coprocessor instructions, is
installed

(J‘Ihwl'\)HO|'_‘

This debugger symbol represents the register pair CS:IP (16-bit mode) or CS.EIP (32-bit
mode).

Example:
? dbg$i p

This debugger symbol represents the type of monitor adapter which isin use.

IBM Monochrome Adapter

IBM Colour Graphics Adapter (CGA)
IBM Enhanced Graphics Adapter (EGA)
IBM Video Graphics Array (VGA)

WNEFEO

This debugger symbol represents the identification number of the next execution thread.
To iterate through all of the threads in a process, you can execute t hr ead dbg$nti d
repetitively until you are back to the original thread. Under environments which do not
support threading, the next thread ID isalways 1. To show the execution stack for all
threads (in the Log window), you can execute the following commands:

Predefined Symbols 171

Appendices

Example:
Jorig tid = dbg$ctid
/curr_tid = dbg$ctid
while curr_tid !'= 0 {
print {----- Next Thread % ----- } curr_tid;
show cal | s;
/curr_tid = dbg$ntid,
thread curr_tid;
if(curr_tid == orig_tid) {
[curr_tid = 0;
}
}
dbg$os This debugger symbol represents the operating system that is currently running the
application.

1 DOS

2 0Ss/2

3 386|DOS-Extender from Phar Lap Software, Inc.

5 NetWare 386 from Novell, Inc.

6 QNX from QNX Software Systems.

7 DOS/4GW from Tenberry Software, Inc., or CauseWay (both included in
the Open Watcom C/C++(32) and Open Watcom FORTRAN 77/32
packages)

8 Windows 3.x from Microsoft Corporation

10 Windows NT/2000/X P or Windows 9x from Microsoft Corporation

13 GNU/Linux

dbg$pid (OS2, NetWare 386, Linux, QNX, Windows NT, Windows 95 only) This debugger

symbol contains the process identification value for the program being debugged.

dbg$psp (DOS only) This debugger symbol contains the segment va ue for the DOS "program
segment prefix" of the program being debugged.

dbg$radix This debugger symbol represents the current default numeric radix.
dbg$remote This debugger symbol is 1 if the "REMotefiles’ option was specified and 0 otherwise.

dbg$sp This debugger symbol represents the register pair SS:SP (16-bit mode) or SS:ESP (32-bit
mode).

Example:
? dbg$sp

dbg$loaded Thisdebugger symbol is 1 if aprogram isloaded. Otherwisg, itisO.
dbg$nil This debugger symbol is the null pointer value.

dbg$src This debugger symbol is 1 if you are currently debugging in an area that contains
debugging information.

172 Predefined Symbols

Wiring For Remote Debugging

C. Wiring For Remote Debugging

This appendix describes both serial and parallel port cable wiring for remote debugging.

C.1 Serial Port Wiring Considerations

If you plan to use the seria port Debug Server "SERSERV", a cable must connect the serial ports of the
two computer systems. The following diagram illustrates the wiring between the two serial ports. If your
computer systems have more than one serial port, any serial port may be used.

Task Machi ne Debugger Machi ne
Seri al Seri al
Connect or Connect or
Pin # Pin #
1 (PG <reemem--- >1 (PQ
2 (TXD)<---mmmm--- >3 (RxD)
3 (RXD)<---------- >2 (TxD)
------- 4 (RTS) 4 (RTS) -------
...... > 5 (CTS) 5 (CTS) <------
------ > 6 (DSR) 6 (DSR) <------
I 7 (SQ <--eeeeeee- >7 (SQ I
- > 8 (DCD) 8 (DCD) <------ |
L 20 (DTR) 20 (DTR) ------- |

Figure 26. Serial Port Wiring Scheme
Note that the wiring is symmetrical (i.e., either end of the cable can be plugged into either PC). This

particular arrangement of the wiring is sometimes called a"null modem" (since pins 2 and 3 are crossed
and no modem isinvolved).

C.2 Parallel Port Wiring Considerations
If you plan to use the parallel port Debug Server "PARSERV" or "PARSERVW", a cable must connect the
parallel ports of the two computer systems. Three cabling methods are supported - the LapLink cable, the
Flying Dutchman cable, and Watcom’'s own design. There are two advantages to using the LapLink or
Flying Dutchman cable;

1. They are commercially available (you may aready own one).

Parallel Port Wiring Considerations 173

Appendices

2. They may work with more PC "compatibles’ than Watcom's cable. Watcom’s cabling requires
8 bi-directional datalinesin the parallel port and some PC "compatibles’ do not support this.

The disadvantage with the LapLink and Flying Dutchman cables is that they are slower than Watcom'’s
cable since only 4 bits are transmitted in parallel versus 8 bits for Watcom’s. Thus Watcom’s cable is
faster but it will have to be custom made.

The LapLink cableis available from:

Travelling Software, Inc.
18702 North Creek Parkway
Bothell, Washington,

U.S.A. 98011

Telephone: (206) 483-8088

The Flying Dutchman cable is available from:

Cyco,

Adm. Banckertweg 2a,
2315 SR Leiden,

The Netherlands.

The following diagram illustrates Watcom'’ s cable wiring between the two parallel ports.

Task Machi ne Debugger Machi ne
Par al | el Connect or Par al | el Connect or
Pi n Nunber Pi n Nunber
1 <cmmmmmmmmee o > 2
S > 1
IR S > 14
4 <o > 16
YRS > 15
6 <------ee-a--- > 13
AR > 12
8 <--mmmeaaa- > 10
9 <o > 11
10 <------mmmmmo- > 8
11 <mmmmmm oo >9
12 <emmmmmmmeaoo o > 7
13 <mmmmmmm oo > 6
14 <emmmmmmeeoa o > 3
15 <mmmmmmmm oo >5
16 <--mmmmmmmoo-- > 4
17 <ommmmmm oo > 17
18 <------mmaaa - > 18

Figure 27. Watcom Cable Wiring Scheme

The following diagram illustrates the LapLink cable wiring between the two parallel ports.

174 Parallel Port Wiring Considerations

Wiring For Remote Debugging

Task Machi ne Debugger Machi ne
Paral | el Connect or Paral | el Connect or
Pi n Nunber Pi n Nunber

2 ceeeeemeeee--- > 15

3 e > 13

4 --ceeeeeeeee- > 12

5 o > 10

6 ~---ceeeeee--- > 11

10 <-------m--m-- 5

11 <-mmmmmmmmeeee 6

12 <-mmmme - - 4

13 <emmmmmmeeee- 3

15 <----ommee- - 2

25 <-ecmeeeeeees > 25

Figure 28. LapLink Cable Wiring Scheme

The following diagram illustrates the Flying Dutchman cable wiring between the two parallel ports.

Task Machi ne Debugger Machi ne
Paral | el Connect or Paral | el Connector
Pi n Nunber Pi n Nunber

1 --eeememee - > 11

2 e > 15

I > 13

4 e > 12

S > 10

10 <------mmmm--- 5

11 <-------mmmm - 1

12 <--mmmmmeeee - 4

I 3

15 <----mmmeeea o 2

Figure 29. Flying Dutchman Cable Wiring Scheme

For the IBM PC and PS/2, the connectors are standard "male" DB-25 connectors. Note that, in all cases,
the wiring is symmetrical (i.e., either end of the cable can be plugged into either PC).

Note: Although the wiring is different for all three cables, the Open Watcom parallel communications
software can determine which oneisin use.

Parallel Port Wiring Considerations 175

Appendices

176 Parallel Port Wiring Considerations

Remote File Operations (DOS, 0S/2 Only)
'

D. Remote File Operations (DOS, 0S/2 Only)

Use the Remote File e Xchange program (RFX) to manipulate files on a personal computer which is
connected to your personal computer using a debugger remote link. 'Y ou should consult the chapter entitled
"Remote Debugging” on page 89 to familiarize yourself with the concepts of remote debugging. The types
of file operations that are supported on both local and remote machines include:

1. creating, listing and removing directories

2. setting the current drive and directory

3. display, renaming, erasing, and copying files (including PC to PC file transfers).

To run RFEX, set up your machines asif you are about to do remote debugging. Start the remote debug
server, then start RFX using the the following syntax.

RFX trap_file[;trap_parm] [rfx_cmd]

The name of atrap file must be specified when running RFX. See "Remote Debugging" on page 89.

See the section entitled " Specifying Files on Remote and Local Machines' on page 100 for an explanation
of remote and local file names.

Y ou are now ready to copy files back and forth between machines.

D.1 RFX Commands

When RFX is run without specifying a command, the DOS or OS/2 prompt will change asillustrated in the
following example.

Example:
Mon 11-06-1989 15:17:05.84 E:\ DOC\ UG
E>rfx par
[RFX] Mon 11-06-1989 15:17:12.75 @E:\DOC\ UG
[RFX] E>

Note that the current drive specifier "E" in "E:\DOC\UG" has changed to " @LE" indicating that the current
driveistheloca "E" drive.

Any command can be typed in response to the prompt. RFX recognizes a special set of commands and
passes al others on to DOS or OS2 for processing. The following sections describe RFX commands.

RFX Commands 177

Appendices

D.2 Set Current Drive - drive:

drive:

The current drive and locale can be set using this command. The"@L" or "@R" prefix may be used to
specify the locale (local or remote).

Example:
d:

Make the "D" disk of the current locale (local or remote) the current drive. Since the locale is not specified,
it remains unchanged.

Example:
@c:

Make the "C" disk of the remote machine the current drive. Both locale and disk are specified.

Example:
@e:

Make the "E" disk of the local machine the current drive. Both locale and disk are specified.

D.3 Change Directory - CHDIR, CD

chdir dir_spec
cd dir_spec

This command may be used to change the current directory of any disk on the local or remote machine. CD
isashort form for CHDIR. The"@L" or "@R" prefix may be used to specify the locale (local or remote).

Example:
cd \'tnp

Make the "TMP" directory of the current drive the current directory.

Example:
cd d:\etc

Make the "ETC" directory of the "D" disk of the current locale (local or remote) the current directory of
that drive.

178 Change Directory - CHDIR, CD

Remote File Operations (DOS, 0S/2 Only)

Example:
cd @c:\denp

Make the "DEMQ" directory of the "C" disk of the remote machine the current directory of that drive.
Both locale and disk are specified.

Example:
cd @e:test

Make the "TEST" subdirectory of the current directory of the"E" disk of the local machine the current
directory of that drive. Both locale and disk are specified.

D.4 Copy Files - COPY

copy [/s] src_spec [dst_spec] [/9]

The COPY command operates in a manner very similar to the DOS "COPY" and "XCOPY" commands.
Files may be copied from the local machine to the local or remote machine. Similarly files may be copied
from the remote machine to the local or remote machine. If /sis specified then subdirectories are copied as
well. Directorieswill be created as required for the destination files. If dst_spec is not specified then the
default destination will be the current directory of the other locale (i.e., remote, if thefile'slocaleislocal
or, local, if thefile'slocale is remote).

Example:
copy *.for @d:\tnp

All files of type "FOR" in the current directory are copied to the "TMP" directory of the"D" disk on the
remote machine. If the current locale is the local machine then files are copied from the local machine to
the remote machine. If the current locale is the remote machine then files are copied from the remote
machine to the remote machine.

Note: If your default driveis set to one of the disks on the local machine then the localeislocal (e.g.,
@LC:, @LD:, @LE:, etc.). If your default drive is set to one of the disks on the remote machine then
thelocale isremote (e.g., @RC:, @RD:, @RE;, etc.). If your DOS or OS/2 prompt contains the current
drive and directory then it will be easy to identify which locale is current.

Example:
copy @d:\tmp*.for

All files of type "FOR" in the "TMP" directory of the "D" disk on the remote machine are copied to the
current directory of the local machine. Whenever a destination is not specified, the current directory of the
opposite localeisused. If the source locale is the remote machine then files are copied from the remote to
the local machine. If the source locale is the current machine then files are copied from the local to the
remote machine.

Copy Files - COPY 179

Appendices

Example:
copy @c:\watcom*.* /s

All files and subdirectories of the "WATCOM" directory of the "C" disk on the remote machine are copied
to the current directory of the local machine. Whenever adestination is not specified, the current directory
of the opposite localeisused. If the source locale is the remote machine then files are copied from the
remote to the local machine. If the source locale is the current machine then files are copied from the local
to the remote machine. Subdirectories are created as required.

Note: The"COPY" command is most effectively used when copying files from one machine to the
other. Copying of large amounts of files from one place on the remote machine to another place on the
remote machine could be done more effectively using the remote machine' s DOS or OS/2. Thiswould
eliminate the transfer of data from the remote machine to the local machine and back to the remote
machine.

D.5 List Directory - DIR

dir [/w] dir_spec [/w]

This command may be used to list the directories of any disk on the local or remote machine. Any of the
DOS or OS2 "wild card" characters ("?" and "*") may be used. If /w is specified then file names are
displayed across the screen ("wide") and the file creation date and time are omitted.

Example:
dir \'tnp

List the names of filesin the "TMP" directory of the current drive.

Example:
dir d:\etc

List the names of filesin the "ETC" directory of the "D" disk of the current locale (local or remote).

Example:
dir @c:\deno

List the names of filesin the "DEMQ" directory of the"C" disk of the remote machine. Both locale and
disk are specified.

Example:
dir @e:test

List the names of filesin the "TEST" subdirectory of the current directory of the "E" disk of the local

machine. If no "TEST" subdirectory exists then the names of all filesnamed "TEST" will be listed. Both
locale and disk are specified.

180 List Directory - DIR

Remote File Operations (DOS, 0S/2 Only)

Example:
dir @e:test.*

List the names of all files named "TEST" in the current directory of the "E" disk of the local machine. Both
locale and disk are specified.

D.6 Erase File - ERASE, DEL

erase[/q| file_spec[/d]
del [/4] file_spec[/d]

This command may be used to erase files from the directories of any disk on the local or remote machine.
DEL isashort form for ERASE. Any of the DOS or OS/2 "wild card" characters ("?' and "*") may be
used. If /sis specified then subdirectories are also processed.

Example:
erase \tnmp*.*

Erase dl thefilesin the "TMP" directory of the current drive.

Example:
erase d:\etc*.| st

Erase all files of type "LST" inthe"ETC" directory of the "D" disk of the current locale (local or remote).

Example:
erase @c:\deno*. obj

Erase dl files of type "OBJ" in the "DEMO" directory of the"C" disk of the remote machine. Both locale
and disk are specified.

Example:
erase @e:trial.*

Erase all filesnamed "TRIAL" of any typein the current directory of the "E" disk of the local machine.
Both locale and disk are specified.

D.7 Exit from RFX - EXIT

This command may be used to exit from RFX and return to the invoking process.

Exit from RFX - EXIT 181

Appendices

D.8 Make Directory - MKDIR, MD

mkdir dir_spec
md dir_spec

This command may be used to create a directory on any disk on the local or remote machine. MD isashort
form for MKDIR. The"@L" or "@R" prefix may be used to specify the locale (local or remote).

Example:
nd \tnp

Create a"TMP" directory in the root of the current drive.

Example:
nd d:\etc

Create an "ETC" directory in the root of the "D" disk of the current locale (local or remote).

Example:
nd @c:\deno

Create a"DEMO" directory in the root of the "C" disk of the remote machine. Both locale and disk are
specified.

Example:
nd @e:test

Create a"TEST" subdirectory in the current directory of the "E" disk of the local machine. Both locale and
disk are specified.

D.9 Rename - RENAME, REN

rename file_spec new_name
ren file_spec new_name

This command may be used to rename afilein any directory on any disk on the local or remote machine.
REN is ashort form for RENAME. The"@L" or "@R" prefix may be used to specify the locale (local or
remote). Unlike the DOS"RENAME" command, afile can be moved to a different directory if the
directory is specified in new_name.

182 Rename - RENAME, REN

Remote File Operations (DOS, 0S/2 Only)

Example:
ren test.tnp testl.tnp

Rename the file"TEST.TMP" in the current directory of the current driveto "TEST1L.TMP".

Example:
ren d:\etc\test.tnp testl.tnp

Rename thefile"TEST.TMP" in the "ETC" directory of the "D" disk of the current locale (local or remote)
to"TESTLTMP".

Example:
ren @c:\denmo\test.tnp testl.tnp

Rename the file"TEST.TMP"' in the "DEMOQ" directory of the"C" disk of the remote machine to
"TESTL.TMP". Bothlocale and disk are specified.

Example:
ren @e:trial.dat triall.dat

Renamethefile"TRIAL.DAT" in the current directory of the "E" disk of the local machine to
"TRIAL1.DAT". Both locale and disk are specified.

Example:
ren @e:trial.dat ..\triall.dat

Renamethefile"TRIAL.DAT" in the current directory of the "E" disk of the local machine to
"TRIAL1.DAT" and move it to the parent directory. Both locale and disk are specified.

D.10 Remove Directory - RMDIR, RD

rmdir [/s] dir_spec[/9]
rd [/s] dir_spec[/s]

This command may be used to remove one or more directories on any disk on the local or remote machine.
RD isashort form for RMDIR. The"@L" or "@R" prefix may be used to specify the locale (local or
remote). If /sis specified then subdirectories are also removed. Before adirectory can be removed, it must
not contain any files.

Example:
rd \tnp

Remove the "TMP" directory from the root of the current drive.

Remove Directory - RMDIR, RD 183

Appendices

Example:
rd d:\etc

Remove the "ETC" directory from the root of the "D" disk of the current locale (local or remote).

Example:
rd @c:\denmo

Remove the "DEMO" directory from the root of the"C" disk of the remote machine. Both locale and disk
are specified.

Example:
rd @e: test

Remove the "TEST" subdirectory from the current directory of the "E" disk of the local machine. Both
locale and disk are specified.

D.11 Display File Contents - TYPE

typedir_spec

This command may be used to list the contents of afile on any disk on the local or remote machine. The
"@L" or "@R" prefix may be used to specify thelocale (local or remote). Unlikethe DOS"TY PE"
command, DOS or OS/2 "wild card" characters ("?' or "*") may be used.

Example:
type \tnp\test. dat

List the contents of the file"TEST.DAT" in the "TMP" directory of the current drive.

Example:
type d:\etc*. st

List the contents of all files of type"LST" inthe "ETC" directory of the"D" disk of the current locale (local
or remote).

Example:
type @c:\demp\test.c

List the contents of the file"TEST.C" in the "DEMO" directory of the "C" disk of the remote machine.
Both locale and disk are specified.

Example:
type @e:trial.*

List the contents of al filesnamed "TRIAL" of any typein the current directory of the "E" disk of the local
machine. Both locale and disk are specified.

184 Display File Contents - TYPE

Remote File Operations (DOS, 0S/2 Only)

D.12 RFX Sample Session

Run serial port server on remote PC specifying aport 1 and a maximum baud rate of 38,400 baud.

Tue 11-07-1989 15:29:24.19 C\
C>serserv 1. 38

Run RFX on local PC.
Tue 11-07-1989 15:30:53.18 E:\ DOC\ UG

E>rfx ser
Li nk at 38400 baud

List directory of remote machine's"F" drive.

[RFX] Tue 11-07-1989 15:30:59.33 @E:\ DOC\ UG
[RFX] E>dir @f:

CLIB <Dl R> 02-01-89 06:43p
MATH <Dl R> 02-01-89 06:51p
PCLI NT <Dl R> 03-09-89 04:05p

3 File(s) 16748544 bytes free

Switch to remote machine' s"F" drive and list files.

[RFX] Tue 11-07-1989 15:31:11.80 @E: \DOQ\ UG

[RFX] B>@f:
[RFX] Tue 11-07-1989 15:31:22.51 @RF:\
[REX] F>dir
CLIB <Dl R> 02-01-89 06:43p
MATH <Dl R> 02-01-89 06:51p
PCLI NT <Dl R> 03-09-89 04:05p

3 File(s) 16748544 bytes free

Change to subdirectory and list files.

RFX Sample Session 185

Appendices

[RFX] Tue 11-07-1989 15:31:27.73 @RF:\
[RFX] F>cd clib
[RFX] Tue 11-07-1989 15:31:47.83 @F:\CLIB

[RFX] F>dir

. <Dl R> 02-01-89 06:43p
.. <Dl R> 02-01-89 06:43p
MKCLI B BAT 95 12-20-88 04:24p
MKMODEL BAT 128 02-01-89 04:32p
VDEF I NC 1831 12-08-88 12:23p
STRUCT I NC 2487 12-20-88 05:45p
CLIB M F 559 02-01-89 04:42p
H <Dl R> 02-01-89 06:44p
SCSD <Dl R> 02-01-89 06:44p
BCSD <Dl R> 02-01-89 06:44p
SCBD <Dl R> 02-01-89 06:44p
BCBD <Dl R> 02-01-89 06: 44p
BCHD <Dl R> 02-01-89 06: 44p
ANSI <Dl R> 02-01-89 06: 44p
DCSs <Dl R> 02-01-89 06:47p
A <Dl R> 02-01-89 06:50p
C <Dl R> 02-01-89 06:50p
CGSUPP <Dl R> 02-01-89 06:50p

18 File(s) 16748544 bytes free

List directory of local machine.

[RFX] Tue 11-07-1989 15:31:51.57 @F:\CLIB
[RFEX] F>dir @..\tools*.c
CALENDAR C 4378 04-17-89 08:17p

CLRSCRN C 233 04-17-89 08:17p
ERR C 198 04-17-89 08:30p
MAI' N C 142 04-17-89 09:14p
SAMPLE1 C 83 04-14-89 03:56p
SAMPLE2 C 83 04-14-89 03:57p
SAMPLE3 C 86 04-14-89 03:58p
SAMPLE4 C 132 04-14-89 04:05p
SAMPLES C 131 04-14-89 04:05p
SUB1 C 108 11-03-89 05:11p
SUB2 C 108 11-03-89 05:11p
TEST C 236 05-08-89 07:02p

12 File(s) 8292352 bytes free

Copy file from local machine to current directory of remote machine.

[RFX] Tue 11-07-1989 15:32:21.99 @RF:\CLIB
[RFX] F>copy @..\tools\test.c
E:..\TOCOLS\ TEST. C
1 Files copied O Directories created

Confirm presence of file.
[RFX] Tue 11-07-1989 15:32:41.22 @F:\CLIB
[REX] F>dir *.c

TEST C 236 05-08-89 07:02p
1 File(s) 16746496 bytes free

Leave RFX.

186 RFX Sample Session

Remote File Operations (DOS, 0S/2 Only)

[RFX] Tue 11-07-1989 15:32:46.99 @RF: \CLIB
[RFX] F>exit

Tue 1989-11-07 15:32:57.20 E:\ DOC\ UG
E>

RFX Sample Session 187

Index

i

wdrc 113-114

32-bit application debugging 109
32-bit debugging
trap file 16
386|DOS-Extender 109, 172
version 109
387
examining 84
modifying 84

8087
examining 84
modifying 84
registers 168

@@routine_name 120
@L 100

@R 100
@routine_name 120

About menu item 37
Accelerate command 146
Accelerator

for menu items 27

for pop-up menu 26

window 38
Accelerator menu item 36
Accelerator Pop-up menu

Delete 39

Modify 39

New 39

TD Keys 39

WD Keys 39
accelerators 29, 38
Action menu 27, 37, 112
Address menu item 66
All Modules menu item 43
Application menu item 36
arguments

changing 31
array

expand 62

traversing in memory 68

view dlices 62
assembly

debugging 81

examining 82

inspecting operands 82

setting break points 82

window 82
Assembly menu item 5, 35, 46, 48, 56, 66, 74
Assembly options 33
Assembly Pop-up menu

Break 82

Enter Function 82

Hex 83

Home 83

Inspect 82

No source 83

Show/Address 82

Show/Functions 82

Show/Module 83

Show/Source 82
At Cursor menu item 72

backward execution

over call 56

over simple statement 54
Bell 32
Break

window 74
Break All menuitem 46
Break command 147

189

Index

Break menu toggling 72
At Cursor 72 up call stack 57
Clear All 73 window 74
Disable All 73 breakpoints 4
Enable All 73 buttons 4, 25
New 73 Byte menu item 85-86

On Debug Message 73
On Image Load 73

Restore 73
Save 73 C
Toggle 72
View All 73
Break menu item 5, 44-45, 48, 57, 62, 72, 82
Break on Write menu item 65 cable
Break Pop-up menu Flyi ng Dutchman 173
Assembly 74 LapLink 173
Delete 74 Watcom
Disable 74 Watcom'sown 173
Enable 74 Call command 148
Modify 74 callg, _
New 74 displaying stack 57
Source 74 unwinding stack 4, 28, 30, 55, 57
breakpoint window _57
at cursor position 73 Calls menuitem 35
changing 74 Calls Pop-up menu
clearing 72 Break 57
clearing al 73 Goto. 57
condition 71, 76 Unwind 57
countdown 71, 76 CAPture command 150
counting 76 case insensitive searching 32
creating new 74 CauseWay 105, 109-110, 172
defined 71 changing memory 36
deleting 74, 77 char 13_2 _
disabling 72, 74 CHecksize option 19
disabling all 73 Class/Show Functions menu item 64
displaying 73 Class/Show Generated menu item 64
enabling 72, 74 Class/Show Inherited menu item 64
enabling all 73 Class/Show Private menu item 64

Class/Show Protected menu item 64
Class/Show Static menu item 64
Clear All menuitem 46, 73

executing debugger commands 76
finding assembly code 74
finding source code 74

in assembly code 82 code

on debug message 73 skipping 53

on execute 71, 76 Code menu 35
onimageload 73 Assembly 35

onwrite 44, 62, 65, 71, 76 Calls 35

restoring 73 Functions 35

saving 73 Images 35

setting 73 Modules 35

setting in caller 57 Replay 35

setting simple 72 Source 35

specifying address 75 Threads 35 _
Sate 72 CodeView keyboard emulation 29
status 77 Color option 18

190

Index

Colour option 18 CPU Register
COlumns option 16, 20-21 window 81
command Cursor Follow menuitem 66

Accelerate 146 CW.TRP 110

Break 147 CWD, environment variable 113-114

Call 148 CWSTUB.EXE 110

CAPture 150 Cyco 173

COnfigfile 150

Display 150

DO (or/) 151

ERror 151 D

Examine 152

Flip 153

FOnt 153

Go 153 Datamenu 35

Help 154 File Variables 35

HOok 154 FPU Registers 36

IF 154 Globas 35

INvoke (or <) 155 I/O Ports 36

Log (or >) 155 Locals 35

MOdify 155 Log 36

NEW 156 Memory at 36

PAINt 156 MMX Registers 36

Print (or ?) 158 Registers 35

Quit 160 Stack 36

RECord 160 Watches 35

Register 160 XMM Registers 36

REMark (or *) 160 _dbg@ 169

Set 160 _dbg 169

SHow 161 dbginst.exe 94

SKip 162 DBGLIB.REX 110

dbgport.sys 94
debug compiler options 9
debug kernel 89

STackpos <intexpr> 162
summary 146

syntax 145 _ _

SYstem (or !) 162 debug Ilnker options 10

THread (or ~) 162 debqg registers

Trace 162 disabling 113

Undo 163 using 113

View 163 Debug Startup menu item 54

While 163 debugging

Window 163 32-hit DOS applications 109
Command menu item 31 at assembly level 81

DLLs 49

common menu items 4

COnfigfile command 150 mouse events 16
configuration Novell NLM 111

automatic saving of 32 postmortem dump under QNX 114
saving 32 preparing application for 9
Console option 20-21 remote 89

Contents menu item 37 windows applications 112
context sensitivity 4 debugging an OS/2 exception handler 16

control-key shortcuts 26 debugging DLLs 112
debugging information 49

Coprocessor
Fe)xami ning 84 debugging under Linux 113
modifying 84 debugging under QNX 114

191

Index

Delete menuitem 5, 39, 63, 74, 83 Examine command 152
Delete Symbols menu item 50 exception handler
dialogs 0s/2 16
general description 28 Execute to menu item 53
Dlp option 18 Exit menuitem 31
Disable All menuitem 73 expression
Disable menu item 74 evaluate 61
display expressions
changing columns 16 aggregate 126
changing lines 16, 18 C operators 127
Display command 150 C++ operators 134
DLL character constant 125
debugging 49, 112 coercing types 127, 132
showing list of 49 complex constant 124
DO (or /) command 151 control word register 126
DOS extenders current module 120
386|DOS-Extender 109, 172 current routine 120
CauseWay 109, 172 _dbg module 126
debugging 109 _dbg@cs 126
DOS/AGW 109, 172 evaluating 45
trap option 16 flags 126
DOS/AGW 109, 172 flagsregister 126
version 109 floating point registers 126
DOSAG.EXE 110 FORTRAN operators 137
DOAGW.EXE 110 function 120
double 132 handling of 119
Double menu item 86 image@module@routine_name 120
DOwnload option 17 instruction pointer 126
dumper 114 integer constant 123
dumper command 114 line numbers 122
DWord menu item 85-86 memory references 125
DY namic option 16 module 120
module@routine_name 120
offset 125
pre-defined variables 126
E procedure 120

real constant 124
referencing memory 125
register aggregate 126

Edit menu item 62-63

! registers 126
EGA Im&_ 18 routine 120
Ega43 option 18 rules 119
Enable All menuitem 73 segment 125

Enable menu item 74

ment registers 126
Enter Function menu item 44, 82 > eg

status word register 126

environment variables symbol name 120
CWD 113-114 type enforcement 127, 132
HOME 114, 116 watching 45
PATH 16-17, 91, 95-97, 110 Extended menu item 81
WD 21-22 extensions
WD_PATH 113-114, 116 TRP 16
ERror command 151
ESP 36
Examine 119

192

Index

Far Follow menu item 66
Fastswap option 20
features 3
FieldOnTop menu item 63
file

viewing 45

window 45
File menu 31

Command 31

Exit 31

Load Setup 31

Open 31

Options 31

Save Setup 31

Source Path 31

System 31

View 31

Window Options 31
file operations

remote 177
File options 34
File Variables

window 61
File Variables menu item 35
Find menu item 43, 45
Flip command 153
float 132
Float menu item 85-86
Flying Dutchman cable 173
FOnt command 153
FPU

window 84
FPU Pop-up menu

Hex 84

Modify 84
FPU Registers menu item 36
Freeze menu item 58
Functions

inspecting 44

showing list of 45, 48

window 48
Functions menu item 5, 35, 46, 50
Functions options 34
Functions Pop-up menu

Assembly 48

Break 48

Source 48

Typed Symbols 48

global variables
displaying 47
showing list 47
Globals
window 47
Globals menu item 5, 35, 50
Globals options 34
Global s Pop-up menu
Raw Memory 47
Typed Symbols 47
Watch 47
GNU/Linux 172
Go command 153
Go menu item 53
Goto menu item 56-57
graphics applications
debugging 111

Help command 154
Help menu 37

About 37

Contents 37

OnHelp 37

Search 37
Hex menuitem 81, 83-86
HOME environment variable 114, 116
Home menu item 45, 55, 66, 83
HOok command 154

|

110
window 83

1/0O Pop-up menu
Delete 83
Modify 83
New 83
Read 84
Type 84

193

Index

Write 84
1/O ports
reading 83
writing 83
I/O Ports menu item 36
IF command 154
Images
showing list of 49
window 49
Images menu item 35
Images Pop-up menu
Delete Symbols 50
Functions 50
Globals 50
Modules 50
New Symbols 50
infinite loop
interrupting 105

Inspect menu item 4, 44, 62, 81-82, 85-86

instruction pointer
repositioning 53

int 132

Internet 100

Internet Protocol
remote debugging 99

interrupting a running program 105
INvoke (or <) command 155

invokefiles 32
Invoke option 16
IP address 99

keep 153

keyboard equivalents 29, 38

for menu items 27
for pop-up menu 26

LapLink cable 173
Left menuitem 66
LInesoption 16
linked lists

following in memory 67

Linux 172
customization 113

194

debugging 113
Load Setup menuitem 31
local file specifier prefix
@L 100
Local variables 35
LOcdlinfo option 17
Locas
window 61
Locals menu item 35
locating source code 11
Log
window 38
Log (or >) command 155
Log menu item 36
long 132
loops
running to completion 53

M

Match menu item 43
memory
break on write 65
changing 36
display 65
displaying 36
examine array 66
examine new address 66
follow pointers 66
modify 65
set display type 66
window 65
Memory at... menu item 36
Memory Pop-up menu
Address 66
Assembly 66
Break on Write 65
Cursor Follow 66
Far Follow 66
Home 66
Left 66
Modify 65
Near Follow 65
Previous 66
Repeat 66
Right 66
Segment Follow 66
Type/0:16 Pointer 67
Type/0:32 Pointer 67
Type/16:16 Pointer 67

Index

Type/16:32 Pointer 67
Typel__int64 67
Type/Byte 66
Type/Char 67
Type/Double 67
Type/Dword 66
Type/Extended Float 67
Type/Float 67
Type/Long 67
Type/Qword 67
Type/Short 67
Type/lUnsigned __int64 67
Type/Unsigned Char 67
Type/Unsigned Long 67
Type/Unsigned Short 67
Type/Word 66
menu
accelerator 26
accelerators 27
Action 27
at-key shortcuts 27
Assembly 5
Break 5
control-key shortcuts 26
Delete 5
Functions 5
Globals 5
Inspect 4
keyboard equivalents 27
Modify 4
New 5
shortcuts 26-27
Show 5
Source 5
Type 5
Watch 5
menus 27
Microsoft Corp 172
MMX
examining 85
modifying 85
window 85
MM X Pop-up menu
Byte 85
DWord 85
Float 85
Hex 85
Inspect 85
Modify 85
QWord 85
Signed 85
Word 85
MMX registers 169
MMX Registers menu item 36

Modify 119
MOdify command 155
Modify menuitem 4, 39, 65, 74, 81, 83-86
Modify... menu item 62
modules
showing list of 46
window 46
Modules menu item 35, 50
Modules options 34
M odules Pop-up menu
Assembly 46
Break All 46
Clear All 46
Functions 46
Show All 46
Source 46
Monochrome option 18
mouse
sharing 16
mouse events
debugging 16
Multi-media extension registers
examining 85
modifying 85

name completion 53, 75
Named Pipes
remote debugging 97
Near Follow menu item 65
NetWare 386 172
NEW command 156
new features 3
New menuitem 5, 39, 61, 63, 73-74, 83, 119
New Symbols menuitem 50
Next menu item 36, 43
Next Sequential menu item 53
NLM
debugging Novell 111
showing list of 49
No source menu item 83
NOCHarremap option 19
NOExports option 17
noflip 153
NOFpu option 18
NOGraphicsmouse option 20
NOInvoke option 16
NOMouse option 16
NOSY mbols option 18

195

Index

Novell 172
Novell NLM
debugging 111
Novell SPX remote debugging 93
null modem wiring 173

On Debug Message menu item 73
On Help menuitem 37
On Image Load... menu item 73
ontop 63
Once argument 93
Open menu item 31
Open Watcom Debugger
overview 3
option
Bell 32
options
Assembly window 33
CHecksize 19
Color 18
Colour 18
COlumns 16, 20-21
Console 20-21
default 22
dialog 32
DIlp 18
DOwnload 17
DYnamic 16
Ega43 18
Fastswap 20
Filewindow 34
Functions window 34
Globalswindow 34
Invoke 16
Lines 16
LOcalinfo 17
Moduleswindow 34
Monochrome 18
NOCHarremap 19
NOExports 17
NOFpu 18
NOGraphicsmouse 20
NOInvoke 16
NOMouse 16
NOSYmbols 18
Overwrite 18

Page 19
REMotefiles 17

196

setting 31

Swap 19

TRap 16

Two 18

Variableswindow 34

Vgas0 18

Watcheswindow 34

XConfig 21
Options menu item 31

Options/Whole Expression menu item 64

0Ss/2

remote debugging 98
0S/2 exception handler 16
OutputDebugString 73
overview 3
Overwrite option 18

Page option 19
PAint command 156
parallel port
wiring 173
parallel port remote debugging 94
parameters
changing 31

PATH environment variable 16-17, 95-97, 110

PATH, environment variable 91
PEDHELP.EXP 110
Phar Lap Software, Inc 109, 172
RUNS386.EXE 110
TNT.EXE 110
platforms supported 3
PLS.TRP 110
PLSHELP.EXP 110
pmd.trp 115
pointer
display asarray 64
display asstring 64
display value 64
follow 62
follow in memory 66
show as array 62
show code at 63
show memory at 63
postmortem dump
QNX 114
predefined symbol
dbg$32 170
dbg$bp 170

Index

dbg$code 170
dbg$cpu 170
dbgsctid 171
dbg$data 171
dbg$etid 171
dbg$fpu 171
dbg$ip 171
dbg$loaded 172
dbg$monitor 171
dbg$nil 172
dbg$ntid 171
dbg$os 172
dbg$pid 172
dbg$psp 172
dbg$radix 172
dbg$remote 172
dbg$sp 172
dbg$src 172
Previous menu item 43, 66
Print (or ?) command 158
program
arguments 31
interrupting 105
preparing for debugging 9
restarting 31, 54

running to specified address 53

QNX 172
customization 114
debugging 114
QNX Software Systems 172
Quit command 160
QWord menu item 85-86

Radix

default 32

setting 32
Raw Memory menu item 47
Read menu item 84
RECord command 160
recording debug session 56
Recursive functions

tracing over 32

Redo menu item 55
Register command 160
Register Pop-up menu

Extended 81

Hex 81

Inspect 81

Modify 81
registers 36

control word 168

cw 168

displaying 32-bit 81

displaying in decimal 81

displaying memory 81

examining 81

flags 168

floating point 168

mmO - mm7 169

MMX 169

modifying 81

S0 - st7 168

statusword 168

sw 168

XMM 169

XmmO - xmm7 169
Registers menu item 35

REMark (or *) command 160

remote debugging 89
Novell SPX 93
Once argument 93
over parallel port 94
over serial port 95
parallel port wiring 173
seria port wiring 173

with Internet Protocol 99

with Named Pipes 97

with OS2 98

with TCP/IP 99

with Windows 96

with Windows NT 98
remote file operations 177
remote file specifier prefix

@R 100
remote trap files 89
REMotefiles option 17
Repeat menu item 66
Replay 4

window 56
Replay menu item 35
Replay Pop-up menu

Assembly 56

Goto 56

Source 56
replaying debug session 56
Restart 31

197

Index

Restart menu item 54
restarting program 54
Restore menu item 54, 73
restoring debug session 56
resuming execution 53
return to caller 53
reverse execution 3

over call 56

over smple statement 54
Rewind Stack menu item 55
RFX

running 177
RFX see aso

remote file operations 177
RFX utility program 177
Right menu item 66
RSI.TRP 110
run 53

to cursor position 53

until function entered 45

until loop completes 53

until return 53
Run menu 53

Debug Startup 54

Executeto 53

Go 53

Next Sequential 53

Restart 54

Restore 54

Run to Cursor 53

Save 54

Skip to Cursor 53

Step Over 53

TraceInto 53

Until Return 53

Run to Cursor menu item 44, 53

RUNBS86.EXE 110

Save menu item 54, 73
Save Setup menu item 31
saving debug session 54
screen
number of columns 16
number of lines 16, 18
scroll bars 25
search
entering strings 43
ignoring case 32

198

Search menu
All Modules 43
Find 43
Match 43
Next 43
Previous 43
Search menu item 37
search order
Linux 114
QNX 116
searching 43
ignoring case 44
incrementally 43
Segment Follow menu item 66
selecting text 27
serial port remote debugging 95
serial port wiring 173
service name
teplink 99
Set command 160
Set LAnguage 119
settings 11, 31
automatic saving of 32
saving 32
short 132
shortcuts 29, 38
for menu items 27
for pop-up menu 26
Show All menuitem 46
SHow command 161
Show menu item 5
SHow Set LAnguage 119, 125
Show/Address menu item 45, 82
Show/Assembly menu item 45
Show/Functions menu item 45, 82
Show/Line menu item 45
Show/Module menu item 45
Show/Module... menu item 83
Show/Pointer Code menu item 63
Show/Pointer Memory menu item 63
Show/Raw Memory menu item 62
Show/Source menu item 82
Show/Type menu item 63
signed 132
Signed menu item 85-86
SKip command 162
Skip to Cursor menu item 53
skipping code 53
socket port number 99
default 99
Source
locating files 31
window 44
source code

Index

displaying line number 45
examining amodule 45
examining at address 45
going to line number 45
locating 11
Source menu item 5, 35, 46, 48, 56, 74
Source Path menu item 31
Source Pop-up menu
Break 44
Enter Function 44
Find 45
Home 45
Inspect 44
Run to Cursor 44
Show/Address 45
Show/Assembly 45
Show/Functions 45
Show/Line 45
Show/Module 45
Watch 45
SP 36
stack
display 65
window 65
Stack menu item 36
stack unwinding 4
STackpos <intexpr> command 162
Status
window 37
Step Over menu item 53
stepping
into calls 53
over calls 53
string
display pointer 64
display pointer as 64
strings
entering search 43
finding 43
matching incrementally 43
support files
dbg 113, 116
hip 113, 116
prs 113, 116
search order 114, 116
sym 113, 116
trp 113, 116
Swap option 19
Switch to menu item 58
symbol completion 53, 75
symbols 53, 75
predefined 167
syntax
for commands 145

SYSTEM 19
SYstem (or I) command 162
System menu item 31

TCP/IP

remote debugging 99
TCP/IP services 99
TCP/IP socket 99
teplink service name 99
TCPSERV 99
TD Keysmenu item 39
Tenberry Software, Inc 109, 172

DOAG.EXE 110

DOSAGW.EXE 110
text

selecting 27
Thaw menu item 58
Options/Expand

menu 64

item’ 64

Thread

window 58
THread (or ~) command 162
Thread Pop-up menu

Freeze 58

Switchto 58

Thaw 58
threads

displaying 57

freezing 58

state 58

switchingto 58

thawing 58
Threads menu item 35
TNT.EXE 110
To File menu item 36
To Log menu item 36
Toggle menuitem 72
Toolbar

window 28
Trace command 162
Trace Into menu item 53
Trace Over

recursive functions 32
tracepoint

defined 71
tracing

into calls 53

199

Index

over calls 53
trap file 16, 115

CW.TRP 110

PLS.TRP 110

pmd.trp 115

remote 89

RSI.TRP 110
TRap option 16, 115
Travelling Software 173
TRP extension 16
Turbo keyboard emulation 29
Two option 18
type

show item

show item’stype 63
Type menu item 5, 84
Type/0:16 Pointer menu item 67
Type/0:32 Pointer menu item 67
Type/16:16 Pointer menu item 67
Type/16:32 Pointer menu item 67
Type/__int64 menuitem 67
Type/Array... menu item 62, 64
Type/Byte menu item 66
Type/Char menu item 67
Type/Character menu item 64
Type/Decimal menu item 64
Type/Double menu item 67
Type/Dword menu item 66
Type/Extended Float menu item 67
Type/Float menu item 67
Type/Hex menu item 64
Type/Long menu item 67
Type/Pointer menu item 64
Type/Qword menu item 67
Type/Short menu item 67
Type/String menu item 64
Type/lUnsigned __ int64 menu item 67
Type/Unsigned Char menu item 67
Type/Unsigned Long menu item 67
Type/Unsigned Short menu item 67
Type/Word menu item 66
typecast 61, 63
Typed Symbols menu item 47-48

Undo command 163
Undo menu 54
Home 55
Redo 55

200

Rewind Stack 55

Undo 55

Unwind Stack 55
Undo menu item 55
undoing changes 54
unsigned 132
until 153
Until Return menu item 53
Unwind menu item 57
Unwind Stack menu item 55
unwinding call stack 55
user interface 3

variable
break on write 62
display type 63
file scope 61
inspect 62
modify 62
show raw storage 63
typecast 61, 63
watch 62
window 61

Variable Pop-up menu
Break 62
Class/Show Functions 64
Class/Show Generated 64
Class/Show Inherited 64
Class/Show Private 64
Class/Show Protected 64
Class/Show Static 64
Delete 63
Edit 63
FieldOnTop 63
Inspect 62
Modify 62
New 63
Options/Expand 'this' 64
Options/Whole Expression 64
Show/Pointer Code 63
Show/Pointer Memory 63
Show/Raw Memory 62
Show/Type 63
Options/Expand
Type/Array 64
Type/Character 64
Type/Decimal 64
Type/Hex 64

Index

Type/Pointer 64

Type/String 64

Watch 62
Variables

break on write 44

displaying 47

global 35

inspecting 44

local 35,61

static 35

stopping on write 71

watching 35
Variables options 34
VGA lines 18
Vgab0 option 18
View All menuitem 73
View command 163
View menuitem 31

w

Watch menu item 5, 45, 47, 61-62
Watches

window 61
Watches menu item 35
watchpoint 71

defined 71
WD environment variable 21-22
WD Keysmenuitem 39
WD_PATH environment variable 114, 116
WD_PATH, environment variable 113-114
While command 163
window

Accelerator 38

Assembly 82

Break 74

Calls 57

closing 25

CPU Register 81

current 26

File 45

File Variables 61

FPU 84

Functions 48

Globals 47

1/0 83

Images 49

Locals 61

Log 38

maximizing 25

Memory 65

minimizing 25

MMX 85

Modules 46

moving 26

options 33

Replay 56

resizing 26

restoring 25

Source 44

Stack 65

Status 37

System Menu 25

Thread 58

Toolbar 28

Variable 61

Watches 61

XMM 85

zooming 26
Window command 163
Window menu 36

Accelerator 36

Application 36

Next 36

ToFile 36

TolLog 36

Zoom 36
Window Options menu item 31
Windows

enhanced mode 96

Microsoft 112

remote debugging 96
Windows 3.x 172

Microsoft 112
Windows 95 172
WindowsNT 172

remote debugging 98
wiring

null modem 173

paralel port 173

serial port 173
Word menu item 85-86
Write menu item 84

XConfig option 21
XMM
examining 85
modifying 85

201

Index

window 85
XMM Pop-up menu
Byte 86
Double 86
DWord 86
Float 86
Hex 86
Inspect 86
Modify 86
QWord 86
Signed 86
Word 86
XMM registers 169
XMM Registers menu item 36
XMM/SSE registers
examining 85
modifying 85

Zoom menu item 36

202

