Open Watcom C/C++ Tools

User’s Guide

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Preface

The Open Watcom C/C++ Tools User’s Guide describes how to use Open Watcom’ s software devel opment
tools on Intel 80x86-based personal computers with DOS, Windows, or OS/2. The Open Watcom C/C++
Tools User’ s Guide describes the following toals:

» compile and link utility

* assembler

* object file library manager

» object file disassembler

« exe2bin utility

« far call optimization utility

* patch utility

* executablefile strip utility

» make utility

« touch utility

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. Thesetags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

0OS/2 isatrademark of International Business Machines Corp. I1BM is aregistered trademark of
International Business Machines Corp.

Intel are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. WindowsNT isa
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender, and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.

ONX isaregistered trademark of QNX Software Systems Ltd.
UNIX isaregistered trademark of The Open Group.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

The Open Watcom Compile and Link ULHITYcocoiiiiiiiinie e st

1 The Open Watcom C/C++ Compile and Link ULtyccccoeiieiieineireseeeeee e
1.1 WCL/WCL 386 Command Line Format
1.2 Open Watcom Compile and Link Options SUMMAIYccccceveerireneieneieseese e
1.3 WCL/WCL 386 Environment Variables
1.4 WCL/WCL386 Command Line EXaAMPIEScccvvveeeeeeeeee et

2 The Open Watcom C/C++ POSIX-like COMPILEr DIIVESccoccviiieieiecece e

2.1 owcec Command Line Format

2.2 OWCC OPLIONS SUMIMEIYvieieiieeeieieeieee ettt besee e e besbe e e s esee e e e eseese e e enesbesaesaesreseas
2.3 owcc Command Line Examples

The Open WaCOM ASSEIMDIES ...t e b e b et bbbt

3 The Open WatCom ASSEMDIEYcooiie e sr e sre e sre e nes
130 A g1 T [Tox oo OSSP
3.2 Assembly Directives and Opcodes
3.3 UNSUPPOItEd DIFECLIVES ..ottt ettt sb b sr e
3.4 Open Watcom Assembler Specific

3.4.1 Naming convention

3.4.2 Open Watcom "C" NaMeE MANGIENc.ooeireirieirieerieesee e

3.4.3 Cdlling convention

3.5 Open Watcom Assembler Diagnostic MESSAZESccvvveirieirienenieresie e

ODJECE FilE ULIITIES ...

4 The Open Watcom Library M NGOENcooerererieieieeieieese sttt s e se e e sae b e snen
A1 INEFOTUCTION ..ottt e b e e eb et et n et bt r et r e nne s
4.2 The Open Watcom Library Manager Command LiNeccooeviiiieneiininienenesene e
4.3 Open Watcom Library Manager Module Commandscccoeereereenenenenesenneeseeeseenes
4.4 Adding Modulesto aLibrary File
4.5 Deleting Modules from a Library File ..
4.6 Replacing Modulesin aLibrary File ...
4.7 Extracting aModule from aLibrary File ...
4.8 Creating IMPOrt LIDIariESoovciciie ettt sa e ens
4.9 Creating Import Library Entries
4.10 Commands from a File or Environment Variable ...
4.11 Open Watcom Library Manager OPLiONSccccoeererierenenene e see s eseseenens

4.11.1 Suppress Creation of Backup File- "b" Optionccccocireniiininenereeeeeeene
4.11.2 Case Sensitive Symbol Names - "C" OPLiONccevveereierenreencesese s
4.11.3 Specify Output Directory - "d" OPtiONccooeereereireereereese e
4.11.4 Specify Output Format - "f" OPLiONccceerrirreree e
4.11.5 Generating IMpPOorts - "i" OPLION ...c.coveerererererere e
4.11.6 Creating aListing File - "I" OPtionccccevivveriererereeeeeeeeeese e
4.11.7 Display C++ Mangled Names - "m" OptioNccocvvvviereveereeresseeeeesese e
4.11.8 Always Create aNew Library - "n" Optioncccccveeveveveveiecreeeeeeese s
4.11.9 Specifying an Output File Name - "0" OptioNc.ccccvverereneneneieeeeeeenee
4.11.10 Specifying aLibrary Record Size - "p" Optionccoceeererenenene e

4.11.11 Operate Quietly -

q

Option

©O© O prhoww

13
13
14
18

19

21
21
23
27
27
27
28
28
28

37

39
39
39
41
41
41
42
42

GRES

45
45
45
45
46
46
47
47
47
47
48

Table of Contents

4.11.12 Strip Line Number Records - "S" Optioncccccverereneeneieenene e

4.11.13 Trim Module Name -

"ETOPHON i e

4.11.14 Operate Verbosaly - "V" OPtIONcooveireirieirieerieesieses ettt

4.11.15 Explode Library File -
4.12 Librarian Error Messages

5 The Object File Disassembler
5.1 Introductioncccceeveeveeceneennne.

"X OPLON oot

5.2 Changing the Internal Label Character - "i=<char>" ...
5.3 The Assembly Format Option - "'oooiiirere et
5.4 The External SymbolS Option - "'ooiiiiiiere e e e
5.5 The No Instruction Name Pseudonyms Option - "fp" ..o
5.6 The No Register Name Pseudonyms Option - "fI" ...
5.7 The Alternate Addressing FOrm Option - "fi" ..o
5.8 The Uppercase Instructions/Registers Option - "fu" ...
5.9 The Listing Option - "I[=<liSt_fill&>]" o

5.10 The Public Symbols Option - "p"

5.11 Retain C++ Mangled NamES - "M" ..o s
5.12 The Source Option - "J=<S0Urce fil€>]" ..o

513 An Exampleccccoeveieneeenene.

6 Optimization of Far Callsccccocevereenen.

6.1 Far Call Optimizations for Non-Open Watcom Object Modulesccooeveveieierieecenncne.
6.1.1 The Open Watcom Far Call Optimization Enabling Utilityc.ccccooeerennenenn

7 The Open Watcom Exe2bin Utility

7.1 The Open Watcom Exe2bin Utility Command LiNeccccceoveveeeeeerieniese e seesesee s

7.2 Exe2bin Messagesocveveeveeenenn

Executable Image ULIlities ...,

8 The Open Watcom Patch Utility
8.1 Introductionccceeeerrerenenens
8.2 Applying aPatch ...
8.3 Diagnostic Messages ...

9 The Open Watcom Strip Utility
9.1 Introductioncccceeeveevieceeeennnne,

9.2 The Open Watcom Strip Utility Command LiNeccocveriierenineneneeeeeeeeeeseseeaens

9.3 Strip Utility Messages

The Make/Touch UtIlItIEScceevvveeieeeie e

10 The Open Watcom Make Utility
10.1 Introductioncccceevevevreeeenennen.

10.2 Open Watcom Make Reference

10.2.1 Open Watcom Make Command Line FOrmMatcccoeveveeieieeieeeniesesesiesesnens
10.2.2 Open Watcom Make Options SUMMAIYccecererererenierieseesieseeseeseeeeseeeenens
10.2.3 CommMaNd LinE OPLIONSccceieeeeieeeieiereeie sttt se e e

10.2.4 Specia Macros

Vi

48
48
48
49
49

53
53

55
55
55
56
56
56
57
57
58

63

67
67
69

73

75
75
75
76

79
79
79
81

83

85
85
85
85
86
86
92

Table of Contents

10.3 DePendency DECIAIaLIONScccceieruirierierierieiete ettt st se bt se e e e e eneas 94
10.4 MUILIPIE DEPENUENES ...ttt sttt sttt e sbe b b saesbeseesean 95
10.5 MUITIPIE TAIGELS ...veueeiueieiietieet ettt 95
10.6 MUITIPIE RUIES ...ttt bbbt 96
O o g = o I £ 97
10.8 Final Commands ((AFTER)ooiiiiiiiree ettt st s 98
10.9 Ignoring Dependent Timestamps (ALWAY'S) ..o 98
10.10 Automatic Dependency Detection (AUTODEPEND)ccccevevieveveriesereeeeeseseenens 99
10.11 Initial Commands (.BEFORE)c.cccccieiiriiresie e ste e sre e e sas s s sse e ssesrenns 99
10.12 Disable Implicit RUIES ((BLOCK)couiuiirirerieieinisiieeesisiete s 99
10.13 Ignoring Errors ((CONTINUE) ..ottt e 99
10.14 Default Command List (DEFAULT) ..ot 100
10.15 Erasing Targets After Error (ERASE) ..ot 100
10.16 Error Action ((ERROR)coiiiiiieiriee ettt st s 101
10.17 Ignoring Target Timestamp ((EXISTSONLY) ..o 101
10.18 Specifying Explicitly Updated Targets ((.EXPLICIT) .o 101
10.19 Defining Recognized File Extensions ((EXTENSIONS)cccoeeievevieneviene e 102
10.20 Approximate Timestamp Matching ((FUZZY) ..o 103
10.21 Preserving Targets After Error ((HOLD) ..ocooviecececceeeeeses et e 103
10.22 Ignoring Return Codes (IGNORE)ccccieiieieriecie sttt sre e e sreens 103
10.23 Minimising Target Timestamp ((JUST_ENOUGH) ..o 104
10.24 Updating Targets Multiple TIMeS ((MULTIPLE)ccooiiiiiieeeee e 104
10.25 Ignoring Target Timestamp ((NOCHECK)c.ooeiiiiririreeree e 105
10.26 Cache Search Path (LOPTIMIZE)ccoiiviiieiirreeer et s 105
10.27 Preserving Targets ((PRECIOUS) ..o 106
10.28 Name Command Sequence (.PROCEDURE)cccooviriiineieneiinerereeseses e 106
10.29 Re-Checking Target Timestamp ((RECHECK)cocooiiirieriiir e 106
10.30 Suppressing Terminal Output (SILENT) ..cvvvviviie et 107
10.31 Defining Recognized File Extensions ((SUFFIXES)ccccoveveieveveccecesece e 108
10.32 Targets Without Any Dependents ((SYMBOLIC)coooieiiieiieecereresesesese e 108
O 1Y o oL USSP 109
10.34 IMPLICIE RUIES ...ttt ettt bbb st e et be b e e 118
10.35 Double Colon EXPlICIt RUIESco.ciiieiiiiniceneeeeeet e 127
10.36 Preprocessing DITECHIVEScociieiriiiriee ettt sttt bbb 128
0T T I T = g o 1 o R 128
10.36.2 Conditional PrOCESSINGccceereeierieirieierieesieiesieesie et sbe s sbe st seeseseeneseas 131
10.36.3 Loading Dynamic Link Librariesccccvcevivvievenenerereeesese e seseseeseesee s 135

10.37 CommaNd LiSt DIFECHIVEScocvreiiereireriereeesse et 137
10.38 MAKEINIT FIE ettt 138
10.39 Command List EXECULIONccceviveirieiireinresesteses et 139
10.40 Compatibility Between Open Watcom Make and UNIX Makecccooeveieiiiecenenne. 145
10.41 Open Watcom Make Diagn0ostiC MESSAgEScoerereirierierieneeiee e reeesiese et 146
L1 ThE TOUCKH ULHILY .ottt nn s 151
0 1 T [T 4 o o PSS 151
112 WTOUCH OPEFALIONcveeeiirieiisieeeieresie st sttt see st ettt st et benees 151

vii

viii

The Open Watcom Compile and Link
Utility

The Open Watcom Compile and Link Utility

1 The Open Watcom C/C++ Compile and Link
Utility

The Open Watcom C/C++ Compile and Link Utility is designed for generating applications, simply and
quickly, using a single command line. On the command line, you can list source file names as well as
object file names. Source files are either compiled or assembled based on file extension; object files and
libraries are simply included in the link phase. Options can be passed on to both the compiler and linker.

1.1 WCL/WCL386 Command Line Format

The format of the command lineis:

WCL [files] [options]
WCL 386 [files] [optiong]

The square brackets [] denote items which are optional.
WCL is the name of the Open Watcom Compile and Link utility that invokes the 16-bit compiler.
WCL 386 is the name of the Open Watcom Compile and Link utility that invokes the 32-bit compiler.

Thefiles and options may be specified in any order. The Open Watcom Compile and Link utility usesthe
extension of the file name to determine if it isa sourcefile, an object file, or alibrary file. Fileswith
extensions of "OBJ' and "LIB" are assumed to be object files and library files respectively. Fileswith
extensions of "ASM" are assumed to be assembler source files and will be assembled by the Open Watcom
Assembler. Fileswith any other extension, including none at all, are assumed to be C/C++ source files and
will be compiled. Pattern matching characters ("*" and "?") may be used in the file specifications.

If no file extension is specified for afile name then the Open Watcom Compile and Link utility will check
for afile with one of the following extensions.

O der Narme. Ext Assunmed to be
1 file. ASM Assenbl er source code
2. file. CXX C++ source code
3. file.CPP C++ source code
4. file.CC C++ source code
5 file.C C sour ce code

It checks for each filein the order listed. By default, the Open Watcom Assembler will be selected to
compile files with the extension "ASM". By default, the Open Watcom C++ compiler will be selected to
compile files with any of the extensions "CXX", "CPP" or "CC". By default, the Open Watcom C compiler
will be selected to compile afilewith a"C" extension. The default selection of compiler can be overridden
by the "cc" and "cc++" options, described below.

WCL/WCL386 Command Line Format 3

The Open Watcom Compile and Link Utility

Options are prefixed with aslash (/) or adash (—) and may be specified in any order. Options can include
any of the Open Watcom C/C++ compiler options plus some additional options specific to the Open
Watcom Compile and Link utility. A summary of optionsis displayed on the screen by simply entering the
"WCL" or "WCL386" command with no arguments.

1.2 Open Watcom Compile and Link Options Summary

General options: Description:

c compile thefiles only, do not link them

cc treat source files as C code

cc++ treat source files as C++ code

y ignore the WCL/WCL 386 environment variable

Compiler options: Description:

(16-bit only) 8088 and 8086 instructions (default for 16-hit)

(16-bit only) 188 and 186 instructions

(16-bit only) 286 instructions

(16-bit only) 386 instructions

(16-bit only) 486 instructions

(16-bit only) Pentium instructions

(16-bit only) Pentium Pro instructions

(32-bit only) generate 386 instructions based on 386 instruction timings and use

register-based argument passing conventions

(32-bit only) generate 386 instructions based on 386 instruction timings and use

stack-based argument passing conventions

4r (32-bit only) generate 386 instructions based on 486 instruction timings and use
register-based argument passing conventions

4s (32-bit only) generate 386 instructions based on 486 instruction timings and use
stack-based argument passing conventions

5r (32-bit only) generate 386 instructions based on Intel Pentium instruction timings and use
register-based argument passing conventions (default for 32-bit)

5s (32-bit only) generate 386 instructions based on Intel Pentium instruction timings and use
stack-based argument passing conventions

6r (32-bit only) generate 386 instructions based on Intel Pentium Pro instruction timings and
use register-based argument passing conventions

6s (32-bit only) generate 386 instructions based on Intel Pentium Pro instruction timings and
use stack-based argument passing conventions

ad[=<file_name>] generate makefile style auto depend file

adbs force dashes generated in makefile style auto depend to backward

add[=<file_name>] specify source dependancy name generated in make-style autodep file

adhp[=<file_name>] specify path to use for headers which result with no path, and are filename only.

Q(DU‘I#QJI\)HO

w
(7]

adfs force dashes generated in makefile style auto depend to forward
adt[=<target_name>] specify target name generated in makefile style auto depend
bc build target is a console application

bd build target isa Dynamic Link Library (DLL)

bg build target isa GUI application

bm build target is a multi-thread environment

br build target uses DLL version of C/C++ run-time libraries

4 Open Watcom Compile and Link Options Summary

The Open Watcom C/C++ Compile and Link Utility

bt[=<o0s>]
bw

do

di

di+

d2

d2i

d2s

d2t

d3

d3i

d3s
d<name>[=text]
d+

db

ep[<number>]

ew
ez

build target for operating system <os>

build target uses default windowing support

(C++ only) no debugging information

line number debugging information

(C only) line number debugging information plus typing information for global symbols
and local structs and arrays

full symbolic debugging information

(C++ only) d2 and debug inlines; emit inlines as external out-of-line functions
(C++ only) d2 and debug inlines; emit inlines as static out-of-line functions
(C++ only) full symbolic debugging information, without type names

full symbolic debugging with unreferenced type names ,*

(C++ only) d3 plus debug inlines; emit inlines as external out-of-line functions
(C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions
preprocessor #define name [text]

allow extended -d macro definitions

generate browsing information

set error limit number (default is 20)

set default calling conventionto _cdecl

set default calling conventionto __stdcall

set default calling conventionto __ fastcall

set default calling convention to __pascal

set default calling conventionto __ fortran

set default calling conventionto __syscall

set default calling convention to _ watcall (default)

call epilogue hook routine

use full path names in error messages

force enum base typeto use at least an int

force enum base type to use minimum

emit routine name before prologue

call prologue hook routine with number of stack bytes available

do not display error messages (they are till written to afile)

(C++ only) do not recover from undefined symbol errors

Pentium profiling

(C++ only) generate less verbose messages

(32-bit only) generate Phar Lap Easy OMF-386 object file

fc=<file_name> (C++ only) specify file of command lines to be batch processed
fh[g][=<file_name>] use precompiled headers

fhd

fhr

fhw

fhwe
fi=<file_name>

store debug info for pre-compiled header once (DWARF only)

(C++ only) force compiler to read pre-compiled header

(C++ only) force compiler to write pre-compiled header

(C++ only) don't include pre-compiled header warnings when "we" is used
force file_name to be included

fo=<file_name> set object or preprocessor output file specification

fpc
fpi

fpi87

fp2
fp3

generate calls to floating-point library
(16-bit only) generate in-line 80x87 instructions with emulation (default)

(32-bit only) generate in-line 387 instructions with emulation (default)
(16-bit only) generate in-line 80x87 instructions

(32-bit only) generate in-line 387 instructions

generate in-line 80x87 instructions
generate in-line 387 instructions

Open Watcom Compile and Link Options Summary 5

The Open Watcom Compile and Link Utility

fp5

fp6

fpd

fpr
fr=<file_name>
ft

fti

fx

fzh

fzs
g=<codegroup>
h{w,d,c}
i=<directory>

j

k

m{f,s,;m,c,l,h}
nc=<name>
nd=<name>
nm=<name>
nt=<name>

generate in-line 80x87 instructions optimized for Pentium processor
generate in-line 80x87 instructions optimized for Pentium Pro processor
enable generation of Pentium FDIV bug check code

generate 8087 code compatible with older versions of compiler

set error file specification

(C++ only) try truncated (8.3) header file specification

(C only) track include file opens

(C++ only) do not try truncated (8.3) header file specification

(C++ only) do not automatically append extensions for include files
(C++ only) do not automatically append extensions for source files
set code group name

set debug output format (Open Watcom, Dwarf, Codeview)

add directory to list of include directories

change char default from unsigned to signed

(C++ only) continue processing files (ignore errors)

memory model — mf=flat ms=small mm=medium mc=compact mi=large mh=huge
(default is"ms" for 16-bit and Netware, "mf" for 32-bit)

set name of the code class

set name of the "data" segment

set module name different from filename

set name of the "text" segment

ofa,b,c,d,ef,f+h,i,i+k,lI+mn,op,r,stu,x,z control optimization

pil

preprocessor ignores #line directives

p{el,c,w=<num>} preprocess file only, sending output to standard output; "c" include comments; "e"

t=<num>
u<name>

Y,

VC...
w<number>
wed=<num>
wee=<num>
we

wo

WX

xd

xdt

xds

Xr

XS

Xst

XSS

ZAa,e}

zat

zc

encrypt identifiers (C++ only); "I" include #line directives; w=<num> wrap output lines
at <num> columns (zero means no wrap)

operate quietly

save/restore segment registers

return chars and shorts asints

remove stack overflow checks

generate calls to grow the stack

touch stack through SSfirst

(C++ only) set tab stop multiplier

preprocessor #undef name

output function declarations to .def file (with typedef names)
(C++ only) VC++ compatibility options

set warning level number (default iswl)

warning control: disable warning message <num>

warning control: enable warning message <num>

treat all warnings as errors

(C only) (16-hit only) warn about problems with overlaid code
set warning level to maximum setting

(C++ only) disable exception handling (default)

(C++ only) disable exception handling (same as "xd")

(C++ only) disable exception handling (table-driven destructors)
(C++ only) enable RTTI

(C++ only) enable exception handling

(C++ only) enable exception handling (direct calls for destruction)
(C++ only) enable exception handling (table-driven destructors)
disable/enabl e language extensions (default is ze)

(C++ only) disable alternative tokens

place literal stringsin code segment

Open Watcom Compile and Link Options Summary

The Open Watcom C/C++ Compile and Link Utility

zd{f,p} allow DSregister to "float" or "peg” it to DGROUP (default is zdp)

zdl (32-bit only) load DS register directly from DGROUP

zev (C only, Unix extension) enable arithmetic on void derived types

z (C++ only) let scope of for loop initialization extend beyond loop

z{f,p} allow FSregister to be used (default for all but flat memory model) or not be used
(default for flat memory model)

zfw generate FWAIT instructions on 386 and later

zg output function declarations to .def (without typedef names)

zo{f,p} allow GSregister to be used or not used

zkO0 double-byte char support for Kanji

ZkOu trandate Kanji double-byte characters to UNICODE

1 double-byte char support for Chinese/Taiwanese

k2 double-byte char support for Korean

zI double-byte char support if current code page has lead bytes

Zku=<codepage> load UNICODE tranglate table for specified code page

| suppress generation of library file names and references in object file

2d suppress generation of file dependency information in object file

Af add default library information to object files

s remove automatically inserted symbols (such as runtime library references)

zm place each function in separate segment (near functions not allowed)

zmf place each function in separate segment (near functions allowed)

70[{1,2,4,8,16}] set minimal structure packing (member alignment)

Zpw output warning when padding is added in a struct/class

zq operate quietly

zi inline floating point rounding code

zro omit floating point rounding code

zs syntax check only

zt<number> set data threshold (default is zt32767)

do not assume that SS contains segment of DGROUP

(C++ only) enable virtual function removal optimization

Microsoft Windows prologue/epilogue code sequences

(16-bit only) Microsoft Windows optimized prol ogue/epil ogue code sequences
s (16-bit only) Microsoft Windows smart callback sequences

remove " @size" from __stdcall function names (10.0 compatible)

NERYND

See the Open Watcom C/C++ User’s Guide for afull description of compiler options.
Linker options. Description:

bcl=<system name> Compile and link for the specified system name. See the section for link option ’1=’
below and the linker user guide for available system names. Thisis equivalent to
specifying -bt=<system name> and -I=<system name>.

k<stack size> set stack size

fd[=<directive file>] keep directivefile and, optionally, rename it (default nameis"” _WCL__.LNK").

fe=<executable> name executablefile

fm[=<map_file>] generate map file and name it (optional)

Ip (16-bit only) create an OS/2 protected-mode program

Ir (16-bit only) create a DOS real-mode program

I=<system_name> link a program for the specified system. Among the supported systems are:

Open Watcom Compile and Link Options Summary 7

The Open Watcom Compile and Link Utility

286 16-bit DOS executables (synonym for "DOS") under DOS and NT hosted
platforms; 16-bit OS/2 executables (synonym for "OS2") under 32-bit
0S/2 hosted OS/2 session.

386 32-bit DOS executables (synonym for "DOSAG") under DOS; 32-bit NT

character-mode executables (synonym for "NT") under Windows NT,;
32-bit OS/2 executables (synonym for "OS2V2") under 32-bit OS/2

hosted OS/2 session.
COM 16-bit DOS"COM" files
DOS 16-bit DOS executables
DOHAG 32-hit Tenberry Software DOS Extender executables

DOSAGNZ 32-bit Tenberry Software DOS Extender non-zero base executables
NETWARE 32-bit Novell NetWare 386 NLMs
NOVELL 32-bit Novell NetWare 386 NLMs (synonym for NETWARE)

NT 32-bit Windows NT character-mode executables
NT _DLL 32-bit Windows NT DLLs

NT_WIN 32-bit Windows NT windowed executables

0Ss2 16-bit OS/2 V1.x executables

0S2 DLL 16-bit OS/2DLLs

0s2 PM 16-hit OS/2 PM executables

os2v2 32-bit OS/2 executables

OS2v2 DLL 32-bit OS/2DLLs
OS2v2 PM 32-bit OS2 PM executables
PHARLAP 32-bit PharLap DOS Extender executables

QNX 16-bit QNX executables

QNX386 32-bit QNX executables

TNT 32-bit Phar Lap TNT DOS-style executable
WIN386 32-bit extended Windows 3.x executables/DLLs
WIN95 32-bit Windows 9x executables/DLLs

WINDOWS 16-bit Windows executables
WINDOWS DLL 16-bit Windows Dynamic Link Libraries

X32R 32-bit FlashTek (register calling convention) executables

X32RV 32-bit FlashTek Virtual Memory (register calling convention) executables
X32S 32-bit FlashTek (stack calling convention) executables

X328V 32-bit FlashTek Virtual Memory (stack calling convention) executables

These names are among the systems identified in the Open Watcom Linker initialization
file, "WLSY STEM.LNK". The Open Watcom Linker "SY STEM" directives, found in
thisfile, are used to specify default link options for particular (operating) systems. Users
can augment the Open Watcom Linker initialization file with their own system definitions
and these may be specified as an argument to the "I=" option. The "system_name"
specified in the "1=" option is used to create a"SY STEM system_name" Open Watcom
Linker directive when linking the application.

X make names case sensitive

@xdirective file> include additional directivefile

"linker directives' alows use of any linker directive

8 Open Watcom Compile and Link Options Summary

The Open Watcom C/C++ Compile and Link Utility

1.3 WCL/WCL386 Environment Variables

The WCL environment variable can be used to specify commonly used WCL options. The WCL 386
environment variable can be used to specify commonly used WCL 386 options. These options are
processed before options specified on the command line.

Example:
C>set wel =/d1 /ot

C>set wel 386=/d1 /ot

The above example defines the default options to be "d1" (include line number debugging information in
the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use the "#"
character initsplace. Thisisrequired by the syntax of the "SET" command.

Once the appropriate environment variable has been defined, those options listed become the default each
time the WCL or WCL 386 command is used.

The WCL environment variable is used by WCL only. The WCL 386 environment variable is used by
WCL 386 only. Both WCL and WCL 386 pass the relevant options to the Open Watcom C/C++ compiler
and linker. Thisenvironment variable is not examined by the Open Watcom C/C++ compiler or the linker
when invoked directly.

Hint: If you are running DOS and you use the same WCL or WCL 386 options all the time, you may
find it handy to place the "SET WCL" or "SET WCL 386" command in your DOS system initialization
file, AUTCEXEC. BAT. If you are running OS/2 and you use the same WCL or WCL 386 options all
the time, you may find it handy to place the"SET WCL" or "SET WCL 386" command in your OS/2
system initialization file, CONFI G SYS.

1.4 WCL/WCL386 Command Line Examples

For most small applications, the WCL or WCL 386 command will suffice. We have only scratched the
surface in describing the capabilities of the WCL and WCL 386 commands. The following examples
describe the WCL and WCL 386 commands in more detail.

Suppose that your application is contained in threefiles called apdeno. ¢, aputil s. c,and
apdat a. c. We can compileand link all three files with one command.

Example 1.
Cwel /d2 apdenp.c aputils.c apdata.c
Cwel 386 /d2 apdenp.c aputils.c apdata.c

The executable program will be stored in apdenn. exe since apdeno appeared first in the list. Each of
the three filesis compiled with the "d2" debug option. Debugging information isincluded in the executable
file

We can issue asimpler command if the current directory contains only our three C/C++ sourcefiles.

WCL/WCL386 Command Line Examples 9

The Open Watcom Compile and Link Utility

Example 2:
Cwel /d2 *.c
Cwel 386 /d2 *.c

WCL or WCL 386 will locate all fileswith the".c" filename extension and compile each of them. The name
of the executable file will depend on which of the C/C++ source filesisfound first. Sincethisisa
somewhat haphazard approach to naming the executable file, WCL and WCL 386 have an option, "fe",
which will alow you to specify the name to be used.

Example 3:
Cwel /d2 /fe=apdenp *.c
Cwel 386 /d2 /fe=apdeno *.c

By using the "fe" option, the executable file will lways be called apdeno. exe regardless of the order of
the C/C++ sourcefilesin the directory.

If the directory contains other C/C++ source files which are not part of the application then other tricks may
be used to identify a subset of the files to be compiled and linked.

Example 4:
Cwel /d2 /fe=apdenmp ap*.c
Cwel 386 /d2 /fe=apdenp ap*.c

Here we compile only those C/C++ source files that begin with the letters "ap".

In our examples, we have recompiled all the source files each time. In general, we will only compile one of
them and include the abject code for the others.

Example 5:
Cwel /d2 /fe=apdenp aputils.c ap*.obj
Cwel 386 /d2 /fe=apdenp aputils.c ap*.obj

The sourcefileaputi | s. ¢ isrecompiled and apdeno. obj and apdat a. obj areincluded when
linking the application. The".obj" filename extension indicates that this file need not be compiled.

Example 6:
Cwel /fe=denp *.c utility. obj
Cwel 386 /fe=denp *.c utility. obj

All of the C/C++ source filesin the current directory are compiled and then linked with utility. obj to
generate denp. exe.

Example 7:
C>set wel =/mm /d1l /ox / k4096
Cwel /fe=grdenmop gr*.c graph.lib /fd=grdeno

C>set wel 386=/d1l /ox / k4096
Cwel 386 /fe=grdenp gr*.c graph.lib /fd=grdeno

All C/C++ source files beginning with the letters "gr" are compiled and then linked with graph. |i b to

generate gr deno. exe which usesa 4K stack. The temporary linker directivefile that is created by WCL
or WCL 386 will be kept and renamed to gr deno. | nk.

10 WCL/WCL386 Command Line Examples

The Open Watcom C/C++ Compile and Link Utility

Example 8:
C>set libos2=c:\watcom|i b286\0s2;c:\os2
C>set lib=c:\watcom|ib286\dos;c:\watcom|ib286
Csset wel=/mm/Ip
Cwel grdenpl \watcom | i b286\ 0s2\ graphp. obj phapi.lib

Thefilegr denol iscompiled for the medium memory model and then linked with gr aphp. obj and
phapi . | i b to generate gr denpl. exe which isto be used with Phar Lap’s 286 DOS Extender. The
"Ip" option indicates that an OS/2 format executable isto be created. Thefile gr aphp. obj inthe
directory "\WATCOM\LIB286\0S2" contains specia initialization code for Phar Lap’s 286 DOS Extender.
Thefilephapi . | i b ispart of the Phar Lap 286 DOS Extender package. The L1BOS2 environment
variable must include the location of the OS/2 libraries and the LI B environment variable must include the
location of the DOS libraries (in order to locate gr aph. | i b). The LIBOS2 environment variable must
also include the location of the OS2 file doscal | s. | i b whichisusually "C:\OS2".

For more complex applications, you should use the "Make" utility.

WCL/WCL386 Command Line Examples 11

The Open Watcom Compile and Link Utility

12 WCL/WCL386 Command Line Examples

2 The Open Watcom C/C++ POSIX-like Compiler
Driver

The Open Watcom C/C++ POSI X-like Compiler Driver is designed for generating applications, simply and
quickly, using a single command line. On the command line, you can list source file names as well as
object file names. Source files are either compiled or assembled based on file extension; object files and
libraries are simply included in the link phase. Options can be passed on to both the compiler and linker.

2.1 owee Command Line Format

The format of the command lineis:

owcc [optiong] [files]

The square brackets [] denote items which are optional.

The files and options may be specified in any order. The owcc utility uses the extension of the file name to
determine if it isasourcefile, an object file, or alibrary file. Fileswith extensions of "0" and "lib" are
assumed to be object files and library files respectively. Fileswith extensions of "asm" are assumed to be
assembl er source files and will be assembled by the Open Watcom Assembler. Fileswith any other
extension, including none at al, are assumed to be C/C++ source files and will be compiled. Pattern
matching characters ("*" and "?') may be used in the file specifications.

If no file extension is specified for afile name then the owcc utility will check for afile with one of the
following extensions.

O der Nane. Ext Assuned to be
1 file.asm Assenbl er source code
2. file.cxx C++ source code
3. file.cpp C++ source code
4, file.cc C++ source code
5 file.c C source code

It checks for each filein the order listed. By default, the Open Watcom Assembler will be selected to
compile files with the extension "asm". By default, the Open Watcom C++ compiler will be selected to
compile files with any of the extensions "cxx", "cpp” or "cc". By default, the Open Watcom C compiler
will be selected to compile afilewith a"c" extension. The default selection of compiler can be overridden
by the "-x" option, described below.

Options are prefixed with a dash (=) and may be specified in any order. Option names were chosen to
resembl e those of the GNU Compiler Collection (ak.a. GCC). They are translated into Open Watcom
CI/C++ options, or to directives for the Open Watcom C/C++ wlink utility, accordingly. A summary of
options is displayed on the screen by running the compiler driver like this: "owcc -?'. If run without any
arguments the compiler driver just displays its name and hints towards the "-?" option.

owcc Command Line Format 13

The Open Watcom Compile and Link Utility

2.2 owcce Options Summary

General options: Description:

c
S

x {c,c++}

o <filename>

\Y

zq

compile the files only, do not link them

compile the source file(s), then run the Open Watcom C/C++ disassembler on the
generated object file(s) instead of linking them. Please note that this leaves you with both
an object file and an assembly source file. Unix compilers traditionally compile by
generating asm source and pass that to the assembler, so there, the "-S' option is done by
stopping short of assembling the file. Open Watcom C/C++ compiles directly to object
files, so we need the disassembler to achieve asimilar effect.

treat all source files as written in the specified programming language, regardless of
filename suffix.

Change the name of the generated file. If only the preprocessor is run, this sends the
preprocessed output to afile instead of the standard output stream. If only compilation is
done, this allows to change the name of the object file. If compilation and disassembly is
done, this changes the name of the assembly sourcefile. If owcc runs the linker, this
changes the name of the generated executable or DLL.

operate verbosely, displaying the actual command lines used to invoke the compiler and
linker, and passing flags to them to operate verbosely, too.

operate quietly (default). Thisisthe opposite of the"-v" option.

Compiler options: Description:

mtune=i{0,1,2,3,4,5,6}86 which x86 CPU type to optimize for

mregparm=1
mregparm=0
MMD

MF <file>

MT <target>

mconsole
shared
mwindows
mthreads
mrtdl

use register-based argument passing conventions (default)

use stack-based argument passing conventions

generate auto depend makefile fragment

change name of makefile style auto depend file. Without this option, the filename isthe
same as the the base name of the source file, with a suffix of ".d".

specify target name generated in makefile style auto depend different than that of the
object file name

build target is a console application

build target isa Dynamic Link Library (DLL)

build target isa GUI application

build target is a multi-thread environment

build target uses DLL version of C/C++ run-time libraries

mdefault-windowing build target uses default windowing support

g0
ol
gl+

g2

g2i

g2s

g2t

g3

g3i

g3s
g{w.d.c}

(C++ only) no debugging information

line number debugging information

(C only) line number debugging information plus typing information for global symbols
and local structs and arrays

full symbolic debugging information

(C++ only) d2 and debug inlines; emit inlines as external out-of-line functions
(C++ only) d2 and debug inlines; emit inlines as static out-of-line functions
(C++ only) full symbolic debugging information, without type names

full symbolic debugging with unreferenced type names ,*

(C++ only) d3 plus debug inlines; emit inlines as external out-of-line functions
(C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions
set debug output format (Open Watcom, Dwarf, Codeview)

D<name>[=text] preprocessor #define name [text]

14 owcc Options Summary

The Open Watcom C/C++ POSIX-like Compiler Driver

D+
fbrowser

fshort-enum
femit-names

msoft-float
fpmath=287
fpmath=387
fptune=586
fptune=686
fr=<file_name>
H

I

fsigned-char

k

00
o1
02
03

floop-optimize
funroll-loops
finline-math

allow extended -D macro definitions

generate browsing information

Wstop-after-errors=<number> set error limit number (default is 20)

mabi={cdecl stdcall ,fastcall,pascal ,fortran,syscall ,watcall} set default calling convention
fhook-epilogue call epilogue hook routine

fmessage-full-path use full path namesin error messages

fno-short-enum force enum base type to use at least an int

force enum base type to use minimum

emit routine name before prologue

fhook-prologue/=<number>] call prologue hook routine with number of stack bytes available
include <file_name> force file_nameto be included in front of the source file text
fo=<file_name> set object or preprocessor output file specification

generate callsto floating-point library

generate in-line 80x87 instructions

generate in-line 387 instructions

generate in-line 80x87 instructions optimized for Pentium processor
generate in-line 80x87 instructions optimized for Pentium Pro processor
enable error file creation and specify its name

(C only) track include file opens

add directory to thelist of include directories

change char default from unsigned to signed

(C++ only) continue processing files (ignore errors)
mcmodel={f,s,m,c,|,h} select a memory model from these choices:

f
S
m
c
I
h
t

flat

small

medium

compact

large

huge

compile code for the small memory model and then use the Open
Watcom Linker to generate a"COM" file

The default is small for 16-bit and Netware, flat for 32-bit targets.
turn off all optimization

enable some optimazion

enable most of the usual optimizations

enable even more optimizations

fno-dtrict-aliasing relax alias checking

fguess-branch-probability branch prediction

fno-optimize-sibling-calls disable call/ret optimization

finline-functions expand functionsinline

finline-limit=num which functions to expand inline
fno-omit-frame-pointer generate traceable stack frames
fno-omit-leaf-frame-pointer generate more stack frames

frerun-optimizer enable repeated optimizations

finline-intrinsicg-max] inline intrinsic functions [-max: more aggressively]
fschedule-prologue control flow entry/exit seq.

perform loop optimizations

perform loop unrolling

generate inline math functions
funsafe-math-optimizations numerically unstable floating-point

owcc Options Summary 15

The Open Watcom Compile and Link Utility

ffloat-store improve floating-point consistency
fschedule-insns re-order instructions to avoid stalls
fkeep-duplicates ensure unique addresses for functions
fignore-line-directives preprocessor ignores #line directives

E preprocess sources, sending output to standard output or filename selected via-o
C include original commentsin -E output
P don’t include #line directives in -E output

fcpp-wrap=<num> wrap output lines at <num> columns (zero means no wrap)
ftabstop=<num> (C++ only) set tab stop multiplier
fno-stack-check remove stack overflow checks

fgrow-stack generate calls to grow the stack

fstack-probe touch stack through SSfirst

U <name> preprocessor #undef name

fwrite-def output function declarations to .def file (with typedef names)

w turn off al warnings (same as Wlevel 0)

Wall turn on most warnings, but not al (same as Wlevel4)
Wilevel<number> set warning level number (default isw1)

Wextra set warning level to maximum setting

Wno-n<num> warning control: disable warning message <num>

Wn<num> warning control: enable warning message <num>

Werror treat all warnings as errors

Woverlay (C only) warn about problems with overlaid code

friti (C++ only) enable RTTI

fno-eh (C++ only) disable exception handling (default)

feh (C++ only) enable exception handling

feh-direct (C++ only) enable exception handling (direct calls for destruction)
feh-table (C++ only) enable exception handling (table-driven destructors)

std={c89,c99,0w} select language dialect; c89 is (almost) strictly ANSI/ISO standard C89 only, c99 enables
C99 support (may be incomplete), ow enables all Open Watcom C/C++ extensions.

fno-writable-strings place literal stringsin code segment

fvoid-ptr-arithmetics (C only, Unix extension) enable arithmetic on void derived types

fwrite-def-without-typedefs output function declarations to .def (without typedef names)

fnostdlib suppress generation of library file names and referencesin object file

ffunction-sections place each function in separate segment (near functions not allowed)

fpack-struct=[{1,2,4,8,16}] set minimal structure packing (member alignment)

Wpadded output warning when padding is added in a struct/class

finline-fp-rounding inline floating point rounding code

fomit-fp-rounding omit floating point rounding code

fsyntax-only syntax check only

See the Open Watcom C/C++ User’s Guide for afull description of compiler options.
Linker options: Description:

b <target name> Compile and link for the specified target system name. See the section linker user guide
for available system names. The linker will effectively receive a -I=<target name>
option. owcc looks up <system name> in a specification table "specs.owc" to find out
which of the Open Watcom C utilities to run. One those options will be -bt=<o0s>, where
<0s> isthe generic target platform name, and usually less specific than the linker <system
name>. Among the supported systems are:

16 owcc Options Summary

The Open Watcom C/C++ POSIX-like Compiler Driver

286 16-bit DOS executables (synonym for "DOS") under DOS and NT hosted
platforms; 16-bit OS/2 executables (synonym for "OS2") under 32-bit
0S/2 hosted OS/2 session.

386 32-bit DOS executables (synonym for "DOSAG") under DOS; 32-bit NT

character-mode executables (synonym for "NT") under Windows NT,;
32-bit OS/2 executables (synonym for "OS2V2") under 32-bit OS/2

hosted OS/2 session.
COM 16-bit DOS"COM" files
DOS 16-bit DOS executables
DOHAG 32-hit Tenberry Software DOS/4G DOS Extender executables
DOSAGNZ 32-bit Tenberry Software DOS4G DOS Extender non-zero base
executables

NETWARE 32-bit Novell NetWare 386 NLMs
NOVELL 32-bit Novell NetWare 386 NLMs (synonym for NETWARE)

NT 32-bit Windows NT character-mode executables
NT_DLL 32-bit Windows NT DLLs

NT_WIN 32-bit Windows NT windowed executables

0Ss2 16-bit OS/2 V1.x executables

0Ss2 DLL 16-bit OS/2DLLs

0s2 PM 16-bit OS/2 PM executables

0os2v2 32-bit OS/2 executables

OS2v2 DLL 32-bit OS2 DLLs
OS2V2_ PM 32-bit OS2 PM executables
PHARLAP 32-bit PharLap DOS Extender executables

QNX 16-bit QNX executables

QNX386 32-bit QNX executables

TNT 32-bit Phar Lap TNT DOS-style executable
WIN386 32-bit extended Windows 3.x executables/DLLs
WIN95 32-bit Windows 9x executables/DLLs

WINDOWS 16-bit Windows executables
WINDOWS DLL 16-bit Windows Dynamic Link Libraries

X32R 32-bit FlashTek (register calling convention) executables

X32RV 32-bit FlashTek Virtual Memory (register calling convention) executables
X32S 32-bit FlashTek (stack calling convention) executables

X328V 32-bit FlashTek Virtual Memory (stack calling convention) executables

These names are among the systems identified in the Open Watcom Linker initialization
file, "wlsystem.Ink". The Open Watcom Linker "SY STEM" directives, found in thisfile,
are used to specify default link options for particular (operating) systems. Users can
augment the Open Watcom Linker initialization file with their own system definitions
and these may be specified as an argument to the "|=" option. The "system_name"
specified in the "1=" option is used to create a"SY STEM system_name" Open Watcom
Linker directive when linking the application.

mstack-size=<size> set stack size
fd[=<directive_file>] keep linker directive file generated by this tool and, optionally, rename it (default

nameis"__owcc__.Ink").

fm[=<map_file>] generate map file, optionally specify its name.

S
WI," directives'
WI,@xfile>

strip symbolic information not strictly required to run from executable.

send any supplementary directives directly to the linker

include additional linker directives from <file>. Thisisactually just aspecial case of -WI
used to pass the linker’s @ directive to pull in directives from <file>

owcc Options Summary 17

The Open Watcom Compile and Link Utility

2.3 owec Command Line Examples

For most small applications, the owcc command will suffice. We have only scratched the surfacein
describing the capabilities of the owcc command. The following examples describe the owcc commandsin
more detail.

Suppose that your application is contained in threefiles called apdeno. c, aputil s. c, and
apdat a. c. We can compileand link all three files with one command.

Example 1:
Cowcc -g apdeno.c aputils.c apdata.c

The executable program will be stored in a. out . Each of the three filesis compiled with the "g" debug
option. Debugging information isincluded in the executable file.

We can issue asimpler command if the current directory contains only our three C/C++ sourcefiles.

Example 2:
Cowccec -g *.c

owcc will locate all fileswith the".c" filename extension and compile each of them. The default name of
the executable file will be a. out . Sinceit isonly possible to have one executable with the name a. out
in adirectory, owcc has an option, "0", which will alow you to specify the name to be used.

Example 3:
Cowcc -g -0 apdenp *.c

By using the "0" option, the executable file will always be called apdeno.

If the directory contains other C/C++ source files which are not part of the application then other tricks may
be used to identify a subset of the files to be compiled and linked.

Example 4:
Cowcc -g -0 apdenop ap*.c

Here we compile only those C/C++ source files that begin with the letters "ap”.

In our examples, we have recompiled al the source files each time. In general, we will only compile one of
them and include the object code for the others.

Example 5:
Csowcc -g -0 apdenp aputils.c ap*.obj

The sourcefileaputi | s. c isrecompiled and apdeno. obj and apdat a. obj areincluded when
linking the application. The".obj" filename extension indicates that this file need not be compiled.

Example 6:
Cowcc -0 denp *.c utility. obj

All of the C/C++ source filesin the current directory are compiled and then linked with utility. obj to
generatedeno. Thetemporary linker directive file that is created by owcc will be kept and renamed to
grdeno. | nk.

For more complex applications, you should use a"Make" utility.

18 owcec Command Line Examples

The Open Watcom Assembler

The Open Watcom Assembler

20

3 The Open Watcom Assembler

3.1 Introduction

This chapter describes the Open Watcom Assembler. It takes asinput an assembler source file (afile with
extension ".asm") and produces, as output, an object file.

The Open Watcom Assembler command line syntax is the following.

WASM [options] [d:][path]filename].ext] [options] [@env_var]

The square brackets [] denote items which are optional.

WASM is the name of the Open Watcom Assembler.

d: isan optional drive specification such as"A:", "B:", etc. If not specified, the default drive
is assumed.

path isan optional path specification such as "\PROGRAMS\ASM\". If not specified, the
current directory is assumed.

filename isthe file name of the assembler source file to be assembl ed.

ext isthe file extension of the assembler source file to be assembled. If omitted, afile

extension of ".asm" isassumed. If the period "." is specified but not the extension, thefile
is assumed to have no file extension.

options isalist of valid options, each preceded by aslash ("/") or adash ("-"). Options may be
specified in any order.

The options supported by the Open Watcom Assembler are;

{0,1,2,3,4,5,6}{pHr,s}

0
1

2{p}
3{p}

4{p}
5{p}
&{p}

same as ".8086"

sameas ".186"

same as".286" or ".286p"

sameas".386" or ".386p" (also defines"_386__ " and changes the default
USE attribute of segmentsfrom "USE16" to "USE32")

sameas".486" or ".486p" (aso defines”_ 386" and changes the default
USE attribute of segments from "USE16" to "USE32")

same as ".586" or ".586p" (also defines”_ 386" and changes the default
USE attribute of segments from "USE16" to "USE32")

same as".686" or ".686p" (also defines™_386__ " and changes the default

USE attribute of segments from "USE16" to "USE32")

Introduction 21

The Open Watcom Assembler

p protect mode
addr defines"__REGISTER__"
add s defines" STACK__ "
Example:
-2 -3p - 4pr -5p
bt=<os> defines”__<os> " and checksthe "<os> INCLUDE" environment variable for include
files
c do not output OMF COMENT records that allow WDISASM to figure out when data bytes

have been placed in a code segment

d<name>[=text] define text macro

di line number debugging support

e stop reading assembler source file at END directive. Normally, anything following the
END directive will cause an error.

e<number> set error limit number

fe=<file_name> set error file name

fo=<file_name> set object file name

fi=<file_name> force <file_name> to be included

fpc same as ".no87"

fpi inline 80x87 instructions with emulation

fpi87 inline 80x87 instructions

fpo same as".8087"

fp2 same as".287" or ".287p"

fp3 same as".387" or ".387p"

fp5 same as".587" or ".587p"

fp6 sameas".687" or ".687p"

i=<directory> add directory to list of include directories
jors force signed types to be used for signed values

m{t,s;m,c,|,h,f} memory model: (Tiny, Small, Medium, Compact, Large, Huge, Flat)

-mt Same as".model tiny"

-ms Same as".model small"
-mm Same as ".model medium”
-mc Same as ".model compact”
-ml Same as".model large”
-mh Same as ".model huge"
-mf Same as ".model flat"

Each of the model directives also defines” __<model>_ " (e.g., ".model small" defines
" SMALL__"). They also affect whether something like "foo proc” is considered a "far"
or "near" procedure.

nd=<name> set data segment name

nm=<name> set module name

nt=<name> set name of text segment

o] alow C form of octal constants

zcm set C name mangler to MASM compatible mode

2d remove file dependency information

zqor q operate quietly

z remove " @size" from STDCALL function names

zZ0 don’'t mangle STDCALL symbols (WASM backward compatible)
? orh print this message

w<number> set warning level number

22 Introduction

The Open Watcom Assembler

we

3.2 Assembly Directives and Opcodes

treat all warnings as errors

set warning level to maximum setting

It is not the intention of this chapter to describe assembly-language programming in any detail. Y ou should
consult a book that deals with this topic. However, we present an alphabetically ordered list of the
directives, opcodes and register names that are recognized by the assembler.

. 186

. 287

. 486

. 686

aaa

abs
addps
addsubpd
alias
andnpd
ar pl

bh

. break
bt

bx

cal | f
cdq

cld

cnc
cnovbe
cnovge
cnovnae
cnovne
crmovnl e
crmovnz
cnovpo
cnpeqpd
cnpl epd
cnpl t pd
cnpnegpd
cnpnl epd
cnpnl t pd
cnpor dpd
cnppd
cnpsd
cnpunor dps
cnpxchg8b
conmm

. const
cr2

cs

cvt pd2pi
cvt ps2dq
cvt sd2ss
cvtss2s
cvtt ps2pi
cwde

. 286

. 386

. 486p

. 686p
aad

adc

addr
addsubps
align
andnps
assume
bl

bsf

bt c

byt e
casemap
ch

cl flush
cnova
crovc
cnovl
crmovnb
cnovng
cnovno
cnovo
cnovs
cnpeqgps
cnpl eps
cnpl t ps
cnpneqgps
cnpnl eps
cnpnl t ps
cnpor dps
cnpps
cnpss
cnpunor dsd
. code
coment
.conti nue
cr3

cvt dq2pd
cvt pd2ps
cvt ps2pd
cvtsi 2sd
cvt t pd2dq
cvttsd2s
CX

. 286¢C

. 386p

. 586

. 8086
aam

add
addsd

ah

. al pha
andpd

ax

bound
bsr

btr

c

catstr

c

cl
cnovae
cnove
cmovl e
cnovnbe
cnovnge
crovnp
cnovp
cnovz
cnpeqgsd
cnpl esd
cnpl t sd
cnpnegsd
cnpnl esd
cnpnl tsd
cnpordsd
cnps
CpsSw
cnpunor dss
comi sd
common
cpuid
cr4

cvt dq2ps
cvt pi 2pd
cvt ps2pi
cvtsi 2ss
cvtt pd2pi
cvttss2s
daa

. 286p

. 387

. 586p

. 8087
aas
addpd
addss

a

and
andps
basi c

bp

bswap
bt s

cal |

cbw

clc

clts
cnmovb
cnovg
crmovna
cnmovnc
crmovnl
crmovns
cnovpe
cnp
cnpeqgss
cnpl ess
cnpl tss
cnpneqgss
cnpnl ess
cnpnl tss
cnpor dss
cnpsb
cnpunor dpd
cnpxchg
comi ss
conpact
cr0
.cref
cvt pd2dq
cvt pi 2ps
cvt sd2s
cvt ss2sd
cvtt ps2dq
cwd

das

Assembly Directives and Opcodes

23

The Open Watcom Assembler

. dat a
dec

di v

di vss
dp

dr2

ds
dwor d
ebx

edx
enms
endm
ent er
.err
.errdifi
.errnb
es

.exit
ext er ndef
f add
.fardat a?
fchs

f cnove
f cnovnu
fcomp
fdecstp
fdivr
ffree
fidiv
fincstp
fisttp
fld

fl denvd
fldlg2
f mu

f neni
fnrstord
f nsavew
f nst envw
fortran
fptan
frstorw
f savew
f si ncos
fstenv
fstsw
fsubrp
fuconm p
fword

f xsave
ge

gt

hi ghwor d
huge
if1l

i fdif

i fidni

i mul

includelib

. dat a?
df

di vpd

d

dq

dr3

dt

dx

echo

. el se
end
endp

€q
.errb
.erre

. errndef
esi
exitm
extrn

f addp
farstack
fcl ex

f cnovnb
f cnovu
fcomp
fdis
fdivrp
fi add
fidivr
finit
fisub
fldl

fl denvw
fldln2
frul p
fninit
fnrstorw
fnstcw
f nst sw
f pat an
frndi nt
fs
fscal e
fsqgrt
fstenvd
fsub
ftst
fuconp
f xam
fxtract
gl obal
haddpd
hl t
idiv
if2
ifdifi

i fnb

in

ins

24 Assembly Directives and Opcodes

db

dh

di vps

. dosseg
drO

dr6

dup

eax

ecx

el se
.endif
ends
equ
.errdef
.erridn
.errnz
esp
export
f 2xml
far
fbld

f cnovb
f cnobvnbe
fcom

f compp
fdiv
femms
ficom
fild
fist
fisubr
fldcw
fldl2e
fldpi

f ncl ex
fnop

f nsave
f nst env
for
fprem
frstor
f save
fsetpm
f st
fstenvw
f subp
fucom

f uconpp
fxch
fyl 2x
group
haddps
hsubpd
i f

ifb

ife

i f ndef

i nc

i nsb

dd

d

di vsd
dosseg
drl

dr7

dw

ebp

ed

el sei f
endi f

. endw
equ2
.errdif
.erridni
error
even
extern
f abs
.fardata
fbstp

f cnovbe
f cnovne
fcom
fcos
fdivp

f eni
ficonp
fimul
fistp
flat

fl denv
fldl2t
fldz

f ndi si

f nrstor
f nsaved
f nst envd
forc

f prenl
frstord
f saved
fsin
fstcw
fstp

f subr
fucom
fwai t

f xrstor
fyl 2xpl
gs

hi gh
hsubps
i f

i fdef

i fidn

i gnore
i ncl ude
i nsd

The Open Watcom Assembler

i nsw

i nvl pg
i retdf
ja

(¢]

U)O::S:S_g@
oK T

j
j
j
j
j
j
j

| ahf

I dnmxcsr
| eave
.1 fcond
I gs
distif
| msw

| odsb

| oopd

| oopne
| oopnzd
| oopzd
[rof fset
[tr
maskmovq
Maxss

m npd
m0

mm

. MK
nov
novddup
novhl ps
novl| pd
novnt dg
novnt g
novshb
novss
novups
nul ps
name
neg

nop
opattr
or pd
out

out sw
packuswb
paddsb
paddw
par a
pavgushb
pcrpeqw
pextrw
pf add
pf max
pf pnacc

i nt

i nvoke
iretf

j ae

j cxz

I ge

.listmacro
| ocal

| odsd

| oope

| oopned
| oopnzw
| oopzw
I sl
nmacr o
maxpd
medi um
m nps
il

nmb

nod
novapd
novdqg2q
novhpd
novl ps
novnt
novq
novsd
novVsSw
novzx
mul sd
ne

. no87
not
option
or ps
outs
oword
paddb
paddsw
page
pascal
pavgw
pcnpgt b
pf 2id
pf cnpeq
pfm n
pfrcp

into
iret

irp

ib

je

jl

j na

j nc

j nl

j ns

J pe

. k3d

| ar ge
le

| engt hof
[fs
st
.listmacroall
| ock

| odsw

| ooped

| oopnew
| oopw

| ow

I ss

mask
maxps
nenory
m nsd
nm2

nmB

. nodel
novaps
novdga
novhps
nmovneskpd
novnt pd
novg2dqg
nmovshdup
nOVSX
mul

mul ss
near

. nocr ef
not hi ng
or
os_dos
out sb
packssdw
paddd
paddushb
pand
pause
pcnpegb
pcnpgtd
pf 2i w
pf cnpge
pf mul
pfrcpitl

i nvd
iretd

i rpc

j be

j ecxz
jle

j nae

j ne

jnle

jnz

J po

| abel

| ddqu

| ea

| es

| gdt
distall
[l dt

| ods

| oop

| oopew

| oopnz

| oopz

| owwor d
It
maskrmovdqu
maxsd

nf ence

m nss
mB

i’
noni t or
novd
novdqu
novl hps
novnskps
novnt ps
novs
nmovsl dup
novupd
nmul pd
mhvai t
near st ack
.noli st
of f set
org
0S_o0s2
out sd
packsswb
paddq
paddusw
pandn
pavgb
pcnpeqd
pcnpgt w
pfacc

pf cnpgt
pf nacc
pfrcpit2

Assembly Directives and Opcodes

25

The Open Watcom Assembler

pfrsqitl
pi 2fd
pMaxsw
provirskb
prul | w
popad
por
prefetchtl
proc
pshuf hw
psl | dq
psraw
psrlw
psubsb
psubw
punpckhbw
punpckl bw
pur ge
pushcont ext
pushw

. radi x
rcr
readonl y
. repeat
r ept
retf

ror

sahf

sbb
scasd
segment
setb
setg

set na
setnc
set nl
setns
set pe

. sfcond
shi d
shuf pd
si ze
SITBW
sqrtsd

. stack
stdcal |
st osb
struc
subps
subttl
sysexit
.tfcond
tr3

tr7

uni on
unpckl ps
uses
wai t

wi dt h

pfrsqrt
pi 2f w
prmaxub
prul hrw
prul udqg
popcont ext
prefetch
prefetcht?2
proto
pshuf | w
psllq
psrld
psubb
psubsw
pswapd
punpckhdq
punpckl dq
push
pushd
pwor d
rcl

rdmsr
record

r epeat
repz
retfd
rsm

sal
shyte
scasw

. seq

set be
set ge
set nae
set ne
setnle
set nz
set po
sfence
short
shuf ps
si zeof
sp
sqrtss
.startup
st

st osd
struct
subsd
swor d

t byte
this

trd

t ypedef
unpckhpd
.until
vararg
wat com ¢
wor d

26 Assembly Directives and Opcodes

pf sub

pi nsrw
pm nsw
prmul huw
pop
popf
prefetchnta
pr ef et chw
psadbw
pshuf w
psl | w
psrl dq
psubd
psubusb
ptr
punpckhqdqg
punpckl qdqg
pusha
pushf
pxor
rcpps
rdpnc
rep
repne
ret
retn
rsqrtps
.sall
scas
sdwor d
seta
setc
set |

set nb
set ng
set no
seto
sets
sgdt

shr

S

sl dt
sqrt pd
SS

stc

st nxcsr
st osw
sub
subss
syscal |
t est
tiny
tr5
ucomi sd
unpckhps
usel6
verr

wbi nvd
W B

pf subr
prmaddwd
pm nub
prrul hw
popa
popf d
prefetchtO
private
pshufd
psl|d
psr ad
psrlq
psubq
psubusw
public
punpckhwd
punpckl wd
pushad
pushfd
gword
rcpss
rdtsc
repe
repnz
retd

rol
rsqrtss
sar
scasb
seg

set ae
sete
setle
set nbe
set nge
set np
setp
setz

shl

shrd

si dt
smal |
sqrtps
st

std

st os

str
subpd
subtitle
sysenter
t ext equ
title
tr6
ucom ss
unpckl pd
use32
verw
.while
xadd

The Open Watcom Assembler

xchg . xcref x| at
. xli st . Xmm xnm0
41111 xm . X8
Xm xmb xnmb
xor xor pd XO0r ps

3.3 Unsupported Directives

xl atb
xnmil
Xxnm®B
X v

Other assemblers support directives that this assembler does not. The following isalist of directives that
areignored by the Open Watcom Assembler (use of these directives results in awarning message).

. al pha .cref .1 fcond st
distall distif .listmacro .I'istmacroall
. nocr ef .nol i st page . sal

. seq . sfcond subtitle subtt
.tfcond title . xcr ef Xl i st

Thefollowingisalist of directivesthat are flagged by the Open Watcom Assembler (use of these directives

resultsin an error message).

addr . break casenap
.continue echo . el se
.endif . endw .exit

hi ghwor d i f i nvoke
| ownor d [rof fset mask
option popcont ext prot o
pushcont ext .radi x record
.startup this t ypedef
.until .while wi dt h

3.4 Open Watcom Assembler Specific

There are afew specific featuresin Open Watcom Assembler

3.4.1 Naming convention

Pr ocedur e Vari abl e

Conventi on Narmre Nane
C L LR
C (MASM o o
WATCOM C Tx T
SYSCALL T TR
STDCALL or@n’ o
STDCALL o _*

STDCALL Tx *

BASI C A A
FORTRAN A A
PASCAL A A

Open Watcom Assembler Specific

catstr
endmacr o
hi gh

| ow
opattr
pur ge

. repeat
uni on

see note 1

see note 2

see note 3

27

The Open Watcom Assembler

Notes:

1. WASM uses MASM compatible names when -zcm command line option is used.

2. InSTDCALL procedures name’'nn’ isoverall parametrs sizein bytes. '@nn’ is suppressed

when -zz command line option isused (WATCOM 10.0 compatibility).

3. STDCALL symbols mangling is suppressed by -zzo command line option (WASM backward

compatible).

3.4.2 Open Watcom "C" name mangler

Conmmand |i ne Procedure O hers

option Nane Nanmes
O 1' 2 1 *_l 1 * !
3,4,5,6 withr T o
3,4,5,6 with s T T

3.4.3 Calling convention
Par anet er s Par anet er s C eanup caller

Conventi on Var ar g passed by or der stack
C yes st ack right to left no
WATCOM_C yes regi sters right to left no
SYSCALL yes st ack right to left no
STDCALL yes st ack right to left yes see note 1
BASI C no st ack left to right yes
FORTRAN no st ack left to right yes
PASCAL no st ack left to right yes

Notes:

1. For STDCALL procedures WASM automaticaly cleanup caller stack, except case when vararg

parameter is used.

3.5 Open Watcom Assembler Diagnostic Messages

1 Size doesn’t match with previous definition

2 Invalid instruction with current CPU setting
3 LOCK prefix isnot allowed on thisinstruction
4 REP prefix is not allowed on thisinstruction
5 Invalid memory pointer

6 Cannot use 386 addressing mode with current CPU setting

28 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

7 Too many base registers

8 Invalid index register

9 Scale factor must be 1, 2,4 or 8

10 invalid addressing mode with current CPU setting
11 ESP cannot be used as index

12 Too many base/index registers

13 Memory offset cannot reference to more than one label
14 Offset must be relocatable

15 Memory offset expected

16 Invalid indirect memory operand

17 Cannot mix 16 and 32-bit registers

18 CPU type already set

19 Unknown directive

20 Expecting comma

21 Expecting number

22 Invalid label definition

23 Invalid use of SHORT, NEAR, FAR operator

24 No memory

25 Cannot use 386 segment register with current CPU setting
26 POP CSisnot allowed

27 Cannot use 386 register with current CPU setting
28 Only MOV can use special register

29 Cannot use TR3, TR4, TR5 in current CPU setting
30 Cannot use SHORT with CALL

31 Only SHORT displacement is allowed

32 Syntax error

33 Prefix must be followed by an instruction

Open Watcom Assembler Diagnostic Messages 29

The Open Watcom Assembler

34 No size given before’ PTR’ operator

35 Invalid IMUL format

36 Invalid SHLD/SHRD format

37 Too many commas

38 Syntax error: Unexpected colon

39 Operands must be the same size

40 Invalid instruction operands

41 Immediate constant too large

42 Can not use short or near modifierswith thisinstruction
43 Jump out of range

44 Displacement cannot be larger than 32k
45 I nitializer valuetoo large

46 Symbol already defined

47 Immediate data too large

48 |mmediate data out of range

49 Can not transfer control to stack symbol
50 Offset cannot be smaller than WORD size
51 Can not take offset of stack symbol

52 Can not take segment of stack symbol
53 Segment too large

54 Offset cannot be larger than 32k

55 Operand 2 too big

56 Operand 1 too small

57 Too many arithmetic operators

58 Too many open sguare brackets

59 Too many close square brackets

60 Too many open brackets

30 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

61 Too many close brackets

62 Invalid number digit

63 Assembler Codeistoo long

64 Brackets are not balanced

65 Operator is expected

66 Operand is expected

67 Too many tokensin aline

68 Bracket is expected

69 Illegal use of register

70 Illegal use of label

71 Invalid operand in addition

72 Invalid operand in subtraction

73 One operand must be constant

74 Constant operand is expected

75 A constant operand is expected in addition

76 A constant operand is expected in subtraction
77 A constant operand is expected in multiplication
78 A constant operand is expected in division

79 A constant operand is expected after a positive sign
80 A constant operand is expected after a negative sign
81 Label isnot defined

82 Morethan one override

83 Label is expected

84 Only segment or group label is allowed

85 Only register or label is expected in override

86 Unexpected end of file

87 Label istoo long

Open Watcom Assembler Diagnostic Messages 31

The Open Watcom Assembler

88 Thisfeature has not been implemented yet
89 Internal Error #1

90 Can not take offset of group

91 Can not take offset of segment

92 Invalid character found

93 Invalid operand size for instruction

94 Thisinstruction is not supported

95 size not specified -- BYTE PTR is assumed
96 size not specified -- WORD PTR is assumed
97 size not specified -- DWORD PTR is assumed
500 Segment parameter is defined already

501 Model parameter is defined already

502 Syntax error in segment definition

503 AT’ isnot supported in segment definition
504 Segment definition is changed

505 Lnameistoo long

506 Block nesting error

507 Ends a segment which is not opened

508 Segment option is undefined

509 Model option is undefined

510 No segment is currently opened

511 Lnameisused already

512 Segment is not defined

513 Publicis not defined

514 Colon is expected

515 A token is expected after colon

516 Invalid qualified type

32 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

517 Qualified type is expected

518 External definition different from previous one
519 Memory model is not found in .MODEL
520 Cannot open includefile

521 Nameis used already

522 Library nameis missing

523 Segment name ismissing

524 Group name is missing

525 Data emitted with no segment

526 Seglocation is expected

527 Invalid register

528 Cannot address with assumed register
529 Invalid start address

530 Label isalready defined

531 Token istoo long

532 Thelineistoo long after expansion

533 A label is expected after colon

534 Must be associated with code

535 Procedure must have a name

536 Procedureis alreadly defined

537 Language type must be specified

538 End of procedureisnot found

539 Local variable must immediately follow PROC or MACRO statement
540 Extra character found

541 Cannot nest procedures

542 No procedureis currently defined

543 Procedure name does not match

Open Watcom Assembler Diagnostic Messages

33

The Open Watcom Assembler

544 Vararg requires C calling convention

545 Model declared already

546 Model is not declared

547 Backquote expected

548 COMMENT delimiter expected

549 End directive required at end of file

550 Nesting level too deep

551 Symbol not defined

552 Insert Stupid warning #1 here

553 Insert Stupid warning #2 here

554 Spaces not allowed in command line options
555 Error:

556 Source File

557 No filename specified.

558 Out of Memory

559 Cannot Open File -

560 Cannot Close File -

561 Cannot Get Start of Source File -

562 Cannot Set to Start of Source File -

563 Command Line Contains More Than 1 File To Assemble
564 include path %s.

565 Unknown option %s. Use /? for list of options.
566 read more command line from %os.

567 Internal error in %s(%u)

568 OBJECT WRITE ERROR !!

569 NO LOR PHARLAP !!

570 Parameter Required

34 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

571 Expecting closing square bracket

572 Expecting file name

573 Floating point instruction not allowed with /fpc
574 Too many errors

575 Build target not recognised

576 Public constants should be numeric

577 Expecting symbol

578 Do not mix simplified and full segment definitions
579 Parms passed in multiple registers must be accessed separately, use %s
580 Ten byte variables not supported in register calling convention
581 Parameter type not recognised

582 forced error:

583 forced error: Value not equal to O : %d

584 forced error: Value equal to 0: %d

585 forced error: symbol defined: %s

586 forced error: symbol not defined: %s

587 forced error: string blank : <%s>

588 forced error: string not blank : <%s>

589 forced error: strings not equal : <%s> : <%s>

590 forced error: strings equal : <%s> : <%s>

591 included by file %s(%od)

592 macro called from file %s(%d)

593 Symbol %s not defined

594 Extending jump

595 Ignoring inapplicable directive

596 Unknown symbol class’%s

597 Symbol classfor '%s' already established

Open Watcom Assembler Diagnostic Messages

35

The Open Watcom Assembler

598 number must be a power of 2
599 alignment request greater than segment alignment
600’ %s is already defined

601 %u unclosed conditional directive(s) detected

36 Open Watcom Assembler Diagnostic Messages

Object File Utilities

Object File Utilities

38

4 The Open Watcom Library Manager

4.1 Introduction

The Open Watcom Library Manager can be used to create and update object library files. It takes asinput
an object file or alibrary file and creates or updates alibrary file. For OS/2, Win16 and Win32
applications, it can also create import libraries from Dynamic Link Libraries.
An object library is essentialy acollection of object files. These object files generally contain utility
routines that can be used as input to the Open Watcom Linker to create an application. The following are
some of the advantages of using library files.
1. Only those modules that are referenced will be included in the executable file. This eliminates
the need to know which object files should be included and which ones should be left out when
linking an application.

2. Librariesare agood way of organizing object files. When linking an application, you need only
list onelibrary fileinstead of several object files.

The Open Watcom Library Manager currently runs under the following operating systems.
*DOS
» 0S/2
« QONX

* Windows

4.2 The Open Watcom Library Manager Command Line

The following describes the Open Watcom Library Manager command line.

WLIB [options 1] lib_file[options_2] [emd_list]

The square brackets "[]" denote items which are optional.

lib file isthefile specification for the library file to be processed. If no file extension is specified,
afile extension of "lib" is assumed.

options 1 isalist of valid options. Options may be specified in any order. If you are using a DOS,
0S/2 or Windows-hosted version of the Open Watcom Library Manager, options are
preceded by a"/* or "—" character. If you are using a UNIX-hosted version of the Open
Watcom Library Manager, options are preceded by a"—" character.

The Open Watcom Library Manager Command Line 39

Object File Utilities

options 2 isalist of valid options. These options are only permitted if you are running a DOS, OS/2
or Windows-hosted version of the Open Watcom Library Manager and must be preceded
by a"/" character. The"—" character cannot be used as an option delimiter for options
following the library file name since it will be interpreted as a del ete command.

cmd_list isalist of commands to the Open Watcom Library Manager specifying what operations are
to be performed. Each command in cmd_list is separated by a space.

Thefollowing is asummary of valid options. Items enclosed in square brackets "[]" are optional. Items
separated by an or-bar "[" and enclosed in parentheses ()" indicate that one of the items must be specified.
Items enclosed in angle brackets "<>" are to be replaced with a user-supplied name or value (the "<>" are
not included in what you specify).

display the usage message
suppress creation of backup file
perform case sensitive comparison
=<output_directory>
directory in which extracted object modules will be placed

o0 T vV

fa output AR format library

fm output MLIB format library

fo output OMF format library

h display the usage message

ia generate AXP import records
i generate X86 import records
ip generate PPC import records
ie generate EL F import records
ic generate COFF import records
io generate OMF import records
i(r[n)(nlo) imports for the resident/non-resident names table are to be imported by name/ordinal.
[[=<list_file>] createalistingfile

m display C++ mangled names

n always create a new library

o=<output_file>
set output file name for library
p=<record_size>
set library page size (supported for "OMF" library format only)

q suppress identification banner

S strip line number records from object files (supported for "OMF" library format only)

t remove path information from module name specified in THEADR records (supported for
"OMF" library format only)

% do not suppress identification banner

X extract al object modules from library

2d strip file dependency info from object files (supported for "OMF" library format only)

The following sections describe the operations that can be performed on alibrary file. Note that before
making a change to alibrary file, the Open Watcom Library Manager makes a backup copy of the original
library file unless the "0" option is used to specify an output library file whose name is different than the
original library file, or the"b" option is used to suppress the creation of the backup file. The backup copy
has the same file name as the original library file but has afile extension of "bak". Hence, lib_file should
not have afile extension of "bak".

40 The Open Watcom Library Manager Command Line

The Open Watcom Library Manager

4.3 Open Watcom Library Manager Module Commands

The following is a summary of basic Open Watcom Library Manager module mani pulation commands:

+ add moduleto alibrary

- remove module from alibrary

*or: extract module from alibrary (: isused with a UNIX-hosted version of the Open Watcom
Library Manager, otherwise * is used)

++ add import library entry

4.4 Adding Modules to a Library File

An object file can be added to alibrary file by specifying a+obj_file command where obj_fileisthefile
specification for an object file. If you are using a DOS, OS/2 or Windows-hosted version of the Open
Watcom Library Manager, afile extension of "obj" isassumed if noneis specified. If you areusing a
UNIX-hosted version of the Open Watcom Library Manager, afile extension of "0" isassumed if noneis

specified. If thelibrary file does not exist, awarning message will be issued and the library file will be
created.

Example:
wWib nmylib +nyobj

In the above example, the abject file "myobj" is added to the library file "mylib.lib".

When amodule is added to alibrary, the Open Watcom Library Manager will issue awarning if a symbol
redefinition occurs. Thiswill occur if asymbol in the module being added is aready defined in another
module that already existsin the library file. Note that the module will be added to the library in any case.

It is also possible to combine two library filestogether. The following example adds all modulesin the
library "newlib.lib" to the library "mylib.lib".

Example:
Wib nmylib +newib.lib

Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library Manager will
assume you are adding an object file.

4.5 Deleting Modules from a Library File

A module can be deleted from alibrary file by specifying a-mod_name command where mod_name isthe
file name of the object file when it was added to the library with the directory and file extension removed.

Deleting Modules from a Library File 41

Object File Utilities

Example:
wib nmylib -nyobj

In the above example, the Open Watcom Library Manager isinstructed to delete the module "myobj" from
thelibrary file "mylib.lib".

It isalso possible to specify alibrary fileinstead of a module name.

Example:
wWib nylib -oldlib.lib

In the above example, all modulesin the library file "oldlib.lib" are removed from the library file
"mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library
Manager will assume you are removing an object module.

4.6 Replacing Modules in a Library File

A module can be replaced by specifying a-+mod_name or +-mod_name command. The module
mod_nameis deleted from the library. The object file "mod_name" is then added to the library.

Example:
wWib nmylib -+myobj

In the above example, the module "myobj" is replaced by the object file "myabj".
It is also possible to merge two library files.

Example:
Wib nylib -+updlib.lib

In the above example, all modulesin the library file "updlib.lib" replace the corresponding modulesin the
library file"mylib.lib". Any moduleinthe library "updlib.lib" not in library "mylib.lib" is added to the
library "mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open Watcom
Library Manager will assume you are replacing an object module.

4.7 Extracting a Module from a Library File

A module can be extracted from alibrary file by specifying a*mod_name [=file_name] command for a
DOS, OS2 or Windows-hosted version of the Open Watcom Library Manager or a:mod_name
[=file_name] command for a UNIX-hosted version of the Open Watcom Library Manager. The module
mod_nameis not deleted but is copied to adisk file. 1f mod_nameis preceded by a path specification, the
output file will be placed in the directory identified by the path specification. If mod_name isfollowed by
afile extension, the output file will contain the specified file extension.

42 Extracting a Module from a Library File

The Open Watcom Library Manager

Example:
wWib nylib *myobj DOS, Os/2 or W ndows- hosted
or
Wib nylib :myobj UNI X- host ed

In the above example, the module "myobj" is copied to adisk file. Thedisk file will be an object file with
file name "myobj". If you are running a DOS, OS/2 or Windows-hosted version of the Open Watcom
Library Manager, afile extension of "obj" will be used. If you are running a UNIX-hosted version of the
Open Watcom Library Manager, afile extension of "0" will be used.

Example:
wib nylib *nmyobj. out DOs, OS/2 or W ndows- host ed
or
wWib nylib :myobj. out UNI X- host ed

In the above example, the module "myobj" will be extracted from the library file "mylib.lib" and placed in
the file "myobj.out"

The following form of the extract command can be used if the module name is not the same as the output

file name.
Example:
wWib nylib *myobj =newnyobj . out DOS, Os/2 or W ndows- host ed
or

wib nylib :nyobj =newnyobj . out UNI X- host ed

Y ou can extract a module from afile and have that module deleted from the library file by specifying a
*-mod_name command for aDOS, OS/2 or Windows-hosted version of the Open Watcom Library
Manager or a:-mod_name command for a UNIX-hosted version of the Open Watcom Library Manager.
The following example performs the same operations as in the previous example but, in addition, the
module is deleted from the library file.

Example:
wib nylib *-nyobj. out DOs, OS/ 2 or W ndows- host ed
or
wWib nylib :-nyobj.out UNI X- host ed

Note that the same result is achieved if the delete operator precedes the extract operator.

4.8 Creating Import Libraries

The Open Watcom Library Manager can also be used to create import libraries from Dynamic Link
Libraries. Import libraries are used when linking OS/2, Win16 or Win32 applications.

Example:
wWib inmplib +dynanic.dll

In the above example, the following actions are performed. For each external symbol in the specified
Dynamic Link Library, a specia object module is created that identifies the external symbol and the actual
name of the Dynamic Link Library it isdefined in. This object module is then added to the specified
library. Theresulting library is called an import library.

Creating Import Libraries 43

Object File Utilities

Note that you must specify the "dll" file extension. Otherwise, the Open Watcom Library Manager will
assume you are adding an object file.

4.9 Creating Import Library Entries

Animport library entry can be created and added to alibrary by specifying a command of the following
form.

++symdl | _nane[.[al tsym.export_ nane][.ordinal]

where description:

sym is the name of a symbol in aDynamic Link Library.

dil_name is the name of the Dynamic Link Library that defines sym

altsym isthe name of asymbol in aDynamic Link Library. When omitted, the default symbol
nameissym

export_name isthe name that an application that islinking to the Dynamic Link Library usesto reference
sym When omitted, the default export nameis sym

ordinal isthe ordinal value that can be used to identify syminstead of using the name
export _nane.

Example:
Wib mth ++ sin.trig.sin.1

In the above example, an import library entry will be created for symbol si n and added to the library
"math.lib". The symbol si n isdefined inthe Dynamic Link Library called "trig.dll" as __si n. Whenan
application is linked with the library "math.lib", the resulting executabl e file will contain an import by
ordinal value 1. If the ordinal value was omitted, the resulting executable file would contain an import by
namesi n.

4.10 Commands from a File or Environment Variable

The Open Watcom Library Manager can be instructed to process all commandsin adisk file or
environment variable by specifying the @name command where name is a file specification for the
command file or the name of an environment variable. A file extension of "Ibc" is assumed for filesif none
is specified. The commands must be one of those previously described.

Example:
wWib nmylib @ycnd

In the above example, all commands in the environment variable "mycmd" or file "mycmd.lbc" are
processed by the Open Watcom Library Manager.

44 Commands from a File or Environment Variable

The Open Watcom Library Manager

4.11 Open Watcom Library Manager Options

The following sections describe the list of options allowed when invoking the Open Watcom Library
Manager.

4.11.1 Suppress Creation of Backup File - "b" Option

The"b" option tells the Open Watcom Library Manager to not create a backup library file. Inthe following
example, the object fileidentified by "new" will be added to the library file "mylib.lib".

Example:
Wib -b nylib +new

If thelibrary file "mylib.lib" already exits, no backup library file ("mylib.bak™") will be created.

4.11.2 Case Sensitive Symbol Names - "c" Option

The"c" option tells the Open Watcom Library Manager to use a case sensitive compare when comparing a
symbol to be added to the library to a symbol already in the library file. Thiswill cause the names"myrtn"
and "MYRTN" to be treated as different symbols. By default, comparisons are case insensitive. That isthe
symbol "myrtn" is the same as the symbol "MYRTN".

4.11.3 Specify Output Directory - "d" Option

The "d" option tells the Open Watcom Library Manager the directory in which all extracted modules are to
be placed. The default isto place all extracted modules in the current directory.

In the following example, the module "mymod" is extracted from the library "mylib.lib". If you are
running a DOS, OS/2 or Windows-hosted version of the Open Watcom Library Manager, the module will
be placed in the file "\obj\mymaod.obj". If you are running a UNIX-hosted version of the Open Watcom
Library Manager, the module will be placed in the file "/o/mymod.o”.

Example:
wib -d=\obj nynod DOS, OS/ 2 or W ndows- host ed
or
Wib -d=/o nmynod UNI X- host ed

4.11.4 Specify Output Format - "f" Option

The"f" option tells the Open Watcom Library Manager the format of the output library. The default output
format is determined by the type of object filesthat are added to the library when it is created. The possible
output format options are:

fa output AR format library
fm output MLIB format library
fo output OMF format library

Open Watcom Library Manager Options 45

Object File Utilities

4.11.5 Generating Imports - "i" Option
The"i" option can be used to describe type of import library to create.
ia generate AXP import records

i generate X86 import records

ip generate PPC import records
ie generate ELF import records
ic generate COFF import records
io generate OMF import records

When creating import libraries from Dynamic Link Libraries, import entries for the names in the resident
and non-resident names tables are created. The"i" option can be used to describe the method used to

import these names.

iro Specifying "iro" causes imports for names in the resident names table to be imported by
ordinal.

irn Specifying "irn" causes imports for namesin the resident names table to be imported by

name. Thisisthe default.

ino Specifying "ino" causes imports for names in the non-resident names table to be imported
by ordinal. Thisisthe default.

inn Specifying "inn" causes imports for names in the non-resident names table to be imported
by name.

Example:
Wib -iro -inn inplib +dynamc.dl|

Note that you must specify the "dll" file extension for the Dynamic Link Library. Otherwise an object file
will be assumed.

4.11.6 Creating a Listing File - "I" Option
The"I" (lower case "L") option instructs the Open Watcom Library Manager to produce alist of the names
of al symbolsthat can be found in thelibrary fileto alisting file. Thefile name of thelisting fileisthe
same as the file name of the library file. Thefile extension of thelisting fileis"Ist".

Example:
wWwib -1 nmylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of the library file
"mylib.lib" and produce the output to alisting file called "mylib.Ist".

An dternate form of thisoptionis - | =l'i st _fil e. Withthisform, you can specify the name of the
listing file. When specifying alisting file name, afile extension of "Ist" is assumed if none is specified.

46 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
Wib -l=nylib.out nylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of the library file
"mylib.lib" and produce the output to alisting file called "mylib.out".

Y ou can get alisting of the contents of alibrary file to the terminal by specifying only the library name on
the command line as demonstrated by the following example.

Example:
wib nylib

4.11.7 Display C++ Mangled Names - "m" Option

The"m" option instructs the Open Watcom Library Manager to display C++ mangled names rather than
displaying their demangled form. The default isto interpret mangled C++ names and display themin a
somewhat more intelligible form.

4.11.8 Always Create a New Library - "n" Option

The"n" option tells the Open Watcom Library Manager to always create anew library file. If the library
file aready exists, a backup copy is made (unless the "b" option was specified). The origina contents of
thelibrary are discarded and anew library is created. If the"n" option was not specified, the existing
library would be updated.

Example:
Wib -n nylib +myobj

In the above example, alibrary file called "mylib.lib" is created. It will contain a single object module,
namely "myobj", regardless of the contents of "mylib.lib" prior to issuing the above command. If
"mylib.lib" aready exists, it will be renamed to "mylib.bak".

4.11.9 Specifying an Output File Name - "o" Option

The"o" option can be used to specify the output library file name if you want the original library to remain
unchanged and anew library created.

Example:
Wib -o=newiib libl +lib2.1ib

In the above example, the modules from "libL.lib" and "lib2.lib" are added to the library "newlib.lib". Note
that since the original library remains unchanged, no backup copy is created. Also, if the"I" option is used
to specify alisting file, the listing file will assume the file name of the output library.

4.11.10 Specifying a Library Record Size - "p" Option

The"p" option specifies the record size in bytes for each record in the library file. The record size must be
apower of 2 and in the range 16 to 32768. If the record sizeislessthan 16, it will be rounded up to 16. If
the record size is greater than 16 and not a power of 2, it will be rounded up to the nearest power of 2. The
default record sizeis 256 bytes.

Open Watcom Library Manager Options 47

Object File Utilities

Each entry in the dictionary of alibrary file contains an offset from the start of the file which pointsto a
module. The offset is 16 bits and isamultiple of the record size. Since the default record sizeis 256, the
maximum size of alibrary file for arecord size of 256 is 256*64K. If the size of the library file increases
beyond this size, you must increase the record size.

Example:
Wib -p=512 libl +lib2.1ib

In the above example, the Open Watcom Library Manager is instructed to create/update the library file
"libL.lib" by adding the modules from the library file "lib2.lib". The record size of the resulting library file
is512 bytes.

4.11.11 Operate Quietly - "q" Option

The"q" option suppressing the banner and copyright notice that is normally displayed when the Open
Watcom Library Manager is invoked.

Example:
Wwib -g -1 nylib
4.11.12 Strip Line Number Records - "s" Option
The"s" option tells the Open Watcom Library Manager to remove line number records from object files
that are being added to alibrary. Line number records are generated in the object fileif the "d1" optionis

specified when compiling the source code.

Example:
Wib -s nylib +nyobj

4.11.13 Trim Module Name - "t" Option

The"t" option tells the Open Watcom Library Manager to remove path information from the module name
specified in THEADR records in object files that are being added to alibrary. The module nameis created
from the file name by the compiler and placed in the THEADR record of the object file. The module name
will contain path information if the file name given to the compiler contains path information.

Example:
wib -t mylib +myobj

4.11.14 Operate Verbosely - "v" Option

The"v" option enables the display of the banner and copyright notice when the Open Watcom Library
Manager isinvoked.

48 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
Wib -v -1 nylib

4.11.15 Explode Library File - "x" Option

The"x" option tells the Open Watcom Library Manager to extract all modules from the library. Note that
the modules are not deleted from the library. Object modules will be placed in the current directory unless
the"d" option is used to specify an alternate directory.

In the following example all modules will be extracted from the library "mylib.lib" and placed in the
current directory.

Example:
wWib -x nmylib

In the following example, all modules will be extracted from the library "mylib.lib". If you are running a
DOS, OS2 or Windows-hosted version of the Open Watcom Library Manager, the module will be placed
in the "\obj" directory. If you are running a UNIX-hosted version of the Open Watcom Library Manager,
the module will be placed in thefile "/0" directory.

Example:
wWib -x -d=\obj nylib DOs, OS/2 or W ndows- host ed
or
Wib -x -d=/o mylib UNI X- host ed

4.12 Librarian Error Messages

The following messages may be issued by the Open Watcom Library Manager.

Error! Could not open object file’%s'.
Object file’%s could not be found. This message is usually issued when an attempt is
made to add a non-existent object file to the library.

Error! Could not open library file’ %s'.
The specified library file could not be found. Thisis usually issued for input library files.
For example, if you are combining two library files, the library file you are adding is an
input library file and the library file you are adding to or creating is an output library file.

Error! Invalid object modulein file’%s' not added.
The specified file contains an invalid object module.

Error! Dictionary too large. Recommend split library into two libraries.
The size of the dictionary in alibrary file cannot exceed 64K. Y ou must split the library
fileinto two separate library files.

Error! Redefinition of module’%s' in file’%s'.
This message is usually issued when an attempt is made to add a module to alibrary that
already contains a module by that name.

Warning! Redefinition of symbol "%s’ in file’%s ignored.

Thismessageisissued if asymbol defined by a module already in the library is aso
defined by a module being added to the library.

Librarian Error Messages 49

Object File Utilities

Error! Library too large. Recommend split library into two libraries or try a larger page_bound than
Y%oxH. The record size of the library file does not allow the library file to increase beyond its

current size. The record size of the library file must be increased using the "p" option.

Error! Expected '%s in’'%s but found’ %s'.
An error occurred while scanning command input.

Warning! Could not find module’%s’ for deletion.
This message isissued if an attempt is made to del ete a module that does not exist in the
library.

Error! Could not find module’%s' for extraction.
Thismessageisissued if an attempt is made to extract a module that does not exist in the
library.

Error! Could not rename old library for backup.
The Open Watcom Library Manager creates a backup copy before making any changes
(unlessthe "b" option is specified). This messageisissued if an error occurred while trying
to rename the original library file to the backup file name.

Warning! Could not open library '%s' : will be created.
The specified library does not exist. It isusually issued when you are adding to a
non-existent library. The Open Watcom Library Manager will create the library.

Warning! Output library name specification ignored.
This message isissued if the library file specified by the "0" option could not be opened.

Warning! Could not open library '%s and no operations specified: will not be created.
Thismessageisissued if the library file specified on the command line does not exist and
no operations were specified. For example, asking for alisting file of a non-existent library
will cause this message to be issued.

Warning! Could not open listing file’ %s'.
The listing file could not be opened. For example, this message will be issued when a"disk
full" condition is present.

Error! Could not open output library.
The output library could not be opened.

Error! Unable to write to output library.
An error occurred while writing to the output library.

Error! Unableto write to extraction file ' %s'.
This message is issued when extracting an object module from alibrary file and an error
occurs while writing to the output file.

Error! Out of Memory.
There was not enough memory to processthe library file.

Error! Could not open file'%s'.

Thismessageisissued if the output file for amodule that is being extracted from alibrary
could not be opened.

50 Librarian Error Messages

The Open Watcom Library Manager

Error! Library '%s' isinvalid. Contentsignored.
Thelibrary file does not contain the correct header information.

Error! Library'%s hasan invalid page size. Contentsignored.
The library file has an invalid record size. Therecord sizeis contained in the library header
and must be a power of 2.

Error! Invalid object record found in file ' %s'.
The specified file contains an invalid object record.

Error! No library specified on command line.
Thismessageisissued if alibrary file nameis not specified on the command line.

Error! Expecting library name.
This message isissued if the location of the library file name on the command lineis
incorrect.

Warning! Invalid file name’ %s'.
Thismessageisissued if aninvalid file nameis specified. For example, afile name longer
that 127 charactersis not allowed.

Error! Could not open command file’ %s'.
The specified command file could not be opened.

Error! Could not read from file’%s . Contentsignored as command input.
An error occurred while reading a command file.

Librarian Error Messages 51

Object File Utilities

52 Librarian Error Messages

5 The Object File Disassembler

5.1 Introduction

This chapter describes the Open Watcom Disassembler. [t takes asinput an object file (afile with
extension ".obj") and produces, as output, the Intel assembly language equivalent. The Open Watcom
compilers do not produce an assembly language listing directly from a source program. Instead, the Open
Watcom Disassembler can be used to generate an assembly language listing from the object file generated
by the compiler.

The Open Watcom Disassembler command line syntax is the following.

WDI S [optiong] [d:][path]filename].ext] [options]

The square brackets [] denote items which are optional.

WDIS is the name of the Open Watcom Disassembler.

d: isan optional drive specification such as"A:", "B:", etc. If not specified, the default drive
is assumed.

path isan optional path specification such as "\PROGRAMS\OBJ\". If not specified, the current
directory is assumed.

filename isthe file name of the object file to disassemble.

ext isthefile extension of the object file to disassemble. If omitted, afile extension of ".obj" is
assumed. If the period "." is specified but not the extension, the file is assumed to have no
file extension.

options isalist of valid options, each preceded by adlash ("/") or adash ("-"). Options may be

specified in any order.

The options supported by the Open Watcom Disassembler are:

a write assembly instructions only to the listing file

e include list of external names

fp do not use instruction name pseudonyms

fr do not use register name pseudonyms [Alpha only]

fi use alternate indexing format [80(x)86 only]

fu instructions/registers in upper case

i=<char> redefine the initial character of internal labels (default: L)
[[=<list_file>] createalistingfile

m leave C++ names mangled

Introduction 53

Object File Utilities

p include list of public names
g=<source file>]
using object file source line information, imbed original source linesinto the output file

The following sections describe the list of options.

5.2 Changing the Internal Label Character - "i=<char>"

The"i" option permits you to specify the first character to be used for internal labels. Internal labels take
theform "Ln" where"n" is one or more digits. The default character "L" can be changed using the "i"
option. The replacement character must be aletter (a-z, A-Z). A lowercase letter is converted to
uppercase.

Example:
Cwdi s cal endar /i =x

5.3 The Assembly Format Option - "a"

The"a" option controls the format of the output produced to the listing file. When specified, the Open
Watcom Disassembler will produce alisting file that can be used as input to an assembler.

Example:
Cwdi s calendar /a /| =cal endar.asm

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file

cal endar . obj and produce the output to thefile cal endar . asmso that it can be assembled by an
assembler.

5.4 The External Symbols Option - "e"

The"€" option controls the amount of information produced in the listing file. When specified, alist of all
externally defined symbolsis produced in the listing file.

Example:
Cwdi s cal endar /e

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file

cal endar . obj and produce the output, with alist of all external symbols, on the screen. A samplelist
of external symbolsis shown below.

54 The External Symbols Option - "e"

The Object File Disassembler

Li st of external synbols

Synmbo

__iob 0000032f 00000210 000001f4 00000158 00000139
__CK 00000381 00000343 000002eb 00000237 000000ch 00000006
Box_ 000000f 2
Cal endar _ 000000a7 00000079 00000049
Cl ear Screen_ 00000016
fflush_ 00000334 00000215 000001f9 0000015d 0000013e
int386_ 000003af 00000372

Li ne_ 000002db 000002b5 00000293 00000274 0000025a
localtinme_ 00000028
nenset _ 00000308

PosCur sor _ 0000031e 000001el 00000148 00000123 000000b6
printf_ 00000327 00000208 000001lec 00000150 00000131
strlen_ 00000108
time_ 0000001d

Each externally defined symbol isfollowed by alist of location counter values indicating where the symbol
isreferenced.

The"e" option isignored when the "a" option is specified.

5.5 The No Instruction Name Pseudonyms Option - "fp"

By default, AXP instruction name pseudonyms are emitted in place of actual instruction names. The Open
Watcom AXP Assembler accepts instruction name pseudonyms. The "fp" option instructs the Open
Watcom Disassembler to emit the actual instruction names instead.

5.6 The No Register Name Pseudonyms Option - "fr"

By default, AXP register names are emitted in pseudonym form. The Open Watcom AXP Assembler
accepts register pseudonyms. The "fr" option instructs the Open Watcom Disassembler to display register
names in their non-pseudonym form.

5.7 The Alternate Addressing Form Option - "fi"

The"fi" option causes an alternate syntactical form of the based or indexed addressing mode of the 80x86
to be used in an instruction. For example, the following form is used by default for Intel instructions.

nov ax, - 2[bp]
If the "fi" option is specified, the following form is used.

nov ax, [bp- 2]

The Alternate Addressing Form Option - "fi" 55

Object File Utilities

5.8 The Uppercase Instructions/Registers Option - "fu"

The "fu" option instructs the Open Watcom Disassembl er to display instruction and register namesin
uppercase characters. The default isto display them in lowercase characters.

" " " ” " " "
5.9 The Listing Option - "I[=<list_file>]
By default, the Open Watcom Disassembler produces its output to the terminal. The"l" (lowercaseL)
option instructs the Open Watcom Disassembler to produce the output to alisting file. The default file
name of the listing file is the same as the file name of the object file. The default file extension of the
listing fileis. | st.

Example:
Cwdi s cal endar /1

In the above example, the Open Watcom Disassembler isinstructed to disassemble the contents of thefile
cal endar . obj and produce the output to alisting file called cal endar . | st .

An dternate form of this optionis"l=<list_file>". With thisform, you can specify the name of the listing
file. When specifying alisting file, afile extension of . | st isassumed if noneis specified.

Example:
Cwdi s calendar /| =calendar.lis

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
cal endar . obj and produce the output to alisting filecalled cal endar . |i s.

5.10 The Public Symbols Option - “p"

The"p" option controls the amount of information produced in the listing file. When specified, alist of all
public symbolsis produced in the listing file.

Example:
Cwdi s cal endar /p

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
cal endar . obj and produce the output, with alist of al exported symbols, to the screen. A samplelist
of public symbolsis shown below.

Thefollowingisalist of public symbolsin 80x86 code.

56 The Public Symbols Option - "p"

The Object File Disassembler

Li st of public synbols

SYMBOL SECTI ON OFFSET
mai n_ _TEXT 000002C0
void near Box(int, int, int, int)

_TEXT 00000093
void near Calendar(int, int, int, int, int, char near *)

_TEXT 0000014A
voi d near C earScreen() _TEXT 00000000
void near Line(int, int, int, char, char, char)

_TEXT 00000036
void near PosCursor(int, int)

TEXT 0000001A
Thefollowing isalist of public symbolsin Alpha AXP code.

Li st of public synbols
SYMBOL SECTI ON OFFSET
mai n .text 000004F0
voi d near Box(int, int, int, int)

.text 00000148
void near Calendar(int, int, int, int, int, char near *)

.text 00000260
voi d near C earScreen() .text 00000000
void near Line(int, int, int, char, char, char)

.text 00000060
voi d near PosCursor(int, int)

.text 00000028

The"p" option isignored when the "a" option is specified.

5.11 Retain C++ Mangled Names - "m"

The"m" option instructs the Open Watcom Disassembler to retain C++ mangled names rather than
displaying their demangled form. The default isto interpret mangled C++ names and display them in a
somewhat more intelligible form.

5.12 The Source Option - "s[=<source _file>]"

The"s" option causes the source lines corresponding to the assembly language instructions to be produced
inthelisting file. The object file must contain line numbering information. That is, the "d1" or "d2" option
must have been specified when the source file was compiled. If no line numbering information is present in
the object file, the"s" option isignored.

The following defines the order in which the source file name is determined when the "'s" option is
specified.

1. If present, the source file name specified on the command line.
2. The name from the modul e header record.
3. Theobject file name.

In the following example, we have compiled the source file mysr c. ¢ with "d1" debugging information.
We then disassembleit as follows:

The Source Option - "s[=<source_file>]" 57

Object File Utilities

Example:
Cwdis nysrc /s /1

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
nmysr c. obj and produce the output to the listing file mysrc. | st. The source lines are extracted from

thefilenmysrc. c.

An dternate form of this option is"s=<source file>". With thisform, you can specify the name of the
source file.

Example:
Cwdi s nysrc /s=myprog.c /|

The above example produces the same result as in the previous example except the source lines are
extracted from the file mypr og. c.

5.13 An Example

Consider the following program contained in thefile hel | o. c.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");

Compileit with the"d1" option. An object filecalled hel | 0. obj will be produced. The"d1" option
causes line numbering information to be generated in the object file. We can use the Open Watcom
Disassembler to disassembl e the contents of the object file by issuing the following command.

Cwdis hello /1l /e /p /s /fu

The output will be written to alisting filecalled hel | 0. | st (the"I" option was specified"). 1t will
contain alist of external symbols (the "€e" option was specified), alist of public symbols (the "p" option was
specified) and the source lines corresponding to the assembly language instructions (the "s" option was
specified). The sourceinput fileiscaled hel | 0. c. Theregister names will be displayed in upper case
(the"fu" option was specified). The output, shown below, is the result of using the Open Watcom C++
compiler.

The following is adisassembly of 80x86 code.

58 An Example

The Object File Disassembler

Modul e: HELLO. C
GROUP: ' DGROUP' CONST, CONST2, _DATA, _BSS

Segnent: _TEXT DWORD USE32 0000001A bytes
#i ncl ude <stdio. h>

voi d mai n()

0000 mai n_:
0000 68 08 00 00 00 PUSH 0x00000008
0005 E8 00 00 00 00 CALL __CHK

printf("Hello world\n");

000A 68 00 00 00 00 PUSH of fset L$1

000F E8 00 00 00 00 CALL printf_

0014 83 C4 04 ADD ESP, 0x00000004
}

0017 31 @ XOR EAX, EAX

0019 c3 RET

Routi ne Size: 26 bytes, Rout i ne Base: _TEXT + 0000

No di sassenbly errors

Li st of external references

SYMBOL

__OK 0006

printf_ 0010

Segrent : CONST DWORD USE32 0000000D byt es

0000 L$1:

0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 OA 00 Hel 1 o worl d.

BSS Size: 0 bytes

Li st of public synbols

main_ _TEXT 00000000

Thefollowing is a disassembly of Alpha AXP code.

An Example 59

Object File Utilities

.new_section .text, "crx4"

#i ncl ude <stdio. h>

voi d main()

0000 mai n:
0000 23DEFFFO LDA SP, - 0x10(SP)
0004 B75E0000 STQ RA, (SP)
{

printf("Hello world\n");
0008 261F0000 LDAH A0, h"L$0(R31)
000C 22100000 LDA A0, | "L$0(AD)
0010 43F00010 SEXTL A0, A0
0014 D3400000 BSR RA, j~printf
}
0018 201F0000 MoV 0x00000000, VO
001C A75E0000 LDQ RA, (SP)
0020 23DE0010 LDA SP, 0x10(SP)
0024 6BFA8001 RET (RA)
Routine Size: 40 bytes, Routi ne Base: .text + 0000

No di sassenbly errors

Li st of

0000
0000

0000

external references

0014
.new_section .const, "drw4"
L$0:
48 65 6C 6C 6F 20 77 6F 72 6C 64 OA 00 00 00 00 Hello world.....
.new_section .const2, "drw4"

.new_section .data, "drw"

.new_section .bss, "urw"
. bss:

BSS Size: 0 bytes

0000

0000
0010
0020
0030

Li st of

60 An Example

.new_section .pdata, "dr2"

/1 Procedure descriptor for main

mai n /1 Begi nAddr ess

mai n+0x28 /1 EndAddress

00000000 /1 ExceptionHandl er

00000000 /1 Handl er Dat a

mai n+0x8 /1 Prol ogEnd
.new_section .drectve, "iRrO"

2D 64 65 66 61 75 6C 74 6C 69 62 3A 63 6C 69 62 -defaultlib:clib
20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 70 6C 69 -defaultlib:pl
62 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 6D 61 b -defaultlib:m
74 68 20 00 th

public synbols

. text 00000000

WO OoOpr~O

The Object File Disassembler

Let us create aform of the listing file that can be used as input to an assembler.

Cwdis hello /l=hello.asm/r /a

The output will be produced inthefile hel | 0. asm The output, shown below, isthe result of using the
Open Watcom C++ compiler.

The following is adisassembly of 80x86 code.

. 387
. 386p
PUBLIC main_
EXTRN __CHK: BYTE
EXTRN printf_:BYTE
EXTRN ___wepp_3_data_init_fs_root_:BYTE
EXTRN _cstart_: BYTE
DGROUP GROUP CONST, CONST2, _ DATA, _BSS
_TEXT SEGVENT DWORD PUBLI C USE32 ' CODE'
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP
mai n_:
PUSH 0x00000008
CALL near ptr __CHK
PUSH of fset L$1
CALL near ptr printf_
ADD ESP, 0x00000004
XOR EAX, EAX
RET
_TEXT ENDS
CONST SEGVENT DWORD PUBLI C USE32 ' DATA
L$1:
DB 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, Ox6f
DB 0x72, 0x6c, 0x64, O0xOa, 0x00
CONST ENDS
CONST2 SEGVENT DWORD PUBLI C USE32 ' DATA
CONST2 ENDS
_DATA SEGVENT DWORD PUBLI C USE32 ' DATA
_DATA ENDS
_BSS SEGVENT DWORD PUBLI C USE32 ' BSS'
_BSS ENDS
END

Thefollowing is a disassembly of Alpha AXP code.

. gl obl mai n
.extrn printf
.extrn _cstart _
.new_section .text, "crx4"
mai n:
LDA $SP, - 0x10($SP)
STQ $RA, ($SP)
LDAH $A0, h~* L$0" ($ZERO
LDA $A0, | M L$0O' ($A0)
SEXTL $A0, $A0
BSR $RA, jAprintf
MoV 0x00000000, $VO
LDQ $RA, ($SP)
LDA $SP, 0x10($SP)
RET $ZERO, ($RA), 0x00000001

An Example 61

Object File Utilities

.new_section .const, "drw4"

‘L$0:

.asciiz

. byte

"Hell o world\n"
0x00, 0x00

.new_section .pdata, "dr2"
/1 0000
.long mai n
.l ong mai n+0x28
.long 00000000
.long 00000000
.long mai n+0x8

.new_section .drectve

"i RrO"

Procedure descriptor for nain

/1
/1
/1
/1
/1

Begi nAddr ess
EndAddr ess
Except i onHandl er
Handl er Dat a

Pr ol ogEnd

WO OoOpr~O

.asciiz "-defaultlib:clib -defaultlib:plib -defaultlib:math "

62 An Example

6 Optimization of Far Calls

Optimization of far calls can result in smaller executable files and improved performance. 1t is most useful
when the automatic grouping of logical segments into physical segments takes place. Note that, by default,
automatic grouping is performed by the Open Watcom Linker.

The Open Watcom C, C++ and FORTRAN 77 compilers automatically enable the far call optimization.
The Open Watcom Linker will optimize far callsto procedures that reside in the same physical segment as
the caller. For example, alarge code model program will probably contain many far calls to proceduresin
the same physical segment. Since the segment address of the caler is the same as the segment address of
the called procedure, only anear call isnecessary. A near call does not require arelocation entry in the
relocation table of the executable file whereas afar call does. Thus, the far call optimization will result in
smaller executable files that will load faster. Furthermore, anear call will generally execute faster than a
far call, particularly on 286 and 386-based machines where, for applications running in protected mode,
segment switching is fairly expensive.

The following describes the far call optimization. The call far label instruction is converted to one of the
following sequences of code.

push cSs seg Ss

cal | near | abel push cS

nop cal | near | abel
Notes:

1. Thenop or seg ssinstruction is present since acall far label instruction isfive bytes. The push
csinstruction is one byte and the call near label instruction isthree bytes. The seg ssinstruction
isused because it is faster than the nop instruction.

2. Thecalled procedure will still use aretf instruction but since the code segment and the near
address are pushed on the stack, the far return will execute correctly.

3. Theposition of the padding instruction is chosen so that the return addressisword aligned. A
word aligned return address improves performance.

4. When two consecutive call far label instructions are optimized and the first call far label
instruction isword aigned, the following sequence replaces both call far label instructions.

push cs
cal |l near | abel 1
seg SS
push cS
seg cs
cal | near | abel 2

5. If your program contains only near calls, this optimization will have no effect.
A far jump optimization is also performed by the Open Watcom Linker. This has the same benefits asthe

far call optimization. A jmp far label instruction to alocation in the same segment will be replaced by the
following sequence of code.

Optimization of Far Calls 63

Object File Utilities

jmp near | abel
nov ax, ax

Note that for 32-hit segments, this instruction becomes nov eax, eax.

6.1 Far Call Optimizations for Non-Open Watcom Object
Modules

Thefar call optimization is automatically enabled when object modules created by the Open Watcom C,
C++, or FORTRAN 77 compilers are linked. These compilers mark those segmentsin which this
optimization can be performed. The following utility can be used to enable this optimization for object
modules that have been created by other compilers or assemblers.

6.1.1 The Open Watcom Far Call Optimization Enabling Utility

Only DOS, 0S/2 and Windows-hosted versions of the Open Watcom Far Call Optimization Enabling
Utility are available. A QNX-hosted version is not necessary since QNX-hosted development tool s that
generate object files, generate the necessary information that enables the far call optimization.

The format of the Open Watcom Far Call Optimization Enabling Utility isasfollows. Itemsenclosedin
square brackets are optional; items enclosed in braces may be repeated zero or more times.

FCENABLE { [option] [file] }

where description:
option isan option and must be preceded by adash ('-’) or slash ('/’).
file isafile specification for an object file or library file. If no file extension is specified, afile

extension of "obj" isassumed. Wild card specifiers may be used.

The following describes the command line options.

b Do not create abackup file. By default, abackup file will be created. The backup file
name will have the same file name as the input file and afile extension of "bob" for object

filesand "bak" for library files.

c Specify alist of class names, each separated by a comma. This enablesthe far call
optimization for all segments belonging to the specified classes.

S Specify alist of segment names, each separated by acomma. This enables the far call
optimization for all specified segments.

X Specify alist of ranges, each separated by a comma, for which no far call optimizations are
to be made. A range has the following format.

64 Far Call Optimizations for Non-Open Watcom Object Modules

Optimization of Far Calls

seg_nane start-end
or
seg_nane start:length

seg_nameisthe name of asegment. start is an offset into the specified segment defining
the start of the range. end is an offset into the specified segment defining the end of the
range. length isthe number of bytesfrom start to be included in therange. All values are
assumed to be hexadecimal .

Notes:

1. If morethan one classlist or segment list is specified, only the last oneisused. A classor
segment list appliesto al object and library files regardiess of their position relative to the class
or segment list.

2. Arangelist applies only to the first object file following the range specification. If the object
file contains more than one module, the range list will only apply to the first module in the object
file

The following examplesillustrate the use of the Open Watcom Far Call Optimization Enabling Utility.

Example:
fcenable /c code *. obj

In the above example, the far call optimization will be enabled for al segments belonging to the "code"
class.

Example:
fcenable /s _text *.obj

In the above example, the far call optimization will be enabled for all segments with name"_text".

Example:
fcenabl e /x special 0:400 asnfile. obj

In the above example, the far call optimization will be disabled for the first 1k bytes of the segment named
"specia" in the object file "asmfile".

Example:
fcenable /x special O-ffffffff asnfile. obj

In the above example, the far call optimization will be disabled for the entire segment named "specia” in
the object file "asmfile".

Far Call Optimizations for Non-Open Watcom Object Modules 65

Object File Utilities

66 Far Call Optimizations for Non-Open Watcom Object Modules

/ The Open Watcom Exe2bin Utility

The exe2bin utility strips off the header of a DOS executable file and applies any necessary fixups. In
addition, it is able to display the header and rel ocations of an executable file in human readable format.

When DOS executes a program (supplied as an ".exe" file) it first reads the header of the executablefile
and ensures there is enough memory to load the program. If thereis, DOS loads the file — excluding the
header — to memory. Before jumping to the entry point, DOS has to adjust a number of certain locations
that depend on the load address of the program. These adjustments consist of the addition of the load
address to each entry in the above mentioned list of relocations. These relocations are part of the header of
an executable file. The load address may vary from invocation to invocation, this creates the need for the
existence of relocations.

As exe2bin strips the executable header, the rel ocations are lost (among other things). This would render
the resulting output useless, if exe2bin were not to apply the relocations as part of the conversion process.
Just like DOS, exe2bin therefore needs to know the load address. Thisis supplied via an argument to
exe2bin.

Some programs do not rely on the address they are being loaded at, and consequently do not contain any
relocations. In this case exe2bin merely copies the contents of the input file (apart from the header) to the
output file.

The phrase "binary part” (also "binary data") is used as atechnical term in the documentation of exe2bin. It
denotes the data following the header. The length of the binary data is determined by the header entries
"Size mod 512", "Number of pages' and "Size of header”. It isnot directly related to the actual size of the
input file.

Note: Although Open Watcom Exe2bin is capable of producing DOS".COM" executables, this
functionality is only provided for compatibility with other tools. The preferred way of generating
".COM" executablesisto use the Open Watcom Linker with directive "f or rat dos coni. Refer
to the Open Watcom Linker Guide for details.

7.1 The Open Watcom Exe2bin Utility Command Line

The format of the Open Watcom Exe2bin command lineis asfollows. Items enclosed in square brackets
("[1) areoptional.

EXE2BIN [options] exe file[bin_file]

The Open Watcom Exe2bin Utility Command Line 67

Object File Utilities

68

where description:
options isalist of options, each preceded by adash ("-"). On non-UNIX platforms, adash ("/")
may be also used instead of a dash. Options may be specified in any order. Supported
options are;
h display the executable file header
r display the relocations of the executable file
|=<seg> specify the load address of the binary file
X enable extended capabilities of Open Watcom Exe2bin
exe file isafile specification for a 16-bit DOS executable file used asinput. If no file extension is
specified, afile extension of ".exe" isassumed. Wild card specifiers may not be used.
bin_file isan optional file specification for abinary output file. If no file nameis given, the
extension of theinput fileisreplaced by "bin" and taken as the name for the binary output
file
Description:
1. If areany relocationsin the input file, the /I option becomes mandatory (and is useless
otherwise).
2. If exe2biniscalled without the /x option, certain restrictions to the input file apply (apart from
being avalid DOS executablefile):
« the size of the binary data must be <= 64 KByte
* no stack must be defined, i.e. ss:sp = 0x0000:0x0000
* the code segment must be always zero, i.e. ¢s=0x0000
« theinitia instruction pointer must be either ip = 0x0000 or ip = 0x0100
None of the above restrictions apply if the /x option is supplied.
3. If csiip = 0x0000:0x0100 and the /x option is not specified, no relocations are allowed in the

input file. Furthermore, exe2bin skips another 0x100 bytes following the header (in addition to
the latter).

This behaviour allows the creation of DOS".COM" executables and is implemented for
backward compatibility. Itishowever strongly suggested to use the Open Watcom Linker
instead (together with directive " f or rat dos coni).

The examples below illustrate the use of Open Watcom Exe2bin.

The Open Watcom Exe2bin Utility Command Line

The Open Watcom Exe2bin Utility

Example:
exe2bi n prog. exe

Strips off the executable header from pr og. exe and writes the binary part to pr og. bi n. If thereare
any relocationsin pr og. exe or if theinput file violates any of the restrictions listed above, the execution
of exe2bin fails.

Example:
exe2bin -x prog.exe

Same as above but the " - x" option relaxes certain restrictions.

Note: Even if exe2bin is sucessfully invoked with identical input files as in the preceding examples (i.e.
with vs. without /x) the output files may differ. This happens when cs.ip = 0x0000:0x0100 causes
exe2bin to skip additional 0x100 bytes from the input file, if the user did not specify /x.

Example:
exe2bin /h prog.exe test.bin

Displaysthe header of pr og. exe , stripsit off and copiesthe binary part to t est . bi n.

Example:
exe2bin /h /r /x /1 =0xEO00 bi os. exe bios.rom

Displays the header and the relocations (if any) of bi 0s. exe strips the header and applies any fixups to
(i.e. relocates) bi os. exe asif it were to be loaded at 0XE000:0x0000. The result will be written to
bi os.rom

The above command line may serve as an example of creating a 128 KByte BIOS image for the PC-AT
architecture.

7.2 Exe2bin Messages

Thisisalist of the diagnostic messages exe2bin may display, accompanied by more verbose descriptions
and some possible causes.

Error opening %s for reading.
The input executable file could not be opened for reading.

Check that the input file exists and exe2bin has read permissions.

Error opening %s for writing.
The output binary file could not be opened for writing.

Make sure the mediais not write protected, has enough free space to hold the output file,
and exe2bin has write permissions.

Error allocating file I /O buffer.
Thereis not enough free memory to allocate afile buffer.

Exe2bin Messages 69

Object File Utilities

Error reading while copying data.
An error occured while reading the binary part of the input file.

Thisismost likely due to a corrupted executable header. Run exe2bin with the /h option
and check the size reported. The size of the input file must be at least ("Number of pages' -
1) * 512 + "Sizemod 512". Omit decrementing the number of pagesif "Size mod 512"
happens to equal zero.

Error writing while copying data.
The output binary file can not be written to.

Make sure the media has enough free space to hold the output file and is not removed while
writing to it.

Error. %s has no valid executable header.
The signature (the first two bytes of the input file) does not match "MZ".

exe2bin can only use valid DOS executable files as input.

Error allocating/reading reloc-table.
Thereis either not enough free memory to allocate a buffer for the relocations (each
relocation takes about 4 bytes) or there was an error while reading from the input file.

Error. Option " -I=<seg>" mandatory (there are relocations).
The executable file contains relocations. Therefore, exe2bin needs to know the segment the
binary output fileis supposed to reside at.

Either provide a segment as an argument to the /I option or rewrite your executable file to
not contain any relocations.

Error: Binary part exceeds 64 KBytes.
The binary part of theinput fileis larger than 64 KBytes.

The restriction applies because the /x option was not specified. Check if the extended
behaviour is suitable or rewrite the program to shorten the binary part.

Error: Stack segment defined.
The header definesan initia stack, i.e. ss:sp != 0x0000:0x0000.

The restriction applies because the /x option was not specified. Check if the extended
behaviour is suitable or rewrite the program to not have a segment of class "stack”.

Error: CS:IP neither 0x0000: 0x0000 nor 0x0000: 0x0100.
The header definesaninitia cs:ip not matching any of the two values.

The restriction applies because the /x option was not specified. Check if the extended
behaviour is suitable or rewrite the program to have a different entry point (cf. Open
Watcom Linker "option start").

Error: com-file must not have relocations.
Although the binary part is <= 64 KByte in length, there is no stack defined and the csiip is
0x0000:0x0100, i.e. exe2bin assumesyou try to generatea”.COM" executable, there are
relocations in the input file.

70 Exe2bin Messages

The Open Watcom Exe2bin Utility

".COM" files are not allowed to contain relocations. Either produce an ".EXE" file instead
or rewrite the program to avoid the need for relocations. 1n order to do the latter, look for
statements that refer to segments or groups such as nov ax, _ TEXT ornov ax,
DGROUP.

Exe2bin Messages 71

Object File Utilities

72 Exe2bin Messages

Executable Image Utilities

Executable Image Utilities

74

8 The Open Watcom Patch Utility

8.1 Introduction

The Open Watcom Patch Utility isautility program which may be used to apply patches or bug fixesto
Open Watcom’s compilers and its associated tools. As problems are reported and fixed, patches are created
and made available on Open Watcom’s BBS, Open Watcom’s FTP site, or CompuServe for users to
download and apply to their copy of thetools.

8.2 Applying a Patch

The format of the BPATCH command lineis:

BPATCH [options] patch_file

The square brackets [] denote items which are optional.

where description:
options isalist of valid Open Watcom Patch Utility options, each preceded by a dash ("-").
Options may be specified in any order. The possible options are:
-p Do not prompt for confirmation
-b Do not create a .BAK file
-q Print current patch level of file
patch_file isthe file specification for a patch file provided by Open Watcom.

Suppose a patch file called "wlink.a" is supplied by Open Watcom to fix abug in the file "WLINK.EXE".
The patch may be applied by typing the command:

bpatch wink.a

The Open Watcom Patch Utility locates the file C: \ WATCOM Bl NW W.I NK. EXE using the PATH
environment variable. The actual name of the executable file is extracted from thefile Wl i nk. a. It then
verifies that thefile to be patched is the correct one by comparing the size of the file to be patched to the
expected size. If thefile sizes match, the program responds with:

Ok to modify ’ C\ WATCOM BI NW WLI NK. EXE’ 2 [y] n]

If you respond with "yes', BPATCH will modify the indicated file. If you respond with "no", BPATCH
aborts. Once the patch has been applied the resulting fileis verified. First thefile size is checked to make

Applying a Patch 75

Executable Image Utilities

sure it matches the expected file size. If the file size matches, a check-sum is computed and compared to
the expected check-sum.

Notes:

1. If anerror message isissued during the patch process, the file that you specified to be patched
will remain unchanged.

2. If asequence of patch files exist, such as "wlink.a", "wlink.b" and "wlink.c", the patches must be
applied in order. That is, "wlink.a" must be applied first followed by "wlink.b" and finally
"wlink.c".

8.3 Diagnostic Messages

If the patch cannot be successfully applied, one of the following error messages will be displayed.

Usage: BPATCH {-p} {-q} {-b} <file>
-p = Do not prompt for confirmation
-b = Do not create a .BAK file
-q = Print current patch level of file
The command line was entered with ho arguments.

File’%s has not been patched
This message isissued when the "-q" option is used and the file has not been patched.

File’%s hasbeen patched to level ' %s
This message is issued when the "-q" option is used and the file has been patched to the
indicated level.

File’%s has already been patched to level '%s’ - skipping
This message isissued when the file has already been patched to the same level or higher.

Command line may only contain one file name
More than one file name is specified on the command line. Make surethat "/" is not used
as an option delimiter.

Command line must specify a file name
No file name has been specified on the command line.

'%s' isnot a Open Watcom patch file
The patch fileis not of the required format. The required header information is not present.

"%s' isnot a valid Open Watcom patch file
The patch fileis not of the required format. The required header information is present but
the remaining contents of the file have been corrupted.

"%s isthewrong size (%lul). Should be (%6lu2)
The size of the file to be patched (%lul) is not the same as the expected size (%lu2).

Cannot find* %s
Cannot find the executable to be patched.

76 Diagnostic Messages

The Open Watcom Patch Utility

Cannot open ' %s
An error occurred while trying to open the patch file, the file to be patched or the resulting
file.

Cannot read ' %s
An input error occurred while reading the old version of the file being patched.

Cannot rename’ %s’ to '%s
Thefile to be patched could not be renamed to the backup file name or the resulting file
could not be renamed to the name of the file that was patched.

Cannot writeto ' %s
An output error occurred while writing to the new version of the file to be patched.

I/O error processing file’ %s
An error occurred while seeking in the specified file.

No memory for %s
An attempt to allocate memory dynamically failed.

Patch program aborted!
Thismessageisissued if you answered no to the "OK to modify" prompt.

Resulting file has wrong checksum (%lu) - Should be (%lu2)
The check-sum of the resulting file (%lu) does not match the expected check-sum (%lu2).
This messageisissued if you have patched the wrong version.

Resulting file haswrong size (%lul) - Should be (%lu2)

The size of the resulting file (%lul) does not match the expected size (%lu2). This
message is issued if you have patched the wrong version.

Diagnostic Messages 77

Executable Image Utilities

78 Diagnostic Messages

9 The Open Watcom Strip Utility

9.1 Introduction

The Open Watcom Strip Utility may be used to manipulate information that is appended to the end of an
executable file. Theinformation can be either one of two things:

1. Symbolic debugging information
2. Resourceinformation

This information can be added or removed from the executable file. Symbolic debugging information is
placed at the end of an executable file by the Open Watcom Linker or the Open Watcom Strip Utility.
Resource information is placed at the end of an executable by a resource compiler or the Open Watcom
Strip Utility.
Once a program has been debugged, the Open Watcom Strip Utility allows you to remove the debugging
information from the executable file so that you do not have to remove the debugging directives from the
linker directive file and link your program again. Removal of the debugging information reduces the size
of the executable image.
All executable files generated by the Open Watcom Linker can be specified as input to the Open Watcom
Strip Utility. Note that for executable files created for Novell’s NetWare operating system, debugging
information created using the "NOVELL" option in the "DEBUG" directive cannot be removed from the
executable file. You must remove the "DEBUG" directive from the directive file and re-link your
application.
The Open Watcom Strip Utility currently runs under the following operating systems.

* DOS

» 0S/2

* QONX

» Windows NT/2000/XP

» Windows 95/98/Me

9.2 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility command line syntax is:

The Open Watcom Strip Utility Command Line 79

Executable Image Utilities

WSTRIP [optiong] input_file [output_fil€] [info_fil€]

where:

[l

options

input_file

output_file

info_file

Description:

The sguare brackets denote items which are optional.

/n (noerrors) Do not issue any diagnostic message.

q (quiet) Do not print any informational messages.

Ir (resources) Process resource information rather than debugging
information.

/a (add) Add information rather than remove information.

isafile specification for the name of an executablefile. If no file extension is specified,
the Open Watcom Strip Utility will assume one of the following extensions: "exe", "dIl",
"exp”, "rex", "nlm", "dsk", "lan", "nam", "mdl", "cdm", "ham", "gnx" or no file extension.
Note that the order specified in the list of file extensionsis the order in which the Open
Watcom Strip Utility will select file extensions.

isan optional file specification for the output file. If no file extension is specified, the file
extension specified in the input file name will be used for the output file name. If "." is
specified, the input file name will be used.

isan optional file specification for the file in which the debugging or resource information
isto be stored (when removing information) or read (when adding information). If nofile
extension is specified, afile extension of "sym" is assumed for debugging information and
"res" for resource information. To specify the name of the information file but not the

name of an output file, a"." may be specified in place of output_file.

1. If the"r" (resource) option is not specified then the default action is to add/remove symbolic
debugging information.

2. If the"a" (add) option is not specified then the default action isto remove information.

3. If output_fileis not specified, the debugging or resource information is added to or removed
from input_file.

4. If output_fileis specified, input_fileis copied to output_file and the debugging or resource
information is added to or removed from output_file. input_file remains unchanged.

5. If info_fileis specified then the debugging or resource information that is added to or removed
from the executable file is read from or written to this file. The debugging or resource
information may be appended to the executable by specifying the "a" (add) option. Also, the
debugging information may be appended to the executable by concatenating the debugging
information file to the end of the executable file (the files must be treated as binary files).

80 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility

6. During processing, the Open Watcom Strip Utility will create atemporary file, ensuring that a
file by the chosen name does not already exist.

9.3 Strip Utility Messages

The following messages may be issued by the Open Watcom Strip Utility.

Usage: WSTRIP [options] input_file [output_file] [info_fil€]
options: (-option is also accepted)
/n don’t print warning messages
/g don’t print informational messages
/v processresource information rather than debugging information
/a add information rather than delete information
input_file: executablefile
output_file: optional output executableor ’.’
info_file: optional output debugging or resource information file
or input debugging or resource informational file
The command line was entered with no arguments.

Too low on memory
There is not enough free memory to alocate file buffers.

Unableto find ' %s
The specified file could not be located.

Cannot create temporary file
All the temporary file names are in use.

Unableto open '%s' to read
The input executable file cannot be opened for reading.

"%s' isnot avalid executablefile
Theinput file has invalid executable file header information.

"%s' does not contain debugging information
There is nothing to strip from the specified executablefile.

Seek error on ' %s
An error occurred during a seek operation on the specified file.

Unableto create output file ' %s
The output file could not be created. Check that the output disk is not write-protected or
that the specified output fileis not marked "read-only".

Unable to create symbol file’ %s
The symboal file could not be created.

Error reading ' %s
An error occurred while reading the input executable file.

Error writing to ' %s
An error occurred while writing the output executable file or the symbol file. Check the

Strip Utility Messages 81

Executable Image Utilities

amount of free space on the output disk. If theinput and output files reside on the same
disk, there might not be enough room for a second copy of the executable file during
processing.

Cannot erasefile’ %s
The input executable file is probably marked "read-only" and therefore could not be erased
(theinput file is erased whenever the output file has the same name).

Cannot renamefile’ %s
The output executable file could not be renamed. Ordinarily, this should never occur.

82 Strip Utility Messages

The Make/Touch Utilities

The Make/Touch Utilities

84

10 The Open Watcom Make Utility

10.1 Introduction

The Open Watcom Make utility is useful in the development of programs and text processing but is general
enough to be used in many different applications. Make uses the fact that each file has a time-stamp
associated with it that indicates the last time the file was updated. Make uses this time-stamp to decide
which files are out of date with respect to each other. For instance, if we have an input datafile and an
output report file we would like the output report file to accurately reflect the contents of the input datafile.
In terms of time-stamps, we would like the output report to have a more recent time-stamp than the input
datafile (we will say that the output report file should be "younger" than the input datafile). If theinput
file had been modified then we would know from the younger time-stamp (in comparison to the report file)
that the report file was out of date and should be updated. Make may be used in this and many other
situations to ensure that files are kept up to date.

Some readers will be quite familiar with the concepts of the Make file maintenance tool. Open Watcom
Make is patterned after the Make utility found on UNIX systems. The next major section is simply
intended to summarize, for reference purposes only, the syntax and options of Make’'s command line and
special macros. Subsequent sections go into the philosophy and capabilities of Open Watcom Make. |If

you are not familiar with the capabilities of the Make utility, we recommend that you skip to the next major
section entitled "Dependency Declarations” and read on.

10.2 Open Watcom Make Reference

The following sub-sections serve as a reference guide to the Open Watcom Make utility.

10.2.1 Open Watcom Make Command Line Format

The formal Open Watcom Make command line syntax is shown below.

WMAKE [options] [macro_defs] [targets]

Asindicated by the square brackets|], all items are optional .

options isalist of valid Open Watcom Make options, each preceded by aslash (/") or adash ("-").
Options may be specified in any order.

macro_defs isalist of valid Open Watcom Make macro definitions. Macro definitions are of the form:
A=B

and are readily identified by the presence of the "=" (the "#" character may be used instead
of the"=" character if necessary). Surround the definition with quotes (") if it contains

Open Watcom Make Reference 85

The Make/Touch Utilities

targets

blanks (e.g., "debug_opt=debug all"). The macro definitions specified on the command
line supersede any macro definitions defined in makefiles. Macro names are
case-insensitive unless the "ms" option is used to select Microsoft NMAKE mode.

is one or more targets described in the makefile.

10.2.2 Open Watcom Make Options Summary

In this section, we present a terse summary of the Open Watcom Make options. This summary is displayed
on the screen by simply entering "WMAKE ?' on the command line.

Example:
Cwnake ?
/a make all targets by ignoring time-stamps
/b block/ignore all implicit rules
Ic do not verify the existence of files made
/d debug mode - echo all work asit progresses
le always erase target after error/interrupt (disables prompting)
/f the next parameter is a name of dependency description file
/h do not print out Make identification lines (no header)
fi ignore return status of all commands executed
/k on error/interrupt: continue on next target
Nl the next parameter is the name of a output log file
/m do not search for MAKEINIT file
/ms Microsoft NMAKE mode
/n no execute mode - print commands without executing
/o use circular implicit rule path
Ip print the dependency tree as understood from the file
/q guery mode - check targets without updating them
Ir do not use default definitions
Is silent mode - do not print commands before execution
/sn noisy mode - always print commands before execution
It touch filesinstead of executing commands
/u UNIX compatibility mode
v verbose listing of inlinefiles
ly show why atarget will be updated
/z do not erase target after error/interrupt (disables prompting)

10.2.3 Command Line Options

Command line options, available with Open Watcom Make, alow you to control the processing of the

makefile.

make all targets by ignoring time-stamps

The"a" option is a safe way to update every target. For program maintenance, it isthe preferred method
over deleting object files or touching source files.

86 Open Watcom Make Reference

The Open Watcom Make Utility

block/ignore al implicit rules

The"b" option will indicate to Make that you do not want any implicit rule checking done. The"b" option
isuseful in makefiles containing double colon "::" explicit rules because an implicit rule search is
conducted after a double colon "::" target is updated. Including the directive . BLOCK in a makefile also
will disable implicit rule checking.

do not verify the existence of files made
Make will check to ensure that atarget exists after the associated command list is executed. The target
existence checking may be disabled with the "c" option. The"c" option isuseful in processing makefiles

that were devel oped with other Make utilities. The . NOCHECK directive is used to disable target existence
checks in amakefile.

debug mode - echo all work as it progresses

The"d" option will print out information about the time-stamp of files and indicate how the makefile
processing is proceeding.

always erase target after error/interrupt (disables prompting)
The"€" option will indicate to Make that, if an error or interrupt occurs during makefile processing, the

current target being made may be deleted without prompting. The . ERASE directive may be used as an
equivalent option in a makefile.

the next parameter is a name of dependency description file

The"f" option specifies that the next parameter on the command line is the name of a makefile which must
be processed. If the "f" option is specified then the search for the default makefile named "MAKEFILE" is
not done. Any number of makefiles may be processed with the "f* option.

Example:
wrake /f nyfile
whake /f nyfilel /f nyfile2

do not print out Make identification lines (no header)

The"h" option is useful for less verbose output. Combined with the"q" option, this allows a batch fileto
silently query if an application is up to date. Combined with the "n" option, a batch file could be produced
containing the commands necessary to update the application.

ignore return status of all commands executed

Open Watcom Make Reference 87

The Make/Touch Utilities

ms

The"i" option is equivalent to the . | GNORE directive.

on error/interrupt: continue on next target
Make will stop updating targets when a non-zero statusis returned by a command. The "k option will

continue processing targets that do not depend on the target that caused the error. The . CONTI NUE
directive in amakefile will enable this error handling capability.

the next parameter is the name of a output log file

Make will output an error message when a non-zero status is returned by acommand. The"I" option
specifies afile that will record al error messages output by Make during the processing of the makefile.

do not search for the MAKEINIT file

The default action for Make is to search for aninitiaization file called "MAKEINIT" or "TOOLS.INI" if
the"ms" optionisset. The"m" option will indicate to Make that processing of the MAKEINIT fileis not
desired.

Microsoft NMAKE mode

The default action for Make is to process makefiles using Open Watcom syntax rules. The "ms" option will
indicate to Make that it should process makefiles using Microsoft syntax rules. For example, the line
continuation in NMAKE is abackslash ("\") at the end of the line.

no execute mode - print commands without executing

The"n" option will print out what commands should be executed to update the application without actually
executing them. Combined with the "h" option, a batch file could be produced which would contain the
commands necessary to update the application.

Example:
wrake /h /n >update. bat
updat e

Thisisuseful for applications which require all available resources (memory and devices) for executing the
updating commands.

use circular implicit rule path

When this option is specified, Make will use a circular path specification search which may save on disk
activity for large makefiles. The"0" optionis equivalent tothe . OPTI M ZE directive.

88 Open Watcom Make Reference

The Open Watcom Make Utility

print out makefile information

The"p" option will cause Make to print out information about al the explicit rules, implicit rules, and
macro definitions.

guery mode - check targets without updating them

The"q" option will cause Make to return a status of 1 if the application requires updating; it will return a
status of O otherwise. Hereis aexample batch file using the"q" option:

Example:
wrake /g
if errorstatus 0 goto noupdate
wnake /g /h /n >\tnp\update. bat
call \tnp\update. bat
: noupdat e

do not use default definitions

The default definitions are:

__MAKEOPTS__ = <options passed to WWAKE>

__ _MAKEFILES _ = <list of makefiles>

__VERSION__ = <versi on nunber>

__LOADDLL__= defined if DLL | oadi ng supported

__MeDOs = defined if MS/DOS version

__NT__ = defined if Wndows NT version
_NT386__ = defined if x86 Wndows NT version
~0s2. = defined if OS/2 version

__ ONX__ = defined if QNX version

__LINUX__ = defined if Linux version

__LINUX386__ = defined if x86 Linux version

__UNIX = defined if OQNX or Linux version
MAKE = <nane of file containi ng WAKE>

#endi f

clear .EXTENSIONS |i st

. EXTENSI ONS:

In general,
set .EXTENSIONS list as foll ows
.EXTENSI ONS: .exe .nlm.dsk .lan .exp &
.lib .obj &
&
.asm.c .cpp .cxx .cc .for .pas .cob &
.h .hpp .hxx .hh . fi .mf .inc

For Microsoft NMAKE compatibility (when you use the "ms" option), the following default definitions are
established.

Open Watcom Make Reference 89

The Make/Touch Utilities

For Mcrosoft NMAKE conpatibility swtch,

set .EXTENSIONS |ist as follows

. EXTENSI ONS: .exe .obj .asm.c .cpp .cxx &
.bas .cbl .for .f .f90 .pas .res .

IWVAKEFLAGS=$(UWAKEFLAGS) $(__ MAKEOPTS_)
MAKE=<nanme of file containing WAKE>

AS=nl
BC=bc
CC=cl
COBOL=cobol
CPP=cl
CXX=cl
FOR=F |
PASCAL =pl
RC=rc
. asm exe:

$(AS) $(AFLAGS) $*.asm
.asm obj :

$(AS) $(AFLAGS) /c $*.asm
. C. exe:

$(CC) $(CFLAGS) $*.c
.C.obj:

$(CC) $(CFLAGS) /c $*.c
. Cpp. exe:

$(CPP) $(CPPFLAGS) $*.cpp
. cpp. obj :

$(CPP) $(CPPFLAGS) /c $*.cpp
. CXX. exe:

$(CXX) $(CXXFLAGS) $*. cxx
. CXX. obj :

$(CXX) $(CXXFLAGS) $*. cxx
. bas. obj :

$(BC) $(BFLAGS) $*. bas
. cbl . exe:

$(COBOL) $(COBFLAGS) $*.cbl, $*.exe;
.cbl . obj:

$(COBAL) $(COBFLAGS) $*.chl;
.f.exe:

$(FOR) $(FFLAGS) $*.f
.f.obj:

$(FOR) /c $(FFLAGS) $*.f
.90. exe:

$(FOR) $(FFLAGS) $*.f90
.190. obj :

$(FOR) /c $(FFLAGS) $*.f90
.for.exe:

$(FOR) $(FFLAGS) $*.for
.for.obj:

$(FOR) /¢ $(FFLAGS) $*.for
. pas. exe:

$(PASCAL) $(PFLAGS) $*. pas
. pas. obj :

$(PASCAL) /c $(PFLAGS) $*.pas
.rc.res:

$(RCO) $(RFLAGS) /r $*

90 Open Watcom Make Reference

The Open Watcom Make Utility

Sn

For OS2,the __ MSDOS__ macro will bereplacedby OS2

macro will bereplacedby ~ NT_

and for Windows NT, the MSDOS_

For UNIX make compatibility (when you use the "u" option), the following default definitionis

established.
.EXTENSI ONS: .exe .obj .c .y .l .f

WVAKEFLAGS=$(YWAKEFLAGS) $(__ MAKECPTS_)
MAKE=<nanme of file containing WAKE>
YACC=yacc
YFLAGS=
LEX=I ex
LFLAGS=
LDFLAGS=
CC=cl
FC=f I
. asm exe:
$(AS) $(AFLAGS) $*.asm
. C. exe:
$(CO $(CFLAGS) $(LDFLAGS) -0 $@ $<
f.exe:
$(FC) $(FFLAGS) $(LDFLAGS) -0 $@ $<
.C.obj:
$(CO $(CFLAGS) -c $<
.f.obj:
$(FC) $(FFLAGS) -c $<
.y.obj:
$(YACO) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c

del y.tab.c
nove y.tab.obj $@
.1 .obj:

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
del lex.yy.c
nove | ex.yy.obj $@
y.C:
$(YACO) $(YFLAGS) $<
nove y.tab.c $@
e
$(LEX) $(LFLAGS) $<
nmove lex.yy.c $@

The"r" option will disable these definitions before processing any makefiles.

silent mode - do not print commands before execution

The"s' option isequivalent to the . SI LENT directive.

noisy mode - always print commands before execution

The"sn" option overrules all silencing controls. It can be used to assist in debugging a makefile.

Open Watcom Make Reference 91

The Make/Touch Utilities

touch filesinstead of executing commands
Sometimes there are changes which are purely cosmetic (adding a comment to a source file) that will cause

targets to be updated needlessly thus wasting computer resources. The "t" option will make files appear
younger without altering their contents. The "t" option is useful but should be used with caution.

UNIX compatibility mode

The "u" option will indicate to Make that the line continuation character should be a backslash "\" rather
than an ampersand "&".

The "v" option enables a verbose listing of inline temporary files.

The"y" option enables the display of a progress line denoting which dependent file has caused atarget to
be updated. Thisisauseful option for helping to debug makefiles.

do not erase target after error/interrupt (disables prompting)

The"Z" option will indicate to Make that if an error or interrupt occurs during makefile processing then the
current target being made should not be deleted. The . HOLD directive in a makefile has the same effect as
the "Zz" option.

10.2.4 Special Macros

92

Open Watcom Make has many different special macros. Here are some of the smpler ones.
Macro Expansion

$$ represents the character "$"

$# represents the character "#"

@ full file name of the target

$* target with the extension removed

$< list of al dependents

$? list of dependents that are younger than the target

The following macros are for more sophisticated makefiles.

Macro Expansion

__MSDOS__ This macro is defined in the MS/DOS environment.

_NT__ This macro is defined in the Windows NT environment.

02 This macro is defined in the OS/2 environment.

Open Watcom Make Reference

The Open Watcom Make Utility

_LINUX__
QNX

__UNIX__

__MAKEOPTS _

__MAKEFILES _

MAKE

__VERSION__

The next three tables contain macros that are valid during execution of command lists for explicit rules,

This macro is defined in the Linux environment.

This macro is defined in the QNX environment.

This macro is defined in the Linux or QNX environment.

for any use of the "f" or "n" options.

contains the names of all of the makefiles processed at the time of expansion

(includes the file currently being processed)

contains the full name of the file that contains WMAKE

contains the wmake version.

implicit rules, and the . ERROR directive. The expansion is presented for the following example:

Example:

a:\dir\target. ext

Macro

@
$/*
&
$.
N

Macro

@
>
$[&
9.
9

Macro

$j@
$]*
$1&
3.
3

Expansion

a\dir\target.ext
a\dir\target
target
target.ext
a\din\

Expansion

b:\dir1\depl.ex1
b:\dir1\depl
depl

depl.exl
b:\dir1\

Expansion

c:\dir2\dep2.ex2
c:\dir2\dep2
dep2

dep2.ex2
c\dir2\

b:\diri\depl. exl c:\dir2\dep2. ex2

Open Watcom Make Reference

contains al of the command line options that WMAKE was invoked with except

93

The Make/Touch Utilities

10.3 Dependency Declarations

In order for Open Watcom Make to be effective, alist of file dependencies must be declared. The
declarations may be entered into atext file of any name but Make will read afile called "MAKEFILE" by
default if it isinvoked asfollows:

Example:
C>wrake

If you want to use afile that is not called "MAKEFILE" then the command line option "f" will cause Make
to read the specified file instead of the default "MAKEFILE".

Example:
Cwnake /f nyfile

We will now go through an example to illustrate how Make may be used for a simple application. Suppose
we have an input file, areport file, and a report generator program then we may declare a dependency as
follows:

#
(a comment in a nmakefile starts with a "#")
sinpl e dependency decl aration
#
bal ance. |l st : |edger. dat
dor eport

Note that the dependency declaration starts at the beginning of aline while commands aways have at least
one blank or tab before them. Thisform of a dependency declaration is called an explicit rule. Thefile
"BALANCE.LST" iscaled the target of therule. The dependent of the ruleisthefile"LEDGER.DAT"
while "DOREPORT" forms one line of the rule command list. The dependent is separated from the target
by acolon.

Hint: A good habit to develop is to always put spaces around the colon so that it will not be confused
with drive specifications (e.g., &).

The explicit rule declaration indicates to Make that the program "DOREPORT" should be executed if
"LEDGER.DAT" isyounger than "BALANCE.LST" or if "BALANCE.LST" does not yet exist. In
general, if the dependent file has a more recent modification date and time than the target file then Open
Watcom Make will execute the specified command.

Note: The terminology employed hereis used by S.I.Feldman of Bell Laboratoriesin Make - A
Program for Maintaining Computer Programs.
http://www.softlab.ntua.gr/facilities’documentation/unix/docs/make.txt has a copy of this seminal
article. Confusion often arises from the use of the word "dependent”. In this context, it means"a
subordinate part”. Inthe example, "LEDGER.DAT" is a subordinate part of the report
"BALANCE.LST".

94 Dependency Declarations

The Open Watcom Make Utility

10.4 Multiple Dependents

Suppose that our report "BALANCE.LST" becomes out-of-date if any of the files"LEDGER.DAT",
"SALES.DAT" or "PURCHASE.DAT" are modified. We may modify the dependency rule as follows:

#

multiple dependents rule

#

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

Thisis an example of arule with multiple dependents. In this situation, the program "DOREPORT" should
be executed if any of "LEDGER.DAT", "SALES.DAT" or "PURCHASE.DAT" are younger than
"BALANCE.LST" or if "BALANCE.LST" does not yet exist. In cases where there are multiple
dependents, if any of the dependent files has a more recent modification date and time than the target file
then Open Watcom Make will execute the specified command.

10.5 Multiple Targets

Suppose that the "DOREPORT" program produces two reports. |f both of these reports require updating as
aresult of modification to the dependent files, we could change the rule as follows:

#

multiple targets and nmultiple dependents rule

#

bal ance. |l st summary.| st : |edger.dat sal es.dat purchase. dat

doreport
Suppose that you entered the command:
wake
which causes Make to start processing the rules described in "MAKEFILE". In the case where multiple
targets are listed in the makefile, Make will, by default, process only the first target it encounters. Inthe

example, Make will check the date and time of "BALANCE.LST" against its dependents since thisisthe
first target listed.

To indicate that some other target should be processed, the target is specified as an argument to the Make
command.

Example:
wrake sunmary. | st

There are anumber of interesting points to consider:
1. By default, Make will only check that the target file exists after the command ("DOREPORT" in
this example) is executed. It does not check that the target’ s time-stamp shows it to be younger.

If the target file does not exist after the command has been executed, an error is reported.

2. Thereisno guarantee that the command you have specified does update the target file. In other
words, smply because you have stated a dependency does not mean that one exists.

Multiple Targets 95

The Make/Touch Utilities

3. Furthermore, it isnot implied that other targetsin our list will not be updated. In the case of our
example, you can assume that we have designed the "doreport” command to update both targets.

10.6 Multiple Rules

A makefile may consist of any number of rules. Note that the following:

targetl target2 : dependentl dependent2 dependent 3
command |i st

is equivalent to:

targetl : dependentl dependent2 dependent3
conmand |i st

target2 : dependentl dependent2 dependent3
command |i st

Also, the rules may depend on the targets of other rules.

#

rule 1: this rule uses rule 2

#

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat
dor eport

#

rule 2: used by rules 1 and 3

#

sal es. dat : canada. dat engl and. dat usa. dat
dosal es

#

rule 3: this rule uses rule 2

#

year.|st : |edger.dat sal es.dat purchase. dat
doyearly

The dependents are checked to see if they are the targets of any other rules in the makefile in which case
they are updated. This process of updating dependents that are targets in other rules continues until aruleis
reached that has only simple dependents that are not targets of rules. At this point, if the target does not
exist or if any of the dependents is younger than the target then the command list associated with theruleis
executed.

Hint: Theterm "updating", in this context, refersto the process of checking the time-stamps of
dependents and running the specified command list whenever they are out-of-date. Whenever a
dependent is the target of some other rule, the dependent must be brought up-to-date first. Stated
another way, if "A" depends on "B" and "B" depends on "C" and "C" is younger than "B" then we must
update "B" before we update "A".

Make will check to ensure that the target exists after its associated command list is executed. The target
existence checking may be disabled in two ways:

96 Multiple Rules

The Open Watcom Make Utility

1. usethe command line option "c"
2. usethe. NOCHECK directive.

The rule checking returns to the previous rule that had the target as a dependent. Upon returning to the
rule, the command list is executed if the target does not exist or if any of the updated dependents are now
younger than the target. If you wereto type:

whake

here are the steps that would occur with the previous makefile:

updat e(bal ance.lst) (rule 1)

updat e(| edger . dat) (not a target)
updat e(sal es. dat) (found rule 2)
updat e(canada. dat) (not a target)
updat e(engl and. dat) (not a target)
updat e(usa. dat) (not a target)
| F sal es. dat does not exi st OR

any of (canada. dat, engl and. dat, usa. dat)
i s younger than sal es. dat
THEN execut e "dosal es"

updat e(pur chase. dat) (not a target)
| F bal ance. | st does not exi st OR
any of (| edger.dat, sal es. dat, purchase. dat)
i s younger than (bal ance. | st)
THEN execute "doreport"

The third rule in the makefile will not be included in this update sequence of steps. Recall that the default
target that is"updated” isthe first target in the first rule encountered in the makefile. Thisisthe default
action taken by Make when no target is specified on the command line. If you were to type:

wrake year. | st

then thefile"YEAR.LST" would be updated. AsMake readstherulesin"MAKEFILE", it discovers that
updating "YEAR.LST" involves updating "SALES.DAT". The update sequence is similar to the previous
example.

10.7 Command Lists

A command list is a sequence of one or more commands. Each command is preceded by one or more
spaces or tabs. Command lists may also be used to construct inline files"on the fly". Macros substitute in
command listsand ininlinefiles. Aninlinefileisintroduced by "<<" in acommand in acommand list.
Datato insert into that fileis placed (left-justified) in the command list. The dataisterminated by "<<" in
the first column. It isnot possible to place aline which starts "<<" in aninline file. More than oneinline
file may be created in acommand. Datafor each is placed in order of reference in the command.

In building the Open Watcom system, it is sometimes necessary to do some text substitution with a program

called vi. Thisneedsafile of instructions. The following simplifies an example used to build Open
Watcom so that inline files may be shown. Without inlinefiles, thisis done as:

Command Lists 97

The Make/Touch Utilities

$(dl Il name).inmp : $(dllnanme).lbc ../../trimbc.vi
cp $(dl I name).lbc $(dl I nane).inp
$(vi) -s ../../trimbc.vi $(dllname).inmp

where trimbc.vi consists of

set magic

set magicstring = ()

atom c

Y%s/\.dl

Y/ NN)(CF)CONT)N [0-9] 4B/ VN2V 3. 0\ 27
X

A doubled "$" to produce a single dollar is notable when an inlinefile is used:

$(dl I name).inp : $(dllnane).|bc
cp $(dl I name).lbc $(dl I nane).inp
$(vi) -s << $(dllnare).inp
set magic
set magicstring = ()
atom c
%s/\.dl1
s/ A(\HH)(LF)CNL L FT)N [0-9]+8$/\V 1\ 2\ 3. .0\ 2'
X
<<

A filename may follow a"<<" on acommand line to cause afile with that nameto be created. (Otherwise,
"WMAKE' chooses aname.) "keep" or "nokeep" may follow aterminating "<<" to show what to do with

the file after usage. The default is"nokeep” which zapsiit.

10.8 Final Commands (.AFTER)

The . AFTER directive specifies commands for Make to run after it has done al other commands. Seethe

section entitled "Command List Directives' on page 137 for afull description of its use.

10.9 Ignoring Dependent Timestamps ((ALWAYS)

98

The. ALWAYS directive indicates to Make that the target should always be updated regardless of the

timestamps of its dependents.
#
.always directive
#

foo : bar .always
wt ouch $@

foo is updated each time Make isrun.

Ignoring Dependent Timestamps (.LALWAYS)

The Open Watcom Make Utility

10.10 Automatic Dependency Detection (AUTODEPEND)

Explicit listing of dependenciesin a makefile can often be tedious in the development and maintenance
phases of aproject. The Open Watcom C/C++ compiler will insert dependency information into the object
file asit processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. Since all files do not have dependency information contained within them in a standard form, it
is necessary to indicate to Make when dependencies are present.

Toillustrate the use of the . AUTODEPEND directive, we will show itsusein an implicit ruleand in an
explicit rule.

#
. AUTODEPEND exanpl e
#
. C.0bj: . AUTOCDEPEND
wcc386 $[* $(conpil e_options)

test.exe : a.obj b.obj c.obj test.res
w ink FILE a.obj, b.obj, c.obj
wc /q /bt=windows test.res test.exe

test.res : test.rc test.ico . AUTODEPEND
wc /ad /g /bt=windows /r $[@$"@

In the above example, Make will use the contents of the object file to determine whether the object file has
to be built during processing. The Open Watcom Resource Compiler can also insert dependency
information into a resource file that can be used by Make.

10.11 Initial Commands (.BEFORE)

The . BEFORE directive specifies commands for Make to run before it does any other command. Seethe
section entitled "Command List Directives' on page 137 for afull description of its use.

10.12 Disable Implicit Rules (.BLOCK)

The . BLOCK directive and the "b" command line option are alternative controls to cause implicit rules to
beignored. Seethe section entitled "Command Line Options" on page 86 for afull description of its use.

10.13 Ignoring Errors (.CONTINUE)

The . CONTI NUE directive and the "b" command line option are alternative controls to cause failing
commandsto beignored. See the section entitled "Command Line Options' on page 86 for afull
description of its use.

Ignoring Errors (.CONTINUE) 99

The Make/Touch Utilities

#

.continue exanple
#

.conti nue

all: bad good
@mnul |

bad:
fal se

good:
touch $@

Although the command list for bad fails, that for good is done. Without the directive, good is not built.

10.14 Default Command List (DEFAULT)

The . DEFAULT directive provides a default command list for those targets which lack one. See the section
entitled "Command List Directives' on page 137 for afull description of its use.

#

.default example

#

.defaul t
@cho Using default rule to update target "$@
@cho because of dependent(s) "$<"
wt ouch $@

all: foo

foo:

wt ouch foo

"all" has no command list. The one supplied to the default directive is executed instead.

10.15 Erasing Targets After Error (.ERASE)

Most operating system utilities and programs have special return codes that indicate error conditions. Open
Watcom Make will check the return code for every command executed. If the return code is non-zero,
Make will stop processing the current rule and optionally delete the current target being updated. By
default, Make will prompt for deletion of the current target. The . ERASE directive indicates to Make that
the target should be deleted if an error occurs during the execution of the associated command list. No
prompt isissued in this case. Hereisan example of the . ERASE directive:

#

. ERASE exanmpl e

#

. ERASE

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

100 Erasing Targets After Error (.(ERASE)

The Open Watcom Make Utility

If the program "DOREPORT" executes and its return code is hon-zero then Make will attempt to delete
"BALANCE.LST".

10.16 Error Action (.ERROR)

The . ERROR directive supplies acommand list for error conditions. See the section entitled "Command
List Directives' on page 137 for afull description of its use.

#
.error exanple
#

.error:
@cho it is good that "$@ is known

all : .synbolic
fal se

10.17 Ignoring Target Timestamp (.EXISTSONLY)

The. EXI STSONLY directive indicates to Make that the target should not be updated if it already exists,
regardless of itstimestamp.

#
.existsonly directive
#

foo: .existsonly
wt ouch $@

If absent, thisfile creates foo; if present, this file does nothing.

10.18 Specifying Explicitly Updated Targets (.EXPLICIT)

The. EXPLI ClI T directive may me used to specify atarget that needs to be explicitly updated. Normally,
the first target in a makefule will be implicitly updated if no target is specified on Make command line.
The. EXPLI ClI T directive prevents this, and is useful for instance when creating files designed to be
included for other make files.

#
.EXPLICI T exanple
#
target : .synbolic .explicit
@cho updating first target
next : .synbolic

@cho updati ng next target

In the above example, Make will not automatically update "target", despite the fact that it isthe first one
listed.

Specifying Explicitly Updated Targets (.EXPLICIT) 101

The Make/Touch Utilities

10.19 Defining Recognized File Extensions (.EXTENSIONS)

The . EXTENSI ONS directive and its synonym, the . SUFFI XES directive declare which extensions are
allowed to be used in implicit rules and how these extensions are ordered. . EXTENSI ONS isthe
traditional Watcom name; . SUFFI XES is the corresponding POSIX name. The default . EXTENSI ONS
declaration is:

. EXTENSI ONS:

.EXTENSIONS: .exe .nlm.dsk .lan .exp .lib .obj &
.i .asm.c .cpp .cxx .cc .for .pas .cob &
.h .hpp .hxx .hh .fi .mf .inc

A . EXTENSI ONS directive with an empty list will clear the . EXTENSI ONS list and any previously
defined implicit rules. Any subsequent . EXTENSI ONS directives will add extensionsto the end of thellist.

Hint: Thedefault . EXTENSI ONS declaration could have been coded as:

.EXTENSIONS:

.EXTENSIONS: .exe

.EXTENSIONS: .nim .dsk .lan .exp
.EXTENSIONS: .lib

.EXTENSIONS: .obj

.EXTENSIONS: .i .asm.c.cpp .CXx .cC
.EXTENSIONS: .for .pas.cob
.EXTENSIONS: .h .hpp .hxx .hh fi .mif .inc
.EXTENSIONS: .inc

with identical results.

Make will not allow any implicit rule declarations that use extensions that are not in the current
. EXTENSI ONS list.

#
.extensions and .suffixes directives
#
.suffixes : # Cear list
.extensions : .foo .bar
. bar. f oo:
copy $< $@
f ubar . f oo:

fubar. bar: .existsonly
wt ouch $@

Thefirst time this example runs, Make creates fubar.foo. This example always ensures that fubar.foo isa
copy of fubar.bar. Note the implicit connection beween the two files.

102 Defining Recognized File Extensions (.EXTENSIONS)

The Open Watcom Make Utility

10.20 Approximate Timestamp Matching (.FUZZY)

The. FUZZY directive allows . AUTODEPEND times to be out by a minute without considering atarget out
of date. Itisonly useful in conjunction with the . JUST_ ENOUGH directive when Make is calculating the
timestamp to set the target to.

10.21 Preserving Targets After Error ((HOLD)

Most operating system utilities and programs have special return codes that indicate error conditions. Open
Watcom Make will check the return code for every command executed. |If the return code is non-zero,
Make will stop processing the current rule and optionally delete the current target being updated. By
default, Make will prompt for deletion of the current target. The . HOLD directive indicates to Make that
the target should not be deleted if an error occurs during the execution of the associated command list. No
prompt isissued in thiscase. The . HOLD directiveissimilar to . PRECI OUS but appliesto all targets
listed in the makefile. Hereisan example of the . HOLD directive:

#

. HOLD exanpl e

#

. HOLD

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will not delete
"BALANCE.LST".

10.22 Ignoring Return Codes (.IGNORE)

Some programs do not have meaningful return codes so for these programs we want to ignore the return
code completely. There are different ways to ignore return codes namely,

1. usethe command line option "i"
2. puta"-"infront of specific commands, or
3. usethe. | GNORE directive.

In the following example, the rule:

#

ignore return code exanple

#

bal ance. |l st : |edger.dat sal es.dat purchase. dat

-doreport

will ignore the return status from the program "DOREPORT". Using the dash in front of the command is
the preferred method for ignoring return codes because it allows Make to check all the other return codes.

The. | GNORE directive is used as follows:

Ignoring Return Codes (.IGNORE) 103

The Make/Touch Utilities

#

.1 GNORE exanpl e

#

. | GNORE

bal ance. st : |edger.dat sal es.dat purchase. dat

dor eport

Using the . | GNORE directive will cause Make to ignore the return code for every command. The"i"
command line option and the . | GNORE directive prohibit Make from performing any error checking on the
commands executed and, as such, should be used with caution.

Another way to handle non-zero return codes is to continue processing targets which do not depend on the
target that had a non-zero return code during execution of its associated command list. There are two ways
of indicating to Make that processing should continue after a non-zero return code:

1. usethe command line option "k"
2. usethe. CONTI NUE directive.

10.23 Minimising Target Timestamp (.JUST_ENOUGH)

The. JUST_ ENOQUGH directive is equivalent to the "j" command line option. The timestamps of created
targets are set to be the same as those of their youngest dependendents.

#
. JUST_ENOUGH exanpl e
#
.just_enough
. C. exe:

wel 386 -zq $<
hel | o. exe:

hello.exe is given the same timestamp as hello.c, and not the usual timestamp corresponding to when
hello.exe was built.

10.24 Updating Targets Multiple Times (.MULTIPLE)

The. MULTI PLE directiveis used to update a target multiple times. Normally, Make will only update
each target once while processing a makefile. The . MULTI PLE directiveis useful if atarget needsto be
updated more than once, for instance in case the target is destroyed during processing of other targets.
Consider the following example:

104 Updating Targets Multiple Times (.MULTIPLE)

The Open Watcom Make Utility

#
exanple not using .nultiple
#

all: targl targ2

target:
wt ouch target

targl: target
rmtarget
wt ouch targl

targ2: target
rmtarget
wt ouch targ2

This makefile will fail because "target" is destroyed when updating "targl”, and later isimplicitly expected
to exist when updating "targ2". Usingthe . MULTI PLE directive will work around this problem:

#
. MULTI PLE exanpl e
#

all : targl targ2

target : .multiple
wt ouch target

targl : target
rmtarget
wt ouch targl

targ2 : target
rmtarget
wt ouch targ2

Now Make will attempt to update "target” again when updating "targ2", discover that "target" doesn’t exigt,
and recreate it.

10.25 Ignoring Target Timestamp (.NOCHECK)

The . NOCHECK directive is used to disable target existence checksin amakefile. See the section entitled
"Command Line Options' on page 86 for afull description of its use.

10.26 Cache Search Path (.OPTIMIZE)

The. OPTI M ZE directive and the equivalent "0" command line option cause Make to use a circular path
search. If afileisfound in aparticular directory, that directory will be the first searched for the next file.
See the section entitled "Command Line Options" on page 86 for afull description of its use.

Cache Search Path (.OPTIMIZE) 105

The Make/Touch Utilities

10.27 Preserving Targets (.PRECIOUS)

Most operating system utilities and programs have special return codes that indicate error conditions. Open
Watcom Make will check the return code for every command executed. If the return code is non-zero,
Make will stop processing the current rule and optionally delete the current target being updated. If afileis
precious enough that this treatment of return codesis not wanted then the . PRECI QUS directive may be
used. The. PRECI OUS directive indicates to Make that the target should not be deleted if an error occurs
during the execution of the associated command list. Hereisan example of the . PRECI OUS directive:

#

. PRECI QUS exanpl e

#

bal ance summary : sal es. dat purchase. dat . PRECI OQUS

dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will not attempt to delete
"BALANCE" or "SUMMARY". If only one of thefilesis precious then the makefile could be coded as
follows:

#

. PRECI QUS exanpl e

#

bal ance : . PRECI QUS

bal ance sunmary : sal es. dat purchase. dat
dor eport

Thefile"BALANCE.LST" will not be deleted if an error occurs while the program "DOREPORT" is
executing.

10.28 Name Command Sequence (.PROCEDURE)

The . PROCEDURE directive may be used to construct "procedures’ in a makefile.

#

.procedure exanple
#

all: .symbolic

@trake proc

proc: .procedure
@cho Executing procedure "proc"

10.29 Re-Checking Target Timestamp (RECHECK)

Make will re-check the target’ s timestamp, rather than assuming it was updated by its command list. This
isuseful if thetarget is built by another make- style tool, asin the following example:

106 Re-Checking Target Timestamp (.RECHECK)

The Open Watcom Make Utility

#

. RECHECK exanpl e
#

foo.gz : foo

gzip foo

foo : .ALWAYS . RECHECK
nant -buildfile:foo.build

foo’s command list will always be run, but foo will only be compressed if the timestamp is actually
changed.

10.30 Suppressing Terminal Output (.SILENT)

As commands are executed, Open Watcom Make will print out the current command before it is executed.
It is possible to execute the makefile without having the commands printed. There are three ways to inhibit
the printing of the commands before they are executed, namely:

1. usethe command line option "s"
2. putan"@"infront of specific commands, or
3. usethe. SI LENT directive.

In the following example, therule:

#

silent command exanpl e

#

bal ance sunmary : | edger. dat sal es. dat purchase. dat

@lor eport
will prevent the string "doreport” from being printed on the screen before the command is executed.

The. SI LENT directive is used as follows:

#

. S| LENT exanpl e

#

. SI LENT

bal ance sunmary : | edger. dat sal es. dat purchase. dat
dor eport

Using the . SI LENT directive or the"s' command line option will inhibit the printing of all commands
before they are executed. The "sn" command line option can be used to veto any silencing control.

At this point, most of the capability of Make may be realized. Methods for making makefiles more
succinct will be discussed.

Suppressing Terminal Output (.SILENT) 107

The Make/Touch Utilities

10.31 Defining Recognized File Extensions (.SUFFIXES)

The . SUFFI XES directive declares which extensions are allowed to be used in implicit rules and how
these extensions are ordered. It isasynonym for the . EXTENSI ONS directive. See the section entitled
"Defining Recognized File Extensions (.EXTENSIONS)" on page 102 for afull description of both
directives.

10.32 Targets Without Any Dependents (.SYMBOLIC)

There must always be at least one target in arule but it is not necessary to have any dependents. If atarget
does not have any dependents, the command list associated with the rule will always be executed if the
target is updated.

Y ou might ask, "What may arule with no dependents be used for?'. A rule with no dependents may be
used to describe actions that are useful for the group of files being maintained. Possible uses include
backing up files, cleaning up files, or printing files.

Toillustrate the use of the . SYMBCOLI C directive, we will add two new rules to the previous example.
First, we will omit the . SYMBOLI C directive and observe what will happen when it is not present.

#
rule 4: backup the data files
#
backup :
echo "insert backup disk”
pause
copy *.dat a:
echo "backup conpl ete"
#
rule 5: cleanup tenporary files
#
cl eanup :
del *.tnp
del \tnp*.*

and then execute the command:

wrake backup

Make will execute the command list associated with the "backup" target and issue an error message
indicating that the file "BACKUP" does not exist after the command list was executed. The same thing
would happen if we typed:

wrake cl eanup

In this makefile we are using "backup” and "cleanup" to represent actions we want performed. The names
are not real files but rather they are symbolic names. This special type of target may be declared with the
. SYMBOLI Cdirective. Thistime, we show rules 4 and 5 with the appropriate addition of . SYMBOLI C
directives.

108 Targets Without Any Dependents (.SYMBOLIC)

The Open Watcom Make Utility

#
rule 4: backup the data files
#
backup : .SYMBOLI C
echo "insert backup disk"
pause
copy *.dat a:
echo "backup conpl ete”

#
rule 5: cleanup tenporary files
#
cleanup : .SYMBOLIC
del *.tnp
del \tnp*. *

The use of the . SYMBOLI Cdirective indicates to Make that the target should always be updated internally
after the command list associated with the rule has been executed. A short form for the common idiom of
singular . SYMBOLI Ctargets like:

target : .SYMBOLIC
conmands

t ar get
conmands

Thiskind of target definition is useful for many types of management tasks that can be described in a
makefile.

10.33 Macros

Open Watcom Make has a simple macro facility that may be used to improve makefiles by making them
easier to read and maintain. A macro identifier may be composed from a string of alphabetic characters and
numeric characters. The underscore character is also allowed in amacro identifier. If the macro identifier
startswith a"%" character, the macro identifier represents an environment variable. For instance, the
macro identifier "%path" represents the environment variable "path”.

Macro identifiers Valid?
2morrow yes
gtitch_in_9 yes
invalid~id no

2b _or_not_2b yes

% path yes
reports yes
l@# % no

We will use a programming example to show how macros are used. The programming example involves
four C/C++ source files and two header files. Hereistheinitial makefile (before macros):

Macros 109

The Make/Touch Utilities

#

progranmi ng exanpl e
(before macros)
#
p

| ot.exe : main.obj input.obj calc.obj output.obj
w i nk @l ot

mai n. obj : main.c defs.h globals.h
wce386 main /nf /dl /w3

calc.obj : calc.c defs.h globals.h
wce386 calc /nf /dl /w3

input.obj : input.c defs.h globals.h
wee386 input /nf /dl /w3

out put.obj : output.c defs.h globals.h
wce386 output /nf /dl /w3

Macros become useful when changes must be made to makefiles. If the programmer wanted to change the
compiler options for the different compiles, the programmer would have to make a global change to the
makefile. With this simple example, it is quite easy to make the change but try to imagine a more complex
example with different programs having similar options. The globa change made by the editor could cause
problems by changing the options for other programs. A good habit to develop isto define macros for any
programs that have command line options. In our example, we would change the makefile to be:

#

progranmi ng exanpl e

(after macros)

#

link_options =

conpil er = wcc386

conpile _options = /nf /dl /w3

pl ot.exe : nmmin.obj input.obj calc.obj output.obj
wink $(link_options) @l ot

main.obj : main.c defs.h globals.h
$(conpiler) main $(conpile_options)

calc.obj : calc.c defs.h globals.h
$(conpiler) calc $(conpile_options)

i nput.obj : input.c defs.h globals.h
$(conpiler) input $(compil e_options)

out put.obj : output.c defs.h globals.h
$(conpil er) output $(conpile_options)

A macro definition consists of a macro identifier starting on the beginning of the line followed by an "="
which in turnisfollowed by the text to be replaced. A macro may be redefined, with the latest declaration
being used for subsequent expansions (no warning is given upon redefinition of amacro). The replacement
text may contain macro references.

110 Macros

The Open Watcom Make Utility

A macro reference may occur in two forms. The previous example illustrates one way to reference macros
whereby the macro identifier is delimited by "$(" and ")". The parentheses are optional so the macros
"compiler" and "compile_options’ could be referenced by:

mai n. obj : main.c defs.h globals.h
$conpil er main $conpil e_options

Certain ambiguities may arise with this form of macro reference. For instance, examine this makefile
fragment:

Example:
tenporary_dir = \tnmp\
temporary_file = $tenporary_dirtnp000.tnp

Theintention of the declarations is to have a macro that will expand into afile specification for atemporary
file. Makewill collect the largest identifier possible before macro expansion occurs. The macro reference
isfollowed by text that looks like part of the macro identifier (“tmp000") so the macro identifier that will
be referenced will be "temporary_dirtmp000". The incorrect macro identifier will not be defined so an
error message will be issued.

If the makefile fragment was:

tenmporary _dir = \tm\
tenporary_file = $(tenporary_dir)tnp000.tnp

there would be no ambiguity. The preferred way to reference macros is to enclose the macro identifier by

"$(" and")".

Macro references are expanded immediately on dependency lines (and thus may not contain references to
macros that have not been defined) but other macro references have their expansion deferred until they are
used in acommand. In the previous example, the macros "link_options"', "compiler”, and
"compile_options" will not be expanded until the commands that reference them are executed.

Another use for macrosis to replace large amounts of text with a much smaller macro reference. In our
example, we only have two header files but suppose we had very many header files. Each explicit rule
would be very large and difficult to read and maintain. We will use the previous example makefile to
illustrate this use of macros.

#

progranm ng exanpl e

(with nore nmacros)

#

link_options =

conpil er = wcc386
conpile_options = /nf /d1l /w3

header files
object _files

defs. h global s.h
mai n. obj input.obj calc.obj &
out put . obj

pl ot.exe : $(object_files)
wink $(1ink_options) @l ot

mai n.obj : main.c $(header_files)
$(conpiler) main $(conpil e_options)

Macros 111

The Make/Touch Utilities

calc.obj : calc.c $(header_files)
$(conpiler) calc $(conpile_options)

input.obj : input.c $(header_files)
$(conpiler) input $(conpile_options)

out put.obj : output.c $(header_files)
$(conpiler) output $(conpile_options)

Notice the ampersand ("&") at the end of the macro definition for "object_files'. The ampersand indicates
that the macro definition continues on the next line. In general, if you want to continue aline in a makefile,
use an ampersand ("&") at the end of the line.

There are specia macros provided by Make to access environment variable names. To accessthe PATH
environment variable in a makefile, we use the macro identifier "%path”. For example, if we have the
following linein acommand list:

Example:
echo $(%pat h)

it will print out the current value of the PATH environment variable when it is executed.

There are two other special environment macros that are predefined by Make. The macro identifier
"%cdrive" will expand into one letter representing the current drive. Note that it is operating system
dependent whether the cd command changes the current drive. The macro identifier "%cwd" will expand
into the current working directory. These macro identifiers are not very useful unless we can specify that
they be expanded immediately. The complementary macros"$+" and "$-" respectively turn on and turn
off immediate expansion of macros. The scope of the "$+" macro is the current line after which the default
macro expansion behaviour isresumed. A possible use of these macrosisillustrated by the following
example makefile.

#
$(%drive), $(%wd), $+, and $- exanple
#
dirl = $(%drive): $(%ewd)
dir2 = $+ $(dirl) $-
exanple : .SYMBOLIC
cd ..

echo $(dir1)
echo $(dir2)

Which would produce the following output if the current working directory is
C\WATCOM\SOURCE\EXAMPLE:

Example:
(command out put only)
C. \ WATCOM SOURCE
C: \ WVATCOM SCQURCE\ EXAMPLE

The macro definition for "dir2" forces immediate expansion of the "%cdrive" and "%cwd" macros thus
defining "dir2" to be the current directory that Make wasinvoked in. The macro "dirl" isnot expanded
until execution time when the current directory has changed from theinitial directory.

Combining the $+ and $— special macros with the specia macro identifiers "%cdrive" and "%cwd" isa
useful makefile technique. The $+ and $— specia macros are general enough to be used in many different

ways.

112 Macros

The Open Watcom Make Utility

Constructing other macrosis another use for the $+ and $— special macros. Make allows macros to be
redefined and combining this with the $+ and $— special macros, similar looking macros may be
constructed.

#

macro construction with $+ and $-

#

template = filel. $(ext) file2. $(ext) file3.$(ext) filed. $(ext)
ext = dat

data_files = $+ $(tenplate) $-

ext = |st

listing_files = $+ $(tenpl ate) $-
exanple : .SYMBOLIC

echo $(data_files)
echo $(listing_files)

This makefile would produce the following output:

Example:
filel.dat file2.dat file3.dat fil e4. dat
filel.lst file2.1st file3.lst filed.!|st

Adding more text to amacro can aso be done with the $+ and $— special macros.

#

macro addition with $+ and $-

#

objs = filel.obj file2.0bj file3. obj
objs = $+$(o0bjs)$- filed. obj

objs = $+$(o0bjs)$- fileb5. obj

exanple : .SYMBOLIC
echo $(objs)

This makefile would produce the following output:

Example:
filel.obj file2.obj file3.0bj file4.obj file5. obj

Make provides a shorthand notation for this type of macro operation. Text can be added to a macro by

using the "+=" macro assignment. The previous makefile can be written as:
#
macro addition with +=
#
obj s filel.obj file2.obj file3. obj

objs += fil e4. obj
objs += fileb. obj

exanple : .SYMBOLIC
echo $(objs)

and still produce the sameresults. The shorthand notation "+=" supported by Make provides a quick way
to add more text to macros.

Make provides the "linject" preprocessor directive to append a "word" (one or more graphic characters) to
one or more macros. The previous makefile is adapted to show the usage:

Macros 113

The Make/Touch Utilities

macro construction with !inject

nject filel.obj objs objsl2 objsl13 objsl4 objsl5
nject file2. obj objs objsl12 objsl13 objsl4 objsl5

S

nject file3.obj objs obj s13 obj s14 objsi15
nject file4.obj objs obj s14 obj s15
linject fileb.obj objs obj s15

exanple : .SYMBOLIC
echo $(objs)
echo $(objs12)
echo $(objs13)
echo $(objsi14)
echo $(objs15)

This makefile would produce the following output:

Example:
filel.obj file2.0bj file3.0bj file4.obj file5. obj
filel.obj file2. obj
filel.obj file2. obj file3.obj
filel.obj file2.obj file3.0bj file4. obj
filel.obj file2.obj file3.0bj filed.obj file5. obj

The "linject" preprocessor directive supported by Make provides away to append aword to several macros.

There are instances when it is useful to have macro identifiers that have macro references contained in
them. If you wanted to print out an informative message before linking the executabl e that was different
between the debugging and production version, we would express it as follows:

#
progranmmi ng exanpl e
(macro sel ection)

#

versi on = debuggi ng # debuggi ng version
nmsg_production = linking production version ...
nsg_debuggi ng = |inki ng debug version ...

link_options_production =
I i nk_options_debuggi ng = debug all
l'ink_options = $(link_options_$(version))

conpil er = wcc386

conpil e_options_production = /nf /w3

conpil e_options_debugging = /nf /dl /w3

conpi l e_options = $(conpile_options_$(version))

114 Macros

The Open Watcom Make Utility

header files
object _files

defs.h gl obals.h
nmai n. obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(msg_$(version))
w ink $(link_options) @l ot

mai n. obj : main.c $(header_files)
$(conpiler) main $(conpil e_options)

calc.obj : calc.c $(header_files)
$(conpiler) calc $(conpile_options)

i nput.obj : input.c $(header_files)
$(conpiler) input $(conpile_options)

out put.obj : output.c $(header_files)
$(conpil er) output $(conpile_options)

Take notice of the macro references that are of the form:
$(<partial _macro_identifier>$(version))

The expansion of a macro reference begins by expanding any macros seen until a matching right
parenthesisisfound. The macro identifier that is present after the matching parenthesisis found will be
expanded. The other form of macro reference namely:

$<macro_identifier>
may be used in asimilar fashion. The previous example would be of the form:

$<partial _nmacro_identifier>$version

Macro expansion occurs until a character that cannot be in amacro identifier isfound (on the sameline as
the"$") after which the resultant macro identifier is expanded. If you want two macros to be concatenated
then the line would have to be coded:

$(macrol) $(macr 02)

The use of parentheses is the preferred method for macro references because it completely specifies the
order of expansion.

In the previous example, we can see that the four command lines that invoke the compiler are very similar
in form. We may make use of these similarities by denoting the command by a macro reference. We need
to be able to define amacro that will expand into the correct command when processed. Fortunately, Make
can reference the first member of the dependent list, the last member of the dependent list, and the current
target being updated with the use of some special macros. These special macros have the form:

$<file_specifier><form qualifier>

where <file_specifier> is one of:

Macros 115

The Make/Touch Utilities

"

represents the current target being updated
represents the first member of the dependent list

represents the last member of the dependent list

and <form_qualifier> is one of:

n @u

"nygn

"

full file name

file name with extension removed

file name with path and extension removed
file name with path removed

path of file name

If thefile"D:\DIRI\DIR2ZNAME.EXT" isthe current target being updated then the following example will
show how the form qualifiers are used.

Macro Expansion for D:\DIR1\DIR2ANAME.EXT
@ D: \ DI R1\ DI R2\ NAME. EXT

g D: \ DI R1\ DI R2\ NAMVE

& NAME

. NAME. EXT

RN D: \ DI R1\ DI R2\

These special macros provide the capability to reference targets and dependentsin a variety of ways.

116 Macros

#
progranm ng exanmpl e
(nore nacros)

#

versi on = debuggi ng # debuggi ng version
nmsg_production = linking production version ...
nmsg_debuggi ng = |inki ng debug version ...

[ink_options_production =
I i nk_options_debuggi ng = debug all
l'ink_options = $(link_options_$(version))

The Open Watcom Make Utility

conpil e_options_production = /nf /w3
conpil e_options_debugging = /nf /dl /w3
conpil e_options = $(conpile_options_$(version))

conpi l er _command = wcc386 $[* $(conpil e_options)

header files
object_files

defs.h gl obals.h
mai n. obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(msg_$(version))
wink $(link_options) @"*

mai n.obj : main.c $(header files)
$(conpi | er _conmand)

calc.obj : calc.c $(header_files)
$(conpi | er _conmmand)

i nput.obj : input.c $(header_files)
$(conpi | er _command)

out put.obj : output.c $(header files)
$(conpi | er _conmand)

This example illustrates the use of the special dependency macros. Notice the use of "$*" in the linker
command. The macro expands into the string "plot" since "plot.exe" is the target when the command is
processed. The use of the special dependency macros is recommended because they make use of
information that is already contained in the dependency rule.

At this point, we know that macro references begin with a"$" and that comments begin with a"#". What
happens if we want to use these characters without their special meaning? Make has two special macros
that provide these charactersto you. The special macro "$$" will result in a"$" when expanded and "$#"
will expand into a"#". These special macros are provided so that you are not forced to work around the
special meanings of the"$" and "#" characters.

Thereis also asimple macro text substitution facility. We have previously seen that a macro call can be
made with $(macroname). The construct $(macroname:stringl=string2) substitutes macroname with each

occurrence of stringl replaced by string2. We have already seen that it can be useful for amacro to be a set

of object file names separated by spaces. The file directivein wlink can accept a set of names separated by
commeas.

#
progranm ng exanpl e
(nmacro substitution)
#

.C.obj:
wcc386 -zq $*.c

object_files = main.obj input.obj calc.obj output.obj

plot.exe : $(object_files)
wink namre $@file $(object_files: =)

Macros 117

The Make/Touch Utilities

Note that macro substitution cannot be used with special macros.

It is also worth noting that although the above example shows a valid approach, the same problem, that is,
providing alist of object filesto wlink, can be solved without macro subsitutions. The solution is using the
{} syntax of wlink, as shown in the following example. Refer to the Open Watcom Linker Guide for
details.

#

progranm ng exanpl e

(not using macro substitution)
#

.C.o0bj:
wce386 -zq $*.c

object_files = main.obj input.obj calc.obj output.obj

plot.exe : $(object_files)
wink nane $@file { $(object_files) }

10.34 Implicit Rules

Open Watcom Make is capable of accepting declarations of commonly used dependencies. These
declarations are called "implicit rules’ as opposed to "explicit rules* which were discussed previously.
Implicit rules may be applied only in instances where you are able to describe a dependency in terms of file
extensions.

Hint: Recall that afile extension is the portion of the file name which follows the period. In thefile
specification:

c:\dos\ansi. sys

thefile extensionis"SYS".

An implicit rule provides a command list for a dependency between files with certain extensions. The form
of animplicit rule isasfollows:

. <dependent _ext ensi on>. <t ar get _ext ensi on>:
<command_1|ist>

Implicit rules are used if afile has not been declared as atarget in any explicit rule or the file has been
declared as atarget in an explicit rule with no command list. For agiven target file, a search is conducted
to seeif there are any implicit rules defined for the target file's extension in which case Make will then
check if the file with the dependent extension in the implicit rule exists. If the file with the dependent
extension exists then the command list associated with theimplicit rule is executed and processing of the
makefile continues.

Other implicit rules for the target extension are searched in asimilar fashion. The order in which the

dependent extensions are checked becomes important if there is more than one implicit rule declaration for
atarget extension. If we have the following makefile fragment:

118 Implicit Rules

The Open Watcom Make Utility

Example:
. pas. obj :
(command i st)
. C.o0bj:
(command i st)

an ambiguity arises. If we have atarget file "TEST.OBJ" then which do we check for first, "TEST.PAS" or
"TEST.C"? Make handles this with the previously described . EXTENSI ONS directive. Returning to our
makefile fragment:

. pas. obj :

(command i st)
.C.obj:

(command i st)

and our target file"TEST.OBJ', we know that the . EXTENSI ONS list determinesin what order the
dependents "TEST.PAS" and "TEST.C" will betried. If the . EXTENSIONS declarationis.

Example:
. EXTENSI ONS:
. EXTENSI ONS: .exe .obj .asm.pas .c .cpp .for .cob

we can see that the dependent file "TEST.PAS" will betried first as a possible dependent with "TEST.C"
being tried next.

One apparent problem with implicit rules and their associated command listsis that they are used for many
different targets and dependents during the processing of a makefile. The same problem occurs with
commands constructed from macros. Recall that there is a set of special macros that start with "$\", "$§[",
or "$]" that reference the target, first dependent, or last dependent of an explicit dependency rule. Inan
implicit rule there may be only one dependent or many dependents depending on whether the rule is being
executed for atarget with asingle colon ;" or double colon "::" dependency. If thetarget hasasingle
colon or double colon dependency, the "$™, "$[", and "$]" special macros will reflect the valuesin the rule
that caused the implicit rule to be invoked. Otherwiseg, if the target does not have a dependency rule then
the "$[" and "$]" special macros will be set to the same value, namely, the file found in the implicit rule
search.

We will use the last programming example to illustrate a possible use of implicit rules.

#
progranm ng exanpl e
(implicit rules)

#

versi on = debuggi ng # debuggi ng version
nsg_production = linking production version ...
nsg_debuggi ng = |inki ng debug version ...

i nk_options_production =
i nk_options_debuggi ng = debug all
l'ink_options = $(link_options_$(version))

Implicit Rules 119

The Make/Touch Utilities

conpil er = wcc386

conpil e_options_production = /nf /w3

conpil e_options_debugging = /nf /dl /w3

conpil e_options = $(conpile_options_$(version))

header _files = defs.h globals.h
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(nmsg_%$(version))
wink $(link_options) @"*

.C.obj:
$(conpiler) $[* $(conpile_options)
maei n. obj : main.c $(header_files)
calc.obj : calc.c $(header_files)
i nput.obj : input.c $(header_files)

out put.obj : output.c $(header files)

Asthis makefile is processed, any time an object file is found to be older than its associated source file or
header files then Make will attempt to execute the command list associated with the explicit rule. Since
there are no command lists associated with the four object file targets, an implicit rule search is conducted.
Suppose "CALC.OBJ' was older than "CALC.C". Thelack of acommand list in the explicit rule with
"CALC.OBJ' asatarget causesthe ".c.obj" implicit rule to be invoked for "CALC.OBJ'. Thefile
"CALC.C" isfound to exist so the commands

wee386 calc /nf /dl /w3
echo |inking debug version ...
w i nk debug all @l ot

are executed. The last two commands are aresult of the compilation of "CALC.C" producing a
"CALC.OBJ' filethat isyounger than the "PLOT.EXE" file that in turn must be generated again.

The use of implicit rulesis straightforward when all the files that the makefile deals with are in the current
directory. Larger applications may have files that arein many different directories. Suppose we moved the
programming example files to three sub-directories.

Files Sub-directory
*H \ EXAMPLE\ H
*C \ EXAMPLE\ C
rest \ EXAMPLE\ O

Now the previous makefile (located in the \EXAMPLE\O sub-directory) would look like this:

120 Implicit Rules

The Open Watcom Make Utility

#

programmi ng exanpl e

(inplicit rules)

#

h_dir = \exanpl e\ h\ #sub-directory containing header files
c_dir = \exanpl e\c\ #sub-directory containing C/ C++ files

version = debugging # debuggi ng version

nmsg_production = |inking production version ..
nmsg_debuggi ng = |inking debug version ..

i nk_options_production =
I'i nk_opti ons_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

conpi l er = wcc386

conpil e_options_production = /nf /w3

conpi | e_options_debugging = /nf /dl /w3
conpi | e_options = $(conpil e_options_$(version))

header _files
object_files

$(h_dir)defs.h $(h_dir)globals.h
mai n. obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(nsg_$(version))
wink $(link_options) @"*

.c.obj:

$(compiler) $[* $(conpile_options)
mai n.obj : $(c_dir)main.c $(header_files)
calc.obj : $(c_dir)calc.c $(header_files)

input.obj : $(c_dir)input.c $(header_files)

output.obj : $(c_dir)output.c $(header_files)

Suppose "\EXAMPLE\O\CALC.OBJ" was older than "\EXAMPLE\C\CALC.C". Thelack of acommand
list in the explicit rule with "CALC.OBJ" as atarget causesthe ".c.obj" implicit rule to be invoked for
"CALC.OBJ'. Atthistime, thefile"\EXAMPLE\O\CALC.C" isnot found so an error is reported
indicating that "CALC.OBJ" could not be updated. How may implicit rules be useful in larger applications
if they will only search the current directory for the dependent file? We must specify more information
about the dependent extension (in this case ".C"). We do this by associating a path with the dependent
extension as follows:

. <dependent _ext ensi on> : <path_specification>

This allows the implicit rule search to find the files with the dependent extension.

Hint: A valid path specification is made up of directory specifications separated by semicolons (*;").
Here are some path specifications:

D.;C\DCS;, C.\UTILS;, C\WC
C:\ SYS
A \BIN; D:

Notice that these path specifications are identical to the form required by the operating system shell’s
"PATH" command.

Implicit Rules 121

The Make/Touch Utilities

Our makefile will be correct now if we add the new declaration as follows:

#

programming exanpl e

(inmplicit rules)

#

h_dir = \exanpl e\ h\ #sub-directory contai ning header files
c_dir = \exanpl e\c\ #sub-directory containing C/ C++ files
versi on = debuggi ng # debuggi ng version

msg_production = linking production version ..

nmsg_debuggi ng = |inki ng debug version ..

l'ink_options_production =
I'i nk_options_debuggi ng = debug al
link_options = $(link_options_$(version))

conpi l er = wcc386

conpi | e_options_production = /nf /w3

conpi | e_options_debugging = /nf /dl /w3
conpi | e_options = $(conpil e_options_$(version))

header _files
object_files

$(h_dir)defs.h $(h_dir)globals.h
mai n. obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(msg_$(version))
wink $(link_options) @"*
.C: $(c_dir)
.c.obj:
$(conpiler) $[* $(conpile_options)
mai n.obj : $(c_dir)min.c $(header_files)
calc.obj : $(c_dir)calc.c $(header_files)
input.obj : $(c_dir)input.c $(header_files)
output.obj : $(c_dir)output.c $(header_files)
Suppose "\EXAMPLE\O\CALC.OBJ" is older than "\EXAMPLE\C\CALC.C". Thelack of acommand list
in the explicit rule with "CALC.OBJ" as atarget will cause the ".c.obj" implicit rule to be invoked for

"CALC.OBJ'. The dependent extension ".C" has a path associated with it so thefile
"\EXAMPLE\C\CALC.C" isfound to exist. The commands

wecc386 \ EXAMPLE\ Q\ CALC /nf /dl /w3
echo linking debug version ...
w i nk debug all @l ot

are executed to update the necessary files.

If the application requires many source filesin different directories Make will search for the filesusing
their associated path specifications. For instance, if the current example files were setup as follows:

Sub-directory Contents

\EXAMPLE\H
DEFS. H, GLOBALS. H

\EXAMPLE\C\PROGRAM
MAIN. C, CALC. C

122 Implicit Rules

The Open Watcom Make Utility

\EXAMPLE\C\SCREEN
I NPUT. C, QUTPUT. C

\EXAMPLE\O
PLOT. EXE, MAKEFI LE, MAI N. OBJ, CALC. OBJ, | NPUT. OBJ, OQUTPUT. CBJ

the makefile would be changed to:

programm ng exanpl e
(implicit rules)

SHFHH

dir

.\ hy # sub-directory with header files

sub-directories with C/ C++ source files
..\c\programl # - MAIN.C, CALC.C
..\c\screen\ # - INPUT.C, QUTPUT.C

program dir
screen_dir

ver si on debuggi ng # debuggi ng version
nmsg_production = linking production version ..
msg_debuggi ng = |inking debug version ..

I'ink_options_production =
I'i nk_options_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

conpi l er = wcc386

conpi l e_options_production = /nf /w3

conpi | e_options_debugging = /nf /dl /w3

conpil e_options = $(conpile_options_$(version))

header _files
object_files

$(h_dir)defs.h $(h_dir)globals.h
mai n. obj input.obj calc.obj] &
out put . obj

plot.exe : $(object_files)
echo $(nsg_$(version))
W ink $(link_options) @"*

. C: $(program dir); $(screen_dir)
.c.obj:
$(conpiler) $[* $(conpile_options)

mai n.obj : $(program dir)main.c $(header_files)
calc.obj : $(programdir)calc.c $(header_files)
input.obj : $(screen_dir)input.c $(header_files)
out put.obj : $(screen_dir)output.c $(header_files)

Suppose that there is a change in the "DEFS.H" file which causes all the source filesto be recompiled. The
implicit rule".c.obj" isinvoked for every object file so the corresponding ".C" file must be found for each
".OBJ' file. Wewill show where Make searches for the C/C++ source files.

updat e mai n. obj
t est ..\c\programimain.c (it does exist)
execute wec386 ..\c\programmain /nf /dl /w3

updat e cal c. obj

t est ..\c\programcalc.c (it does exist)
execute wec386 ..\c\programcalc /nf /dl /w3

Implicit Rules 123

The Make/Touch Utilities

updat e i nput . obj
t est ..\c\programinput.c (it does not exist)
t est ..\c\screen\input.c (it does exist)

execute wcc386 ..\c\screen\input /nf /dl /w3

updat e out put . obj
t est ..\c\program out put.c (it does not exist)
t est ..\c\screen\output.c (it does exist)
execute wec386 ..\c\screen\output /nf /dl /w3

etc.

Notice that Make checked the sub-directory ".\C\PROGRAM" for the files"INPUT.C" and "OUTPUT.C".
Make optionally may use acircular path specification search which may save on disk activity for large
makefiles. The circular path searching may be used in two different ways:

1. usethe command line option "0"
2. usethe. OPTI M ZE directive.

Make will retain (for each suffix) what sub-directory yielded the last successful search for afile. The
search for afileisresumed at this directory in the hope that wasted disk activity will be minimized. If the
file cannot be found in the sub-directory then Make will search the next sub-directory in the path
specification (cycling to the first sub-directory in the path specification after an unsuccessful search in the
last sub-directory).

Changing the previous example to include this feature, results in the following:
#
programming exanpl e
(optimzed path searching)
#

. OPTIM ZE

h_dir .\ hy # sub-directory with header files
sub-directories with C/ C++ source files
..\c\programl # - MAIN.C, CALC. C

..\c\screen\ # - INPUT.C, QUTPUT.C

program dir
screen_dir

version debuggi ng # debuggi ng version
nmsg_production = |inking production version ..
nmsg_debuggi ng = |inki ng debug version ..

i nk_options_production =
I'i nk_options_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

conpi l er = wcc386

conpil e_options_production = /nf /w3

conpi | e_options_debugging = /nf /dl /w3
conpi | e_options = $(conpil e_options_$(version))

header _files
object_files

$(h_dir)defs.h $(h_dir)globals.h
mai n. obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(nsg_$(version))
wink $(link_options) @"*

.C: $(program dir); $(screen_dir)

.c.obj:
$(conpiler) $[* $(conpile_options)

124 Implicit Rules

The Open Watcom Make Utility

mai n.obj : $(program dir)main.c $(header files)
calc.obj : $(programdir)calc.c $(header_files)
input.obj : $(screen_dir)input.c $(header_files)
output.obj : $(screen_dir)output.c $(header_files)
Suppose again that there is a change in the "DEFS.H" file which causes all the source filesto be

recompiled. We will show where Make searches for the C/C++ source files using the optimized path
specification searching.

updat e mai n. obj
t est ..\c\programi main.c (it does exist)
execute wec386 ..\c\programimain /nf /dl /w3

updat e cal c. obj
t est ..\c\programcalc.c (it does exist)
execute wec386 ..\c\programicalc /nf /dl /w3

updat e i nput . obj
t est ..\c\programinput.c (it does not exist)
t est ..\c\screen\input.c (it does exist)

execute wec386 ..\c\screen\input /nf /dl /w3

updat e out put . obj
t est ..\c\screen\output.c (it does exist)
execute wec386 ..\c\screen\output /nf /dl /w3

etc.

Make did not check the sub-directory ".\C\PROGRAM" for the file "OUTPUT.C" because the last
successful attempt to find a".C" file occurred in the ".\C\SCREEN" sub-directory. In thissmall example,
the amount of disk activity saved by Make is not substantial but the savings become much more
pronounced in larger makefiles.

Hint: The simple heuristic method that Make uses for optimizing path specification searches namely,
keeping track of the last successful sub-directory, is very effective in reducing the amount of disk
activity during the processing of amakefile. A pitfall to avoid is having two files with the same name
in the path. The version of thefile that is used to update the target depends on the previous searches.
Care should be taken when using files that have the same name with path specifications.

Large makefiles for projects written in C/C++ may become difficult to maintain with al the header file
dependencies. Ignoring header file dependencies and using implicit rules may reduce the size of the
makefile while keeping most of the functionality intact. The previous example may be made smaller by
using thisidea.

Implicit Rules 125

The Make/Touch Utilities

#

programmi ng exanpl e

(no header dependenci es)

#

.OPTIM ZE

h_dir = ..\h\ # sub-directory with header files

sub-directories with C/ C++ source files
..\c\programl # - MAIN.C, CALC. C
..\c\screen\ # - INPUT.C, OUTPUT.C

program dir
screen_dir

version debuggi ng # debuggi ng version
nmsg_production = |inking production version ..
nmsg_debuggi ng = |inking debug version ..

i nk_options_production =
I'i nk_opti ons_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

conpi l er = wcc386

conpil e_options_production = /nf /w3

conpi | e_options_debugging = /nf /dl /w3
conpi | e_options = $(conpil e_options_$(version))

object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(nsg_$(version))
w ink $(link_options) @"*

. C: $(program dir); $(screen_dir)
.c.obj:
$(compiler) $[* $(conpile_options)

Implicit rules are very useful in this regard providing you are aware that you have to make up for the
information that is missing from the makefile. In the case of C/C++ programs, you must ensure that you
force Make to compile any programs affected by changesin header files. Forcing Make to compile
programs may be done by touching source files (not recommended), deleting object files, or using the "a"
option and targets on the command line. Hereishow thefiles"INPUT.OBJ' and "MAIN.OBJ' may be
recompiled if achange in some header file affects both files.

Example:
del input. obj
del main. obj
whake

or using the "a" option

Example:
wrake /a i nput.obj main. obj

The possibility of introducing bugs into programs is present when using this makefile technique because it
does not protect the programmer completely from object modules becoming out-of-date. The use of
implicit rules without header file dependenciesis a viable makefile technique but it is not without its
pitfals.

126 Implicit Rules

The Open Watcom Make Utility

10.35 Double Colon Explicit Rules

Single colon ":" explicit rules are useful in many makefile applications. However, the single colon rule has
certain restrictions that make it difficult to express more complex dependency relationships. The
restrictions imposed on single colon ":" explicit rules are:

1. only one command list is allowed for each target
2. after the command list is executed, the target is considered up to date

The first restriction becomes evident when you want to update atarget in different ways (i.e., when the
target is out of date with respect to different dependents). The double colon explicit rule removesthis

restriction.
#
multiple command lists
#
targetl :: dependentl dependent 2

commandl

targetl :: dependent3 dependent4
comrand?2

Noticethat if "target1l" is out of date with respect to either "dependent1” or "dependent2" then "commandl1”
will be executed. The double colon "::" explicit rule does not consider the target (in this case "target1") up
to date after the command list is executed. Make will continue to attempt to update "target1". Afterwards
"command2" will be executed if "target1" is out of date with respect to either "dependent3" or
"dependent4”. It ispossible that both "commandl" and "command2" will be executed. Asaresult of the
target not being considered up to date, an implicit rule search will be conducted on "targetl" also. Make
will process the double colon "::" explicit rules in the order that they are encountered in the makefile. A
useful application of the double colon "::" explicit rule involves maintaining and using prototype
information generated by a compiler.

#

double colon "::" exanple
#

conpil er = wcc386

options = /w3

generate macros for the .0BJ and .DEF files
tenmpl ate = nodul el. $(ext) nodul e2. $(ext) nodul e3. $(ext)

ext = obj
objs = $+ $(tenplate) $-
ext = def

defs = $+ $(tenplate) $-
add .DEF to the extensions |ist

. EXTENSI ONS:
. EXTENSI ONS: .exe .obj .def .c

Double Colon Explicit Rules 127

The Make/Touch Utilities

inplicit rules for the .0BJ and .DEF files
. C.o0bj:
$(conpiler) $[* $(options)

generate the prototype file (only do a syntax check)
. c. def:
$(conpiler) $[* $(options) /v/zs

programexe :: $(defs)
erase *.err

program exe :: $(objs)
W ink @n*

The".OBJ' files are updated to complete the update of the file"PROGRAM.EXE". It isimportant to keep
in mind that Make does not consider the file "PROGRAM.EXE" up to date until it has conducted afinal
implicit rule search. The double colon "::" explicit rule is useful when describing complex update actions.

10.36 Preprocessing Directives

One of the primary objectives in using amake utility isto improve the development and maintenance of
projects. A programming project consisting of many makefilesin different sub-directories may become
unwieldy to maintain. The maintenance problem stems from the amount of duplicated information
scattered throughout the project makefiles. Make provides a method to reduce the amount of duplicated
information present in makefiles. Preprocessing directives provide the capability for different makefilesto
make use of common information.

10.36.1 File Inclusion

A common solution to the "duplicated information" problem involves referencing text contained in onefile
from many different files. Make supportsfileinclusion withthe ! i ncl ude preprocessing directive. The
development of object libraries, using 16-bit Open Watcom C/C++, for the different 80x86 16-bit memory
models provides an ideal example to illustrate the use of the ! i ncl ude preprocessing directive.
Sub-directory Contents

\WINDOW W NDOW CNVD, W NDOW M F

\WINDOW\H PROTO. H, GLOBALS. H, Bl CS_DEF. H

\WINDOW\C W NDOW C, KEYBOARD. C, MOUSE. C, BI Cs. C

\WINDOW\SCSD
small model object files, MAKEFI LE, W NDOW S. LI B

\WINDOW\SCBD
compact model object files, MAKEFI LE, W NDOW C. LI B

\WINDOW\BCSD
medium mode! object files, MAKEFI LE, W NDOW M LI B

128 Preprocessing Directives

The Open Watcom Make Utility

\WINDOW\BCBD
large model object files, MAKEFI LE, W NDOW L. LI B

\WINDOW\BCHD
huge model object files, MAKEFI LE, W NDOW L. LI B

The WLIB command file "WINDOW.CMD" contains the list of library operations required to build the
libraries. The contents of "WINDOW.CMD" are:

- +wi ndow

- +bi os

- +keyboard
- +nouse

The"—+" library manager command indicates to WLIB that the object file should be replaced in the library.

Thefile"WINDOW.MIF" contains the makefile declarations that are common to every memory model.
The".MIF" extension will be used for all the Make Include Files discussed in this manual. This extension
isalso in the default extension list so it is a recommended extension for Make include files. The contents of
the "WINDOW.MIF" fileis asfollows:

#

exanple of a Make Include File

#

comon = /dl /w3 # conmmon options

obj s = wi ndow. obj bi os.obj keyboard. obj mnouse. obj
.c: ..\c

.C.0bj:

wee $[* $(common) $(local) /nt(nodel)

wi ndow_$(nodel).lib : $(objs)
W ib window $(nmodel) @.\w ndow

The macros "model" and "local" are defined by the file "MAKEFILE" in each object directory. An
example of the file"MAKEFILE" in the medium memory model object directory is:

#

linclude exanpl e

#

nodel = m # menory nodel required

| ocal = # menory nodel specific options

l'include ..\w ndow. mi f
Notice that changes that affect all the memory models may be made in one file, namely "WINDOW.MIF".

Any changes that are specific to amemory model may be made to the "MAKEFILE" in the object
directory. To update the medium memory model library, the following commands may be executed:

Preprocessing Directives 129

The Make/Touch Utilities

Example:
C>cd \wi ndow\ bcsd
Cwrake

A DOS".BAT" or OS/2".CMD" file may be used to update all the different memory models. If the
following DOS"MAKEALL.BAT" (OS/2 "MAKEALL.CMD") fileislocated somewherein the "PATH",
we may update all thelibraries.

cd \'wi ndow\ scsd
wrake % %R 98 % % % % YB %O
cd \'wi ndow\ schd
wrake % %® 98 % % % % Y8 %O
cd \'wi ndow\ bcsd
wrake % %@ 98 % 9% % % Y8 %0
cd \'wi ndow\ bchd
wneke % %2 98 % % 9% % 9B 90
cd \'wi ndow\ bchd
wrake % %® 98 % % Y% % Y8 9O

The batch file parameters are useful if you want to specify optionsto Make. For instance, a global
recompile may be done by executing:

Example:
Cnakeal | /a

The! i ncl ude preprocessing directive is agood way to partition common information so that it may be
maintained easily.

Another use of the ! i ncl ude involves program generated makefile information. For instance, if we have
aprogram called "WMKMK" that will search through source files and generate afile called
"WMKMK.MIF" that contains:

#
program generated nakefile information

#
C to_OBJ = $(conpiler) $[* $(conpile_options)

OBJECTS = W NDOW OBJ BI CS. OBJ KEYBOARD. OBJ MOUSE. OBJ

WNDONOB] @ ..\CWNDOWNC ..\H\PROTO H ..\ H GLOBALS. H
$(C_to_0BJ)

BIOS.OBJ : ..\CQBIOCS.C..\H\BIOS_DEF.H ..\H GLOBALS. H
$(C_to_0BJ)

KEYBOARD. OBJ : ..\ CQ KEYBOARD.C ..\H\PROTO H ..\ H GLOBALS. H
$(C_to_0BJ)

MOUSE. OBJ : ..\CMOUSE.C ..\H\PROTO. H ..\ H GLOBALS. H
$(C_to_0BJ)

In order to use this program generated makefile information, we use a"MAKEFILE" containing:

130 Preprocessing Directives

The Open Watcom Make Utility

#

makefile that nakes use of generated nekefile infornation
#

conpile_options = /nf /dl /w3

first_target : window lib .SYMBOLIC
echo done

linclude wrknk. m f

wi ndow. | ib : $(OBJECTS)
W ib wi ndow $(OBJECTS)

make : . SYMBOLIC
wknk /r .. \c*.c+. .\c*.cpp+..\h

Notice that thereis a symbolic target "first_target” that is used as a"place holder”. The default behaviour
for Make isto "make" the first target encountered in the makefile. The symbolic target "first_target"
ensures that we have control over what file will be updated first (in this case "WINDOW.LIB"). The use of
the!i ncl ude preprocessing directive simplifies the use of program generated makefile information
because any changes are localized to the file "MAKEFILE". As program development continues, the file
"WMKMK.MIF" may be regenerated so that subsequent invocations of WMAKE benefit from the new
makefile information. Thefile"MAKEFILE" even contains the command to regenerate the file
"WMKMK.MIF". The symbolic target "make" has an associated command list that will regenerate the file
"WMKMK.MIF". The command list can be executed by typing the following command:

Example:
Cwrake nmake

Theuseof the! i ncl ude preprocessing directive is a simple way to reduce maintenance of related
makefiles.

Hint: Macros are expanded on ! i ncl ude preprocessor control lines. This allows many benefits like:
linclude $(%env_var)

so that the files that Make will process can be controlled through many different avenues like internal
macros, command line macros, and environment variables.

Another way to access files is through the suffix path feature of Make. A definition like

.mif : c:\mymifs; d:\some\more\mifs

will cause Make to search different paths for any make include files.

10.36.2 Conditional Processing

Open Watcom Make has conditional preprocessing directives available that allow different declarationsto
be processed. The conditional preprocessing directives allow the makefile to

1. check whether amacro is defined, and
2. check whether amacro has a certain value.

The macros that can be checked include

Preprocessing Directives 131

The Make/Touch Utilities

1. normal macros"$(<macro_identifier>)"
2. environment macros "$(%<environment_var>)"

The conditional preprocessing directives allow a makefile to adapt to different external conditions based on
the values of macros or environment variables. We can define macros on the WMAKE command line as
shown in the following example.

Example:
C>wrake "nmacro=sone text with spaces in it"

Alternatively, we can include a makefile that defines the macrosif all the macros cannot fit on the
command line. Thisisshown in the following example:

Example:
Cwrake /f macdef . mf /f makefile

Also, environment variables can be set before WMAKE isinvoked. Thisis shown in the following
example:

Example:
C>set macro=sone text with spaces in it
Cwnake

Now that we know how to convey information to Make through either macros or environment variables, we
will look at how this information can be used to influence makefile processing.

Make has conditional preprocessing directives that are similar to the C preprocessor directives. Make
supports these preprocessor directives:

lifeq
l'i fneq
L'ifeqi
l'i fneqi
l'i f def
l'i f ndef

along with

lel se
l'endif

Together these preprocessor directives allow selection of makefile declarations to be based on either the
value or the existence of a macro.

Environment variables can be checked by using an environment variable name prefixed with a"%". A
common use of aconditional preprocessing directive involves setting environment variables.

#
setting an environment variable
#
lifndef %ib
. BEFORE
set lib=c:\watcom i b386;c:\watcom|ib386\dos
lendi f

132 Preprocessing Directives

The Open Watcom Make Utility

If you are writing portable applications, you might want to have:

#

checking a nacro

#

linclude version. mf

lifdef OS2

machine = /2 # compile for 286
lel se

machine = /0 # default: 8086
lendi f

The!i f def ("if defined")and!i f ndef ("if not defined") conditional preprocessing directives are useful
for checking boolean conditions. In other words, the !i f def and!'i f ndef areuseful for "yes-no"
conditions. There are instances where it would be useful to check a macro against avalue. In order to use
the value checking preprocessor directives, we must know the exact value of amacro. A macro definition
is of the form:

<macro_identifier> = <text> <comrent >

Make will first strip any comment off the line. The macro definition will then be the text following the
equal "=" sign with leading and trailing blanks removed. Initially this might not seem like a sensible way
to define amacro but it does lend itself well to defining macros that are common in makefiles. For
instance, it allows definitions like:

#
sanmpl e macro definitions
#

link_options

debug |ine # 1ine nunber debuggi ng
conpi |l e_options

/dl /s # line nunbers, no stack checking

These definitions are both readable and useful. A makefile can handle differences between compilers with
thelifeq, 'ifneq, 'ifeqi and!ifneqi conditional preprocessing directives. Thefirst two
perform case sensitive comparisons while the last two perform case insensitive comparisons. One way of
setting up adaptive makefilesis:

#

options made sinmple

#

conpi |l er = wcc386

stack_overfl ow
line_info

No # yes -> check for stack overfl ow
Yes # yes -> generate |line nunbers

l'ifeq conpiler wc386
lifneqi stack_overflow vyes

stack_option = /s
l'endi f

lifeqgi line_info yes
line_option = /d1
l'endi f

l'endi f

Preprocessing Directives 133

The Make/Touch Utilities

lifeqg conpiler tcc
lifeqgi stack overflow yes

stack_option = -N

I endi f

lifeqi line_info yes
ine_option = -y

l'endif

l'endif

#

make sure the macros are defined
#

l'i fndef stack_option
stack_option =

l'endi f

lifndef |ine_option
ine_option =
l'endi f

exanple : .SYMBOLIC
echo $(conpiler) $(stack_option) $(line_option)

The conditional preprocessing directives can be very useful to hide differences, exploit similarities, and
organize declarations for applications that use many different programs.

Another directiveisthe ! def i ne directive. Thisdirectiveisequivaent to the normal type of macro
definition (i.e., macro = text) but will make C programmers feel more at home. One important distinction
isthat the! def i ne preprocessor directive may be used to reflect the logical structure of macro definitions
in conditional processing. For instance, the previous makefile could have been written in this style:

l'i fndef stack_option

I define stack_option
l'endi f

lifndef |ine_option

I define line_option
lendi f

The"!" character must be in the first column but the directive keyword can be indented. This freedom
appliesto all of the preprocessing directives. The ! el se preprocessing directive benefits from this type of
style because ! el se can aso check conditionslike:

lel se ifeq
lel se ifneq
lelse ifeqi
lel se ifneqi
lel se ifdef

lel se ifndef

so that logical structures like:

134 Preprocessing Directives

The Open Watcom Make Utility

l'i fdef %ersion

I ifeq %Wersion debuggi ng

! define option debug all

I else ifeq %ersion beta

! define option debug |line

I else ifeq %Wersion production
! define option debug

I else

! error invalid value in VERSI ON
I endif

l'endi f

can be used. The above example checks the environment variable "VERSION" for three possible values
and acts accordingly.

Another derivative from the C language preprocessor isthe ! er r or directive which has the form of

lerror <text>

in Make. Thisdirective will print out the text and terminate processing of the makefile. It isvery useful in
preventing errors from macros that are not defined properly. Hereisan example of the ! err or
preprocessing directive.

l'i fndef stack_option

I error stack_option is not defined
l'endi f

lifndef |ine_option

I error line_option is not defined
l'endi f

There is one more directive that can be used in amakefile. The ! undef preprocessing directive will clear
amacro definition. The ! undef preprocessing directive has the form:

lundef <nacro_identifier>

The macro identifier can represent a normal macro or an environment variable. A macro can be cleared
after it isno longer needed. Clearing a macro will reduce the memory requirements for a makefile. If the
macro identifier represents an environment variable (i.e., the identifier hasa"%" prefix) then the
environment variable will be deleted from the current environment. The ! undef preprocessing directive
is useful for deleting environment variables and reducing the amount of internal memory required during
makefile processing.

10.36.3 Loading Dynamic Link Libraries

Open Watcom Make supports loading of Dynamic Link Library (DLL) versions of Open Watcom software
through the use of the ! | oaddl | preprocessing directive. This support is available on Win32 and 32-bit
0S/2 platforms. Performance is greatly improved by avoiding areload of the software for each file to be
processed. The syntax of the ! | oaddl | preprocessing directiveis:

'l oaddl | $(exenanme) $(dl | name)
where $(exenane) isthe command name used in the makefile and $(dl | nane) isthe name of the

DLL to beloaded and executed in its place. For example, consider the following makefile which contains a
list of commands and their corresponding DLL versions.

Preprocessing Directives 135

The Make/Touch Utilities

Default conpilation nmacros for sanple prograns
#
Conpile switches that are enabl ed

CFLAGS = -d1

cC = wpp386 $(CFLAGS)
LFLAGS = DEBUG ALL

LINK = wink $(LFLAGS)

lifdef __LOADDLL_

I loaddl | wcc wced

I loaddll wccaxp wecdaxp
I loaddll wcc386 wccd386
I loaddll wpp wppdi 86
I loaddl |l wppaxp wppdaxp
I loaddll wpp386 wppd386
I loaddl | wink w i nk

I loaddll Wib w i bd
lendi f

.C.obj:
$(CO $*.c

The LOADDLL__ symbol is defined for versions of Open Watcom Make that support the! | oaddl |
preprocessing directive. The!i fdef _ LOADDLL _ construct ensures that the makefile can be
processed by an older version of Open Watcom Make.

Make will look up the wop386 command inits DLL load table and find a match. It will then attempt to
load the corresponding DLL (i.e.,, wopd386. dl |) and passit the command line for processing. The
lookup is case insensitive but must match in all other respects. For example, if a path isincluded with the
command name then the same path must be specifiedinthe ! | oaddl | preprocessing directive. This
problem can be avoided through the use of macros asillustrated below.

136 Preprocessing Directives

The Open Watcom Make Utility

Default conpilation nmacros for sanple prograns

#

Conpile switches that are enabl ed
#

cc286 = wpp

cc286d = wppdi 86

cc386 = wpp386

cc386d = wppd386

[inker = wink

linkerd = wink

CFLAGS = -d1

CcC = $(cc386) $(CFLAGS)
LFLAGS = DEBUG ALL

LI NK = wink $(LFLAGS)
lifdef __LOADDLL_

'l oaddl | $(cc286) $(cc286d)
'l oaddl | $(cc386) $(cc386d)
'l oaddl | $(linker) $(linkerd)
l'endi f

. C.0bj:

$(CO $*.c

A path and/or extension may be specified with the DLL name if desired.

10.37 Command List Directives

Open Watcom Make supports special directives that provide command lists for different purposes. If a
command list cannot be found while updating a target then the directive . DEFAULT may be used to
provide one. A simple. DEFAULT command list which makes the target appear to be updated is:

. DEFAULT
wt ouch $"@

The Open Watcom Touch utility sets the time-stamp on the file to the current time. The effect of the above
rule will beto "update" the file without altering its contents.

In some applications it is necessary to execute some commands before any other commands are executed
and likewise it is useful to be able to execute some commands after all other commands are executed.

Make supports this capability by checking to seeif the . BEFORE and . AFTER directives have been used.
If the . BEFORE directive has been used, the . BEFORE command list is executed before any commands are
executed. Similarly the . AFTER command list is executed after processing is finished. It isimportant to
note that if all the files are up to date and no commands must be executed, the . BEFORE and . AFTER
command lists are never executed. |f some commands are executed to update targets and errors are

detected (non-zero return status, macro expansion errors), the . AFTER command list is not executed (the

. ERROR directive supplies acommand list for error conditions and is discussed in this section). These two
directives may be used for maintenance as illustrated in the following example:

Command List Directives 137

The Make/Touch Utilities

#
. BEFORE and . AFTER exanpl e
#
. BEFORE
echo . BEFORE command |i st executed
. AFTER
echo . AFTER command |i st executed
#
rest of makefile foll ows
#

If al the targets in the makefile are up to date then neither the . BEFORE nor the . AFTER command lists
will be executed. If any of the targets are not up to date then before any commands to update the target are
executed, the . BEFORE command list will be executed. The . AFTER command list will be executed only
if there were no errors detected during the updating of the targets. The . BEFORE, . DEFAULT, and

. AFTER command list directives provide the capability to execute commands before, during, and after the
makefile processing.

Make also supports the . ERRCR directive. The . ERROR directive supplies a command list to be executed
if an error occurs during the updating of atarget.

#
. ERROR exampl e
#
. ERROR
beep
#
rest of makefile foll ows
#

The above makefile will audibly signal you that an error has occurred during the makefile processing. If
any errors occur during the . ERROR command list execution, makefile processing is terminated.

10.38 MAKEINIT File

As you become proficient at using Open Watcom Make, you will probably want to isolate common
makefile declarations so that there is less duplication among different makefiles. Make will search for a
file called "MAKEINIT" (or "TOOLS.INI" when the "ms" option is set) and process it before any other
makefiles. The search for the "MAKEINIT" file will occur along the current "PATH". If thefile
"MAKEINIT" is not found, processing continues without any errors. By default, Make defines a set of data
described at the "r" option. The use of a"MAKEINIT" file will allow you to reuse common declarations
and will result in simpler, more maintainable makefiles.

138 MAKEINIT File

The Open Watcom Make Utility

10.39 Command List Execution

Open Watcom Make is a program which must execute other programs and operating system shell
commands. There are three basic types of executable filesin DOS.

1. . COMfiles
2. . EXEfiles
3. . BATfiles

There are two basic types of executable filesin Windows NT.

1. . EXEfiles
2. . BATfiles

There are two basic types of executablefilesin OS/2.

1. . EXEfiles
2. . CMDfiles

The. COMand . EXE files may be loaded into memory and executed. The . BAT files must be executed by
the DOS command processor or shell, "COMMAND.COM". The . CVDfiles must be executed by the
0S/2 command processor or shell, "CMD.EXE" Make will search along the "PATH" for the command and
depending on the file extension the file will be executed in the proper manner.

If Make detects any input or output redirection characters (these are ">", "<", and "|") in the command, it
will be executed by the shell.

Under DOS, an asterisk prefix (*) will cause Make to examine the length of the command argument. If itis
too long (> 126 characters), it will take the command argument and stuff it into atemporary environment
variable and then execute the command with " @env_var" asits argument. Suppose the following sample
makefile fragment contained a very long command line argument.

#
Asterisk exanple
#
*foo nyfile /fa/b/c ... Ixly /lz

Make will perform something logically similar to the following steps.

set TEMPVAROO1=nyfile /fa /b /c ... Ix [y [z
foo @EMPVAROO1

The command must, of course, support the "@env_var" syntax. Typically, DOS commands do not support
this syntax but many of the Open Watcom tools do.

The exclamation mark prefix (1) will force acommand to be executed by the shell. Also, the command will
be executed by the shell if the command is an internal shell command from the following list:

break (check for Ctrl+Break)
call (nest batch files)

chdir (change current directory)
cd (change current directory)

Command List Execution 139

The Make/Touch Utilities

cls (clear the screen)

cmd (start NT or OS/2 command processor)

command (start DOS command processor)

copy (copy or combine files)

ctty (DOS redirect input/output to COM port)

d: (change drive where "d" represents a drive specifier)
date (set system date)

del (erasefiles)

dir (display contentsin adirectory)

echo (display commands as they are processed)

erase (erasefiles)

for (repetitively process commands, intercepted by WMAKE)
if (allow conditional processing of commands)

md (make directory)

mkdir (make directory)

path (set search path)

pause (suspend batch operations)

prompt (change command prompt)

ren (renamefiles)

rename (renamefiles)

rmdir (remove directory)

rd (remove directory)

rm (erase files, intercepted by WMAKE)

set (set environment variables, intercepted by WMAKE)
time (set system time)

type (display contents of afile)

ver (display the operating system version number)
verify (set data verification)

vol (display disk volume label)

The operating system shell "SET" command is intercepted by Make. The"SET" command may be used to
set environment variables to values required during makefile processing. The environment variable
changes are only valid during makefile processing and do not affect the values that were in effect before
Make was invoked. The"SET" command may be used to initialize environment variables necessary for the
makefile commands to execute properly. The setting of environment variables in makefiles reduces the
number of "SET" commands required in the system initialization file. Hereis an example with the Open
Watcom C/C++ compiler.

#
SET exanpl e
#
. BEFORE
set include=c:\special\h; $(% ncl ude)
set lib=c:\watcom i b386;c:\watcom|ib386\dos
#
rest of makefile foll ows
#

Thefirst "SET" command will set up the INCL UDE environment variable so that the Open Watcom
C/C++ compiler may find header files. Notice that the old value of the INCLUDE environment variableis
used in setting the new value.

140 Command List Execution

The Open Watcom Make Utility

The second "SET" command indicates to the Open Watcom Linker that libraries may be found in the
indicated directories.

Environment variables may be used aso as dynamic variables that may communicate information between
different parts of the makefile. An example of communication within a makefileisillustrated in the
following example.

#

internal makefile communi cation
#

. BEFORE

set message=nessage text 1
echo *$(%ressage) *

set nmessage=

echo *$(%ressage) *

.exanmpl e : another_target .SYMBOLIC
echo *$(%ressage)*

anot her _target : .SYMBOLIC
set nessage=nessage text 2

The output of the previous makefile would be:

(command out put only)
message text 1

* %

message text 2

Make handles the "SET" command so that it appearsto work in an intuitive manner similar to the operating
system shell’s "SET" command. The "SET" command also may be used to allow commandsto relay
information to commands that are executed afterwards.

The DOS "FOR" command is intercepted by Make. The reason for thisisthat DOS has afixed limit for the
size of acommand thus making it unusable for large makefile applications. One such application that can
be done easily with Make is the construction of a WLINK command file from a makefile. The idea behind
the next example isto have onefile that contains the list of object files. Anytime thisfile is changed, say,
after a new module has been added, a new linker command file will be generated which in turn, will cause
the linker to relink the executable. First we need the makefile to define the list of object files, thisfileis
"OBJDEF.MIF" and it declares a macro "objs" which has asits value the list of object filesin the
application. The content of the "OBJDEF.MIF" fileis:

#
list of object files
#
objs = &
wi ndow. obj &
bi 0s. obj &
keyboard. obj &
nouse. obj

The main makefile "MAKEFILE") is:

Command List Execution 141

The Make/Touch Utilities

#

FOR conmmand exanpl e
#

l'incl ude objdef.mf

pl ot.exe : $(objs) plot.Ink
w i nk @l ot

plot.Ink : objdef.mf
echo NAME $"& >$"@
echo DEBUG al | >>$"@
for % in ($(objs)) do echo FILE % >>$"@

This makefile would produce afile "PLOT.LNK" automatically whenever thelist of object filesis changed
(anytime "OBJDEF.MIF" is changed). For the above example, the file"PLOT.LNK" would contain:

NAME pl ot

DEBUG al |

FI LE wi ndow. obj
FI LE bi os. obj

FI LE keyboard. obj
FI LE nouse. obj

Make supports nine internal commands:

%abor t
Y%append
%create
%r ase
%rake
%nul |
Ygui t
%st op
Ywrite

©CoNoOA~AWDNE

The %abort and %gui t internal commands terminate execution of Make and return to the operating
system shell: %@bort setsanon-zero exit code; Ygui t sets azero exit code.

#
%abort and %guit exanple
#
done_enough :
Ygui t

sui ci de :
%abor t

The%append, %reate, %erase, and %w i t e internal commands alow WMAKE to generate files
under makefile control. Thisisuseful for filesthat have contents that depend on makefile contents.
Through the use of macros and the "for" command, Make becomes a very powerful tool in maintaining lists
of filesfor other programs.

The ¥%append internal command appends atext line to the end of afile (which is created if absent) while

the % i t e internal command creates or truncates afile and writes one line of text into it. Both
commands have the same form, namely:

142 Command List Execution

The Open Watcom Make Utility

Y%append <file> <text>
%wite <file> <text>

where <f i | e>isafile specification and <t ext > isarbitrary text.

The %r eat e internal command will create or truncate afile so that the file does not contain any text
while the %er ase internal command will delete afile. Both commands have the same form, namely:

o%¢create <file>
%erase <file>

where <f i | e> isafile specification.

Full macro processing is performed on these internal commands so the full power of WMAKE can be used.
The following example illustrates a common use of these internal commands.

#

%append, %reate, %rase, and %wite exanple
#

l'include objdef.mf

plot.exe : $(objs) plot.Ink
w ink @l ot

plot.lnk : objdef.mf
Y%create $"@
Yappend $"@ NAMVE $"&
Next line equivalent to previous two |ines.
Y%ereate $"@ NAMVE $"&
Yappend $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

clean : .SYMBOLIC
%rase plot.|nk

The above code demonstrates a val uable technique that can generate directive files for WLINK, WLIB, and
other utilities.

The %rake internal command permits the updating of a specific target and has the form:

%ake <target>

where <t ar get > isatarget in the makefile.

Command List Execution 143

The Make/Touch Utilities

#

%ake exanpl e

#

l'incl ude objdef.mf

pl ot.exe : $(objs)
%rake plot. | nk
W ink @l ot

plot.Ink : objdef.mf
%reate $"@
Y%append $"@ NAME $"&
Y%append $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

There seem to be other ways of doing the same thing. Among them is putting plot.Ink into the list of
dependencies:

#

%ake counter-exanpl e
#

l'include objdef.mf

plot.exe : $(objs) plot.Ink
w ink @l ot

plot.Ink : objdef.mf
%create $"@
Yappend $"@ NAME $"&
Y%append $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

and using a make variable;
#
%rake counter-exanpl e
#
l'include objdef.mf

pl ot.exe : $(objs)
w i nk NAME $°"& DEBUG all FILE { $(objs) }

The %ul | internal command does absolutely nothing. It is useful because Make demands that a
command list be present whenever atarget is updated.

144 Command List Execution

The Open Watcom Make Utility

#

9%ul | exanpl e

#

all : applicationl application2 .SYMBCLIC

oul |

applicationl : appll.exe .SYMBOLIC
%ul |

application2 : appl2.exe .SYMBOLIC
%ul |

appl 1. exe : (dependents ...)
(commands)

appl 2. exe : (dependents ...)
(commands)

Through the use of the %ul | internal command, multiple application makefiles may be produced that are
quite readable and maintainable.

The %st op internal command will temporarily suspend makefile processing and print out a message
asking whether Makefile processing should continue. Make will wait for either the "y" key (indicating that
the Makefile processing should continue) or the "n" key. If the"n" key is pressed, makefile processing will
stop. The %t op internal command is very useful for debugging makefiles but it may be used also to
develop interactive makefiles.

#

Ystop exanpl e

#

all : appll.exe .SYMBOLIC

%nul |

appl 1. exe : (dependents ...)
@cho Are you feeling |ucky? Punk!

@6t op
(conmmands)

10.40 Compatibility Between Open Watcom Make and UNIX

Make

Open Watcom Make was originally based on the UNIX Make utility. The PC's operating environment
presents a base of users which may or may not be familiar with the UNIX operating system. Makeis
designed to be a PC product with some UNIX compatibility. The line continuation in UNIX Makeisa
backslash ("\") at the end of theline. The backslash ("\") is used by the operating system for directory
specifications and as such will be confused with line continuation. For example, you could type:

cd \

along with other commands ... and get unexpected results. However, if your makefile does not contain
path separator characters (*\") and you wish to use "\" as aline continuation indicator then you can use the
Make"u" (UNIX compatibility mode) option.

Compatibility Between Open Watcom Make and UNIX Make 145

The Make/Touch Utilities

Also, in the UNIX operating system there is no concept of file extensions, only the concept of afile suffix.
Make will accept the UNIX Make directive . SUFFI XES for compatibility with UNIX makefiles. The
UNIX compatible special macros supported are:

Macro Expansion

$@ full name of the target

& target with the extension removed

$< list of all dependents

$? list of dependents that are younger than the target

The extra checking of makefiles done by Make will require modificationsto UNIX makefiles. The UNIX
Make utility does not check for the existence of targets after the associated command list is executed so the
"c" or the . NOCHECK directive should be used to disable this checking. Thelack of acommand list to
update atarget isignored by the UNIX Make utility but Open Watcom Make requires the special internal
command %nul | to specify anull command list. In summary, Make supports many of the features of the
UNIX Make utility but is not 100% compatible.

10.41 Open Watcom Make Diagnostic Messages

This section lists the various warning and error messages that may be issued by the Open Watcom Make.
In the messages below, %7? character sequences indicate places in the message that are replaced with some
other string.

1 Out of memory

2 Make execution terminated

3 Option %c%c invalid

4 %c%c must be followed by a filename

5 No targets specified

6 Ignoring first target in MAKEINIT

7 Expecting a %M

8 Invalid macro name %E

9 Ignoring out of place %M

10 Macros nested too deep

11 Unknown internal command

12 Program nameistoo long

13 No control characters allowed in options

14 Cannot execute %E: %Z

146 Open Watcom Make Diagnostic Messages

The Open Watcom Make Utility

15 Syntax error in %s command

16 Nested %s loops not allowed

17 Token too long, maximum size is %d chars
18 Unrecognized or out of place character *%C’
19 Target %E already declared %M

20 Command list does not belong to any target
21 Extension(s) %E not defined

22 No existing file matches %E

23 Extensionsreversed in implicit rule

24 More than one command list found for %E
25 Extension %E declared more than once

26 Unknown preprocessor directive: %s

27 Macro %E isundefined

28 !If statements nested too deep

29 1%s has no matching !if

30 Skipping %1 block after !%2

31 %1 not allowed after ! %2

32 Opening file %E: %Z

34 1%s pending at end of file

35 Trying to ! %s an undefined macro

36 Illegal attempt to update special target %E
37 Target %E is defined recursively

38 %E does not exist and cannot be made from existing files
39 Target %E not mentioned in any makefile
40 Could not touch %E

41 No %s commands for making %E

42 Last command making (%L) returned a bad status

Open Watcom Make Diagnostic Messages 147

The Make/Touch Utilities

43 Deleting %E: %Z

44 %s command returned a bad status

45 Maximum string length exceeded

46 |llegal character value %xH in file

47 Assuming target(s) are .%s

48 Maximum %%make depth exceeded

49 Opening (%s) for write: %Z

50 Unable to write: %Z

51 CD’ing to %E: %Z

52 Changing to drive %C:

53 DOS memory inconsistency detected! System may halt ...
53 OS corruption detected

54 While reading (%s): %Z

59 !IF Parse Error

60 TMP Path/File Too Long

61 Unexpected End of File

62 Only NO(KEEP) allowed here

63 Non-matching "

64 Invalid String Macro Substitution

65 File Name Length Exceeded

66 Redefinition of DEFAULT Command List
67 Non-matching { In Implicit Rule

68 Invalid Implicit Rule Definition

69 Path Too Long

70 Cannot Load/Unload DLL %E

71 Initialization of DLL %E returned a bad status

72 DLL %E returned a bad status

148 Open Watcom Make Diagnostic Messages

The Open Watcom Make Utility

73 1llegal Character %C in macro name
74in closing file %E

75 in opening file %E

76 in writing file %E

77 User Break Encountered

78 Error in Memory Tracking Encountered

79 Makefile may be Microsoft try /ms switch

Open Watcom Make Diagnostic Messages 149

The Make/Touch Utilities

150 Open Watcom Make Diagnostic Messages

11 The Touch Utility

11.1 Introduction

This chapter describes the Open Watcom Touch utility. Open Watcom Touch will set the time-stamp (i.e.,
the modification date and time) of one or more files. The new modification date and time may be the
current date and time, the modification date and time of another file, or a date and time specified on the
command line. This utility is normally used in conjunction with the Open Watcom Make utility. The
rationale for bringing afile up-to-date without atering its contents is best understood by reading the
chapter which describes the Make utility.

The Open Watcom Touch command line syntax is:

WTOUCH [optiong] file_spec [file_spec...]

The square brackets [] denote items which are optional.

options isalist of valid options, each preceded by aslash ("/") or adash ("-"). Options may be
specified in any order.

file_spec isthefile specification for the file to be touched. Any number of file specifications may be
listed. Thewild card characters"*" and "?' may be used.

Thefollowing is a description of the options available.

c do not create an empty file if the specified file does not exist
d <date> specify the date for the file time-stamp in "mm-dd-yy" format
f <file> use the time-stamp from the specified file

[increment time-stamp before touching the file

q suppress informational messages

r touch file even if it is marked read-only

t <time> specify the time for the file time-stamp in "hh:mm:ss" format
u use USA date/time format regardless of country

? display help screen

11.2 WTOUCH Operation

WTOUCH isused to set the time-stamp (i.e., the modification date and time) of afile. The contents of the
file are not affected by this operation. If the specified file does not exist, it will be created as an empty file.
This behaviour may be atered with the "c" option so that if the fileis not present, a new empty file will not
be created.

WTOUCH Operation 151

The Make/Touch Utilities

Example:
(will not create nyfile.dat)
Cwt ouch /c nyfile. dat

If awild card file specification is used and no files match the pattern, no fileswill have their time-stamps
altered. The date and time that all the specified files are set to is determined as follows:

1. Thecurrent date and timeis used as adefault value.

2. Atime-stamp from an "age file" may replace the current date and time. The "f" option is used to
specify the file that will supply the time-stamp.

Example:
(use the date and tine fromfile "last.tini)
Cwouch /f last.timfile*. dat

3. Thedate and/or time may be specified from the command line to override a part of the
time-stamp that will beused. The"d" and "t" options are used to override the date and time
respectively.

Example:
(use current date but use different tinme)
Cwtouch /t 2:00p file*. dat
(compl etely specify date and tine)
Cwt ouch /d 10-31-90 /t 8:00:00 file*. dat
(use date fromfile "last.tini but set tine)
Cwouch /f last.tim/t 12:00 fil e*. dat

The format of the date and time on the command line depends on the country information
provided by the host operating system. Open Watcom Touch should accept dates and timesin a
similar format to any operating system utilities (i.e., the DATE and TIME utilities provided by
DOS). The"a" and "p" suffix isan extension to the time syntax for specifying whether the time
isA.M. or P.M., but thisisonly available if the operating system is not configured for military
or 24-hour time.

152 WTOUCH Operation

Index

i

.apha 27
Jreak 27
.continue 27
.cref 27
ese 27
.endif 27
.endw 27
exit 27

if 27
fcond 27
list 27
Jistal 27
Jistif 27
Jistmacro 27
Jistmacroall 27
.nocref 27
.nolist 27
radix 27
repeat 27
sl 27
.Seq 27
.sfcond 27
Startup 27
tfcond 27
.until 27
while 27
xcref 27
Xlist 27

addr 27
AFTER

WMAKE directive 98, 137
ALWAYS

WMAKE directive 98
assembler 21
AUTODEPEND

WMAKE directive 99, 103
AUTOEXEC.BAT

system initialization file 9

batch files 130
BEFORE
WMAKE directive 99, 137
Bell Laboratories 94
BLOCK
WMAKE directive 87, 99
BPATCH
command line format 75
diagnostics 76
bugs 75

casemap 27
catstr 27
checking macro values 133
CMD.EXE shell 139
colon ()

behaviour in WMAKE 96

explicit rulein WMAKE 94
command execution 139
command line format

BPATCH 75

owcc 13

WASM 21

WCL 3

WCL386 3

WDIS 53

WLIB 39

WMAKE 85

WSTRIP 79

WTOUCH 151
COMMAND.COM shell 139
common information 128
communication 141
CONFIG.SYS

systeminitiaization file 9
CONTINUE

WMAKE directive 88, 99

153

Index

debug information

remova 79
debugging makefiles 87, 145
declarations 94
DEFfiles 127
DEFAULT

WMAKE directive 100, 137
dependency 94
dependent 94
dependent extension 118
diagnostics

BPATCH 76

WSTRIP 81

different memory model libraries 128

disassembler 53
disassembly example 58
DLL support 135
DOS Extender
Phar Lap 286 11
DOSCALLSLIB 11
double colon explicit rule 127
double-colon (::)
behaviour in WMAKE 128
explicit rulein WMAKE 127
duplicated information 128
Dynamic Link Library
imports 43-44, 46
dynamic variables 141

echo 27
WMAKE 137
endmacro 27
environment string
#9
= substitute 9

environment variables 112, 131-132, 140

INCLUDE 140

LIB 11, 132, 140

LIBOS2 11

PATH 75, 112

WCL 9

WCL386 9
ERASE

154

WMAKE directive 87, 100
ERROR

WMAKE directive 101, 138
executablefiles

reducing size 79
EXISTSONLY

WMAKE directive 101
EXPLICIT

WMAKE directive 101
explicit rule 94, 127
EXTENSIONS

WMAKE directive 102, 119

far call optimization
enabling 64
far call optimizations 63
far jump optimization 63
FCENABLE options
b 64
c 64
S 64
X 64
Feldman, S.I 94
finding targets 121
FOR
using Open Watcom Make 141
FUzzY
WMAKE directive 103

generating prototypes 127
global recompile 86, 130
GRAPH.LIB 11
GRAPHP.OBJ 11

high 27
highword 27
HOLD

Index

WMAKE directive 92, 103

!

IGNORE
WMAKE directive 88, 103
ignoring return codes 103
implicit rule 118
implicit rules
$[form 119
$] form 119
$ form 119
import library 43-44, 46
INCLUDE environment variable 140
initialization file 138
invoke 27
invoking Open Watcom Make 94, 129, 131
invoking Open Watcom Touch 151

JUST_ENOUGH
WMAKE directive 103-104

large projects 128
larger applications 122
LBC command file 44
LIB environment variable 10-11
LIBOS2 environment variable 10-11
libraries 128
library
import 46
library file
addingtoa 41
deleting from a 41
extracting from a 42
replacing amodulein a 42
library manager 39
line continuation 112
__LOADDLL__ 136
low 27

lowword 27
Iroffset 27

M

macro construction 113, 127
macro definition 133
macro identifier 131
macro text 133
macros 109, 133
maintaining libraries 128
maintenance 85
make

includefile 129

reference 85

Touch 151

WMAKE 85
MAKEFILE 87,94
MAKEFILE comments 94
MAKEINIT 138
mask 27
memory model 128
message passing 141
Microsoft compatibility

NMAKE 88
modification 151
MULTIPLE

WMAKE directive 104
multiple dependents 95
multiple source directories 122
multiple targets 95

NMAKE 86, 88
NOCHECK
WMAKE directive 87, 97, 105, 146

opattr 27
Open Watcom Far Call Optimization Enabling
Utility 64

155

Index

Open Watcom Make
WMAKE 85
OPTIMIZE
WMAKE directive 88, 105, 124
option 27
0sS2 11
DOSCALLSLIB 11
owcc 18
command line format 13
owcc options
b <system name> 16
cl4
compile 14
fd[=<directive file>] 17
fm[=<map_file>] 17
mstack-size=<size> 17
o014
s 14,17
wl 17
X 14

page 27
patches 75

path 121
PATH environment variable 75, 112
pause
WMAKE 137
PHAPI.LIB 11
Phar Lap
286 DOS Extender 11
popcontext 27
PRECIOUS
WMAKE directive 103, 106
preprocessing directives
WMAKE 128
PROCEDURE
WMAKE directive 106
program maintenance 85
proto 27
prototypes 127
purge 27
pushcontext 27

156

RECHECK

WMAKE directive 106
recompile 86, 126, 130
record 27
reducing maintenance 131
removing debug information 79
replace 129
return codes 100, 103, 106
rule command list 94

SET
INCLUDE environment variable 140
LIB environment variable 10, 140
LIBOS2 environment variable 10
using Open Watcom Make 140-141
WCL environment variable 9-10
WCL 386 environment variable 9-10
setting
modification date 151
modification time 151
setting environment variables 132, 140
shell
CMD.EXE 139
COMMAND.COM 139
SILENT
WMAKE directive 107
single colon explicit rule 94
strip utility 79
subtitle 27
subttl 27
SUFFIXES
WMAKE directive 108, 146
suppressing output 107
SYMBOLIC
WMAKE directive 108, 112-113, 144
systeminitiaization file 140
AUTOEXEC.BAT 9
CONFIG.SYS 9

Index

target 94

target deletion prompt 87, 92
this 27

time-stamp 85, 151

title 27

Touch 86, 92, 137, 151
touch utility 151

typedef 27

union 27
UNIX 94, 145
UNIX compatibility modein Make 92

w

WASM

command line format 21
WCL 9-10

command line format 3
WCL environment variable 9-10
WCL options

@ 8

bcl=<system name> 7

c4

cc 4

cct+ 4

compile 4

fd[=<directive file>] 7

fe=<executable> 7

fm[=<map_file>] 7

k<stack_size> 7

|=<system_name> 7

Ip 7,10

Ir 7

X 8

y 4
WCL386 9-10

command lineformat 3
WCL 386 environment variable 9-10

WCL 386 options
@ 8
bcl=<system name> 7
c4
cc 4
ccH+ 4
compile 4
fd[=<directive file>] 7
fe=<executable> 7
fm[=<map file>] 7
k<stack_size> 7
|=<system _name> 7
Ip 10
x 8
y 4
WDIS
command line format 53
WDIS example 58
WDIS options 54
ab4
et
fi 55
fp 55
fr 55
fu 56
i 54
| (lowercase L) 56
m 57
p 56
s 57
width 27
WLIB
command file 44
command line format 39
operations 40
WLIB options 45
b 45
c 45
d 45
f 45
i 46
| (lower case L) 46
m 47
n 47
o 47
p 47
g 48
s 48
t 48
v 48
X 49
WLINK debug options 114
WMAKE
I command execution 139

157

Index

":" behaviour 96 setting environment variables 132, 140
":" explicit rule 94 single colon explicit rule 94
"::" behaviour 128 special macros 92

" explicit rule 127 suppressing output 107

* command execution 139 target 94

.DEFfiles 127 target deletion prompt 87, 92
<redirection 139 time-stamp 85

> redirection 139 touch 86, 92, 137

batch files 130 UNIX 94, 145

Bell Laboratories 94 UNIX compatibility mode 92
checking macro values 133 WTOUCH 137

command execution 139 | redirection 139

common information 128 WMAKE command line
debugging makefiles 87, 145 defining macros 85, 132
declarations 94 format 85

dependency 94 help 86

dependent 94 invoking WMAKE 85, 94, 129, 131
dependent extension 118 options 86

different memory model libraries 128 summary 86

double colon explicit rule 127 targets 86, 131

duplicated information 128 WMAKE command prefix
dynamic variables 141 - 103

environment variables 112, 131-132, 140 @ 107

explicit rule 94, 127 WMAKE directives

Feldman, S.I 94 AFTER 98, 137

finding targets 121 ALWAYS 98

ignoring return codes 103 AUTODEPEND 99, 103
implicit rule 118 .BEFORE 99, 137
includefile 129 .BLOCK 87,99
initialization file 138 .CONTINUE 88, 99

large projects 128 .DEFAULT 100, 137

larger applications 122 .ERASE 87, 100

libraries 128 .ERROR 101, 138

line continuation 112 .EXISTSONLY 101

macro construction 113, 127 .EXPLICIT 101

macro definition 133 .EXTENSIONS 102, 119
macro identifier 109, 131 FUZzY 103

macro text 133 .HOLD 92, 103

macros 109, 133 IGNORE 88, 103
maintaining libraries 128 JUST_ENOUGH 103-104
MAKEFILE 87,94 .MULTIPLE 104
MAKEFILE comments 94 .NOCHECK 87, 97, 105, 146
MAKEINIT 138 .OPTIMIZE 88, 105, 124
memory model 128 .PRECIOUS 103, 106
multiple dependents 95 .PROCEDURE 106
multiple source directories 122 .RECHECK 106

multiple targets 95 SILENT 107

path 121 SUFFIXES 108, 146
preprocessing directives 128 .SYMBOLIC 108, 112-113, 144
recompile 126 WMAKE internal commands
reducing maintenance 131 %abort 142

reference 85 Y%append 142-143

return codes 100, 103, 106 %create 142-143

rule command list 94 Y%erase 142-143

158

Index

%make 142-143

%null 142, 144, 146

%quit 142

%stop 142, 145

%write 142-143
WMAKE options

a 86, 126, 130

b 87

c 87

d 87

e 87

f 87,94, 132

h 87

i 87,103

k 88

| 88

m 88

ms 88

n 88

o 88

p 89

q 89

r 89

s 91, 107

sn 91

t 92

u 92

v 92

y 92

z 92
WMAKE preprocessing

ldefine 134

lelse 132

lendif 132

lerror 135

lifdef 132

lifeq 132

lifegi 132

lifndef 132

lifneq 132

lifnegi 132

linclude 128

linject 113

lloaddll 135

lundef 135

DLL support 135
__LOADDLL__ 136

WMAKE special macros
$# 92, 117
$$ 92, 117
$(%o<environment_var>) 112, 131
$(%cdrive) 112
$(%cwd) 112
$(%path) 112, 140

$* 92, 146

$+ 112-113, 127

$ 112-113, 127

$< 92,146

$? 92, 146

$@ 92, 146

$[93, 115

$[form 93, 115, 119
$[& 93,115

$[* 93,115

$[: 93,115

@ 93,115

$] 93,115

$] form 93, 115, 119
$]& 93,115

$]* 93,115

$]: 93,115

$|@ 93,115

$ 93,115

$" form 93, 115, 119
$& 93,115

=+ 93,115

$: 93,115

$@ 93,115

WSTRIP 79

command line format 79
diagnostics 81

WTOUCH 86, 92, 137

command line format 151

WTOUCH options 151

159

