
Watcom C/C++

Programmer’s Guide

Version 1.8

Notice of Copyright
Copyright  2002-2008 the Open Watcom Contributors. Portions Copyright  1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

ii

Preface
The Watcom C/C++ Programmer’s Guide includes the following major components:

• DOS Programming Guide

• The DOS/4GW DOS Extender

• Windows 3.x Programming Guide

• Windows NT Programming Guide

• OS/2 Programming Guide

• Novell NLM Programming Guide

• Mixed Language Programming

• Common Problems

Acknowledgements
This book was produced with the Watcom GML electronic publishing system, a software tool developed by
WATCOM. In this system, writers use an ASCII text editor to create source files containing text annotated
with tags. These tags label the structural elements of the document, such as chapters, sections, paragraphs,
and lists. The Watcom GML software, which runs on a variety of operating systems, interprets the tags to
format the text into a form such as you see here. Writers can produce output for a variety of printers,
including laser printers, using separately specified layout directives for such things as font selection,
column width and height, number of columns, etc. The result is type-set quality copy containing integrated
text and graphics.

Many users have provided valuable feedback on earlier versions of the Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have
some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual
DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.

OS/2 is a trademark of International Business Machines Corp. IBM Developer’s Toolkit, Presentation
Manager, and OS/2 are trademarks of International Business Machines Corp. IBM is a registered
trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows NT is a
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

iii

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iv

Table of Contents
1 Watcom C/C++ Application Development .. 1

DOS Programming Guide ... 3

2 Creating 16-bit DOS Applications ... 5
2.1 The Sample Application ... 5
2.2 Building and Running the Sample DOS Application .. 5
2.3 Debugging the Sample DOS Application .. 6

3 Creating 32-bit Phar Lap 386|DOS-Extender Applications ... 9
3.1 The Sample Application ... 9
3.2 Building and Running the Sample 386|DOS-Extender Application 9
3.3 Debugging the Sample 386|DOS-Extender Application .. 10

4 Creating 32-bit DOS/4GW Applications .. 13
4.1 The Sample Application ... 13
4.2 Building and Running the Sample DOS/4GW Application ... 13
4.3 Debugging the Sample DOS/4GW Application .. 14

5 32-bit Extended DOS Application Development ... 17
5.1 Introduction .. 17
5.2 How can I write directly to video memory using a DOS extender? 18

5.2.1 Writing to Video Memory under Tenberry Software DOS/4GW 18
5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-Extender 19

5.3 How do I get information about free memory in the 32-bit environment? 19
5.3.1 Getting Free Memory Information under DOS/4GW ... 20
5.3.2 Getting Free Memory Information under the Phar Lap 386|DOS-Extender 21
5.3.3 Getting Free Memory Information in the 32-bit Environment under

Windows 3.x .. 22
5.4 How do I access the first megabyte in the extended DOS environment? 24

5.4.1 Accessing the First Megabyte under Tenberry Software DOS/4GW 24
5.4.2 Accessing the First Megabyte under the Phar Lap 386|DOS-Extender 25

5.5 How do I spawn a protected-mode application? .. 26
5.5.1 Spawning Protected-Mode Applications Under Tenberry Software

DOS/4GW ... 26
5.5.2 Spawning Protected-Mode Applications Under Phar Lap 386|DOS-Extender ... 27

5.6 How Can I Use the Mouse Interrupt (0x33) with DOS/4GW? .. 28
5.7 How Do I Simulate a Real-Mode Interrupt with DOS/4GW? ... 30
5.8 How do you install a bi-modal interrupt handler using DOS/4GW? 32

The DOS/4GW DOS Extender ... 37

6 The Tenberry Software DOS/4GW DOS Extender .. 39

7 Linear Executables ... 41
7.1 The Linear Executable Format ... 41

7.1.1 The Stub Program .. 41
7.2 Memory Use ... 42

8 Configuring DOS/4GW .. 45

v

Table of Contents
8.1 The DOS4G Environment Variable ... 45
8.2 Changing the Switch Mode Setting ... 46
8.3 Fine Control of Memory Usage ... 47

8.3.1 Specifying a Range of Extended Memory ... 47
8.3.2 Using Extra Memory ... 48

8.4 Setting Runtime Options .. 49
8.5 Controlling Address Line 20 .. 50

9 VMM .. 51
9.1 VMM Default Parameters .. 51
9.2 Changing the Defaults .. 52

9.2.1 The .VMC File ... 52

10 Interrupt 21H Functions ... 53
10.1 Functions 25H and 35H: Interrupt Handling in Protected Mode 56

10.1.1 32-Bit Gates ... 56
10.1.2 Chaining 16-bit and 32-bit Handlers ... 57
10.1.3 Getting the Address of the Interrupt Handler .. 57

11 Interrupt 31H DPMI Functions .. 59
11.1 Using Interrupt 31H Function Calls ... 59
11.2 Int31H Function Calls .. 60

11.2.1 Local Descriptor Table (LDT) Management Services 60
11.2.2 DOS Memory Management Services .. 65
11.2.3 Interrupt Services ... 67
11.2.4 Translation Services .. 69
11.2.5 DPMI Version .. 76
11.2.6 Memory Management Services ... 77
11.2.7 Page Locking Services ... 78
11.2.8 Demand Paging Performance Tuning Services ... 79
11.2.9 Physical Address Mapping .. 80
11.2.10 Virtual Interrupt State Functions ... 81
11.2.11 Vendor Specific Extensions ... 83
11.2.12 Coprocessor Status .. 83

12 Utilities ... 85
12.1 DOS4GW ... 86
12.2 PMINFO ... 87
12.3 PRIVATXM ... 89
12.4 RMINFO .. 90

13 Error Messages ... 93
13.1 Kernel Error Messages ... 93
13.2 DOS/4G Errors ... 96

14 DOS/4GW Commonly Asked Questions ... 101
14.1 Access to Technical Support .. 101
14.2 Differences Within the DOS/4G Product Line .. 102
14.3 Addressing ... 105
14.4 Interrupt and Exception Handling .. 106
14.5 Memory Management .. 108
14.6 DOS, BIOS, and Mouse Services .. 109

vi

Table of Contents
14.7 Virtual Memory .. 109
14.8 Debugging .. 112
14.9 Compatibility ... 115

Windows 3.x Programming Guide ... 117

15 Creating 16-bit Windows 3.x Applications .. 119
15.1 The Sample GUI Application .. 119
15.2 Building and Running the GUI Application .. 120
15.3 Debugging the GUI Application .. 120

16 Porting Non-GUI Applications to 16-bit Windows 3.x .. 123
16.1 Console Device in a Windowed Environment ... 123
16.2 The Sample Non-GUI Application .. 123
16.3 Building and Running the Non-GUI Application .. 124
16.4 Debugging the Non-GUI Application .. 125
16.5 Default Windowing Library Functions .. 126

17 Creating 32-bit Windows 3.x Applications .. 127
17.1 The Sample GUI Application .. 127
17.2 Building and Running the GUI Application .. 128
17.3 Debugging the GUI Application .. 129

18 Porting Non-GUI Applications to 32-bit Windows 3.x .. 131
18.1 Console Device in a Windowed Environment ... 131
18.2 The Sample Non-GUI Application .. 131
18.3 Building and Running the Non-GUI Application .. 132
18.4 Debugging the Non-GUI Application .. 134
18.5 Default Windowing Library Functions .. 135

19 The Watcom 32-bit Windows 3.x Extender ... 137
19.1 Pointers ... 137
19.2 Implementation Overview .. 138
19.3 System Structure .. 139
19.4 System Overview ... 139
19.5 Steps to Obtaining a 32-bit Application ... 140

20 Windows 3.x 32-bit Programming Overview .. 141
20.1 WINDOWS.H .. 141
20.2 Environment Notes .. 142
20.3 Floating-point Emulation ... 142
20.4 Multiple Instances .. 143
20.5 Pointer Handling .. 143

20.5.1 When To Convert Incoming Pointers .. 144
20.5.2 When To Convert Outgoing Pointers .. 144

20.5.2.1 SendMessage and SendDlgItemMessage .. 145
20.5.3 GlobalAlloc and LocalAlloc .. 146
20.5.4 Callback Function Pointers .. 146

20.5.4.1 Window Sub-classing .. 149
20.6 Calling 16-bit DLLs ... 150

20.6.1 Making DLL Calls Transparent ... 151

vii

Table of Contents
20.7 Far Pointer Manipulation ... 152
20.8 _16 Functions ... 153

21 Windows 32-Bit Dynamic Link Libraries .. 155
21.1 Introduction to 32-Bit DLLs .. 155
21.2 A Sample 32-bit DLL .. 156
21.3 Calling Functions in a 32-bit DLL from a 16-bit Application ... 158
21.4 Writing a 16-bit Cover for the 32-bit DLL .. 159
21.5 Creating and Debugging Dynamic Link Libraries ... 160

21.5.1 Building the Applications .. 161
21.5.2 Installing the Examples under Windows ... 161
21.5.3 Running the Examples ... 161
21.5.4 Debugging a 32-bit DLL ... 161
21.5.5 Summary .. 162

22 Interfacing Visual Basic and Watcom C/C++ DLLs .. 163
22.1 Introduction to Visual Basic and DLLs ... 163
22.2 A Working Example .. 164
22.3 Sample Visual Basic DLL Programs ... 166

22.3.1 Source Code for VBDLL32.DLL .. 166
22.3.2 Source code for COVER16.DLL ... 167

22.4 Compiling and Linking the Examples .. 168

23 WIN386 Library Functions and Macros ... 169
AllocAlias16 ... 170
AllocHugeAlias16 ... 171
_Call16 .. 172
DefineDLLEntry ... 174
DefineUserProc16 ... 175
FreeAlias16 ... 177
FreeHugeAlias16 ... 178
FreeIndirectFunctionHandle ... 179
GetIndirectFunctionHandle ... 181
GetProc16 .. 183
InvokeIndirectFunction ... 186
MapAliasToFlat .. 188
MK_FP16 .. 189
MK_FP32 .. 190
MK_LOCAL32 ... 191
PASS_WORD_AS_POINTER ... 192
ReleaseProc16 ... 193

24 32-bit Extended Windows Application Development .. 195
24.1 Can you call 16-bit code from a 32-bit Windows application? 195
24.2 Can I WinExec another Windows application? ... 195
24.3 How do I add my Windows resources? .. 196
24.4 All function pointers passed to Windows must be 16-bit far pointers, correct? 196
24.5 Why are 32-bit callback routines FAR? ... 196
24.6 Why use the _16 API functions? .. 196
24.7 What about pointers in structures? ... 197
24.8 When do I use MK_FP32? ... 197
24.9 What is the difference between AllocAlias16 and MK_FP16? 197

viii

Table of Contents
24.10 Tell Me More About Thunking and Aliases .. 197

25 Special Variables for Windows Programming ... 199

26 Definitions of Windows Terms .. 201

27 Special Windows API Functions .. 203

Windows NT Programming Guide ... 207

28 Windows NT Programming Overview ... 209
28.1 Windows NT Programming Note .. 209
28.2 Windows NT Character-mode Versus GUI ... 209

29 Creating Windows NT GUI Applications .. 211
29.1 The Sample GUI Application .. 211
29.2 Building and Running the GUI Application .. 211
29.3 Debugging the GUI Application .. 212

30 Creating Windows NT Character-mode Applications .. 215
30.1 The Sample Character-mode Application .. 215
30.2 Building and Running the Character-mode Application .. 215
30.3 Debugging the Character-mode Application ... 216

31 Windows NT Multi-threaded Applications .. 219
31.1 Programming Considerations ... 219
31.2 Creating Threads .. 219

31.2.1 Creating a New Thread .. 220
31.2.2 Terminating the Current Thread .. 220
31.2.3 Getting the Current Thread Identifier .. 220

31.3 A Multi-threaded Example ... 221

32 Windows NT Dynamic Link Libraries ... 223
32.1 Creating Dynamic Link Libraries .. 223
32.2 Creating a Sample Dynamic Link Library ... 224
32.3 Using Dynamic Link Libraries ... 227
32.4 The Dynamic Link Library Data Area ... 229

33 Creating Windows NT POSIX Applications .. 231

OS/2 Programming Guide ... 235

34 Creating 16-bit OS/2 1.x Applications ... 237
34.1 The Sample Application ... 237
34.2 Building and Running the Sample OS/2 1.x Application .. 238
34.3 Debugging the Sample OS/2 1.x Application .. 238

35 Creating 32-bit OS/2 Applications ... 241
35.1 The Sample Application ... 241
35.2 Building and Running the Sample OS/2 Application .. 242

ix

Table of Contents
35.3 Debugging the Sample OS/2 Application .. 242

36 OS/2 2.x Multi-threaded Applications ... 245
36.1 Programming Considerations ... 245
36.2 Creating Threads .. 245

36.2.1 Creating a New Thread .. 246
36.2.2 Terminating the Current Thread .. 246
36.2.3 Getting the Current Thread Identifier .. 246

36.3 A Multi-threaded Example ... 247
36.4 Thread Limits ... 248

37 OS/2 2.x Dynamic Link Libraries .. 249
37.1 Creating Dynamic Link Libraries .. 249
37.2 Creating a Sample Dynamic Link Library ... 250
37.3 Using Dynamic Link Libraries ... 252
37.4 The Dynamic Link Library Data Area ... 253
37.5 Dynamic Link Library Initialization/Termination ... 253

38 Programming for OS/2 Presentation Manager ... 255
38.1 Porting Existing C/C++ Applications .. 255

38.1.1 An Example ... 255
38.2 Calling Presentation Manager API Functions .. 256

39 Developing an OS/2 Physical Device Driver ... 259

Novell NLM Programming Guide .. 263

40 Creating NetWare 386 NLM Applications ... 265

Mixed Language Programming .. 267

41 Inter-Language calls: C and FORTRAN .. 269
41.1 Symbol Naming Convention .. 269
41.2 Argument Passing Convention ... 270
41.3 Memory Model Compatibility ... 270
41.4 Linking Considerations .. 271
41.5 Integer Type Compatibility .. 271
41.6 How do I pass integers from C to a FORTRAN function? .. 271
41.7 How do I pass integers from FORTRAN to a C function? .. 272
41.8 How do I pass a string from a C function to FORTRAN? ... 273
41.9 How do I pass a string from FORTRAN to a C function? ... 274
41.10 How do I access a FORTRAN common block from within C? 275
41.11 How do I call a C function that accepts a variable number of arguments? 276

Common Problems .. 277

42 Commonly Asked Questions and Answers .. 279
42.1 Determining my current patch level ... 279
42.2 Converting to Watcom C/C++ ... 280

x

Table of Contents
42.2.1 Conversion from UNIX compilers .. 282
42.2.2 Conversion from IBM-compatible PC compilers .. 283

42.3 What you should know about optimization ... 284
42.4 The compiler cannot find "stdio.h" .. 285
42.5 Resolving an "Undefined Reference" linker error ... 286
42.6 Why my variables are not set to zero ... 287
42.7 What does "size of DGROUP exceeds 64K" mean for 16-bit applications? 288
42.8 What does "NULL assignment detected" mean in 16-bit applications? 289
42.9 What "Stack Overflow!" means ... 290
42.10 Why redefinition errors are issued from WLINK .. 291
42.11 How more than 20 files at a time can be opened ... 292
42.12 How source files can be seen in the debugger ... 293
42.13 The difference between the "d1" and "d2" compiler options ... 295

xi

List of Figures
Figure 1. Basic Memory Layout ... 43
Figure 2. Physical Memory/Linear Address Space .. 44
Figure 3. Access Rights/Type .. 63
Figure 4. Extended Access Rights/Type .. 64
Figure 5. WIN386 Structure ... 139
Figure 6. 32-bit Application Structure ... 139

xii

1 Watcom C/C++ Application Development

This document contains guides to application development for several environments including 16-bit DOS,
32-bit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows NT/2000/XP, Win9x, OS/2,
and Novell NLMs. It also describes mixed language (C, FORTRAN) application development. It
concludes with a chapter on some general questions and the answers to them.

This document covers the following topics:

• DOS Programming Guide

Creating 16-bit DOS Applications
Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/4GW Applications
32-bit Extended DOS Application Development

• The DOS/4GW DOS Extender

The Tenberry Software DOS/4GW DOS Extender
Linear Executables
Configuring DOS/4GW
VMM
Interrupt 21H Functions
Interrupt 31H DPMI Functions
Utilities
Error Messages
DOS/4GW Commonly Asked Questions

• Windows 3.x Programming Guide

Creating 16-bit Windows 3.x Applications
Porting Non-GUI Applications to 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications
Porting Non-GUI Applications to 32-bit Windows 3.x
The Watcom 32-bit Windows Extender
Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries
Interfacing Visual Basic and Watcom C/C++ DLLs
WIN386 Library Functions and Macros
32-bit Extended Windows Application Development
Special Variables for Windows Programming
Definitions of Windows Terms
Special Windows API Functions

• Windows NT Programming Guide

Watcom C/C++ Application Development 1

Chapter 1

Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applications to Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries

• OS/2 Programming Guide

Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications
OS/2 Multi-threaded Applications
OS/2 Dynamic Link Libraries
Programming for OS/2 Presentation Manager

• Novell NLM Programming Guide

Creating NetWare 386 NLM Applications

• Mixed Language Programming

Inter-Language calls: C and FORTRAN

• Common Problems

Commonly Asked Questions and Answers

2 Watcom C/C++ Application Development

DOS Programming Guide

DOS Programming Guide

4

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample application and
showing you how to compile, link, run and debug it.

2.1 The Sample Application
To demonstrate the creation of 16-bit DOS applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

2.2 Building and Running the Sample DOS Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl /l=dos hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS Application 5

DOS Programming Guide

C>wcl /l=dos hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a DOS executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). It is hello.exe that is run by DOS when you enter the
"hello" command.

2.3 Debugging the Sample DOS Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, this is fairly straightforward. WCL recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl /l=dos /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

6 Debugging the Sample DOS Application

Creating 16-bit DOS Applications

C>wcl /l=dos /d2 hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c /d2
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a DOS executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

C>wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 7

DOS Programming Guide

8 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386|DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender applications simply and
quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by taking a small
sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application
To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using command-line
oriented tools, we introduce a simple sample program. For our example, we are going to use the famous
"hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

3.2 Building and Running the Sample 386|DOS-Extender
Application

To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl386 /l=pharlap hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample 386|DOS-Extender Application 9

DOS Programming Guide

C>wcl386 /l=pharlap hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Phar Lap simple executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>run386 hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exp (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). It is hello.exp that is run by DOS when you enter the
"run386 hello" command.

3.3 Debugging the Sample 386|DOS-Extender Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 /l=pharlap /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

10 Debugging the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386|DOS-Extender Applications

C>wcl386 /l=pharlap /d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c /d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Phar Lap simple executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

C>wd /trap=pls hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample 386|DOS-Extender Application 11

DOS Programming Guide

12 Debugging the Sample 386|DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/4GW applications simply and quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample application
and showing you how to compile, link, run and debug it.

4.1 The Sample Application
To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

4.2 Building and Running the Sample DOS/4GW Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl386 /l=dos4g hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS/4GW Application 13

DOS Programming Guide

C>wcl386 /l=dos4g hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a DOS/4G executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). It is hello.exe that is run by DOS when you enter the
"hello" command.

4.3 Debugging the Sample DOS/4GW Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 /l=dos4g /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

14 Debugging the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

C>wcl386 /l=dos4g /d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c /d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a DOS/4G executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

C>wd /trap=rsi hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS/4GW Application 15

DOS Programming Guide

16 Debugging the Sample DOS/4GW Application

5 32-bit Extended DOS Application Development

5.1 Introduction
The purpose of this chapter is to anticipate common programming questions for 32-bit extended DOS
application development. Note that these programming solutions may be DOS-extender specific and
therefore may not work for other DOS extenders.

The following topics are discussed in this chapter:

• How can I write directly to video memory using a DOS extender?

• How do I get information about free memory in the 32-bit environment?

• How do I access the first megabyte in the extended DOS environment?

• How do I spawn a protected-mode application?

• How can I use the mouse interrupt (0x33) with DOS/4GW?

• How do I simulate a real-mode interrupt with DOS/4GW?

• How do you install a bi-modal interrupt handler with DOS/4GW?

Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on DPMI
services. In the past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065
Santa Clara, California
U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Introduction 17

DOS Programming Guide

5.2 How can I write directly to video memory using a DOS
extender?

Many programmers require access to video RAM in order to directly manipulate data on the screen. Under
DOS, it was standard practice to use a far pointer, with the segment part of the far pointer set to the screen
segment. Under DOS extenders, this practice is not so standard. Each DOS extender provides its own
method for accessing video memory.

5.2.1 Writing to Video Memory under Tenberry Software DOS/4GW
Under DOS/4GW, the first megabyte of physical memory is mapped as a shared linear address space. This
allows your application to access video RAM using a near pointer set to the screen’s linear address. The
following program demonstrates this method.

/*

SCREEN.C - This example shows how to write directly
to screen memory under the DOS/4GW dos-extender.

Compile & Link: wcl386 -l=dos4g SCREEN
*/

#include <stdio.h>
#include <dos.h>

/*
Under DOS/4GW, the first megabyte of physical memory
(real-mode memory) is mapped as a shared linear address
space. This allows your application to access video RAM
using its linear address. The DOS segment:offset of
B800:0000 corresponds to a linear address of B8000.

*/
#define SCREEN_AREA 0xb800
#define SCREEN_LIN_ADDR ((SCREEN_AREA) << 4)
#define SCREEN_SIZE 80*25
void main()
{

char *ptr;
int i;

/* Set the pointer to the screen’s linear address */
ptr = (char *)SCREEN_LIN_ADDR;
for(i = 0; i < SCREEN_SIZE - 1; i++) {

ptr = ’’;
ptr += 2 * sizeof(char);

}
}

Please refer to the chapter entitled "Linear Executables" on page 41 for more information on how
DOS/4GW maps the first megabyte.

18 How can I write directly to video memory using a DOS extender?

32-bit Extended DOS Application Development

5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-Extender
The Phar Lap DOS extender provides screen access through the special segment selector 0x1C. This
allows far pointer access to video RAM from a 32-bit program. The following example illustrates this
technique.

/*

SCREENPL.C - This example shows how to write directly
to screen memory under the Phar Lap DOS extender.

Compile & Link: wcl386 -l=pharlap SCREENPL
*/

#include <stdio.h>
#include <dos.h>

/*
Phar Lap allows access to screen memory through a
special selector. Refer to "Hardware Access" in
Phar Lap’s documentation for details.

*/
#define PL_SCREEN_SELECTOR 0x1c
#define SCREEN_SIZE 80*25
void main()
{

/* Need a far pointer to use the screen selector */
char far *ptr;
int i;

/* Make a far pointer to screen memory */
ptr = MK_FP(PL_SCREEN_SELECTOR, 0);
for(i = 0; i < SCREEN_SIZE - 1; i++) {

ptr = ’’;
ptr += 2 * sizeof(char);

}
}

It is also possible to map screen memory into your near memory using Phar Lap system calls. Please refer
to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s 386|DOS-Extender Reference
Manual for details.

5.3 How do I get information about free memory in the 32-bit
environment?

Under a virtual memory system, programmers are often interested in the amount of physical memory they
can allocate. Information about the amount of free memory that is available is always provided under a
DPMI host, however, the manner in which this information is provided may differ under various
environments. Keep in mind that in a multi-tasking environment, the information returned to your task
from the DPMI host can easily become obsolete if other tasks allocate memory independently of your task.

How do I get information about free memory in the 32-bit environment? 19

DOS Programming Guide

5.3.1 Getting Free Memory Information under DOS/4GW
DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI service
0x0500 to get free memory information. The following program illustrates this procedure.

/*

MEMORY.C - This example shows how to get information
about free memory using DPMI call 0500h under DOS/4GW.
Note that only the first field of the structure is
guaranteed to contain a valid value; any field that
is not returned by DOS/4GW is set to -1 (0FFFFFFFFh).

Compile & Link: wcl386 -l=dos4g memory
*/

#include <i86.h>
#include <dos.h>
#include <stdio.h>

#define DPMI_INT 0x31

struct meminfo {
unsigned LargestBlockAvail;
unsigned MaxUnlockedPage;
unsigned LargestLockablePage;
unsigned LinAddrSpace;
unsigned NumFreePagesAvail;
unsigned NumPhysicalPagesFree;
unsigned TotalPhysicalPages;
unsigned FreeLinAddrSpace;
unsigned SizeOfPageFile;
unsigned Reserved[3];

} MemInfo;

void main()
{

union REGS regs;
struct SREGS sregs;

regs.x.eax = 0x00000500;
memset(&sregs, 0, sizeof(sregs));
sregs.es = FP_SEG(&MemInfo);
regs.x.edi = FP_OFF(&MemInfo);

20 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

int386x(DPMI_INT, ®s, ®s, &sregs);
printf("Largest available block (in bytes): %lu\n",

MemInfo.LargestBlockAvail);
printf("Maximum unlocked page allocation: %lu\n",

MemInfo.MaxUnlockedPage);
printf("Pages that can be allocated and locked: "

"%lu\n", MemInfo.LargestLockablePage);
printf("Total linear address space including "

"allocated pages: %lu\n",
MemInfo.LinAddrSpace);

printf("Number of free pages available: %lu\n",
MemInfo.NumFreePagesAvail);

printf("Number of physical pages not in use: %lu\n",
MemInfo.NumPhysicalPagesFree);

printf("Total physical pages managed by host: %lu\n",
MemInfo.TotalPhysicalPages);

printf("Free linear address space (pages): %lu\n",
MemInfo.FreeLinAddrSpace);

printf("Size of paging/file partition (pages): %lu\n",
MemInfo.SizeOfPageFile);

}

Please refer to the chapter entitled "Interrupt 31H DPMI Functions" on page 59 for more information on
DPMI services.

5.3.2 Getting Free Memory Information under the Phar Lap 386|DOS-Extender
Phar Lap provides memory statistics through 386|DOS-Extender System Call 0x2520. The following
example illustrates how to use this system call from a 32-bit program.

/*

MEMPLS40.C - This is an example of how to get the
amount of physical memory present under Phar Lap
386|DOS-Extender v4.0.

Compile & Link: wcl386 -l=pharlap MEMPLS40
*/

#include <dos.h>
#include <stdio.h>

typedef struct {
unsigned data[25];

} pharlap_mem_status;

/* Names suggested in Phar Lap documentation */
#define APHYSPG 5
#define SYSPHYSPG 7
#define NFREEPG 21

unsigned long memavail(void)
{

pharlap_mem_status status;
union REGS regs;
unsigned long amount;

How do I get information about free memory in the 32-bit environment? 21

DOS Programming Guide

regs.h.ah = 0x25;
regs.h.al = 0x20;
regs.h.bl = 0;
regs.x.edx = (unsigned int) &status;
intdos(®s, ®s);
/* equation is given in description for nfreepg */
amount = status.data[APHYSPG];
amount += status.data[SYSPHYSPG];
amount += status.data[NFREEPG];
return(amount * 4096);

}

void main()
{

printf("%lu bytes of memory available\n",
memavail());

}

Please refer to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s 386|DOS-Extender
Reference Manual for more information on 386|DOS-Extender System Calls.

5.3.3 Getting Free Memory Information in the 32-bit Environment under
Windows 3.x

Windows 3.x provides a DPMI host that you can access from a 32-bit program. The interface to this host is
a 16-bit interface, hence there are some considerations involved when calling Windows 3.x DPMI services
from 32-bit code. If a pointer to a data buffer is required to be passed in ES:DI, for example, an
AllocAlias16() may be used to get a 16-bit far pointer that can be passed to Windows 3.x through these
registers. Also, an int86() call should be issued rather than an int386() call. The following program
demonstrates the techniques mentioned above.

/*

MEMWIN.C - This example shows how to get information
about free memory with DPMI call 0x0500 using Windows
as a DPMI host. Note that only the first field of the
structure is guaranteed to contain a valid value; any
field that is not returned by the DPMI implementation
is set to -1 (0FFFFFFFFh).

Compile & Link: wcl386 -l=win386 -zw memwin
Bind: wbind -n memwin

*/
#include <windows.h>
#include <i86.h>
#include <dos.h>
#include <stdio.h>

22 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

struct meminfo {
unsigned LargestBlockAvail;
unsigned MaxUnlockedPage;
unsigned LargestLockablePage;
unsigned LinAddrSpace;
unsigned NumFreePagesAvail;
unsigned NumPhysicalPagesFree;
unsigned TotalPhysicalPages;
unsigned FreeLinAddrSpace;
unsigned SizeOfPageFile;
unsigned Reserved[3];

} MemInfo;

#define DPMI_INT 0x31
void main()
{

union REGS regs;
struct SREGS sregs;
DWORD mi_16;

regs.w.ax = 0x0500;
mi_16 = AllocAlias16(&MemInfo);
sregs.es = HIWORD(mi_16);
regs.x.di = LOWORD(mi_16);

int86x(DPMI_INT, ®s, ®s, &sregs);
printf("Largest available block (in bytes): %lu\n",

MemInfo.LargestBlockAvail);
printf("Maximum unlocked page allocation: %lu\n",

MemInfo.MaxUnlockedPage);
printf("Pages that can be allocated and locked: "

"%lu\n", MemInfo.LargestLockablePage);
printf("Total linear address space including "

"allocated pages: %lu\n",
MemInfo.LinAddrSpace);

printf("Number of free pages available: %lu\n",
MemInfo.NumFreePagesAvail);

printf("Number of physical pages not in use: %lu\n",
MemInfo.NumPhysicalPagesFree);

printf("Total physical pages managed by host: %lu\n",
MemInfo.TotalPhysicalPages);

printf("Free linear address space (pages): %lu\n",
MemInfo.FreeLinAddrSpace);

printf("Size of paging/file partition (pages): %lu\n",
MemInfo.SizeOfPageFile);

FreeAlias16(mi_16);
}

Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on DPMI
services. In the past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065
Santa Clara, California
U.S.A. 95051-8065

How do I get information about free memory in the 32-bit environment? 23

DOS Programming Guide

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

5.4 How do I access the first megabyte in the extended DOS
environment?

Many programmers require access to the first megabyte of memory in order to look at key low memory
addresses. Under DOS, it was standard practice to use a far pointer, with the far pointer set to the
segmented address of the memory area that was being inspected. Under DOS extenders, this practice is not
so standard. Each DOS extender provides its own method for accessing the first megabyte of memory.

5.4.1 Accessing the First Megabyte under Tenberry Software DOS/4GW
Under DOS/4GW, the first megabyte of physical memory - the real memory - is mapped as a shared linear
address space. This allows your application to access the first megabyte of memory using a near pointer set
to the linear address. The following program demonstrates this method. This example is similar to the
screen memory access example.

/*

KEYSTAT.C - This example shows how to get the keyboard
status under DOS/4GW by looking at the ROM BIOS
keyboard status byte in low memory.

Compile & Link: wcl386 -l=dos4g keystat
*/

#include <stdio.h>
#include <dos.h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040:0x0017. This corresponds to a
linear address of 0x417.

*/
#define LOW_AREA 0x417

void main()
{

/* Only need a near pointer in the flat model */
char *ptr;

/* Set pointer to linear address of the first
status byte */

ptr = (char *)LOW_AREA;

/* Caps lock state is in bit 6 */
if(*ptr & 0x40) {

puts("Caps Lock on");
}

24 How do I access the first megabyte in the extended DOS environment?

32-bit Extended DOS Application Development

/* Num lock state is in bit 5 */
if(*ptr & 0x20) {

puts("Num Lock on");
}
/* Scroll lock state is in bit 4 */
if(*ptr & 0x10) {

puts("Scroll Lock on");
}

}

Please refer to the chapter entitled "Linear Executables" on page 41 for more information on how
DOS/4GW maps the first megabyte.

5.4.2 Accessing the First Megabyte under the Phar Lap 386|DOS-Extender
The Phar Lap DOS extender provides access to real memory through the special segment selector 0x34.
This allows far pointer access to the first megabyte from a 32-bit program. The following example
illustrates this technique.

/*

KEYSTAPL.C - This example shows how to get the keyboard
status under 386|DOS-Extender by looking at the ROM
BIOS keyboard status byte in low memory.

Compile & Link: wcl386 -l=pharlap keystapl
*/

#include <stdio.h>
#include <dos.h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040:0x0017. This corresponds to a
linear address of 0x417.

*/

void main()
{

/* We require a far pointer to use selector
for 1st megabyte */

char far *ptr;
/* Set pointer to segmented address of the first

status byte */
ptr = MK_FP(0x34, 0x417);
/* Caps lock state is in bit 6 */
if(*ptr & 0x40) {

puts("Caps Lock on");
}
/* Num lock state is in bit 5 */
if(*ptr & 0x20) {

puts("Num Lock on");
}
/* Scroll lock state is in bit 4 */
if(*ptr & 0x10) {

puts("Scroll Lock on");
}

}

How do I access the first megabyte in the extended DOS environment? 25

DOS Programming Guide

Please refer to the chapter entitled "Program Environment" in Phar Lap’s 386|DOS-Extender Reference
Manual for more information on segment selectors available to your program.

5.5 How do I spawn a protected-mode application?
Sometimes applications need to spawn other programs as part of their execution. In the extended DOS
environment, spawning tasks is much the same as under DOS, however it should be noted that the only
mode supported is P_WAIT. The P_OVERLAY mode is not supported since the DOS extender cannot be
removed from memory by the application (this is also the reason why the exec() functions are unsupported).
The other modes are for concurrent operating systems only.

Also, unless the application being spawned is bound or stubbed, the DOS extender must be spawned with
the application and its arguments passed in the parameter list.

5.5.1 Spawning Protected-Mode Applications Under Tenberry Software
DOS/4GW

In the case of DOS/4GW, some real-mode memory must be set aside at run time for spawning the DOS
extender, otherwise the spawning application could potentially allocate all of system memory. The real
memory can be reserved from within your program by assigning the global variable __minreal the
number of bytes to be set aside. This variable is referenced in <stdlib.h>. The following two
programs demonstrate how to spawn a DOS/4GW application.

/*

SPWNRD4G.C - The following program demonstrates how to
spawn another DOS/4GW application.

Compile and link: wcl386 -l=dos4g spwnrd4g
*/

#include <process.h>
#include <stdio.h>
#include <stdlib.h>

/* DOS/4GW var for WLINK MINREAL option */
unsigned __near __minreal = 100*1024;

void main()
{

int app2_exit_code;

puts("Spawning a protected-mode application..."
"using spawnlp() with P_WAIT");

app2_exit_code = spawnlp(P_WAIT, "dos4gw",
"dos4gw", "spwndd4g", NULL);

printf("Application #2 returned with exit code %d\n",
app2_exit_code);

}

26 How do I spawn a protected-mode application?

32-bit Extended DOS Application Development

/*

SPWNDD4G.C - Will be spawned by the SPWNRD4G program.

Compile & Link: wcl386 -l=dos4g spwndd4g
*/

#include <stdio.h>
#include <stdlib.h>

void main()
{

puts("\nApplication #2 spawned\n");
/* Send back exit code 59 */
exit(59);

}

5.5.2 Spawning Protected-Mode Applications Under Phar Lap
386|DOS-Extender

In the case of the Phar Lap 386|DOS-Extender, some real-mode memory must be set aside at link time for
spawning the DOS extender, otherwise the spawning application will be assigned all the system memory at
startup. This is done at link time by specifying the runtime minreal and runtime maxreal options, as
demonstrated by the following programs.

/*

SPWNRPLS.C - The following program demonstrates how to
spawn a Phar Lap application.

Compile & Link:
wcl386 -l=pharlap -"runt minr=300K,maxr=400K" spwnrpls

*/
#include <process.h>
#include <stdio.h>

void main()
{

int app2_exit_code;

puts("Spawning a protect-mode application..."
"using spawnlp() with P_WAIT");

puts("Spawning application #2...");
app2_exit_code = spawnlp(P_WAIT, "run386",

"run386", "spwndpls", NULL);

printf("Application #2 returned with exit code %d",
app2_exit_code);

}

How do I spawn a protected-mode application? 27

DOS Programming Guide

/*

SPWNDPLS.C - Will be spawned by the SPWNRPLS program.

Compile & Link: wcl386 -l=pharlap spwndpls
*/

#include <stdio.h>
#include <stdlib.h>

void main()
{

puts("\nApplication #2 spawned\n");
/* Exit with error code 59 */
exit(59);

}

5.6 How Can I Use the Mouse Interrupt (0x33) with DOS/4GW?
Several commonly used interrupts are automatically supported in protected mode with DOS/4GW. The
DOS extender handles the switch from protected mode to real mode and manages any intermediate
real-mode data buffers that are required. To use a supported interrupt, set up the register information as
required for the interrupt and use one of the int386() or int386x() library functions to execute the interrupt.
For calls that are not supported by DOS/4GW, you can use the DPMI function, Simulate a Real-Mode
Interrupt (0x0300). This process is described in the next section.

Since the mouse interrupt (0x33) is quite commonly used, DOS/4GW provides protected-mode support for
the interrupt and any mouse data buffer that is required. The following example demonstrates how a
programmer could use the Microsoft standard mouse interrupt (0x33) from within a DOS/4GW application.

/*

MOUSE.C - The following program demonstrates how
to use the mouse interrupt (0x33) with DOS/4GW.

Compile and link: wcl386 -l=dos4g mouse
*/
#include <stdio.h>
#include <dos.h>
#include <i86.h>

int right_button = 0;
int mouse_event = 0;
int mouse_code = 0;
int mouse_cx = 0;
int mouse_dx = 0;

28 How Can I Use the Mouse Interrupt (0x33) with DOS/4GW?

32-bit Extended DOS Application Development

/* Set up data buffer for mouse cursor bitmap */
unsigned short cursor[] =
{

0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000

};
#pragma off (check_stack)
void _loadds far click_handler (int max, int mcx, int mdx)
{
#pragma aux click_handler parm [EAX] [ECX] [EDX]

mouse_event = 1;
mouse_code = max;
mouse_cx = mcx;
mouse_dx = mdx;
if(mouse_code & 8) right_button = 1;

}
#pragma on (check_stack)
void main(void)
{

struct SREGS sregs;
union REGS inregs, outregs;
int installed = 0;
int orig_mode = 0;
int far *ptr;
int (far *function_ptr)();

segread(&sregs);

/* get original video mode */

inregs.w.ax = 0x0f00;
int386(0x10, &inregs, &outregs);

printf("Current Mode = %u\n",
orig_mode=outregs.h.al);

/* check for mouse driver */

inregs.w.ax = 0;
int386 (0x33, &inregs, &outregs);
if(installed = (outregs.w.ax == -1))

printf("Mouse installed...\n");
else

printf("Mouse NOT installed...\n");
if(installed) {

/* goto graphics mode */

inregs.h.ah = 0x00;
inregs.h.al = 0x4;
int386(0x10, &inregs, &outregs);
/* show mouse cursor */

inregs.w.ax = 0x1;
int386(0x33, &inregs, &outregs);

How Can I Use the Mouse Interrupt (0x33) with DOS/4GW? 29

DOS Programming Guide

/* set mouse cursor form */

inregs.w.ax = 0x9;
inregs.w.bx = 0x0;
inregs.w.cx = 0x0;
ptr = cursor;
inregs.x.edx = FP_OFF(ptr);
sregs.es = FP_SEG(ptr);
int386x(0x33, &inregs, &outregs, &sregs);
/* install click watcher */

inregs.w.ax = 0xC;
inregs.w.cx = 0x0002 + 0x0008;
function_ptr = click_handler;
inregs.x.edx = FP_OFF(function_ptr);
sregs.es = FP_SEG(function_ptr);
int386x(0x33, &inregs, &outregs, &sregs);
while(!right_button) {

if(mouse_event) {
printf("Event = %x : CX = %u DX = %u\n",

mouse_code, mouse_cx, mouse_dx);
mouse_event = 0;

}
}

}
/* check installation again (to clear watcher) */

inregs.w.ax = 0;
int386(0x33, &inregs, &outregs);
if(outregs.w.ax == -1)

printf("DONE : Mouse still installed...\n");
else

printf("DONE : Mouse NOT installed...\n");
inregs.h.ah = 0x00;
inregs.h.al = orig_mode;
int386(0x10, &inregs, &outregs);

}

5.7 How Do I Simulate a Real-Mode Interrupt with DOS/4GW?
Some interrupts are not supported in protected mode with DOS/4GW but they can still be called using the
DPMI function, Simulate Real-Mode Interrupt (0x0300). Information that needs to be passed down to the
real-mode interrupt is transferred using an information data structure that is allocated in the protected-mode
application. The address to this protected-mode structure is passed into DPMI function 0x0300.
DOS/4GW will then use this information to set up the real-mode registers, switch to real mode and then
execute the interrupt in real mode.

If your protected-mode application needs to pass data down into the real-mode interrupt, an intermediate
real-mode buffer must be used. This buffer can be created using DPMI function 0x0100 to allocate
real-mode memory. You can then transfer data from the protected-mode memory to the real-mode memory
using a far pointer as illustrated in the "SIMULATE.C" example.

The following example illustrates how to allocate some real-mode memory, transfer a string of characters
from protected mode into the real-mode buffer, then set up and call the Interrupt 0x0021 function to create
a directory. The string of characters are used to provide the directory name. This example can be adapted
to handle most real-mode interrupt calls that aren’t supported in protected mode.

30 How Do I Simulate a Real-Mode Interrupt with DOS/4GW?

32-bit Extended DOS Application Development

/*

SIMULATE.C - Shows how to issue a real-mode interrupt
from protected mode using DPMI call 300h. Any buffers
to be passed to DOS must be allocated in DOS memory
This can be done with DPMI call 100h. This program
will call DOS int 21, function 39h, "Create
Directory".

Compile & Link: wcl386 -l=dos4g simulate
*/
#include <i86.h>
#include <dos.h>
#include <stdio.h>
#include <string.h>

static struct rminfo {
long EDI;
long ESI;
long EBP;
long reserved_by_system;
long EBX;
long EDX;
long ECX;
long EAX;
short flags;
short ES,DS,FS,GS,IP,CS,SP,SS;

} RMI;
void main()
{

union REGS regs;
struct SREGS sregs;
int interrupt_no=0x31;
short selector;
short segment;
char far *str;

/* DPMI call 100h allocates DOS memory */
memset(&sregs,0,sizeof(sregs));
regs.w.ax=0x0100;
regs.w.bx=0x0001;
int386x(interrupt_no, ®s, ®s, &sregs);
segment=regs.w.ax;
selector=regs.w.dx;
/* Move string to DOS real-mode memory */
str=MK_FP(selector,0);
_fstrcpy(str, "myjunk");

/* Set up real-mode call structure */
memset(&RMI,0,sizeof(RMI));
RMI.EAX=0x00003900; /* call service 39h ah=0x39 */
RMI.DS=segment; /* put DOS seg:off into DS:DX*/
RMI.EDX=0; /* DOS ignores EDX high word */
/* Use DPMI call 300h to issue the DOS interrupt */
regs.w.ax = 0x0300;
regs.h.bl = 0x21;
regs.h.bh = 0;
regs.w.cx = 0;
sregs.es = FP_SEG(&RMI);
regs.x.edi = FP_OFF(&RMI);
int386x(interrupt_no, ®s, ®s, &sregs);

}

How Do I Simulate a Real-Mode Interrupt with DOS/4GW? 31

DOS Programming Guide

5.8 How do you install a bi-modal interrupt handler using
DOS/4GW?

Due to the nature of the protected-mode/real-mode interface, it is often difficult to handle high speed
communications with hardware interrupt handlers. For example, if you install your communications
interrupt handler in protected mode, you may find that some data is lost when transmitting data from a
remote machine at the rate of 9600 baud. This occurs because the data arrived at the communication port
while the machine was in the process of transferring the previous interrupt up to protected mode. Data will
also be lost if you install the interrupt handler in real mode since your program, running in protected mode,
will have to switch down into real mode to handle the interrupt. The reason for this is that the data arrived
at the communication port while the DOS extender was switching between real mode and protected mode,
and the machine was not available to process the interrupt.

To avoid the delay caused by switching between real-mode and protected mode to handle hardware
interrupts, install interrupt handlers in both real-mode and protected-mode. During the execution of a
protected-mode program, the system often switches down into real-mode for DOS system calls. If a
communications interrupt occurs while the machine is in real-mode, then the real-mode interrupt handler
will be used. If the interrupt occurs when the machine is executing in protected-mode, then the
protected-mode interrupt handler will be used. This enables the machine to process the hardware interrupts
faster and avoid the loss of data caused by context switching.

Installing the interrupt handlers in both protected-mode and real-mode is called bi-modal interrupt
handling. The following program is an example of how to install both handlers for Interrupt 0x0C (also
known as COM1 or IRQ4). The program writes either a ’P’ to absolute address 0xB8002 or an ’R’ to
absolute address 0xB8000. These locations are the first two character positions in screen memory for a
color display. As the program runs, you can determine which interrupt is handling the COM1 port by the
letter that is displayed. A mouse attached to COM1 makes a suitable demo. Type on the keyboard as you
move the mouse around. The ESC key can be used to terminate the program. Transmitted data from a
remote machine at 9600 baud can also be used to test the COM1 handling.

/*

BIMODAL.C - The following program demonstrates how
to set up a bi-modal interrupt handler for DOS/4GW

Compile and link: wcl386 -l=dos4g bimodal bimo.obj
*/

#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define D32RealSeg(P) ((((DWORD) (P)) >> 4) & 0xFFFF)
#define D32RealOff(P) (((DWORD) (P)) & 0xF)

typedef unsigned int WORD;
typedef unsigned long DWORD;

extern void com1_init (void);
extern void __interrupt pmhandler (void);
extern void __interrupt __far rmhandler (void);

32 How do you install a bi-modal interrupt handler using DOS/4GW?

32-bit Extended DOS Application Development

void *D32DosMemAlloc (DWORD size)
{

union REGS r;

r.x.eax = 0x0100; /* DPMI allocate DOS memory */
r.x.ebx = (size + 15) >> 4; /* Number of paragraphs requested */
int386 (0x31, &r, &r);

if(r.x.cflag) /* Failed */
return ((DWORD) 0);

return (void *) ((r.x.eax & 0xFFFF) << 4);
}
void main (void)
{

union REGS r;
struct SREGS sr;
void *lowp;
void far *fh;
WORD orig_pm_sel;
DWORD orig_pm_off;
WORD orig_rm_seg;
WORD orig_rm_off;
int c;

/* Save the starting protected-mode handler address */
r.x.eax = 0x350C; /* DOS get vector (INT 0Ch) */
sr.ds = sr.es = 0;
int386x (0x21, &r, &r, &sr);
orig_pm_sel = (WORD) sr.es;
orig_pm_off = r.x.ebx;

/*
Save the starting real-mode handler address using DPMI
(INT 31h).

*/
r.x.eax = 0x0200; /* DPMI get real mode vector */
r.h.bl = 0x0C;
int386 (0x31, &r, &r);
orig_rm_seg = (WORD) r.x.ecx;
orig_rm_off = (WORD) r.x.edx;

/*
Allocate 128 bytes of DOS memory for the real-mode
handler, which must of course be less than 128 bytes
long. Then copy the real-mode handler into that
segment.

*/
if(! (lowp = D32DosMemAlloc(128))) {

printf ("Couldn’t get low memory!\n");
exit (1);

}
memcpy (lowp, (void *) rmhandler, 128);

/*
Install the new protected-mode vector. Because INT 0Ch
is in the auto-passup range, its normal "passdown"
behavior will change as soon as we install a
protected-mode handler. After this next call, when a
real mode INT 0Ch is generated, it will be resignalled
in protected mode and handled by pmhandler.

*/
r.x.eax = 0x250C; /* DOS set vector (INT 0Ch) */
fh = (void far *) pmhandler;
r.x.edx = FP_OFF (fh);
/* DS:EDX == &handler */
sr.ds = FP_SEG (fh);
sr.es = 0;
int386x (0x21, &r, &r, &sr);

How do you install a bi-modal interrupt handler using DOS/4GW? 33

DOS Programming Guide

/*
Install the new real-mode vector. We do this after
installing the protected-mode vector in order to
override the "passup" behavior. After the next call,
interrupts will be directed to the appropriate handler,
regardless of which mode we are in when they are
generated.

*/
r.x.eax = 0x0201;
r.h.bl = 0x0C;
/* CX:DX == real mode &handler */
r.x.ecx = D32RealSeg(lowp);
r.x.edx = D32RealOff(lowp);
int386 (0x31, &r, &r);

/*
Initialize COM1.

*/
com1_init ();

puts("Move mouse, transmit data; ESC to quit\n");

while(1) {
if(kbhit()) {

if(((c = getch ()) & 0xff) == 27)
break;

putch (c);
}

delay(1);
}

/*
Clean up.

*/
r.x.eax = 0x250C; /* DOS set vector (INT 0Ch) */
r.x.edx = orig_pm_off;
sr.ds = orig_pm_sel; /* DS:EDX == &handler */
sr.es = 0;
int386x (0x21, &r, &r, &sr);

r.x.eax = 0x0201; /* DPMI set real mode vector */
r.h.bl = 0x0C;
/* CX:DX == real mode &handler */
r.x.ecx = (DWORD) orig_rm_seg;
r.x.edx = (DWORD) orig_rm_off;
int386 (0x31, &r, &r);

}

You will also need to create the following assembler code module. The first part provides the interrupt
handling routine for the real-mode interrupt handler. The second provides the protected-mode version of
the interrupt handler.

34 How do you install a bi-modal interrupt handler using DOS/4GW?

32-bit Extended DOS Application Development

;**
;** bimo.asm:
;** Assembler code for real-mode and protected-mode
;** INT 0xC interrupt handlers to support the INT 0xC
;** interrupt in both modes
;**
.386
;**
;** The real-mode interrupt handler is in a 16-bit code
;** segment so that the assembler will generate the right
;** code. We will copy this code down to a 16-bit segment
;** in low memory rather than executing it in place.
;**

_TEXT16 SEGMENT BYTE PUBLIC USE16 ’CODE’
ASSUME cs:_TEXT16

PUBLIC rmhandler_
rmhandler_:

push es
push bx
mov bx,0B800h
mov es,bx ; ES = 0xB800
sub bx,bx ; BX = 0
mov WORD PTR es:[bx],0720h ; Clear 2 char cells
mov WORD PTR es:[bx+2],0720h
mov BYTE PTR es:[bx],’R’ ; Write R to memory
pop bx
pop es
push ax
push dx
mov dx,03FAh
in al,dx ; Read ports so
mov dx,03F8h ; interrupts can
in al,dx ; continue to be
mov dx,020h ; generated
mov al,dl
out dx,al ; Send EOI
pop dx
pop ax
iret

_TEXT16 ENDS
;**
;** The protected-mode interrupt handler is in a 32-bit code
;** segment. Even so, we have to be sure to force an IRETD
;** at the end of the handler, because MASM doesn’t generate
;** one. This handler will be called on a 32-bit stack by
;** DOS/4GW.
;**
;** _DATA is the flat model data segment, which we load into
;** ES so we can write to absolute address 0xB8000. (In the
;** flat model, DS is based at 0.)
;**
_DATA SEGMENT BYTE PUBLIC USE32 ’DATA’
_DATA ENDS

How do you install a bi-modal interrupt handler using DOS/4GW? 35

DOS Programming Guide

DGROUP GROUP _DATA

_TEXT SEGMENT BYTE PUBLIC USE32 ’CODE’
ASSUME cs:_TEXT

PUBLIC com1_init_
com1_init_:

mov ax,0F3h ; 9600,n,8,1
mov dx,0 ; com1
int 14h ; Initialize COM1
mov bx,03F8h ; COM1 port space
lea dx,[bx+5] ; line status reg
in al,dx
lea dx,[bx+4] ; modem control reg
in al,dx
or al,8 ; enable OUT2 int
out dx,al
lea dx,[bx+2] ; int id register
in al,dx
mov dx,bx ; data receive reg
in al,dx
in al,21h ; interrupt mask reg
and al,0EFh ; force IRQ4 unmask
out 21h,al
lea dx,[bx+1] ; int enable reg
mov al,1
out dx,al ; enable received int
ret
PUBLIC pmhandler_

pmhandler_:
push es
push bx
mov bx,DGROUP
mov es,bx
mov ebx,0B8000h ; ES:EBX=flat:0B8000h
mov DWORD PTR es:[ebx],07200720h ; Clear cells
mov BYTE PTR es:[ebx+2],’P’ ; Write P to memory
pop bx
pop es
push ax
push dx
mov dx,03FAh
in al,dx ; Read ports so
mov dx,03F8h ; interrupts can
in al,dx ; continue to be
mov dx,020h ; generated
mov al,dl
out dx,al ; Send EOI
pop dx
pop ax
iretd

_TEXT ENDS
END

36 How do you install a bi-modal interrupt handler using DOS/4GW?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

38

6 The Tenberry Software DOS/4GW DOS Extender

The chapters in this section describe the 32-bit Tenberry Software DOS/4GW DOS Extender which is
provided with the Watcom C/C++ package. DOS/4GW is a subset of Tenberry Software’s DOS/4G
product. DOS/4GW is customized for use with the Watcom C/C++ package. Key differences are:

• DOS/4GW will only execute programs built with a Watcom 32-bit compiler such as Watcom C/C++
and linked with its run-time libraries.

• The DOS/4GW virtual memory manager (VMM), included in the package, is restricted to 32MB of
memory.

• DOS/4GW does not provide extra functionality such as TSR capability and VMM performance
tuning enhancements.

If your application has requirements beyond those provided by DOS/4GW, you may wish to acquire
DOS/4GW Professional or DOS/4G from:

Tenberry Software, Inc.
PO Box 20050
Fountain Hills, Arizona
U.S.A 85269-0050

WWW: http://www.tenberry.com/dos4g/
Email: info@tenberry.com
Phone: 1.480.767.8868
Fax: 1.480.767.8709

Programs developed to use the restricted version of DOS/4GW which is included in the Watcom C/C++
package can be distributed on a royalty-free basis, subject to the licensing terms of the product.

The Tenberry Software DOS/4GW DOS Extender 39

The DOS/4GW DOS Extender

40 The Tenberry Software DOS/4GW DOS Extender

7 Linear Executables

To build a linear executable, compile and link it as described in the chapter entitled "Creating 32-bit
DOS/4GW Executables". The resulting file will not run independently: you can run it under the Watcom
Debugger, Tenberry Software Instant-D debugger, or with the standalone "DOS4GW.EXE".

7.1 The Linear Executable Format
DOS/4GW works with files that use the Linear Executable (LE) file format. The format represents a
protected-mode program in the context of a 32-bit 386 runtime environment with linear to physical address
translation hardware enabled. It uses a flat address space.

This file format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS Windows.
Both support Dynamic Linking, Resources, and are geared toward protected-mode programs. Both formats
use tables of "counted ASCII" names, and they use similar relocation formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub program
executes when the DOS/4GW loader is not present, displaying the message, This program cannot run in
DOS mode.

When the Watcom Linker is used to link a DOS/4GW application, it automatically replaces the default stub
program with one that calls DOS4GW.

7.1.1 The Stub Program
The stub at the beginning of a linear executable is a real-mode program that you can modify as you like.
For example, you can:

• make the stub program do a checksum on the "DOS4GW.EXE" file to make sure it’s the correct
version.

• copy protect your program.

• specify a search path for the "DOS4GW.EXE" file.

• add command line arguments.

The SRC directory contains source code for a sample stub program. "WSTUB.C" is a simple example, a
good base to start from when you construct your own stub. Please note that you will require a 16-bit C
compiler to compile a new stub program. Following is the code in "WSTUB.C":

The Linear Executable Format 41

The DOS/4GW DOS Extender

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <errno.h>
#include <string.h>

/* Add environment strings to be searched here */
char *paths_to_check[] = {

"DOS4GPATH",
"PATH"};

char *dos4g_path()
{

static char fullpath[80];
int i;

for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {

_searchenv("dos4gw.exe", paths_to_check[i], fullpath);
if(fullpath[0]) return(&fullpath);

}
for(i = 0;

i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {

_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if(fullpath[0]) return(&fullpath);

}
return("dos4gw.exe");

}

main(int argc, char *argv[])
{

char *av[4];
auto char cmdline[128];

av[0] = dos4g_path(); /* Locate the DOS/4G loader */
av[1] = argv[0]; /* name of executable to run */
av[2] = getcmd(cmdline); /* command line */
av[3] = NULL; /* end of list */

#ifdef QUIET
putenv("DOS4G=QUIET"); /* disables DOS/4G Copyright banner */

#endif
execvp(av[0], av);
puts("Stub exec failed:");
puts(av[0]);
puts(strerror(errno));
exit(1); /* indicate error */

}

7.2 Memory Use
This section explains how a DOS/4GW application uses the memory on a 386-based PC/AT. The basic
memory layout of an AT machine consists of 640KB of DOS memory, 384KB of upper memory, and an
undetermined amount of extended memory. DOS memory and upper memory together compose real
memory, the memory that can be addressed when the processor is running in real mode.

42 Memory Use

Linear Executables

Extended
Memory

Upper
Memory

DOS
Memory

Interrupt
Vectors

DOS and
Real-Mode
Software

ROMs and
Hardware

1 MB

640 KB

1 KB

Figure 1. Basic Memory Layout

Under DOS/4GW, the first megabyte of physical memory &mdash the real memory &mdash is mapped as a
shared linear address space. This allows your application to use absolute addresses in real memory, to
access video RAM or BIOS ROM, for example. Because the real memory is available to all processes, you
are not guaranteed to be able to allocate a particular area in real memory: another process may have
allocated it already.

Most code and data is placed in a paged linear address space starting at 4MB. The linear address space
starts at 4MB, the first address in the second page table, to avoid conflicts with VCPI system software.

This split mapping &mdash an executable that is linked to start at 4MB in the linear address space, with the
first MB in the address space mapped to the first MB of physical memory &mdash is called a split flat
model.

The illustration below shows the layout of physical memory on the left, and the layout of the linear address
space on the right.

Memory Use 43

The DOS/4GW DOS Extender

Mapped
to all
processes

1 KB

4 MB

4 KB

1 MB

640 KB
DOS and
Real-Mode
Software

Mapped into
process as
needed

Mapped
as
needed

4KB pages

VCPI code
1-4 MB unmapped
for VCPI
compatibility

Process code
and data}

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks the end of
the first page.

44 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOS4G environment variable
including how to suppress the banner that is displayed by DOS/4GW at startup. It also explains how to use
the DOS16M environment variable to select the switch mode setting, if necessary, and to specify the range
of extended memory in which DOS/4GW will operate. DOS/4GW is based on Tenberry Software’s
DOS/16M 16-bit Protected-Mode support; hence the DOS16M environment variable name remains
unchanged.

8.1 The DOS4G Environment Variable
A number of options can be selected by setting the DOS4G environment variable. The syntax for setting
options is:

set DOS4G=option1,option2,...

Do not insert a space between DOS4G and the equal sign. A space to the right of the equal sign is optional.

Options:

QUIET Use this option to suppress the DOS/4GW banner.

The banner that is displayed by DOS/4GW at startup can be suppressed by issuing the
following command:

set DOS4G=quiet

Note: Use of the quiet switch is only permitted pursuant to the terms and conditions of the
WATCOM Software License Agreement and the additional redistribution rights described
in the Getting Started manual. Under these terms, suppression of the copyright by using
the quiet switch is not permitted for applications which you distribute to others.

VERBOSE Use this option to maximize the information available for postmortem debugging.

Before running your application, issue the following command:

set DOS4G=verbose

Reproduce the crash and record the output.

NULLP Use this option to trap references to the first sixteen bytes of physical memory.

Before running your application, issue the following command:

set DOS4G=nullp

To select a combination of options, list them with commas as separators.

The DOS4G Environment Variable 45

The DOS/4GW DOS Extender

Example:
set DOS4G=nullp,verbose

8.2 Changing the Switch Mode Setting
In almost all cases, DOS/4GW programs can detect the type of machine that is running and automatically
choose an appropriate real- to protected-mode switch technique. For the few cases in which this default
setting does not work we provide the DOS16M DOS environment variable, which overrides the default
setting.

Change the switch mode settings by issuing the following command:

set DOS16M=value

Do not insert a space between DOS16M and the equal sign. A space to the right of the equal sign is
optional.

The table below lists the machines and the settings you would use with them. Many settings have
mnemonics, listed in the column "Alternate Name", that you can use instead of the number. Settings that
you must set with the DOS16M variable have the notation req’d in the first column. Settings you may use
are marked option, and settings that will automatically be set are marked auto.

Alternate
Status Machine Setting Name Comment

auto 386/486 w/ DPMI 0 None Set automatically if DPMI is active
req’d NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 Set automatically for 386 or 486
auto 386 INBOARD None 386 with Intel Inboard
req’d Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI 11 None Set automatically if VCPI detected
req’d Hitachi B32 14 None Must be set for Hitachi B32
req’d OKI if800 15 None Must be set for OKI if800
option IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment variable to the
value shown for that machine and specify a range of extended memory. For example, if your
machine is a NEC 98-series, set DOS16M=1 @2M-4M. See the section entitled "Fine Control
of Memory Usage" on page 47 in this chapter for more information about setting the memory
range.

46 Changing the Switch Mode Setting

Configuring DOS/4GW

Machine Setting

NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OKI if800 15

Before running DOS/4GW applications, check the switch mode setting by following this
procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display. (PMINFO,
which reports on the protected-mode resources available to your programs, is described in more
detail in the chapter entitled "Utilities" on page 85)

If PMINFO runs, the setting is usable on your machine.

3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT file.

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does not run, and
PMINFO does, check the CPU type reported on the first line of the display.

You are authorized (and encouraged) to distribute PMINFO to your customers. You may also include a
copy of this section in your documentation.

8.3 Fine Control of Memory Usage
In addition to setting the switch mode as described above, the DOS16M environment variable enables you
to specify which portion of extended memory DOS/4GW will use. The variable also allows you to instruct
DOS/4GW to search for extra memory and use it if it is present.

8.3.1 Specifying a Range of Extended Memory
Normally, you don’t need to specify a range of memory with the DOS16M variable. You must use the
variable, however, in the following cases:

• You are running on a Fujitsu FMR-series, NEC 98-series, OKI if800-series or Hitachi B-series
machine.

• You have older programs that use extended memory but don’t follow one of the standard disciplines.

• You want to shell out of DOS/4GW to use another program that requires extended memory.

If none of these conditions applies to you, you can skip this section.

The general syntax is:

set DOS16M= [switch_mode] [@start_address [- end_address]] [:size]

In the syntax shown above, start_address, end_address and size represent numbers, expressed
in decimal or in hexadecimal (hex requires a 0x prefix). The number may end with a K to indicate an

Fine Control of Memory Usage 47

The DOS/4GW DOS Extender

address or size in kilobytes, or an M to indicate megabytes. If no suffix is given, the address or size is
assumed to be in kilobytes. If both a size and a range are specified, the more restrictive interpretation is
used.

The most flexible strategy is to specify only a size. However, if you are running with other software that
does not follow a convention for indicating its use of extended memory, and these other programs start
before DOS/4GW, you will need to calculate the range of memory used by the other programs and specify a
range for DOS/4GW programs to use.

DOS/4GW ignores specifications (or parts of specifications) that conflict with other information about
extended memory use. Below are some examples of memory usage control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use extended memory
between 2.0 and 4.0MB.

set DOS16M= :1M Use the last full megabyte of extended memory, or as much as
available limited to 1MB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @ 0 - 5m Use any available extended memory from 0.0 (really 1.0) to
5.0MB.

set DOS16M= :0 Use no extended memory.

As a default condition DOS/4GW applications take all extended memory that is not otherwise in use.
Multiple DOS/4GW programs that execute simultaneously will share the reserved range of extended
memory. Any non-DOS/4GW programs started while DOS/4GW programs are executing will find that
extended memory above the start of the DOS/4GW range is unavailable, so they may not be able to run.
This is very safe. There will be a conflict only if the other program does not check the BIOS configuration
call (Interrupt 15H function 88H, get extended memory size).

To create a private pool of extended memory for your DOS/4GW application, use the PRIVATXM
program, described in the chapter entitled "Utilities" on page 85.

The default memory allocation strategy is to use extended memory if available, and overflow into DOS
(low) memory.

In a VCPI or DPMI environment, the start_address and end_address arguments are not
meaningful. DOS/4GW memory under these protocols is not allocated according to specific addresses
because VCPI and DPMI automatically prevent address conflicts between extended memory programs.
You can specify a size for memory managed by VCPI or DPMI, but DOS/4GW will not necessarily
allocate this memory from the highest available extended memory address, as it does for memory managed
under other protocols.

8.3.2 Using Extra Memory
Some machines contain extra non-extended, non-conventional memory just below 16MB. When
DOS/4GW runs on a Compaq 386, it automatically uses this memory because the memory is allocated
according to a certain protocol, which DOS/4GW follows. Other machines have no protocol for allocating
this memory. To use the extra memory that may exist on these machines, set DOS16M with the + option.

set DOS16M=+

48 Fine Control of Memory Usage

Configuring DOS/4GW

Setting the + option causes DOS/4GW to search for memory in the range from FA0000 to FFFFFF and
determine whether the memory is usable. DOS/4GW does this by writing into the extra memory and
reading what it has written. In some cases, this memory is mapped for DOS or BIOS usage, or for other
system uses. If DOS/4GW finds extra memory that is mapped this way, and is not marked read-only, it will
write into that memory. This will cause a crash, but won’t have any other effect on your system.

8.4 Setting Runtime Options
The DOS16M environment variable sets certain runtime options for all DOS/4GW programs running on the
same system.

To set the environment variable, the syntax is:

set DOS16M=[switch_mode_setting]^options.

Note: Some command line editing TSRs, such as CED, use the caret (^) as a delimiter. If you want to set
DOS16M using the syntax above while one of these TSRs is resident, modify the TSR to use a different
delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS/4GW to wait until the A20 line is enabled before
switching to protected mode. When DOS/4GW switches to real mode, this option suspends
your program’s execution until the A20 line is disabled, unless an XMS manager (such as
HIMEM.SYS) is active. If an XMS manager is running, your program’s execution is
suspended until the A20 line is restored to the state it had when the CPU was last in real
mode. Specify this option if you have a machine that runs DOS/4GW but is not truly
AT-compatible. For more information on the A20 line, see the section entitled
"Controlling Address Line 20" on page 50.

0x02 prevent initialization of VCPI -- By default, DOS/4GW searches for a VCPI server and, if
one is present, forces it on. This option is useful if your application does not use EMS
explicitly, is not a resident program, and may be used with 386-based EMS simulator
software.

0x04 directly pass down keyboard status calls -- When this option is set, status requests are
passed down immediately and unconditionally. When disabled, pass-downs are limited so
the 8042 auxiliary processor does not become overloaded by keyboard polling loops.

0x10 restore only changed interrupts -- Normally, when a DOS/4GW program terminates, all
interrupts are restored to the values they had at the time of program startup. When you use
this option, only the interrupts changed by the DOS/4GW program are restored.

0x20 set new memory to 00 -- When DOS/4GW allocates a new segment or increases the size of a
segment, the memory is zeroed. This can help you find bugs having to do with
uninitialized memory. You can also use it to provide a consistent working environment
regardless of what programs were run earlier. This option only affects segment allocations
or expansions that are made through the DOS/4GW kernel (with DOS function 48H or
4AH). This option does not affect memory allocated with a compiler’s malloc function.

0x40 set new memory to FF -- When DOS/4GW allocates a new segment or increases the size of
a segment, the memory is set to 0xFF bytes. This is helpful in making reproducible cases

Setting Runtime Options 49

The DOS/4GW DOS Extender

of bugs caused by using uninitialized memory. This option only affects segment
allocations or expansions that are made through the DOS/4GW kernel (with DOS function
48H or 4AH). This option does not affect memory allocated with a compiler’s malloc
function.

0x80 new selector rotation -- When DOS/4GW allocates a new selector, it usually looks for the
first available (unused) selector in numerical order starting with the highest selector used
when the program was loaded. When this option is set, the new selector search begins after
the last selector that was allocated. This causes new selectors to rotate through the range.
Use this option to find references to stale selectors, i.e., segments that have been cancelled
or freed.

8.5 Controlling Address Line 20
This section explains how DOS/4GW uses address line 20 (A20) and describes the related DOS16M
environment variable settings. It is unlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable memory location is
one byte below 1MB. If you specify an address at 1MB or over, which would require a twenty-first bit to
set, the address wraps back to zero. Some parts of DOS depend on this wrap, so on the 286 and 386, the
twenty-first address bit is disabled. To address extended memory, DOS/4GW enables the twenty-first
address bit (the A20 line). The A20 line must be enabled for the CPU to run in protected mode, but it may
be either enabled or disabled in real mode.

By default, when DOS/4GW returns to real mode, it disables the A20 line. Some software depends on the
line being enabled. DOS/4GW recognizes the most common software in this class, the XMS managers
(such as HIMEM.SYS), and enables the A20 line when it returns to real mode if an XMS manager is
present. For other software that requires the A20 line to be enabled, use the A20 option. The A20 option
makes DOS/4GW restore the A20 line to the setting it had when DOS/4GW switched to protected mode.
Set the environment variable as follows:

set DOS16M=A20

To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable also lets you to specify the length of the delay between a DOS/4GW instruction to
change the status of the A20 line and the next DOS/4GW operation. By default, this delay is 1 loop
instruction when DOS/4GW is running on a 386 machine. In some cases, you may need to specify a longer
delay for a machine that will run DOS/4GW but is not truly AT-compatible. To change the delay, set
DOS16M to the desired number of loop instructions, preceded by a comma:

set DOS16M=,loops

50 Controlling Address Line 20

9 VMM

The Virtual Memory Manager (VMM) uses a swap file on disk to augment RAM. With VMM you can use
more memory than your machine actually has. When RAM is not sufficient, part of your program is
swapped out to the disk file until it is needed again. The combination of the swap file and available RAM
is the virtual memory.

Your program can use VMM if you set the DOS environment variable, DOS4GVM, as follows. To set the
DOS4GVM environment variable, use the format shown below.

set DOS4GVM= [option[#value]] [option[#value]]

A "#" is used with options that take values since the DOS command shell will not accept "=".

If you set DOS4GVM equal to 1, the default parameters are used for all options.

Example:
C>set DOS4GVM=1

9.1 VMM Default Parameters
VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The default is 512KB.

MAXMEM The maximum amount of RAM managed by VMM. The default is 4MB.

SWAPMIN The minimum or initial size of the swap file. If this option is not used, the size of the
swap file is based on VIRTUALSIZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is "DOS4GVM.SWP". By default the file is in
the root directory of the current drive. Specify the complete path name if you want to
keep the swap file somewhere else.

DELETESWAP Whether the swap file is deleted when your program exits. By default the file is not
deleted. Program startup is quicker if the file is not deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

VMM Default Parameters 51

The DOS/4GW DOS Extender

9.2 Changing the Defaults
You can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOS4GVM environment variable, as
shown in the example below.

set DOS4GVM=deleteswap maxmem#8192

2. Create a configuration file with the filetype extension ".VMC", and use that as an argument to
the DOS4GVM environment variable, as shown below.

set DOS4GVM=@NEW4G.VMC

9.2.1 The .VMC File
A ".VMC" file contains VMM parameters and settings as shown in the example below. Comments are
permitted. Comments on lines by themselves are preceded by an exclamation point (!). Comments that
follow option settings are preceded by white space. Do not insert blank lines: processing stops at the first
blank line.

!Sample .VMC file
!This file shows the default parameter values.
minmem = 512 At least 512K bytes of RAM is required.
maxmem = 4096 Uses no more than 4MB of RAM
virtualsize = 16384 Swap file plus allocated memory is 16MB
!To delete the swap file automatically when the program exits, add
!deleteswap
!To store the swap file in a directory called SWAPFILE, add
!swapname = c:\swapfile\dos4gvm.swp

52 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS/4GW, the 32-bit registers in which you pass values are
translated into the appropriate 16-bit registers, since DOS works only with 16 bits. However, you can use
32-bit values in your DOS calls. You can allocate blocks of memory larger than 64KB or use an address
with a 32-bit offset, and DOS/4GW will translate the call appropriately, to use 16-bit registers. When the
Interrupt 21H function returns, the value is widened - placed in a 32-bit register, with the high order bits
zeroed.

DOS/4GW uses the following rules to manage registers:

• When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity in a general
register (for example, AX), pass a 32-bit quantity in the corresponding extended register (for
example, EAX). When a DOS function returns a 16-bit quantity in a general register, expect to
receive it (with high-order zero bits) in the corresponding extended register.

• When an Interrupt 21H function expects to receive a 16:16 pointer in a segment:general register pair
(for example, ES:BX), supply a 16:32 pointer using the same segment register and the corresponding
extended general register (ES:EBX). DOS/4GW will copy data and translate pointers so that DOS
ultimately receives a 16:16 real-mode pointer in the correct registers.

• When DOS returns a 16:16 real-mode pointer, DOS/4GW translates the segment value into an
appropriate protected-mode selector and generates a 32-bit offset that results in a 16:32 pointer to the
same location in the linear address space.

• Many DOS functions return an error code in AX if the function fails. DOS/4GW checks the status of
the carry flag, and if it is set, indicating an error, zero-extends the code for EAX. It does not change
any other registers.

• If the value is passed or returned in an 8-bit register (AL or AH, for example), DOS/4GW puts the
value in the appropriate location and leaves the upper half of the 32-bit register untouched.

The table below lists all the Interrupt 21h functions. For each, it shows the registers that are widened or
narrowed. Footnotes provide additional information about some of the interrupts that require special
handling. Following the table is a section that provides a detailed explanation of interrupt handling under
DOS/4GW.

Interrupt 21H Functions 53

The DOS/4GW DOS Extender

Function Purpose Managed Registers

00H Terminate Process None
01H Character Input with Echo None
02H Character Output None
03H Auxiliary Input None
04H Auxiliary Output None
05H Print Character None
06H Direct Console I/O None
07H Unfiltered Character Input Without Echo None
08H Character Input Without Echo None
09H Display String EDX
0AH Buffered Keyboard Input EDX
0BH Check Keyboard Status None
0CH Flush Buffer, Read Keyboard EDX
0DH Disk Reset None
0EH Select Disk None
0FH Open File with FCB EDX

10H Close File with FCB EDX
11H Find First File EDX
12H Find Next File EDX
13H Delete File EDX
14H Sequential Read EDX
15H Sequential Write EDX
16H Create File with FCB EDX
17H Rename File EDX
19H Get Current Disk None
1AH Set DTA Address EDX
1BH Get Default Drive Data Returns in EBX, ECX, and EDX
1CH Get Drive Data Returns in EBX, ECX, and EDX

21H Random Read EDX
22H Random Write EDX
23H Get File Size EDX
24H Set Relative Record EDX
25H Set Interrupt Vector EDX
26H Create New Program Segment Prefix None
27H Random Block Read EDX, returns in ECX
28H Random Block Write EDX, returns in ECX
29H Parse Filename ESI, EDI, returns in EAX, ESI and EDI (1.)
2AH Get Date Returns in ECX
2BH Set Date None
2CH Get Time None
2DH Set Time None
2EH Set/Reset Verify Flag None
2FH Get DTA Address Returns in EBX

30H Get MS-DOS Version Number Returns in ECX
31H Terminate and Stay Resident None
33H Get/Set Control-C Check Flag None
34H Return Address of InDOS Flag Returns in EBX
35H Get Interrupt Vector Returns in EBX
36H Get Disk Free Space Returns in EAX, EBX, ECX, and EDX

54 Interrupt 21H Functions

Interrupt 21H Functions

38H Get/Set Current Country EDX, returns in EBX
39H Create Directory EDX
3AH Remove Directory EDX
3BH Change Current Directory EDX
3CH Create File with Handle EDX, returns in EAX
3DH Open File with Handle EDX, returns in EAX
3EH Close File None
3FH Read File or Device EBX, ECX, EDX, returns in EAX (2.)

40H Write File or Device EBX, ECX, EDX, returns in EAX (2.)
41H Delete File EDX
42H Move File Pointer Returns in EDX, EAX
43H Get/Set File Attribute EDX, returns in ECX
44H IOCTL (3.)

00H Get Device Information Returns in EDX
01H SetDevice Information None
02H Read Control Data from CDD EDX, returns in EAX
03H Write Control Data to CDD EDX, returns in EAX
04H Read Control Data from BDD EDX, returns in EAX
05H Write Control Data to BDD EDX, returns in EAX
06H Check Input Status None
07H Check Output Status None
08H Check if Block Device is Removeable Returns in EAX
09H Check if Block Device is Remote Returns in EDX
0AH Check if Handle is Remote Returns in EDX
0BH Change Sharing Retry Count None
0CH Generic I/O Control for Character Devices EDX
0DH Generic I/O Control for Block Devices EDX
0EH Get Logical Drive Map None
0FH Set Logical Drive Map None

45H Duplicate File Handle Returns in EAX
46H Force Duplicate File Handle None
47H Get Current Directory ESI
48H Allocate Memory Block Returns in EAX
49H Free Memory Block None
4AH Resize Memory Block None
4BH Load and Execute Program (EXEC) EBX, EDX (4.)
4CH Terminate Process with Return Code None
4DH Get Return Code of Child Process None
4EH Find First File EDX
4FH Find Next File None

52H Get List of Lists (not supported)
54H Get Verify Flag None
56H Rename File EDX, EDI
57H Get/Set Date/Time of File Returns in ECX, and EDX
58H Get/Set Allocation Strategy Returns in EAX
59H Get Extended Error Information Returns in EAX
5AH Create Temporary File EDX, returns in EAX and EDX
5BH Create New File EDX, returns in EAX
5CH Lock/Unlock File Region None
5EH Network Machine Name/Printer Setup

00H Get Machine Name EDX
02H Set Printer Setup String ESI

Interrupt 21H Functions 55

The DOS/4GW DOS Extender

03H Get Printer Setup String EDI, returns in ECX
5FH Get/Make Assign List Entry

02H Get Redirection List Entry ESI, EDI, returns in ECX
03H Redirect Device ESI, EDI
04H Cancel Device Redirection ESI

62H Get Program Segment Prefix Address Returns in EBX
63H Get Lead Byte Table (version 2.25 only) Returns in ESI
65H Get Extended Country Information EDI
66H Get or Set Code Page None
67H Set Handle Count None

This list of functions is excerpted from The MS-DOS Encyclopedia, Copyright (c) 1988 by Microsoft Press.
All Rights Reserved.

1. For Function 29H, DS:ESI and ES:EDI contain pointer values that are not changed by the call.

2. You can read and write quantities larger than 64KB with Functions 3FH and 40H. DOS/4GW
breaks your request into chunks smaller than 64KB, and calls the DOS function once for each
chunk.

3. You can’t transfer more than 64KB using Function 44h, subfunctions 02H, 03H, 04H, or 05H.
DOS/4GW does not break larger requests into DOS-sized chunks, as it does for Functions 3FH
and 40H.

4. When you call Function 4B under DOS/4GW, you pass it a data structure that contains 16:32 bit
pointers. DOS/4GW translates these into 16:16 bit pointers in the structure it passes to DOS.

10.1 Functions 25H and 35H: Interrupt Handling in Protected
Mode

By default, interrupts that occur in protected mode are passed down: the entry in the IDT points to code in
DOS/4GW that switches the CPU to real mode and resignals the interrupt. If you install an interrupt
handler using Interrupt 21H, Function 25H, that handler will get control of any interrupts that occur while
the processor is in protected mode. If the interrupt for which you installed the handler is in the autopassup
range, your handler will also get control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If the interrupt is in the
autopassup range, the real-mode vector will be modified when you install the protected-mode handler to
point to code in the DOS/4GW kernel. This code switches the processor to protected mode and resignals
the interrupt-where your protected-mode handler will get control.

10.1.1 32-Bit Gates
The DOS/4GW kernel always assigns a 32-bit gate for the interrupt handlers it installs. It does not
distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-bit gate points into the DOS/4GW kernel. When DOS/4GW handles the interrupt, it switches to its
own 16-bit stack, and from there it calls the interrupt handler (yours or the default). This translation is

56 Functions 25H and 35H: Interrupt Handling in Protected Mode

Interrupt 21H Functions

transparent to the handler, with one exception: since the current stack is not the one on which the interrupt
occurred, the handler cannot look up the stack for the address at which the interrupt occurred.

10.1.2 Chaining 16-bit and 32-bit Handlers
If your program hooks an interrupt, write a normal service routine that either handles the interrupt and
IRETs or chains to the previous handler. As part of handling the interrupt, your handler can PUSHF/CALL
to the previous handler. The handler must IRET (or IRETD) or chain.

For each protected-mode interrupt, DOS/4GW maintains separate chains of 16-bit and 32-bit handlers. If
your 16-bit handler chains, the previous handler is a 16-bit program. If your 32-bit handler chains, the
previous handler is a 32-bit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit chain is executed
first. If all the 16-bit handlers unhook later and a new 16-bit program hooks the interrupt while 32-bit
handlers are still outstanding, the 32-bit handlers will be executed first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler
When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no other program
of your bitness (i.e., 16-bit or 32-bit) has hooked the interrupt. The address points to a dummy handler that
looks to you as though it does an IRET to end the chain. This means that you can’t find an unused interrupt
by looking for a NULL pointer. Since this technique is most frequently used by programs that are looking
for an unclaimed real-mode interrupt on which to install a TSR, it shouldn’t cause you problems.

Functions 25H and 35H: Interrupt Handling in Protected Mode 57

The DOS/4GW DOS Extender

58 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced mode, an OS/2
virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QEMM/QDPMI (with EXTCHKOFF),
the DPMI host provides the DPMI services, not DOS/4GW. The DPMI host also provides virtual memory,
if any. Performance (speed and memory use) under different DPMI hosts varies greatly due to the quality
of the DPMI implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS/4GW and DOS/4GW Professional in the absence of
a DPMI host. DOS/4GW supports many of the common DPMI system services. Not all of the services
described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-Mode Interface (DPMI)
specification. It is no longer in print; however the DPMI 1.0 specification can be obtained from the Intel
ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls
Interrupt 31H DPMI function calls can be used only by protected-mode programs.

The general ground rules for Interrupt 31H calls are as follows:

• All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful calls return an error
code in AX. Other registers are saved unless they contain specified return values.

• All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the carry flag
set. Successful calls clear the carry flag. Only memory management and interrupt flag management
calls modify the interrupt flag.

• Memory management calls can enable interrupts.

• All calls are reentrant.

The flag and register information for each call is listed in the following descriptions of supported Interrupt
31H function calls.

Using Interrupt 31H Function Calls 59

The DOS/4GW DOS Extender

11.2 Int31H Function Calls
The Interrupt 31H subfunction calls supported by DOS/4GW are listed below by category:

• Local Descriptor Table (LDT) management services

• DOS memory management services

• Interrupt services

• Translation services

• DPMI version

• Memory management services

• Page locking services

• Demand paging performance tuning services

• Physical address mapping

• Virtual interrupt state functions

• Vendor specific extensions

• Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

11.2.1 Local Descriptor Table (LDT) Management Services
Function 0000H This function allocates a specified number of descriptors from the LDT and returns the

base selector. Pass the following information:

AX = 0000H
CX = number of descriptors to be allocated

If the call succeeds, the carry flag is clear and the base selector is returned in AX. If the
call fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of zero. The
privilege level of an allocated descriptor is set to match the code segment privilege level of
the application. To find out the privilege level of a descriptor, use the lar instruction.

Allocated descriptors must be filled in by the application. If more than one descriptor is
allocated, the returned selector is the first of a contiguous array. Use Function 0003H to
get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

60 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0001H
BX = the selector to free

Use the selector returned with function 0000h when the descriptor was allocated. To free
an array of descriptors, call this function for each descriptor. Use Function 0003H to find
out the increment for each descriptor in the array.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

You can use this function to free the descriptors allocated for the program’s initial CS, DS,
and SS segments, but you should not free other segments that were not allocated with
Function 0000H or Function 000DH.

Function 0002H This function converts a real-mode segment to a descriptor that a protected-mode
program can address. Pass the following information:

AX = 0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the real-mode
segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment address, you get
the same selector value each time. The descriptor limit is set to 64KB.

The purpose of this function is to give protected-mode programs easy access to commonly
used real-mode segments. However, because you cannot modify or free descriptors created
by this function, it should be used infrequently. Do not use this function to get descriptors
for private data areas.

To examine real-mode addresses using the same selector, first allocate a descriptor, and
then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Use this function to get
the value you add to the base address of an allocated array of descriptors to get the next
selector address. Pass the following information:

AX = 0003H

This call always succeeds. The increment value is returned in AX. This value is always a
power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following information:

AX = 0006H
BX = selector

If the call succeeds, the carry flag is clear and CX:DX contains the 32-bit linear base
address of the segment. If the call fails, it sets the carry flag.

If the selector you specify in BX is invalid, the call fails.

Function 0007H This function changes the base address of a specified selector. Only descriptors allocated
through Function 0000H should be modified. Pass the following information:

Int31H Function Calls 61

The DOS/4GW DOS Extender

AX = 0007H
BX = selector
CX:DX = the new 32-bit linear base address for the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

If the selector you specify in BX is invalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function to modify
descriptors allocated with Function 0000H only. Pass the following information:

AX = 0008H
BX = selector
CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The call fails if the specified selector is invalid, or if the specified limit cannot be set.

Segment limits greater than 1MB must be page-aligned. This means that limits greater than
1MB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of lsl for segment limits greater than
64KB.

Function 0009H This function sets the descriptor access rights. Use this function to modify descriptors
allocated with Function 0000H only. To examine the access rights of a descriptor, use the
lar instruction. Pass the following information:

AX = 0009H
BX = selector
CL = Access rights/type byte
CH = 386 extended access rights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set. If the
selector you specify in BX is invalid, the call fails. The call also fails if the access
rights/type byte does not match the format and meet the requirements shown in the figures
below.

62 Int31H Function Calls

Interrupt 31H DPMI Functions

The access rights/type byte passed in CL has the format shown in the figure below.

6 5 4 3 2 1 07

P DPL 1 C/D E/C W/R A

0 => Not accessed
1 => Accessed

Data: 0 => Read, 1=> R/W
Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
Code: Must be 0 (non-conform)

0 => Data, 1=> Code

Must be 1

Must equal caller’s CPL

0 = > Absent, 1=> Present

Figure 3. Access Rights/Type

Int31H Function Calls 63

The DOS/4GW DOS Extender

The extended access rights/type byte passed in CH has the following format.

6 5 4 3 2 1 07

G B/D Avl0 Reserved

Ignored

Can be 0 or 1

Must be 0

0 => Byte Granular, 1=> Page Granular

0 => Default 16-bit., 1=> Default 32-bit

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a data descriptor
that has the same base and limit as the specified code segment descriptor. Pass the
following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flag is clear and the new data selector is returned in AX. If
the call fails, the carry flag is set. The call fails if the selector passed in BX is not a valid
code segment.

To deallocate an alias to a code segment, use Function 0001H.

After the alias is created, it does not change if the code segment descriptor changes. For
example, if the base or limit of the code segment change later, the alias descriptor stays the
same.

Function 000BH This function copies the descriptor table entry for a specified descriptor. The copy is
written into an 8-byte buffer. Pass the following information:

AX = 000BH
BX = selector
ES:EDI = a pointer to the 8-byte buffer for the descriptor copy

64 Int31H Function Calls

Interrupt 31H DPMI Functions

If the call succeeds, the carry flag is clear and ES:EDI contains a pointer to the buffer that
contains a copy of the descriptor. If the call fails, the carry flag is set. The call fails if the
selector passed in BX is invalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified descriptor. The
descriptor must first have been allocated with Function 0000H. Pass the following
information:

AX = 000CH
BX = selector
ES:EDI = a pointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. The call fails if
the descriptor passed in BX is invalid.

The type byte, byte 5, has the same format and requirements as the access rights/type byte
passed to Function 0009H in CL. The format is shown in the first figure presented with the
description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the extended
access rights/type byte passed to Function 0009H in CH, except that the limit field can have
any value, and the low order bits marked reserved are used to set the upper 4 bits of the
descriptor limit. The format is shown in the second figure presented with the description of
Function 0009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following information:

AX = 000DH
BX = selector

If the call succeeds, the carry flag is clear and the specified descriptor is allocated. If the
call fails, the carry flag is set.

The call fails if the specified selector is already in use, or if it is not a valid LDT descriptor.
The first 10h (16 decimal) descriptors are reserved for this function, and should not be used
by the host. Some of these descriptors may be in use, however, if another client application
is already loaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services
Function 0100H This function allocates memory from the DOS free memory pool. This function returns

both the real-mode segment and one or more descriptors that can be used by
protected-mode applications. Pass the following information:

AX = 0100H
BX = the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flag is clear. AX contains the initial real-mode segment of
the allocated block and DX contains the base selector for the allocated block.

Int31H Function Calls 65

The DOS/4GW DOS Extender

If the call fails, the carry flag is set. AX contains the DOS error code. If memory is
damaged, code 07H is returned. If there is not enough memory to satisfy the request, code
08H is returned. BX contains the number of paragraphs in the largest available block of
DOS memory.

If you request a block larger than 64KB, contiguous descriptors are allocated. Use
Function 0003H to find the value of the increment to the next descriptor. The limit of the
first descriptor is set to the entire block. Subsequent descriptors have a limit of 64KB,
except for the final descriptor, which has a limit of blocksize MOD 64KB.

You cannot modify or deallocate descriptors allocated with this function. Function 101H
deallocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H. Pass the
following information:

AX = 0101H
DX = selector of the block to be freed

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set and the DOS error code is returned in AX. If the
incorrect segment was specified, code 09H is returned. If memory control blocks are
damaged, code 07H is returned.

All descriptors allocated for the specified memory block are deallocated automatically and
cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H. Pass the
following information:

AX = 0102H
BX = the number of paragraphs (16-byte blocks) in the resized block
DX = selector of block to resize

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set, the maximum number of paragraphs available is
returned in BX, and the DOS error code is returned in AX. If memory code blocks are
damaged, code 07H is returned. If there isn’t enough memory to increase the size as
requested, code 08H is returned. If the incorrect segment is specified, code 09h is returned.

Because of the difficulty of finding additional contiguous memory or descriptors, this
function is not often used to increase the size of a memory block. Increasing the size of a
memory block might well fail because other DOS allocations have used contiguous space.
If the next descriptor in the LDT is not free, allocation also fails when the size of a block
grows over the 64KB boundary.

If you shrink the size of a memory block, you may also free some descriptors allocated to
the block. The initial selector remains unchanged, however; only the limits of subsequent
selectors will change.

66 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.3 Interrupt Services
Function 0200H This function gets the value of the current task’s real-mode interrupt vector for the

specified interrupt. Pass the following information:

AX = 0200H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear, and the segment:offset of the
real-mode interrupt handler is returned in CX:DX.

Because the address returned in CX is a segment, and not a selector, you cannot put it into a
protected-mode segment register. If you do, a general protection fault may occur.

Function 0201H This function sets the value of the current task’s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX = 0201H
BL = interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be a real-mode segment:offset, such as
function 0200H returns. For this reason, the interrupt handler must reside in DOS
addressable memory. You can use Function 0100H to allocate DOS memory. This version
does not support the real-mode callback address function.

If you are hooking a hardware interrupt, you have to lock all segments involved. These
segments include the segment in which the interrupt handler runs, and any segment it may
touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function returns the
CS:EIP of the current protected-mode exception handler for the specified exception
number. Pass the following information:

AX = 0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flag is clear and the selector:offset of the
protected-mode exception handler is returned in CX:EDX. If it fails, the carry flag is set.

The value returned in CX is a valid protected-mode selector, not a real-mode segment.

Function 0203H This function sets the processor exception handler vector. This function allows
protected-mode applications to intercept processor exceptions that are not handled by the
DPMI environment. Programs may wish to handle exceptions such as "not present segment
faults" which would otherwise generate a fatal error. Pass the following information:

Int31H Function Calls 67

The DOS/4GW DOS Extender

AX = 0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear. If it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
in the EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

The handler should return using a far return instruction. The original SS:ESP, CS:EIP and
flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error code is only valid for
exceptions 08h, 0Ah, 0Bh, 0Ch, 0Dh, and 0Eh.

The handler must preserve and restore all registers.

The exception handler will be called on a locked stack with interrupts disabled. The
original SS, ESP, CS, and EIP will be pushed on the exception handler stack frame.

The handler must either return from the call by executing a far return or jump to the next
handler in the chain (which will execute a far return or chain to the next handler).

The procedure can modify any of the values on the stack pertaining to the exception before
returning. This can be used, for example, to jump to a procedure by modifying the CS:EIP
on the stack. Note that the procedure must not modify the far return address on the stack
&mdash. it must return to the original caller. The caller will then restore the flags, CS:EIP
and SS:ESP from the stack frame.

If the DPMI client does not handle an exception, or jumps to the default exception handler,
the host will reflect the exception as an interrupt for exceptions 0, 1, 2, 3, 4, 5 and 7.
Exceptions 6 and 8 - 1Fh will be treated as fatal errors and the client will be terminated.

Exception handlers will only be called for exceptions that occur in protected mode.

Function 0204H This function gets the CS:EIP selector:offset of the current protected-mode
interrupt handler for a specified interrupt number. Pass the following information:

AX = 0204H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear and CX:EDX contains the
protected-mode selector:offset of the exception handler.

A 32-bit offset is returned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt vector. Pass the
following information:

68 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0205H
BL = interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
in the EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

11.2.4 Translation Services
These services are provided so that protected-mode programs can call real-mode software that DPMI does
not support directly. The protected-mode program must set up a data structure with the appropriate register
values. This "real-mode call structure" is shown below.

Int31H Function Calls 69

The DOS/4GW DOS Extender

Offset Register

00H EDI

04H ESI

08H EBP

0CH Reserved by system

10H EBX

14H EDX

18H ECX

1CH EAX

20H Flags

22H ES

24H DS

26H FS

28H GS

2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and IP will be
copied back to the real-mode call structure so that the caller can examine the real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode selectors.

The translation services will provide a real-mode stack if the SS:SP fields are zero. However, the stack
provided is relatively small. If the real-mode procedure/interrupt routine uses more than 30 words of stack
space then you should provide your own real-mode stack.

Function 0300H This function simulates a real-mode interrupt. This function simulates an interrupt in real
mode. It will invoke the CS:IP specified by the real-mode interrupt vector and the handler
must return by executing an iret. Pass the following information:

70 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0300H
BL = interrupt number
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags are

reserved and must be 0.
CX = number of words to copy from protected-mode stack to real-mode stack
ES:EDI = the selector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of the modified real-mode call structure.

The CS:IP in the real-mode call structure is ignored by this service. The appropriate
interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the real-mode stack
iret frame. The interrupt handler will be called with the interrupt and trace flags clear.

It is up to the caller to remove any parameters that were pushed on the protected-mode
stack.

The flag to reset the interrupt controller and the A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI implementations that
return to real mode to set the interrupt controller and A20 address line hardware to its
normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure with a FAR
return frame. The called procedure must execute a FAR return when it completes. Pass the
following information:

AX = 0301H
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved

and must be 0.
CX = Number of words to copy from protected-mode to real-mode stack
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1. The CS:IP in the real-mode call structure specifies the address of the real-mode
procedure to call.

2. The real-mode procedure must execute a FAR return when it has completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

Int31H Function Calls 71

The DOS/4GW DOS Extender

5. It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

6. The flag to reset the interrupt controller and A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0302H (DOS/4GW Professional only) This function calls a real-mode procedure with an iret
frame. The called procedure must execute an iret when it completes. Pass the following
information:

AX = 0302H
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved

and must be 0.
CX = Number of words to copy from protected-mode to real-mode stack
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1. The CS:IP in the real-mode call structure specifies the address of the real-mode
procedure to call.

2. The real-mode procedure must execute an iret when it has completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

5. The flags specified in the real-mode call structure will be pushed the real-mode
stack iret frame. The procedure will be called with the interrupt and trace
flags clear.

6. It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

7. The flag to reset the interrupt controller and A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback address. This
service is used to obtain a unique real-mode SEG:OFFSET that will transfer control from
real mode to a protected-mode procedure.

72 Int31H Function Calls

Interrupt 31H DPMI Functions

At times it is necessary to hook a real-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address whenever the
mouse is moved. Software running in protected mode can use a real-mode callback to
intercept the mouse driver calls. Pass the following information:

AX = 0303H
DS:ESI = selector:offset of procedure to call
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and CX:DX contains the segment:offset of
real-mode callback address.

If the call fails, the carry flag is set.

Callback Procedure Parameters

Interrupts disabled
DS:ESI = selector:offset of real-mode SS:SP
ES:EDI = selector:offset of real-mode call structure
SS:ESP = Locked protected-mode API stack
All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES:EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Since the real-mode call structure is static, you must be careful when writing
code that may be reentered. The simplest method of avoiding reentrancy is to
leave interrupts disabled throughout the entire call. However, if the amount of
code executed by the callback is large then you will need to copy the real-mode
call structure into another buffer. You can then return with ES:EDI pointing to
the buffer you copied the data to &mdash. it does not have to point to the
original real mode call structure.

2. The called procedure is responsible for modifying the real-mode CS:IP before
returning. If the real-mode CS:IP is left unchanged then the real-mode callback
will be executed immediately and your procedure will be called again. Normally
you will want to pop a return address off of the real-mode stack and place it in
the real-mode CS:IP. The example code in the next section demonstrates
chaining to another interrupt handler and simulating a real-mode iret.

3. To return values to the real-mode caller, you must modify the real-mode call
structure.

4. Remember that all segment values in the real-mode call structure will contain
real-mode segments, not selectors. If you need to examine data pointed to by a
real-mode seg:offset pointer, you should not use the segment to selector service
to create a new selector. Instead, allocate a descriptor during initialization and
change the descriptor’s base to 16 times the real-mode segment’s value. This is

Int31H Function Calls 73

The DOS/4GW DOS Extender

important since selectors allocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per task.

The following code is a sample of a real-mode interrupt hook. It hooks the DOS Int 21h
and returns an error for the delete file function (AH=41h). Other calls are passed through
to DOS. This example is somewhat silly but it demonstrates the techniques used to hook a
real mode interrupt. Note that since DOS calls are reflected from protected mode to real
mode, the following code will intercept all DOS calls from both real mode and protected
mode.

74 Int31H Function Calls

Interrupt 31H DPMI Functions

;**
; This procedure gets the current Int 21h real-mode
; Seg:Offset, allocates a real-mode callback address,
; and sets the real-mode Int 21h vector to the call-
; back address.
;**
Initialization_Code:
;
; Create a code segment alias to save data in
;

mov ax, 000Ah
mov bx, cs
int 31h
jc ERROR
mov ds, ax
ASSUMES DS,_TEXT

;
; Get current Int 21h real-mode SEG:OFFSET
;

mov ax, 0200h
mov bl, 21h
int 31h
jc ERROR
mov [Orig_Real_Seg], cx
mov [Orig_Real_Offset], dx

;
; Allocate a real-mode callback
;

mov ax, 0303h
push ds
mov bx, cs
mov ds, bx
mov si, OFFSET My_Int_21_Hook
pop es
mov di, OFFSET My_Real_Mode_Call_Struc
int 31h
jc ERROR

;
; Hook real-mode int 21h with the callback address
;

mov ax, 0201h
mov bl, 21h
int 31h
jc ERROR

;**
;
; This is the actual Int 21h hook code. It will return
; an "access denied" error for all calls made in real
; mode to delete a file. Other calls will be passed
; through to DOS.
;
; ENTRY:
; DS:SI -> Real-mode SS:SP
; ES:DI -> Real-mode call structure
; Interrupts disabled
;
; EXIT:
; ES:DI -> Real-mode call structure
;
;**

My_Int_21_Hook:
cmp es:[di.RealMode_AH], 41h
jne Chain_To_DOS

;
; This is a delete file call (AH=41h). Simulate an
; iret on the real-mode stack, set the real-mode
; carry flag, and set the real-mode AX to 5 to indicate
; an access denied error.
;

Int31H Function Calls 75

The DOS/4GW DOS Extender

cld
lodsw ; Get real-mode ret IP
mov es:[di.RealMode_IP], ax
lodsw ; Get real-mode ret CS
mov es:[di.RealMode_CS], ax
lodsw ; Get real-mode flags
or ax, 1 ; Set carry flag
mov es:[di.RealMode_Flags], ax
add es:[di.RealMode_SP], 6
mov es:[di.RealMode_AX], 5
jmp My_Hook_Exit

;
; Chain to original Int 21h vector by replacing the
; real-mode CS:IP with the original Seg:Offset.
;
Chain_To_DOS:

mov ax, cs:[Orig_Real_Seg]
mov es:[di.RealMode_CS], ax
mov ax, cs:[Orig_Real_Offset]
mov es:[di.RealMode_IP], ax

My_Hook_Exit:
iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback address that was
allocated through the allocate real-mode callback address service. Pass the following
information:

AX = 0304H
CX:DX = Real-mode callback address to free

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Real-mode callbacks are a limited resource. Your code should free any break
point that it is no longer using.

11.2.5 DPMI Version
Function 0400H This function returns the version of DPMI services supported. Note that this is not

necessarily the version of any operating system that supports DPMI. It should be used by
programs to determine what calls are legal in the current environment. Pass the following
information:

AX = 0400H

The information returned is:

AH = Major version
AL = Minor version
BX = Flags Bit 0 = 1 if running under an 80386 DPMI implementation. Bit 1 = 1 if

processor is returned to real mode for reflected interrupts (as opposed to
Virtual 8086 mode). Bit 2 = 1 if virtual memory is supported. Bit 3 is
reserved and undefined. All other bits are zero and reserved for later use.

CL = Processor type

76 Int31H Function Calls

Interrupt 31H DPMI Functions

02 = 80286
03 = 80386
04 = 80486
05 = Pentium

DH = Current value of virtual master PIC base interrupt
DL = Current value of virtual slave PIC base interrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services
Function 0500H This function gets information about free memory. Pass the following information:

AX = 0500H
ES:EDI = the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of a buffer with the structure shown in the figure below.

Offset Description

00H Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

0CH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pages not in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved
2FH

Only the first field of the structure is guaranteed to contain a valid value. Any field that is
not returned by DOS/4GW is set to -1 (0FFFFFFFFH).

Int31H Function Calls 77

The DOS/4GW DOS Extender

Function 0501H This function allocates and commits linear memory. Pass the following information:

AX = 0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flag is clear, BX:CX contains the linear address of the
allocated memory, and SI:DI contains the memory block handle used to free or resize the
block. If the call fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and initialize
selectors needed to access the memory.

If VMM is present, the memory is allocated as unlocked, page granular blocks. Because of
the page granularity, memory should be allocated in multiples of 4KB.

Function 0502H This function frees a block of memory allocated through function 0501H. Pass the
following information:

AX = 0502H
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. You must also
free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H function. If you
resize a block of linear memory, it may have a new linear address and a new handle. Pass
the following information:

AX = 0503H
BX:CX = new size of memory block, in bytes
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear, BX:CX contains the new linear address of the
memory block, and SI:DI contains the new handle of the memory block. If the call fails,
the carry flag is set.

If either the linear address or the handle has changed, update the selectors that point to the
memory block. Use the new handle instead of the old one.

You cannot resize a memory block to zero bytes.

11.2.7 Page Locking Services
These services are only useful under DPMI implementations that support virtual memory. Although
memory ranges are specified in bytes, the actual unit of memory that will be locked will be one or more
pages. Page locks are maintained as a count. When the count is decremented to zero, the page is unlocked
and can be swapped to disk. This means that if a region of memory is locked three times then it must be
unlocked three times before the pages will be unlocked.

78 Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI = size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flag is clear. If the specified region overlaps part of a page at
the beginning or end of a region, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously locked using
the "lock linear region" function (0600h). Pass the following information:

AX = 0601H
BX:CX = starting linear address of memory to unlock
SI:DI = size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked. An error
will be returned if the memory was not previously locked or if the specified region is
invalid.

If the call succeeds, the carry flag is clear. If the specified region overlaps part of a page at
the beginning or end of a region, the page(s) will be unlocked. Even if the call succeeds,
the memory will remain locked if the lock count is not decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. This function returns the
size of a single memory page in bytes. Pass the following information:

AX = 0604H

If the call succeeds, the carry flag is clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

11.2.8 Demand Paging Performance Tuning Services
Some applications will discard memory objects or will not access objects for long periods of time. These
services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual memory, other
implementations will ignore these functions (it will always return carry clear). Therefore your code can
always call these functions regardless of the environment it is running under.

Since both of these functions are simply advisory functions, the operating system may choose to ignore
them. In any case, your code should function properly even if the functions fail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand paging candidate.
This function is used to inform the operating system that a range of pages should be placed
at the head of the page out candidate list. This will force these pages to be swapped to disk
ahead of other pages even if the memory has been accessed recently. However, all memory
contents will be preserved.

Int31H Function Calls 79

The DOS/4GW DOS Extender

This is useful, for example, if a program knows that a given piece of data will not be
accessed for a long period of time. That data is ideal for swapping to disk since the
physical memory it now occupies can be used for other purposes. Pass the following
information:

AX = 0702H
BX:CX = Starting linear address of pages to mark
SI:DI = Number of bytes to mark as paging candidates

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. This function does not force the pages to be swapped to disk immediately.

2. Partial pages will not be discarded.

Function 0703H (DOS/4GW Professional only) This function discards page contents. This function
discards the entire contents of a given linear memory range. It is used after a memory
object that occupied a given piece of memory has been discarded.

The contents of the region will be undefined the next time the memory is accessed. All
values previously stored in this memory will be lost. Pass the following information:

AX = 0703H
BX:CX = Starting linear address of pages to discard
SI:DI = Number of bytes to discard

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Partial pages will not be discarded.

11.2.9 Physical Address Mapping
Memory mapped devices such as network adapters and displays sometimes have memory mapped at
physical addresses that lie outside of the normal 1Mb of memory that is addressable in real mode. Under
many implementations of DPMI, all addresses are linear addresses since they use the paging mechanism of
the 80386. This service can be used by device drivers to convert a physical address into a linear address.
The linear address can then be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.

Some implementations of DPMI may not support this call because it could be used to
circumvent system protection. This call should only be used by programs that absolutely
require direct access to a memory mapped device.

Pass the following information:

80 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can be used to
access the physical memory.

If the call fails, the carry flag is set.

Notes:

1. Under DPMI implementations that do not use the 80386 paging mechanism, the
call will always succeed and the address returned will be equal to the physical
address parameter passed into this function.

2. It is up to the caller to build an appropriate selector to access the memory.

3. Do not use this service to access memory that is mapped in the first megabyte of
address space (the real-mode addressable region).

Function 0801H This function is used to free Physical Address Mapping. Pass the following information:

AX = 0801H
BX:CX = Linear address returned by Function 0800H.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. The client should call this function when it is finished using a device previously
mapped to linear addresses with the Physical Address Mapping function
(Function 0800H).

11.2.10 Virtual Interrupt State Functions
Under many implementations of DPMI, the interrupt flag in protected mode will always be set (interrupts
enabled). This is because the program is running under a protected operating system that cannot allow
programs to disable physical hardware interrupts. However, the operating system will maintain a "virtual"
interrupt state for protected-mode programs. When the program executes a CLI instruction, the program’s
virtual interrupt state will be disabled, and the program will not receive any hardware interrupts until it
executes an STI to reenable interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will be pushed
onto the stack. Thus, examining the flags pushed on the stack is not sufficient to determine the state of the
program’s virtual interrupt flag. These services enable programs to get and modify the state of their virtual
interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtual interrupt state to
it’s previous state.

Int31H Function Calls 81

The DOS/4GW DOS Extender

;
; Disable interrupts and get previous interrupt state
;

mov ax, 0900h
int 31h

;
; At this point AX = 0900h or 0901h
;

.

.

.
;
; Restore previous state (assumes AX unchanged)
;

int 31h

Function 0900H This function gets and disables Virtual Interrupt State. This function will disable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Pass the
following information:

AX = 0900H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are disabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will enable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Pass the
following information:

AX = 0901H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are enabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0902H This function gets the Virtual Interrupt State. This function will return the current state of
the virtual interrupt flag. Pass the following information:

82 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0902H

After the call, the carry flag is clear (this function always succeeds).

AL = 0 if virtual interrupts are disabled.
AL = 1 if virtual interrupts are enabled.

11.2.11 Vendor Specific Extensions
Some DOS extenders provide extensions to the standard set of DPMI calls. This call is used to obtain an
address which must be called to use the extensions. The caller points DS:ESI to a null terminated string
that specifies the vendor name or some other unique identifier to obtain the specific extension entry point.

Function 0A00H This function gets Tenberry Software’s API Entry Point. Pass the following information:

AX = 0A00H
DS:ESI = Pointer to null terminated string "RATIONAL DOS/4G"

If the call succeeds, the carry flag is clear and ES:EDI = Extended API entry point. DS,
FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.

Notes:

1. Execute a far call to call the API entry point.

2. All extended API parameters are specified by the vendor.

3. The string comparison used to return the API entry point is case sensitive.

11.2.12 Coprocessor Status
Function 0E00H This function gets the coprocessor status. Pass the following information:

AX = 0E00H

If the call succeeds, the carry flag is clear and AX contains the coprocessor status.

Bit Significance

0 MPv (MP bit in the virtual MSW/CR0).
0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.

1 EMv (EM bit in the virtual MSW/CR0).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.

2 MPr (MP bit from the actual MSW/CR0).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.

Int31H Function Calls 83

The DOS/4GW DOS Extender

1 EMr (EM bit from the actual MSW/CR0).
0 = Host is not emulating coprocessor instructions.
1 = Host is emulating coprocessor instructions.

4-7 Coprocessor type.

00H = no coprocessor.
02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium

8-15 Not applicable.

If the call fails, the carry flag is set.

Notes:

1. If the real EM (EMr) bit is set, the host is supplying or is capable of supplying
floating-point emulation.

2. If the MPv bit is not set, the host may not need to save the coprocessor state for
this virtual machine to improve system performance.

3. The MPr bit setting should be consistent with the setting of the coprocessor type
information. Ignore MPr bit information if it is in conflict with the coprocessor
type information.

4. If the virtual EM (EMv) bit is set, the host delivers all coprocessor exceptions to
the client, and the client is performing its own floating-point emulation (wether
or not a coprocessor is present or the host also has a floating-point emulator). In
other words, if the EMv bit is set, the host sets the EM bit in the real CR0 while
the virtual machine is active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

5. A client can determine the CPU type with int 31H Function 0400H, but a client
should not draw any conclusions about the presence or absence of a coprocessor
based on the CPU type alone.

Function 0E01H This function sets coprocessor emulation. Pass the following information:

AX = 0E01H
BX = coprocessor bits

Bit Significance

0 New value of MPv bit for client’s virtual CR0.
0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for this client.

1 New value of EMv bit for client’s virtual CR0.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.

2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

84 Int31H Function Calls

12 Utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the Watcom
C/C++ package. Each program is described using the following format:

Purpose: This is a brief statement of what the utility program does. More specific information is provided
under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each command is in a
typewriter font, while variable parts of the command are in italics. Optional parts are
enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We explain anything
special that you might need to know about the program.

See Also: This is a cross-reference to any information that is related to the program.

Example: You’ll find one or more sample uses of the utility program with an explanation of what the
program is doing.

Some of the utilities are DOS/4GW-based, protected-mode programs. To determine which programs run in
protected mode and which in real, run the program. If you see the DOS/4GW banner, the program runs in
protected mode.

Utilities 85

The DOS/4GW DOS Extender

12.1 DOS4GW
Purpose: Loads and executes linear executables.

Syntax: linear_executable

Notes: The stub program at the beginning of the linear executable invokes this program, which loads the
linear executable and starts up the DOS extender. The stub program must be able to find
DOS4GW: make sure it is in the path.

86 DOS4GW

Utilities

12.2 PMINFO
Purpose: Measures the performance of protected/real-mode switching and extended memory.

Syntax: PMINFO.EXE

Notes: We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary slightly from run to run.

Example: The following example shows the output of the PMINFO program on a 386 AT-compatible
machine.

C>pminfo
Protected Mode and Extended Memory Performance Measurement -- 5.00

Copyright (c) Tenberry Software, Inc. 1987 - 1993

DOS memory Extended memory CPU performance equivalent to 67.0 MHz 80486
---------- ---------------

736 8012 K bytes configured (according to BIOS).
640 15360 K bytes physically present (SETUP).
651 7887 K bytes available for DOS/16M programs.

22.0 (3.0) 18.9 (4.0) MB/sec word transfer rate (wait states).
42.9 (3.0) 37.0 (4.0) MB/sec 32-bit transfer rate (wait states).

Overall cpu and memory performance (non-floating point) for typical
DOS programs is 10.36 æ 1.04 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 36156/sec (27 usec/switch, 15 up + 11 down),
DOS/16M switch mode 11 (VCPI).

The top information line shows that the CPU performance is equivalent to a 67.0 MHz 80486.
Below are the configuration and timings for both the DOS memory and extended memory. If the
computer is not equipped with extended memory, or none is available for DOS/4GW, the
extended memory measurements may be omitted ("--").

The line "according to BIOS" shows the information provided by the BIOS (interrupts 12h and
15h function 88h). The line "SETUP", if displayed, is the configuration obtained directly from
the CMOS RAM as set by the computer’s setup program. It is displayed only if the numbers are
different from those in the BIOS line. They will be different for computers where the BIOS has
reserved memory for itself or if another program has allocated some memory and is intercepting
the BIOS configuration requests to report less memory available than is physically configured.
The "DOS/16M memory range", if displayed, shows the low and high addresses available to
DOS/4GW in extended memory.

Below the configuration information is information on the memory speed (transfer rate).
PMINFO tries to determine the memory architecture. Some architectures will perform well
under some circumstances and poorly under others; PMINFO will show both the best and worst
cases. The architectures detected are cache, interleaved, page-mode (or static column), and
direct. Measurements are made using 32-bit accesses and reported as the number of megabytes
per second that can be transferred. The number of wait states is reported in parentheses. The
wait states can be a fractional number, like 0.5, if there is a wait state on writes but not on reads.
Memory bandwidth (i.e., how fast the CPU can access memory) accounts for 60% to 70% of the
performance for typical programs (that are not heavily dependent on floating-point math).

PMINFO 87

The DOS/4GW DOS Extender

A performance metric developed by Tenberry Software is displayed, showing the expected
throughput for the computer relative to a standard 8MHz IBM PC/AT (disk accesses and floating
point are excluded). Finally, the speed with which the computer can switch between real and
protected mode is displayed, both as the maximum number of round-trip switches that can occur
per second, and the time for a single round-trip switch, broken out into the real-to-protected (up)
and protected-to-real (down) components.

88 PMINFO

Utilities

12.3 PRIVATXM
Purpose: Creates a private pool of memory for DOS/4GW programs.

Syntax: PRIVATXM [-r]

Notes: This program may be distributed to your users.

Without PRIVATXM, a DOS/4GW program that starts up while another DOS/4GW program is
active uses the pool of memory built by the first program. The new program cannot change the
parameters of this memory pool, so setting DOS16M to increase the size of the pool has no
effect. To specify that the two programs use different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS/4GW programs as private, preventing subsequent DOS/4GW
programs from using the same memory pool. The first DOS/4GW program to start after
PRIVATXM sets up a new pool of memory for itself and any subsequent DOS/4GW programs.
To release the memory used by the private programs, use the PRIVATXM -r option.

PRIVATXM is a TSR that requires less than 500 bytes of memory. It is not supported under
DPMI.

Example: The following example creates a 512KB memory pool that is shared by two DOS/4GW TSRs.
Subsequent DOS/4GW programs use a different memory pool.

C>set DOS16M= :512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOS/4GW programs use a new memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512KB memory pool used by the TSRs. (If the TSRs
shut down, their memory is not released unless PRIVATXM is
released.)

PRIVATXM 89

The DOS/4GW DOS Extender

12.4 RMINFO
Purpose: Supplies configuration information and the basis for real/protected-mode switching in your

machine.

Syntax: RMINFO.EXE

Notes: This program may be distributed to your users.

RMINFO starts up DOS/4GW, but stops your machine just short of switching from real mode to
protected mode and displays configuration information about your computer. The information
shown by RMINFO can help determine why DOS/4GW applications won’t run on a particular
machine. Run RMINFO if PMINFO does not run to completion.

Example: The following example shows the output of the RMINFO program on an 386 AT-compatible
machine.

C>rminfo

DOS/16M Real Mode Information Program 5.00
Copyright (C) Tenberry Software, Inc. 1987 - 1993

Machine and Environment:
Processor: i386, coprocessor present
Machine type: 10 (AT-compatible)
A20 now: enabled
A20 switch rigor: disabled
DPMI host found

Switching Functions:
To PM switch: DPMI
To RM switch: DPMI
Nominal switch mode: 0
Switch control flags: 0000

Memory Interfaces:
DPMI may provide: 16384K returnable
Contiguous DOS memory: 463K

The information provided by RMINFO includes:

Machine and Environment:

Processor: processor type, coprocessor present/not present

Machine type:

90 RMINFO

Utilities

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)
(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)
(Zenith)
(Hitachi)
(Okidata)
(PS/55)

A20 now: Current state of Address line 20.

A20 switch rigor: Whether DOS4GW rigorously controls enabling and disabling of Address line
20 when switching modes.

PS feature flag

XMS host found Whether your system has any software using extended memory under the XMS
discipline.

VCPI host found Whether your system has any software using extended memory under the
VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory

Switching Functions:

A20 switching:

To PM switch: reset catch:
pre-PM prep:
post-PM-switch:

To RM switch:
pre-RM prep:
reset method:
post-reset:
reset uncatch:

Nominal switch mode: x

Switch control flags: xxxxh

RMINFO 91

The DOS/4GW DOS Extender

Memory Interfaces:

(VCPI remapping in effect)

DPMI may provide: xxxxxK returnable

VCPI may provide: xxxxxK returnable

Top-down

Other16M

Forced

Contiguous DOS memory:

92 RMINFO

13 Error Messages

The following lists DOS/4G error messages, with descriptions of the circumstances in which the error is
most likely to occur, and suggestions for remedying the problem. Some error messages pertaining to
features &mdash like DLLs &mdash that are not supported in DOS/4GW will not arise with that product.
In the following descriptions, references to DOS/4G, DOS4G, or DOS4G.EXE may be replaced by
DOS/4GW, DOS4GW, or DOS4GW.EXE should the error message arise when using DOS/4GW.

13.1 Kernel Error Messages
This section describes error messages from the DOS/16M kernel embedded in DOS/4G. Kernel error
messages may occur because of severe resource shortages, corruption of DOS4GW.EXE, corruption of
memory, operating system incompatibilities, or internal errors in DOS/4GW. All of these messages are
quite rare.

0. involuntary switch to real mode

The computer was in protected mode but switched to real mode without going through DOS/16M. This
error most often occurs because of an unrecoverable stack segment exception (stack overflow), but can
also occur if the Global Descriptor Table or Interrupt Descriptor Table is corrupted. Increase the stack
size, recompile your program with stack overflow checking, or look into ways that the descriptor tables
may have been overwritten.

1. not enough extended memory

2. not a DOS/16M executable <filename>

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy the file.

3. no DOS memory for transparent segment

4. cannot make transparent segment

5. too many transparent segments

6. not enough memory to load program

There is not enough memory to load DOS/4G. Make more memory available and try again.

7. no relocation segment

8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file units. Set a
larger FILES= entry in CONFIG.SYS, reboot, and try again.

Kernel Error Messages 93

The DOS/4GW DOS Extender

9. cannot allocate tstack

There is not enough memory to load DOS/4G. Make more memory available and try again.

10. cannot allocate memory for GDT

There is not enough memory to load DOS/4G. Make more memory available and try again.

11. no passup stack selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.

12. no control program selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.

13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try again.

14. premature EOF

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy the file.

15. protected mode available only with 386 or 486

DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications

Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode. This is done to
provide special memory services to DOS programs, such as EMS simulation (EMS interface without
EMS hardware) or high memory. In this mode, it is not possible to switch into protected mode unless
the resident software follows a standard that DOS/16M supports (DPMI, VCPI, and XMS are the most
common). Contact the vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)

On some Japanese machines that are not IBM AT-compatible, and have no protocol for managing
extended memory, you must set the DOS16M environment variable to specify the range of available
extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requires DOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your program.

94 Kernel Error Messages

Error Messages

23. no memory for VCPI page table

There is not enough memory to load DOS/4G. Make more memory available and try again.

24. VCPI page table address incorrect

This is an internal error.

25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that VCPI is
present, but VCPI returns an error when DOS/16M tries to initialize the interface.

26. 8042 timeout

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop

This error probably indicates that memory was corrupted during execution of your program. Using an
invalid or stale alias selector may cause this error. Incorrect manipulation of segment descriptors may
also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your program. Writing
through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMS)

34. DPMI host error (cannot lock stack)

Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI. Under Windows,
you might try making more physical memory available by eliminating or reducing any RAM drives or
disk caches. You might also try editing DEFAULT.PIF so that at least 64KB of XMS memory is
available to non-Windows programs. Under OS/2, you want to increase the DPMI_MEMORY_LIMIT
in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your program should
cause error 2001 instead.

36. The DOS16M.386 virtual device driver was never loaded

37. Unable to reserve selectors for DOS16M.386 Windows driver

Kernel Error Messages 95

The DOS/4GW DOS Extender

38. Cannot use extended memory: HIMEM.SYS not version 2

This error indicates an incompatibility with an old version of HIMEM.SYS.

39. An obsolete version of DOS16M.386 was loaded

40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its configuration.
Try configuring the memory manager to provide more extended memory, or change memory managers.

13.2 DOS/4G Errors
1000 "can’t hook interrupts"

A DPMI host has prevented DOS/4G from loading. Please contact Tenberry Technical Support.

1001 "error in interrupt chain"

DOS/4G internal error. Please contact Tenberry Technical Support.

1003 "can’t lock extender kernel in memory"

DOS/4G couldn’t lock the kernel in physical memory, probably because of a memory shortage.

1004 "syntax is DOS4G <executable.xxx>"

You must specify a program name.

1005 "not enough memory for dispatcher data"

There is not enough memory for DOS/4G to manage user-installed interrupt handlers properly. Free
some memory for the DOS/4G application.

1007 "can’t find file <program> to load"

DOS/4G could not open the specified program. Probably the file didn’t exist. It is possible that
DOS ran out of file handles, or that a network or similar utility has prohibited read access to the
program. Make sure that the file name was spelled correctly.

1008 "can’t load executable format for file <filename> [<error code>]"

DOS/4G did not recognize the specified file as a valid executable file. DOS/4G can load linear
executables (LE and LX) and EXPs (BW). The error code is for Tenberry Software’s use.

1009 "program <filename> is not bound"

This message does not occur in DOS/4G, only DOS/4GW Professional; the latter requires that the
DOS extender be bound to the program file. The error signals an attempt to load

1010 "can’t initialize loader <loader> [<error code>]"

96 DOS/4G Errors

Error Messages

DOS/4G could not initialize the named loader, probably because of a resource shortage. Try making
more memory available. If that doesn’t work, please contact Tenberry Technical Support. The error
code is for Tenberry Software’ use.

1011 "VMM initialization error [<error code>]"

DOS/4G could not initialize the Virtual Memory Manager, probably because of a resource shortage.
Try making more memory available. If that doesn’t work, please contact Tenberry Technical
Support. The error code is for Tenberry Software’ use.

1012 "<filename> is not a WATCOM program"

This message does not occur in DOS/4G, only DOS/4GW and DOS/4GW Professional. Those
extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because of an internal
error. Please call Tenberry Technical Support.

1100 "assertion \"<statement>\" failed (<file>:<line>)"

DOS/4G internal error. Please contact Tenberry Technical Support.

1200 "invalid EXP executable format"

DOS/4G tried to load an EXP, but couldn’t. The executable file is probably corrupted.

1201 "program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU -AUTO or -DPMI
switch.

1202 "can’t allocate memory for GDT"

There is not enough memory available for DOS/4G to build a Global Descriptor Table. Make more
memory available.

1203 "premature EOF"

DOS/4G tried to load an EXP but couldn’t. The file is probably corrupted.

1204 "not enough memory to load program"

There is not enough memory available for DOS/4G to load your program. Make more memory
available.

1301 "invalid linear executable format"

DOS/4G cannot recognize the program file as a LINEXE format. Make sure that you specified the
correct file name.

1304 "file I/O seek error"

DOS/4G Errors 97

The DOS/4GW DOS Extender

DOS/4G was unable to seek to a file location that should exist. This usually indicates truncated
program files or problems with the storage device from which your program loads. Run CHKDSK
or a similar utility to begin determining possible causes.

1305 "file I/O read error"

DOS/4G was unable to read a file location that should contain program data. This usually indicates
truncated program files or problems with the storage device from which your program loads. Run
CHKDSK or a similar utility to begin determining possible causes.

1307 "not enough memory"

As it attempted to load your program, DOS/4G ran out of memory. Make more memory available,
or enable VMM.

1308 "can’t load requested program"

1309 "can’t load requested program"

1311 "can’t load requested program"

1312 "can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1313 "can’t resolve external references"

DOS/4G was unable to resolve all references to DLLs for the requested program, or the program
contained unsupported fixup types. Use EXEHDR or a similar LINEXE dump utility to see what
references your program makes and what special fixup records might be present.

1314 "not enough lockable memory"

As it attempted to load your program, DOS/4G encountered a refusal to lock a virtual memory
region. Some memory must be locked in order to handle demand-load page faults. Make more
physical memory available.

1315 "can’t load requested program"

1316 "can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1317 "program has no stack"

DOS/4G reports this error when you try to run a program with no stack. Rebuild your program,
building in a stack.

2000 "deinitializing twice"

DOS/4G internal error. Please contact Tenberry Technical Support.

2001 "exception <exception_number> (<exception_description>) at <selector:offset>"

98 DOS/4G Errors

Error Messages

Your program has generated an exception. For information about interpreting this message, see the
file COMMON.DOC.

2002 "transfer stack overflow at <selector:offset>"

Your program has overflowed the DOS/4G transfer stack. For information about interpreting this
message, see the file COMMON.DOC.

2300 " can’t find <DLL>.<ordinal> - referenced from <module>"

DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the DLL at all.
Correct or remove the reference, and make sure that DOS/4G can find the DLL.

DOS/4G looks for DLLs in the following directories:

• The directory specified by the Libpath32 configuration option (which defaults to the directory
of the main application file).

• The directory or directories specified by the LIBPATH32 environment variable.

• Directories specified in the PATH.

2301 "can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or remove the
reference, and make sure that DOS/4G can find the DLL.

2302 "DLL modules not supported"

This DOS/4GW Professional error message arises when an application references or tries to
explicitly load a DLL. DOS/4GW Professional does not support DLLs.

2303 "internal LINEXE object limit reached"

DOS/4G currently handles a maximum of 128 LINEXE objects, including all .DLL and .EXE files.
Most .EXE or .DLL files use only three or four objects. If possible, reduce the number of objects, or
contact Tenberry Technical Support.

2500 "can’t connect to extender kernel"

DOS/4G internal error. Please contact Tenberry Technical Support.

2503 "not enough disk space for swapping - <count> byes required"

VMM was unable to create a swap file of the required size. Increase the amount of disk space
available.

2504 "can’t create swap file \<filename>\""

VMM was unable to create the swap file. This could be because the swap file is specified for a
nonexistent drive or on a drive that is read-only. Set the SWAPNAME parameter to change the
location of the swap file.

DOS/4G Errors 99

The DOS/4GW DOS Extender

2505 "not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more memory
available. If <table> is page buffer, make more DOS memory available.

2506 "not enough physical memory (minmem)"

There is less physical memory available than the amount specified by the MINMEM parameter.
Make more memory available.

2511 "swap out error [<error code>]"

Unknown disk error. The error code is for Tenberry Software’ use.

2512 "swap in error [<error code>]"

Unknown disk error. The error code is for Tenberry Software’ use.

2514 "can’t open trace file"

VMM could not open the VMM.TRC file in the current directory for writing. If the directory
already has a VMM.TRC file, delete it. If not, there may not be enough memory on the drive for the
trace file, or DOS may not have any more file handles.

2520 "can’t hook int 31h"

DOS/4G internal error. Please contact Tenberry Technical Support.

2523 "page fault on non-present mapped page"

Your program references memory that has been mapped to a nonexistent physical device, using
DPMI function 508h. Make sure the device is present, or remove the reference.

2524 "page fault on uncommitted page"

Your program references memory reserved with a call to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before you reference
it.

3301 "unhandled EMPTYFWD, GATE16, or unknown relocation"

3302 "unhandled ALIAS16 reference to unaliased object"

3304 "unhandled or unknown relocation"

If your program was built for another platform that supports the LINEXE format, it may contain a
construct that DOS/4G does not currently support, such as a call gate. This message may also occur
if your program has a problem mixing 16- and 32-bit code. A linker error is another likely cause.

100 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/4GW and
DOS/4GW Professional product. The content of this chapter has been edited by Watcom. In most cases,
the information is applicable to both products.

This chapter covers the following topics:

• Access to technical support

• Differences within the DOS/4G product line

• Addressing

• Interrupt and exception handling

• Memory management

• DOS, BIOS, and mouse services

• Virtual memory

• Debugging

• Compatibility

14.1 Access to Technical Support
1a. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

WWW: http://www.tenberry.com/dos4g/
Email: 4gwhelp@tenberry.com
Phone: 1.480.767.8868
Fax: 1.480.767.8709
Mail: Tenberry Software, Inc.

PO Box 20050
Fountain Hills, Arizona
U.S.A 85269-0050

PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

Access to Technical Support 101

The DOS/4GW DOS Extender

1b. When to contact Watcom, when to contact Tenberry.

Since DOS/4GW Professional is intended to be completely compatible with DOS/4GW, you may wish
to ascertain whether your program works properly under DOS/4GW before contacting Tenberry
Software for technical support. (This is likely to be the second question we ask you, after your serial
number.)

If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect your own
code or a problem compiling or linking, you may wish to contact Watcom first. Tenberry Software
support personnel are not able to help you with most programming questions, or questions about using
the Watcom tools.

If your program only fails with DOS/4GW Professional, you have probably found a bug in DOS/4GW
Professional, so please contact us right away.

1c. Telephone support.

Tenberry Software’s hours for telephone support are 9am-6pm EST. Please note that telephone support
is free for the first 30 days only. A one-year contract for continuing telephone support on DOS/4GW
Professional is US$500 per developer, including an update subscription for one year, to customers in the
United States and Canada; for overseas customers, the price is $600. Site licenses may be negotiated.

There is no time limit on free support by fax, mail, or electronic means.

1d. References.

The DOS/4GW documentation from Watcom is the primary reference for DOS/4GW Professional as
well. Another useful reference is the DPMI specification. In the past, the DPMI specification could be
obtained free of charge by contacting Intel Literature. We have been advised that the DPMI
specification is no longer available in printed form.

However, the DPMI 1.0 specification can be obtained at:

http://www.delorie.com/djgpp/doc/dpmi/

Online HTML as well as a downloadable archive are provided.

14.2 Differences Within the DOS/4G Product Line
2a. DOS/4GW Professional versus DOS/4GW

DOS/4GW Professional was designed to be a higher-performance version of DOS/4GW suitable for
commercial applications. Here is a summary of the advantages of DOS/4GW Professional with respect
to DOS/4GW:

• Extender binds to the application program file

• Extender startup time has been reduced

• Support for Watcom floating-point emulator has been optimized

• Virtual memory manager performance has been greatly improved

102 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

• Under VMM, programs are demand loaded

• Virtual address space is 4 GB instead of 32 MB

• Extender memory requirements have been reduced by more than 50K

• Extender disk space requirements have been reduced by 40K

• Can omit virtual memory manager to save 50K more disk space

• Support for INT 31h functions 301h-304h and 702h-703h

DOS/4GW Professional is intended to be fully compatible with programs written for DOS/4GW 1.9 and
up. The only functional difference is that the extender is bound to your program instead of residing in a
separate file. Not only does this help reduce startup time, but it eliminates version-control problems
when someone has both DOS/4GW and DOS/4GW Professional applications present on one machine.

2b. DOS/4GW Professional versus DOS/4G.

DOS/4GW Professional is not intended to provide any other new DOS extender functionality. Tenberry
Software’s top-of-the-line 32-bit extender, DOS/4G, is not sold on a retail basis but is of special interest
to developers who require more flexibility (such as OEMs). DOS/4G offers these additional features
beyond DOS/4GW and DOS/4GW Professional:

• Complete documentation

• DLL support

• TSR support

• Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

• A C language API that offers more control over interrupt handling and program loading, as well
as making it easier to use the extender

• An optional (more protected) nonzero-based flat memory model

• Remappable error messages

• More configuration options

• The D32 debugger, GLU linker, and other tools

• Support for other compilers besides Watcom

• A higher level of technical support

• Custom work is available (e.g., support for additional executable formats, operating system API
emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or future) in the
DOS/4G line.

Differences Within the DOS/4G Product Line 103

The DOS/4GW DOS Extender

2c. DPMI functions supported by DOS/4GW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QDPMI (with
EXTCHKOFF), the DPMI host provides the DPMI services, not DOS/4GW. The DPMI host also
provides virtual memory, if any. Performance (speed and memory use) under different DPMI hosts
varies greatly due to the quality of the DPMI implementation.

These are the services provided by DOS/4GW and DOS/4GW Professional in the absence of a DPMI
host.

0000 Allocate LDT Descriptors
0001 Free LDT Descriptor
0002 Map Real-Mode Segment to Descriptor
0003 Get Selector Increment Value
0006 Get Segment Base Address
0007 Set Segment Base Address
0008 Set Segment Limit
0009 Set Descriptor Access Rights
000A Create Alias Descriptor
000B Get Descriptor
000C Set Descriptor
000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block
0101 Free DOS Memory Block
0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector
0201 Set Real-Mode Interrupt Vector
0202 Get Processor Exception Handler
0203 Set Processor Exception Handler
0204 Get Protected-Mode Interrupt Vector
0205 Set Protected-Mode Interrupt Vector

0300 Simulate Real-Mode Interrupt
0301 Call Real-Mode Procedure with Far Return Frame (DOS/4GW Professional only)
0302 Call Real-Mode Procedure with IRET Frame (DOS/4GW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)
0304 Free Real-Mode Callback Address (DOS/4GW Professional only)

0400 Get DPMI Version

0500 Get Free Memory Information
0501 Allocate Memory Block
0502 Free Memory Block
0503 Resize Memory Block

0600 Lock Linear Region
0601 Unlock Linear Region
0604 Get Page Size (VM only)

0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)

104 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

0703 Discard Page Contents (DOS/4GW Professional only)

0800 Physical Address Mapping
0801 Free Physical Address Mapping

0900 Get and Disable Virtual Interrupt State
0901 Get and Enable Virtual Interrupt State
0902 Get Virtual Interrupt State

0A00 Get Tenberry Software API Entry Point

0E00 Get Coprocessor Status
0E01 Set Coprocessor Emulation

14.3 Addressing
3a. Converting between pointers and linear addresses.

Because DOS/4GW uses a zero-based flat memory model, converting between pointers and linear
addresses is trivial. A pointer value is always relative to the current segment (the value in CS for a code
pointer, or in DS or SS for a data pointer). The segment bases for the default DS, SS, and CS are all
zero. Hence a near pointer is exactly the same thing as a linear address: a null pointer points to linear
address 0, and a pointer with value 0x10000 points to linear address 0x10000.

3b. Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other. To create a data
alias for a code pointer, merely create a data pointer and set it equal to the code pointer. It’s not
necessary for you to create your own alias descriptor. Similarly, to create a code alias for a data pointer,
merely create a code pointer and set it equal to the data pointer.

3c. Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode interrupt vector
table is at address 0, the BIOS data segment is at address 0x400, the monochrome video memory is at
address 0xB0000, and the color video memory is at address 0xB8000. To read and write any of these,
you can just use a pointer set to the proper address. You don’t need to create a far pointer, using some
magic segment value.

3d. Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can not in general
read or write extended memory directly, nor can you tell how a particular block of extended memory
has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addresses to linear addresses.
In other words, if you have a peripheral device in your machine that has memory at a physical address
of 256 MB, you can issue this call to create a linear address that points to that physical memory. The
linear address is the same thing as a near pointer to the memory and can be manipulated as such.

There is no way in a DPMI environment to determine the physical address corresponding to a given
linear address. This is part of the design of DPMI. You must design your application accordingly.

Addressing 105

The DOS/4GW DOS Extender

3e. Null pointer checking.

DOS/4GW will trap references to the first sixteen bytes of physical memory if you set the environment
variable DOS4G=NULLP. This is currently the only null-pointer check facility provided by
DOS/4GW.

As of release 1.95, DOS/4GW traps both reads and writes. Prior to this, it only trapped writes.

You may experience problems if you set DOS4G=NULLP and use some versions of the Watcom
Debugger with a 1.95 or later extender. These problems have been corrected in later versions of the
Watcom Debugger.

14.4 Interrupt and Exception Handling
4a. Handling asynchronous interrupts.

Under DOS/4GW, there is a convenient way to handle asynchronous interrupts and an efficient way to
handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or real mode (a
DOS or BIOS call) when a hardware interrupt comes in, you have to be prepared to handle interrupts in
either mode. Otherwise, you may miss interrupts.

You can handle both real-mode and protected-mode interrupts with a single handler, if 1) the interrupt
is in the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT 21h/25h or _dos_setvect();
3) you do not install a handler for the same interrupt using any other mechanism. DOS/4GW will route
both protected-mode interrupts and real-mode interrupts to your protected-mode handler. This is the
convenient way.

The efficient way is to install separate real-mode and protected-mode handlers for your interrupt, so
your CPU won’t need to do unnecessary mode switches. Writing a real-mode handler is tricky; all you
can reasonably expect to do is save data in a buffer and IRET. Your protected-mode code can
periodically check the buffer and process any queued data. (Remember, protected-mode code can
access data and execute code in low memory, but real-mode code can’t access data or execute code in
extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we recommend the DPMI
function INT 31h/201h for portability.

It does matter how you install the protected-mode handler. You can’t install it directly into the IDT,
because a DPMI provider must distinguish between interrupts and exceptions and maintain separate
handler chains. Installing with INT 31h/205h is the recommended way to install your protected-mode
handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions will be
funneled to your handler, to mimic DOS. Since DPMI exception handlers and interrupt handlers are
called with different stack frames, DOS/4GW executes a layer of code to cover these differences up; the
same layer is used to support the DOS/4G API (not part of DOS/4GW). This layer is the reason that
hooking with INT 21h/25h is less efficient than hooking with INT 31h/205h.

106 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b. Handling asynchronous interrupts in the second IRQ range.

Because the second IRQ range (normally INTs 70h-77h) is outside the DOS/4GW auto-passup range
(8-2Eh, excluding 21h) you may not handle these interrupts with a single handler, as described above
(the "convenient" method). You must install separate real-mode and protected-mode handlers (the
"efficient" method).

DOS/4G does allow you to specify additional passup interrupts, however.

4c. Asynchronous interrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt handler
MUST be locked at interrupt time. A DPMI virtual memory manager can use the DOS file system to
swap pages of memory to and from the disk; because DOS is not reentrant, a DPMI host is not required
to be able to handle page faults during asynchronous interrupts. Use INT 31h/600h (Lock Linear
Region) to lock an address range in memory.

If you fail to lock all of your code and data, your program may run under DOS/4GW, but fail under the
DOS/4GW Virtual Memory Manager or under another DPMI host such as Windows or OS/2.

You should also lock the code and data of a mouse callback function.

4d. Watcom signal() function and Ctrl-Break.

In earlier versions of the Watcom C/C++ library, there was a bug that caused signal(SIGBREAK) not to
work. Calling signal(SIGBREAK) did not actually install an interrupt handler for Ctrl-Break (INT
1Bh), so Ctrl-Break would terminate the application rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking INT 1Bh
directly. With release 10.0, this problem has been fixed.

4e. More tips on writing hardware interrupt handlers.

• It’s more like handling interrupts in real mode than not.

The same problems arise when writing hardware interrupt handlers for protected mode as arise for real
mode. We assume you know how to write real-mode handlers; if our suggestions don’t seem clear,
you might want to brush up on real-mode interrupt programming.

• Minimize the amount of time spent in your interrupt handlers.

When your interrupt handlers are called, interrupts are disabled. This means that no other system tasks
can be performed until you enable interrupts (an STI instruction) or until your handler returns. In
general, it’s a good idea to handle interrupts as quickly as possible.

• Minimize the amount of time spent in the DOS extender by installing separate real-mode and
protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode are resignalled in
protected mode by the extender, your application has to switch from real mode to protected mode to
real mode once per interrupt. Mode switching is a time-consuming process, and interrupts are disabled
during a mode switch. Therefore, if you’re concerned about performance, you should install separate
handlers for real-mode and protected-mode interrupts, eliminating the mode switch.

Interrupt and Exception Handling 107

The DOS/4GW DOS Extender

• If you can’t just set a flag and return, enable interrupts (STI).

Handlers that do more than just set a flag or store data in a buffer should re-enable interrupts as soon as
it’s safe to do so. In other words, save your registers on the stack, establish your addressing
conventions, switch stacks if you’re going to &mdash. and then enable interrupts (STI), to give
priority to other hardware interrupts.

• If you enable interrupts (STI), you should disable interrupts (CLI).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler, you should be
sure to do a CLI before you return. (CLI, then switch back to the original stack if you switched away,
then restore registers, then IRET.) If you don’t do this, the IRET will not necessarily restore the
previous interrupt flag state, and your program may crash. This is a difference from real-mode
programming, and it tends to show up as a problem when you try running your program in a Windows
or OS/2 DOS box for the first time (but not before).

• Add a reentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then interrupts can
quickly nest to the point of overflowing the transfer stack. This is a design flaw in your program, not
in the DOS extender; a real-mode DOS program can have exactly the same behavior. If you can
conceive of a situation where your interrupt handler can be called again before the first instance
returns, you need to code in a reentrancy check of some sort (before you switch stacks and enable
interrupts (STI), obviously).

Remember that interrupts can take different amounts of time to execute on different machines; the CPU
manufacturer, CPU speed, speed of memory accesses, and CMOS settings (e.g. "system BIOS
shadowing") can all affect performance in subtle ways. We recommend you program defensively and
always check for unexpected reentry, to avoid transfer stack overflows.

• Switch to your own stack.

Interrupt handlers are called on a stack that typically has only a small amount of stack available (512
bytes or less). If you need to use more stack than this, you have to switch to your own stack on entry
into the handler, and switch back before returning.

If you want to use C run-time library functions, which are compiled for flat memory model (SS == DS,
and the base of CS == the base of DS), you need to switch back to a stack in the flat data segment first.

Note that switching stacks by itself won’t prevent transfer stack overflows of the kind described above.

14.5 Memory Management
5a. Using the realloc() function.

In versions of Watcom C/C++ prior to 9.5b, there was a bug in the library implementation of realloc()
under DOS/4GW and DOS/4GW Professional. This bug was corrected by Watcom in the 9.5b release.

108 Memory Management

DOS/4GW Commonly Asked Questions

5b. Using all of physical memory.

DOS/4GW Professional is currently limited to 64 MB of physical memory. We do not expect to be able
to fix this problem for at least six months. If you need more than 64 MB of memory, you must use
virtual memory.

14.6 DOS, BIOS, and Mouse Services
6a. Speeding up file I/O.

The best way to speed up DOS file I/O in DOS/4GW is to write large blocks (up to 65535 bytes, or the
largest number that will fit in a 16-bit int) at a time from a buffer in low memory. In this case,
DOS/4GW has to copy the least amount of data and make the fewest number of DOS calls in order to
process the I/O request.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You can convert the
real-mode segment address returned by INT 31h/0100h to a pointer (suitable for passing to setvbuf()) by
shifting it left four bits.

6b. Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of the DOS
extender will be loaded into memory. DOS/4G supports loading of multiple programs atop a single
extender, as well as DLLs.

6c. Mouse callbacks.

DOS/4GW Professional now supports the INT 31h interface for managing real-mode callbacks.
However, you don’t need to bother with them for their single most important application: mouse
callback functions. Just register your protected-mode mouse callback function as you would in real
mode, by issuing INT 33h/0Ch with the event mask in CX and the function address in ES:EDX, and
your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking requirement exists for a
mouse callback function as for a hardware interrupt handler. See (4c) above.

6d. VESA support.

While DOS/4GW automatically handles most INT 10h functions so that you can you can issue them
from protected mode, it does not translate the INT 10h VESA extensions. The workaround is to use
INT 31h/300h (Simulate Real-Mode Interrupt).

14.7 Virtual Memory
7a. Testing for the presence of VMM.

INT 31h/400h returns a value (BX, bit 2) that tells if virtual memory is available. Under a DPMI host
such as Windows 3.1, this will be the host’s virtual memory manager, not DOS/4GW’s.

Virtual Memory 109

The DOS/4GW DOS Extender

You can test for the presence of a DOS/4G-family DOS extender with INT 31h/0A00h, with a pointer
to the null-terminated string "RATIONAL DOS/4G" in DS:ESI. If the function returns with carry clear,
a DOS/4G-family extender is running.

7b. Reserving memory for a spawned application.

If you spawn one DOS/4GW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOS4GVM=deleteswap) so that the two applications don’t try to use the
same swap file. You should also set the MAXMEM option low enough so that the parent application
doesn’t take all available physical memory; memory that’s been reserved by the parent application is
not available to the child application.

7c. Instability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes sporadically with
it, probably needs to lock the code and data for its hardware interrupt handlers down in memory.
DOS/4GW does not support page faults during hardware interrupts, because DOS services may not be
available at that time. See (4c) and (6c) above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).

7d. Running out of memory with a huge virtual address space.

Because DOS/4GW has to create page tables to describe your virtual address space, we recommend that
you set your VIRTUALSIZE parameter just large enough to accommodate your program. If you set
your VIRTUALSIZE to 4 GB, the physical memory occupied by the page tables will be 4 MB, and that
memory will not be available to DOS/4GW.

7e. Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for efficiency.
However, if you set the SWAPMIN parameter to a size (in KB), DOS/4GW will start with a swap file
of that size, and will grow the swap file when it has to. The SWAPINC value (default 64 KB) controls
the incremental size by which the swap file will grow.

7f. Deleting the swap file.

The DELETESWAP option has two effects: telling DOS/4GW to delete the swap file when it exits, and
causing DOS/4GW to provide a unique swap file name if an explicit SWAPNAME setting was not
given.

DELETESWAP is required if one DOS/4GW application is to spawn another; see (7b) above.

7g. Improving demand-load performance of large static arrays.

DOS/4GW demand-loading feature normally cuts the load time of a large program drastically.
However, if your program has large amounts of global, zero-initialized data (storage class BSS), the
Watcom startup code will explicitly zero it (version 9.5a or earlier). Because the zeroing operation
touches every page of the data, the benefits of demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/4GW automatically
zeroes pages of BSS data as they are loaded. You can make this change yourself by inserting a few
lines into the startup routine, assembling it (MASM 6.0 will work), and listing the modified object
module first when you link your program.

110 Virtual Memory

DOS/4GW Commonly Asked Questions

Here are the changes for \watcom\src\startup\386\cstart3r.asm (startup module from
the C/C++ 9.5 compiler, library using register calling conventions). You can modify the workaround
easily for other Watcom compilers:

... ; cstart3r.asm, circa line 332

; end of _BSS segment (start of STACK)
mov ecx,offset DGROUP:_end

; start of _BSS segment
mov edi,offset DGROUP:_edata

;-------------------------------; RSI OPTIMIZATION
mov eax, edi ; minimize _BSS initialization loop
or eax, 0FFFh ; compute address of first page after
inc eax ; start of _BSS
cmp eax, ecx ; if _BSS extends onto that page,
jae allzero ; then we can rely on the loader
mov ecx, eax ; zeroing the remaining pages

allzero: ;
;-------------------------------; END RSI OPTIMIZATION

sub ecx,edi ; calc # of bytes in _BSS segment
mov dl,cl ; save bottom 2 bits of count in edx
shr ecx,2 ; calc # of dwords
sub eax,eax ; zero the _BSS segment
rep stosd ; ...
mov cl,dl ; get bottom 2 bits of count
and cl,3 ; ...
rep stosb ; ...
...

Note that the 9.5b and later versions of the Watcom C library already contain this enhancement.

7h. How should I configure VM for best performance?

Here are some recommendations for setting up the DOS/4GW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and otherwise) your
program requires. If your program has 16 MB of code and data, set to 32 MB. (There
is only a small penalty for setting this value larger than you will need, but your program
won’t run if you set it too low.) See (7d) above.

MINMEM Set to the minimum hardware requirement for running your application. (If you require
a 2 MB machine, set to 2048).

MAXMEM Set to the maximum amount of memory you want your application to use. If you don’t
spawn any other applications, set this large (e.g., 32000) to make sure you can use all
available physical memory. If you do spawn, see (7b) above.

SWAPMIN Don’t use this if you want the best possible VM performance. The trade-off is that
DOS/4GW will create a swap file as big as your VIRTUALSIZE.

SWAPINC Don’t use this if you want the best possible VM performance.

DELETESWAP DOS/4GW’s VM will start up slightly slower if it has to create the swap file afresh
each time. However, unless your swap file is very large, DELETESWAP is a
reasonable choice; it may be required if you spawn another DOS/4GW program at the
same time. See (7b) above.

Virtual Memory 111

The DOS/4GW DOS Extender

14.8 Debugging
8a. Attempting to debug a bound application.

You can’t debug a bound application. The 4GWBIND utility (included with DOS/4GW Professional)
will allow you to take apart a bound application so that you can debug it:

4GWBIND -U <boundapp.exe> <yourapp.exe>

8b. Debugging with an old version of the Watcom debugger.

DOS/4GW supports versions 8.5 and up of the Watcom C, C++ and FORTRAN compilers. However,
in order to debug your unbound application with a Watcom debugger, you must have version 9.5a or
later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact Watcom to
upgrade your compiler and tools. The only way to debug a DOS/4GW Professional application with an
old version of the debugger is to rename 4GWPRO.EXE to DOS4GW.EXE and make sure that it’s
either in the current directory or the first DOS4GW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it’s up to you to keep track of which
DOS extender is which.

8c. Meaning of "unexpected interrupt" message/error 2001.

In version 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it easier to
understand.

For example, the message:

Unexpected interrupt 0E (code 0) at 168:10421034

is now printed:

error (2001): exception 0Eh (page fault) at 168:10421034

followed by a register dump, as before.

This message indicates that the processor detected some form of programming error and signaled an
exception, which DOS/4GW trapped and reported. Exceptions which can be trapped include:

00h divide by zero
01h debug exception OR null pointer used
03h breakpoint
04h overflow
05h bounds
06h invalid opcode
07h device not available
08h double fault
09h overrun
0Ah invalid TSS
0Bh segment not present
0Ch stack fault
0Dh general protection fault
0Eh page fault

112 Debugging

DOS/4GW Commonly Asked Questions

When you receive this message, this is the recommended course of action:

1. Record all of the information from the register dump.

2. Determine the circumstances under which your program fails.

3. Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’s Reference
Manual, to determine the circumstances under which the processor will generate the reported
exception.

4. Get the program to fail under your debugger, which should stop the program as soon as the
exception occurs.

5. Determine from the exception context why the processor generated an exception in this
particular instance.

8d. Meaning of "transfer stack overflow" message/error 2002.

In version 1.95 of DOS/4GW, we added more information to the "transfer stack overflow" message.
The message (which is now followed by a register dump) is printed:

error (2002): transfer stack overflow
on interrupt <number> at <address>

This message means DOS/4GW detected an overflow on its interrupt handling stack. It usually
indicates either a recursive fault, or a hardware interrupt handler that can’t keep up with the rate at
which interrupts are occurring. The best way to understand the problem is to use the VERBOSE option
in DOS/4GW to dump the interrupt history on the transfer stack; see (8e) below.

8e. Making the most of a DOS/4GW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/4GW register dump is
your best debugging tool. To maximize the information available for postmortem debugging, set the
environment variable DOS4G to VERBOSE, then reproduce the crash and record the output.

Here’s a typical register dump with VERBOSE turned on, with annotations.

1 DOS/4GW error (2001): exception 0Eh (page fault)

at 170:0042C1B2
2 TSF32: prev_tsf32 67D8
3 SS 178 DS 178 ES 178 FS 0 GS 20

EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E EDI 0 EBP 431410 ESP 4313FC
CS:IP 170:0042C1B2 ID 0E COD 0 FLG 10246

4 CS= 170, USE32, page granular, limit FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limit 0, base 15, acc 0
GS= 20, USE16, byte granular, limit FFFF, base 6AA0, acc 93

5 CR0: PG:1 ET:1 TS:0 EM:0 MP:0 PE:1 CR2: 1F000000 CR3: 9067
6 Crash address (unrelocated) = 1:000001B2
7 Opcode stream: 8A 18 31 D2 88 DA EB 0E 50 68 39 00 43 00 E8 1D

Stack:
8 0178:004313FC 000E 0000 0000 0000 C2D5 0042 C057 0042 0170 0000 0000 0000

0178:00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178:0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178:00431444 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:0043145C 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:00431474 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

9 Last 4 ints: 21 @ 170:42CF48/21 @ 170:42CF48/21 @ 170:42CF48/E @ 170:42C1B2/

Debugging 113

The DOS/4GW DOS Extender

1. The error message includes a synopsis of the problem. In this case, the processor signaled a
page fault exception while executing at address 170:0042C1B2.

2. The prev_tsf32 field is not usually of interest.

3. These are the register values at the time of the exception. The interrupt number and error
code (pushed on the stack by the processor for certain exceptions) are also printed.

4. The descriptors referenced by each segment register are described for your convenience.
USE32 segments in general belong to your program; USE16 segments generally belong to
the DOS extender. Here, CS points to your program’s code segment, and SS, DS, and ES
point to your data segment. FS is NULL and GS points to a DOS extender segment.

5. The control register information is not of any general interest, except on a page fault, when
CR2 contains the address value that caused the fault. Since EAX in this case contains the
same value, an attempt to dereference EAX could have caused this particular fault.

6. If the crash address (unrelocated) appears, it tells you where the crash occurred relative to
your program’s link map. You can therefore tell where a crash occurred even if you can’t
reproduce the crash in a debugger.

7. The opcode stream, if it appears, shows the next 16 bytes from the code segment at the point
of the exception. If you disassemble these instructions, you can tell what instructions caused
the crash, even without using a debugger. In this case, 8A 18 is the instruction mov
bl,[eax].

8. 72 words from the top of the stack, at the point of the exception, may be listed next. You
may be able to recognize function calls or data from your program on the stack.

9. The four interrupts least to most recently handled by DOS/4GW in protected mode are listed
next. In this example, the last interrupt issued before the page fault occurred was an INT 21h
(DOS call) at address 170:42CF48. Sometimes, this information provides helpful context.

Here’s an abridged register dump from a stack overflow.

DOS/4GW error (2002): transfer stack overflow
on interrupt 70h at 170:0042C002

TSF32: prev_tsf32 48C8
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4884

1 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
...

2 Previous TSF:
TSF32: prev_tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4960

3 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
...
Previous TSF:
TSF32: prev_tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 42FFE0

4 CS:IP 170:0042C039 ID 70 COD 0 FLG 202
5 Opcode stream: CF 66 B8 62 25 66 8C CB 66 8E DB BA 00 C0 42 00

Last 4 ints: 70 @ 170:42C002/70 @ 170:42C002/70 @ 170:42C002/70 @ 170:42C002/

1. We overflowed the transfer stack while trying to process an interrupt 70h at 170:0042C002.

114 Debugging

DOS/4GW Commonly Asked Questions

2. The entire interrupt history from the transfer stack is printed next. The prev_tsf32 numbers
increase as we progress from most recent to least recent interrupt. All of these interrupts are
still pending, which is why we ran out of stack space.

3. Before we overflowed the stack, we got the same interrupt at the same address. For a
recursive interrupt situation, this is typical.

4. The oldest frame on the transfer stack shows the recursion was touched off at a slightly
different address. Looking at this address may help you understand the recursion.

5. The opcode stream and last four interrupt information comes from the newest transfer stack
frame, not the oldest.

14.9 Compatibility
9a. Running DOS/4GW applications from inside Lotus 1-2-3.

In order to run DOS/4GW applications while "shelled out" from Lotus 1-2-3, you must use the
PRIVATXM program included with your Watcom compiler. Otherwise, 1-2-3 will take all of the
memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus’ memory use (see
your Watcom manual). After shelling out, you must run PRIVATXM, then clear the DOS16M
environment variable before running your application.

9b. EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS 6.0, one
involving mis-counting the amount of available memory, one involving mapping too little of the High
Memory Area (HMA) into its page tables, and one involving allocation of EMS memory. Version 1.95
of DOS/4GW contains workarounds for some of these problems.

If you are having problems with DOS/4GW and you are using an EMM386.EXE dated 3-10-93 at
6:00:00, or later, you may wish to try the following workarounds, in sequence, until the problem goes
away.

• Configure EMM386 with both the NOEMS and NOVCPI options.

• Convert the DEVICEHIGH statements in your CONFIG.SYS to DEVICE statements, and
remove the LH (Load High) commands from your AUTOEXEC.BAT.

• Run in a Windows DOS box.

• Replace EMM386 with another memory manager, such as QEMM-386, 386Max, or an older
version of EMM386.

• Run with HIMEM.SYS alone.

You may also wish to contact Microsoft Corporation to inquire about the availability of a fix.

Compatibility 115

The DOS/4GW DOS Extender

9c. Spawning under OS/2 2.1.

We know of a bug in OS/2 2.1 that prevents one DOS/4GW application from spawning another over
and over again. The actual number of repeated spawns that are possible under OS/2 varies from
machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet found a
workaround, other than linking your two programs together as a single program.

9d. "DPMI host error: cannot lock stack".

This error message almost always indicates insufficient memory, rather than a real incompatibility. If
you see it under an OS/2 DOS box, you probably need to edit your DOS Session settings and make
DPMI_MEMORY_LIMIT larger.

9e. Bug in Novell TCPIP driver.

Some versions of a program from Novell called TCPIP.EXE, a real-mode program, will cause the high
words of EAX and EDX to be altered during a hardware interrupt. This bug breaks protected-mode
software (and other real-mode software that uses the 80386 registers). Novell has released a newer
version of TCPIP that fixes the problem; contact Novell to obtain the fix.

9f. Bugs in Windows NT.

The initial release of Windows NT includes a DPMI host, DOSX.EXE, with several serious bugs, some
of which apparently cannot be worked around. We cannot warranty operation of DOS/4GW under
Windows NT at this time, but we are continuing to exercise our best efforts to work around these
problems.

You may wish to contact Microsoft Corporation to inquire about the availability of a new version of
DOSX.EXE.

116 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

118

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications simply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

Note - It is supposed you are working on the host with Windows 3.x installed. If you are on the host with
any other operating system you should setup INCLUDE environment variable correctly to compile for
16-bit Windows 3.x target.

You can do that by command (DOS, OS/2, NT)

set INCLUDE=%WATCOM%\h;%WATCOM%\h\win

or by command (LINUX)

export INCLUDE=$WATCOM/h:$WATCOM/h/win

15.1 The Sample GUI Application
To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
The following example is the "hello" program adapted for Windows.

#include <windows.h>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
MessageBox(NULL, "Hello world",

"Watcom C/C++ for Windows",
MB_OK | MB_TASKMODAL);

return(0);
}

The goal of this program is to display the message "Hello world" on the screen. The MessageBox
Windows API function is used to accomplish this task. We will take you through the steps necessary to
produce this result.

The Sample GUI Application 119

Windows 3.x Programming Guide

15.2 Building and Running the GUI Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl -l=windows -bt=windows hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl -l=windows -bt=windows hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c -bt=windows
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 37

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries).

The resultant 16-bit Windows 3.x application HELLO.EXE can now be run under Windows 3.x.

15.3 Debugging the GUI Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, this is fairly straightforward. WCL recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl -l=windows -bt=windows -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

120 Debugging the GUI Application

Creating 16-bit Windows 3.x Applications

C>wcl -l=windows -bt=windows -d2 hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c -bt=windows -d2
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 58

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.
It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the GUI Application 121

Windows 3.x Programming Guide

122 Debugging the GUI Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that is to run in a windowed environment must be written in such a way as to
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. There is a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Watcom’s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS and you now
wish to run them under Windows 3.x. To achieve this, you can simply recompile your application with the
appropriate options and link with the appropriate libraries. We provide a default windowing system that
turns your character-mode application into a simple Windows 3.x Graphical User Interface (GUI)
application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such as a DOS
application) can run as a GUI application. This is achieved by our default windowing system. The
following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment
In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are connected to the
standard input and standard output devices respectively. It is not a recommended practice to read directly
from the standard input device or write to the standard output device when running in a windowed
environment. For this reason, a default windowing environment is created for C/C++ applications that read
from stdin (C++ cin) or write to stdout (C++ cout). When your application is started, a window is created
in which output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by explicitly opening
a file whose name is "CON". When this occurs, another window is created and displayed. This window is
different from the one created for standard input and standard output. In fact, every time you open the
console device a different window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

16.2 The Sample Non-GUI Application
To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the famous "hello" program.

The Sample Non-GUI Application 123

Windows 3.x Programming Guide

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

16.3 Building and Running the Non-GUI Application
Very little effort is required to port an existing C/C++ application to Windows 3.x.

You must compile and link the file hello.c specifying the "bw" option.

C>wcl -l=windows -bw -bt=windows hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl -l=windows -bw -bt=windows hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c -bw -bt=windows
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries).

124 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 16-bit Windows 3.x

The resultant 16-bit Windows 3.x application HELLO.EXE can now be run under Windows 3.x as a
Windows GUI application.

16.4 Debugging the Non-GUI Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, this is fairly straightforward. WCL recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl -l=windows -bw -bt=windows -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl -l=windows -bw -bt=windows -d2 hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c -bw -bt=windows -d2
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.
It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Non-GUI Application 125

Windows 3.x Programming Guide

16.5 Default Windowing Library Functions
A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

_dwDeleteOnClose

int _dwDeleteOnClose(int handle);

This function tells the console window that it should close itself when the file is closed. You must
pass to it the handle associated with the opened console.

_dwSetAboutDlg

int _dwSetAboutDlg(const char *title, const char *text);

This function sets the about dialog box of the default windowing system. The "title" points to the
string that will replace the current title. If title is NULL then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new
line after each logical line in the string. If "text" is NULL, then the current text in the about box
will not be replaced.

_dwSetAppTitle

int _dwSetAppTitle(const char *title);

This function sets the main window’s title.

_dwSetConTitle

int _dwSetConTitle(int handle, const char *title);

This function sets the console window’s title which corresponds to the handle passed to it.

_dwShutDown

int _dwShutDown(void);

This function shuts down the default windowing I/O system. The application will continue to
execute but no windows will be available for output.

_dwYield

int _dwYield(void);

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the WATCOM C Library Reference.

126 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications simply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

Note - It is supposed you are working on the host with Windows 3.x installed. If you are on the host with
any other operating system you should setup INCLUDE environment variable correctly to compile for
32-bit Windows 3.x target.

You can do that by command (DOS, OS/2, NT)

set INCLUDE=%WATCOM%\h;%WATCOM%\h\win

or by command (LINUX)

export INCLUDE=$WATCOM/h:$WATCOM/h/win

17.1 The Sample GUI Application
To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
The following example is the "hello" program adapted for Windows.

#include <windows.h>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
MessageBox(NULL, "Hello world",

"Watcom C/C++ for Windows",
MB_OK | MB_TASKMODAL);

return(0);
}

The goal of this program is to display the message "Hello world" on the screen. The MessageBox
Windows API function is used to accomplish this task. We will take you through the steps necessary to
produce this result.

The Sample GUI Application 127

Windows 3.x Programming Guide

17.2 Building and Running the GUI Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl386 -l=win386 -bt=windows hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 -l=win386 -bt=windows hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bt=windows
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 41

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.rex (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). The ".rex" file must now be combined with Watcom’s
32-bit Windows supervisor WIN386.EXT using the Watcom Bind utility. WBIND.EXE combines your
32-bit application code and data (".rex" file) with the 32-bit Windows supervisor. The process involves the
following steps:

1. WBIND copies WIN386.EXT into the current directory.

2. WBIND.EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-bit executable can have access to the applications resources.

3. WBIND.EXE concatenates WIN386.EXT and the ".rex" file, and creates a ".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the WBIND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

128 Building and Running the GUI Application

Creating 32-bit Windows 3.x Applications

WBIND is the name of the Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational messages are
displayed).

-s supervisor specifies the path and name of the Windows supervisor to be bound with the
application. If not specified, a search of the paths listed in the PATH
environment variable is performed. If this search is not successful and the
WATCOM environment variable is defined, the %WATCOM%\BINW directory is
searched.

-R rc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbind hello -n

If the "s" option is specified, it must identify the location of the WIN386.EXT file or the W386DLL.EXT
file (if you are building a DLL).

Example:
C>wbind hello -n -s c:\watcom\binw\win386.ext

If the "s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Example:
C>set watcom=c:\watcom

or
C>path c:\watcom\binw;c:\dos;c:\windows

The resultant 32-bit Windows 3.x application HELLO.EXE can now be run under Windows 3.x.

17.3 Debugging the GUI Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 -l=win386 -bt=windows -d2 hello.c

Debugging the GUI Application 129

Windows 3.x Programming Guide

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 -l=win386 -bt=windows -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bt=windows -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 66

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

Once again, the ".rex" file must be combined with Watcom’s 32-bit Windows supervisor WIN386.EXT
using the Watcom Bind utility. This step is described in the previous section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.
It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

130 Debugging the GUI Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that is to run in a windowed environment must be written in such a way as to
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. There is a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Watcom’s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS and you now
wish to run them under Windows 3.x. To achieve this, you can simply recompile your application with the
appropriate options and link with the appropriate libraries. We provide a default windowing system that
turns your character-mode application into a simple Windows 3.x Graphical User Interface (GUI)
application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such as a DOS
application) can run as a GUI application. This is achieved by our default windowing system. The
following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment
In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are connected to the
standard input and standard output devices respectively. It is not a recommended practice to read directly
from the standard input device or write to the standard output device when running in a windowed
environment. For this reason, a default windowing environment is created for C/C++ applications that read
from stdin (C++ cin) or write to stdout (C++ cout). When your application is started, a window is created
in which output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by explicitly opening
a file whose name is "CON". When this occurs, another window is created and displayed. This window is
different from the one created for standard input and standard output. In fact, every time you open the
console device a different window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

18.2 The Sample Non-GUI Application
To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the famous "hello" program.

The Sample Non-GUI Application 131

Windows 3.x Programming Guide

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

18.3 Building and Running the Non-GUI Application
Very little effort is required to port an existing C/C++ application to Windows 3.x.

You must compile and link the file hello.c specifying the "bw" option.

C>wcl386 -l=win386 -bw -bt=windows hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 -l=win386 -bw -bt=windows hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bw -bt=windows
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.rex (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). The ".rex" file must now be combined with Watcom’s
32-bit Windows supervisor WIN386.EXT using the Watcom Bind utility. WBIND.EXE combines your

132 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

32-bit application code and data (".rex" file) with the 32-bit Windows supervisor. The process involves the
following steps:

1. WBIND copies WIN386.EXT into the current directory.

2. WBIND.EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-bit executable can have access to the applications resources.

3. WBIND.EXE concatenates WIN386.EXT and the ".rex" file, and creates a ".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the WBIND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

WBIND is the name of the Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational messages are
displayed).

-s supervisor specifies the path and name of the Windows supervisor to be bound with the
application. If not specified, a search of the paths listed in the PATH
environment variable is performed. If this search is not successful and the
WATCOM environment variable is defined, the %WATCOM%\BINW directory is
searched.

-R rc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbind hello -n

If the "s" option is specified, it must identify the location of the WIN386.EXT file or the W386DLL.EXT
file (if you are building a DLL).

Example:
C>wbind hello -n -s c:\watcom\binw\win386.ext

If the "s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Building and Running the Non-GUI Application 133

Windows 3.x Programming Guide

Example:
C>set watcom=c:\watcom

or
C>path c:\watcom\binw;c:\dos;c:\windows

The resultant 32-bit Windows 3.x application HELLO.EXE can now be run under Windows 3.x as a
Windows GUI application.

18.4 Debugging the Non-GUI Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 -l=win386 -bw -bt=windows -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 -l=win386 -bw -bt=windows -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bw -bt=windows -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

134 Debugging the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

Once again, the ".rex" file must be combined with Watcom’s 32-bit Windows supervisor WIN386.EXT
using the Watcom Bind utility. This step is described in the previous section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.
It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

18.5 Default Windowing Library Functions
A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

_dwDeleteOnClose

int _dwDeleteOnClose(int handle);

This function tells the console window that it should close itself when the file is closed. You must
pass to it the handle associated with the opened console.

_dwSetAboutDlg

int _dwSetAboutDlg(const char *title, const char *text);

This function sets the about dialog box of the default windowing system. The "title" points to the
string that will replace the current title. If title is NULL then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new
line after each logical line in the string. If "text" is NULL, then the current text in the about box
will not be replaced.

_dwSetAppTitle

int _dwSetAppTitle(const char *title);

This function sets the main window’s title.

_dwSetConTitle

int _dwSetConTitle(int handle, const char *title);

This function sets the console window’s title which corresponds to the handle passed to it.

_dwShutDown

int _dwShutDown(void);

This function shuts down the default windowing I/O system. The application will continue to
execute but no windows will be available for output.

_dwYield

int _dwYield(void);

Default Windowing Library Functions 135

Windows 3.x Programming Guide

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the WATCOM C Library Reference.

136 Default Windowing Library Functions

19 The Watcom 32-bit Windows 3.x Extender

Watcom C/C++ contains the necessary tools and libraries to create 32-bit applications for Windows 3.x.
Using Watcom C/C++ gives the programmer the benefits of a 32-bit flat memory model and access to the
full Windows API (along with the usual C/C++ library functions).

The general model of the environment is as follows: The 32-bit flat memory model program is linked
against a special 32-bit Windows library. This library contains the necessary information to invoke special
16-bit functions, which lie in the supervisor (WIN386.EXT). The 32-bit program is then bound (using
WBIND.EXE) with the supervisor to create a Windows executable. At the same time as the 32-bit
program is being bound, the resource compiler is run on the supervisor, and all the resources for the
application are placed there. When the application is started, the supervisor obtains the 32-bit memory,
relocates the 32-bit application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within the supervisor.
The local heap resides within the supervisor as well.

If you are starting from a 16-bit Windows application, most of the code will not change when you port it to
the 32-bit Windows environment. However, because of the nature of the Windows API and its implicit
dependencies on a 16-bit environment, some source changes are necessary. These source changes are
minimal, and are backwards compatible with the 16-bit environment.

19.1 Pointers
Throughout this document, there will be references to both near and far, and 16-bit and 32-bit pointers.
Since this can rapidly become confusing, some initial explanations will be given here.

A far pointer is a pointer that is composed of both a selector and an offset. A selector determines a specific
region of memory, and the offset is relative to the start of this region. A near pointer is a pointer that has
an offset only, the selector is automatically assumed by the CPU.

The problem with far pointers is the selector overhead. Using a far pointer is much more expensive than
using a near pointer. This is the advantage of the 32-bit flat memory model - all pointers within the
program are near, and yet you can address up to 4 gigabytes of memory.

A 16-bit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bits long). This pointer can
reference up to 64K of data.

A 16-bit far pointer occupies 4 bytes of memory. There is a 16-bit selector and a 16-bit offset. This
pointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bits long). This pointer can
reference up to 4 gigabytes of data.

A 32-bit far pointer occupies 6 bytes of memory. There is a 16-bit selector and a 32-bit offset. This
pointer can reference up to 4 gigabytes of data.

Pointers 137

Windows 3.x Programming Guide

Windows, in general, uses 16-bit far pointers to pass information around. These 16-bit far pointers can also
be used by a 32-bit Windows application. Using a special macro, MK_FP32, the offset of the 16-bit far
pointer is extended from 16 bits to 32 bits, and the pointer becomes a 32-bit far pointer. The 32-bit far
pointer is then used by the application to access the data (note that offsets still must be less than 64K, since
the selector is still for a 64K data area).

19.2 Implementation Overview
This section provides an overview of the issues that require consideration when creating a 32-bit Windows
application for a 16-bit Windows environment.

First, all modules have to be recompiled for the 32-bit flat memory model with a compiler capable of
generating 32-bit instructions. Many Windows API functions take int as a parameter. This int is from the
16-bit world, and is 2 bytes long. In the 32-bit world, this int becomes 4 bytes long. Since Windows is
only expecting two bytes of data, all occurrences of int have to be changed to short in WINDOWS.H.

Pointers to data passed to Windows are all far pointers. We will be passing pointers to data in our 32-bit
flat address space, and these pointers are near pointers. By simply getting rid of all far keywords in
WINDOWS.H, all pointers will now be passed as 32-bit near pointers. As well, notice that these 32-bit near
pointers are the same size as as their 16-bit far pointer counterparts (4 bytes). This is good, since all data
structures containing pointers will remain the same size.

Windows cannot be called from 32-bit code on a 32-bit stack. This means that in order to call the API
functions, it is necessary to write a set of cover functions that will accept the parameters, switch into a
16-bit environment, and then call Windows. There is another issue, though. Windows only understands
16-bit pointers, so before calling Windows, all pointers being passed to Windows must be converted to
16-bit far pointers.

It turns out that Windows can also call back to your application. Windows can only call 16-bit code,
though, so there is a need for a bridge from the 16-bit side to the 32-bit side. It is necessary to allocate
16-bit call back routines that can be passed to Windows. These call back routines will then switch into the
32-bit environment and call whatever 32-bit function is required. The 32-bit call back has to be declared as
a far function, since it is necessary to issue a far call to enter it from the 16-bit side. If it is a far function,
then the compiler will generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointers in a long (4 byte) parameter. This
pointer can only be used in the 32-bit environment if it is a 32-bit far pointer, not a 16-bit far pointer. The
conversion is simple: the 16-bit offset is extended to a 32-bit offset (the high word is zeroed out). Any far
pointer that Windows hands to you must be converted in this way.

Sometimes, a Windows application wants to call a procedure in a DLL. The procedure address is a 16-bit
far pointer. It is not possible to issue an indirect call to this address from the 32-bit environment, so some
sort of interface is needed. This interface would switch into the 16-bit environment, and then call the 16-bit
function.

These issues, along with other minor items, are handled by Watcom C/C++, and are discussed in more
technical detail in later sections.

138 Implementation Overview

The Watcom 32-bit Windows 3.x Extender

19.3 System Structure

C
al

lb
ac

k

A
PI

/D
O

S
C

al
l

32-16

Translation
(DOS Calls Only)

32-16

Translation
(DOS Calls Only)

C
al

lb
ac

k
32-bit C
Library

32-16

Translation
Windows

Supervisor

Windows
3.x

32-bit
Windows

API

32-bit
Application

Figure 5. WIN386 Structure

0

Stack Code Global
Data

Heap

Figure 6. 32-bit Application Structure

19.4 System Overview
• WIN386.EXT is the key component of a 32-bit Windows application. It is a 16-bit Windows
application which contains:

• All application resources.
• A 16-bit local heap.
• A 16-bit stack.

• W386DLL.EXT is similar to WIN386.EXT, only it provides a DLL interface.

WIN386.EXT is bound to your 32-bit application to create a 32-bit application that will run under
Windows 3.x. WIN386.EXT provides the following functionality:

System Overview 139

Windows 3.x Programming Guide

• supervisor to bring the 32-bit application into memory and start it running.

• "glue" functions to connect to Windows for both API and DOS functionality. This interface is
designed to transparently set up the calling functions’ pointers and parameters to their 16-bit
counterparts.

• "glue-back" functions to allow Windows to call back 32-bit routines.

• special code to allow debugging of 32-bit applications.

• WINDOWS.H has been specially modified for use in the 32-bit Windows environment. As well, it
contains all special definitions for 32-bit applications.

• WIN386.LIB contains all the necessary library functions to connect to the 32-bit supervisor
WIN386.EXT. All Windows API calls and Watcom C/C++ library DOS calls are found here.

• The standard C/C++ library functions, specially modified to run in the 32-bit environment, are
located in the \WATCOM\LIB386\WIN directory.

• WBIND.EXE merges your 32-bit executable and the appropriate Supervisor into a single executable.

19.5 Steps to Obtaining a 32-bit Application
The following is an overview of the procedure for creating a 32-bit Windows Application:

1. If you are starting with a 16-bit Windows application, you must adapt your source code to the
32-bit environment.

2. You must compile the application using a 32-bit compiler.
3. You must link the application with the 32-bit libraries.
4. You must bind the 32-bit application with the 32-bit supervisor.
5. You can then run and/or debug the application.

140 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming Overview

This chapter includes the following topics:

• WINDOWS.H

• Environment Notes

• Floating-point Emulation

• Multiple Instances

• Pointer Handling

• When To Convert Incoming Pointers

• When To Convert Outgoing Pointers

• SendMessage and SendDlgItemMessage

• GlobalAlloc and LocalAlloc

• Callback Function Pointers

• Window Sub-classing

• Calling 16-bit DLLs

• Making DLL Calls Transparent

• Far Pointer Manipulation

• _16 Functions

20.1 WINDOWS.H
When developing programs, make sure WINDOWS.H is included as the first include file in all source files.
This header file contains only the following lines:

#ifdef _WINDOWS_16_
#include <win16.h>
#else
#include <_win386.h>
#endif

The file WIN16.H is the regular 16-bit Windows header file, and is only conditionally included for 16-bit
Windows applications. The file _WIN386.H contains all the prototypes and macros for the 32-bit
environment, as well as including and modifying WIN16.H. These modifications are changing int to

WINDOWS.H 141

Windows 3.x Programming Guide

short, and changing the far keyword to nothing. These changes (that ONLY apply to things defined in
WIN16.H) cause all integers to be 16-bit integers, and all LP... pointer types to be near pointers.

Other include files for Windows must be specifically requested by defining macros before including
WINDOWS.H. This is required so that the same changes made to the primary Windows header file will
apply to routines declared in the other header files.

Macro name File included

#define INCLUDE_COMMDLG_H COMMDLG.H
#define INCLUDE_CUSTCNTL_H CUSTCNTL.H
#define INCLUDE_DDE_H DDE.H
#define INCLUDE_DDEML_H DDEML.H
#define INCLUDE_DRIVINIT_H DRIVINIT.H
#define INCLUDE_LZEXPAND_H LZEXPAND.H
#define INCLUDE_MMSYSTEM_H MMSYSTEM.H
#define INCLUDE_OLE_H OLE.H
#define INCLUDE_PENWIN_H PENWIN.H
#define INCLUDE_PENWOEM_H PENWOEM.H
#define INCLUDE_PRINT_H PRINT.H
#define INCLUDE_SHELLAPI_H SHELLAPI.H
#define INCLUDE_STRESS_H STRESS.H
#define INCLUDE_TOOLHELP_H TOOLHELP.H
#define INCLUDE_VER_H VER.H

20.2 Environment Notes
• The Windows functions Catch and Throw save only the 16-bit state. Instead of these functions, use
the setjmp and longjmp functions.

• The 32-bit Windows Supervisor uses the first 256 bytes of the 32-bit application’s stack to save state
information. If this is corrupted, your application will abnormally terminate.

• The 32-bit Windows Supervisor provides resources for up to 512 callback routines. Note that this
restriction is only on the maximum number of active callbacks.

20.3 Floating-point Emulation
The file WEMU387.386 is included to support floating-point emulation for 32-bit applications running
under Windows. This file is installed in the [386Enh] section of your SYSTEM.INI file. By using the
floating-point emulator, your application can be compiled with the "fpi87" option to use inline
floating-point instructions, and it will run on a machine without a numeric coprocessor.

Only one of WEMU387.386 and WDEBUG.386 may be installed in your [386Enh] section.
WEMU387.386 may be distributed with your application.

142 Floating-point Emulation

Windows 3.x 32-bit Programming Overview

20.4 Multiple Instances
Since the 32-bit application resides in a flat memory space, it is NOT possible to share code with other
instances. This means that you must register new window classes with callbacks into the new instance’s
code space. A simple way of accomplishing this is as follows:

int PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevInstance;
LPSTR lpCmdLine,
int nCmdShow);

{
WNDCLASS wc;
HWND hWnd
char class[32];
wc.style = NULL;
wc.lpfnWndProc = (LPVOID) MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "Menu";
sprintf(class,"Class%d",hInstance);
wc.lpszClassName = class;
RegisterClass(&wc);
hWnd = CreateWindow(

class,
"Application",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL

);

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling
Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are 16-bit far
pointers, and any data you communicate to Windows with are 16-bit far pointers. 16-bit far pointers
occupy 4 bytes of data, and are capable of addressing up to 64K. For data objects larger than 64K, huge
pointers are used (a sequence of far pointers that map out consecutive 64K segments for the data object).
16-bit far pointers are expensive to use due to the overhead of selector loads (each time you use the pointer,
a segment register must have a value put in it). 16-bit huge pointers are even more expensive: not only is
there the overhead of selector loads, but a run-time call is necessary to perform any pointer arithmetic.

Pointer Handling 143

Windows 3.x Programming Guide

In a 32-bit flat memory model, such as that of the Watcom C/C++ for Windows environment, all pointers
are 32-bit near pointers (occupying 4 bytes of data as well). However, these pointers may access objects of
up to 4 gigabytes in size, and there is no selector load overhead.

All Windows defined pointer types (e.g., LPSTR) are by default near pointers, not far pointers. To obtain a
far pointer, the far keyword must be explicitly coded, i.e., char far *foo, rather than LPSTR foo.
A 32-bit near pointer is the same size as a 16-bit far pointer, so that all Windows pointers are the same size
in the 32-bit flat memory model as they are in the original 16-bit segmented model.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations. All pointers
sent to Windows must be converted from 32-bit near pointers to 16-bit far pointers. These conversions are
handled by the Supervisor.

It is important to remember that all API functions which accept pointers (with the exception of functions
that accept function pointers) accept 32-bit near pointers in this 32-bit model. If you attempt to pass a
32-bit far pointer, the conversion will not take place correctly.

16-bit far pointers to data may be passed into the API functions, and the Supervisor will not do any
conversion.

Incoming pointers must be converted from 16-bit far pointers to 32-bit far pointers. This conversion is a
trivial one: the offset portion of the 16-bit far pointer is extended to 32-bits. Pointers from Windows are
by their nature far (that is, the data is pointed to by its own selector), and must be used as far in the 32-bit
environment. Of course, conversions are only required if you actually need to reference the pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from 32-bit to
16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-bit environment to the 32-bit
environment must be used. This thunking layer is provided by the Supervisor.

20.5.1 When To Convert Incoming Pointers
Whenever you wish to use a pointer passed to you by Windows, you must convert it to a 32-bit far pointer.
If you are passed a 16-bit far pointer, the macro MK_FP32 can be used to convert it to a 32-bit far pointer.
If you are passed a 16-bit near pointer (e.g., from LocalLock), then the macro MK_LOCAL32 can be used
to convert it to a 32-bit far pointer.

Some places where pointer conversion may be required are:

• LocalLock
• GlobalLock
• the lParam in a window callback routine (if it is a pointer)

20.5.2 When To Convert Outgoing Pointers
Typically, there is no need to do any kind of conversions on your pointers when passing them to Windows.
The Supervisor handles all 32-bit to 16-bit translations for you, in the case of the regular Windows API
functions. However, if you are passing a 32-bit pointer to some other 16-bit application in the Windows
environment, then pointer conversions must by done. There are two types of "outgoing" pointers: data
pointers and function pointers.

Function pointers (to callback routines) must have a thunking layer provided, using the GetProc16 function
(this is explained in detail in a later section).

144 Pointer Handling

Windows 3.x 32-bit Programming Overview

Data pointers can be translated from 32-bit to 16-bit using the AllocAlias16 and AllocHugeAlias16
functions. These functions create 16-bit far pointers that have the same linear address as the 32-bit near
pointer that was converted.

It is important to remember that when passing a pointer to a data structure in this fashion, any pointers in
the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some complications created by
the fact that Windows allows you to pass pointers in functions that are prototyped to take a long integer.

The Windows API functions SendMessage and SendDlgItemMessage rely on other fields determining the
nature of the long data item that they accept; this is discussed in detail in the next section.

20.5.2.1 SendMessage and SendDlgItemMessage

SendMessage and SendDlgItemMessage have special cover functions that determine when the long integer
is really a pointer and needs to be converted. These cover functions are used automatically, unless the
macro NOCOVERSENDS is defined before including WINDOWS.H as in the following example.

#define NOCOVERSENDS
#include <windows.h>

SendMessage and SendDlgItemMessage will do pointer conversions automatically using AllocAlias16 and
FreeAlias16 (unless NOCOVERSENDS is defined) for the following message types:

• combo boxes (CB_ messages)
• edit controls (EM_ messages)
• list boxes (LB_ messages)
• certain windows messages (WM_ messages);

The messages that are intercepted by the cover functions for SendMessage and SendDlgItemMessage are:

CB_ADDSTRING CB_DIR CB_FINDSTRING
CB_FINDSTRINGEXACT CB_GETLBTEXT CB_INSERTSTRING
CB_SELECTSTRING

EM_GETLINE EM_GETRECT EM_REPLACESEL
EM_SETRECT EM_SETRECTNP EM_SETTABSTOPS

LB_ADDSTRING LB_DIR LB_FINDSTRING
LB_FINDSTRINGEXACT LB_GETITEMRECT LB_GETSELITEMS
LB_GETTEXT LB_INSERTSTRING LB_SELECTSTRING
LB_SETTABSTOPS

WM_MDICREATE WM_NCCALCSIZE

Note that for SendMessage and SendDlgItemMessage, some of the messages may NOT require pointer
conversion:

• CB_ADDSTRING, CB_FINDSTRING, CB_FINDSTRINGEXACT, CB_INSERTSTRING will not
need a conversion if the combo box was created as owner-draw style without CBS_HASSTRINGS
style.

• LB_ADDSTRING, LB_FINDSTRING, LB_FINDSTRINGEXACT, LB_INSERTSTRING will not
need a conversion if the list box was created as owner-draw style without LBS_HASSTRINGS style.

Pointer Handling 145

Windows 3.x Programming Guide

The macro NOCOVERSENDS should be defined in modules where messages like these are being sent.
With these messages, the lParam data item does not contain a pointer, and the automatic pointer conversion
would be incorrect. By doing

#define NOCOVERSENDS
#include "windows.h"

modules that send messages like the above will not have the pointer conversion performed.

20.5.3 GlobalAlloc and LocalAlloc
The functions GlobalAlloc and LocalAlloc are the typical way of allocating memory in the 16-bit Windows
environment. In the 32-bit environment, there is no need to use these functions. The only time
GlobalAlloc is needed is when allocating shared memory, i.e., GMEM_DDESHARE.

The C runtime functions malloc and free manipulate your 32-bit near heap for you. By using these
functions to allocate memory, you may create data objects as large as the enhanced mode Windows
memory manager will permit.

20.5.4 Callback Function Pointers
To access a callback function, an instance of it must be created using MakeProcInstance. This creates a
"thunk" (a special piece of code) that automatically puts the application’s data segment into the AX
register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcInstance directly on a 32-bit callback routine, since
Windows 3.x does not understand 32-bit applications. Therefore, it is necessary to use a 16-bit callback
routine that passes control to the 32-bit callback routine. This 16-bit callback routine is automatically
created by the Supervisor when using any of the standard Windows API functions that accept a callback
routine.

The 16-bit callback routine for a 32-bit application is a special layer that transfers the parameters from a
16-bit stack to the 32-bit stack, and then passes control to 32-bit code. These 16-bit callback routines are
found in the Supervisor. The function GetProc16 provides pointers to these 16-bit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit callback interface
function.

In the general case, one would have to write code as follows:

146 Pointer Handling

Windows 3.x 32-bit Programming Overview

#define NOAUTOPROCS
#include <windows.h>

CALLBACKPTR pCb;
FARPROC fpProc;

pCb = GetProc16(A_Function, GETPROC_callbacktype);
fpProc = MakeProcInstance(pCb, hInstance);

/* do stuff */

Do_it(..., fpProc, ...);

/* do more stuff */

FreeProcInstance(fpProc);
ReleaseProc16(pCb);

It is not necessary to use this general code in the case of the regular Windows API functions. The
following functions will automatically allocate the correct 16-bit/32-bit callback interface functions:

• ChooseColor
• ChooseFont
• CorrectWriting
• CreateDialog
• CreateDialogIndirect
• CreateDialogIndirectParam
• CreateDialogParam
• DdeInitialize
• DialogBox
• DialogBoxIndirect
• DialogBoxIndirectParam
• DialogBoxParam
• DictionarySearch
• EnumChildWindows
• EnumFontFamilies
• EnumFonts
• EnumMetaFile
• EnumObjects
• EnumProps
• EnumSymbols
• EnumTaskWindows
• EnumWindows
• Escape (SETABORTPROC option)
• FindText
• GetOpenFileName
• GetSaveFileName
• GlobalNotify
• GrayString
• LineDDA
• mciSetYieldProc
• mmioInstallIOProc
• NotifyRegister
• PrintDlg

Pointer Handling 147

Windows 3.x Programming Guide

• ProcessWriting
• Recognize
• RecognizeData
• RegisterClass
• ReplaceText
• SetClassLong (GCL_WNDPROC option)
• SetPenHook
• SetResourceHandler
• SetTimer
• SetWindowLong (GWL_WNDPROC option)
• SetWindowsHook
• SetWindowsHookEx
• TrainInk

As well, the following functions are covered to provide support for automatic creation of 16-bit callback
routines:

• FreeProcInstance
• MakeProcInstance
• UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must code the general
case. Typically, this is required when a DLL needs a callback routine. In modules where this is necessary,
you define the macro NOAUTOPROCS before you include WINDOWS.H as in the following example.

#define NOAUTOPROCS
#include <windows.h>

Be careful of the following when using NOAUTOPROCS.

1. The call to MakeProcInstance and FreeProcInstance for the callback function occurs in a
module with NOAUTOPROCS defined.

2. No Windows API functions (listed above) are used in the module with NOAUTOPROCS
defined. If they are, you must code the general case to use them.

Note that NOAUTOPROCS is in effect on a module-to-module basis only.

You can avoid using NOAUTOPROCS on a call-by-call basis, if you do the following:

#undef <function>
<function>
Note: re-defining is only needed if you want to

use a covered version of the function later on.
#define <function> _Cover_<function>

For example:

{
#undef SetWindowsHook
#undef MakeProcInstance

FARPROC fp,oldfp;
CALLBACKPTR cbp;

148 Pointer Handling

Windows 3.x 32-bit Programming Overview

cbp = GetProc16(CallbackHook, GETPROC_CALLBACK);
fp = MakeProcInstance(cbp, hInstance);
oldfp = SetWindowsHook(WH_CALLWNDPROC, fp);

}

This allows you to add general case code in the same module, without having to break the module into two
parts.

RegisterClass automatically does a GetProc16 for the callback function, unless the macro NOCOVERRC is
specified before including WINDOWS.H as in the following example.

#define NOCOVERRC
#include <windows.h>

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the code is identical
to the code used in the 16-bit environment. A simple example is:

FARPROC fpOldProc;

long FAR PASCAL SubClassProc(HWND hWnd,
unsigned message,
WORD wParam,
LONG lParam)

{
/*
* code for sub-classing here
*/

return(CallWindowProc(fpOldProc, hWnd, message,
wParam, lParam));

}

void SubClassDemo(void)
{

HWND hControl;
FARPROC fp;
extern HANDLE ProgramInstance;

/* assume hControl gets created in here */

fpOldProc = (FARPROC) GetWindowLong(hControl, GWL_WNDPROC);
fp = MakeProcInstance(SubClassProc, ProgramInstance);
SetWindowLong(hControl, GWL_WNDPROC, (LONG) fp);

/* set it back */
SetWindowLong(hControl, GWL_WNDPROC, (LONG) fpOldProc);
FreeProcInstance(fp);

}

Note that SetWindowLong is covered to recognize GWL_WNDPROC and automatically creates a 16-bit
callback for the 32-bit callback. When replacing the callback routine with the original 16-bit routine, the
covered version of SetWindowLong recognizes that the function is not a 32-bit callback, and so passes the
pointer right through to Windows unchanged.

Pointer Handling 149

Windows 3.x Programming Guide

20.6 Calling 16-bit DLLs
A 16-bit function in a DLL can be called using the _Call16 function. The first argument to _Call16 is the
address of the 16-bit function. This address is usually obtained by calling GetProcAddress with the name
of the desired function. The second argument to _Call16 is a string identifying the types of the parameters
to be passed to the 16-bit function.

Character Parameter Type

c call a ’cdecl’ function as opposed to a ’pascal’ function (if specified, it must be listed first)
b unsigned BYTE
w 16-bit WORD
d 32-bit DWORD
f double precision floating-point
p 32-bit flat pointer (converted to 16:16 far pointer)

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention is the default. If the function uses the CDECL calling convention, then you must specify the
letter "c" as the first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointers to 16-bit far pointers before the
function is invoked. Note that this pointer is only valid over the period of the call; after control returns to
the 32-bit application, the 16-bit pointer created by the Supervisor is no longer valid.

The return value from _Call16 is a DWORD.

#include <windows.h>
HANDLE hDrv;
FARPROC lpfn;
int cb;

if((hDrv = LoadLibrary ("foo.dll")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress (hDrv, "ExtDeviceMode")))
return FALSE;

/*
* now, invoke the function
*/

cb = (WORD) _Call16(
lpfn, // address of function
"wwdppddw", // parameter type info
hwnd, // parameters ...
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0
);

150 Calling 16-bit DLLs

Windows 3.x 32-bit Programming Overview

20.6.1 Making DLL Calls Transparent
This section gives an example of how to make your source code look as if you are calling the 16-bit DLL
directly.

Assume there are 3 functions that you want to call in the 16-bit DLL, with prototypes as follows:

HWND FAR PASCAL Initialize(WORD start_code);
BOOL FAR PASCAL DoStuff(HWND win_hld, HDC win_dc);
void FAR PASCAL Finish(void);

A fragment from the header file that you would include in your 32-bit application would be as follows:

extern FARPROC InitializeAddr;
extern FARPROC DoStuffAddr;
extern FARPROC FinishAddr;
#define Initialize(start_code) \

_Call16(InitializeAddr, "w", (WORD)start_code)
#define DoStuff(win_hld, data) \

_Call16(DoStuffAddr, "wp", (HWND)win_hld, (LPVOID)data)
#define Finish(void) _Call16(FinishAddr, "")

The header file fragment gives external references for the function addresses for each function, and sets up
macros do a _Call16 for each of the functions.

At start up, you would call the following function:

/*
* LoadDLL - get DLL ready for 32-bit use
*/

BOOL LoadDLL(void)
{

HANDLE dll;

dll = LoadLibrary("chart.dll");
if(dll < 32) return(FALSE);
InitializeAddr = GetProcAddress(dll, "Initialize");
DoStuffAddr = GetProcAddress(dll, "DoStuff");
FinishAddr = GetProcAddress(dll, "Finish");
return(TRUE);

}

This function loads the 16-bit DLL and gets the addresses for all of the entry points in the DLL. By
including the header file with all the macros in it, you can code calls to the DLL functions as if you were
calling the functions directly. For example:

#include <windows.h>
#include "fragment.h"
char *data = "the data";

void TestDLL(void)
{

HWND res;

Calling 16-bit DLLs 151

Windows 3.x Programming Guide

if(!LoadDLL()) {
MessageBox(NULL, "Could not load DLL",

"Error", MB_OK);
return;

}
res = Initialize(1);
DoStuff(res, data);
Finish();

}

20.7 Far Pointer Manipulation
The following C library functions are available for manipulating far data. These are useful when using
pointers obtained by MK_FP32 and MK_LOCAL32.

Memory manipulation:

• _fmemccpy
• _fmemchr
• _fmemcmp
• _fmemcpy
• _fmemicmp
• _fmemmove
• _fmemset

String manipulation:

• _fstrcat
• _fstrchr
• _fstrcmp
• _fstrcpy
• _fstrcspn
• _fstricmp
• _fstrlen
• _fstrlwr
• _fstrncat
• _fstrncmp
• _fstrncpy
• _fstrnicmp
• _fstrnset
• _fstrpbrk
• _fstrrchr
• _fstrrev
• _fstrset
• _fstrspn
• _fstrtok
• _fstrupr

152 Far Pointer Manipulation

Windows 3.x 32-bit Programming Overview

20.8 _16 Functions
Every Windows API function that accepts a pointer has a corresponding _16 function. The _16 version of
the function will not convert any of the pointers that it accepts; it will assume that all pointers are 16-bit far
pointers already. This applies to both data and function pointers.

Some sample code demonstrating the use for this is:

void ReadEditBuffer(char *fname, HWND hwndEdit)
{

int file;
HANDLE hText;
char far *flpData;
LPSTR lpData;
WORD filelen;
/*
* no error checking is performed; we just
* assume everything works for this example.
*/

file = _lopen(fname, 0);
filelen = _llseek(file, 0L, 2);

hText = (HANDLE) SendMessage(hwndEdit, EM_GETHANDLE,
0, 0L);

LocalReAlloc(hText, filelen+1, LHND);
flpData = MK_LOCAL32(LocalLock(hText));
lpData = (LPSTR) MK_FP16(flpB);
_16_lread(file, lpData, filelen);
_lclose(file);

}

This example reads the contents of a file into the buffer of an edit window. Because the edit window’s
memory is located in the local heap, which is the Supervisor’s heap, the MK_LOCAL32 function is needed
to access the data. The MK_FP16 macro compresses the 32-bit far pointer into a 16-bit far pointer, which
can then be used by the _16_lread function.

_16 Functions 153

Windows 3.x Programming Guide

154 _16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs
Watcom C/C++ allows the creation of 32-bit Dynamic Link Libraries (DLL). In fact, 32-bit DLLs are
simpler to write than 16-bit DLLs. A 16-bit DLL runs on the caller’s stack, and thus DS != SS. This
creates difficulties in the small and medium memory models because near pointers to local variables are
different from near pointers to global variables. The 32-bit DLL runs on its own stack, in the usual flat
memory space, which eliminates these concerns.

There is a special version of the supervisor, W386DLL.EXT that performs a similar job to WIN386.EXT.
However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a 16-bit Windows application.
On the first use of the 32-bit DLL, the DLL supervisor loads the 32-bit DLL and invokes the 32-bit
initialization routine (the DLL’s WinMain routine). The initialization routine declares all entry points (via
DefineDLLEntry) and performs any other necessary initialization. An index number in the range 1 to
128 is used to identify all external 32-bit DLL routines. DefineDLLEntry is used to assign an index
number to each routine, as well as to identify the arguments.

The DLL supervisor contains a general entry point for Windows applications to call into called
Win386LibEntry. It also contains 128 specific entry points called DLL1 to DLL128 which correspond
to the entry points established via DefineDLLEntry (the first argument to DefineDLLEntry is an
index number in the range 1 to 128). These entry points are FAR PASCAL functions. All applications call
into the 32-bit DLL via these entry points. They build the necessary stack frame and switch to the 32-bit
DLL’s data space.

If you call via Win386LibEntry then you pass the DLL entry point number or index (1 to 128) as the
last argument. Win386LibEntry uses this index number to call the appropriate 32-bit DLL routine.
From a pseudo-code point of view, the 16-bit supervisor might look like the following:

Introduction to 32-Bit DLLs 155

Windows 3.x Programming Guide

DLL1:: set index=1

invoke 32bitDLLindirect

DLL2:: set index=2
invoke 32bitDLLindirect

.

.

.
DLL128:: set index=128

invoke 32bitDLLindirect

Win386LibEntry::
set index from index_argument
invoke 32bitDLLindirect

32bitDLLindirect:
set up stack frame
switch to 32-bit data space
call indirect registration_list[index]

.

.

.

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be invoked by a
16-bit application as well as a 32-bit application. It is for this reason that all far pointers passed to a 32-bit
DLL are 16-bit far pointers. Hence, whenever a pointer is passed as an argument to a 32-bit DLL entry
point and you wish to access the data it points to, you must convert the pointer appropriately.

21.2 A Sample 32-bit DLL
Let us begin our discussion of DLLs by showing the code for a simple DLL. The source code for these
examples is provided in the \WATCOM\SAMPLES\DLL directory. We describe how to compile and link
the examples in the section entitled "Creating and Debugging Dynamic Link Libraries" on page 160. The
code for this DLL can be compiled with the 16-bit compiler to produce a 16-bit DLL and it can can be
compiled with the 32-bit compiler to produce a 32-bit DLL. The example illustrates the fundamental
differences between the two types of DLLs. The 32-bit DLL has a WinMain routine and the 16-bit DLL
has a LibMain routine.

Example:
/*
* DLL.C
*/

#include <stdio.h>
#include <windows.h>

#if defined(__386__)/* if we are doing a 32-bit DLL */
#define DLL_ID "DLL32"

#else /* else we are doing a 16-bit DLL */
#define DLL_ID "DLL16"

#endif

156 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

long FAR PASCAL __export FooMe1(WORD w1, DWORD w2, WORD w3)
{

char buff[128];

sprintf(buff, "FooMe1: w1=%hx, w2=%lx, w3=%hx",
w1, w2, w3);

MessageBox(NULL, buff, DLL_ID, MB_OK);
return(w1 + w2);

}

long FAR PASCAL __export FooMe2(DWORD w1, WORD w2)
{

char buff[128];

sprintf(buff, "FooMe2: w1=%lx, w2=%hx", w1, w2);
MessageBox(NULL, buff, DLL_ID, MB_OK);
return(w1 + 1);

}

#if defined(__386__)/* if we are doing a 32-bit DLL */
long PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

{
if(DefineDLLEntry(1, (void *) FooMe1, DLL_WORD,

DLL_DWORD, DLL_WORD, DLL_ENDLIST)) {
return(0);

}
if(DefineDLLEntry(2, (void *) FooMe2, DLL_DWORD,

DLL_WORD, DLL_ENDLIST)) {
return(0);

}
MessageBox(NULL, "32-bit DLL Started", DLL_ID, MB_OK);
return(1);

}
#else /* else we are doing a 16-bit DLL */
BOOL FAR PASCAL LibMain(HANDLE hInstance,

WORD wDataSegment,
WORD wHeapSize,
LPSTR lpszCmdLine)

{
#if 0
/*

We can’t use MessageBox here since static binding is
used and a message queue has not been created by the
time DLL16 is loaded.

*/
MessageBox(NULL, "16-bit DLL Started", DLL_ID, MB_OK);
#endif
return(TRUE);

}
#endif

To create a 16-bit DLL from this code, the following steps must be performed.

A Sample 32-bit DLL 157

Windows 3.x Programming Guide

Example:
C>wcc dll /mc /bt=windows /zu /fo=dll16
C>wlink system windows_dll file dll16
C>wlib -n dll16 +dll16.dll

To create a 32-bit DLL from this code, the following steps must be performed.

Example:
C>wcc386 dll /bt=windows /fo=dll32
C>wlink system win386 file dll32
C>wbind -n -d dll32

There are two entry points defined, FooMe1 (index number 1) and FooMe2 (index number 2). FooMe1
accepts three arguments: a WORD, a DWORD, and a WORD. FooMe2 accepts two arguments: a
DWORD and a WORD.

WinMain returns zero to notify Windows that the DLL initialization failed, and returns a one if
initialization succeeds.

WinMain accepts the same arguments as the WinMain procedure of a regular Windows program,
however, only two arguments are used. hInstance is the DLL handle and lpszCmdLine is the
command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

The following is a 16-bit Windows program that demonstrates how to call the two routines defined in our
DLL example.

Example:
/*
* EXE16.C
*/

#include <stdio.h>
#include <windows.h>

#define Add3 1
#define Add2 2

typedef long (FAR PASCAL *FPROC)();
typedef long (FAR PASCAL *FARPROC1)(WORD, DWORD, WORD, int);
typedef long (FAR PASCAL *FARPROC2)(DWORD, WORD, int);

long FAR PASCAL FooMe1(WORD, DWORD, WORD);
long FAR PASCAL FooMe2(DWORD, WORD);

158 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

int PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

{
FPROC fp;
HANDLE hlib;
long cb;
char buff[128];

MessageBox(NULL, "16-bit EXE Started", "EXE16", MB_OK);

/* Do the 16-bit demo using static binding */
cb = FooMe1(0x666, 0x77777111, 0x6969);
sprintf(buff, "RC1 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB_OK);

cb = FooMe2(0x12345678, 0x8888);
sprintf(buff, "RC2 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB_OK);

/* Do the 32-bit demo */
hlib = LoadLibrary("dll32.dll");
fp = (FPROC) GetProcAddress(hlib, "Win386LibEntry");

cb = (*(FARPROC1)fp)(0x666, 0x77777111, 0x6969, Add3);
sprintf(buff, "RC1 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB_OK);

cb = (*(FARPROC2)fp)(0x12345678, 0x8888, Add2);
sprintf(buff, "RC2 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB_OK);

return(0);

}

Note that the last argument of a call to the 32-bit DLL routine is the index number of the 32-bit DLL
routine to use. To create the 16-bit sample Windows executable from this code, the following steps must
be performed.

Example:
C>wcc exe16 /bt=windows
C>wlink system windows file exe16 library dll16

21.4 Writing a 16-bit Cover for the 32-bit DLL
The following is a suggested way to make a 32-bit DLL behave just like a 16-bit DLL from the point of
view of the person trying to use the DLL.

Create a library of cover functions for each of the entry points. Each library entry would call the 32-bit
DLL using the appropriate index number.

Writing a 16-bit Cover for the 32-bit DLL 159

Windows 3.x Programming Guide

For example, assume we have 3 functions in our DLL, Initialize, DoStuff, and Finish.
Assume Initialize takes an integer, DoStuff takes an integer and a pointer, and Finish takes
nothing. We could build a 16-bit library as follows:

Example:
#include <windows.h>
typedef long (FAR PASCAL *FPROC)();
extern long FAR PASCAL Win386LibEntry();
FPROC LibEntry = Win386LibEntry;

BOOL Initialize(int parm)
{

return(LibEntry(parm, 1));
}

int DoStuff(int parm1, LPVOID parm2)
{

return(LibEntry(parm1, parm2, 2));
}

void Finish(void)
{

LibEntry(3);
}

21.5 Creating and Debugging Dynamic Link Libraries
In the following sections, we will take you through the steps of compiling, linking, and debugging both
16-bit and 32-bit Dynamic Link Libraries (DLLs).

We will use example programs that are provided in source-code form in the Watcom C/C++ package. The
files described in this chapter are located in the directory \WATCOM\SAMPLES\DLL. The following files
are provided:

GEN16.C is the source code for a generic 16-bit Windows application that calls functions
in a 32-bit Windows DLL.

GEN16.LNK is the linker directive file for linking the 16-bit Windows application.

GEN32.C is the source code for a generic 32-bit Windows application that calls functions
in both 16-bit and 32-bit Windows DLLs.

GEN32.LNK is the linker directive file for linking the 32-bit Windows application.

DLL16.C is the source code for a simple 16-bit DLL containing one library routine.

DLL16.LNK is the linker directive file for linking the 16-bit Windows DLL.

DLL32.C is the source code for a more complex 32-bit DLL containing three library
routines.

DLL32.LNK is the linker directive file for linking the 32-bit Windows DLL.

160 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

EXE16.C is the source code for a generic 16-bit Windows application that calls functions
in both 16-bit and 32-bit Windows DLLs.

DLL.C is the source code for a DLL containing three library routines. The source code
for this DLL can be used to create both 16-bit and 32-bit DLLs.

MAKEFILE is a makefile for compiling and linking the programs described above.

21.5.1 Building the Applications
To create the DLLs and test applications, we will use the WATCOM Watcom Make utility and the supplied
makefile.

Example:
C>wmake -f makefile

21.5.2 Installing the Examples under Windows
Start up Microsoft Windows 3.x if you have not already done so. Add the EXE16.EXE file to one of your
Window groups using the Microsoft Program Manager.

1. Select the "New..." entry from the "File" menu of the Microsoft Windows Program Manager.

2. Select "Program Item" from the "New Program Object" window and press the "OK" button.

3. Enter "DLL Test" as a description for the EXE16 program. Enter the full path to the EXE16
program as a command line.

Example:
Description: Test
Command Line: c:\work\dll\exe16.exe

21.5.3 Running the Examples
Start the 16-bit application by double clicking on its icon. A number of message boxes are presented. You
may wish to compare the output in each message box with the source code of the program to determine if
the correct results are being obtained. Click on the "OK" button as each of them are displayed.

21.5.4 Debugging a 32-bit DLL
The Watcom Debugger can be used to debug a DLL. To debug a 32-bit DLL, a "breakpoint" instruction
must be inserted into the source code for the DLL at the "WinMain" entry point. This is done using the
"pragma" compiler directive. We have already added the breakpoint to the source code for the 32-bit DLL.

Creating and Debugging Dynamic Link Libraries 161

Windows 3.x Programming Guide

Example:
extern void BreakPoint(void);
#pragma aux BreakPoint = 0xcc;

int PASCAL WinMain(HANDLE hInstance,
HANDLE x1,
LPSTR lpCmdLine,
int x2)

{

BreakPoint();
DefineDLLEntry(1, (void *) Lib1,

DLL_WORD,
DLL_DWORD,
DLL_WORD,

.

.

.

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by double-clicking on
the Watcom Debugger icon. At the prompt, enter the path specification for the application. When the
debugger has successfully loaded EXE16, start execution of the program. When the breakpoint is
encountered in the 32-bit DLL, the debugger is re-entered. The debugger will automatically skip past the
breakpoint.

From this point on, you can symbolically debug the 32-bit DLL. You might, for example, set breakpoints
at the start of each DLL routine to debug each of them as they are called.

21.5.5 Summary
Note that the "WinMain" entry point is only called once, at the start of any application requesting it. After
this, the "WinMain" entry point is no longer called. You may have to restart Windows to debug this section
of code a second or third time.

162 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Watcom C/C++
DLLs

22.1 Introduction to Visual Basic and DLLs
This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-bit Dynamic Link
Libraries (DLLs) created by Watcom C/C++. It describes how to write functions for a 32-bit DLL, how to
compile and link them, and how to call these functions from Visual Basic. One of the proposed techniques
involves the use of a set of cover functions in a 16-bit DLL so, indirectly, this chapter also describes
interfacing to 16-bit DLLs.

It is possible to invoke the Win386LibEntry function (Watcom’s 32-bit function entry point, described
below) directly from Visual Basic. However, this technique limits the arguments that can be passed to a
32-bit DLL. The procedure and problems are explained below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL. Within the 16-bit
DLL, we will place cover functions that will call the corresponding 32-bit function in the 32-bit DLL. We
illustrate the creation of the 16-bit DLL using the 16-bit C compiler in Watcom C/C++.

Before we begin our example, there are some important technical issues to consider.

The discussion in this chapter assumes that you, the developer, have a working knowledge of Visual Basic,
including how to bring up the general declarations screen, how to create command buttons, and how to
associate code with command buttons. You must use Visual Basic 3.0 or later. Visual Basic Version 2.x
will not work because of a deficiency in this product regarding the calling of functions in DLLs.

For the purposes of the following discussion, you should have installed both the 16-bit and 32-bit versions
of Watcom C/C++, as well as version 3.0 or later of Visual Basic. Ensure that the PATH, INCLUDE and
WINDOWS_INCLUDE environment variables are defined to include at least the directories indicated.
We have assumed that Watcom C/C++ is installed in the c:\watcom directory, and Visual Basic is in the
c:\vb directory:

set path=c:\watcom\binw;c:\vb;c:\dos;c:\windows
set include=c:\watcom\h
set windows_include=c:\watcom\h\win

Watcom’s 32-bit DLL supervisor contains a general entry point for Windows applications to call into called
Win386LibEntry. It also contains 128 specific entry points called DLL1 to DLL128 which correspond
to the entry points established via DefineDLLEntry (the first argument to DefineDLLEntry is an
index number in the range 1 to 128). All applications call into the 32-bit DLL via these entry points. They
build the necessary stack frame and switch to the 32-bit DLL’s data space.

If you call via Win386LibEntry then you pass the DLL entry point number or index (1 to 128) as the
last argument. Win386LibEntry uses this index number to call the appropriate 32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very flexible. In other
words, a function can be called with different argument types each time. This is generally necessary for
calling Win386LibEntry in a 32-bit extended DLL function. The reason is that this function takes the

Introduction to Visual Basic and DLLs 163

Windows 3.x Programming Guide

same arguments as the function being called, as well as the index number of the called function. After the
32-bit flat model has been set up, Win386LibEntry then calls this function. In Visual Basic, once a
function is declared as having certain arguments, it cannot be redeclared. For example, suppose we have a
declaration as follows:

Example:
Declare Function Win386LibEntry Lib "c:\path\vbdll32.dll"
=> (ByVal v1 As Integer, ByVal v2 As Long, ByVal
=> v3 As Integer, ByVal I As Integer) As Long

(Note: the => means to continue the statement on the same line.) In this example, we could only call a
function in any 32-bit extended DLL with a 16-bit integer as the first and third argument, and a 32-bit
integer as the second argument. There are three ways to work around this deficiency in Visual Basic:

1. Use the Visual Basic "Alias" attribute to declare Win386LibEntry differently for each DLL
routine. Reference the different DLL routines using these aliases.

2. Use the specific entry point, one of DLL1 through DLL128, corresponding to the DLL routine
that you want to call. Each entry point can be described to take different arguments. We can
still use the "Alias" attribute to make the link between the name we use in the Visual Basic
function and the name in the 32-bit extended DLL. This is the method that we will use in the
"Direct Call" technique discussed below. It is simpler to use since it requires one less argument
(you don’t require the index number).

3. Use a method which involves calling functions in a 16-bit "cover" DLL written in a
flexible-argument language, which then calls the functions in the 32-bit DLL. This is the
"Indirect Call" method discussed below.

22.2 A Working Example
The best way to demonstrate these techniques is through an example. This example consists of a Visual
Basic application with 3 push buttons. The first push button invokes a direct call to a 32-bit DLL which
will display a message window with its arguments, the second push button invokes an indirect call to the
same function through a 16-bit DLL, and the third button exits the Visual Basic application.

To create a Visual Basic application:

(1) Start up a new project folder from the "File" menu.

(2) Select "View Form" from the "Project" window.

(3) Draw three command buttons on the form by selecting command buttons from the "Toolbox"
window.

(4) Change the caption on each button. To do this, highlight the first button. Then, open the
"Properties" window. Double click on the "Caption window", and change the caption to "Direct call".
Highlight the second button, and change its caption to "Indirect call". Highlight the third, changing
the caption to "Exit".

Now, your Visual Basic application should have three push buttons, "Direct call", "Indirect call", and
"Exit".

164 A Working Example

Interfacing Visual Basic and Watcom C/C++ DLLs

(5) Double click on the "Direct Call" button.

An edit window will pop up. Enter the following code:

Sub Command1_Click ()

Dim var1, var2 As Integer
Dim varlong, worked As Long

var1 = 230
varlong = 215
var2 = 32
worked = Add3(var1, varlong, var2)
Print worked
worked = Add2(varlong, var2)
Print worked

End Sub

(6) Double click on the "Indirect Call" button.

Another edit window will pop up. Enter the following code:

Sub Command2_Click ()

Dim var1, var2 As Integer
Dim varlong, worked As Long

var1 = 230
varlong = 215
var2 = 32
worked = Function1(var1, varlong, var2)
Print worked
worked = Function2(varlong, var2)
Print worked

End Sub

(7) Double click on the "Exit" command button and enter the following code in the pop-up window:

Sub Command3_Click ()

End
End Sub

(8) Select "View Code" from the "Project" window. To interface these Visual Basic functions to the
DLLs, the following code is needed in the

Object: [general] Proc: [declarations]

section of the code. This code assumes that VBDLL32.DLL and COVER16.DLL are in the
c:\path directory. Modify the pathnames appropriately if this is not the case. (Note: the => means
to continue the statement on the same line.)

A Working Example 165

Windows 3.x Programming Guide

Declare Function Function1 Lib "c:\path\cover16.dll"
=> (ByVal v1 As Integer, ByVal v2 As Long,
=> ByVal v3 As Integer) As Long

Declare Function Function2 Lib "c:\path\cover16.dll"
=> (ByVal v1 As Long, ByVal v2 As Integer) As Long

Declare Function Add3 Lib "c:\path\vbdll32.dll"
=> Alias "DLL1"
=> (ByVal v1 As Integer, ByVal v2 As Long,
=> ByVal v3 As Integer) As Long

Declare Function Add2 Lib "c:\path\vbdll32.dll"
=> Alias "DLL2"
=> (ByVal v1 As Long, ByVal v2 As Integer) As Long

Now, when all of the code below is compiled correctly, and the Visual Basic program is run, the "Direct
call" button will call the DLL1 and DLL2 functions directly, aliased as the functions Add3 and Add2
respectively. The "Indirect call" button will call the 16-bit DLL, which will then call the 32-bit DLL, for
both Function1 and Function2. To run the Visual Basic program, select "Start" from the "Run"
menu.

22.3 Sample Visual Basic DLL Programs
The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which will call the two
functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

/*
* VBDLL32.C
*/

#include <stdio.h>
#include <windows.h> /* required for all Windows applications */

long FAR PASCAL Add3(short var1, long varlong, short var2)
{

char buf[128];

sprintf(buf, "Add3: var1=%d, varlong=%ld, var2=%d",
var1, varlong, var2);

MessageBox(NULL, buf, "VBDLL32", MB_OK | MB_TASKMODAL);
return(var1 + varlong + var2);

}

long FAR PASCAL Add2(long varlong, short var2)
{

char buf[128];

sprintf(buf, "Add2: varlong=%ld, var2=%d", varlong, var2);
MessageBox(NULL, buf, "VBDLL32", MB_OK | MB_TASKMODAL);
return(varlong + var2);

}

166 Sample Visual Basic DLL Programs

Interfacing Visual Basic and Watcom C/C++ DLLs

#pragma off (unreferenced);
int PASCAL WinMain(HANDLE hInstance, HANDLE x1, LPSTR lpCmdLine, int x2)
#pragma on (unreferenced);
{

DefineDLLEntry(1, (void *) Add3, DLL_WORD, DLL_DWORD, DLL_WORD,
DLL_ENDLIST);

DefineDLLEntry(2, (void *) Add2, DLL_DWORD, DLL_WORD, DLL_ENDLIST);
return(1);

}

22.3.2 Source code for COVER16.DLL
The functions in this 16-bit DLL will call the functions in the 32-bit DLL, VBDLL32.DLL, shown above,
with the appropriate Win386LibEntry call for each function.

/*
* COVER16.C
*/

#include <stdio.h>
#include <windows.h> /* required for all Windows applications */

typedef long (FAR PASCAL *FPROC)();

FPROC DLL_1;
FPROC DLL_2;

long FAR PASCAL __export Function1(short var1,
long var2,
short var3)

{
return((long) DLL_1(var1, var2, var3));

}

long FAR PASCAL __export Function2(long var1, short var2)
{

return((long) DLL_2(var1, var2));
}

#pragma off (unreferenced);
BOOL FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSegment,

WORD wHeapSize, LPSTR lpszCmdLine)
#pragma on (unreferenced);
{

HANDLE hlib;

/* Do our DLL initialization */
hlib = LoadLibrary("vbdll32.dll");
if(hlib < 32) {

MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
"COVER16", MB_OK | MB_ICONEXCLAMATION);

return(FALSE);
}
DLL_1 = (FPROC) GetProcAddress(hlib, "DLL1");
DLL_2 = (FPROC) GetProcAddress(hlib, "DLL2");
return(TRUE);

}

Sample Visual Basic DLL Programs 167

Windows 3.x Programming Guide

22.4 Compiling and Linking the Examples
To create the 32-bit DLL VBDLL32.DLL, type the following at the command line (make sure that
VBDLL32.c is in your current directory):

wcl386 vbdll32 -bt=windows -bd -d2 -l=win386
wbind vbdll32 -d -n

To create the 16-bit DLL COVER16.DLL, type the following at the command line (make sure that
COVER16.C are in your current directory):

wcl cover16 -mc -bt=windows -bd -zu -d2 -l=windows_dll

Notes:

1. The "mc" option selects the compact memory model (small code, big data). The code for 16-bit
DLLs must be compiled with one of the big data models.

2. The "bd" option indicates that a DLL will be created from the object files.

3. The "bt" option selects the "windows" target. This option causes the C or C++ compiler to
generate Windows prologue/epilogue code sequences which are required for Microsoft Windows
applications. It also causes the compiler to use the WINDOWS_INCLUDE environment
variable for header file searches. It also causes the compiler to define the macro
__WINDOWS__ and, for the 32-bit C or C++ compiler only, the macro__WINDOWS_386__.

4. The "zu" option is used when compiling 16-bit code that is to be placed in a Dynamic Link
Library (DLL) since the SS register points to the stack segment of the calling application upon
entry to the function.

5. The "d2" option is used to disable optimizations and include debugging information in the object
file and DLL. The techniques for debugging DLLs are described in the chapter entitled
"Windows 32-Bit Dynamic Link Libraries" on page 155.

You are now ready to run the Visual Basic application.

168 Compiling and Linking the Examples

23 WIN386 Library Functions and Macros

Each special Windows function or macro in the Watcom C/C++ library is described in this chapter. Each
description consists of a number of subsections:

Synopsis: This subsection gives the header files that should be included within a source file that references the
function or macro. It also shows an appropriate declaration for the function or for a function that could be
substituted for a macro. This declaration is not included in your program; only the header file(s) should be
included.

When a pointer argument is passed to a function and that function does not modify the item indicated by
that pointer, the argument is shown with const before the argument. For example,

const char *string

indicates that the array pointed at by string is not changed.

Description: This subsection is a description of the function or macro.

Returns: This subsection describes the return value (if any) for the function or macro.

Errors: This subsection describes the possible errno values.

See Also: This optional subsection provides a list of related functions or macros.

Example: This optional subsection consists of one or more examples of the use of the function. The examples are
often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the function or macro is commonly found. The
functions or macros in this section are all classified as "WIN386" (i.e., they pertain to 32-bit Windows
programming).

WIN386 Library Functions and Macros 169

AllocAlias16

Synopsis: #include <windows.h>
DWORD AllocAlias16(void *ptr);

Description: The AllocAlias16 function obtains a 16-bit far pointer equivalent of a 32-bit near pointer. These
pointers are used when passing data pointers to Windows through functions that have DWORD
arguments, and for any pointers within data structures passed this way.

Returns: The AllocAlias16 function returns a 16-bit far pointer usable by Windows, or returns 0 if the alias
cannot be allocated.

See Also: FreeAlias16

Example: #include <windows.h>

DWORD mcs_16;
/*
* Send a message to a MDI client to create a window.
* _16SendMessage is used for this example, since it will
* not do any pointer conversions automatically.
*/

MDICREATESTRUCT mcs;
mcs.szTitle = (LPSTR) AllocAlias16("c:\\foo.bar");
mcs.szClass = (LPSTR) AllocAlias16("mdichild");
mcs.hOwner = hInst;
mcs.x = mcs.cx = (int) CW_USEDEFAULT;
mcs.y = mcs.cy = (int) CW_USEDEFAULT;
mcs.style = 0;

/* tell the MDI Client to create the child */
mcs_16 = AllocAlias16(&mcs);
hwnd = (WORD) _16SendMessage(hwndMDIClient,

WM_MDICREATE,
0,
(LONG) mcs_16);

FreeAlias16(mcs_16);
FreeAlias16((DWORD) mcs.szClass);
FreeAlias16((DWORD) mcs.szTitle);

Classification: WIN386

170 WIN386 Library Functions and Macros

AllocHugeAlias16

Synopsis: #include <windows.h>
DWORD AllocHugeAlias16(void *ptr, DWORD size);

Description: The AllocHugeAlias16 function obtains a 16-bit far pointer to a 32-bit memory object that is size
bytes in size. This is similar to the function AllocAlias16, except that AllocAlias16 will only
give 16-bit far pointers to 32-bit memory objects of up to 64K in size. To get 16-bit far pointers to
32-bit memory objects larger than 64K, AllocHugeAlias16 should be used.

Returns: The AllocHugeAlias16 function returns a 16-bit far pointer usable by Windows, or returns 0 if the
alias cannot be allocated.

See Also: AllocAlias16, FreeAlias16, FreeHugeAlias16

Example: #include <windows.h>
#include <malloc.h>
#define SIZE 300000

DWORD alias;
void *tmp;

tmp = malloc(SIZE);
alias = AllocHugeAlias16(tmp, SIZE);

/* Windows calls using the alias ... */

FreeHugeAlias16(alias, SIZE);

Classification: WIN386

WIN386 Library Functions and Macros 171

_Call16

Synopsis: #include <windows.h>
DWORD _Call16(FARPROC lpFunc, char *fmt, ...);

Description: The _Call16 function performs the same function as GetIndirectFunctionHandle,
InvokeIndirectFunctionHandle and FreeIndirectFunctionHandle but is much
easier to use. The first argument lpFunc is the address of the 16-bit function to be called. This address
is usually obtained by calling GetProcAddress with the name of the desired function. The second
argument fmt is a string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

c call a ’cdecl’ function as opposed to a ’pascal’ function (if specified, it must be listed
first)

b unsigned BYTE
w 16-bit WORD
d 32-bit DWORD
f double precision floating-point
p 32-bit flat pointer (converted to 16:16 far pointer)

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention is the default. If the function uses the CDECL calling convention, then you must specify the
letter "c" as the first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointers to 16-bit far pointers before the
function is invoked. Note that this pointer is only valid over the period of the call; after control returns
to the 32-bit application, the 16-bit pointer created by the Supervisor is no longer valid.

Returns: The _Call16 function returns a 32-bit DWORD which represents the return value from the 16-bit
function that was called.

See Also: GetIndirectFunctionHandle, FreeIndirectFunctionHandle

Example:

172 WIN386 Library Functions and Macros

_Call16

#include <windows.h>
HANDLE hDrv;
FARPROC lpfn;
int cb;

if((hDrv = LoadLibrary ("foo.dll")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress (hDrv, "ExtDeviceMode")))
return FALSE;

/*
* now, invoke the function
*/

cb = (WORD) _Call16(
lpfn, // address of function
"wwdppddw", // parameter type info
hwnd, // parameters ...
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0
);

Classification: WIN386

WIN386 Library Functions and Macros 173

DefineDLLEntry

Synopsis: #include <windows.h>
int DefineDLLEntry(int index, void * routine, ...);

Description: The DefineDLLEntry function defines an index number for the 32-bit DLL procedure routine. The
parameter index defines the index number that must be used in order to invoke the 32-bit FAR
procedure routine. The variable argument list defines the types of parameters that will be received by
the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer
DLL_DWORD 32-bits
DLL_WORD 16-bits
DLL_CHAR 8-bits
DLL_ENDLIST Marks the end of the variable argument list.

Note that all pointers are received as 16-bit far pointers. To access the data from the 32-bit DLL, the
MK_FP32 macro must be applied. The data can then be accessed with the resulting 32-bit far pointer.

Returns: The DefineDLLEntry function returns zero if successful, and a non-zero value otherwise.

Example: #include <windows.h>
int FAR PASCAL FooMe(WORD w1, DWORD w2, WORD w3)
{

char str[128];

sprintf(str, "w1=%hx, w2=%lx, w3=%hx", w1, w2, w3);
MessageBox(NULL, str, "DLL Test", MB_OK);
return(w1 + w2);

}

int PASCAL WinMain(HANDLE hInstance, HANDLE x1,
LPSTR lpCmdLine, int x2)

{
DefineDLLEntry(1, (PROCPTR) FooMe, DLL_WORD,

DLL_DWORD, DLL_WORD, DLL_ENDLIST);
MessageBox(NULL, "32-bit DLL Started", "Test", MB_OK);
return(1);

}

Classification: WIN386

174 WIN386 Library Functions and Macros

DefineUserProc16

Synopsis: #include <windows.h>
int DefineUserProc16(int typ, PROCPTR routine, ...);

Description: The DefineUserProc16 function defines the arguments accepted by the user defined callback
procedure routine. There may be up to 32 user defined callbacks. The parameter typ indicates which
one of GETPROC_USERDEFINED_1 through GETPROC_USERDEFINED_32 is being defined (see
GetProc16). The callback routine must be declared as FAR PASCAL, or as FAR cdecl. The
variable argument list defines the types of parameters that will be received by the user defined callback
procedure routine. Valid parameter types are:

UDP16_PTR 16-bit far pointer

UDP16_DWORD 32-bits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16_CDECL callback routine will be declared as type cdecl rather than as type
PASCAL. This keyword may be placed anywhere before the
UDP16_ENDLIST keyword.

UDP16_ENDLIST Marks the end of the variable argument list.

Once the DefineUserProc16 function has been used to declare the user callback routine, then
GetProc16 may be used to get a 16-bit function pointer that may be used by Windows.

Returns: The DefineUserProc16 function returns zero if it succeeds and non-zero if it fails.

See Also: GetProc16

Example: #include <windows.h>

WORD FAR PASCAL Test(DWORD a, WORD b)
{

char foo[128];

sprintf(foo, "a=%lx, b=%hx", a, b);
MessageBox(NULL, foo, "TEST", MB_OK);
return(0x123);

}

WIN386 Library Functions and Macros 175

DefineUserProc16

int DefineTest(void)
{

FARPROC cb;

DefineUserProc16(GETPROC_USERDEFINED_1,
(PROCPTR) Test,
UDP16_DWORD,
UDP16_WORD,
UDP16_ENDLIST);

cb = GetProc16((PROCPTR) Test, GETPROC_USERDEFINED_1);

/*
* cb may then be used whenever a pointer to the
* callback is required by 16-bit Windows
*/

}

Classification: WIN386

176 WIN386 Library Functions and Macros

FreeAlias16

Synopsis: #include <windows.h>
void FreeAlias16(DWORD fp16);

Description: FreeAlias16 frees a 16-bit far pointer alias for a 32-bit near pointer that was allocated with
AllocAlias16. This is important to do when there is no further use for the pointer since there are a
limited number of 16-bit aliases available (due to limited space in the local descriptor table).

Returns: The FreeAlias16 function returns nothing.

See Also: AllocAlias16

Example: #include <windows.h>

DWORD mcs_16;
/*
* Send a message to a MDI client to create a window.
* _16SendMessage is used for this example, since it will
* not do any pointer conversions automatically.
*/

MDICREATESTRUCT mcs;
mcs.szTitle = (LPSTR) AllocAlias16("c:\\foo.bar");
mcs.szClass = (LPSTR) AllocAlias16("mdichild");
mcs.hOwner = hInst;
mcs.x = mcs.cx = (int) CW_USEDEFAULT;
mcs.y = mcs.cy = (int) CW_USEDEFAULT;
mcs.style = 0;

/* tell the MDI Client to create the child */
mcs_16 = AllocAlias16(&mcs);
hwnd = (WORD) _16SendMessage(hwndMDIClient,

WM_MDICREATE,
0,
(LONG) mcs_16);

FreeAlias16(mcs_16);
FreeAlias16((DWORD) mcs.szClass);
FreeAlias16((DWORD) mcs.szTitle);

Classification: WIN386

WIN386 Library Functions and Macros 177

FreeHugeAlias16

Synopsis: #include <windows.h>
void FreeHugeAlias16(DWORD fp16, DWORD size);

Description: FreeHugeAlias16 frees a 16-bit far pointer alias that was allocated with AllocHugeAlias16.
The size of the original 32-bit memory object must be specified. It is important to use
FreeHugeAlias16 when there is no further use for the pointer, since there are a limited number of
16-bit aliases available (due to limited space in the local descriptor table).

Returns: The FreeHugeAlias16 function returns nothing.

See Also: AllocHugeAlias16, AllocAlias16, FreeAlias16

Example: #include <windows.h>
#include <malloc.h>
#define SIZE 300000

DWORD alias;
void *tmp;

tmp = malloc(SIZE);
alias = AllocHugeAlias16(tmp, SIZE);

/* windows calls using the alias ... */

FreeHugeAlias16(alias, SIZE);

Classification: WIN386

178 WIN386 Library Functions and Macros

FreeIndirectFunctionHandle

Synopsis: #include <windows.h>
void FreeIndirectFunctionHandle(HINDIR handle);

Description: FreeIndirectFunctionHandle frees a handle that was obtained using
GetIndirectFunctionHandle. This is important to do when there is no further use for the
pointer since there are a limited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns: The FreeIndirectFunctionHandle function returns nothing.

See Also: _Call16, GetIndirectFunctionHandle, InvokeIndirectFunction

Example: #include <windows.h>

HANDLE hDrv;
FARPROC lpfn;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress(hDrv, "ExtDeviceMode")))
return FALSE;

#ifdef __WINDOWS_386__
hIndir = GetIndirectFunctionHandle(

lpfn,
INDIR_WORD,
INDIR_WORD,
INDIR_DWORD,
INDIR_PTR,
INDIR_PTR,
INDIR_DWORD,
INDIR_DWORD,
INDIR_WORD,
INDIR_ENDLIST);

cb = (WORD) InvokeIndirectFunction(
hIndir,
hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

FreeIndirectFunctionHandle(hIndir);

WIN386 Library Functions and Macros 179

FreeIndirectFunctionHandle

#else
cb = lpfn(hwnd,

hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

#endif

Classification: WIN386

180 WIN386 Library Functions and Macros

GetIndirectFunctionHandle

Synopsis: #include <windows.h>
HINDIR GetIndirectFunctionHandle(FARPROC prc, ...);

Description: The GetIndirectFunctionHandle function gets a handle for a 16-bit procedure that is to be
invoked indirectly. The procedure is assumed to have PASCAL calling convention, unless the
INDIR_CDECL parameter is used, to indicate that Microsoft C calling convention is to be used. The
16-bit far pointer prc is supplied to GetIndirectFunctionHandle, and a list of the type of each
parameter (in the order that they will be passed to the 16-bit function). The parameter types are:

INDIR_DWORD A DWORD will be passed.

INDIR_WORD A WORD will be passed.

INDIR_CHAR A char will be passed.

INDIR_PTR A pointer will be passed. This is only used if pointer conversion from 32-bit
to 16-bit is required, otherwise; INDIR_DWORD is specified.

INDIR_CDECL This option may be included anywhere in the list before the
INDIR_ENDLIST keyword. When this is used, the calling convention used
to invoke the 16-bit function will be the Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

There is no substitute for this function when compiling for 16-bit Windows. In order to make the code
16-bit Windows compatible, conditional code (based on the __WINDOWS_386__ macro) should be
placed around the GetIndirectFunctionHandle usage (see the example).

This handle is a data structure that was created using the malloc function. To free the handle, just use
one of the FreeIndirectFunctionHandle or free functions.

You may find it easier to use _Call16 rather than GetIndirectFunctionHandle followed by a
call to InvokeIndirectFunction.

Returns: The GetIndirectFunctionHandle function returns a handle to the indirect function, or NULL if
a handle could not be allocated. This handle is used in conjunction with
InvokeIndirectFunction to call the 16-bit procedure.

See Also: _Call16, FreeIndirectFunctionHandle, InvokeIndirectFunction

Example: #include <windows.h>

HANDLE hDrv;
FARPROC lpfn;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress(hDrv, "ExtDeviceMode")))
return FALSE;

WIN386 Library Functions and Macros 181

GetIndirectFunctionHandle

#ifdef __WINDOWS_386__
hIndir = GetIndirectFunctionHandle(

lpfn,
INDIR_WORD,
INDIR_WORD,
INDIR_DWORD,
INDIR_PTR,
INDIR_PTR,
INDIR_DWORD,
INDIR_DWORD,
INDIR_WORD,
INDIR_ENDLIST);

cb = (WORD) InvokeIndirectFunction(
hIndir,
hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

FreeIndirectFunctionHandle(hIndir);

#else
cb = lpfn(hwnd,

hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

#endif

Classification: WIN386

182 WIN386 Library Functions and Macros

GetProc16

Synopsis: #include <windows.h>
CALLBACKPTR GetProc16(PROCPTR fcn, long type);

Description: The GetProc16 function returns a 16-bit far function pointer suitable for use as a Windows callback
function. This callback function will invoke the 32-bit far procedure specified by fcn. The types of
callback functions that may be allocated are:

GETPROC_CALLBACK This is the most common form of callback; suitable as the callback routine
for a window. The callback has the form:

long FAR PASCAL WProc(HWND, unsigned,

WORD, LONG);

GETPROC_ABORTPROC This is the callback type used for trapping abort requests when printing.
The callback has the form:

int FAR PASCAL AbortProc(HDC, WORD);

GETPROC_ENUMCHILDWINDOWS This callback is used with the EnumChildWindows
Windows function. The callback function has the form

BOOL FAR PASCAL EnumChildWindowsFunc(

HWND, DWORD);

GETPROC_ENUMFONTS This callback type is used with the EnumFonts Windows function. The
callback has the form:

int FAR PASCAL EnumFontsFunc(LPLOGFONT,

LPTEXTMETRICS, short, LPSTR);

GETPROC_ENUMMETAFILE This callback is used with the EnumMetaFile Windows function.
The callback function has the form:

int FAR PASCAL EnumMetaFileFunc(HDC,

LPHANDLETABLE, LPMETARECORD,
short, LPSTR);

GETPROC_ENUMOBJECTS This callback is used with the EnumObjects Windows function. The
callback function has the form:

int FAR PASCAL EnumObjectsFunc(LPSTR, LPSTR);

GETPROC_ENUMPROPS_FIXED_DS This callback is used with the EnumProps Windows
function, when the fixed data segments callback is needed. The callback function has the
form:

int FAR PASCAL EnumPropsFunc(

HWND, LPSTR, HANDLE);

GETPROC_ENUMPROPS_MOVEABLE_DS This callback is used with the EnumProps Windows
function, when the moveable data segments callback is needed. The callback function
has the form:

int FAR PASCAL EnumPropsFunc(

HWND, WORD, PSTR, HANDLE);

WIN386 Library Functions and Macros 183

GetProc16

GETPROC_ENUMTASKWINDOWS This callback is used with the EnumTaskWindows Windows
function. The callback function has the form:

int FAR PASCAL EnumTaskWindowsFunc(

HWND, DWORD);

GETPROC_ENUMWINDOWS This callback is used with the EnumWindows Windows function.
The callback function has the form:

int FAR PASCAL EnumWindowsFunc(HWND, DWORD);

GETPROC_GLOBALNOTIFY This callback is used with the GlobalNotify Windows function.
The callback function has the form:

int FAR PASCAL GlobalNotifyFunc(HANDLE);

GETPROC_GRAYSTRING This callback is used with the GrayString Windows function. The
callback function has the form:

int FAR PASCAL GrayStringFunc(

HDC, DWORD, short);

GETPROC_LINEDDA This callback is used with the LineDDA Windows function. The callback
function has the form:

void FAR PASCAL LineDDAFunc(

short, short, LPSTR);

GETPROC_SETRESOURCEHANDLER This callback is used with the SetResourceHandler
Windows function. The callback function has the form:

int FAR PASCAL SetResourceHandlerFunc(

HANDLE, HANDLE, HANDLE);

GETPROC_SETTIMER This callback is used with the SetTimer Windows function. The callback
function has the form:

int FAR PASCAL SetTimerFunc(

HWND, WORD, short, DWORD);

GETPROC_SETWINDOWSHOOK This callback is used with the SetWindowsHook Windows
function. The callback function has the form:

int FAR PASCAL SetWindowsHookFunc(

short, WORD, DWORD);

GETPROC_USERDEFINED_x This callback is used in conjunction with DefineUserProc16
function to create a callback routine with an arbitrary set of parameters. Up to 32 user
defined callbacks are allowed, they are identified by using
GETPROC_USERDEFINED_1 through GETPROC_USERDEFINED_32. The user
defined callback must be declared as a FAR PASCAL function, or as a FAR cdecl
function.

Returns: The GetProc16 function returns a 16-bit far pointer to a callback procedure. This pointer may then
be fed to any Windows function that requires a pointer to a function within the 32-bit program. Note
that the callback function within the 32-bit program must be declared as FAR.

184 WIN386 Library Functions and Macros

GetProc16

See Also: ReleaseProc16

Example: #include <windows.h>

CALLBACKPTR cbp;
FARPROC lpProcAbout;
/*
* Get a 16-bit callback routine to point at
* our About dialogue procedure, then create
* the dialogue. We use _16 versions of
* MakeProcInstance, DialogBox, and
* FreeProcInstance because they do not do
* any magic work on the callback routines.
*/

cbp = GetProc16((PROCPTR) About,
GETPROC_CALLBACK);

lpProcAbout = _16MakeProcInstance(cbp, hInst);

_16DialogBox(hInst,
"AboutBox",
hWnd,
lpProcAbout);

_16FreeProcInstance(lpProcAbout);
ReleaseProc16(cbp);

Classification: WIN386

WIN386 Library Functions and Macros 185

InvokeIndirectFunction

Synopsis: #include <windows.h>
long InvokeIndirectFunction(HINDIR handle, ...);

Description: The InvokeIndirectFunction function invokes the 16-bit function pointed to by the specified
handle. The handle must have been previously allocated using the
GetIndirectFunctionHandle function. The handle is followed by the list of parameters to be
passed to the 16-bit function.

If you specified INDIR_PTR as a parameter when allocating the handle, then a 16-bit pointer is
allocated for a 32-bit pointer that you pass. However, this pointer is freed when the 16-bit function
being invoked returns.

There is no substitute for this function when compiling for 16-bit Windows. In order to make the code
16-bit Windows compatible, conditional code (based on the __WINDOWS_386__ macro) should be
placed around the InvokeIndirectFunction usage (see the example).

Returns: The InvokeIndirectFunction function returns the value which the 16-bit function returned. If
the 16-bit function returns a short rather than a long, the result must be typecast.

See Also: _Call16, FreeIndirectFunctionHandle, GetIndirectFunctionHandle

Example: #include <windows.h>

HANDLE hDrv;
FARPROC lpfn;
HINDIR hIndir;
int cb;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress(hDrv, "ExtDeviceMode")))
return FALSE;

#ifdef __WINDOWS_386__

hIndir = GetIndirectFunctionHandle(
lpfn,
INDIR_WORD,
INDIR_WORD,
INDIR_DWORD,
INDIR_PTR,
INDIR_PTR,
INDIR_DWORD,
INDIR_DWORD,
INDIR_WORD,
INDIR_ENDLIST);

186 WIN386 Library Functions and Macros

InvokeIndirectFunction

cb = (WORD) InvokeIndirectFunction(
hIndir,
hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

FreeIndirectFunctionHandle(hIndir);
#else

cb = lpfn(hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

#endif

Classification: WIN386

WIN386 Library Functions and Macros 187

MapAliasToFlat

Synopsis: #include <windows.h>
void *MapAliasToFlat(DWORD alias);

Description: The MapAliasToFlat function returns a 32-bit near pointer equivalent of a pointer allocated
previously with AllocAlias16 or AllocHugeAlias16. This is useful if you are communicating
with a 16-bit application that is returning pointers that you previously gave it.

Returns: The MapAliasToFlat function returns a 32-bit near pointer usable by the 32-bit application.

See Also: AllocAlias16, AllocHugeAlias16

Example: #include <windows.h>

DWORD alias;
void *ptr;

alias = (DWORD) AllocAlias16(&alias);
alias += 5;
ptr = MapAliasToFlat(alias);
if(ptr == ((char *)&alias + 5)) {

MessageBox(NULL,"It Worked","",MB_OK);
} else {

MessageBox(NULL,"It Failed","",MB_OK);
}

Classification: WIN386

188 WIN386 Library Functions and Macros

MK_FP16

Synopsis: #include <windows.h>
DWORD MK_FP16(void far * fp32);

Description: The MK_FP16 function converts a 32-bit far pointer to a 16-bit far pointer. The 16-bit pointer is
created by simply removing the high word of the offset of the 32-bit pointer.

The 32-bit far pointer must be one that was obtained by using MK_FP32 to extend a 16-bit pointer.

This is useful whenever it is necessary to pass a 16-bit far pointer a parameter to a Windows function
though an _16 function.

Returns: The MK_FP16 returns a 16-bit far pointer.

See Also: MK_LOCAL32, MK_FP32

Example: #include <windows.h>

DRAWITEMSTRUCT FAR *lpdis;
RECT rc;
DWORD alias;
/*
* The drawitem struct was passed as a long, so we
* have to convert it to a 32 bit far pointer.
* Then, we want the 16 bit far pointer of the rcItem
* element so we can pass it to CopyRect (_16CopyRect
* is a version of CopyRect that does not convert
* the pointers it was given).
*/

case WM_DRAWITEM:
lpdis = MK_FP32((void *) lParam);
alias = AllocAlias16(&rc);
_16CopyRect((LPRECT) alias,

(LPRECT) MK_FP16(&lpdis->rcItem));
FreeAlias16(alias);

Classification: WIN386

WIN386 Library Functions and Macros 189

MK_FP32

Synopsis: #include <windows.h>
void far *MK_FP32(void * fp16);

Description: The MK_FP32 function converts a 16-bit far pointer to a 32-bit far pointer. This is needed whenever
Windows returns a 16-bit far pointer, and access to the data is needed by the 32-bit program.

Returns: The MK_FP32 returns a 32-bit far pointer.

See Also: MK_LOCAL32, MK_FP16

Example: #include <windows.h>

MEASUREITEMSTRUCT far *mis;

case WM_MEASUREITEM:
/*
* Windows has passed us a 16 bit far pointer
* to the measure item data structure. We
* use MK_FP32 to make that pointer a 32-bit far
* pointer, which enables us to access the data.
*/

mis = MK_FP32((void *) lParam);
mis->itemHeight = MEASUREITEMHEIGHT;
mis->itemWidth = MEASUREITEMWIDTH;
return TRUE;

Classification: WIN386

190 WIN386 Library Functions and Macros

MK_LOCAL32

Synopsis: #include <windows.h>
void far *MK_LOCAL32(void * fp16);

Description: The MK_LOCAL32 function converts a 16-bit near pointer to a 32-bit far pointer. This is needed
whenever Windows returns a 16-bit near pointer that is to be accessed by the 32-bit program.

Returns: The MK_LOCAL32 returns a 32-bit far pointer.

See Also: MK_FP32, MK_FP16

Example: #include <windows.h>

WORD ich,cch;
char *pch;
char far *fpch;
HANDLE hT;

/*
* Request the data from an edit window; copy it
* into a local buffer so that it can be passed
* to TextOut
*/

ich = (WORD) SendMessage(hwndEdit,
EM_LINEINDEX,
iLine,
0L);

cch = (WORD) SendMessage(hwndEdit,
EM_LINELENGTH,
ich,
0L);

fpch = MK_LOCAL32(LocalLock(hT)) ;
pch = alloca(cch);
_fmemcpy(pch, fpch + ich, cch);

TextOut(hdc, 0, yExtSoFar, (LPSTR) pch, cch);
LocalUnlock(hT);

Classification: WIN386

WIN386 Library Functions and Macros 191

PASS_WORD_AS_POINTER

Synopsis: #include <windows.h>
void *PASS_WORD_AS_POINTER(DWORD dw);

Description: Some Windows API functions have pointer parameters that do not always take pointers. Sometimes
these parameters are pure data. In order to stop the supervisor from trying to convert the data into a
16-bit far pointer, the PASS_WORD_AS_POINTER function is used.

Returns: The PASS_WORD_AS_POINTER returns a 32-bit "near" pointer, that is really the parameter dw.

Example: #include <windows.h>

Func(PASS_WORD_AS_POINTER(1));

Classification: WIN386

192 WIN386 Library Functions and Macros

ReleaseProc16

Synopsis: #include <windows.h>
void ReleaseProc16(CALLBACKPTR cbp);

Description: ReleaseProc16 releases the callback function allocated by GetProc16. Since the callback
routines are a limited resource, it is important to release the routines when they are no longer required.

Returns: The ReleaseProc16 function returns nothing.

See Also: GetProc16

Example: #include <windows.h>

CALLBACKPTR cbp;
FARPROC lpProcAbout;
/*
* Get a 16-bit callback routine to point at
* our About dialogue procedure, then create
* the dialogue. We use _16 versions of
* MakeProcInstance, DialogBox, and
* FreeProcInstance because they do not do
* any magic work on the callback routines.
*/
cbp = GetProc16((PROCPTR) About,

GETPROC_CALLBACK);

lpProcAbout = _16MakeProcInstance(cbp, hInst);

_16DialogBox(hInst,
"AboutBox",
hWnd,
lpProcAbout);

_16FreeProcInstance(lpProcAbout);
ReleaseProc16(cbp);

Classification: WIN386

WIN386 Library Functions and Macros 193

Windows 3.x Programming Guide

194 WIN386 Library Functions and Macros

24 32-bit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows application
development.

The following topics are discussed in this chapter:

• Can you call 16-bit code from a 32-bit Windows application?
• Can I WinExec another Windows application?
• How do I add my Windows resources?
• All function pointers passed to Windows must be 16-bit far pointers, correct?
• Why are 32-bit callback routines FAR?
• Why use the _16 API functions?
• What about pointers in structures?
• When do I use MK_FP32?
• What is the difference between AllocAlias16 and MK_FP16?

24.1 Can you call 16-bit code from a 32-bit Windows
application?

A 32-bit Windows application can make a call to 16-bit code through the use of the Watcom _Call16 or
InvokeIndirectFunction procedures. These functions ensure that the Watcom Windows
Supervisor prepares the stack for the 16-bit call and return to the 32-bit code. The 32-bit application uses
LoadLibrary function to bring the 16-bit DLL into memory and then calls the 16-bit procedures. To
invoke 16-bit procedures, use GetProcAddress to get the 16-bit far pointer to the function. Use the
_Call16 procedure to call the 16-bit function since it is simpler to use than the
GetIndirectFunctionHandle, InvokeIndirectFunction, and
FreeIndirectFunctionHandle sequence. An example of this process is provided under the
_Call16 Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any 32-bit extended
DLL procedure from within a 32-bit application, including DLLs that are available as products through
Independent Software Vendors (ISVs).

24.2 Can I WinExec another Windows application?
As far as Windows is concerned, the WinExec was made by a 16-bit application, and the application
specified will be started. This new application can be a 16-bit application or another 32-bit application that
was implemented with Watcom C/C++

Can I WinExec another Windows application? 195

Windows 3.x Programming Guide

24.3 How do I add my Windows resources?
The WBIND utility automatically runs the resource compiler to add the resources to the 32-bit Windows
supervisor (since the supervisor is a 16-bit Windows application). Note that resource compiler options may
be specified by using the "R" option of WBIND.

24.4 All function pointers passed to Windows must be 16-bit
far pointers, correct?

All function pointers passed to Windows must be 16-bit far pointers since no translation is applied to any
function pointers passed to Windows. Translation is often not possible, since any functions that Windows
is to call back must be exported, and only 16-bit functions can be exported.

A 16-bit far pointer to a function is obtained in one of two ways: either Windows gives it to you (via
GetProcAddr, for example), or you obtain a pointer from the supervisor, via GetProc16.

Function pointers obtained from Windows may either be fed into other Windows functions requiring
function pointers, or called indirectly by using _Call16 or by using the
GetIndirectFunctionHandle, InvokeIndirectFunction, and
FreeIndirectFunctionHandle sequence.

The function GetProc16 returns a 16-bit far pointer to a callback function that Windows can use. This
callback function will direct control into the desired 32-bit routine.

24.5 Why are 32-bit callback routines FAR?
The callback routines are declared as FAR so that the compiler will generate a far return from the
procedure. This is necessary since the 32-bit callback routine is "far" called from the supervisor.

The callback routine is still "near" in the sense that it lies within the 32-bit flat address space of the
application. This means that GetProc16 only needs the offset of the 32-bit callback function in order to
set up the 16-bit procedure to call back correctly. Thus, GetProc16 accepts type PROCPTR which is in
fact only 4 bytes long. The compiler will provide the offset only, which is, as already stated, all that is
needed.

24.6 Why use the _16 API functions?
The regular Windows API functions used in Watcom C/C++ automatically convert any pointers to 16-bit
far pointers for use by Windows. Sometimes, you may have a set of pointers that are 16-bit far pointers
already (e.g., obtained from GlobalLock), and do not need any conversion. The "_16..." API functions
do not convert pointers, they simply pass them on directly to Windows. See the appendix entitled "Special
Windows API Functions" on page 203 for a list of the "_16..." API functions.

196 Why use the _16 API functions?

32-bit Extended Windows Application Development

24.7 What about pointers in structures?
Pointers in structures will be converted if the Windows API function actually takes a pointer to that
structure (i.e., if it is possible for the supervisor to identify that structure). There are few functions that
accept pointers to structures containing pointers. One such function is RegisterClass which accepts a
pointer to a WNDCLASS structure.

If Windows has you passing a pointer to a structure through a 32-bit integer argument, then it is not
possible for the supervisor to identify that as a pointer that needs conversion. It is also not possible for the
supervisor to convert any pointers contained in the structure, since it is not aware that it is a structure (as far
as the supervisor is concerned, that data is what Windows said it was - a 32-bit integer). In this case, it is
necessary to get 16-bit far pointer equivalents to the 32-bit near pointers that you want to pass. Use
AllocAlias16 for this.

24.8 When do I use MK_FP32?
MK_FP32 is used to convert all 16-bit far pointers to 32-bit far pointers that can be used by your 32-bit
application. For example, to access the memory returned by GlobalLock requires the use of MK_FP32.
To access any pointer passed to you (in a callback routine) requires the use of MK_FP32 if you want access
to that data in your 32-bit application.

24.9 What is the difference between AllocAlias16 and
MK_FP16?

AllocAlias16 actually gets a new selector that points at the same memory as the 32-bit near pointer,
whereas MK_FP16 squishes a 32-bit far pointer back into a 16-bit far pointer (i.e., it reverses MK_FP32).

24.10 Tell Me More About Thunking and Aliases
Consider the following example.

dwAlias = AllocAlias16(pszSomething);
hwnd = CreateWindowEx(

0L, // extendedStyle
"classname", // class name
"",
WS_POPUP|WS_VISIBLE|WS_CLIPSIBLINGS|WS_HSCROLL|
WS_BORDER|WS_CAPTION|WS_SYSMENU,
x, y, 0, 0, // x, y, cx, cy
hwndParent, // hwndParent
NULL, // control ID
g_app.hinst, // hInstance
(void FAR*)dwAlias); // lpCreateParams

FreeAlias16(dwAlias);

When I get the lpCreateParams parameter in WM_CREATE, I don’t get the original dwAlias but
something else which looks like another alias to me. So the question is: Must the CreateWindowEx
parameter lpCreateParams be "thunked" or is this done automatically by the supervisor?

Tell Me More About Thunking and Aliases 197

Windows 3.x Programming Guide

Thunks are always created for function pointers. Aliases are always created for data pointers. There are 3
data pointer parameters in the CreateWindowEx function call. Aliases are created for all three pointers.
The lpCreateParams argument is a pointer to a struct which contains 3 pointers. Aliases are not
created for the 3 pointers inside the struct. If you need to have this done, then you will have to create the
aliases yourself. If you create aliases for the parameters to CreateWindowEx, then you must call the
_16CreateWindowEx function which will not create any aliases.

Here is some further information on thunks (which are created for function pointers). There is code in the
supervisor that trys (note the word trys) to determine if the user has already created a thunk and, if so,
avoids creating a double thunk which will always generate a GPF. The best policy is to let the supervisor
automatically create all thunks for you unless you have a very specific reason not to, in which case you
should call the _16 version of the function.

Here is some further information on aliases (which are created for data pointers). There is no way for the
supervisor to determine if a value is a 32-bit flat pointer or an alias for the pointer. So if you pass in an
alias to the non _16 version of the function, the supervisor will create an alias for the alias which will end
up pointing to the wrong memory location. If you are going to create the alias, then you must call the _16
version of the function.

198 Tell Me More About Thunking and Aliases

25 Special Variables for Windows Programming

__A000 A selector for addressing the real-mode segment 0xA000.

__B000 A selector for addressing the real-mode segment 0xB000.

__B800 A selector for addressing the real-mode segment 0xB800.

__C000 A selector for addressing the real-mode segment 0xC000.

__D000 A selector for addressing the real-mode segment 0xD000.

__E000 A selector for addressing the real-mode segment 0xE000.

__F000 A selector for addressing the real-mode segment 0xF000.

LocalPtr The selector for the supervisor’s data area.

Special Variables for Windows Programming 199

Windows 3.x Programming Guide

200 Special Variables for Windows Programming

26 Definitions of Windows Terms

CALLBACKPTR Pointer to a 16-bit callback routine; used to call into 32-bit functions.

DWORD An unsigned long.

HINDIR A handle to 16-bit function that needs to be called indirectly.

PROCPTR A pointer to a 32-bit callback routine. Although the callback routine is declared
as far, only the 32-bit offset is used.

WORD An unsigned short.

Definitions of Windows Terms 201

Windows 3.x Programming Guide

202 Definitions of Windows Terms

27 Special Windows API Functions

On rare occasions, you want to use 16-bit far pointers directly in a Windows function. Since all Windows
functions in the 32-bit environment are expecting 32-bit near pointers, you cannot simply use the 16-bit far
pointer directly in the function.

The following functions are special versions of Windows API functions that do NOT convert any of the
pointers from 32-bit to 16-bit. There are _16 versions of all Windows API functions that accept data
pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem
_16AnsiToOemBuff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmapIndirect
_16CreateBrushIndirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDialogIndirect
_16CreateDialogIndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnIndirect
_16CreateFont
_16CreateFontIndirect
_16CreateIC
_16CreateIcon
_16CreateMetaFile
_16CreatePalette
_16CreatePenIndirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnIndirect

Special Windows API Functions 203

Windows 3.x Programming Guide

_16CreateWindow
_16CreateWindowEx
_16DialogBox
_16DialogBoxIndirect
_16DialogBoxIndirectParam
_16DialogBoxParam
_16DispatchMessage
_16DlgDirList
_16DlgDirListComboBox
_16DlgDirSelect
_16DlgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumWindows
_16EqualRect
_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProcInstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos
_16GetCharWidth
_16GetClassInfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodeInfo
_16GetCommError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDlgItemInt
_16GetDlgItemText
_16GetEnvironment
_16GetKeyboardState
_16GetKeyNameText
_16GetMenuString
_16GetMetaFile
_16GetModuleFileName
_16GetModuleHandle

204 Special Windows API Functions

Special Windows API Functions

_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfileInt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfileInt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16GlobalAddAtom
_16GlobalFindAtom
_16GlobalGetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_16InvalidateRect
_16InvertRect
_16IsDialogMessage
_16IsRectEmpty
_16LineDDA
_16LoadAccelerators
_16LoadBitmap
_16LoadCursor
_16LoadIcon
_16LoadLibrary
_16LoadMenu
_16LoadMenuIndirect
_16LoadModule
_16LoadString
_16LPtoDP
_16MakeProcInstance
_16MapDialogRect
_16MessageBox
_16OemToAnsi
_16OemToAnsiBuff
_16OffsetRect
_16OpenComm
_16OpenFile
_16OutputDebugString
_16PlayMetaFileRecord

Special Windows API Functions 205

Windows 3.x Programming Guide

_16Polygon
_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowMessage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrollDC
_16ScrollWindow
_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDlgItemText
_16SetEnvironment
_16SetKeyboardState
_16SetPaletteEntries
_16SetProp
_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut
_16ToAscii
_16TrackPopupMenu
_16TranslateAccelerator
_16TranslateMDISysAccel
_16TranslateMessage
_16UnhookWindowsHook
_16UnionRect
_16UnregisterClass
_16ValidateRect
_16WinExec
_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16_lread
_16_lwrite

206 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

208

28 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed Graphical User
Interface (GUI) applications. In addition, Windows NT supports Dynamic Link Libraries and applications
with multiple threads of execution.

We have supplied all the necessary tools for native development on Windows NT. You can also cross
develop for Windows NT using either the DOS-hosted compilers and tools, the Windows 95-hosted
compilers and tools, or the OS/2-hosted compilers and tools.

Note - If you are on the host with operating system other then 32-bit Windows, you should setup
INCLUDE environment variable correctly to compile for 32-bit Windows target.

You can do that by command (DOS, OS/2, Windows 3.x)

set INCLUDE=%WATCOM%\h;%WATCOM%\h\nt

or by command (LINUX)

export INCLUDE=$WATCOM/h:$WATCOM/h/nt

Testing and debugging of your Windows NT application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in a special DOS extender
from Phar Lap (TNT) that can run your Windows NT character-mode application under DOS.

28.1 Windows NT Programming Note
When doing Win32 programming, you should use the /ei and /zp4 options to compile C and C++ code with
the Watcom compilers since this adjusts the compilers to match the default Microsoft compiler behaviour.
Some Microsoft software relies on the default behaviour of their own compiler regarding the treatment of
enums and structure packing alignment.

28.2 Windows NT Character-mode Versus GUI
Basically, there are two classes of C/C++ applications that can run in a windowed environment like
Windows NT.

The first are those C/C++ applications that do not use any of the Win32 API functions; they are strictly
C/C++ applications that do not rely on the features of a particular operating system.

• This Application must be created as Windows NT Character-mode Application.

Windows NT Character-mode Versus GUI 209

Windows NT Programming Guide

The second class of C/C++ applications are those that actually call Win32 API functions directly. These
are applications that have been tailored for the Win32 operating environment. There can occure two
application types.

• First one uses GUI interface then it must be created as Windows NT GUI Application.

• Second one uses only character console (no GUI) then it must be created as Windows NT
Character-mode Application

A subsequent chapters deal with the creation of different application types for Windows NT target.

210 Windows NT Character-mode Versus GUI

29 Creating Windows NT GUI Applications

This chapter describes how to compile and link Windows NT GUI applications simply and quickly. In this
chapter, we look at applications written to exploit the Windows NT Application Programming Interface
(API).

We will illustrate the steps to creating Windows NT GUI applications by taking a small sample application
and showing you how to compile, link, run and debug it.

29.1 The Sample GUI Application
To demonstrate the creation of Windows NT GUI applications, we introduce a simple sample program.
The following example is the "hello" program adapted for Windows.

#include <windows.h>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
MessageBox(NULL, "Hello world",

"Watcom C/C++ for Windows",
MB_OK | MB_TASKMODAL);

return(0);
}

The goal of this program is to display the message "Hello world" on the screen. The MessageBox
Windows API function is used to accomplish this task. We will take you through the steps necessary to
produce this result.

29.2 Building and Running the GUI Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl386 -l=nt_win -bt=nt hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the GUI Application 211

Windows NT Programming Guide

C>wcl386 -l=nt_win -bt=nt hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bt=nt
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 41

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows NT windowed executable

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries).

The resultant Windows NT GUI application HELLO.EXE can now be run under Windows NT.

29.3 Debugging the GUI Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 -l=nt_win -bt=nt -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

212 Debugging the GUI Application

Creating Windows NT GUI Applications

C>wcl386 -l=nt_win -bt=nt -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bt=nt -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 66

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows NT windowed executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.
It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the GUI Application 213

Windows NT Programming Guide

214 Debugging the GUI Application

30 Creating Windows NT Character-mode
Applications

This chapter describes how to compile and link Windows NT Character-mode applications simply and
quickly. In this chapter, we look at applications written to exploit the Windows NT Application
Programming Interface (API).

We will illustrate the steps to creating Windows NT Character-mode applications by taking a small sample
application and showing you how to compile, link, run and debug it.

30.1 The Sample Character-mode Application
To demonstrate the creation of Windows NT Character-mode applications, we introduce a simple sample
program. The following example is the "hello" program adapted for Windows.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The goal of this program is to display the message "Hello world" on the screen. The C library printf
routine is used to accomplish this task. We will take you through the steps necessary to produce this result.

30.2 Building and Running the Character-mode Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

C>wcl386 -l=nt -bt=nt hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Character-mode Application 215

Windows NT Programming Guide

C>wcl386 -l=nt -bt=nt hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bt=nt
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 41

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows NT Character-mode executable

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries).

The resultant Windows NT Character-mode application HELLO.EXE can now be run under Windows NT.

30.3 Debugging the Character-mode Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 -l=nt -bt=nt -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

216 Debugging the Character-mode Application

Creating Windows NT Character-mode Applications

C>wcl386 -l=nt -bt=nt -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -bt=nt -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 66

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating a Windows NT Character-mode executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.
It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Character-mode Application 217

Windows NT Programming Guide

218 Debugging the Character-mode Application

31 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A process is an executing application and the
resources it uses. A thread is the smallest unit of execution within a process. Each thread has its own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In this type of application, all tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

31.1 Programming Considerations
Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.
For example, if your application has a function that displays information on the console and is used by all
threads, it is necessary to allow only one thread to use that function at any time. That is, once a thread calls
that function, the function should ensure that no other thread displays information until all information for
the initial thread has been displayed. An example of such a function is the printf library function.

Another issue that must be considered when creating multi-threaded applications is global variables. If you
have global variables that contain thread-specific information, there must be an instance of each global
variable for each thread. An example of such a variable is the errno global variable defined in the
run-time libraries. If an error condition was created by a thread, you would not want it to affect the
execution of other threads. Therefore, each thread should contain its own instance of this variable.

31.2 Creating Threads
Each application initially contains a single thread. The run-time libraries contain two functions that create
and terminate threads of execution. The function _beginthread creates a thread of execution and the
function _endthread ends a thread of execution. The macro _threadid can be used to determine the
current thread identifier.

Creating Threads 219

Windows NT Programming Guide

WARNING! If any thread calls a library function, you must use the _beginthread function to
create the thread. Do not use the CreateThread API function.

31.2.1 Creating a New Thread
The _beginthread function creates a new thread. It is defined as follows.

unsigned long _beginthread(void (*start_address)(void *),

unsigned stack_size,
void *arglist);

where description:

start_address is the address of the function that will be called when the newly created thread is executed.
When the thread returns from that function, the thread will be terminated. Note that a call
to the _endthread function will also terminate the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be a multiple of 4K.

arglist is passed as an argument to the function specified by start_address. If no argument
is required, a value of NULL can be specified.

If a new thread is successfully created, the thread identifier of the new thread is returned. Otherwise, a
value of -1 is returned.

The header file process.h contains the definition of the _beginthread function.

Another thread related function for Windows NT is _beginthreadex. See the Watcom C Library
Reference for more information.

31.2.2 Terminating the Current Thread
The _endthread function terminates the current thread. It is defined as follows.

void _endthread(void)

The header file process.h contains the definition of the _endthread function.

31.2.3 Getting the Current Thread Identifier
The _threadid macro can be used to determine the current thread identifier. It is defined as follows.

int *__threadid(void);
#define _threadid (__threadid())

The header file stddef.h contains the definition of the _threadid macro.

220 Creating Threads

Windows NT Multi-threaded Applications

31.3 A Multi-threaded Example
Let us create a simple multi-threaded application.

#include <process.h>
#include <stdio.h>
#include <stddef.h>
#include <windows.h>

static volatile int NumThreads;
static volatile int HoldThreads;

CRITICAL_SECTION CriticalSection;

#define NUM_THREADS 5
#define STACK_SIZE 8192

static void a_thread(void *arglist)
/***********************************/
{

while(HoldThreads) {
Sleep(1);

}
printf("Hi from thread %d\n", *_threadid);
EnterCriticalSection(&CriticalSection);
--NumThreads;
LeaveCriticalSection(&CriticalSection);
_endthread();

}

int main(void)
/**************/
{

int i;

printf("Initial thread id = %d\n", *_threadid);
NumThreads = 0;
HoldThreads = 1;
InitializeCriticalSection(&CriticalSection);
/* initial thread counts as 1 */
for(i = 2; i <= NUM_THREADS; ++i) {

if(_beginthread(a_thread, STACK_SIZE, NULL) == -1) {
printf("creation of thread %d failed\n", i);

} else {
++NumThreads;

}
}
HoldThreads = 0;
while(NumThreads != 0) {

Sleep(1);
}
DeleteCriticalSection(&CriticalSection);
return(0);

}

Note:

1. In the function a_thread, EnterCriticalSection and LeaveCriticalSection
are called when we modify the variable NumThreads. This ensures that the action of
extracting the value of NumThreads from memory, incrementing the value, and storing the
new result into memory, occurs without interruption. If these functions were not called, it would
be possible for two threads to extract the value of NumThreads from memory before an update
occurred.

Let us assume that the file mthread.c contains the above example. Before compiling the file, make sure
that the WATCOM environment variable is set to the directory in which you installed Watcom C/C++.

A Multi-threaded Example 221

Windows NT Programming Guide

Also, the INCLUDE environment variable must include the \watcom\h\nt and \watcom\h
directories ("\WATCOM" is the directory in which Watcom C/C++ was installed).

We can now compile and link the application by issuing the following command.

C:\>wcl386 -bt=nt -bm -l=nt mthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.

The "l" option specifies the target system for which the application is to be linked. The system name nt is
defined in the file wlsystem.lnk which is located in the "BINW" subdirectory of the directory in which
you installed Watcom C/C++.

The multi-threaded application is now ready to be run.

222 A Multi-threaded Example

32 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is a library of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. This form of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application is loaded. This form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functions in dynamic link libraries are not linked into your program. Only references to the
functions in dynamic link libraries are placed in the program module. These references are
called import definitions. As a result, the linking time is reduced and disk space is saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, a dynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

32.1 Creating Dynamic Link Libraries
Once you have developed the source for a library of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of a dynamic link library. Once you have successfully compiled your
source, you must create a linker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create a dynamic link library.

1. The "SYSTEM" directive is used to specify that a dynamic link library is to be created.
2. The "EXPORT" directive is used to to specify which functions in the dynamic link library are to

be exported.

Specifying exports in the source code

The "EXPORT" directive need not be used when the symbols to be exported are
declared with the __declspec(dllexport) modifier in the source code.
Such symbols are exported automatically, through special records inserted into
the object files by the compiler.

Creating Dynamic Link Libraries 223

Windows NT Programming Guide

Exporting C++ symbols and classes

Symbols exported via the "EXPORT" directive have to be entered in their
mangled form. This makes it rather awkward to export C++ functions, classes or
global objects. These symbols also often reference other compiler-generated
symbols (invisible to the user) that need be exported together with the
class/object. Using the __declspec(dllexport) method of exporting
symbols is the preferred solution.

3. The "OPTION" directive is used to specify attributes such as the name of the dynamic link
library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The "SEGMENT" directive is used to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to use it. This can be done by creating an import library for the dynamic link library
or creating a linker directive file that contains "IMPORT" directives for each of the entry points in the
dynamic link library.

32.2 Creating a Sample Dynamic Link Library
Let us now create a dynamic link library using the following example.

#include <stdio.h>
#include <windows.h>

#if defined(__cplusplus)
#define EXPORTED extern "C" __declspec(dllexport)
#else
#define EXPORTED __declspec(dllexport)
#endif

DWORD TlsIndex; /* Global Thread Local Storage index */

/* Error checking should be performed in following code */

BOOL APIENTRY LibMain(HANDLE hinstDLL,
DWORD fdwReason,
LPVOID lpvReserved)

{
switch(fdwReason) {
case DLL_PROCESS_ATTACH:

/* do process initialization */

/* create TLS index */
TlsIndex = TlsAlloc();
break;

case DLL_THREAD_ATTACH:
/* do thread initialization */

/* allocate private storage for thread */
/* and save pointer to it */
TlsSetValue(TlsIndex, malloc(200));
break;

224 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

case DLL_THREAD_DETACH:
/* do thread cleanup */

/* get the TLS value and free associated memory */
free(TlsGetValue(TlsIndex));
break;

case DLL_PROCESS_DETACH:
/* do process cleanup */

/* free TLS index */
TlsFree(TlsIndex);
break;

}
return(1); /* indicate success */
/* returning 0 indicates initialization failure */

}

EXPORTED void dll_entry_1(void)
{

printf("Hi from dll entry #1\n");
}

EXPORTED void dll_entry_2(void)
{

printf("Hi from dll entry #2\n");
}

Arguments:

hinstDLL This is a handle for the DLL. It can be used as a argument to other functions such as
GetModuleFileName.

fdwReason This argument indicates why LibMain is being called. It can have one of the following
values:

Value Meaning

DLL_PROCESS_ATTACH This value indicates that the DLL is attaching to the address
space of the current process as a result of the process starting up or as a
result of a call to LoadLibrary. A DLL can use this opportunity to
initialize any instance data or to use the TlsAlloc function to allocate a
Thread Local Storage (TLS) index.

During initial process startup or after a call to LoadLibrary, the
operating system scans the list of loaded DLLs for the process. For each
DLL that has not already been called with the DLL_PROCESS_ATTACH
value, the system calls the DLL’s LibMain entry-point. This call is made
in the context of the thread that caused the process address space to change,
such as the primary thread of the process or the thread that called
LoadLibrary.

DLL_THREAD_ATTACH This value indicates that the current process is creating a new
thread. When this occurs, the system calls the LibMain entry-point of all
DLLs currently attached to the process. The call is made in the context of
the new thread. DLLs can use this opportunity to initialize a Thread Local
Storage (TLS) slot for the thread. A thread calling the DLL’s LibMain
with the DLL_PROCESS_ATTACH value does not call LibMain with the
DLL_THREAD_ATTACH value. Note that LibMain is called with this
value only by threads created after the DLL is attached to the process.

Creating a Sample Dynamic Link Library 225

Windows NT Programming Guide

When a DLL is attached by LoadLibrary, existing threads do not call
the LibMain entry-point of the newly loaded DLL.

DLL_THREAD_DETACH This value indicates that a thread is exiting normally. If the
DLL has stored a pointer to allocated memory in a TLS slot, it uses this
opportunity to free the memory. The operating system calls the LibMain
entry-point of all currently loaded DLLs with this value. The call is made
in the context of the exiting thread. There are cases in which LibMain is
called for a terminating thread even if the DLL never attached to the thread.
For example, LibMain is never called with the DLL_THREAD_ATTACH
value in the context of the thread in either of these two situations:

• The thread was the initial thread in the process, so the system called
LibMain with the DLL_PROCESS_ATTACH value.

• The thread was already running when a call to the LoadLibrary
function was made, so the system never called LibMain for it.

DLL_PROCESS_DETACH This value indicates that the DLL is detaching from the
address space of the calling process as a result of either a normal
termination or of a call to FreeLibrary. The DLL can use this
opportunity to call the TlsFree function to free any TLS indices
allocated by using TlsAlloc and to free any thread local data. When a
DLL detaches from a process as a result of process termination or as a
result of a call to FreeLibrary, the operating system does not call the
DLL’s LibMain with the DLL_THREAD_DETACH value for the
individual threads of the process. The DLL is only given
DLL_PROCESS_DETACH notification. DLLs can take this opportunity to
clean up all resources for all threads attached and known to the DLL.

lpvReserved This argument specifies further aspects of DLL initialization and cleanup. If fdwReason
is DLL_PROCESS_ATTACH,lpvReserved is NULL for dynamic loads and
non-NULL for static loads. If fdwReason is DLL_PROCESS_DETACH,
lpvReserved is NULL if LibMain has been called by using FreeLibrary and
non-NULL if LibMain has been called during process termination.

Return Value When the system calls the LibMain function with the DLL_PROCESS_ATTACH value,
the function returns TRUE (1) if initialization succeeds or FALSE (0) if initialization fails.

If the return value is FALSE (0) when LibMain is called because the process uses the
LoadLibrary function, LoadLibrary returns NULL.

If the return value is FALSE (0) when LibMain is called during process initialization, the
process terminates with an error. To get extended error information, call
GetLastError.

When the system calls LibMain with any value other than DLL_PROCESS_ATTACH,
the return value is ignored.

Assume the above example is contained in the file dllsamp.c. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

C:\>wcc386 -bd dllsamp

226 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

Before we can link our example, we must create a linker directive file that describes the attributes and entry
points of our dynamic link library. The following is a linker directive file, called dllsamp.lnk, that
can be used to create the dynamic link library.

system nt_dll initinstance terminstance
export dll_entry_1_
export dll_entry_2_
file dllsamp

Notes:

1. The "SYSTEM" directive specifies that we are creating a Windows NT dynamic link library.

2. When a dynamic link library uses the Watcom C/C++ run-time libraries, an automatic data
segment is created each time a new process accesses the dynamic link library. For this reason,
initialization code must be executed when a process accesses the dynamic link library for the
first time. To achieve this, "INITINSTANCE" must be specified in the "SYSTEM" directive.
Similarly, "TERMINSTANCE" must be specified so that the termination code is executed when
a process has completed its access to the dynamic link library. If the Watcom C/C++ run-time
libraries are not used, these options are not required.

3. The "EXPORT" directive specifies the entry points into the dynamic link library. Note that the
names specified in the "EXPORT" directive are appended with an underscore. This is the
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

We can now create our dynamic link library by issuing the following command.

C:\>wlink @dllsamp

A file called dllsamp.dll will be created.

32.3 Using Dynamic Link Libraries
It is assumed that all symbols imported by a client application were declared with a __declspec(
dllimport) modifier when the client application was compiled. At the link stage we have to tell the
linker which dynamic libraries the client application should link to. Once we have created a dynamic link
library, we must allow other applications to access the functions available in the dynamic link library.
There are two ways to achieve this.

The first method is to create a linker directive file which contains an "IMPORT" directive for all entry
points in the dynamic link library. The "IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic
link library, this linker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. An import library is a standard library that is created from a
dynamic link library by using the Watcom Library Manager. It contains object modules that describe the
entry points in a dynamic link library. The resulting import library can then be specified in a "LIBRARY"
directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When a dynamic link library is modified, typically the import library corresponding to the

Using Dynamic Link Libraries 227

Windows NT Programming Guide

modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a "LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

C:\>wlib dllsamp +dllsamp.dll

A standard library called dllsamp.lib will be created.

Suppose the following sample program, contained in the file dlltest.c, calls the functions from our
sample dynamic link library.

#include <stdio.h>
#include <process.h>
#if defined(__cplusplus)
#define IMPORTED extern "C" __declspec(dllimport)
#else
#define IMPORTED __declspec(dllimport)
#endif

IMPORTED void dll_entry_1(void);
IMPORTED void dll_entry_2(void);
#define STACK_SIZE 8192

static void thread(void *arglist)
{

printf("Hi from thread\n");
_endthread();

}

int main(void)
{

unsigned long tid;

dll_entry_1();
tid = _beginthread(thread, STACK_SIZE, NULL);
dll_entry_2();
return(0);

}

We can compile and link our sample application by issuing the following command.

C:\>wcl386 -bm -l=nt dlltest dllsamp.lib

If we had created a linker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directive file, say dllimps.lnk, would be as follows.

import dll_entry_1_ dllsamp
import dll_entry_2_ dllsamp

Note that the names specified in the "IMPORT" directive are appended with an underscore. This is the
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

To compile and link our sample application, we would issue the following command.

C:\>wcl386 -bm -l=nt dlltest -"@dllimps"

228 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

32.4 The Dynamic Link Library Data Area
The Watcom C/C++ 32-bit run-time library does not support the general case operation of DLLs in an
execution environment where there is only one instance of the DATA segment (DGROUP) for that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLs linked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLs linked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can suppress the
function which issues the diagnostic and notifies the operating system that the second process cannot attach
to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not released back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int __disallow_single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

The Dynamic Link Library Data Area 229

Windows NT Programming Guide

230 The Dynamic Link Library Data Area

33 Creating Windows NT POSIX Applications

This chapter describes how to compile and link POSIX applications for Windows NT. There are a number
of issues to consider.

1. Watcom does not provide its own POSIX libraries. You must use those included with the
Microsoft Win32 SDK. They are libcpsx.lib, psxdll.lib and psxrtl.lib. If you
installed the Win32 SDK component when you installed the Watcom software, you will find
these libraries in the %WATCOM%\lib386\nt directory.

2. Since you will be using Microsoft POSIX libraries compiled by the Microsoft compiler, you
must follow the calling conventions used by Microsoft (i.e., the __cdecl convention). The
Watcom compiler can generate these calling conventions provided that the POSIX library
routines are all properly prototyped.

3. Watcom does not provide its own header files for use with the Microsoft POSIX libraries. The
Microsoft Win32 SDK includes only a subset of the headers required for calling the POSIX
library routines. If you installed the Win32 SDK component when you installed the Watcom
software, you will find these headers in the %WATCOM%\sdk\posix\h and
%WATCOM%\sdk\posix\h\sys directories. Take a look at these directories to see what is
and what is not included.

4. If you have the Microsoft compiler, then you will likely have access to the missing header files.
If you do not have the Microsoft compiler, then you will have to define prototypes for any of the
POSIX library routines that you use for which no prototypes are defined in any of the POSIX
header files.

5. There is one exception to the generation of the __cdecl calling convention for appropriately
prototyped functions. This is the main function. Since many Microsoft sample programs
inappropriately declare the main function as __cdecl, it was necessary to make a special
case in the Watcom compilers to ignore the __cdecl attribute when used for this entry point.
To work around this problem, a special pragma is used. This is shown in the following example.

6. Since we are going to use the Microsoft POSIX libraries rather than the Watcom libraries, we
will use the "zl" compile option to instruct the Watcom compiler not to include references to
Watcom libraries in the object files.

To illustrate the creation of a POSIX application, we will use a simple example. This program displays an
identifying banner and then displays its arguments one at a time.

Example:

Creating Windows NT POSIX Applications 231

Windows NT Programming Guide

[POSIXSMP.C]
#include <unistd.h>

// The Win32 SDK doesn’t provide a complete set of
// headers for the libraries (e.g., no stdio.h).

extern int __cdecl printf(char *, ...);

// Note: the "__cdecl" attribute is ignored for main().

int __cdecl main(int argc, char **argv)
{

int i;
printf("POSIX sample program\n");
for(i = 0 ; i < argc ; i++) {

printf("%d: %s\n", i, argv[i]);
}
return 0;

}

// Since the "__cdecl" attribute is ignored,
// make sure that parms go on the stack for main
// and that main gets the _ in the right place by
// using a pragma to do so.

#pragma aux main "_*" parm [];

// The compiler emits references to these symbols,
// so make sure they get defined here to prevent
// unresolved references.

int _cstart_;
#pragma aux _cstart_ "*";
int __argc;
#pragma aux __argc "*";

The example program illustrates some of the special considerations required for using the Microsoft POSIX
libraries rather than the Watcom libraries. There are also some special link time issues and these are
addressed in the following sample "makefile".

Example:
[MAKEFILE]
posixsmp.exe : posixsmp.c posix.add makefile.

set nt_include=
set include=$(%watcom)\sdk\posix\h;$(%watcom)\sdk\posix\h\sys
wcc386 -bt=nt -oaxt -zl posixsmp.c
wlink @posix.add file posixsmp sys nt_posix option map

posix.add :
%create posix.add
%append posix.add system begin nt_posix
%append posix.add option osname=’Windows NT character-mode posix’
%append posix.add libpath %WATCOM%\lib386\nt
%append posix.add option nodefaultlib
%append posix.add option start=___PosixProcessStartup
%append posix.add lib { libcpsx.lib psxrtl.lib psxdll.lib }
%append posix.add format windows nt ^
%append posix.add runtime posix
%append posix.add end

232 Creating Windows NT POSIX Applications

Creating Windows NT POSIX Applications

A new "nt_posix" system is defined in the posix.add file. This file is generated automatically by the
makefile.

That is about all there is to creating a Windows NT POSIX application. One final note - make sure when
using the Microsoft headers that all the library routines that you use are declared as __cdecl otherwise
your application will not run correctly.

Creating Windows NT POSIX Applications 233

Windows NT Programming Guide

234 Creating Windows NT POSIX Applications

OS/2 Programming Guide

OS/2 Programming Guide

236

34 Creating 16-bit OS/2 1.x Applications

An OS/2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runs in its own screen group. A
PM-compatible application will run in an OS/2 fullscreen environment or in a window in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 255.

We will illustrate the steps to creating 16-bit OS/2 1.x applications by taking a small sample application
and showing you how to compile, link, run and debug it.

34.1 The Sample Application
To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

The Sample Application 237

OS/2 Programming Guide

34.2 Building and Running the Sample OS/2 1.x Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

[C:\]wcl -l=os2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl -l=os2 hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

[C:\]hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). It is hello.exe that is run by OS/2 when you enter the
"hello" command.

34.3 Debugging the Sample OS/2 1.x Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, this is fairly straightforward. WCL recognizes the Watcom C/C++ compiler
"debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

[C:\]wcl -l=os2 -d2 hello.c

238 Debugging the Sample OS/2 1.x Application

Creating 16-bit OS/2 1.x Applications

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl -l=os2 -d2 hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc hello.c -d2
Open Watcom C16 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating an OS/2 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

For OS/2, you should also include the BINP\DLL directory in the "LIBPATH" directive of the system
configuration file CONFIG.SYS. It contains the Watcom Debugger Dynamic Link Libraries (DLLs).

Example:
libpath=c:\watcom\binp\dll

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

[C:\]wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample OS/2 1.x Application 239

OS/2 Programming Guide

240 Debugging the Sample OS/2 1.x Application

35 Creating 32-bit OS/2 Applications

An OS/2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runs in its own screen group. A
PM-compatible application will run in an OS/2 fullscreen environment or in a window in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 255.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample application and
showing you how to compile, link, run and debug it.

35.1 The Sample Application
To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library printf routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

The Sample Application 241

OS/2 Programming Guide

35.2 Building and Running the Sample OS/2 Application
To compile and link our example program which is stored in the file hello.c, enter the following
command:

[C:\]wcl386 -l=os2v2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl386 -l=os2v2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

[C:\]hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
hello.obj (the result of compiling hello.c) and hello.exe (the result of linking hello.obj
with the appropriate Watcom C/C++ libraries). It is hello.exe that is run by OS/2 when you enter the
"hello" command.

35.3 Debugging the Sample OS/2 Application
Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

[C:\]wcl386 -l=os2v2 -d2 hello.c

242 Debugging the Sample OS/2 Application

Creating 32-bit OS/2 Applications

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl386 -l=os2v2 -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.

wcc386 hello.c -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

Open Watcom Linker
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See http://www.openwatcom.org/ for details.
loading object files
searching libraries
creating an OS/2 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

[C:\]wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample OS/2 Application 243

OS/2 Programming Guide

244 Debugging the Sample OS/2 Application

36 OS/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A process is an executing application and the
resources it uses. A thread is the smallest unit of execution within a process. Each thread has its own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In this type of application, all tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

36.1 Programming Considerations
Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.
For example, if your application has a function that displays information on the console and is used by all
threads, it is necessary to allow only one thread to use that function at any time. That is, once a thread calls
that function, the function should ensure that no other thread displays information until all information for
the initial thread has been displayed. An example of such a function is the printf library function.

Another issue that must be considered when creating multi-threaded applications is global variables. If you
have global variables that contain thread-specific information, there must be an instance of each global
variable for each thread. An example of such a variable is the errno global variable defined in the
run-time libraries. If an error condition was created by a thread, you would not want it to affect the
execution of other threads. Therefore, each thread should contain its own instance of this variable.

36.2 Creating Threads
Each application initially contains a single thread. The run-time libraries contain two functions that create
and terminate threads of execution. The function _beginthread creates a thread of execution and the
function _endthread ends a thread of execution. The macro _threadid can be used to determine the
current thread identifier.

Creating Threads 245

OS/2 Programming Guide

WARNING! If any thread calls a library function, you must use the _beginthread function to
create the thread. Do not use the DosCreateThread API function.

36.2.1 Creating a New Thread
The _beginthread function creates a new thread. It is defined as follows.

int _beginthread(void (*start_address)(void *),

void *stack_bottom,
unsigned stack_size,
void *arglist);

where description:

start_address is the address of the function that will be called when the newly created thread is executed.
When the thread returns from that function, the thread will be terminated. Note that a call
to the _endthread function will also terminate the thread.

stack_bottom specifies the bottom of the stack to be used by the thread. Note that this argument is
ignored as it is only needed to simplify the port of OS/2 1.x multi-threaded applications to
OS/2 2.x. Under OS/2 2.x, the operating system allocates the stack for the new thread. A
value of NULL may be specified.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be a multiple of 4K.

arglist is passed as an argument to the function specified by start_address. If no argument
is required, a value of NULL can be specified.

If a new thread is successfully created, the thread identifier of the new thread is returned. Otherwise, a
value of -1 is returned.

The header file process.h contains the definition of the _beginthread function.

36.2.2 Terminating the Current Thread
The _endthread function terminates the current thread. It is defined as follows.

void _endthread(void)

The header file process.h contains the definition of the _endthread function.

36.2.3 Getting the Current Thread Identifier
The _threadid macro can be used to determine the current thread identifier. It is defined as follows.

int *__threadid(void);
#define _threadid (__threadid())

The header file stddef.h contains the definition of the _threadid macro.

246 Creating Threads

OS/2 2.x Multi-threaded Applications

36.3 A Multi-threaded Example
Let us create a simple multi-threaded application. The source code for this example can be found in
\watcom\samples\os2.

#include <process.h>
#include <stdio.h>
#include <stddef.h>
#define INCL_DOS
#include <os2.h>

static volatile int NumThreads;
static volatile int HoldThreads;

#define NUM_THREADS 5
#define STACK_SIZE 32768

static void a_thread(void *arglist)
/***********************************/
{

while(HoldThreads) {
DosSleep(1);

}
printf("Hi from thread %d\n", *_threadid);
DosEnterCritSec();
--NumThreads;
DosExitCritSec();
_endthread();

}

int main(void)
/**************/
{

int i;

printf("Initial thread id = %d\n", *_threadid);
NumThreads = 0;
HoldThreads = 1;
/* initial thread counts as 1 */
for(i = 2; i <= NUM_THREADS; ++i) {

if(_beginthread(a_thread, NULL, STACK_SIZE, NULL) == -1) {
printf("creation of thread %d failed\n", i);

} else {
++NumThreads;

}
}
HoldThreads = 0;
while(NumThreads != 0) {

DosSleep(1);
}
return(0);

}

Note:

1. In the function a_thread, DosEnterCritSec and DosExitCritSec are called when
we modify the variable NumThreads. This ensures that the action of extracting the value of
NumThreads from memory, incrementing the value, and storing the new result into memory,
occurs without interruption. If these functions were not called, it would be possible for two
threads to extract the value of NumThreads from memory before an update occurred.

Let us assume that the file mthread.c contains the above example. Before compiling the file, make sure
that the WATCOM environment variable is set to the directory in which you installed Watcom C/C++.
Also, the INCLUDE environment variable must include the \watcom\h\os2 and \watcom\h
directories ("\WATCOM" is the directory in which Watcom C/C++ was installed).

A Multi-threaded Example 247

OS/2 Programming Guide

We can now compile and link the application by issuing the following command.

[C:\]wcl386 -bt=os2 -bm -l=os2v2 mthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.

The "l" option specifies the target system for which the application is to be linked. The system name
os2v2 is defined in the file wlsystem.lnk which is located in the "BINW" subdirectory of the
directory in which you installed Watcom C/C++.

The multi-threaded application is now ready to be run.

36.4 Thread Limits
There is a limit to the number of threads an application can create under 16-bit OS/2. The default limit is
32. This limit can be adjusted by statically initializing the unsigned global variable __MaxThreads.

Under 32-bit OS/2, there is no limit to the number of threads an application can create. However, due to
the way in which multiple threads are supported in the Watcom libraries, there is a small performance
penalty once the number of threads exceeds the default limit of 32 (this number includes the initial thread).
If you are creating more than 32 threads and wish to avoid this performance penalty, you can redefine the
threshold value of 32. You can statically initialize the global variable __MaxThreads.

By adding the following line to your multi-threaded application, the new threshold value will be set to 48.

unsigned __MaxThreads = { 48 };

248 Thread Limits

37 OS/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is a library of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. This form of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application is loaded. This form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functions in dynamic link libraries are not linked into your program. Only references to the
functions in dynamic link libraries are placed in the program module. These references are
called import definitions. As a result, the linking time is reduced and disk space is saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, a dynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

37.1 Creating Dynamic Link Libraries
Once you have developed the source for a library of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of a dynamic link library. Once you have successfully compiled your
source, you must create a linker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create a dynamic link library.

1. The "SYSTEM" directive is used to specify that a dynamic link library is to be created.
2. The "EXPORT" directive is used to to specify which functions in the dynamic link library are to

be exported.

Specifying exports in the source code

The "EXPORT" directive need not be used when the symbols to be exported are
declared with the __export type qualifier in the source code. Such symbols
are exported automatically, through special records inserted into the object files
by the compiler.

Creating Dynamic Link Libraries 249

OS/2 Programming Guide

3. The "OPTION" directive is used to specify attributes such as the name of the dynamic link
library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The "SEGMENT" directive is used to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to use it. This can be done by creating an import library for the dynamic link library
or creating a linker directive file that contains "IMPORT" directives for each of the entry points in the
dynamic link library.

37.2 Creating a Sample Dynamic Link Library
Let us now create a dynamic link library using the following example.

#include <stdio.h>
#include <os2.h>

#if defined(__cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

unsigned APIENTRY LibMain(unsigned hmod, unsigned termination)
{

if(termination) {
/* DLL is detaching from process */

} else {
/* DLL is attaching to process */

}
return(1);

}

EXTERNC void dll_entry_1(void)
{

printf("Hi from dll entry #1\n");
}

EXTERNC void dll_entry_2(void)
{

printf("Hi from dll entry #2\n");
}

32-bit OS/2 DLLs can include a LibMain entry point when you are using the Watcom C/C++ run-time
libraries.

Arguments:

hmod This is a handle for the DLL.

termination A 0 value indicates that the DLL is attaching to the address space of the current process as a
result of the process starting up or as a result of a call to DosLoadModule. A DLL can
use this opportunity to initialize any instance data.

A non-zero value indicates that the DLL is detaching from the address space of the calling
process as a result of either a normal termination or of a call to DosFreeModule.

Return Value The LibMain function returns 1 if initialization succeeds or 0 if initialization fails.

250 Creating a Sample Dynamic Link Library

OS/2 2.x Dynamic Link Libraries

If the return value is 0 when LibMain is called because the process uses the
DosLoadModule function, DosLoadModule returns an error.

If the return value is 0 when LibMain is called during process initialization, the process
terminates with an error.

Assume the above example is contained in the file dllsamp.c. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

[C:\]wcc386 -bd dllsamp

Before we can link our example, we must create a linker directive file that describes the attributes and entry
points of our dynamic link library. The following is a linker directive file, called dllsamp.lnk, that
can be used to create the dynamic link library.

system os2v2 dll initinstance terminstance
option manyautodata
export dll_entry_1_
export dll_entry_2_
file dllsamp

Notes:

1. The "SYSTEM" directive specifies that we are creating a 32-bit OS/2 dynamic link library.

2. The "MANYAUTODATA" option specifies that the automatic data segment is allocated for
every instance of the dynamic link library. This option must be specified only for a dynamic link
library that uses the Watcom C/C++ run-time libraries. If the Watcom C/C++ run-time libraries
are not used, this option is not required. Our example does use the Watcom C/C++ run-time
libraries so we must specify the "MANYAUTODATA" option.

As was just mentioned, when a dynamic link library uses the Watcom C/C++ run-time libraries,
an automatic data segment is created each time a process accesses the dynamic link library. For
this reason, initialization code must be executed when a process accesses the dynamic link
library for the first time. To achieve this, "INITINSTANCE" must be specified in the
"SYSTEM" directive. Similarly, "TERMINSTANCE" must be specified so that the termination
code is executed when a process has completed its access to the dynamic link library. If the
Watcom C/C++ run-time libraries are not used, these options are not required.

3. The "EXPORT" directive specifies the entry points into the dynamic link library. Note that the
names specified in the "EXPORT" directive are appended with an underscore. This is the
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

We can now create our dynamic link library by issuing the following command.

[C:\]wlink @dllsamp

A file called dllsamp.dll will be created.

Creating a Sample Dynamic Link Library 251

OS/2 Programming Guide

37.3 Using Dynamic Link Libraries
Once we have created a dynamic link library, we must allow other applications to access the functions
available in the dynamic link library. There are two ways to achieve this.

The first method is to create a linker directive file which contains an "IMPORT" directive for all entry
points in the dynamic link library. The "IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic
link library, this linker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. An import library is a standard library that is created from a
dynamic link library by using the Watcom Library Manager. It contains object modules that describe the
entry points in a dynamic link library. The resulting import library can then be specified in a "LIBRARY"
directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When a dynamic link library is modified, typically the import library corresponding to the
modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a "LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

[C:\]wlib dllsamp +dllsamp.dll

A standard library called dllsamp.lib will be created.

Suppose the following sample program, contained in the file dlltest.c, calls the functions from our
sample dynamic link library.

#include <stdio.h>
#if defined(__cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

EXTERNC void dll_entry_1(void);
EXTERNC void dll_entry_2(void);
int main(void)
{

dll_entry_1();
dll_entry_2();
return(0);

}

We can compile and link our sample application by issuing the following command.

[C:\]wcl386 -l=os2v2 dlltest dllsamp.lib

If we had created a linker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directive file, say dllimps.lnk, would be as follows.

import dll_entry_1_ dllsamp
import dll_entry_2_ dllsamp

252 Using Dynamic Link Libraries

OS/2 2.x Dynamic Link Libraries

Note that the names specified in the "IMPORT" directive are appended with an underscore. This is the
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

To compile and link our sample application, we would issue the following command.

[C:\]wcl386 -l=os2v2 dlltest -"@dllimps"

37.4 The Dynamic Link Library Data Area
The Watcom C/C++ 32-bit run-time library does not support the general case operation of DLLs in an
execution environment where there is only one instance of the DATA segment (DGROUP) for that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLs linked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLs linked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can suppress the
function which issues the diagnostic and notifies the operating system that the second process cannot attach
to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not released back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int __disallow_single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

37.5 Dynamic Link Library Initialization/Termination
Each dynamic link library (DLL) has an initialization and termination routine associated with it. The
initialization routine can either be called the first time any process accesses the DLL ("INITGLOBAL" is
specified at link time) or each time a process accesses the DLL ("INITINSTANCE" is specified at link
time). Similarly, the termination routine can either be called when all processes have completed their
access of the DLL ("TERMGLOBAL" is specified at link time) or each time a process completes its access
of the DLL ("TERMINSTANCE" is specified at link time).

For a DLL that uses the C/C++ run-time libraries, initialization and termination of the C/C++ run-time
environment is performed automatically. It is also possible for a DLL to do its own special initialization
and termination process.

Dynamic Link Library Initialization/Termination 253

OS/2 Programming Guide

The C/C++ run-time environment provides two methods for calling user-written DLL initialization and
termination code.

1. If you provide your own version of LibMain then it will be called for initialization and
termination. The use of LibMain is described earlier in this chapter.

2. If you do not provide your own version of LibMain then a default version is linked in from the
library. This version will call __dll_initialize for DLL initialization and
__dll_terminate for DLL termination. Default stub versions of these two routines are
included in the run-time library. If you wish to perform additional initialization/termination that
is specific to your dynamic link library, you may write your own versions of these routines.

Once the C/C++ run-time environment is initialized, the routine __dll_initialize is called. After
the C/C++ run-time environment is terminated, the routine __dll_terminate is called. This last point
is important since it means that you cannot do any run-time calls in the termination routine.

The initialization and termination routines return an integer. A value of 0 indicates failure; a value of 1
indicates success. The following example illustrates sample initialization/termination routines.

#include <stdlib.h>

#define WORKING_SIZE (64 * 1024)

char *WorkingStorage;

#if defined(__cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

void __dll_finalize(void);

EXTERNC int __dll_initialize(void)
{

WorkingStorage = malloc(WORKING_SIZE);
if(WorkingStorage == NULL) return(0);
atexit(__dll_finalize);
return(1);

}

void __dll_finalize(void)
{

free(WorkingStorage);
}

EXTERNC int __dll_terminate(void)
{

return(1);
}

EXTERNC void dll_entry(void)
{

/* use array WorkingStorage */
}

In the above example, the process initialization routine allocates storage that the dynamic link library needs,
the routine dll_entry uses the storage, and the process termination routine frees the storage allocated in
the initialization routine.

254 Dynamic Link Library Initialization/Termination

38 Programming for OS/2 Presentation Manager

Basically, there are two classes of C/C++ applications that can run in a windowed environment.

The first are those C/C++ applications that do not use any of the Presentation Manager API functions; they
are strictly C/C++ applications that do not rely on the features of a particular operating system.

The second class of C/C++ applications are those that actually call Presentation Manager API functions
directly. These are applications that have been tailored for the Presentation Manager operating
environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager programming.

38.1 Porting Existing C/C++ Applications
Suppose you have a set of C/C++ applications that previously ran under DOS and you now wish to run
them under OS/2. To achieve this, simply recompile your application and link with the appropriate
libraries. Depending on the method with which you linked your application, it can run in an OS/2
fullscreen environment, a PM-compatible window, or as a Presentation Manager application. An OS/2
fullscreen application runs in its own screen group. A PM-compatible application will run in an OS/2
fullscreen environment or in a window in the Presentation Manager screen group but does not take direct
advantage of menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus, icons, scroll
bars, etc. However, porting a console oriented application to Presentation Manager often requires
significant effort and a substantial redesign of the application.

38.1.1 An Example
Very little effort is required to port an existing C/C++ application to OS/2. Let us try to run the following
sample program (contained in the file hello.c).

#include <stdio.h>

int main(void)
/**************/
{

printf("Hello world!\n");
return(0);

}

An equivalent C++ program follows:

Porting Existing C/C++ Applications 255

OS/2 Programming Guide

#include <iostream.h>

int main(void)
{

cout << "Hello world" << endl;
return(0);

}

First we must compile the file hello.c by issuing the following command.

[C:\]wcc386 hello

Once we have successfully compiled the file, we can link it by issuing the following command.

[C:\]wlink sys os2v2 file hello

It is also possible to compile and link in one step, by issuing the following command.

[C:\]wcl386 -l=os2v2 hello

This will create a PM-compatible application. If you wish to create a fullscreen application, link with the
following command.

[C:\]wlink sys os2v2 fullscreen file hello

38.2 Calling Presentation Manager API Functions
It is also possible for a C/C++ application to create its own windowing environment. This is achieved by
calling PM API functions directly from your C/C++ program. The techniques for developing these
applications can be found in the OS/2 Technical Library.

A number of C/C++ include files (files with extension .h) are provided which define Presentation Manager
data structures and constants. They are located in the \watcom\h\os2 directory. These include files are
roughly equivalent to the C/C++ header files that are available with the IBM OS/2 Developer’s Toolkit.

A sample C/C++ Presentation Manager application is also located in the \watcom\samples\os2
directory. It is contained in the files shapes.c (C variant) and shapes.cpp (C++ variant, nearly
identical). The file shapes.c contains the following.

#include <stdlib.h>

#define INCL_WIN
#define INCL_GPI
#include <os2.h>

int SizeX;
int SizeY;
HWND FrameHandle;
HMQ hMessageQueue;
HAB AnchorBlock;

256 Calling Presentation Manager API Functions

Programming for OS/2 Presentation Manager

static int Random(int high)
{

return(((double)rand() / 32767) * high);
}

static void NewColor(HPS ps)
{

GpiSetColor(ps, Random(15) + 1);
}

/* Draw a rectangular shape of random size and color at random position */
static void DrawEllipse(HWND hwndWindow)
{

POINTL ptl;
HPS ps;
static int Odd = 0;
int parm1,parm2;

ps = WinGetPS(hwndWindow);
ptl.x = Random(SizeX);
ptl.y = Random(SizeY);
GpiMove(ps, &ptl);
ptl.x = Random(SizeX);
ptl.y = Random(SizeY);
parm1 = Random(50);
parm2 = Random(50);
if(Random(10) >= 5) {

NewColor(ps);
GpiBox(ps, DRO_FILL, &ptl, 0, 0);
NewColor(ps);
GpiBox(ps, DRO_OUTLINE, &ptl, 0, 0);

} else {
NewColor(ps);
GpiBox(ps, DRO_FILL, &ptl, parm1, parm2);
NewColor(ps);
GpiBox(ps, DRO_OUTLINE, &ptl, parm1, parm2);

}
Odd++;
Odd &= 1;
WinReleasePS(ps);

}

/* Client window procedure */
MRESULT EXPENTRY MainDriver(HWND hwnd, USHORT msg, MPARAM mp1, MPARAM mp2)
{

HPS ps;
RECTL rcl;

switch(msg) {
case WM_CREATE:

/* Start a 150ms timer on window creation */
WinStartTimer(AnchorBlock, hwnd, 1, 150) ;
break;

case WM_TIMER:
/* Draw another ellipse on each timer tick */
DrawEllipse(hwnd);
return(0);

case WM_SIZE:
/* Remember new dimensions when window is resized */
SizeX = SHORT1FROMMP(mp2);
SizeY = SHORT2FROMMP(mp2);
return(0);

case WM_PAINT:
/* Handle paint events */
ps = WinBeginPaint(hwnd, NULL, NULL);
WinQueryWindowRect(hwnd, &rcl);
WinFillRect(ps, &rcl, CLR_WHITE);
WinEndPaint(ps);
return(0);

Calling Presentation Manager API Functions 257

OS/2 Programming Guide

}
/* Let the default window procedure handle all other messages */
return(WinDefWindowProc(hwnd, msg, mp1, mp2));

}

int main()
{

ULONG style;
QMSG qmsg;
HWND WinHandle;

/* Initialize windowing and create message queue */
AnchorBlock = WinInitialize(0);
if(AnchorBlock == 0) return(0);
hMessageQueue = WinCreateMsgQueue(AnchorBlock, 0);
if(hMessageQueue == 0) return(0);

/* Register window class */
if(!WinRegisterClass(AnchorBlock, "Watcom", (PFNWP)MainDriver,

CS_SIZEREDRAW, 0)) {
return(0);

}

/* Create frame and client windows */
style = FCF_TITLEBAR | FCF_SYSMENU | FCF_SIZEBORDER | FCF_MINMAX |

FCF_SHELLPOSITION | FCF_TASKLIST;
FrameHandle = WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE, &style,

"Watcom",
"Shapes - C sample",
0, NULL, 0, &WinHandle);

/* If window creation failed, exit immediately! */
if(FrameHandle == 0) return(0);

/* Message loop */
while(WinGetMsg(AnchorBlock, &qmsg, NULL, 0, 0)) {

WinDispatchMsg(AnchorBlock, &qmsg);
}

/* Shut down and clean up */
WinDestroyWindow(FrameHandle);
WinDestroyMsgQueue(hMessageQueue);
WinTerminate(AnchorBlock);

return(1);
}

You can compile, link and run this demonstration by issuing the following commands.

[C:\]wcl386 -l=os2v2_pm shapes
[C:\]shapes

258 Calling Presentation Manager API Functions

39 Developing an OS/2 Physical Device Driver

In this chapter, we discuss the development of Physical Device Drivers (PDD) for OS/2. The tools used in
the creation of the sample PDD are:

• the 16-bit Watcom C compiler

• the Watcom Assembler

• the Watcom Make utility

The sample Physical Device Driver that we are going to build, HRTIMER.SYS, provides access to a high
resolution timer. Additional sources of information on PDDs can be found in the following:

1. OS/2 2.0 Technical Library - Physical Device Driver Reference

2. Writing OS/2 2.1 Device Drivers in C by Steve J. Mastrianni

3. An OS/2 High Resolution Software Timer by Derek Williams, an article which appeared in the
Fall 1991 issue of IBM Personal Systems Developer magazine. The source code for this device
driver was adapted from the magazine article. For detailed information on the way this device
driver works, please read that article.

HRTIMER.SYS is a 16-bit device driver which runs under OS/2 1.x and 2.x/3.x. It has a resolution of 840
nanoseconds (i.e., 1 tick of the Intel 8253/8254 timer = 840 nanoseconds).

Here are some notes on creating Physical Device Drivers using Watcom software tools.

1. A Physical Device Driver is linked as a DLL.

2. The first segment must be a data segment, the next a code segment.

3. By default only the first two segments remain after initialization, extra segments have to be
marked IOPL.

4. The assembler file, DEVSEGS.ASM, defines the segment ordering.

5. #pragma dataseg and #pragma codeseg are used to get various pieces of code and data
into the correct segments.

6. The _HEADER segment contains the device header and must be at the beginning of the data
segment.

7. The _INITCODE and _INITDATA segments are used to place initialization code and data at the
end so it can be discarded by OS/2.

To compile the source code for the 16-bit Physical Device Drivers, we use the following options:

Developing an OS/2 Physical Device Driver 259

OS/2 Programming Guide

-bt=os2 build target is OS/2

-ms 16-bit small code/small data model

-5 Pentium optimizations (this is optional)

-omi inline math and intrinsic functions (this is optional)

-s no stack checking

-zdp DS is pegged to DGROUP

-zff FS floats, i.e. not fixed to a segment

-zgf GS floats, i.e. not fixed to a segment

-zu SS != DGROUP

-zl remove default library information

To link the object code for the 16-bit Physical Device Drivers, we use the following options:

name hrtimer.sys to name the executable file.

sys os2 dll initglobal to link a 16-bit OS/2 DLL. Specifying INITGLOBAL will cause the
initialization routine to be called the first time the dynamic link library is loaded.

option map to generate a map file.

option quiet to minimize the number of linker informational messages.

lib os2 to include the 16-bit OS2.LIB library file.

file ... to include the component object files of the device driver.

The sample files used to create the Physical Device Driver and the programs that use it are located in the
\WATCOM\SRC\OS2\PDD directory. The Physical Device Driver files are:

DEVSEGS.ASM This small assembler file orders the segment definitions in the executable file.

Data Segments _HEADER

CONST
CONST2
_DATA
_BSS
_INITDATA (discardable)

Code Segments _TEXT
_INITCODE (discardable)

HEADER.C The first thing that must follow the EXE Header is the Device Driver Header.

STRATEGY.C This is the resident portion of the Strategy routine.

STRATINI.C This is the discardable portion of the Strategy routine, the initialization code and
data.

260 Developing an OS/2 Physical Device Driver

Developing an OS/2 Physical Device Driver

HRTIMER.H This file contains the definition of the timer "timestamp" structure.

HRDEV.H This file contains definitions for the Intel 8253 hardware timer.

DEVHDR.H This file contains definitions for the Device Driver Header structure (see page
3-2, "Physical Device Driver Header" of PDD Reference).

DEVDEFS.H This file provides type definitions.

DEVREQP.H This file contains definitions for the Device Driver Request Packets.

DEVAUX.H This file contains definitions for the Device Driver Help (DevHlp) routines.

The demonstration program files are:

HRTEST.C This file is a sample C program that shows how to use the device driver to calculate elapsed
times. It demonstrates how to open the device driver, read timestamps from it and close it.
It factors in the overhead of the read and has a function that is used to calculate elapsed
time from a start and stop timestamp.

TIMER.C This file is a sample C program that can be used to time other applications. It also uses the
device driver.

To build the device driver and demonstration programs, set your current directory to
\WATCOM\SRC\OS2\PDD and type:

wmake

To install the device driver, put the following statement in your CONFIG.SYS file.

DEVICE=\WATCOM\SRC\OS2\PDD\HRTIMER.SYS

You must then reboot OS/2.

To run the test program, use the following command-line:

HRTEST [milliseconds]

For [milliseconds], you can enter any number (e.g., 2000 which is 2 seconds).

HRTEST.EXE will issue a DosSleep for the amount of milliseconds specified or will use a default if no
command-line parameter is given. It will get a timestamp from the device driver before and after the
DosSleep and will calculate the elapsed time of that sleep and display the results. It will do this
continuously until Ctrl/C or Ctrl/Break is pressed.

Keep in mind that DosSleep has a granularity of 32 milliseconds. Any discrepancy between the number of
milliseconds used for the DosSleep and the elapsed time results from the timer are the fault of this
granularity, not a problem with the timer. DosSleep is used solely as a convenient method of displaying the
capabilities of the driver.

To run the timer program, use the following command-line:

TIMER program_name [program_args]

For example, to time an OS/2 Directory command, issue the following command.

Developing an OS/2 Physical Device Driver 261

OS/2 Programming Guide

Example:
timer cmd /c dir c:

262 Developing an OS/2 Physical Device Driver

Novell NLM Programming Guide

Novell NLM Programming Guide

264

40 Creating NetWare 386 NLM Applications

Watcom C/C++ supports version 4.0 of the Netware 386 API. We include the following components:

header files Header files for the Netware 4.0 API are located in the \WATCOM\NOVH directory.

import libraries
Import libraries for the Netware 4.0 API are located in the \WATCOM\NOVI directory.

libraries The C/C++ libraries for Netware 4.0 is located in the \WATCOM\LIB386 and
\WATCOM\LIB386\NETWARE directories.

debug servers Servers for remote debugging of Netware 4.0 NLMs are located in the \WATCOM\NLM
directory. The same directory also contains the Watcom Execution Sampler for NLMs.

Applications built for version 4.0 will run on 4.1. We do not include support for any API specific to
version 4.1. Netware developers must use the support included with Watcom C/C++ version 10.0 or
greater since the version supplied by Novell only works with Watcom C/C++ version 9.5. Netware 4.1
support requires modification to the header files supplied by Novell. Contact Novell for more information.

The following special notes apply to developing applications for NetWare.

1. You must compile your source files with the "-bt=NETWARE" option. This will cause the
compiler to:

• use the small memory model instead of the flat memory model,
• use stack-based calling conventions,
• search the NETWARE_INCLUDE environment variable before searching the
INCLUDE environment variable, and

• reference a special startup symbol, __WATCOM_Prelude, in the libraries.

2. You must compile your source files with the small memory model option ("ms"). This is
accomplished by specifying the "-bt=NETWARE" option.

3. You must compile your source files with one of the stack-based calling convention options ("3s",
"4s" or "5s"). This is accomplished by specifying the "-bt=NETWARE" option.

4. You must set the NETWARE_INCLUDE environment variable to point to the
\WATCOM\NOVH directory. This environment variable will be searched first when you compile
with the "-bt=NETWARE" option. Alternatively, you can set the INCLUDE environment
variable to include \WATCOM\NOVH before other include directories.

5. If you are using the compile and link utility WCL386, you must use the following options:
"-l=NETWARE -bt=NETWARE".

6. You must specify

system NETWARE

Creating NetWare 386 NLM Applications 265

Novell NLM Programming Guide

when linking an NLM. This is automatic if you are using WCL386 and the "-l=NETWARE"
option.

7. If you are using other Netware APIs such as NWSNUT, then you must include module and
import statements as input to the Watcom Linker.

Example:
module nwsnut
import @%WATCOM%\novi\nwsnut.imp

This is done automatically for the C Library (CLIB.IMP). The following import lists have been
provided for Netware API libraries.

AIO.IMP
APPLETLK.IMP
BSD.IMP
CLIB.IMP
DSAPI.IMP
MATHLIB.IMP
NWSNUT.IMP
SOCKLIB.IMP
STREAMS.IMP
TLI.IMP

266 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

268

41 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language development using
Watcom C/C++ and Watcom FORTRAN 77.

The following topics are discussed in this chapter:

• Symbol Naming Convention

• Argument Passing Convention

• Memory Model Compatibility

• Integer Type Compatibility

• How do I pass integers from C to a FORTRAN function?

• How do I pass integers from FORTRAN to a C function?

• How do I pass a string from a C function to FORTRAN?

• How do I pass a string from FORTRAN to a C function?

• How do I access a FORTRAN common block from within C?

• How do I call a C function that accepts a variable number of arguments?

41.1 Symbol Naming Convention
The symbol naming convention describes how a symbol in source form is mapped to its object form.
Because of this mapping, the name generated in the object file may differ from its original source form.

Default symbol naming conventions vary between compilers. Watcom C/C++ prefixes an underscore
character to the beginning of variable names and appends an underscore to the end of function names
during the compilation process. Watcom FORTRAN 77 converts symbols to upper case. Auxiliary
pragmas can be used to resolve this inconsistency.

Pragmas are compiler directives which can provide several capabilities, one of which is to provide
information used for code generation. When calling a FORTRAN subprogram from C, we want to instruct
the compiler NOT to append the underscore at the end of the function name and to convert the name to
upper case. This is achieved by using the following C auxiliary pragma:

#pragma aux ftnname "^";

The "^" character tells the compiler to convert the symbol name "ftnname" to upper case; no underscore
character will be appended. This solves potential linker problems with "ftnname" since (by C convention)
the linker would attempt to resolve a reference to "ftnname_".

Symbol Naming Convention 269

Mixed Language Programming

When calling C functions from FORTRAN, we need to instruct the compiler to add the underscore at the
end of the function name, and to convert the name to lower case. Since the FORTRAN compiler
automatically converts identifiers to uppercase, it is necessary to force the compiler to emit an equivalent
lowercase name. Both of these things can be done with the following FORTRAN auxiliary pragma:

*$pragma aux CNAME "!_"

There is another less convenient way to do this as shown in the following:

*$pragma aux CNAME "cname_"

In the latter example, the case of the name in quotation marks is preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing must still be
resolved.

41.2 Argument Passing Convention
In general, C uses call-by-value (passes argument values) while FORTRAN uses call-by-reference (passes
pointers to argument values). This implies that to pass arguments to a FORTRAN subprogram we must
pass the addresses of arguments rather than their values. C uses the "&" character to signify "address of".

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming conventions must also
instruct the compiler that the C function is expecting values, not addresses.

*$pragma aux CNAME "!_" parm (value)

The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of addresses.

Character data (strings) are an exception to the general case when used as arguments. In C, strings are not
thought of as a whole entity, but rather as an "array of characters". Since strings are not considered scalar
arguments, they are referenced differently in both C and FORTRAN. This is described in more detail in a
following section.

41.3 Memory Model Compatibility
While it is really not an issue with the 32-bit compilers (both use the default "flat" memory model), it is
important to know that the default memory model used in Watcom FORTRAN 77 applications is the
"large" memory model ("ml") with "medium" and "huge" memory models as options. Since the 16-bit
Watcom C/C++ default is the "small" memory model, you must specify the correct memory model when
compiling your C/C++ code with the 16-bit C or C++ compiler.

270 Memory Model Compatibility

Inter-Language calls: C and FORTRAN

41.4 Linking Considerations
When both C/C++ and FORTRAN object files are combined into an executable program or dynamic link
library, it is important that you list a least one of the FORTRAN object files first in the Watcom Linker
(WLINK) "FILES" directive to guarantee the proper search order of the FORTRAN and C run-time
libraries. If you place a C/C++ object file first, you may inadvertently cause the wrong version of run-time
initialization routines to be loaded by the linker.

41.5 Integer Type Compatibility
In general, the number of bytes used to store an integer type is implementation dependent. In FORTRAN,
the default size of an integer type is always 4 bytes, while in C/C++, the size is architecture dependent. The
size of an "int" is 2 bytes for the 16-bit Watcom C/C++ compilers and 4 bytes for the 32-bit compilers
while the size of a "long" is 4 bytes regardless of architecture. It is safest to prototype the function in C,
specifying exactly what size integers are being used. The byte sizes are as follows:

1. LONG - 4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses a default of 4 bytes, we should specify the "long" keyword in C for integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "ftnname" takes three "pointers to long ints" as arguments, and returns a "long int". By
specifying that the arguments are pointers, and not values, and by specifying "long int" for the return type,
this prototype has solved the problems of argument passing and integer type compatibility.

41.6 How do I pass integers from C to a FORTRAN function?
The following Watcom C/C++ routine passes three integers to a FORTRAN function that returns an integer
value.

/* MIX1C.C - This C program calls a FORTRAN function to
* compute the max of three numbers.
*
* Compile/Link: wcl /ml mix1c mix1f.obj /fe=mix1
* wcl386 mix1c mix1f.obj /fe=mix1
*/

#include <stdio.h>

#pragma aux tmax3 "^";
long int tmax3(long int *, long int *, long int *);

How do I pass integers from C to a FORTRAN function? 271

Mixed Language Programming

void main()
{

long int result;
long int i, j, k;

i = -1;
j = 12;
k = 5;
result = tmax3(&i, &j, &k);
printf("Maximum is %ld\n", result);

}

The FORTRAN function:

* MIX1F.FOR - This FORTRAN function accepts three integer
* arguments and returns their maximum.

* Compile: wfc[386] mix1f.for

integer function tmax3(arga, argb, argc)
integer arga, argb, argc

tmax3 = arga
if (argb .gt. tmax3) tmax3 = argb
if (argc .gt. tmax3) tmax3 = argc
end

41.7 How do I pass integers from FORTRAN to a C function?
The following Watcom FORTRAN 77 routine passes three integers to a Watcom C/C++ function that
returns an integer value.

* MIX2F.FOR - This FORTRAN program calls a C function to
* compute the max of three numbers.
*
* Compile/Link: wfl[386] mix2f mix2c.obj /fe=mix2

*$pragma aux tmax3 "!_" parm (value)

program mix2f

integer*4 tmax3
integer*4 result
integer*4 i, j, k

i = -1
j = 12
k = 5
result = tmax3(i, j, k)
print *, ’Maximum is ’, result
end

The C function "tmax3" is shown below.

272 How do I pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

/* MIX2C.C - This C function accepts 3 integer arguments
* and returns their maximum.
*
* Compile: wcc /ml mix2c
* wcc386 mix2c
*/

long int tmax3(long int arga,
long int argb,
long int argc)

{
long int result;
result = arga;
if(argb > result) result = argb;
if(argc > result) result = argc;
return(result);

}

41.8 How do I pass a string from a C function to FORTRAN?
Character strings are referenced differently in C and FORTRAN. The C language terminates its strings
with a null character as an End-Of-String (EOS) marker. In this case, C need not store the length of the
string in memory. FORTRAN, however, does not use any EOS marker; hence it must store each string’s
length in memory.

The structure FORTRAN uses to keep track of character data is called a "string descriptor" which consists
of a pointer to the character data (2, 4, or 6 bytes, depending on the data model) followed by an unsigned
integer length (2 bytes or 4 bytes, depending on the data model).

system option size of pointer size of length
------ ------ --------------- --------------
16-bit /MM 16 bits 16 bits
16-bit /ML 32 bits 16 bits
32-bit /MF 32 bits 32 bits
32-bit /ML 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data’s string descriptor. Hence,
FORTRAN expects a pointer to a string descriptor to be passed as an argument for character data.

Passing string arguments between C and FORTRAN is a simple task of describing a struct type in C
containing the two fields described above. The first field must contain the pointer to the character data, and
the second field must contain the length of the string being passed. A pointer to this structure can then be
passed to FORTRAN.

* MIX3F.FOR - This FORTRAN program calls a function written
* in C that passes back a string.
*
* Compile/Link: wfl[386] mix3f mix3c.obj /fe=mix3

program mix3f

character*80 sendstr
character*80 cstring

How do I pass a string from a C function to FORTRAN? 273

Mixed Language Programming

cstring = sendstr()
print *, cstring(1:lentrim(cstring))
end

The C function "sendstr" is shown below.

/* MIX3C.C - This C function passes a string back to its
* calling FORTRAN program.
*
* Compile: wcc /ml mix3c
* wcc386 mix3c
*/

#include <string.h>

#pragma aux sendstr "^";

typedef struct descriptor {
char *addr;
unsigned len;

} descriptor;

void sendstr(descriptor *ftn_str_desc)
{

ftn_str_desc->addr = "This is a C string";
ftn_str_desc->len = strlen(ftn_str_desc->addr);

}

41.9 How do I pass a string from FORTRAN to a C function?
By default, FORTRAN passes the address of the string descriptor when passing strings. If the C function
knows it is being passed a string descriptor address, then it is very similar to the above example. If the C
function is expecting normal C-type strings, then a FORTRAN pragma can be used to pass the string
correctly. When the Watcom FORTRAN 77 compiler pragma to pass by value is used for strings, then just
a pointer to the string is passed.

Example:
*$pragma aux cname "!_" parm (value)

The following example FORTRAN mainline defines a string, and passes it to a C function that prints it out.

* MIX4F.FOR - This FORTRAN program calls a function written
* in C and passes it a string.
*
* Compile/Link: wfl[386] mix4f mix4c.obj /fe=mix4

*$pragma aux cstr "!_" parm (value)

program mix4f

character*80 forstring

forstring = ’This is a FORTRAN string’//char(0)
call cstr(forstring)
end

274 How do I pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

The C function:

/* MIX4C.C - This C function prints a string passed from
* FORTRAN.
*
* Compile: wcc /ml mix4c
* wcc386 mix4c
*/

#include <stdio.h>

void cstr(char *instring)
{

printf("%s\n", instring);
}

41.10 How do I access a FORTRAN common block from
within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a C routine.
The C routine defines an extern struct to correspond to the FORTRAN common block.

* MIX5F.FOR - This program shows how a FORTRAN common
* block can be accessed from C.
*
* Compile/Link: wfl[386] mix5f mix5c.obj /fe=mix5

program mix5f
external put
common/cblk/i,j

i=12
j=10
call put
print *, ’i = ’, i
print *, ’j = ’, j
end

The C function:

/* MIX5C.C - This code shows how to access a FORTRAN
* common block from C.
*
* Compile: wcc /ml mix5c
* wcc386 mix5c
*/

#include <stdio.h>

#pragma aux put "^";
#pragma aux cblk "^";

How do I access a FORTRAN common block from within C? 275

Mixed Language Programming

#ifdef __386__
#define FAR
#else
#define FAR far
#endif

extern struct cb {
long int i,j;

} FAR cblk;

void put(void)
{

printf("i = %ld\n", cblk.i);
printf("j = %ld\n", cblk.j);
cblk.i++;
cblk.j++;

}

For the 16-bit C compiler, the common block "cblk" is described as far to force a load of the segment
portion of the address. Otherwise, since the object is smaller than 32K (the default data threshold), it is
assumed to be located in the DGROUP group which is accessed through the SS segment register.

41.11 How do I call a C function that accepts a variable
number of arguments?

One capability that C possesses is the ability to define functions that accept variable number of arguments.
This feature is not present, however, in the definition of the FORTRAN 77 language. As a result, a special
pragma is required to call these kinds of functions.

*$pragma aux printf "!_" parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The "[]" indicates that there are
no arguments passed in registers because the printf function takes a variable number of arguments
passed on the stack. The following example is a FORTRAN function that uses this pragma. It calls the
printf function to print the value 47 on the screen.

* MIX6.FOR - This FORTRAN program calls the C
* printf function.

* Compile/Link: wfl[386] mix6

*$pragma aux printf "!_" parm (value) caller []

program mix6

character cr/z0d/, nullchar/z00/

call printf(’Value is %ld.’//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language programming, please
refer to the chapter entitled "Pragmas" in both the Watcom C/C++ User’s Guide and the Watcom
FORTRAN 77 User’s Guide.

276 How do I call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

278

42 Commonly Asked Questions and Answers

As with any sophisticated piece of software, there are topics that are not directly addressed by the
descriptive portions of the manuals. The purpose of this chapter is to anticipate common questions
concerning Watcom C/C++. It is difficult to predict what topics will prove to be useful but with that in
mind, we hope that this chapter will help our customers make full use of Watcom C/C++.

A number of example programs are presented throughout. The source text for these files can be found in
the \WATCOM\SAMPLES\GOODIES directory.

The purpose of this chapter is to present some of the more commonly asked questions from our users and
the answers to these questions. The following topics are discussed:

• How do I determine my current patch level?
• How do I convert to Watcom C/C++?
• What should I know about optimization?
• Why can’t the compiler find "stdio.h"?
• How do I resolve an "Undefined Reference" linker error?
• Why aren’t my variables set to zero?
• What does "size of DGROUP exceeds 64K" mean for 16-bit applications?
• What does "NULL assignment detected" mean in 16-bit applications?
• What does "Stack Overflow!" mean?
• Why do I get redefinition errors from WLINK?
• How can I open more than 20 files at a time?
• How can I see my source files in the debugger?
• What is the difference between the "d1" and "d2" compiler options?

42.1 Determining my current patch level
In an effort to immediately correct any problems discovered in the originally shipped product, Watcom
provides patches as a continued service to its customers. To determine the current patch level of your
Watcom software, a TECHINFO utility program has been provided. This program will display your
current environment variables, the patch level of various Watcom software programs, and other pertinent
information, such as your AUTOEXEC.BAT and CONFIG.SYS files. This information proves to be very
useful when reporting a problem to the Technical Support team.

To run TECHINFO, you must ensure the Watcom environment variable has been set to the directory where
your Watcom software has been installed. TECHINFO will pause after each screenful of information. The
output is also placed in the file TECHINFO.OUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Determining my current patch level 279

Common Problems

Example:
WATCOM’s Techinfo Utility, Version 1.4
Current Time: Thu Oct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterloo, Ontario
CANADA N2L 3X2

-------------WATCOM C Environment Variables -------------
WATCOM=<c:\watcom>
EDPATH=<c:\watcom\eddat>
INCLUDE=<c:\watcom\h;c:\watcom\h\os2>
FINCLUDE=<c:\watcom\src\fortran;c:\watcom\src\fortran\win>
LIBOS2=<c:\watcom\lib286\os2;c:\watcom\lib286>
PATH=<c:\dos;c:\windows;c:\watcom\binw>
TMP=<h:\temp>
File ’c:\watcom\binw\wcc386.exe’ has been patched to level ’.d’
...etc...

In this example, the software has been patched to level "d". In most cases, all tools will share a common
patch level. However, there are instances where certain tools have been patched to one level while others
are patched to a different level. For example, the compiler may be patched to level "d" while the debugger
is only patched to level "c". Basically, this means that there were no debugger changes in the D-level
patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it is
recommended that you update your software. Patches are available on Watcom’s bulletin board, Watcom’s
FTP site and CompuServe. They are available 24 hours a day. Patches are also available on the current
release CD-ROM. Each patch will include a batch file that allows you to apply the patches to your existing
software. Note that patches must be applied in sequential order, as each patch depends on the previous one.

42.2 Converting to Watcom C/C++
There are some common steps involved in converting C programs written for other compilers. Conversion
from UNIX and other IBM-compatible PC compilers will be covered in detail later. There are six major
problems with most programs that are ported to Watcom C/C++. The assumptions that most foreign
programs make that may be invalid when using Watcom C/C++ are:

1. sizeof(pointer) == sizeof(int)

(true for 16-bit systems except "far" pointers, true for 32-bit systems except "far" pointers)

2. sizeof(long) == sizeof(int)

(not true for 16-bit systems)

3. sizeof(short) == sizeof(int)

(not true for 32-bit systems)

4. arguments are always passed on the stack

5. dereferencing the NULL pointer

6. "char" is either signed or unsigned

280 Converting to Watcom C/C++

Commonly Asked Questions and Answers

These assumptions are very easy to make when developing programs for only one system. The first point
becomes important when you move a program to 80x86 systems. Depending on the memory model, the
size of an integer might not equal the size of a pointer. You might ask how this assumption is made in
programs. The C language will assume that a function returns an integer unless told otherwise. If a
programmer does not declare a function as returning a pointer, the compiler will generate code which
would convert an integer to a pointer. On other systems, where the size of an integer is equal to the size of
a pointer this would amount to nothing because no conversion was necessary (to change size). The older C
compilers did not worry about warning the programmer about this condition and as such this error is
imbedded in a lot of older C code. As C was moved to other machines, it became apparent that this
assumption was no longer valid for all machines. The 80x86 architecture can have 16-bit integers and
32-bit pointers (in the compact, large, and huge memory models), which means that more care must be
taken when working with declarations (converting an int to a 32-bit pointer will result in a segment value of
0x0000 or 0xffff). Similarly, the 386 architecture can have 32-bit integers and 48-bit pointers.

The Watcom C/C++ compiler will complain about incorrect pointer and integer mixing thus making
programs compiled with Watcom C/C++ much more portable. For instance, if the Watcom C/C++
compiler complains about your usage of the "malloc" memory allocation function then you probably forgot
to include "<stdlib.h>" which contains the prototype of the "malloc" function.

Example:
extern void *malloc(unsigned);

The Watcom C/C++ compiler was complaining about you trying to assign an integer (the value returned by
"malloc") to a pointer. By including the header file with the correct prototype, the Watcom C/C++
compiler can validate that you are in fact assigning a pointer value to a pointer.

Passing arguments on the stack has been the method used by most older compilers because it allowed the C
library function "printf" to work with a variable number of arguments. Older C compilers catered to a few
functions by forcing all the argument handling to be handled by the caller of the function. With the advent
of the ANSI (and later ISO) standard, which forced all functions expecting a variable number of arguments
to be declared properly, compilers can generate smaller code for routines that did not require a variable
number of arguments.

Example:
/* function accepting two arguments */
extern FILE *fopen(char *, char *);
/* function accepting a variable number of arguments */
extern int printf(char *, ...);

The Watcom C/C++ compiler takes advantage of this part of the ISO/ANSI standard by passing arguments
in registers (for the first few arguments). If there are not enough registers for all of the arguments, the rest
of the arguments are passed on the stack but the routine being called is responsible for removing them from
the stack. By default, the Watcom C/C++ compiler uses this calling convention because it results in faster
procedure calls and smaller code. The Watcom C/C++ calling convention carries with it a responsibility to
ensure that all functions are prototyped correctly before they are used. For instance, if a procedure is called
with too few arguments, the assumptions that the code generator made (while generating the code) will be
invalidated. The code generator assumes that AX (EAX for the 32-bit compiler) and any other registers
used to pass arguments will be modified by the called function. The code generator also assumes that the
exact amount of arguments pushed on the stack will be removed by the function that is called. It is
important to recognize this aspect of the Watcom C/C++ compiler because the program will simply not
work unless the caller and the function being called strictly agree on the number and types of the arguments
being passed. See the "Assembly Language Considerations" chapter in the Watcom C/C++ User’s Guide
for more details.

Converting to Watcom C/C++ 281

Common Problems

Some compilers allow the NULL pointer to be dereferenced and return NULL (we have never understood
the rationale behind this, nor why some compilers continue to support this type of code). Leaving the
aesthetics of this type of code behind, using the NULL dereferencing assumption in a program will ensure
that the program will not be portable. Source code which contains the NULL dereferencing assumption
must be corrected before it will work with Watcom C/C++.

Programs that assume that the "char" type is "signed" should use the Watcom C/C++ compiler "j" option.
The "j" option will indicate to the Watcom C/C++ compiler that the "char" type is "signed" rather than the
default "unsigned".

42.2.1 Conversion from UNIX compilers
The ISO/ANSI standard for C (which Watcom C/C++ adheres to) is very similar to UNIX C. Most of the
effort in converting UNIX C programs will involve replacing references to library functions (such as the
CURSES library). There are many third-party libraries which are implementations of UNIX libraries on
IBM-compatible Personal Computers. There is a common problem which many older UNIX programs
exhibit, namely, functions that accept a variable number of arguments are coded in many different ways.
Functions accepting a variable number of arguments must be coded according to the ISO standard if they
are to work with Watcom C/C++. We will code an example of a function which will return the maximum
of a list of positive integers.

/*

variable number of arguments example
*/
#include <stdarg.h>

int MaxList(int how_many, ...)
{

va_list args;
int max;

max = 0;
va_start(args, how_many);
while(how_many > 0) {

value = va_arg(args, int);
if(value > max) {

max = value;
}

}
va_end(args);

return(max);
}

Notice that the standard header file STDARG.H must be included in any source file which defines a
function that handles a variable number of arguments. The function "MaxList" must be prototyped
correctly in other source files external to the source file containing the definition of "MaxList".

extern int MaxList(int how_many, ...);

See the Watcom C Library Reference manual description of "va_arg" for a more complete description of
variable number of arguments handling.

282 Converting to Watcom C/C++

Commonly Asked Questions and Answers

42.2.2 Conversion from IBM-compatible PC compilers
Most of the compilers available for IBM-compatible PCs have been following the ISO/ANSI standard and,
as such, the majority of programs will not require extensive source changes. There are problems with
programs that use compiler-specific library functions. The use of compiler-specific library functions can be
dealt with in two different ways:

1. use equivalent Watcom C/C++ library functions
2. write your own library functions

If portability must be maintained with the other compiler, the predefined macro "__WATCOMC__" can be
used to conditionally compile the correct code for the Watcom C/C++ compiler.

The default calling convention for the Watcom C/C++ compiler is different from the calling convention
used by other compilers for Intel-based personal computers. The Watcom C/C++ calling convention is
different because it will pass some arguments in registers (thus reducing the overhead of a function call)
rather than pushing all of the arguments on the stack. The Watcom C/C++ compiler is flexible enough to
use different calling conventions on a per function basis. Converting code from other compilers usually
involves recompiling the C source files and setting up prototypes (to use the older calling convention) for
functions written in assembly language. For instance, if you have the functions "video_init", "video_put",
and "video_get" written in assembly language, you can use the following prototypes in any source file
which uses these functions.

#include <stddef.h>

extern int cdecl video_init(void);
extern void cdecl video_put(int row,int col,char ch,int attr);
extern char cdecl video_get(int row,int col);

The inclusion of the STDDEF.H header file defines the "cdecl" calling convention. The Watcom C/C++
compiler will ensure that any calls to these three functions will adhere to the "cdecl" calling conventions.
The Watcom C/C++ compiler will put a trailing underscore "_" character (as opposed to the beginning of
the name for the "cdecl" convention) on any function names to ensure that the program will not link register
calling convention calls to "cdecl" convention functions (or vice versa). If the linker indicates that
functions defined in assembler files cannot be resolved, it could be a result of not prototyping the functions
properly as "cdecl" functions.

Converting to Watcom C/C++ 283

Common Problems

Hint: (16-bit applications only) Most 16-bit C compilers (including Watcom C/C++) have a "large"
memory model which means that four byte pointers are used for both code and data references. A
subtle point to watch out for involves differences between memory model definitions of different
compilers. The "cdecl" calling convention allows functions to assume that the DS segment register
points to the group "DGROUP". The Watcom C/C++ large memory model has what is called a
"floating DS". Any function used for the large memory model cannot assume that the DS segment
register points to the group "DGROUP". There are a few possible recourses.

1. The assembly code could save and restore the DS segment register and set DS to DGROUP
in order to conform to the Watcom C/C++ convention. If there are only a few accesses to
DGROUP data, it is advisable to use the SS segment register which points to DGROUP in
the large memory model.

2. The assembly function could be described using a pragma that states that DS should point to
"DGROUP" before calling the function.

#pragma aux _Setcolor parm loadds

In the above example, _Setcolor is the sample function being described.

3. The final alternative would be the use of the "zdp" compiler option. The "zdp" option
informs the code generator that the DS register must always point to "DGROUP". This is the
default in the small, medium and flat memory models. Note that "flat" is a 32-bit memory
model only.

42.3 What you should know about optimization
The C/C++ language contains features which allow simpler compilers to generate code of reasonable
quality. Register declarations and imbedding assignments in expressions are two of the ways that C allows
the programmer to "help" the compiler generate good quality code. An important point about the Watcom
C/C++ compiler is that it is not as important (as it is with other compilers) to "help" the compiler. In order
to make good decisions about code generation, the Watcom C/C++ compiler uses modern optimization
techniques.

Hint: The definitive reference on compiler design is the "dragon" book "Compilers - Principles,
Techniques, and Tools", Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, published by
Addison-Wesley, Reading, Massachusetts, 1986. The authors of the "dragon" book advocate a
conservative approach to code generation where optimizations must preserve the semantics of the
original program. The conservative approach is used throughout the Watcom C/C++ compiler to ensure
that programmers can use the compiler without worrying about the semantics of their program being
changed. The programmer can request that potentially unsafe optimizations be performed. With regard
to the "oa" (ignore aliasing) option provided by the Watcom C/C++ compiler, the compiler only ignores
aliasing of global variables rather than ignore aliasing totally like other compilers.

There are certain pieces of information which the compiler cannot derive from the source code. The
"#pragma" compiler directive is used to provide extra information to the compiler. It is necessary to have a
complete understanding of both C/C++ and the machine architecture (i.e., 80x86) before using the powerful

284 What you should know about optimization

Commonly Asked Questions and Answers

pragma compiler directives. See the "Pragmas" chapter in the Watcom C/C++ User’s Guide for more
details.

Debugging optimized programs is difficult because variables can be assigned to different locations (i.e.,
memory or registers) in different parts of the function. The "d2" compiler option will restrict the amount of
optimization so that variables occupy one location and can be easily displayed. It follows that the "d2"
option is useful for initial development but production programs should be compiled with only the "d1"
option for the best code quality. Before you distribute your application to others, you may wish to use the
Watcom Strip Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The "d2" compiler option will generate symbolic information (for every local variable) and line
number information for the source file. The "d1" compiler option will only generate line number
information for the source file. The use of these options determines what kind of information will be
available for the particular module during the debugging session.

Incorrect programs can sometimes work when compiled with the "d2" option and not work when compiled
with the "d1" option. One way this sort of problem arises involves local arrays.

void example(void)
{

int i;
int a[10];

for(i = 0; i <= 10; ++i)
a[i] = i;

do_something(a);
}

The "for" loop initializes one too many array elements but the version compiled with the "d2" option will
overwrite the variable "i" without causing any problems. The same function compiled with the "d1" option
would have the variable "i" in a register. The erroneous access of "a[10]" would modify a value that is used
to restore a register when the function returns. The register would be "restored" with an incorrect value and
this would affect the execution of the function that called this function. The above example shows how a
program can work when compiled with the "d2" option and stop working when compiled with the "d1"
option. You should always test your program fully with all the modules compiled with the "d1" option to
protect yourself from any surprises.

42.4 The compiler cannot find "stdio.h"
The standard header files are usually located in the sub-directory that the Watcom C/C++ compiler is
installed in. Suppose that the header files are located in the sub-directory c:\watcom\h. If the
compiler indicates (through an error message) that it is unable to locate the file STDIO.H, we have
forgotten something. There are two ways to indicate to the Watcom C/C++ compiler the location of the
standard header files.

1. use the INCLUDE environment variable
2. use the "i" option (Watcom C/C++, Watcom Compile and Link)

The use of the environment variable is the simplest way to ensure that the include files will be found. For
instance, if you include the following line in your system initialization file, AUTOEXEC.BAT,

The compiler cannot find "stdio.h" 285

Common Problems

set include=c:\watcom\h

the Watcom C/C++ compiler will be able to find the standard include files. The use of the "i" option is
another way to give the directory name of the standard include files.

Example:
C>wcc myfile.c -ic:\watcom\h

or
C>wcc386 myfile.c -ic:\watcom\h

or
C>wpp myfile.cpp -ic:\watcom\h

or
C>wpp386 myfile.cpp -ic:\watcom\h

The usual manner that these methods are combined is as follows. The INCLUDE environment variable is
used to give the location of the standard C library header files. Any directories of header files local to a
specific programming project are often candidates for the "i" option method. See the "Watcom C/C++
#include File Processing" section of the chapter entitled "The Watcom C/C++ Compilers" in the Watcom
C/C++ User’s Guide for more details.

42.5 Resolving an "Undefined Reference" linker error
The Watcom Linker builds an executable file by a process of resolving references to functions or data items
that are declared in other source files. Certain conditions arise that cause the linker to generate an
"Undefined Reference" error message. An "Undefined Reference" error message will be displayed by the
linker when it cannot find a function or data item that was referenced in the program. Verify that you have
included all the required object modules in the linker command and that you are linking with the correct
libraries. There are a couple of "undefined references" that require some explanation.

cstart The unresolved reference for _cstart_ indicates that the linker cannot find the C/C++
run-time libraries. The 16-bit C run-time libraries for the small memory model are
clibs.lib and, either maths.lib, or math87s.lib. The 32-bit C run-time
libraries for the flat memory model compiled for the register-based argument passing
model are clib3r.lib and, either math3r.lib, or math387r.lib. Ensure that
the WATCOM environment variable is set to the directory that Watcom C/C++ was
installed in.

fltused The _fltused_ undefined reference indicates that floating-point arithmetic has been
used in the modules that exhibit this error. The remedy is to ensure that the linker can find
the appropriate math library. For the 16-bit small memory model, it is either
maths.lib, or math87s.lib For the 32-bit register-based argument passing model, it
is either math3r.lib, or math387r.lib depending on which floating-point option is
used. Ensure that the WATCOM environment variable is set to the directory that Watcom
C/C++ was installed in.

_small_code_ If this undefined reference occurs when you are trying to create a 16-bit application, we
have saved you many hours of debugging! The reason for this undefined reference is that
the "main" entry point has been compiled for a big code model (in any one of medium,
large, or huge memory models). Any of the modules that have this undefined reference
have been compiled for a small code model (in any one of small or compact memory
models) and as such do not have the correct return instructions. You should recompile the
modules so that all the modules are compiled for the same memory model. Combining

286 Resolving an "Undefined Reference" linker error

Commonly Asked Questions and Answers

source modules compiled for different memory models is very difficult and often leads to
strange bugs. If your program has special considerations and this reference causes you
problems, there is a "work-around". You could resolve the reference with a PUBLIC
declaration in an assembler file or code the following in Watcom C/C++.

/* rest of your module */

void _small_code(void)
{}

The code generator will generate a single RET instruction with the public symbol
_small_code_ attached to it. The common epilogue optimizations will probably
combine this function with another function’s RET instruction and you will not even pay
the small penalty of one byte of extra code.

There may be another cause of this problem, the "main" function must be entered in lower
case letters ("Main" or "MAIN" are not identified as being the same as "main" by the
compiler). The compiler will identify the module that contains the definition of the
function "main" by creating the public definition of either _small_code_ or
_big_code_ depending on the memory model it was compiled in.

_big_code_ Your module that contains the "main" entry point has been compiled with a 16-bit small
code model (small or compact). The modules that have this undefined reference have been
compiled in 16-bit big code models (medium, large, or huge). You should recompile the
modules so that all the modules are compiled in the same memory model. See the
explanation for _small_code_ for more details.

main_ All C programs, except applications developed specifically for Microsoft Windows, must
have a function called "main". The name "main" must be in lower case for the compiler to
generate the appropriate information in the "main" module.

WINMAIN All Windows programs must have a function called "WinMain". The function "WinMain"
must be declared "pascal" in order that the compiler generate the appropriate name in the
"WinMain" module.

42.6 Why my variables are not set to zero
The linker is the program that handles the organization of code and data and builds the executable file. C
guarantees that all global and static uninitialized data will contain zeros. The "BSS" region contains all
uninitialized global and static data for C programs (the name "BSS" is a remnant of the early UNIX C
compilers). Most C compilers take advantage of this situation by not explicitly storing all the zeros to
achieve smaller executable file sizes. In order for the program to work correctly, there must be some code
(that will be executed before "main") that will clear the "BSS" region. The code that is executed before
"main" is called "startup" code. The linker must indicate to the startup code where the "BSS" region is
located. In order to do this, the Watcom Linker (WLINK) treats the "BSS" segment (region) in a special
manner. The special variables ’_edata’ and ’_end’ are constructed by the Watcom Linker so that the startup
code knows the beginning and end of the "BSS" region.

Some users may prefer to use the linker provided by another compiler vendor for development. In order to
have the program execute correctly, some extra care must be taken with other linkers. For instance, with
the Microsoft linker (LINK) you must ensure that the ’/DOSSEG’ command line option is used. With the
Phar Lap Linker, you must use the "-DOSORDER" command line option. In general, if you must use other
linkers, extract the module that contains _cstart from clib?.lib (? will change depending on the

Why my variables are not set to zero 287

Common Problems

memory model) and specify the object file containing _cstart as the first object file to be processed by
the linker. The object file will contain the information necessary for the linker to build the executable file
correctly.

42.7 What does "size of DGROUP exceeds 64K" mean for
16-bit applications?

This question applies to 16-bit applications. There are two types of segments in which data is stored. The
two types of segments are classified as "near" and "far". There is only one "near" segment while there may
be many "far" segments. The single "near" segment is provided for quick access to data but is limited to
less than 64K in size. Conversely, the "far" segments can hold more than 64K of data but suffer from a
slight execution time penalty for accessing the data. The "near" segment is linked by arranging for the
different parts of the "near" segment to fall into a group called DGROUP. See the section entitled
"Memory Layout" in the Watcom Linker User’s Guide for more details.

The 8086 architecture cannot support segments larger than 64K. As a result, if the size of DGROUP
exceeds 64K, the program cannot execute correctly. The basic idea behind solving this problem is to move
data out of the single "near" segment into one or more "far" segments. Of course, this solution does not
come without any penalties. The penalty is paid in decreased execution speed as a result of accessing "far"
data items. The magnitude of this execution speed penalty depends on the behavior of the program and, as
such, cannot be predicted (i.e., we cannot say that the program will take precisely 5% longer to execute).
The specific solution to this problem depends on the memory model being used in the compilation of the
program.

If you are compiling with the tiny, small, or medium memory models then there are two possible solutions.
The first solution involves changing the program source code so that any large data items are declared as
"far" data items and accessed with "far" pointers. The addition of the "far" keyword into the source code
makes the source code non-portable but this might be an acceptable tradeoff. See the "Advanced Types"
chapter in the Watcom C Language Reference manual for details on the use of the "near" and "far"
keywords. The second solution is to change memory models and use the large or compact memory model.
The use of the large or compact memory model allows the compiler to use "far" segments to store data
items that are larger than 32K.

The large and compact memory models will only allocate data items into "far" segments if the size of the
data item exceeds 32K. If the size of DGROUP exceeds 64K then a good solution is to reduce the size
threshold so that smaller data items will be stored into "far" segments. The relevant compiler option to
accomplish this task is "zt<num>". The "zt" option sets a data size threshold which, if exceeded, will
allocate the data item in "far" segments. For instance, if the option "zt100" is used, any data item larger
than 100 bytes will be allocated in "far" segments. A good starting value for the data threshold is 32 bytes
(i.e., "zt32"). The number of compilations necessary to reduce the size of DGROUP for a successful link
with WLINK depends on the program. Minimally, any files which allocate a lot of data items should be
recompiled. The "zt<num>" option should be used for all subsequent compiles, but the recompilation of all
the source files in the program is not necessary. If the "DGROUP exceeds 64K" WLINK error persists, the
threshold used in the "zt<num>" option should be reduced and all of the source files should be recompiled.

288 What does "size of DGROUP exceeds 64K" mean for 16-bit applications?

Commonly Asked Questions and Answers

42.8 What does "NULL assignment detected" mean in 16-bit
applications?

This question applies to 16-bit applications. The C language makes use of the concept of a NULL pointer.
The NULL pointer cannot be dereferenced according to the ISO standard. The Watcom C/C++ compiler
cannot signal the programmer when the NULL address has been written to or read from because the
Intel-based personal computers do not have the necessary hardware support. The best that the run-time
system can do is help programmers find these sorts of errors through indirect means. The lower 32 bytes of
"near" memory have been seeded with 32 bytes of the value 0x01. The C run-time function "_exit" checks
these 32 bytes to ensure that they have not been written over. Any modification of these 32 bytes results in
the "NULL assignment error" being printed before the program terminates.

Here is an overview of a good debugging technique for this sort of error:

1. use the Watcom Debugger to debug the program
2. let the program execute
3. find out what memory has been incorrectly modified
4. set a watchpoint on the modified memory address
5. restart the program with the watchpoint active
6. let the program execute, for a second time
7. when the memory location is modified, execution will be suspended

We will go through the commands that are executed for this debugging session. First of all, we invoke the
Watcom Debugger from the command line as follows:

C>wd myprog

Once we are in the debugger type:

DBG>go

The program will now execute to completion. At this point we can look at the output screen with the
debugger command, "FLIP".

DBG>flip

We would see that the program had the run-time error "NULL assignment detected". At this point, all we
have to do is find out what memory locations were modified by the program.

The following command will display the lower 16 bytes of "near" memory.

DBG>examine __nullarea

The command should display 16 bytes of value 0x01. Press the space bar to display the next 16 bytes of
memory. This should also display 16 bytes of value 0x01. Notice that the following data has two bytes
which have been erroneously modified by the program.

__nullarea 01 01 56 12 01 01 01 01-01 01 01 01 01 01 01 01
__nullarea+16 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

The idea behind this debugging technique is to set a watchpoint on the modified memory so that execution
of the program will be suspended when it modifies the memory. The following command will "watch" the
memory for you.

What does "NULL assignment detected" mean in 16-bit applications? 289

Common Problems

DBG>watch __nullarea+2

There has to be a way to restart the program without leaving the Watcom Debugger so that the watchpoint
is active during a subsequent execution of the program. The Watcom Debugger command "NEW" will
reload the program and prepare for a new invocation of the program.

DBG>new
DBG>go

The Watcom Debugger command "GO" will start execution of the program. You may notice that the
program executes much slower than usual but eventually the debugger will show the part of the program
that modified the two bytes. At this point, you might want to clear the watchpoint and proceed to debug
why the memory was modified. The command to clear the watchpoint is:

DBG>watch/clear 1

The "1" indicates that you want watchpoint number 1 to be cleared. Typing "WATCH" by itself will print
out all active watchpoints. The above technique is generally useful for any type of memory overwrite error
provided you know which memory location has been overwritten.

Hint: The Watcom Debugger allows many commands to have short forms. For instance, the
"EXAMINE" command can be shortened to an "E". We used the full commands in the examples for
clarity.

42.9 What "Stack Overflow!" means
The memory used for local variables is allocated from the function call stack although the Watcom
compilers will often use registers for local variables. The size of the function call stack is limited at
link-time and it is possible to exceed the amount of stack space during execution. The Watcom run-time
library will perform checks whenever a large amount of stack space is required by a function but it is up to
the user to check stack requirements before calling a Watcom run-time function. Compiling programs with
stack checking will ensure that there is enough stack space to call a Watcom run-time function.

There are various ways of protecting against stack overflow errors. First, one should minimize the number
of recursive functions used in an application program. This can be done by recoding recursive functions to
use loops. Keep the amount of stack used in functions to a minimum by using and reusing static arrays
whenever possible. These techniques will reduce the amount of stack space required but there still may be
times where the default amount of stack space is insufficient. The Watcom Linker (WLINK) allows the
user to set the amount of stack space at link-time through the directive "OPTION STACK=size" where size
may be specified in bytes with an optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Debugging a program that reports a stack overflow error can be accomplished with the following sequence.

1. Load your application into the debugger

2. Set a breakpoint at __STKOVERFLOW

290 What "Stack Overflow!" means

Commonly Asked Questions and Answers

3. Run the application until the breakpoint at __STKOVERFLOW is triggered

4. Issue the debugger "show calls" command. This will display a stack traceback giving you the
path of calls that led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

42.10 Why redefinition errors are issued from WLINK
This question comes up often in discussions about porting old UNIX or Microsoft C programs. The
problem stems from the forgiving nature of early UNIX linkers. In early C code, it was common to define
header files like this:

Example:
/* define global variables */
int line_count;
int word_count;
int char_count;

The header file would then be included in many different modules. The C compiler would generate a
definition of each variable in each module and leave it to the linker to pick one and resolve all references to
one variable. The development of the ANSI C standard made this practice non-conforming. The Watcom
C compiler is an ISO/ANSI C compiler and as such, is not required to support this obsolete behavior. The
effect is that WLINK will report redefinition errors. The header file must be coded in such a way that the
variables are defined in one module. One way to do this is as follows:

Example:
#ifdef DEFINE_HERE
#define GLOBAL
#else
#define GLOBAL extern
#endif
/* define global variables */
GLOBAL int line_count;
GLOBAL int word_count;
GLOBAL int char_count;

In most modules, the macro "DEFINE_HERE" will not be defined so the file will be equivalent to:

Example:
/* define global variables */
extern int line_count;
extern int word_count;
extern int char_count;

In one module, the macro "DEFINE_HERE" must be defined before the header file is included. This can
be done by defining the macro on the command line or by coding like this:

Why redefinition errors are issued from WLINK 291

Common Problems

Example:
#define DEFINE_HERE
#include "globals.h"

42.11 How more than 20 files at a time can be opened
The number of file handles allowed by Watcom C/C++ is initialized to 20 in stdio.h, but this can be
changed by the application developer. To change the number of file handles allowed with Watcom C/C++,
follow the steps outlined below.

1. Let n represent the number of files the application developer wishes to have open. Ensure that
the stdin, stdout, stderr, stdaux, and stdprn files are included in the count.

2. Change the CONFIG.SYS file to include "files=n" where "n" is the number of file handles
required by the application plus an additional 5 handles for the standard files (this applies to
DOS 5.0). The number "n" may vary depending on your operating system and version. If you
are running a network such as Novell’s NetWare, this will also affect the number of available
file handles. In this case, you may have to increase the number specified in the "files=n"
statement.

3. Add a call to _grow_handles in your application.

The following example illustrates the use of _grow_handles.

Example:
/*
* HANDLES.C
* This C program grows the number of file handles so
* more than 16 files can be opened. This program
* illustrates the interaction between _grow_handles and
* the DOS 5.0 file system. If you are running a network
* such as Novell’s NetWare, this will also affect the
* number of available file handles. In the actual trial,
* FILES=40 was specified in CONFIG.SYS.
*/

292 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

#include <stdio.h>

void main()
{

int i, j, maxh, maxo;
FILE *temp_files[50];

for(i = 25; i < 40; i++) {
/* count 5 for stdin,stdout,stderr,stdaux,stdprn */
printf("Trying for %2.2d handles...", 5 + i);
maxh = _grow_handles(5 + i);
maxo = 0;
for(j = 0; j < maxh; j++) {

temp_files[j] = tmpfile();
if(temp_files[j] == NULL)break;
maxo++;

}
printf(" %d/%d temp files opened\n", maxo, maxh);
for(j = 0; j < maxo; j++) {

fclose(temp_files[j]);
}

}
}

42.12 How source files can be seen in the debugger
The selection and use of debugging information is important for getting the most out of the Watcom
Debugger. If you are not able to see your source code in the Watcom Debugger source window, there are
three areas where things may have gone wrong, namely:

1. using the correct option for the Watcom C/C++.
2. using the correct directives for the Watcom Linker.
3. using the right commands in the Watcom Debugger.

The Watcom C/C++ compiler takes C/C++ source and creates an object file containing the generated code.
By default, no debugging information is included in the object file. The compiler will output debugging
information into the object file if you specify a debugging option during the compile. There are two levels
of debugging information that the compiler can generate:

1. Line numbers and local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you are
debugging a particular module. If you use the "d2" option, you will be able to see your source file and
display your local variables. The "d1" option will display the source but will not give you access to local
variable information.

The Watcom Linker (WLINK) is the tool that puts together a complete program and sets up the debugging
information for all the modules in the executable file. There is a linker directive that indicates to the linker
when it should include debugging information from the modules. There are five levels of debugging
information that can be collected during the link. These are:

1. global names (DEBUG)

How source files can be seen in the debugger 293

Common Problems

2. global names, line numbers (DEBUG LINE)
3. global names, types (DEBUG TYPES)
4. global names, local variables (DEBUG LOCALS)
5. all of the above (DEBUG ALL)

Notice that global names will always be included in any request for debugging information. The debugging
options can be combined

DEBUG LINE, TYPES

with the above directive resulting in full line number and typing information being available during
debugging. The directives are position dependent so you must precede any object files and libraries with
the debugging directive. For instance, if the file mylink.lnk contained:

#
invoke with: wlink @mylink
#
file main
debug line
file input, output
debug all
file process

then the modules input and output will have global names and source line information available during
debugging. All debugging information in the module process will be available during debugging.

Hint: A subtle point to debugging information is that all the modules will have global names available
if any debugging directive is used. In the above example, the module main will have global name
information even though it does not have a DEBUG directive preceding it.

It is preferable to have one DEBUG directive before any FILE and LIBRARY directives. You might
wonder if this increases the size of the executable file so that it will occupy too much memory during
debugging. The debugging information is loaded "on demand" by the debugger during the debugging
session. A small amount of memory (40k default, selectable with the Watcom Debugger "dynamic"
command line option) is used to hold the most recently used module debugging information. In practice,
this approach saves a lot of memory because most debugging information is never used. The overhead of
accessing the disk for debugging information is negligible compared to accessing the source file
information. In other words, you can have as much debugging information as you want included in the
executable file without sacrificing memory required by the program. See the section entitled "The DEBUG
Directive" in the Watcom Linker User’s Guide for more details.

If the previous steps have been followed, you should be well on your way to debugging your programs with
source line information. There are instances where the Watcom Debugger cannot find the appropriate
source file even though it knows all the line numbers. The problem that has surfaced involves how the
source file is associated with the debugging information of the module. The original location of the source
file is included in the debugging information for a module. The name that is included in the debugging
information is the original name that was on the Watcom C/C++ command line. If the original filename is
no longer valid (i.e., you have moved the executable to another directory), the Watcom Debugger must be
told where to find the source files. The Watcom Debugger "Source Path" menu item (under "File") can be
used to supply new directories to search for source files. If your source files are located in two directories,
the following paths can be added in the Watcom Debugger:

294 How source files can be seen in the debugger

Commonly Asked Questions and Answers

c:\program\c*.c
c:\program\new\c*.c

The "*" character indicates where the module name will be inserted while the Watcom Debugger is
searching for the source file. See the description of the "Source Path" menu item in the Watcom Debugger
User’s Guide for more details.

42.13 The difference between the "d1" and "d2" compiler
options

The reason that there are two levels of debugging information available is that the code optimizer can
perform many more optimizations and still maintain "d1" (line) information. The "d2" option forces the
code optimizer to ensure that any local variable can be displayed at any time in the function. To illustrate
why this results in less optimum code being generated for a function, let us look at a simple array
initialization.

extern int a[100];

void init_a(void)
{

int i;

for(i = 0; i < 100; ++i) {
a[i] = 3*i;

}
}

The code optimizer will ensure that you can print the value of the variable "i" at any time during the
execution of the loop. The "d2" option will always generate code and debugging information so that you
can print the value of any variable during the execution of the function. In order to get the best code
possible and still see your source file while debugging, the "d1" option only generates line number
information into the object file. With line number information, much better code can be generated. Here is
the C equivalent of the code generated for the array initialization example.

extern int a[100];

void init_a(void)
{

int *t1;
int t2;

/* for(i = 0; i < 100; ++i) { */
t1 = a;
t2 = 0;
do {

/* a[i] = 3*i; */
*t1 = t2;
++t1;
t2 += 3;

/* } */
} while(t1 != a + 100);

}

The difference between the "d1" and "d2" compiler options 295

Common Problems

The above code executes very quickly but notice that the variable "i" has been split into two different
variables. One of the variables handles the use of "i" as an array index and the other handles the calculation
of "3*i". The debugging of programs that have undergone extensive optimization can be difficult, but with
the source line information it is much easier. To summarize, use the "d2" compiler option if you are
developing a module and you would like to be able to display each local variable. The "d1" compiler
option will give you line number information and the best generated code possible. There is absolutely no
reason not to specify the "d1" option because the code quality will be identical to code generated without
the "d1" option.

296 The difference between the "d1" and "d2" compiler options

Index

1 A

16-bit 137 __A000 199
16-bit DLL 163 A20 line 49-50
16-bit DOS applications 5 address line 20 50
16-bit far pointer 137 AllocAlias16 170, 145, 171, 177, 188, 197
16-bit near pointer 137 AllocHugeAlias16 171, 145, 171, 178, 188
16-bit OS/2 1.x applications 237 answers to general problems 279
16-bit Windows 3.x application 119 API special functions 203
16-bit Windows 3.x applications 119 application development 1
16-bit Windows 3.x non-GUI applications 123 arguments
_16xxx functions 203 what you need to know 281

array subscript errors
how they hurt 285

AUTOEXEC.BAT
system initialization file 2853

autopassup range 56
auxiliary pragma

loadds 284
32-bit 137
32-bit DLL 155, 163
32-bit DOS/4GW applications 13
32-bit far pointer 137 B
32-bit gates 56
32-bit near pointer 137
32-bit OS/2 applications 241
32-bit Phar Lap 386|DOS-Extender applications 9 __B000 199
32-bit Windows 3.x application 127 __B800 199
32-bit Windows 3.x applications 127 BBS 280
32-bit Windows 3.x non-GUI applications 131 _beginthread function 220, 246
386enh 142 bi-modal interrupt 32
386LINK 287 _big_code_ 287

binding 32-bit applications 128, 133
binding a 32-bit DLL 129, 133
BINP directory 239
BINW directory 129, 1334
BSS segment 287
building 386|DOS-Extender applications 9
building DOS applications 5

4GWPRO.EXE 112 building DOS/4GW applications 13
building OS/2 1.x applications 238
building OS/2 applications 242
building Windows 3.x applications 120, 1288 building Windows NT applications 211, 215
bulletin board 280

8042 auxiliary processor 49

297

Index

debugging DOS applications 6
debugging DOS/4GW applications 14C debugging information

global variables 293
line numbering 293
local variables 293__C000 199
source file 293_Call16 172, 150-151, 181, 195-196
types 293CALLBACKPTR 201
Watcom C/C++ 293calling convention
Watcom Debugger 294what you need to know 281
WLINK 293calling conventions

debugging Non-GUI 16-bit Windows 3.xcdecl 283
applications 125Catch 142

debugging Non-GUI 32-bit Windows 3.xcdecl 150, 172, 175, 231
applications 134calling convention 283

debugging OS/2 1.x applications 238class 143
debugging OS/2 applications 242clearing
debugging Windows 3.x applications 120, 129variables 287
debugging Windows NT applications 212, 216COMMDLG.H 142
default windowing library functions 126, 135common questions 279
DefineDLLEntry 174DOS/4GW 101
DefineUserProc16 175, 184Compaq 386 memory 48
DELETESWAP virtual memory option 51,compile options

110-111zdp 284
DevHlp 261CompuServe 280
device driver header 260CONFIG.SYS 239, 261
DEVICE= 261const 169
DGROUP size exceeds 64K 288converting to Watcom C/C++ 280
distribution rights 142common problems 280
DLL 259from IBM-compatible PC compilers 283

16-bit 163from UNIX 282
16-bit calls into 32-bit DLLs 158what you need to know 280
16-bit cover 159_cstart_ 286
32-bit 155, 163CUSTCNTL.H 142
32-bit Windows example 156
creating 160-161
debugging 160
debugging example 161D
installing example 161
OS/2 2.x 249
running example 161
summary 162__D000 199
Windows NT 223d1 285

DLL accessd1 versus d2 295
OS/2 2.x 252d2 285
Windows NT 227DDE.H 142

DLL creationDDEML.H 142
OS/2 2.x 249debugging 285
Windows NT 223memory bugs 289

DLL directory 239NULL assignment detected 289
DLL initializationoptimized programs 285, 295

OS/2 2.x 253stack overflow 290
DLL sampletechniques 289-290

OS/2 2.x 250debugging 386|DOS-Extender applications 10

298

Index

Windows NT 224 mouse support 109
DLL termination NULL pointer references 106

OS/2 2.x 253 OS/2 bug 116
DLL_CHAR 174 out of memory 110
DLL_DWORD 174 pointers vs linear addresses 105
DLL_ENDLIST 174 realloc 108
__dll_initialize 254 register dump 113
DLL_PTR 174 runtime options 49
__dll_terminate 254 spawning 109
DLL_WORD 174 switch mode setting 46
DOS extenders TCPIP.EXE 116

common problems 17 telephone support 102
DOS file I/O 109 transfer stack overflow 113
DOS memory 24 TSR not supported 39

using DOS/4GW 24 unexpected interrupt 112
using Phar Lap 25 utilities 85

DOS memory management 65 VESA support 109
DOS Protected-Mode Interface 59 VM configuration 111
DOS/4GW VMM 109

4GWPRO.EXE 112 VMM instability 110
address line 20 50 VMM restriction 39
asynchronous interrupts 106 Windows NT bug 116
bi-modal interrupt 32 DOS/4GW DOS extender 39
cannot lock stack 116 DOS16M
chaining handlers 57 + option 48
code and data addresses 105 A20 option 50
common questions 101 loops option 50
contacting Tenberry 102 runtime options 49
Ctrl-Break handling 107 DOS16M environment variable 45-50, 89
debugger version 112 DOS4G
debugging bound applications 112 NULLP option 45, 106
demand-loading 110 QUIET option 45
differences with DOS/4G 103 VERBOSE option 45, 113
differences with Professional version 102 DOS4G environment variable 45
documentation 102 DOS4GPATH environment variable 41
DOS file I/O 109 DOS4GVM
DOSX.EXE 116 DELETESWAP 110-111
DPMI support 104 MAXMEM 111
EMM386.EXE 115 MINMEM 111
error messages 96 SWAPINC 110-111
extender messages 93 SWAPMIN 110-111
extra memory 48 SWAPNAME 110
int 70h-77h 107 VIRTUALSIZE 110-111
interrupt handler address 57 DOS4GVM environment variable 51-52
interrupt handlers 57, 107 DOS4GVM.SWP 51
kernel error messages 93 DOS4GW 86
linear vs physical addresses 105 DOS4GW.EXE 41
locking memory 107 DosFreeModule 250
Lotus 1-2-3 115 DosLoadModule 250-251
low memory access 105 DosSleep 261
memory addressability 109 DOSX.EXE 116
memory control 47 DPMI 48, 56, 59
memory range 47 allocate DOS memory block 65
memory use 42 allocate memory block 78

299

Index

allocate real-mode callback address 72 Windows NT 223
demand paging 79 dynamic link library 155, 163
discard page 80 dynamic link library access
free DOS memory block 66 OS/2 2.x 252
free memory block 78 Windows NT 227
free physical address mapping 81 dynamic link library creation
free real-mode callback address 76 OS/2 2.x 249
function calls 60 Windows NT 223
get and disable virtual interrupt state 82 dynamic link library initialization
get and enable virtual interrupt state 82 OS/2 2.x 253
get API entry point 83 dynamic link library sample
get coprocessor status 83 OS/2 2.x 250
get DPMI version 76 Windows NT 224
get exception handler vector 67 dynamic link library termination
get free memory information 77 OS/2 2.x 253
get page size 79 dynamic linking 223, 249
get protected-mode interrupt vector 68
get real-mode interrupt vector 67
get virtual interrupt state 82
lock linear region 79 E
mark page 79
physical address mapping 80
resize DOS memory block 66

__E000 199resize memory block 78
EMM386.EXE 115set coprocessor emulation 84
_endthread function 220, 246set exception handler vector 67
EnumChildWindows 183set protected-mode interrupt vector 68
EnumFonts 183set real-mode interrupt vector 67
EnumMetaFile 183simulate real-mode far call 71
EnumObjects 183simulate real-mode interrupt 70
EnumProps 183simulate real-mode iret call 72
enums 209unlock linear region 79
EnumTaskWindows 184vendor extensions 83
EnumWindows 184virtual interrupt state 81
environment variablesDPMI host

DOS16M 45-50, 89386Max 59
DOS4G 45OS/2 VDM 59
DOS4GPATH 41QEMM QDPMI 59
DOS4GVM 51-52Windows 3.1 59
INCLUDE 163, 222, 247, 265, 285-286DPMI specification 17, 23, 102
NETWARE_INCLUDE 265DPMI_MEMORY_LIMIT
PATH 129, 133, 163DOS setting 116
WATCOM 129, 133, 221, 247, 286dragon book 284
WINDOWS_INCLUDE 163, 168DRIVINIT.H 142

errno 169DS segment register 284
error messages_dwDeleteOnClose 126, 135

DOS/4GW 96DWORD 150, 201
kernel 93_dwSetAboutDlg 126, 135

example_dwSetAppTitle 126, 135
variable number of arguments 282_dwSetConTitle 126, 135

EXE header 260_dwShutDown 126, 135
executable_dwYield 126, 135

linear 41dynamic link libraries 239
segmented 41OS/2 2.x 249

300

Index

executable file 6, 10, 14, 120, 124, 128, 132, 212, GETPROC_GLOBALNOTIFY 184
216, 238, 242 GETPROC_GRAYSTRING 184

extended memory 45 GETPROC_LINEDDA 184
extender messages GETPROC_SETRESOURCEHANDLER 184

DOS/4GW 93 GETPROC_SETTIMER 184
GETPROC_SETWINDOWSHOOK 184
GETPROC_USERDEFINED_1 175
GETPROC_USERDEFINED_32 175
GETPROC_USERDEFINED_x 184F
GetProcAddr 196
GetProcAddress 150, 172, 195
GlobalAlloc 146

__F000 199 GlobalLock 196-197
far 137-138, 142, 184, 276 GlobalNotify 184
far pointer 137 GMEM_DDESHARE 146
files GrayString 184

more than 20 292 _grow_handles 292
unable to find 285 GWL_WNDPROC 149

fltused 286
free 146, 181
free memory 19

using DOS/4GW 20 H
using Phar Lap 21
using Windows 3.x 22

FreeAlias16 177, 145
FreeHugeAlias16 178, 178 header
FreeIndirectFunctionHandle 179, 172, 181, device driver 260-261

195-196 EXE 260
FreeLibrary 226 header files 285
FreeProcInstance 148 _HEADER 259
FTP site 280 hello program 5, 9, 13, 237, 241
Fujitsu FMR-70 switch mode setting 46 HIMEM.SYS 49

HINDIR 201
Hitachi B32 switch mode setting 46
HRTEST.EXE 261
HRTIMER.SYS 259G

GetIndirectFunctionHandle 181, 172, 179, 186, I
195-196

GetLastError 226
GetModuleFileName 225
GetProc16 183, 144, 146, 175, 193, 196 i8253 timer 261
GETPROC_ABORTPROC 183 IBM PS/55 switch mode setting 46
GETPROC_CALLBACK 183 IBM-compatible PC compilers 283
GETPROC_ENUMCHILDWINDOWS 183 IDT 56
GETPROC_ENUMFONTS 183 import 266
GETPROC_ENUMMETAFILE 183 import definitions 223, 249
GETPROC_ENUMOBJECTS 183 import library 227, 252
GETPROC_ENUMPROPS_FIXED_DS 183 INCLUDE environment variable 163, 222, 247,
GETPROC_ENUMPROPS_MOVEABLE_DS 265, 285-286

183 INDIR_CDECL 181
GETPROC_ENUMTASKWINDOWS 184 INDIR_CHAR 181
GETPROC_ENUMWINDOWS 184 INDIR_DWORD 181

301

Index

INDIR_ENDLIST 181 linker
INDIR_PTR 181, 186 undefined references 286
INDIR_WORD 181 loadds pragma option 284
_INITCODE 259 LoadLibrary 195, 225-226
_INITDATA 259 returns 226
INITGLOBAL 260 NULL. 226
initialization local descriptor table 60

OS/2 2.x dynamic link library 253 LocalAlloc 146
initialized global data 287 LocalLock 144
Instant-D 41 LocalPtr 199
int 138 longjmp 142
INT 21H 53 Lotus 1-2-3 115
INT 31H 21, 59 LZEXPAND.H 142
int 31H function calls 60
INT 33H

using DOS/4GW 28
integer/pointer equivalence 281 M
inter-language calls 269
interrupt handling 56
interrupt services 67

macrosinterrupts
__WATCOMC__ 283real-mode simulation 30

main_ 287invalid conversion 281
MakeProcInstance 146, 148InvokeIndirectFunction 186, 181, 195-196
malloc 146, 181InvokeIndirectFunctionHandle 172
MapAliasToFlat 188iostream 5, 9, 13, 124, 132, 237, 241
MAXMEM virtual memory option 51, 111ISO/ANSI standard
memory management services 77NULL 289
memory modelsvariable number of arguments 281

what you need to know 281
memory transfer rate 87
memory wait states 87
messageK

header files 285
unable to find files 285
undefined references 286

kernel error messages 93 MessageBox 119, 127, 211
keyboard status 49 messages

DOS/4GW 93
Microsoft

LINK 287
LINK386 287L

Microsoft Win32 SDK 231
MINMEM virtual memory option 51, 111
mixed-language programming 269

LDT 60 argument passing 270
LE format 41 common blocks 275
LibMain 225-226, 250-251 integer type 271
library functions linking issues 271

default windowing 126, 135 memory models 270
line number information 285 parameter passing 270
linear executable 41 passing integers 271-272
LineDDA 184 passing strings 273-274
LINK 287 symbol names 269
LINK386 287

302

Index

variable number of arguments 276
MK_FP16 189, 153, 197 OMK_FP32 190, 138, 144, 152, 174, 189, 197
MK_LOCAL32 191, 144, 152-153
MMSYSTEM.H 142
mode switching object file 6, 10, 14, 120, 124, 128, 132, 212, 216,

basis 90 238, 242
performance 87 OKI if800 switch mode setting 46

module 266 OLE.H 142
mouse interrupt opening more than 20 files 292

using DOS/4GW 28 optimization
multi-threaded applications 219, 245 suggested reading 284

OS/2 2.x 245 what you should know 284
Windows NT 219 OS/2

multi-threading issues fullscreen application 237, 241
OS/2 2.x 245 PM-compatible application 237, 241
Windows NT 219 Presentation Manager application 237, 241

OS/2 PDD 259
OS/2 physical device drivers 259
OS/2 PMN API calls 256

non-GUI applications 255
non-GUI example 255

OS/2 Presentation Manager 255NE format 41
OS2.LIB 260near 137

near pointer 137
NEC 98-series switch mode setting 46
NETWARE_INCLUDE environment variable P265
NLM

debugging 265
header files 265 page locking services 78
import libraries 265 page tuning services 79
libraries 265 parameters
sampler 265 what you need to know 281

NLM support PASCAL 150, 172, 175
version 4.0 265 PASS_WORD_AS_POINTER 192
version 4.1 265 patch level 279

NOAUTOPROCS 148 patches 279
NOCOVERSENDS 145-146 PATH environment variable 129, 133
Novell PATH, environment variable 163

TCPIP.EXE 116 PDD 259
NT development 209 PENWIN.H 142
NULL assignment detected 289 PENWOEM.H 142

debugging 289 performance 88
NULL pointer 282 Phar Lap
NULLP 45 386LINK 287

Phar Lap TNT 209
physical device drivers 259
PMINFO 47, 87
pointers

16-bit 137
32-bit 137

303

Index

far 137
near 137 Sportability
NULL pointer 282
signed char 282

porting segment ordering 260
from Microsoft C 291 segment registers
from UNIX 291 DS 284

POSIX applications 231 segmented executable 41
POSIX libraries 231 selector
pragma 284 __A000 199

loadds option 284 __B000 199
predefined macros __B800 199

__WATCOMC__ 283 __C000 199
PRINT.H 142 __D000 199
printf 5, 9, 13, 124, 132, 215, 237, 241 __E000 199
private memory pool 89 __F000 199
PRIVATXM 48, 89, 115 LocalPtr 199
problems SendDlgItemMessage 145

with d2 and d1 options 285 SendMessage 145
PROCPTR 196, 201 setjmp 142
program timer 261 SetResourceHandler 184
protected mode 49 SetTimer 184
PS/2 switch mode setting 46 setvbuf 109
pushing arguments SetWindowLong 149

what you need to know 281 SetWindowsHook 184
SHELLAPI.H 142
short 138
signed char 282Q simulating real-mode interrupts 30
size of DGROUP exceeds 64K 288
_small_code_ 286
spawn 26questions 279

using DOS/4GW 26QUIET 45
using Phar Lap 27

stack overflow 290
static linking 223, 249
Strategy routine 260R
STRESS.H 142
structure alignment 209
stub program 41, 86
supervisor 128, 132real mode 49
SWAPINC virtual memory option 51, 110-111real-mode memory 24
SWAPMIN virtual memory option 51, 110-111using DOS/4GW 24
SWAPNAME virtual memory option 51, 110using Phar Lap 25
switch mode settingregisters

Fujitsu FMR-70 46calling convention 281
Hitachi B32 46ReleaseProc16 193
IBM PS/55 46request packets 261
NEC 98-series 46resource compiler 129, 133
OKI if800 46RMINFO 90
PS/2 46

switching modes
performance 87

304

Index

symbolic information 285 UDP16_ENDLIST 175
system configuration file 239 UDP16_PTR 175
system initialization file UDP16_WORD 175

AUTOEXEC.BAT 285 unable to find files 285
SYSTEM.INI 142 undefined references 286

_big_code_ 287
cstart 286
fltused 286
main_ 287T
_small_code_ 286
WinMain 287

UNIX 282
TCPIP.EXE 116
TECHINFO 279
technical support

Tenberry Software 101 V
termination

OS/2 2.x dynamic link library 253
thread creation

OS/2 2.x 245-246 variable number of arguments 282
Windows NT 219-220 variables

thread example set to zero 287
OS/2 2.x 247 VCPI 48
Windows NT 221 VER.H 142

thread identifier VERBOSE 45
OS/2 2.x 246 video memory 18
Windows NT 220 using DOS/4GW 18

thread limits using Phar Lap 19
OS/2 2.x 248 virtual memory manager 51, 109

thread termination VIRTUALSIZE virtual memory option 51,
OS/2 2.x 246 110-111
Windows NT 220 Visual Basic 163

_threadid macro 220, 246 16-bit DLL 166-167
threads of execution 219, 245 32-bit DLL 166
Throw 142 building examples 168
timer example 164

i8523 261 Version 3.0 163
TIMER.EXE 261 VMC extension 52
TlsAlloc 225-226 VMM 51, 109
TlsFree 226
TNT 209
TOOLHELP.H 142
transfer rate W

memory 87
translation services 69

W386DLL.EXT 129, 133
Watcom C/C++

calling convention 281U
converting to 280
unique aspects 281

Watcom C/C++ options
UDP16_CDECL 175 d1 285, 293, 295
UDP16_CHAR 175 d2 285, 293, 295
UDP16_DWORD 175 i 285

305

Index

WATCOM environment variable 129, 133, 221, programming overview 209
247, 286 Windows NT Character-mode application 215

Watcom Strip Utility 285 Windows NT Character-mode applications 215
__WATCOM_Prelude 265 Windows NT GUI application 211
__WATCOMC__ 283 Windows NT GUI applications 211
WBIND 128-129, 133, 196 Windows supervisor 128, 132
WBIND.EXE 128, 132-133 WINDOWS.H 141-142, 145
WCL 6-7, 120-121, 125, 238-239 __WINDOWS_386__ 168
WCL386 10-11, 14-15, 129-130, 134, 212-213, __WINDOWS__ 168

216-217, 242-243 WINDOWS_INCLUDE environment variable
WDEBUG.386 142 163, 168
WEMU387.386 142 WinMain 155, 287
WIN16.H 141 WORD 201
Win32 SDK 231 WSTUB.C 41
WIN386 library routines 169
WIN386.EXT 128-129, 132-133
_WIN386.H 141
Win386LibEntry 163 X
windowed applications

default windowing environment 123, 131
Windows

XMS 49binding 32-bit applications 128, 133
Windows 3.x extender 137

_16xxx functions 196, 203
32-bit callback routines 196
aliases 197
AllocAlias16 197
calling 16-bit code 195
components 139
creating applications 140
floating-point 142
function pointers 196
MK_FP16 197
MK_FP32 197
multiple instances 143
overview 138
pointer conversion 144
pointer handling 143
pointers 137
pointers in structures 197
programming notes 141
questions 195
resources 196
special functions 203
structure 139
thunks 197
WinExec 195

Windows API functions
Catch 142
Throw 142

Windows NT 209
character-mode applications 209
GUI applications 209
programming notes 209

306

