Watcom C/C++

Programmer’s Guide

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

Preface

The Watcom C/C++ Programmer’s Guide includes the following major components:

» DOS Programming Guide

» The DOS/4GW DOS Extender

» Windows 3.x Programming Guide

» Windows NT Programming Guide

» OS2 Programming Guide

* Novell NLM Programming Guide

» Mixed Language Programming

* Common Problems

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool developed by
WATCOM. In thissystem, writers use an ASCI| text editor to create source files containing text annotated
with tags. These tags label the structural elements of the document, such as chapters, sections, paragraphs,
and lists. The Watcom GML software, which runs on a variety of operating systems, interprets the tags to
format the text into aform such as you see here. Writers can produce output for avariety of printers,
including laser printers, using separately specified layout directives for such things as font selection,
column width and height, number of columns, etc. The result istype-set quality copy containing integrated
text and graphics.

Many users have provided valuable feedback on earlier versions of the Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have
some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual
DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.
0S/2 isatrademark of International Business Machines Corp. IBM Developer’s Toolkit, Presentation
Manager, and OS/2 are trademarks of International Business Machines Corp. IBM isaregistered
trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. WindowsNT isa
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.
UNIX isaregistered trademark of The Open Group.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

1 Watcom C/C++ Application DeVEIOPMENTcoiiiiriiiiieeeeieeeeeereee e
DOS ProgrammMing GUITEcccereeuerieterieierietireeteseestrteessesessee s e s s s sesesaesesaesessesessesessenessensssesesessesesseses
2 Creating 16-bit DOS APPHICALIONSceiueuirieiirieirieiriees ettt b et e ebe e
2.1 The Sample APPHCALIONccveeeeeeeeceee e e sr e resnesrenes
2.2 Building and Running the Sample DOS Applicationccccceveeeeeverienieseeesese e
2.3 Debugging the Sample DOS APPlIiCaLIONcccveieieicecerece e
3 Creating 32-bit Phar Lap 386|DOS-Extender AppliCationScccooevererereienene e
3.1 The SampPle APPHICALTIONoouieieeeeeee e et b e b e
3.2 Building and Running the Sample 386|DOS-Extender Applicationc.cccveevreienienenn
3.3 Debugging the Sample 386|DOS-Extender AppliCationccccvevereerieierienenenenereeenens
4 Creating 32-bit DOS/AGW APPIICALIONScoveeeuiieiirieiirieerieesiees ettt
4.1 The Sample APPIICALIONcceieiieeie e e e ereenesnesrenrs
4.2 Building and Running the Sample DOS/4AGW Applicationcccccvevvvvievevenienieseeneeene
4.3 Debugging the Sample DOS/AGW ApPpPliCationccccevvveveviseie e
5 32-bit Extended DOS Application DevElOPMENTcccccioeririreriinese e
L300 1 11 oo [FTox o) o [OOSR
5.2 How can | write directly to video memory using a DOS extender?ccoceeeveeeneienieenn
5.2.1 Writing to Video Memory under Tenberry Software DOS/AGWccceeveueeee
5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-Extender
5.3 How do | get information about free memory in the 32-bit environment?c.ccc.....
5.3.1 Getting Free Memory Information under DOS/AGW ccocevvevevececerece e
5.3.2 Getting Free Memory Information under the Phar Lap 386|DOS-Extender
5.3.3 Getting Free Memory Information in the 32-bit Environment under
WINAOWS X ettt ettt st ettt sb b s sb e e
5.4 How do | access the first megabyte in the extended DOS environment?cccoceeeenene
5.4.1 Accessing the First Megabyte under Tenberry Software DOS/IAGW
5.4.2 Accessing the First Megabyte under the Phar Lap 386|DOS-Extender
5.5 How do | spawn a protected-mode appliCation?coccceverirenerennenseseeeseee e
5.5.1 Spawning Protected-Mode Applications Under Tenberry Software
DOSIAGW ..ottt ettt sttt et et e s be et e ebeeatesbeentesbeesesanentens
5.5.2 Spawning Protected-Mode Applications Under Phar Lap 386|DOS-Extender ...
5.6 How Can | Use the Mouse Interrupt (0x33) with DOS/AGW?cceceveevecieeeeeeeese e
5.7 How Do | Simulate a Real-Mode Interrupt with DOSIAGW?ccccoevveveeeneeeeece e,
5.8 How do you install abi-modal interrupt handler using DOS/AGW?cocveneneneneniene
The DOS/AGW DOS EXIENUENcceceieeiirieieieeti ittt stee st et se e ettt se et se st seetesaesesaesesae e s tesesbesesbeneste e ssesnsens
6 The Tenberry Software DOS/AGW DOS EXIENUESccooviriiiiieirieerie et
7 LiNEar EXECULADIEScueieieiieiiiiste ettt bbbttt
7.1 The Linear EXECULaDI® FOIMELccoeiviiiiiiirinensese s
7.1.1The StUD Programcccccceieierieiesieseeeeeee s stese e ste e sne st te st sae e e sae e ensenssnenns
T2 MEMOTY USE ..ottt sttt sr et be e st e s ae e eabe e sbeeeabe e s baesbeenbeesnbeenseenareens
8 ConfigUIING DOSIAGWV ...ttt et ettt b e b e st eaesbesbesbeebe st es

o 01 01Ol

O © ©

10

13
13
13
14

17
17
18
18
19
19
20
21

22
24
24
25
26

26
27
28
30
32

37
39
41
41
4
42

45

Table of Contents

8.1 The DOSAG Environment Variable ... 45

8.2 Changing the SWitch Mode SELtINGccoceiirereiiee e e 46

8.3 Fine Control of MemMOry USAJEcoeoiirriirieiirieienieierie et 47

8.3.1 Specifying a Range of Extended MemOryoccovveereiineieneiesee e 47

8.3.2USING EXIFAMEMOIY ...oecuiiiiiiiiiesiest et 48

8.4 Setting RUNLIME OPLIONSoeovirieiirieiirieierieerieesie ettt st be e re e 49

8.5 Controlling AAAreSS LiNE 20cc.ccveeeeeeeeeeese e s te e eeee e e se e s s sre e seeseenen 50

DV MM bbb bR R R R R R R R R e Rt R bR e R R 51
9.1 VMM Default ParamELErSccvvveiiriiireinresesesee st 51

9.2 Changing the DEFAUILScuooiiiieeeeee e 52

9.2.1 The WMC FILE .ottt e 52

10 INtErrUPt 21H FUNCLIONSeouiiiiiiiisicieieee ettt bbbt 53
10.1 Functions 25H and 35H: Interrupt Handling in Protected Modecccoovivvievncninienee 56

10.1.1 32-Bit GAES ...eeueereeereerereeieteesesieeesesesesesseseseseesesesestesesesesassesesesessesesessssesenessssesens 56

10.1.2 Chaining 16-bit and 32-bit HandIersccoovvivveviere s 57

10.1.3 Getting the Address of the Interrupt Handler ..., 57

11 Interrupt 31H DPMI FUNCHIONS ...ttt e s b e 59
11.1 Using Interrupt 31H FUNCLION CallSc.oiiiiiiiiieee e s 59

12.2 INt31H FUNCLION CAlIS ...ttt 60

11.2.1 Local Descriptor Table (LDT) Management SErViCeSccoverrerenereeerieienens 60

11.2.2 DOS Memory Management SEIVICEScocuvririeirieieneeseesie s 65

11.2.3 INLEITUPE SEIVICES ...vveeeiirieerieesie ettt sttt 67

11.2.4 TranSlation SEIVICESccveveereeeeiiresestesieseesees e seeseeseeeeseeseesesses e esessessessessesseses 69

11.2.5 DPMI VEISION ..ottt 76

11.2.6 Memory Management SEIVICEScccvvrreriereeeeesesesesesieste e seessesesaeseenessessenns 77

11.2.7 Page LOCKING SEIVICESccveieeececieie ettt st a e snesne s s 78

11.2.8 Demand Paging Performance Tuning SErVIiCESccoccevievieviereeseeeeseeee e, 79

11.2.9 Physical AddreSS MapPingcoeoeeoereremerene s e e sre b s sre e 80

11.2.10 Virtual Interrupt State FUNCLIONScoiiiieirieie e 81

11.2.11 Vendor SPeCifiCc EXIENSIONScoovirieririeirieiereeereeesieesiee et 83

11.2.12 COPIOCESSOr SEALUSc.eeueeuerueerenreriesseeresreseessessessesseseseseeeesesesseesessessesnesressenes 83

2 = 85
12,1 DOSAGWV ..ottt sttt n e r et r e 86

L2.2 PMINFO .ottt 87
L2.3PRIVATXM ottt ettt 89

L2 4 RMINFO .ottt bbb bbbt b e 0

L3 EITON MESSAZESeciiuiiueeiteeieiteeie st st et ae et eae e s bt et e saeeaeeshe e beshe e b e ehe e b e eae e b e eaeeebeenseeaeenesaeeneesanas 93
13. 1 Kernel Error MESSAgESc.ccecveiiiieieieniete ettt sttt sttt sttt e 93

13.2 DOS/AG EITOFS ..ueeueieieteeiesiesiesiesieseessesteseeseesesseseesessessessessessessessansessensansensensesessessessessensenes 96

14 DOS/AGW Commonly AsSKed QUESLIONScouciriiiriiirerieeseete sttt et 101
14.1 Accessto TeChniCal SUPPOITcocvevrererisise e es 101

14.2 Differences Within the DOS/AG ProdUuct LiNEcccceevrreeinnereiennreeeseseeree e 102

T AN (o == T RS 105

14.4 Interrupt and EXCeption HaNIiNGccooeeeiierieeee e 106

14.5 MemOry ManNagEMENLEooeiiiieieriieeerie ettt sttt st b e b e bbb sbeeneesaeeseeeaeeseeeaeas 108

14.6 DOS, BIOS, and MOUSE SENVICES ...c.eoiueiiieieieeeeiereee sttt sresbe s e s e s e ee e s e sseenes 109

Vi

Table of Contents

T4.7 ViIrtUBl MEIMIONY ..ottt ettt et she b a et e b b et et e e et e ne e e e e enesbenaeee 109

14.8 DEDUGGING +.-veuveeeteeereeieeereeeesessesueetestesseseesseseeseessasssaeeneesessessesbessesaessesbeseessesenseseenessesnes 112

14.9 COMPALIDIHITY o.ecveeeeiieeeee e bbb 115
Windows 3.X Programming GUITEc.coeiiririiirieiniee ettt neens 117
15 Creating 16-bit Windows 3.X APPlICALIONScccceviiereriirierieseeeeeeese e et e e 119
15.1 The Sample GUI APPIICALIONc..cvcuecicece et 119

15.2 Building and Running the GUI ApPliCaLIoNccooiiiiiiineeeeeeeesereee e 120

15.3 Debugging the GUI APPLICELIONcoueieiiireeeeeerere e 120

16 Porting Non-GUI Applications to 16-bit WiNAOWS 3.Xcccverriririnieirieesieeseesieseseses e 123
16.1 Console Devicein aWindowed ENVIFONMENTccccvviveveneneseneeeeereeee s 123

16.2 The Sample Non-GUI APPICEITIONcoviiiriirieiriiee e 123

16.3 Building and Running the Non-GUI AppliCationcceeveriinninneneeeese e 124

16.4 Debugging the Non-GUI APPlICaLIONccccoeeeeerecirece e sre e e 125

16.5 Default Windowing Library FUNCHIONScccveieecinecccece st 126

17 Creating 32-bit Windows 3.X APPIICALIONSccociriririiriirieriereeeeeeee e 127
17.1 The Sample GUI APPIICALIONoooiiiiiieeeeee e e 127

17.2 Building and Running the GUI AppliCationcooe e 128

17.3 Debugging the GUI APPIICELIONccviuiiriiieieseeteneeiereet et 129

18 Porting Non-GUI Applications to 32-bit WiNAOWS 3.Xccviririririnieiieenie s 131
18.1 Console Devicein aWindowed ENVIFONMENEcccccvvvrieveneneseneeseeeeseeee e 131

18.2 The Sample Non-GUI ApPPliCaHIONccceeeveeerese et seeen 131

18.3 Building and Running the Non-GUI AppliCationcccocevviveviiniesie s 132

18.4 Debugging the Non-GUI APPlICaLIONccccvceieeecieece e 134

18.5 Default Windowing Library FUNCLIONScccceieiieiiieie e 135

19 The Watcom 32-bit Windows 3.X EXIENTES ..ot 137
S I o111 SRR 137

19.2 IMplementation OVEINVIEWc..coieiriiiriee ettt sttt st st 138

19.3 SYSIEM SIIUCIUIE ...ttt e e r e 139

19.4 SYSLEM OVEIVIEBIW ...ttt ettt b ettt ettt st st 139

19.5 Stepsto Obtaining a 32-bit APPIICALIONocveeeeceeeee e 140

20 Windows 3.x 32-bit Programming OVEINVIEWccceeiieiinisie i siesieseeseesseeees e sses e ssesrestessesneeas 141
20. 1 WINDOWSH ..otttk bbbt 141

20.2 ENVIFONMENE NOESuiieiiiieiiiteisiees ettt n e s b e e s enenrene 142

20.3 Floating-point EMUIBEIONccoiiiiieie ettt et 142

20.4 MUITIPIE INSLBNCES ...ttt sttt sttt sttt n et et b et b e en s 143

20.5 POINLEr HANAING ...ttt et st 143

20.5.1 When To Convert INcComing POINLErSccoeoireirennenesenene e 144

20.5.2 When To Convert Outgoing POINLESSccveirierineneneneee e 144

20.5.2.1 SendMessage and SendDIgItemMESSAgEcccevervvveerereseseseseeseeens 145

20.5.3 Globa AlloC aNd LOCEIAIIOCoviveeeeireniereeresieee s 146

20.5.4 Callback FUNCLION POINEFSccoviiieeeinisieieeeseseee e 146

20.5.4.1 Window SUB-ClassinNgcccccvrieiieiese e 149

20.6 CalliNg 16-Dit DLLS ...cvcuiiiiieiieirisieie ettt 150

20.6.1 Making DLL CallS TranSparentccccoeceeeerieriemeneresese e seeseesee e sesesesesnens 151

vii

Table of Contents

20.7 Far Pointer ManipUIAtiONcoooeieieeeeeeeeesenen et et
PO S B (G U 1]

21 Windows 32-Bit DynamiC Link LiDraries ..o
21.2 Introduction t0 32-Bit DLLS ..oouvoieereeeeeeeeee st
21.2 A SAMPIE 32-DIT DLL oottt st st st
21.3 Calling Functionsin a 32-bit DLL from a 16-bit Applicationcccceeevevevcivinieeenn,
21.4 Writing a 16-bit Cover for the 32-bit DLLccccceveviieiereeceeeeee s
21.5 Creating and Debugging Dynamic Link Librariescccccocvvvvieeienieveiesieseseseseseeeennns

21.5.1 Building the APPlICALIONSccoeririiiiere e
21.5.2 Ingtalling the Examples under Windows ...
21.5.3 RUNNING the EXBMPIEScoiiiieiieie et
21.5.4 Debugging @32-DIt DLL ...oc.ccoiiiiiiiirisieesieeeeseei et
21.5.5 SUMMEIY ...ooueivieiiiiierierese ettt r b e r e e sn e e e

22 Interfacing Visual Basic and Watcom C/CH++ DLLS ...oooviiiiiirrerneseneeee e
22.1 Introduction to Visua Basic @and DLLSccccecviininnireeeeneese e

W VAV Lo N gTo o] o] = T

22.3 Sample Visual BasiC DLL Programsccccccveeieniine i e e seeessese e sre e snesre s s

22.3.1 Source Code for VBDLL32.DLL ...ocoiiiiiieeeceeeeee e

22.3.2 Source code for COVERILB.DLLcccoooiiiiiieeeeeecre et

22.4 Compiling and Linking the EXamMPIES ...

23 WIN386 Library FUNCLIONS @0 IMACTOSccvevruiirriieiirieiesieiesee s
PN L0107 = 1 1 T
AOCHUGEAILTBSLE ...
=
DEfINEDLLENIIY .vecveieeciece sttt st s
DEFfINEBUSEIPIOCLEooviivveiticiiecieciectecte ettt ettt st s sre s sbesaeesbessaesbessaesbeens
FIEEATIBSLEc.vecvieveceeecte ettt ettt et e a e s e ste e sresneesbeeaaenreens
FreeHUGEATTESLOcc.ooviieiiiiieie e e e
FreelndirectFunctionHandleccoooeecii e
GetlndireCtFUNCLIONHANAIEooveiiieeee e
GEIPIOCLG ...ttt ettt e et e e aae e e b e e e eabe e e entaeesaneeas
INVOKEI NAITECLFUNCLION ...ttt st
MEPATBSTOFIEL ..o bbb
S et TS
S 7
S 0 I TSP
PASS WORD_AS POINTERcoooioicieee et
REIEASEPIOCLEoovvietieceetee ettt ettt et e re e eae e e beeeaee b s

24 32-bit Extended Windows Application DevelOpmMENt ...
24.1 Can you call 16-bit code from a 32-bit Windows application?ccceervenvcnecnnnne
24.2 Can | WinExec another Windows appliCation?c.cccoerrernennenesienesesee e
24.3 How do | add my WindOWS FESOUICES?ccereeuereerereeierieiesieseseeesieseseeessesessesessesseseseenes
24.4 All function pointers passed to Windows must be 16-bit far pointers, correct?
24.5 Why are 32-bit callback roUtINES FAR?ooveeceeee e
24.6 Why usethe 16 APl fUNCHIONS?cociiiieiee ettt st
24.7 What about POINEErS iN SIUCLUMNES?ooueiuiieiiierie et et
24.8When do | USE MK _FP327? ..ottt bbb e
24.9 What is the difference between AllocAliasle and MK_FP167?cccccoovivevieiievennns

viii

195
196
196
196
196
197
197
197

Table of Contents

24.10 Tell Me More About Thunking and AlIESESccoceeereieiinere e 197

25 Special Variables for Windows Programmingcccoeeereerennenninsesseseese s 199
26 Definitions of WINAOWS TEMSc.eiviieiiie e seeee et sttt s ee e enaenee e e e esessessessesseses 201
27 Special WIindowS APl FUNCLIONScccovviiiiisese e e eee ettt ste e sesae e seessnessessessessees 203
Windows NT Programming GUITEccceieeieieeieieesie e see et e et esseeae e sae s e e saessaestessaesteenaesseensenseenns 207
28 Windows NT Programming OVEINVIEWcccoueeeeoirerieeeniese e sie e e see e sessesss e e ssessessesaesseseesnens 209
28.1 Windows NT Programming NOEcccociriiriiiriinireeieeeresee e 209

28.2 Windows NT Character-mode Versus GUI ... 209

29 Creating Windows NT GUI APPlICALIONSccveirieiirieirieiricriesieeseees e 211
29.1 The Sample GUI APPIICAIONcvceieeeeeeeeeee e e sr e e nes 211

29.2 Building and Running the GUI APPlIiCationcccccveiieveneieieseeseeeees e se e 211

29.3 Debugging the GUI APPlICALIONccviiiiiieesceeee e 212

30 Creating Windows NT Character-mode APPliCaLIONScccocererererenienie e 215
30.1 The Sample Character-mode APPliCaLIONcoeiiriirereeeeere e 215

30.2 Building and Running the Character-mode AppliCationcocoveirennensienneneeennas 215

30.3 Debugging the Character-mode ApPpliCaLIONccooveireiieire e 216

31 Windows NT Multi-threaded APPlICALIONSccooeiiiiriiirireee s 219
31.1 Programming CONSIAEratioNSccccvuereereereeieeeresesestesesee e seeseeees e e e esessessessessesesseenses 219

G I (= 11 (=" o < TSR 219

31.2.1 Creating aNew Threadccccoveeeiieiieieeeeeces e re e 220

31.2.2 Terminating the Current Threadcoceveeievicie e 220

31.2.3 Getting the Current Thread [dentifier ... 220

31.3 A Multi-threaded EXAMPIEcooiiiiieieeeieee et et 221

32 Windows NT DynamicC Link LIibDIrariesccoccvirininnieeneese e 223
32.1 Creating Dynamic Link Libraries ... 223

32.2 Creating a Sample Dynamic LinkK LiDrary ..o 224
32.3Using DYyNamicC LinK LIbDrariesccceeeciereeeeeeesie st e s 227

32.4 The Dynamic Link Library DaaATEaccccceeveeeeresesesesiesieseseeseesaeseesessesese e sressesns 229

33 Creating Windows NT POSIX APPlICALIONScccoeriririiiniiniesie e s 231
OS/2 Programming GUITEcerueuerieuirieiirieesieesteestes ettt e bbb st bbbt b e b e b e 235
34 Creating 16-bit OS/2 1.X APPIICALIONS ...cveuiriiiiriiiriiirie e 237
34.1 The SamMPIe APPHICALTION ...oovcuirieiirieierieerte ettt b e e be e 237

34.2 Building and Running the Sample OS/2 1.x Applicationccccoovvevvvnievenenerereeeeene 238

34.3 Debugging the Sample OS/2 1.X APPlICALIONcccceveieveriiere e 238

35 Creating 32-bit OS/2 APPlICALIONSc.oiuiiiriirieii e e 241
35.1 The Sample APPLICALIONcc.oieieee e et 241

35.2 Building and Running the Sample OS/2 Applicationccoeeeieirininineeeeeeeeee 242

Table of Contents

35.3 Debugging the Sample OS/2 APPlICALIONcc.ooviieeeieerereeeeere e

36 0OS/2 2.x Multi-threaded APPIICALIONSccoiviirieiriiieieeee e
36.1 Programming CONSIAEIELIONScc.eurueeriererieriniinieiereeieseeie s ssee s

36.2 Creating THIEaOScccouiiiiireie e et

36.2.1 Creating aNeW THread ..ot

36.2.2 Terminating the Current TAreadcccoeveeeeeecececc e

36.2.3 Getting the Current Thread [dentifierccocvvvevievevcsce s

36.3 A Multi-threaded EXAMPIEcccv ittt s st

36.4 THread LIMITS ...ocveviieeeiieciieees ettt

37 OS2 2.X DYNamicC LiNK LiDIariEScccoiiiiiiiie et
37.1 Creating Dynamic Link Libraries ..o
37.2 Creating a Sample Dynamic Link Library ..o
37.3Using Dynamic LinkK Libraries ..o
37.4 The Dynamic Link Library DB ATEAccveeereririirireeie e
37.5 Dynamic Link Library Initialization/Terminationcccccveveeeievienesenieseseeseeseeseeseenens

38 Programming for OS/2 Presentation Managercccccevveeeeesieiesresesieseessesaeeeseesessessesressessessesss
38.1 Porting Existing C/C++ APPlICALIONSccooiriiiriieierese e e

38.1.1 AN EXAMPIE .ttt bbb e

38.2 Calling Presentation Manager APl FUNCLIONSc.ccoiiiiiriineneneee et

39 Developing an OS/2 PhySiCal DEVICE DIIVELciieiieirieeriesees e

Novell NLM Programming GUITEccceeiirerierieriesieseeseeeeesesestessessessestessessessessesessssssssssssssessesssssessessessens

40 Creating NetWare 386 NLM APPHCALIONSccccevveviiiieierieieeee ettt enas

Mixed Language PrograMiMingcoooeoeoereereeieeieeeeuese st stesiesaeseesbeseessesesesseeseesessesseesessessesaessesseseessasseseens

41 Inter-Language calls: C and FORTRAN ..ottt
41.1 Symbol Naming CONVENTIONceiuriririiieirieese et
41.2 Argument Passing CONVENTIONcc.eurieiriririeirieeseeseses et
41.3 Memory Model Compatibilitycccceveiercreccr e e
41.4 Linking CONSIAEIGLONSccveueirerieieisieseseeseeeeseeseeessessestesteseessessessessesesessesessessessessenses
41.5 Integer Type CompPatibilitycceoveiieieicecece et s
41.6 How do | passintegersfrom C to a FORTRAN function?cccceoinininenenenenen
41.7 How do | passintegersfrom FORTRAN to aC function?ccocevnvneninenenienieniene
41.8 How do | passastring from a C function to FORTRAN?ccccociiiininininene e
41.9 How do | passastring from FORTRAN t0 a C function?ccccceeveeveininncneenenes
41.10 How do | access a FORTRAN common block from within C?ccccocveeieinencnnn
41.11 How do | call a C function that accepts a variable number of arguments?

COMIMON PrOBIBMS ...ttt b ettt e e be e b et bt eneneens
42 Commonly Asked QUESLIONS @NA ANSWENScccueiueerieriieieseesieseeste e sreeseesreesse e e sresae e ssaesreensenes

42.1 Determining my current patCh [EVElooco oo
42.2 Converting to WatCom CICHH ..ot

Table of Contents

42.2.1 Conversion from UNIX COMPILENS ..c.ooiiiiiiiiiieieeeee e e 282

42.2.2 Conversion from IBM-compatible PC cOMPIlErsccoceoniieninienienenenenene 283
42.3 What you should know about OptimiZationccceeeereererenennensesese e 284
42.4 The compiler cannot find "Stdio.n" ..o 285
42.5 Resolving an "Undefined Reference” lINKer e1Torocverernennenese e 286
42.6 Why my variableS are NOt SEL 10 ZEr0oovvveveiiericiree e e 287
42.7 What does "size of DGROUP exceeds 64K" mean for 16-bit applications? 288
42.8 What does "NULL assignment detected" mean in 16-bit applications?cccccceeeenene 289
42.9 What "Stack OVErflow!" MEANScccoviueirirreeereee e 290
42.10 Why redefinition errors are issued from WLINKocooiiiiiieein e 291
42.11 How morethan 20 files at atime can beopened ... 292
42.12 How source files can be seen in the debuggercocooeieiiienene e 293
42.13 The difference between the "d1" and "d2" compiler optionscccooeeverrenneneennns 295

Xi

List of Figures

Figure 1. BasiC MEMOIY LAYOULcoiiiiiiiiterie ittt ettt s h e b e st seese e s e e e e e e e seeaeeaeebesbesaesbesbeseeseenean 43
Figure 2. Physical Memory/Linear AQArESS SPACEcoereriiiuerieieirere ettt st s se b se e ae e esbesaesaesne 44
Figure 3. ACCESS RIGNES/ TYPE ..ottt b e b e e b e e b e e bbb et e b et b et eb e ne b e seebeneebesrene e 63
Figure 4. Extended ACCESS RIGNES/ TYPE ..ottt b et bbbt 64
FIGUIE 5. WINSBE SITUCLUIEoviuiiteiiiteieteseete sttt sttt ettt sttt b e sk e b se bt s e bt s e e be st et sb et sb e e et et ebeneebe e 139
Figure 6. 32-Dbit APPlICALTION SIIUCIUIEooviiiiiieieetiret ettt bbb ee 139

Xii

1 Watcom C/C++ Application Development

This document contains guides to application development for several environments including 16-bit DOS,
32-bit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows NT/2000/XP, Win9x, 0S/2,
and Novell NLMs. It also describes mixed language (C, FORTRAN) application development. It
concludes with a chapter on some general questions and the answers to them.

This document covers the following topics:
» DOS Programming Guide

Creating 16-bit DOS Applications

Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/AGW Applications

32-bit Extended DOS Application Development

» The DOS/AGW DOS Extender

The Tenberry Software DOS/4GW DOS Extender
Linear Executables

Configuring DOS/AGW

VMM

Interrupt 21H Functions

Interrupt 31H DPMI Functions

Utilities

Error Messages

DOS/4GW Commonly Asked Questions

» Windows 3.x Programming Guide

Creating 16-bit Windows 3.x Applications

Porting Non-GUI Applicationsto 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications

Porting Non-GUI Applicationsto 32-bit Windows 3.x
The Watcom 32-bit Windows Extender

Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries

Interfacing Visual Basic and Watcom C/C++ DLLs
WIN386 Library Functions and Macros

32-hit Extended Windows Application Devel opment
Special Variables for Windows Programming
Definitions of Windows Terms

Special Windows API Functions

» Windows NT Programming Guide

Watcom C/C++ Application Development

Chapter 1

Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applicationsto Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries
» OS/2 Programming Guide

Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications

0S/2 Multi-threaded Applications

OS/2 Dynamic Link Libraries

Programming for OS/2 Presentation Manager
* Novell NLM Programming Guide

Creating NetWare 386 NLM Applications
» Mixed Language Programming
Inter-Language calls: C and FORTRAN

* Common Problems

Commonly Asked Questions and Answers

2 Watcom C/C++ Application Development

DOS Programming Guide

DOS Programming Guide

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample application and
showing you how to compile, link, run and debug it.

2.1 The Sample Application

To demonstrate the creation of 16-bit DOS applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the famous "hello" program.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");

The C++ version of this program follows:
#i ncl ude <i ostream h>
voi d main()

cout << "Hello world" << endl;

}

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version uses the "iostream" library to accomplish
thistask. We will take you through the steps necessary to produce this result.

2.2 Building and Running the Sample DOS Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

Cwel /1 =dos hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS Application 5

DOS Programming Guide

Cwel /1=dos hello.c
Open Watcom C/ C++16 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wee hello.c
Open Watcom C16 Optim zing Conpil er
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 155, 0 warnings, O errors
Code size: 17

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a DOS executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now

be run.
Cshel l o
Hello world

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | o. obj
with the appropriate Watcom C/C++ libraries). Itis hel | 0. exe that isrun by DOS when you enter the
"hello" command.

2.3 Debugging the Sample DOS Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello” program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, thisisfairly straightforward. WCL recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel /1=dos /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

6 Debugging the Sample DOS Application

Creating 16-bit DOS Applications

Cwel /1=dos /d2 hello.c
Open Watcom C/ C++16 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wec hello.c /d2
Open Watcom C16 Optim zing Conpil er
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 155, 0 warnings, O errors
Code size: 23

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a DOS executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

Cwd hell o

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 7

DOS Programming Guide

8 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386/DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender applications simply and
quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by taking a small
sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application

To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using command-line
oriented tools, we introduce a ssmple sample program. For our example, we are going to use the famous
"hello" program.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");

The C++ version of this program follows:
#i ncl ude <i ostream h>
voi d main()

cout << "Hello world" << endl;

}

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version uses the "iostream” library to accomplish
thistask. We will take you through the steps necessary to produce this resullt.

3.2 Building and Running the Sample 386/DOS-Extender
Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

C>wel 386 /| =pharlap hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample 386|DOS-Extender Application 9

DOS Programming Guide

Cwel 386 /1 =pharlap hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, 0 warnings, O errors
Code size: 24

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>run386 hello
Hello world

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exp (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries). Itis hel | 0. exp that isrun by DOS when you enter the
"run386 hello" command.

3.3 Debugging the Sample 386|DOS-Extender Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello” program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL 386 command, thisisfairly straightforward. WCL 386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel 386 /I =pharlap /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

10 Debugging the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386/|DOS-Extender Applications

Cwel 386 /1 =pharlap /d2 hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c /d2
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, 0 warnings, O errors
Code size: 45

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

Cwd /trap=pls hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample 386|DOS-Extender Application 11

DOS Programming Guide

12 Debugging the Sample 386/DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/AGW applications simply and quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample application
and showing you how to compile, link, run and debug it.

4.1 The Sample Application

To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the famous "hello" program.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");

The C++ version of this program follows:
#i ncl ude <i ostream h>
voi d main()

cout << "Hello world" << endl;

}

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version uses the "iostream" library to accomplish
thistask. We will take you through the steps necessary to produce this result.

4.2 Building and Running the Sample DOS/4GW Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

Cwel 386 /1 =dos4g hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS/AGW Application 13

DOS Programming Guide

Cwel 386 /1 =dos4g hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, 0 warnings, O errors
Code size: 24

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a DOS/ 4G execut abl e

Provided that no errors were encountered during the compile or link phases, the "hello" program may now

be run.
Cshel l o
Hello world

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | o. obj
with the appropriate Watcom C/C++ libraries). Itis hel | 0. exe that isrun by DOS when you enter the
"hello" command.

4.3 Debugging the Sample DOS/4GW Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello” program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL 386 command, thisisfairly straightforward. WCL 386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wel 386 /1 =dos4g /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

14 Debugging the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

Cwel 386 /1 =dos4g /d2 hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c /d2
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, 0 warnings, O errors
Code size: 45

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a DOS/ 4G execut abl e

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

Cwd /trap=rsi hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS/4GW Application 15

DOS Programming Guide

16 Debugging the Sample DOS/AGW Application

5 32-bit Extended DOS Application Development

5.1 Introduction

The purpose of this chapter is to anticipate common programming questions for 32-bit extended DOS
application development. Note that these programming solutions may be DOS-extender specific and
therefore may not work for other DOS extenders.
The following topics are discussed in this chapter:

» How can | write directly to video memory using a DOS extender?

» How do | get information about free memory in the 32-bit environment?

* How do | access the first megabyte in the extended DOS environment?

* How do | spawn a protected-mode application?

» How can | use the mouse interrupt (0x33) with DOS/AGW?

» How do | simulate areal-mode interrupt with DOS/AGW?

» How do you install a bi-modal interrupt handler with DOS/AGW?
Please refer to the DOS Protected-Mode | nterface (DPMI) Specification for information on DPMI
services. Inthe past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26

3065 Bowers Avenue

P.O. Box 58065

Santa Clara, California

U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/IlAL/sof tware_specs/ dpm v1. zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Introduction 17

DOS Programming Guide

5.2 How can | write directly to video memory using a DOS
extender?

Many programmers require access to video RAM in order to directly manipulate data on the screen. Under
DOS, it was standard practice to use afar pointer, with the segment part of the far pointer set to the screen
segment. Under DOS extenders, this practice is not so standard. Each DOS extender providesits own
method for accessing video memory.

5.2.1 Writing to Video Memory under Tenberry Software DOS/AGW

Under DOS/AGW, the first megabyte of physical memory is mapped as a shared linear address space. This
allows your application to access video RAM using a near pointer set to the screen’s linear address. The
following program demonstrates this method.

/*
SCREEN. C - This exanple shows howto wite directly
to screen nenory under the DOS/ 4GW dos- ext ender.
Conpile & Link: wcl 386 -1=dos4g SCREEN
*/

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

/*
Under DOS/4GWN the first megabyte of physical nmenory
(real -node nmenory) is mapped as a shared |inear address
space. This allows your application to access video RAM
using its linear address. The DOS segnent: of fset of
B800: 0000 corresponds to a |linear address of B8000.

*/

#def i ne SCREEN_ AREA 0xb800

#define SCREEN_LIN_ADDR ((SCREEN_AREA) << 4)

#defi ne SCREEN_SI ZE 80* 25

voi d main()

{
char *ptr;
i nt i;
/* Set the pointer to the screen’s |inear address */
ptr = (char *)SCREEN LI N_ADDR;
for(i =0; i < SCREEN_SIZE - 1; i++) {
*ptr = *";
ptr += 2 * sizeof(char);
}
}

Please refer to the chapter entitled "Linear Executables" on page 41 for more information on how
DOS/4GW maps the first megabyte.

18 How can | write directly to video memory using a DOS extender?

32-bit Extended DOS Application Development

5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-Extender

The Phar Lap DOS extender provides screen access through the special segment selector 0x1C. This
allowsfar pointer access to video RAM from a 32-bit program. The following exampleillustrates this
technique.

/*
SCREENPL. C - This exanple shows howto wite directly
to screen nenory under the Phar Lap DOS extender.

Conpile & Link: wcl 386 -1 =pharl|l ap SCREENPL
*/
#i ncl ude <stdio. h>
#i ncl ude <dos. h>

/*
Phar Lap all ows access to screen nenory through a
speci al selector. Refer to "Hardware Access" in
Phar Lap’s docunentation for details.

*/

#defi ne PL_SCREEN SELECTOR Oxlc
#def i ne SCREEN_SI ZE 80*25
voi d main()

/* Need a far pointer to use the screen selector */
char far *ptr;
i nt i;

/* Make a far pointer to screen nmenory */
ptr = MK_FP(PL_SCREEN SELECTOR, 0);
for(i =0; i < SCREEN_SIZE - 1; i++) {
ptr - ’’;
ptr += 2 * sizeof(char);

}

It is also possible to map screen memory into your near memory using Phar Lap system calls. Please refer
to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s 386|DOS-Extender Reference
Manual for details.

5.3 How do | get information about free memory in the 32-bit
environment?

Under avirtual memory system, programmers are often interested in the amount of physical memory they
can alocate. Information about the amount of free memory that is available is always provided under a
DPMI host, however, the manner in which thisinformation is provided may differ under various
environments. Keep in mind that in a multi-tasking environment, the information returned to your task
from the DPMI host can easily become obsolete if other tasks allocate memory independently of your task.

How do I get information about free memory in the 32-bit environment? 19

DOS Programming Guide

5.3.1 Getting Free Memory Information under DOS/AGW

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI service
0x0500 to get free memory information. The following program illustrates this procedure.

/*
MEMORY. C - This exanple shows how to get information
about free menory using DPM call 0500h under DOS/ 4GWN
Note that only the first field of the structure is
guaranteed to contain a valid value; any field that
is not returned by DOS/4GWis set to -1 (OFFFFFFFFh).

Conpile & Link: wcl 386 -1=dos4g nmenory
*/
#i ncl ude <i 86. h>
#i ncl ude <dos. h>
#i ncl ude <stdi o. h>

#defi ne DPM _|I NT 0x31

struct memnfo {
unsi gned Lar gest Bl ockAvai |
unsi gned MaxUnl ockedPage;
unsi gned Lar gest Lockabl ePage;
unsi gned Li nAddr Space;
unsi gned Nunfr eePagesAvai l
unsi gned NunPhysi cal PagesFr ee;
unsi gned Tot al Physi cal Pages;
unsi gned FreelLi nAddr Space;
unsi gned Si zeOf PageFi | e;
unsi gned Reserved| 3];

} Menl nfo;

voi d main()

uni on REGS regs;
struct SREGS sregs;

regs. x. eax = 0x00000500;

nmenset (&sregs, 0, sizeof(sregs));
sregs.es = FP_SEQ &Meninfo);
regs. x.edi = FP_OFF(&wem nfo);

20 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

}

i nt386x(DPM _I NT, ®s, ®s, &sregs);
printf("Largest available block (in bytes): %u\n",
Mem nf o. Lar gest Bl ockAvail);
printf("Maxi mum unl ocked page allocation: %u\n",
Mem nf o. MaxUnl ockedPage) ;
printf("Pages that can be allocated and | ocked:
"% u\n", Mem nfo.LargestLockabl ePage);
printf("Total |inear address space including "
"al l ocat ed pages: 9% u\n",
Mem nf o. Li nAddr Space);
printf("Nunber of free pages available: % u\n",
Mem nf o. Nuntr eePagesAvail);
printf("Nunmber of physical pages not in use: %u\n",
Mem nf o. NunPhysi cal PagesFree);
printf("Total physical pages managed by host: 9% u\n",
Mem nf o. Tot al Physi cal Pages);
printf("Free linear address space (pages): % u\n",
Mem nf o. Fr eeLi nAddr Space) ;
printf("Size of paging/file partition (pages): %u\n",
Mem nf o. Si zeCf PageFil e);

Please refer to the chapter entitled "Interrupt 31H DPMI Functions® on page 59 for more information on
DPMI services.

5.3.2 Getting Free Memory Information under the Phar Lap 386/DOS-Extender

Phar Lap provides memory statistics through 386|DOS-Extender System Call 0x2520. The following
exampleillustrates how to use this system call from a 32-bit program.

/*

*/

MEMPLS40.C - This is an exanple of how to get the
amount of physical menory present under Phar Lap
386| DOS- Ext ender v4. 0.

Conpile & Link: wcl 386 -1=pharlap MEMPLS40

#i ncl ude <dos. h>
#i ncl ude <stdi o. h>

typedef struct {

unsi gned dat a[25] ;

} pharl ap_nmem st at us;

/* Nanmes suggested in Phar Lap docunentation */

#def i ne APHYSPG 5
#def i ne SYSPHYSPG 7
#def i ne NFREEPG 21

unsi gned | ong nmemavail (void)

phar| ap_mem st at us st at us;
uni on REGS regs;
unsi gned | ong anount;

How do I get information about free memory in the 32-bit environment? 21

DOS Programming Guide

regs. h.ah = 0x25;
regs. h.al = 0x20;
regs. h.bl = 0;

regs. x. edx = (unsigned int) &status;

i ntdos(®s, ®s);

/* equation is given in description for nfreepg */
amount = status.data] APHYSPG];

amount += status. data] SYSPHYSPG];

amount += status. data] NFREEPG];

return(anmount * 4096);

}
voi d main()

printf("%u bytes of nmenory avail abl e\n",
memavail ());

}

Please refer to the chapter entitled "386|DOS-Extender System Calls' in Phar Lap’s 386|DOS-Extender
Reference Manual for more information on 386|DOS-Extender System Calls.

5.3.3 Getting Free Memory Information in the 32-bit Environment under
Windows 3.x

Windows 3.x provides a DPMI host that you can access from a 32-bit program. The interfaceto thishost is
a 16-bit interface, hence there are some considerations involved when calling Windows 3.x DPMI services
from 32-bit code. If apointer to adata buffer isrequired to be passed in ES:DI, for example, an
AllocAlias16() may be used to get a 16-bit far pointer that can be passed to Windows 3.x through these
registers. Also, an int86() call should be issued rather than an int386() call. The following program
demonstrates the techniques mentioned above.

/*
MEMAN. C - This exanple shows how to get information
about free menory with DPM call 0x0500 usi ng W ndows
as a DPM host. Note that only the first field of the
structure is guaranteed to contain a valid val ue; any
field that is not returned by the DPM i npl ementation
is set to -1 (OFFFFFFFFh).

Conpile & Link: wcl 386 -1=wi n386 -zw memui n
Bind: wbind -n nmemn n
* [
#i ncl ude <wi ndows. h>
#i ncl ude <i 86. h>
#i ncl ude <dos. h>
#i ncl ude <stdi o. h>

22 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

struct nmem nfo {
unsi gned Lar gest Bl ockAvai | ;
unsi gned MaxUnl ockedPage;
unsi gned Lar gest Lockabl ePage;
unsi gned Li nAddr Space;
unsi gned Nunfr eePagesAvai l ;
unsi gned NunPhysi cal PagesFr ee;
unsi gned Tot al Physi cal Pages;
unsi gned FreelLi nAddr Space;
unsi gned Si zeOf PageFi | g;
unsi gned Reserved| 3];

} Menl nfo;

#define DPM _I NT 0x31
voi d main()

uni on REGS regs;
struct SREGS sregs;
DWORD mi _16;

regs. w. ax = 0x0500;

m 16 = AllocAliasl6(&vem nfo);
sregs.es = HWORD(m _16);
regs.x.di = LOMORD(m _16);

i nt86x(DPM _I NT, ®s, ®s, &sregs);
printf("Largest available block (in bytes): %u\n",
Mem nf o. Lar gest Bl ockAvail);
printf("Maxi num unl ocked page allocation: %u\n",
Mem nf o. MaxUnl ockedPage) ;
printf("Pages that can be allocated and | ocked:
"% u\n", Mem nfo.LargestLockabl ePage);
printf("Total |inear address space including "
"al l ocat ed pages: % u\n",
Mem nf o. Li nAddr Space);
printf("Number of free pages available: % u\n",
Mem nf o. Nuntr eePagesAvail);
printf("Nunmber of physical pages not in use: %u\n",
Menl nf o. NunPhysi cal PagesFree);
printf("Total physical pages managed by host: 9% u\n",
Mem nf o. Tot al Physi cal Pages);
printf("Free |linear address space (pages): % u\n",
Mem nf o. Fr eeLi nAddr Space) ;
printf("Size of paging/file partition (pages): %u\n",
Mem nf o. Si zeOf PageFil e);
FreeAlias16(m _16);
}

Please refer to the DOS Protected-Mode | nterface (DPMI) Specification for information on DPMI
services. Inthe past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065

Santa Clara, California
U.S.A. 95051-8065

How do I get information about free memory in the 32-bit environment? 23

DOS Programming Guide

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/IlAL/sof tware_specs/ dpm v1. zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

5.4 How do | access the first megabyte in the extended DOS
environment?

Many programmers require access to the first megabyte of memory in order to look at key low memory
addresses. Under DOS, it was standard practice to use afar pointer, with the far pointer set to the
segmented address of the memory areathat was being inspected. Under DOS extenders, this practice is not
so standard. Each DOS extender provides its own method for accessing the first megabyte of memory.

5.4.1 Accessing the First Megabyte under Tenberry Software DOS/4GW

Under DOS/4GW, the first megabyte of physical memory - the real memory - is mapped as a shared linear
address space. Thisallows your application to access the first megabyte of memory using a near pointer set
to the linear address. The following program demonstrates this method. This exampleis similar to the
screen memory access example.

/*
KEYSTAT. C - This exanple shows how to get the keyboard
status under DOS/ 4GW by | ooki ng at the ROM BI OS
keyboard status byte in | ow nenory.
Conpile & Link: wcl 386 -1=dos4g keyst at

*/

#i ncl ude <stdio. h>
#i ncl ude <dos. h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040: 0x0017. This corresponds to a
i near address of 0x417.

*/

#defi ne LOW AREA 0x417
void main()

/[* Only need a near pointer in the flat nodel */
char *ptr;

/* Set pointer to linear address of the first
status byte */
ptr = (char *)LOW AREA;

/* Caps lock state is in bit 6 */

if(*ptr & 0x40) {
puts("Caps Lock on");
}

24 How do I access the first megabyte in the extended DOS environment?

32-bit Extended DOS Application Development

/* Numlock state is in bit 5 */
if(*ptr & 0x20) {
puts("Num Lock on");

/* Scroll lock state is in bit 4 */

if(*ptr & 0x10) {
puts("Scroll Lock on");

}
Please refer to the chapter entitled "Linear Executables' on page 41 for more information on how

DOS/AGW maps the first megabyte.

5.4.2 Accessing the First Megabyte under the Phar Lap 386/DOS-Extender

The Phar Lap DOS extender provides access to real memory through the special segment selector 0x34.
This allows far pointer access to the first megabyte from a 32-bit program. The following example
illustrates this technique.

/*
KEYSTAPL. C - This exanpl e shows how to get the keyboard
status under 386| DOS- Ext ender by | ooking at the ROM
Bl OS keyboard status byte in | ow nenory.
Conpil e & Link: wcl 386 -1=pharlap keystapl
*/

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

/*
Under DOS, the keyboard status byte has a segnented
address of 0x0040: 0x0017. This corresponds to a
i near address of 0x417.

*/

voi d main()
{
/* W require a far pointer to use selector
for 1st negabyte */
char far *ptr;
/* Set pointer to segnented address of the first
status byte */
ptr = MK_FP(0x34, 0x417);
/* Caps lock state is in bit 6 */
if(*ptr & 0x40) {
puts("Caps Lock on");

/* Numlock state is in bit 5 */
if(*ptr & 0x20) {
puts("Num Lock on");

/* Scroll lock state is in bit 4 */

if(*ptr & 0x10) {
puts("Scroll Lock on");

How do I access the first megabyte in the extended DOS environment? 25

DOS Programming Guide

Please refer to the chapter entitled "Program Environment” in Phar Lap’s 386|DOS-Extender Reference
Manual for more information on segment selectors available to your program.

5.5 How do | spawn a protected-mode application?

Sometimes applications need to spawn other programs as part of their execution. In the extended DOS
environment, spawning tasks is much the same as under DOS, however it should be noted that the only
mode supported isP_WAIT. The P_OVERLAY modeis not supported since the DOS extender cannot be
removed from memory by the application (thisis also the reason why the exec() functions are unsupported).
The other modes are for concurrent operating systems only.

Also, unless the application being spawned is bound or stubbed, the DOS extender must be spawned with
the application and its arguments passed in the parameter list.

5.5.1 Spawning Protected-Mode Applications Under Tenberry Software
DOS/4GW

In the case of DOS/AGW, some real-mode memory must be set aside at run time for spawning the DOS
extender, otherwise the spawning application could potentially allocate all of system memory. The real
memory can be reserved from within your program by assigning the global variable _ i nr eal the
number of bytesto be set aside. Thisvariableisreferencedin <st dl i b. h>. Thefollowing two
programs demonstrate how to spawn a DOS/AGW application.

/*
SPWNRDAG. C - The foll owi ng program denonstrates how to
spawn anot her DOS/ 4GW appl i cati on.
Conpi l e and link: wcl 386 -1=dos4g spwnrd4g
*/

#i ncl ude <process. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

/* DOS/4GW var for W.INK M NREAL option */
unsigned _ near __mnreal = 100*1024;

void main()
int app2_exit_code;

puts("Spawni ng a protected-node application..."
"using spawnlp() with P_VWAIT");
app2_exit_code = spawnl p(P_WAIT, "dos4gw',
"dos4gw', "spwndd4g", NULL);
printf("Application #2 returned with exit code %\ n",
app2_exit_code);

26 How do I spawn a protected-mode application?

32-bit Extended DOS Application Development

/*

*/

SPVWNDDAG. C - WII be spawned by the SPWNRD4G program

Conpile & Link: wcl 386 -1=dos4g spwndd4g

#i ncl ude <stdi 0. h>
#i ncl ude <stdlib. h>

void main()

puts("\ nApplication #2 spawned\n");
/* Send back exit code 59 */
exit(59);

5.5.2 Spawning Protected-Mode Applications Under Phar Lap
386/DOS-Extender

In the case of the Phar Lap 386|DOS-Extender, some real-mode memory must be set aside at link time for

spawning the DOS extender, otherwise the spawning application will be assigned all the system memory at

startup. Thisisdone at link time by specifying the runtime minreal and runtime maxreal options, as

demonstrated by the following programs.

/*

*/

SPWNRPLS. C - The foll owi ng program denonstrates how to
spawn a Phar Lap application

Conpil e & Link:
wel 386 -1 =pharlap -"runt m nr=300K, maxr =400K" spwnrpl s

#i ncl ude <process. h>
#i ncl ude <stdi o. h>

void main()

int app2_exit_code;

puts("Spawni ng a protect-node application..."
"using spawnlp() with P_VWAIT");
puts("Spawning application #2...");
app2_exit_code = spawnl p(P_WAIT, "run386",
"run386", "spwndpls", NULL);

printf("Application #2 returned with exit code %",
app2_exit_code);

How do | spawn a protected-mode application?

27

DOS Programming Guide

/*
SPWNDPLS. C - WI I be spawned by the SPWNRPLS program

Conpi l e & Link: wcl 386 -1 =pharlap spwndpls
* [
#i ncl ude <stdi 0. h>
#i ncl ude <stdlib. h>

void main()

{
puts("\ nApplication #2 spawned\n");
/[* Exit with error code 59 */
exit(59);

}

5.6 How Can | Use the Mouse Interrupt (0x33) with DOS/4GW?

Several commonly used interrupts are automatically supported in protected mode with DOS/AGW. The
DOS extender handles the switch from protected mode to real mode and manages any intermediate
real-mode data buffers that are required. To use a supported interrupt, set up the register information as
required for the interrupt and use one of the int386() or int386x() library functions to execute the interrupt.
For callsthat are not supported by DOS/AGW, you can use the DPMI function, Simulate a Real-Mode
Interrupt (0x0300). This processis described in the next section.

Since the mouse interrupt (0x33) is quite commonly used, DOS/4GW provides protected-mode support for
the interrupt and any mouse data buffer that is required. The following example demonstrates how a
programmer could use the Microsoft standard mouse interrupt (0x33) from within a DOS/AGW application.

/*
MOUSE. C - The fol |l owi ng program denpnstrates how
to use the nouse interrupt (0x33) with DOS/ 4GN

Conpil e and |ink: wcl 386 -1=dos4g nouse
*/
#i ncl ude <stdio. h>
#i ncl ude <dos. h>
#i ncl ude <i 86. h>

int right_button =0
int nouse_event =0
int nouse_code =0
int nouse_cx 0

int nouse_dx 0

28 How Can | Use the Mouse Interrupt (0x33) with DOS/4GW?

32-bit Extended DOS Application Development

/* Set up data buffer for nouse cursor bitmap */
unsi gned short cursor[] =
{
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000
|
#pragma of f (check_stack)
void _loadds far click_handler (int max, int ntx, int ndx)
{
#pragma aux click_handl er parm [EAX] [ECX] [EDX]
nmouse_event = 1;
nouse_code = nax;
nouse_cx = NTX;
mouse_dx = nudx;
if(nouse_code & 8) right_button = 1;
}
#pragma on (check_stack)
void main(void)
{
struct SREGS sregs;
uni on REGS inregs, outregs;
int installed = 0;
int orig_node = O;
int far *ptr;
int (far *function_ptr)();

segread(&sregs);
/* get original video node */

i nregs.w. ax = 0xO0f 00;
i nt 386(0x10, & nregs, &outregs);

printf("Current Mbde = %\n",
ori g_npde=outregs. h.al);
/* check for nouse driver */

inregs.w ax = 0;
int386 (0x33, & nregs, &outregs);
if(installed = (outregs.w ax == -1))
printf("Muse installed...\n");
el se
printf("Muse NOT installed...\n");
if(installed) {

/* goto graphics node */

i nregs. h. ah 0x00;

i nregs. h.al 0x4;

int386(0x10, & nregs, &outregs);
/* show mouse cursor */

inregs.w. ax = 0x1;
int386(0x33, & nregs, &outregs);

How Can | Use the Mouse Interrupt (0x33) with DOS/AGW? 29

DOS Programming Guide

/* set nopuse cursor form*/

inregs.w ax = 0x9;
i nregs.w. bx = 0x0;
inregs.w cx = 0x0;

ptr = cursor;

i nregs. x. edx FP_OFF(ptr);

sregs. es FP_SEGQ ptr);

i nt 386x(0x33, & nregs, &outregs, &sregs);
/* install click watcher */

i nregs. w. ax 0xGC;
i nregs. w. cx 0x0002 + 0x0008;
function_ptr = click_handler;
inregs.x.edx = FP_OFF(function_ptr);
sregs. es FP_SEGQ function_ptr);
i nt 386x(0x33, & nregs, &outregs, &sregs);
while(!right_button) {
if(nouse_event) {
printf("Event = % : CX = % DX = %\n",
nmouse_code, nobuse_cx, nouse_dx);
nmouse_event = 0;

}

/* check installation again (to clear watcher) */

inregs.w ax = 0;
i nt386(0x33, & nregs, &outregs);

if(outregs.w ax == -1)
printf("DONE : Muse still installed...\n");
el se
printf("DONE : Muse NOT installed...\n");
i nregs. h.ah = 0x00;
inregs. h.al = orig_node;

i nt 386(0x10, & nregs, &outregs);

5.7 How Do | Simulate a Real-Mode Interrupt with DOS/4GW?

Some interrupts are not supported in protected mode with DOS/AGW but they can till be called using the
DPMI function, Simulate Real-Mode Interrupt (0x0300). Information that needs to be passed down to the
real-mode interrupt is transferred using an information data structure that is allocated in the protected-mode
application. The addressto this protected-mode structure is passed into DPMI function 0x0300.

DOS/4GW will then use this information to set up the real-mode registers, switch to real mode and then
execute the interrupt in real mode.

If your protected-maode application needs to pass data down into the real-mode interrupt, an intermediate
real-mode buffer must be used. This buffer can be created using DPMI function 0x0100 to alocate
real-mode memory. Y ou can then transfer data from the protected-mode memory to the real-mode memory
using afar pointer asillustrated in the "SIMULATE.C" example.

The following example illustrates how to allocate some real-mode memory, transfer a string of characters

from protected mode into the real-mode buffer, then set up and call the Interrupt 0x0021 function to create
adirectory. The string of characters are used to provide the directory name. This example can be adapted
to handle most real-mode interrupt calls that aren’t supported in protected mode.

30 How Do | Simulate a Real-Mode Interrupt with DOS/AGW?

32-bit Extended DOS Application Development

/*

*/

SI MULATE. C - Shows how to issue a real -node interrupt
fromprotected node using DPM call 300h. Any buffers
to be passed to DOS nust be allocated in DOS nmenory
This can be done with DPM call 100h. This program
will call DOS int 21, function 39h, "Create
Directory".

Compil e & Link: wcl 386 -1=dos4g sinmulate

#i ncl ude <i 86. h>
#i ncl ude <dos. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>

static struct rmnfo {

| ong EDI;

| ong ESI;

| ong EBP;

| ong reserved_by_system

| ong EBX;

| ong EDX;

| ong ECX;

| ong EAX;

short fl ags;

short ES, DS, FS, GS, | P, CS, SP, SS;

} RM;
voi d main()

uni on REGS regs;
struct SREGS sregs;
int interrupt_no=0x31;
short selector;

short segnent;

char far *str;

/* DPM call 100h all ocates DOS nenory */
nmenset (&sregs, 0, si zeof (sregs));

regs. w. ax=0x0100;

regs. w. bx=0x0001;

i nt 386x(interrupt_no, ®s, ®s, &sregs);
segnent =r egs. w. ax;

sel ect or =r egs. w. dx;

/* Move string to DOS real -npde nmenory */
str=MK_FP(sel ector, 0);

_fstrepy(str, "myjunk");

/* Set up real-npde call structure */
nenset (&RM , 0, si zeof (RM)) ;
RM . EAX=0x00003900; /* call service 39h ah=0x39 */

RM . DS=segnent ; /* put DOS seg:off into DS: DX*/
RM . EDX=0; /* DOS ignores EDX high word */
/* Use DPM call 300h to issue the DOS interrupt */
regs.w. ax = 0x0300;

regs. h. bl = 0x21;

regs. h.bh = 0;

regs.w.cx = 0;

sregs.es = FP_SEG &RM) ;
regs.x.edi = FP_OFF(&RM);
int386x(interrupt_no, ®s, ®s, &sregs);

How Do | Simulate a Real-Mode Interrupt with DOS/4GW?

31

DOS Programming Guide

5.8 How do you install a bi-modal interrupt handler using
DOS/AGW?

Due to the nature of the protected-mode/real-mode interface, it is often difficult to handle high speed
communications with hardware interrupt handlers. For example, if you install your communications
interrupt handler in protected mode, you may find that some data is |ost when transmitting data from a
remote machine at the rate of 9600 baud. This occurs because the data arrived at the communication port
while the machine was in the process of transferring the previous interrupt up to protected mode. Data will
also belost if you install the interrupt handler in real mode since your program, running in protected mode,
will have to switch down into real mode to handle the interrupt. The reason for thisis that the data arrived
at the communication port while the DOS extender was switching between real mode and protected mode,
and the machine was not available to process the interrupt.

To avoid the delay caused by switching between real-mode and protected mode to handle hardware
interrupts, install interrupt handlersin both real-mode and protected-mode. During the execution of a
protected-mode program, the system often switches down into real-mode for DOS system calls. If a
communications interrupt occurs while the machineis in real-mode, then the real-mode interrupt handler
will beused. If theinterrupt occurs when the machine is executing in protected-mode, then the
protected-mode interrupt handler will be used. This enables the machine to process the hardware interrupts
faster and avoid the loss of data caused by context switching.

Installing the interrupt handlers in both protected-mode and real-mode is called bi-modal interrupt
handling. The following program is an example of how to install both handlers for Interrupt 0xOC (also
known as COM1 or IRQ4). The program writes either a’P' to absolute address 0xB8002 or an 'R’ to
absolute address 0xB8000. These locations are the first two character positions in screen memory for a
color display. Asthe program runs, you can determine which interrupt is handling the COM1 port by the
letter that is displayed. A mouse attached to COM 1 makes a suitable demo. Type on the keyboard as you
move the mouse around. The ESC key can be used to terminate the program. Transmitted data from a
remote machine at 9600 baud can a so be used to test the COM 1 handling.
/ *
Bl MODAL. C - The foll owi ng program denonstrates how
to set up a bi-nmpdal interrupt handler for DOS/4GWN

Conpile and |ink: wcl 386 -1=dos4g bi nodal bi no. obj
*/

#i ncl ude <stdio. h>
#i ncl ude <coni o. h>
#i ncl ude <dos. h>

#defi ne D32Real Seg(P) ((((DWORD) (P)) >> 4) & OxFFFF)
#def i ne D32Real O f (P) (((DWORD) (P)) & OxF)

typedef unsigned int WORD;
typedef unsigned | ong DWORD,

extern void conml_init (void)

extern void __interrupt prmhandl er (void);
extern void __interrupt __far rmhandler (void);

32 How do you install a bi-modal interrupt handler using DOS/AGW?

32-bit Extended DOS Application Development

voi d *D32DosMenAl | oc (DWORD si ze)

{

uni on REGS r;

r.x.eax = 0x0100; /* DPM allocate DOS nenory */
r.x.ebx = (size + 15) >> 4; /* Nunber of paragraphs requested */
int386 (0x31, &r, &r);

if(r.x.cflag) /* Failed */
return ((DWORD) 0);
return (void *) ((r.x.eax & OxFFFF) << 4);

voi d main (void)

{

/*

/*

*/

/*

*/

/*

*/

uni on REGS r;

struct SREGS Sr;

voi d *| owp;

void far *f h;

WORD orig_pm sel;
DWORD orig_pmoff;
WORD orig_rm seg;
WORD orig_rmoff;
i nt (o

Save the starting protected-node handl er address */
r.x.eax = 0x350C, /* DOS get vector (INT OCh) */
sr.ds = sr.es = 0;

i nt 386x (0x21, &r, &r, &sr);

orig_pmsel = (WORD) sr.es;

orig_pmoff r.x.ebx;

Save the starting real -npde handl er address using DPM
(I'NT 31h).

r.x.eax = 0x0200; /* DPM get real node vector */

r.h.bl = 0x0C

int386 (0x31, &, &);
orig_rmseg = (WORD) r.X. ecx;

orig_rmoff = (WORD) r.x. edx;

Al l ocate 128 bytes of DOS nmenory for the real-node
handl er, which nust of course be |ess than 128 bytes
long. Then copy the real -npde handler into that
segnent .

if(! (lowp = D32DosMemAl | oc(128))) {
printf ("Couldn't get |ow nmenory!\n");
exit (1);

}
nmencpy (lowp, (void *) rmhandl er, 128);

Install the new protected-npde vector. Because |NT 0Ch
is in the auto-passup range, its normal "passdown"
behavi or will change as soon as we install a

protect ed-nmode handler. After this next call, when a
real node INT OCh is generated, it will be resignalled
in protected nbde and handl ed by pmhandl er.

r.x.eax = 0x250C; /* DOS set vector (INT 0Ch) */
fh = (void far *) prhandler;

r.x.edx = FP_OFF (fh);

/* DS: EDX == &handl er */

sr.ds = FP_SEG (fh);

sr.es = 0;

int386x (0x21, &, &r, &sr);

How do you install a bi-modal interrupt handler using DOS/4GW?

33

DOS Programming Guide

/*
Install the new real -node vector. W do this after
installing the protected-npbde vector in order to
override the "passup" behavior. After the next call,
interrupts will be directed to the appropriate handler,
regardl ess of which nbde we are in when they are
gener at ed.
*/
r.x.eax = 0x0201;
r.h.bl = 0x0C
/* CX:DX == real node &handler */
r.x.ecx = D32Real Seg(| owp);
r.x.edx = D32Real O f (1 owp) ;
int386 (0x31, &r, &r);
/*
Initialize COML.
*/
coml_init ();
puts("Mve nopuse, transmt data; ESC to quit\n");
while(1) {
if(kbhit()) {
if(((c =getch ()) & Oxff) == 27)
br eak;
putch (c);
delay(1);
}
/*
Cl ean up.
*/
r.x.eax = 0x250C; /* DOS set vector (INT 0Ch) */
r.x.edx = orig_pmoff;
sr.ds = orig_pm sel; /* DS: EDX == &handl er */
sr.es = 0;
int386x (0x21, &, &r, &sr);
r.x.eax = 0x0201; /* DPM set real node vector */
r.h.bl = 0x0C
/* CX:DX == real node &handler */
r.x.ecx = (DWORD) orig_rm seg;
r.x.edx = (DWORD) orig_rmoff;
int386 (0x31, &r, &r);
}

Y ou will also need to create the following assembler code module. The first part provides the interrupt
handling routine for the real-mode interrupt handler. The second provides the protected-maode version of
the interrupt handler.

34 How do you install a bi-modal interrupt handler using DOS/AGW?

32-bit Extended DOS Application Development

koK

. 386
- kK

-k ok

koK

* %

koK

- kK

koK

- kK

* %

- kK

koK

bi no. asm

Assenbl er code for real -node and protect ed- node
INT OxC interrupt handlers to support the | NT OxC
interrupt in both nodes

The real -node interrupt handler is in a 16-bit code
segnment so that the assenbler will generate the right
code. We will copy this code down to a 16-bit segnent
in low nmenmory rather than executing it in place

_TEXT16 SEGVENT BYTE PUBLI C USE16 ' CODE

ASSUME cs:_TEXT16

PUBLI C rmhandl er _

rmhandl er _:
push es
push bx
nov bx, 0B800h
nov es, bx ; ES = 0xB800
sub bx, bx ; BX =0
nov WORD PTR es:[bx],0720h ; Cear 2 char cells
nov WORD PTR es: [bx+2], 0720h
nov BYTE PTR es:[bx],' R ; Wite Rto nenory
pop bx
pop es
push ax
push dx
nmov dx, 03FAh
in al , dx ; Read ports so
nov dx, 03F8h ; interrupts can
in al , dx ; continue to be
nov dx, 020h ; generated
nov al,d
out dx, al ; Send EO
pop dx
pop ax
iret

TEXT16 ENDS

- kK

koK

- kK

koK

- kK

koK

- kK

ok ok

- kK

ok ok

The protected-node interrupt handler is in a 32-bit code
segnment. Even so, we have to be sure to force an | RETD
at the end of the handl er, because MASM doesn’t generate
one. This handler will be called on a 32-bit stack by
DOS/ 4GW

_DATA is the flat nodel data segnent, which we load into
ES so we can wite to absol ute address 0xB8000. (In the
flat nodel, DS is based at 0.)

_DATA SEGVENT BYTE PUBLI C USE32 ' DATA
“DATA ENDS

How do you install a bi-modal interrupt handler using DOS/4GW?

35

DOS Programming Guide

DGROUP GROUP _ DATA

_TEXT SEGVENT BYTE PUBLI C USE32 ' CODE
ASSUME cs: _TEXT

PUBLIC conl_init_

coml_init_:
nov ax, 0F3h ; 9600,n,8,1
nov dx, 0 ; conl
i nt 14h ; Initialize COML
nov bx, 03F8h ; COML port space
| ea dx, [bx+5] ; line status reg
in al , dx
| ea dx, [bx+4] ; modem control reg
in al , dx
or al,8 ; enable QUT2 int
out dx, al
| ea dx, [bx+2] ; int id register
in al , dx
nov dx, bx ; data receive reg
in al , dx
in al, 21h ; interrupt mask reg
and al , OEFh ; force | RY4 unnask
out 21h, a
| ea dx, [bx+1] ; int enable reg
nov al,1
out dx, al ; enabl e received int

ret
PUBLI C pmhandl er _

pmhandl er _:
push es
push bx
nov bx, DGROUP
nov es, bx
nmov ebx, 0B8000h ; ES: EBX=f1 at : 0B8000Oh
nov DWORD PTR es: [ebx], 07200720h ; Cear cells
nov BYTE PTR es:[ebx+2]," P ; Wite P to nenory
pop bx
pop es
push ax
push dx
nov dx, 03FAh
in al , dx ; Read ports so
nov dx, 03F8h ; interrupts can
in al , dx ; continue to be
nov dx, 020h ; gener at ed
nov al, dl
out dx, al ; Send EO
pop dx
pop ax
iretd
_TEXT ENDS
END

36 How do you install a bi-modal interrupt handler using DOS/AGW?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

38

6 The Tenberry Software DOS/4GW DOS Extender

The chaptersin this section describe the 32-bit Tenberry Software DOS4GW DOS Extender which is
provided with the Watcom C/C++ package. DOS4GW is a subset of Tenberry Software’'s DOS/4AG
product. DOS4GW is customized for use with the Watcom C/C++ package. Key differences are:

* DOS4GW will only execute programs built with a Watcom 32-bit compiler such as Watcom C/C++
and linked with its run-time libraries.

» The DOS4GW virtual memory manager (VMM), included in the package, is restricted to 32MB of
memory.

» DOS/4GW does not provide extra functionality such as TSR capability and VMM performance
tuning enhancements.

If your application has requirements beyond those provided by DOS4GW, you may wish to acquire
DOS/4GW Professiona or DOS/4G from:

Tenberry Software, Inc.
PO Box 20050

Fountain Hills, Arizona
U S.A 85269-0050

VWAN http://ww.tenberry. com dos4g/

Email: info@enberry.com
Phone: 1.480.767.8868
Fax: 1.480. 767. 8709

Programs devel oped to use the restricted version of DOS4GW which isincluded in the Watcom C/C++
package can be distributed on aroyalty-free basis, subject to the licensing terms of the product.

The Tenberry Software DOS/4GW DOS Extender 39

The DOS/4GW DOS Extender

40 The Tenberry Software DOS/4GW DOS Extender

/ Linear Executables

To build alinear executable, compile and link it as described in the chapter entitled " Creating 32-bit
DOS/AGW Executables'. The resulting file will not run independently: you can run it under the Watcom
Debugger, Tenberry Software Instant-D debugger, or with the standalone "DOSAGW.EXE".

7.1 The Linear Executable Format

DOS4GW works with files that use the Linear Executable (LE) file format. The format represents a
protected-mode program in the context of a 32-bit 386 runtime environment with linear to physical address
trangd ation hardware enabled. 1t uses aflat address space.

Thisfile format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS Windows.
Both support Dynamic Linking, Resources, and are geared toward protected-mode programs. Both formats
use tables of "counted ASCII" names, and they use similar relocation formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub program
executes when the DOS4AGW loader is not present, displaying the message, This program cannot run in
DOS mode.

When the Watcom Linker isused to link a DOS/4GW application, it automatically replaces the default stub
program with one that calls DOSAGW.

7.1.1 The Stub Program

The stub at the beginning of alinear executable is a real-mode program that you can modify asyou like.
For example, you can:

» make the stub program do a checksum on the "DOSAGW.EXE" file to make sureit’ s the correct
version.

* copy protect your program.
» specify a search path for the "DOSAGW.EXE" file.
» add command line arguments.
The SRC directory contains source code for a sample stub program. "WSTUB.C" isasimple example, a

good base to start from when you construct your own stub. Please note that you will require a 16-bit C
compiler to compile anew stub program. Following isthe codein"WSTUB.C":

The Linear Executable Format 41

The DOS/4GW DOS Extender

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <process. h>
#i ncl ude <errno. h>
#i nclude <string. h>

/* Add environnent strings to be searched here */

char *paths_to_check[] = {
" DOSAGPATH",
"PATH'};
char *dos4g_path()
{
static char fullpath[80];
int i;
for(i =0
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4gw. exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
}
for(i =0
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
return("dos4gw. exe");
}
mai n(int argc, char *argv[])
{
char *av[4];
auto char cmdl i ne[128] ;
av[0] = dos4g_path(); /* Locate the DOS/ 4G | oader */
av[1] = argv[O0]; /* name of executable to run */
av[2] = getcnd(cndline); /* command |ine */
av[3] = NULL; /* end of list */
#ifdef QUET
put env("DOSAG=QUI ET"); /* di sabl es DOS/ 4G Copyri ght banner */
#endi f
execvp(av[O0], av);
puts("Stub exec failed:");
puts(av[0]);
puts(strerror(errno));
exit(1); /* indicate error */
}

7.2 Memory Use

This section explains how a DOS4GW application uses the memory on a 386-based PC/AT. Thebasic
memory layout of an AT machine consists of 640KB of DOS memory, 384K B of upper memory, and an
undetermined amount of extended memory. DOS memory and upper memory together compose real
memory, the memory that can be addressed when the processor is running in real mode.

42 Memory Use

Linear Executables

Extended
Memory
i1MB —»
ROMs and
Upper Hardware
Memory ¢ —
640KB —»
DOS DOS and
Memory Real-Mode
Software
1KB —» Interrupt
Vectors

Figure 1. Basic Memory Layout

Under DOS4GW, the first megabyte of physical memory & mdash the real memory & mdash is mapped as a
shared linear address space. This allows your application to use absolute addresses in real memory, to
access video RAM or BIOS ROM, for example. Because the real memory is available to all processes, you
are not guaranteed to be able to alocate a particular areain real memory: another process may have
allocated it already.

Most code and datais placed in apaged linear address space starting at 4AMB. The linear address space
starts at 4MB, the first address in the second page table, to avoid conflicts with VCPI system software.

This split mapping & mdash an executable that is linked to start at 4MB in the linear address space, with the
first MB in the address space mapped to the first MB of physical memory & mdash is called a split flat
model.

Theillustration bel ow shows the layout of physical memory on the left, and the layout of the linear address
space on theright.

Memory Use 43

The DOS/4GW DOS Extender

Process code
4 amMB > and data
Mapped
as 1-4 MB unmapped
needed VCPI code for VCPI
compatibility
4KB pages
1MB—» A A
DOS and
640 KB > Real-Mode
Software
Mapped Mapped into
toal process as
processes needed
4KB— >
1KB—P> v v

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks the end of
the first page.

44 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOSAG environment variable
including how to suppress the banner that is displayed by DOS4GW at startup. It also explains how to use
the DOS16M environment variable to select the switch mode setting, if hecessary, and to specify the range
of extended memory in which DOS4GW will operate. DOS4GW is based on Tenberry Software's
DOS/16M 16-bit Protected-Mode support; hence the DOS16M environment variable name remains
unchanged.

8.1 The DOS4G Environment Variable

A number of options can be selected by setting the DOSAG environment variable. The syntax for setting
optionsis:

set DOS4G=optionl, option2, ...
Do not insert a space between DOSAG and the equal sign. A space to the right of the equal sign is optional.
Options:
QUIET Use this option to suppress the DOS4GW banner.

The banner that is displayed by DOS4GW at startup can be suppressed by issuing the
following command:

set DOS4G=qui et
Note: Use of the quiet switch isonly permitted pursuant to the terms and conditions of the
WATCOM Software License Agreement and the additional redistribution rights described
in the Getting Started manual. Under these terms, suppression of the copyright by using
the quiet switch is not permitted for applications which you distribute to others.
VERBOSE Use this option to maximize the information available for postmortem debugging.

Before running your application, issue the following command:

set DOS4G=ver bose
Reproduce the crash and record the output.
NULLP Use this option to trap references to the first sixteen bytes of physical memory.

Before running your application, issue the following command:

set DOS4G=nul | p

To select acombination of options, list them with commas as separators.

The DOS4G Environment Variable 45

The DOS/4GW DOS Extender

Example:
set DOS4G=nul | p, ver bose

8.2 Changing the Switch Mode Setting

In almost all cases, DOS4GW programs can detect the type of machine that is running and automatically
choose an appropriate real- to protected-mode switch technique. For the few cases in which this default
setting does not work we provide the DOS16M DOS environment variable, which overrides the default
setting.

Change the switch mode settings by issuing the following command:

set DOS16Meval ue

Do not insert a space between DOS16M and the equal sign. A spaceto theright of the equal signis
optional.

The table below lists the machines and the settings you would use with them. Many settings have
mnemonics, listed in the column "Alternate Name", that you can use instead of the number. Settings that
you must set with the DOS16M variable have the notation req’d in the first column. Settings you may use
are marked option, and settings that will automatically be set are marked auto.

Alternate
Status Machine Setting Name Comment
auto 386/486 w/ DPMI 0 None Set automatically if DPMI is active
req'd NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 Set automatically for 386 or 486
auto 386 INBOARD | None 386 with Intel Inboard
req'd Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI 11 None Set automatically if VCPI detected
req'd Hitachi B32 14 None Must be set for Hitachi B32
req'd OKI1 if800 15 None Must be set for OK1 if800
option IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment variable to the
value shown for that machine and specify arange of extended memory. For example, if your
machineisaNEC 98-series, set DOS16M=1 @M 4M See the section entitled "Fine Control
of Memory Usage" on page 47 in this chapter for more information about setting the memory
range.

46 Changing the Switch Mode Setting

Configuring DOS/4GW

Machine Setting
NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OKI1 if800 15

Before running DOS4GW applications, check the switch mode setting by following this
procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display. (PMINFO,
which reports on the protected-mode resources available to your programs, is described in more
detail in the chapter entitled "Utilities" on page 85)

If PMINFO runs, the setting is usable on your machine.
3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT file.

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does not run, and
PMINFO does, check the CPU type reported on the first line of the display.

Y ou are authorized (and encouraged) to distribute PMINFO to your customers. Y ou may also include a
copy of this section in your documentation.

8.3 Fine Control of Memory Usage

In addition to setting the switch mode as described above, the DOS16M environment variable enables you
to specify which portion of extended memory DOS4GW will use. The variable aso allows you to instruct
DOS4GW to search for extra memory and useit if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify arange of memory with the DOS16M variable. Y ou must use the
variable, however, in the following cases:

* You are running on a Fujitsu FM R-series, NEC 98-series, OK| if800-series or Hitachi B-series
machine.

* You have older programs that use extended memory but don’t follow one of the standard disciplines.
* You want to shell out of DOS4GW to use another program that requires extended memory.
If none of these conditions applies to you, you can skip this section.

The general syntax is:

set DOS16M= [switch_node] [@tart_address [- end_address]] [:size]

In the syntax shown above, st art _addr ess, end_addr ess andsi ze represent numbers, expressed
in decimal or in hexadecimal (hex requiresa Ox prefix). The number may end with aK to indicate an

Fine Control of Memory Usage 47

The DOS/4GW DOS Extender

address or sizein kilobytes, or an M to indicate megabytes. If no suffix is given, the address or sizeis
assumed to bein kilobytes. If both a size and arange are specified, the more restrictive interpretation is
used.

The most flexible strategy isto specify only asize. However, if you are running with other software that
does not follow a convention for indicating its use of extended memory, and these other programs start
before DOS/4GW, you will need to calculate the range of memory used by the other programs and specify a
range for DOS4GW programs to use.

DOS4GW ignores specifications (or parts of specifications) that conflict with other information about
extended memory use. Below are some examples of memory usage control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use extended memory
between 2.0 and 4.0MB.

set DOS16M=:1M Use the last full megabyte of extended memory, or as much as
available limited to IMB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @0 - 5m Use any available extended memory from 0.0 (really 1.0) to
5.0MB.

set DOS16M=:0 Use no extended memory.

As adefault condition DOS/4GW applications take all extended memory that is not otherwise in use.
Multiple DOSAGW programs that execute simultaneously will share the reserved range of extended
memory. Any non-DOS4GW programs started while DOS4GW programs are executing will find that
extended memory above the start of the DOS4GW range is unavailable, so they may not be able to run.
Thisisvery safe. Therewill be aconflict only if the other program does not check the BIOS configuration
call (Interrupt 15H function 88H, get extended memory size).

To create a private pool of extended memory for your DOS4GW application, use the PRIVATXM
program, described in the chapter entitled "Utilities" on page 85.

The default memory allocation strategy is to use extended memory if available, and overflow into DOS
(low) memory.

InaVCPI or DPMI environment, the st art _addr ess andend_addr ess arguments are not
meaningful. DOS4GW memory under these protocols is not allocated according to specific addresses
because VCPI and DPMI automatically prevent address conflicts between extended memory programs.

Y ou can specify a si ze for memory managed by VCPI or DPMI, but DOS/4GW will not necessarily
allocate this memory from the highest available extended memory address, as it does for memory managed
under other protocols.

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB. When
DOS4GW runs on a Compaq 386, it automatically uses this memory because the memory is allocated
according to a certain protocol, which DOS4GW follows. Other machines have no protocol for allocating
this memory. To use the extramemory that may exist on these machines, set DOS16M with the + option.

set DOS16M=+

48 Fine Control of Memory Usage

Configuring DOS/4GW

Setting the + option causes DOS/4GW to search for memory in the range from FA0000 to FFFFFF and
determine whether the memory isusable. DOS4GW does this by writing into the extra memory and
reading what it has written. In some cases, this memory is mapped for DOS or BIOS usage, or for other
system uses. If DOS4GW finds extra memory that is mapped this way, and is not marked read-only, it will
write into that memory. Thiswill cause a crash, but won't have any other effect on your system.

8.4 Setting Runtime Options

The DOS16M environment variable sets certain runtime options for all DOS/4GW programs running on the
same system.

To set the environment variable, the syntax is:

set DOS16M=[switch_npde_setting] ~options.

Note: Some command line editing TSRs, such as CED, use the caret (*) asadelimiter. If you want to set
DOS16M using the syntax above while one of these TSRsis resident, modify the TSR to use a different
delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS4GW to wait until the A20 line is enabled before
switching to protected mode. When DOS4GW switchesto real mode, this option suspends
your program’s execution until the A20 lineis disabled, unless an XM S manager (such as
HIMEM.SYS) isactive. If an XMS manager is running, your program’s execution is
suspended until the A20 lineis restored to the state it had when the CPU was last in real
mode. Specify thisoption if you have a machine that runs DOS4GW but is not truly
AT-compatible. For moreinformation on the A20 line, see the section entitled
"Controlling Address Line 20" on page 50.

0x02 prevent initialization of VCPI -- By default, DOS4GW searches for a VCPI server and, if
oneispresent, forcesit on. Thisoption isuseful if your application does not use EMS
explicitly, is not aresident program, and may be used with 386-based EM S simulator
software.

0x04 directly pass down keyboard status calls -- When this option is set, status requests are
passed down immediately and unconditionally. When disabled, pass-downs are limited so
the 8042 auxiliary processor does not become overloaded by keyboard polling loops.

0x10 restore only changed interrupts -- Normally, when a DOS4GW program terminates, all
interrupts are restored to the values they had at the time of program startup. When you use
this option, only the interrupts changed by the DOS/4GW program are restored.

0x20 set new memory to 00 -- When DOS4GW allocates a new segment or increases the size of a
segment, the memory is zeroed. This can help you find bugs having to do with
uninitialized memory. You can also useit to provide a consistent working environment
regardless of what programs were run earlier. This option only affects segment allocations
or expansions that are made through the DOS4GW kernel (with DOS function 48H or
4AH). This option does not affect memory allocated with a compiler’s nal | oc function.

0x40 set new memory to FF -- When DOS4GW all ocates a new segment or increases the size of
a segment, the memory is set to OxFF bytes. Thisishelpful in making reproducible cases

Setting Runtime Options 49

The DOS/4GW DOS Extender

of bugs caused by using uninitialized memory. This option only affects segment
allocations or expansions that are made through the DOS4GW kernel (with DOS function
48H or 4AH). This option does not affect memory allocated with a compiler’s mal | oc
function.

0x80 new selector rotation -- When DOS4GW all ocates a new selector, it usually looks for the
first available (unused) selector in numerical order starting with the highest selector used
when the program was loaded. When this option is set, the new selector search begins after
the last selector that was allocated. This causes new selectors to rotate through the range.
Use this option to find references to stale selectors, i.e., segments that have been cancelled
or freed.

8.5 Controlling Address Line 20

This section explains how DOS4GW uses address line 20 (A20) and describes the related DOS16M
environment variable settings. It isunlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable memory location is
one byte below 1IMB. If you specify an address at 1IMB or over, which would require a twenty-first bit to
set, the address wraps back to zero. Some parts of DOS depend on this wrap, so on the 286 and 386, the
twenty-first address bit is disabled. To address extended memory, DOS4GW enabl es the twenty-first
address bit (the A20 line). The A20 line must be enabled for the CPU to run in protected mode, but it may
be either enabled or disabled in real mode.

By default, when DOS/4GW returnsto real mode, it disablesthe A20 line. Some software depends on the
line being enabled. DOS4GW recognizes the most common software in this class, the XM S managers
(such asHIMEM.SY S), and enables the A20 line when it returns to real mode if an XM S manager is
present. For other software that requires the A20 line to be enabled, use the A20 option. The A20 option
makes DOSAGW restore the A20 line to the setting it had when DOS/4GW switched to protected mode.
Set the environment variable as follows:

set DOS16M=A20
To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable aso lets you to specify the length of the delay between a DOS4GW instruction to
change the status of the A20 line and the next DOS4GW operation. By default, thisdelay is 1 loop
instruction when DOS4GW is running on a 386 machine. In some cases, you may need to specify alonger
delay for amachine that will run DOS4GW but is not truly AT-compatible. To change the delay, set
DOS16M to the desired number of loop instructions, preceded by a comma:

set DOS16M=, | oops

50 Controlling Address Line 20

9 vumm

The Virtual Memory Manager (VMM) uses a swap file on disk to augment RAM. With VMM you can use
more memory than your machine actually has. When RAM is not sufficient, part of your program is
swapped out to the disk file until it is needed again. The combination of the swap file and available RAM
isthevirtual memory.

Y our program can use VMM if you set the DOS environment variable, DOSAGVM, asfollows. To set the
DOSAGVM environment variable, use the format shown below.

set DOSAGVME= [option[#val ue]] [option[#val ue]]
A "#" is used with options that take values since the DOS command shell will not accept "=".
If you set DOSAGVM equal to 1, the default parameters are used for all options.

Example:
C>set DOS4GVMEL

9.1 VMM Default Parameters

VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The default is 512K B.

MAXMEM The maximum amount of RAM managed by VMM. The default is 4MB.

SWAPMIN The minimum or initial size of the swap file. If thisoption is not used, the size of the
swap fileis based on VIRTUALSI ZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is"DOSAGVM.SWP'. By default thefileisin

the root directory of the current drive. Specify the complete path nameif you want to
keep the swap file somewhere el se.

DELETESWAP Whether the swap file is deleted when your program exits. By default the fileis not
deleted. Program startup is quicker if the fileis not deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

VMM Default Parameters 51

The DOS/4GW DOS Extender

9.2 Changing the Defaults

Y ou can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOSAGVM environment variable, as
shown in the example below.

set DOS4AGVM=del et eswap maxmen#8192

2. Create aconfiguration file with the filetype extension ".VMC", and use that as an argument to
the DOSAGVM environment variable, as shown below.

set DOS4GVMEF@NEWG. VMC

9.2.1 The .VMC File

A " VMC" file contains VMM parameters and settings as shown in the example below. Comments are
permitted. Comments on lines by themselves are preceded by an exclamation point (!). Comments that
follow option settings are preceded by white space. Do not insert blank lines: processing stops at the first
blank line.

!Sample .VMC file
!This file shows the default paraneter val ues

m nmem = 512 At |east 512K bytes of RAMis required.
maxmem = 4096 Uses no nore than 4MB of RAM

virtual size = 16384 Swap file plus allocated nmenory is 16MB

! To delete the swap file automatically when the programexits, add
I del et eswap

! To store the swap file in a directory called SWAPFI LE, add
I'swapnane = c:\swapfil e\ dos4gvm swp

52 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS4GW, the 32-hit registers in which you pass values are
trandlated into the appropriate 16-hit registers, since DOS works only with 16 bits. However, you can use
32-bit valuesin your DOS calls. You can allocate blocks of memory larger than 64KB or use an address
with a 32-bit offset, and DOS4GW will tranglate the call appropriately, to use 16-bit registers. When the

Interrupt 21H function returns, the value is widened - placed in a 32-bit register, with the high order bits
zeroed.

DOS4GW uses the following rules to manage registers:

» When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity in a general
register (for example, AX), pass a 32-bit quantity in the corresponding extended register (for
example, EAX). When a DOS function returns a 16-bit quantity in a general register, expect to
receive it (with high-order zero bits) in the corresponding extended register.

» When an Interrupt 21H function expectsto receive a 16:16 pointer in a segment:general register pair
(for example, ES:BX), supply a 16:32 pointer using the same segment register and the corresponding
extended general register (ES:EBX). DOS4GW will copy data and translate pointers so that DOS
ultimately receives a 16:16 real-mode pointer in the correct registers.

* When DOS returns a 16:16 real-mode pointer, DOS4GW transl ates the segment value into an

appropriate protected-mode selector and generates a 32-bit offset that resultsin a 16:32 pointer to the
same location in the linear address space.

» Many DOS functions return an error code in AX if the function fails. DOS4GW checks the status of

the carry flag, and if it is set, indicating an error, zero-extends the code for EAX. It does not change
any other registers.

« If the valueis passed or returned in an 8-bit register (AL or AH, for example), DOS4GW puts the
value in the appropriate location and |eaves the upper half of the 32-bit register untouched.

Thetable below lists al the Interrupt 21h functions. For each, it shows the registersthat are widened or
narrowed. Footnotes provide additional information about some of the interrupts that require special

handling. Following thetableis a section that provides a detailed explanation of interrupt handling under
DOS4GW.

Interrupt 21H Functions 53

The DOS/4GW DOS Extender

Function

O00H
01H
02H
03H
04H
O5H
06H
Oo7H
08H
O9H
OAH
0BH
OCH
ODH
OEH
OFH

10H
11H
12H
13H
14H
15H
16H
17H
19H
1AH
1BH
1CH

21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH

30H
31H
33H
34H
35H
36H

Purpose

Terminate Process

Character Input with Echo
Character Output

Auxiliary Input

Auxiliary Output

Print Character

Direct Console I/O

Unfiltered Character Input Without Echo
Character Input Without Echo
Display String

Buffered Keyboard Input
Check Keyboard Status

Flush Buffer, Read Keyboard
Disk Reset

Select Disk

Open File with FCB

Close Filewith FCB
Find First File

Find Next File
Delete File
Sequential Read
Sequentia Write
Create File with FCB
Rename File

Get Current Disk

Set DTA Address
Get Default Drive Data
Get Drive Data

Random Read

Random Write

Get File Size

Set Relative Record

Set Interrupt Vector

Create New Program Segment Prefix
Random Block Read

Random Block Write

Parse Filename ESI,
Get Date

Set Date

Get Time

Set Time

Set/Reset Verify Flag

Get DTA Address

Get MS-DOS Version Number
Terminate and Stay Resident
Get/Set Control-C Check Flag
Return Address of INDOS Flag
Get Interrupt Vector

Get Disk Free Space

54 Interrupt 21H Functions

Managed Registers

None
None
None
None
None
None
None
None
None
EDX
EDX
None
EDX
None
None
EDX

EDX
EDX
EDX
EDX
EDX
EDX
EDX
EDX
None
EDX
Returnsin EBX, ECX, and EDX
Returnsin EBX, ECX, and EDX

EDX

EDX

EDX

EDX

EDX

None

EDX, returnsin ECX
EDX, returnsin ECX
EDI, returnsin EAX, ESI and EDI (1.)
Returnsin ECX
None

None

None

None

Returnsin EBX

Returnsin ECX

None

None

Returnsin EBX

Returnsin EBX

Returnsin EAX, EBX, ECX, and EDX

Interrupt 21H Functions

38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

40H
41H
42H
43H
44H

45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH

52H
54H
56H
57H
58H
59H
5AH
5BH
5CH
SEH

O00H
01H
02H
O3H
04H
O5H
06H
Oo7H
08H
09H
O0AH
O0BH
OCH
ODH
OEH
OFH

OOH
02H

Get/Set Current Country
Create Directory

Remove Directory
Change Current Directory
Create File with Handle
Open File with Handle
CloseFile

Read File or Device

Write File or Device

DeleteFile

Move File Pointer

Get/Set File Attribute

IOCTL

Get Device Information
SetDevice Information

Read Control Datafrom CDD
Write Control Datato CDD

Read Control Datafrom BDD
Write Control Datato BDD
Check Input Status

Check Output Status

Check if Block Device is Removeable
Check if Block Device is Remote
Check if Handle is Remote
Change Sharing Retry Count
Generic I/O Control for Character Devices
Generic 1/O Control for Block Devices
Get Logical Drive Map

Set Logical Drive Map

Duplicate File Handle

Force Duplicate File Handle

Get Current Directory

Allocate Memory Block

Free Memory Block

Resize Memory Block

L oad and Execute Program (EXEC)
Terminate Process with Return Code
Get Return Code of Child Process
Find First File

Find Next File

Get List of Lists

Get Verify Flag

Rename File

Get/Set Date/Time of File
Get/Set Allocation Strategy

Get Extended Error Information
Create Temporary File

Create New File

Lock/Unlock File Region
Network Machine Name/Printer Setup
Get Machine Name

Set Printer Setup String

EDX, returnsin EBX
EDX
EDX
EDX
EDX, returnsin EAX
EDX, returnsin EAX
None

EBX, ECX, EDX, returnsin EAX (2.)

EBX, ECX, EDX, returnsin EAX (2.)

EDX

Returnsin EDX, EAX
EDX, returnsin ECX
(3)

Returnsin EDX
None

EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
None

None

Returnsin EAX
Returnsin EDX
Returnsin EDX
None

EDX

EDX

None

None

Returnsin EAX
None

ESI

Returnsin EAX
None

None

EBX, EDX (4.)
None

None

EDX

None

(not supported)

None

EDX, EDI

Returnsin ECX, and EDX
Returnsin EAX

Returnsin EAX

EDX, returnsin EAX and EDX
EDX, returnsin EAX

None

EDX
ESI

Interrupt 21H Functions

55

The DOS/4GW DOS Extender

03H Get Printer Setup String EDI, returnsin ECX
5FH Get/Make Assign List Entry

02H Get Redirection List Entry ESl, EDI, returnsin ECX

03H Redirect Device ESl, EDI

04H Cancel Device Redirection ES|
62H Get Program Segment Prefix Address Returnsin EBX
63H Get Lead Byte Table (version 2.25 only) Returnsin ESI
65H Get Extended Country Information EDI
66H Get or Set Code Page None
67H Set Handle Count None

Thislist of functions is excerpted from The MS-DOS Encyclopedia, Copyright (c) 1988 by Microsoft Press.
All Rights Reserved.

1. For Function 29H, DS:ESI and ES:EDI contain pointer values that are not changed by the call.

2. You can read and write quantities larger than 64KB with Functions 3FH and 40H. DOS4GW
breaks your request into chunks smaller than 64K B, and calls the DOS function once for each
chunk.

3. You can't transfer more than 64K B using Function 44h, subfunctions 02H, 03H, 04H, or O5H.
DOS4GW does not break larger requests into DOS-sized chunks, as it does for Functions 3FH
and 40H.

4. When you cal Function 4B under DOS/4GW, you passit a data structure that contains 16:32 bit
pointers. DOS4GW trandlates these into 16:16 bit pointers in the structure it passesto DOS.

10.1 Functions 25H and 35H: Interrupt Handling in Protected
Mode

By default, interrupts that occur in protected mode are passed down: the entry inthe IDT pointsto codein
DOS4GW that switches the CPU to real mode and resignals the interrupt. If you install an interrupt
handler using Interrupt 21H, Function 25H, that handler will get control of any interrupts that occur while
the processor is in protected mode. If the interrupt for which you installed the handler isin the autopassup
range, your handler will also get control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If theinterrupt isin the
autopassup range, the real-mode vector will be modified when you install the protected-mode handler to

point to code in the DOS4GW kernel. This code switches the processor to protected mode and resignals
the interrupt-where your protected-mode handler will get control.

10.1.1 32-Bit Gates

The DOS/4GW kernel always assigns a 32-bit gate for the interrupt handlersit installs. It does not
distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-hit gate points into the DOS4GW kernel. When DOS4GW handles the interrupt, it switchesto its
own 16-bit stack, and from there it calls the interrupt handler (yours or the default). Thistrandationis

56 Functions 25H and 35H: Interrupt Handling in Protected Mode

Interrupt 21H Functions

transparent to the handler, with one exception: since the current stack is not the one on which the interrupt
occurred, the handler cannot ook up the stack for the address at which the interrupt occurred.

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write anormal service routine that either handles the interrupt and
IRETs or chainsto the previous handler. As part of handling the interrupt, your handler can PUSHF/CALL
to the previous handler. The handler must IRET (or IRETD) or chain.

For each protected-mode interrupt, DOS4GW maintains separate chains of 16-bit and 32-bit handlers. If
your 16-bit handler chains, the previous handler is a 16-bit program. If your 32-bit handler chains, the
previous handler is a 32-hit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit chain is executed
first. If al the 16-bit handlers unhook later and a new 16-bit program hooks the interrupt while 32-bit
handlers are still outstanding, the 32-bit handlers will be executed first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no other program
of your bitness (i.e., 16-hit or 32-bit) has hooked the interrupt. The address points to adummy handler that
looks to you as though it does an IRET to end the chain. This means that you can’t find an unused interrupt
by looking for aNULL pointer. Since this technique is most frequently used by programs that are looking
for an unclaimed real-mode interrupt on which to install a TSR, it shouldn’t cause you problems.

Functions 25H and 35H: Interrupt Handling in Protected Mode 57

The DOS/4GW DOS Extender

58 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS4GW application runs under aDPMI host, such as Windows 3.1 in enhanced mode, an OS/2

virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QEMM/QDPMI (with EXTCHKOFF),

the DPMI host provides the DPMI services, not DOS4GW. The DPMI host also provides virtual memory,
if any. Performance (speed and memory use) under different DPMI hosts varies greatly due to the quality

of the DPMI implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS4GW and DOS/4GW Professional in the absence of

aDPMI host. DOS4GW supports many of the common DPMI system services. Not all of the services
described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-M ode | nterface (DPMI)

specification. It isno longer in print; however the DPMI 1.0 specification can be obtained from the Intel
ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/|AL/sof tware_specs/ dpm vl. zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls

Interrupt 31H DPMI function calls can be used only by protected-mode programs.
The general ground rules for Interrupt 31H calls are as follows:

* All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful callsreturn an error
codein AX. Other registers are saved unless they contain specified return values.

* All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the carry flag
set. Successful calls clear the carry flag. Only memory management and interrupt flag management
calls modify the interrupt flag.

* Memory management calls can enable interrupts.

* All calls are reentrant.

The flag and register information for each call islisted in the following descriptions of supported Interrupt
31H function calls.

Using Interrupt 31H Function Calls 59

The DOS/4GW DOS Extender

11.2 Int31H Function Calls

The Interrupt 31H subfunction calls supported by DOS4GW are listed below by category:
* Local Descriptor Table (LDT) management services
* DOS memory management services
* Interrupt services
* Translation services
* DPMI version
* Memory management services
* Page locking services
» Demand paging performance tuning services
* Physical address mapping
* Virtual interrupt state functions
* Vendor specific extensions
 Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and returns the
base selector. Pass the following information:

AX = 0000H
CX =number of descriptorsto be allocated

If the call succeeds, the carry flag is clear and the base selector isreturned in AX. If the
cal fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of zero. The
privilege level of an allocated descriptor is set to match the code segment privilege level of
the application. To find out the privilege level of adescriptor, usethe | ar instruction.
Allocated descriptors must be filled in by the application. 1f more than one descriptor is
allocated, the returned selector is the first of a contiguous array. Use Function 0003H to
get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

60 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0001H
BX =the selector to free

Use the selector returned with function 0000h when the descriptor was allocated. To free
an array of descriptors, call this function for each descriptor. Use Function 0003H to find
out the increment for each descriptor in the array.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Y ou can use this function to free the descriptors all ocated for the program’sinitial CS, DS,
and SS segments, but you should not free other segments that were not allocated with
Function 0000H or Function 000DH.

Function 0002H This function converts a real-mode segment to a descriptor that a protected-mode
program can address. Pass the following information:

AX =0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the real-mode
segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment address, you get
the same selector value each time. The descriptor limit is set to 64KB.

The purpose of this function is to give protected-mode programs easy access to commonly
used real-mode segments. However, because you cannot modify or free descriptors created
by this function, it should be used infrequently. Do not use this function to get descriptors
for private data areas.

To examine real-mode addresses using the same selector, first allocate a descriptor, and
then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Use this function to get
the value you add to the base address of an allocated array of descriptors to get the next
selector address. Pass the following information:

AX =0003H

This call always succeeds. Theincrement valueisreturned in AX. Thisvalueisawaysa
power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following information:

AX = 0006H
BX = selector

If the call succeeds, the carry flagis clear and CX:DX contains the 32-bit linear base
address of the segment. If the call fails, it setsthe carry flag.

If the selector you specify in BX isinvalid, the call fails.

Function 0007H This function changes the base address of a specified selector. Only descriptors allocated
through Function 0000H should be modified. Pass the following information:

Int31H Function Calls 61

The DOS/4GW DOS Extender

62

AX = 0007H

BX = selector

CX:DX =thenew 32-bit linear base addressfor the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

If the selector you specify in BX isinvalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function to modify

descriptors allocated with Function 0000H only. Pass the following information:;
AX = 0008H

BX = selector

CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The cdll failsif the specified selector isinvalid, or if the specified limit cannot be set.

Segment limits greater than 1MB must be page-aligned. This means that limits greater than
1IMB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of | sl for segment limits greater than
64K B.

Function 0009H This function sets the descriptor access rights. Use this function to modify descriptors

allocated with Function 0000H only. To examine the access rights of a descriptor, use the
| ar instruction. Pass the following information:

AX = 0009H

BX = selector

CL = Accessrights/type byte

CH = 386 extended accessrights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag isset. If the
selector you specify in BX isinvalid, the call fails. The call also failsif the access
rights/type byte does not match the format and meet the requirements shown in the figures
below.

Int31H Function Calls

Interrupt 31H DPMI Functions

The access rights/type byte passed in CL has the format shown in the figure below.

P DPL

1 C/D E/C WIR

4 3 2

1

A

v

0 => Absent, 1=> Present

Figure 3. Access Rights/Type

\
Must equal caller's CPL

0 => Data, 1=> Code

v
Must be 1

i

0 => Not accessed
1=> Accessed

Data: 0 => Read, 1=> R/W
v Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
v Code: Must be 0 (non-conform)

Int31H Function Calls

63

The DOS/4GW DOS Extender

The extended access rights/type byte passed in CH has the following format.

G B/D 0 Avl Reserved
7 6 5 4 3 2 1 0
Ignored
v
CanbeOQor1l
A
Must be 0
v
0 => Default 16-bit., 1=> Default 32-bit
v

0 => Byte Granular, 1=> Page Granular

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a data descriptor
that has the same base and limit as the specified code segment descriptor. Passthe
following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flagis clear and the new data selector isreturned in AX. If
the call fails, the carry flag isset. The call failsif the selector passed in BX isnot avalid
code segment.

To deallocate an dias to a code segment, use Function 0001H.
After the dliasis created, it does not change if the code segment descriptor changes. For
example, if the base or limit of the code segment change later, the alias descriptor stays the

same.

Function 000BH This function copies the descriptor table entry for a specified descriptor. The copy is
written into an 8-byte buffer. Pass the following information:

AX = 000BH

BX = selector
ES.EDI = apointer to the 8-byte buffer for the descriptor copy

64 Int31H Function Calls

Interrupt 31H DPMI Functions

If the call succeeds, the carry flagis clear and ES:EDI contains a pointer to the buffer that
contains a copy of the descriptor. If the call fails, the carry flag isset. Thecall failsif the
selector passed in BX isinvalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified descriptor. The
descriptor must first have been allocated with Function 0000H. Pass the following
information:

AX = 000CH
BX = selector
ES.EDI = apointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flag is clear; if it fails, the carry flag isset. The cal failsif
the descriptor passed in BX isinvalid.

The type byte, byte 5, has the same format and requirements as the access rights/type byte
passed to Function 0009H in CL. The format is shown in the first figure presented with the
description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the extended
access rights/type byte passed to Function 0009H in CH, except that the limit field can have
any value, and the low order bits marked reserved are used to set the upper 4 bits of the
descriptor limit. The format is shown in the second figure presented with the description of
Function O009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following information:

AX = 000DH
BX = selector

If the call succeeds, the carry flag is clear and the specified descriptor is allocated. If the
call fails, the carry flag is set.

The call failsif the specified selector isaready in use, or if itisnot avalid LDT descriptor.
Thefirst 10h (16 decimal) descriptors are reserved for this function, and should not be used
by the host. Some of these descriptors may bein use, however, if another client application
isaready loaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services
Function 0100H This function allocates memory from the DOS free memory pool. This function returns
both the real-mode segment and one or more descriptors that can be used by

protected-mode applications. Pass the following information:

AX =0100H
BX =the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flagisclear. AX containstheinitial real-mode segment of
the allocated block and DX contains the base selector for the allocated block.

Int31H Function Calls 65

The DOS/4GW DOS Extender

66

If the call fails, the carry flag isset. AX containsthe DOS error code. If memory is
damaged, code O7H is returned. If thereis not enough memory to satisfy the request, code
08H isreturned. BX contains the number of paragraphsin the largest available block of
DOS memory.

If you request a block larger than 64K B, contiguous descriptors are allocated. Use
Function 0003H to find the value of the increment to the next descriptor. The limit of the
first descriptor is set to the entire block. Subsequent descriptors have alimit of 64KB,
except for the final descriptor, which hasalimit of bl ocksi ze MOD 64KB.

Y ou cannot modify or deallocate descriptors allocated with this function. Function 101H
deallocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H. Passthe

following information:

AX = 0101H
DX = selector of the block to be freed

If the call succeeds, the carry flag isclear.
If the call fails, the carry flag is set and the DOS error code isreturned in AX. If the
incorrect segment was specified, code 09H isreturned. If memory control blocks are

damaged, code O7H is returned.

All descriptors allocated for the specified memory block are deallocated automatically and
cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H. Passthe

following information;

AX =0102H
BX =the number of paragraphs (16-byte blocks) in theresized block
DX = selector of block toresize

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set, the maximum number of paragraphs availableis
returned in BX, and the DOS error codeisreturned in AX. If memory code blocks are
damaged, code O7H isreturned. If thereisn’t enough memory to increase the size as
requested, code O8H is returned. If the incorrect segment is specified, code 09h is returned.

Because of the difficulty of finding additional contiguous memory or descriptors, this
function is not often used to increase the size of amemory block. Increasing the size of a
memory block might well fail because other DOS all ocations have used contiguous space.
If the next descriptor in the LDT is not free, allocation also fails when the size of ablock
grows over the 64KB boundary.

If you shrink the size of amemory block, you may also free some descriptors allocated to
the block. Theinitial selector remains unchanged, however; only the limits of subsequent
selectors will change.

Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.3 Interrupt Services

Function 0200H This function gets the value of the current task’ s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX =0200H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear, and the segnent : of f set of the
real-mode interrupt handler is returned in CX:DX.

Because the address returned in CX is a segment, and not a selector, you cannot put it into a
protected-mode segment register. If you do, a general protection fault may occur.

Function 0201H This function sets the value of the current task’ s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX =0201H
BL =interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be areal-mode segnent : of f set, suchas
function 0200H returns. For this reason, the interrupt handler must reside in DOS
addressable memory. Y ou can use Function 0100H to allocate DOS memory. Thisversion
does not support the real-mode callback address function.

If you are hooking a hardware interrupt, you have to lock all segmentsinvolved. These
segments include the segment in which the interrupt handler runs, and any segment it may
touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function returns the
CS:EIP of the current protected-mode exception handler for the specified exception
number. Pass the following information:

AX =0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flagisclear and the sel ect or : of f set of the
protected-mode exception handler isreturned in CX:EDX. If it fails, the carry flag is set.

The value returned in CX isavalid protected-mode selector, not a real-mode segment.
Function 0203H This function sets the processor exception handler vector. This function allows
protected-mode applications to intercept processor exceptions that are not handled by the

DPMI environment. Programs may wish to handle exceptions such as "not present segment
faults" which would otherwise generate afatal error. Pass the following information:

Int31H Function Calls 67

The DOS/4GW DOS Extender

AX =0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flagisclear. If it fails, the carry flag is set.

The address passed in CX must be avalid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
inthe EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

The handler should return using afar return instruction. The original SS:ESP, CS:EIP and
flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error code is only valid for
exceptions 08h, 0Ah, 0Bh, 0Ch, 0Dh, and OEh.

The handler must preserve and restore al registers.

The exception handler will be called on alocked stack with interrupts disabled. The
origina SS, ESP, CS, and EIP will be pushed on the exception handler stack frame.

The handler must either return from the call by executing afar return or jump to the next
handler in the chain (which will execute afar return or chain to the next handler).

The procedure can modify any of the values on the stack pertaining to the exception before
returning. This can be used, for example, to jump to a procedure by modifying the CS:EIP
on the stack. Note that the procedure must not modify the far return address on the stack
&mdash. it must return to the original caller. The caller will then restore the flags, CS.EIP
and SS:ESP from the stack frame.

If the DPMI client does not handle an exception, or jumps to the default exception handler,
the host will reflect the exception as an interrupt for exceptions 0, 1, 2, 3,4, 5and 7.
Exceptions 6 and 8 - 1Fh will be treated as fatal errors and the client will be terminated.
Exception handlers will only be called for exceptions that occur in protected mode.

Function 0204H This function getsthe CS:EIP sel ect or : of f set of the current protected-mode
interrupt handler for a specified interrupt number. Pass the following information:

AX = 0204H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear and CX:EDX contains the
protected-mode sel ect or : of f set of the exception handler.

A 32-hit offset isreturned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt vector. Passthe
following information:

68 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0205H
BL =interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
The address passed in CX must be avalid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset

inthe EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that DPMI does
not support directly. The protected-mode program must set up a data structure with the appropriate register
values. This"real-mode call structure” is shown below.

Int31H Function Calls 69

The DOS/4GW DOS Extender

70

Offset Register
OO0H EDI
04H ESI

08H EBP
OCH Reserved by system
10H EBX
14H EDX
18H ECX
1CH EAX
20H Flags
22H ES

24H DS

26H FS

28H GS
2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and IP will be
copied back to the real-mode call structure so that the caller can examine the real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode selectors.

The translation services will provide areal-mode stack if the SS:SP fields are zero. However, the stack
provided isrelatively small. If the real-mode procedure/interrupt routine uses more than 30 words of stack
space then you should provide your own real-mode stack.

Function 0300H This function simulates a real-mode interrupt. This function simulates an interrupt in real

mode. It will invoke the CS:IP specified by the real-mode interrupt vector and the handler
must return by executingan i r et . Passthe following information:

Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0300H

BL =interrupt number

BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags are
reserved and must be 0.

CX =number of wordsto copy from protected-mode stack to real-mode stack

ES.EDI =the selector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flagis clear and ES.EDI containsthe sel ect or : of f set
of the modified real-mode call structure.

The CS:IPin the real-mode call structure isignored by this service. The appropriate
interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the real-mode stack
i ret frame. Theinterrupt handler will be called with the interrupt and trace flags clear.

It isup to the caller to remove any parameters that were pushed on the protected-mode
stack.

Theflag to reset the interrupt controller and the A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI implementations that
return to real mode to set the interrupt controller and A20 address line hardware to its
normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure with a FAR
return frame. The called procedure must execute a FAR return when it completes. Passthe
following information;

AX =0301H
BH =flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved
and must be 0.

CX = Number of wordsto copy from protected-modeto real-mode stack
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI containsthe sel ect or: of f set
of modified real-mode call structure.

If the call fails, the carry flag is set.
Notes:

1. TheCSIPin thereal-mode call structure specifies the address of the real-mode
procedure to call.

2. Therea-mode procedure must execute a FAR return when it has compl eted.

3. If the SS:SPfields are zero then areal-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When theInt 31h returns, the real-mode call structure will contain the val ues that
were returned by the real-mode procedure.

Int31H Function Calls 71

The DOS/4GW DOS Extender

5. Itisup tothecaler to remove any parameters that were pushed on the
protected-mode stack.

6. Theflag to reset the interrupt controller and A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0302H (DOS/4GW Professional only) This function calls a real-mode procedure withan i r et
frame. The called procedure must execute an i r et when it completes. Pass the following
information:

AX =0302H

BH =flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved
and must be 0.

CX =Number of wordsto copy from protected-mode to r eal-mode stack

ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and ES.EDI containsthe sel ect or : of f set
of modified real-mode call structure.

If the call fails, the carry flag is set.
Notes:

1. TheCS:IPin thereal-mode call structure specifies the address of the real-mode
procedure to call.

2. Therea-mode procedure must executean i r et when it has completed.

3. If the SS:SPfields are zero then areal-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

5. Theflags specified in the real-mode call structure will be pushed the real-mode
stack i r et frame. The procedure will be called with the interrupt and trace
flags clear.

6. Itisuptothecaller to remove any parameters that were pushed on the
protected-mode stack.

7. Theflag to reset the interrupt controller and A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback address. This

service is used to obtain a unique real-mode SEG:OFFSET that will transfer control from
real mode to a protected-mode procedure.

72 Int31H Function Calls

Interrupt 31H DPMI Functions

At timesit is necessary to hook areal-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address whenever the
mouse ismoved. Software running in protected mode can use a real-mode callback to
intercept the mouse driver calls. Pass the following information:

AX =0303H
DS.ESI = selector:offset of procedureto call
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and CX:DX containsthe segmrent : of f set of
real-mode callback address.

If the call fails, the carry flag is set.
Callback Procedure Parameters

Interrupts disabled

DS.ESI = selector:offset of real-mode SS:SP
ES.EDI = selector:offset of real-mode call structure
SS.ESP = Locked protected-mode API stack

All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES.EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Sincetherea-mode call structureis static, you must be careful when writing
code that may be reentered. The simplest method of avoiding reentrancy isto
leave interrupts disabled throughout the entire call. However, if the amount of
code executed by the callback is large then you will need to copy the real-mode
call structure into another buffer. Y ou can then return with ES.EDI pointing to
the buffer you copied the datato & mdash. it does not have to point to the
original real mode call structure.

2. Thecalled procedureis responsible for modifying the real-mode CS:IP before
returning. If the real-mode CS:IP isleft unchanged then the real-mode callback
will be executed immediately and your procedure will be called again. Normally
you will want to pop areturn address off of the real-mode stack and placeit in
the real-mode CS:IP. The example code in the next section demonstrates
chaining to another interrupt handler and simulating areal-mode i r et .

3. Toreturn valuesto the real-mode caller, you must modify the real-mode call
structure.

4. Remember that all segment valuesin the real-mode call structure will contain
real-mode segments, not selectors. If you need to examine data pointed to by a
real-mode seg:offset pointer, you should not use the segment to selector service
to create a new selector. Instead, allocate a descriptor during initialization and
change the descriptor’ s base to 16 times the real-mode segment’ svalue. Thisis

Int31H Function Calls 73

The DOS/4GW DOS Extender

important since selectors allocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per task.

The following code is a sample of areal-mode interrupt hook. It hooksthe DOS Int 21h
and returns an error for the delete file function (AH=41h). Other calls are passed through
to DOS. Thisexampleis somewhat silly but it demonstrates the techniques used to hook a
real mode interrupt. Note that since DOS calls are reflected from protected mode to real

mode, the following code will intercept all DOS calls from both real mode and protected
mode.

74 Int31H Function Calls

Interrupt 31H DPMI Functions

B R R R
’

This procedure gets the current Int 21h real - node

My/_Int _21_ Hook:

Seg: O f set,

al | ocates a real -npbde cal | back address,

and sets the real-node Int 21h vector to the call-

back address.

khkkhkkhkkhkkhkkhkkhkkhhhkhhkhhhkhhhkhkhhhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkkkkkkkkkkkkkk*k*x*%x

nitialization_Code:

Create a code segnent alias to save data in

nov
nov
int
jc
nov

ax, 000Ah
bx, cs
31h

ERROR

ds, ax

ASSUMES DS, TEXT

Cet current

nmov
nmov
int
jc
nmv
nmov

Int 21h real -node SEG OFFSET

ax, 0200h

bl, 21h

31h

ERROR

[Orig_Real _Seg], cx
[Orig_Real _Ofset], dx

Al'l ocate a real -npde cal |l back

nov
push

pop
nmov
int
jc

ax, 0303h

ds

bx, cs

ds, bx

si, OFFSET My_Int_21_ Hook

es

di, OFFSET My_Real _Mode_Cal |l _Struc
31h

ERROR

Hook real -node int 21h with the cal |l back address

nov
nov
int
jc

ax, 0201h
bl, 21h
31h

ERROR

khkkhkkhkkhkkhkhkkhkhkhkhkhkhhhkhhhkhhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkkkkkkkkkkkkkk*k*x*%x

This is the actual Int 21h hook code. It will return
an "access denied" error for all calls made in real
mode to delete a file. Oher calls will be passed
through to DOCS.

ENTRY:

DS: SI -> Real -nbde SS: SP
ES: DI -> Real -nobde call structure
Interrupts disabled

EXI T:

ES: DI -> Real -node call structure

Khkkhkhkhhhkhhkhhkhhkhhhhhkhhhhhhhkhhhhhkhhkhhkhhkhhhkhhkhhhkhkhkhkk k%

cnp
j ne

es:[di . Real Mode_AH], 41h
Chai n_To_DOS

This is a delete file call (AH=41h). Sinulate an
iret on the real-npbde stack, set the real-npde

carry flag,

and set the real-nbde AX to 5 to indicate

an access denied error.

Int31H Function Calls

75

The DOS/4GW DOS Extender

cld

| odsw ; Get real-node ret IP
nov es:[di . Real Mode_| P], ax

| odsw ; Get real-node ret CS
nov es:[di . Real Mode_CS], ax

| odsw ; Get real -node flags
or ax, 1 ; Set carry flag

nov es: [di . Real Mode_Fl ags], ax

add es:[di . Real Mode_SP], 6

nov es:[di . Real Mode_AX], 5

jnp My_Hook_ Exi t

Chain to original Int 21h vector by replacing the
; real-node CS:IP with the original Seg: Offset.

bhai n_To_DOCs:

nmov ax, cs:[Oig_Real _Seq]

nov es: [di . Real Mode_CS], ax

nmov ax, cs:[Orig_Real _Ofset]

nov es:[di . Real Mode_I P], ax
My_Hook_Exi t:

iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback address that was

allocated through the allocate real-mode callback address service. Pass the following
information:

AX = 0304H
CX:DX = Real-mode callback addressto free

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
Notes:

1. Rea-mode callbacks are alimited resource. Y our code should free any break
point that it is no longer using.

11.2.5 DPMI Version

76

Function 0400H This function returns the version of DPMI services supported. Note that thisis not

necessarily the version of any operating system that supports DPMI. It should be used by
programs to determine what calls are legal in the current environment. Pass the following
information:

AX = 0400H
The information returned is;

AH =Major version

AL =Minor version

BX =Flags Bit 0=1if running under an 80386 DPMI implementation. Bit1 =1 if
processor is returned to real mode for reflected interrupts (as opposed to
Virtual 8086 mode). Bit 2 = 1if virtual memory is supported. Bit 3is
reserved and undefined. All other bits are zero and reserved for later use.

CL = Processor type

Int31H Function Calls

Interrupt 31H DPMI Functions

02 = 80286

03 = 80386

04 = 80486

05 = Pentium
DH = Current value of virtual master PIC baseinterrupt
DL = Current value of virtual dave PIC baseinterrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

Function 0500H This function gets information about free memory. Pass the following information:

AX = 0500H
ES.EDI =the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI containsthe sel ect or: of f set
of abuffer with the structure shown in the figure below.

Offset Description

O0H Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

OCH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pagesnot in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved

2FH

Only thefirst field of the structure is guaranteed to contain avalid value. Any field that is

not returned by DOS4GW is set to -1 (OFFFFFFFFH).

Int31H Function Calls

77

The DOS/4GW DOS Extender

Function 0501H This function allocates and commits linear memory. Pass the following information:

AX =0501H
BX:CX =size of memory to allocate, in bytes.

If the call succeeds, the carry flagis clear, BX:CX contains the linear address of the
allocated memory, and SI:DI contains the memory block handle used to free or resize the
block. If thecall fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and initialize
selectors needed to access the memory.

If VMM is present, the memory is allocated as unlocked, page granular blocks. Because of
the page granularity, memory should be allocated in multiples of 4KB.

Function 0502H This function frees a block of memory allocated through function 0501H. Passthe

following information:

AX = 0502H
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. Y ou must also
free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H function. If you

resize a block of linear memory, it may have anew linear address and anew handle. Pass
the following information:

AX =0503H
BX:CX = new size of memory block, in bytes
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flagis clear, BX:CX contains the new linear address of the
memory block, and Sl:DI contains the new handle of the memory block. If the call fails,
the carry flag is set.

If either the linear address or the handle has changed, update the selectors that point to the
memory block. Use the new handle instead of the old one.

Y ou cannot resize amemory block to zero bytes.

11.2.7 Page Locking Services

78

These services are only useful under DPMI implementations that support virtual memory. Although
memory ranges are specified in bytes, the actual unit of memory that will be locked will be one or more
pages. Pagelocks are maintained as a count. When the count is decremented to zero, the page is unlocked
and can be swapped to disk. This meansthat if aregion of memory islocked three times then it must be
unlocked three times before the pages will be unlocked.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI =size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flagis clear. If the specified region overlaps part of a page at
the beginning or end of aregion, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously locked using
the "lock linear region” function (0600h). Pass the following information:

AX =0601H
BX:CX = starting linear addr ess of memory to unlock
SI:DI =size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked. An error
will be returned if the memory was not previously locked or if the specified regionis
invalid.

If the call succeeds, the carry flagis clear. If the specified region overlaps part of a page at
the beginning or end of aregion, the page(s) will be unlocked. Even if the call succeeds,
the memory will remain locked if the lock count is not decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. Thisfunction returnsthe
size of asingle memory page in bytes. Pass the following information:

AX = 0604H
If the call succeeds, the carry flagis clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of time. These
services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual memory, other
implementations will ignore these functions (it will always return carry clear). Therefore your code can
aways call these functions regardless of the environment it is running under.

Since both of these functions are simply advisory functions, the operating system may choose to ignore
them. Inany case, your code should function properly even if the functionsfail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand paging candidate.
Thisfunction is used to inform the operating system that arange of pages should be placed
at the head of the page out candidate list. Thiswill force these pages to be swapped to disk
ahead of other pages even if the memory has been accessed recently. However, all memory
contents will be preserved.

Int31H Function Calls 79

The DOS/4GW DOS Extender

Thisisuseful, for example, if aprogram knows that a given piece of datawill not be
accessed for along period of time. That dataisideal for swapping to disk since the
physical memory it now occupies can be used for other purposes. Pass the following
information:
AX =0702H
BX:CX = Starting linear address of pagesto mark
SI:DI = Number of bytesto mark as paging candidates
If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.
Notes:
1. Thisfunction does not force the pages to be swapped to disk immediately.
2. Partial pageswill not be discarded.

Function 0703H (DOS/4GW Professional only) This function discards page contents. This function
discards the entire contents of agiven linear memory range. It isused after amemory
object that occupied a given piece of memory has been discarded.

The contents of the region will be undefined the next time the memory is accessed. All
values previoudly stored in this memory will belost. Pass the following information:

AX =0703H

BX:CX = Starting linear address of pagesto discard

SI:DI = Number of bytesto discard

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Partial pageswill not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory mapped at
physical addresses that lie outside of the normal 1Mb of memory that is addressable in real mode. Under
many implementations of DPMI, all addresses are linear addresses since they use the paging mechanism of
the 80386. This service can be used by device drivers to convert a physical addressinto alinear address.
The linear address can then be used to access the device memory.

Function 0800H Thisfunction is used for Physical Address Mapping.
Some implementations of DPMI may not support this call because it could be used to
circumvent system protection. This call should only be used by programs that absolutely

require direct access to a memory mapped device.

Pass the following information:

80 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can be used to
access the physical memory.

If the call fails, the carry flag is set.
Notes:

1. Under DPMI implementations that do not use the 80386 paging mechanism, the
call will always succeed and the address returned will be equal to the physical
address parameter passed into this function.

2. ltisuptothecaler to build an appropriate selector to access the memory.

3. Do not use this service to access memory that is mapped in the first megabyte of
address space (the real-mode addressable region).

Function 0801H This function is used to free Physical Address Mapping. Pass the following information:

AX =0801H
BX:CX = Linear addressreturned by Function 0800H.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
Notes:

1. Theclient should call thisfunction when it is finished using a device previously
mapped to linear addresses with the Physical Address Mapping function
(Function 0800H).

11.2.10 Virtual Interrupt State Functions

Under many implementations of DPMI, the interrupt flag in protected mode will always be set (interrupts
enabled). Thisisbecause the program is running under a protected operating system that cannot allow
programs to disable physical hardware interrupts. However, the operating system will maintain a"virtual"
interrupt state for protected-mode programs. When the program executes a CL | instruction, the program’s
virtual interrupt state will be disabled, and the program will not receive any hardware interrupts until it
executes an ST to reenable interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will be pushed
onto the stack. Thus, examining the flags pushed on the stack is not sufficient to determine the state of the
program’ svirtual interrupt flag. These services enable programsto get and modify the state of their virtual
interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtua interrupt state to
it's previous state.

Int31H Function Calls 81

The DOS/4GW DOS Extender

; Disable interrupts and get previous interrupt state

nmov ax, 0900h
int 31h

. At this point AX = 0900h or 0901h

; Restore previous state (assunes AX unchanged)

i nt 31h
Function 0900H This function gets and disables Virtual Interrupt State. This function will disable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Passthe
following information:

AX =0900H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are disabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will enable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Passthe
following information:

AX = 0901H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are enabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0902H Thisfunction getsthe Virtual Interrupt State. This function will return the current state of
the virtual interrupt flag. Pass the following information:

82 Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0902H
After the call, the carry flag is clear (this function always succeeds).
AL =0if virtual interrupts are disabled.
AL = 1if virtua interrupts are enabled.
11.2.11 Vendor Specific Extensions
Some DOS extenders provide extensions to the standard set of DPMI calls. Thiscall isused to obtain an
address which must be called to use the extensions. The caller points DS:ESI to a null terminated string
that specifies the vendor name or some other unique identifier to obtain the specific extension entry point.

Function OAOOH This function gets Tenberry Software’s APl Entry Point. Pass the following information:

AX = 0AO0H
DS.ESI = Pointer to null terminated string " RATIONAL DOS/4G"

If the call succeeds, the carry flag is clear and ES:EDI = Extended APl entry point. DS,
FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.
Notes:
1. Executeafar cal to call the API entry point.
2. All extended API parameters are specified by the vendor.

3. Thestring comparison used to return the APl entry point is case sensitive.

11.2.12 Coprocessor Status
Function OEOOH This function gets the coprocessor status. Pass the following information:
AX = OEOOH
If the call succeeds, the carry flagis clear and AX contains the coprocessor status.
Bit Significance

0 MPv (MP bit in the virtual MSW/CRO).
0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.
1 EMv (EM bit in the virtual M SW/CRO).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.
2 MPr (MP bit from the actual M SW/CRO).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.

Int31H Function Calls 83

The DOS/4GW DOS Extender

8-15

EMr (EM bit from the actual M SW/CRO).

0 = Host is not emulating coprocessor instructions.
1 =Host is emulating coprocessor instructions.
Coprocessor type.

O0H = no coprocessor.

02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium
Not applicable.

If the call fails, the carry flag is set.

Notes:

1

If thereal EM (EM) bit is set, the host is supplying or is capable of supplying
floating-point emulation.

If the MPv bit is not set, the host may not need to save the coprocessor state for
this virtual machine to improve system performance.

The MPr bit setting should be consistent with the setting of the coprocessor type
information. Ignore MPr bit information if it isin conflict with the coprocessor
type information.

If the virtual EM (EMV) hit is set, the host delivers all coprocessor exceptions to
the client, and the client is performing its own floating-point emulation (wether
or not a coprocessor is present or the host also has a floating-point emulator). In
other words, if the EMv bit is set, the host sets the EM bit in the real CRO while
the virtual machine is active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

A client can determine the CPU type with int 31H Function 0400H, but a client
should not draw any conclusions about the presence or absence of a coprocessor
based on the CPU type alone.

Function OEO1H This function sets coprocessor emulation. Pass the following information:

AX = 0EO1H
BX = coprocessor bits

Bit Significance

0 New value of MPv bit for client’s virtual CRO.
0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for thisclient.

1 New value of EMv bit for client’s virtual CRO.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.

2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

84 Int31H Function Calls

12 utilities

This chapter describes the Tenberry Software DOS4GW utility programs provided with the Watcom
C/C++ package. Each program is described using the following format:

Purpose: Thisisabrief statement of what the utility program does. More specific information is provided
under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each commandisin a
typewriter font, whilevariable partsof the command areinitalics. Optional parts are
enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We explain anything
special that you might need to know about the program.

See Also: Thisisacross-reference to any information that is related to the program.

Example: You'll find one or more sample uses of the utility program with an explanation of what the
program is doing.

Some of the utilities are DOS4GW-based, protected-mode programs. To determine which programsrunin

protected mode and which in real, run the program. If you see the DOS4GW banner, the program runsin
protected mode.

Utilities 85

The DOS/4GW DOS Extender

12.1 DOS4GW

Purpose: Loads and executes linear executables.
Syntax: linear_executable
Notes: The stub program at the beginning of the linear executable invokes this program, which loads the

linear executable and starts up the DOS extender. The stub program must be able to find
DOSAGW: make sureit isin the path.

86 DOS4GW

Utilities

12.2 PMINFO

Purpose:

Syntax:

Notes:

Example:

Measures the performance of protected/real-mode switching and extended memory.
PM NFO. EXE

We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary slightly from run to run.

The following example shows the output of the PMINFO program on a 386 AT-compatible
machine.

C>pni nfo
Prot ect ed Mbde and Extended Menory Performance Measurement -- 5.00
Copyright (c) Tenberry Software, Inc. 1987 - 1993

DCS nmenory Ext ended nenory CPU performance equivalent to 67.0 MHz 80486

736 8012 K bytes configured (according to Bl OS).

640 15360 K bytes physically present (SETUP).

651 7887 K bytes avail able for DOS/ 16M prograns.
22.0 (3.0) 18.9 (4.0) MB/ sec word transfer rate (wait states).
42.9 (3.0) 37.0 (4.0) MB/ sec 32-bit transfer rate (wait states).

Overal |l cpu and nmenory performance (non-floating point) for typical
DCS prograns is 10.36 & 1.04 tinmes an 8MHz | BM PC/ AT.

Protected/ Real switch rate = 36156/sec (27 usec/sw tch, 15 up + 11 down),
DCS/ 16M swi tch node 11 (VCPI).

The top information line shows that the CPU performanceis equivalent to a 67.0 MHz 80486.
Below are the configuration and timings for both the DOS memory and extended memory. If the
computer is not equipped with extended memory, or none is available for DOS4GW, the
extended memory measurements may be omitted ("--").

Theline "according to BIOS' shows the information provided by the BIOS (interrupts 12h and
15h function 88h). Theline"SETUP", if displayed, is the configuration obtained directly from
the CMOS RAM as set by the computer’s setup program. It is displayed only if the numbers are
different from those in the BIOS line. They will be different for computers where the BIOS has
reserved memory for itself or if another program has allocated some memory and is intercepting
the BIOS configuration requests to report less memory available than is physically configured.
The"DOS/16M memory range”, if displayed, shows the low and high addresses available to
DOS4GW in extended memory.

Below the configuration information isinformation on the memory speed (transfer rate).
PMINFO tries to determine the memory architecture. Some architectures will perform well
under some circumstances and poorly under others; PMINFO will show both the best and worst
cases. The architectures detected are cache, interleaved, page-mode (or static column), and
direct. Measurements are made using 32-bit accesses and reported as the number of megabytes
per second that can be transferred. The number of wait states is reported in parentheses. The
wait states can be a fractional number, like 0.5, if thereisawait state on writes but not on reads.
Memory bandwidth (i.e., how fast the CPU can access memory) accounts for 60% to 70% of the
performance for typical programs (that are not heavily dependent on floating-point math).

PMINFO 87

The DOS/4GW DOS Extender

88 PMINFO

A performance metric developed by Tenberry Software is displayed, showing the expected
throughput for the computer relative to a standard 8SMHz IBM PC/AT (disk accesses and floating
point are excluded). Finally, the speed with which the computer can switch between real and
protected mode is displayed, both as the maximum number of round-trip switches that can occur

per second, and the time for a single round-trip switch, broken out into the real-to-protected (up)
and protected-to-real (down) components.

Utilities

12.3 PRIVATXM

Purpose:

Syntax:

Notes:

Example:

Creates a private pool of memory for DOS/4GW programs.
PRI VATXM [- r]
This program may be distributed to your users.

Without PRIVATXM, a DOS4GW program that starts up while another DOS4GW program is
active uses the pool of memory built by the first program. The new program cannot change the
parameters of this memory pool, so setting DOS16M to increase the size of the pool has no
effect. To specify that the two programs use different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS4GW programs as private, preventing subsequent DOS4GW
programs from using the same memory pool. The first DOS4GW program to start after
PRIVATXM sets up anew pool of memory for itself and any subsequent DOS4GW programs.
To release the memory used by the private programs, use the PRIVATXM -r option.

PRIVATXM isa TSR that requires less than 500 bytes of memory. It isnot supported under
DPMI.

The following example creates a 512K B memory pool that is shared by two DOS4GW TSRs.
Subsequent DOS4GW programs use a different memory pool.

C>set DOS16M=:512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOSAGW programs use a new memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512K B memory pool used by the TSRs. (If the TSRs
shut down, their memory is not released unless PRIVATXM is
released.)

PRIVATXM 89

The DOS/4GW DOS Extender

12.4 RMINFO

Purpose: Supplies configuration information and the basis for real/protected-mode switching in your

RMINFO starts up DOS4GW, but stops your machine just short of switching from real mode to
protected mode and displays configuration information about your computer. The information
shown by RMINFO can help determine why DOS4GW applications won't run on a particular

machine.
Syntax: RM NFO. EXE
Notes: Thisprogram may be distributed to your users.

machine. Run RMINFO if PMINFO does not run to completion.
Example:

90 RMINFO

The following example shows the output of the RMINFO program on an 386 AT-compatible
machine.

Crnminfo
DOS/ 16M Real Mbde | nfornation Program 5. 00
Copyright (C) Tenberry Software, Inc. 1987 - 1993
Machi ne and Environnent:
Processor: i 386, coprocessor present
Machi ne type: 10 (AT-conpati bl e)
A20 now enabl ed
A20 switch rigor: di sabl ed
DPM host found
Swi t chi ng Functi ons:
To PM swi tch: DPM
To RM switch: DPM
Nomi nal switch node: 0
Switch control flags: 0000
Menmory Interfaces:
DPM may provi de: 16384K returnabl e
Conti guous DOS nenory: 463K

Theinformation provided by RMINFO includes:
Machine and Environment:
Processor: processor type, coprocessor present/not present

Machine type:

Utilities

A20 now: Current state of Addressline 20.

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)

(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)

(Zenith)

(Hitachi)
(Okidata)

(PS/55)

A20 switch rigor: Whether DOSAGW rigorously controls enabling and disabling of Addressline

20 when switching modes.

PSfeatureflag

XMS host found Whether your system has any software using extended memory under the XM S
discipline.

VCPI host found Whether your system has any software using extended memory under the
VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory

Switching Functions:

A20 switching:

To PM switch: reset catch:
pre-PM prep:
post-PM-switch:

To RM switch:

pre-RM prep:
reset method:
post-reset:

reset uncatch:

Nominal switch mode: X

Switch control flags: xxxxh

RMINFO 91

The DOS/4GW DOS Extender

92 RMINFO

Memory I nterfaces:

(VCPI remapping in effect)

DPMI may provide: xxxxxK returnable
VCPI may provide: xxxxxK returnable
Top-down

Other16M

Forced

Contiguous DOS memory:

13 Error Messages

The following lists DOS/4G error messages, with descriptions of the circumstances in which the error is
most likely to occur, and suggestions for remedying the problem. Some error messages pertaining to
features & mdash like DLLs & mdash that are not supported in DOS4GW will not arise with that product.
In the following descriptions, referencesto DOS/4G, DOSAG, or DOSAG.EXE may be replaced by
DOS/AGW, DOAGW, or DOSAGW.EXE should the error message arise when using DOSAGW.

13.1 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded in DOS/AG. Kernel error

messages may occur because of severe resource shortages, corruption of DOSAGW.EXE, corruption of

memory, operating system incompatibilities, or internal errorsin DOS/AGW. All of these messages are

quite rare.

0. involuntary switch to real mode
The computer was in protected mode but switched to real mode without going through DOS/16M. This
error most often occurs because of an unrecoverable stack segment exception (stack overflow), but can
also occur if the Global Descriptor Table or Interrupt Descriptor Table is corrupted. Increase the stack
size, recompile your program with stack overflow checking, or look into ways that the descriptor tables
may have been overwritten.

1. not enough extended memory

2. not aDOS/16M executable <filename>

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy thefile.

3. no DOS memory for transparent segment
4. cannot make transparent segment
5. too many transparent segments
6. not enough memory to load program
There is not enough memory to load DOS/4G. Make more memory available and try again.
7. no relocation segment
8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file units. Set a
larger FILES= entry in CONFIG.SY S, reboot, and try again.

Kernel Error Messages 93

The DOS/4GW DOS Extender

9. cannot allocate tstack

There is not enough memory to load DOS/4G. Make more memory available and try again.
10. cannot allocate memory for GDT

Thereis not enough memory to load DOS/4G. Make more memory available and try again.
11. no passup stack selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
12. no control program selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
13. cannot allocate transfer buffer

Thereis not enough memory to load DOS/4G. Make more memory available and try again.
14. premature EOF

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy thefile.

15. protected mode available only with 386 or 486
DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications
Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode. Thisisdoneto
provide special memory services to DOS programs, such as EM S simulation (EM S interface without
EMS hardware) or high memory. Inthismode, it is not possible to switch into protected mode unless
the resident software follows a standard that DOS/16M supports (DPMI, VCPI, and XMS are the most
common). Contact the vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)
On some Japanese machines that are not IBM AT-compatible, and have no protocol for managing
extended memory, you must set the DOS16M environment variable to specify the range of available
extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requiresDOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your program.

94 Kernel Error Messages

Error Messages

23. no memory for VCPI page table

There is not enough memory to load DOS/4G. Make more memory available and try again.
24. VVCPI page table addressincorrect

Thisisaninterna error.
25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that VCPI is
present, but VCPI returns an error when DOS/16M triesto initialize the interface.

26. 8042 timeout

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop
This error probably indicates that memory was corrupted during execution of your program. Using an
invalid or stale alias selector may cause this error. Incorrect manipulation of segment descriptors may
also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your program. Writing
through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMS)

34. DPMI host error (cannot lock stack)
Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI. Under Windows,
you might try making more physical memory available by eliminating or reducing any RAM drives or
disk caches. You might also try editing DEFAULT.PIF so that at least 64KB of XMS memory is
available to non-Windows programs. Under OS/2, you want to increase the DPMI_MEMORY_LIMIT
in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your program should
cause error 2001 instead.

36. The DOS16M.386 virtual device driver was never loaded

37. Unableto reserve selectors for DOS16M.386 Windows driver

Kernel Error Messages 95

The DOS/4GW DOS Extender

38. Cannot use extended memory: HIMEM.SYS not version 2

This error indicates an incompatibility with an old version of HIMEM.SY S.
39. An obsolete version of DOS16M.386 was |oaded
40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its configuration.
Try configuring the memory manager to provide more extended memory, or change memory managers.

13.2 DOS/4G Errors

1000 " can’t hook interrupts’

A DPMI host has prevented DOS/4G from loading. Please contact Tenberry Technical Support.
1001 " error in interrupt chain”

DOS/AG internal error. Please contact Tenberry Technical Support.
1003 " can't lock extender kernel in memory"

DOS/4G couldn’t lock the kernel in physical memory, probably because of a memory shortage.
1004 " syntax is DOSAG <executable.xxx>"

Y ou must specify a program name.
1005 " not enough memory for dispatcher data"

There is not enough memory for DOS/4G to manage user-installed interrupt handlers properly. Free
some memory for the DOS/4G application.

1007 " can’t find file <program> to load"
DOS/4G could not open the specified program. Probably thefiledidn't exist. 1t is possible that
DOS ran out of file handles, or that a network or similar utility has prohibited read access to the
program. Make sure that the file name was spelled correctly.

1008 " can’t load executable format for file <filename> [<error code>]"

DOS/4G did not recognize the specified file as avalid executable file. DOS/4G can load linear
executables (LE and LX) and EXPs (BW). The error codeisfor Tenberry Software’ s use.

1009 " program <filename> is not bound"

This message does not occur in DOS/AG, only DOS/AGW Professional; the latter requires that the
DOS extender be bound to the program file. The error signals an attempt to load

1010 " can’t initialize loader <loader> [<error code>]"

96 DOS/4G Errors

Error Messages

DOS/4G could not initialize the named loader, probably because of aresource shortage. Try making
more memory available. If that doesn’'t work, please contact Tenberry Technical Support. The error
codeisfor Tenberry Software’ use.

1011 " VMM initialization error [<error code>]"
DOS/4G could not initialize the Virtual Memory Manager, probably because of aresource shortage.
Try making more memory available. If that doesn’'t work, please contact Tenberry Technical
Support. The error codeisfor Tenberry Software’ use.

1012 " <filename> is not a WATCOM program”

This message does not occur in DOS/AG, only DOS/AGW and DOS/AGW Professional. Those
extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because of an internal
error. Please call Tenberry Technical Support.

1100 " assertion \" <statement>\" failed (<file>:<line>)"

DOS/4G internal error. Please contact Tenberry Technical Support.
1200 " invalid EXP executable format"

DOS/AG tried to load an EXP, but couldn’t. The executable file is probably corrupted.
1201 " program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU -AUTO or -DPMI
switch.

1202 " can't allocate memory for GDT"

Thereis not enough memory available for DOS/4G to build a Global Descriptor Table. Make more
memory available.

1203 " premature EOF"
DOS/4G tried to load an EXP but couldn’t. Thefileis probably corrupted.
1204 " not enough memory to load program"

Thereis not enough memory available for DOS/AG to load your program. Make more memory
available.

1301 "invalid linear executable format"

DOS/4G cannot recognize the program file as a LINEXE format. Make sure that you specified the
correct file name.

1304 " file 1/O seek error™

DOS/4G Errors 97

The DOS/4GW DOS Extender

DOS/4G was unable to seek to afile location that should exist. This usually indicates truncated
program files or problems with the storage device from which your program loads. Run CHKDSK
or asimilar utility to begin determining possible causes.

1305 " file /O read error"
DOS/4G was unable to read afile location that should contain program data. This usually indicates
truncated program files or problems with the storage device from which your program loads. Run
CHKDSK or asimilar utility to begin determining possible causes.

1307 " not enough memory”

Asit attempted to load your program, DOS/4G ran out of memory. Make more memory available,
or enable VMM.

1308 " can’t load requested program"

1309 " can’t load requested program"

1311 " can’t load requested program"

1312 " can’t load requested program"
DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1313 " can't resolve external references”
DOS/4G was unable to resolve all referencesto DLLs for the requested program, or the program
contained unsupported fixup types. Use EXEHDR or asimilar LINEXE dump utility to see what
references your program makes and what special fixup records might be present.

1314 " not enough lockable memory"
Asit attempted to load your program, DOS/4G encountered arefusal to lock avirtual memory
region. Some memory must be locked in order to handle demand-load page faults. Make more
physical memory available.

1315 " can’t load requested program"

1316 " can’t load requested program"
DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1317 " program has no stack"

DOS/AG reports this error when you try to run a program with no stack. Rebuild your program,
building in a stack.

2000 " deinitializing twice"
DOS/4G internal error. Please contact Tenberry Technical Support.

2001 " exception <exception_number> (<exception_description>) at <selector:offset>"

98 DOS/4G Errors

Error Messages

Y our program has generated an exception. For information about interpreting this message, see the
file COMMON.DOC.

2002 " transfer stack overflow at <selector: offset>"

Y our program has overflowed the DOS/AG transfer stack. For information about interpreting this
message, see the file COMMON.DOC.

2300" can’t find <DLL>.<ordinal> - referenced from <module>"

DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the DLL at al.
Correct or remove the reference, and make sure that DOS/4G can find the DLL.

DOS/AG looks for DLLsin the following directories:

* The directory specified by the Libpath32 configuration option (which defaults to the directory
of the main application file).

* The directory or directories specified by the LIBPATH32 environment variable.
* Directories specified in the PATH.
2301 " can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or remove the
reference, and make sure that DOS/4G can find the DLL.

2302 " DLL modules not supported"

This DOS/4GW Professional error message arises when an application references or tries to
explicitly load aDLL. DOS/4GW Professional does not support DLLs.

2303 " internal LINEXE object limit reached"
DOS/AG currently handles a maximum of 128 LINEXE objects, including all .DLL and .EXE files.
Most .EXE or .DLL filesuse only three or four objects. If possible, reduce the number of objects, or
contact Tenberry Technical Support.

2500 " can’t connect to extender kernel"
DOS/4G internal error. Please contact Tenberry Technical Support.

2503 " not enough disk space for swapping - <count> byes required"”

VMM was unableto create a swap file of the required size. Increase the amount of disk space
available.

2504 " can’t create swap file \<filename>\
VMM was unable to create the swap file. This could be because the swap fileis specified for a

nonexistent drive or on adrivethat is read-only. Set the SWAPNAME parameter to change the
location of the swap file.

DOS/4G Errors 99

The DOS/4GW DOS Extender

2505 " not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more memory
available. If <table> is page buffer, make more DOS memory available.

2506 " not enough physical memory (minmem)"

Thereisless physical memory available than the amount specified by the MINMEM parameter.
Make more memory available.

2511 " swap out error [<error code>]"
Unknown disk error. The error codeisfor Tenberry Software’ use.

2512 " swapin error [<error code>]"
Unknown disk error. The error codeisfor Tenberry Software’ use.

2514 " can’t open tracefile"
VMM could not open the VMM.TRC file in the current directory for writing. If the directory
already hasaVMM.TRC file, deleteit. If not, there may not be enough memory on the drive for the
trace file, or DOS may not have any more file handles.

2520 " can’t hook int 31h"
DOS/AG internal error. Please contact Tenberry Technical Support.

2523 " page fault on non-present mapped page"

Y our program references memory that has been mapped to a nonexistent physical device, using
DPMI function 508h. Make sure the device is present, or remove the reference.

2524 " page fault on uncommitted page"
Y our program references memory reserved with acall to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before you reference
it.

3301 " unhandled EMPTYFWD, GATE16, or unknown relocation”
3302 " unhandled ALIAS16 reference to unaliased object"
3304 " unhandled or unknown relocation”
If your program was built for another platform that supports the LINEXE format, it may contain a

construct that DOS/4G does not currently support, such asacall gate. This message may also occur
if your program has a problem mixing 16- and 32-hit code. A linker error is another likely cause.

100 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/4AGW and
DOS/AGW Professional product. The content of this chapter has been edited by Watcom. In most cases,
theinformation is applicable to both products.
This chapter covers the following topics:

» Access to technical support

« Differences within the DOS/4G product line

» Addressing

* Interrupt and exception handling

» Memory management

* DOS, BIOS, and mouse services

* Virtual memory

* Debugging

» Compatibility

14.1 Access to Technical Support

1la. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

VWAN http://ww.tenberry. com dos4g/
Emai |l : 4gwhel p@enberry. com

Phone: 1.480.767. 8868

Fax: 1.480. 767. 8709

Mai | : Tenberry Software, Inc.

PO Box 20050
Fountain Hills, Arizona
U S. A 85269-0050
PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

Access to Technical Support 101

The DOS/4GW DOS Extender

1b. When to contact Watcom, when to contact Tenberry.

1c.

1d.

Since DOS/AGW Professional is intended to be completely compatible with DOS/4GW, you may wish
to ascertain whether your program works properly under DOS/4GW before contacting Tenberry
Software for technical support. (Thisislikely to be the second question we ask you, after your serial
number.)

If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect your own
code or a problem compiling or linking, you may wish to contact Watcom first. Tenberry Software
support personnel are not able to help you with most programming questions, or questions about using
the Watcom tools.

If your program only fails with DOS/AGW Professional, you have probably found a bug in DOS/AGW
Professional, so please contact us right away.

Telephone support.

Tenberry Software’ s hours for telephone support are 9am-6pm EST. Please note that telephone support
isfreefor thefirst 30 daysonly. A one-year contract for continuing telephone support on DOS/AGW
Professional is US$500 per developer, including an update subscription for one year, to customersin the
United States and Canada; for overseas customers, the price is $600. Site licenses may be negotiated.
Thereis no time limit on free support by fax, mail, or electronic means.

References.

The DOS/AGW documentation from Watcom is the primary reference for DOS/AGW Professional as
well. Ancther useful reference isthe DPMI specification. In the past, the DPMI specification could be
obtained free of charge by contacting Intel Literature. We have been advised that the DPMI

specification is no longer available in printed form.

However, the DPMI 1.0 specification can be obtained at:

http://ww. del ori e. con dj gpp/ doc/ dpmi /

OnlineHTML aswell as adownloadable archive are provided.

14.2 Differences Within the DOS/4G Product Line

2a. DOS/AGW Professional versus DOS/4GW

DOS/4AGW Professional was designed to be a higher-performance version of DOS/AGW suitable for
commercia applications. Hereisasummary of the advantages of DOS/4GW Professional with respect
to DOS/AGW:

* Extender binds to the application program file

« Extender startup time has been reduced

* Support for Watcom floating-point emulator has been optimized

* Virtual memory manager performance has been greatly improved

102 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

» Under VMM, programs are demand |loaded

* Virtual address spaceis4 GB instead of 32 MB

* Extender memory requirements have been reduced by more than 50K

« Extender disk space requirements have been reduced by 40K

« Can omit virtual memory manager to save 50K more disk space

* Support for INT 31h functions 301h-304h and 702h-703h
DOS/4AGW Professional is intended to be fully compatible with programs written for DOS/4GW 1.9 and
up. Theonly functional differenceis that the extender is bound to your program instead of residingin a
separate file. Not only does this help reduce startup time, but it eliminates version-control problems
when someone has both DOS/4GW and DOS/AGW Professional applications present on one machine.

2b. DOS/AGW Professional versus DOS/A4G.

DOS/4GW Professional is not intended to provide any other new DOS extender functionality. Tenberry
Software’ stop-of-the-line 32-bit extender, DOS/4G, is not sold on aretail basis but is of special interest
to devel opers who require more flexibility (such as OEMs). DOS/AG offers these additional features
beyond DOS4GW and DOS/4AGW Professional:

» Compl ete documentation

* DLL support

* TSR support

* Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

» A Clanguage API that offers more control over interrupt handling and program loading, as well
asmaking it easier to use the extender

» An optiona (more protected) nonzero-based flat memory model
» Remappable error messages

 More configuration options

» The D32 debugger, GLU linker, and other tools

* Support for other compilers besides Watcom

* A higher level of technical support

* Custom work is available (e.g., support for additional executable formats, operating system API
emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or future) in the
DOS/4G line.

Differences Within the DOS/4G Product Line 103

The DOS/4GW DOS Extender

2c. DPMI functions supported by DOS/AGW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QDPMI (with
EXTCHKOFF), the DPMI host provides the DPMI services, not DOS/AGW. The DPMI host also
provides virtual memory, if any. Performance (speed and memory use) under different DPMI hosts
varies greatly due to the quality of the DPMI implementation.

These are the services provided by DOS/AGW and DOS/AGW Professional in the absence of aDPMI

host.

0000 Allocate LDT Descriptors

0001 Free LDT Descriptor

0002 Map Real-Mode Segment to Descriptor

0003 Get Selector Increment Value

0006 Get Segment Base Address

0007 Set Segment Base Address

0008 Set Segment Limit

0009 Set Descriptor Access Rights

000A Create Alias Descriptor

000B Get Descriptor

000C Set Descriptor

000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block

0101 Free DOS Memory Block

0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector

0201 Set Real-Mode Interrupt Vector

0202 Get Processor Exception Handler

0203 Set Processor Exception Handler

0204 Get Protected-Mode I nterrupt Vector

0205 Set Protected-Mode Interrupt Vector

0300 Simulate Real-Mode I nterrupt

0301 Call Real-Mode Procedure with Far Return Frame (DOS/AGW Professional only)
0302 Call Real-Mode Procedure with IRET Frame (DOS/4AGW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)
0304 Free Real-Mode Callback Address (DOS/4GW Professional only)
0400 Get DPMI Version

0500 Get Free Memory Information

0501 Allocate Memory Block

0502 Free Memory Block

0503 Resize Memory Block

0600 Lock Linear Region

0601 Unlock Linear Region

0604 Get Page Size (VM only)

0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)

104 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

0703 Discard Page Contents (DOS/4GW Professional only)
0800 Physical Address Mapping

0801 Free Physical Address Mapping

0900 Get and Disable Virtua Interrupt State

0901 Get and Enable Virtua Interrupt State

0902 Get Virtua Interrupt State

0AOQ0 Get Tenberry Software API Entry Point

OEQO Get Coprocessor Status

OEO1 Set Coprocessor Emulation

14.3 Addressing

3a. Converting between pointers and linear addresses.

3b.

3c.

3d.

Because DOS/AGW uses a zero-based flat memory model, converting between pointers and linear
addressesistrivial. A pointer value is always relative to the current segment (the value in CS for a code
pointer, or in DS or SSfor a data pointer). The segment bases for the default DS, SS, and CS are all
zero. Hence a near pointer is exactly the same thing asalinear address. anull pointer pointsto linear
address 0, and a pointer with value 0x10000 points to linear address 0x10000.

Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other. To create adata
alias for a code pointer, merely create a data pointer and set it equal to the code pointer. It's not
necessary for you to create your own alias descriptor. Similarly, to create a code alias for a data pointer,
merely create a code pointer and set it equal to the data pointer.

Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode interrupt vector
tableis at address O, the BIOS data segment is at address 0x400, the monochrome video memory is at
address 0xB0000, and the color video memory is at address 0xB8000. To read and write any of these,
you can just use a pointer set to the proper address. Y ou don't need to create afar pointer, using some
magic segment value.

Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can not in general
read or write extended memory directly, nor can you tell how a particular block of extended memory
has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addressesto linear addresses.
In other words, if you have a peripheral device in your machine that has memory at a physical address
of 256 MB, you can issue this call to create alinear address that points to that physical memory. The

linear address is the same thing as a near pointer to the memory and can be manipulated as such.

Thereisno way in a DPMI environment to determine the physical address corresponding to a given
linear address. Thisis part of the design of DPMI. Y ou must design your application accordingly.

Addressing 105

The DOS/4GW DOS Extender

3e. Null pointer checking.

DOS/4AGW will trap references to the first sixteen bytes of physical memory if you set the environment
variable DOSAG=NULLP. Thisis currently the only null-pointer check facility provided by
DOS/AGW.

Asof release 1.95, DOS/AGW traps both reads and writes. Prior to this, it only trapped writes.

Y ou may experience problems if you set DOSAG=NULLP and use some versions of the Watcom
Debugger with a1.95 or later extender. These problems have been corrected in later versions of the
Watcom Debugger.

14.4 Interrupt and Exception Handling

4a. Handling asynchronous interrupts.

Under DOS/AGW, thereis a convenient way to handle asynchronous interrupts and an efficient way to
handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or real mode (a
DOS or BIOS call) when a hardware interrupt comes in, you have to be prepared to handle interruptsin
either mode. Otherwise, you may missinterrupts.

Y ou can handle both real-mode and protected-mode interrupts with asingle handler, if 1) the interrupt
isin the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT 21h/25h or _dos_setvect();
3) you do not install a handler for the same interrupt using any other mechanism. DOS/4GW will route
both protected-mode interrupts and real-mode interrupts to your protected-mode handler. Thisisthe
convenient way.

The efficient way isto install separate real-mode and protected-mode handlers for your interrupt, so
your CPU won’t need to do unnecessary mode switches. Writing a real-mode handler is tricky; al you
can reasonably expect to do is save datain abuffer and IRET. Y our protected-mode code can
periodically check the buffer and process any queued data. (Remember, protected-mode code can
access data and execute code in low memory, but real-mode code can't access data or execute code in
extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we recommend the DPMI
function INT 31h/201h for portahility.

It does matter how you install the protected-mode handler. You can’t install it directly into the IDT,
because a DPMI provider must distinguish between interrupts and exceptions and maintain separate
handler chains. Installing with INT 31h/205h is the recommended way to install your protected-mode
handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions will be
funneled to your handler, to mimic DOS. Since DPMI exception handlers and interrupt handlers are
called with different stack frames, DOS/4GW executes a layer of code to cover these differences up; the
same layer is used to support the DOS/4G API (not part of DOS/AGW). Thislayer isthe reason that
hooking with INT 21h/25h isless efficient than hooking with INT 31h/205h.

106 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b.

4c.

4d

4e.

Handling asynchronousinterruptsin the second I RQ range.

Because the second IRQ range (hormally INTs 70h-77h) is outside the DOS/4GW auto-passup range
(8-2Eh, excluding 21h) you may not handle these interrupts with a single handler, as described above
(the "convenient" method). Y ou must install separate real-mode and protected-mode handlers (the
"efficient" method).

DOS/4G does alow you to specify additional passup interrupts, however.

Asynchronousinterrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt handler
MUST be locked at interrupt time. A DPMI virtual memory manager can use the DOS file system to
swap pages of memory to and from the disk; because DOS is not reentrant, a DPMI host is not required
to be able to handle page faults during asynchronous interrupts. Use INT 31h/600h (Lock Linear

Region) to lock an address range in memory.

If you fail to lock al of your code and data, your program may run under DOS/4AGW, but fail under the
DOS/4GW Virtual Memory Manager or under another DPMI host such as Windows or OS/2.

Y ou should also lock the code and data of a mouse callback function.

. Watcom signal () function and Ctrl-Break.

In earlier versions of the Watcom C/C++ library, there was a bug that caused signal (SIGBREAK) not to
work. Calling signal(SIGBREAK) did not actually install an interrupt handler for Ctrl-Break (INT
1Bh), so Ctrl-Break would terminate the application rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking INT 1Bh
directly. With release 10.0, this problem has been fixed.

Moretips on writing hardware interrupt handlers.
* [t'smore like handling interrupts in real mode than not.

The same problems arise when writing hardware interrupt handlers for protected mode as arise for real
mode. We assume you know how to write real-mode handlers; if our suggestions don’t seem clear,
you might want to brush up on real-mode interrupt programming.

» Minimize the amount of time spent in your interrupt handlers.

When your interrupt handlers are called, interrupts are disabled. This means that no other system tasks
can be performed until you enable interrupts (an STI instruction) or until your handler returns. In
general, it'sagood ideato handle interrupts as quickly as possible.

» Minimize the amount of time spent in the DOS extender by installing separate real-mode and
protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode areresignalled in
protected mode by the extender, your application has to switch from real mode to protected mode to
real mode once per interrupt. Mode switching is atime-consuming process, and interrupts are disabled
during amode switch. Therefore, if you're concerned about performance, you should install separate
handlers for real-mode and protected-maode interrupts, eliminating the mode switch.

Interrupt and Exception Handling 107

The DOS/4GW DOS Extender

* If you can’t just set aflag and return, enable interrupts (STI).

Handlers that do more than just set aflag or store datain a buffer should re-enable interrupts as soon as
it'ssafeto do so. In other words, save your registers on the stack, establish your addressing
conventions, switch stacksif you're going to & mdash. and then enable interrupts (STI), to give
priority to other hardware interrupts.

« If you enable interrupts (ST1), you should disable interrupts (CL1).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler, you should be
sure to do a CLI before you return. (CLI, then switch back to the original stack if you switched away,
then restore registers, then IRET.) If you don’t do this, the IRET will not necessarily restore the
previous interrupt flag state, and your program may crash. Thisis adifference from real-mode
programming, and it tends to show up as a problem when you try running your program in a Windows
or OS/2 DOS box for the first time (but not before).

» Add areentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then interrupts can
quickly nest to the point of overflowing the transfer stack. Thisisadesign flaw in your program, not
in the DOS extender; areal-mode DOS program can have exactly the same behavior. If you can
conceive of a situation where your interrupt handler can be called again before the first instance
returns, you need to code in areentrancy check of some sort (before you switch stacks and enable
interrupts (STI), obvioudly).

Remember that interrupts can take different amounts of time to execute on different machines; the CPU
manufacturer, CPU speed, speed of memory accesses, and CMOS settings (e.g. "system BIOS
shadowing") can al affect performance in subtle ways. We recommend you program defensively and
always check for unexpected reentry, to avoid transfer stack overflows.
« Switch to your own stack.
Interrupt handlers are called on a stack that typically has only a small amount of stack available (512
bytes or less). If you need to use more stack than this, you have to switch to your own stack on entry
into the handler, and switch back before returning.

If you want to use C run-time library functions, which are compiled for flat memory model (SS== DS,
and the base of CS == the base of DS), you need to switch back to astack in the flat data segment first.

Note that switching stacks by itself won't prevent transfer stack overflows of the kind described above.

14.5 Memory Management

5a. Using the realloc() function.

In versions of Watcom C/C++ prior to 9.5b, there was abug in the library implementation of realloc()
under DOS/4GW and DOS/AGW Professional. This bug was corrected by Watcom in the 9.5b rel ease.

108 Memory Management

DOS/4GW Commonly Asked Questions

5b.

Using all of physical memory.

DOS/4AGW Professional is currently limited to 64 MB of physical memory. We do not expect to be able
to fix this problem for at least six months. If you need more than 64 MB of memory, you must use
virtual memory.

14.6 DOS, BIOS, and Mouse Services

6a.

6b.

6c.

6d.

Speeding up file I/O.

The best way to speed up DOSfile I/0O in DOS/AGW isto write large blocks (up to 65535 bytes, or the
largest number that will fit in a 16-bit int) at atime from a buffer in low memory. In this case,
DOS/AGW has to copy the least amount of data and make the fewest number of DOS callsin order to
process the 1/0 request.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You can convert the
real-mode segment address returned by INT 31h/0100h to a pointer (suitable for passing to setvbuf()) by
shifting it left four bits.

Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of the DOS
extender will be loaded into memory. DOS/4G supports loading of multiple programs atop asingle
extender, aswell asDLLs.

Mouse callbacks.

DOS/4GW Professional now supportsthe INT 31h interface for managing real-mode callbacks.
However, you don't need to bother with them for their single most important application: mouse
callback functions. Just register your protected-mode mouse callback function as you would in real
mode, by issuing INT 33h/0Ch with the event mask in CX and the function addressin ES:EDX, and
your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking requirement exists for a
mouse callback function as for a hardware interrupt handler. See (4c) above.

VESA support.
While DOS/AGW automatically handles most INT 10h functions so that you can you can issue them

from protected mode, it does not translate the INT 10h VESA extensions. The workaround is to use
INT 31h/300h (Simulate Real-Mode I nterrupt).

14.7 Virtual Memory

7a. Testing for the presence of VMM.

INT 31h/400h returns avalue (BX, bit 2) that tells if virtual memory is available. Under a DPMI host
such as Windows 3.1, thiswill be the host’s virtual memory manager, not DOS/AGW'’s.

Virtual Memory 109

The DOS/4GW DOS Extender

7b.

7c.

7d.

Te.

f.

79.

Y ou can test for the presence of a DOS/4G-family DOS extender with INT 31h/0OA00h, with a pointer
to the null-terminated string "RATIONAL DOS/4G" in DSESI. If the function returns with carry clear,
aDOS/AG-family extender is running.

Reserving memory for a spawned application.

If you spawn one DOS/4GW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOSAGV M=deleteswap) so that the two applications don't try to use the
same swap file. Y ou should also set the MAXMEM option low enough so that the parent application
doesn’t take all available physical memory; memory that’s been reserved by the parent application is
not available to the child application.

I nstability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes sporadically with
it, probably needsto lock the code and datafor its hardware interrupt handlers down in memory.
DOS/4GW does not support page faults during hardware interrupts, because DOS services may not be
available at that time. See (4c¢) and (6c) above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).
Running out of memory with a huge virtual address space.

Because DOS/AGW hasto create page tables to describe your virtual address space, we recommend that
you set your VIRTUALSIZE parameter just large enough to accommodate your program. If you set
your VIRTUALSIZE to 4 GB, the physical memory occupied by the page tables will be 4 MB, and that
memory will not be available to DOS/AGW.

Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for efficiency.
However, if you set the SWAPMIN parameter to asize (in KB), DOS/AGW will start with aswap file
of that size, and will grow the swap file when it hasto. The SWAPINC value (default 64 KB) controls
theincremental size by which the swap file will grow.

Deleting the swap file.

The DELETESWAP option has two effects: telling DOS/4GW to delete the swap file when it exits, and
causing DOS/AGW to provide a unique swap file name if an explicit SWAPNAME setting was not
given.

DELETESWAP isrequired if one DOS/AGW application isto spawn another; see (7b) above.
I mproving demand-load performance of large static arrays.

DOS/AGW demand-loading feature normally cuts the load time of alarge program drastically.
However, if your program has large amounts of global, zero-initialized data (storage class BSS), the
Watcom startup code will explicitly zero it (version 9.5a or earlier). Because the zeroing operation
touches every page of the data, the benefits of demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/4AGW automatically
zeroes pages of BSS data asthey are loaded. Y ou can make this change yourself by inserting afew
linesinto the startup routine, assembling it (MASM 6.0 will work), and listing the modified object
module first when you link your program.

110 Virtual Memory

DOS/4GW Commonly Asked Questions

Here are the changesfor \ wat com src\ st art up\ 386\ cst art 3r. asm(startup module from
the C/C++ 9.5 compiler, library using register calling conventions). 'Y ou can modify the workaround
easily for other Watcom compilers:

; cstart3r.asm circa line 332
end of _BSS segnment (start of STACK)

nmv ecx, of f set DGROUP: _end

; start of _BSS segnent
nmv edi, of fset DGROUP: _edata
------------------------ ; RSl OPTI M ZATI ON
nmv eax, edi ; minimize _BSS initialization |oop
or eax, OFFFh ; conmpute address of first page after
inc eax ; start of _BSS
cnp eax, ecx ; if _BSS extends onto that page,
j ae all zero ; then we can rely on the | oader
nmov ecx, eax ; zeroi ng the remaini ng pages
------------------------ ; END RSI OPTI M ZATI ON
sub ecx, edi ; calc # of bytes in _BSS segnent
nov dl, cl ; save bottom 2 bits of count in edx
shr ecx, 2 ; calc # of dwords
sub eax, eax ; zero the _BSS segnent
rep st osd I
nmov cl,dl ; get bottom 2 bits of count
and cl,3 ;
rep st osb

Note that the 9.5b and later versions of the Watcom C library already contain this enhancement.

7h. How should |

configure VM for best performance?

Here are some recommendations for setting up the DOS/AGW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and otherwise) your

MINMEM

MAXMEM

SWAPMIN

SWAPINC

program requires. If your program has 16 MB of code and data, set to 32 MB. (There
isonly asmall penalty for setting this value larger than you will need, but your program
won't run if you set it too low.) See (7d) above.

Set to the minimum hardware requirement for running your application. (If you require
a2 MB machine, set to 2048).

Set to the maximum amount of memory you want your application to use. |f you don’t
spawn any other applications, set thislarge (e.g., 32000) to make sure you can use all
available physical memory. If you do spawn, see (7b) above.

Don't use thisif you want the best possible VM performance. The trade-off is that
DOS/AGW will create a swap file as big asyour VIRTUALSIZE.

Don't use thisif you want the best possible VM performance.

DELETESWAP DOS/AGW’'s VM will start up dlightly slower if it has to create the swap file afresh

each time. However, unless your swap fileisvery large, DELETESWAPisa
reasonable choice; it may be required if you spawn another DOS/4GW program at the
sametime. See (7b) above.

Virtual Memory 111

The DOS/4GW DOS Extender

14.8 Debugging

8a. Attempting to debug a bound application.

Y ou can’'t debug a bound application. The 4AGWBIND utility (included with DOS/AGW Professional)
will allow you to take apart a bound application so that you can debug it:

4G/\BI ND - U <boundapp. exe> <your app. exe>

8b. Debugging with an old version of the Watcom debugger .

8c.

DOS/AGW supports versions 8.5 and up of the Watcom C, C++ and FORTRAN compilers. However,
in order to debug your unbound application with a Watcom debugger, you must have version 9.5a or
later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact Watcom to
upgrade your compiler and tools. The only way to debug a DOS/AGW Professional application with an
old version of the debugger is to rename 4AGWPRO.EXE to DOSAGW.EXE and make sure that it's
either in the current directory or the first DOSAGW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it's up to you to keep track of which
DOS extender is which.

Meaning of " unexpected interrupt" message/error 2001.

Inversion 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it easier to
understand.

For example, the message:

Unexpected interrupt OE (code 0) at 168:10421034

is now printed:

error (2001): exception OEh (page fault) at 168:10421034
followed by aregister dump, as before.

This message indicates that the processor detected some form of programming error and signaled an
exception, which DOS/AGW trapped and reported. Exceptions which can be trapped include:

00h di vide by zero

01h debug exception OR null pointer used
03h br eakpoi nt

04h overfl ow

05h bounds

06h i nval i d opcode

07h devi ce not avail abl e
08h doubl e fault

09h overrun

0Ah invalid TSS

0Bh segnent not present

0Ch stack fault

0Dh general protection fault
OEh page fault

112 Debugging

DOS/4GW Commonly Asked Questions

8d.

8e.

When you receive this message, thisis the recommended course of action:
1. Record al of the information from the register dump.
2. Determine the circumstances under which your program fails.

3. Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’ s Reference
Manual, to determine the circumstances under which the processor will generate the reported
exception.

4. Get the program to fail under your debugger, which should stop the program as soon as the
exception occurs.

5. Determine from the exception context why the processor generated an exception in this
particular instance.

Meaning of " transfer stack overflow" message/error 2002.

In version 1.95 of DOS/4GW, we added more information to the "transfer stack overflow" message.
The message (which is now followed by aregister dump) is printed:

error (2002): transfer stack overflow
on interrupt <number> at <address>

This message means DOS/AGW detected an overflow on itsinterrupt handling stack. It usually
indicates either arecursive fault, or a hardware interrupt handler that can't keep up with the rate at
which interrupts are occurring. The best way to understand the problem is to use the VERBOSE option
in DOS/4GW to dump the interrupt history on the transfer stack; see (8¢e) below.

Making the most of a DOS/4AGW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/AGW register dumpis
your best debugging tool. To maximize the information available for postmortem debugging, set the
environment variable DOSAG to VERBOSE, then reproduce the crash and record the output.

Here' satypical register dump with VERBOSE turned on, with annotations.
1 DOS/4GWerror (2001): exception OEh (page fault)

at 170: 0042C1B2
2 TSF32: prev_tsf32 6708

3 SS 178 DS 178 ES 178 FS 0 GS 20
EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E ED 0 EBP 431410 ESP 4313FC
CS: 1P 170:0042C1B2 | D OE COD 0 FLG 10246

4 Cs= 170, USE32, page granular, limt FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, |limt FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, limt FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limt 0, base 15, acc O
GS= 20, USE16, byte granular, limt FFFF, base 6AA0, acc 93

5 CR0: PG1 ET:1 TSSO EMO M0 PE 1 CR2: 1F000000 CR3: 9067

6 Crash address (unrel ocated) = 1:000001B2

7 Opcode stream 8A 18 31 D2 88 DA EB OE 50 68 39 00 43 00 E8 1D

St ack:

8 0178: 004313FC 000E 0000 0000 0000 C2D5 0042 C0O57 0042 0170 0000 0000 0000
0178: 00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178: 0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178: 00431444 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178: 0043145C 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178: 00431474 0000 0000 0000 0000 0000 0000 0000 OOOO 0000 0000 0000 0000

9 Last 4 ints: 21 @170:42CF48/21 @ 170: 42CF48/ 21 @ 170: 42CF48/ E @ 170: 42C1B2/

Debugging 113

The DOS/4GW DOS Extender

The error message includes a synopsis of the problem. In this case, the processor signaled a
page fault exception while executing at address 170:0042C1B2.

The prev_tsf32 field is not usually of interest.

These are the register values at the time of the exception. The interrupt number and error
code (pushed on the stack by the processor for certain exceptions) are also printed.

The descriptors referenced by each segment register are described for your convenience.
USE32 segmentsin general belong to your program; USE16 segments generally belong to
the DOS extender. Here, CS pointsto your program’s code segment, and SS, DS, and ES
point to your data segment. FSisNULL and GS pointsto a DOS extender segment.

The control register information is not of any general interest, except on a page fault, when
CR2 contains the address value that caused the fault. Since EAX in this case contains the
same value, an attempt to dereference EAX could have caused this particular fault.

If the crash address (unrelocated) appears, it tells you where the crash occurred relative to
your program’s link map. Y ou can therefore tell where a crash occurred even if you can't
reproduce the crash in adebugger.

The opcode stream, if it appears, shows the next 16 bytes from the code segment at the point
of the exception. If you disassemble these instructions, you can tell what instructions caused

the crash, even without using adebugger. In thiscase, 8A 18 istheinstruction nov
bl , [eax] .

72 words from the top of the stack, at the point of the exception, may be listed next. You
may be able to recognize function calls or data from your program on the stack.

The four interrupts least to most recently handled by DOS/4GW in protected mode are listed
next. Inthisexample, the last interrupt issued before the page fault occurred was an INT 21h
(DOS call) at address 170:42CF48. Sometimes, thisinformation provides helpful context.

Here' s an abridged register dump from a stack overflow.

DOs/ 4GW error (2002):

transfer stack overfl ow
on interrupt 70h at 170: 0042C002

TSF32: prev_tsf32 48C8

SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1Bl1 ESP 4884
1 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
2 Previous TSF:
TSF32: prev_tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1Di1Dl1 EBP B1B1B1Bl1 ESP 4960
3 CS:IP 170:0042C002 1D 70 COD 0 FLG 2
Previ ous TSF:
TSF32: prev_tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1Bl1 ESP 42FFEO
CS:IP 170:0042C039 ID 70 COD 0 FLG 202

LS

1

114 Debugging

Opcode stream CF 66 B8 62 25 66 8C CB 66 8E DB BA 00 CO 42 00
Last 4 ints:

70 @170:42C002/ 70 @ 170: 42C002/ 70 @ 170: 42C002/ 70 @ 170: 42C002/

We overflowed the transfer stack while trying to process an interrupt 70h at 170:0042C002.

DOS/4GW Commonly Asked Questions

2. Theentireinterrupt history from the transfer stack is printed next. The prev_tsf32 numbers
increase as we progress from most recent to least recent interrupt. All of these interrupts are
gtill pending, which is why we ran out of stack space.

3. Beforewe overflowed the stack, we got the same interrupt at the same address. For a
recursive interrupt situation, thisistypical.

4. Theoldest frame on the transfer stack shows the recursion was touched off at aslightly
different address. Looking at this address may help you understand the recursion.

5. The opcode stream and last four interrupt information comes from the newest transfer stack
frame, not the oldest.

14.9 Compatibility

9a. Running DOS/4GW applications from inside Lotus 1-2-3.

%.

In order to run DOS/AGW applications while "shelled out" from Lotus 1-2-3, you must use the
PRIVATXM program included with your Watcom compiler. Otherwise, 1-2-3 will take all of the
memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus' memory use (see
your Watcom manual). After shelling out, you must run PRIVATXM, then clear the DOS16M
environment variable before running your application.

EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS 6.0, one
involving mis-counting the amount of available memory, one involving mapping too little of the High
Memory Area (HMA) into its page tables, and one involving alocation of EMS memory. Version 1.95
of DOS/4GW contains workarounds for some of these problems.

If you are having problems with DOS/4GW and you are using an EMM386.EXE dated 3-10-93 at
6:00:00, or later, you may wish to try the following workarounds, in sequence, until the problem goes

away.
* Configure EMM 386 with both the NOEM S and NOV CPI options.

* Convert the DEVICEHIGH statements in your CONFIG.SY S to DEVICE statements, and
remove the LH (Load High) commands from your AUTOEXEC.BAT.

* Run in aWindows DOS box.

* Replace EMM 386 with another memory manager, such as QEMM-386, 386Max, or an ol der
version of EMM 386.

* Run with HIMEM.SY S done.

Y ou may also wish to contact Microsoft Corporation to inquire about the availability of afix.

Compatibility 115

The DOS/4GW DOS Extender

9c. Spawning under OS2 2.1.

We know of abug in OS/2 2.1 that prevents one DOS/4GW application from spawning another over
and over again. The actual number of repeated spawns that are possible under OS/2 varies from
machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet found a
workaround, other than linking your two programs together as a single program.

9d. " DPMI host error: cannot lock stack” .

This error message almost always indicates insufficient memory, rather than areal incompatibility. 1f
you see it under an OS/2 DOS box, you probably need to edit your DOS Session settings and make
DPMI_MEMORY _LIMIT larger.

9e. Bugin Novell TCPIP driver.

Some versions of aprogram from Novell called TCPIP.EXE, areal-mode program, will cause the high
words of EAX and EDX to be altered during a hardware interrupt. This bug breaks protected-mode
software (and other real-mode software that uses the 80386 registers). Novell has released a newer
version of TCPIP that fixes the problem; contact Novell to obtain the fix.

of. Bugsin Windows NT.
Theinitia release of Windows NT includes a DPMI host, DOSX.EXE, with several serious bugs, some
of which apparently cannot be worked around. We cannot warranty operation of DOS/AGW under
Windows NT at thistime, but we are continuing to exercise our best efforts to work around these
problems.

Y ou may wish to contact Microsoft Corporation to inquire about the availability of a new version of
DOSX.EXE.

116 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

118

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications ssmply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

Note - It is supposed you are working on the host with Windows 3.x installed. |f you are on the host with
any other operating system you should setup INCLUDE environment variable correctly to compile for
16-bit Windows 3.x target.

Y ou can do that by command (DOS, OS/2, NT)

set INCLUDE=%WATCOM%\h;%WATCOM%\h\win

or by command (LINUX)

export INCLUDE=$WATCOM/h:$WATCOM/h/win

15.1 The Sample GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
The following example is the "hello" program adapted for Windows.

#i ncl ude <wi ndows. h>

i nt PASCAL W nMai n(HANDLE hl nstance, HANDLE hPrevl nst,
LPSTR | pCrdLi ne, int nCndShow)

{
MessageBox(NULL, "Hello world",
"Wat com C/ C++ for W ndows",
MB_COK | MB_TASKMODAL);
return(0);
}

The goal of this program isto display the message "Hello world" on the screen. The MessageBox
Windows API function is used to accomplish thistask. We will take you through the steps necessary to
produce this result.

The Sample GUI Application 119

Windows 3.x Programming Guide

15.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

Cwel -1 =wi ndows -bt=wi ndows hello.c

The typical messages that appear on the screen are shown in the following illustration.

Cwel -1 =wi ndows - bt =wi ndows hello.c
Open Watcom ¢/ C++16 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

weec hello.c -bt=w ndows
Open Watcom C16 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 37

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries).

The resultant 16-bit Windows 3.x application HELLO. EXE can now be run under Windows 3.x.

15.3 Debugging the GUI Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, thisisfairly straightforward. WCL recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel -1 =wi ndows - bt =wi ndows -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

120 Debugging the GUI Application

Creating 16-bit Windows 3.x Applications

Cwel -1 =wi ndows -bt=wi ndows -d2 hello.c
Open Watcom C/ C++16 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wec hello.c -bt=wi ndows -d2
Open Watcom C16 Optim zing Conpil er
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 58

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the GUI Application 121

Windows 3.x Programming Guide

122 Debugging the GUI Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such away asto
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. Thereis a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Watcom’ s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS and you how
wish to run them under Windows 3.x. To achieve this, you can simply recompile your application with the
appropriate options and link with the appropriate libraries. We provide a default windowing system that
turns your character-mode application into a simple Windows 3.x Graphical User Interface (GUI)
application.

Normally, aWindows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such asa DOS
application) can run as a GUI application. Thisis achieved by our default windowing system. The
following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment

In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are connected to the
standard input and standard output devices respectively. It isnot arecommended practice to read directly
from the standard input device or write to the standard output device when running in a windowed
environment. For this reason, a default windowing environment is created for C/C++ applications that read
from stdin (C++ cin) or write to stdout (C++ cout). When your application is started, awindow is created
in which output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard 1/0O device, it is also possible to perform /O to the console by explicitly opening
afilewhose nameis"CON". When this occurs, another window is created and displayed. Thiswindow is
different from the one created for standard input and standard output. 1n fact, every time you open the
console device adifferent window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

16.2 The Sample Non-GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the famous "hello" program.

The Sample Non-GUI Application 123

Windows 3.x Programming Guide

#i ncl ude <stdi o. h>
voi d main()

printf("Hello world\n");
}

The C++ version of this program follows:
#i ncl ude <i ostream h>
void main()

cout << "Hello world" << endl;

}

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version uses the "iostream” library to accomplish
thistask. We will take you through the steps necessary to produce this result.

16.3 Building and Running the Non-GUI Application

Very little effort is required to port an existing C/C++ application to Windows 3.x.

Y ou must compile and link thefile hel | 0. ¢ specifying the "bw" option.

Cwel -1 =wi ndows -bw -bt=wi ndows hello.c

The typical messages that appear on the screen are shown in the following illustration.

Cwel -1 =wi ndows -bw -bt=wi ndows hello.c
Open Watcom ¢/ C++16 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wec hello.c -bw -bt=wi ndows
Open Watcom C16 Optim zing Conpil er
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 155, O warnings, O errors
Code size: 17

Open Wat com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries).

124 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 16-bit Windows 3.x

The resultant 16-bit Windows 3.x application HELLO. EXE can now be run under Windows 3.x asa
Windows GUI application.

16.4 Debugging the Non-GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, thisisfairly straightforward. WCL recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel -1 =wi ndows -bw -bt=wi ndows -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

Cwel -1 =wi ndows -bw -bt=wi ndows -d2 hello.c
Open WAt com ¢/ C++16 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

wec hello.c -bw -bt=wi ndows -d2
Open WAt com C16 Opti m zi ng Conpil er
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
hello.c: 6 lines, included 155, 0 warnings, O errors
Code size: 23

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Non-GUI Application 125

Windows 3.x Programming Guide

16.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

_dwDeleteOnClose
int _dwbDel eteOnCl ose(int handle);

This function tells the console window that it should close itself when the fileisclosed. Y ou must
pass to it the handle associated with the opened console.

_dwSetAboutDlg
int _dwSet About Dl g(const char *title, const char *text);
This function sets the about dialog box of the default windowing system. The "title" pointsto the
string that will replace the current title. If titleis NULL then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new
line after each logical linein the string. If "text" isNULL, then the current text in the about box
will not be replaced.
_dwSetAppTitle
int _dwSet AppTitle(const char *title);
This function sets the main window’ stitle.
_dwSetConTitle
int _dwSetConTitle(int handle, const char *title);
This function sets the console window’ s title which corresponds to the handle passed to it.
_dwShutDown

int _dwShut Down(void);

This function shuts down the default windowing 1/O system. The application will continue to
execute but no windows will be available for output.

_dwyield
int _dwyield(void);

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the WATCOM C Library Reference.

126 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications smply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

Note - It is supposed you are working on the host with Windows 3.x installed. |f you are on the host with
any other operating system you should setup INCLUDE environment variable correctly to compile for
32-bit Windows 3.x target.

Y ou can do that by command (DOS, OS/2, NT)

set INCLUDE=%WATCOM%\h;%WATCOM%\h\win

or by command (LINUX)

export INCLUDE=$WATCOM/h:$WATCOM/h/win

17.1 The Sample GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
The following example is the "hello" program adapted for Windows.

#i ncl ude <wi ndows. h>

i nt PASCAL W nMai n(HANDLE hl nstance, HANDLE hPrevl nst,
LPSTR | pCrdLi ne, int nCndShow)

{
MessageBox(NULL, "Hello world",
"Wat com C/ C++ for W ndows",
MB_COK | MB_TASKMODAL);
return(0);
}

The goal of this program isto display the message "Hello world" on the screen. The MessageBox
Windows API function is used to accomplish thistask. We will take you through the steps necessary to
produce this result.

The Sample GUI Application 127

Windows 3.x Programming Guide

17.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

Cwel 386 -1 =wi n386 -bt=wi ndows hello.c

The typical messages that appear on the screen are shown in the following illustration.

Cwel 386 -1 =wi n386 - bt =wi ndows hello.c
Open WAt com ¢/ C++32 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcec386 hello.c -bt=wi ndows
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 41

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. r ex (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries). The".rex" file must now be combined with Watcom'’s
32-bit Windows supervisor W N386. EXT using the Watcom Bind utility. VBl ND. EXE combines your
32-hit application code and data (".rex" file) with the 32-bit Windows supervisor. The process involves the
following steps:

1. \ABI NDcopies W N386. EXT into the current directory.

2. VBl ND. EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-bit executable can have access to the applications resources.

3. VBl ND. EXE concatenates W N386. EXT and the ".rex" file, and creates a".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the VABI ND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

128 Building and Running the GUI Application

Creating 32-bit Windows 3.x Applications

WBIND is the name of the Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND runin quiet mode (no informational messages are
displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound with the

application. If not specified, a search of the pathslisted in the PATH
environment variable is performed. If this search is not successful and the
WATCOM environment variable is defined, the 9MATCOWA Bl NWdirectory is
searched.

-Rrc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

Cwbind hello -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the WB86DLL. EXT
file (if you are buildinga DLL).

Example:
Cwbind hello -n -s c:\wat com bi nwA wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Example:
C>set wat convc: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\w ndows

The resultant 32-bit Windows 3.x application HELLO. EXE can now be run under Windows 3.x.

17.3 Debugging the GUI Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL 386 command, thisisfairly straightforward. WCL 386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel 386 -1 =wi n386 -bt=wi ndows -d2 hello.c

Debugging the GUI Application 129

Windows 3.x Programming Guide

The typical messages that appear on the screen are shown in the following illustration.

Cwel 386 -1 =wi n386 - bt =wi ndows -d2 hello.c
Open WAt com ¢/ C++32 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -bt=wi ndows -d2
Open Watcom C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code si ze: 66

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

Once again, the ".rex" file must be combined with Watcom'’s 32-bit Windows supervisor W N386. EXT
using the Watcom Bind utility. This step is described in the previous section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

130 Debugging the GUI Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such away asto
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. Thereis a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Watcom’ s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS and you how
wish to run them under Windows 3.x. To achieve this, you can simply recompile your application with the
appropriate options and link with the appropriate libraries. We provide a default windowing system that
turns your character-mode application into a simple Windows 3.x Graphical User Interface (GUI)
application.

Normally, aWindows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such asa DOS
application) can run as a GUI application. Thisis achieved by our default windowing system. The
following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment

In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are connected to the
standard input and standard output devices respectively. It isnot arecommended practice to read directly
from the standard input device or write to the standard output device when running in a windowed
environment. For this reason, a default windowing environment is created for C/C++ applications that read
from stdin (C++ cin) or write to stdout (C++ cout). When your application is started, awindow is created
in which output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard 1/0O device, it is also possible to perform /O to the console by explicitly opening
afilewhose nameis"CON". When this occurs, another window is created and displayed. Thiswindow is
different from the one created for standard input and standard output. 1n fact, every time you open the
console device adifferent window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

18.2 The Sample Non-GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the famous "hello" program.

The Sample Non-GUI Application 131

Windows 3.x Programming Guide

#i ncl ude <stdi o. h>
voi d main()

printf("Hello world\n");
}

The C++ version of this program follows:
#i ncl ude <i ostream h>
void main()

cout << "Hello world" << endl;

}

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version uses the "iostream” library to accomplish
thistask. We will take you through the steps necessary to produce this result.

18.3 Building and Running the Non-GUI Application

Very little effort is required to port an existing C/C++ application to Windows 3.x.

Y ou must compile and link thefile hel | 0. ¢ specifying the "bw" option.

Cwel 386 -1 =wi n386 -bw -bt=wi ndows hello.c

The typical messages that appear on the screen are shown in the following illustration.

Cwel 386 -1 =wi n386 - bw - bt =wi ndows hell o.c
Open Watcom ¢/ C++32 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -bw -bt=w ndows
Open WAt com C32 Optim zing Conpil er
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, 0 warnings, O errors
Code size: 24

Open Wat com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. r ex (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries). The".rex" file must now be combined with Watcom'’s
32-bit Windows supervisor W N386. EXT using the Watcom Bind utility. VBl ND. EXE combines your

132 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

32-hit application code and data (".rex" file) with the 32-bit Windows supervisor. The process involvesthe
following steps:

1. VBl NDcopies W N386. EXT into the current directory.

2. \\BI ND. EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-hit executable can have access to the applications resources.

3. VBI ND. EXE concatenates W N386. EXT and the ".rex" file, and creates a".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the V\BI ND command.

WBIND file_spec [-d] [-n] [-q] [-S supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

WBIND is the name of the Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND runin quiet mode (no informational messages are
displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound with the

application. If not specified, a search of the pathslisted in the PATH
environment variableis performed. If this search is not successful and the
WATCOM environment variable is defined, the 9MATCOWA Bl NWdirectory is
searched.

-Rrc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

Cwhi nd hello -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the WB86DLL. EXT
file (if you are buildingaDLL).

Example:
Cwhind hello -n -s c:\wat com bi nwh wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Building and Running the Non-GUI Application 133

Windows 3.x Programming Guide

Example:
C>set wat conec: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c: \wi ndows

The resultant 32-bit Windows 3.x application HELLO. EXE can now be run under Windows 3.x asa
Windows GUI application.

18.4 Debugging the Non-GUI Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL 386 command, thisisfairly straightforward. WCL 386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel 386 -1 =wi n386 -bw - bt =wi ndows -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

Cwel 386 -1 =wi n386 -bw -bt=wi ndows -d2 hello.c
Open WAt com ¢/ C++32 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

wec386 hello.c -bw -bt=wi ndows -d2
Open WAt com C32 Opti m zi ng Conpil er
Copyright (c) 2008 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.
hello.c: 6 lines, included 174, 0 warnings, O errors
Code size: 45

Open Wt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The "Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

134 Debugging the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

Once again, the ".rex" file must be combined with Watcom'’s 32-bit Windows supervisor W N386. EXT
using the Watcom Bind utility. This step is described in the previous section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

18.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

_dwDeleteOnClose
int _dwbDel eteOnd ose(int handle);

This function tells the console window that it should close itself when thefileis closed. You must
passto it the handle associated with the opened console.

_dwSetAboutDlg
int _dwSet About Dl g(const char *title, const char *text);
This function sets the about dialog box of the default windowing system. The "title" pointsto the
string that will replace the current title. If titleis NULL then thetitle will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new

line after each logical linein the string. If "text" isNULL, then the current text in the about box
will not be replaced.

_dwSetAppTitle

int _dwSet AppTitle(const char *title);
This function sets the main window’ stitle.

_dwSetConTitle

int _dwSetConTitle(int handle, const char *title);
This function sets the console window’ s title which corresponds to the handle passed to it.
_dwShutDown
i nt _dwsShut Down(void);

This function shuts down the default windowing 1/O system. The application will continue to
execute but no windows will be available for output.

_dwyield

int _dwyield(void);

Default Windowing Library Functions 135

Windows 3.x Programming Guide

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the WATCOM C Library Reference.

136 Default Windowing Library Functions

19 The Watcom 32-bit Windows 3.x Extender

Watcom C/C++ contains the necessary tools and libraries to create 32-bit applications for Windows 3.x.
Using Watcom C/C++ gives the programmer the benefits of a 32-bit flat memory model and access to the
full Windows APl (along with the usual C/C++ library functions).

The general model of the environment is asfollows: The 32-bit flat memory model programis linked
against a special 32-bit Windows library. Thislibrary contains the necessary information to invoke special
16-hit functions, which lie in the supervisor (W N386. EXT) . The 32-bit program is then bound (using
WBI ND. EXE) with the supervisor to create a Windows executable. At the same time as the 32-hit
program is being bound, the resource compiler is run on the supervisor, and all the resources for the
application are placed there. When the application is started, the supervisor obtains the 32-bit memory,
relocates the 32-bit application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within the supervisor.
The local heap resides within the supervisor aswell.

If you are starting from a 16-bit Windows application, most of the code will not change when you port it to
the 32-bit Windows environment. However, because of the nature of the Windows API and itsimplicit
dependencies on a 16-hit environment, some source changes are necessary. These source changes are
minimal, and are backwards compatible with the 16-bit environment.

19.1 Pointers

Throughout this document, there will be referencesto both near and far, and 16-bit and 32-bit pointers.
Since this can rapidly become confusing, some initial explanations will be given here.

A far pointer is apointer that is composed of both a selector and an offset. A selector determines a specific
region of memory, and the offset is relative to the start of thisregion. A near pointer isa pointer that has
an offset only, the selector is automatically assumed by the CPU.

The problem with far pointersis the selector overhead. Using afar pointer is much more expensive than
using anear pointer. Thisisthe advantage of the 32-bit flat memory model - all pointers within the
program are near, and yet you can address up to 4 gigabytes of memory.

A 16-hit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bitslong). This pointer can
reference up to 64K of data.

A 16-bit far pointer occupies 4 bytes of memory. Thereisa 16-bit selector and a 16-bit offset. This
pointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bitslong). This pointer can
reference up to 4 gigabytes of data.

A 32-hit far pointer occupies 6 bytes of memory. Thereisa 16-bit selector and a 32-bit offset. This
pointer can reference up to 4 gigabytes of data.

Pointers 137

Windows 3.x Programming Guide

Windows, in general, uses 16-hit far pointersto pass information around. These 16-bit far pointers can also
be used by a 32-bit Windows application. Using a special macro, MK_FP32, the offset of the 16-bit far
pointer is extended from 16 bits to 32 bits, and the pointer becomes a 32-bit far pointer. The 32-bit far
pointer is then used by the application to access the data (note that offsets still must be less than 64K, since
the selector is still for a 64K data area).

19.2 Implementation Overview

This section provides an overview of the issues that require consideration when creating a 32-bit Windows
application for a 16-bit Windows environment.

First, al modules have to be recompiled for the 32-bit flat memory model with a compiler capable of
generating 32-bit instructions. Many Windows API functions take int as a parameter. Thisint isfrom the
16-bit world, and is 2 byteslong. In the 32-bit world, thisint becomes 4 byteslong. Since Windowsis
only expecting two bytes of data, all occurrences of int have to be changed to short in W NDOWS. H.

Pointers to data passed to Windows are al far pointers. We will be passing pointersto datain our 32-bit
flat address space, and these pointers are near pointers. By simply getting rid of all far keywordsin

W NDOWS. H, all pointerswill now be passed as 32-bit near pointers. Aswell, notice that these 32-bit near
pointers are the same size as as their 16-bit far pointer counterparts (4 bytes). Thisis good, since all data
structures containing pointers will remain the same size.

Windows cannot be called from 32-bit code on a 32-bit stack. This means that in order to call the API
functions, it is necessary to write a set of cover functions that will accept the parameters, switch into a
16-bit environment, and then call Windows. There is another issue, though. Windows only understands
16-hit pointers, so before calling Windows, all pointers being passed to Windows must be converted to
16-bit far pointers.

It turns out that Windows can also call back to your application. Windows can only call 16-bit code,
though, so thereis aneed for a bridge from the 16-bit side to the 32-bit side. It is necessary to allocate
16-bit call back routines that can be passed to Windows. These call back routines will then switch into the
32-hit environment and call whatever 32-bit function is required. The 32-bit call back hasto be declared as
afar function, since it is necessary to issue afar call to enter it from the 16-bit side. If it isafar function,
then the compiler will generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointersin along (4 byte) parameter. This
pointer can only be used in the 32-bit environment if it is a 32-bit far pointer, not a 16-bit far pointer. The
conversionissimple: the 16-bit offset is extended to a 32-bit offset (the high word is zeroed out). Any far
pointer that Windows hands to you must be converted in thisway.

Sometimes, a Windows application wants to call aprocedureinaDLL. The procedure addressis a 16-bit
far pointer. It isnot possible to issue an indirect call to this address from the 32-bit environment, so some
sort of interface is needed. Thisinterface would switch into the 16-bit environment, and then call the 16-bit
function.

These issues, along with other minor items, are handled by Watcom C/C++, and are discussed in more
technical detail in later sections.

138 Implementation Overview

The Watcom 32-bit Windows 3.x Extender

19.3 System Structure

32-hit
Application
]
8
32-hit C —22 5| windows 3216 32-hit
Library (DoTéaéifE%Tl) Supervisor l'-rrandalion Wi R(IjD(I)WS
. 3
J: 8
= a)
8 z
Windows
3x
Figure 5. WIN386 Sructure
0 >
:
I
Global I
Stack Code Data Heap |
I

Figure 6. 32-bit Application Sructure

19.4 System Overview

* W N386. EXT isthe key component of a 32-bit Windows application. It isa 16-bit Windows
application which contains:

« All application resources.

* A 16-hit local heap.

* A 16-hit stack.
*WB86DLL. EXT issimilar to W N386. EXT, only it providesaDLL interface.
W N386. EXT isbound to your 32-bit application to create a 32-bit application that will run under
Windows 3.x. W N386. EXT provides the following functionality:

System Overview 139

Windows 3.x Programming Guide

* supervisor to bring the 32-bit application into memory and start it running.

« "glue" functions to connect to Windows for both API and DOS functionality. Thisinterfaceis
designed to transparently set up the calling functions' pointers and parametersto their 16-bit
counterparts.

* "glue-back" functions to allow Windowsto call back 32-bit routines.
» specia code to allow debugging of 32-bit applications.

* W NDOWS. H has been specially modified for use in the 32-bit Windows environment. Aswell, it
contains all special definitions for 32-bit applications.

* W N386. LI B contains al the necessary library functions to connect to the 32-bit supervisor
W N386. EXT. All Windows API callsand Watcom C/C++ library DOS calls are found here.

* The standard C/C++ library functions, specially modified to run in the 32-bit environment, are
located in the\ WATCOM LI B386\ W N directory.

« V\BI ND. EXE merges your 32-bit executable and the appropriate Supervisor into a single executable.

19.5 Steps to Obtaining a 32-bit Application

Thefollowing is an overview of the procedure for creating a 32-bit Windows Application:

1. If you are starting with a 16-bit Windows application, you must adapt your source code to the
32-bit environment.

Y ou must compile the application using a 32-bit compiler.

Y ou must link the application with the 32-bit libraries.

Y ou must bind the 32-bit application with the 32-bit supervisor.

Y ou can then run and/or debug the application.

gk wn

140 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming Overview

This chapter includes the following topics:
* WINDOWS.H
* Environment Notes
* Floating-point Emulation
 Multiple Instances
* Pointer Handling
» When To Convert Incoming Pointers
» When To Convert Outgoing Pointers
* SendMessage and SendDlgltemMessage
* GlobaAlloc and LocalAlloc
» Callback Function Pointers
» Window Sub-classing
* Calling 16-bit DLLs
» Making DLL Calls Transparent
* Far Pointer Manipulation

» 16 Functions

20.1 WINDOWS.H

When devel oping programs, make sure W NDOWS. Hisincluded asthefirst includefilein all sourcefiles.
This header file contains only the following lines:

#i fdef _WNDOA5 16
#i ncl ude <wi n16. h>
#el se

#i ncl ude <_w n386. h>
#endi f

Thefile W N16. Histhe regular 16-bit Windows header file, and is only conditionally included for 16-bit

Windows applications. Thefile W N386. Hcontains all the prototypes and macros for the 32-bit
environment, aswell asincluding and modifying W N16. H. These modifications are changing int to

WINDOWS.H 141

Windows 3.x Programming Guide

short, and changing the far keyword to nothing. These changes (that ONLY apply to things defined in
W N16. H) cause al integers to be 16-bit integers, and all LP... pointer types to be near pointers.

Other include files for Windows must be specifically requested by defining macros before including
W NDOWS. H. Thisisrequired so that the same changes made to the primary Windows header file will
apply to routines declared in the other header files.

Macro name Fileincluded
#define INCLUDE_COMMDLG H COMVDLG. H
#define INCLUDE_CUSTCNTL_H CUSTCNTL. H
#define INCLUDE_DDE_H DDE. H
#define INCLUDE_DDEML_H DDEM_. H
#define INCLUDE_DRIVINIT_H DRIVINIT. H
#define INCLUDE_LZEXPAND H LZEXPAND. H
#define INCLUDE_MMSYSTEM_H MVBYSTEM H
#defineINCLUDE_OLE_H OLE. H
#define INCLUDE_PENWIN_H PENW N. H
#define INCLUDE_PENWOEM_H PENWOEM H
#define INCLUDE_PRINT _H PRI NT. H
#define INCLUDE_SHELLAPI _H SHELLAPI . H
#define INCLUDE_STRESS H STRESS. H
#define INCLUDE_TOOLHELP_H TOOLHELP. H
#defineINCLUDE_VER H VER. H

20.2 Environment Notes

» The Windows functions Catch and Throw save only the 16-bit state. Instead of these functions, use
the setjmp and longjmp functions.

* The 32-bit Windows Supervisor uses the first 256 bytes of the 32-hit application’s stack to save state
information. If thisis corrupted, your application will abnormally terminate.

* The 32-bit Windows Supervisor provides resources for up to 512 callback routines. Note that this
restriction is only on the maximum number of active callbacks.

20.3 Floating-point Emulation

The file WEMU387. 386 isincluded to support floating-point emulation for 32-bit applications running
under Windows. Thisfileisinstalled inthe [386Enh] section of your SYSTEM | NI file. By using the
floating-point emulator, your application can be compiled with the "fpi87" option to useinline
floating-point instructions, and it will run on a machine without a numeric coprocessor.

Only one of WVEMJ387. 386 and WDEBUG. 386 may beinstalled in your [386Enh] section.
VEMU387. 386 may be distributed with your application.

142 Floating-point Emulation

Windows 3.x 32-bit Programming Overview

20.4 Multiple Instances

Since the 32-hit application resides in aflat memory space, it isNOT possible to share code with other
instances. This means that you must register new window classes with callbacks into the new instance’s
code space. A simple way of accomplishing thisis as follows:

i nt PASCAL W nMai n(HANDLE hl nst ance,
HANDLE hPrevl nst ance;
LPSTR | pCdLi ne,
i nt nCndShow) ;

WNDCLASS wc;
HWND hwhd
char cl ass[32];
.style = NULL;
. I pfnwhdProc = (LPVA D) Mai nWadPr oc;
.cbd sExtra = 0;
. cbwhdExtra = 0;
. hl nstance = hl nstance;
.hlcon = Loadl con(NULL, |DI_APPLI CATION);
. hCursor = LoadCursor(NULL, |IDC_ARROW);
. hbr Background = Get St ockhj ect(WH TE_BRUSH) ;
. I pszMenuNane = "Menu";
sprintf(class,"d ass%", hl nstance);
we. | pszd assName = cl ass;
Regi sterC ass(&wc);
hwid = Creat eW ndow
cl ass,
"Application",
W5 _ OVERLAPPEDW NDOW
CW _ USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW _USEDEFAULT,
NULL,
NULL,
hl nst ance,
NULL

8588858583

'

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling

Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are 16-hit far
pointers, and any data you communicate to Windows with are 16-bit far pointers. 16-hit far pointers
occupy 4 bytes of data, and are capable of addressing up to 64K. For data objects larger than 64K, huge
pointers are used (a sequence of far pointers that map out consecutive 64K segments for the data object).
16-bit far pointers are expensive to use due to the overhead of selector |oads (each time you use the pointer,
a segment register must have avalue put init). 16-bit huge pointers are even more expensive: not only is
there the overhead of selector loads, but arun-time call is necessary to perform any pointer arithmetic.

Pointer Handling 143

Windows 3.x Programming Guide

In a32-bit flat memory model, such as that of the Watcom C/C++ for Windows environment, all pointers
are 32-bit near pointers (occupying 4 bytes of data aswell). However, these pointers may access objects of
up to 4 gigabytesin size, and there is no selector load overhead.

All Windows defined pointer types (e.g., LPSTR) are by default near pointers, not far pointers. To obtain a
far pointer, the far keyword must be explicitly coded, i.e,, char far *f 00, rather than LPSTR f 0o0.

A 32-hit near pointer isthe same size as a 16-bit far pointer, so that all Windows pointers are the same size
in the 32-bit flat memory model asthey are in the original 16-bit segmented model.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations. All pointers
sent to Windows must be converted from 32-bit near pointersto 16-bit far pointers. These conversions are
handled by the Supervisor.

It isimportant to remember that all API functions which accept pointers (with the exception of functions
that accept function pointers) accept 32-bit near pointersin this 32-bit model. If you attempt to pass a
32-bit far pointer, the conversion will not take place correctly.

16-hit far pointers to data may be passed into the API functions, and the Supervisor will not do any
conversion.

Incoming pointers must be converted from 16-bit far pointers to 32-bit far pointers. Thisconversionisa
trivial one: the offset portion of the 16-bit far pointer is extended to 32-bits. Pointers from Windows are
by their nature far (that is, the datais pointed to by its own selector), and must be used as far in the 32-bit
environment. Of course, conversions are only required if you actually need to reference the pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from 32-bit to
16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-bit environment to the 32-bit
environment must be used. This thunking layer is provided by the Supervisor.

20.5.1 When To Convert Incoming Pointers

Whenever you wish to use a pointer passed to you by Windows, you must convert it to a 32-bit far pointer.
If you are passed a 16-bit far pointer, the macro MK_FP32 can be used to convert it to a 32-bit far pointer.
If you are passed a 16-bit near pointer (e.g., from LocalLock), then the macro MK_LOCAL 32 can be used
to convert it to a 32-bit far pointer.

Some places where pointer conversion may be required are:

* LocalLock
* GlobalLock
« the IParam in awindow callback routine (if it is a pointer)

20.5.2 When To Convert Outgoing Pointers

Typically, thereis no need to do any kind of conversions on your pointers when passing them to Windows.
The Supervisor handles all 32-bit to 16-bit translations for you, in the case of the regular Windows API
functions. However, if you are passing a 32-bit pointer to some other 16-bit application in the Windows
environment, then pointer conversions must by done. There are two types of "outgoing” pointers. data
pointers and function pointers.

Function pointers (to callback routines) must have a thunking layer provided, using the GetProc16 function
(thisisexplained in detail in alater section).

144 Pointer Handling

Windows 3.x 32-bit Programming Overview

Data pointers can be translated from 32-bit to 16-bit using the AllocAlias16 and AllocHugeAlias16
functions. These functions create 16-bit far pointers that have the same linear address as the 32-bit near
pointer that was converted.

It isimportant to remember that when passing a pointer to a data structure in this fashion, any pointersin
the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some complications created by
the fact that Windows allows you to pass pointersin functions that are prototyped to take along integer.

The Windows API functions SendMessage and SendDIgltemMessage rely on other fields determining the
nature of the long data item that they accept; thisis discussed in detail in the next section.

20.5.2.1 SendMessage and SendDIgltemMessage

SendM essage and SendDI gl temM essage have special cover functions that determine when the long integer
isreally apointer and needs to be converted. These cover functions are used automatically, unless the
macro NOCOVERSENDS is defined before including W NDOWS. H as in the following example.

#def i ne NOCOVERSENDS
#i ncl ude <wi ndows. h>

SendM essage and SendDIgltemMessage will do pointer conversions automatically using AllocAliasl16 and
FreeAliasl6 (unlessNOCOVERSENDS is defined) for the following message types:

» combo boxes (CB_ messages)

* edit controls (EM_ messages)

* list boxes (LB_ messages)

« certain windows messages (WM _ messages);

The messages that are intercepted by the cover functions for SendMessage and SendDI gl temMessage are:

CB_ADDSTRI NG CB_DIR CB_FI NDSTRI NG
CB_FI NDSTRI NGEXACT CB_GETLBTEXT CB_| NSERTSTRI NG
CB_SELECTSTRI NG

EM GETLI NE EM_GETRECT EM_REPLACESEL
EM_SETRECT EM_SETRECTNP EM_SETTABSTOPS
LB_ADDSTRI NG LB_DIR LB_FI NDSTRI NG
LB_FI NDSTRI NGEXACT LB_GETI TEMRECT LB_GETSELI TEMS
LB_GETTEXT LB_I NSERTSTRING LB_SELECTSTRI NG

LB_SETTABSTOPS

WV_MDI CREATE WV_NCCALCSI ZE

Note that for SendMessage and SendDIgl temM essage, some of the messages may NOT require pointer
conversion:

* CB_ADDSTRING, CB_FINDSTRING, CB_FINDSTRINGEXACT, CB_INSERTSTRING will not
need a conversion if the combo box was created as owner-draw style without CBS_HASSTRINGS
style.

* LB_ADDSTRING, LB_FINDSTRING, LB_FINDSTRINGEXACT, LB_INSERTSTRING will not
need a conversion if the list box was created as owner-draw style without LBS HASSTRINGS style.

Pointer Handling 145

Windows 3.x Programming Guide

The macro NOCOVERSENDS should be defined in modules where messages like these are being sent.
With these messages, the IParam data item does not contain a pointer, and the automatic pointer conversion
would beincorrect. By doing

#def i ne NOCOVERSENDS
#i ncl ude "w ndows. h"

modules that send messages like the above will not have the pointer conversion performed.

20.5.3 GlobalAlloc and LocalAlloc

The functions Global Alloc and Local Alloc are the typical way of allocating memory in the 16-bit Windows
environment. In the 32-bit environment, there is no need to use these functions. The only time
GlobalAlloc is needed is when allocating shared memory, i.e., GMEM_DDESHARE.

The C runtime functions malloc and free manipulate your 32-bit near heap for you. By using these
functions to allocate memory, you may create data objects as large as the enhanced mode Windows
memory manager will permit.

20.5.4 Callback Function Pointers

To access a callback function, an instance of it must be created using MakeProcl nstance. This creates a
"thunk" (a special piece of code) that automatically puts the application’s data segment into the AX
register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcl nstance directly on a 32-bit callback routine, since
Windows 3.x does not understand 32-bit applications. Therefore, it is necessary to use a 16-hit callback
routine that passes control to the 32-bit callback routine. This 16-bit callback routine is automatically
created by the Supervisor when using any of the standard Windows API functions that accept a callback
routine.

The 16-bit callback routine for a 32-bit application is a special layer that transfers the parameters from a
16-bit stack to the 32-bit stack, and then passes control to 32-bit code. These 16-bit callback routines are
found in the Supervisor. The function GetProcl6 provides pointers to these 16-bit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit callback interface
function.

In the general case, one would have to write code as follows:

146 Pointer Handling

Windows 3.x 32-bit Programming Overview

#def i ne NOAUTOPROCS
#i ncl ude <wi ndows. h>

CALLBACKPTR pCh;
FARPROC f pProc;

pCb = GetProcl6(A _Function, GETPROC cal |l backtype);
f pProc = MakeProcl nstance(pCb, hlnstance);

/* do stuff */
Do_it(..., fpProc, ...);
/* do nore stuff */

FreeProcl nstance(fpProc);
Rel easeProcl16(pCb);

It is not necessary to use this general code in the case of the regular Windows API functions. The
following functions will automatically allocate the correct 16-bit/32-bit callback interface functions:

* ChooseColor

* ChooseFont

* CorrectWriting

* CreateDialog

* CreateDialoglndirect
* CreateDial ogl ndirectParam
* CreateDialogParam

* Ddelnitidize

* DialogBox

* DialogBoxIndirect

* DialogBoxIndirectParam
* DialogBoxParam

* DictionarySearch

* EnumChildwWindows
* EnumFontFamilies

* EnumFonts

* EnumMetaFile

» EnumObjects

* EnumProps

* EnumSymbols

* EnumTaskWindows
* EnumWindows

* Escape (SETABORTPROC option)
* FindText

* GetOpenFileName

* GetSaveFileName

* GlobalNotify

* GrayString
 LineDDA

» mciSetYieldProc

» mmiolnstalllOProc

* NotifyRegister

* PrintDIg

Pointer Handling 147

Windows 3.x Programming Guide

* ProcessWriting

* Recognize

* RecognizeData

* RegisterClass

* ReplaceText

* SetClassLong (GCL_WNDPROC option)
* SetPenHook

* SetResourceHandler

* SetTimer

* SetWindowL ong (GWL_WNDPROC option)
* SetWindowsHook

* SetWindowsHookEx

* Trainlnk

Aswell, the following functions are covered to provide support for automatic creation of 16-bit callback
routines:

 FreeProclnstance
» MakeProclnstance
» UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must code the general
case. Typically, thisisrequired when aDLL needs acallback routine. In modules where this is necessary,
you define the macro NOAUTOPROCS before you include W NDOWS. H asin the following example.

#def i ne NOAUTOPROCS
#i ncl ude <wi ndows. h>

Be careful of the following when using NOAUTOPROCS.

1. Thecal to MakeProcl nstance and FreeProcl nstance for the callback function occursin a
module with NOAUTOPROCS defined.

2. No Windows API functions (listed above) are used in the module with NOAUTOPROCS
defined. If they are, you must code the general case to use them.

Note that NOAUTOPROCS isin effect on a module-to-module basis only.

Y ou can avoid using NOAUTOPROCS on a call-by-call basis, if you do the following:

#undef <function>
<function>
Note: re-defining is only needed if you want to
use a covered version of the function |ater on.
#define <function> _Cover_<function>

For example:

{
#undef Set W ndowsHook

#undef MakeProcl nst ance

FARPRQC f p, ol df p;
CALLBACKPTR cbp;

148 Pointer Handling

Windows 3.x 32-bit Programming Overview

cbp = GetProcl6(Call backHook, GETPROC CALLBACK);
fp = MakeProcl nstance(cbp, hlnstance);
ol df p = Set W ndowsHook(WH CALLWADPRCC, fp);

}

This alows you to add general case code in the same module, without having to break the module into two
parts.

RegisterClass automatically does a GetProc16 for the callback function, unless the macro NOCOVERRC is
specified before including W NDOWS. H asin the following example.

#def i ne NOCOVERRC
#i ncl ude <wi ndows. h>

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the codeis identical
to the code used in the 16-bit environment. A simple exampleis:

FARPRCC f pd dProc;

| ong FAR PASCAL SubC assProc(HWND hWhd,
unsi gned nmessage,
WORD wPar am
LONG | Param)

/~k
* code for sub-classing here
*/
return(Cal | WndowProc(fpd dProc, hWhd, nessage,
wParam | Param));
}

voi d Subd assDeno(void)
{

HWAD hControl ;
FARPROC fp;
extern HANDLE Progr aml nst ance;

/* assume hControl gets created in here */

fpA dProc = (FARPROC) Get WndowLong(hControl, GA_WNDPROC);
fp = MakeProcl nstance(Subd assProc, Progranl nstance);
Set W ndowLong(hControl, GAL_WNDPRCC, (LONG fp);

/* set it back */
Set WndowLong(hControl, GA_WNDPROC, (LONG fpd dProc);
FreeProcl nstance(fp);

}

Note that SetWindowL ong is covered to recognize GWL_WNDPROC and automatically creates a 16-bit
callback for the 32-hit callback. When replacing the callback routine with the original 16-bit routine, the
covered version of SetWindowL ong recognizes that the function is not a 32-bit callback, and so passes the
pointer right through to Windows unchanged.

Pointer Handling 149

Windows 3.x Programming Guide

20.6 Calling 16-bit DLLs

A 16-hit functionin aDLL can be called using the _Call16 function. The first argument to _Call16 isthe
address of the 16-bit function. This addressis usually obtained by calling GetProcAddress with the name
of the desired function. The second argument to _Call16 is a string identifying the types of the parameters
to be passed to the 16-bit function.

double precision floating-point
32-hit flat pointer (converted to 16:16 far pointer)

Character Parameter Type

c call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be listed first)
b unsigned BY TE

w 16-bit WORD

d 32-bit DWORD

f

p

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention isthe default. If the function uses the CDECL calling convention, then you must specify the
letter "c" asthefirst character of the argument type string.

Pointer types will automatically be converted from 32-hit near pointersto 16-bit far pointers before the
functionisinvoked. Note that this pointer isonly valid over the period of the call; after control returns to
the 32-hit application, the 16-bit pointer created by the Supervisor is no longer valid.

Thereturn value from _Call16 isa DWORD.

#i ncl ude <wi ndows. h>

HANDLE hbDr v;
FARPRCC | pf n;
int cb;

if((hDrv = LoadLibrary ("foo.dll")) < 32)
return FALSE;
if(!'(lpfn = GetProcAddress (hDrv, "ExtDevicehMde")))
return FALSE;
/*
* now, invoke the function
*/
cb = (WORD) _Call 16(
| pfn, /1 address of function
"wwdppddw', /1 paraneter type info
hwnd, /| paranmeters ...
hDr v,
NULL,
"POSTSCRI PT PRI NTER',
"LPT1",
NULL,
NULL,
0

)

150 Calling 16-bit DLLs

Windows 3.x 32-bit Programming Overview

20.6.1 Making DLL Calls Transparent

This section gives an example of how to make your source code look asif you are calling the 16-bit DLL
directly.

Assume there are 3 functions that you want to call in the 16-bit DLL, with prototypes as follows:

HWND FAR PASCAL Initialize(WORD start_code);
BOOL FAR PASCAL DoStuff(HWND wi n_hld, HDC wi n_dc);
voi d FAR PASCAL Finish(void);

A fragment from the header file that you would include in your 32-bit application would be as follows:

extern FARPROC InitializeAddr;
ext ern FARPROC DosSt uf f Addr ;
extern FARPROC Fi ni shAddr;
#define Initialize(start_code) \
_Call16(InitializeAddr, "w', (WRD)start code)
#define DoStuff(win_hld, data) \
_Call 16(DoStuffAddr, "wp", (HWND)win_hld, (LPvVO D)data)
#define Finish(void) _Call16(FinishAddr, "")

The header file fragment gives external references for the function addresses for each function, and sets up
macros do a_Call16 for each of the functions.

At start up, you would call the following function:

/*
* LoadDLL - get DLL ready for 32-bit use
*/
BOOL LoadDLL(void)
HANDLE dI|;
dll = LoadLibrary("chart.dl|");
if(dll <32) return(FALSE);
InitializeAddr = GetProcAddress(dll, "Initialize");
DoSt uf f Addr = Get ProcAddress(dl |, "DoStuff");
Fi ni shAddr = Get ProcAddress(dll, "Finish");

return(TRUE);
}

This function loads the 16-bit DLL and gets the addresses for al of the entry pointsinthe DLL. By
including the header file with all the macrosin it, you can code callsto the DLL functions asif you were
calling the functions directly. For example:

#i ncl ude <wi ndows. h>
#i ncl ude "fragment. h"
char *data = "the data";

void TestDLL(void)

{
HWAD r es;

Calling 16-bit DLLs 151

Windows 3.x Programming Guide

if(!'LoadDLL()) {
MessageBox(NULL, "Could not |oad DLL",
"Error", MB_ K);

return;
}
res = Initialize(1);
DoStuff(res, data);
Fi ni sh();

20.7 Far Pointer Manipulation

Thefollowing C library functions are available for manipulating far data. These are useful when using
pointers obtained by MK_FP32 and MK_LOCAL32.

Memory manipul ation:

» _fmemccpy
» _fmemchr

o _fmemcmp
» _fmemcpy

e _fmemicmp
e _fmemmove
o fmemset

String manipulation:

o fatrcat

o _fstrchr

o _fstremp
o _fstrepy
 fstrespn
» fstricmp
o fstrlen

o fstriwr

» fstrncat
 _fstrncmp
o _fstrncpy
o _fstrnicmp
o _fstrnset

o _fstrpbrk
 fstrrchr

o fstrrev

o fstrset

* _fstrspn

» fstrtok
 _fstrupr

152 Far Pointer Manipulation

Windows 3.x 32-bit Programming Overview

20.8 16 Functions

Every Windows API function that accepts a pointer has a corresponding _16 function. The _16 version of
the function will not convert any of the pointers that it accepts; it will assume that al pointers are 16-bit far
pointers aready. This applies to both data and function pointers.

Some sample code demonstrating the use for thisis:

voi d ReadEditBuffer(char *fname, HWD hwndEdit)

- .

i nt file;

HANDLE hText ;

char far *flpData;

LPSTR | pDat a;

WORD filelen;

/*

* no error checking is perforned; we just
* assune everything works for this exanple.
*/

file = _lopen(fnane, 0);

filelen = Ilseek(file, OL, 2);

hText = (HANDLE) SendMessage(hwndEdit, EM GETHANDLE,

0, OL);

Local ReAl l oc(hText, filelen+l, LHND);

fl pData = MK _LOCAL32(Local Lock(hText));
| pData = (LPSTR) MK _FP16(flpB);

_16_lread(file, | pData, filelen);

_lclose(file);

}

This exampl e reads the contents of afile into the buffer of an edit window. Because the edit window’s
memory islocated in the local heap, which is the Supervisor’s heap, the MK_L OCAL 32 function is needed
to access the data. The MK_FP16 macro compresses the 32-bit far pointer into a 16-bit far pointer, which
can then be used by the 16 lread function.

_ 16 Functions 153

Windows 3.x Programming Guide

154 16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs

Watcom C/C++ alowsthe creation of 32-bit Dynamic Link Libraries (DLL). Infact, 32-bit DLLsare
simpler to write than 16-bit DLLs. A 16-bit DLL runs on the caller’s stack, and thus DS != SS. This
creates difficulties in the small and medium memory models because near pointersto local variables are
different from near pointers to global variables. The 32-bit DLL runs on its own stack, in the usual flat
memory space, which eliminates these concerns.

There isaspecia version of the supervisor, WB86DLL. EXT that performsasimilar job to W N386. EXT.
However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a 16-bit Windows application.
On thefirst use of the 32-bit DLL, the DLL supervisor loads the 32-bit DLL and invokes the 32-hit
initialization routine (the DLL’s W nMai n routing). Theinitialization routine declares al entry points (via
Def i neDLLENt r y) and performs any other necessary initialization. Anindex number in the range 1 to
128 is used to identify all external 32-bit DLL routines. Def i neDLLENt r y isused to assign an index
number to each routine, as well asto identify the arguments.

The DLL supervisor contains a general entry point for Windows applications to cal into called

W n386Li bEnt ry. Itaso contains 128 specific entry points called DLL1 to DLL128 which correspond
to the entry points established via Def i neDLLENt ry (thefirst argument to Def i neDLLEnt ry isan
index number in therange 1 to 128). These entry pointsare FAR PASCAL functions. All applications call
into the 32-bit DLL viathese entry points. They build the necessary stack frame and switch to the 32-bit
DLL’sdata space.

If you call viaW n386Li bEnt ry then you passthe DLL entry point number or index (1 to 128) asthe

last argument. W n386Li bEnt ry usesthisindex number to call the appropriate 32-bit DLL routine.
From a pseudo-code point of view, the 16-bit supervisor might ook like the following:

Introduction to 32-Bit DLLs 155

Windows 3.x Programming Guide

DLL1:: set index=1
i nvoke 32bi t DLLi ndi rect

DLL2:: set index=2
i nvoke 32bit DLLi ndirect

DLL128: : set index=128
i nvoke 32bi t DLLi ndi rect

W n386Li bEntry::
set index fromindex_argunent
i nvoke 32bit DLLi ndi rect

32bi t DLLi ndirect:
set up stack frame
switch to 32-bit data space
call indirect registration_list[index]

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be invoked by a
16-bit application as well as a 32-bit application. Itisfor thisreason that all far pointers passed to a 32-bit
DLL are 16-hit far pointers. Hence, whenever a pointer is passed as an argument to a 32-bit DLL entry
point and you wish to access the data it pointsto, you must convert the pointer appropriately.

21.2 A Sample 32-bit DLL

Let us begin our discussion of DLLs by showing the code for asimple DLL. The source code for these
examplesis provided in the \ WATCOM SAMPLES\ DLL directory. We describe how to compile and link
the examples in the section entitled "Creating and Debugging Dynamic Link Libraries' on page 160. The
code for this DLL can be compiled with the 16-bit compiler to produce a 16-bit DLL and it can can be
compiled with the 32-bit compiler to produce a 32-bit DLL. The example illustrates the fundamental
differences between the two types of DLLs. The 32-bit DLL hasa W nMai n routine and the 16-bit DLL
hasaLi bMai n routine.

Example:
/*
* DLL.C
* [
#i ncl ude <stdi o. h>
#i ncl ude <wi ndows. h>

#if defined(__386__)/* if we are doing a 32-bit DLL */
#define DLL_ID "DLL32"

#el se /* else we are doing a 16-bit DLL */
#define DLL_ID "DLL16"
#endi f

156 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

| ong FAR PASCAL __ export FooMel(WORD wl, DWORD w2, WORD w3)
char buff[128];

sprintf(buff, "FooMel: wl=%hx, w2=% x, w3=%hx",
wl, w2, w3);

MessageBox(NULL, buff, DLL_ID, MB_OK);

return(wi + w2);

}
| ong FAR PASCAL __ export FooMe2(DWORD wl, WORD w2)
{
char buff[128];
sprintf(buff, "FooMe2: wi=% x, w2=%x", wl, W2);
MessageBox(NULL, buff, DLL_ID, MB K);
return(w1 + 1);
}

#if defined(__386__)/* if we are doing a 32-bit DLL */
| ong PASCAL W nMai n(HANDLE hl nst ance,

HANDLE hPrevl nst ance,

LPSTR | pszCndlLi ne,

i nt nCndShow)

{
i f(DefineDLLEntry(1, (void *) FooMel, DLL_WORD,
DLL_DWORD, DLL_WORD, DLL_ENDLI ST)) {
return(0);
}
i f(DefineDLLEntry(2, (void *) FooMe2, DLL_DWORD,
DLL_WORD, DLL_ENDLIST)) {
return(0);
}
MessageBox(NULL, "32-bit DLL Started", DLL_ID, MB K);
return(1);
}
#el se /* else we are doing a 16-bit DLL */

BOOL FAR PASCAL Li bMai n(HANDLE hl nst ance,
WORD wDat aSegnent ,
WORD wHeapSi ze,
LPSTR | pszCndLi ne)

{
#if O
/*
W can’'t use MessageBox here since static binding is
used and a nmessage queue has not been created by the
time DLL16 is | oaded.
*
/
MessageBox(NULL, "16-bit DLL Started", DLL_ID, MB K);
#endi f
return(TRUE);
}
#endi f

To create a16-bit DLL from this code, the following steps must be performed.

A Sample 32-bit DLL 157

Windows 3.x Programming Guide

Example:
Cwee dll /nt /bt=windows /zu /fo=dll 16
Cw ink system wi ndows_dll file dll16
Cwib -n d116 +dll16.dll

To create a 32-bit DLL from this code, the following steps must be performed.

Example:
Cwec386 dl 1l /bt =wi ndows /fo=dll 32
Cwink systemw n386 file dll 32
Cwbind -n -d dll32

There are two entry points defined, FooMe1 (index number 1) and FooMe2 (index number 2). FooMel
accepts three arguments: a WORD, aDWORD, and aWORD. FooMe2 acceptstwo arguments: a
DWORD and a WORD.

W nMai n returns zero to notify Windows that the DLL initialization failed, and returns aone if
initialization succeeds.

W nMai n accepts the same arguments as the W nMai n procedure of aregular Windows program,
however, only two argumentsareused. hl nst ance isthe DLL handleand | pszCndLi ne isthe
command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

The following is a 16-bit Windows program that demonstrates how to call the two routines defined in our
DLL example.

Example:
/*
* EXEl6. C
*/
#i ncl ude <stdio. h>
#i ncl ude <wi ndows. h>

#defi ne Add3 1
#defi ne Add2 2

typedef |ong (FAR PASCAL *FPROC) ();
typedef |ong (FAR PASCAL *FARPRCCL) (WORD, DWORD, WORD, int);
typedef |ong (FAR PASCAL *FARPROC2) (DWORD, WORD, int);

[ong FAR PASCAL FooMel(WORD, DWORD, WORD);
[ong FAR PASCAL FooMe2(DWORD, WORD);

158 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

i nt PASCAL W nMai n(HANDLE hl nst ance,
HANDLE hPrevl nst ance,
LPSTR | pszCndLi ne,
i nt nCndShow)

FPROC f p;
HANDLE hl i b;

| ong cb;

char buff[128];

MessageBox(NULL, "16-bit EXE Started", "EXE16", MB_ K);

/* Do the 16-bit denp using static binding */
cb = FooMel(0x666, Ox77777111, 0x6969);
sprintf(buff, "RCL = %x", cb);

MessageBox(NULL, buff, "EXE16", MB_ K);

cb = FooMe2(0x12345678, 0x8888);
sprintf(buff, "RC2 = % x", cb);
MessageBox(NULL, buff, "EXE16", MB K);

/* Do the 32-bit deno */
hlib = LoadLibrary("dl132.dll");
fp = (FPROC) GetProcAddress(hlib, "Wn386Li bEntry");

cb = (*(FARPROCL) fp)(Ox666, Ox77777111, 0x6969, Add3);
sprintf(buff, "RCL = %x", cb);
MessageBox(NULL, buff, "EXE16", MB_OK);

cb = (*(FARPROC2) fp) (0x12345678, 0x8888, Add2);
sprintf(buff, "RC2 = % x", cb);
MessageBox(NULL, buff, "EXE16", MB K);

return(0);

}
Note that the last argument of a call to the 32-bit DLL routine is the index number of the 32-bit DLL
routine to use. To create the 16-bit sample Windows executable from this code, the following steps must
be performed.
Example:

Cwee exel6 /bt =wi ndows
Cw ink system wi ndows file exel6 library dll 16

21.4 Writing a 16-bit Cover for the 32-bit DLL

The following is a suggested way to make a 32-bit DLL behave just like a 16-bit DLL from the point of
view of the person trying to use the DLL.

Create alibrary of cover functions for each of the entry points. Each library entry would call the 32-bit
DLL using the appropriate index number.

Writing a 16-bit Cover for the 32-bit DLL 159

Windows 3.x Programming Guide

For example, assume we have 3 functionsinour DLL, I niti al i ze, DoSt uff, and Fi ni sh.
Assumel ni ti al i ze takesaninteger, DoSt uf f takes an integer and a pointer, and Fi ni sh takes
nothing. We could build a 16-bit library as follows:

Example:
#i ncl ude <w ndows. h>
typedef |ong (FAR PASCAL *FPROC) ();
extern | ong FAR PASCAL W n386Li bEntry();
FPROC Li bEntry = W n386Li bEntry;
BOOL Initialize(int parm)

return(LibEntry(parm 1));
}

int DoStuff(int parnl, LPVAO D parng)

return(LibEntry(parnil, parnm2, 2));
}

void Finish(void)

Li bEntry(3);

21.5 Creating and Debugging Dynamic Link Libraries

In the following sections, we will take you through the steps of compiling, linking, and debugging both
16-bit and 32-bit Dynamic Link Libraries (DLLS).

We will use example programs that are provided in source-code form in the Watcom C/C++ package. The
files described in this chapter are located in the directory \ WATCOM SAMPLES\ DLL. Thefollowing files

are provided:

GEN16.C is the source code for a generic 16-bit Windows application that calls functions
in a32-bit WindowsDLL.

GEN16.LNK isthe linker directive file for linking the 16-bit Windows application.

GEN32.C is the source code for a generic 32-bit Windows application that calls functions
in both 16-bit and 32-bit Windows DLLs.

GEN32.LNK isthe linker directive file for linking the 32-hit Windows application.

DLL16.C is the source code for asimple 16-bit DLL containing one library routine.

DLL16.LNK isthe linker directive file for linking the 16-bit Windows DLL.

DLL32.C is the source code for amore complex 32-bit DLL containing three library
routines.

DLL32.LNK isthe linker directive file for linking the 32-bit Windows DLL.

160 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

EXE16.C is the source code for a generic 16-bit Windows application that calls functions
in both 16-bit and 32-bit Windows DLLs.

DLL.C isthe source code for aDLL containing three library routines. The source code
for thisDLL can be used to create both 16-bit and 32-bit DLLSs.

MAKEFILE isamakefile for compiling and linking the programs described above.

21.5.1 Building the Applications

To create the DLLs and test applications, we will use the WATCOM Watcom Make utility and the supplied
makefile.

Example:
Cwrake -f makefile

21.5.2 Installing the Examples under Windows

Start up Microsoft Windows 3.x if you have not already done so. Add the EXE16. EXE fileto one of your
Window groups using the Microsoft Program Manager.

1. Selectthe"New..." entry from the "File" menu of the Microsoft Windows Program Manager.
2. Select "Program Item" from the "New Program Object" window and press the "OK" button.

3. Enter "DLL Tedt" asadescription for the EXE16 program. Enter the full path to the EXE16
program as a command line.

Example:
Descri pti on: Test
Command Li ne: c:\work\dlI\exel6. exe

21.5.3 Running the Examples
Start the 16-bit application by double clicking onitsicon. A number of message boxes are presented. Y ou

may wish to compare the output in each message box with the source code of the program to determine if
the correct results are being obtained. Click on the "OK" button as each of them are displayed.

21.5.4 Debugging a 32-bit DLL

The Watcom Debugger can be used to debug aDLL. To debug a 32-bit DLL, a"breakpoint" instruction
must be inserted into the source code for the DLL at the "WinMain" entry point. Thisisdone using the
"pragma’ compiler directive. We have already added the breakpoint to the source code for the 32-bit DLL.

Creating and Debugging Dynamic Link Libraries 161

Windows 3.x Programming Guide

Example:
extern void BreakPoint(void);
#pragma aux BreakPoi nt = 0Oxcc;

i nt PASCAL W nMai n(HANDLE hl nst ance,
HANDLE x1,
LPSTR | pCndLi ne,
int x2)

Br eakPoi nt () ;

DefineDLLEntry(1, (void *) Libl,
DLL_ WORD,
DLL_ DWORD,
DLL_WORD,

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by double-clicking on
the Watcom Debugger icon. At the prompt, enter the path specification for the application. When the
debugger has successfully loaded EXE16, start execution of the program. When the breakpoint is
encountered in the 32-bit DLL, the debugger is re-entered. The debugger will automatically skip past the
breakpoint.

From this point on, you can symbolically debug the 32-bit DLL. Y ou might, for example, set breakpoints
at the start of each DLL routine to debug each of them as they are called.

21.5.5 Summary

Note that the "WinMain" entry point isonly called once, at the start of any application requesting it. After
this, the "WinMain" entry point is no longer called. You may have to restart Windows to debug this section
of code a second or third time.

162 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Watcom C/C++
DLLs

22.1 Introduction to Visual Basic and DLLs

This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-bit Dynamic Link
Libraries (DLLs) created by Watcom C/C++. It describes how to write functions for a 32-bit DLL, how to
compile and link them, and how to call these functions from Visual Basic. One of the proposed techniques
involves the use of a set of cover functionsin a 16-bit DLL so, indirectly, this chapter also describes
interfacing to 16-bit DLLs.

It is possible to invoke the W n386Li bEnt r y function (Watcom'’s 32-bit function entry point, described
below) directly from Visual Basic. However, this technique limits the arguments that can be passed to a
32-bit DLL. The procedure and problems are explained below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL. Within the 16-bit
DLL, wewill place cover functionsthat will call the corresponding 32-hit function in the 32-bit DLL. We
illustrate the creation of the 16-bit DLL using the 16-bit C compiler in Watcom C/C++.

Before we begin our example, there are some important technical issuesto consider.

The discussion in this chapter assumes that you, the developer, have aworking knowledge of Visual Basic,
including how to bring up the general declarations screen, how to create command buttons, and how to
associate code with command buttons. Y ou must use Visual Basic 3.0 or later. Visual Basic Version 2.x
will not work because of adeficiency in this product regarding the calling of functionsin DLLs.

For the purposes of the following discussion, you should have installed both the 16-bit and 32-bit versions
of Watcom C/C++, aswell asversion 3.0 or later of Visual Basic. Ensure that the PATH, INCLUDE and
WINDOWS_INCLUDE environment variables are defined to include at least the directories indicated.
We have assumed that Watcom C/C++ isinstaled in the ¢: \ wat comdirectory, and Visual Basicisinthe
c: \ vb directory:

set pat h=c:\wat com bi nw; c:\vb; c:\dos; c:\ wi ndows
set include=c:\watcomh
set wi ndows_i ncl ude=c:\wat com h\w n

Watcom'’s 32-bit DLL supervisor contains ageneral entry point for Windows applications to call into called
W n386Li bEnt ry. Itaso contains 128 specific entry points called DLL1 to DLL128 which correspond
to the entry points established via Def i neDLLENt ry (thefirst argument to Def i neDLLEnt ry isan
index number in the range 1 to 128). All applications call into the 32-bit DLL viathese entry points. They
build the necessary stack frame and switch to the 32-bit DLL’s data space.

If you call viaW n386Li bEnt r y then you passthe DLL entry point number or index (1 to 128) asthe
last argument. W n386Li bEnt ry usesthisindex number to call the appropriate 32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very flexible. In other

words, afunction can be called with different argument types each time. Thisis generally necessary for
calling W n386Li bEnt ry in a32-bit extended DLL function. The reason isthat this function takes the

Introduction to Visual Basic and DLLs 163

Windows 3.x Programming Guide

same arguments as the function being called, as well as the index number of the called function. After the
32-bit flat model has been set up, W n386Li bEnt r y then callsthisfunction. InVisual Basic, once a
function is declared as having certain arguments, it cannot be redeclared. For example, suppose we have a
declaration as follows:

Example:
Decl are Functi on Wn386Li bEntry Lib "c:\path\vbdl132.dlI"
=> (ByVal vl1 As Integer, ByVal v2 As Long, ByVal
=> v3 As Integer, ByVal | As Integer) As Long

(Note: the => meansto continue the statement on the same line.) In this example, we could only call a
function in any 32-bit extended DLL with a 16-bit integer as the first and third argument, and a 32-bit
integer as the second argument. There are three ways to work around this deficiency in Visual Basic:

1. UsetheVisua Basic "Alias' attribute to declare W n386Li bEnt r y differently for each DLL
routine. Reference the different DLL routines using these aliases.

2. Usethe specific entry point, one of DLL1 through DLL128, corresponding to the DLL routine
that you want to call. Each entry point can be described to take different arguments. We can
still usethe "Alias" attribute to make the link between the name we use in the Visual Basic
function and the name in the 32-bit extended DLL. Thisisthe method that we will usein the
"Direct Call" technique discussed below. It issimpler to use since it requires one less argument
(you don't require the index number).

3. Useamethod which involves calling functionsin a 16-bit "cover" DLL writtenin a

flexible-argument language, which then calls the functionsin the 32-bit DLL. Thisisthe
"Indirect Call" method discussed below.

22.2 A Working Example

The best way to demonstrate these techniques is through an example. This example consists of a Visual
Basic application with 3 push buttons. The first push button invokes a direct call to a 32-bit DLL which
will display a message window with its arguments, the second push button invokes an indirect call to the
same function through a 16-bit DLL, and the third button exits the Visual Basic application.

To create a Visual Basic application:
(1) Start up anew project folder from the "File" menu.
(2) Select " View Form" from the "Project”" window.

(3) Draw three command buttons on the form by selecting command buttons from the "Toolbox"
window.

(4) Changethe caption on each button. To do this, highlight the first button. Then, open the
"Properties’ window. Double click on the " Caption window", and change the caption to "Direct call".
Highlight the second button, and change its caption to "Indirect call". Highlight the third, changing
the caption to "EXxit".

Now, your Visual Basic application should have three push buttons, "Direct call", "Indirect call", and
"Exit".

164 A Working Example

Interfacing Visual Basic and Watcom C/C++ DLLs

(5) Doubleclick onthe" Direct Call" button.

An edit window will pop up. Enter the following code:

Sub Commandl_dick ()
Dimvarl, var2 As |nteger
Di m varl ong, worked As Long

varl = 230
varlong = 215
var2 = 32

wor ked = Add3(varl, varlong, var?2)
Print worked
wor ked = Add2(varl ong, var?2)
Print worked
End Sub

(6) Doubleclick onthe"Indirect Call" button.
Another edit window will pop up. Enter the following code:
Sub Command2_dick ()

Dimvarl, var2 As |nteger
Di m varl ong, worked As Long

varl = 230
varlong = 215
var2 = 32

wor ked = Functionl(varl, varlong, var2)
Print worked
wor ked = Function2(varlong, var2)
Print worked
End Sub

(7) Doubleclick onthe" Exit" command button and enter the following code in the pop-up window:
Sub Command3_dick ()

End
End Sub

(8 Select " View Code" from the "Project” window. To interface these Visual Basic functionsto the
DLLs, the following code is needed in the

bject: [general] Proc: [declarations]
section of the code. This code assumesthat VBDLL32. DLL and COVER16. DLL arein the

c: \ pat h directory. Modify the pathnames appropriately if thisis not the case. (Note: the => means
to continue the statement on the sameline.)

A Working Example 165

Windows 3.x Programming Guide

Decl are Function Functionl Lib "c:\path\coverl16.dlI"
=> (ByVal vl1 As Integer, ByVal v2 As Long,
=> ByVal v3 As Integer) As Long

Decl are Function Function2 Lib "c:\path\coverl16.dll"
=> (ByVal v1 As Long, ByVal v2 As Integer) As Long

Decl are Function Add3 Lib "c:\path\vbdlI32.dlI"
=> Alias "DLL1"

=> (ByVal v1 As Integer, ByVal v2 As Long,

=> ByVal v3 As Integer) As Long

Decl are Function Add2 Lib "c:\path\vbdl|32.dlI"
=> Alias "DLL2"
=> (ByVal vl1 As Long, ByVal v2 As Integer) As Long

Now, when all of the code below is compiled correctly, and the Visua Basic program is run, the "Direct
call" button will call the DLL1 and DLL2 functions directly, aliased as the functions Add3 and Add2
respectively. The "Indirect call" button will call the 16-bit DLL, which will then call the 32-bit DLL, for
both Functi onl and Functi on2. ToruntheVisua Basic program, select "Start" from the "Run"
menu.

22.3 Sample Visual Basic DLL Programs

The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which will call the two
functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

/*
* VBDLL32.C
*/
#i ncl ude <stdio. h>
#i ncl ude <wi ndows. h> /* required for all Wndows applications */

| ong FAR PASCAL Add3(short varl, long varlong, short var2)
char buf[128];
sprintf(buf, "Add3: varl1=%l, varlong=%d, var2=%l",
varl, varlong, var2);

MessageBox(NULL, buf, "VBDLL32", MB_OK | MB_TASKMODAL);
return(varl + varlong + var2);

}

| ong FAR PASCAL Add2(|ong varlong, short var2)
char buf[128];
sprintf(buf, "Add2: varlong=%d, var2=%", varlong, var2);
MessageBox(NULL, buf, "VBDLL32", MB_OK | MB_TASKMODAL);

return(varlong + var2);

}

166 Sample Visual Basic DLL Programs

Interfacing Visual Basic and Watcom C/C++ DLLs

#pragma of f (unreferenced);
int PASCAL W nMai n(HANDLE hl nst ance, HANDLE x1, LPSTR | pCndLine, int x2)
#pragma on (unreferenced);

DefineDLLEntry(1, (void *) Add3, DLL_WORD, DLL_DWORD, DLL_WORD,
DLL_ENDLI ST);

DefineDLLEntry(2, (void *) Add2, DLL_DWORD, DLL_WORD, DLL_ENDLI ST);

return(1);

22.3.2 Source code for COVER16.DLL

The functionsin this 16-bit DLL will call the functionsin the 32-bit DLL, VBDLL32. DLL, shown above,
with the appropriate W n386Li bEnt ry call for each function.

/*
* COVER16. C
*/

#i ncl ude <stdio. h>
#i ncl ude <w ndows. h> /* required for all Wndows applications */

typedef |ong (FAR PASCAL *FPROC) ();

FPROC DLL_1;
FPROC DLL_2;

|l ong FAR PASCAL __export Functionl(short varl,
I ong var 2,
short var3)

return((long) DLL_1(varl, var2, var3));
}

Il ong FAR PASCAL __export Function2(long varl, short var2)
{

return((long) DLL_2(varl, var2));

#pragma of f (unreferenced);

BOOL FAR PASCAL Li bMai n(HANDLE hl nstance, WORD wDat aSegment ,
WORD wHeapSi ze, LPSTR | pszCndLi ne)

#pragma on (unreferenced);

HANDLE hl i b;

/* Do our DLL initialization */
hlib = LoadLibrary("vbdl132.dlI 1");
if(hlib <32) {
MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
"COVER16", MB_OK | MB_| CONEXCLAMATI ON);
return(FALSE);

}
DLL_1 = (FPROC) GetProcAddress(hlib, "DLL1");
DLL_2 = (FPROC) GetProcAddress(hlib, "DLL2");

return(TRUE);

Sample Visual Basic DLL Programs 167

Windows 3.x Programming Guide

22.4 Compiling and Linking the Examples

To create the 32-bit DLL VBDLL32. DLL, typethefollowing at the command line (make sure that
VBDLL32. c isinyour current directory):

wel 386 vbdl | 32 - bt =wi ndows -bd -d2 -|=wi n386
wbi nd vbdl 132 -d -n

To create the 16-bit DLL COVERL6. DLL, typethe following at the command line (make sure that
COVERLG6. Careinyour current directory):

wel

Notes:

1

coverl1l6 -nt -bt=wi ndows -bd -zu -d2 -|=w ndows_dl |

The"mc" option selects the compact memory model (small code, big data). The code for 16-bit
DLLs must be compiled with one of the big data models.

The "bd" option indicates that a DLL will be created from the object files.

The "bt" option selects the "windows" target. This option causes the C or C++ compiler to
generate Windows prol ogue/epil ogue code sequences which are required for Microsoft Windows
applications. It also causes the compiler to use the WINDOWS _INCL UDE environment
variable for header file searches. It aso causes the compiler to define the macro
__WNDOA5__ and, for the 32-bit C or C++ compiler only, the macro__ W NDOAS_386_ .

The"zu" option is used when compiling 16-bit code that is to be placed in a Dynamic Link
Library (DLL) since the SSregister points to the stack segment of the calling application upon
entry to the function.

The"d2" option is used to disable optimizations and include debugging information in the object
fileand DLL. The techniques for debugging DLLs are described in the chapter entitled
"Windows 32-Bit Dynamic Link Libraries" on page 155.

Y ou are now ready to run the Visual Basic application.

168 Compiling and Linking the Examples

23 WIN386 Library Functions and Macros

Synopsis:

Each special Windows function or macro in the Watcom C/C++ library is described in this chapter. Each
description consists of a number of subsections:

This subsection gives the header files that should be included within a source file that references the
function or macro. It aso shows an appropriate declaration for the function or for afunction that could be
substituted for amacro. Thisdeclaration is not included in your program; only the header file(s) should be
included.

When a pointer argument is passed to a function and that function does not modify the item indicated by
that pointer, the argument is shown with const before the argument. For example,

const char *string

indicates that the array pointed at by string is not changed.

Description: This subsection is a description of the function or macro.

Returns:
Errors:
See Also:

Example:

This subsection describes the return value (if any) for the function or macro.
This subsection describes the possible er r no values.
This optional subsection provides alist of related functions or macros.

This optional subsection consists of one or more examples of the use of the function. The examples are
often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the function or macro is commonly found. The

functions or macrosin this section are al classified as"WIN386" (i.e., they pertain to 32-bit Windows
programming).

WIN386 Library Functions and Macros 169

AllocAlias16

Synopsis: #i ncl ude <wi ndows. h>
DWORD Al | ocAlias16(void *ptr);

Description: The Al | ocAl i as16 function obtains a 16-hit far pointer equivalent of a 32-bit near pointer. These
pointers are used when passing data pointers to Windows through functions that have DWORD
arguments, and for any pointers within data structures passed this way.

Returns: The Al | ocAl i as16 function returns a 16-bit far pointer usable by Windows, or returns O if the alias
cannot be allocated.

See Also: FreeAliasl6

Example: #i ncl ude <wi ndows. h>

DWORD nts_16;

/*
* Send a nessage to a MDl client to create a w ndow.
* 16SendMessage is used for this exanple, since it wll
* not do any pointer conversions autonatically.
*/

MDI CREATESTRUCT nts;

ncs.szTitle (LPSTR) AllocAliasl1l6("c:\\foo.bar");

ncs. szd ass (LPSTR) Al l ocAliasl6("ndichild");

ncs. hOaner hl nst ;

NCS. X = NCS. CX (int) CW USEDEFAULT;

NtsS.y = NTS.cy (int) CW USEDEFAULT;

ncs.style = 0;

/* tell the MDI Cient to create the child */
ncs_16 = Al ocAliasl6(&ncs);
= (WORD) _16SendMessage(hwndMDI d i ent,
WV_MDI CREATE,
0,
(LONG nts_16);
FreeAliasl6(nts_16);
FreeAliasl16((DWORD) nts.szC ass);
FreeAlias16((DWORD) nts.szTitle);

Classification: WIN386

170 WIN386 Library Functions and Macros

AllocHugeAlias16

Synopsis:

Description:

Returns:

See Also;

Example:

#i ncl ude <wi ndows. h>
DWORD Al | ocHugeAl i as16(void *ptr, DWORD size);

The Al | ocHugeAl i as16 function obtains a 16-hit far pointer to a 32-bit memory object that is size
bytesin size. Thisissimilar to the function Al | ocAl i as16, exceptthat Al | ocAl i as16 will only
give 16-bit far pointers to 32-bit memory objects of up to 64K in size. To get 16-bit far pointersto
32-bit memory objects larger than 64K, Al | ocHugeAl i as16 should be used.

The Al | ocHugeAl i as16 function returns a 16-bit far pointer usable by Windows, or returns O if the
alias cannot be alocated.

Al l ocAl i asl6, FreeAli asl6, FreeHugeAl i as16

#i ncl ude <wi ndows. h>
#i ncl ude <mal | oc. h>
#def i ne SI ZE 300000

DWORD al i as;
void *tnp;

tnmp = malloc(SIZE);
alias = All ocHugeAl i as16(tnp, SIZE);

/* Wndows calls using the alias ... */

FreeHugeAl i as16(alias, SIZE);

Classification: WIN386

WIN386 Library Functions and Macros 171

_Call16

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <wi ndows. h>
DWORD Cal | 16(FARPRCC | pFunc, char *fm, ...);

The _Cal | 16 function performs the same function as Get | ndi r ect Funct i onHandl e,

I nvokel ndi rect Functi onHandl e and Fr eel ndi r ect Funct i onHandl| e but ismuch
easier to use. The first argument IpFunc is the address of the 16-bit function to be called. This address
isusually obtained by calling Get Pr oc Addr ess with the name of the desired function. The second
argument f nt isastring identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be listed
first)

unsigned BY TE

16-bit WORD

32-bit DWORD

double precision floating-point

32-hit flat pointer (converted to 16:16 far pointer)

o

T *rtaso

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention isthe default. If the function uses the CDECL calling convention, then you must specify the
letter "c" asthefirst character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointersto 16-bit far pointers before the
function isinvoked. Note that this pointer isonly valid over the period of the call; after control returns
to the 32-bit application, the 16-bit pointer created by the Supervisor is no longer valid.

The _Cal | 16 function returns a 32-bit DWORD which represents the return value from the 16-bit
function that was called.

Cet | ndi r ect Functi onHandl e, Fr eel ndi r ect Funct i onHandl e

172 WIN386 Library Functions and Macros

_Call16

#i ncl ude <wi ndows. h>

HANDLE hbDr v;
FARPROC | pf n;
int cb;

if((hDrv = LoadLibrary ("foo.dll")) < 32)

i f (

/*

* now,
*/

return FALSE;

(I pfn = Get ProcAddress (hDrv, "ExtDevicehMde")))
return FALSE;

i nvoke the function

cb = (WORD) _Cal | 16(

Classification: WIN386

I pfn, /] address of function
"wwdppddw', /] paranmeter type info
hwnd, /] paranmeters ...

hDr v,

NULL,

"POSTSCRI PT PRI NTER",

"LPT1",

NULL,

NULL,

0

)

WIN386 Library Functions and Macros 173

DefineDLLEntry

Synopsis: #i ncl ude <wi ndows. h>
int DefineDLLEntry(int index, void * routine, ...);

Description: The Def i neDLLEnNt r y function defines an index number for the 32-bit DLL procedure routine. The
parameter index defines the index number that must be used in order to invoke the 32-bit FAR
procedure routine. The variable argument list defines the types of parameters that will be received by
the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer

DLL_DWORD 32-bits

DLL_WORD 16-bits

DLL_CHAR 8-bits

DLL_ENDLIST Marks the end of the variable argument list.

Note that all pointers are received as 16-bit far pointers. To access the data from the 32-bit DLL, the
MK_FP32 macro must be applied. The data can then be accessed with the resulting 32-bit far pointer.

Returns: The Def i neDLLENt ry function returns zero if successful, and a non-zero value otherwise.
Example: #i ncl ude <wi ndows. h>

i nt FAR PASCAL FooMe(WORD wl, DWORD w2, WORD w3)

{

char str[128];

sprintf(str, "wl=0%hx, w2=% x, w3=%hx", wl, w2, w3);
MessageBox(NULL, str, "DLL Test", MB K);
return(wi + w2);

}

i nt PASCAL W nMai n(HANDLE hl nst ance, HANDLE x1,
LPSTR | pCrdLi ne, int x2)

Defi neDLLEntry(1, (PROCPTR) FooMe, DLL_WORD,

DLL_DWORD, DLL_WORD, DLL_ENDLI ST);
MessageBox(NULL, "32-bit DLL Started", "Test", MB_OK);
return(1);

}

Classification: WIN386

174 WIN386 Library Functions and Macros

DefineUserProc16

Synopsis:

Description:

Returns:
See Also;

Example:

#i ncl ude <wi ndows. h>
int DefineUserProcl6(int typ, PROCPTR routine, ...);

The Def i neUser Pr oc16 function defines the arguments accepted by the user defined callback
procedure routine. There may be up to 32 user defined callbacks. The parameter typ indicates which
one of GETPROC_USERDEFI NED 1 through GETPROC_USERDEFI NED_ 32 is being defined (see
Get Proc16). The callback routine must be declared as FAR PASCAL, or as FAR cdecl. The
variable argument list defines the types of parameters that will be received by the user defined callback
procedure routine. Valid parameter types are:

UDP16 PTR 16-bit far pointer

UDP16_DWORD 32-hits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16 CDECL callback routine will be declared astype cdecl rather than astype

PASCAL. Thiskeyword may be placed anywhere before the
UDP16_ENDLI ST keyword.

UDP16_ENDLIST Marks the end of the variable argument list.

Oncethe Def i neUser Pr oc16 function has been used to declare the user callback routine, then
Get Pr oc16 may be used to get a 16-bit function pointer that may be used by Windows.

The Def i neUser Pr oc16 function returns zero if it succeeds and non-zero if it fails.
Get Proc16

#i ncl ude <wi ndows. h>

WORD FAR PASCAL Test(DWORD a, WORD b)

{
char foo[128];

sprintf(foo, "a=%x, b=%x", a, b);

MessageBox(NULL, foo, "TEST", MB_ K);
return(0x123);

WIN386 Library Functions and Macros 175

DefineUserProc16

int DefineTest(void)

{
FARPRCC cb;

Def i neUser Proc16(GETPROC_USERDEFI NED 1,
(PROCPTR) Test,
UDP16_ DWORD,
UDP16_ \WORD,
UDP16_ENDLI ST) ;

cb = GetProcl6((PROCPTR) Test, GETPROC_USERDEFI NED 1);
/*
* cb may then be used whenever a pointer to the
* callback is required by 16-bit W ndows
*/
}

Classification: WIN386

176 WIN386 Library Functions and Macros

FreeAlias16

Synopsis:

Description:

Returns:
See Also;

Example:

#i ncl ude <wi ndows. h>
void FreeAliasl6(DWORD fpl6);

FreeAl i as16 freesa16-bit far pointer alias for a 32-bit near pointer that was allocated with
Al l ocAl i as16. Thisisimportant to do when thereisno further use for the pointer since there are a
limited number of 16-bit aliases available (due to limited space in the local descriptor table).

The Fr eeAl i as16 function returns nothing.
Al l ocAliasl6

#i ncl ude <wi ndows. h>

DWORD nts_16;
/*
* Send a nmessage to a MDl client to create a w ndow.
* 16SendMessage is used for this exanple, since it wll
* not do any pointer conversions autonatically.
*/
MDI CREATESTRUCT ntTs;
ncs.szTitle (LPSTR) All ocAliasl6("c:\\foo.bar");
ncs. szd ass (LPSTR) AllocAliasl1l6("ndichild");
ncs. hOaner hl nst ;
NCS. X = NCS. CX (int) CW USEDEFAULT;
Ncs.y = NTS.cy (int) CW USEDEFAULT;
ncs.style = 0;

/* tell the MDI dient to create the child */
ncs_16 = Al ocAliasl6(&ncs);
hwnd = (WORD) _16SendMessage(hwndMDI Cl i ent,
WV_MDI CREATE,
0,
(LONG nts_16);
FreeAliasl6(nts_16);
FreeAlias16((DWORD) nts.szC ass);
FreeAlias16((DWORD) nts.szTitle);

Classification: WIN386

WIN386 Library Functions and Macros 177

FreeHugeAlias16

Synopsis: #i ncl ude <wi ndows. h>
voi d FreeHugeAl i as16(DWORD fpl6, DWORD size);

Description: Fr eeHugeAl i as16 freesa 16-bit far pointer alias that was allocated with Al | ocHugeAl i as16.
The size of the original 32-bit memory object must be specified. It isimportant to use
Fr eeHugeAl i as16 when thereis no further use for the pointer, since there are alimited number of
16-bit aliases available (due to limited space in the local descriptor table).

Returns: The Fr eeHugeAl i as16 function returns nothing.
See Also: Al | ocHugeAl i as16, Al | ocAl i as16, FreeAl i asl16
Example: #i ncl ude <wi ndows. h>

#i ncl ude <mal | oc. h>
#def i ne SI ZE 300000

DWORD al i as;
void *tnp;

tnp = malloc(SIZE);
alias = Al ocHugeAlias16(tnp, SIZE);

/* windows calls using the alias ... */

FreeHugeAl i as16(alias, SIZE);

Classification: WIN386

178 WIN386 Library Functions and Macros

FreelndirectFunctionHandle

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <wi ndows. h>
voi d Freel ndirect Functi onHandl e(HI NDI R handl e);

Fr eel ndi r ect Funct i onHandl e freesahandle that was obtained using

Get | ndi r ect Funct i onHandl e. Thisisimportant to do when thereis no further use for the
pointer since there are alimited number of 16-bit aliases available (due to limited space in the local
descriptor table).

The Fr eel ndi r ect Funct i onHandl e function returns nothing.
_Call 16,Cet I ndi rect Functi onHandl e, | nvokel ndi rect Functi on

#i ncl ude <wi ndows. h>

HANDLE hDrv;
FARPROC | pf n;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!'(lpfn = GetProcAddress(hDrv, "ExtDeviceMde")))
return FALSE;

#ifdef __ W NDONS_386_
hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_W\ORD,
| NDI R_W\ORD,
| NDI R_DWORD,
| NDI R_PTR,

cb = (WORD) | nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
"POSTSCRI PT PRI NTER',
"LPT1",
NULL,
NULL,
0);
Freel ndi rect Functi onHandl e(hindir);

WIN386 Library Functions and Macros 179

FreelndirectFunctionHandle

#el se
cb = I pfn(hwnd,

hDr v,
NULL,
"POSTSCRI PT PRI NTER',
"LPT1",
NULL,
NULL,
0);

#endi f

Classification: WIN386

180 WIN386 Library Functions and Macros

GetindirectFunctionHandle

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <wi ndows. h>
H NDI R Get I ndi rect Functi onHandl e(FARPRCC prc, ...);

The Get | ndi r ect Funct i onHandl e function gets a handle for a 16-bit procedure that is to be
invoked indirectly. The procedure is assumed to have PASCAL calling convention, unless the

| NDI R_CDECL parameter is used, to indicate that Microsoft C calling convention isto be used. The
16-bit far pointer prcissupplied to CGet | ndi r ect Funct i onHandl e, and alist of the type of each
parameter (in the order that they will be passed to the 16-bit function). The parameter types are:

INDIR_DWORD A DWORD will be passed.

INDIR_WORD A WORD will be passed.

INDIR_CHAR A char will be passed.

INDIR_PTR A pointer will be passed. Thisisonly used if pointer conversion from 32-bit

to 16-bit is required, otherwise; INDIR_DWORD is specified.

INDIR_CDECL This option may be included anywhere in the list before the
| NDI R_ENDLI ST keyword. When thisis used, the calling convention used
to invoke the 16-bit function will be the Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

Thereis no substitute for this function when compiling for 16-bit Windows. In order to make the code
16-bit Windows compatible, conditional code (based onthe WINDOWS 386 __ macro) should be
placed around the Get | ndi r ect Funct i onHandl e usage (see the example).

This handle is adata structure that was created using the mal | oc function. To freethe handle, just use
one of the Fr eel ndi r ect Funct i onHandl e or f r ee functions.

You may find it easier touse _ Cal | 16 rather than Get | ndi r ect Funct i onHandl e followed by a
cal tol nvokel ndi r ect Functi on.

The Get | ndi r ect Funct i onHandl e function returns a handle to the indirect function, or NULL if
ahandle could not be alocated. This handleis used in conjunction with
I nvokel ndi rect Funct i on to call the 16-bit procedure.

_Cal I 16,Freel ndi rect Functi onHandl e, | nvokel ndi rect Functi on

#i ncl ude <wi ndows. h>

HANDLE hbDr v;
FARPROC | pf n;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!'(lpfn = GetProcAddress(hDrv, "ExtDevicehMde")))
return FALSE;

WIN386 Library Functions and Macros 181

GetindirectFunctionHandle

#i fdef __WNDONS_386_
hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_WORD,
| NDI R_WORD,
| NDI R_DWORD,
| NDI R_PTR,

D
DI R_\ORD,
DI R_ENDLI ST) ;

cb = (WORD) | nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
"POSTSCRI PT PRI NTER",
"LPT1",
NULL,
NULL,
0);
Freel ndi rect Functi onHandl e(hindir);

#el se
cb = I pfn(hwnd,

hDr v,
NULL,
" POSTSCRI PT PRI NTER",
"LPT1",
NULL,
NULL,
0);

#endi f

Classification: WIN386

182 WIN386 Library Functions and Macros

GetProc16

Synopsis:

Description:

#i ncl ude <wi ndows. h>
CALLBACKPTR Get Proc16(PROCPTR fcn, |long type);

The Get Pr oc 16 function returns a 16-bit far function pointer suitable for use as a Windows callback
function. This callback function will invoke the 32-bit far procedure specified by fcn. The types of
callback functions that may be allocated are:

GETPROC_CALLBACK Thisisthe most common form of callback; suitable as the callback routine
for awindow. The callback hasthe form:

| ong FAR PASCAL Wproc(HWAD, unsigned,
WORD, LONG);

GETPROC_ABORTPROC Thisisthe callback type used for trapping abort requests when printing.
The callback has the form:

i nt FAR PASCAL AbortProc(HDC, WORD);

GETPROC_ENUMCHILDWINDOWS This callback is used with the EnuntChi | dW ndows
Windows function. The callback function has the form

BOOL FAR PASCAL EnuntChi | dW ndowsFunc(
HWAD, DWORD);

GETPROC_ENUMFONTS This callback type is used with the Enunfont s Windows function. The
callback hasthe form:

i nt FAR PASCAL Enuntont sFunc(LPLOGFONT,
LPTEXTMETRI CS, short, LPSTR);

GETPROC_ENUMMETAFILE This calback is used with the Enumiviet aFi | e Windows function.
The callback function has the form:

i nt FAR PASCAL Enumivet aFi | eFunc(HDC,
LPHANDLETABLE, LPNVETARECORD,
short, LPSTR);

GETPROC_ENUMOBJECTS This callback is used with the Enuntbj ect s Windows function. The
callback function has the form:

i nt FAR PASCAL Enun(bj ect sFunc(LPSTR, LPSTR);

GETPROC_ENUMPROPS _FIXED_DS This callback is used with the EnunmPr ops Windows
function, when the fixed data segments callback is needed. The callback function has the
form:

i nt FAR PASCAL EnunPropsFunc(
HWAD, LPSTR, HANDLE);

GETPROC_ENUMPROPS MOVEABLE_DS This callback is used with the EnunPr ops Windows
function, when the moveabl e data segments callback is needed. The callback function
has the form:

i nt FAR PASCAL EnunPropsFunc(
HWAD, WORD, PSTR, HANDLE);

WIN386 Library Functions and Macros 183

GetProc16

Returns:

GETPROC_ENUMTASKWINDOWS This callback is used with the EnunifaskW ndows Windows
function. The callback function has the form:

i nt FAR PASCAL EnuniTfaskW ndowsFunc(
HWND, DWORD) ;

GETPROC_ENUMWINDOWS This calback is used with the EnumW ndows Windows function.
The callback function has the form:

int FAR PASCAL EnumW ndowsFunc(HWND, DWORD);

GETPROC_GLOBALNOTIFY This callback is used with the G obal Not i f y Windows function.
The callback function has the form:

int FAR PASCAL Q obal Noti fyFunc(HANDLE);

GETPROC_GRAYSTRING This callback is used with the Gr ay St r i ng Windows function. The
callback function has the form:

i nt FAR PASCAL G ayStringFunc(
HDC, DWORD, short);

GETPROC_LINEDDA Thiscallback is used with the Li ne DDA Windows function. The callback
function has the form:

voi d FAR PASCAL Li neDDAFunc(
short, short, LPSTR);

GETPROC_SETRESOURCEHANDLER This callback is used with the Set Resour ceHandl er
Windows function. The callback function has the form:

i nt FAR PASCAL Set Resour ceHandl er Func(
HANDLE, HANDLE, HANDLE);

GETPROC_SETTIMER This callback is used with the Set Ti ner Windows function. The callback
function has the form:

i nt FAR PASCAL Set Ti ner Func(
HW\D, WORD, short, DWORD);

GETPROC_SETWINDOWSHOOK This callback is used with the Set W ndows Hook Windows
function. The callback function has the form:

i nt FAR PASCAL Set W ndowsHookFunc(
short, WORD, DWORD);

GETPROC_USERDEFINED_x This callback isused in conjunction with Def i neUser Proc16
function to create a callback routine with an arbitrary set of parameters. Up to 32 user
defined callbacks are allowed, they are identified by using
GETPROC_USERDEFINED _1 through GETPROC_USERDEFINED_32. The user
defined callback must be declared asa FAR PASCAL function, or as a FAR cdecl
function.

The Get Pr oc 16 function returns a 16-bit far pointer to a callback procedure. This pointer may then
be fed to any Windows function that requires a pointer to a function within the 32-bit program. Note
that the callback function within the 32-bit program must be declared as FAR.

184 WIN386 Library Functions and Macros

GetProc16

See Also: Rel easeProc16

Example: #i ncl ude <wi ndows. h>

CALLBACKPTR chp;

FARPROC | pPr ocAbout ;

/*

* Get a 16-bit callback routine to point at
* our About dial ogue procedure, then create
the di al ogue. W use _16 versions of
MakePr ocl nst ance, Di al ogBox, and
FreeProcl nst ance because they do not do
any magi ¢ work on the call back routines.

* X X X X

/
cbp = GetProcl6((PROCPTR) About,
GETPROC_CALLBACK);

| pProcAbout = _16MakeProcl nstance(cbp, hinst);
_16Di al ogBox(hl nst,

" About Box",

hwhd,

| pProcAbout);

_16FreeProcl nstance(| pProcAbout);
Rel easeProcl1l6(cbp);

Classification: WIN386

WIN386 Library Functions and Macros 185

InvokelndirectFunction

Synopsis:

Description:

Returns:

See Also;

Example:

#i ncl ude <wi ndows. h>
| ong I nvokel ndirect Function(HNDIR handle, ...);

Thel nvokel ndi r ect Funct i on function invokes the 16-bit function pointed to by the specified
handle. The handle must have been previously allocated using the

Get | ndi r ect Funct i onHandl e function. The handleisfollowed by thelist of parametersto be
passed to the 16-bit function.

If you specified | NDI R_PTR as a parameter when allocating the handle, then a 16-bit pointer is
allocated for a 32-bit pointer that you pass. However, this pointer is freed when the 16-hit function
being invoked returns.

There is no substitute for this function when compiling for 16-bit Windows. In order to make the code
16-bit Windows compatible, conditional code (based onthe _ WINDOWS 386 __ macro) should be
placed around the | nvokel ndi r ect Funct i on usage (see the example).

Thel nvokel ndi rect Funct i on function returns the value which the 16-bit function returned. If
the 16-bit function returns a short rather than along, the result must be typecast.

_Cal | 16,Freel ndi rect Functi onHandl e, Get | ndi r ect Funct i onHandl e

#i ncl ude <wi ndows. h>

HANDLE hDrv;
FARPROC | pf n;
H NDIR hlndir;
int cb;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

'(I pfn = Get ProcAddress(hDrv,
return FALSE;
__WNDOA5_386__

i f(" Ext Devi ceMbde”)))

#i f def

hi ndir = GetlndirectFunctionHandl e(
| pfn,
| NDI R_WORD,
| NDI R_WORD,
| NDI R_DWORD,

| R_\\ORD,
| R_ENDLI ST) ;

186 WIN386 Library Functions and Macros

InvokelndirectFunction

cb = (WORD) | nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
"POSTSCRI PT PRI NTER',
"LPT1",
NULL,
NULL,
0);
Freel ndi rect Functi onHandl e(hindir);
#el se

cb = I pfn(hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER',
"LPT1",
NULL,
NULL,
0);

#endi f

Classification: WIN386

WIN386 Library Functions and Macros 187

MapAliasToFlat

Synopsis: #i ncl ude <wi ndows. h>

void *MapAl i asToFl at (DWORD alias);

Description: The MapAl i asToFl at function returns a 32-bit near pointer equivalent of a pointer allocated
previously with Al | ocAl i as16 or Al | ocHugeAl i as16. Thisisuseful if you are communicating
with a 16-bit application that is returning pointers that you previously gaveit.

Returns: The MapAl i asToFI at function returns a 32-bit near pointer usable by the 32-bit application.

See Also: Al l ocAli asl6, Al | ocHugeAl i as16

Example: #i ncl ude <wi ndows. h>

DWORD al i as;
void *ptr;

alias = (DWORD) All ocAliasl6(&alias);

alias += 5;
ptr = MapAliasToFlat(alias);

if(ptr == ((char *)&alias + 5)) {

MessageBox(NULL, "It Worked","", MB_ K);
} else {
MessageBox(NULL, "It Failed","",MB K);

}

Classification: WIN386

188 WIN386 Library Functions and Macros

MK_FP16

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <wi ndows. h>
DWORD MK _FP16(void far * fp32);

The MK_FP16 function converts a 32-bit far pointer to a 16-bit far pointer. The 16-bit pointer is
created by simply removing the high word of the offset of the 32-bit pointer.

The 32-bit far pointer must be one that was obtained by using MK_FP32 to extend a 16-bit pointer.

Thisis useful whenever it is necessary to pass a 16-bit far pointer a parameter to a Windows function
though an _16 function.

The MK_FP16 returns a 16-bit far pointer.
MK_LOCAL32, MK_FP32

#i ncl ude <wi ndows. h>

DRAW TEMSTRUCT FAR *| pdi s;
RECT rc;
DWORD al i as;
/*
* The drawitem struct was passed as a long, so we
* have to convert it to a 32 bit far pointer.
Then, we want the 16 bit far pointer of the rcltem
el ement so we can pass it to CopyRect (_16CopyRect
is a version of CopyRect that does not convert
* the pointers it was given).
*/
case WM _DRAW TEM
| pdis = MK_FP32((void *) | Param);
alias = AllocAliasl6(&c);
_16CopyRect ((LPRECT) ali as,
(LPRECT) MK_FP16(&l pdis->rcltem));
FreeAliasl16(alias);

* * *

Classification: WIN386

WIN386 Library Functions and Macros 189

MK_FP32

Synopsis: #i ncl ude <wi ndows. h>
void far *MK_FP32(void * fpl6);

Description: The MK_FP32 function converts a 16-bit far pointer to a 32-bit far pointer. Thisis needed whenever
Windows returns a 16-bit far pointer, and access to the data is needed by the 32-bit program.

Returns: The MK_FP32 returns a 32-bit far pointer.
See Also: MK_LOCAL32, MK_FP16
Example: #i ncl ude <wi ndows. h>

MEASUREI TEMSTRUCT far *m s;

case VWM _MEASUREI TEM
/*
* Wndows has passed us a 16 bit far pointer
* to the neasure itemdata structure. W
* use MK_FP32 to nmake that pointer a 32-bit far
* pointer, which enables us to access the data.
*/
ms = MK FP32((void *) | Param);
m s->i t enHei ght MEASUREI TEMHEI GHT;
ms->tenWdth MEASUREI TEMW DTH;
return TRUE;

Classification: WIN386

190 WIN386 Library Functions and Macros

MK_LOCAL32

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <wi ndows. h>
void far *MK LOCAL32(void * fpl6);

The MK_LOCAL 32 function converts a 16-bit near pointer to a 32-bit far pointer. Thisis needed
whenever Windows returns a 16-bit near pointer that isto be accessed by the 32-bit program.

The MK_LOCAL 32 returns a 32-bit far pointer.
MK_FP32,MK_FP16

#i ncl ude <wi ndows. h>

WORD i ch, cch;
char *pch;
char far *fpch;
HANDLE hT;

/*
* Request the data froman edit wi ndow, copy it
* into a local buffer so that it can be passed
* to Text Qut
*/
ich = (WORD) SendMessage(hwndEdit,
EM_LI NEI NDEX,
i Li ne,
oL);
(WORD) SendMessage(hwndEdit,
EM LI NELENGTH,
i ch,
oL);
fpch = MK _LOCAL32(Local Lock(hT)) ;
pch = alloca(cch);
_frmencpy(pch, fpch + ich, cch);

cch

Text Qut (hdc, 0, yExtSoFar, (LPSTR) pch, cch);
Local Unl ock(hT);

Classification: WIN386

WIN386 Library Functions and Macros 191

PASS_WORD_AS_POINTER

Synopsis: #i ncl ude <wi ndows. h>
voi d *PASS_WORD AS_PO NTER(DWORD dw);

Description: Some Windows API functions have pointer parameters that do not always take pointers. Sometimes
these parameters are pure data. In order to stop the supervisor from trying to convert the datainto a
16-bit far pointer, the PASS_WORD AS PO NTER function is used.

Returns: The PASS WORD AS PO NTERreturns a 32-bit "near" pointer, that is really the parameter dw.

Example: #i ncl ude <wi ndows. h>

Func(PASS_WORD AS POINTER(1));

Classification: WIN386

192 WIN386 Library Functions and Macros

ReleaseProc16

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <wi ndows. h>
voi d Rel easeProcl16(CALLBACKPTR chp);

Rel easePr oc16 releasesthe callback function alocated by Get Proc16. Since the callback
routines are a limited resource, it isimportant to rel ease the routines when they are no longer required.

The Rel easePr oc 16 function returns nothing.
Get Procl6

#i ncl ude <wi ndows. h>

CALLBACKPTR chp;

FARPROC | pProcAbout ;

/*

Get a 16-bit call back routine to point at

our About di al ogue procedure, then create

the di al ogue. W use _16 versions of

MakePr ocl nst ance, Di al ogBox, and

FreeProcl nst ance because they do not do

any nmagi ¢ work on the call back routi nes.

/

cbp = GetProcl6((PROCPTR) About,
GETPROC_CALLBACK);

L

| pProcAbout = _16MakeProcl nstance(cbp, hinst);

_16Di al ogBox(hl nst,
" About Box",
hwWhd,
| pProcAbout);

_16FreeProcl nstance(| pProcAbout);
Rel easeProcl1l6(cbp);

Classification: WIN386

WIN386 Library Functions and Macros 193

Windows 3.x Programming Guide

194 WIN386 Library Functions and Macros

24 32-bit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows application
development.

The following topics are discussed in this chapter:

* Can you call 16-bit code from a 32-bit Windows application?

* Can | WinExec another Windows application?

» How do | add my Windows resources?

* All function pointers passed to Windows must be 16-bit far pointers, correct?
» Why are 32-bit callback routines FAR?

* Why usethe 16 API functions?

» What about pointersin structures?

* When do | use MK_FP32?

» What is the difference between AllocAliasl6 and MK_FP167?

24.1 Can you call 16-bit code from a 32-bit Windows
application?

A 32-bit Windows application can make acall to 16-bit code through the use of the Watcom _Cal | 16 or
I nvokel ndi rect Funct i on procedures. These functions ensure that the Watcom Windows
Supervisor prepares the stack for the 16-bit call and return to the 32-bit code. The 32-bit application uses
LoadLi br ary function to bring the 16-bit DLL into memory and then calls the 16-bit procedures. To
invoke 16-bit procedures, use Get Pr ocAddr ess to get the 16-bit far pointer to the function. Use the
_Cal | 16 procedure to call the 16-bit function sinceit is simpler to use than the

Get | ndi r ect Funct i onHandl e, | nvokel ndi rect Functi on, and

Freel ndi rect Funct i onHandl e sequence. An example of this processis provided under the

_Cal I 16 Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any 32-hit extended

DLL procedure from within a 32-bit application, including DLLsthat are available as products through
Independent Software Vendors (I1SVs).

24.2 Can | WinExec another Windows application?

Asfar as Windows s concerned, the WinExec was made by a 16-bit application, and the application
specified will be started. This new application can be a 16-bit application or another 32-bit application that
was implemented with Watcom C/C++

Can | WinExec another Windows application? 195

Windows 3.x Programming Guide

24.3 How do I add my Windows resources?

The WBI ND utility automatically runs the resource compiler to add the resources to the 32-bit Windows
supervisor (since the supervisor isa 16-bit Windows application). Note that resource compiler options may
be specified by using the "R" option of V\BI ND.

24.4 All function pointers passed to Windows must be 16-bit
far pointers, correct?

All function pointers passed to Windows must be 16-bit far pointers since no translation is applied to any
function pointers passed to Windows. Tranglation is often not possible, since any functions that Windows
isto call back must be exported, and only 16-bit functions can be exported.

A 16-hit far pointer to afunction is obtained in one of two ways. either Windows givesit to you (via
Get Pr ocAddr, for example), or you obtain a pointer from the supervisor, via Get Pr oc16.

Function pointers obtained from Windows may either be fed into other Windows functions requiring
function pointers, or called indirectly by using _ Cal | 16 or by using the

Get | ndi rect Funct i onHandl e, | nvokel ndi rect Functi on, and

Fr eel ndi r ect Funct i onHandl e sequence.

The function Get Pr oc 16 returns a 16-bit far pointer to a callback function that Windows can use. This
callback function will direct control into the desired 32-bit routine.

24.5 Why are 32-bit callback routines FAR?

The callback routines are declared as FAR so that the compiler will generate afar return from the
procedure. Thisisnecessary since the 32-hit callback routineis"far" called from the supervisor.

The callback routineis still "near” in the sense that it lies within the 32-bit flat address space of the
application. Thismeansthat Get Pr oc16 only needs the offset of the 32-bit callback function in order to
set up the 16-bit procedure to call back correctly. Thus, Get Pr oc16 acceptstype PROCPTRwhichisin
fact only 4 byteslong. The compiler will provide the offset only, which is, as already stated, al that is
needed.

24.6 Why use the _16 API functions?

The regular Windows API functions used in Watcom C/C++ automatically convert any pointersto 16-bit
far pointers for use by Windows. Sometimes, you may have a set of pointers that are 16-bit far pointers
aready (e.g., obtained from @ obal Lock), and do not need any conversion. The" 16..." API functions
do not convert pointers, they ssimply pass them on directly to Windows. See the appendix entitled " Special
Windows API Functions" on page 203 for alist of the" 16..." API functions.

196 Why use the _16 API functions?

32-bit Extended Windows Application Development

24.7 What about pointers in structures?

Pointersin structures will be converted if the Windows API function actually takes a pointer to that
structure (i.e., if it is possible for the supervisor to identify that structure). There are few functions that
accept pointers to structures containing pointers. One such function is Register Class which accepts a
pointer to a WNDCLASS structure.

If Windows has you passing a pointer to a structure through a 32-bit integer argument, then it is not
possible for the supervisor to identify that as a pointer that needs conversion. It isalso not possible for the
supervisor to convert any pointers contained in the structure, sinceit is not aware that it is a structure (as far
as the supervisor is concerned, that datais what Windows said it was - a 32-hit integer). Inthiscasg, itis
necessary to get 16-bit far pointer equivalents to the 32-bit near pointers that you want to pass. Use

Al | ocAl i as16 for this.

24.8 When do | use MK_FP32?

MK _FP32 isused to convert al 16-hit far pointers to 32-bit far pointers that can be used by your 32-bit
application. For example, to access the memory returned by G obal Lock requiresthe use of MK_FP32.
To access any pointer passed to you (in acallback routine) requires the use of MK_FP32 if you want access
to that data in your 32-bit application.

24.9 What is the difference between AllocAlias16 and
MK FP167?

Al | ocAl i as16 actualy gets a new selector that points at the same memory as the 32-bit near pointer,
whereas MK_FP16 squishes a 32-bit far pointer back into a 16-bit far pointer (i.e., it reverses MK_FP32).

24.10 Tell Me More About Thunking and Aliases

Consider the following example.

dwAlias = All ocAliasl6(pszSonething)

hwnd = Creat eW ndowEx(
oL, /] extendedStyle
"cl assnane", /1 class nane

WS_POPUP| W_VI SI BLE| Ws_CLI PSI BLI NGS| W6_HSCROLL|
W5_BORDER| WW5_CAPTI ON| W5_ SYSMVENU,

X, y, 0, 0, Il x, y, cx, cy
hwndPar ent , /1 hwndPar ent
NULL, /1 control ID
g_app. hinst, /'l hlnstance
(void FAR*)dwAl i as); /'l | pCreateParans

FreeAl i as16(dwAlias);
When | get the | pCr eat ePar ans parameter in WM_CREATE, | don't get the original dwAl i as but

something else which looks like another aiasto me. So the question is: Must the Cr eat eW ndowEx
parameter | pCr eat ePar ans be "thunked" or is this done automatically by the supervisor?

Tell Me More About Thunking and Aliases 197

Windows 3.x Programming Guide

Thunks are always created for function pointers. Aliases are always created for data pointers. Thereare 3
data pointer parametersin the Cr eat eW ndowEx function call. Aliases are created for all three pointers.
Thel pCr eat ePar ans argument is a pointer to a struct which contains 3 pointers. Aliases are not
created for the 3 pointersinside the struct. If you need to have this done, then you will have to create the
aliases yourself. If you create aliases for the parametersto Cr eat eW ndowEx, then you must call the
_16Cr eat eW ndowEx function which will not create any aliases.

Here is some further information on thunks (which are created for function pointers). Thereis codein the
supervisor that trys (note the word trys) to determine if the user has already created a thunk and, if so,
avoids creating a double thunk which will always generate a GPF. The best policy isto let the supervisor
automatically create all thunks for you unless you have a very specific reason not to, in which case you
should call the 16 version of the function.

Hereis some further information on aliases (which are created for data pointers). Thereisno way for the
supervisor to determine if avaueisa32-hbit flat pointer or an aias for the pointer. So if you passin an
aliasto the non _16 version of the function, the supervisor will create an alias for the alias which will end
up pointing to the wrong memory location. If you are going to create the alias, then you must call the 16
version of the function.

198 Tell Me More About Thunking and Aliases

25 Special Variables for Windows Programming

__A000 A selector for addressing the real-mode segment 0xAQQO.
__B000 A selector for addressing the real-mode segment 0xB0OO.
__B800 A selector for addressing the real-mode segment 0xB800.
__Co00 A selector for addressing the real-mode segment 0xC0QO.
__ D000 A selector for addressing the real-mode segment 0xD00O.
__EO00 A selector for addressing the real-mode segment OXEOQO.
__F000 A selector for addressing the real-mode segment 0xF00O.
L ocal Ptr The selector for the supervisor's data area.

Special Variables for Windows Programming 199

Windows 3.x Programming Guide

200 Special Variables for Windows Programming

26 Definitions of Windows Terms

CALLBACKPTR Pointer to a 16-bit callback routine; used to call into 32-bit functions.

DWORD An unsigned long.

HINDIR A handle to 16-bit function that needs to be called indirectly.

PROCPTR A pointer to a 32-bit callback routine. Although the callback routine is declared

asfar, only the 32-hit offset is used.

WORD An unsigned short.

Definitions of Windows Terms 201

Windows 3.x Programming Guide

202 Definitions of Windows Terms

27 Special Windows API Functions

On rare occasions, you want to use 16-bit far pointers directly in aWindows function. Since all Windows
functionsin the 32-bit environment are expecting 32-bit near pointers, you cannot simply use the 16-bit far
pointer directly in the function.

The following functions are specia versions of Windows API functions that do NOT convert any of the
pointers from 32-bit to 16-bit. Thereare 16 versions of all Windows API functions that accept data
pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem

_16Ansi ToOemBuUff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmaplndirect
_16CreateBrushindirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDial oglndirect
_16CreateDial oglndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnindirect
_16Createfont
_16CreateFontIndirect
_16CreatelC
_16Createlcon
_16CreateMetaFile
_16CreatePal ette
_16CreatePenindirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnindirect

Special Windows API Functions 203

Windows 3.x Programming Guide

_16CreateWindow
_16CreateWindowEx
_16DialogBox

_16Dia ogBoxIndirect
_16DialogBoxIndirectParam
_16Dia ogBoxParam
_16DispatchM essage
_16DIgDirList
_16DIgDirListComboBox
_16DIgDirSelect
_16DIgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildwWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumwWindows
_16EqualRect
_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProclnstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos
_16GetCharWidth
_16GetClassinfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodelnfo
_16GetCommeError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDIgltemint
_16GetDIgltemText
_16GetEnvironment
_16GetK eyboardState
_16GetKeyNameT ext
_16GetMenuString
_16GetMetaFile
_16GetM oduleFileName
_16GetModuleHandle

204 Special Windows API Functions

Special Windows API Functions

_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfilelnt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfilelnt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16GlobalAddAtom
_16Global FindAtom
_16Global GetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_16InvalidateRect
_l6InvertRect
_16lsDialogMessage
_16lsRectEmpty
_16LineDDA

_16L oadAccelerators
_16L ocadBitmap

_16L oadCursor

_16L oadlcon
_16LoadLibrary
_16LoadMenu

_ 16l oadMenulndirect
_16L oadModule

_16L oadString
_16LPtoDP
_16MakeProclnstance
_16MapDialogRect
_16MessageBox
_160emToAnNsi
_160emToAnsiBuff
_160ffsetRect
_160penComm
_160penFile
_160utputDebugString
_16PlayMetaFileRecord

Special Windows API Functions 205

Windows 3.x Programming Guide

_16Polygon

_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowM essage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrolIDC
_16ScrollWindow
_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDIgltemText
_16SetEnvironment
_16SetK eyboardState
_16SetPal etteEntries
_16SetProp

_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut

_16ToAscii
_16TrackPopupMenu
_16TrandlateAccelerator
_16TranslateM DI SysAccel
_16Trand ateMessage
_16UnhookWindowsHook
_16UnionRect
_16UnregisterClass
_l6ValidateRect
_16WinExec

_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16 lIread

_ 16 lwrite

206 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

208

28 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed Graphical User
Interface (GUI) applications. In addition, Windows NT supports Dynamic Link Libraries and applications
with multiple threads of execution.

We have supplied al the necessary tools for native development on Windows NT. You can also cross
develop for Windows NT using either the DOS-hosted compilers and tools, the Windows 95-hosted
compilers and tools, or the OS/2-hosted compilers and tools.

Note - If you are on the host with operating system other then 32-bit Windows, you should setup
INCLUDE environment variable correctly to compile for 32-bit Windows target.

Y ou can do that by command (DOS, 0OS/2, Windows 3.x)

set INCLUDE=%WATCOM%\h;%WATCOM%\h\nt

or by command (LINUX)

export INCLUDE=$WATCOM/h:$WATCOM/h/nt

Testing and debugging of your Windows NT application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in a special DOS extender
from Phar Lap (TNT) that can run your Windows NT character-mode application under DOS.

28.1 Windows NT Programming Note

When doing Win32 programming, you should use the /ei and /zp4 options to compile C and C++ code with
the Watcom compilers since this adjusts the compilers to match the default Microsoft compiler behaviour.
Some Microsoft software relies on the default behaviour of their own compiler regarding the treatment of
enums and structure packing alignment.

28.2 Windows NT Character-mode Versus GUI

Basically, there are two classes of C/C++ applications that can run in awindowed environment like
Windows NT.

Thefirst are those C/C++ applications that do not use any of the Win32 API functions; they are strictly
C/C++ applications that do not rely on the features of a particular operating system.

* This Application must be created as Windows NT Character-mode Application.

Windows NT Character-mode Versus GUI 209

Windows NT Programming Guide

The second class of C/C++ applications are those that actually call Win32 API functions directly. These
are applications that have been tailored for the Win32 operating environment. There can occure two
application types.

* First one uses GUI interface then it must be created as Windows NT GUI Application.

» Second one uses only character console (no GUI) then it must be created as Windows NT
Character-mode Application

A subsequent chapters deal with the creation of different application types for Windows NT target.

210 Windows NT Character-mode Versus GUI

29 Creating Windows NT GUI Applications

This chapter describes how to compile and link Windows NT GUI applications simply and quickly. In this
chapter, we look at applications written to exploit the Windows NT Application Programming Interface
(API).

We will illustrate the steps to creating Windows NT GUI applications by taking a small sample application
and showing you how to compile, link, run and debug it.

29.1 The Sample GUI Application

To demonstrate the creation of Windows NT GUI applications, we introduce a simple sample program.
The following example isthe "hello" program adapted for Windows.

#i ncl ude <wi ndows. h>

i nt PASCAL W nMai n(HANDLE hl nst ance, HANDLE hPrevl nst,
LPSTR | pCrdLi ne, int nCndShow)

{
MessageBox(NULL, "Hello world",
"Wat com C/ C++ for W ndows",
MB_OK | MB_TASKMODAL);
return(0);
}

The goal of this program isto display the message "Hello world" on the screen. The MessageBox
Windows API function is used to accomplish thistask. We will take you through the steps necessary to
produce this result.

29.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

Cwel 386 -1=nt_win -bt=nt hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the GUI Application 211

Windows NT Programming Guide

Cwel 386 -l=nt_win -bt=nt hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -bt=nt
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 41

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows NT w ndowed executabl e

If you examine the current directory, you will find that two files have been created. These are
hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries).

The resultant Windows NT GUI application HELLO. EXE can now be run under Windows NT.

29.3 Debugging the GUI Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, thisisfairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel 386 -1=nt_win -bt=nt -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

212 Debugging the GUI Application

Creating Windows NT GUI Applications

Cwel 386 -1=nt_win -bt=nt -d2 hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -bt=nt -d2
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 66

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows NT w ndowed executabl e

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the GUI Application 213

Windows NT Programming Guide

214 Debugging the GUI Application

30 Creating Windows NT Character-mode
Applications

This chapter describes how to compile and link Windows NT Character-mode applications simply and
quickly. Inthis chapter, we look at applications written to exploit the Windows NT Application
Programming Interface (API).

We will illustrate the steps to creating Windows NT Character-mode applications by taking a small sample
application and showing you how to compile, link, run and debug it.

30.1 The Sample Character-mode Application

To demonstrate the creation of Windows NT Character-mode applications, we introduce a simple sample
program. The following exampleisthe "hello" program adapted for Windows.

#i ncl ude <stdio. h>
void main()
printf("Hello world\n");

The goal of this program is to display the message "Hello world" on the screen. The Clibrary pri nt f
routineis used to accomplish thistask. We will take you through the steps necessary to produce this result.

30.2 Building and Running the Character-mode Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

Cwel 386 -1 =nt -bt=nt hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Character-mode Application 215

Windows NT Programming Guide

Cwel 386 -1=nt -bt=nt hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -bt=nt
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 41

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows NT Character-node executable

If you examine the current directory, you will find that two files have been created. These are
hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries).

The resultant Windows NT Character-mode application HELLO. EXE can now be run under Windows NT.

30.3 Debugging the Character-mode Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, thisisfairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

Cwel 386 -1 =nt -bt=nt -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

216 Debugging the Character-mode Application

Creating Windows NT Character-mode Applications

Cwel 386 -1=nt -bt=nt -d2 hello.c
Open Watcom C/ C++32 Conpile and Link Wility
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -bt=nt -d2
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 10 lines, included 6500, O warnings, O errors
Code size: 66

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows NT Character-node executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom Debugger icon.

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Character-mode Application 217

Windows NT Programming Guide

218 Debugging the Character-mode Application

31 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A processisan executing application and the
resourcesit uses. A thread isthe smallest unit of execution within aprocess. Each thread hasits own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, al tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

31.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.
For example, if your application has afunction that displays information on the console and is used by all
threads, it is necessary to allow only one thread to use that function at any time. That is, once athread calls
that function, the function should ensure that no other thread displays information until al information for
the initial thread has been displayed. An example of such afunctionisthe pri nt f library function.

Another issue that must be considered when creating multi-threaded applicationsis global variables. If you
have global variables that contain thread-specific information, there must be an instance of each global
variable for each thread. An example of such avariableisthe er r no global variable defined in the
run-time libraries. If an error condition was created by athread, you would not want it to affect the
execution of other threads. Therefore, each thread should contain its own instance of this variable.

31.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two functions that create
and terminate threads of execution. Thefunction _begi nt hr ead creates athread of execution and the
function _endt hr ead ends athread of execution. Themacro _t hr eadi d can be used to determine the
current thread identifier.

Creating Threads 219

Windows NT Programming Guide

WARNING! If any thread calls alibrary function, you must usethe _begi nt hr ead function to
create the thread. Do not usethe Cr eat eThr ead API function.

31.2.1 Creating a New Thread

The _begi nt hr ead function creates a new thread. It isdefined as follows.

unsi gned |l ong _beginthread(void (*start_address)(void *),
unsi gned stack_si ze,
void *arglist);

where description:
start_address isthe address of the function that will be called when the newly created thread is executed.
When the thread returns from that function, the thread will be terminated. Note that a call

tothe _endt hr ead function will also terminate the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be amultiple of 4K.

arglist is passed as an argument to the function specified by st art _addr ess. If no argument
isrequired, avalue of NULL can be specified.

If anew thread is successfully created, the thread identifier of the new thread isreturned. Otherwise, a
value of -1 isreturned.

The header file pr ocess. h contains the definition of the _begi nt hr ead function.

Another thread related function for Windows NT is _begi nt hr eadex. Seethe Watcom C Library
Reference for more information.

31.2.2 Terminating the Current Thread

The _endt hr ead function terminates the current thread. It is defined as follows.

void _endthread(void)

The header file pr ocess. h contains the definition of the _endt hr ead function.

31.2.3 Getting the Current Thread Identifier

The _t hr eadi d macro can be used to determine the current thread identifier. It is defined as follows.

int *_ threadid(void);
#define _threadid (__threadid())

The header file st ddef . h containsthe definition of the _t hr eadi d macro.

220 Creating Threads

Windows NT Multi-threaded Applications

31.3 A Multi-threaded Example

Let us create a simple multi-threaded application.

#i ncl ude <process. h>
#i ncl ude <stdio. h>

#i ncl ude <stddef. h>
#i ncl ude <w ndows. h>

static volatile int NunThr eads;
static volatile int Hol dThr eads;

CRI TI CAL_SECTION Critical Secti on;

#def i ne NUM_THREADS 5
#def i ne STACK_SI ZE 8192

static void a_thread(void *arglist)

IR R AR E RS EEEEEEEEEEEEEEEEEEEY]

whi | e(Hol dThreads) {
Sleep(1);

printf("H fromthread %\n", *_threadid);
EnterCritical Section(&Critical Section);

- - Nunirhr eads;

LeaveCritical Section(&Critical Section);
_endthread();

}

int main(void)
/**************/

{

i nt i

printf(“Initial thread id = %@\n", *_threadid);
NunThr eads = 0;
Hol dThreads = 1,
InitializeCritical Section(&Critical Section);
/* initial thread counts as 1 */
for(i = 2; i <= NUM_THREADS; ++i) {
if(_beginthread(a_thread, STACK SIZE, NULL) == -1) {
printf("creation of thread % failed\n", i);
} else {
++Nunirhr eads;
}

}

Hol dThr eads = O;

whil e(NuniThreads !'= 0) {
Sleep(1);

Del eteCritical Section(& ritical Section);
return(0);

Note:

1. Inthefunctiona_thread, EnterCritical Sectionand LeaveCritical Section
are called when we modify the variable NumThr eads. Thisensuresthat the action of
extracting the value of NumThr eads from memory, incrementing the value, and storing the
new result into memory, occurs without interruption. If these functions were not called, it would
be possible for two threads to extract the value of Nunirhr eads from memory before an update
occurred.

Let us assume that the file nt hr ead. ¢ contains the above example. Before compiling the file, make sure
that the WATCOM environment variable is set to the directory in which you installed Watcom C/C++.

A Multi-threaded Example 221

Windows NT Programming Guide

Also, the INCL UDE environment variable must include the \ wat coml h\ nt and \ wat com h
directories ("\WATCOM" isthe directory in which Watcom C/C++ was installed).

We can now compile and link the application by issuing the following command.

C:\>wcl 386 -bt=nt -bm-I=nt nthread
The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.
The"I" option specifies the target system for which the applicationisto be linked. The system name nt is
defined inthefilew syst em | nk whichislocated in the "BINW" subdirectory of the directory in which
you installed Watcom C/C++.

The multi-threaded application is now ready to be run.

222 A Multi-threaded Example

32 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. Thisform of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application isloaded. Thisform of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only references to the
functionsin dynamic link libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, adynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

32.1 Creating Dynamic Link Libraries

Once you have developed the source for alibrary of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of adynamic link library. Once you have successfully compiled your
source, you must create alinker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create adynamic link library.

1. The"SYSTEM" directiveisused to specify that a dynamic link library isto be created.
2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link library areto
be exported.

Specifying exportsin the source code
The "EXPORT" directive need not be used when the symbols to be exported are
declared withthe __decl spec(dl | export) modifier in the source code.

Such symbols are exported automatically, through special records inserted into
the object files by the compiler.

Creating Dynamic Link Libraries 223

Windows NT Programming Guide

Exporting C++ symbols and classes

Symbols exported viathe "EXPORT" directive have to be entered in their
mangled form. This makesit rather awkward to export C++ functions, classes or
global objects. These symbols aso often reference other compiler-generated
symbols (invisible to the user) that need be exported together with the
class/object. Usingthe _ decl spec(dl | export) method of exporting
symbolsisthe preferred solution.

3. The"OPTION" directiveis used to specify attributes such as the name of the dynamic link
library and how to alocate the automatic data segment when the dynamic link library is
referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to useit. Thiscan be done by creating an import library for the dynamic link library
or creating alinker directive file that contains "IMPORT" directives for each of the entry pointsin the
dynamic link library.

32.2 Creating a Sample Dynamic Link Library

Let us now create a dynamic link library using the following example.

#i ncl ude <stdio. h>
#i ncl ude <wi ndows. h>

#i f defined(__cpl uspl us)

#defi ne EXPORTED extern "C' __ decl spec(dllexport)
#el se

#defi ne EXPORTED __decl spec(dllexport)

#endi f

DWORD Tl sl ndex; /* d obal Thread Local Storage index */
/* Error checking should be perforned in followi ng code */

BOOL API ENTRY Li bMai n(HANDLE hi nst DLL,
DWORD f dwReason,
LPVAO D | pvReserved)

switch(fdwReason) {
case DLL_PROCESS_ATTACH:
/* do process initialization */

/* create TLS index */
Tl sl ndex = TlIsAlloc();
br eak;

case DLL_THREAD_ ATTACH:
/* do thread initialization */

/* allocate private storage for thread */
/* and save pointer to it */

Tl sSet Val ue(Tl sl ndex, malloc(200));

br eak;

224 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

}

case DLL_THREAD DETACH:
/* do thread cl eanup */

/* get the TLS value and free associ ated nmenmory */
free(TlsCGetValue(TlIslndex));
br eak;

case DLL_PROCESS DETACH:
/* do process cleanup */

/* free TLS index */
Tl sFree(Tlslndex);
br eak;

return(1); /* indicate success */
/* returning O indicates initialization failure */

EXPORTED void dll _entry_1(void)

printf("H fromdll entry #1\n");

EXPORTED void dll _entry_2(void)
{

printf("H fromdll entry #2\n");

Arguments:

hinstDLL

Thisisahandlefor the DLL. It can be used as aargument to other functions such as
Get Modul eFi | eNane.

fdwReason This argument indicateswhy Li bMai n isbeing called. It can have one of the following

values:
Value Meaning

DLL_PROCESS_ATTACH Thisvaueindicates that the DLL is attaching to the address
space of the current process as a result of the process starting up or asa
result of acall to LoadLi brary. A DLL can usethisopportunity to
initialize any instance data or to use the Tl sAl | oc function to alocate a
Thread Loca Storage (TLS) index.

During initial process startup or after acall to LoadLi br ary, the
operating system scans the list of loaded DL Lsfor the process. For each
DLL that has not already been called with the DLL_ PROCESS ATTACH
value, the system callsthe DLL’s Li bMai n entry-point. Thiscall is made
in the context of the thread that caused the process address space to change,
such as the primary thread of the process or the thread that called

LoadLi brary.

DLL_THREAD_ATTACH Thisvaue indicates that the current processis creating a new
thread. When this occurs, the system callsthe Li bMai n entry-point of all
DLLs currently attached to the process. The call is made in the context of
the new thread. DLLs can use this opportunity to initialize a Thread Local
Storage (TLS) dot for thethread. A thread callingthe DLL’s Li bMai n
with the DLL_ PROCESS ATTACH value does not call Li bMai n with the
DLL_THREAD ATTACHvalue. NotethatLi bMai n iscaled with this
value only by threads created after the DLL is attached to the process.

Creating a Sample Dynamic Link Library 225

Windows NT Programming Guide

When aDLL isattached by LoadLi br ary, existing threads do not call
the Li bMai n entry-point of the newly loaded DLL.

DLL_THREAD_DETACH Thisvalueindicates that athread is exiting normally. If the
DLL has stored a pointer to allocated memory inaTLS dot, it uses this
opportunity to free the memory. The operating system callsthe Li bMai n
entry-point of al currently loaded DLLs with thisvalue. The call is made
in the context of the exiting thread. There are casesin which Li bMai nis
called for aterminating thread even if the DLL never attached to the thread.
For example, Li bMai n isnever called withthe DLL_ THREAD ATTACH
value in the context of the thread in either of these two situations:

* The thread was the initial thread in the process, so the system called
Li bMai n with the DLL_ PROCESS_ATTACH value.

* The thread was already running when acall to the LoadLi br ary
function was made, so the system never called Li bMai n for it.

DLL_PROCESS DETACH Thisvalue indicates that the DLL is detaching from the
address space of the calling process as a result of either anormal
termination or of acall to FreeLi brary. TheDLL canusethis
opportunity to call the Tl sFr ee function to free any TLS indices
allocated by using Tl sAl | oc and to free any thread local data. When a
DLL detaches from a process as aresult of process termination or asa
result of acal to Fr eeLi brary, the operating system does not call the
DLL’sLi bMai n withthe DLL_ THREAD DETACH value for the
individual threads of the process. The DLL isonly given
DLL_PROCESS DETACH notification. DLLs can take this opportunity to
clean up all resources for al threads attached and known to the DLL.

IpvReserved This argument specifies further aspects of DLL initiaization and cleanup. If f dwReason
isDLL_PROCESS_ATTACH, | pvReser ved isNULL for dynamic loads and
non-NULL for static loads. If f dwReason isDLL_PROCESS DETACH,
| pvReserved isNULL if Li bMai n hasbeen called by using Fr eeLi brary and
non-NULL if Li bMai n has been called during process termination.

Return Value When the system callsthe Li bMai n function with the DLL_ PROCESS ATTACH value,
the function returns TRUE (1) if initialization succeeds or FALSE (0) if initialization fails.

If thereturn value is FALSE (0) when Li bMai n is called because the process uses the
LoadLi br ary function, LoadLi brary returns NULL.

If the return value is FALSE (0) when Li bMai n iscalled during process initialization, the

process terminates with an error. To get extended error information, call
Get Last Error.

When the system calls Li bMai n with any value other than DLL_ PROCESS_ATTACH,
the return value isignored.

Assume the above exampleis contained in thefile dl | sanp. c. We can compile thefile using the
following command. Note that we must specify the "bd" compiler option.

C.\>wcc386 -bd dl |l sanp

226 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

Before we can link our example, we must create alinker directive file that describes the attributes and entry
points of our dynamic link library. The following isalinker directivefile, caled dl | sanp. | nk, that
can be used to create the dynamic link library.

systemnt _dll initinstance term nstance
export dil _entry 1

export dll _entry 2

file dllsanp

Notes:
1. The"SYSTEM" directive specifiesthat we are creating a Windows NT dynamic link library.

2. When adynamic link library uses the Watcom C/C++ run-time libraries, an automatic data
segment is created each time a new process accesses the dynamic link library. For this reason,
initialization code must be executed when a process accesses the dynamic link library for the
first time. To achievethis, "INITINSTANCE" must be specified in the"SY STEM" directive.
Similarly, "TERMINSTANCE" must be specified so that the termination code is executed when
aprocess has completed its access to the dynamic link library. If the Watcom C/C++ run-time
libraries are not used, these options are not required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library. Note that the
names specified in the "EXPORT" directive are appended with an underscore. Thisisthe
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

We can now create our dynamic link library by issuing the following command.
C\>wink @lllsanp

Afilecaled dl | sanp. dl | will be created.

32.3 Using Dynamic Link Libraries

It isassumed that all symbolsimported by a client application were declared witha __decl spec(

dl i mport) modifier when the client application was compiled. At the link stage we haveto tell the
linker which dynamic libraries the client application should link to. Once we have created a dynamic link
library, we must allow other applications to access the functions available in the dynamic link library.
There are two ways to achieve this.

The first method isto create alinker directive file which contains an "IMPORT" directive for all entry
pointsin the dynamic link library. The"IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic
link library, thislinker directive file would be included as part of the linking process that created the
application.

The second method isto use import libraries. Animport library is astandard library that is created from a
dynamic link library by using the Watcom Library Manager. It contains object modules that describe the
entry pointsin adynamic link library. The resulting import library can then be specified in a"LIBRARY"
directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When adynamic link library is modified, typically the import library corresponding to the

Using Dynamic Link Libraries 227

Windows NT Programming Guide

modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

C\>wib dlIsanp +dllsanp.dll
A standard library called dl | sanp. | i b will be created.

Suppose the following sample program, contained in thefile dl | t est . ¢, callsthe functions from our
sample dynamic link library.

#i ncl ude <stdio. h>

#i ncl ude <process. h>

#if defined(__cpl usplus)

#define | MPORTED extern "C' __decl spec(dllinport)
#el se

#define | MPORTED __decl spec(dllinport)

#endi f

| MPORTED void dll _entry_1(void);
| MPORTED void dll _entry_2(void);

#defi ne STACK Sl ZE 8192
static void thread(void *arglist)
{
printf("H fromthread\n");
_endthread();
}
int main(void)
{
unsigned long tid,;
dil_entry_1()
tid = _beginthread(thread, STACK SIZE, NULL);
dil _entry_2()
return(0);
}

We can compile and link our sample application by issuing the following command.

C\>wl 386 -bm-1=nt dlltest dllsamp.lib

If we had created alinker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directivefile, say dl | i nps. | nk, would be asfollows.

inmport dll _entry_1 dllsanp
inmport dll _entry 2 dllsanp

Note that the names specified in the "IMPORT" directive are appended with an underscore. Thisisthe
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

To compile and link our sample application, we would issue the following command.

C\>wl 386 -bm-1=nt dlltest -"@llIlinps"

228 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

32.4 The Dynamic Link Library Data Area

The Watcom C/C++ 32-hit run-time library does not support the general case operation of DLLsin an
execution environment where there is only one instance of the DATA segment (DGROUP) for that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLslinked for the Win32 API and executing under Win32s.
In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.
Developers who require DLLs to operate when there is only one instance of the DGROUP can suppress the
function which issues the diagnostic and notifies the operating system that the second process cannot attach
totheDLL.
Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not rel eased back to the free memory pool.
To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int __disallow single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

The Dynamic Link Library Data Area 229

Windows NT Programming Guide

230 The Dynamic Link Library Data Area

33 Creating Windows NT POSIX Applications

This chapter describes how to compile and link POSIX applications for Windows NT. There are a number
of issuesto consider.

1

Watcom does not provide its own POSIX libraries. Y ou must use those included with the
Microsoft Win32 SDK. They are | i bcpsx. li b, psxdll.libandpsxrtl.lib. Ifyou
installed the Win32 SDK component when you installed the Watcom software, you will find
these librariesin the YAMATCOMA | | b386\ nt directory.

Since you will be using Microsoft POSI X libraries compiled by the Microsoft compiler, you
must follow the calling conventions used by Microsoft (i.e., the __cdecl convention). The
Watcom compiler can generate these calling conventions provided that the POSIX library
routines are all properly prototyped.

Watcom does not provide its own header files for use with the Microsoft POSIX libraries. The
Microsoft Win32 SDK includes only a subset of the headers required for calling the POSIX
library routines. If you installed the Win32 SDK component when you installed the Watcom
software, you will find these headers in the 9MATCOWA sdk\ posi x\ h and

IMATCOMWMA sdk\ posi x\ h\ sys directories. Take alook at these directoriesto seewhat is
and what is not included.

If you have the Microsoft compiler, then you will likely have access to the missing header files.
If you do not have the Microsoft compiler, then you will have to define prototypes for any of the
POSIX library routines that you use for which no prototypes are defined in any of the POSIX
header files.

There is one exception to the generation of the __cdecl! calling convention for appropriately
prototyped functions. Thisisthe mai n function. Since many Microsoft sample programs
inappropriately declarethe mai n functionas __ cdecl , it was necessary to make a special
case in the Watcom compilerstoignorethe _ cdecl attribute when used for this entry point.
To work around this problem, a special pragmais used. Thisisshown in the following example.
Since we are going to use the Microsoft POSI X libraries rather than the Watcom libraries, we
will usethe"zl" compile option to instruct the Watcom compiler not to include references to
Watcom libraries in the object files.

To illustrate the creation of a POSIX application, we will use asimple example. This program displays an
identifying banner and then displays its arguments one at atime.

Example:

Creating Windows NT POSIX Applications 231

Windows NT Programming Guide

[PCSI XSMP. C]
#i ncl ude <unistd. h>

/1 The Wn32 SDK doesn't provide a conplete set of
/1 headers for the libraries (e.g., no stdio.h).

extern int __cdecl printf(char *, ...);
/1 Note: the " __cdecl" attribute is ignored for nain().
int __cdecl main(int argc, char **argv)
{

int i;

printf("POSI X sanmpl e programin");

for(i =0; i <argc; i+t) {

printf("%l: %\n", i, argv[i]);

return O,
}
/1 Since the " __cdecl" attribute is ignored,

/1 nake sure that parns go on the stack for main
/1 and that main gets the _ in the right place by
/1 using a pragma to do so.

#pragnma aux main "_*" parm[];
/1 The compiler emts references to these synbols,

/1 so make sure they get defined here to prevent
/1 unresolved references.

int cstart_;
#pragnma aux _cstart_ "*";
int __argc;

#pragma aux __argc "*";

The example program illustrates some of the special considerations required for using the Microsoft POSIX
libraries rather than the Watcom libraries. There are also some special link time issues and these are
addressed in the following sample "makefile".

Example:
[MAKEFI LE]
posi xsnp. exe : posi xsnp. c posi x. add nekefile
set nt_include=
set incl ude=$(%at com \ sdk\ posi x\ h; $(%wat con) \ sdk\ posi x\ h\ sys
wee386 -bt=nt -oaxt -zl posixsnp.c
W i nk @osix.add file posixsnmp sys nt_posix option nmap

posi x. add
%reat e posix.add
%ppend posi x. add system begi n nt_posi x
%ppend posi x. add option osnane=" Wndows NT charact er-nopde posi x

%append posi x. add i bpath 9%ATCOWA | i b386\ nt

%ppend posi x. add option nodefaultlib

%append posi x. add option start=___Posi xProcessStartup
%append posi x. add lib { libcpsx.lib psxrtl.lib psxdll.lib }

%append posi x. add format wi ndows nt ~
%ppend posi x. add runtime posix
%ppend posi x. add end

232 Creating Windows NT POSIX Applications

Creating Windows NT POSIX Applications

A new "nt_posix" system is defined in the posi x. add file. Thisfileis generated automatically by the
makefile.

That isabout all thereisto creating aWindows NT POSIX application. One final note - make sure when
using the Microsoft headers that all the library routines that you use are declared as __ cdecl otherwise
your application will not run correctly.

Creating Windows NT POSIX Applications 233

Windows NT Programming Guide

234 Creating Windows NT POSIX Applications

0S/2 Programming Guide

0S/2 Programming Guide

236

34 Creating 16-bit 0S/2 1.x Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runsin its own screen group. A
PM-compatible application will runin an OS/2 fullscreen environment or in awindow in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 255.

We will illustrate the steps to creating 16-bit OS/2 1.x applications by taking a small sample application
and showing you how to compile, link, run and debug it.

34.1 The Sample Application

To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the famous "hello" program.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");
}

The C++ version of this program follows:
#i ncl ude <i ostream h>

voi d main()

{
}

cout << "Hello world" << endl;

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version usesthe "iostream" library to accomplish
thistask. We will take you through the steps necessary to produce this result.

The Sample Application 237

0S/2 Programming Guide

34.2 Building and Running the Sample 0S/2 1.x Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

[C\]wel -1=0s2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C\]wel -1=0s2 hello.c
Open Watcom ¢/ C++16 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wee hello.c
Open Watcom C16 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 155, O warnings, O errors
Code size: 17

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now

be run.
[C\lhello
Hell o worl d

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries). Itis hel | 0. exe that isrun by OS/2 when you enter the
"hello" command.

34.3 Debugging the Sample 0S/2 1.x Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, thisisfairly straightforward. WCL recognizes the Watcom C/C++ compiler
"debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

[C\]wel -1=0s2 -d2 hello.c

238 Debugging the Sample 0S/2 1.x Application

Creating 16-bit 0S/2 1.x Applications

The typical messages that appear on the screen are shown in the following illustration.

[C\]lwel -1=0s2 -d2 hello.c
Open WAt com ¢/ C++16 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wec hello.c -d2
Open Watcom C16 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 155, O warnings, O errors
Code size: 23

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

For OS2, you should also include the Bl NP\ DLL directory inthe "LIBPATH" directive of the system
configuration file CONFI G. SYS. It contains the Watcom Debugger Dynamic Link Libraries (DLLS).

Example:
['i bpat h=c: \ wat com bi np\ dl |

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

[C\]wd hello

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample 0S/2 1.x Application 239

0S/2 Programming Guide

240 Debugging the Sample 0S/2 1.x Application

39 Creating 32-bit 0S/2 Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runsin its own screen group. A
PM-compatible application will runin an OS/2 fullscreen environment or in awindow in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 255.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample application and
showing you how to compile, link, run and debug it.

35.1 The Sample Application

To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the famous "hello" program.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");
}

The C++ version of this program follows:
#i ncl ude <i ostream h>

voi d main()

{
}

The goal of this program is to display the message "Hello world" on the screen. The C version usesthe C
library pri nt f routineto accomplish thistask. The C++ version usesthe "iostream" library to accomplish
thistask. We will take you through the steps necessary to produce this result.

cout << "Hello world" << endl;

The Sample Application 241

0S/2 Programming Guide

35.2 Building and Running the Sample 0S/2 Application

To compile and link our example program which is stored in thefile hel | 0. ¢, enter the following
command:

[C\]wcl 386 -1=0s2v2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C\]wcl 386 -1=0s2v2 hello.c
Open WAt com ¢/ C++32 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcec386 hello.c
Open WAt com C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, O warnings, O errors
Code size: 24

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now

be run.
[C\lhello
Hell o worl d

If you examine the current directory, you will find that two files have been created. These are

hel | 0. obj (theresult of compiling hel | 0. ¢) and hel | 0. exe (theresult of linking hel | 0. obj
with the appropriate Watcom C/C++ libraries). Itis hel | 0. exe that isrun by OS/2 when you enter the
"hello" command.

35.3 Debugging the Sample 0S/2 Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, thisisfairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

[C\]wcl 386 -1=0s2v2 -d2 hello.c

242 Debugging the Sample 0S/2 Application

Creating 32-bit 0S/2 Applications

The typical messages that appear on the screen are shown in the following illustration.

[C\]wcl 386 -1=0s2v2 -d2 hello.c
Open WAt com ¢/ C++32 Conpile and Link Utility
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1988, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wcc386 hello.c -d2
Open Watcom C32 Optim zing Conpiler
Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
hello.c: 6 lines, included 174, O warnings, O errors
Code size: 45

Open WAt com Li nker

Copyright (c) 2008 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the
Watcom C/C++ compiler. WCL386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The"Code size" value islarger than in the previous example since selection of the "d2" option resultsin
fewer code optimizations by default. Y ou can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Watcom Debugger to assist in debugging the application, the following command may be
issued.

[C\]wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Watcom Debugger User’s Guide.

Debugging the Sample 0S/2 Application 243

0S/2 Programming Guide

244 Debugging the Sample 0S/2 Application

36 0S/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A processisan executing application and the
resourcesit uses. A thread isthe smallest unit of execution within aprocess. Each thread hasits own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, al tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

36.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.
For example, if your application has afunction that displays information on the console and is used by all
threads, it is necessary to allow only one thread to use that function at any time. That is, once athread calls
that function, the function should ensure that no other thread displays information until al information for
the initial thread has been displayed. An example of such afunctionisthe pri nt f library function.

Another issue that must be considered when creating multi-threaded applicationsis global variables. If you
have global variables that contain thread-specific information, there must be an instance of each global
variable for each thread. An example of such avariableisthe er r no global variable defined in the
run-time libraries. If an error condition was created by athread, you would not want it to affect the
execution of other threads. Therefore, each thread should contain its own instance of this variable.

36.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two functions that create
and terminate threads of execution. Thefunction _begi nt hr ead creates athread of execution and the
function _endt hr ead ends athread of execution. Themacro _t hr eadi d can be used to determine the
current thread identifier.

Creating Threads 245

0S/2 Programming Guide

WARNING! If any thread calls alibrary function, you must usethe _begi nt hr ead function to
create the thread. Do not use the DosCr eat eThr ead API function.

36.2.1 Creating a New Thread

The _begi nt hr ead function creates a new thread. It isdefined as follows.

int _beginthread(void (*start_address)(void *),

where

start_address

stack_bottom

stack size

arglist

voi d *stack _bottom
unsi gned stack_si ze,
void *arglist);

description:

isthe address of the function that will be called when the newly created thread is executed.
When the thread returns from that function, the thread will be terminated. Note that a call
tothe _endt hr ead function will also terminate the thread.

specifies the bottom of the stack to be used by the thread. Note that this argument is
ignored asit isonly needed to simplify the port of OS/2 1.x multi-threaded applications to
0S/2 2.x. Under OS/2 2.x, the operating system allocates the stack for the new thread. A
value of NULL may be specified.

specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be amultiple of 4K.

is passed as an argument to the function specified by st art _addr ess. If no argument
isrequired, avalue of NULL can be specified.

If anew thread is successfully created, the thread identifier of the new thread isreturned. Otherwise, a
value of -1 isreturned.

The header file pr ocess. h contains the definition of the _begi nt hr ead function.

36.2.2 Terminating the Current Thread

The _endt hr ead function terminates the current thread. It is defined as follows.

void _endthread(void)

The header file pr ocess. h contains the definition of the _endt hr ead function.

36.2.3 Getting the Current Thread Identifier

The _t hr eadi d macro can be used to determine the current thread identifier. It isdefined asfollows.

int *_

t hr eadi d(voi d) ;

#define _threadid (__threadid())

The header file st ddef . h containsthe definition of the _t hr eadi d macro.

246 Creating Threads

0S/2 2.x Multi-threaded Applications

36.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be found in

\ wat conml sanpl es\ 0s2.

#i ncl ude <process. h>
#i ncl ude <stdio. h>
#i ncl ude <stddef. h>
#define | NCL_DOS

#i ncl ude <o0s2. h>

static volatile int Nunirhr eads;
static volatile int Hol dThr eads;
#defi ne NUM_THREADS 5

#define STACK Sl ZE 32768

static void a_thread(void *arglist)
/***********************************/

whi | e(Hol dThreads) {
DosSl eep(1);

}

printf("H fromthread %\n", *_threadid);
DosEnterCritSec();

- - Nunirhr eads;

DosExitCritSec();

_endt hread();

}

int main(void)

[KR KK kK ko kK ok ok ok ok

o .
i nt i;
printf(“Initial thread id = %@\n", *_threadid);
NunThr eads = O;
Hol dThreads = 1;
/* initial thread counts as 1 */
for(i =2; i <= NUM_THREADS; ++i) {
if(_beginthread(a_thread, NULL, STACK Sl ZE,
printf("creation of thread % failed\n",
} else {
++Nunirhr eads;
}
}
Hol dThr eads = O;
whi l e(NunThreads '= 0) {
DosSleep(1);
return(0);
}

NULL) == -1) {
i)

1. Inthefunctiona_t hread, DosEnterCrit Sec and DosExi t Crit Sec are called when
we modify the variable NuniThr eads. This ensures that the action of extracting the value of
NuniThr eads from memory, incrementing the value, and storing the new result into memory,
occurs without interruption. If these functions were not called, it would be possible for two
threads to extract the value of Nunirhr eads from memory before an update occurred.

Let us assume that the file nt hr ead. ¢ contains the above example. Before compiling the file, make sure
that the WATCOM environment variable is set to the directory in which you installed Watcom C/C++.
Also, the INCLUDE environment variable must include the \ wat com h\ 0s2 and \ wat com h
directories ("\WATCOM" isthe directory in which Watcom C/C++ was installed).

A Multi-threaded Example 247

0S/2 Programming Guide

We can now compile and link the application by issuing the following command.

[C\]wcl 386 -bt=0s2 -bm -1=0s2v2 nt hread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.

The"I" option specifies the target system for which the application is to be linked. The system name
0s2v2 isdefined inthefile w syst em | nk whichislocated in the "BINW" subdirectory of the
directory in which you installed Watcom C/C++.

The multi-threaded application is now ready to be run.

36.4 Thread Limits

Thereisalimit to the number of threads an application can create under 16-bit OS/2. The default limitis
32. Thislimit can be adjusted by statically initializing the unsigned global variable _ MaxThr eads.

Under 32-bit OS/2, there is no limit to the number of threads an application can create. However, dueto
the way in which multiple threads are supported in the Watcom libraries, there is a small performance
penalty once the number of threads exceeds the default limit of 32 (this number includes theinitial thread).
If you are creating more than 32 threads and wish to avoid this performance penalty, you can redefine the
threshold value of 32. You can staticaly initialize the global variable __ MaxThr eads.

By adding the following line to your multi-threaded application, the new threshold value will be set to 48.

unsi gned __MaxThreads = { 48 };

248 Thread Limits

37 0S/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. Thisform of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application isloaded. Thisform of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only references to the
functionsin dynamic link libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, adynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

37.1 Creating Dynamic Link Libraries

Once you have developed the source for alibrary of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of adynamic link library. Once you have successfully compiled your
source, you must create alinker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create adynamic link library.

1. The"SYSTEM" directiveisused to specify that a dynamic link library isto be created.
2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link library areto
be exported.

Specifying exportsin the source code
The "EXPORT" directive need not be used when the symbols to be exported are
declared withthe __export type quadlifier in the source code. Such symbols

are exported automatically, through special records inserted into the object files
by the compiler.

Creating Dynamic Link Libraries 249

0S/2 Programming Guide

3. The"OPTION" directiveis used to specify attributes such as the name of the dynamic link
library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to useit. Thiscan be done by creating an import library for the dynamic link library
or creating alinker directive file that contains "IMPORT" directives for each of the entry pointsin the
dynamic link library.

37.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example.

#i ncl ude <stdio. h>
#i ncl ude <os2. h>

#i f defined(__cpl uspl us)
#defi ne EXTERNC extern "C'
#el se
#def i ne EXTERNC
#endi f
unsi gned API ENTRY Li bMai n(unsi gned hnod, unsigned term nation)
if(termnation) {
/* DLL is detaching from process */
} else {
/* DLL is attaching to process */

return(1);

}

EXTERNC void dl | _entry_1(void)

printf("H fromdll entry #1\n");

EXTERNC void dll _entry_2(void)

printf("H fromdll entry #2\n");
}

32-bit OS/2 DLLscanincludea Li bMai n entry point when you are using the Watcom C/C++ run-time
libraries.

Arguments:

hmod Thisisahandlefor the DLL.

termination A Ovalueindicatesthat the DLL is attaching to the address space of the current process as a
result of the process starting up or asaresult of acall to DosLoadModul e. A DLL can

use this opportunity to initialize any instance data.

A non-zero value indicates that the DLL is detaching from the address space of the calling
process as aresult of either anormal termination or of acall to DosFr eeModul e.

Return Value TheLi bMai n function returns 1 if initialization succeeds or O if initialization fails.

250 Creating a Sample Dynamic Link Library

0S/2 2.x Dynamic Link Libraries

If thereturn value is O when Li bMai n is called because the process uses the
DosLoadModul e function, DosLoadModul e returns an error.

If thereturn valueis O when Li bMai n is called during process initialization, the process
terminates with an error.

Assume the above exampleis contained in thefile dl | sanp. c. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

[C\]wecc386 -Dbd dl | samp

Before we can link our example, we must create alinker directive file that describes the attributes and entry
points of our dynamic link library. Thefollowing isalinker directivefile, caled dl | sanp. | nk, that
can be used to create the dynamic link library.

system os2v2 dl |l initinstance tern nstance
opti on nanyaut odat a

export dll_entry_1_

export dll_entry_2_

file dllsanmp

Notes:
1. The"SYSTEM" directive specifiesthat we are creating a 32-bit OS/2 dynamic link library.

2. The"MANYAUTODATA" option specifies that the automatic data segment is allocated for
every instance of the dynamic link library. This option must be specified only for adynamic link
library that uses the Watcom C/C++ run-time libraries. If the Watcom C/C++ run-time libraries
are not used, this option is not required. Our example does use the Watcom C/C++ run-time
libraries so we must specify the "MANYAUTODATA" option.

Aswas just mentioned, when adynamic link library uses the Watcom C/C++ run-time libraries,
an automatic data segment is created each time a process accesses the dynamic link library. For
this reason, initialization code must be executed when a process accesses the dynamic link
library for thefirst time. To achievethis, "INITINSTANCE" must be specified in the
"SYSTEM" directive. Similarly, "TERMINSTANCE" must be specified so that the termination
code is executed when a process has completed its access to the dynamic link library. If the
Watcom C/C++ run-time libraries are not used, these options are not required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library. Note that the
names specified in the "EXPORT" directive are appended with an underscore. Thisisthe
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

We can now create our dynamic link library by issuing the following command.

[C\]IwWink @Il sanmp

Afilecaled dl | sanp. dI | will be created.

Creating a Sample Dynamic Link Library 251

0S/2 Programming Guide

37.3 Using Dynamic Link Libraries

Once we have created adynamic link library, we must allow other applications to access the functions
available in the dynamic link library. There are two ways to achieve this.

Thefirst method isto create alinker directive file which contains an "IMPORT" directive for al entry
pointsin the dynamic link library. The"IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic
link library, thislinker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. Animport library is astandard library that is created from a
dynamic link library by using the Watcom Library Manager. It contains object modules that describe the
entry pointsin adynamic link library. The resulting import library can then be specified in a"LIBRARY"
directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functionsin dynamic link
libraries. When adynamic link library is modified, typically the import library corresponding to the
modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifiesthe
import library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

[C\]Wib dllsanp +dl|sanp.dll
A standard library called dI | sanp. | i b will be created.

Suppose the following sample program, contained in thefile dl | t est . ¢, callsthe functions from our
sample dynamic link library.

#i ncl ude <stdio. h>

#if defined(__cpl usplus)
#def i ne EXTERNC extern "C'
#el se

#def i ne EXTERNC

#endi f

_entry_1(void);

EXTERNC voi d dI
Il _entry_2(void);

|
EXTERNC void dl |
int main(void)
{
dil_entry_1();
di | _entry_2();
return(0);

}
We can compile and link our sample application by issuing the following command.
[C\]wcl 386 -1=0s2v2 dlltest dllsanmp.lib

If we had created alinker directivefile of "IMPORT" directivesinstead of an import library for the
dynamic link library, the linker directivefile, say dl | i nps. | nk, would be asfollows.

inmport dll _entry 1 dllsanp
import dll _entry 2 dllsanp

252 Using Dynamic Link Libraries

0S/2 2.x Dynamic Link Libraries

Note that the names specified in the "IMPORT" directive are appended with an underscore. Thisisthe
default naming convention used when compiling using the register-based calling convention. No
underscore is required when compiling using the stack-based calling convention.

To compile and link our sample application, we would issue the following command.

[C\]wcl 386 -1=0s2v2 dlltest -"@llIlinps"

37.4 The Dynamic Link Library Data Area

The Watcom C/C++ 32-bit run-time library does not support the general case operation of DLLsin an
execution environment where there is only one instance of the DATA segment (DGROUP) for that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.
1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.
2. DLLslinked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can suppressthe
function which issues the diagnostic and notifies the operating system that the second process cannot attach
totheDDLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not rel eased back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int __disallow single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

37.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with it. The
initialization routine can either be called the first time any process accessesthe DLL ("INITGLOBAL" is
specified at link time) or each time a process accesses the DLL ("INITINSTANCE" is specified at link
time). Similarly, the termination routine can either be called when all processes have completed their
access of the DLL ("TERMGLOBAL" is specified at link time) or each time a process compl etes its access
of theDLL ("TERMINSTANCE" is specified at link time).

For aDLL that uses the C/C++ run-time libraries, initialization and termination of the C/C++ run-time

environment is performed automatically. It isalso possible for aDLL to do its own special initialization
and termination process.

Dynamic Link Library Initialization/Termination 253

0S/2 Programming Guide

The C/C++ run-time environment provides two methods for calling user-written DLL initialization and
termination code.

1. If you provide your own version of Li bMai n thenit will be called for initialization and
termination. The use of Li bMai n isdescribed earlier in this chapter.

2. If you do not provide your own version of Li bMai n then adefault version islinked in from the
library. Thisversionwill call __dl| _initialize for DLL initialization and
__dI'l _term nat e for DLL termination. Default stub versions of these two routines are
included in the run-time library. If you wish to perform additional initialization/termination that
is specific to your dynamic link library, you may write your own versions of these routines.

Once the C/C++ run-time environment isinitialized, theroutine __dl | _initializeiscaled. After
the C/C++ run-time environment is terminated, theroutine __dl | _t er m nat e iscaled. Thislast point
isimportant since it means that you cannot do any run-time calls in the termination routine.

Theinitiaization and termination routines return an integer. A value of O indicates failure; avalue of 1
indicates success. The following example illustrates sample initialization/termination routines.

#include <stdlib. h>

#define WORKING_SI ZE (64 * 1024)

char *Wér ki ngSt or age;

#i f defined(__cplusplus)

#defi ne EXTERNC extern "C'

#el se

#defi ne EXTERNC

#endi f

void __dll_finalize(void);

EXTERNC int _ _dll _initialize(void)

{
Wor ki ngSt orage = mal | oc(WORKI NG_SI ZE);
i f(WorkingStorage == NULL) return(0);
atexit(__dll _finalize);
return(1);

}

void __dll_finalize(void)

free(WorkingStorage);

}

EXTERNC int __dll_termnate(void)
{ return(1);

}

EXTERNC void dl | _entry(void)

i /* use array WorkingStorage */

In the above example, the process initialization routine allocates storage that the dynamic link library needs,
theroutinedl | _ent ry usesthe storage, and the process termination routine frees the storage allocated in
the initialization routine.

254 Dynamic Link Library Initialization/Termination

38 Programming for 0S/2 Presentation Manager

Basically, there are two classes of C/C++ applications that can run in awindowed environment.

Thefirst are those C/C++ applications that do not use any of the Presentation Manager API functions; they
are strictly C/C++ applications that do not rely on the features of a particular operating system.

The second class of C/C++ applications are those that actually call Presentation Manager API functions
directly. These are applications that have been tailored for the Presentation Manager operating
environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager programming.

38.1 Porting Existing C/C++ Applications

Suppose you have a set of C/C++ applications that previously ran under DOS and you now wish to run
them under OS/2. To achieve this, simply recompile your application and link with the appropriate
libraries. Depending on the method with which you linked your application, it can run in an OS/2
fullscreen environment, a PM-compatible window, or as a Presentation Manager application. An OS/2
fullscreen application runsin its own screen group. A PM-compatible application will run in an OS/2
fullscreen environment or in awindow in the Presentation Manager screen group but does not take direct
advantage of menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus, icons, scroll
bars, etc. However, porting a console oriented application to Presentation Manager often requires
significant effort and a substantial redesign of the application.

38.1.1 An Example

Very little effort is required to port an existing C/C++ application to OS/2. Let ustry to run the following
sample program (contained in thefile hel | o. c).

#i ncl ude <stdi o. h>

int main(void)

/**************/

printf("Hello world!\n");
return(0);

}

An equivalent C++ program follows:

Porting Existing C/C++ Applications 255

0S/2 Programming Guide

#i ncl ude <i ostream h>

int main(void)

{

cout << "Hello world" << endl;
return(0);

}

First we must compilethefile hel | 0. ¢ by issuing the following command.

[C\]weec386 hello

Once we have successfully compiled the file, we can link it by issuing the following command.

[C\]wWink sys os2v2 file hello

It isalso possible to compile and link in one step, by issuing the following command.

[C\]wcl 386 -1=0s2v2 hello

Thiswill create a PM-compatible application. If you wish to create afullscreen application, link with the
following command.

[C\]Wink sys os2v2 fullscreen file hello

38.2 Calling Presentation Manager API Functions

It isalso possible for a C/C++ application to create its own windowing environment. Thisis achieved by
calling PM API functions directly from your C/C++ program. The techniques for developing these
applications can be found in the OS/2 Technical Library.

A number of C/C++ include files (files with extension . h) are provided which define Presentation Manager
data structures and constants. They are located in the \ wat com h\ 0s2 directory. Theseincludefilesare
roughly equivalent to the C/C++ header files that are available with the IBM OS/2 Devel oper’ s Toolkit.

A sample C/C++ Presentation Manager application is also located in the \ wat com sanpl es\ 0s2
directory. Itiscontained inthefiles shapes. ¢ (Cvariant) and shapes. cpp (C++ variant, nearly
identical). Thefile shapes. ¢ contains the following.

#i ncl ude <stdlib. h>
#define | NCL_WN

#define | NCL_GPI
#i ncl ude <os2. h>

int Si zeX;

int Si zeY;

HWAD FrameHandl e
HVR hMessageQueue;
HAB Anchor Bl ock

256 Calling Presentation Manager API Functions

Programming for 0S/2 Presentation Manager

static int Randon{ int high)

return(((double)rand() / 32767) * high);

static void NewCol or(HPS ps)
{

}

/* Draw a rectangul ar shape of random size and col or at random position */
static void Drawkl | i pse(HWND hwndW ndow)
{

Gpi Set Col or (ps, Random(15) + 1);

PO NTL ptl;

HPS ps;

static int Odd = 0;

i nt par mi, par n2;

ps = WnGet PS(hwndW ndow) ;
ptl.x Randon{ SizeX);
ptl.y Randon{ SizeY);
Gpi Move(ps, &ptl);
ptl.x = Randon{ SizeX);
ptl.y Randon{ SizeY);
par mL Randon{ 50);
parn2 = Randon{ 50);
i f(Randon{ 10) >= 5) {
NewCol or (ps);
Gpi Box(ps, DRO FILL, &ptl, 0, 0);
NewCol or (ps);
Gpi Box(ps, DRO QUTLINE, &ptl, 0, 0);
} else {
NewCol or (ps);
Gpi Box(ps, DRO _FILL, &ptl, parml, parn?);
NewCol or (ps);
Gpi Box(ps, DRO_QUTLINE, &ptl, parml, parn?);

}

Qdd++;

dd &= 1;

W nRel easePS(ps);
}

/* Cient w ndow procedure */
MRESULT EXPENTRY Mai nDriver(HWD hwnd, USHORT nsg, MPARAM npl, MPARAM np2)
{

HPS ps;

RECTL rcl;

switch(nsg) {

case WM_CREATE:
/* Start a 150ms timer on wi ndow creation */
WnStartTimer(AnchorBl ock, hwnd, 1, 150) ;
br eak;

case WM_TI MER:
/* Draw another ellipse on each timer tick */
Drawgl | i pse(hwnd);
return(0);

case WM_SI ZE:
/* Remenber new di mensi ons when wi ndow i s resized */
Si zeX = SHORT1IFROMWP(np2);
Si zeY = SHORT2FROMMP(np2);
return(0);

case WMV _PAI NT:
/* Handl e paint events */
ps = WnBegi nPai nt (hwnd, NULL, NULL);
W nQuer yW ndowRect (hwnd, &rcl);
WnFillRect(ps, &cl, CLR_WH TE);
W nEndPai nt (ps);
return(0);

Calling Presentation Manager API Functions 257

0S/2 Programming Guide

int

/* Let the default w ndow procedure handle all other nessages */
return(W nDef WndowProc(hwnd, nsg, npl, np2));

mai n()
ULONG style;
QG qnsg;
HW\D W nHandl e;

/* Initialize window ng and create nessage queue */
AnchorBlock = Wnlnitialize(0);

i f(AnchorBlock == 0) return(0);

hMessageQueue = W nCreat eMsgQueue(AnchorBl ock, 0);
i f(hMessageQueue == 0) return(0);

/* Regi ster wi ndow cl ass */
i f(!WnRegi sterd ass(Anchor Bl ock, "Watconi, (PFNWP) MainDriver,
CS_SI ZEREDRAW 0)) {
return(0);

}

/* Create frame and client w ndows */
style = FCF_TI TLEBAR | FCF_SYSMENU | FCF_SI ZEBORDER | FCF_M NMVAX |
FCF_SHELLPOSI TI ON | FCF_TASKLI ST;
FraneHandl e = W nCr eat eSt dW ndow(HWND_DESKTOP, WS_VI SI BLE, &style,
"Wat cont',
" Shapes - C sanple",
0, NULL, 0, &WnHandle);

/* If window creation failed, exit inmmediately! */
if(FrameHandle == 0) return(0);

/* Message | oop */

whi |l e(WnGet Msg(AnchorBl ock, &gmsg, NULL, 0, 0)) {
W nDi spat chMsg(Anchor Bl ock, &qnsg);

}

/* Shut down and cl ean up */

W nDest r oyW ndow(FraneHandle);

W nDest royMsgQueue(hMessageQueue);
W nTerm nate(AnchorBl ock);

return(1);

Y ou can compile, link and run this demonstration by issuing the following commands.

[C\]wcl 386 -1 =0s2v2_pm shapes
[C:\]shapes

258 Calling Presentation Manager API Functions

39 Developing an 0S/2 Physical Device Driver

In this chapter, we discuss the development of Physical Device Drivers (PDD) for OS/2. Thetoolsused in
the creation of the sample PDD are:

* the 16-bit Watcom C compiler

* the Watcom Assembl er

« the Watcom Make utility

The sample Physical Device Driver that we are going to build, HRTI MER. SYS, provides accessto a high
resolution timer. Additional sources of information on PDDs can be found in the following:

1

2.

3.

0S/2 2.0 Technical Library - Physical Device Driver Reference
Writing OS/2 2.1 Device Driversin C by Steve J. Mastrianni

An OS/2 High Resolution Software Timer by Derek Williams, an article which appeared in the
Fall 1991 issue of IBM Personal Systems Developer magazine. The source code for this device
driver was adapted from the magazine article. For detailed information on the way this device
driver works, please read that article.

HRTI MER. SYS isa16-bit device driver which runs under OS/2 1.x and 2.x/3.x. It has aresolution of 840
nanoseconds (i.e., 1 tick of the Intel 8253/8254 timer = 840 nanoseconds).

Here are some notes on creating Physical Device Drivers using Watcom software tools.

1

2.

A Physical Device Driver islinked asaDLL.
The first segment must be a data segment, the next a code segment.

By default only the first two segments remain after initialization, extra segments have to be
marked |OPL.

The assembler file, DEVSEGS. ASM defines the segment ordering.

#pragm dat aseg and #pr agna codesegq are used to get various pieces of code and data
into the correct segments.

The _ HEADER segment contains the device header and must be at the beginning of the data
segment.

The | NI TCODE and __| NI TDATA segments are used to placeinitiaization code and data at the
end so it can be discarded by OS/2.

To compile the source code for the 16-bit Physical Device Drivers, we use the following options:

Developing an 0S/2 Physical Device Driver 259

0S/2 Programming Guide

-bt=0s2

-ms

build target is OS/2

16-bit small code/small data model

Pentium optimizations (thisis optional)

inline math and intrinsic functions (this is optional)
no stack checking

DSis pegged to DGROUP

FSfloats, i.e. not fixed to a segment

GSfloats, i.e. not fixed to a segment
SS!=DGROUP

remove default library information

To link the object code for the 16-bit Physical Device Drivers, we use the following options:

name hrtimer.sys to name the executablefile.

sys 0s2 dil initglobal to link a16-bit OS2 DLL. Specifying INITGLOBAL will cause the

option map
option quiet
lib 0s2

file...

initialization routine to be called the first time the dynamic link library is loaded.
to generate amap file.

to minimize the number of linker informational messages.

to include the 16-bit OS2. LI B library file.

to include the component object files of the device driver.

The sample files used to create the Physical Device Driver and the programs that use it are located in the
\ WATCOM SRC\ OS2\ PDD directory. The Physical Device Driver files are:

DEVSEGS.ASM This small assembler file orders the segment definitions in the executable file.

HEADER.C

STRATEGY.C

STRATINI.C

Dat a Segnents _ HEADER

CONST

CONST2

_DATA

_BSS

_I NI TDATA (di scar dabl e)
Code Segments _TEXT

_I NI TCODE (di scardabl e)

Thefirst thing that must follow the EXE Header is the Device Driver Header.
Thisisthe resident portion of the Strategy routine.

Thisisthe discardable portion of the Strategy routine, the initialization code and
data

260 Developing an OS/2 Physical Device Driver

Developing an 0S/2 Physical Device Driver

HRTIMER.H This file contains the definition of the timer "timestamp™ structure.

HRDEV.H Thisfile contains definitions for the Intel 8253 hardware timer.

DEVHDR.H This file contains definitions for the Device Driver Header structure (see page
3-2, "Physical Device Driver Header" of PDD Reference).

DEVDEFSH Thisfile provides type definitions.

DEVREQP.H Thisfile contains definitions for the Device Driver Request Packets.

DEVAUX.H Thisfile contains definitions for the Device Driver Help (DevHIp) routines.

The demonstration program files are:

HRTEST.C Thisfileisasample C program that shows how to use the device driver to calculate el apsed
times. It demonstrates how to open the device driver, read timestamps from it and close it.
It factorsin the overhead of the read and has afunction that is used to calculate elapsed
time from a start and stop timestamp.

TIMER.C Thisfileisasample C program that can be used to time other applications. It also usesthe
devicedriver.

To build the device driver and demonstration programs, set your current directory to
\ WATCOM SRC\ OS2\ PDD and type:

wrake
Toinstall the device driver, put the following statement in your CONFI G. SYSfile.

DEVI CE=\ WATCOM SRC\ OS2\ PDD\ HRTI MER. SYS
Y ou must then reboot OS/2.
To run the test program, use the following command-line:

HRTEST [nilliseconds]
For[m || iseconds], youcanenter any number (e.g., 2000 which is 2 seconds).
HRTEST. EXE will issue a DosSleep for the amount of milliseconds specified or will use adefault if no
command-line parameter is given. It will get atimestamp from the device driver before and after the
DosSleep and will calculate the elapsed time of that sleep and display the results. It will do this
continuously until Ctrl/C or Ctrl/Break is pressed.
Keep in mind that DosSleep has a granularity of 32 milliseconds. Any discrepancy between the number of
milliseconds used for the DosSleep and the elapsed time results from the timer are the fault of this
granularity, not a problem with the timer. DosSleep is used solely as a convenient method of displaying the
capabilities of the driver.
To run the timer program, use the following command-line:

TI MER program nanme [program args]

For example, to time an OS/2 Directory command, issue the following command.

Developing an 0S/2 Physical Device Driver 261

0S/2 Programming Guide

Example:
timer cnmd /c dir c:

262 Developing an OS/2 Physical Device Driver

Novell NLM Programming Guide

Novell NLM Programming Guide

264

40 Creating NetWare 386 NLM Applications

Watcom C/C++ supports version 4.0 of the Netware 386 API. We include the following components:
header files Header filesfor the Netware 4.0 API are located in the \ WATCOM NOVH directory.

import libraries
Import libraries for the Netware 4.0 API arelocated in the \ WATCOM NOVI directory.

libraries The C/C++ libraries for Netware 4.0 islocated in the \ WATCOM LI B386 and
\ WATCOM LI B386\ NETWARE directories.

debug servers Serversfor remote debugging of Netware 4.0 NLMs are located in the \ WATCOM NLM
directory. The same directory also contains the Watcom Execution Sampler for NLMs.

Applications built for version 4.0 will run on 4.1. We do not include support for any API specific to
version 4.1. Netware devel opers must use the support included with Watcom C/C++ version 10.0 or
greater since the version supplied by Novell only works with Watcom C/C++ version 9.5. Netware 4.1
support requires modification to the header files supplied by Novell. Contact Novell for more information.

The following specia notes apply to developing applications for NetWare.

1. You must compile your source fileswith the "-bt=NETWARE" option. Thiswill cause the
compiler to:

* use the small memory model instead of the flat memory model,

* use stack-based calling conventions,

* search the NETWARE_INCL UDE environment variable before searching the
INCLUDE environment variable, and

* reference a special startup symbol, ~ WATCOM Pr el ude, inthelibraries.

2. You must compile your source files with the small memory model option ("ms’). Thisis
accomplished by specifying the "-bt=NETWARE" option.

3. You must compile your source files with one of the stack-based calling convention options ("3s",
"4s" or "5s"). Thisisaccomplished by specifying the "-bt=NETWARE" option.

4. Youmust set the NETWARE_INCLUDE environment variable to point to the
\ WATCOM NOVH directory. Thisenvironment variable will be searched first when you compile
with the "-bt=NETWARE" option. Alternatively, you can set the INCLUDE environment
variableto include \ WATCOM NOVH before other include directories.

5. If you are using the compile and link utility WCL 386, you must use the following options:
"-I=NETWARE -bt=NETWARE".

6. You must specify

syst em NETWARE

Creating NetWare 386 NLM Applications 265

Novell NLM Programming Guide

when linking an NLM. Thisisautomatic if you are using WCL 386 and the "-I=NETWARE"
option.

7. If you are using other Netware APIs such as NWSNUT, then you must include nodul e and
i mport statements asinput to the Watcom Linker.

Example:
nodul e nwsnut
i mport @ANATCOMA novi \ nwsnut . i mp

Thisis done automatically for the C Library (CLIB.IMP). The following import lists have been
provided for Netware API libraries.

Al O | MP
APPLETLK. | MP
BSD. | MP
CLIB. | MP
DSAPI . | MP
MATHLI B. | MP
NWBNUT. | MP
SOCKLI B. | MP
STREAMS. | MP
TLI. I MP

266 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

268

41 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language development using
Watcom C/C++ and Watcom FORTRAN 77.

The following topics are discussed in this chapter:
» Symbol Naming Convention
» Argument Passing Convention
* Memory Model Compatibility
* Integer Type Compatibility
* How do | passintegers from C to a FORTRAN function?
» How do | passintegers from FORTRAN to a C function?
* How do | pass astring from a C function to FORTRAN?
* How do | pass astring from FORTRAN to a C function?
* How do | access a FORTRAN common block from within C?

* How do | call aC function that accepts a variable number of arguments?

41.1 Symbol Naming Convention

The symbol naming convention describes how a symbol in source form is mapped to its object form.
Because of this mapping, the name generated in the object file may differ from its original source form.

Default symbol naming conventions vary between compilers. Watcom C/C++ prefixes an underscore
character to the beginning of variable names and appends an underscore to the end of function names
during the compilation process. Watcom FORTRAN 77 converts symbolsto upper case. Auxiliary
pragmas can be used to resolve this inconsistency.

Pragmas are compiler directives which can provide several capabilities, one of which isto provide
information used for code generation. When calling a FORTRAN subprogram from C, we want to instruct
the compiler NOT to append the underscore at the end of the function name and to convert the name to
upper case. Thisisachieved by using the following C auxiliary pragma:

#pragma aux ftnname """;
The """ character tells the compiler to convert the symbol name "ftnname" to upper case; no underscore

character will be appended. This solves potential linker problems with "ftnname" since (by C convention)
the linker would attempt to resolve areference to "ftnname_".

Symbol Naming Convention 269

Mixed Language Programming

When calling C functions from FORTRAN, we need to instruct the compiler to add the underscore at the
end of the function name, and to convert the name to lower case. Since the FORTRAN compiler
automatically convertsidentifiers to uppercase, it is necessary to force the compiler to emit an equivalent
lowercase name. Both of these things can be done with the following FORTRAN auxiliary pragma:

*$pragma aux CNAME "! _"
There is another less convenient way to do this as shown in the following:

*$pragma aux CNAME "cname_"
In the latter example, the case of the name in quotation marksis preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing must still be
resolved.

41.2 Argument Passing Convention

In general, C uses call-by-value (passes argument values) while FORTRAN uses call-by-reference (passes
pointersto argument values). Thisimpliesthat to pass arguments to a FORTRAN subprogram we must
pass the addresses of arguments rather than their values. C usesthe"&" character to signify "address of".

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming conventions must also
instruct the compiler that the C function is expecting values, not addresses.

*$pragma aux CNAME "!_" parm (val ue)
The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of addresses.

Character data (strings) are an exception to the general case when used as arguments. In C, strings are not
thought of as awhole entity, but rather asan "array of characters'. Since strings are not considered scalar
arguments, they are referenced differently in both C and FORTRAN. Thisisdescribed in more detail in a
following section.

41.3 Memory Model Compatibility

Whileit isreally not an issue with the 32-bit compilers (both use the default "flat" memory model), it is
important to know that the default memory model used in Watcom FORTRAN 77 applicationsisthe
"large” memory model ("mi") with "medium" and "huge" memory models as options. Since the 16-bit
Watcom C/C++ default is the "small" memory model, you must specify the correct memory model when
compiling your C/C++ code with the 16-bit C or C++ compiler.

270 Memory Model Compatibility

Inter-Language calls: C and FORTRAN

41.4 Linking Considerations

When both C/C++ and FORTRAN object files are combined into an executable program or dynamic link
library, it isimportant that you list aleast one of the FORTRAN aobject filesfirst in the Watcom Linker
(WLINK) "FILES" directive to guarantee the proper search order of the FORTRAN and C run-time
libraries. If you place a C/C++ object file first, you may inadvertently cause the wrong version of run-time
initialization routines to be loaded by the linker.

41.5 Integer Type Compatibility

In general, the number of bytes used to store an integer type is implementation dependent. In FORTRAN,
the default size of an integer typeis always 4 bytes, while in C/C++, the size is architecture dependent. The
size of an "int" is 2 bytes for the 16-bit Watcom C/C++ compilers and 4 bytes for the 32-bit compilers
while the size of a"long" is 4 bytes regardless of architecture. It is safest to prototype the function in C,
specifying exactly what sizeintegers are being used. The byte sizes are asfollows:

1. LONG -4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses adefault of 4 bytes, we should specify the "long" keyword in C for integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "ftnname" takes three "pointersto long ints" as arguments, and returnsa”long int". By
specifying that the arguments are pointers, and not values, and by specifying "long int" for the return type,
this prototype has solved the problems of argument passing and integer type compatibility.

41.6 How do | pass integers from C to a FORTRAN function?

The following Watcom C/C++ routine passes three integers to a FORTRAN function that returns an integer
value.

/* MXLC.C - This C programcalls a FORTRAN function to

* comput e the max of three nunbers.
*

* Conpile/Link: wel /m mxlc nmix1f.obj /fe=m x1
* wel 386 mi x1lc mix1f.obj /fe=m x1
*/

#i ncl ude <stdio. h>

#pragma aux tmax3 """,
long int tmax3(long int *, long int *, long int *);

How do I pass integers from C to a FORTRAN function? 271

Mixed Language Programming

void main()

long int result;
long int i, j, Kk;
i -1;

i 12;

k 5;

result = tmax3(&, &, &);
printf("Maximumis %d\n", result);

}
The FORTRAN function:

* M X1F. FOR - This FORTRAN function accepts three integer
* argunents and returns their naximum

* Conpile: wic[386] mx1f.for

i nteger function tmax3(arga, argb, argc)
i nteger arga, argb, argc

tmax3 = arga

if (argbh .gt. tmax3) tmax3
if (argc .gt. tmax3) tmax3
end

argb
argc

41.7 How do | pass integers from FORTRAN to a C function?

The following Watcom FORTRAN 77 routine passes three integers to a Watcom C/C++ function that
returns an integer value.

* M X2F. FOR - This FORTRAN programcalls a C function to
* conpute the nax of three nunbers.

*
* Conpil e/ Link: wl[386] mix2f mix2c.obj /fe=m x2
*$pragnma aux tnmax3 "!_" parm (val ue)

program mi x2f

i nteger*4 tmax3
integer*4 result

integer*4 i, j, k

i =-1

j =12

k =5

result = tmax3(i, j, k)
print *, "Maximumis ', result
end

The C function "tmax3" is shown below.

272 How do I pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

/* MX2C.C - This C function accepts 3 integer argunents
* and returns their maxi num

* Conpile: weec /ml m x2c

* wce386 mi x2c¢

*/

long int tmax3(long int arga,
I ong int argb,
long int argc)

{
 ong int result;
result = arga
if(argbh > result) result = argb;
if(argc > result) result = argc;
return(result);

}

41.8 How do | pass a string from a C function to FORTRAN?

Character strings are referenced differently in C and FORTRAN. The C language terminates its strings
with anull character as an End-Of-String (EOS) marker. In this case, C need not store the length of the
string in memory. FORTRAN, however, does not use any EOS marker; hence it must store each string’s
length in memory.

The structure FORTRAN uses to keep track of character dataiis called a "string descriptor" which consists
of apointer to the character data (2, 4, or 6 bytes, depending on the data model) followed by an unsigned
integer length (2 bytes or 4 bytes, depending on the data model).

system option size of pointer size of length
16-bit /MW 16 bits 16 bits
16-bit /M 32 bits 16 bits
32-bit /M 32 bits 32 bits
32-bit /M 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data' s string descriptor. Hence,
FORTRAN expects a pointer to a string descriptor to be passed as an argument for character data.

Passing string arguments between C and FORTRAN isasimple task of describing a struct typein C
containing the two fields described above. The first field must contain the pointer to the character data, and
the second field must contain the length of the string being passed. A pointer to this structure can then be
passed to FORTRAN.

* M X3F. FOR - This FORTRAN programcalls a function witten
* in Cthat passes back a string.

*
* Conpil e/Link: wfl[386] m x3f m x3c.obj /fe=m x3
pr ogram m x3f

character*80 sendstr
character*80 cstring

How do I pass a string from a C function to FORTRAN? 273

Mixed Language Programming

cstring = sendstr()
print *, cstring(l:lentrin{(cstring))
end

The C function "sendstr" is shown below.

/* MX3C.C - This C function passes a string back to its
* calling FORTRAN program

*

* Conpile: wee /m m x3c
* wecc386 mi x3c
*/

#i ncl ude <string. h>
#pragma aux sendstr "/";

typedef struct descriptor {
char *addr ;
unsi gned | en;

} descriptor;

voi d sendstr(descriptor *ftn_str_desc)

{

ftn_str_desc->addr = "This is a C string";
ftn_str_desc->len = strlen(ftn_str_desc->addr);

41.9 How do | pass a string from FORTRAN to a C function?

By default, FORTRAN passes the address of the string descriptor when passing strings. If the C function
knowsit is being passed a string descriptor address, then it is very similar to the above example. If the C
function is expecting normal C-type strings, then a FORTRAN pragma can be used to pass the string
correctly. When the Watcom FORTRAN 77 compiler pragmato pass by value is used for strings, then just
apointer to the string is passed.

Example:
*$pragnma aux cnanme "!_" parm (val ue)

The following example FORTRAN mainline defines a string, and passes it to a C function that printsit out.

* M X4F. FOR - This FORTRAN programcalls a function witten
* in C and passes it a string.

*

* Conpil e/Link: wfl[386] mi x4f mi x4c.obj /fe=m x4

*$pragma aux cstr "!_" parm (val ue)

pr ogram mi x4f

character*80 forstring

forstring = "This is a FORTRAN string’//char(0)

call cstr(forstring)
end

274 How do I pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

The C function:

/* MX4C.C - This C function prints a string passed from

* FORTRAN.

* Conmpile: wee /ml m x4c
* wee386 ni x4c
*/

#i ncl ude <stdio. h>
void cstr(char *instring)

printf("%\n", instring);

41.10 How do | access a FORTRAN common block from
within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a C routine.
The C routine defines an extern struct to correspond to the FORTRAN common block.

* M X5F. FOR - This program shows how a FORTRAN conmon
* bl ock can be accessed from C.

*

* Conpi | e/ Link: wfl[386] mix5f mix5c.obj /fe=nix5

program mi x5f
external put
common/ cbl k/ i, j

call put
print *, i
print *, 'j T
end

The C function:

/* MX5C.C - This code shows how to access a FORTRAN
* comon bl ock from C.

*

* Conpile: weec /m m x5¢
* wcc386 m x5c
*/

#i ncl ude <stdi o. h>

#pragma aux put "/~";
#pragma aux cblk "~";

How do I access a FORTRAN common block from within C? 275

Mixed Language Programming

#i fdef __386__

#define FAR

#el se

#define FAR far

#endi f

extern struct cb {
long int i,j;

} FAR cbl k;

void put(void)

printf("i = 9%d\n", cblk.i);
printf("j = %d\n", cblk.j);
cbl k. i ++;
chl k. j ++;

}

For the 16-bit C compiler, the common block "chlk" is described as f ar to force aload of the segment
portion of the address. Otherwise, since the object is smaller than 32K (the default datathreshold), itis
assumed to be located in the DGROUP group which is accessed through the SS segment register.

41.11 How do I call a C function that accepts a variable
number of arguments?

One capability that C possessesis the ability to define functions that accept variable number of arguments.
Thisfeature is not present, however, in the definition of the FORTRAN 77 language. Asaresult, aspecia
pragmais required to call these kinds of functions.

*$pragma aux printf "!_" parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The "[]" indicates that there are
no arguments passed in registers because the pri nt f function takes a variable number of arguments
passed on the stack. The following example is a FORTRAN function that uses this pragma. It callsthe
printf function to print the value 47 on the screen.

* M X6. FOR - This FORTRAN programcalls the C
* printf function.

* Conpil e/ Link: wfl[386] m x6

*$pragma aux printf "!_" parm (value) caller []
program m x6
character cr/z0d/, nullchar/z00/

call printf("Value is %d.'//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language programming, please

refer to the chapter entitled "Pragmas" in both the Watcom C/C++ User’s Guide and the Watcom
FORTRAN 77 User’s Guide.

276 How do I call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

278

42 commonly Asked Questions and Answers

Aswith any sophisticated piece of software, there are topics that are not directly addressed by the
descriptive portions of the manuals. The purpose of this chapter is to anticipate common questions
concerning Watcom C/C++. It isdifficult to predict what topics will prove to be useful but with that in
mind, we hope that this chapter will help our customers make full use of Watcom C/C++.

A number of example programs are presented throughout. The source text for these files can be found in
the \ WATCOM SAMPLES\ GOODI ES directory.

The purpose of this chapter is to present some of the more commonly asked questions from our users and
the answers to these questions. The following topics are discussed:

* How do | determine my current patch level?

* How do | convert to Watcom C/C++?

» What should | know about optimization?

» Why can’t the compiler find "stdio.h"?

* How do | resolve an "Undefined Reference” linker error?

» Why aren’t my variables set to zero?

» What does "size of DGROUP exceeds 64K" mean for 16-bit applications?
» What does "NULL assignment detected" mean in 16-bit applications?
» What does " Stack Overflow!" mean?

* Why do | get redefinition errors from WLINK?

* How can | open more than 20 files at atime?

* How can | see my source filesin the debugger?

» What is the difference between the "d1" and "d2" compiler options?

42.1 Determining my current patch level

In an effort to immediately correct any problems discovered in the originally shipped product, Watcom
provides patches as a continued service to its customers. To determine the current patch level of your
Watcom software, a TECHINFO utility program has been provided. This program will display your
current environment variables, the patch level of various Watcom software programs, and other pertinent
information, such as your AUTCEXEC. BAT and CONFI G. SYSfiles. Thisinformation provesto be very
useful when reporting a problem to the Technical Support team.

To run TECHINFO, you must ensure the Watcom environment variable has been set to the directory where
your Watcom software has been installed. TECHINFO will pause after each screenful of information. The
output isaso placed in the file TECHI NFO. QUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Determining my current patch level 279

Common Problems

Example:
WATCOM s Techinfo Uility, Version 1.4
Current Time: Thu Oct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterl oo, Ontario

CANADA N2L 3X2

------------- WATCOM C Environnent Variables -------------
WATCOME<c: \ wat con®

EDPATH=<c: \ wat com eddat >

| NCLUDE=<c: \ wat com\ h; c: \ wat com h\ 0s2>

FI NCLUDE=<c: \wat com src\fortran;c:\watcom src\fortran\w n>

LI BOS2=<c: \wat com | i b286\ 0s2; c: \wat com | i b286>

PATH=<c:\ dos; c: \ wi ndows; c: \ wat coml bi nw>

TMP=<h: \'t emp>

File 'c:\watcom bi nwAwcc386. exe’ has been patched to level '.d
...etc...

In this example, the software has been patched to level "d". In most cases, al tools will share acommon
patch level. However, there are instances where certain tools have been patched to one level while others
are patched to adifferent level. For example, the compiler may be patched to level "d" while the debugger
isonly patched to level "c". Basically, this means that there were no debugger changes in the D-level
patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it is
recommended that you update your software. Patches are available on Watcom' s bulletin board, Watcom's
FTP site and CompuServe. They are available 24 hoursaday. Patches are also available on the current

release CD-ROM. Each patch will include a batch file that allows you to apply the patches to your existing
software. Note that patches must be applied in sequential order, as each patch depends on the previous one.

42.2 Converting to Watcom C/C++

There are some common steps involved in converting C programs written for other compilers. Conversion
from UNIX and other IBM-compatible PC compilers will be covered in detail later. There are six major
problems with most programs that are ported to Watcom C/C++. The assumptions that most foreign
programs make that may be invalid when using Watcom C/C++ are:
1. sizeof(pointer) == sizeof(int)
(true for 16-bit systems except "far" pointers, true for 32-bit systems except "far" pointers)
2. sizeof(long) == sizeof(int)
(not true for 16-bit systems)
3. sizeof(short) == sizeof(int)
(not true for 32-bit systems)
4. arguments are always passed on the stack

5. dereferencing the NULL pointer

6. "char" iseither signed or unsigned

280 Converting to Watcom C/C++

Commonly Asked Questions and Answers

These assumptions are very easy to make when developing programs for only one system. The first point
becomes important when you move a program to 80x86 systems. Depending on the memory model, the
size of an integer might not equal the size of a pointer. Y ou might ask how this assumption is made in
programs. The C language will assume that a function returns an integer unlesstold otherwise. If a
programmer does not declare afunction as returning a pointer, the compiler will generate code which
would convert an integer to a pointer. On other systems, where the size of an integer is equal to the size of
apointer this would amount to nothing because no conversion was necessary (to change size). The older C
compilers did not worry about warning the programmer about this condition and as such this error is
imbedded in alot of older C code. AsC was moved to other machines, it became apparent that this
assumption was no longer valid for all machines. The 80x86 architecture can have 16-bit integers and
32-hit pointers (in the compact, large, and huge memory models), which means that more care must be
taken when working with declarations (converting an int to a 32-bit pointer will result in a segment value of
0x0000 or 0xffff). Similarly, the 386 architecture can have 32-bit integers and 48-hit pointers.

The Watcom C/C++ compiler will complain about incorrect pointer and integer mixing thus making
programs compiled with Watcom C/C++ much more portable. For instance, if the Watcom C/C++
compiler complains about your usage of the "malloc" memory allocation function then you probably forgot
to include "<stdlib.h>" which contains the prototype of the "malloc” function.

Example:
extern void *mall oc(unsigned);

The Watcom C/C++ compiler was complaining about you trying to assign an integer (the value returned by
"malloc") to apointer. By including the header file with the correct prototype, the Watcom C/C++
compiler can validate that you are in fact assigning a pointer value to a pointer.

Passing arguments on the stack has been the method used by most older compilers because it allowed the C
library function "printf* to work with a variable number of arguments. Older C compilers catered to afew
functions by forcing al the argument handling to be handled by the caller of the function. With the advent
of the ANSI (and later 1SO) standard, which forced all functions expecting a variable number of arguments
to be declared properly, compilers can generate smaller code for routines that did not require avariable
number of arguments.

Example:
/* function accepting two argunments */
extern FILE *fopen(char *, char *);
/* function accepting a variable nunber of argunents */
extern int printf(char *, ...);

The Watcom C/C++ compiler takes advantage of this part of the ISO/ANSI standard by passing arguments
in registers (for the first few arguments). If there are not enough registers for al of the arguments, the rest
of the arguments are passed on the stack but the routine being called is responsible for removing them from
the stack. By default, the Watcom C/C++ compiler uses this calling convention because it resultsin faster
procedure calls and smaller code. The Watcom C/C++ calling convention carries with it aresponsibility to
ensure that all functions are prototyped correctly before they are used. For instance, if a procedureis called
with too few arguments, the assumptions that the code generator made (while generating the code) will be
invalidated. The code generator assumes that AX (EAX for the 32-bit compiler) and any other registers
used to pass arguments will be modified by the called function. The code generator also assumes that the
exact amount of arguments pushed on the stack will be removed by the function that iscalled. Itis
important to recognize this aspect of the Watcom C/C++ compiler because the program will simply not
work unless the caller and the function being called strictly agree on the number and types of the arguments
being passed. Seethe "Assembly Language Considerations' chapter in the Watcom C/C++ User’s Guide
for more details.

Converting to Watcom C/C++ 281

Common Problems

Some compilers allow the NULL pointer to be dereferenced and return NULL (we have never understood
the rational e behind this, nor why some compilers continue to support this type of code). Leaving the
aesthetics of this type of code behind, using the NULL dereferencing assumption in a program will ensure
that the program will not be portable. Source code which contains the NULL dereferencing assumption
must be corrected before it will work with Watcom C/C++.

Programs that assume that the "char" typeis"signed" should use the Watcom C/C++ compiler "j" option.
The"j" option will indicate to the Watcom C/C++ compiler that the "char" typeis"signed" rather than the
default "unsigned".

42.2.1 Conversion from UNIX compilers

The ISO/ANSI standard for C (which Watcom C/C++ adheres to) isvery similar to UNIX C. Most of the
effort in converting UNIX C programs will involve replacing referencesto library functions (such as the
CURSES library). There are many third-party libraries which are implementations of UNIX libraries on
IBM-compatible Personal Computers. There is acommon problem which many older UNIX programs
exhibit, namely, functions that accept a variable number of arguments are coded in many different ways.
Functions accepting a variable number of arguments must be coded according to the SO standard if they
are to work with Watcom C/C++. We will code an example of a function which will return the maximum
of alist of positiveintegers.

*
i vari abl e nunber of argunents exanple
#i/ ncl ude <stdarg. h>
int MaxList(int how many, ...)
{ ya_l i st args;

i nt max;

max = 0;

va_start(args, how_nany);
while(how_many > 0) {
value = va_arg(args, int);
if(value > max) {
max = val ue;
}

va_end(args);

return(max);

}

Notice that the standard header file STDARG. H must be included in any source file which defines a
function that handles a variable number of arguments. The function "MaxList" must be prototyped
correctly in other source files external to the source file containing the definition of "MaxList".

extern int MaxList(int how_many, ...);

See the Watcom C Library Reference manual description of "va arg" for a more complete description of
variable number of arguments handling.

282 Converting to Watcom C/C++

Commonly Asked Questions and Answers

42.2.2 Conversion from IBM-compatible PC compilers

Most of the compilers available for IBM-compatible PCs have been following the ISO/ANSI standard and,
as such, the majority of programs will not require extensive source changes. There are problems with
programs that use compiler-specific library functions. The use of compiler-specific library functions can be
dealt with in two different ways:

1. useequivalent Watcom C/C++ library functions
2. writeyour own library functions

If portability must be maintained with the other compiler, the predefined macro "~ WATCOMC__ " can be
used to conditionally compile the correct code for the Watcom C/C++ compiler.

The default calling convention for the Watcom C/C++ compiler is different from the calling convention
used by other compilers for Intel-based personal computers. The Watcom C/C++ calling convention is
different because it will pass some argumentsin registers (thus reducing the overhead of afunction call)
rather than pushing all of the arguments on the stack. The Watcom C/C++ compiler is flexible enough to
use different calling conventions on a per function basis. Converting code from other compilers usually
involves recompiling the C source files and setting up prototypes (to use the older calling convention) for
functions written in assembly language. For instance, if you have the functions "video_init", "video put",
and "video_get" written in assembly language, you can use the following prototypes in any source file
which uses these functions.

#i ncl ude <stddef. h>

extern int cdecl video_init(void);
extern void cdecl video_put(int row,int col,char ch,int attr);
extern char cdecl video_get(int row, int col);

Theinclusion of the STDDEF. H header file defines the "cdecl” calling convention. The Watcom C/C++
compiler will ensure that any calls to these three functions will adhere to the "cdecl" calling conventions.
The Watcom C/C++ compiler will put atrailing underscore"” " character (as opposed to the beginning of
the name for the "cdecl" convention) on any function names to ensure that the program will not link register
calling convention callsto "cdecl” convention functions (or vice versa). If the linker indicates that
functions defined in assembler files cannot be resolved, it could be aresult of not prototyping the functions

properly as "cdecl" functions.

Converting to Watcom C/C++ 283

Common Problems

Hint: (16-bit applications only) Most 16-bit C compilers (including Watcom C/C++) have a"large"
memory model which means that four byte pointers are used for both code and data references. A
subtle point to watch out for involves differences between memory model definitions of different
compilers. The"cdecl" calling convention allows functions to assume that the DS segment register
pointsto the group "DGROUP". The Watcom C/C++ large memory model haswhat is called a
"floating DS". Any function used for the large memory model cannot assume that the DS segment
register points to the group "DGROUP'. There are afew possible recourses.

1. Theassembly code could save and restore the DS segment register and set DS to DGROUP
in order to conform to the Watcom C/C++ convention. If there are only afew accessesto
DGROUP datg, it is advisable to use the SS segment register which pointsto DGROUP in
the large memory model.

2. Theassembly function could be described using a pragmathat states that DS should point to
"DGROUP" before calling the function.

#pragma aux _Setcolor parm loadds
In the above example, _Setcolor isthe sample function being described.

3. Thefinal alternative would be the use of the "zdp" compiler option. The "zdp" option
informs the code generator that the DS register must always point to "DGROUP". Thisisthe

default in the small, medium and flat memory models. Note that "flat" is a 32-bit memory
model only.

42.3 What you should know about optimization

The C/C++ language contains features which allow simpler compilers to generate code of reasonable
quality. Register declarations and imbedding assignmentsin expressions are two of the ways that C allows
the programmer to "help" the compiler generate good quality code. An important point about the Watcom
C/C++ compiler isthat it is not asimportant (asit is with other compilers) to "help" the compiler. In order
to make good decisions about code generation, the Watcom C/C++ compiler uses modern optimization
techniques.

Hint: The definitive reference on compiler design isthe "dragon” book "Compilers - Principles,
Techniques, and Tools", Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, published by
Addison-Wesley, Reading, Massachusetts, 1986. The authors of the "dragon” book advocate a
conservative approach to code generation where optimizations must preserve the semantics of the
original program. The conservative approach is used throughout the Watcom C/C++ compiler to ensure
that programmers can use the compiler without worrying about the semantics of their program being
changed. The programmer can request that potentially unsafe optimizations be performed. With regard
tothe"oa" (ignore aliasing) option provided by the Watcom C/C++ compiler, the compiler only ignores
aliasing of global variables rather than ignore aliasing totally like other compilers.

There are certain pieces of information which the compiler cannot derive from the source code. The
"#pragma' compiler directive is used to provide extrainformation to the compiler. It isnecessary to havea
complete understanding of both C/C++ and the machine architecture (i.e., 80x86) before using the powerful

284 What you should know about optimization

Commonly Asked Questions and Answers

pragma compiler directives. Seethe "Pragmas" chapter in the Watcom C/C++ User’s Guide for more
details.

Debugging optimized programs is difficult because variables can be assigned to different locations (i.e.,
memory or registers) in different parts of the function. The "d2" compiler option will restrict the amount of
optimization so that variables occupy one location and can be easily displayed. It follows that the "d2"
option is useful for initial development but production programs should be compiled with only the "d1"
option for the best code quality. Before you distribute your application to others, you may wish to use the
Watcom Strip Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The"d2" compiler option will generate symbolic information (for every local variable) and line
number information for the source file. The"d1" compiler option will only generate line number
information for the sourcefile. The use of these options determines what kind of information will be
available for the particular module during the debugging session.

Incorrect programs can sometimes work when compiled with the "d2" option and not work when compiled
with the"d1" option. One way this sort of problem arisesinvolveslocal arrays.

voi d exanpl e(void)

int i;
int a[10];

for(i =0; i <= 10; ++i)
a[i] =i;
do_sonething(a);

}

The"for" loop initializes one too many array elements but the version compiled with the "d2" option will
overwrite the variable "i" without causing any problems. The same function compiled with the "d1" option
would have the variable "i" in aregister. The erroneous access of "a[10]" would modify a value that is used
to restore aregister when the function returns. The register would be "restored" with an incorrect value and
this would affect the execution of the function that called this function. The above example shows how a
program can work when compiled with the "d2" option and stop working when compiled with the "d1"
option. You should always test your program fully with all the modules compiled with the "d1" option to
protect yourself from any surprises.

42.4 The compiler cannot find "stdio.h"

The standard header files are usually located in the sub-directory that the Watcom C/C++ compiler is
installed in. Suppose that the header files are located in the sub-directory c¢: \ wat com h. If the
compiler indicates (through an error message) that it is unable to locate the file STDI O. H, we have
forgotten something. There are two ways to indicate to the Watcom C/C++ compiler the location of the
standard header files.

1. usethe NCLUDE environment variable
2. usethe"i" option (Watcom C/C++, Watcom Compile and Link)

The use of the environment variable is the simplest way to ensure that the include files will be found. For
instance, if you include the following line in your system initialization file, AUTOEXEC. BAT,

The compiler cannot find "stdio.h" 285

Common Problems

set include=c:\watcon h

the Watcom C/C++ compiler will be able to find the standard include files. The use of the"i" optionis
another way to give the directory name of the standard include files.

Example:
Cwee nyfile.c -ic:\watcom h
or
Cwee386 nyfile.c -ic:\watconmh
or
Cwop nyfile.cpp -ic:\watcom h
or

C>wpp386 nyfile.cpp -ic:\watcom h

The usual manner that these methods are combined is as follows. The INCLUDE environment variableis
used to give the location of the standard C library header files. Any directories of header fileslocal to a
specific programming project are often candidates for the "i" option method. See the "Watcom C/C++
#include File Processing” section of the chapter entitled "The Watcom C/C++ Compilers" in the Watcom
C/C++ User’s Guide for more details.

42.5 Resolving an "Undefined Reference" linker error

The Watcom Linker builds an executable file by a process of resolving references to functions or dataitems
that are declared in other source files. Certain conditions arise that cause the linker to generate an
"Undefined Reference” error message. An "Undefined Reference” error message will be displayed by the
linker when it cannot find a function or data item that was referenced in the program. Verify that you have
included all the required object modulesin the linker command and that you are linking with the correct
libraries. There are acouple of "undefined references" that require some explanation.

cstart The unresolved referencefor _cst art _ indicates that the linker cannot find the C/C++
run-time libraries. The 16-bit C run-time libraries for the small memory model are
clibs.liband either mat hs. i b, ormat h87s. i b. The32-bit Crun-time
libraries for the flat memory model compiled for the register-based argument passing
model arecl i b3r. | i b and, either mat h3r. i b, or mat h387r.1i b. Ensurethat
the WATCOM environment variableis set to the directory that Watcom C/C++ was
instaledin.

_fltused The _f |t used_ undefined reference indicates that floating-point arithmetic has been
used in the modules that exhibit this error. The remedy is to ensure that the linker can find
the appropriate math library. For the 16-bit small memory model, it is either
mat hs. i b, or mat h87s. | i b For the 32-bit register-based argument passing model, it
iseither mat h3r. i b, or mat h387r. | i b depending on which floating-point optionis
used. Ensurethat the WATCOM environment variable is set to the directory that Watcom
C/C++ wasinstalled in.

_small_code_ If this undefined reference occurs when you are trying to create a 16-bit application, we
have saved you many hours of debugging! The reason for this undefined reference is that
the "main" entry point has been compiled for a big code model (in any one of medium,
large, or huge memory models). Any of the modules that have this undefined reference
have been compiled for asmall code model (in any one of small or compact memory
models) and as such do not have the correct return instructions. Y ou should recompile the
modules so that all the modules are compiled for the same memory model. Combining

286 Resolving an "Undefined Reference" linker error

Commonly Asked Questions and Answers

source modules compiled for different memory modelsis very difficult and often leadsto
strange bugs. If your program has special considerations and this reference causes you
problems, thereis a"work-around". Y ou could resolve the reference with a PUBLIC
declaration in an assembler file or code the following in Watcom C/C++.

/* rest of your nodule */

void _small_code(void)

{}

The code generator will generate asingle RET instruction with the public symbol

_smal | _code_ attached to it. The common epilogue optimizations will probably
combine this function with another function’s RET instruction and you will not even pay
the small penalty of one byte of extra code.

There may be another cause of this problem, the "main" function must be entered in lower
case letters ("Main" or "MAIN" are not identified as being the same as "main" by the
compiler). The compiler will identify the module that contains the definition of the
function "main" by creating the public definition of either _smal | _code_ or

_bi g_code_ depending on the memory model it was compiled in.

_big_code_ Your modulethat contains the "main" entry point has been compiled with a 16-bit small
code model (small or compact). The modules that have this undefined reference have been
compiled in 16-bit big code models (medium, large, or huge). Y ou should recompile the
modules so that al the modules are compiled in the same memory model. Seethe
explanation for _snal | _code_ for more details.

main_ All C programs, except applications devel oped specifically for Microsoft Windows, must
have afunction called "main". The name "main" must be in lower case for the compiler to
generate the appropriate information in the "main" module.

WINMAIN All Windows programs must have a function called "WinMain". The function "WinMain"
must be declared "pascal” in order that the compiler generate the appropriate namein the
"WinMain" module.

42.6 Why my variables are not set to zero

The linker isthe program that handles the organization of code and data and builds the executable file. C
guarantees that all global and static uninitialized data will contain zeros. The"BSS" region contains all
uninitialized global and static datafor C programs (the name "BSS" is aremnant of the early UNIX C
compilers). Most C compilers take advantage of this situation by not explicitly storing all the zeros to
achieve smaller executablefile sizes. In order for the program to work correctly, there must be some code
(that will be executed before "main™) that will clear the "BSS' region. The code that is executed before
"main" is called "startup" code. The linker must indicate to the startup code where the "BSS" region is
located. In order to do this, the Watcom Linker (WLINK) treats the "BSS" segment (region) in a special
manner. The special variables’ _edata’ and’_end’ are constructed by the Watcom Linker so that the startup
code knows the beginning and end of the "BSS" region.

Some users may prefer to use the linker provided by another compiler vendor for development. In order to
have the program execute correctly, some extra care must be taken with other linkers. For instance, with
the Microsoft linker (LINK) you must ensure that the '/DOSSEG’ command line option isused. With the
Phar Lap Linker, you must use the "-DOSORDER" command line option. In general, if you must use other
linkers, extract the module that contains _cst art fromcl i b?. 1 i b (? will change depending on the

Why my variables are not set to zero 287

Common Problems

memory model) and specify the object file containing _cst art asthefirst object file to be processed by
thelinker. The object file will contain the information necessary for the linker to build the executable file
correctly.

42.7 What does "size of DGROUP exceeds 64K" mean for
16-bit applications?

This question applies to 16-bit applications. There are two types of segmentsin which datais stored. The
two types of segments are classified as "near" and "far". Thereis only one "near" segment while there may
be many "far" segments. The single "near" segment is provided for quick access to data but is limited to
lessthan 64K in size. Conversely, the "far" segments can hold more than 64K of data but suffer from a
dlight execution time penalty for accessing the data. The "near" segment islinked by arranging for the
different parts of the "near" segment to fall into agroup called DGROUP. See the section entitled
"Memory Layout" in the Watcom Linker User’s Guide for more details.

The 8086 architecture cannot support segments larger than 64K. Asaresult, if the size of DGROUP
exceeds 64K, the program cannot execute correctly. The basic idea behind solving this problem isto move
data out of the single "near" segment into one or more "far" segments. Of course, this solution does not
come without any penalties. The penalty is paid in decreased execution speed as a result of accessing "far"
dataitems. The magnitude of this execution speed penalty depends on the behavior of the program and, as
such, cannot be predicted (i.e., we cannot say that the program will take precisely 5% longer to execute).
The specific solution to this problem depends on the memory model being used in the compilation of the
program.

If you are compiling with the tiny, small, or medium memory models then there are two possible solutions.
The first solution involves changing the program source code so that any large data items are declared as
"far" dataitems and accessed with "far" pointers. The addition of the "far" keyword into the source code
makes the source code non-portable but this might be an acceptable tradeoff. See the "Advanced Types"
chapter in the Watcom C Language Reference manual for details on the use of the "near" and "far"
keywords. The second solution is to change memory models and use the large or compact memory model.
The use of the large or compact memory model allows the compiler to use "far" segmentsto store data
itemsthat are larger than 32K.

The large and compact memory models will only allocate dataitemsinto "far" segmentsif the size of the
dataitem exceeds 32K. If the size of DGROUP exceeds 64K then agood solution isto reduce the size
threshold so that smaller dataitems will be stored into "far" segments. The relevant compiler option to
accomplish thistask is"zt<num>". The"zt" option sets a data size threshold which, if exceeded, will
allocate the dataitemin "far" segments. For instance, if the option "zt100" is used, any dataitem larger
than 100 bytes will be allocated in "far" segments. A good starting value for the data threshold is 32 bytes
(i.e., "zt32"). The number of compilations necessary to reduce the size of DGROUP for a successful link
with WLINK depends on the program. Minimally, any files which allocate alot of dataitems should be
recompiled. The "zt<num>" option should be used for all subsequent compiles, but the recompilation of all
the source filesin the program is not necessary. If the "DGROUP exceeds 64K" WLINK error persists, the
threshold used in the "zt<num>" option should be reduced and all of the source files should be recompiled.

288 What does "size of DGROUP exceeds 64K" mean for 16-bit applications?

Commonly Asked Questions and Answers

42.8 What does "NULL assignment detected” mean in 16-bit
applications?

This question applies to 16-hit applications. The C language makes use of the concept of a NULL pointer.
The NULL pointer cannot be dereferenced according to the SO standard. The Watcom C/C++ compiler
cannot signal the programmer when the NULL address has been written to or read from because the
Intel-based personal computers do not have the necessary hardware support. The best that the run-time
system can do is help programmers find these sorts of errors through indirect means. The lower 32 bytes of
"near" memory have been seeded with 32 bytes of the value 0xO1. The C run-time function"_exit" checks
these 32 bytes to ensure that they have not been written over. Any modification of these 32 bytes resultsin
the "NULL assignment error" being printed before the program terminates.

Here is an overview of agood debugging technique for this sort of error:

use the Watcom Debugger to debug the program

let the program execute

find out what memory has been incorrectly modified

set awatchpoint on the modified memory address

restart the program with the watchpoint active

let the program execute, for a second time

when the memory location is modified, execution will be suspended

Nogas~wdDE

We will go through the commands that are executed for this debugging session. First of all, we invoke the
Watcom Debugger from the command line as follows:

Cwd myprog
Once we are in the debugger type:
DBG>go

The program will now execute to completion. At this point we can look at the output screen with the
debugger command, "FLIP".

DBG>f 1 i p

We would see that the program had the run-time error "NULL assignment detected”. At this point, all we
have to do is find out what memory locations were modified by the program.

The following command will display the lower 16 bytes of "near" memory.

DBG>exam ne __null area

The command should display 16 bytes of value 0x01. Press the space bar to display the next 16 bytes of
memory. This should also display 16 bytes of value 0x01. Notice that the following data has two bytes
which have been erroneously modified by the program.

__nullarea 01 01 56 12 01 01 01 01-01 01 01 01 01 01 01 01
__nullarea+l6 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

Theidea behind this debugging technique is to set a watchpoint on the modified memory so that execution

of the program will be suspended when it modifies the memory. The following command will "watch" the
memory for you.

What does "NULL assignment detected” mean in 16-bit applications? 289

Common Problems

DBG>wat ch __ nul | area+2

There has to be away to restart the program without leaving the Watcom Debugger so that the watchpoint
is active during a subsequent execution of the program. The Watcom Debugger command "NEW" will
reload the program and prepare for a new invocation of the program.

DBG>new
DBG>go

The Watcom Debugger command "GO" will start execution of the program. Y ou may notice that the
program executes much slower than usual but eventually the debugger will show the part of the program
that modified the two bytes. At this point, you might want to clear the watchpoint and proceed to debug
why the memory was modified. The command to clear the watchpoint is:

DBG>wat ch/ cl ear 1

The "1" indicates that you want watchpoint number 1 to be cleared. Typing "WATCH" by itself will print
out al active watchpoints. The above technique is generally useful for any type of memory overwrite error
provided you know which memory location has been overwritten.

Hint: The Watcom Debugger allows many commands to have short forms. For instance, the
"EXAMINE" command can be shortened to an "E". We used the full commands in the examples for
clarity.

42.9 What "Stack Overflow!" means

The memory used for local variablesis allocated from the function call stack although the Watcom
compilers will often use registers for local variables. The size of the function call stack islimited at
link-time and it is possible to exceed the amount of stack space during execution. The Watcom run-time
library will perform checks whenever alarge amount of stack spaceisrequired by afunction but it is up to
the user to check stack requirements before calling a Watcom run-time function. Compiling programs with
stack checking will ensure that there is enough stack space to call a Watcom run-time function.

There are various ways of protecting against stack overflow errors. First, one should minimize the number
of recursive functions used in an application program. This can be done by recoding recursive functions to
use loops. Keep the amount of stack used in functions to a minimum by using and reusing static arrays
whenever possible. These techniques will reduce the amount of stack space required but there still may be
times where the default amount of stack spaceisinsufficient. The Watcom Linker (WLINK) allows the
user to set the amount of stack space at link-time through the directive "OPTION STACK=size" where size
may be specified in bytes with an optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Debugging a program that reports a stack overflow error can be accomplished with the following sequence.
1. Load your application into the debugger

2. Setabreskpointat STKOVERFLOW

290 What "Stack Overflow!" means

Commonly Asked Questions and Answers

3. Runthe application until the breakpoint at __ STKOVERFLOWis triggered

4. Issuethe debugger "show calls' command. Thiswill display a stack traceback giving you the
path of callsthat led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

42.10 Why redefinition errors are issued from WLINK

This question comes up often in discussions about porting old UNIX or Microsoft C programs. The
problem stems from the forgiving nature of early UNIX linkers. In early C code, it was common to define
header fileslike this:

Example:
/* define global variables */
int line_count;
i nt word_count;
i nt char_count;

The header file would then be included in many different modules. The C compiler would generate a
definition of each variable in each module and leave it to the linker to pick one and resolve all references to
onevariable. The development of the ANSI C standard made this practice non-conforming. The Watcom
C compiler isan ISO/ANSI C compiler and as such, is not required to support this obsolete behavior. The
effect isthat WLINK will report redefinition errors. The header file must be coded in such away that the
variables are defined in one module. One way to do thisis asfollows:

Example:
#i f def DEFI NE_HERE
#defi ne GLOBAL
#el se
#define GLOBAL extern
#endi f
/* define global variables */
GLOBAL int line_count;
GLOBAL int word_count;
GLOBAL int char_count;

In most modules, the macro "DEFINE_HERE" will not be defined so the file will be equivalent to:

Example:
/* define global variables */
extern int line_count;
extern int word_count;
extern int char_count;

In one module, the macro "DEFINE_HERE" must be defined before the header fileisincluded. Thiscan
be done by defining the macro on the command line or by coding like this:

Why redefinition errors are issued from WLINK 291

Common Problems

Example:

#def i ne DEFI NE_HERE
#i ncl ude "gl obal s. h"

42.11 How more than 20 files at a time can be opened

The number of file handles allowed by Watcom C/C++ isinitiadlized to 20in st di 0. h, but thiscan be
changed by the application developer. To change the number of file handles allowed with Watcom C/C++,

follow the steps outlined below.

1.

3.

Let n represent the number of files the application devel oper wishes to have open. Ensure that

the stdin, stdout, stderr, stdaux, and stdprn files are included in the count.

Change the CONFI G SYSfileto include "files=n" where "n" is the number of file handles
required by the application plus an additional 5 handles for the standard files (this applies to
DOS5.0). The number "n" may vary depending on your operating system and version. If you
are running a network such as Novell’s NetWare, thiswill also affect the number of available
file handles. Inthis case, you may have to increase the number specified in the "files=n"

statement.

Addacal to _grow_handl es inyour application.

The following example illustrates the use of _gr ow_handl es.

Example:

/*

*

* Ok ¥ F kX X ok

HANDLES. C

This C program grows the nunber of file handles so
nore than 16 files can be opened. This program
illustrates the interacti on between _grow handl es and
the DOS 5.0 file system If you are running a network
such as Novell’'s NetWare, this will also affect the
nunber of available file handles. In the actual trial,
FI LES=40 was specified in CONFI G SYS.

292 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

#i ncl ude <stdi o. h>
voi d main()

i nt i, j, maxh, naxo;
FILE *tenp_files[50];

for(i =25; i <40; i++) {
/* count 5 for stdin,stdout, stderr, stdaux, stdprn */
printf("Trying for %.2d handles...", 5 + i);
maxh = grow _handles(5 + i);
maxo = O;
for(j =0; j < maxh; j++) {

tenmp_files[j] = tnpfile();
if(tenmp_files[j] == NULL)break;
Maxo++;

printf(" %/ % tenp files opened\n", maxo, nmaxh);
for(j =0; j < maxo; j++) {

fclose(temp _files[j]);
}

42.12 How source files can be seen in the debugger

The selection and use of debugging information isimportant for getting the most out of the Watcom
Debugger. If you are not able to see your source code in the Watcom Debugger source window, there are
three areas where things may have gone wrong, namely:

1. usingthe correct option for the Watcom C/C++.
2. using the correct directives for the Watcom Linker.
3. using theright commands in the Watcom Debugger.

The Watcom C/C++ compiler takes C/C++ source and creates an object file containing the generated code.
By default, no debugging information isincluded in the object file. The compiler will output debugging
information into the object file if you specify a debugging option during the compile. There aretwo levels
of debugging information that the compiler can generate:

1. Linenumbersand local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you are
debugging a particular module. If you usethe "d2" option, you will be able to see your source file and
display your local variables. The"d1" option will display the source but will not give you access to local
variable information.

The Watcom Linker (WLINK) isthetool that puts together a complete program and sets up the debugging
information for all the modulesin the executable file. Thereisalinker directive that indicates to the linker
when it should include debugging information from the modules. There are five levels of debugging
information that can be collected during the link. These are;

1. globa names (DEBUG)

How source files can be seen in the debugger 293

Common Problems

global names, line numbers (DEBUG LINE)
global names, types (DEBUG TY PES)

global names, local variables (DEBUG LOCALYS)
all of the above (DEBUG ALL)

gk wnN

Notice that global names will always be included in any request for debugging information. The debugging
options can be combined

DEBUG LI NE, TYPES

with the above directive resulting in full line number and typing information being available during
debugging. The directives are position dependent so you must precede any object files and libraries with
the debugging directive. For instance, if thefile nyl i nk. | nk contained:

#

invoke with: wink @ryylink
#

file main

debug line

file input, output

debug al

file process

then themodules i nput and out put will have global names and source line information available during
debugging. All debugging information in the module pr ocess will be available during debugging.

Hint: A subtle point to debugging information is that all the modules will have global names available
if any debugging directive isused. In the above example, the module nai n will have global name
information even though it does not have a DEBUG directive preceding it.

It is preferable to have one DEBUG directive before any FILE and LIBRARY directives. Y ou might
wonder if thisincreases the size of the executable file so that it will occupy too much memory during
debugging. The debugging information isloaded "on demand" by the debugger during the debugging
session. A small amount of memory (40k default, selectable with the Watcom Debugger "dynamic”
command line option) is used to hold the most recently used module debugging information. In practice,
this approach saves alot of memory because most debugging information is never used. The overhead of
accessing the disk for debugging information is negligible compared to accessing the source file
information. In other words, you can have as much debugging information as you want included in the
executable file without sacrificing memory required by the program. See the section entitled "The DEBUG
Directive" in the Watcom Linker User’s Guide for more details.

If the previous steps have been followed, you should be well on your way to debugging your programs with
source lineinformation. There are instances where the Watcom Debugger cannot find the appropriate
source file even though it knows all the line numbers. The problem that has surfaced involves how the
source file is associated with the debugging information of the module. The original location of the source
fileisincluded in the debugging information for amodule. The name that isincluded in the debugging
information is the original name that was on the Watcom C/C++ command line. If the original filenameis
no longer valid (i.e., you have moved the executabl e to another directory), the Watcom Debugger must be
told where to find the source files. The Watcom Debugger " Source Path" menu item (under "File") can be
used to supply new directoriesto search for sourcefiles. If your source files are located in two directories,
the following paths can be added in the Watcom Debugger:

294 How source files can be seen in the debugger

Commonly Asked Questions and Answers

c:\programic*.c
c:\programinewc*.c

The"*" character indicates where the module name will be inserted while the Watcom Debugger is
searching for the source file. See the description of the "Source Path" menu item in the Watcom Debugger
User’s Guide for more details.

42.13 The difference between the "d1" and "d2" compiler
options

The reason that there are two levels of debugging information availableis that the code optimizer can
perform many more optimizations and still maintain "d1" (line) information. The "d2" option forcesthe
code optimizer to ensure that any local variable can be displayed at any timein the function. To illustrate
why this results in less optimum code being generated for afunction, let uslook at asimple array
initialization.

extern int a[100];

void init_a(void)

{

int i;

< 100; ++) {

for(i =0; i
= 3*i;

ali]
}
}

The code optimizer will ensure that you can print the value of the variable "i" a any time during the
execution of the loop. The "d2" option will always generate code and debugging information so that you
can print the value of any variable during the execution of the function. In order to get the best code
possible and still see your source file while debugging, the "d1" option only generates line number
information into the object file. With line number information, much better code can be generated. Hereis
the C equivaent of the code generated for the array initialization example.

extern int a[100];

void init_a(void)

L
int *t1;
int t2;
[* for(i =0; i < 100; ++i) { */
tl = a;
t2 = 0;
do {
[* a[i] = 3*i; */
*t1l = t2;
++t 1;
t2 += 3;
[* } */
} while(t1 !'=a + 100);
}

The difference between the "d1" and "d2" compiler options 295

Common Problems

The above code executes very quickly but notice that the variable "i" has been split into two different
variables. One of the variables handles the use of "i" as an array index and the other handles the cal culation
of "3*i". The debugging of programs that have undergone extensive optimization can be difficult, but with
the source line information it is much easier. To summarize, use the "d2" compiler option if you are
developing a module and you would like to be able to display each local variable. The"d1" compiler
option will give you line number information and the best generated code possible. There is absolutely no
reason not to specify the "d1" option because the code quality will be identical to code generated without
the "d1" option.

296 The difference between the "d1" and "d2" compiler options

Index

16-bit 137

16-bit DLL 163

16-bit DOS applications 5

16-hit far pointer 137

16-bit near pointer 137

16-bit OS/2 1.x applications 237

16-bit Windows 3.x application 119

16-bit Windows 3.x applications 119

16-bit Windows 3.x non-GUI applications 123
_16xxx functions 203

32-bit 137

32-bit DLL 155, 163

32-bit DOS/AGW applications 13

32-bit far pointer 137

32-hit gates 56

32-bit near pointer 137

32-bit OS/2 applications 241

32-hit Phar Lap 386|DOS-Extender applications 9
32-bit Windows 3.x application 127

32-bit Windows 3.x applications 127

32-bit Windows 3.x non-GUI applications 131
386enh 142

386LINK 287

4GWPRO.EXE 112

8042 auxiliary processor 49

__A000 199
A20line 49-50
addressline 20 50
AllocAliasl6 170, 145, 171, 177, 188, 197
AllocHugeAliasl6 171, 145, 171, 178, 188
answers to general problems 279
API special functions 203
application development 1
arguments
what you need to know 281
array subscript errors
how they hurt 285
AUTOEXEC.BAT
systeminitialization file 285
autopassup range 56
auxiliary pragma
loadds 284

__BO000 199

_ B800 199

BBS 280

_beginthread function 220, 246

bi-modal interrupt 32

_big_code_ 287

binding 32-bit applications 128, 133
binding a32-bit DLL 129, 133

BINP directory 239

BINW directory 129, 133

BSS segment 287

building 386|DOS-Extender applications 9
building DOS applications 5

building DOS/4AGW applications 13
building OS/2 1.x applications 238

building OS/2 applications 242

building Windows 3.x applications 120, 128
building Windows NT applications 211, 215
bulletin board 280

297

Index

__C000 199
_Call16 172, 150-151, 181, 195-196
CALLBACKPTR 201
calling convention
what you need to know 281
calling conventions
cdecl 283
Catch 142
cdecl 150, 172, 175, 231
caling convention 283
class 143
clearing
variables 287
COMMDLG.H 142
common questions 279
DOS/4GW 101
Compaq 386 memory 48
compile options
zdp 284
CompuServe 280
CONFIG.SYS 239, 261
const 169
converting to Watcom C/C++ 280
common problems 280
from IBM-compatible PC compilers 283
from UNIX 282
what you need to know 280
cstart 286
CUSTCNTL.H 142

__ D000 199

dl 285

d1 versusd2 295

d2 285

DDE.H 142

DDEML.H 142

debugging 285
memory bugs 289
NULL assignment detected 289
optimized programs 285, 295
stack overflow 290
techniques 289-290

debugging 386|DOS-Extender applications 10

298

debugging DOS applications 6
debugging DOS/AGW applications 14
debugging information
global variables 293
line numbering 293
local variables 293
source file 293
types 293
Watcom C/C++ 293
Watcom Debugger 294
WLINK 293
debugging Non-GUI 16-hbit Windows 3.x
applications 125
debugging Non-GUI 32-bit Windows 3.x
applications 134
debugging OS/2 1.x applications 238
debugging OS/2 applications 242
debugging Windows 3.x applications 120, 129
debugging Windows NT applications 212, 216
default windowing library functions 126, 135
DefineDLLEnNtry 174
DefineUserProcl6 175, 184
DELETESWAP virtual memory option 51,
110-111
DevHIp 261
device driver header 260
DEVICE= 261
DGROUP size exceeds 64K 288
distribution rights 142
DLL 259
16-bit 163
16-bit callsinto 32-bit DLLs 158
16-bit cover 159
32-bit 155, 163
32-bit Windows example 156
creating 160-161
debugging 160
debugging example 161
installing example 161
0S/22.x 249
running example 161
summary 162
Windows NT 223
DLL access
0S/22x 252
Windows NT 227
DLL creation
0S/22.x 249
Windows NT 223
DLL directory 239
DLL initialization
0S/22x 253
DLL sample
0S/22.x 250

Index

Windows NT 224
DLL termination
0S/22x 253
DLL_CHAR 174
DLL DWORD 174
DLL_ENDLIST 174
__dll_initialize 254
DLL_PTR 174
__dIl_terminate 254
DLL_WORD 174
DOS extenders
common problems 17
DOSfilel/O 109
DOS memory 24
using DOS/4AGW 24
using Phar Lap 25
DOS memory management 65
DOS Protected-Mode Interface 59
DOS/AGW
AGWPRO.EXE 112
addressline 20 50
asynchronous interrupts 106
bi-modal interrupt 32
cannot lock stack 116
chaining handlers 57
code and data addresses 105
common questions 101
contacting Tenberry 102
Ctrl-Break handling 107
debugger version 112
debugging bound applications 112
demand-loading 110
differences with DOS4G 103
differences with Professional version 102
documentation 102
DOSfilel/O 109
DOSX.EXE 116
DPMI support 104
EMM386.EXE 115
error messages 96
extender messages 93
extramemory 48
int 70h-77h 107
interrupt handler address 57
interrupt handlers 57, 107
kernel error messages 93
linear vs physical addresses 105
locking memory 107
Lotus 1-2-3 115
low memory access 105
memory addressability 109
memory control 47
memory range 47
memory use 42

mouse support 109
NULL pointer references 106
0S/2 bug 116
out of memory 110
pointersvs linear addresses 105
realloc 108
register dump 113
runtime options 49
spawning 109
switch mode setting 46
TCPIP.EXE 116
telephone support 102
transfer stack overflow 113
TSR not supported 39
unexpected interrupt 112
utilities 85
VESA support 109
VM configuration 111
VMM 109
VMM instability 110
VMM restriction 39
Windows NT bug 116
DOS/AGW DOS extender 39
DOS16M
+ option 48
A20 option 50
loops option 50
runtime options 49
DOS16M environment variable 45-50, 89
DOSAG
NULLP option 45, 106
QUIET option 45
VERBOSE option 45, 113
DOSAG environment variable 45
DOSAGPATH environment variable 41
DOAGVM
DELETESWAP 110-111
MAXMEM 111
MINMEM 111
SWAPINC 110-111
SWAPMIN 110-111
SWAPNAME 110
VIRTUALSIZE 110-111
DOSAGVM environment variable 51-52
DOAGVM.SWP 51
DOSAGW 86
DOAGW.EXE 41
DosFreeModule 250
DosLoadModule 250-251
DosSleep 261
DOSX.EXE 116
DPMI 48, 56, 59
allocate DOS memory block 65
allocate memory block 78

299

Index

allocate real-mode callback address 72
demand paging 79
discard page 80
free DOS memory block 66
free memory block 78
free physical address mapping 81
free real-mode callback address 76
function calls 60
get and disable virtua interrupt state 82
get and enable virtual interrupt state 82
get API entry point 83
get coprocessor status 83
get DPMI version 76
get exception handler vector 67
get free memory information 77
get page size 79
get protected-mode interrupt vector 68
get real-mode interrupt vector 67
get virtual interrupt state 82
lock linear region 79
mark page 79
physical address mapping 80
resize DOS memory block 66
resize memory block 78
set coprocessor emulation 84
set exception handler vector 67
set protected-mode interrupt vector 68
set real-mode interrupt vector 67
simulate real-mode far call 71
simulate real-mode interrupt 70
simulate real-modeiret call 72
unlock linear region 79
vendor extensions 83
virtual interrupt state 81
DPMI host
386Max 59
0S2VDM 59
QEMM QDPMI 59
Windows 3.1 59
DPMI specification 17, 23, 102
DPMI_MEMORY _LIMIT
DOS setting 116
dragon book 284
DRIVINIT.H 142
DS segment register 284
_dwDeleteOnClose 126, 135
DWORD 150, 201
_dwSetAboutDlg 126, 135
_dwSetAppTitle 126, 135
_dwSetConTitle 126, 135
_dwShutDown 126, 135
_dwYied 126, 135
dynamic link libraries 239
0S/22.x 249

300

Windows NT 223

dynamic link library 155, 163

dynamic link library access
0S/22x 252
Windows NT 227

dynamic link library creation
0S/22.x 249
Windows NT 223

dynamic link library initialization
0S/22x 253

dynamic link library sample
0S/22.x 250
Windows NT 224

dynamic link library termination
0S/22x 253

dynamic linking 223, 249

__E000 199
EMM386.EXE 115
_endthread function 220, 246
EnumChildWindows 183
EnumFonts 183
EnumMetaFile 183
EnumObjects 183
EnumProps 183
enums 209
EnumTaskWindows 184
EnumWindows 184
environment variables
DOS16M 45-50, 89
DOSAG 45
DOSAGPATH 41
DOAGVM 51-52
INCLUDE 163, 222, 247, 265, 285-286
NETWARE_INCLUDE 265
PATH 129, 133, 163
WATCOM 129, 133, 221, 247, 286
WINDOWS INCLUDE 163, 168
errno 169
error messages
DOS/AGW 96
kernel 93
example
variable number of arguments 282
EXE header 260
executable
linear 41
segmented 41

Index

executablefile 6, 10, 14, 120, 124, 128, 132, 212, GETPROC_GLOBALNOTIFY 184
216, 238, 242 GETPROC_GRAYSTRING 184
extended memory 45 GETPROC_LINEDDA 184
extender messages GETPROC_SETRESOURCEHANDLER 184
DOS/4GW 93 GETPROC_SETTIMER 184

GETPROC_SETWINDOWSHOOK 184
GETPROC _USERDEFINED 1 175
GETPROC _USERDEFINED_32 175

F GETPROC _USERDEFINED x 184
GetProcAddr 196

GetProcAddress 150, 172, 195
GlobalAlloc 146

__FO00 199 GlobalLock 196-197
far 137-138, 142, 184, 276 GlobalNotify 184
far pointer 137 GMEM_DDESHARE 146
files GrayString 184
more than 20 292 grow_handles 292
unableto find 285 GWL_ WNDPROC 149
_fltused 286 B
free 146, 181
freememory 19
using DOS/4GW 20 H

using Phar Lap 21
using Windows 3.x 22
FreeAliasl6 177, 145

FreeHugeAliasl6 178, 178 header
FreelndirectFunctionHandle 179, 172, 181, devicedriver 260-261

195-196 EXE 260
FreelLibrary 226 header files 285
FreeProclnstance 148 _HEADER 259
FTP site 280 hello program 5, 9, 13, 237, 241
Fujitsu FMR-70 switch mode setting 46 HIMEM.SYS 49

HINDIR 201

Hitachi B32 switch mode setting 46
HRTEST.EXE 261

G HRTIMER.SYS 259
GetlndirectFunctionHandle 181, 172, 179, 186,
195-196

GetLastError 226
GetModuleFileName 225

GetProcl6 183, 144, 146, 175, 193, 196 8253 timer 261
GETPROC_ABORTPROC 183 IBM PS/55 switch mode setting 46
GETPROC_CALLBACK 183 IBM-compatible PC compilers 283
GETPROC_ENUMCHILDWINDOWS 183 IDT 56
GETPROC_ENUMFONTS 183 import 266
GETPROC_ENUMMETAFILE 183 import definitions 223, 249
GETPROC_ENUMOBJECTS 183 import library 227, 252
GETPROC_ENUMPROPS _FIXED_DS 183 INCLUDE environment variable 163, 222, 247,
GETPROC_ENUMPROPS_MOVEABLE_DS 265, 285-286

183 INDIR_CDECL 181
GETPROC_ENUMTASKWINDOWS 184 INDIR_CHAR 181
GETPROC_ENUMWINDOWS 184 INDIR_DWORD 181

301

Index

INDIR_ENDLIST 181
INDIR_PTR 181, 186
INDIR_WORD 181
_INITCODE 259
_INITDATA 259
INITGLOBAL 260
initialization
0S/2 2.x dynamic link library 253
initialized global data 287
Instant-D 41
int 138
INT 21H 53
INT 31H 21,59
int 31H function calls 60
INT 33H
using DOS/4GW 28
integer/pointer equivalence 281
inter-language calls 269
interrupt handling 56
interrupt services 67
interrupts
real-mode simulation 30
invalid conversion 281
Invokel ndirectFunction 186, 181, 195-196
Invokel ndirectFunctionHandle 172
iostream 5, 9, 13, 124, 132, 237, 241
ISO/ANSI standard
NULL 289
variable number of arguments 281

kernel error messages 93
keyboard status 49

LDT 60
LE format 41
LibMain 225-226, 250-251
library functions

default windowing 126, 135
line number information 285
linear executable 41
LineDDA 184
LINK 287
LINK386 287

302

linker

undefined references 286
loadds pragma option 284
LoadLibrary 195, 225-226

returns 226

NULL. 226

local descriptor table 60
LocaAlloc 146
LocalLock 144
LocalPtr 199
longimp 142
Lotus 1-2-3 115
LZEXPAND.H 142

M

macros
__WATCOMC__ 283
main_ 287
MakeProclnstance 146, 148
malloc 146, 181
MapAliasToFlat 188
MAXMEM virtual memory option 51, 111
memory management services 77
memory models
what you need to know 281
memory transfer rate 87
memory wait states 87
message
header files 285
unableto find files 285
undefined references 286
MessageBox 119, 127, 211
messages
DOS/AGW 93
Microsoft
LINK 287
LINK386 287
Microsoft Win32 SDK 231
MINMEM virtual memory option 51, 111
mixed-language programming 269
argument passing 270
common blocks 275
integer type 271
linking issues 271
memory models 270
parameter passing 270
passing integers 271-272
passing strings 273-274
symbol names 269

Index

variable number of arguments 276
MK_FP16 189, 153, 197
MK_FP32 190, 138, 144, 152, 174, 189, 197
MK_LOCAL32 191, 144, 152-153
MMSYSTEM.H 142
mode switching

basis 90

performance 87
module 266
mouse interrupt

using DOS/4GW 28
multi-threaded applications 219, 245

0S/22.x 245

Windows NT 219
multi-threading issues

0S/22.x 245

Windows NT 219

NE format 41
near 137
near pointer 137
NEC 98-series switch mode setting 46
NETWARE_INCLUDE environment variable
265
NLM
debugging 265
header files 265
import libraries 265
libraries 265
sampler 265
NLM support
version 4.0 265
version 4.1 265
NOAUTOPROCS 148
NOCOVERSENDS 145-146
Novell
TCPIP.EXE 116
NT development 209
NULL assignment detected 289
debugging 289
NULL pointer 282
NULLP 45

object file 6, 10, 14, 120, 124, 128, 132, 212, 216,

238, 242
OKI if800 switch mode setting 46
OLE.H 142
opening more than 20 files 292
optimization
suggested reading 284
what you should know 284
0S/2
fullscreen application 237, 241
PM-compatible application 237, 241
Presentation Manager application 237, 241
OS2 PDD 259
0OS/2 physical device drivers 259
OS2 PM
API cdls 256
non-GUI applications 255
non-GUI example 255
0S/2 Presentation Manager 255
0S2.LIB 260

page locking services 78
page tuning services 79
parameters

what you need to know 281
PASCAL 1950, 172, 175
PASS WORD_AS POINTER 192
patch level 279
patches 279
PATH environment variable 129, 133
PATH, environment variable 163
PDD 259
PENWIN.H 142
PENWOEM.H 142
performance 88
Phar Lap

386LINK 287
Phar Lap TNT 209
physical device drivers 259
PMINFO 47, 87
pointers

16-bit 137

32-hit 137

303

Index

far 137
near 137
portability
NULL pointer 282
signed char 282
porting
from Microsoft C 291
from UNIX 291

segment ordering 260
segment registers

DS 284
gg& ﬁ%?gr?il 02n§1231 segmented executable 41
selector

pragma 284 A000 199
loadds option 284 __BO00 199
predefined macros __B800 199
__ WATCOMC__ 283 ~C000 199
PRINT.H 142 D000 199
printf 5,9, 13, 124, 132, 215, 237, 241 " E000 199
private memory pool 89 " FO00 199
PRIVATXM 48, 89, 115 LocalPtr 199

problems
with d2 and d1 options 285
PROCPTR 196, 201

SendDIgltemMessage 145
SendMessage 145

_ setjmp 142

program timer 261 SetResourceHandler 184
protected mode 49 SetTimer 184

PS/2 switch mode setting 46 setvbuf 109

pushing arguments
what you need to know 281

SetWindowLong 149
SetWindowsHook 184
SHELLAPI.H 142
short 138

signed char 282

Q simulating real-mode interrupts 30
size of DGROUP exceeds 64K 288
_small_code 286
questions 279 spawn 26
using Phar Lap 27
stack overflow 290
static linking 223, 249
R Strategy routine 260
STRESSH 142
structure alignment 209
stub program 41, 86
real mode 49 supervisor 128, 132
real-mode memory 24 SWAPINC virtual memory option 51, 110-111
using DOS4GW 24 SWAPMIN virtual memory option 51, 110-111
using Phar Lap 25 SWAPNAME virtua memory option 51, 110
registers switch mode setting
calling convention 281 Fujitsu FMR-70 46
ReleaseProc16 193 Hitachi B32 46
request packets 261 IBM PS/55 46
resource compiler 129, 133 NEC 98-series 46
RMINFO 90 OK1 if800 46

PS/2 46
switching modes
performance 87

304

Index

symbolic information 285
system configuration file 239
systeminitialization file
AUTOEXEC.BAT 285
SYSTEM.INI 142

TCPIP.EXE 116
TECHINFO 279
technical support

Tenberry Software 101
termination

0S/2 2.x dynamic link library 253

thread creation
0S/2 2.x 245-246
Windows NT 219-220
thread example
0S/22.x 247
Windows NT 221
thread identifier
0S/2 2.x 246
Windows NT 220
thread limits
0S/2 2.x 248
thread termination
0S/22.x 246
Windows NT 220
_threadid macro 220, 246
threads of execution 219, 245
Throw 142
timer
18523 261
TIMER.EXE 261
TIsAlloc 225-226
TIsFree 226
TNT 209
TOOLHELP.H 142
transfer rate
memory 87
trandation services 69

UDP16_CDECL 175
UDP16_CHAR 175
UDP16_DWORD 175

UDP16_ENDLIST 175
UDP16 PTR 175
UDP16 WORD 175
unable to find files 285

undefined references 286

_big_code 287

cstart 286

fltused 286

main_ 287

_small_code 286

WinMain 287
UNIX 282

variable number of arguments 282

variables
set to zero 287
VCPI 48
VERH 142
VERBOSE 45
video memory 18
using DOS/AGW 18
using Phar Lap 19

virtual memory manager 51, 109
VIRTUALSIZE virtual memory option 51,

110-111
Visual Basic 163
16-bit DLL 166-167
32-bit DLL 166

building examples 168

example 164

Version 3.0 163
VMC extension 52
VMM 51, 109

w

W386DLL.EXT 129, 133

Watcom C/C++

calling convention 281

converting to 280
unique aspects 281
Watcom C/C++ options
dl 285, 293, 295
d2 285, 293, 295

i 285

305

Index

WATCOM environment variable 129, 133, 221,
247, 286
Watcom Strip Utility 285
_ WATCOM_Prelude 265
__ WATCOMC__ 283
WBIND 128-129, 133, 196
WBIND.EXE 128, 132-133
WCL 6-7,120-121, 125, 238-239
WCL386 10-11, 14-15, 129-130, 134, 212-213,
216-217, 242-243
WDEBUG.386 142
WEMU387.386 142
WIN16.H 141
Win32 SDK 231
WIN386 library routines 169
WIN386.EXT 128-129, 132-133
_WIN386.H 141
Win386LibEntry 163
windowed applications
default windowing environment 123, 131
Windows
binding 32-bit applications 128, 133
Windows 3.x extender 137
_16xxx functions 196, 203
32-hit callback routines 196
dliases 197
AllocAliasl6 197
calling 16-hit code 195
components 139
creating applications 140
floating-point 142
function pointers 196
MK_FP16 197
MK_FP32 197
multiple instances 143
overview 138
pointer conversion 144
pointer handling 143
pointers 137
pointersin structures 197
programming notes 141
questions 195
resources 196
special functions 203
structure 139
thunks 197
WinExec 195
Windows API functions
Catch 142
Throw 142
Windows NT 209
character-mode applications 209
GUI applications 209
programming notes 209

306

programming overview 209
Windows NT Character-mode application 215
Windows NT Character-mode applications 215
Windows NT GUI application 211
Windows NT GUI applications 211
Windows supervisor 128, 132
WINDOWS.H 141-142, 145
__WINDOWS 386__ 168
__WINDOWS__ 168
WINDOWS INCLUDE environment variable
163, 168
WinMain 155, 287
WORD 201
WSTUB.C 41

XMS 49

