Open Watcom FORTRAN 77

Language Reference

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Preface

Open Watcom FORTRAN 77 is an implementation of the American National Standard programming
language FORTRAN, ANSI X3.9-1978, commonly referred to as FORTRAN 77. The language level
supported by Open Watcom FORTRAN 77 compilers includes the full language definition aswell as
significant extensions to the language. Open Watcom FORTRAN 77 compilers are based upon some well
known FORTRAN language compilers, namely the University of Waterloo’'s WATFOR and WATFIV-S
compilers (implementations for the International Business Machines 370 series) and the WATFOR-11
compiler (an implementation for the Digital Equipment PDP11).

This manual describes the language level supported by Open Watcom FORTRAN 77 including extensions
to the standard language. Shaded areas in the book denote a Open Watcom FORTRAN 77 language
extension. Occasionally, where an entire section or chapter deals with alanguage extension, the text may
not be shaded. Users should note that extensions which are supported by this compiler may not be
supported by other compilers. We leave the choice to use a particular extension to the discretion of the
programmer.

An accompanying manual, the User’s Guide, contains system specific topics such as how to run the
software on your system, file system support, compiler options, etc.

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. Thesetags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

Much of the information contained in this document was taken from the ANSI publication "American
National Standard Programming Language FORTRAN, ANSI X3.9-1978". We recommend that anyone
who isinterested in the definitive description of FORTRAN 77 obtain a copy of thisdocument. Their
addressis. American National Standards Ingtitute, Inc., 1430 Broadway, New Y ork, New York, U.S.A.
10018.

July, 1997.

Table of Contents

LaNQUAGE REFEIEINCEoviiteiee ittt et sttt h e bt s ae e b e ebesbesb e be b e se et e nt e e e e ebeeseeaesbeneas

1 FORTRAN Source Program FOIMMELcceiiiiiinieiereeieee e e

1.1 Character Set

1.2 EXtended CharaCler SEL ..ottt bbbt s
1.3 S0UrCe Program FOMMELcoerieiierieieieine ettt sne e nne

1.3.1 Comment

I L T

1.3.2 Debug Ling (EXLENSION)cc.coeeieeeieieeeeeteresee e sesee st e see e esaeae e e ne s e s e snesnesnenns

1.3.3 Initid Lin

LN

1.3.4 ContiNUALTON LiNEcooiveiiieeiireesree e e
1.3.5 Significance of the Blank CharaCtercocooeieriniieneienreeerce e
1.3.6 Significance of Lower Case Characters (EXtension)ccccceevvenvenienencneniens

1.3.7 Examples
1.4 Order of FORTRA

2 FORTRAN Statements

N StatementS anNd LINESooivceeieieeieeeeee et s e

2.1 ClasSifyiNg StALEMENESccveieeeeeeeeeee et se e e eseesessesnesresresnenrenees
2.2 FORTRAN Staement SUMIMAIYccceeveieerieieesieseesieseesseseessesessseessssseesssssessssssessessenns

2.3 ADMIT Statement

2.4 ALLOCATE SEBEMENTovviveiiiiiteieiesesesiete ettt ettt sn e senes
2.5 Statement Label Assignment (ASSIGN) Statementccooeoririnienienenese e
2.6 AT END SEBLEIMENTvivieiiriiieeee ettt sttt b ettt e bt sn bt
2.7 BACKSPACE SHEEMENT ...oecviiiieiieeierieesteesiees ettt si e b e ere e
2.8 BLOCK DATA SEAEMENT ...ecueiviiirieenieieeiesiete sttt st r e s be s ebeseebeseereseas

2.9 CALL Statement .

2.10 CASE Statement

2.11 CHARACTER St
2.11.1 Standard

AEEMENT ...
CHARACTER StAeMENtcocvevrvrrciciciirnieteecssee s

2.11.2 Extended CHARACTER Statement: Data Initializationccceeevvevcvenreennene.
A O I @S S = 1= 011= 0| TR
2.13 COMMON SEAEMENT ...ttt sttt st et s s st s e e e sbeebesbesrssbesbesessreares
2.14 COMPLEX SEAEIMENE ..vcuvieeeiceiceieeeeeteee et sttt sttt s e e e sbssbesbeebs st e sbesensreeras

2.14.1 Standard

COMPLEX SEatemMentccccoeveeeririeincrcerene e

2.14.2 Extended COMPLEX Statement: Length Specificationc..cccooeevirveninnne.
2.14.3 Extended COMPLEX Statement: Data lnitializationc.cccceeevveeiiecieecreennee.
2. 15 CONTINUE SEAEMENT ..ot et e ee e s e e et e e eesaee s saseeeebeessnsseeessseesansenennns
A (G O O I S = = 1= 0|

2.17 DATA Statement

2. 18 DEALLOCATE SEEEMENTooviiiiiiriiinini s
2. 19 DIMENSION SEAEMENEocviieieiicieieee e s

2.20 DO Statement ...
2.20.1 Standard

(DO 7 1< 111 0| AU

2.20.2 Extended DO SEALEMENTcccveerieirieirieesieest e nees

2.20.3 Descripti

ON Of DO SEALEMENEvveeecceie et e e s e e e e s s ear e e s saeessbeeeeaes

2.21 DOUBLE COMPLEX StAEMENE ...ttt s ettt e s s sbae e s e s searee e e s s sanns
2.21.1 Smple DOUBLE COMPLEX SAtEMENTcevveverieirieirienenenesie e
2.21.2 DOUBLE COMPLEX Statement: Data Initializationcocooveeeveeieriveeirennns

2.22 DOUBLE PRECI
2.22.1 Standard

SO NS 7= 1 41< |
DOUBLE PRECISION StatEMENtccceeeeieiieceeesie e esvee s

2.22.2 Extended DOUBLE PRECISION Statement: Data Initialization
223 DO WHILE SEEEMENTooviiiieeeieeeiecee et s

2.24 EL SE Statement

UV RAANMRADIMNDNMWW [N

©

12
13
16
18
19
21
23
25
26
26
28
29
31
33
33
33

36
37
38
42

45
45
45
45
49
49
49
51
51
51
53

Table of Contents

225 ELSE [F SEAEMENT ..o.vcviiieeeieeiisieesie sttt sttt s eteseese et st se st ste e ste e ste e etenensens 55
L o N | DS 0= o | SR 56
2.27 END AT END SEEEMENE ...vcueirerirteereririeieesesee e ses e se s se st s sasbe s ssssnas 57
2.28 END BLOCK SEBLEIMENEcoeiierieieierererieteesesieiesesesesesesesestssesesesessssesesessssesesessssesensssssssas 58
2. 29 END DO SEBEEMENLvcviueireeeeeeerisieteesesteeeeesesessenesessesesesesestesesesessssssensssssesenessssesenensssns 59
2.30 ENDFILE SEEEMENLccveeieeiiieieeieeieseeeieeeee e e seeeeesteeee e eeesseeneesseensesseensesseensesseensesnes 60
2.31 END GUESS SEEEIMENL ...c.ecveieiirieiirieiesieesie ettt seste s ses e see s e s nessesessesessesens 62
2.32 END |F SEBEMENE ...voiciiieieieereere ettt st s st st st sttt 63
2.33 END LOOP SEAEMENE ...coevevieeierieierieesieeesieesieses e sesie st sestesesteseeseseesessesessesessenessenessenens 64
2.34 END MAP SEREEMENTeoveeeieieiereeiesieie st s siese et steseste e e sesteseesesaesesaesessssessesessaneas 65
2.35 END SELECT SEAEMENE ...vcveiieeiiieieieieeesieie e st seesestesessesesse e ssesessesessesessesessesessesens 66
2.36 END STRUCTURE SEELEIMENTcovvieriieiirieeesieresieesissessesessesessesessessssessesessssessesessesessenes 67
2.37 END UNION SEEEMENLecvieiriirieieienisieteesesesiese s se st ee e sesesessebssesesessssasssessneas 68
2.38 END WHILE SEAEEMENEcviieririeieieiesirieieeseses ettt sae e s sseas 69
2.3 ENTRY SEBLEMENT ...oeiiiiiiieieiieie e e et ettt see e te e e tesaeensesseeseeneenseeneeneas 70
2,40 EQUIVALENCE SEBEMENTccceeieeeieieierieeiesieseeenieeeeseeeeeseeeeesseessssneessesseessesseessessenssenns 71
241 EXECUTE SEAEMENTcovieitiieiereeie ettt ettt st st s be e s e seenessenens 73
P oy I IS - 1= 011 | OSSR 74
243 EXTERNAL SEBEIMENL ..ottt sttt e e ste st nessenessesessenens 75
244 FORMAT SEABEEMENT ..viiveeieieieiesiete ettt ettt st st saetesaebesaeseseesessenens 76
245 FUNCTION SEAEMENT ..cveveviieiiiieiisieesiesesieesieseetesesresestesesseseesesaesesaesessesessesessenssseseesenens 77
2.45.1 Standard FUNCTION SEAEMENE ..o.voviveeirieirieisieisieeseses e 77
2.45.2 Extended FUNCTION SEEEEMENLccoourueuiiririnieieneresieiee s 78
2.46 Unconditional GO TO SEAEMENEcccceierirerierierieiereeeeesese e eeseenes 79
2.47 Computed GO TO SEAEMENTceveeeriiirieiriereeiere s seens 80
248 ASSIgNEd GO TO SEELEMENLeveveieririeiiriee et se e eenas 81
2.49 GUESS SEEEIMENLoeivieeteieeierieie ettt st st st st sttt st bbb 83
2.50 Arithmetic IF SEBEEMENTcceereeereiiiereieee e 84
A o o o= TS = = 111 0| 85
2.52 BIOCK [F SEAEEMENTcveeeeereeeirreierree ettt sttt 87
2.52.1 Standard BIOck 1F SEEIEMENTccovveiriiirieree e 87
2.52.2 Extended BIOCK [F SEEEEMENTcccooiiirireeeeiere e 87
253 IMPLICIT SEBIEMENLeiieiteiiererieieiereresiet et se st e bbb e sesbebe e seias 89
2.53.1 Standard IMPLICIT StEEMENEcueeiereeireireeieiere st ees 89
2.53.2 Extended IMPLICIT StatemMentcccoceveieeireeieeeee e eenens 89
2.53.3IMPLICIT NONE STEEMENTeeeeeieeeierieeiesieeieseeesie e see e e esessseeseesseeseesseens 90
2.53.4 Description of IMPLICIT Statementcoocvvvveninvenirereeseeeeese e 20
254 INCLUDE SEAEMENEeoviieieieiereeieseeiesiete e seese s st steseste st sestesesseseesesassessssessesessanens 92
2.55 INQUIRE SEALEIMENTooveirieieierieieseeiesieteseeteseeseseeeseeseste e ssesestesessesesseseesesaesesassessesessanens 93
2551 INQUIRE DY FILE ..ottt 93
2552 INQUIRE BY UNIT oottt snens 93
2.55.3 INQUITY SPECITIEIS . b e 94
2.55.4 Definition Status of Specifiers- Inquireby File ... 97
2.55.5 Definition Status of Specifiers- Inquire by Unitcocooeeveinninnincineens 98
2.56 INTEGER SEELEMENTc.veiieiieeieeiieieeteeie et et ee s te e te s e e sneeneeeneenseenes 99
2.56.1 Standard INTEGER StatemMentccccoeeeeeirerese e e e eeee e seeesseseenens 99
2.56.2 Extended INTEGER Statement: Length Specificationccocevvvevevecceeennnn 99
2.56.3 Extended INTEGER Statement: Data Initializationccccocovevevrrneienenennas 100
257 INTRINSIC SEBEMENT ...cveiveieieiiieeierieesiee ettt st sae e sbe e re e re e 102
2.58 LOGICAL SEAEMENTeoveeeiiieiereeiesieesietesieieseesesse e steestesesseseesesesteseesesaesesaesessssessesessanens 103
2.58.1 Standard LOGICAL StAaEMENTc.evveirieirieerieiseesees e 103
2.58.2 Extended LOGICAL Statement: Length Specificationcococeveiercienienene 103

Vi

Table of Contents

2.58.3 Extended LOGICAL Statement: Data Initializationccccoceveevrecineicnecenine 104

2.59 LOOP SEAEMENE ..uvcveieieieeiesieiesieteseeesaesesaesesteesteses e e stesestesestesessesassessnsessesessesessesessesessens 106
S O N S v = 0= | SRS 107
2.61 NAMELIST SEAEMENT ...oveviiveeiiieeesieesteee ettt saese s s s sessesessesesaesessanes 108
2.62 OPEN SEALEMENT ...oeceieiiieiee ettt rte e st e st e e e e be e saeeebeesaeeenseesnaeenseeenneenreas 111
2.63 OTHERWISE SAEMENToooiiecieciee ettt st et e e st esnaeenne e e 115
2.64 PARAMETER SEBEMENEc.oiviiiiiiisieieeeisie ettt sttt st s s 116
2.65 PAUSE SEEEEIMENLoecveieieieeiesieiesie sttt sttt s s sttt st et 117
2.66 PRINT SEBEIMENE ...cveicieiieieieeiesieie sttt st st st sttt st st snne 118
2.66.1 Standard PRINT SEAEEMENTccvvveirieirieirieireeseesese e 118

2.66.2 Extended PRINT SLEIEMENLcooveirieirieirieisieesienesesee e sees 118

2.66.3 Description of PRINT SEAEEMENTccoviiieireeieeiecre e e 118

2.67 PROGRAM SEAEMENT ...cveieviiieiiiieiisiee st sieesee et seetesaetesaesesaesessesessesessenesseneesenens 121
2.68 QUIT SEALEIMENLocveeiieieiesietesiete ettt sttt se et se et e e etesaesesaesesaesesaenenaens 122
2.69 READ SEAEMENT ...ocveicieieieceete ettt se e se et se et besaesesaesesaesesaenestenesrens 123
2.69.1 Standard READ SEEEMENTcceeeeeeeeerieseeseseseeseeeeseeseeseseseesessesseseessesseseens 123

2.69.2 Extended READ SEAEMENEcovveirieirieerieenieeseese e 123

2.69.3 Description of READ StatemMEentcccccceeeevieieeieceeeresese e sees e s seenens 123

2.70 REAL SEBEMENE ...ocviiiieieieieeie ettt sttt st st sttt st st 127
2.70.1 Standard REAL SEAEMENTcovrveirieirieerieesieese sttt nees 127

2.70.2 Extended REAL Statement: Length Specificationcccocevrinininiciinenene 127

2.70.3 Extended REAL Statement: Data Initializationc.coceeenevincicieicenee 128

2.71 RECORD SEAEMENTcviiveiiiieeiiieisieesteee e sesaesesassessesessesessassssessssessssessessssesessesessenes 130
2.72 REMOTE BLOCK SEAEIMENTcoivieivirietiieriseeresiessseesessesessesessessssessssessssesssssssesessesssseses 131
2. 73 RETURN SEELEMENTcccviieieeiie et see st s et s st sae e s te e saaesnaeestaeeaeenneesnseennnesanas 132
2. 74 REWIND SEBLEMENTcccviieieeiei et see sttt e te e ste s s teesaeesate e saaesaae e sreeeneenteesnteenneesanas 133
2.75 SAVE SEBEMENE ..ottt ettt 135
2.76 SELECT SEAEMENToviiieiiieirieesieis ettt sttt ettt st st seebeneenens 137
2.77 STOP SEAEEMENT ..ottt sttt st sttt e e be e e s e s seenesane 139
2.78 STRUCTURE SEALEMENTcueiveuiiieieteieetesietesesteseeteseeseseesesaesessesessesessesessesessesessesessesessesens 140
2.79 SUBROUTINE SEEEIMENLeoviiitiieieieeiesieieseeiesiesestesessesesteestesessesesseseesesessessesessesessnsessas 141
2.80 UNION SEAEEMENT ...vevevirieeiiieiesieesieesieestesestesesteses e sassesessesessesassessssessesessesessessssessssensesens 142
2.8LUNTIL SEAEMENE .ecviecieieeieieeie ettt et sttt sa et e sesaesesbenestenestenenrens 143
2.82 VOLATILE SEAEMENT ...cveicviieeieieeti sttt tese st st sae s e sesaesesaesessee e e e ranens 144
2.83 BIOCK WHILE SEEBEEMENTccveiieieeieieieseeeeeeee ettt s ne e enee e eneenennes 145
2.84 WHILE SEAEMENL ...cveeiiieiiecie e ciee et st e cteestee e ste e ste e stae st e e s taeeneenbessnteenneesaseesnaesnneenseas 146
2.85 WRITE SEEEIMENLoeivirieieieeierieierie sttt st sttt st bbb 147
3 Names, Data TYPES aNd CONSLANLSc.cccceiieriiieiesiinieseseesee e e eeeresse e re e sresrestesaeseeseseeseeseesessens 151
G RS Y 111 0T o AN =S 151
A B L = Y/ 01 S TP P RSO PR TP UR PR 152
3.3 DAATYPE OF AINGME ...ttt s bbbt see e 152
I] = | ST PRSPPI 153
3.4.11NtEGEr CONSLANTSvevieireieseeee et 153

BT = I 0 - 153

3.4.3 Double PreciSion CONSLANEcccccvviirrnerieieineseseeseeeeseesessessessesresseseeseessessesenns 154

3.4.4 CoMPIEX CONSLANE ...eveiviieieceeriee e e e ese ettt sr et se e e eneeneeneens 154

3.4.5 Double Precision Complex Constant (EXENSION)cccvevvvvevieveiniesieseeseeeeeeenns 154

3.4.6 LOQICal CONSLANEccveiveiiieieeieeeeie e eee ettt st sr et e e sa e e e e e e eneenesne e 155

3.4.7 CharaCter CONSLANTccuereeieieieeeieeie ettt et b b e e 155

3.4.8 String Constant (EXIENSION)ccceriiirirerieieesiese e e 155

3.4.9 Hollerith Constants (EXtENSION)cc.coueeeiieieirere et enens 155

vii

Table of Contents

3.4.10 Hexadecimal Constants (EXTENSION)c.ccoereririeneriereeie e 156

3.4.11 Octa Constants (EXLENSION)cccererereririenieniesie e sie e seesesee e e e sse e sresresaesnens 156

3.5 SYMDBOIIC CONSLANES ...ttt ettt bbb 157

N = Y4 TSP ST 159
0 1 14T L1 o 1 o SRS 159

4.2 Properti€S Of AITAYS ..ocvieieiieiesesistes e ste st e seae e e ese s e s e sse s e ssesaestesbeseestenteseensanseneeneeneenennes 159

G N 4 - Y == 04T g1 = 160

4.4 Classifying Array Declarators by Dimension Declaratorccccoovvevenenevesieseeseeseenenn, 162

4.4.1 Constant Array DECIAratorcccceeveieeieiieie e ee e ne s 162

4.4.2 Adjustable Array DECIAratorcoceeviiinine e e 162

4.4.3 Assumed-Size Array DECIAIatorcccooeirireninese e 162

4.4.4 Allocatable Array DECIAraOrcooeereerieiriee ettt e 163

4.5 Classifying Array Declarators by Array NamMeccoeveirreneenee e 164

4.5.1 Actual Array DECIAratorcoeoveeriiniiieeeees e 164

4.5.2 DUMMY Array DECIAIEIONccciiiveiiriiieesieese e 164

4.6 USE OF ATTAY NAITIESeocveiiiieieiesie st e ste st e te e e e ese e e eae s ssesrestesaesaestentesaensanseneeneeneenennes 164

X Otz = o (= S U 1] 10 165
S5.LINEIOTUCTION ...ttt p et r e 165

5.2 SUDSEITNG NBIMIES ...ttt sb e b bbb st s e et e b e e e e e e st et ebeebesne b 165

T (01 0] USSR 166

6 Structures, UnionS and RECOITSccoeeieiiiiecei ittt et stes et e eessbe e saeesabe s saassneesbessbeesnessnres 167
6.1 SErUCtUreS aNd RECOITSc.veieieeieeieeeeeecee ettt se e snesreseeseeneeneas 167

6.2 ArrayS Of RECOITSoeiiiiiierieieseete ettt ettt st 168

B.3 UNIONS .ottt 169

T EXPIESSIONS ..oouviiviieieitetetesteeeseesesseeseetestestestesteseestestessessesaeseeseeseasessestenbeseeseenteteseensensensensesensensensens 173
7.1 ArtHMELIC EXPIESSIONSvieiieieiieeeieeieriesie ettt sttt et e se et be et ae b sbe e e nnas 173

7.1.1 ArithmELiC OPEIEIOIS ..o.vevieiieie ettt sb e bbb e 173

7.1.2 Rules for Forming Standard Arithmetic EXpressionsccccceeveeerincenenenienn 174

7.1.3 Arithmetic Constant EXPreSSIONccvereirieineinieeneesesesiesese s 176

7.1.4 Data Type of Arithmetic EXPressionscccveoereoneienenesenesesese e 177

7.2 CharaCter EXPrESSIONScoeiiriiiiiereeiereete sttt sttt ettt b e st st saebesee b seeneseenens 178

7.2.1 CharaCter OPEIELOIScerveuireeerieerieeriees et e b ss e s e sseneenes 178

7.2.2 Rules for Forming Character EXPreSSiONScccceveeeeeesereesesieseessesseseeseesessenns 178

7.2.3 Character Constant EXPreSSIONSccccveveeeeererieseseseseesesieseessessessesseassessensens 179

7.3 REIAioNal EXPrESSIONScvcveeeuieeieeeieceste et sttt s e et sae e sa e e e e eseeressesnestesresnesrenrs 179

7.3. 1 RelatioNal OPEIatOrsSccoierieiieeeieeeeee ettt s sb b s sr e e 179

7.3.2 Form of a Relational EXPrESSIONccocieeeirerenienere et 179

7.3.2.1 Arithmetic Relational EXPreSSioNnScocceeeeereeieeieniesiesesese e 180

7.3.2.2 Character Relational EXPressionsccoeevenenenenenesenese s 180

7.4 LOGiCal EXPIESSIONSocuiieeiiieiirieiesie sttt sttt sttt st s s eb et s b et b et sttt eb s 180

7.4 L LOQICA OPEIALOIS ...c.eiveuerieerieeeieseete ettt st eeie ettt et st ebe e b seebeseene e 181

7.4.2 Rulesfor Forming Logical EXPreSSiONSccocevverirerenenesieneee e 183

7.4.3 Logical Constant EXPrESSIONSc.cceeeeererereseseseesiesiesesssssseseeseesesessessessessessens 184

7.5 EVAlUating EXPIrESSIONSvccveieeeeeeeeieeieresestes e seste e stesaeste e seesaesaeseesesseesessessessessesssssenses 184

7.6 CONSLANt EXPIESSIONSuecuvevieieciietiieste et se e ste e s e st e te b e sa et e e e e e e esessessesaesrestesaestesteseeseenean 185

8 ASSIGNMENT SEALEMIENLS ...ttt st b et be b b e b et e be e e se e e e e et eneeaesaeees 187
LS00 1 011 oo [UTox o) o [OOSR 187

Table of Contents

8.2 ArithmetiC ASSIGNIMENT ...ttt sb e b e e e 187
8.3 L0QICal ASSIONMIENToouiiuiitiiieiieete ettt sttt e e b be bt s besbesae b e beseese e s enee e e e eneas 188
8.4 Statement Lalel ASSIGNMENLcccoiiiiiieiereere e 188
8.5 CharaCter ASSIONMENTcouiiiiiiiteiete ettt st st se b e e s srenen 189
8.6 Extended ASSIgNMENt SEAEEMENTooviuiririireeerieere et 190
9 Program Structure COontrol SLAEEMENESccveeveeeeeececce et e e e e sne e nnens 193
1S 25 A g1 T [Tex ' o OSSO 193
Q.21F - ELSE - END IF .ottt 193
.3 ELSE IR ettt 194
.4 DO - END DO ..ttt bbbttt b e 196
9.5 DO WHILE - END DOoiiiiiiiiiiirieteiesesisiete ettt s ss s 197
Q.6 LOOP - END LOOP ...ttt sttt sttt e 198
9.7 WHILE - END WHILE ..ottt s 199
9.8 WHILE - Executabl€-StAlEMENTcoveeeeeeee e s 199
LS T | 200
9.10 SELECT - END SELECT ...ttt 201
9.11 EXECUTE and REMOTE BLOCKooiciiirireereerenee e 204
9.12 GUESS-ADMIT-END GUESSccoeitririieiiinirieiee st 206
Q. LB QUIT ettt bbb bt E b bR e R bR e e bbbt n e 208
.14 EXIT ettt bbb bbb £ bR bR e bbbt b 209
QL5 CY CLE ettt bbbt bbb bbb 210
.16 AT END ettt bbb bbbt bbb et 211
9.17 Notes on Structured Programming SELEMENESccooeiieiinerererene e 212
O T 010 |7 H 11 o1 PSSRSO 215
025 g T [o' o OSSP 215
10.2 Reading @nd WIITING ...vccveiveiieieeeeeeireeesesese e este st e te st sa e e e e e e eseesessessessesaesresseneesenns 215
ORI = o] o = SO 216
10.3.1 FOrmatted RECOITcccoiuiriirieriiiiinie et bbb e 216

10.3.2 Unformatted RECOIAc.oooiiiiriiirere et 216

10.3.3 ENGfilE@ RECOIT ..ottt e 216

LO.A FIES ettt et b et b e £ bbbt bbbt e bbb sttt ne s 217
10.4.1 EXEEINEL FIlES ..ottt et st 217

L0 Vg1 =g = I T S P 218

08 T SR 219
OIS o 1= ot 1= £ 221
10.6.1 The UNit SPECITIEN ...ocveececeee et 221

10.6.2 FOrmMat SPECITIEN ...ocviiiii ettt ne s 221

10.6.3 RECOId SPECITIEN ..oviiiiiii it 222

10.6.4 Input/Output SEALUS SPECITIENeieieeecee e 222

10.6.5 Error SPECITIEN ..ouiieieieie et 222

10.6.6 ENd-Of-File SPECITIEN ...ovcviieeeiieeerc e 223

10.7 Printing of FOrmatted RECOITScoeiiieirieirieesieesiereere ettt 223
I o = TSRO PRSP 225
00 g T [T ' TSRS 225
11.2 The FORMAT SEBEMENTveveeiriiereieesieiere st 225
11.3 FORMAT as a CharaCter EXPrESSIONccccceeieeieieeeeesiesreseseseessesseseeseesesessessessesssssenses 225
11.4 FOrmat SPECITICALIONcveeiieieieeeie ettt et b e sb e s be e e 226
11.5 Repeatable Edit DESCIIPLONScoiiiiiriirierieitesie et be e sae b b e seeeas 227
11.6 Nonrepeatable Edit DESCIIPLOIScoviiiiieeeerere ettt sre e 228

Table of Contents

LL.7 EQIING eeeiereeteiesieieeisi sttt stttk bbb s 228
11.7.1 APOSIrOPhE EQItINGcooeeeireirienieeiere et s 229

I o o T o TSSOSO 229

11.7.3 Positional Editing: T, TL, TR and X Editingcc.cocvvvrenenerereeeeenese e 229

11.7.4 Sash BEAItiNG ...c.ooveeiieeiieeeeeereee bbb e 230

11.7.5 COlON EAITING ..vvveneeieeeieerie ettt 230

11.7.6 S, SPand SSEAItiNG ...ccoveeeerereeire s sie e e e sre s 230

L1177 PEAIIING oot 230

11.7.8 BN @Nd BZ EQItiNG ..ccvveveeiriirieieierisieee st 231

11.7.9 $ or \ Editing (EXIENSION) ..cveveiveeieeeeiiiietereseseeiereesestesesessssssssesesesseseessssesesssnnns 231
11.7.10 Numeric Editing: |, F, E, D and G Edit DeSCriptorsccceeevrierieniereneniene 232
11.7.10.1 Integer Editing: Iw and Iw.m Edit DesCriptorsccccveeevenerereenens 232

11.7.10.2 Floating-point Editing: F, E, D and G Edit Descriptorsc........ 233

11.7.10.3 F EAItiNG o.eoveeeeerieeeiesiris ettt s 233

e O 1 = 1 o I D o] o 234

12.7.10.5 G EAItING cveveeieeeeeeee et e 235

11.7.10.6 Complex EQItINGcccooveereieriese et 236

T I T T T o o o 236
T 2 N o T D TS o] o R 236
11.7.13 Z Editing (EXTENSION) ...ccveeiieiecieeeeste ettt nas 237

11.8 Format-Directed INPUL/OULPULc.ooeriririreie sttt sbe e 238
11.9 List-Directed FOMMELLINGcoereierieieieieereee ettt sttt e e e ene 238
11.9.1 List-DireCted INPULcooeuirieieieeeireeterieere sttt 239

11.9.2 LiSt-DireCted OULPULcuereeverieeirieiisieerieesieesi et ere b snenen 240

11.10 Namelist-Directed Formatting (EXIENSION)c.ccevveerieiniinireireeeee e 240
11.10.1 Namelist-Directed INput (EXTENSION)ocvvireeiieerieere e 241
11.10.2 Namelist-Directed OULPULccccveerererieriesieseese e ees e 242

12 FUNCLIONS 8N SUDFOULINESvvieeeieeieeerereeiet ettt bbbt 243
T2, 1 INEFOTUCTION ..ottt et n ettt 243
12.2 SEAEMENE FUNCLIONS ...ttt 243
12.2.1 Referencing a Statement FUNCHIONcccooiiiiiniiece e 244

12.2.2 Statement FUNCiON RESIHCHIONSvovviiieieeeee e 245

123 INLHINSIC FUNCHIONS ...t sttt sttt st se e e e e e 246
12.3.1 Specific Names and Generic Names of Intrinsic FUNCLIONScccoveeveciee. 246

12.3.2 Type Conversion: Conversion t0 INtEOENcccveererrennieneesee e 248

12.3.3 Type Conversion: CoONVErsion tO realccccevvevvesernseeneneseeseeeeeeseeesessesnens 248

12.3.4 Type Conversion: Conversion to double precisionccccceceevevcenesieneseseniens 249

12.3.5 Type Conversion: Conversion to COMPIEXcccevevievecveeieeieeeeese e 249

12.3.6 Type Conversion: Conversion to double complexccccevrninienieneneneniens 249

12.3.7 Type Conversion: Character conversion to integercccceeeevervenienieneneseniens 250

12.3.8 Type Conversion: CoONVersion t0 CharaClerocooereeeierreeienenenesesese e 250

I C e B I (U o 1 o] o LTSRN 250
12.3.10 Nearest Whole NUMDBENocoeeeeeeeeeee e 251
12.3.11 NEAESE INTEOESoviereiee ittt e 251
12.3.12 ADSOIULE VEIUE ..ottt ens 251

12.3. 13 REMEINAESocveeeeiereires et 252
12.3.14 Transfer Of SIgN ..ocvceie i et 252
12.3.15 POSItIVE DIffEreNCevcveeieeeeeiee e 253
12.3.16 Double Precision ProdUCEcccoieerrierineeineeeneeenee e 253
12.3.17 ChooSiNg Largest ValUEccceririiiiinie et 253
12.3.18 Choosing SMAllESt VAUcoviiiiiiie e 254

Table of Contents

12.3 19 LONGN oot 254
12.3.20 Length Without Trailing Blanks ..o 254
12.3.21 INdeX Of 8 SUDSIIING ...ovevereeiirieierieesieesiee sttt 255
12.3.22 Imaginary Part of CompleX NUMDESccceiiiinieireeresese e 255
12.3.23 Conjugate of a CompIeX NUMDES ..ot 255
12.3.24 SQUBIE ROOL ...ttt et er s 256
12.3.25 EXPONENLIEI ...ocveieieiieieseeseeeeee et er e nnenns 256
12.3.26 Natural LOgarithmcocieieeecire e s 257
12.3.27 CommON LOGarithmccovieicicice st 257
L12.3.28 SINE .ottt bbbttt s 258
12.3.29 COSINE ...vviniiieieutireeteie sttt st b et b bbbkt e bbb bt e bt ettt 258
12.3.30 TANGENE ..eiieieiiieirieiee ettt ettt b ettt b bt e bt 259
12.3.31 COANGENL ...ttt sresr s 259
R I 7 AN o= 1= TS 259
T G N o0 1 = S 260
12.3.34 ATCEANGENT ..ottt r e nnenes 260
12.3.35 HYPErDOIIC SINE ..o e 261
12.3.36 HYPErDOliC COSINEcuvceiciieececere sttt s 261
12.3.37 HYperbolic TanQENLcccoeeeeeceeece et 261
12.3.38 GaMMAFUNCLIONcoviiiiiiireeerereere st 262
12.3.39 Natural Log of Gamma FUNCLIONccooiiiiieriricie s 262
12.3.40 EXTOr FUNCHION ..ottt ettt sttt et sne s 262
12.3.41 Complement of Error FUNCLIONccviiiininirieenieene e 263
12.3.42 Lexically Greater Than or EQUalccoeiiiiniirieeeeee e 263
12.3.43 Lexically Greater Than ...t 263
12.3.44 Lexicaly LessThan or EQUEcccoeerririiniercceee s 263
12345 LeXiCally LESS TRAN ...cuvceeeeeececcre et 264
12.3.46 Binary Pattern Processing Functions: Boolean ANDcccccceveceveecececennnn, 264
12.3.47 Binary Pattern Processing Functions; Boolean Inclusive ORccccocuue... 264
12.3.48 Binary Pattern Processing Functions. Boolean Exclusive ORcccc.c....... 265
12.3.49 Binary Pattern Processing Functions: Boolean Complementcccceceee.. 265
12.3.50 Binary Pattern Processing Functions: Logical Shiftcccocooiirininininene 265
12.3.51 Binary Pattern Processing Functions: Arithmetic Shift ..o 266
12.3.52 Binary Pattern Processing Functions: Circular Shiftccccocvenniinniennenens 267
12.3.53 Binary Pattern Processing Functions: Bit TESHINGccooveveveernienciniecniens 268
12.3.54 Binary Pattern Processing FUNCtions: Set Bitccccooevviinniineineceneese e 268
12.3.55 Binary Pattern Processing Functions: Clear Bitcccccocvevvivvivvesienevenenienes 268
12.3.56 Binary Pattern Processing Functions: Change Bitcccccccevvivvninienccennenn, 269
12.3.57 Binary Pattern Processing Functions; Arithmetic Shifts ..o 269
e RSt A H oo = o A - Y R 270
12.3.59 MEMOIY LOCALIONoouiiuiiiiriinieeiesie sttt s se e e 270
12.3.60 Size of Variable Or SITUCLUIEcouoieiieeiiieeceree e 270
12.3.61 VOlatil@ REFEIENCEccoevieeireeectere et 270
12,4 EXTErNGl FUNCLIONSooeiieieiieiee ettt sttt sttt e e e e e 271
12.4.1 Referencing an External FUNCLION ..o 272
12.4.2 Actual Arguments for an External FUNCLIONcccoeiiveienennennenee e 272
12.4.3 External Function Subprogram RESIICLIONSccccvveveeveereereeieeneeese e 273
12.5 SUBIOULINES ... 273
12.5.1 Referencing a Subroutine: The CALL Statementcccccveeeeveveveceseveesieienns 273
12.5.2 Actual Argumentsfor a SUDIOULINEcceeveiiiiieiiceece e 273
12.5.3 Subroutine Subprogram RESIFCLIONScccceveierinerie e 274
12.6 THE ENTRY SEAIEMENLooiiiiieiiiiirieice sttt et s 274

Xi

Table of Contents

12.6.1 ENTRY Statements in External FUNCLIONSccooeiiveiineiicinee e 275

12.6.2 ENTRY Statement RESIICHIONSoovevviieieieeieerere e 275

12.7 The RETURN SEBLEMENTc.oiviiiieiieeiirieie ettt 276

12.7.1 RETURN Statement in the Main Program (EXtension)c.ccocevevevciennennns 276

12.7.2 RETURN Statement in Function SUDProgramsc.cceeeeereenecenenesienesienennene 276

12.7.3 RETURN Statement in Subroutine SUbprograms.c.cceeveveieveeneenseneenens 277

12.8 SUDPrOgram ATQUIMENESecveieeeeeiesieeeeeeeseeseesesessessessessessessessessessessesssssessnsesessessensessens 277

12.8.1 DUMMY AFQUIMENLSocveeieeieeerieseesieseesteseesesseesseeseesseessesseensesseesssseessssnsessesnns 278

T N (U AN o 0001 o] = 278

12.8.3 Association of Actual and Dummy Argumentsccccceveeeverieeseereeseeseeseene. 278

12.8.3.1 Length of Character Actual and Dummy Argumentsccceceeene. 279

12.8.3.2 Variables as DUMMy ArgUMENEScoceveererieeieeienenesese e 279

12.8.3.3 Arrays as DUMMY ArgQUMENESccccceeererinenenesisese s 279

12.8.3.4 Procedures as DUMMY AFQUMENESccoveerienerenenienenenesie s 280

12.8.3.5 Asterisks as DUumMmy ArgUMENESccoeereeerieienieenieesere e 281

N o 0= o= S 283
A. Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 ..o 285

Xii

Language Reference

Language Reference

1 FORTRAN Source Program Format

1.1 Character Set

The FORTRAN character set consists of twenty-six letters, ten digits, and thirteen special characters.

The letters are:

ABCDEFGHI

Thedigitsare: 0 1 2 3 456 78 9

The special characters are:

Character Name of Character

+ 1

- N~~~ %1

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Currency Symbol
Apostrophe
Colon

The FORTRAN character set is a subset of the character set of the computing system which you are using.

JKLMNOPQRSTUVWXYZ

We shall refer to the larger character set as the processor character set.

1.2 Extended Character Set

Open Watcom FORTRAN 77 also includes the following special characters.

Character Name of Character

!
%
\

Exclamation Mark

Percentage Symbol

Back slash

Extended Character Set

3

Language Reference

1.3 Source Program Format

Open Watcom FORTRAN 77 supports one source program format. A FORTRAN program is composed of
lines. There are three types of lines; the comment line, the initial line, and the continuation line.

1.3.1 Comment Line

Comment lines are denoted by placinga"C" or "*" in column one of theline. Open Watcom FORTRAN
77 dso alows the use of alowercase"c" asacomment indicator. Blank lines are treated as comment lines.
Comment lines may be placed anywhere in the program source (i.e., they may appear before a FORTRAN
statement, they may be intermingled with continuation lines, or they may appear after astatement). There
is no restriction on the number of comment lines. Comment lines may contain any characters from the
processor character set.

Open Watcom FORTRAN 77 allows end-of-line comments. |f a"!" character appearsin column 1 or
anywhere in the statement portion of a source line, the remainder of that line is treated as a comment unless
the "!" appears inside quotation marks or in column 6.

1.3.2 Debug Line (Extension)

Debug lines are denoted by placing a"D" or "d" in column one of the line. Debug lines contain
FORTRAN statements. Thereis no restriction on the number of debug lines. Normally, the FORTRAN
statements on debug lines are ignored by the compiler. See the User’s Guide for information on activating
debug statements.

1.3.3 Initial Line

Aninitial lineisthefirst line of a FORTRAN statement. Column 6 of this line must be blank or contain the
digit "0". A comment line can never be aninitia line. Columns 1 through 5 of an initial line may contain a
statement label. Statement labels are composed entirely of digits. The statement label may be thought of
as an integral number and, as such, leading O digits are not significant. For example, the label composed of
the digits "00123" is the same as the label "123". The same label may not identify more than one statement
inaprogramunit. A program unit is a series of comment lines and FORTRAN statements ending in an
END statement. The body of the FORTRAN statement is entered starting in column 7 and stopping at
column 72. Column 73 and on is called the sequence field and is ignored by the compiler.

1.3.4 Continuation Line

4

A statement may be continued on anew line. A continuation character is placed in column 6. The
continuation character may not be ablank character or a"0" character. FORTRAN 77 requires that the
continuation character be selected from the FORTRAN character set but Open Watcom FORTRAN 77
allows any character from the processor’s character set. The statement number field must be blank. The
previous statement is continued on the new line, starting in column 7 and continuing to column 72. Under
the control of acompiler option, Open Watcom FORTRAN 77 permits the source statement to extend to
column 132.

Source Program Format

FORTRAN Source Program Format

FORTRAN 77 allows up to 19 continuation lines to continue a statement. Open Watcom FORTRAN 77
extends this by allowing more than 19 continuation lines. A minimum of 61 continuation lines are
permitted when the source statement ends at column 72. A minimum of 31 continuation lines are permitted
when the source statement ends at column 132. The maximum number of continuation lines depends on the
sum of the lengths of all the continuation lines.

1.3.5 Significance of the Blank Character
Except in the following cases, blank characters have no meaning within a program unit.
Q) Character and Hollerith constants.

2 Apostrophe and H edit descriptors in format specifications.

For example, the symbolic name A B is the same as the symbolic name AB.

1.3.6 Significance of Lower Case Characters (Extension)

Except in the following cases, lower case characters are treated as if they were the upper case equivalent.
ThisisaOpen Watcom FORTRAN 77 extension to the usual rules of FORTRAN.

(@D} Character and Hollerith constants.
2 Apostrophe and H edit descriptors in format specifications.

Hence, TOTAL, total, and Tot al represent the same symbolic name and 3F10. 2 and 3f 10. 2
represent the same format edit descriptor.

1.3.7 Examples

Example:
C This and the following five lines are coment |ines.
c The follow ng statement "INDEX = I NDEX + 2" has a
c statenent nunber and is continued by placing a "$"
c in colum 6.
* Col um Nunbers

* 234567890
10 | NDEX = | NDEX
$ + 2

* The above blank lines are treated |ike comrent |ines.
The following example demonstrates the use of comment lines, blanks lines, and continuation lines. We

use the symbol "$" to denote continuation lines although any character other than a blank or "0" could have
been used.

Source Program Format 5

Language Reference

Example:
From t he quadratic equation

*
*
*
*
*
*
*
*
*
*
*
*
*

2
ax + bx +c =0

we derive the followi ng two equations:

and express these equations in FORTRAN as:

XL = (-B+ SQRT(B**2 - 4 * A* C))
$ (2*A)
X2 = (-B- SQRT(B**2 - 4 * A* C))
$ (2*A)

1.4 Order of FORTRAN Statements and Lines

Thefirst statement of a program unit may be a PROGRAM FUNCTI ON, SUBROUTI NE, or BLOCK
DATA statement. The PROGRAMstatement identifies the start of a main program and there may only be one
of these in an executable FORTRAN program. Execution of a FORTRAN program begins with the first
executable statement in the main program. The other statementsidentify the start of a subprogram. If the
first statement of aprogram unit is not one of the above then the program unit is considered to be amain

6

program.

Although you may not be familiar with al of the terms used here, it isimportant that you understand that
FORTRAN 77 has specific rules regarding the ordering of FORTRAN statements. Y ou may wish to refer
to this section at later times. In general, the following rules apply to the order of statements and comment
lines within a program unit:

1.

2.

Comment lines and | NCLUDE statements may appear anywhere.
FORMAT statements may appear anywhere in a subprogram.

All specification statements must precede all DATA statements, statement function statements,
and executable statements.

All statement function statements must precede all executable statements.
DATA statements may appear anywhere after the specification statements.

ENTRY statements may appear anywhere except between ablock | F statement and its
corresponding END | F statement, or between a DO statement and its corresponding terminal
statement. Open Watcom FORTRAN 77 extends these rules to apply to all program structure
blocks resulting from the use of statements introduced to the language by Open Watcom
FORTRAN 77 (e.g., WHI LE, LOOP, SELECT).

| MPLI ClI T statements must precede all other specification statements, except PARAMETER
statements. A specification statement that defines the type of a symbolic constant must appear

Order of FORTRAN Statements and Lines

FORTRAN Source Program Format

before the PARAMETER statement that defines the name and value of a symbolic constant. A
PARAMETER statement that defines the name and value of a symbolic constant must precede all
other statements containing a reference to that symbolic constant.

The following chart illustrates the required order of FORTRAN statements. Vertical lines delineate
varieties of statements that may be interspersed, while horizontal lines mark varieties of statements that
may not be interspersed.

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
IMPLICIT
PARAMETER Statements
Comment ENTRY Statements Other
Lines Specification
and Statements
FORMAT Statement
INCLUDE Function
Statement Statements DATA Statements
Statements Executable
Statements
END Statement

Required Order of Comment Lines and Satements

For example, DATA statements may be interspersed with statement function statements and executable
statements but statement function statements must precede executable statements.

Order of FORTRAN Statements and Lines 7

Language Reference

8 Order of FORTRAN Statements and Lines

2 FORTRAN Statements

2.1 Classifying Statements

The following table is a summary of Open Watcom FORTRAN 77 statement classification.

Column 1 indicates that the statement is a specification statement.

Column 2 indicates that the statement is not allowed as the terminal statement of a DO-1oop.
Column 3 indicates that the statement is not executable.

Column 4 indicates that the statement is not allowed as the object of alogical | F

or WHI LE statement.

Column 5 indicates that the statement cannot have control of execution transferred to it by using a

statement label.

Column 6 indicates that the statement is allowed in a block data subprogram.
Statement 1 2 3 4 5 6
ADMIT * * *
ALLOCATE
ASSIGN
AT END * * *
BACKSPACE
BLOCK DATA * * * *

CALL

CASE * * *
CHARACTER * * * * * *
CLOSE

COM M ON * * * * * *

Classifying Statements 9

Language Reference

Statement

COMPLEX
CONTINUE
CYCLE

DATA
DEALLOCATE
DIMENSION

DO

DOUBLE COMPLEX
DOUBLE PRECISION
DO WHILE

ELSE

ELSE IF

END

END AT END
END BLOCK

END DO
ENDFILE

END GUESS

END IF

END LOOP

END MAP

END SELECT
END STRUCTURE
END UNION

END WHILE
ENTRY
EQUIVALENCE
EXECUTE

EXIT

EXTERNAL
FORMAT
FUNCTION
assigned GO TO
computed GO TO
unconditional GO TO
GUESS

arithmetic IF

logical IF

block IF

* 0% ok X X X X X X X

* 0% ok kX X X X X X

* %k X X

*

L B T R R T R

* 0% ok X X X kX %X X

L S I T R

10 Classifying Statements

FORTRAN Statements

Statement 1 2 3 4 5 6
IMPLICIT * * * * * *
INCLUDE * * * * *
INQUIRE

INTEGER * * * * * *
INTRINSIC * * * * *
LOGICAL * * * * * *
LOOP * *

MAP * * * * * *
NAMELIST * * * * *

OPEN

OTHERWISE * * *
PARAMETER * * * * * *
PAUSE

PRINT

PROGRAM * * * *

QUIT

READ

REAL * * * * * *
RECORD * * * * * *
REMOTE BLOCK * * * *
RETURN *

REWIND

SAVE * * * * * *
SELECT * *

STOP *

STRUCTURE * * * * * *
SUBROUTINE * * * *

UNION * * * * * *
UNTIL * * *
VOLATILE * * * * * *
WHILE * *

WRITE

2.2 FORTRAN Statement Summary

The following sections describe each FORTRAN 77 statement. The statement descriptions are organized
alphabetically for quick reference. The syntax models for each statement are presented in shaded or
unshaded boxes. The unshaded box denotes a standard FORTRAN 77 statement. The shaded box denotes
a Open Watcom FORTRAN 77 extension to the language. Users should note that extensions which are
supported by this compiler may not be supported by other compilers. We leave the choiceto use a
particular extension to the discretion of the programmer.

In the following sections the use of square brackets ([]) denotes items which may be optionally specified.
The use of the ellipsis (...) denotes items which may be repeated as often as desired.

FORTRAN Statement Summary 11

Language Reference

2.3 ADMIT Statement

ADM T

The ADM T statement is used in conjunction with the structured GUESS statement. The ADM T statement
marks the beginning of an alternative block of statements that are executed if a QUI T statement is executed
in aprevious GUESS or ADM T block.

Example:
* Assume i ncorrect sex code
GUESS
IF(SEX .EQ '"F YQUIT
IF(SEX .EQ "M YQUIT
PRINT *, "Invalid sex code encountered’
CALL | NVSEX(SEX)
* W ong assunption - sex code is fine
ADM T
END GUESS

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

12 ADMIT Statement

FORTRAN Statements

2.4 ALLOCATE Statement

ALLOCATE (array([l:Ju[,[l:]Ju,...]1)[,...]1[,LOCATI ON=Il oc])
or

ALLOCATE (array([l:Ju[,[l:]Ju,...])[,...][,STAT=ierr])
or

ALLOCATE (char*1 en)

where:

array isthe name of an allocatable array.

I isan integer expression that sets the lower bound of the array dimension.
u isan integer expression that sets the upper bound of the array dimension.
char is the name of an allocatable character variable.

len isan integer expression that sets the length of the character variable.

LOCATION =loc
| oc isaninteger expression that specifies the location of the allocated memory.

STAT =ierr
i err isan alocation status specifier. Theinteger variable or integer array element i err is
defined with O if the allocation succeeded, 1 if the allocation failed, and 2 if the array is
already allocated. The STAT= specifier may not be used with the LOCATI ON= specifier.

Allocatable arrays and character variables may be dynamically alocated and deallocated at execution time.
An array must have been declared alocatable by specifying its dimensions using colons only. No array
bounds are specified.

Example:
DI MENSI ON A(:), B(:,:)

In the above example, A isdeclared to be a one-dimensional allocatable array and B isdeclared to bea
two-dimensional allocatable array.

A character variable must have been declared allocatable by specifying its size as (*).

Example:
CHARACTER C*(*)

For an allocatable array, the ALLOCATE statement establishes the lower and upper bounds of each array
dimension and cal culates the amount of memory required for the array.

For an allocatable character variable, the ALLOCATE statement establishes the number of charactersin the
character variable and thus the size of the character variable.

If thereisno LOCATI ON= specifier, it then attempts to dynamically allocate memory for the array or
character variable. The success of the allocation can be checked by using the STAT= specifier.

ALLOCATE Statement 13

Language Reference

If thereisa LOCATI ON= specifier, the expression in the specification is evaluated and that valueis used as
the address of the array or character variable. This permits the programmer to specify a substitute memory
allocator or to map the array or character variable onto a fixed memory location.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N))
ALLOCATE(B(0: 4,5))

More than one allocatable array or character variable may appear in an ALLOCATE statement, separated by
commeas.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(O:4,5))

If the allocation fails and the STAT= specifier was not used, an execution-time error occurs. If the STAT=
specifier is used, the specified variable returns a zero value if the allocation succeeded, and a non-zero
value if the allocation failed.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(O:4,5), STAT=IALLCC)
IF(TALLOC .NE. 0) PRINT *, "Allocation failure’

An attempt to allocate a previously allocated array or character variable resultsin an execution-time error.
If the LOCATI ON= specifier was not used, the array or character variable must be deallocated first before it
can be allocated a second time (see the DEALL OCATE statement).

An absolute memory location may be specified using the LOCATI ON= specifier.

Example:
CHARACTER*1 SCREEN(:, :)
N = 80*25
*$| FDEF __386__
ALLOCATE(SCREEN(O:1,0: N-1), LOCATI ON=" B800O’ x)

* $ELSE
ALLOCATE(SCREEN(O: 1, 0: N-1), LOCATI ON=' B800000O’ X)
* SENDI F
DOl =0, N1
SCREEN(O, 1) = ' *’
ENDDO
END

The above example maps the array SCREEN onto the IBM PC colour monitor screen memory and then fills
the screen with asterisks (16-bit real-mode only). The character is stored in SCREEN(0, |) and the

14 ALLOCATE Statement

FORTRAN Statements

character attribute (unchanged in this example) isstored in SCREEN(1, 1) . The column major ordering
of arrays must be taken into consideration when mapping an array onto afixed area of memory.

The following example is similar but uses an allocatable character variable.

Example:
CHARACTER* (*) SCREEN
| NTEGER SCRSI ZE, |
PARAMETER (SCRSI ZE = 80*25*2)
*$| FDEF __386__
ALLOCATE(SCREEN*SCRSI ZE, LOCATI ON=" B800O’ X)

* $ELSE
ALLOCATE(SCREEN* SCRSI ZE, LOCATI ON=' B8000000’ X)
*$ENDI F
DOl = 1, SCRSIZE, 2
SCREEN(1:1) = '*’
ENDDO
END

A user-defined memory allocator may be specified using the LOCATI ON= specifier.

Example:
CHARACTER* 1 BUFFER(:)
N = 128
ALLOCATE(BUFFER(O: N-1), LOCATI ON=MYALLOC(N))

END

Perhaps a better way to check for a successful allocation, in this case, would be the following.

Example:
CHARACTER*1 BUFFER(:)
N = 128
LOC = MYALLOC(N)
IF(LOC .EQ 0) STOP
ALLOCATE(BUFFER(0: N-1), LOCATI ON=LCC)

END

For more information on arrays, see the chapter entitled "Arrays' on page 159.

ALLOCATE Statement 15

Language Reference

2.5 Statement Label Assignment (ASSIGN) Statement

ASSICN s TO i

where:
S is a statement |abel
[is an integer variable name

The statement label s isassigned to theinteger variable i . The statement |abel must appear in the same
program unit as the ASSI GN statement. The statement label must be that of an executable statement or a
FORNVAT statement.

After astatement label has been assigned to an integer variable, that variable may only be used in an
assigned GO TOstatement or as aformat identifier in an input/output statement. The integer variable must
not be used in any other way (e.g., in an arithmetic expression). It may, however, be redefined with another
statement label using the ASSI GN statement or it may be assigned an integer value (e.g., in an arithmetic
assignment statement).

Example:
| NTEGER RET
X=0.0
ASSI GN 100 TO RET
G0 TO 3000
100 X=X+1
ASSI GN 110 TO RET

G0 TO 3000
110 X=X +1
* Print both X and its square root

3000 Y = SQRT(X)
PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSI GN statement and the assigned GO TO statement to
implement a"local subroutine" in a program unit. A sequence of often-used code can be "called" using the
unconditional GO TOstatement and "return” is accomplished using the assigned GO TO statement. Care
must be exercised to properly assign the return label value.

Example:
| F(FIRST) THEN
ASSI GN 100 TO LFRMT
ELSE
ASSI GN 200 TO LFRMT
END | F
WRI TE(UNI T=5, FMI=LFRMT) X, Y, Z
100 FORMAT(1X, 3F10.5)
200 FORMAT(1X, 3E15.7)

16 Statement Label Assignment (ASSIGN) Statement

FORTRAN Statements

It should be noted that the ASSI GN statement does not assign the numeric value of the statement label to
the variable.

Example:
ASSI GN 100 TO LABEL2
PRI NT *, LABEL2

Try the above example; the value printed will not be 100.
Consider the following example.

Example:
* |1l egal use of a GOTO statenent.
LABEL2 = 123
LABEL3 = LABEL2 + 10
GO TO LABEL3

LABEL3 is assigned the integer value 133. The assigned GO TOstatement, which followsiit, isillegal and
arun-time error will occur when it is executed.

Statement label values are quite different from integer values and the two should never be mixed. Inthe
following example, the assignment statement isillegal since it involves an integer variable that was
specified in an ASSI GN statement.

Example:
* |11 egal use of an ASSI GNed variable in an expression.
ASSI GN 100 TO LABEL2
LABEL3 = LABEL2 + 10
Note that if the assignment statement was preceded by
LABEL2 = 100

the assignment statement would have been legal.

Statement Label Assignment (ASSIGN) Statement 17

Language Reference

2.6 AT END Statement

AT END DO [: Dbl ock-Iabel]
or

AT END, stnt

where:
stmt is an executable statement other than an AT END statement.

The AT END control statement is an extension of the END= option of the READ statement for sequential
files. It allows a statement or a block of code following the READ statement to be executed when an
end-of-file condition is encountered during theread. The AT END statement or block is by-passed if no
end-of-file occurs. It isnot valid to use this control statement with direct-access or internal files. It isnot
valid to use this statement when END= is also specified in the READ statement. The AT END statement or
block must immediately follow the READ statement to which it applies.

Example:
READ(UNI T=1, FMr='(15,F10.4)") I, X
AT END DO
PRI NT *, ' END- OF- FI LE ENCOUNTERED ON UNI T 1’
EOFSW = . TRUE.
END AT END

The second form of the AT END statement isillustrated below.
Example:
READ(UNI T=1, FMI='(F10.4)’) X
AT END, EOFSW = . TRUE.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

18 AT END Statement

FORTRAN Statements

2.7 BACKSPACE Statement

BACKSPACE u
BACKSPACE (al i st)

where:

alist

is an external unit identifier.

isalist of backspace specifiers separated by commas:

[UNIT =] u
| OSTAT = ios
ERR = s

Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned at the
beginning of the preceding record. If the preceding record is an endfile record then the fileis positioned at
the beginning of the endfile record.

Backspace Specifiers

[UNIT =] u

u isan external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNI T= specifier is omitted then the specifier must be the first
itemin thelist of specifiers.

|OSTAT =ios

ERR=s

Example:

100

isan input/output status specifier. Theinteger variable or integer array element i os is
defined with zero if no error condition occurs or a positive integer value if an error
condition occurs.

isan error specifier and s isastatement label. When an error occurs, execution is
transferred to the statement labelled by s.

LOOP
READ(UNI T=8, END=100, FMI=200) RECORD

ENDL OOP

BACKSPACE(UNI T=8)

WR TE(UNI T=8, FMI=200) NEWREC

In the previous example, we illustrate how one might append arecord to the end of an existing file.

Notes:

1. Theunit must be connected for sequential access.

2. If thefileis positioned before the first record then the BACKSPACE statement has no effect.

3. ltisillegal to backspace afilethat does not exist.

BACKSPACE Statement 19

Language Reference

The FORTRAN 77 standard specifiesthat it isillegal to backspace over records that were written using
list-directed formatting; Open Watcom FORTRAN 77 alowsiit.

If the file has been opened with access * APPEND' , which isaform of sequential accessin which thefile
is positioned at the endfile record, then the BACKSPACE statement cannot be used.

For more information on input/output, see the chapter entitled "Input/Output” on page 215.

20 BACKSPACE Statement

FORTRAN Statements

2.8 BLOCK DATA Statement

BLOCK DATA [sub]

where:

sub is an optional symbolic name of the block data subprogram and must not be the name of an
external procedure, main program, common block, other block data subprogram, or any local
name in the block data subprogram.

The BLOCK DATA statement is used to define the start of a block data subprogram. A block data
subprogram is used to provide initial values for variables and array elements in named common blocks.

The only statements which are allowed to appear in a block data subprogram are:

IMPLICIT
PARAVETER

DI MENSI ON

COVVON

SAVE

EQUI VALENCE

DATA

STRUCTURE, END STRUCTURE
UNI ON, END UNI ON
MAP, END MAP

11. RECORD

12. END

13. type statements

BOoOo~NoGOA~A®DNE

=4

Example:
BLOCK DATA I NI TCB
DI MENSI ON A(10), B(10)
COWON /CB/ A, B
DATA A/ 10*1.0/, B/10*2.0/
END

In the above example, the arrays A and B in the named common block CB areinitialized.
Notes:
1. Morethan one named common block may appear in ablock data subprogram.
2. All entities of the named common block(s) must be specified.
3. Not al entities need be given initial values.

4. Only entities that appear in (or are associated, through the EQUI VALENCE statement, with
entries in) anamed common block may be given initial values.

5. Only one unnamed block data subprogram may occur in an executable program.

BLOCK DATA Statement 21

Language Reference

6. A named block data subprogram may occur only once in an executable program.

22 BLOCK DATA Statement

FORTRAN Statements

2.9 CALL Statement

CALL sub [([a [, a] ... 1)]
where:
sub is a symbolic name of a subroutine and must not be the name of a main program, function,
common block, or block data subprogram. As an extension to FORTRAN 77, Open Watcom
FORTRAN 77 permits the calling of functions.
a isan actual argument.

The CALL statement is used to invoke the execution of a subroutine subprogram or function.

Example:

N < X
I n

1.0
1.1
1.2

9

L QUAD(X, Y, Z)

END

SUBROUTI NE QUAD(ARGA, ARGB, ARGC)
REAL ARGA, ARGB, ARGC

PRINT *, 2.0*ARGA**2 + 4. 0*ARGB + ARCC
END

In the above example, the variables X, Y and Z are passed to the subroutine QUAD. This subroutine
computes an expression and prints the result.

Notes:

1

2.

The parametersin the CALL statement are called actual arguments.
The parameters in the SUBROUTI NE statement are called dummy arguments.

The actual argumentsin a subroutine or function reference must agree in order, number and
type with the corresponding dummy arguments.

An actual argument may be an expression, array name, intrinsic function name, external
procedure name (i.e., a subroutine or function name), a dummy procedure name (i.e., one that
was an argument to the calling subroutine or function), or an alternate return specifier
(subroutines only). An alternate return specifier takestheform *s, where s isthe statement
label of an executable statement that appears in the same program unit asthe CALL statement.
An expression may not be a character expression involving the concatenation of an operand
whose length specificationis (*) unlessthe operand is the symbolic name of a constant.

Actual arguments are associated with dummy arguments by passing the address of the actual
arguments.

CALL Statement

Language Reference

It isimportant to note that versions of FORTRAN compilers that implement the previous
FORTRAN language standard may have associated arguments by passing the value of the actual
argument and assigning it to the dummy argument and then updating the actual argument upon
return from the subprogram (thisis called "value-result" argument handling). The FORTRAN
77 language standard prohibits this technique for handling argument association.

The following example illustrates the importance of this rule.

Example:
=1
CALL ASSOC(|, |)
END
SUBROUTI NE ASSOC(M N)
M=M+ 1
PRINT *, M N
END

In the above example, Mand N refer to the same variable; they are both associated to | in the
calling subprogram. The value 2 will be printed twice.

For more information, see the chapter entitled "Functions and Subroutines” on page 243.

24 CALL Statement

FORTRAN Statements

2.10 CASE Statement

CASE cl

where:

cl isalist, enclosed in parentheses, of one or more cases separated by commas, or the DEFAULT
keyword. A caseiseither

(@)
(b)

asingleinteger, logical or character constant expression or

an integer, logical or character constant expression followed by a colon followed by
another expression or the sametype. Thisform of a case defines arange of values
consisting of al integers or characters greater than or equal to the value of the
expression preceding the colon and less than or equal to the value of the expression
following the colon.

The CASE statement is used in conjunction with the SELECT statement. The CASE statement marks the
start of anew CASE block which is a series of zero or more statements ending in another CASE statement, a
CASE DEFAULT statement, or an END SELECT statement.

A particular case value or range of values must not be contained in more than one CASE block.

The CASE DEFAULT statement is used to indicate a block of statements that are to be executed when no
other caseis selected.

Example:

SELECT CASE (CH)
CASE ('a' : 'z')

PRINT *, ’'Lower case letter’

CASE ('A : 'Z)

PRI NT *, " Upper case letter’

CASE ('O : '9)

PRINT *, "Digit’

CASE DEFAULT

PRI NT *, ’ Special character’

END SELECT

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers, the
OTHERW SE statement may be used in place of the CASE DEFAULT statement.

For more information, see the chapter entitled "Program Structure Control Statements' on page 193.

CASE Statement 25

Language Reference

2.11 CHARACTER Statement

The CHARACTER statement is a type declaration statement and can be used to declare a name to be of type
character. The implicit type of the name, whether defined by the "first letter rule” (see the chapter entitled
"Names, Data Types and Constants' on page 151) or by an | MPLI CI T statement, is either confirmed or
overridden. However, once a name has been declared to be of type character, it cannot appear in another
type declaration statement.

There are various forms of the CHARACTER statement. The following sections describe them.

2.11.1 Standard CHARACTER Statement

CHARACTER] *l en [,]] nane [, nane]

where:
name is one of the following forms:

v[*l en]

a(d)[*l en]

al[*l en] (d)
Y isavariable name, symbolic name of a constant, function name or dummy procedure name.
a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is called the length specification and is the length (number of characters) of a character variable,

character array element, symbolic character constant or character function. It has one of the
following forms:

1) An unsigned positive integer constant.
(2 A positive integer constant expression enclosed in parentheses.
(©)] An asterisk in parentheses (*) .

The length specification immediately following the word CHARACTER is the length specification for each
entity in the statement not having its own length specification. 1f omitted, the defaultis1. An entity with
its own length specification overrides the default length specification or the length specification
immediately following the word CHARACTER. Note that for an array the length specification applies to
each element of the array.

26 CHARACTER Statement

FORTRAN Statements

Example:
DI MENSI ON C(- 5: 5)
CHARACTER A, B*10(10), C*20
CHARACTER*7 X, Y, Z*4

The (*) length specification is only allowed for external functions, dummy arguments or symbolic
character constants. |If adummy argument has a length specification of (*), it assumesthe length of the
corresponding actual argument. If the actual argument is an array name, the length assumed by the dummy
argument is the length of an array element of the actua array.

Example:
SUBROUTI NE QUTCHR(STR)
CHARACTER STR*(*)
PRINT *, STR
END

In this example, STRis a character variable whose length is the length of the actual argument. Thus
OUTCHR can be called with a character entity of any length.

If an external function has alength specification of (*) declared in afunction subprogram, the function
name must appear as the name of afunction ina FUNCTI ON or ENTRY statement in the same subprogram.
When the function is called, the function assumes the length specified in the program unit that called it. In
the following example, when F is called its length is assumed to be 10.

Example:
CHARACTER* (10) F

PRINT *, F()

END

CHARACTER* (*) FUNCTI ON F
F = "HELLO
END

The following exampleisillegal since F does not appear in a FUNCTI ON or ENTRY statement.

Example:
* |Ilegal definition of function F.
CHARACTER*(*) F

PRINT *, F()

END
The length specified for a character function in the program unit that referenced it must agree with the

length specified in the subprogram that defines the character function. Note that there is always agreement
if the function is defined to have alength specification of (*) .

CHARACTER Statement 27

Language Reference

If asymbolic name is of type character and has a length specification of (*), it assumes the length of the
corresponding character constant expression in the PARAMVETER statement.

The length specification of a character statement function or statement function dummy argument must not
be(*).

2.11.2 Extended CHARACTER Statement: Data Initialization

CHARACTER] *l en[,]] nane [/cl/] [,nane[/cl/]]

where:

name is as described in the previous section.

len is as described in the previous section.
cl isalist of theform:

k [K]
k is one of the forms:

c

r*c (equivalent to r successive appearances of ¢)
c isaconstant or the symbolic name of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the CHARACTER statement is an extension to the FORTRAN 77 language. The rulesfor data
initialization are the same as for the DATA statement.

Example:
CHARACTER*5 A/ " AAAAA' /[, B*3(10)/10*' 111’/

In the previous example, Aisinitialized with the character constant * AAAAA" and each element of the
array B isinitialized with the character constant * 111’ .

28 CHARACTER Statement

FORTRAN Statements

2.12 CLOSE Statement

CLCSE (cllist)

where:

cllist

isalist of close specifiers separated by commas:

[UNIT =] u

| OSTAT = ios
ERR = s
STATUS = sta

A CLOSE statement is used to terminate the connection of afile to the specified unit.

Close Specifiers

[UNIT =] u
u isan external unit identifier. An externa unit identifier is a non-negative integer
expression. If the optional UNI T= specifier is omitted then the specifier must be the first
iteminthelist of specifiers.

IOSTAT =ios
is an input/output status specifier. Theinteger variable or integer array element i os is
defined with zero if no error condition occurs or a positive integer value if an error
condition occurs.

ERR=s
isan error specifier and s isastatement label. When an error occurs, execution is
transferred to the statement labelled by s.

STATUS = sta

isastatus specifier and st a is acharacter expression whose value when trailing blanks are
removed evaluates to one of * KEEP" or ' DELETE' .

KEEP " KEEP' may not be specified for afile whose statusis * SCRATCH (see
description of the OPEN statement). If the file exists, it will exist after
execution of the CLCOSE statement. If the file does not exist, it will not
exist after execution of the CLOSE statement. If not specified, ' KEEP' is
assumed, unlessthefile statusis’ SCRATCH inwhich case’ DELETE' is
assumed.

DELETE If* DELETE isspecified, thefile will not exist after execution of the
CLOSE statement.

CLOSE Statement 29

Language Reference

Example:

100

LOOP

READ(UNI T=8, END=100, FMr=200) RECORD
ENDLOOP
CLOSE(UNIT=8)

In the previous example, we illustrate how one might process the records in afile and then terminate the
connection of the file to unit 8 using the CLOSE statement.

Notes:

1

Execution of a CLOSE statement specifying a unit that is not connected to afile or a unit that is
connected to afile that does not exist has no effect.

It is possible to connect the unit to another file after a CLOSE statement has been executed.

It is possible to connect the unit to the same file after a CLOSE statement has been executed,
provided that the file till exists.

It is possible to connect the file to another unit after a CLOSE statement has been executed,
provided that the file still exists.

At the termination of execution of the program, for whatever the reason of termination, any units
that are connected are closed. Each unit is closed with status ' KEEP' unless the file status was
" SCRATCH , inwhich casethe unit is closed with status ' DELETE' . The effect is the same
asif a CLCOSE statement is executed without a STATUS= specifier.

For more information on input/output, see the chapter entitled "Input/Output” on page 215.

30 CLOSE Statement

FORTRAN Statements

2.13 COMMON Statement

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist]

where:
cb isacommon block name.
nlist isalist of names each separated by a comma.

If cb isomitted, the blank common block is assumed. |If specified, cb iscalled a named common block.
The names appearing in nl i st can be variable names, array names, and array declarators. Dummy
arguments are not allowed in nl i st .

The COVMON statement allows sharing of blocks of storage between subprograms. Each name appearing in
thenl i st following acommon block name cb is declared to belong to that common block. A variable or
an array name can belong to only one common block. A common block name can occur more than once in
the same COMMON statement as well asin more than one COMMON statement. Lists following successive
appearances of the same common block hame in COMMON statements are considered a continuation of the
list of names belonging to the common block. A variable or an array can appear in a COVMON statement
only once.

Common blocks are defined as follows. A common block is one consecutive block of storage. It consists
of al the storage sequences of all the entities specified in all the lists declared to belong to that common
block. The order in which each entity appearsin a common block is defined by the order in which they
appear in thelists. Storage sequences associated to a common block through the EQUI VAL ENCE statement
are considered to belong to that common block. In thisway a common block may only be extended beyond
the last storage unit. The size of acommon block isthe sum of all the storage sequences of al the names
belonging to that common block plus any storage sequence which extends the common block through
equivalence association.

An EQUI VALENCE statement must not cause storage sequences of two different common blocks to
become associated nor should they extend the common block by adding storage units preceding the first
storage unit of the common block.

Example:
DI MENSI ON A(5)
COWDN / COVMBLK/ A, B(10), C

In this example, the common block COMBLK containsthe array A followed by the array B and finally the
variable C.

COMMON Statement 31

Language Reference

Example:

REAL A B, C D
DI MENSI ON DX 5)
EQUI VALENCE (B, D)
COWON A, B, C

In this example,

defined to bein

A, B, C, and Dbelong to the blank common block; A, B, and C have been explicitly
the blank common block whereas D has been equivalenced to a variable in common,

namely B. Also note that the EQUI VALENCE statement has caused the extension of the common block
beyond its last storage unit. In this example, array D has extended the common block by 3 storage units.

Example:

* |llegal definition of a common bl ock.
DI MENSI ON A(5)
EQUI VALENCE (A(2), B)
COWDN / XYZ/ B

This example demonstrates an illegal use of the COVMMON statement. B isin the named common block XYZ
since it appeared in a COMMON statement. A isin the common block XYZ since it was equivalenced to B.
However, Aillegally extends the common block by adding 1 storage unit before the first storage unit of the

common block.

The following outlines the differences between a blank common block and a named common block.

1)

2

3

All named common blocks with the same name in an executable program must be the same
size. Blank common blocks do not have to be the same size.

Entities in named common blocks can be initialized by using DATA statements in block
data subprograms; entities in blank common blocks cannot.

Entities in named common blocks can become undefined after the execution of a RETURN
or END statement; entities in blank common blocks cannot. This situation can arise when
all subprograms which refer to the named common block become inactive. A typica case
occurs when program overlays are used. If the named common block isplaced in an
overlay, then the entities in the named common block will become undefined when the
overlay isreplaced by another. Of course, if the named common block is referenced in the
main program then this could never happen. The main program and any named common
blocks referenced in the main program remain memory-resident until the application
terminates.

The SAVE statement should be used if entities in named common blocks must not become
undefined.

The FORTRAN 77 standard specifies that a common block cannot contain both numeric and character
data; Open Watcom FORTRAN 77 allows common blocks to contain both numeric and character data.

The FORTRAN 77 standard specifies that a named common block must be initialized in a block data
subprogram. Open Watcom FORTRAN 77 permits the initialization of named common blocksin other

subprograms.

32 COMMON Statement

FORTRAN Statements

2.14 COMPLEX Statement

The COVPLEX statement is a type declaration statement and can be used to declare a name to be of type
complex. Theimplicit type of the name, whether defined by the "first letter rule" (see the chapter entitled
"Names, Data Types and Constants' on page 151) or by an | MPLI CI T statement, is either confirmed or
overridden. However, once a name has been declared to be of type complex, it cannot appear in another
type declaration statement.

There are various forms of the COVPLEX statement. The following sections describe them.

2.14.1 Standard COMPLEX Statement

COWPLEX nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

Thisform is the standard form of the COVPLEX statement.
Example:

DI MENSI ON C(-5:5)

COWMPLEX A, B(10), C

In the previous example, A is defined to be avariable of type complex and B and C are defined to be arrays
of type complex.

2.14.2 Extended COMPLEX Statement: Length Specification

COWPLEX[*l en[,]] nane [, nane]

where:

name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]

% isavariable name, array nhame, symbolic name of a constant, function name or dummy
procedure name.

COMPLEX Statement 33

Language Reference

a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is caled the length specification and is an unsigned positive integer constant or an integer

constant expression enclosed in parentheses whose value is 8 or 16.

Thisform of the COVPLEX statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the COVPLEX statement. The default length specification is 8. A length specification of
16 specifies that the data type of the name appearing in the COVPLEX statement is to be double precision
complex.

The length specification immediately following the word COMPLEX is the length specification for each
entity in the statement not having its own length specification. If alength specification is not specified the
default length specification is used. An entity with its own specification overrides the default length
specification or the length specification immediately following the word COMPLEX. Notethat for an array
the length specification applies to each element of the array.

Example:
DI MENSI ON C(-5:5)
COWLEX A, B*16(10), C*16
COVWPLEX*16 X

In the previous example, X is declared to be a variable of type double precision complex, Aisdeclared to be
avariable of type complex and B and C are declared to be arrays of type double precision complex.

2.14.3 Extended COMPLEX Statement: Data Initialization

COWPLEX[*l en[,]] nane [/cl/] [,name[/cl/]]

where:
name is as described in the previous section.
len is as described in the previous section.
cl isalist of the form:
k [,Kk]
k isone of the forms:
c
r*c (equivalent to r successive appearances of c)
c isaconstant or the symbolic name of a constant

34 COMPLEX Statement

FORTRAN Statements

r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the COVPLEX statement is an extension to the FORTRAN 77 language. Therulesfor data
initialization are the same as for the DATA statement.

Example:
COWLEX A/ (.4,-.3)/, B(10)/10*(0,1)/

In the previous example, A isinitialized with the complex constant (. 4, - . 3) and each element of the
array B isinitialized with the complex constant (0, 1) .

COMPLEX Statement 35

Language Reference

2.15 CONTINUE Statement

CONTI NUE

Execution of a CONTI NUE statement has no effect. This statement is often used in conjunction with DO
statements. It isusually identified with alabel. It often provides a convenient reference for statements
which have the ability to transfer control of execution.

Example:
DO 10 X = -5.1, 12.8, 0.125

10 CONTI NUE

om
> >
95
0w
88
— -
(oNe
NN
oo

20 CONTI NUE

36 CONTINUE Statement

FORTRAN Statements

2.16 CYCLE Statement

CYCLE [:

bl ock- | abel]

The CYCLE statement may be used to cause atransfer of control from within aloop to the terminal
statement of a corresponding DO, DO VWHI LE, WHI LE or LOOP statement. If bl ock- | abel is present
then control is transferred to the terminal statement of the block identified by that block label. The CYCLE
statement is an extension to the FORTRAN 77 language.

Example:

LOOP
WRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI=' (F10.4)’, | OSTAT=10S) X
IF(10S .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SORT(X))

END LOOP

END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

CYCLE Statement 37

Language Reference

2.17 DATA Statement

DATA nlist/clist/ [[,]nlist/clist/]

where:
nlist isalist of variable names, array element names, substring names and implied-DO lists.
clist isalist of the form:
a[,a]
a is one of the forms:
c
r*c (equivalent to r successive appearances of c)
c isaconstant or the symbolic name of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Theitemsof nl i st areinitialized with the values specified in cl i st in the following manner. The first
iteminnl i st isassigned the value of thefirstitemin cl i st, theseconditemin nl i st isassigned the
value of theseconditemin cl i st, etc. Inthisway al itemsof nl i st areinitiaized.

The number of itemsin nl i st must equal the number of itemsin cl i st so that aone-to-one
correspondence exists between the two lists. If an array without a subscript list appearsin nl i st there
must bean element in cl i st for each element of the array.

If the type of an entity in nl i st ischaracter or logical then the type of its corresponding itemin cl i st
must also be character or logical respectively. Asan extension to FORTRAN 77, Open Watcom
FORTRAN 77 permits an item of type character to be initialized with integer data.

An item of type character isinitialized using the rules of assignment. If the length of theitemin nl i st is
greater than the length of the corresponding character constant in cl i st, therightmost remaining
charactersin the item are initialized with blanks. If the length of theitemin nl i st islessthan the length
of the character constant in cl i st, the character constant is truncated to the length of theitemin

nl i st. Notethat initializing a character entity causes all of the charactersin the entity to become defined
and that each character constant defines exactly one character variable, array element or substring.

If the type of an entity in nl i st isinteger, real, double precision or complex then the corresponding item
incl i st can be one of integer, real, double precision or complex. If necessary the constantin cl i st is
converted to the type of theitemin nl i st according to the rules of arithmetic conversion (see the chapter
entitled "Assignment Statements' on page 187).

A variable, array element or substring can only beinitialized once. If two entities are associated (for
exampl e equivalenced), only one of the items can be initialized.

38 DATA Statement

FORTRAN Statements

Example:
CHARACTER* 30 MSG
LOd CAL TRUE
REAL X, Y(10)
DATA X/ 1.0/, TRUE/.TRUE./, MSG ' ENTER DATA'/
DATA Y/ 10*5/

Animplied-DO list in a DATA statement has the following form:
(dlist, i =i, n2[, nB])
where;
diist isalist of array element names and implied-DO lists.
[is the name of an integer variable called the implied-DO-variable.

m1,m2,m3 are each integer constant expressions. The expressions may contain
implied-DO-variables of other implied-DO lists that have thisimplied-DO list in their
ranges.

Therange of theimplied-DO lististhelist dl i st. Aniteration count and the value of the
implied-DO-variable are computed from nil, n2 and nB in the same way as for a DO-loop except that the
iteration count must be positive. Animplied-DO-variable does not affect the definition of avariable by the
same name in the same program unit. Animplied-DO list is processed asfollows. Each itemin the
implied-DO list is processed once for each iteration with the appropriate substitution of values for any
occurrence of the implied-DO-variable. The following exampleinitializes the upper right triangle of the
array A.

Example:
DI MENSI ON A(5, 5)
DATA ((A(1,J),3=1,1),1=1,5)/15*0/

Dummy arguments, functions, and entities in blank common are not allowed in nl i st . Entitiesina
named common block can be initialized only within a block data subprogram.

The following extensions to data initialization are supported by Open Watcom FORTRAN 77.

1. Character constants can initialize avariable of any type. If theitemin nl i st isof numeric
type and is being initialized with character data, the size of theitemin nl i st isthe maximum
number of characters that can be stored in the space allocated for that item. The rules for
initializing such items, are the same as for items of type character. See the chapter entitled
"Names, Data Types and Constants" on page 151 for the number of bytes required for a
particular datatype.

Example:
I NTEGER |, J
DATA | /' AA' [/, J]/’ 123456’ /

In the previous example, | and J each occupy 4 character storage units. | will beinitialized
with the characters AA followed by 2 blank characters. J will be initialized with the characters
1234. Note the the character constant initializing J istruncated on the right to the number of
character storage units occupied by J.

DATA Statement 39

Language Reference

2.

As an extension to FORTRAN 77, Open Watcom FORTRAN 77 permits an item of type
character to be initialized with integer data.

Example:
CHARACTER C, D
DATA C/ 65/, D/ 66/
END

Open Watcom FORTRAN 77 allows data initialization using hollerith constants. Initializing
items using hollerith constants behaves in the same way as initializing items using character
constants. Note that hollerith data can initialize entities of any type. See the chapter entitled
"Names, Data Types and Constants" on page 151 for a description of hollerith constants.

Open Watcom FORTRAN 77 allows data initialization using hexadecimal or octal constants.
Hexadecimal or octal constants can be used to initialize memory with any binary pattern.

Items areinitialized with hexadecimal constants in the following way. Two hexadecimal digits
arerequired to initialize one byte of storage. If the number of characters in the hexadecimal
constant is less than 2 times the number of bytes of storage allocated for the entity being
initialized, the entity is padded on the left with zeroes. 1f the number of charactersin the
hexadecimal constant is greater than 2 times the number of bytes of storage allocated for the
entity being initialized, the constant is truncated on the l€eft to the size (in bytes) of the entity
being initialized.

Items areinitialized with octal constants in the following way. Each octal digit initializes three
bits of storage. If the number of digitsin the octal constant times 3 is less than the number of
bits of storage allocated for the entity being initialized, the entity is padded on the left with zero
bits. If the number of digitsin the octal constant times 3 is greater than the number of bits of
storage allocated for the entity being initialized, bits are truncated on the |eft to the size (in bits)
of the entity being initialized.

Note that hexadecimal or octal data can initialize entities of any type. See the chapter entitled
"Names, Data Types and Constants" on page 151 for a description of hexadecimal and octal
constants.

Example:
DOUBLE PRECI SI ON DPREC
COWPLEX CWVPLX
* Initialize an integer variable with the value 5
DATA |/ z05/
* |nitialize a real variable with the value 5.0
DATA X/ 241500000/
Initialize a double precision variable
with the value 5D0
DATA DPREC/ Z4150000000000000/
Initialize a conplex variable
with the value (5.0,5.0)
DATA CMPLX/ Z4150000041500000/

*

*

*

*

END

40 DATA Statement

FORTRAN Statements

Caution should be used when initializing items with hexadecimal constants, in particular those
whose typeisreal or double precision, since the data they represent depends on the computer
being used. In the previous example, the hexadecimal constant used to initialize the variable X,
represents the number 5.0 on a computer with an IBM 370 architecture. The number 5.0 will
have a different floating-point representation on other computers.

DATA Statement 41

Language Reference

2.18 DEALLOCATE Statement

DEALLOCATE (arraylist [, STAT =ierr])

where:
arraylist isalist of allocatable array names separated by commas.
ierr isan integer variable that returns the status of the attempted deallocation.

Allocatable arrays may be dynamically allocated and deallocated at execution time. An array must have
been declared alocatable by specifying its dimensions using colons only. No array bounds are specified.

Example:
DI MENSI ON A(:), B(:,:)

In the above example, A is declared to be a one-dimensional allocatable array and B isdeclared to be a
two-dimensional allocatable array.

The DEALL OCATE statement frees up any memory allocated for the specified array(s). It then
disassociates the specified array(s) from the memory to which it was associated. The deallocation does not
necessarily succeed. For example, an attempt to deallocate an array that was not previously allocated will
cause an error.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(O0:4,5))

DEALLOCATE(A)
More than one allocatable array may appear in an DEALLOCATE statement, separated by commas.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(O:4,5))

DEALLOCATE(A, B)
If the deallocation fails and the STAT= specifier was not used, an execution-time error occurs. If the

STAT= specifier is used, the specified variable returns a zero value if the deallocation succeeded, and a
non-zero value if the deallocation failed.

42 DEALLOCATE Statement

FORTRAN Statements

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(0:4,5), STAT=IALLCC)
IF(1ALLOC .NE. 0) PRINT *, 'Allocation failure’

DEALLOCATE(A, B, STAT=I FREE)
IF(IFREE .NE. 0) PRINT *, 'Deallocation failure’

An attempt to deall ocate an unallocated array resultsin an execution-time error. The array must be
allocated first (see the ALLOCATE statement).

An array that was allocated using the LOCATI ON= specifier need not be deallocated.

For more information on arrays, see the chapter entitled "Arrays' on page 159.

DEALLOCATE Statement 43

Language Reference

2.19 DIMENSION Statement

DI MENSI ON a(d) [, a(d)]

where:
a isthe name of the array.

d defines the dimension of the array and the range of its subscripts. See the chapter entitled "Arrays"
on page 159 for more information on dimensioning arrays.

Each name a appearing in a DI MENSI ON statement defines a to be an array in the program unit containing
the DI MENSI ON statement. A name can only be dimensioned once in a program unit. Note that a name
can also be dimensioned in a COMMON statement and type declaration statements.

Example:
DI MENSI ON A(10), B(-5:5), C(1,J), D(4,*)

In thisexample Aisal1-dimensiona array containing 10 elements, each element referenced as A(1) ,
A(2), ..., A(9), A(10). Bisal-dimensiona array containing 11 elements, each element
referencedasB(-5), B(-4), ..., B(4), B(5). Cisa2-dimensional array containing | rowsand J
columns. C, |, and J must be dummy arguments or belong to acommon block. Disa2-dimensional
array containing 4 rows. The * in thelast dimension indicatesthat Disan assumed sizearray. Dmust bea
dummy argument. The number of columns is determined from the number of elements of the actual
argument. For example, if the actual argument contains 8 elements then D would contain 2 columns (i.e., 8
elements/ 4 rows).

For more information on dimensioning arrays refer to the chapter entitled "Arrays' on page 159. See also

the description of the ALLOCATE and DEAL L OCATE statements for information on dynamically
allocatable arrays.

44 DIMENSION Statement

FORTRAN Statements

2.20 DO Statement

Two forms of the DO statement are presented. The second form is a Open Watcom FORTRAN 77
extension to the FORTRAN 77 language.

2.20.1 Standard DO Statement

DOs [,] i =el, e2 [, e3]
where:
S is the statement label of an executable statement, called the terminal statement,
which follows the DO statement in the same program unit.
[isan integer, real, or double precision variable, called the DO-variable.
el, e2, e3 are each an integer, real, or double precision expression.

2.20.2 Extended DO Statement

DO [s[,]] i =el, e2 [, e3] [: bl ock-Iabel]
where:
S isan optional statement label of an executable statement, called the terminal
statement, which follows the DO statement in the same program unit.
[isan integer, real, or double precision variable, called the DO-variable.
el, e2, e3 are each an integer, real, or double precision expression.
block-label isan optional block label.

Thisform of the DO statement is an extension to the FORTRAN 77 language. |f no statement label is
present then the terminal statement of the DO-loop must be an END DO statement. In all other respects, the
rules are the same as those given for the standard DO statement.

2.20.3 Description of DO Statement

Therange of a DO-loop consists of all of the executable statements that appear following the DO statement
that specifies the DO-loop, up to and including the terminal statement of the DO-loop. Only certain
statements can be the terminal statement of a DO-loop. See the section entitled "Classifying Statements”
on page 9 at the beginning of this chapter for alist of these statements.

DO Statement 45

Language Reference

Transfer of control into the range of a DO-loop from outside the range is not permitted.

A DO-loop may be executed 0 or more times. The following sequence occurs when a DO statement is

encountered.

Q) Aninitial value, mL, iscalculated by evaluating expression el. A terminal value, n2, is
calculated by evaluating expression e2. Anincrementation value, 8, iscalculated by
evaluating expression e3 if it is present; otherwise B hasthe valueone. If e3 is specified,
nB8 must not be zero. Thetypeof niL, n2, and nB isdetermined from the DO-variable
and any conversions of type are done as required.

(i) The DO-variable is defined with theinitial value .

(iii) The iteration count (i.e., the maximum number of times that the DO-loop will be executed)

is calculated as follows:
MAX(INT((nR2 - niL + nB)/nB), 0)
The iteration count will be zero whenever:

m. > nR and n8 > 0, or
m < nm and n8 < 0.

The number of times that the DO-loop is executed may be reduced if control is transferred
outside the range of the DO-loop, or if a RETURN or STOP statement is executed.

The stepsinvolved in each iteration of the DO-loop are as follows:

() Check theiteration count. If it isnot zero then start execution of the first executable
statement of the DO-loop. If the count is zero then iteration of the DO-loop is complete.

(i) Execute statements until the terminal statement is encountered. During thistime, the
DO-variable may not be redefined.

(iii) Execute the terminal statement. Unless execution of the terminal statement causes a
transfer of control, proceed with the next step which is "incrementation” processing.

(iv) The DO-variableisincremented by thevalue nB. The iteration count is decremented by
one. Go back to step (i).
Example:
DO10 | = -5, 5
PRINT *, |, 1*I

10 CONTI NUE

In this example, the initial valueis-5, thetermina valueis 5, and the incrementation value is 1 (the
default). The DO-variableis|. The DO-loop is executed

MAX(INT((5 - (-5) + 1)/1), 0)

or 11 times. The successivevaluesof |, inside the range of the DO-loop, are-5, -4,-3, ..., 0, 1, ..., 4, 5.
When the DO-loop is terminated, the value of | will be 6. 1t should be noted that when a DO-loop variable
is of type real, the iteration count may be one less than expected. Because of rounding errors, the value of
n2 - ml + nB may be dlightly less than the exact value and when the INT function is applied, the
resulting iteration count is one less than expected.

46 DO Statement

FORTRAN Statements

Example:
DO 10 X = -5, 6, 2
PRI NT *, X, X*X
10 CONTI NUE

In this example, the terminal value has been changed to 6 and the incrementation value has been changed to
2. TheDO-variableis X, areal variable. Thusthevaluesof el, e2 and e3 are converted to typereal.
The DO-loop is executed

MAX(INT((6 - (-5) + 2)/2), 0)
MAX(| NT(13 1" 2), 0)

or 6 times. The successive valuesof X, inside the range of the DO-loop, are -5.0, -3.0, -1.0, 1.0, 3.0, 5.0.
When the DO-loop is terminated, the value of X will be 7.0.

DO-loops may be nested, that is, another DO-loop may be contained within the range of the outer DO-loop.
More than one DO-loop may have the same terminal statement.

Example:
DO10 | = -5, 5
DO10J = -2, 3

10 ARRAY(I, J) = 0.0

Thisis equivaent to the following example.

Example:
DO10 | = -5, 5
DO20J =-2, 3
ARRAY(I, J) =0.0
20 CONTI NUE
10 CONTI NUE

If a DO statement appears within the range of a DO-loop, its range must be entirely contained within the
range of the outer DO-loop.

Example:
* |1l egal use of nested DOl oops.
DO20 | =-5, 5
DO10 J = -2, 3
ARRAY(I, J) =0.0
20 CONTI NUE
10 CONTI NUE

The above exampleisillegal since the terminal statement of the first DO-loop precedes that of the second
DO-loop.

Similarly, the range of a DO-loop that appears within the range of an |F-block, EL SE |F-block, or

EL SE-block must be entirely contained within that 1F-block, EL SE I1F-block, or EL SE-block, respectively.
Thisrule appliesto all Open Watcom FORTRAN 77 structured block extensions.

DO Statement 47

Language Reference

Example:
* |llegal nesting of a DO loop and an | F-bl ock.
IF(A .LT. B)THEN
DO10 I =1, 5
PRINT *, 'Iteration nunber’, |
END I F
VECTOR(|) =1
10 CONTI NUE

The above exampleisillegal since the range of the IF-block must terminate after the range of the DO-loop.
Note how statement indentation helpsto illustrate the problem with this example.

Itisalsoillegal to attempt to transfer control into the range of a DO-loop. The following example
illustrates this error.

Example:
* |llegal transfer into the range of a DO | oop.
GO TO 20
DO 10, | = 100, O, -1
PRI NT *, " Counting down from 100 to 0", |
20 PRI NT *, |, SQRT(FLQAT(I))

10 CONTI NUE

The following example shows amore subtle form of this error.

Example:
* |llegal transfer into the range of a DO | oop.
DO10 I =1, 10
* Skip row 5 of 10x10 matrix

IF(| .EQ 5)GO TO 10
DO 10 J = 1, 10
ACl, J) =0.0
10 CONTI NUE

Since the CONTI NUE statement is included in the range of the inner DO-loop, an error message is issued.
The following example illustrates the Open Watcom FORTRAN 77 structured DO statement.

Example:
DOl = -5, 5
DOJ = -2, 3
ARRAY(I, J) =0.0
END DO
END DO

In keeping with more modern programming practices, this feature allows the programmer to write
DO-loops without resorting to the use of statement labels. A well-chosen indentation style further enhances
the readability of the program.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

48 DO Statement

FORTRAN Statements

2.21 DOUBLE COMPLEX Statement

The DOUBLE COVPLEX statement is a type declaration statement and can be used to declare aname to be
of type double complex. Theimplicit type of the name, whether defined by the "first letter rule" (see the
chapter entitled "Names, Data Types and Constants' on page 151) or by an | MPLI CI T statement, is either
confirmed or overridden. However, once a name has been declared to be of type double complex, it cannot
appear in another type declaration statement.

There are various forms of the DOUBLE COVPLEX statement. The following sections describe them.

2.21.1 Simple DOUBLE COMPLEX Statement

DOUBLE COWPLEX nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

The DOUBLE COWMPLEX statement is an extension to the FORTRAN 77 language.
Example:

DI MENSI ON C(-5:5)

DOUBLE COWPLEX A, B(10), C

In the previous example, A is defined to be avariable of type double complex and B and C are defined to be
arrays of type double complex.

2.21.2 DOUBLE COMPLEX Statement: Data Initialization

DOUBLE COWPLEX nane [/cl/] [,nane[/cl/]]

where:

name is as described in the previous section.

cl isalist of the form:
k [K]

k is one of the forms:
c

r*c (equivalent to r successive appearances of c)

DOUBLE COMPLEX Statement 49

Language Reference

c isaconstant or the symbolic hame of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the DOUBLE COVPLEX statement is also an extension to the FORTRAN 77 language. The
rules for datainitialization are the same as for the DATA statement.

Example:
DOUBLE COMPLEX A/ (4D4,5.1D4)/, B(10)/10*(5D1, 3. 1D1)/

In the previous example, A isinitialized with the double precision complex constant (4D4, 5. 1D4) and
each element of the array B isinitialized with the double precision complex constant (5D1, 3. 1D1) .

50 DOUBLE COMPLEX Statement

FORTRAN Statements

2.22 DOUBLE PRECISION Statement

The DOUBLE PRECI SI ON statement is a type declaration statement and can be used to declare aname to
be of type double precision. Theimplicit type of the name, whether defined by the "first |etter rule” (see
the chapter entitled "Names, Data Types and Constants' on page 151) or by an | MPLI CI T statement, is
either confirmed or overridden. However, once a name has been declared to be of type double precision, it
cannot appear in another type declaration statement.

There are various forms of the DOUBLE PRECI SI ON statement. The following sections describe them.

2.22.1 Standard DOUBLE PRECISION Statement

DOUBLE PRECI SI ON nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

Thisform is the standard form of the DOUBLE PRECI S| ON statement.
Example:

DI MENSI ON C(-5:5)

DOUBLE PRECI SION A, B(10), C

In the previous example, A is defined to be a variable of type double precision and B and C are defined to
be arrays of type double precision.

2.22.2 Extended DOUBLE PRECISION Statement: Data Initialization

DOUBLE PRECI SION nane [/cl/] [,name[/cl/]]

where:

name is as described in the previous section.

cl isalist of the form:
k [, K]
k is one of the forms:

c

r*c (equivalent to r successive appearances of ¢)

DOUBLE PRECISION Statement 51

Language Reference

c isaconstant or the symbolic hame of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the DOUBLE PRECI SI ON statement is an extension to the FORTRAN 77 language. The
rulesfor datainitialization are the same as for the DATA statement.

Example:
DOUBLE PRECI SI ON A/ 4D4/, B(10)/10*5D1/

In the previous example, A isinitialized with the double precision constant 4D4 and each element of the
array B isinitialized with the double precision constant 5D1.

52 DOUBLE PRECISION Statement

FORTRAN Statements

2.23 DO WHILE Statement

DO [s[,]] WH LE (e) [: Dbl ock-Iabel]

where:

S isan optional statement label of an executable statement, called the terminal
statement, which follows the DO statement in the same program unit.

e isalogical expression or integer arithmetic expression, in which case the result
of the integer expression is compared for inequality to the integer value 0.

block-label is an optiona block label.

The DO WHI LE statement is an extension to the FORTRAN 77 language.

Example:

0
WHI LE(X .LT. 100.0)
X SQRT(X))

+

10 CONTI NUE

If no statement label is present, the terminal statement of the DO-loop must bean END DO statement.

Example:
X =0.0
DO WHI LE(X .LT. 100.0)
PRINT *, X, SQRT(X)
X=X+1.0
ENDDO

The following example illustrates the use of an integer arithmetic expression.

Example:
I =10
DO WHI LE(|)
PRI NT *, |
I =1 -1
ENDDO

END
The DO WHI LE statement, is similar to the DO statement. All nesting rules that apply to the DO statement
also apply to the DO WHI LE statement. The differenceis the way in which the looping is accomplished;
the DO-loop is executed while the logical expression of the DO WHI LE statement has a true value or until
control istransferred out of the DO-loop.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

DO WHILE Statement 53

Language Reference

2.24 ELSE Statement

ELSE

The EL SE statement is used in conjunction with the | F or ELSE | F statement. The range of the ELSE
block is terminated by a matching END | F statement.

Example:
IF(A .LT. B)THEN
PRINT *, "Ais less than B
ELSE
PRINT *, "Ais greater than or equal to B
END I F

Transfer of control into the range of an ELSE block isillegal. It isinteresting to note that the ELSE
statement may be identified by a statement label but it must not be referenced by any statement!

Example:
* |llegal branch to a labelled ELSE statenent.
IF(A .LT. B)THEN
PRINT *, "Ais less than B
100 ELSE
PRINT *, "Ais greater than or equal to B
GO TO 100
END I F

The aboveis an example of an illegal way to construct an infinitely repeating loop. The following isthe
correct way to do this.

Example:
IF(A .LT. B)THEN
PRINT *, "Ais less than B
ELSE
100 PRINT *, "Ais greater than or equal to B
GO TO 100
END I F

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

54 ELSE Statement

FORTRAN Statements

2.25 ELSE IF Statement

ELSE | F (e) THEN

where:

e isalogical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value O.

The ELSE | F statement is used in conjunction with the | F statement. The range of the ELSE | F block
isterminated by another ELSE | F statement, an ELSE statement, or an END | F statement.

Example:

IF(A .LT. B)THEN

PRINT *, "Ais less than B
ELSE IF(A .EQ B)THEN

PRINT *, "Ais equal to B
ELSE

PRINT *, "Ais greater than B
END | F

Transfer of control into therange of an ELSE | F block isillegal. Itisinteresting to note that the ELSE
| F statement may be identified by a statement label but it must not be referenced by any statement!

Example:
* |llegal transfer into the range of
* an ELSE I F statenent.
IF(A.EQ 0.0)GO TO 110
IF(A .LT. B)THEN
PRINT *, "Ais less than B
ELSE IF(A .EQ B)THEN
PRINT *, "Ais equal to B or’

110 PRINT *, "Ais equal to O’
ELSE
PRINT *, "Ais greater than B
END I F

The aboveis an example of anillegal attempt to branch into the range of an ELSE | F block.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

ELSE IF Statement 55

Language Reference

2.26 END Statement

END

The END statement indicates the end of a sequence of statements and comment lines of a program unit.
Execution of an END statement in a function or subroutine subprogram has the same effect asa RETURN
statement. Control is returned to the invoking program unit. Execution of an END statement in amain
program causes termination of execution of the program.

Example:
SUBROUTI NE EULER(X, Y, Z)

END
Upon executing the END statement, execution control is returned to the calling program unit.

Example:
PROGRAM PAYROL

END
Upon executing the END statement, execution of the program is terminated.
Some rather specia rules apply to the END statement. The statement is written in columns 7 to 72 of an
initial line. In other words, it must not be continued. Also, no other statement in the program unit may

have an initial line that appears to be an END statement.

Example:
* An illegal ENDIF statenent.
IF(A .LT. B)THEN

END
& F

The above END | F statement isillegal sincetheinitial line appearsto be an END statement.

56 END Statement

FORTRAN Statements

2.27 END AT END Statement

END AT END

The END AT END statement is used in conjunction with the structured AT END statement. The END AT
END statement marks the end of a sequence of statements which are part of an AT END-block. The AT
END statement marks the beginning of the AT END-block. The AT END-block is executed when the
preceding READ statement terminates because of an end-of-file condition.

Example:

READ(UNIT=1, FMI='(315)’) I, J, K
AT END DO

PRI NT *, " END- OF- FI LE ENCOUNTERED ON UNI T 1’
ECFSW = . TRUE.
END AT END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

END AT END Statement 57

Language Reference

2.28 END BLOCK Statement

END BLOCK

The END BLOCK statement is used to terminate a REMOTE-block. The END BLOCK statement is
implicitly atransfer statement, since it returns program control from a REMOTE-block.

Example:
REMOTE BLOCK A
=1 +1
PRINT *, "= 1
END BLOCK

For more information, see the description of the EXECUTE and REMOTE BLOCK statements or the chapter
entitled "Program Structure Control Statements" on page 193.

58 END BLOCK Statement

FORTRAN Statements

2.29 END DO Statement

END DO

The END DOstatement is used to terminate the range of a"structured” DOstatement. A structured DO
statement is one in which a statement label is not present. For more information, see the description of the
structured DO statement or the chapter entitled "Program Structure Control Statements" on page 193.

Example:
DO X = -5.1, 12.8, 0.125
END DO

Example:
X =-51

DO WH LE(X .LE. 12.8)

X = X + 0.125
END DO

END DO Statement 59

Language Reference

2.30 ENDFILE Statement

ENDFI LE u
ENDFI LE (al i st)

where:

u isan external unit identifier.

alist isalist of endfile specifiers separated by commas:
[UNIT =] u
| OSTAT = io0s
ERR = s

Execution of an ENDFI LE statement causes an endfile record to be written to the file connected to the
specified unit. Thefileisthen positioned after the endfile record. If the file may be connected for direct
access, only those records before the endfile record are considered to have been written. Thus, only those
records before the endfile record may be read during subsequent direct access connections to thefile.

Endfile Specifiers

[UNIT =] u
u isan external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNI T= specifier is omitted then the specifier must be the first
itemin thelist of specifiers.

|OSTAT =ios
isan input/output status specifier. The integer variable or integer array element i os is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.

ERR=s
isan error specifier and s isastatement label. When an error occurs, execution is
transferred to the statement labelled by s.

Example:

LOOP
READ(UNI T=7, END=100, FMI=200) RECORD
VWRI TE(UNI T=8, FMI=200) RECORD
ENDLOOP
100 ENDFI LE(UNI T=8)

In the previous example, we illustrate how one might read all the records from one file (unit 7), write them
to another file (unit 8) and then write an endfile record to the end of the file on unit 8.

60 ENDFILE Statement

FORTRAN Statements

Notes:
1. Theunit must be connected for sequential access.
2. After execution of an ENDFI LE statement, a BACKSPACE or REW ND statement must be used
to reposition the file before any other input/output statement which refersto this file can be

executed.

3. If thefiledid not exist before execution of the ENDFI LE statement then it will be created after
execution of this statement.

For more information on input/output, see the chapter entitled "Input/Output” on page 215.

ENDFILE Statement 61

Language Reference

2.31 END GUESS Statement

END GUESS

The END GUESS statement is used in conjunction with the structured GUESS statement. The END

GUESS statement marks the end of a series of GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS
IF(CH.LT. &
IF(CH.GT. "7z’
PRI NT *, ' Lower
ADM T
IF(CH .LT. "A
IF(CH.GT. 'Z
PRI NT *, ’ Upper
ADM T
IF(CH.LT. '0
IF(CH.GT. '9
PRINT *, "Digit
ADM T
PRI NT *, ' Speci al
END GUESS
END

For more information, see the chapter entitled "Program Structure Control Statements' on page 193.

62 END GUESS Statement

— -

) QUI
) QUI
case

letter’

— -

) QU
) QU
case

letter’

— -

)
)

e

character’

FORTRAN Statements

2.32 END IF Statement

END | F

The END | F statement is used in conjunction with the block | F statement. The END | F statement marks
the end of a sequence of statements which are to be conditionally executed.

Example:
IF(X .LT. 100.0) THEN
PRINT *, "X IS LESS THAN 100’
END I F

The END | F statement can also be used in conjunction with the ELSE and ELSE | F statements. For
more information, see the chapter entitled "Program Structure Control Statements" on page 193.

END IF Statement 63

Language Reference

2.33 END LOOP Statement

END LOOP

The END LOOP statement is used in conjunction with the structured LOOP statement. The END LOOP
statement marks the end of a sequence of statements which are to be repeated. The LOOP statement marks
the beginning of the loop. The LOOP-block is executed until control is transferred out of the L OOP-block.

The QUI T statement may be used to transfer control out of a LOOP-block.

Example:
LOOP
READ *, X
IF(X .GI. 99.0) QUT
PRI NT *, X
END LOCP

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

64 END LOOP Statement

FORTRAN Statements

2.34 END MAP Statement

END MAP

The END MAP statement is used in conjunction with the MAP declarative statement. The END MAP
statement marks the end of a MAP structure. The following example maps out a 4-byte integer on an Intel
80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
VAP
| NTEGER*4 LONG
END MAP
MAP
I NTEGER*2 LO_WORD
I NTEGER*2 HI _WORD
END MAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
| 4ONG = ' 01020304’ x

PRINT ' (2Z4)’, 19%.0 WORD, | % _WORD
END

For more information, see the chapter entitled " Structures, Unions and Records" on page 167.

END MAP Statement 65

Language Reference

2.35 END SELECT Statement

END SELECT

The END SELECT statement is used in conjunction with the SELECT statement. The END SELECT

statement marks the end of a series of CASE blocks.

Example:

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

SELECT CASE (CH)

CASE ('a : 'z’)

PRI NT *, ’'Lower case letter’
CASE ('A : 'Z)

PRINT *, ' Upper case letter’
CASE ('0" : "9)

PRINT *, "Digit’
CASE DEFAULT

PRI NT *, ' Special character’
END SELECT

66 END SELECT Statement

FORTRAN Statements

2.36 END STRUCTURE Statement

END STRUCTURE

The END STRUCTURE statement is used in conjunction with the STRUCTURE declarative statement. The
END STRUCTURE statement marks the end of a structure definition.

Example:

STRUCTURE / ADDRESS/
CHARACTER* 20 STREET
CHARACTER*20 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE

END STRUCTURE

STRUCTURE / PECPLE/
CHARACTER* 20 NAME
RECORD / ADDRESS/ ADDR
| NTEGER*2 AGE

END STRUCTURE

For more information, see the chapter entitled " Structures, Unions and Records" on page 167.

END STRUCTURE Statement 67

Language Reference

2.37 END UNION Statement

END UNI ON

The END UNI ON statement is used in conjunction with the UNI ON declarative statement. The END
UNI ON statement marks the end of a series of MAP structures. The following example maps out a 4-byte
integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
VAP
| NTEGER*4 LONG
END MAP
MAP
I NTEGER*2 LO_WORD
I NTEGER*2 HI _WORD
END MAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
| 4ONG = ' 01020304’ x

PRINT ' (2Z4)’, 19%.0 WORD, | % _WORD
END

For more information, see the chapter entitled " Structures, Unions and Records" on page 167.

68 END UNION Statement

FORTRAN Statements

2.38 END WHILE Statement

END VWHI LE

The END WHI LE statement is used in conjunction with the structured WHI LE statement. The END

VWHI LE statement marks the end of a sequence of statements which are to be repeated. The WHI LE
statement marks the beginning of the WHILE-block. The WHILE-block is executed while the logical
expression (or integer arithmetic expression) of the WHI LE statement has a true (or non-zero) value or until
control istransferred out of the WHILE-block.

Example:

Example:

X=1.0

WHI LE(X .LT. 100)DO
PRINT *, X, SORT(X)
X=X+1.0

END V\HI LE

| =10

WH LE(|)DO
PRINT *, |
I =1 -1

ENDWHI LE

END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

END WHILE Statement 69

Language Reference

2.39 ENTRY Statement

ENTRY name [([d [, d] ...])]

where:

name is asymbolic name of an entry in afunction or subroutine subprogram. If the ENTRY statement
appears in a subroutine subprogram then nane isasubroutine name. If the ENTRY statement
appears in afunction subprogram then nane is an external function name.

d isavariable name, array name, dummy procedure name, or an asterisk. d is called adummy
argument. An asterisk is allowed only in a subroutine subprogram.

The ENTRY statement is used to define an alternate entry into a subprogram.

Example:
PRI NT *, TMAX2(121.0, -290.0)
PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTI ON TMAX3(ARGA, ARGB, ARCC)
T3 = ARGC
GO TO 10
ENTRY TMAX2(ARGA, ARGB)
T3 = ARGA
10 TMAX2 = ARGA
|F(ARGB . GT. TMAX2) TMAX2 = ARGB
IF(T3 .GT. TMAX2) TMAX2 = T3
END

In the above example, an entry was defined to permit usto find the maximum of two real variables. Either
the entry name TMAX2 or the function name TMAX3 could have been used as the variable for returning the
maximum value since they agreein type. Itisnot necessary to precede an ENTRY statement with atransfer
statement as the ENTRY statement is not an executabl e statement; the next statement executed will be the
first executable statement following the ENTRY statement.

Notes:

1. Nodummy arguments need be specified in the ENTRY statement. If thisisthe case, the
parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines” on page 243.

70 ENTRY Statement

FORTRAN Statements

2.40 EQUIVALENCE Statement

EQUI VALENCE (nlist) [,(nlist)]

where:
nlist isalist of at least two names, each name separated by acomma.

The names appearing in nl i st can be variable names, array names, array element names, character
names, character substring names, and character array element substring names. Dummy arguments are not
alowedinnl i st.

The EQUI VALENCE statement specifies that the storage occupied by the entities appearingin nl i st all
start at the same place. It in no way changes the characteristics of an object. For example, if avariableis
equivalenced to an array, the variable does not inherit the properties of the array. Similarly, if avariable of
type integer is equivalenced to a variable of type real, there is no implied type conversion.

If an array element name appearsin an EQUI VALENCE statement, the number of subscript expressions
must be the same as the number of dimensions specified when the array was declared and each subscript
expression must be in the range specified. Asan extension to FORTRAN 77, Open Watcom FORTRAN
77 adlows a single subscript expression for amulti-dimensional array. An array name used by itself is
equivalent to specifying the first element of the array.

If acharacter substring appearsin an EQUI VALENCE statement, the substring defined by the substring
expression must be properly contained in the character entity being substrung. A character name used by
itself is equivalent to specifying the first character of the character variable.

Example:
REAL A B
DI MENSI ON A(10), B(20)
EQUI VALENCE (A, B(16))

In the above example, the first 5 elements of A occupy the same storage as the last 5 elements of B.
Example:

DI MENSI ON A(10)

EQUI VALENCE (C, A(2)), (D, A(4))

In the above example, Cis assigned the same storage unit as A(2) and Dis assigned the same storage unit
asA(4).

EQUIVALENCE Statement 71

Language Reference

The following example illustrates a Open Watcom FORTRAN 77 extension.

Example:
REAL A(2,10),B(20),C(2,2,5)
EQUI VALENCE (A(5),B(1)),(B(1),C(1))

In the above example, a single subscript is specified for arrays Aand C. The following table shows the
mapping of a 2-dimensional array onto a 1-dimensional array.

A(l,1) == A(1)
A(2,1) == A2
A(l,2) == A(3)
A(2,2) == A(4)
A(1,3) == A(5)
A(2,3) == A(6)
In the abovetable, "=="isread as "is equivalent to". In FORTRAN, arrays are stored in "column major"

format (i.e., arrays are stored column by column rather than row by row).

Example:
CHARACTER*5 A, D
EQUI VALENCE (A(3:5), D(1:3))

In this example, the last 3 characters of A occupy the same character storage units as the first 3 characters of
D.

There are certain restrictions on EQUI VALENCE statements. It is not possible to equivalence a storage unit
to 2 different storage units. Thisisillustrated by the following example.

Example:
* |llegally equivalencing a storage unit to
* 2 different storage units.
DI MENSI ON A(2)
EQUI VALENCE (A(1),B), (A(2), B)

B has been given 2 different storage units.
It is also not possible to specify that consecutive storage units be non-consecutive. For example,

Example:
* |l1legally equival enci ng consecutive storage units to
* non-consecutive storage units.
DI MENSI ON A(2), B(2)
EQUI VALENCE (A(1),B(2)),(A(2),B(1))

A(1) and A(2) areconsecutive but B(1) and B(2) arenot.

The FORTRAN 77 standard specifies that character and numeric data cannot be equivalenced; Open
Watcom FORTRAN 77 allows character and numeric data to be equivalenced.

72 EQUIVALENCE Statement

FORTRAN Statements

2.41 EXECUTE Statement

EXECUTE nane

where:
name isthe name of a REMOTE BLOCK located in the same program unit.

The EXECUTE statement allows a named block of code to be executed. The named block of code may be
defined anywhere in the same program unit and is delimited by the REMOTE BLOCK and END BLOCK
statements. Executing a REMOTE-block is similar in concept to calling a subroutine, with the advantage
that shared variables do not need to be placed in a COVMMON block or passed in an argument list. When
execution of the REMOTE-block is complete (i.e., when the END BLOCK statement is executed), control
returns to the statement following the EXECUTE statement which invoked it.

Example:
EXECUTE | NCR
PRINT *, ' FIRST
EXECUTE | NCR
PRI NT *, ' SECOND

REMOTE BLOCK | NCR
I =I+1
PRINT *, " 1= 1
END BLOCK

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

EXECUTE Statement 73

Language Reference

2.42 EXIT Statement

EXIT [: Dbl ock-Iabel]

The EXI T statement is used to transfer control:

1. fromwithin aloop (DO, DO WHILE, WHILE or LOOP) to the statement following the loop,

2. fromwithin a GUESS or ADMIT block to the statement following the ENDGUESS statement, or

3. from within aremote block to the statement following the EXECUTE statement that invoked the
remote block.

The EXI T statement may be used to cause atransfer of control to the first executable statement that follows
the terminal statement of the block which containsit. Examples of such termina statementsare END DO,
END LOOP, END WHI LE, UNTI L, etc. If bl ock-1 abel ispresent then control istransferred out of
the block identified by that block label. The EXI T statement is an extension to the FORTRAN 77
language.

Example:

LOOP
WRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI=' (F10.4)’, | OSTAT=10S) X
IF(ICS .NE. 0) EXIT
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOCP

END

For more information, see the chapter entitled "Program Structure Control Statements' on page 193.

74 EXIT Statement

FORTRAN Statements

2.43 EXTERNAL Statement

EXTERNAL p [, p]

where:

p is the name of an external procedure, dummy procedure or block data subprogram.

The EXTERNAL statement identifies a symbolic name to be a dummy procedure or an external procedure
and allows these names to be passed as an actual argument. In the following example, SAM ERRRTN and
PCLY are declared to be external procedures.

Example:
EXTERNAL SAM ERRRTN, PCLY

In the following example, F isdeclared to be an external procedure and is passed as such to subroutine
SAM If the EXTERNAL statement were eliminated then the variable F would be passed on to subroutine
SAMsince thereis no way of knowing that F isan external function.

Example:
EXTERNAL F

CALL SAM F)
The appearance of an intrinsic function in an EXTERNAL statement declares that name to be an external
procedure and the intrinsic function by that name is no longer available in that program unit. This allows
the programmer to define a function by the same name as an intrinsic function. In the following example,
the programmer’s Sl N function will be called instead of theintrinsic SI N function.

Example:
EXTERNAL SI N

CALL SIN(.1)

A statement function name must not appear in an EXTERNAL statement. A name must only appear in an
EXTERNAL statement once.

EXTERNAL Statement 75

Language Reference

2.44 FORMAT Statement

| abel FORMAT fs
where:
fs isaformat specification and is described in the chapter entitled "Format" on page 225.
label isthe statement label used by an 1/0O statement to identify the FORMAT statement to be used.
The FORMAT statement must be labelled.
Example:
REAL X
X = 234.43

PRI NT 100, X
100 FORMAT(F10. 2)
END

In the previous example, the PRI NT statement uses the format specification in the FORMAT statement
whose statement label is 100 to display the value of X.

For more information on the FORVAT statement, see the chapter entitled "Format" on page 225.

76 FORMAT Statement

FORTRAN Statements

2.45 FUNCTION Statement

A FUNCTI ON statement is used to define the start of afunction subprogram. There are two forms of the
FUNCTI ON function statement. The second form is a Open Watcom FORTRAN 77 extension.

2.45.1 Standard FUNCTION Statement

[type] FUNCTION fun ([d [, d] ...]1)

where:

type

fun

Example:

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COVPLEX or CHARACTER
[*len].

isa symbolic name of afunction subprogram.
isavariable name, array name, or adummy procedure name. d iscalled a dummy argument.

is called the length specification and is the length (number of characters) of the result of the
character function. It has one of the following forms:

(1) An unsigned positive integer constant.
2 A positive integer constant expression enclosed in parentheses.
(€] An asterisk in parentheses, (*) .

PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTI ON TMAX3(ARGA, ARGB, ARGC)
TMAX3 = ARGA
| F(ARGB .GI. TMAX3) TMAX3
| F(ARGC . GT. TMAX3) TMAX3

ARGB
ARGC

END

In the above example, the function TMAX3 is defined to find the maximum of three real variables.

Notes:

1.

No dummy arguments need be specified in the FUNCTI ON statement. However, the parentheses
() are mandatory.

For more information, see the chapter entitled "Functions and Subroutines’ on page 243.

FUNCTION Statement 77

Language Reference

2.45.2 Extended FUNCTION Statement

[type[*l en]] FUNCTION fun[*len] ([d [, dI ...])

where:
type isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COVPLEX, CHARACTER
or RECORD /t ypenarne/
fun isasymbolic name of afunction subprogram.
d isavariable name, array name, or adummy procedure name. d iscalled a dummy argument.
len is called the length specification and has one of the following forms:
Q An unsigned positive integer constant.
2 A positive integer constant expression enclosed in parentheses.
©)] An asterisk in parentheses, (*) .

For valid values of | en, refer to the appropriate type declaration statement.
Thisform of the FUNCTI ON statement is an extension to the FORTRAN 77 language.

Example:

| NTEGER*2 FUNCTI ON MOD2(|, J)
INTEGER*2 |, J

INTEGER 11, JJ

=1

JJ =1

MOD2
END

MOD(1 1, JJ)

Notes:

1. Nodummy arguments need be specified in the FUNCTI ON statement. However, the parentheses
() are mandatory.

2. Thelength specification can appear only oncein the FUNCTI ON statement.

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

78 FUNCTION Statement

FORTRAN Statements

2.46 Unconditional GO TO Statement

&0 TO s

where:

S isthe statement label of an executable statement that appearsin the same program unit asthe GO TO
Statement.

Example:
G0 TO 10

10 S=S+1

When the GO TOstatement is executed, control is transferred to the statement identified by that label. In
the above example, the GO TO statement causes execution to proceed to the statement labelled 10.

Example:
* An illegal GO TO statenment
GO TO 100
100 . FORMAT(1X, 3F10.2)

The above example contains an illegal GO TOstatement since the statement identified by the label 100 is
not executable.

Unconditional GO TO Statement 79

Language Reference

2.47 Computed GO TO Statement

G TO(s [,s]...) [.]i

where:
[is an integer expression.

S isthe statement label of an executable statement that appearsin the same program unit as the
computed GO TO statement.

Theinteger expression i isevaluated and the i th label is selected for transfer of control. If i islessthan 1
or greater than the number of statement labelsin the list then execution control continues with the next
executable statement that follows the computed GO TO statement.

Example:
G0 TO (110, 120, 130, 140) I NDEX
100 CALL AUDIT

In the above example, control istransferred to the statement identified by the label 110 if | NDEX hasthe
value 1, the label 120 if | NDEX hasthe value 2, etc. If | NDEX has avauethat is negative, zero or larger
than 4, control continues with the statement labelled 100. In this example, the integer expression consists
simply of an integer variable.

Example:
&0 TO (100, 200, 100, 200, 100, 200), 1/10

The above example illustrates that statement labels may be repeated in the list and that a"," may follow the
closing right parenthesis.

80 Computed GO TO Statement

FORTRAN Statements

2.48 Assigned GO TO Statement

O TOi [[,] (s [,s]...)]

where:
[is an integer variable name.

S isthe statement label of an executable statement that appearsin the same program unit as the
assigned GO TOstatement.

Thevariablei must be defined with the value of a statement label of an executable statement that appears
in the same program unit (see the ASSI GN statement). The execution of the assigned GO TO statement
causes atransfer of control to the statement that isidentified by that label.

Example:
| NTEGER RET
X =0.0
ASSI GN 100 TO RET

100 X=X+1

GO TO 3000
110 X=X +1
* .Print both X and its square root

3000 Y = SQRT(X)
PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSI GN statement and the assigned GO TO statement to
implement a"local subroutine” in a program unit. A sequence of often-used code can be "called" using the
unconditional GO TOstatement and "return” is accomplished using the assigned GO TO statement. Care
must be exercised to properly assign the return label value.

If alist of statement labelsis present then the statement label assignedto i must beinthelist. If itisnotin
thelist, an error will occur when the assigned GO TO statement is executed. Unlike the computed GO TO
statement, execution does not continue with the next statement. Thisis demonstrated by the following
example. Notethat the"," preceding the statement label list is optional.

Example:

Assigned GO TO Statement 81

Language Reference

* |1l ega

*

*

100
110
120
1.30

200

St at enent | abe

| abel

use of the assigned GO TO

100 does not appear

ASSI GN 100 TO | CASE

@GO TO | CASE,

(110, 120, 130)

begi nni ng of sel ections

PRI NT *,

GO TO 200

PRI NT *,

GO TO 200

PRI NT *,

GO TO 200

PRI NT *,

100

110

120

130

end of selections

END

82 Assigned GO TO Statement

in the statenent

list of the assigned GO TO statenent.

FORTRAN Statements

2.49 GUESS Statement

GUESS [:

bl ock- | abel]

The GUESS statement is an extension to the FORTRAN 77 language. The GUESS statement marks the
beginning of ablock of statements for which a certain assumption or hypothesis has been made. This

hypothesis may be tested using logical | F statementsin conjunction with QUI T statements. The ADM T

statement may be used to mark the beginning of an alternate hypothesis. The END GUESS statement is

used to mark the end of a series of GUESS-ADMIT blocks.

Example:

An optional block label may be specified with the GUESS statement.

CHARACTER CH

YQUIT
YQUIT
case letter’
)QUIT
QU T

case letter’

)QUI T
YQUI T

character’

READ *, CH
GQUESS
IF(CH .LT. "a&
IF(CH.GT. 'z’
PRI NT *, ’ Lower
ADM T
IF(CH .LT. "A
IF(CH.GT. 'Z
PRI NT *, ’ Upper
ADM T
IF(CH .LT. 'O
IF(CH .GI. '9
PRINT *, "Digit’
ADM T
PRI NT *, ' Speci al
END GUESS
END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

GUESS Statement

83

Language Reference

2.50 Arithmetic IF Statement

IF (e) sl1, s2, s3

where:
e isan integer, real, or double precision expression.
sl, s2,s3 are statement labels of executable statements that appear in the same program unit

asthe arithmetic | F statement.

The expression e isevaluated and if the value is less than zero then transfer is made to the statement
identified by label s1. If thevaueisequal to zero then transfer is made to the statement identified by
label s2. If thevalueisgreater than zero then transfer is made to the statement identified by label s3.

Example:

IF(SIN(X)) 10, 20, 30

10 PRINT *, "SIN(X) IS < 0O
GO TO 40

20 PRINT *, "SIN(X) = 0O
GO TO 40

30 PRINT *, "SIN(X) > 0O

40 CONTI NUE

The above example evaluates the sine of the real variable X and prints whether the result isless than 0O,

equal to 0, or greater than 0.
The same label may appear more than once in the arithmetic | F statement.

Example:
IF(SIN(X)) 10, 10, 30
10 PRINT *, "SIN(X) IS <=0
GO TO 40
30 PRINT *, "SIN(X) > 0O
40 CONTI NUE

The above example evaluates the sine of the real variable X and prints whether the result is less than or

equal to zero, or that it is greater than O.

84 Arithmetic IF Statement

FORTRAN Statements

2.51 Logical IF Statement

IF (e) st
where:
e isalogical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value O.
st is an executable statement. Only certain executable statements are allowed. See the section entitled

"Classifying Statements' on page 9 at the beginning of this chapter for alist of alowable statements.

The expression e is evaluated and must result in atrue or afalse value. If theresult is true then the
statement st is executed, otherwise it is not executed.

Example:
IF(A.LT. B)PRINT *, "A< B

In the above example, the logical expression A . LT. Bisevaluated and, if it istrue, the message A <
Bisprinted. A logical expression isoneinwhich the result is either true or false. An expressionsuchas 1
+ 2 isclearly not an example of alogical expression.

Logical variables have logical values of true or false and may also be used in the logical expression.
Consider the following two examples.

Example:
LOd CAL RESULT
RESULT = A .LT. B
| F(RESULT)PRINT *, "A < B

The above example is equivalent to the preceding one but introduces the use of alogical variable.

Example:
LOd CAL RESULT
RESULT = A .LT. B
IF(.NOT. RESULT)PRINT *, "A >= B

In the above example, the logical expression is negated through the use of the . NOT. operator in order to
test for the inverse condition, namely . GE. .

Much more complex logical expressions can be constructed and then tested for their truth value.

Example:
IF(ALT.B.OR C GED)PRINT *, 'A<B or C=D

Logical IF Statement 85

Language Reference

An example of an integer expressionin an | F statement follows:

Example:
I =1
* | nteger arithmetic expression
IF(I) THEN
PRI NT *, ' Yes’
ENDI F

* Equi val ent | ogi cal expression
IF(| .NE. 0)THEN
PRI NT *, ’Yes’
ENDI F
END

86 Logical IF Statement

FORTRAN Statements

2.52 Block IF Statement

There are two forms of the block | F statement. The second is a Open Watcom FORTRAN 77 extension.

2.52.1 Standard Block IF Statement

IF (e) THEN
where:
e isalogica expression.

Theblock | F statement isused in conjunction withthe ELSE | F, ELSE, and END | F statements.
Example:
IF(A .LT. B)THEN

PRINT *, "A < B
END | F

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

2.52.2 Extended Block IF Statement

IF (e) THEN [: bl ock-1abel]

where:

e isalogical expression or integer arithmetic expression, in which case the result
of theinteger expression is compared for inequality to the integer value 0.

block-label is an optiona block label.

Thisform of the block | F statement is an extension to the FORTRAN 77 language. Itisidentical to the
standard form of the block | F statement with the exception that an integer arithmetic expression and an
optional block label are permitted.

Example:

Block IF Statement 87

Language Reference

IF(| .EQ 10)THEN : IFBLK
IF(J .EQ 20)THEN

IF(K. EQ 0)QUT : IFBLK
END | F

END | F

In the previous example, the QUI T statement will transfer control to the statement following the second
END | F statement.

88 Block IF Statement

FORTRAN Statements

2.53 IMPLICIT Statement

Open Watcom FORTRAN 77 supports three forms of the | MPLI Cl T statement. The second and third
forms are extensions to the FORTRAN 77 language.

2.53.1 Standard IMPLICIT Statement

IMPLICIT type (a [,a] ...) [,type (a[,a] ...)]...

where:

type

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COVPLEXor
CHARACTER *I en] .

iseither asingle letter or arange of letters denoted by separating the first letter in the range from
the last letter in the range by a minus sign.

isthe length of the character entities and is a positive unsigned integer constant or a positive
integer constant expression enclosed in parentheses. If | en isnot specified, the length is 1.

2.53.2 Extended IMPLICIT Statement

IMPLICIT type[*len] (a [,a] ...)
[.type[*len] (a [,a] ...)]

where:

type

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COVPLEXor
CHARACTER

is apositive unsigned integer constant or a positive integer constant expression enclosed in
parentheses. If t ype is CHARACTERthen (*) isaso allowed. The possiblevaluesof | en are
asfollows:

1. IftypeisLOd CAL thenl| en canbelor 4. Thedefaultis4.

2. Iftypeisl NTEGERthen| en canbel, 2 or 4. Thedefaultis4.

3. IftypeisREAL thenl| en canbe4 or 8. Thedefaultis4.

4. IftypeisDOUBLE PRECI SI ONthen | en cannot be specified.

5. Iftype isCOVPLEXthen| en canbe8or 16. The defaultis8.

6. Iftype isCHARACTERthen| en canbe (*) or any positive integer.

IMPLICIT Statement 89

Language Reference

2.53.3 IMPLICIT NONE Statement

| MPLICI T NONE

2.53.4 Description of IMPLICIT Statement

90

Thel MPLI ClI T statement defines the default type and length for all variables, arrays, symbolic constants,
external functions and statement functions that begin with any letter that has appearedinan | MPLI CI T
statement as a single letter or as a member of arange of letters.

The following example specifies that any name beginning with the letters A, D, E, F or Gwill have
default a default type of integer and any hame beginning with the letters X, Y or Z will have a default type
of character and length 3.

Example:
IMPLICIT INTEGER (A DG, CHARACTER*3 (X-2)

The next example illustrates the extended form of the | MPLI Cl T statement.

Example:

| MPLICI T I NTEGER*2 (A B), LOd CAL*1 (CF)

| MPLICI T COWLEX*16 (X, Y,Z), REAL*8 (P)
Specifying NONE in the | MPLI CI T statement will cause Open Watcom FORTRAN 77 to issue an error
when a symbol is used and has not appeared in a type specification statement.

Example:
* Referencing X will cause an error
| MPLI CI' T NONE
X = 13143. 383

In the above example, the | MPLI Cl T statement specifies that the type of all symbols must be explicitly
declared in atype specification statement. The assignment statement will cause an error since the type of X
has not been explicitly declared.

Notes:

1. Theimplicit typeset by an | MPLI CI T statement may be overridden or confirmed for any
variable, array, symbolic constant, external function or statement function name by its
appearance in atype statement. The default length specification may also be overridden or
confirmed in atype statement.

IMPLICIT Statement

FORTRAN Statements

Example:
| MPLI I T CHARACTER*10 (S-U)
| MPLICI T | NTEGER*2 (P)
CHARACTER STRI NG
| NTEGER PO NTS

In the above example, the variable STRI NGis of type character but itslength is 1 since it has
appeared in a CHARACTER statement which has a default length of 1. Also, the variable

PO NTS is of typeinteger but its length is 4 since it has appeared in an | NTEGER statement
which has a default length of 4.

A letter cannot appear more than once as a single letter or be included in arange of lettersin all
| MPLI ClI T statements in a program unit.

An | MPLI CI T statement applies only to the program unit that containsiit.
Thel MPLI ClI T statement does not change the type of intrinsic functions.
A program unit can contain morethan one | MPLI Cl T statement.

Within the specification statements of a program unit, | MPLI CI T statements must precede all
other specification statements except PARAMETER statements.

Thel MPLI CI T NONE statement is allowed only once in a program unit. Furthermore, no

other | MPLI ClI T statement can be specified in the program unit containingan | MPLI CI T
NONE statement.

IMPLICIT Statement 91

Language Reference

2.54 INCLUDE Statement

I NCLUDE ' i nc_spec’

where:

inc_spec isan include specification. Y ou should refer to the compiler’s User’s Guide for a detailed
description of an include specification and include file processing.

Example:

| NCLUDE ' GBLDEFS'

END

92 INCLUDE Statement

FORTRAN Statements

2.55 INQUIRE Statement

The | NQUI RE statement is used to ask about certain properties of anamed file or its connection to a
particular unit. There are two forms of the | NQUI RE statement; inquire by file name and inquire by unit.

2.55.1 INQUIRE by FILE
INQUIRE (iflist)
where:
iflist includes the FI LE= specifier and may include at most one of each of the inquiry specifiers

Example:

listed below. Specifiersare separated by commas. The FI LE= specifier has the form

FILE = fin

where f i n isa character expression whose value when trailing blanks are removed is the
name of afile being inquired about. The file need not exist or be connected to a unit.

LOE CAL EX, OD
I NTEGER NUM
I NQUI RE(FI LE=" ROLL’ , EXI ST=EX, OPENED=0D, NUMBER=NUM)

In the above example, information is requested on the file PAYROLL. In particular, we want to know if it
exists, whether it is connected to a unit, and what the unit number is (if it isindeed connected).

2.55.2 INQUIRE by UNIT
I NQUIRE (iulist)
where:
iulist includes the UNI T= specifier and may include at most one of each of the inquiry specifiers

listed below. Specifiers are separated by commas. The UNI T= specified has the form

[UNIT =] u

where u isan external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNI T= specifier is omitted then the specifier must be the first
itemin thelist of specifiers.

INQUIRE Statement 93

Language Reference

Example:
LOd CAL EX, OD
CHARACTER* 30 FN
I NQUI RE(UNI T=7, EXI ST=EX, OPENED=0D, NAME=FN)

In the above example, information is requested on unit 7. In particular, we want to know if the unit exists,
whether it is connected to afile, and, if so, what the file nameis.

2.55.3 Inquiry Specifiers

The following inquiry specifiers are supported.

| OSTAT = ios

ERR = s

EXI ST = ex
OPENED = od
NUMBER = num
NAMED = nnd

NAME = fn
ACCESS = acc
SEQUENTI AL = seq
DIRECT = dir
FORM = fm
FORVATTED = fnt
UNFORVATTED = unf
RECL = rcl
NEXTREC = nr
BLANK = bl nk

As an extension to the FORTRAN 77 language, the following inquiry specifiers are also supported.
ACTI ON = act
CARRI AGECONTRCL = cc

RECORDTYPE = rct
BLOCKSI ZE = bl

IOSTAT =ios isan input/output status specifier. Theinteger variable or integer array element i 0s is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.

ERR=s isan error specifier and s isastatement label. When an error occurs, execution is
transferred to the statement labelled by s.

EXIST=ex ex isalogica variableor logical array element.

Inquire by file: Thevalue . TRUE. isassigned if afile exists with the specified name;
otherwise the value .FALSE. isassigned.

Inquire by unit: Thevalue . TRUE. isassigned if the specified unit exists; otherwise the
value .FALSE. isassigned.

OPENED = od od isalogical variable or logical array element.

94 INQUIRE Statement

FORTRAN Statements

Inquire by file: Thevalue . TRUE. isassigned if the specified file is connected to a unit;
otherwise the value .FALSE. isassigned.

Inquire by unit: Thevalue . TRUE. isassigned if the specified unit is connected to afile;
otherwise the value .FALSE. isassigned.

NUMBER = num
numis an integer variable or integer array element that is assigned the value of the unit
number to which the fileis connected. If no unit is connected to the file then numbecomes
undefined.

NAMED = nmd
nmd isalogical variable or logical array element name that is assigned the value . TRUE. if
the file has a name; otherwise the value .FALSE. is assigned.

NAME =fn f n isacharacter variable or character array element. Open Watcom FORTRAN 77 aso
permits f n to be a character substring.

It is assigned the name of thefile, if the file has a name; otherwise it becomes undefined.
Thefile name that is returned need not be the same as that given in a FI LE= specifier but it
must be suitable for usein the FI LE= specification of an OPEN statement (e.g., thefile
name returned may have additional system qualifications attached to it).

ACCESS = acc
acc isacharacter variable or character array element. Open Watcom FORTRAN 77 also
permits acc to be a character substring.

Itisassigned thevalue ' SEQUENTI AL’ if thefileis connected for sequential access. Itis
assigned thevalue’ DI RECT’ if thefileis connected for direct access. Itisassigned an
undefined value if there is no connection.

SEQUENTIAL =seq
se(isacharacter variable or character array element. Open Watcom FORTRAN 77 aso
permits seq to be a character substring.

Itisassigned thevalue’ YES' if SEQUENTI AL isincluded in the set of allowed access
methods for the file, the value ’ NO if SEQUENTI AL is not included in the set of allowed
access methods for thefile, or ¥ UNKNOAN' if Open Watcom FORTRAN 77 is unable to
determine whether or not SEQUENTI AL isincluded in the set of allowed access methods
for thefile.

DIRECT =dir di r isacharacter variable or character array element. Open Watcom FORTRAN 77 also
permitsdi r to be a character substring.

Itisassigned thevalue ' YES' if DI RECT isincluded in the set of allowed access methods
for thefile, thevalue ' NO if DI RECT is not included in the set of allowed access methods
for thefile, or * UNKNOWN' if Open Watcom FORTRAN 77 is unable to determine
whether or not DI RECT isincluded in the set of allowed access methods for the file.

FORM =fm f misacharacter variable or character array element. Open Watcom FORTRAN 77 aso
permits f mto be a character substring.

INQUIRE Statement 95

Language Reference

Itisassigned thevalue’ FORMATTED if thefileis connected for formatted input/output,
thevalue’ UNFORVATTED' if thefile is connected for unformatted input/output, or an
undefined value if there is no connection.

FORMATTED = fmt
f m isacharacter variable or character array element. Open Watcom FORTRAN 77 also
permitsf nt to be a character substring.

Itisassigned thevalue’ YES' if FORMATTED isincluded in the set of allowed forms for
thefile, thevalue’ NO if FORMATTED is not included in the set of allowed forms for the
file, or " UNKNOWN' if Open Watcom FORTRAN 77 is unable to determine whether or not
FORMATTED isincluded in the set of allowed forms for the file.

UNFORMATTED = unf
unf isacharacter variable or character array element. Open Watcom FORTRAN 77 also
permitsunf to be a character substring.

Itisassigned thevalue’' YES' if UNFORMATTED isincluded in the set of allowed forms
for thefile, thevalue’ NO if UNFORMATTED is not included in the set of allowed forms
for thefile, or * UNKNOWN' if Open Watcom FORTRAN 77 is unable to determine
whether or not UNFORVATTED isincluded in the set of allowed forms for the file.

RECL =rcl rcl isaninteger variable or integer array element that is assigned the value of the record
length of the file connected for direct access. If the fileis connected for formatted
input/output, the length is the number of characters. If thefileis connected for unformatted
input/output, the length is measured in processor-dependent units (bytes). See the compiler
User’'s Guide for a discussion of record length or size. If thereisno connection or if the
fileis not connected for direct access then the value isundefined. The RECL= specifier is
also allowed if thefile is connected for sequential access.

NEXTREC = nr
nr isaninteger variable or integer array element that is assigned the value n+1, wheren
isthe record number of the last record read or written on the file connected for direct
access. If thefileis connected but no records have been read or written then the valueis 1.
If the file is not connected for direct access or if the position of the file can not be
determined because of an input/output error then nr becomes undefined.

BLANK = bInk
bl nk isacharacter variable or character array element. Open Watcom FORTRAN 77
also permits bl nk to be a character substring.

Itisassigned thevalue’ NULL’ if null blank control isin effect for the file connected for
formatted input/output, and is assigned the value * ZERO if zero blank control isin effect
for the file connected for formatted input/output. If thereisno connection, or if thefileis
not connected for formatted input/output, bl nk becomes undefined.

ACTION =act act isacharacter variable or character array element. Open Watcom FORTRAN 77 also
permitsact to be acharacter substring.

Itisassigned thevalue ' READ if data can only be read from thefile, ' WRI TE’ if data
can only be written from the file, and * READWRI TE' if data can be both read and written.

96 INQUIRE Statement

FORTRAN Statements

CARRIAGECONTROL = cc
cc isacharacter variable or character array element. Open Watcom FORTRAN 77 aso
permits cc to be a character substring.

Itisassigned thevalue’ YES' if the first character of each record isinterpreted asa
carriage control character and * NO if no interpretation is placed on the first character of
each record.

RECORDTYPE =rct
r ct isacharacter variable or character array element. Open Watcom FORTRAN 77 aso
permitsr ct to be a character substring.

It is assigned a value that represents the record type (or record structure) that is used for the
file. The value assigned depends on the system on which you are running the program.
See the compiler User’s Guide for a discussion of record types.

BLOCKSIZE =hl
bl isan integer variable or integer array element.

It is assigned a value that represents the internal buffer size that is used for input/output
operations on the file. The value assigned depends on the system on which you are running
the program. See the compiler User’s Guide for a discussion of default internal buffer size.

2.55.4 Definition Status of Specifiers - Inquire by File

The following table summarizes which specifier variables or array elements become defined with values
under what conditions when using the FI LE= specifier.

| OSTAT = ios (1)
EXI ST = ex (2)
OPENED = od (2)
NUMBER = num (4)
NAMVED = nnd (3)
NAME = fn (3)
ACCESS = acc (5)
SEQUENTI AL = seq (3)
DIRECT = dir (3)
FORM = fm (5)
FORMATTED = fnmt (3)
UNFORMATTED = unf (3)
RECL = rcl (5)
NEXTREC = nr (5)
ACTI ON = act (5)
CARRI ACECONTROL = cc (5)
RECORDTYPE = rct (5)
BLOCKSI ZE = bl (5)

1. Thel OSTAT= specifier variable is always defined with the most recent error status. If an error
occurs during execution of the | NQUI RE statement then the error statusis defined with a
positive integer; otherwise the status is that of the most recent input/output statement which
referenced that file.

2. The specifier dways becomes defined unless an error condition occurs.

INQUIRE Statement 97

Language Reference

3. This specifier becomes defined with avalue only if the file name specified in the FI LE=
specifier is an acceptable file name and the named file exists. Also, no error condition can occur
during the execution of the | NQUI RE statement.

4. This specifier becomes defined with avalueif and only if od becomes defined with the value
.TRUE.. Also, no error condition can occur during the execution of the | NQUI RE statement.

5. This specifier may become defined with avalue only if od becomes defined with the value
.TRUE.. However, there may be other conditions under which this specifier does not become
defined with avalue. In other words, (5) is anecessary, but not sufficient condition. For
example, bl nk isundefined if the fileis not connected for formatted input/output.

2.55.5 Definition Status of Specifiers - Inquire by Unit

The following table summarizes which specifier variables or array elements become defined with values
under what conditions when using the UNI T= specifier.

| OSTAT = ios (1)
EXI ST = ex (2)
OPENED = od (2)
NUVBER = num (3)
NAMVED = nnd (3)
NAME = fn (3)
ACCESS = acc (3)
SEQUENTI AL = seq (3)
DIRECT = dir (3)
FORM = fm (3)
FORMATTED = fnt (3)
UNFORMATTED = unf (3)
RECL = rcl (3)
NEXTREC = nr (3)
ACTI ON = act (3)
CARRI AGECONTRCL = cc (3)
RECORDTYPE = rct (3)
BLOCKSI ZE = bl (3)

1. Thel OSTAT= specifier variable is aways defined with the most recent error status. If an error
occurs during execution of the | NQUI RE statement then the error status is defined with a
positive integer; otherwise the status is that of the most recent input/output statement which
referenced that unit.

2. Thisspecifier always becomes defined unless an error condition occurs.
3. This specifier becomes defined with avalue only if the specified unit existsand if afileis
connected to the unit. Also, no error condition can occur during the execution of the 1 NQUI RE

Statement.

For more information on input/output, see the chapter entitled "Input/Output” on page 215.

98 INQUIRE Statement

FORTRAN Statements

2.56 INTEGER Statement

The | NTEGER statement is a type declaration statement and can be used to declare a name to be of type
integer. Theimplicit type of the name, whether defined by the "first letter rule” (see the chapter entitled
"Names, Data Types and Constants' on page 151) or by an | MPLI CI T statement, is either confirmed or
overridden. However, once a name has been declared to be of type integer, it cannot appear in another type
declaration statement.

There are various forms of the | NTEGER statement. The following sections describe them.

2.56.1 Standard INTEGER Statement

| NTEGER nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

Thisform isthe standard form of the | NTEGER statement.
Example:

DI MENSI ON C(-5:5)

I NTEGER A, B(10), C

In the previous example, A is defined to be avariable of type integer and B and C are defined to be arrays of
type integer.

2.56.2 Extended INTEGER Statement: Length Specification

| NTEGER] *1 en[,]] nanme [, nane]

where:

name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]

% isavariable name, array nhame, symbolic name of a constant, function name or dummy
procedure name.

INTEGER Statement 99

Language Reference

a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is caled the length specification and is an unsigned positive integer constant or an integer

constant expression enclosed in parentheses whose valueis 1, 2 or 4.

Thisform of the | NTEGER statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the | NTEGER statement. The default length specificationis4. A length specification of
1 or 2 does not change the data type; it merely restricts the magnitude of the integer that can be represented.
See the chapter entitled "Names, Data Types and Constants" on page 151 for more information.

The length specification immediately following the word | NTEGER is the length specification for each
entity in the statement not having its own length specification. If alength specification is not specified the
default length specification is used. An entity with its own specification overrides the default length
specification or the length specification immediately following theword | NTEGER. Notethat for an array
the length specification applies to each element of the array.

Example:
DI MENSI ON C(-5:5)
| NTEGER A, B*2(10), C*2
| NTEGER*1 X

In the previous example, X is declared to be avariable of type integer and occupying 1 byte of storage, Ais
declared to be a variable of type integer and occupying 4 bytes of storage and B and C are declared to be
arrays of type integer with each element of the array occupying 2 bytes.

2.56.3 Extended INTEGER Statement: Data Initialization

| NTEGER] *1 en[,]] name [/cl/] [,nanme[/cl/]]

where:

name is as described in the previous section.

len is as described in the previous section.
cl isalist of the form:

k [, k]
k isone of the forms:

c

r*c (equivalent to r successive appearances of c)

c isaconstant or the symbolic name of a constant

100 INTEGER Statement

FORTRAN Statements

r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the | NTEGER statement is an extension to the FORTRAN 77 language. Therulesfor data
initialization are the same as for the DATA statement.

Example:
| NTEGER A/ 100/, B(10)/10*0/

In the previous example, Aisinitialized with the integer constant 100 and each element of the array Bis
initialized with the integer constant 0.

INTEGER Statement 101

Language Reference

2.57 INTRINSIC Statement

INTRINSIC f [,f]

where:

f isthe name of an intrinsic function name.

An | NTRI NSI C statement is used to identify a symbolic name as the name of an intrinsic function. It also
allows a specific intrinsic function to be passed as an actual argument. The names of intrinsic functions for
type conversion (INT, IFIX, HFIX, IDINT, FLOAT, DFLOAT, SNGL, REAL, DREAL, DBLE, CMPLX,
DCMPLX, ICHAR, CHAR), lexical relationship (LGE, LGT, LLE, LLT), for choosing the largest or
smallest value (MAX, MAX0, AMAX1, DMAX1, AMAX0, MAX1, MIN, MINO, AMIN1, DMIN1,
AMINO, MIN1), aswell as ALLOCATED, ISIZEOF and LOC, must not be used as actual arguments.

A generic intrinsic function does not lose its generic property if it appearsinan | NTRI NSI C statement.

A name must only appear inan | NTRI NSI C statement once. A symbolic name must not appear in both an
I NTRI NSI Cand an EXTERNAL statement in a program unit.

Example:
I NTRINSI C SIN

CALL SAM SIN)

In the previous example, the intrinsic function SI N was passed to the subroutine SAM If the | NTRI NSI C
statement were eliminated then the variable SI N would be passed to the subroutine SAM

102 INTRINSIC Statement

FORTRAN Statements

2.58 LOGICAL Statement

The LOQ CAL statement is a type declaration statement and can be used to declare a name to be of type
logical. Theimplicit type of the name, whether defined by the "first letter rule" (see the chapter entitled
"Names, Data Types and Constants' on page 151) or by an | MPLI CI T statement, is either confirmed or
overridden. However, once a name has been declared to be of type logical, it cannot appear in another type
declaration statement.

There are various forms of the LOG CAL statement. The following sections describe them.

2.58.1 Standard LOGICAL Statement

LOd CAL nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

Thisform isthe standard form of the LOG CAL statement.
Example:

DI MENSI ON C(-5:5)

LOG CAL A, B(10), C

In the previous example, A is defined to be avariable of typelogical and B and C are defined to be arrays of
typelogical.

2.58.2 Extended LOGICAL Statement: Length Specification

LOd CAL[*l en[,]] nanme [, nane]

where:

name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]

% isavariable name, array nhame, symbolic name of a constant, function name or dummy
procedure name.

LOGICAL Statement 103

Language Reference

a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is caled the length specification and is an unsigned positive integer constant or an integer

constant expression enclosed in parentheses whose valueis 1 or 4.

Thisform of the LOG CAL statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the LOG CAL statement. The default length specificationis4. A length specification of
1 only changes the storage requirement from 4 bytesto 1 byte; the values of true and false can be
represented regardless of the length specification.

The length specification immediately following theword LOG CAL isthe length specification for each
entity in the statement not having its own length specification. If alength specification is not specified the
default length specification is used. An entity with its own specification overrides the default length
specification or the length specification immediately following theword LOG CAL. Notethat for an array
the length specification applies to each element of the array.

Example:
DI MENSI ON C(-5:5)
LOd CAL A, B*1(10), C*1
LOd CAL*4 X

In the previous example, X is declared to be a variable of type logical and occupying 4 bytes of storage, Ais
declared to be a variable of type logical and occupying 4 bytes of storageand B and C are declared to be
arrays of type logical with each element of the array occupying 1 byte.

2.58.3 Extended LOGICAL Statement: Data Initialization

LOd CAL[*l en[,]] name [/cl/] [,name[/cl/]]

where:

name is as described in the previous section.

len is as described in the previous section.
cl isalist of the form:

k [, k]
k isone of the forms:

c

r*c (equivalent to r successive appearances of c)

c isaconstant or the symbolic name of a constant

104 LOGICAL Statement

FORTRAN Statements

r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the LOG CAL statement is an extension to the FORTRAN 77 language. Therulesfor data
initialization are the same as for the DATA statement.

Example:
LOG CAL A/. TRUE./, B(10)/10*.FALSE./

In the previous example, Aisinitialized with thelogical constant . TRUE. and each element of the array B
isinitialized with the logical constant . FALSE. .

LOGICAL Statement 105

Language Reference

2.59 LOOP Statement

LOOP [: bl ock-1 abel]

The LOOP statement is used in conjunction with the structured END LOOP or UNTI L statement. The
L OOP statement marks the beginning of a sequence of statements which are to be repeated. The END
LOOP or UNTI L statement marks the end of the loop. The LOOP-block is executed until control is
transferred out of the LOOP-block or the logical expression (or integer arithmetic expression) of the

UNTI L statement has a true (or non-zero) value.

The QUI T statement may be used to transfer control out of a LOOP-block.

Example:
LOOP
READ *, X
IF(X .GI. 99.0) QUT
PRI NT *, X
END LOCP
Example:
X=10
LOOP

PRINT *, X, SQRT(X)

X=X+1.0
UNTIL(X .GT. 10.0)

An optional block label may be specified with the LOOP statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

106 LOOP Statement

FORTRAN Statements

2.60 MAP Statement

MAP

The MAP statement is used in conjunction with the END MAP declarative statement. The MAP statement
marks the start of a memory mapping structure. A MAP structure must appear within a UNI ON block. Any
number of variables of any type may appear within amemory map. At least two MAP structures must
appear within a UNI ON block. A UNI ON block permits the mapping of the same storage in several
different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
MAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
| NTEGER*2 HI _WORD
END MAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
I %4.ONG = ' 01020304’ x

PRINT ' (2z4)', 1%.0 VWORD, |9% _WORD
END

For more information, see the chapter entitled " Structures, Unions and Records' on page 167.

MAP Statement 107

Language Reference

2.61 NAMELIST Statement

NAMELI ST /nanme/ vlist [[,]/name/ vlist]

where:

name is the name, enclosed in slashes, of agroup of variables. 1t may not be the same asavariable
or array name.

viist isalist of variable names and array names separated by commas.

The NAMELI ST statement is used to declare a group name for a set of variables so that they may be read or
written with a single namelist-directed READ, WRI TE, or PRI NT statement.

Thelist of variable or array names belonging to a NAMELI ST name ends with anew NAMELI ST name
enclosed in slashes or with the end of the NAMELI ST statement. The same variable name may appear in
more than one namelist.

A dummy variable, dummy array name, or allocatable array may not appear ina NAMELI ST list. Also, a
variable whose type is a user-defined structure may not appear in a NAMELI ST list.

The NAMELI ST statement must precede any statement function definitions and all executable statements.

A NAMELI ST name must be declared in a NAMELI ST statement and may be declared only once. The
name may appear only in input/output statements. The READ, WRI TE, and PRI NT statements may be used
to transmit data between afile and the variables specified in a namelist.

Example:
CHARACTER* 20 NAME
CHARACTER* 20 STREET
CHARACTER*15 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE
| NTEGER AGE
| NTEGER MARKS(10)
NAMELI ST / PERSONV NAME, STREET, CITY, STATE,
+ COUNTRY, ZI P_CODE, AGE, MARKS

OPEN(UNIT=1, FILE=' PECPLE’)
LOooP
READ(UNI T=1, FMI=PERSON, END=99)
WRI TE(UNI T=6, FMT=PERSON)
ENDLOOP
99 CLOSE(UNIT=1)
END

The following example shows another form of a namelist-directed READ statement.

108 NAMELIST Statement

FORTRAN Statements

Example:
CHARACTER* 20 NAME
CHARACTER* 20 STREET
CHARACTER*15 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE
| NTEGER AGE
| NTEGER MARKS(10)
NAMELI ST / PERSONV NAME, STREET, CITY, STATE,
+ COUNTRY, ZI P_CODE, AGE, MARKS

READ PERSON
PRI NT PERSON
END

Theinput data must bein aspecia format. The first character in each record must be blank. The second
character in the first record of agroup of data records must be an ampersand (&) or dollar sign (%)
immediately followed by the NAMELI ST name. The NAMELI ST name must be followed by a blank and
must not contain any imbedded blanks. This nameisfollowed by data items separated by commas. The
end of adatagroup is signaled by the character "&" or "$", optionally followed by the string "END". If the
"&" character was used to start the group, then it must be used to end the group. If the"$" character was
used to start the group, then it must be used to end the group.

The form of the dataitemsin an input record is:

Name = Constant
The name may be avariable name or an array el ement name. The constant may be integer,
real, complex, logical or character. Logical constants may bein theform"T" or ".TRUE"
and"F" or ".FALSE". Character constants must be contained within apostrophes.
Subscripts must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex, logical or
character. The constants are separated by commas. The number of constants must be less
than or equal to the number of elementsin the array. Successive occurrences of the same
constant may be represented in theform r * const ant, where r isanon-zero integer
constant specifying the number of times the constant isto occur.

The variable and array names specified in the input file must appear in the NAMELI ST list, but the order is
not important. A name that has been made equivalent to a name in the input data cannot be substituted for
that namein the NAMELI ST list. Thelist can contain names of itemsin COMMON but must not contain
dummy argument names.

Each data record must begin with a blank followed by a complete variable or array hame or constant.

Embedded blanks are not permitted in name or constants. Trailing blanks after integers and exponents are
treated as zeros.

NAMELIST Statement 109

Language Reference

Example:

&PERSON
NAME = ' John Doe’
STREET = '22 Main St.” CITY = "Smallville’
STATE = ' Texas’ COUNTRY = "U. S. A’
ZI P_CODE = ' 78910- 1203
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
AGE = 23

&END

The form of the dataitemsin an output record is suitable for input using a namelist-directed READ

statement.

1

4

5.

Output records are written using the ampersand character (&), not the dollar sign ($), although
the dollar sign is accepted as an aternative during input. That is, the output datais preceded by
"&name" and isfollowed by "& END".

All variable and array names specified in the NAMELI ST list and their values are written out,
each according to itstype.

Character datais enclosed in apostrophes.
Thefields for the data are made large enough to contain all the significant digits.

The values of a complete array are written out in columns.

For more information, see the chapters entitled "Format" on page 225 and "Input/Output” on page 215.

110 NAMELIST Statement

FORTRAN Statements

2.62 OPEN Statement

OPEN (oplist)

where:

oplist

must include the UNI T= specifier and may include at most one of each of the open

specifierslisted below. Specifiers are separated by commas.

[UNIT =] u

| OSTAT = ios
ERR = s

FILE = fin
STATUS = sta
ACCESS = acc
FORM = fm
RECL = rcl
BLANK = bl nk

As an extension to the FORTRAN 77 language, the following inquiry specifiers are also

supported.

ACTI ON = act

CARRI ACECONTRCL = cc
RECORDTYPE = r ct
BLOCKSI ZE = bl

SHARE = shr

The OPEN statement may be used to connect an existing file to a unit, create afile that is preconnected,
create afile and connect it to a unit, or change certain specifications of a connection between afileand a

unit.

Open Specifiers

[UNIT =] u

|IOSTAT =ios

ERR=s

u isan external unit identifier. An externa unit identifier is a non-negative integer
expression. If the optional UNI T= specifier is omitted then the specifier must be the first
itemin thelist of specifiers.

is an input/output status specifier. Theinteger variable or integer array element i os is
defined with zero if no error condition exists or a positive integer value if an error condition

exists.

isan error specifier and s isastatement label. When an error occurs, execution is

transferred to the statement labelled by s.

OPEN Statement 111

Language Reference

FILE =fin

STATUS = sta

ACCESS = acc

FORM =fm

RECL =rcl

fi n isacharacter expression whose value when trailing blanks are removed is the name of
afile to be connected to the specified unit. If this specifier is omitted and the unit is not
connected to afile, it becomes connected to afile determined by Open Watcom FORTRAN
77. The name established by Open Watcom FORTRAN 77 is described in the section
entitled "Units" on page 219 of the chapter entitled "Input/Output”

st a isacharacter expression whose value when trailing blanks are removedis ' OLD'
"NEW , * SCRATCH , or’ UNKNOMWN .

OoLD When OLDis specified, a FI LE= specifier must be given. Thefile
must exist.
NEW When NEWis specified, a Fl LE= specifier must be given. Thefile

must not exist. Successful execution of the OPEN statement creates the
file and changes the status to OLD.

SCRATCH SCRATCH may only be specified for an unnamed file (i.e. FI LE=is
not allowed). When thefileisclosed, it is deleted.

UNKNOWN If UNKNOWN is specified, the statusisignored. If the STATUS=
specifier is omitted then UNKNOWN i s assumed.

acc isacharacter expression whose value when trailing blanks are removed is

" SEQUENTI AL’ or’ DI RECT’ . It specifies the access method for thefile. If the
ACCESS= specifier isomitted then ' SEQUENTI AL’ isassumed. If thefile exists then the
access method must be in the set of allowed access methods for thefile. If the file does not
exist then thefile is created with a set of allowed access methods that includes the specified
access method.

Open Watcom FORTRAN 77 also supports access ' APPEND' which isaform of
sequential access in which thefile is positioned at the endfile record. The file must exist or
the append access method must be in the set of allowed access methods for the file. Inall
other respects, the fileistreated asif * SEQUENTI AL’ had been specified.

f mis acharacter expression whose value when trailing blanks are removed is

" FORVATTED or ' UNFORVATTED . It specifiesthat the fileis being connected for
formatted or unformatted input/output. If the FORM= specifier is omitted and thefileis
being connected for direct accessthen * UNFORMATTED' isassumed. If the FORM=
specifier is omitted and the file is being connected for sequential access then

" FORVATTED isassumed. If thefile exists then the specified form must be included in
the set of allowed formsfor thefile. If the file does not exist then thefileis created with a
set of allowed forms that includes the specified form.

rcl isaninteger expression whose value must be positive. It specifies the length of each
record in afile being connected for direct access. If thefileisbeing connected for direct
access, this specifier must be given; otherwise it must be omitted. Open Watcom
FORTRAN 77 allows the RECL = specifier for files opened for sequential access.

112 OPEN Statement

FORTRAN Statements

BLANK = bInk
bl nk isacharacter expression whose value when trailing blanks are removed is * NULL’
or’ ZERO . If " NULL’ isspecified then al blank charactersin numeric formatted input
fields are ignored except that an entirely blank field has avalue of zero. If * ZERO is
specified then all blank characters other than leading blanks are treated as zeroes. If this
specifier isomitted then * NULL’ isassumed. This specifier may only be present for afile
being connected for formatted input/output.

ACTION = act
act isacharacter expression whose value when trailing blanks are removed is * READ'
"WRI TE' or’ READWRI TE' . If ' READ is specified, data can only be read from the
file. If* WRI TE' is specified, data can only be written to thefile. If * READWRI TE' is
specified, data can both be read and written. The default is *° READWRI TE' .

CARRIAGECONTROL = cc
cc isacharacter expression whose value when trailing blanks areremoved is * YES' , or
"NO . If’ YES isspecified, Open Watcom FORTRAN 77 will automatically add an
extra character at the beginning of each record. This character will be interpreted as a
carriage control character. If * NO is specified, records will be written to the file without
adding a carriage control character at the beginning of therecord. The defaultis ' NO .

RECORDTYPE = rct
r ct isacharacter expression whose value when trailing blanks are removed specifies the
type of record (or record structure) to be used for the file. The allowed valuesfor r ct
depend on the system on which you are running the program. See the compiler User’s
Guide for adiscussion of the RECORDTYPE= specifier.

BLOCKSI ZE = bl
bl isan integer expression whose value specifies the internal buffer size to be used for file
input/output. The allowed valuesfor bl depend on the system on which you are running
the program. Generally, the larger the buffer, the faster the input/output. See the compiler
User’s Guide for a discussion of the BLOCKSI ZE= specifier.

SHARE = shr
shr isacharacter expression whose value when trailing blanks are removed specifies the
way in which other processes can simultaneously accessthe file. The allowed values for
shr depend on the system on which you are running the program. See the compiler User's
Guide for adiscussion of the SHARE= specifier.
Example:
OPEN(UNIT=1, FILE="TEST' , STATUS=" UNKNOWN ,
+ ACCESS=" SEQUENTI AL’ ,
+ FORME' FORVATTED , BLANK=' ZERO)

In the above example, thefile” TEST' , containing FORMATTED records, is connected to unit 1. The
status of thefileis’ UNKNOWN' since we do not know if it already exists. We will accessthefile
sequentially, using formatted input/output statements. Blanksin numeric input data are to be treated as
ZEroes.

OPEN Statement 113

Language Reference

Notes:

1. If theunitisalready connected to afile that exists, the execution of an OPEN statement for that
unit is permitted.

€)) If the samefile is opened then only the BLANK= specifier may be different. The
samefileis opened if no FI LE= specifier was given or if the FI LE= specifier
refers to the samefile.

(b) If adifferent file is opened then the currently connected file is automatically
closed.

2. If thefile to be connected to the unit does not exist, but is already preconnected to the unit, any
properties specified in the OPEN statement are merged with and supersede those of the
preconnection. For example, the RECL= specification will override the record length attribute
defined by a preconnection of thefile.

3. Thesame file may not be connected to two or more different units.

For more information on input/output, see the chapter entitled "Input/Output” on page 215.

114 OPEN Statement

FORTRAN Statements

2.63 OTHERWISE Statement

OTHERW SE

The OTHERW SE statement is used in conjunction with the SELECT statement. The OTHERW SE
statement marks the start of anew CASE block which is a series of zero or more statements ending in an
END SELECT statement.

When this statement is used and the value of a case expression is not found in any case list then control of
execution istransferred to the first executable statement following the OTHERW SE statement.

The CASE DEFAULT statement may be used in place of the OTHERW SE statement.

Example:

SELECT CASE (CH)

CASE ('a” : 'z)

PRINT *, 'Lower case letter’
CASE ("A : 'Z)

PRI NT *, " Upper case letter’
CASE ('0" : 9")

PRINT *, 'Digit’
OTHERW SE

PRI NT *, ' Special character’
END SELECT

In the above example, if the character CHis not aletter or digit then the OTHERW SE block is executed.

Note:

The OTHERW SE or CASE DEFAULT block must follow all other CASE blocks.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

OTHERWISE Statement 115

Language Reference

2.64 PARAMETER Statement

PARAMETER (p=e [, p=e€e] ...)

where:
p is asymbolic name.
e is aconstant expression. Refer to the chapter entitled "Expressions' on page 173 for more

information.

p is known as a symbolic constant whose value is determined by the value of the expression e according to
the rules of assignment as described in the chapter entitled "Assignment Statements” on page 187. Any
symbolic constant appearing in expression e must have been previously defined in the same or a previous
PARANMETER statement in the same program unit. A symbolic constant may not be defined more than once
in aprogram unit.

If the symbolic name p is of type integer, real, double precision or complex then the corresponding
expression e must be an arithmetic constant expression (see the chapter entitled "Expressions' on page
173). If the symbolic name p is of type character or logical then the expression e must be a character
constant expression or alogical constant expression respectively (see the chapter entitled "Expressions’ on

page 173).

Example:
PARAMETER (Pl =3. 14159, BUFFER=80, Pl BY2=PI / 2)
PARAMETER (ERRMSG=" AN ERROR HAS OCCURRED)

If asymbolic constant is not of default implied type, its type must be specifiedinan | MPLI Cl T statement
or atype statement before its occurrence in a PARAMETER statement. Similarly, if the length of a character
symbolic constant is not the default length of 1, its length must be specifiedinan | MPLI ClI T statement or
atype statement before its occurrence in a PARAVETER statement.

116 PARAMETER Statement

FORTRAN Statements

2.65 PAUSE Statement

PAUSE [n]

where:
n isacharacter constant or an unsigned integer constant of no more than five digits.

Open Watcom FORTRAN 77 alows n to be any unsigned integer constant.
Execution of a PAUSE statement causes a cessation of execution of the program. Execution of the program
may be resumed by the program operator by pressing the terminal line entering key (e.g., ENTER or
RETURN). The PAUSE statement may appear in any program unit.

If the Open Watcom FORTRAN 77 debugger was requested then execution of the PAUSE statement will
cause entry into the debugger. Program execution may be resumed by issuing the debugger "go" command.

Example:
PAUSE 4341

The four digit number 4341 isdisplayed on the terminal. The program temporarily ceases execution.
Execution is resumed by pressing the terminal line entering key.

Example:
PAUSE ' Ready the paper and then resune execution’

The character string

Ready the paper and then resunme execution

isdisplayed on the terminal. Execution of the program may be resumed.

PAUSE Statement 117

Language Reference

2.66 PRINT Statement

Two forms of the PRI NT statement are supported by Open Watcom FORTRAN 77.

2.66.1 Standard PRINT Statement

PRINT f [,olist]

where:

f

olist

isaformat identifier.

isan optional output list.

2.66.2 Extended PRINT Statement

PRI NT, oli st

where:

olist

isan output list.

2.66.3 Description of PRINT Statement

The PRI NT statement is used to transfer data from the executing FORTRAN program to an external device

or file.

Format Identifier - A format identifier is one of the following:

1

ok w

A statement label of a FORVAT statement that appears in the same program unit as the format
identifier.

An integer variable name that has been assigned the statement label of a FORMAT statement that
appears in the same program unit as the format identifier (see the ASSI GN statement).

An integer array name.

A character array name.

Any character expression except one involving the concatenation of an operand whose length
specification is (*) unless the operand is a symbolic constant (see the PARAMETER statement).
An asterisk (*), indicating list-directed formatting.

Open Watcom FORTRAN 77 supports a variation of list-directed formatting in which the
asterisk (*) may be omitted. It isequivalent to

PRI NT * [,olist]

118 PRINT Statement

FORTRAN Statements

7. A NAMELI ST name, indicating namelist-directed formatting.
Output list - An output list may contain one or more of the following:

1. Avaiable name.

2. Anarray lement name.

3. A character substring name.

4. Anarray name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an operand
whose length specification is an asterisk in parentheses unless the operand is the symbol name of
a constant (since the length can be determined at compile time).

6. Animplied-DO list of the form:
(dlist, i =el, e2 [,e3])
wheredl i st iscomposed of one or more of items (1) through (6).

Example:
CHARACTER*5 S
COWPLEX C
S ="Hello
I 123
X =12.5
C =(12.5,4.58)
PRINT *, S, |, X, C
END

The above example illustrates list-directed formatting using the PRI NT statement. The asterisk specifies
that the variablesin the output list are to be displayed in some format that is appropriate to the type of the
variable (hence the term "list-directed"). The CHARACTER variable Sisprinted using a suitable A format
descriptor. The INTEGER variable | is printed using asuitable | format descriptor. The REAL variable X
is printed using a suitable Gformat descriptor. The COMPLEX variable Cis printed using a suitable G
format descriptor and is displayed with enclosing parentheses and a comma. Output from the above
program would resembl e the following.

Hell o 123 12. 5000000 (12. 5000000, 4. 5799999)

Example:
CHARACTER*5 S
COWPLEX C
S ="Hello
I 123
X =12.5
C =(12.5,4.58)
PRINT, S, I, X, C
END

The above example illustrates a Open Watcom FORTRAN 77 extension of list-directed formatting using
the PRI NT statement. The asterisk is omitted but the results are exactly the same asin the previous
example.

PRINT Statement 119

Language Reference

Example:

100

PRINT 100, X, Y, Z
FORMAT(3F10.5)
PRINT '(3F10.5)', X, Y, Z

The above gives two examples of the PRI NT statement. In both cases, the format conversion is identical
but it was specified in different ways. When executed, the effect of both PRI NT statementsis the same.

Example:

PRI NT ’ (1X, 100A1)’, (’*',1=1,J)

The above example illustrates a technique for producing histograms using the implied DO-loop. Each time
this statement is executed, a number of asterisks are printed, depending on the value of J.

Notes:

1

2.

The PRI NT statement isimplicitly aformatted output statement.
The unit number that isimplicitly used in the PRI NT statement is unit number 6.

If no output list is specified then the effect of the PRI NT statement is to produce one or more
records whose characters are al blanks.

FORTRAN 77 leaves the format of output in list-directed formatting to the discretion of Open
Watcom FORTRAN 77. Hence other FORTRAN compilers may produce different results. |If
the format of output must be consistent from one compiler to the next then list-directed
formatting should not be used.

An implication of point (6) aboveisthat nesting of implied-DO listsis permitted. For example,
the output list

((AC1,J), B(I,3), 3 =1,5), 1 =1, 10)
may be broken down into the following components:
A(ll‘])l B(ll‘])

(....dlistl...., J =1, 5)
(... .. dlist2. oo, L1 =1, 10)

For more information on input/output, see the chapter entitled "Input/Output” on page 215. For more
information on formatted input/output, see the chapter entitled "Format" on page 225.

120 PRINT Statement

FORTRAN Statements

2.67 PROGRAM Statement

PROGRAM pgm

where:
pgm isthe symbolic name of the main program.

A PROGRAMSstatement is optional in an executable program. If it does appear, it must be the first statement
in the main program.

Example:
PROGRAM CALC

CALL COVPUTE

END

The main program can contain any Open Watcom FORTRAN 77 statement except a FUNCTI ON,
SUBROUTI NE, BLOCK DATA, RETURNor ENTRY statement. Note that a SAVE statement is allowed
but has no effect in the main program.

PROGRAM Statement 121

Language Reference

2.68 QUIT Statement

QT [: Dbl ock-Iabel]

The QUI T statement may be used to cause atransfer of control to the first executable statement that follows
the terminal statement of the block which containsit. Examples of such terminal statementsare ADM T,
CASE, END DO, END LOOP, END WHI LE, UNTI L, etc. If bl ock-1 abel ispresent then control is

transferred out of the block identified by that block label. The QUI T statement is an extension to the
FORTRAN 77 language.

Example:

LOOP
WRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI='(F10.4)’, | OSTAT=10S) X
IF(10S .NE. 0) QUT
IF(X .LT. 0) QUT
PRINT *, X, SORT(X)

END LOCP

END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

122 QUIT Statement

FORTRAN Statements

2.69 READ Statement

Three forms of the READ statement are supported by Open Watcom FORTRAN 77.

2.69.1 Standard READ Statement

READ (cilist) [ilist]
READ f [,ilist]

where:

cilist isacontrol information list of specifiers separated by commas:

[UNIT =] u
[FMT =] f
REC = rn

| OSTAT = ios
ERR = s
END = s

f isaformat identifier.

ilist isan optional input list.

2.69.2 Extended READ Statement

READ, ili st

where:

ilist isaninput list.

2.69.3 Description of READ Statement

The READ statement is used to transfer data from a device or file into the executing FORTRAN program.
As shown above, Open Watcom FORTRAN 77 supports three forms of the READ statement.

Control Information List and Format | dentifier

[UNIT =] u
u isan external unit identifier or an internal file identifier.

1. Anexternal unit identifier is a non-negative integer expression or an asterisk
(*) inwhich case unit 5 isassumed.

READ Statement 123

Language Reference

2.

Aninternal fileidentifier is the name of acharacter variable, character array,
character array element, or character substring.

If the optional UNI T= specifier is omitted then the unit specifier must be the first item in
thelist of specifiers.

f isaformat identifier. A format identifier is one of the following:

A statement label of a FORVAT statement that appears in the same program unit
asthe format identifier.

An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format identifier
(see the ASSI GN statement).

An integer array name.

A character array name.

Any character expression except one involving the concatenation of an operand
whose length specificationis (*) unlessthe operand is a symbolic constant (see
the PARAMVETER statement).

Anasterisk (*), indicating list-directed formatting.

Open Watcom FORTRAN 77 supports athird form of the READ statement in
which the asterisk (*) may be omitted. Thisisaform of list-directed
formatting in which unit 5 is assumed. It is equivaent to

READ * [,ilist]

A NAMELI ST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the second item
inthe list of specifiersand UNI T= must not be specified for the first item in the list.

r n isan integer expression whose value must be positive. It isthe number of the record to
be read when afileis connected for direct access.

is an input/output status specifier. Theinteger variable or integer array element i os is
defined with zero if no error occurs, a positive integer value if an error occurs, or anegative
integer value if an end-of-file occurs.

isan error specifier and s isa statement label. When an error occurs, execution is
transferred to the statement labelled by s.

[FMT =] f
1.
2.
3.
4.
5.
6.
7.

REC=rn

IOSTAT =ios

ERR=s

END =s

is an end-of-file specifier and s isastatement label. When an end-of-file occurs, execution
istransferred to the statement labelled by s.

Input list - Aninput list may contain one or more of the following:

1. A variable name.

2. Anarray element name.

124 READ Statement

FORTRAN Statements

3. A character substring name.
4. Anarray name except an assumed-size dummy array.
5. Animplied-DO list of the form:
(dlist, i =el, e2 [,e3])
wheredl i st iscomposed of one or more of items (1) through (5).

Example:
READ(5, 100)X, Y, Z
READ(UNI T=5, FMI=100)X, Y, Z
100 FORMAT(3F10.5)
READ(UNI T=5, FMr="(3F10.5)")X VY, Z
READ(5, '(3F10.5)")X Y, Z

The above gives four examples of formatted READ statements, using the first of three supported forms of
the READ statement. In all cases, the format conversionisidentical but it was specified in different ways.
When executed, the effect of all READ statements is the same. The unit number that is explicitly used in
thisform of the READ statement isunit number 5. There are, in fact, many other ways in which the READ
statement could have been written, all of which would have the same effect when executed. We have not
shown the use of al the specifiers.

Example:
READ 100, X, Y, Z
100 FORMAT(3F10.5)
READ ' (3F10.5)", X Y, Z

The above gives two examples of formatted READ statements, using the second of three supported forms of
the READ statement. In both cases, the format conversion isidentical but it was specified in different ways.
When executed, the effect of both READ statementsis the same. The unit number that isimplicitly used in
this form of the READ statement is unit number 5.

Example:
READ(5, *)X Y, Z
READ(*, *)X, Y, Z
READ(UNI T=5, FMI=*)X, Y, Z
READ(UNI T=*, FMI=*)X, Y, Z
READ *, X, Y, Z
READ , X Y, Z

The above six examples of list-directed formatted input are al equivalent. Open Watcom FORTRAN 77
assumes unit 5 when the unit number identifier is an asterisk (asin the second and fourth examples). Inthe
fifth example, the asterisk is aformat identifier indicating list-directed formatting. The fifth and sixth
examples are examples of the second and third forms, respectively, of the READ statement in which Open
Watcom FORTRAN 77 assumes unit 5. When the format identifier is an asterisk or when the third form of
the READ statement is used, we call thislist-directed list-directed formatting.

READ Statement 125

Language Reference

Example:
READ(8)X Y, Z
READ(UNIT=8)X, Y, Z

The above gives two examples of unformatted READ statements. The unit number used in the exampleis 8.
When executed, the effect of both of these statementsisthe same. The values of thevariables X, Y and Z
are read from the file connected to unit 8. The values are stored in the filein their binary form (aform

quite incomprehensible to most human beings). An advantage to using this particular form of the READ
statement is that no conversion is required between the internal binary representation of the values and their
textual (human-readable) form (which means it takes less computer time to process the data).

Notes:
1. The REC= specifier may not be used when list-directed output is specified.

2. If noinput list is specified then the effect of the READ statement isto skip one or more records in
thefile.

3. Animplication of point (5) aboveis that nesting of implied-DO listsis permitted. For example,
theinput list

((AC1,J), B(1,J3), J =1, 5,1 =1, 10)
may be broken down into the following components:
A(l,J), B(1,J)

(....dlistl...., J =1, 5)
(... dlist2., , 1 =1, 10)

For more information on input/output, see the chapter entitled "Input/Output” on page 215. For more
information on formatted input/output, see the chapter "Format" on page 225.

126 READ Statement

FORTRAN Statements

2.70 REAL Statement

The REAL statement is a type declaration statement and can be used to declare a name to be of typereal.
Theimplicit type of the name, whether defined by the "first letter rule” (see the chapter entitled "Names,
Data Types and Constants' on page 151) or by an | MPLI CI T statement, is either confirmed or overridden.
However, once a hame has been declared to be of type real, it cannot appear in another type declaration
Statement.

There are various forms of the REAL statement. The following sections describe them.

2.70.1 Standard REAL Statement

REAL nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

Thisform isthe standard form of the REAL statement.
Example:

DI MENSI ON C(-5:5)

REAL A, B(10), C

In the previous example, A is defined to be avariable of type real and B and C are defined to be arrays of
typereal.

2.70.2 Extended REAL Statement: Length Specification

REAL[*l en[,]] nane [, nane]

where:

name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]

% isavariable name, array nhame, symbolic name of a constant, function name or dummy
procedure name.

REAL Statement 127

Language Reference

a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is caled the length specification and is an unsigned positive integer constant or an integer

constant expression enclosed in parentheses whose value is 4 or 8.

Thisform of the REAL statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the REAL statement. The default length specificationis4. A length specification of 8
specifies that the data type of the name appearing in the REAL statement is to be double precision.

The length specification immediately following the word REAL is the length specification for each entity in
the statement not having its own length specification. If alength specification is not specified the default
length specification isused. An entity with its own specification overrides the default length specification
or the length specification immediately following theword REAL. Note that for an array the length
specification applies to each element of the array.

Example:
DI MENSI ON C(-5:5)
REAL A, B*8(10), C'8
REAL*8 X

In the previous example, X is declared to be a variable of type double precision, Aisdeclaredtobea
variable of type real and B and C are declared to be arrays of type double precision.

2.70.3 Extended REAL Statement: Data Initialization

REAL[*l en[,]] name [/cl/] [,name[/cl/]]

where:

name is as described in the previous section.

len is as described in the previous section.
cl isalist of theform:

k [K]
k isone of the forms:

c

r*c (equivalent to r successive appearances of ¢)
c isaconstant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

128 REAL Statement

FORTRAN Statements

Thisform of the REAL statement is an extension to the FORTRAN 77 language. The rulesfor data
initialization are the same as for the DATA statement.

Example:
REAL A/ 1.2/, B(10)/10*5.0/

In the previous example, Aisinitialized with the real constant 1. 2 and each element of the array Bis
initialized with the real constant 5. 0.

REAL Statement 129

Language Reference

2.71 RECORD Statement

RECORD /typenanme/ nane [, nane]

where:
typename is the name of a user-defined structure type.
name isavariable name, array name, array declarator, function name or dummy procedure

name.
The RECORD statement is used to assign a structure type to avariable.

Example:

STRUCTURE / ADDRESS/
CHARACTER* 20 STREET
CHARACTER*15 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE

END STRUCTURE

STRUCTURE / PECPLE/
CHARACTER* 20 NANE
RECORD / ADDRESS/ ADDR
| NTEGER*2 ACE

END STRUCTURE

RECCRD / PEOPLE/ CUSTQOVER

CUSTOVERYNAMVE = ’ John Doe’
CUSTOVERYADDR¥STREET = 22 Main St.’
CUSTOMVERYADDRYCI TY = ' Snal lvill e’
CUSTOVER¥ADDR*STATE = ' Texas’
CUSTOVERYADDR¥COUNTRY = " U. S. A’
CUSTOVER¥ADDRXZI P_CODE = ' 78910- 1203’
CUSTOVER¥ACGE = 23

For more information, see the chapter entitled " Structures, Unions and Records' on page 167.

130 RECORD Statement

FORTRAN Statements

2.72 REMOTE BLOCK Statement

REMOTE BLOCK namne

where:
name isavalid FORTRAN symbolic name.

The REMOTE BLOCK statement is used to define a block of statements which may be executed by an
EXECUTE statement. A REMOTE-block must be defined in the program unit in which it isused and is
terminated by an END BLOCK statement. A REMOTE-block is similar in concept to a subroutine, with the
advantage that shared variables do not need to be placed in a common block or passed in an argument list.
When execution of the REMOTE-block is complete, control returns to the statement following the
EXECUTE statement which invoked it.

Thisfeature is helpful in avoiding duplication of code for acommon sequence of statementsrequiredin a
number of places throughout a program. It can also be an aid to writing awell structured program. This
feature can be mimicked using the ASSI GN and assigned GO TOstatements. However, statement numbers
must be introduced which could lead to errors.

Each REMOTE-block must have a different name and it must not be a subprogram or variable name. Note
that aREMOTE-block islocal to the program unit in which it is defined and may not be referenced
(executed) from another program unit.

Note that the nested definition of REMOTE-blocksis not permitted.

Example:
EXECUTE | NCR
PRINT *, ' FIRST
EXECUTE | NCR
PRI NT *, ' SECOND

REMOTE BLOCK | NCR
I =I+1
PRINT *, " 1= 1
END BLOCK

Both EXECUTE statements will cause REMOTE-block | NCRto be executed. That is, variable | will be
incremented and its value will be printed. When the block has been executed by the first EXECUTE
statement, control returns to the PRI NT statement following it and the word FI RST isprinted. Similarly,
when the block is executed by the second EXECUTE statement, control returnsto the PRI NT statement
following it and the word SECOND is printed.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

REMOTE BLOCK Statement 131

Language Reference

2.73 RETURN Statement

RETURN [e]
where:
e is an integer expression.

A RETURN statement is used to terminate execution of a subprogram and return control to the program unit
that referenced it. Asan extension to FORTRAN 77, Open Watcom FORTRAN 77 permits the use of the
RETURN statement in the main program. When a RETURN statement is executed in the main program,
program execution terminates in the same manner asthe STOP or END statement.

The expression e isnot permitted when returning from an external function subprogram (or main program);
it can only be specified when returning from a subroutine subprogram.

Example:
FUNCTI ON ABS(A)
ABS = A
IF(A.CE 0)RETURN
ABS = -A
RETURN
END

For more information, see the chapter entitled "Functions and Subroutines’ on page 243.

132 RETURN Statement

FORTRAN Statements

2.74 REWIND Statement

REW ND u
REW ND (ali st)

where:

alist

is an external unit identifier.

isalist of rewind specifiers separated by commas:

[UNIT =] u
| OSTAT = ios
ERR = s

Execution of a REW ND statement causes the file connected to the specified unit to be positioned at the
beginning (or before the first record) of the file.

Rewind Specifiers

[UNIT =] u
u isan external unit identifier. An externa unit identifier is a non-negative integer
expression. If the optional UNI T= specifier is omitted then the specifier must be the first
itemin thelist of specifiers.
IOSTAT =ios
isan input/output status specifier. The integer variable or integer array element i os is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.
ERR=s
isan error specifier and s isastatement label. When an error occurs, execution is
transferred to the statement labelled by s.
Example:
LOOP
READ(UNI T=7, END=100, FMr=200) RECORD
PRI NT *, RECORD
ENDLOOP
100 REW ND(UNI T=7)
LOOP
READ(UNI T=7, END=101, FMr=200) RECORD
VWRI TE(UNI T=8, FMTI=200) RECORD
ENDL COP
101 CONTI NUE

In the previous example, we illustrate how one might process the recordsin afile twice. After reaching the
endfile record, a REW ND statement is executed and the file is read a second time.

REWIND Statement 133

Language Reference

Notes:
1. Theunit must be connected for sequential access.
2. If thefileis positioned at the beginning of the file then the REW ND statement has no effect.
3. Itispermissibleto rewind afile that does not exist but it has no effect.

For more information on input/output, see the chapter entitled "Input/Output” on page 215.

134 REWIND Statement

FORTRAN Statements

2.75 SAVE Statement

SAVE [a [,a] ...]

where:

a

isanamed common block preceded and followed by a slash (/), avariable name or an array name.

The SAVE statement is used to retain the value of an entity after the execution of a RETURN or END
statement in a subprogram. Upon re-entry to the subprogram, the entity will have the same value it had
when exit was made from the subprogram. However, an entity belonging to acommon block that has
appeared in a SAVE statement may become redefined in another program unit.

Notes:

1

2.

A name cannot appear in a SAVE statement more than once in the same program unit.

Dummy arguments, procedure names and names belonging to a common block are not permitted
in a SAVE statement.

A SAVE statement with no list isidentical to a SAVE statement containing all allowable namesin
aprogram unit.

A common block name appearing in a SAVE statement has the same effect of specifying all
names belonging to that common block in the SAVE statement.

If a named common block is specified in a SAVE statement in a subprogram, it must be specified
in a SAVE statement in every subprogram in which that common block appears. Furthermore,
upon executing a RETURN or END statement, the current values of the entitiesin that common
block are made available to the next program unit executed in which that common block appears.

If anamed common block is specified in a SAVE statement in the main program unit, the current
values of the entities in that common block are made available to every subprogram that
specifies that common block. In this case, a SAVE statement has no effect in the subprogram.

In the following example, the subroutine BLKI NI T initializes the entities of the common block BLK and
uses a SAVE statement to ensure that their values are made available to subroutine BLKPRT.

Example:

SAVE Statement 135

Language Reference

PROGRAM MAI N

CALL BLKINIT
CALL BLKPRT

END

SUBROUTI NE BLKI NI T
COWON / BLK/ A, B, C

SAVE / BLK/
A=10
B=20
C=3.0
END

SUBROUTI NE BLKPRT
COWDN / BLK/ A B, C
SAVE / BLK/

PRINT *, A B, C
END

136 SAVE Statement

FORTRAN Statements

2.76 SELECT Statement

SELECT [CASE] (e) [FROM [: bl ock-1abel]

The SELECT statement is used in conjunction with the CASE and END SELECT statements. The form of
a SELECT block isasfollows:

SELECT [CASE] (e) [FROM [: bl ock-Iabel]
CASE (case-list)

statenment (s)
CASE (case-list)

statement (s)

CASE (case-list)
statenent (s)

CASE DEFAULT
statenment (s)
END SELECT
where:
e isan integer expression.
case-list isalist of one or more cases separated by commas. A caseis either
(@ asingleinteger, logical or character constant expression or
(b) an integer, logical or character constant expression followed by a colon

followed by another expression or the same type. Thisform of acase
defines arange of values consisting of all integers or characters greater
than or equal to the value of the expression preceding the colon and less
than or equal to the value of the expression following the colon.

The CASE and FROMkeywords are optional in the SELECT statement. An optional block label may be
specified with the SELECT statement.

The case expression eis evaluated and if the result is equal to one of the values covered by case-1i st
then the control of execution is transferred to the associated CASE block.

SELECT Statement 137

Language Reference

Example:

SELECT CASE (CH)

CASE ('a' : 'z')

PRI NT *, ' Lower case letter’
CASE ("A : 'Z)

PRI NT *, ' Upper case letter’
CASE ('0" : "9)

PRINT *, '"Digit’
CASE DEFAULT

PRI NT *, ’ Special character’
END SELECT

In the above example, if the character CHis not aletter or digit then the CASE DEFAULT block is

executed.

The CASE DEFAULT statement isoptional. If it is present and the case expression is out of range (i.e., no
CASE blocks are executed) then the CASE DEFAULT block isexecuted. If itisnot present and the case
expression is out of range then execution continues with the first executable statement following the END
SELECT statement. The CASE DEFAULT block must follow all other CASE blocks.

Example:

SELECT CASE (|)
CASE (1)

X <
non
* 4+
W X

N
1l
X<_$_ X<
*

N
+
>

2

m

N

N
©
N -
H
w

X <N
[T
X <

CASE DEFAULT

PRINT *, "CASE is not in range’
END SELECT
PRINT *, X, Y, Z

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers, the
OTHERW SE statement may be used in place of the CASE DEFAULT statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

138 SELECT Statement

FORTRAN Statements

2.77 STOP Statement

STOP [n]

where:
n isacharacter constant or an unsigned integer constant of no more than five digits.
Open Watcom FORTRAN 77 alows n to be any unsigned integer constant.
Execution of a STOP statement causes termination of execution of the program. A STOP statement may
appear in any program unit (although good programming practice suggests that the main program is the

proper place for this statement).

Example:
STOP 943

The three digit number 943 is displayed on the console prior to program termination.

Example:
STOP ' Fini shed at |ast’

The character string

Fi ni shed at | ast

is displayed on the console prior to program termination.

STOP Statement 139

Language Reference

2.78 STRUCTURE Statement

STRUCTURE /t ypenane/

where:
typename is the name for a new, compound variable, data type.

The STRUCTURE statement is used in conjunction with the END STRUCTURE declarative statement. The
STRUCTURE statement marks the start of a structure definition.

The STRUCTURE statement defines anew variable type, caled a structure. It does not declare a specific
program variable. The RECORD statement is used to declare variables and arrays to be of this particular
structure type.

Structures may be composed of simple FORTRAN types or more complex structure types. Thisis shown
in the following example.

Example:

STRUCTURE / ADDRESS/
CHARACTER* 20 STREET
CHARACTER*20 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE

END STRUCTURE

STRUCTURE / PECPLE/
CHARACTER* 20 NAME
RECORD / ADDRESS/ ADDR
| NTEGER*2 AGE

END STRUCTURE

RECORD / PEOPLE/ CUSTOVER

Element names are local to the structure in which they appear. The same element name can appear in more
than one structure. Nested structures may have elements with the same name. A particular element is
specified by listing the sequence of elements required to reach the desired element, separated by percent
symbols (%) or periods (.).

Example:
CUSTOVERYNAME = ’ John Doe’
CUSTOVERYADDR¥STREET = '22 Main St.’
CUSTOVERYADDRYCI TY = ' Snal lville’
CUSTOMVERYADDRYSTATE = ' Texas’
CUSTOMERYADDRYCOUNTRY = " U. S. A’
CUSTOMVERYADDRYZ| P_CCDE = ’ 78910- 1203’
CUSTOMERYAGE = 23

For more information, see the chapter entitled " Structures, Unions and Records" on page 167.

140 STRUCTURE Statement

FORTRAN Statements

2.79 SUBROUTINE Statement

SUBROUTINE sub [([d [, d] ...])]

where:
sub is a symbolic name of a subroutine subprogram.
d isavariable name, array name, dummy procedure name or an asterisk (*). d iscalled adummy

argument.
A SUBROUTI NE statement is used to define the start of a subroutine subprogram.

Example:
CALL TMAX3(-1.0, 12.0, 5.0)
END

SUBROUTI NE TMAX3(ARGA, ARGB, ARGC)
THEMAX = ARGA
| F(ARGB . GT. THEMAX) THEMAX
| F(ARGC . GT. THEMAX) THEMAX
PRINT *, THEMAX

ARGB
ARGC

END

In the above example, the subroutine TMAX3 is defined to find and print out the maximum value of three
real variables.

Notes:

1. Nodummy arguments need be specified in the SUBROUTI NE statement. If such isthe case, the
parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines’ on page 243.

SUBROUTINE Statement 141

Language Reference

2.80 UNION Statement

UNI ON

The UNI ON statement is used in conjunction with the END UNI ON declarative statement. The UNI ON
statement marks the start of a series of MAP structures. A UNI ON block must contain at least two MAP
structures. A UNI ON block permits the mapping of the same storage in several different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
VAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
| NTEGER*2 HI _WORD
END MAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
[%4ONG = ' 01020304’ x

PRINT ' (224)', 1%.0 WORD, | % _WORD
END

For more information, see the chapter entitled " Structures, Unions and Records" on page 167.

142 UNION Statement

FORTRAN Statements

2.81 UNTIL Statement

UNTIL (e)
where:
e isalogical expression or integer arithmetic expression, in which case the result of the integer

expression is compared for inequality to the integer value O.

The UNTI L statement is used in conjunction with the structured LOOP or block VWHI LE statement. The
LOOP or block WHI LE statement marks the beginning of a sequence of statements which are to be repeated.
The UNTI L statement marks the end of the loop. The LOOP-block or WHILE-block is executed until
control istransferred out of the block or the logical expression of the UNTI L statement has a true value.

Example:
X=1.0
LOOP
PRINT *, X, SQRT(X)
X=X+1.0
UNTIL(X .GT. 10.0)
Example:
I =1
WH LE(| .LT. 100)DO
J=4*1 *|
K=3%*|
PRINT *, "4x**2 + 3x + 6 =", J + K+ 6
I =1 +1

UNTIL((J + K+ 6) .GI. 100)

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

UNTIL Statement 143

Language Reference

2.82 VOLATILE Statement

VOLATILE [a [,a] ...]

where:
a isavariable name or an array name.

The VOLATI LE statement is used to indicate that a variable or an element of an array may be updated
concurrently by other code. A volatile variable or array element will not be cached (in aregister) by the
code generator. Each time avolatile variable or array element is referenced, it isloaded from memory.
Each time avolatile variable or array element is updated, it is stored back into memory.

Notes:
1. A name cannot appear in a VOLATI LE statement more than once in the same program unit.

2. Dummy arguments, procedure names, and common block names are not permitted in a
VCOLATI LE statement.

In the following example, the subroutine A_ THREAD waits on the Hol dThr eads semaphore. It usesthe
VOLATI LE statement to ensure that the variable is re-loaded from memory each time through the loop.

Example:
SUBROUTI NE A_ THREADX)

STRUCTURE / RTL_CRI TI CAL_ SECTI ON/
| NTEGER*4 Debugl nf o
| NTEGER*4 LockCount
| NTEGER*4 Recur si onCount
| NTEGER*4 Owni ngThr ead
| NTEGER*4 LockSenmaphore
| NTEGER*4 Reserved
END STRUCTURE

| NTEGER NumThr eads

LOGA CAL Hol dThr eads

VOLATI LE Hol dThr eads

RECORD / RTL_CRI TI CAL_SECTIONV Critical Section
COVMMON NumThr eads, Hol dThreads, Critical Section
| NTEGER t hreadi d

VWHI LE(Hol dThreads) DO

CALL Sleep(1)
END WHI LE
PRINT " ("'"H fromthread "', i4)’, threadid()
CALL EnterCritical Section(Critical Section)
NumThr eads = NunmThreads - 1
CALL LeaveCritical Section(Critical Section)
CALL endt hr ead()
END

144 VOLATILE Statement

FORTRAN Statements

2.83 Block WHILE Statement

VWH LE (e) DO [: Dbl ock-Iabel]

where:

e isalogical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value O.

The block WHI LE statement is used in conjunction with the structured END WHI LE or UNTI L statement.
The block WHI LE statement marks the beginning of a sequence of statements which are to be repeated.

The END WHI LE or UNTI L statement marks the end of the WHILE-block. The WHILE-block is executed
while the logical expression of the WHI LE statement has atrue value or until control is transferred out of
the WHILE-block.

Example:
X=1.0
WH LE(X .LT. 100)DO
PRINT *, X, SQRT(X)
X=X+1.0
END WH LE
Example:
I =1
VWH LE(| .LT. 100)DO
J=4*1 *|
K=3*I
PRINT *, "4x**2 + 3x + 6 =", J + K+ 6
I =1 +1
UNTIL((J + K+ 6) .GI. 100)

END
An optional block label may be specified with the WHI LE statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

Block WHILE Statement 145

Language Reference

2.84 WHILE Statement

VWH LE (e) stnt

where:
e isalogical expression.
stmt is an executable statement. Only certain executable statements are allowed. See the section

entitled "Classifying Statements" on page 9 at the beginning of this chapter for alist of allowed

statements.

Thisform of the WHI LE statement allows an executable statement to be repeatedly executed until the

logical expression eisfalse.

Example:
I =0
VWH LE(| .LE. 100) CALL PRTSQR(|)
END

SUBROUTI NE PRTSQR(J)
PRINT *, J, J**2
J=J+1

END

In the above example, the subroutine PRTSQR s called again and again until the value of | has been
incremented beyond 100. Note that the subroutine increments its argument thereby guaranteeing that the

program will eventually stop execution.

For more information, see the chapter entitled "Program Structure Control Statements' on page 193 Control

Statements’'.

146 WHILE Statement

FORTRAN Statements

2.85 WRITE Statement

VWRITE (cilist) [olist]

where:
cilist isacontrol information list of specifiers separated by commas:
[UNIT =] u
[FMT =] f
REC = rn
| OSTAT = ios
ERR = s
olist isan output list.

The WRI TE statement is used to transfer data from the executing FORTRAN program to an external device

or file.

Control Information List

[UNIT =] u

u isan external unit identifier or an internal file identifier.

1.

2.

An external unit identifier is a non-negative integer expression or an asterisk
(*) inwhich case unit 6 is assumed.

Aninternal file identifier isthe name of a character variable, character array,
character array element, or character substring.

If the optional UNI T= specifier is omitted then the unit specifier must be the first item in
thelist of specifiers.

[FMT =] f

f isaformat identifier. A format identifier is one of the following:

1.

ok w

6.
7.

A statement label of a FORVAT statement that appears in the same program unit
asthe format identifier.

An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format identifier
(see the ASSI GN statement).

An integer array name.

A character array name.

Any character expression except one involving the concatenation of an operand
whose length specificationis (*) unlessthe operand is a symbolic constant (see
the PARAMETER statement).

An asterisk (*), indicating list-directed formatting.

A NAMELI ST name, indicating namelist-directed formatting.

If the optional FMT'= specifier is omitted then the format specifier must be the second item
inthelist of specifiersand UNI T= must not be specified for the first itemin thelist.

WRITE Statement 147

Language Reference

REC=rn
r n isan integer expression whose value must be positive. It isthe number of the record to
be written when afile is connected for direct access.

IOSTAT =ios
isan input/output status specifier. Theinteger variable or integer array element i os is
defined with zero if no error condition occurs or a positive integer value if an error
condition occurs.

ERR=s

isan error specifier and s isastatement label. When an error occurs, execution is
transferred to the statement labelled by s.

Output list - An output list may contain one or more of the following:
1. Avaiable name
2. Anarray lement name.
3. A character substring name.
4. Anarray name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an operand
whose length specification is an asterisk in parentheses unless the operand is the symbolic name
of aconstant (since the length can be determined at compile time).

6. Animplied-DO list of the form:
(dlist, i =el1, e2 [,e3])
wheredl i st iscomposed of one or more of items (1) through (6).

Example:
WRI TE(6, 100)X, Y, Z
WRI TE(UNI T=6, FMI=100)X, Y, Z
100 FORMAT(3F10.5)
WRI TE(UNI T=6, FMI="(3F10.5)’)X, Y, Z
WRITE(6, '(3F10.5)")X Y, Z

The above gives four examples of formatted WRI TE statements. In al cases, the format conversion is
identical but it was specified in different ways. When executed, the effect of all WRI TE statementsisthe
same. The unit number, used here, is6. There are, in fact, many other waysin which the WRI TE statement
could have been written, all of which would have the same effect when executed. We have not shown use
of al the specifiers.

Example:
WRITE(6, *)X Y, Z
WRITE(*, *)X Y, Z
WRI TE(UNI T=6, FMI=*)X, Y, Z
WRI TE(UNI T=*, FMI=*)X, Y, Z

The above four examples of list-directed formatted output are all equivalent. Open Watcom FORTRAN 77
assumes unit 6 when the unit number identifier is an asterisk (asin the second and fourth examples). Inthe
examples, the format identifier is an asterisk indicating list-directed formatting.

148 WRITE Statement

FORTRAN Statements

Example:
WRITE(8)X Y, Z
WRITE(UNNT=8)X, Y, Z

The above gives two examples of unformatted WRI TE statements. The unit number used in the exampleis
8. When executed, the effect of both of these statementsis the same. The values of the variables X, Y and
Z are written to the file connected to unit 8 in their binary form (aform quite incomprehensible to most
human beings). An advantage to using this particular form of the WRI TE statement is that no conversionis
required between the internal binary representation of the values and their textual (human-readable) form
(which means it takes less computer time to process the data).

Notes:

1. If nooutput list is specified then the effect of the WRI TE statement is to produce a record whose
characters are all blanks.

2. The REC= specifier may not be used when list-directed output is specified.

3. Animplication of point (6) aboveis that nesting of implied-DO listsis permitted. For example,
the output list

((AC1,J), B(1,J3), J =1, 5,1 =1, 10)
may be broken down into the following components:
A(l,J), B(1,J)

(....dlistl...., J =1, 5)
(..... dlist2. ..., , 1 =1, 10)

For more information on input/output, see the chapter entitled "Input/Output” on page 215. For more
information on formatted input/output, see the chapter entitled "Format" on page 225.

149

Language Reference

150

3 Names, Data Types and Constants

3.1 Symbolic Names

Symbolic names are names that represent variables, arrays, functions, etc. Names are formed using any of
the upper-case letters A-Z and the digits 0-9, the first of which must be aletter. Symbolic names are
limited to 6 charactersin length. The following are examples of symbolic names.

AMOUNT
AGE
CUST73

Open Watcom FORTRAN 77 extends the allowabl e characters that can make up a symbolic hame to
include the lower-case letters a-z, the dollar sign ($) and the underscore (). Note that the dollar sign and
the underscore are treated as letters and are therefore allowed as the first letter of a symbolic name.
Furthermore, Open Watcom FORTRAN 77 alows symbolic names of up to 32 characters. The following
are examples of permissible symbolic names.

Eval uat e
$Cheque

Conput eAver age
_devi ce

| OGBERROR

st udent _total

Open Watcom FORTRAN 77 makes no distinction between upper and lower case letters. The following
symbolic names are identical.

Account
ACCount
ACCOUNT

Spaces are allowed in symbolic names and areignored. The following symbolic names are identical.

CREDT
CREDI T

FORTRAN 77 allows certain keywords such as WRITE to be used as symbolic names. In Open Watcom
FORTRAN 77, all keywords satisfy the requirements of a symbolic name. A keyword is a sequence of
letters that isinterpreted in a special way by Open Watcom FORTRAN 77. Whether a string of characters
isinterpreted as a keyword or as a symbolic name depends on the context in which it isused. Inthe
following example, the first statement is an assignment statement assigning the value 2 to the symbolic
name DOLOI . The second statement is the beginning of a DO-loop.

Symbolic Names 151

Language Reference

Example:
DOLOI =1
DOL0I =1, 10

3.2 Data Types

There are 6 basic data typesin FORTRAN 77; logical, integer, real, double precision, complex and
character. Open Watcom FORTRAN 77 provides an additional datatype, namely double precision
complex (DOUBLE COVPLEX or COMPLEX* 16). Open Watcom FORTRAN 77 also supports the
creation of more complex user-defined data types using the STRUCTURE statement.

Each data type can be classified as numeric, logical or character. Each datum occupies a sequence of
storage units. Numeric data and logical data occupy numeric storage units whereas character data occupy
character storage units. In Open Watcom FORTRAN 77, a numeric storage unit occupies 4 bytes and a
character storage unit occupies 1 byte.

The following table summarizes al data types supported by Open Watcom FORTRAN 77.

Data Type Size Standard
(in bytes) FORTRAN

LOGICAL 4 yes
LOGICAL*1 1 extension
LOGICAL*4 4 extension
INTEGER 4 yes
INTEGER* 1 1 extension
INTEGER*2 2 extension
INTEGER*4 4 extension
REAL 4 yes
REAL*4 4 extension
REAL*8 8 extension
DOUBLE PRECISION 8 yes
COMPLEX 8 yes
COMPLEX*8 8 extension
DOUBLE COMPLEX 16 extension
COMPLEX*16 16 extension
CHARACTER 1 yes
CHARACTER*n n yes

Detailed information on the size and range of values supported by each of these data typesis provided in
the User's Guide.

3.3 Data Type of a Name

A name must only have one datatype. Itstypeis specified by the appearance of that namein atype
statement. |f a name does not appear in any type statement then an implied typeis assigned to it by the
"first letter rule”". A name not appearing in any type statement and beginning with any of theletters|, J, K,
L, M or N isassigned the type integer. A name not appearing in any type statement and beginning with any
other letter isassigned thetypereal. Theimplied type of aletter can bechangedby an | MPLI CI T
statement.

152 Data Type of a Name

Names, Data Types and Constants

The type associated with a name defines the type of the dataiit isto contain. For example, if A isof type
integer, then the storage unit which A occupiesis assumed to contain integer data. Note that the data type
of an array element is the same as the data type associated with the array name.

The data type of afunction name specifies the type of the result returned by the function when it is
referenced. A name that identifies a specific intrinsic function has type as specified in the chapter entitled
"Functions and Subroutines" on page 243. A generic function name has no type associated with it; its type
is determined by the type of its argument(s). The appearance of a generic function in atype statement is
not sufficient to remove the generic properties of that name. For example, if SIN was declared to be of type
real, it could still be called with an argument of type complex. Thetype of an external function referenceis
determined in the same way as for variables and arrays. The actual type of the external function is
determined implicitly by its name or explicitly by its appearance in a FUNCTI ON or type statement. Note
that an | MPLI Cl T statement can affect the type of the external function being defined.

3.4 Constants

A constant can be one of arithmetic, logical or character. Each constant has a data type and value
associated with it and, once established in a program, cannot be changed. Arithmetic constants consist of
those constants whose data type is one of integer, real, double precision, complex or double precision
complex. Logical constants consist of those constants whose data typeislogical and character constants
consist of those constants whose data type is character. The string of characters representing a constant
determinesits value and data type. The blank character isinsignificant for all but character constants.

3.4.1 Integer Constants

Aninteger constant is formed by a non-empty string of digits preceded by an optional sign.

The following are examples of integer constants.
1423

+345
- 34565788

3.4.2 Real Constants

Wefirst define asimple real constant asfollows. an optional sign followed by an integer part followed by
adecimal point followed by afractional part. Theinteger and fractional parts are non-empty strings of
digits. Either can be omitted but not both.

A real constant has one of the following forms.

1. A simplereal constant.

2. A simplerea constant followed by an E followed by an optionally signed integer constant.

3. Aninteger constant followed by an E followed by an optionally signed integer constant.
The optionally signed integer constant that follows the E is called the exponent. The value of area
constant that contains an exponent is the value of the constant preceding the E multiplied by the power of

ten determined by the exponent.

The following are examples of real constants.

Constants 153

Language Reference

123. 764

. 4352344
1423. 34E12
+345. E- 4

-. 4565788E3
2E6

1234.

3.4.3 Double Precision Constant

A double precision constant has one of the following forms.

1. A simplerea constant followed by a D followed by an optionally signed integer constant.
2. Aninteger constant followed by a D followed by an optionally signed integer constant.

The optionally signed integer constant that follows the Dis called the exponent. The value of a double
precision constant that contains an exponent is the value of the constant preceding the D multiplied by the
power of ten determined by the double precision exponent. Note that the resulting approximation is of
greater precision than the equivalent real constant. The approximations may be of equal precision if the
approximations are exact representations. For example, 0D0 and OEO are double and single precision
constants respectively, both representing zero with the same precision.

The following are examples of double precision constants.
1423. 34D12
+345.D- 4

-.4565788D5
2D6

3.4.4 Complex Constant

A complex constant consists of aleft parenthesis, followed by areal or integer constant representing the
real part of the complex constant, followed by a comma, followed by areal or integer constant representing
the imaginary part of the complex constant, followed by aright parenthesis.

The following are examples of complex constants.
(1423.34E12, 3)
(+345, 4)

3.4.5 Double Precision Complex Constant (Extension)

A double precision complex constant has the same form as a complex constant except that at |east one of
the real and imaginary parts must be a double precision constant.

The following are examples of double precision complex constants.

(1423.34D12, 3)
(+345, 4D2)

154 Constants

Names, Data Types and Constants

3.4.6 Logical Constant
A logical constant can have one of the following forms.

1. . TRUE. representing the valuetrue.
2. . FALSE. representing the valuefalse.

3.4.7 Character Constant

A character constant consists of an apostrophe followed by any string of characters followed by an
apostrophe. The apostrophes are not part of the datum. |f an apostrophe isto appear as part of the datum it
must be followed immediately by another apostrophe. Note that blanks are significant. The length of the
character constant is the number of characters appearing between the delimiting apostrophes. Consecutive
apostrophesin a character datum represent one character, namely the apostrophe. A character constant
must not have length O.

The following are examples of character constants.

" ABCDEFGL1234567"
"There’ ' s al ways tonorrow

3.4.8 String Constant (Extension)

A string constant consists of an apostrophe followed by any string of characters followed by an apostrophe
and then the letter Cor c. The apostrophes are not part of the datum. The datum is stored in memory with
aterminating NUL character (CHAR(0)). If an apostrophe isto appear as part of the datum it must be
followed immediately by another apostrophe. Note that blanks are significant. The length of the string
constant is the number of characters appearing between the delimiting apostrophes plus one for the
terminating NUL character (CHAR(0)). Consecutive apostrophes in a string datum represent one character,
namely the apostrophe. A string constant must not have length 0. A string constant may be used anywhere
a character constant may be used.

The following are examples of string constants.
"Hello there’' C

"There''s al ways tonorrow c
"The result for %=%l’c

3.4.9 Hollerith Constants (Extension)

A hallerith constant consists of a positive unsigned integer constant n followed by the letter H or h
followed by a string of exactly n characters. The actual dataisthe n characters following the letter Hor h.
A hoallerith constant is another way of representing character data.

Constants 155

Language Reference

Actually, hollerith constants are treated as character constants and can be used wherever a character
constant can be used. Hollerith constants are different from character constantsin that a quote is
represented by two quotes in character constants and by a single quote in hollerith constants.

The following are examples of hollerith constants.

5HABCDEFG
10h xxxxx ' 44

3.4.10 Hexadecimal Constants (Extension)

Two forms of hexadecimal constant are supported. The first form can only be used in type declaration or
DATA statements. The second form may be used anywhere an integer constant may be used.

Thefirst form of hexadecimal constant consists of the letter Z or z followed by a string of hexadecimal
digits. A hexadecimal digit can be any digit or one of theletters A, B, C, D, Eor F (thelower case of
these lettersis also acceptable). The actual datais the hexadecimal digits following the letter Z or z.
Hexadecimal constants of this form can only be used in type declaration statements and DATA statements
for initializing memory with binary patterns.

The following are examples of the first form of hexadecimal constant.

21234
Zac

Thefirst example is equivalent to the binary pattern 0001 0010 0011 0100. The second exampleis
equivalent to the binary pattern 1010 1100.

The second form of hexadecimal constant consists of an apostrophe followed by any string of hexadecimal
digits followed by an apostrophe and then the letter X or x. A hexadecimal digit can be any digit or one of
thelettersA, B, C, D, Eor F (thelower case of these lettersis also acceptable). The actual dataisthe
hexadecimal digits placed inside apostrophes.

The following are examples of the second form of hexadecimal constant.

11234 x
"ac’ X

Thefirst example is equivalent to the binary pattern 0001 0010 0011 0100. The second exampleis
equivalent to the binary pattern 1010 1100.

3.4.11 Octal Constants (Extension)

An octal constant consists of an apostrophe followed by any string of octal digits followed by an
apostrophe and then the letter Oor 0. An octal digit can be any of the digits 0 through 7. The actual data
isthe octal digits placed inside apostrophes. An octal constant may be used anywhere an integer constant
may be used.

156 Constants

Names, Data Types and Constants

The following are examples of octal constants.

'1234’ o
370

Thefirst example is equivalent to the binary pattern 001 010 011 100. The second exampleis
equivalent to the binary pattern 011 111.

3.5 Symbolic Constants

It is possible to give a constant a symbolic name. Thisis done through PARAMETER statements. For more
details, see the section on the PARAMETER statement in the chapter entitled "FORTRAN Statements" on

page 9.

Symbolic Constants 157

Language Reference

158 Symbolic Constants

4 Arrays

4.1 Introduction

An array is anon-empty collection of data. Arrays allow a convenient way of manipulating large quantities
of data. An array can be referenced as an entity. Inthisway it is possible to conveniently pass large
guantities of data between subprograms. Alternatively, it is possible to reference each element of an array
individually so that data can be selectively processed. Consider the task of managing the marks of 100
students. Without arrays one would have to have a unique name for each mark. They might be M1, M2,
etc. uptoM100. Thisisclearly cumbersome. Instead, we can use an array called MARKS containing 100
elements. Now there is one name for al the marks. Each mark can be referenced by using that name
followed by a subscript. Furthermore, suppose the size of the class doubled. Do we add the names M 101,
M102, etc. upto M200? Not if we use arrays. |If the size of the class doubled, all that need be doneisto
define the array to contain 200 elements. It is not hard to see that programs that use arrays tend to be
genera in nature. Arrays also facilitate the repetitive computations that must be performed on large
amounts of datain that they lend themselves to loop processing.

4.2 Properties of Arrays

Arrays are defined by an array declarator. The form of an array declarator is:

a(d[,d ...)
where:
a is the symbolic name of the array
d isadimension declarator.

The number of dimensions of the array is determined by the number of dimension declarators appearing in
the array declarator. Allowable dimensionsfor arraysrangefrom 1to 7. A 1-dimensional array can be
viewed as a vector, a 2-dimensional array as a matrix and a 3-dimensional array as a number of parallel
matrices. Arrayswith dimension higher than 3 are generally difficult to intuitively describe and hence
examples will deal with arrays whose dimensionis1, 2 or 3.

Each dimension has arange of values. When referencing elementsin that dimension, the dimension

expression must fall in that range. The range of adimension is defined in the dimension declarator. A
dimension declarator has the following form:

Properties of Arrays 159

Language Reference

[lo:] hi
where:
lo isthe lower dimension bound.
hi is the upper dimension bound.

The lower and upper dimension bounds must be integer expressions and the upper dimension bound must
be greater than or equal to the lower dimension bound. The upper dimension bound of the last dimension
may be an asterisk (*) . Themeaning of thiswill be discussed later. If the lower dimension bound is not
specified then adefault of 1 isassumed. Thesize of adimensionisdefined as hi —1lo+ 1. Notethat if
the lower dimension bound is not specified the size of the dimensionisjust hi . Thesize of the array (or
the number of elementsin the array) is defined as the product of all the sizes of the dimensions of the array.
The maximum number of elementsin any dimension is limited to 65535. The maximum size of an array is
limited by the amount of available memory.

Arrays are defined by the appearance of an array declarator ina DI MENSI ON statement, a type statement
or a COVMON statement.

Example:
DI MENSI ON A(10), B(-5:5,-10:10)
| NTEGER C(10, 20)
COWDN / DATA X, Y(30,30), Z

In the previous example, B isa 2-dimensional array with 11 rows and 21 columns and has 231 elements
(i.e. 11* 21).

Each array has a data type associated with it. This datatypeisinherited by all elements of the array.

4.3 Array Elements

Each array is comprised of a sequence of array elements. An array element is referenced by following the
array name with a subscript. Different elements of the array are referenced by simply changing the
subscript. An array element has the following form:

a(s[,s]...)
where:
a isthe array name.
(d.9.--) isasubscript.
S isasubscript expression.

160 Array Elements

Arrays

Each subscript expression must be an integer expression and must be in the range defined by the upper and
lower dimension bounds of the corresponding dimension. The number of subscript expressions must be
equal to the dimension of the array.

If an array has n elements then there is a 1-to-1 correspondence between the elements of the array and the
integersfrom 1 to n. Each subscript has a subscript value associated with it which determines which
element of the array is being referenced. If the subscript value isi then the ith element of the array isthe
one referenced. The subscript value depends on the subscript expressions and on the dimensions of the
array. The following table describes how to compute the subscript value.

n Dimension Subscript Subscript
Declarator Value
1 (J1:K1) (S 1+(S1-J1)
2 (J1:K1,J2:K2) (S1,92) 1+(S1-J1)
+(S2-J2)*D1
3 (J1:K1,J2:K2,J3:K3) (S1,52,33) 1+(S1-J1)
+(S2-32)*D1

+(S3-J3)*D2* D1

n |(@LKL...dn:Kn) (S1,...,.Sn) 1+(S1-J1)

+(S2-J2)*D1

+(S3-J3)*D2* D1

+
+(Sn-Jn)*Dn-1*Dn-2*..* D1

Notes:
1. nisthenumber of dimensions, 1 <=n<=7.
2. Jiisthevalue of the lower bound of thei’th dimension.
3. Kiisthevalue of the upper bound of thei’th dimension.
4. If only the upper bound is specified, then Ji = 1
5. Siistheinteger value of thei’th subscript expression.
6. Di=Ki-Ji+listhesizeof thei'th dimension. If the value of the lower bound is 1, then Di = Ki.
7. A subscript of the form (J1,...,Jdn) has subscript value 1 and identifies the first element of the

array. A subscript of the form (K1,...,Kn) has subscript value equal to the size of the array and
identifies the last element of the array.

Array Elements 161

Language Reference

4.4 Classifying Array Declarators by Dimension Declarator

Array declarators can be classified according to the characteristics of the dimension declarator. The
following sections discuss the three classifications.

4.4.1 Constant Array Declarator

A constant array declarator is one in which each of the dimension bound expressionsis an integer constant
expression. Itiscalled aconstant array declarator because the dimension bound expressions can never
change. Inthefollowing example both A(10) and B(—5:5) are constant array declarators.

Example:
SUBROUTI NE SQUARE(A)
DI MENSI ON A(10), B(-5:5)

END

4.4.2 Adjustable Array Declarator

An adjustable array declarator is one that contains at least one variable in all of its dimension bound
expressions. It iscalled an adjustable array declarator because the dimension bound expressions can
change depending on the current value of the variablesin the dimension bound expressions. The array
name must be a dummy argument. In the following example, A(M 2* N) isan adjustable array declarator.
If SQUARE is called with Mhaving value 5 and N having value 10, then the array A will be a 2-dimensional
array having 5 rows and 20 columns.

Example:
SUBROUTI NE SQUARE(A, M N)
DI MENSI ON A(M 2*N)

END

4.4.3 Assumed-size Array Declarator

An assumed-size array declarator is aconstant array declarator or an adjustable array declarator whose
upper dimension bound of the last dimension is an asterisk (e.g., A(M,N,*)) or theinteger value 1 (e.g.,
A(M,N,1)). Thearray name must be adummy argument. The value of the upper bound of the last
dimension is determined by the number of elements of the actual array argument and is computed as
follows. First we compute the size of the dummy array. Note that thissizeisreally an upper bound.

1. If the corresponding actual array argument is a non-character array name, the size of the dummy
array isthe size of the actual array.

2. If the corresponding actual array argument is a non-character array element name with a
subscript value of r in an array of size x, the size of the dummy array isx+ 1 —r.

162 Classifying Array Declarators by Dimension Declarator

Arrays

3. If the corresponding actual argument is a character array name, character array element or a
substrung character array element which begins at character t of an array with ¢ characters then
the size of the dummy array iSINT((c+ 1 -1t)/ €) where e isthe size of an element of the
dummy array.

If the assumed-size array has dimension n then the product of the first n — 1 dimensions must be less than or
equal to the size of the array as determined by one of the preceding rules. The value of the assumed
dimension isthe largest integer such that the product of all of the dimensionsislessthan or equal to the size
of the dummy array. Inthefollowing example, A(4, *) isan assumed-size array declarator.

Example:
DI MENSI ON B(10)

CALL SQUARE(B)

END

SUBROUTI NE SQUARE(A)
DI MENSI ON A(4, *)

END

By rule 1, the upper bound of the size of Ais10. We now look for the largest integer n such that 4 * nis
lessthan or equal to 10. Clearly, nis2. Aistherefore a2-dimensiona array with 4 rows and 2 columns.

4.4.4 Allocatable Array Declarator

An allocatable array declarator is one that contains no dimension bound expressions. Itiscalled an
allocatable array declarator because the dimension bounds are specified at run-timein an ALLOCATE
statement.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N))
ALLOCATE(B(0: 4,5))

In the previous example, A(:) isaone-dimensional allocatable array declarator and B(: , :) isa
two-dimensional alocatable array declarator. Thefirst ALLOCATE statement is used to allocate the array A
with bounds 1: N. The second ALLOCATE statement is used to allocate the array B with bounds 0: 4 in
thefirst dimension and 1: 5 in the second dimension.

Classifying Array Declarators by Dimension Declarator 163

Language Reference

4.5 Classifying Array Declarators by Array Name

Array declarators can also be classified according to the characteristic of the array name. The following
sections discuss the two classifications.

4.5.1 Actual Array Declarator
An actual array declarator is one in which the array name is not adummy argument. All actual array

declarators must also be constant array declarators. An actual array declarator is permitted in a
DI MENSI ON statement, a type statement or a COVMON statement.

4.5.2 Dummy Array Declarator
A dummy array declarator is one in which the array name is a dummy argument and hence can only appear
in afunction or subroutine subprogram. It can be a constant, adjustable or assumed-size array declarator.
A dummy array declarator can appear in a DI MENSI ON statement or atype statement but not in a COMVON
statement. 1t should be noted that the array declarator for adummy array declarator need not be the same as

the array declarator of the corresponding actual array declarator. Also note that every array declarator in a
main program must be a constant array declarator.

4.6 Use of Array Names

The appearance of an array name must always be as part of an array element name except in the following
Cases:

1. inalist of dummy arguments. For example, a subroutine that has as one of its arguments an
array.

2. ina COMMON statement to define that array as belonging to a common block.

3. inatype statement either as part of an array declarator or by itself to establish the type of the
array.

4. inan array declarator ina DI MENSI ON, type or COVMON statement.
5. inan EQUI VALENCE statement.

6. inaDATA statement.

7. inthelist of actual arguments when calling an external procedure.

8. Inthelist of aninput/output statement.

9. asaunitidentifier for aninternal filein an input/output statement.

10. asaformat identifier in an input/output statement.

11. inaSAVE statement.

164 Use of Array Names

5 Character Substrings

5.1 Introduction

A substring is a contiguous portion of a character entity. The substring operation selects a substring from a
character entity. The resulting substring can then be treated as a character entity in itself. Substringing also
allows the replacement of substrings from character entities with other character entities.

5.2 Substring Names

Substrings are formed by specifying a substring name. The forms of a substring name are:

v([el] : [e2])
a(s [,s] ...)([el] : [e2])

where:

Vv is a character variable name.

a(gy,g...) isacharacter array element name.

el isan integer expression identifying the leftmost character of the substring.
€2 isan integer expression identifying the rightmost character of the substring.

el and e2 are caled substring expressions. They must be such that

1 <= el <= e2 <= |en

where| en isthe length of the character entity. If el isomitted, avalue of 1isassumed. If e2 isomitted,
avaueof | enisassumed. Both el and e2 may be omitted. The length of the substringis e2 - el + 1.

Substring Names 165

Language Reference

Example:

CHARACTER A*8, B(4)*8, C-14

* A gets the string ' EVERYDAY
A = ' EVERYDAY’

* Replace "DAY' with "ONE in A
A(6:8) = 'ONE

* B(1) gets the string ' OTHELLO
B(1) = 'OTHELLO

* B(2) gets sane value as B(1)
B(2)(:) = ' OTHELLO

* B(3) gets last 6 characters of B(1)
B(3) = B(1)(3:8)

* B(4) gets first 4 characters of B(1)

* concatenated with the letter 'R
B(4) =B(1)(1:.4) // 'R

* Cgets last 6 characters of B(1)

* concatenated with the variable A
C=B(1((3:) /Il A

* Print out the results

PRI NT *, A
PRINT ' (A8)', B
PRINT *, C
END

5.3 Extensions

Open Watcom FORTRAN 77 allows an external character function reference or a character statement
function reference as part of the substring name (see the chapter entitled " Functions and Subroutines' on
page 243. for more information).

Example:
CHARACTER*10 F, G
CHARACTER*10 X
* DEFI NE CHARACTER STATEMENT FUNCTI ON
*
qx =X
PRINT *, F(’0123456789")(1:5)

PRINT *, G’ 0123456789’)(6: 10)
END

DEFI NE CHARACTER EXTERNAL FUNCTI ON

* F X

CHARACTER* (*) FUNCTI ON F(X)
CHARACTER* 10 X

F=X

END

166 Extensions

6 Structures, Unions and Records

6.1 Structures and Records

As an extension to the basic FORTRAN 77 types such as INTEGER, REAL, LOGICAL, etc., Open
Watcom FORTRAN 77 supports the creation of hierarchical, composite data types called structures. A
structure is atemplate describing the form of arecord. It is composed of members or fields of various
types, including other structures. A structure does not reserve any storage.

For example, you could describe the structure of the COMPLEX data type using the following
construction.

Example:
STRUCTURE / CVPLX/
REAL REAL_PART
REAL | MAG_PART
END STRUCTURE

Since the COMPLEX datatypeisan intrinsic type of FORTRAN, thereisno need to do so. The
STRUCTURE and END STRUCTURE statements mark the start and end of a structure definition.

There are, however, many practical examples of collections of data that may be described using a structure.
Consider, for example, the contents of a datarecord on disk. It may contain fields such as last name, first
name, and middle initial which describe the name of a customer. Each of these fields are fixed in length. A
sample structure declaration might be:

STRUCTURE / NAME/
CHARACTER* 20 LAST_ NAME
CHARACTER* 20 FI RST_NAME
CHARACTER*1 M DDLE_I NI Tl AL
END STRUCTURE

As we stated above, a structure does not allocate storage. Instead, we have created a new type called NAMVE
which may be used to describe objects. Objects of the new type are defined using the RECORD statement.

For example, the following statements describe two objects, STUDENT _1 and STUDENT _ 2, to be of type
NANME.

RECORD / NAME/ STUDENT_1
RECORD / NAME/ STUDENT_2

There are other attributes of a person besides one’ s name that could be recorded in the record. For
example, we can also store a person’s date of birth and sex. Firdt, let us define a DATE structure.

STRUCTURE / DATE/
| NTEGER* 1 DAY
| NTEGER*1 MONTH
| NTEGER*2 YEAR
END STRUCTURE

Now we can describe a person in terms of name, date of birth, and sex.

Structures and Records 167

Language Reference

STRUCTURE / PERSON/
RECORD / NAME/ NAME
RECORD / DATE/ BI RTH_DATE
CHARACTER*1 SEX

END STRUCTURE

RECCRD / PERSON STUDENT

Having declared STUDENT to be of type PERSON, how do we reference the component parts of
STUDENT? The following example illustrates this.

STUDENT. NAME. LAST_NAME = ’ Pugsl ey’
STUDENT. NAME. FI RST_NAME = ' El mar’
STUDENT. NAME. M DDLE_INITIAL = "M
STUDENT. Bl RTH_DATE. DAY = 21
STUDENT. Bl RTH_DATE. MONTH = 11
STUDENT. Bl RTH_DATE. YEAR = 1959
STUDENT. SEX = ' M

The object’snameis specified first, followed by a"." (or "%") and the structure member name. If the

structure member isitself arecord then another "." (or "%") and member name is specified. This continues
until the desired structure member isidentified. The"." or "%" is called afield selection operator.

The previous example contained both a structure called NAME (RECORD / NAME/) and a structure
member called NAVE (RECORD / NAME/ NAME) . The structure name is enclosed within slashes ("/").
A structure name must be unigue among structure names. However, the same name can also be used to
name either variables or structure members (fields). Thusit is possible to have avariable named X, a
structure named X, and one or more fields named X.

Structure, field, and variable names are all local to the program unit in which they are defined.

6.2 Arrays of Records

It is often the case that the individual attributes of objects are stored in separate arrays. If, for example,

your application deals with 1000 objects with attributes "size", "weight", and "colour", the traditional

approach isto declare three different arrays.
PARAVETER (MAX_ELS=1000)
REAL SI ZE(MAX_ELS)

| NTEGER VEI GHT(MAX_ELS)
CHARACTER* 2 COLOUR(MAX_ELYS)

To read or write the attributes relating to an object, you would use a statement such as:
READ(UNI T=3) SI ZE(1), WEIGHT(Il), COLOUR(I)

Using a simple structure, we can express the problem as follows:

168 Arrays of Records

Structures, Unions and Records

PARAVETER (MAX_ELS=1000)
STRUCTURE / OBJECT/

REAL Sl ZE

| NTEGER VEI GHT

CHARACTER*2 COLOUR
END STRUCTURE

RECORD / OBJECT/ | TEM MAX_ELS)
To read or write the attributes relating to an object, you would use a statement such as:

READ(UNI T=3) | TEM 1)

6.3 Unions

Sometimesit is useful to be able to describe parts of structuresin different ways in much the same way that
the EQUI VALENCE statement is used to describe a specific storage areain different ways. The UNI ON -
END UNI ON statements are used to mark a section of a structure that will have alternate storage
organizations (MAPs). The MAP - END MAP statements are used to define the start and end of an aternate
storage map. Thus several MAP - END MAP pairs will appear between a UNI ON- END UNI ON section.

Consider the following example. The subroutine displays the contents of a field using different names and
formats depending on a TYPE field.

Example:

Unions 169

Language Reference

SUBROUTI NE PRI NT_I TEM | TEM)
STRUCTURE / DATA_MAP/
| NTEGER TYPE
UNI ON
MAP
LOG CAL LGL
END MAP
MAP
| NTEGER | NT
END MAP
MAP
REAL FLT
END MAP
MAP
DOUBLE PRECI SI ON DBL
END MAP
END UNI ON
END STRUCTURE

RECORD / DATA_NMAP/ | TEM

IF(ITEMAYPE .EQ 1) THEN
PRINT ' (L2)’, | TEMAGL

ELSEI F(| TEMAYPE .EQ 2) THEN
PRINT ' (18)', | TEMA NT

ELSEI F(| TEMAYPE .EQ 3) THEN
PRINT ' (E12.5)', | TEM<

ELSEI F(| TEMAYPE .EQ 4) THEN
PRINT ' (D12.5)', | TEM/®BL

ENDI F

END

The organization of the record in memory is as follows:

offset +0 +4 +8
i nt eger | ogi cal (sl ack)
i nt eger (sl ack)
r eal (sl ack)
doubl e precision

Thefirst 4 bytes of storage are occupied by TYPE. The next 4 to 8 bytes of storage are occupied by either
LG, I NT, FLT, or DBL depending on the interpretation of the contents of the variable TYPE. Thesize
of therecord | TEMis atotal of 12 bytes. Based on the conventions of the above program example, only 8
bytes of the record | TEMare used when TYPE is 1, 2, or 3. When TYPE is 4 then 12 bytes of the record
are used.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

170 Unions

Structures, Unions and Records

Example:

STRUCTURE / MAPI NT/
UNI ON
MAP
| NTECER* 4
END VAP
MAP
| NTECER* 2
| NTECER* 2
END VAP
MAP
I NTEGER* 1
| NTEGER* 1
| NTEGER* 1
| NTEGER* 1
END VAP
END UNI ON
END STRUCTURE

RECCRD / MAPI NT/ |
| 4AONG = ' 01020304’ x

PRINT ' (Z8)’, |%ONG
PRI NT ' (Z4, 1X, Z4) ',

PRI NT ' (Z2, 3(1X, 22))",

END

LONG

LO_WORD
H _\WORD

BYTE_O
BYTE_1
BYTE_2
BYTE_3

1 9.0 WORD, | % _WORD
| 9BYTE_O, |9BYTE 1,
| YBYTE_2, | 9YBYTE_3

The above example produces the following output:

01020304
0304 0102
04 03 02 01

Unions 171

Language Reference

172 Unions

/ Expressions

The following topics are discussed in this chapter.
* Arithmetic Expressions
* Character Expressions
* Relational Expressions
* Logical Expressions
* Evaluating Expressions

* Constant Expressions

7.1 Arithmetic Expressions

Arithmetic expressions are used to describe computations involving operands with numeric data type,
arithmetic operators and left and right parentheses. The result of the computation is of humeric data type.

7.1.1 Arithmetic Operators

The following table lists the arithmetic operators and the operation they perform.

Oper at or Arithnmetic Operation

** Exponenti ati on

/ Di vi si on

* Mul tiplication

- Subtraction or Negation
+ Addition or ldentity

Some operators can be either binary or unary. A binary operator is one that requires two operands. A
unary operator is one that requires one operand. Each of the operators**, /, and * are binary operators.

The operators + and — can either be binary or unary operators. The following table describes how each
operator is used with their operands.

Arithmetic Expressions 173

Language Reference

Oper at or Arithnetic Operation
X **y X is raised to the power y
x 'y X is divided by y
X *y x is multiplied by y
X -y y is subtracted from x
X +y y is added to X
- X X i's negated
+ X identity

Arithmetic expressions can contain more than one operator. It isthus necessary to define rules of
evaluation for such expressions. A precedence relation is defined between operators. This relation defines
the order in which operands are combined and hence describes the evaluation sequence of an arithmetic
expression. Operands of higher precedence operators are combined using that operator to form an operand
for an operator of lower precedence. The following rules define the precedence relation among arithmetic
operators.

1. Exponentiation (**) has highest precedence.

2. Multiplication (*) and division (/) have equal precedence but have lower precedence than
exponentiation.

3. Addition (+) and subtraction (-) have equal precedence but have lower precedence than
multiplication and division.

For example, to evaluate the expression
A-B**4
B israised to the exponent 4 first and the result is then subtracted from A.

Parentheses can be used to alter the evaluation sequence of an arithmetic expression. When aleft
parenthesis is encountered, the entire expression enclosed in parentheses is evaluated. Consider the
following expression.

3% (4+5)

We first evaluate the expression in the parentheses, the result being 9. We now multiply the result by 3
giving afinal result of 27. Now suppose we remove the parentheses. According to the precedencerules, *
has precedence over + so we perform the multiplication before the addition. The result in this caseis 17.

7.1.2 Rules for Forming Standard Arithmetic Expressions

The building blocks for arithmetic expressions are called arithmetic primaries. They are one of the
following:

unsigned arithmetic constant
arithmetic symbolic constant
arithmetic variable reference
arithmetic array element reference
arithmetic function reference
(arithmetic expression)

oukrwdhpE

174 Arithmetic Expressions

Expressions

A grammar for forming arithmetic expressions can be described which reflects the precedence relation
among arithmetic operators.

Exponentiation has highest precedence. We define afactor as:

1. primary
2. primary ** factor

A factor is simply a sequence of primaries, each separated by the exponentiation operator. Rule (2)
specifies that the primaries involving exponentiation operators are combined from right to left when
evaluating afactor.

Next in the precedence hierarchy are the multiplication and division operators. We define atermas:

1. factor
2. term/factor
3. term* factor

A term is simply a sequence of factors, each separated by a multiplication operator or a division operator.
Rules (2) and (3) imply that in such a sequence, factors are combined from |eft to right when evaluating a
term. Factors can be interpreted as the result obtained from evaluating them. Thisimpliesthat all factors
are evaluated before any of the multiplication or division operands are combined. Thisinterpretation is
consistent with the precedence relation between the exponentiation operator and the division and
multiplication operators.

An arithmetic expression can now be defined as follows.

term

+term

- term

arithmetic expression + term
arithmetic expression — term

agkrwNPRE

An arithmetic expression is simply a sequence of terms, each separated by an addition operator or a
subtraction operator. Rules (4) and (5) imply that terms are evaluated from left to right. Rules (2) and (3)
imply that only the first term of an arithmetic expression can be preceded by a unary + or — operator.
Terms can be interpreted in the same way as factors were interpreted in the definition of terms.
Note that consecutive operators are not permitted. For example, the expression

A+-B
isillegal. However, expressions of the form

A+(-B)

are dlowed.

Arithmetic Expressions 175

Language Reference

7.1.3 Arithmetic Constant Expression

An arithmetic constant expression is an arithmetic expression in which all primaries are one of the
following.

1. arithmetic constant
2. symbolic arithmetic constant
3. (arithmetic constant expression)

Thereis afurther restriction with the exponentiation operator; the exponent must be of type INTEGER.

As an extension to the FORTRAN 77 language, Open Watcom FORTRAN 77 supports the use of the
intrinsic function | SI ZEOF in an arithmetic constant expression.

Example:
PARAMETER (I NTSI Z = | SI ZEOF(| NTECGER))

An integer constant expression is an arithmetic constant expression in which all constants and symbolic
constants are of type INTEGER.

Example:
123
- 753+2
-(12*13)

A real constant expression is an arithmetic constant expression in which at least one constant or symbolic
constant is of type REAL and all other constants or symbolic constants are of type REAL or INTEGER.

Example:
123.
-753+2.0
- (13E0*12)

A double precision constant expression is an arithmetic constant expression in which at least one constant
or symbolic constant is of type DOUBLE PRECISION and all other constants or symbolic constants are of
type DOUBLE PRECISION, REAL or INTEGER.

Example:
123. 4D0
-753D0*2+. 5
-(12D0*12. 2)

A complex constant expression is an arithmetic constant expression in which at least one constant or

symbolic constant is of type COMPLEX and all other constants or symbolic constants are of type
COMPLEX, REAL or INTEGER.

176 Arithmetic Expressions

Expressions

Example:
(123, 0)
(-753,12.3)*2
-(12,-12.4)-(1.0,.2)

A double precision complex constant expression is an arithmetic constant expression in which at least one
constant or symbolic constant is of type COMPLEX* 16 and all other constants or symbolic constants are of
type COMPLEX* 16, DOUBLE PRECISION, REAL or INTEGER. If there are no constants or symbolic
constants of type COMPLEX* 16 in a constant expression, the type of the constant expression will be
COMPLEX*16 if it contains at least one constant or symbolic constant of type COMPLEX and at |east one
constant or symbolic constant of type DOUBLE PRECISION. Open Watcom FORTRAN 77 supports this

Example:
(123, 0DO)
(-753,12.3D0) *2
-(12D0, -12.4)-(1.0,.2)

7.1.4 Data Type of Arithmetic Expressions

Evaluating an arithmetic expression produces aresult which has atype. The type of theresult is
determined by the type of its operands. The following table describes the rules for determining the type of
arithmetic expressions. Theletters|, R, D, C and Z stand for INTEGER, REAL, DOUBLE PRECISION,
COMPLEX and COMPLEX*16 respectively. An entry in the table represents the data type of the result
when the operands are of the type indicated by the row and column in which the entry belongs. The
column represents the type of the operand to the right of the operator, and the row represents the type of the
operand to the left of the operator. The tableisvalid for al of the arithmetic operators.

op I*1 | 1*2 | 1*4 R D C Z
I*1 |11 [1*2 | I*4 R D C Z
1*2 112 [1*2 | I*4 R D C Z
1*4 [1*4 | 1*4 | 1*4 R D C Z
R R R R R D C Z
D D D D D D Z Z
C C C C C Z C Z
Z Z Z Z Z Z Z Z
Notes:

1. I*1lrepresentsthe | NTEGER* 1 datatype, I1*2 representsthe | NTEGER* 2 datatype, and 1*4
representsthe | NTEGER or | NTEGER* 4 datatype.

2. Thedatatype of the result obtained by dividing an integer datum by an integer datum is also of
type INTEGER even though the mathematical result may not be an integer. Thisresult iscalled
the integer quotient and is defined as the integer part of the mathematical quotient.

3. Open Watcom FORTRAN 77 supports the double precision complex data type
(COMPLEX*16) as an extension of the FORTRAN 77 language. Combining an operand of type
DOUBLE PRECISION with an operand of type COMPLEX yields aresult of type
COMPLEX* 16.

Arithmetic Expressions 177

Language Reference

7.2 Character Expressions

Character expressions are used to describe computations involving operands of type CHARACTER, the
concatenation operator (//) and left and right parentheses. The result of the computation is of type
CHARACTER.

7.2.1 Character Operators

Thereis only one character operator, namely the concatenation operator (/). It requires two operands of
type CHARACTER. If x istheleft operand and y isthe right operand, then theresult is y concatenated to
X. Thelength of the result is the sum of the lengths of the two operands. For example, the result of

" AAAAA' /[BBB'

isthe string AAAAABBB.

7.2.2 Rules for Forming Character Expressions

The building blocks for character expressions are called character primaries. They are one of the
following.

character constant

character symbolic constant
character variable reference
character array element reference
character substring reference
character function reference

(character expression)

Nogas~wdE

Character expressions are defined as follows:

1. character primary
2. character expression // character primary

A character expression is simply a sequence of character primaries, each separated by the concatenation
operator (//). Rule 2 impliesthat character primaries are combined from left to right. Except in a character
assignment statement, the operands in a character expression must not contain operands whose length
specification is (*) unless the operand is a symbolic constant.

Note that, unlike arithmetic expressions, parentheses have no effect on the result of evaluating a character
expression. For example, the result of the expressions

"A/I'B/I'C
and
"AI('B /]I C)

isidentically the string ABC.

178 Character Expressions

Expressions

7.2.3 Character Constant Expressions
A character constant expression is a character expression in which all primaries are one of the following.

1. character constant
2. symbolic character constant
3. (character constant expression)

As an extension to the FORTRAN 77 language, Open Watcom FORTRAN 77 supports the use of the
intrinsic function CHAR in a character constant expression.

Example:
CHARACTER*6 HELLO, WORLD
PARAVMETER (HELLO = ' Hel | o’ // CHAR(0))
PARAMETER (WORLD = "wor |l d'// CHAR(7))
PRI NT *, HELLO WORLD
END

7.3 Relational Expressions

A relational expression is used to compare two arithmetic expressions or two character expressions. Itis
not possible to compare a character expression to an arithmetic expression. Evaluation of arelational
expression produces aresult of typelogical.

7.3.1 Relational Operators

The following table lists the relational operators and the operation they perform.

Oper at or Rel ati onal QOperation
.LT. Less than
. LE. Less than or equal
. EQ Equal
. NE. Not equal
. GT. Greater than
. GE Greater than or equal

7.3.2 Form of a Relational Expression

The form of arelational expressionisasfollows.

el relop e2

Relational Expressions 179

Language Reference

where:
relop isarelational operator.
el, e? are both arithmetic expressions or both character expressions.

7.3.2.1 Arithmetic Relational Expressions

An arithmetic relational expression isarelational expression in which el and e2 are both arithmetic
expressions. An arithmetic relational expression has avalue of true if the operands satisfy the relation
specified by the relational operator and false otherwise.

A complex operand is only permitted when using either the .EQ. or .NE. relational operators. Open
Watcom FORTRAN 77 allows operands of type COMPLEX* 16.

7.3.2.2 Character Relational Expressions

Character relational expressions are relational expressions whose operands are of type CHARACTER.
The value of arelation between character strings is established by using the collating sequence of the
processor character set. The collating sequenceis an ordering of the charactersin the processor character
set. Note, for example, that the EBCDIC character set has a different collating sequence than that of the
ASCII character set. For example, el isgreater than e2 if the value of el followsthe value of €2 inthe
processor collating sequence. The value of a character relational expression depends on the collating
sequence. Inthe case of the .NE. and .EQ. operators, the collating sequence has no effect.

Example:

IF(A .LT. "a)THEN
PRI NT *, ' The processor character set’
PRINT *, 'appears to be ASC I’

ELSE
PRI NT *, ' The processor character set’
PRI NT *, "appears to be EBCDI C

END I F

END

The above exampleis a crude test for determining the character set used on your processor.
Itis possible to have operands of unequal length. In this case, the character string of smaller lengthis

treated asif blanks were padded to the right of it to the length of the larger string. The relational operator is
then applied.

7.4 Logical Expressions

Logical expressions are used to describe computations involving operands whose typeis LOGICAL or
INTEGER , logica operators and left and right parentheses. The result of the computation is of type
LOGICAL unless both operands are of type INTEGER in which case the result of the computation is of
type INTEGER.

180 Logical Expressions

Expressions

7.4.1 Logical Operators

The following table lists the logical operators and the operation they perform.

Qper at or Logi cal QOperation
. NOT. Logi cal negation
. AND. Logi cal conjunction
.OR Logi cal inclusive disjunction
. EQV. Logi cal equi val ence
. NEQV. Logi cal non-equi val ence
. XOR. Excl usi ve or

Thelogical operator .NOT. isaunary operator; al other logical operators are binary. The following tables
describe the result of each operator when it is used with logical operands.

X . NOT. x
true fal se
fal se true

X y X . AND. vy
true true true
true fal se fal se
fal se true fal se
fal se fal se fal se
X y x .OR vy
true true true
true fal se true
fal se true true
fal se fal se fal se
X y X .EQV. vy
true true true
true fal se fal se
fal se true fal se
fal se fal se true
X y X . NEQV. vy
............... X . XOR vy
true true fal se
true fal se true
fal se true true
fal se fal se fal se

Logical Expressions 181

Language Reference

Note that the operators .NEQV. and .XOR. perform the samelogical operation.

The following tables describe the result of the logical operators when they are used with integer operands.
These operators apply to bits in the operand(s), hence we show only the result of operations on individual
bits. The way to read the entries in the following tables is:

1. If thebitin"x" is 0 then the corresponding bit in ".NOT.x" is 1, and so on.

2. If thebitin"x" is 1 and the corresponding bit in"y" is 1 then the corresponding bit in “x.AND.y"

is1, and so on.
X . NOT. x
0 1
1 0
X y X .AND. vy
1 1 1
1 0 0
0 1 0
0 0 0
X y x .OR vy
1 1 1
1 0 1
0 1 1
0 0 0
X y X .EQV. vy
1 1 1
1 0 0
0 1 0
0 0 1
X y X . NEQV. y
............. X . XOR vy
1 1 0
1 0 1
0 1 1
0 0 0

Note that the operators .NEQV. and .XOR. perform the same mathematical operation on bits.

182 Logical Expressions

Expressions

Asisthe case with arithmetic operators, we must define rulesin order to evaluate logical expressions.
Again we define rules of precedence for logical operators which dictate the evaluation sequence of logical
expressions. The following liststhe logical operatorsin order of precedence.

.NOT. (highest precedence)

AND.

.OR.

.EQV., .NEQV. and.XOR. (lowest precedence)

AwWDdDE

For example, in the expression

A.OR B .A\D C

the . AND. operator has higher precedence than the .OR. operator so B and C are combined first using the
AND. operator. Theresult isthen combined with A using the .OR. operator.

Parentheses can be used to alter the sequence of evaluation of logical expressions. If in the previous
example we had written

(A.OR B) .AND. C

then A and B would have been combined first.

7.4.2 Rules for Forming Logical Expressions
Logica primaries are the building blocks for logical expressions. They are one of the following.

logical orinteger constant

symbolic logical orinteger constant
logical orinteger variable reference
logical orinteger array element reference
logical orinteger function reference
relational expression

(logical orinteger expression)

Nogak~wdDE

Aswas done with arithmetic expressions, agrammar can be defined which dictates the precedence relation
among logical operators.

The .NOT. logical operator has highest precedence. We define alogical factor as:

1. logical primary
2. .NOT. logica primary

Next in the precedence hierarchy isthe AND. operator. We define alogical termas:

1. logical factor
2. logica term .AND. logical factor

A logical term is simply a sequence of logical factors, each separated by the AND. operator. Rule (2)
specifies that the logical factors are combined from left to right.

Next isthe .OR. operator. We define alogical digunct as:

Logical Expressions 183

Language Reference

1. logica term
2. logica digunct .OR. logica term

A logical digunct issimply a sequence of logical terms each separated by the .OR. operator. Rule (2)
specifies that the logical terms are combined from left to right.

A logical expression can now be defined as follows.

1. logical disunct
2. logica expression .EQV. logica disunct
3. logical expression .NEQV. logical disunct or logical expression .XOR. logical disunct

A logical expression is therefore a sequence of logical diguncts, each separated by the .EQV. operator or
the .NEQV. or .XOR. operator. Rules(2) and (3) indicate that logical disjuncts are combined from left
to right.

Consider the following example.
A .OR .NOT. B.AND. C
Sincethe .NOT. operator has highest precedence we first logically negate B. Theresult is then combined

with Cusing the . AND. operator. That result isthen combined with A using the .OR. operator to form the
final result.

7.4.3 Logical Constant Expressions
A logical constant expression isalogical expression in which each primary is one of the following:

logical constant

symbolic logical constant

arelational expression in which each primary is a constant expression
(logical constant expression)

PwWdE

The following are examples of alogical constant expression (assumethat A, B, Cand D are arithmetic
constants appearing in PARAVETER statements).

. TRUE. . AND. .NOT. .FALSE
A LLT. Ta’
A*B.GI. C* D

7.5 Evaluating Expressions

Four different types of operators have been discussed; arithmetic, character, relational and logical. Itis
possible to form an expression which contains all of these operators. Consider the following example.

A+tB .LE. C .AND. X // Y .EQ Z .AND. L

where A, Band Careof numerictype, X, Y and Z are of type CHARACTER and L is of type
LOGICAL. Inthisexpression, +isan arithmetic operator, // is a character operator, .EQ. isarelational
operator and .AND. isalogical operator. Since we can mix these four types of operators, it is necessary to
define a precedence among these four classes of operators. The following defines this precedence of
operators.

184 Evaluating Expressions

Expressions

arithmetic operators (highest precedence)
character operators

relational operators

logical operators (lowest precedence)

AwWdE

With this precedence any expression can how be evaluated without ambiguity.

7.6 Constant Expressions

A constant expression is an arithmetic constant expression, a character constant expression or alogical
constant expression.

Constant Expressions 185

Language Reference

186 Constant Expressions

8 Assignment Statements

8.1 Introduction

Assignment statements are used to define entities. There are four different types of assignment.

Arithmetic

Logical

Statement label (ASSIGN)
Character

AwWdE

8.2 Arithmetic Assignment

The form of an arithmetic assignment statement is

where:

\ isavariable name or array element name of type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or double precision complex (COMPLEX* 16).

e is an arithmetic expression.

The following are examples of arithmetic assignment statements.

Y = X**2 + 4.0*X + 3.0
Z(10) = 4.3*(X+Y)

Executing an arithmetic assignment statement causes the evaluation of the arithmetic expression e,
converting the type of the expression e to thetype of v, and defining v with the result.

If v isof type INTEGER* 1 or INTEGER* 2, then the value of the expression e isfirst converted to type
INTEGER. The resulting integer isthen assigned to v in the following way.

1. If visof type INTEGER*2 and the value of e issuch that —32768 <= e <= 32767, v will be
assigned thevalue of e. Otherwise, v will be undefined.

2. If visof type INTEGER*1 and the value of e issuch that -128 <= e <= 127, v will be assigned
thevalueof e. Otherwise, v will be undefined.

Arithmetic Assignment 187

Language Reference

8.3 Logical Assignment

The form of alogical assignment statement is

v =e

where:

v isavariable name or array element name of type LOGICAL.
e isalogical expression.

The following are examples of logical assignment statements.

LOGL = . TRUE.
LOG = (X.GT.Y) .AND. (X LT.2)
LOG3(2) = LO® .EQV. LOGL

Executing alogical assignment statement causes the evaluation of the logical expression e, and defining v
with theresult. Note that the type of v and e must be LOGICAL.

8.4 Statement Label Assignment

The form of a statement label assignment is

ASSIGN s to i

where:
S isastatement label.
[isthe name of an integer variable.

The following is an example of a statement label assignment statement.

ASSI GN 10 TO |

Theresult of executing an ASSI GN statement causes the integer variable i to be defined with the value of
the statement label s. s must be the statement label of an executable statement or aformat statement in
the same program unit in which the ASSI GN statement appears. It is possible to changethevaueof i by
executing another ASSI GN statement.

During execution when i isused in an assigned GO TO statement, an ASSI GN statement which defines i
must have been executed prior to the execution of the assigned GO TOstatement.

188 Statement Label Assignment

Assignment Statements

Whilethe variable i isdefined with a statement label, it should not be used in any other way other than in
an assigned GO TOstatement. Consider the following example.

Example:
10 ASSIGN 10 TO |
* |1l egal use of an ASSI GNed vari abl e
PRINT *, |

The output produced by the PRI NT statement is not the integer 10. Itsvalue is undefined and should be
treated that way.

8.5 Character Assignment

The form of a character assignment statement is

vV = e

where:

% isacharacter variable name, character array element, or character substring.
e is acharacter expression.

The following are examples of character assignment statements.

CHARACTER* 20 C, DX 5)
C=" ABCDEF’

C(3: 5) = XYZ'

D(5) (14: 15) =" 12’

Executing a character assignment statement causes the evaluation of the character expression e and the
definition of v with the result.

None of the character positions defined in v may be referenced in e. The following exampleisillegal
since the 4th and 5th character positions of A appear on the left and right hand side of the equal sign.

Example:
* |1l egal character assignnent.
CHARACTER*10 A, B*5
A(2:6) = A(4:5) /] B

Thelength of v and e may be different. If the length of v islessthan the length of e then the assignment

has the effect of truncating e from the right to the length of v. If thelength of v is greater than the length
of e, thevalue assigned to v isthe value of e padded on the right with blanksto the length of v.

Character Assignment 189

Language Reference

8.6 Extended Assignment Statement

Open Watcom FORTRAN 77 supports an extension to the FORTRAN 77 assignment statement, namely
the extended assignment statement.

where:
Vi must be one of the following:
1. Variable names or array element names of type INTEGER, REAL, DOUBLE
PRECISION, COMPLEX or double precision complex (COMPLEX* 16).
2. Variable names or array element names of type LOGICAL.
3. Character variable names, character array elements, or character substrings.

e must be one of the following and must follow the rules of the arithmetic, logical or character

assignment statements:

1. Anarithmetic expression.
2. Alogical expression.
3. A character expression.

The extended assignment statement is equivalent to the following individual statements.

\ = e
n

Y = \
n-1 n

Y = Y
2 3

% = Y
1 2

When using an extended assignment statement involving variables of mixed type, it isimportant to
understand the exact way in which the assignments are performed. Assignment of each variable is made
using the value of the variable to itsimmediate right, starting with the rightmost variable which is assigned
the value of the expression. To help make this clear, consider the following program.

190 Extended Assignment Statement

Assignment Statements

Example:
CHARACTER C1*10, C2*5, C3*7
LOd CAL L1, L2, L3
I NTEGER*2 K, L

| =8§=J=T=125
PRINT *, I, S, J, T
I = K=J =1L = 70000
PRINT *, |, K

, J, L
Cl = C = C ="' ABCDEFGH JKL’
PRINT *, C1, C2, C3

L1 = L2 = L3 = . TRUE
PRINT *, L1, L2, L3

END

The output from this program would be:

1 1.0000000 1 1.2500000
4464 4464 4464 4464
ABCDE ABCDEABCDEFG
T T T

Note that variables K and L are of type INTEGER* 2 and cannot contain any value greater than 32767.
Truncation resulted and this value (4464) was propagated to the | eft.

Extended Assignment Statement 191

Language Reference

192 Extended Assignment Statement

9 Program Structure Control Statements

9.1 Introduction

The use of structured programming statements has been found to encourage better programming and design
practices among beginners, and aids the more experienced programmer in writing error-free programs.

The format of these statements and their blocksisillustrated below. Following this, the use and meaning of
each statement is described and illustrated with examples. In each of theseillustrations, the blocks are
denoted by st at ement (s) and are delimited by control statements.

In the descriptions, | ogi cal - expr essi on can also be an integer expression, in which case the result
of the integer expression is compared for inequality to the integer value 0.

Example:
| F(LEN - 1) THEN

In the preceding example, the expression LEN - 1 isinterpretedas LEN - 1 . NE. 0.

9.2IF - ELSE - END IF

The EL SE portion of this construct is optional, thus there are two possible formats.

(a) IF(Iogical-expression) THEN [: Dbl ock-Iabel]
stat ement (S)
END | F

(b) I'F(Iogical-expression)THEN [: bl ock-Iabel]
stat enent (s)
ELSE
stat enent (s)
END | F

This construct is an enhancement of the FORTRAN logical | F statement. If the value of the parenthesized
logical expressionistruein (a), the block of statements following the | F statement is executed, after which
control passes to the statement following the END | F statement; otherwise, control will pass directly to the
statement following the END | F statement. When the EL SE statement is used and the logical expression
istrue, the block of statements between the | F and the EL SE statements is executed and then control
passes to the statement following the END | F statement; otherwise the block of statements following

EL SE statement is executed and then control passes to the statement following the END | F statement.

An optional block label may be specified with the | F statement (seethe CYCLE, EXI T or QUI T
statement for more information).

IF-ELSE -ENDIF 193

Language Reference

Examples follow which illustrate the use of the two formats.

Example:
IF(I .EQ 0O)THEN
PRINT *, "1 |S ZERO
I =1
END I F

If variable | iszero whenthe | F statement is executed, thestring | | S ZEROwill be printed, variable |
will be assigned the value 1, and the statement following the END | F will be executed. If variable | is not
zero when the | F statement is executed, control will pass to the statement following the END | F
statement.

Example:
IF(A .GI. B)THEN
PRINT *, ' A GREATER THAN B’
A=A-B
ELSE
PRI NT *, " A NOT GREATER THAN B’
END I F

If the value of variable A is greater than the value of variable B when this | F statement is executed, the
string A GREATER THAN B will be printed and variable A will be assigned the value of the expression A
- B. Control will then pass to the statement following the END | F statement.

If the value of variable Ais not greater than the value of variable B when the | F statement is executed, the

string A NOT GREATER THAN B will be printed and control will pass to the statement following the
END | F statement.

9.3 ELSE IF

A further enhancement of the IF-THEN-EL SE construct isthe ELSE | F statement which may be used in
the following two formats:

(a) I'F(Iogical-expression-1)THEN [: Dbl ock-Iabel]
st at enent (s)
ELSE | F(| ogi cal - expressi on-2) THEN
stat enent (s)

END | F
(b) I'F(Iogical-expression-1)THEN [: bl ock-I1abel]
st at ement (S)

ELSE | F(| ogi cal - expressi on-2) THEN
st at enent ('s)

ELSE
stat enent (s)
END | F

194 ELSE IF

Program Structure Control Statements

The presence of the"..." in the above formats indicates that the ELSE | F statement may be repeated as
often asdesired. If thevalueof | ogi cal - expr essi on- 1 istruein case (a), the block of statements
following the | F statement up to the first ELSE | F statement is executed, after which control passesto the
statement following the END | F statement; otherwise, control will passto thefirst ELSE | F statement. If
thevaueof | ogi cal - expr essi on- 2 istrue, the block of statements following thefirst ELSE | F
statement up to the next ELSE | F statement or END | F statement is executed, after which control passes
to the statement following the END | F statement; otherwise, control will passto the next ELSE | F
statement, if thereis one, or directly to the statement following the END | F statement. When the ELSE
statement is used, asin case (b), and the values of all thelogical expressionsinthe | Fand ELSE | F
statements are false, the block of statements following the EL SE statement is executed and then control
passes to the statement following the END | F statement. An optional block label may be specified with
the | F statement (seethe CYCLE, EXI T or QUI T statement for more information).

Examples follow which illustrate the use of the two formats.

Example:
IF(I .EQ 0)THEN
PRINT *, "I 1S ZERO
ELSE IF(| .GI. 0)THEN
PRINT *, "1 | S GREATER THAN ZERO
END I F

If variable | iszero whenthe | F statement is executed, thestring | | S ZEROwill be printed and the
statement following the END | F statement will be executed. If variable | isnot zerowhenthe | F
statement is executed, control will passto the ELSE | F statement. If variable | isgreater than zero, the
stringl | S GREATER THAN ZEROwill be printed and the statement following the END | F statement
will be executed. If variable | islessthan zero then nothing would be printed and control passes from the
ELSE | F statement to the statement following the END | F statement.

Example:
IF(A.GI. B)THEN
PRI NT *, ' A GREATER THAN B’
=A-B
ELSE IF(A .LT. B)THEN

PRI NT *, " A LESS THAN B’
A=B- A

ELSE
PRINT *, A EQUAL TO B’
A=0.0

END | F

If the value of variable A is greater than the value of variable B when the | F statement is executed, the
string A GREATER THAN B will be printed and variable A will be assigned the value of the expression A
- B. Control will then pass to the statement following the END | F statement.

If the value of variable Ais not greater than the value of variable B when the | F statement is executed,
control passesto the ELSE | F statement. If the value of variable A islessthan the value of variable B,
thestring A LESS THAN B will be printed and variable A will be assigned the value of the expression B
- A, Control will then pass to the statement following the END | F statement.

If the value of variable A is not less than the value of variable B when the ELSE | F statement is executed,

thestring A EQUAL TO Bwill be printed and variable A will be assigned the value zero. Control will
pass to the statement following the END | F statement.

ELSEIF 195

Language Reference

9.4D0 - END DO

DO i nit-expr, end-val ue[,inc-value] [: bl ock-I|abel]
st at enent (s)
END DO

This extension to FORTRAN 77 allows the creation of DO-loops without the introduction of statement
numbers. An optional block label may be specified (seethe CYCLE, EXI T or QUI T statement for more
information). The END DO statement is used to indicate the end of the range of its corresponding DO
statement. A statement number may not be specified in the corresponding DO statement. Nested DO-loops
of thisform require separate END DO statements to terminate the range of the corresponding DO statement.
Since a statement number may appear on the END DO statement, the number may be used to terminate
outer DO-loops. Thisisnot arecommended practice (a CONTI NUE statement or a structured DO statement
should be used). A transfer of control from within the DO-loop to a statement number onthe END DO
statement is treated in the same manner asif the word CONTI NUE had been used instead of END DO.

Some examples follow.

Example:

PRINT *, MATRIX(|, J)

The aboveis equivalent to the following example which uses statement numbers.

Example:
DO10 | =1, 3
DO20J =1, 5
PRINT *, MATRIX(I, J)
20 CONTI NUE
10 CONTI NUE

The next example demonstrates the use of a GO TO statement to control execution of all or part of a

DO-loop.
Example:
DOI =1, 3
DOJ =1, 5
PRINT *, "I NNER LOOP - J=", J
IF(J .LE. 3)G0 TO 20
PRINT *, 'J > 3
20 END DO
PRINT *, ' QUTER LOOP - J=", J
END DO

A result of this example isthat the character string J > 3 isprinted 6 times (i.e., twice for each iteration
of the outer loop). Of course thereis a much better way of coding this algorithm using the IF-END IF
construct. The example isincluded to illustrate the behaviour of transfers of control to an END DO
statement. The following example is an equivalent algorithm to the one above but the intent is much
clearer.

196 DO - END DO

Program Structure Control Statements

Example:

PRINT *, 'INNER LOOP - J=', J
| .GT. 3)THEN
NT =, *J > 3

9.5 DO WHILE - END DO

DO WHI LE (e) [: bl ock-1abel]
st at enent (s)
END DO

This extension to FORTRAN 77 allows the creation of DO-loops without iterative techniques. Instead, the
DO-loop is executed while the parenthesized expression istrue. Thelogical expression is evaluated before
entry to the DO-loop. If the valueisfalse, control istransferred to the statement following the END DO
statement. |If the logical expression if true, the statements of the DO-loop are executed. Whenthe END DO
statement is reached, the expression is re-evaluated and program control proceeds as previously described.
An optional block label may be specified (seethe CYCLE, EXI T or QUI T statement for more
information).

An optional statement number can be specified after the DOkeyword. When the END DOstatement is used
to indicate the end of the range of its corresponding DO WHI LE statement, a statement number may not be
specified.

Some examples follow.

Example:

I =1

DO VHILE(| .LE. 3)
J=1
DO WVHILE(J .LE. 5)

PRINT *, MATRIX(I, J)

END DO

END DO

The aboveis equivalent to the following example which uses statement numbers.

Example:
| =

DO 1 LE(| .LE. 3)

(SN eN]

VI
=1
DO 20 WHILE(J .LE. 5)
PRINT *, MATRIX(I, J)
20 CONTI NUE
10 CONTI NUE

DO WHILE - END DO 197

Language Reference

The next example demonstrates the use of a GO TOstatement to control execution of all or part of a

DO-loop.
Example:
I =1
DO VHILE(| .LE. 3)
J=1
DO WHILE(J .LE. 5)
PRINT *, "I NNER LOOP - J=", J
IF(J .LE. 3)G0O TO 20
PRINT *, 'J > 3
20 END DO
PRINT *, ' QUTER LOOP - J=", J
END DO

A result of thisexampleisthat the character string J > 3 isprinted 6 times (i.e., twice for each iteration
of the outer loop). Of course there is a much better way of coding this algorithm using the IF-END IF
construct. The exampleisincluded to illustrate the behaviour of transfers of control toan END DO
statement. The following example is an equivalent algorithm to the one above but the intent is much

clearer.
Example:
I =1
DO VHILE(| .LE. 3)
J=1
DO WHILE(J .LE. 5)
PRINT *, "I NNER LOCP - J=", J
IF(J .GT. 3)THEN
PRINT *, 'J > 3
END | F
END DO
PRI NT *, ' QUTER LOOP - J=", J

END DO

9.6 LOOP - END LOOP

LOOP [: bl ock-Iabel]
statenment (s)
END LOOP

This extension to FORTRAN 77 causes the statements between the LOOP and END L OOP statements to be
repeated until control is transferred out of the loop, usually by an EXI T or QUI T statement. An optional

block label may be specified (seethe CYCLE, EXI T or QUI T statement for more information). An
example follows:

198 LOOP - END LOOP

Program Structure Control Statements

Example:
LOOP
READ *, X
IF(X .EQ 99.0)EXIT
PRI NT *, X
END LOOP

The above statements cause values to be read and printed, one to aline, until the value 99.0 isread. When
variable X has this value, the logical expressioninthe | F statement evaluates as true and the EXI T
statement causes a transfer of control to the statement following the END LOOP statement. The EXI T
statement is discussed in more detail in alater section.

9.7 WHILE - END WHILE

VWHI LE(| ogi cal - expressi on) DO [: bl ock-Iabel]
stat enment (s)
END WHI LE

This extension to FORTRAN 77 causes its block of code to be executed repeatedly while the parenthesized
logical expressionistrue. Thelogica expression is evaluated before entry to the block. If thevalueis
false, control passesto the statement following the END WHI LE statement. If thelogical expressionis
true, the statements of the block are executed. When the END WHI LE statement is reached, the WHI LE
logical expression is re-evaluated and the above program control decisions are repeated. An optional block
label may be specified (seethe CYCLE, EXI T or QUI T statement for more information). An example
follows:

Example:
VWH LE(J .GT. 0)DO
A(J) = B(I + J)
J=J-1
END WH LE

If variable J is zero or negative when the WHI LE statement is executed, the WHI LE block of code will be
by-passed and the statement following the END WHI LE statement will be executed.

If variable J is greater than zero when the WHI LE statement is executed, the WHI LE block will be executed
repeatedly until J becomes equal to zero. The effect of thisloop will be to assign valuesto elements of
array Afrom array B, starting with the element of A corresponding to the initial value of variable J and
working backwards down the array to element 1.

9.8 WHILE - Executable-statement

WHI LE(| ogi cal - expression)stnt

WHILE - Executable-statement 199

Language Reference

where:

stmt is an executable statement. Only certain executable statements are are allowed. See the section
entitled "Classifying Statements" on page 9 in the chapter entitled "FORTRAN Statements' for a
list of allowable statements.

This control statement is another form of the WHILE construct.

Example:
VWH LE(| .GT. 0)EXECUTE A

When this statement is executed, if the logical expression is not true, control passes to the next statement.
If the expression istrue, REMOTE-block A (assumed to be defined el sewhere in the program unit) is
executed, and the logical expressionisre-evaluated. Thisis repeated until the logical expression, when
evaluated, isfalse; control then passes to the next statement.

9.9 UNTIL

LOOP [: bl ock-Iabel]
stat ement (S)
UNTI L(| ogi cal - expression)

or

VWHI LE(| ogi cal - expressi on) DO [: bl ock-Iabel]
st at enent (s)
UNTI L(| ogi cal - expressi on)

The UNTI L statement, an extension to FORTRAN 77, may be combined with either a LOOP or VHI LE
statement by replacing the END LOOP or END WHI LE statement. It provides away of specifying a
condition to be tested at the end of each iteration of aloop, which will determine whether or not the loop is
repeated. After all of the statementsin the block have been executed, the logical expression inthe UNTI L
statement is evaluated. If the result of the condition isfalse, the loop is repeated; otherwise, control passes
to the statement following the UNTI L statement.

In the following example, the statements between the LOOP and the UNTI L statements are executed until
the value of variable X is greater than 10.0.

Example:
X=1.0
LOOP
PRINT *, X, SQRT(X))
X=X+1.0

UNTIL(X .GT. 10.0)

200 UNTIL

Program Structure Control Statements

9.10 SELECT - END SELECT

SELECT [CASE] (e) [FROM [: bl ock-1I abel]
CASE (case-list)

statenment (s)
CASE (case-list)

statenent (s)

CASE DEFAULT

st at ement (s)
END SELECT
where:
case-list isalist of one or more cases separated by commas. A caseis either
(a asingleinteger, logical or character constant expression or
(b) an integer, logical or character constant expression followed by a colon

followed by another expression or the same type. Thisform of a case defines
arange of values consisting of all integers or characters greater than or equal
to the value of the expression preceding the colon and less than or equal to
the value of the expression following the colon.

The SELECT construct, an extension to FORTRAN 77, is similar in concept to the FORTRAN computed
GO TOstatement. It allows one of a number of blocks of code (case blocks) to be selected for execution by
means of an integer expression in the SELECT statement.

The SELECT statement keywords, CASE and FROM are optional. The SELECT statement may contain a
block label (seethe CYCLE, EXI T or QUI T statements for more information).

Each block must be started with a CASE statement; however, the last block may begin with a CASE
DEFAULT statement. The CASE DEFAULT block isoptional. In order to retain compatibility with earlier
versions of WATCOM FORTRAN 77 compilers, the OTHERW SE statement may be used in place of the
CASE DEFAULT statement. Thelast block isended by the END SELECT statement. The number of case
blocks is optional, from one to many; however, it is recommended that the SELECT construct not be used
for fewer than 3 case blocks. The conditional execution of one or two blocks of code is handled more
efficiently by the IF-THEN-EL SE construct.

A particular case value or range of values must not be contained in more than one CASE-block. For
example, the following isillegal:

SELECT - END SELECT 201

Language Reference

Example:
* ||l egal SELECT block - case value in nore
* than one CASE bl ock.

SELECT CASE (| - 3)
CASE (1, 3,7:10)
st at enment (s)
CASE (5, 6, 8)
st at ement (s)
CASE (-3:-2+4)
statement (s)
END SELECT

The second CASE-block includes 8 which is already handled by the first CASE-block. Aswell, the third
CASE-block handles cases -3, -2, -1, 0, 1, 2 but the first CASE-block also handles case 1. Thusthe
second and third CASE-ranges are in error.

When the SELECT statement case expression is evaluated asi, the case block whose range containsi is
executed and control passes to the statement following the END SELECT statement. If no range containsi,
control istransferred to the statement following the CASE DEFAULT statement, if oneis specified. If the
CASE DEFAULT block is omitted and the case expression is out of range when the SELECT statement is
executed (that is, none of the CASE-blocks handles the particular expression value), control is passed to the
statement following the END SELECT statement and none of the CASE-blocks is executed.

Example:
SELECT CASE (|)
CASE (1)
Y=Y+ X
X=X* 3.2
CASE (2)
Z = Y*2 + X
PRINT *, X Y, Z

CASE (3)
Y=VY* 13 + X
X = X - 0.213
CASE (4)
Z = X*2 + Y**2 - 3.0
Y=Y+1.5
X = X* 32.0
PRINT *, "CASE 4', X, Y, Z
END SELECT

This example will execute in the manner described below for each of the possible values of variable | .

Q) | iszero or negative:
- control will pass to the statement after the END SELECT statement

(i) I = 1:
- the value of X will beaddedto Y
- X will be multiplied by 3.2
- control will pass to the statement after the END SELECT statement

(iii) I =2
- Z will be assigned the value of the expression Y**2 + X
- thevaluesof X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

202 SELECT-END SELECT

Program Structure Control Statements

(iv) I = 3:
- Y will be assigned the value of theexpression Y * 13. + X
- 0.213 will be subtracted from X
- control will pass to the statement after the END SELECT statement

(v) I = 4:
-Z, Yand Xwill beassigned new values
- the string CASE 4, followed by the valuesof X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

(vi) I =5, 6, -
- control will pass to the statement after the END SELECT statement

CASE DEFAULT allows ablock of code to be specified for execution when the SELECT expression is out
of range. It must follow all CASE-blocks and thusis ended by the END SELECT statement. The CASE
DEFAULT statement terminates the previous and last CASE-block. Note that only one CASE DEFAULT
block may be specified in a SELECT construct.

If aCASE DEFAULT block wereincluded in the above example, it would be executed in cases (i) and (vi)
of the description. After a CASE DEFAULT block is executed, control then passes to the statement after
the END SELECT statement.

Empty or null case blocks are permitted (that is, two CASE statements with no statements between). The
net result of executing a null CASE-block isto effectively bypass the SELECT construct.

Example:
SELECT CASE (| * 4 - J)
CASE (-10 : -5)
PRINT *,’ First case:’
PRINT *,’-10 <= 1*4-]J <= -5
CASE (-4 : 2)
PRI NT *,’ Second case:’
PRINT *,’ -4 <= 1*4-] <= 2’
CASE (3, 5, 7)
PRI NT *,’ Third case:’
PRINT *,'1*4-J is one of 3, 5 or 7’
CASE (4, 6, 8:10)
PRI NT *,’ Fourth case:’
PRINT *,’1*4-J is one of 4, 6, 8, 9 or 10
CASE DEFAULT
PRINT *,” All other cases:’
PRINT *,’1*4-J < -10 or 1*4-J > 10’
END SELECT

This example will execute in the manner described below for each of the possible values of expression
[*4-7.

Q) expression < -10
- control will passto the statement after the CASE DEFAULT statement
-thestring Al | ot her cases: will beprinted
-thestringl *4-J < -10 or 1*4-J > 10 will be printed

(i) -10 <= expression <= -5:

- control will pass to the statement after the first CASE statement
-thestring Fi rst case: will beprinted

SELECT - END SELECT 203

Language Reference

-thestring- 10 <= 1*J-4 <= -5 will be printed
- control will pass to the statement after the END SELECT statement

(iii) —4 <= expression <= 2:
- control will pass to the statement after the second CASE statement
- the string Second case: will be printed
-thestring-4 <= 1*J-4 <= 2 will be printed
- control will pass to the statement after the END SELECT statement

(iv) expresson=3,50r 7:
- control will pass to the statement after the third CASE statement
- thestring Thi rd case: will be printed
-thestringl *J-4 is one of 3, 5 or 7 will beprinted
- control will pass to the statement after the END SELECT statement

(V) expression =4, 6, 8, 9 or 10:
- control will pass to the statement after the fourth CASE statement
- thestring Fourt h case: will be printed
-thestringl *J-4 is one of 4, 6, 8, 9 or 10 will beprinted.
- control will passto the statement after the END SELECT statement

(vi) expression > 10:
- control will pass to the statement after the CASE DEFAULT statement
-thestring Al | ot her cases: will beprinted
-thestringl *4-J < -10 or 1*4-J > 10 will be printed

9.11 EXECUTE and REMOTE BLOCK

EXECUTE name

REMOTE BLOCK name
statenment (s)
END BLOCK

where:
name isavaid FORTRAN symbolic name.

The EXECUTE statement, an extension to FORTRAN 77, allows a named block of code to be executed.
The named block of code may be defined anywhere in the same program unit and is delimited by the
REMOTE BLOCK and END BLOCK statements. Executing a REMOTE-block is similar in concept to
calling a subroutine, with the advantage that shared variables do not need to be placed in a common block
or passed in an argument list. In addition there isless overhead involved in executing a REMOTE-block
than in calling a subroutine (in both amount of object code and execution time). When execution of the
REMOTE-block is complete, control returns to the statement following the EXECUTE statement which
invoked it.

204 EXECUTE and REMOTE BLOCK

Program Structure Control Statements

Thisfeature is helpful in avoiding duplication of code for afunction (such as 1/0) required in a number of
places throughout a program. It can also be an aid to writing a well-structured program.

Each REMOTE-block within the same program unit must have a different name and it must not be a
subprogram or variable name. Note that a REMOTE-block islocal to the program unit in which it is
defined and may not be referenced (executed) from another program unit.

REMOTE-blocks may be defined anywhere in the program unit except as follows.

1. They must follow all specification statements.
2. They must not be defined within a control structure.

If aREMOTE BLOCK statement is encountered during execution, control istransferred to the statement
following the corresponding END BLOCK statement.

Note that the nested definition of REMOTE-blocksis not permitted.

Example:
EXECUTE A
PRINT *, 'FIRST

EXECUTE A
PRINT *, ’ SECOND

REMOTE BLOCK A
I =1 +1
PRINT *, 1=, |
END BLOCK

Both EXECUTE statements will cause REMOTE-block Ato be executed. That is, variable | will be
incremented and its value will be printed. When the block has been executed by the first EXECUTE
statement, control returns to the PRI NT statement following it and the word FI RST isprinted. Similarly,
when the block is executed by the second EXECUTE statement, control returnsto the PRI NT statement
following it and the word SECOND is printed.

REMOTE-blocks may be executed from other REMOTE-blocks. For example, REMOTE-block A might
contain the statement EXECUTE B, where B isa REMOTE-block defined elsewhere in the program unit.
The execution of REMOTE-blocks from other REMOT E-blocks may take place to any level; however, the
recursive execution of REMOTE-blocks is not permitted, either directly or through a chain of EXECUTE
statements. Attemptsto execute REMOTE-blocks recursively are detected as errors at execution time.

EXECUTE and REMOTE BLOCK 205

Language Reference

9.12 GUESS-ADMIT-END GUESS

GQUESS [: bl ock-Iabel]
st at enent (s)

ADM T
statenment (s)

ADM T
st at ement ('s)

ADM T
stat ement (S)
END GUESS

The GUESS-ADMIT-END GUESS structure is a rejection mechanism which is useful when sets of
statements are to be conditionally chosen for execution, but not all of the conditions required to make a
selection are available beforehand. It isan extension to FORTRAN 77. The sets of statements to be chosen
may be thought of as alternatives, the first alternative being statements immediately after the GUESS
statement. Execution begins with the statements in the first alternative. If acondition is detected which
indicates that the first alternative was the wrong choice, a QUI T statement may be executed to cause
control to be passed to the statements after the ADM T statement (i.e., the second alternative). A QUI T
statement within the second alternative passes control to the third alternative, etc. A QUI T statement
within the last alternative passes control to the statement after the END GUESS statement. If an aternative
completes execution without encountering a QUI T statement (i.e., all statements are executed up to the next
ADM T statement) then control is passed to the statement after the END GUESS statement. An optional
block label may be specified following the keyword GUESS (see the QUI T statement for more
information).

In the following example, two sets of codes and numbers are read in and some simple sequence checking is

performed. If a sequence error is detected an error message is printed and processing terminates; otherwise
the numbers are processed and another pair of numbersisread.

206 GUESS-ADMIT-END GUESS

Program Structure Control Statements

Example:
LOOP : PRLOOP
GUESS
LINE = LINE + 1
READ *, | CODE, X
AT END, QU T : PRLOOP
IF(ICODE .NE. 1)QUIT
LINE = LINE + 1
READ *, |CODE, Y
AT END, QUIT
IF(1CODE .NE. 2)QUIT
PRINT *, X Y
CALL PROCES(X, Y)

ADM T
PRINT *, ’ I NVALI D SEQUENCE: LINE =, LINE
QU T : PRLOOP
END GUESS
END LOOP

The above example attempts to read a code and number. If an end of file occurs then the loop is terminated
by the QUI T statement.

If the codeis not 1 then we did not get what we expected and an error situation has arisen. Control is
passed to the statement following the ADM T statement. An error message is printed and the loop is
terminated by the QUI T statement.

If the codeis 1 then a second code and number are read. If an end of file occurs then we are missing a set
of data and an error situation has arisen. Control is passed to the statement following the ADM T statement.
An error message is printed and the loop is terminated by the QUI T statement. Similarly if the expected
codeisnot 2 an error situation has arisen. Control is passed to the statement following the ADM T
statement. An error message is printed and the loop is terminated by the QUI T statement.

If the second codeis 2, the values of variables X and Y are printed. A subroutineisthen called to process
the data. Control resumes at the statement following the END GUESS statement. Since this statement is an
END LQOOP, control istransferred to the beginning of the loop.

The above example illustrates the point that all the information required to make a choice (in this case
between avalid set of data and an invalid set) is not available from the beginning. In this case we make an
assumption that the data values are correct (our hypothesis) and then test the assumption at various pointsin
the algorithm. If any of the tests fail we reject the hypothesis (and, perhaps, select a new hypothesis).

It should be noted that no aternative selection need be coded (i.e., we need not use any ADMIT-blocks).
Thisisillustrated in the following example.

Example:

GUESS
X=SQRT(X)
IF(X .LT. EPS)QUI T
X=Y+SQRT(Y)
IF(X .LT. EPS)QUIT
CALL I NTGRT(X, Y)

END GUESS

It might be noted that the IF-EL SE-END IF construct is simply a specific instance of the more general

GUESS-ADMIT-END GUESS construct wherein the data values are known beforehand (as could be
illustrated using the previous example).

GUESS-ADMIT-END GUESS 207

Language Reference

9.13 QUIT

QU T [: block-Iabel]

The QUI T statement may be used to transfer control to the first executable statement following the terminal
statement of the block in which it is contained.

When transferring out of aloop, control is passed to the statement following the END DO, END WHI LE,
END LOOP or UNTI L statement.

When transferring out of a GUESS block, control is passed to the statement after the next ADM T or END
GUESS statement.

When transferring out of an IF-block or SELECT-block, control is passed to the statement after the
corresponding END | F or END SELECT statement.

When transferring out of a REMOTE-block, control passes to the statement following the EXECUTE
statement that invoked the REMOTE-block.

If no block label is specified in the QUI T statement, control is transferred from the immediately enclosing
structure. If severa structures or DO-loops are nested, it is possible to exit from any one of them by
specifying the block label of the corresponding block structure.

The QUI T statement is most commonly used as the statement in alogical | F or AT END statement but
may also be used to cause an unconditional transfer of control. (The AT END statement is described in a
subsequent section).

Examples of the QUI T statement with and without a block 1abel follow.

Example:
CHARACTER CH
READ *, CH
GUESS
IF(CH .LT. "a)QUIT
IF(CH.GI. "z2" YQUIT
PRINT *, 'Lower case letter’
ADM T
IF(CH .LT. "A)QUIT
IF(CH.GT. 'Z YQUT
PRI NT *, ' Upper case letter’
ADM T
IF(CH .LT. "0)QUIT
IF(CH.GI. "9 QU T
PRINT *, "Digit’
ADM T
PRI NT *, ' Special character’
END GUESS
END

The above statements read and print values until an end of file occurs. At that point control is passed to the
QUI T statement, as specified by the AT END statement. The QUI T statement causes control to continue
with the statement after the END LOOP statement.

208 QUIT

Program Structure Control Statements

Example:
CHARACTER RECORD(80)
LOOP : RDREC
READ(5, 100) RECCRD
AT END, STOP
DOl =1, 80
| F(RECORD(Il) .LT. 'O

+ .OR RECORD(I) .GI. 9")QUT : RDREC
END DO
WRI TE(6, 101) RECORD

END LOCP

PRI NT *, ' 1 NVALI D RECORD

The above example reads in records and verifies that they contain only numeric data. The QUI T statement
iswithin two levels of nesting: the DO-loop and the LOOP-END LOORP structure. If anon-numeric
character isfound, the QUI T : RDREC statement will cause control to be passed to the PRI NT
statement after the END L OOP statement.

9.14 EXIT

EXIT [: block-Iabel]

The EXI T statement is used to transfer control:

1. from within aloop (DO, DO WHILE, WHILE or LOOP) to the statement following the [oop,

2. fromwithin a GUESS or ADMIT block to the statement following the ENDGUESS statement, or

3. from within aremote block to the statement following the EXECUTE statement that invoked the
remote block.

When transferring out of aloop, control is passed to the statement following the END DO, END WHI LE,
END LOOP or UNTI L statement.

When transferring out of a GUESS block, control is passed to the statement after the corresponding END
GUESS statement.

When transferring out of a REMOTE-block, control passes to the statement following the EXECUTE
statement that invoked the REMOTE-block.

If no block label is specified in the EXI T statement, control is transferred from the immediately enclosing
structure. If several structures or DO-loops are nested, it is possible to exit from any one of them by
specifying the block label of the corresponding block structure.

The EXI T statement is most commonly used as the statement in alogical | F or AT END statement but
may also be used to cause an unconditional transfer of control. (The AT END statement is described in a
subsequent section).

Examples of the EXI T statement with and without a block 1abel follow.

EXIT 209

Language Reference

Example:
LOOP
READ *, X
AT END, EXIT
PRI NT *, X
END LOOP

The above statements read and print values until an end of file occurs. At that point control is passed to the
EXI T statement, as specified by the AT END statement. The EXI T statement causes control to continue
with the statement after the END LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC
READ(5, 100) RECCORD
AT END, STOP
DOl =1, 80
| F(RECORD(Il) .LT. 'O

+ .OR RECORD(I) .GI. "9)EXIT : RDREC
END DO
WRI TE(6, 101) RECORD

END LOCP

PRI NT *, ' 1 NVALI D RECORD

The above example reads in records and verifies that they contain only numeric data. The EXI T statement
iswithin two levels of nesting: the DO-loop and the LOOP-END LOORP structure. 1f anon-numeric
character isfound, the EXI T : RDREC statement will cause control to be passed to the PRI NT
statement after the END L OOP statement.

9.15CYCLE

CYCLE [: bl ock-1abel]

The CYCLE statement is used to cause atransfer of control from within aloop to the terminal statement of a
corresponding DO, DO VWHI LE, WHI LE or LOOP statement. If bl ock- | abel is present then control is
transferred to the terminal statement of the block identified by that block label.

If no block label is specified in the CYCLE statement, control is transferred to the terminal statement of the
immediately enclosing loop structure. If several |oop structures are nested, it is possible to cycle to the
terminal statement of any one of them by specifying the block label of the corresponding block structure.

The CYCLE statement is most commonly used as the statement in alogica | F statement but may also be
used to cause an unconditional transfer of control.

Examples of the CYCLE statement with and without a block label follow.

210 CYCLE

Program Structure Control Statements

Example:

LOOP
WRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI='(F10.4)', | OSTAT=10S) X
IF(10S .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X))

END LOCP

The above statements read and print values until a negative integer value is entered. If aninput error
occurs, the input operation (READ) isretried using the CYCLE statement. The CYCLE statement causes
control to resume at the END L OOP statement which then immediately transfers control to the statement
following the LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC
READ(5, 100) RECCRD
AT END, STOP

DO1 =1, 80
| F(RECORD(1) .LT. 'O’
+ _OR RECORD(l) .GT. '9)THEN

PRINT *, ' | NVALI D RECORD
CYCLE : RDREC
ENDI F
END DO
WRI TE(6, 101) RECORD
END LOOP

The above example reads in records and verifies that they contain only numeric data. If the record does
not, the input operation istried again. The CYCLE statement is within three levels of nesting: the IF, the
DO-loop, and the LOOP-END LOORP structure. 1f a non-numeric character isfound, the CYCLE :
RDREC statement will cause control to be passed to the READ statement that follows the LOOP statement.

9.16 AT END

(READ st at enment)

AT END DO [: bl ock-1I abel]
st at enent (s)

END AT END

or

(READ st at enent)
AT END, st atenent

The AT END control statement, an extension to FORTRAN 77, is an extension of the END= option of the
FORTRAN READ statement for sequential files. It allows a statement or a block of code following the

ATEND 211

Language Reference

READ statement to be executed when an end of file condition is encountered during the READ and to be
by-passed immediately following a READ statement. It is not valid to use this control statement with
direct-access or memory-to-memory reads. Clearly, it isnot valid to use this statement when END= is
specified in the READ statement.

Example:
READ(7, *) I, X
AT END DO
PRI NT *, ' END- OF- FI LE ENCOUNTERED
EOFSW = . TRUE.
END AT END

If the READ statement is executed without encountering end of file, control passes to the statement
followingthe END AT END statement. If an end of file condition occurs during the read, the string,
END- OF- FI LE ENCOUNTERED is printed, logical variable EOFSWis assigned the value . TRUE. and
control passes to the statement following the END AT END statement.

Example:
READ(7, *) X
AT END, EOFSW = . TRUE.

If an end of fileis not encountered by the READ statement, control passes to the statement following the AT
END statement. If an end-of-file condition occurs, variable EOFSWissetto . TRUE. and control then
passes to the statement following the AT END statement. Note that the use of the second form of the AT
END statement requires the use of acomma (,) between the AT END word and the executabl e statement.
Thisis necessary to distinguish the case where the executable statement is an assignment statement. The
executable statement may be any statement that is also allowed as the operand of alogical | F statement.

9.17 Notes on Structured Programming Statements

In addition to the definitions and examples of these constructs, the following points should be noted:

(i) Any of the new control statements with their blocks may be used within the block of any
other statement. For example, a WHILE-block may contain another WHILE or an
IF-THEN-EL SE block. Blocks may be nested in this manner to any level within storage
limitations. Animportant exception to this rule isthe REMOTE-block A REMOTE-block
may contain other types of blocks (nested to any level); however, another REMOTE-block
may not be defined within it. Furthermore, REMOTE-blocks may not be defined within
another control structure. The following exampleisillegal.

Example:
* |llegal definition of a REMOTE- bl ock.
IF(I .EQ 3)then
REMOTE BLOCK A

END BLOCK
END | F

(i) When nesting blocks, the inner blocks must always be completed with the appropriate

block-terminating END statement before the outer blocks are terminated. Similarly, when
nesting blocks with DO-loops, a DO-loop started within a block must be completed before

212 Notes on Structured Programming Statements

Program Structure Control Statements

(iii)

(iv)

v)

the block is completed. A block started within a DO-loop must be terminated before the
DO-loop iscompleted. Indenting the statements of each new block, as shown in the
examples, is helpful in avoiding invalid nesting and helps to make the structure of the
program visually obvious.

The normal flow of control of the new programming constructs described earlier may be
altered with standard FORTRAN control statements. For example, the program may exit
fromablock usinga GO TO, STOP, RETURN or arithmetic | F statement. However, a
block may not be entered in the middle through use of any control statement such as GO
TOor the arithmetic | F.

Consider the following example.

Example:
GO TO 20
10 IF(X .GI. Y)THEN
CALL REDUCE(X, Y)
20 X=X-1
ELSE
CALL SCALE(X))
END I F

Thisisan example of an illegal attempt to transfer execution into the middle of an I F-block.
The statement X = X - 1 iscontained within the IF-block and may only be transferred
to from within the block.

Example:
IF(X .GTI. Y)THEN
20 CALL REDUCE(X, Y)

X=X-1
IF(X .GI. 0)GO TO 20

ELSE
CALL SCALE(X)

END | F

Thislast example demonstrates alegal transfer of control within an IF-block. However, we
have seen better ways to express the loop with this IF-block.

Example:
IF(X .GI. Y)THEN
LOOP
CALL REDUCE(X, Y)
X=X-1
UNTIL(X .LE. 0)
ELSE
CALL SCALE(X)
END | F

Many control structure statements cannot be branched to using a GO TOstatement. For a
list of these statements, see the section entitled "Classifying Statements' on page 9 in the
chapter entitled "FORTRAN Statements"

Many control structure statements cannot be the object statement of alogical | F statement,

or be the last statement of aDO-loop. For alist of these statements, see the section entitled
"Classifying Statements' on page 9 in the chapter entitled "FORTRAN Statements®

Notes on Structured Programming Statements 213

Language Reference

214 Notes on Structured Programming Statements

10 Input/Output

10.1 Introduction

FORTRAN 77 provides a means of communicating information or data between a FORTRAN program
and the computing environment. The computing environment may include a number of devices which are
capable of the recording, retrieval, display, and input of data. Disk and magnetic tape devices are capable
of storing large amounts of data. Other devices such as printers and display terminals can be used to
present avisua (i.e., human-readable) representation of the data. Y et other devices such asterminal
keyboards and card-readers make possible the entry of new data into the computing environment.

For the purposes of our discussion, datais any information which can be processed by an executing
FORTRAN program. Some examples of data are names, addresses, telephone numbers, credit card
balances, flight trajectories, bus schedules, athletic records, etc. In computing, such information is usually
well-organized in order to make it useful for processing.

To use an example, consider the entries in atelephone book. There are essentially three pieces of data
listed for each entry; a name, an address, and a number.

Smith J 32 Arthur Ste-----e--cemmcaomcaaaaaooo 555- 3208
Smith JW512 King St--------c=mmcemmcaomcamn- 555- 9229
Smith Jack 255-113 Queen St Ne---=---=---zm--- 555- 0572

Each entry isarecord. The organization of the book is clear. The nameisaways listed first, the address
second, and the number last. The records are sorted, for our convenience, by name (within each city or
geographical location). The length of each record isthe same. Thisfixed length does sometimes lead to
problems since entries which have along name or address won't fit in arecord. The phone company
solved this by continuing the information in subsequent records. We might have solved this problem by
increasing the length of arecord with the disadvantage of wasting alot of printing space. Alternatively, we
could have used avariable length record. This solves the problem of wasted space but creates a severe
problem when trying to display the recordsin nice orderly columns. The telephone book itself isa
collection of records or afile.

We have introduced much of the terminology of data processing: "data", "records’, "fixed and variable
record sizes', "files’, "sorted", etc.

10.2 Reading and Writing

FORTRAN provides a mechanism called "reading” for transferring data into the environment of an
executing program. The READ statement is used to do this. Similarly "writing” is the mechanism for
transferring data out of an executing program. The WRI TE and PRI NT statements are used to do this.
Other statements provide additional functions such as positioning to a certain record in afile, establishing
which files are to be processed by the program, or making inquiries about files.

Reading and Writing 215

Language Reference

10.3 Records

FORTRAN distinguishes between three kinds of records, namely:

1. Formatted
2. Unformatted
3. Endfile

We shall describe each of these in the following sections.

10.3.1 Formatted Record

A formatted record consists of characters. The length of aformatted record is determined by the number of
charactersinit. A formatted record may contain no characters at all and thus has zero length. Formatted
records are read or written using formatted input/output statements. An excellent example of afile
consisting of formatted records is our telephone book example.

10.3.2 Unformatted Record

An unformatted record consists of values such as integers, real numbers, complex numbers, etc. It may also
consist of characters. Essentially, these values have the same representation in arecord asthey havein the
computer’s memory. The length of an unformatted record depends on the amount of storage required to
represent these values in the computer’s memory. For example, on this computer an integer value is stored
using 4 bytes of memory (abyte isagrouping of 8 binary digits). Thus, integer valuesin unformatted
records also require 4 bytes of storage. For example, 3 integer values stored in an unformatted record
would require 12 bytes of storage. Unformatted records are read or written using unformatted i nput/output
statements.

To illustrate the difference between a formatted and unformatted record consider the following example.

Example:
| NTEGER NUMBER
NUMBER=12345
PRI NT 100, NUMBER
100 FORMAT(1X,15)
WRI TE(UNI T=7) NUMBER

If you print the variable NUMBER on a printer, it requires 5 character positions. If you writeit to afile
using an unformatted VARl TE statement, it only requires 4 bytes or character positionsin the record. Note
that a character is conveniently represented in one byte of storage, hence we sometimes use the term "byte"
or "character" interchangeably when talking about the size of variables.

10.3.3 Endfile Record

An endfile record is a specia record that follows all other recordsin afile. Simply stated, an endfile record
occurs at the end of afile. Actualy, an endfile record is aconceptua thing. It hasno length. When the
end of afileisreached (i.e., an attempt to read arecord results in the endfile record being read), an
"end-of-file" condition exists. There are no more records following the endfile record. Thereisonly one
endfilerecord so it is strictly illegal to attempt to read another record after the endfile record has been read
(i.e., when the end-of-file condition exists).

216 Records

Input/Output

10.4 Files

Earlier we described the notion of afile as a collection of records. In FORTRAN, there are two kinds of

files:
1. Externa
2. Interna
10.4.1 External Files

External files arefiles that exist or can be created upon external media such as disks, printers, terminal
displays, etc. A file may exist before the execution of a FORTRAN program. It may be brought into
existence or "created" during execution. It may also be deleted and therefore not exist after the execution
of aFORTRAN program.

All input/output statements may refer to filesthat exist. In addition, the | NQUI RE, OPEN, CLOCSE,
VARI TE, PRI NT, and ENDFI LE statements may refer to files that do not exist (and in so doing, may very
well cause thefile to be created).

Properties of External Files

Name

Access

In FORTRAN, afile may or may not have aname. If it does have a name then, not
surprisingly, it iscalled anamed file. All filesin Open Watcom FORTRAN 77 have names
and so it may seem odd to introduce this notion. However, we do since the | NQUI RE
statement lets you find out if afileisnamed and, if so, what itsnameis. File naming
conventions may differ from one computing system to the next. Aswell, different
FORTRAN 77 compilers may have different file naming conventions.

"Access' simply refersto the way in which we can position to and read or write the datain
aparticular record in afile. There are two waysin which records can be accessed in afile;
sequentially or directly.

Using the sequential access method, records may be read or written in order starting with
the first record and proceeding to the last record. For example, it would be quite
impossible to read or write the tenth record in afile and then read or write the third record.
Similarly the eleventh record must be read or written before we can access the twelfth
record. If we adopt the convention that each record in afile has arecord number then the
first record is record number 1, the second is 2, and so on. This numbering convention is
important when we look at the other access method which is "direct".

Using the direct access method, records may be read or written in any order. It ispossible
to read or write the tenth record of afile and then the third and then the twelfth and so on.

A caveat: arecord cannot beread if it has never been written since the file was created. In
direct access, the idea of arecord number is very important and so by convention, we
number them starting at 1 as the first record and proceeding on up. With direct access, if
you create a new file and write record number 10 then the file has ten records regardless of
the fact that only one has been written. Y ou could, at some later time, write records 1
through 9 (in whatever order you please) and add additional records by writing records with
record numbers greater than 10.

Some files have the property of being able to sustain both of these access methods. Some
filesmay only have one of these properties. For example, most line printers cannot be

Files 217

Language Reference

Record Form

Record Length

accessed directly. Y ou have no choice but to write records sequentially. Sometimes afile
that was created using the sequential access method may not be accessed using the direct
method or vice versa. FORTRAN calls this property of afile the "set of allowed access
methods’.

Some files have the property of being able to handle both formatted and unformatted record
formats. Some files may only have one of these properties. For example, if you tried to
write unformatted records to aline printer, the result might be gibberish. On the other hand
agraphics printer may readily accept unformatted records for reproducing graphical images
on paper. FORTRAN calls this property of afile the "set of allowed forms".

Another property of afileisrecord length. Some files may have restrictions on the length
of arecord. Some files do not allow records of zero length. Other files, such as printers,
may restrict the length of arecord to some maximum. FORTRAN calls this property the
"set of allowed record lengths'.

10.4.2 Internal Files

Internal files are special files that reside only in memory. They do not exist before or after the execution of
aFORTRAN program, only during the execution of aprogram. Aninterna file allows you to treat
memory in the computer asif it were one or more recordsin afile. The file must be a character variable,
character array element, character array, or character substring. A record in thisfile may be a character
variable, character array element or character substring.

Another way of

looking at thisisthat an internal file that is either a character variable, character array

element or character substring can contain only one record but an internal file that is a character array can
contain several records (as many as there are elementsin the array).

Properties of Internal Files

Records

Definition

Position

Restrictions

218 Files

Unless the name of acharacter array is used, only one record is contained in an internal file.
The length of thisrecord is the same as the length of the variable, array element, or
substring. If thefileisacharacter array then each element in the array isarecord. The
order of therecordsin the file is the same as the order of the elementsin the array. The
length of arecord in this case is the same as the length of the character array elements.

If the number of characters written to arecord in an interna file is less than the length of
the record then the record is padded with blanks.

A record may be read only if the variable, array element, or substring is defined (i.e., it has
been assigned some value). Definition may not only result from an output statement such
as\W\RI TE. It may also be defined through other means; for example, a character
assignment statement.

For all input/output statements, the file is positioned at the beginning of the first record.
Multiple records may be read or written using the "slash" format edit descriptor (see the
chapter entitled "Format" on page 225).

Only sequential access formatted input and output statements (READ and WWRI TE) may be
used to transfer datato and from recordsin an interna file.

Input/Output

Although FORTRAN 77 states that list-directed formatted input/output to an internal fileis
not permitted, Open Watcom FORTRAN 77 allows you to use list-directed formatted
input/output statements. Thisis an extension to the language standard.

Example:
WRI TE(I NTFIL,*) X, Y, Z

No other input/output statements (OPEN, ENDFI LE, REW ND, etc.) may be used.

Internal files may be used to convert data from one format to another. The following exampleillustrates
one use of interna files.

Example:
CHARACTER* 11 | NPUT
PRINT *, "TYPE IN "’ 1"’ FOLLOWED BY AN | NTEGER
PRINT *, "ORTYPE IN''R’' FOLLOAED BY A REAL’
READ 100, | NPUT
100 FORMAT(A1l)

IF(INPUT(1:1) .EQ ’I’)THEN
READ(UNI T=I NPUT(2: 11), FMI="(110)’) |VAR
PRINT *, ' AN | NTEGER WAS ENTERED ', | VAR

ELSE | F(INPUT(1:1) .EQ 'R)THEN
READ(UNI T=I NPUT(2: 11), FMI=" (F10.3)’) RVAR
PRINT *, ' A REAL NUMBER WAS ENTERED ', RVAR
END | F
END

After checkingforan " 1" or " R" asthefirst character of the character variable | NPUT, the appropriate
internal READ statement is executed.

10.5 Units

Many FORTRAN 77 input/output statements refer to external files using a mechanism called the unit.
There are many units available to the FORTRAN 77 programmer. Open Watcom FORTRAN 77 numbers
these units from 0 to 999; thus the unit number is a non-negative integer |ess than 1000.

A unit may be associated with a particular file. Thisassociation is called connection. Any unit may or may
not be connected to afile. There are anumber of ways in which this connection may be established.

A unit may be preconnected to afile before execution of a program begins. The User’s Guide describes the
mechanism for preconnecting a unit to afile.

Alternatively, aunit may become connected to afile by the execution of an OPEN statement.
All input/output statements except OPEN, CLOSE, and | NQUI RE must refer to a unit that is connected to
afile. Open Watcom FORTRAN 77 automatically establishes a connection of the unit to afile if no

connection previously existed. Consider the following example in which unit number 1 is not previously
connected to afile.

Units 219

Language Reference

Example:
WRI TE(1, *) ’'Qutput on unit 1’
END

Open Watcom FORTRAN 77 constructs a file name using the specified unit number. The format of thefile
name is described in the User’ s Guide since it varies from one computer system to the next.

Connection of aunit to afile does not imply that the file must exist. For example, it could be anew file.
When we speak of aunit being connected to afile, we can also say that afileis connected to aunit. Under
therules of FORTRAN, it isillegal to connect the same file to more than one unit at the same time.
However, afile may be connected to different units at different times. We shall explain how thisis
possible.

A file may be disconnected from a unit by the use of the CLOSE statement.

Example:
CLOSE(UNI T=1)

Under certain circumstances, the file may be disconnected from a unit by the use of the OPEN statement.

Example:
OPEN(UNI T=1, FI LE=" FI LE1")

OPEN(UNI T=1, FI LE=' FI LE2')

In the above example, the second OPEN statement disconnects unit 1 from one file and connectsit to a
second file. Y ou may think of the second OPEN statement as automatically closing the first file and then
establishing a connection to the second file.

If aunit has been disconnected from afile through the execution of a CLOSE statement, the unit may
subsequently be connected to the same file or to adifferent file. It also followsthat afile which has been
disconnected from one unit number may be connected to the same unit number or a different unit number.
The following example may help to illustrate this last point.

Example:
OPEN(UNI T=1, FI LE=" FI LE1")

CLOSE(UNI T=1)
OPEN(UNI T=2, FI LE=' FI LEL')

Once afile has been disconnected, the only means for referring to the fileis by itsnameinan OPEN
statement or an | NQUI RE statement.

220 Units

Input/Output

10.6 Specifiers

All input/output statements contain one or more specifiers. They appear in alist separated by commas.
Some of the more common specifiers are those listed below. Not all of them need be used in every
input/output statement. 'Y ou should consult the description of the input/output statement under
consideration to discover which specifiers are allowed and what they mean.

[UNIT=]u
[FMT =] f
REC=rn
IOSTAT =ios
ERR=5s

END =s

the unit specifier

the format specifier

the record specifier

the input/output status specifier
the error specifier

the end-of-file specifier

We shall ook at these specifiersin more detail.

10.6.1 The Unit Specifier

The form of aunit specifier in an input/output statement is:

[UNIT=]u uisanexternal unitidentifier or aninternal fileidentifier.

1

An external unit identifier is a non-negative integer expression or an asterisk

(*) inwhich case unit 5 isassumed for an input statement and unit 6 is assumed
for an output statement. The unit identifier must not be an asterisk for the
BACKSPACE, ENDFI LE and REW ND statements.

Aninternal file identifier is the name of acharacter variable, character array,
character array element, or character substring.

If the optional UNI T= specifier is omitted then the unit specifier must be the first item in the list of

specifiers.

10.6.2 Format Specifier

The form of aformat specifier in an input/output statement is:

[FMT =] f f isaformat identifier. A format identifier isone of the following:

1. A statement label of a FORMAT statement that appearsin the same program unit
asthe format identifier.

2. Aninteger variable name that has been assigned the statement label of a
FORNMAT statement that appears in the same program unit as the format identifier
(see the ASSI GN statement).

3. Aninteger array name.

4. A character array name.

Specifiers 221

Language Reference

5. Any character expression except one involving the concatenation of an operand
whose length specificationis (*) unless the operand is a symbolic constant (see
the PARAVETER statement).

6. Anasterisk (*), indicating list-directed formatting.

7. A NAMELI ST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the second item in the list of
specifiersand UNI T= must not be specified for the first item in thelist.

10.6.3 Record Specifier

The form of arecord specifier in an input/output statement is:

REC=rn r n isan integer expression whose value must be positive. It isthe number of the record to
be read when afileis connected for direct access.

10.6.4 Input/Output Status Specifier

The form of an input/output status specifier in an input/output statement is:

IOSTAT =ios i os isan integer variable or integer array element. It isdefined with zero if no error
occurs, a positive integer value if an error occurs, or anegative integer valueif an
end-of-file occurs.

If an input/output error or end-of-file condition occurs during the execution of an input/output statement

and the input/output status specifier is present then execution of the program is not terminated.

Input/output errors may result from aviolation of the rules of FORTRAN or from afile system error. For

example, a negative unit number will result in an error since thisisaviolation of the rules of FORTRAN.

An example of afile system error might be an attempt to create afile on a non-existent file storage device.

Consult the User’'s Guide for alist of Open Watcom FORTRAN 77 diagnostic messages. An input/output
status of nn corresponds to the message | O- nn. For example, if the status returned is 3 then the error is:

| O 03 ENDFILE statenent requires sequential access node

10.6.5 Error Specifier
The form of an error specifier in an input/output statement is:

ERR=s s isastatement label. When an error occurs, execution is transferred to the statement
labelled by s.

If an input/output error occurs during the execution of an input/output statement and the ERR= specifier is
present then execution of the program is not terminated.

222 Specifiers

Input/Output

10.6.6 End-of-File Specifier

The form of an end-of-file specifier in an input/output statement is:

END =s s isastatement label. When an end-of-file condition occurs, execution is transferred to the
statement labelled by s.

If an end-of-file condition occurs during the execution of an input/output statement and the END= specifier

is present then execution of the program is not terminated.

10.7 Printing of Formatted Records

Printing occurs when formatted records are transferred to a device which interprets the first character of the
record as a special spacing command. The remaining charactersin the record are "printed”. Printing can be
accomplished by use of either the PRI NT statement or the WRI TE statement. What actually determines
whether or not you are "printing" is the device (or file) to which records are transferred.

Thefirst character of the record controls the vertical spacing. Thisfeatureis quite often called ASA

(American Standards Association) carriage control.

Char act er Vertical Spacing Before Printing
Bl ank One Line

0 Two Lines

- Three Lines

1 To First Line of Next Page

+ No Advance

The"-" control character is an extension to the FORTRAN 77 language that is supported by many

"printing" devices.

Printing of Formatted Records 223

Language Reference

224 Printing of Formatted Records

11 Format

11.1 Introduction

A format specification used in conjunction with formatted I/O provides a means of specifying the way
internal datais converted to a character string and vice versa. A format specification can be given in two
ways.

1. InaFORVAT statement.
2. Asvalues of character expressions or character arrays.

11.2 The FORMAT Statement

The form of a FORNMAT statement is

| abel FORNMAT fs
where:
label isthe statement label used by an I/O statement to identify the FORMAT statement.
fs isaformat specification which will be described |ater.
Example:
REAL X
X = 234.43

PRI NT 100, X
100 FORMAT(F10. 2)
END

In the previous example, the PRI NT statement uses the format specification in the FORMAT statement
whose statement label is 100 to display the value of X.

11.3 FORMAT as a Character Expression

Instead of specifying the statement label of a FORVAT statement, a character expression can be used. The
previous example could be modified as follows and achieve the identical result.

FORMAT as a Character Expression 225

Language Reference

Example:
REAL X
X = 234.43
PRINT ' (F10.2)", X
END

When using a character expression to represent a format specification, the format specification can be
preceded by blank characters and followed by any character data without affecting the format specification.
The following example produces the identical result to the previous example.

Example:
REAL X
X = 234.43
PRI NT (F10.2) THHS IS FOR X, X
END

If acharacter array is used to describe the format specification, the format specification is considered to be
the concatenation of all the character array elements in the order given by array element ordering described
in the chapter entitled "Arrays' on page 159. Notethat if a character array element is used, the format
specification is considered to be only that array element.

Example:
REAL X
CHARACTER*5 FMI'SPEC(3)
X = 234.43
FMISPEC(1) =" (’
FMISPEC(2) =’ F10. 2’
FMISPEC(3)=")"’
PRI NT FMTSPEC, X
END

11.4 Format Specification

A format specification has the following form.

([flist])

where:

flist isalist whose items are separated by commas. The forms of theitemsin f i st are:
[r] ed
ned
[r] fs

ed is arepeatable edit descriptor.

ned is a nonrepeatabl e edit descriptor.

226 Format Specification

Format

fs isaformat specification with anonempty list f | i st .
r isapositive unsigned integer constant called a repeat specification.
The comma separating theitemsof f 1 i st can be omitted in the following cases.

1. BetweenaP editdescriptorandan F, E, Dor Gedit descriptor which immediately follows.
2. Beforeor after adash edit descriptor.
3. Beforeor after acolon edit descriptor.

Open Watcom FORTRAN 77 allows the omission of acomma between theitemsof fli st. Careshould
be taken when omitting commas between edit descriptors. For example, the format specification (1 5

21 3) may appear to bean | 5 edit descriptor followed by two | 3 edit descriptors when in actuality it is
interpreted asan | 52 edit descriptor followed by an | 3 edit descriptor.

11.5 Repeatable Edit Descriptors

The forms of repeatable edit descriptors are:

I w

I w. m
Fw. d
Ew. d
Ew. dEe
Dw. d
Gw. d
Qwv. dEe
Lw

A

Aw

As an extension to the FORTRAN 77 language, the following repeatable edit descriptors are also
supported.

Ew. dDe
W

where:
I, F, EE D, G L, Aand Zindicatethe method of editing.
wand e are positive unsigned integer constants.

d and mare unsigned integer constants.

Repeatable Edit Descriptors 227

Language Reference

11.6 Nonrepeatable Edit Descriptors

The forms of nonrepeatable edit descriptors are:

"hh...h" (apostrophe)
nHhh. .. h
Tc

TLc

TRc

nXx

/

S

SP

SS

kP

BN

BZ

X

As an extension to the FORTRAN 77 language, the following nonrepeatable edit descriptors are also
supported.

—

where:

Apostrophe,H, T, TL, TR, X, /, :, S, SP, SS, P, BN, BZ, \ and$ indicatethe
method of editing.

h isacharacter.
n and c are positive unsigned integer constants.
k isan optionally signed integer constant.

Open Watcom FORTRAN 77 allows edit descriptors to be specified using lower case | etters.

11.7 Editing

Edit descriptors are used to describe the way the editing between internal representation of data and the
characters of arecord in afileisto take place. When the edit descriptors |, F, E, D, G L, A H,
Z or apostrophe are processed, they process a sequence of characters called afield. Oninput, thefield is
the character data read from arecord; on output it is the character data written to arecord. The number of
charactersin afield is called the field width.

228 Editing

Format

11.7.1 Apostrophe Editing

The apostrophe edit descriptor has the same form as a character constant and can only be used on output.
It causes the charactersin the format specification enclosed in quotes to be written. Thefield width isthe
number of characters enclosed in quotes.

Example:
PRINT " (''H THERE ')’
END

In the previous example, the string

H THERE

would be the output produced by the PRI NT statement.

11.7.2 H Editing

The nH edit descriptor causes the n characters following the H, including blanks, to be written. Like the
apostrophe edit descriptor, it can only appear in aformat specification used for output.

Example:
PRINT ' (8HHI THERE)’
END

In the previous example, the string

H THERE

would be the output produced by the PRI NT statement.

11.7.3 Positional Editing: T, TL, TR and X Editing

TheT, TL, TRand X edit descriptors specify at which position the next character will be read from or
written to therecord. In the case of input, this allows data to be read more than once with different edit
descriptors. On output, it is possible to overwrite data previously written.

On output it is possible to use positional editing to create arecord in which gaps appear. That is, there may
be parts of the record where no data has been written. The parts of arecord in which no data has been
written are filled with blanks. The effect isasif the record was previously initialized to blanks. Note that
positioning does not cause any data to be transmitted.

The Tc edit descriptor specifies that the next character to be transmitted is to be from the cth character
position intherecord. The TLc edit descriptor specifies that the next character to be transmitted isto be
from the cth position backward from the current position. The TRc edit descriptor isidentical to the TLc
edit descriptor except that positioning is forward from the current position. The nX edit descriptor behaves
identically to the TRc edit descriptor; the transmission of the next character is n character positions forward
from the current position. If n is omitted then the transmission of the next character is 1 character position
forward from the current position.

Editing 229

Language Reference

Example:
PRI NT " (’ ' THE NUMBER 'S AN | NTEGER ', TL19,
$ ' 12345’ ")’
END

The output produced is

THE NUMBER 12345 IS AN | NTEGER

11.7.4 Slash Editing

The dash edit descriptor indicates the end of data transfer on the current record. On input from arecord
connected for sequential access, the remaining charactersin the record are skipped and the file is positioned
to the start of the next record. Note that entire records may be skipped. On output, a new record is created
and becomes the last and current record of the file. Note that arecord with no characters can be written. 1f
thefileisan internal file or adirect accessfile, the record isfilled with blanks.

For afile connected for direct access, the current record number isincreased by one and the fileis
positioned at the beginning of that record.

11.7.5 Colon Editing

The colon edit descriptor terminates processing of the format specification if there are no more itemsin the
/O list. If there areitemsremaining in the /O list, the colon edit descriptor has no effect.

11.7.6 S, SP and SS Editing

The S, SP and SS edit descriptors control optional plus charactersin numeric output fields. They only
effectthel , F, E, Dand Gedit descriptors during output and have no effect on input. The FORTRAN 77
standard specifies that before processing aformat specification, the appearance of a plus sign in numeric
output fields is optional and is determined by the processor. Open Watcom FORTRAN 77 does not
produce plus signsin numeric output fields. When an SP edit descriptor is encountered, aplussignis
produced in any subsequent position that optionally contains aplus sign. When as SS edit descriptor is
encountered, aplus sign is not produced in any subsequent position that optionally contains aplussign. If
an S edit descriptor is encountered, the option is returned to the processor.

Example:

PRINT ' (1H<,15,SP,15,SS,15,1H)’,1,2,3
END

The output produced by the PRI NT statement in the previous exampleis:

< 1 +2 3>

11.7.7 P Editing

The form of a P edit descriptor is kP where k is an optionally signed integer constant called the scale
factor. The value of the scale factor is zero at the beginning of each 1/0 statement. The scale factor applies
to al subsequent F, E, Dand Gedit descriptors until another scale factor is encountered. The scale factor
affects editing in the following way.

230 Editing

Format

1. Oninputwith F, E, Dand Gediting, provided that no exponent exists in the field, the effect is
that the represented number equals the internally represented number multiplied by 10* * k.

2. Oninputwith F, E, Dand Gediting, the scale factor has no effect if there is an exponent in the
field.

3. OnF output editing, the effect isthat the represented number equals the internally represented
number multiplied by 10* * k.

4. Onoutput with E and D editing, the ssimple real constant (see the chapter entitled "Names, Data
Types and Constants' on page 151) part of the datais multiplied by 10* * k and the exponent is
reduced by k.

5. Onoutput with Gediting, the scale factor has no effect unless the magnitude of the datum is
outside the range that allows F editing (see the section entitled "G Editing” on page 235). If E
editing is required, the scale factor has the same effect aswith E output editing.

11.7.8 BN and BZ Editing

The BN and BZ edit descriptors are used to describe the interpretation of embedded blanks in numeric input
fields. They only effect | , F, E, Dand Gediting and have no effect during output. When a BN edit
descriptor is encountered in aformat specification, embedded blanks in subsequent numeric input fields are
ignored. However, afield of all blanks has the value of zero. If a BZ edit descriptor is encountered, then
all embedded blanks in subsequent numeric input fields are treated as zeroes. At the beginning of each 1/0
statement, all blanks are treated as zeroes or ignored depending on the value of the BLANK= specifier (see
the OPEN statement) currently in effect for the unit.

11.7.9 $ or | Editing (Extension)

The $ and \ edit descriptors behave identically. The $and\ edit descriptors are intended for output to an
interactive device such asaterminal. They are a Open Watcom FORTRAN 77 extensions. The output
record is displayed at the terminal leaving the cursor at the end of the record; the carriage return at the end
of thelineis suppressed. Itsuseisintended for prompting for input so that the response can be entered
immediately following the prompt.

Depending on the type of terminal, the prompt may be returned as part of the input. An application must be
aware of the way a particular terminal behaves. The following example demonstrates this. Note that the
format specification in the FORMAT statement labelled 20 ignores the first eleven characters of the
response since the prompt also appears in the response.

Example:

| NTEGER AGE
VRl TE(6, FMI=10)

10 FORMAT('Enter age: ',$)
READ(5, 20) AGE

20 FORMAT(11X, 12)
PRI NT *,’ Your age is ', AGE
END

If the terminal you are using does not return the prompt as part of the response (that is, aread from the

terminal only includes characters typed at the terminal), the format specification in the FORMAT statement
labelled 20 must be changed, as in the following example, to achieve the same result.

Editing 231

Language Reference

Example:

| NTEGER AGE
VWRI TE(6, FMT=10)

10 FORMAT(' Enter age: ',\/)
READ(5, 20) AGE

20 FORMAT(12)
PRINT *,’ Your age is ', AGE
END

11.7.10 Numeric Editing: |, F, E, D and G Edit Descriptors

Numeric edit descriptors are used to specify 1/0 of integer, real, double precision, complex and double
precision complex data. The following rules apply to all humeric edit descriptors.

1. Oninput, leading blanks are not significant. The interpretation of blanks other than leading
blanks is determined by any BN or BZ edit descriptors in effect and the BLANK= specifier (see
the OPEN statement). A field of all blanksis always zero. Plussigns are optional.

2. Oninput, with F, E, Dand Gediting, the decimal location specified in the edit descriptor is
overridden by a decimal point appearing in the input field.

3. Onoutput, the plus signis optional and is determined by the S, SP and SS edit descriptors. A
negative quantity is represented by a negative sign. A minus sign is never produced when
outputting a value of zero.

4. On output, the representation is always right justified in the field with leading blanks inserted at
the beginning of the field if the number of charactersin the representation isless than the field
width.

5. Onoutput, if the number of charactersin the external representation is greater than the field
width or an exponent exceeds its specified length using Ew. dEe, Gw. dEe, Ew. dDe or
QGw. dDe edit descriptors, the entire field isfilled with asterisks.

11.7.10.1 Integer Editing: Iw and Iw.m Edit Descriptors

Thel wand | w. medit descriptorsindicate that the field width of thefield to be edited is w. Theitemin
the 1/0O list must be of type integer; on input the 1/0O list item will be defined by integer data, on output the
[/O list item must be defined with an integer datum.

Oninput, the | w. medit descriptor istreated identically to the | wedit descriptor. The output field for the

| wedit descriptor consists of zero or more leading blanks followed by a minus sign if the value of the 1/O
list item is negative or an optional plus sign otherwise, followed by the magnitude of the integer datum with
no leading zeroes. Note that the integer constant contains at |east one digit. On output, the | w. medit
descriptor specifiesthat at least mdigits are to be displayed with leading zeroes if necessary. The value of
mmust be less than or equal to the value of w. If miszero and the value of the datum is zero, then the
output field isfilled with blanks.

Example:
PRINT ' (1H<,14.4,15,1H>)", 23, 2345

The output produced by the PRI NT statement in the previous example is the string:

<0023 2345>

232 Editing

Format

11.7.10.2 Floating-point Editing: F, E, D and G Edit Descriptors

TheF, E, Dand Gedit descriptors describe the editing of real, double precision, complex and double
precision complex data. The /O list item corresponding to one of these edit descriptors must be of type
real, double precision, complex or double precision complex. On input, the I/O list item will become
defined with a datum whose type is the same as that of the I/O list item. On output, the I/O list item must
be defined with a datum whose type is that of the 1/O list item.

11.7.10.3 F Editing

An F edit descriptor hasthe form Fw. d where wisthe field width and d is the number of digitsin the
fractiona part. Theinput field consists of an optional sign, followed by a string of digits optionally
containing adecimal point. If the decimal point is omitted, the rightmost d digits with leading zeroes
assumed if necessary, are interpreted as the fractional part of the value represented. An exponent of one of
the following forms may follow.

1. A signed integer constant.
2. AnEor Dfollowed by an optionally signed integer constant.

Consider the following example, where the decimal point isomitted. The formulaused in the evaluationis:

-d (exponent subfi el d)
(integer subfield) x 10 x 10

If the specification is F10.8 and the input quantity is 31415E+5 then the following conversion takes place.

-8 5
00031415 x 10 x 10

5
. 00031415 x 10

31. 415

In other words, the decimal point is assumed to lie to the left of the 8 digits (padded with zeroes on the | eft)
forming the fractional part of the input value.

The output field produced by an F edit descriptor consists of blanks if necessary followed by a minus sign
if theitem inthe /O list is negative or an optional plus sign otherwise, followed by a string of digits
containing a decimal point which represents the magnitude of the I/O list item. The string representing the
magnitude of the I/O list item is modified according to the scale factor and is rounded to d fractional digits.
An optional leading zero is produced only if the magnitude of the 1/O list item islessthan one. Note that a
leading zero is required if there would otherwise be no digitsin the output field.

Example:
PRI NT ' (1H<, F8.4,1H>)’, 234.43

The output produced by the PRI NT statement in the previous example is the string:

<234. 4300>

Editing 233

Language Reference

11.7.10.4 E and D Editing
The Ew. d, Dw. d and Ew. dEe edit descriptors indicate that the field widthis w, the fractional part
contains d digits unless a scale factor greater than one isin effect, and the exponent consists of e digits.

The e has no effect on input.

The form of the input field and processing of it isthe same asthat for F editing. The form of the output

fiedis:
[+] [0] . x Xx ... X exp
[-] 1 2 d
where:
p indicates a plus or minus sign.

x's arethed most significant digits of the value after rounding.
exp isadecimal exponent.
The form of the exponent is as follows.
1. Whenusing the Ew. d edit descriptor, the form of the exponent is
E+nn
or if |exp|] <= 99
E- nn
and
+nnn
or if 99 < |exp| <= 999

-nnn

2. When using the Ew. dEe edit descriptor, the form of the exponent is

E+n ... n where |exp| <= (10**e)-1
-1 e

3. When using the Dw. d edit descriptor, the form of the exponent is
D+nn
or if |expl <= 99
D-nn

and

+nnn
or if 99 < |exp| <= 999
-nnn

Note that asign in the exponent is always present. If the exponent is 0, aplussignisused. Theforms
Ew. d and Dw. d arenot to be used if | exp| > 999.

234 Editing

Format

Example:
PRI NT ' (1H<, E10. 4, 1H>, 1H<, E9. 4, 1H>, 1H<, E12. 4E3, 1H>) ",
$.5, .5, .5
END

The output from the PRI NT statement in the previous exampleis the string:

<0. 5000E+00><. 5000E+00>< 0. 5000E+000>
The scale factor k in a P edit descriptor controls decimal normalization as follows:

1. If-d < k <= 0, thentheoutput field contains | k| leading zeroesand d- | k| significant
digits after the decimal point.

2. If0 < k < d+2, theoutput field contains exactly k significant digitsto the left of the
decimal point and d- k+1 significant digits to the right of the decimal point.

3. Other values of k are not permitted.

The Ew. dDe edit descriptor behaves in the same way asthe Ew. dEe edit descriptor on input; on output
the only difference is that the letter Dis used to mark the exponent instead of the letter E.

11.7.10.5 G Editing

The Gn. d and Gw. dEe edit descriptors indicate that the field width is w, the fractional part contains d
digits unless a scale factor greater than oneis in effect, and the exponent consists of e digits.

Ginput editing is the same as F input editing.

The representation on Goutput editing depends on the magnitude of the datum being edited. Let Mbe the
magnitude of the datum being edited. Then Goutput editing behaves as follows.

1. IfM< 0.1lorM>= 10**d, Gw. d output editing is equivalent to kPEw. d output editing
and Gw. dEe output editing is equivaent to kPEw. dEe output editing where k isthe scaling
factor currently in effect.

2. If0.1 <= M < 10**d, thescalefactor has no effect and the value of Mdeterminesthe
editing as shown in the following table.

Magnitude of Datum Equivalent Edit Descriptor
0.1<=M<1 F<w-n>.d followed by n blanks
1<=M<10 F<w-n>.<d-1> followed by n blanks

10**(d-2)<=M<10**(d-1) F<w-n>.1 followed by n blanks

10**(d-1)<=M<10**d F<w-n>.0 followed by n blanks
where:
<w-n> stands for the integer represented by evaluating w- n.
<d-1> stands for the integer represented by evaluating d- 1.

Editing 235

Language Reference

n is4 for Gw. d editing and e+2 for Gn. dEe editing.

Example:
PRINT ' (1H<, G12. 6, 1H>, 1H<, G12. 4E4, 1H>)', .5, .5
END

The output from the PRI NT statement in the previous exampleis the string:

<0. 500000 ><0. 5000 >

11.7.10.6 Complex Editing

Since a complex datum consists of a pair of real or double precision data, the editing of a complex datum is
specified by two successive pairsof F, E, Dor Gedit descriptors. The two descriptors may be different
and may be separated by any number of non-repeatable edit descriptors. Double precision complex editing
isidentical to complex editing.

11.7.11 L Edit Descriptor
The Lw edit descriptor is used for 1/0 list items of typelogical. Thefield widthis w.

On input the 1/0O list item will become defined with a datum of type logical. The input field consists of
optional blanks, followed by an optional decimal point followed by a T or F for true or false respectively.
The T and F may be followed by additional charactersinthefield. Open Watcom FORTRAN 77 allows t
and f inadditionto T and F on input.

On output, the 1/0O list item must be defined with a datum of type logical. The output field consists of w- 1
blanks followed by a T for true or F for false.

Example:
PRI NT ' (1H<, L3, L5,1H>)",. TRUE., . FALSE.

The output produced by the PRI NT statement in the previous example is the string:

< T F>

11.7.12 A Edit Descriptor

The Al w] edit descriptor isused for /O list items of type character. Oninput, the I/O list item becomes
defined with character data. On output, the I/O list item must be defined with character data. If wis
specified in the edit descriptor, the field width is w otherwise the field width is the number of charactersin
the I/O list item.

Open Watcom FORTRAN 77 also permits I/O list items of non-character data types. On input, the I/O list
item becomes defined with the binary representation of the character data. On output, the I/O list itemis
assumed to be defined with character data.

If | en isthelength of the /O list item and wis specified in Ainput editing so that wis greater than | en,

therightmost | en characters of theinput field will betaken. If wislessthan| en, thenthe wcharactersin
the input field will be taken and padded with | en- wblanks.

236 Editing

Format

If wis specified in A output editing so that wis greater than | en, then the output field will consist of
w- | en blanksfollowed by the | en characters of the 1/O list item. If wislessthan or equa to | en, the
output field will consist of the first w characters of the 1/O list item.

Example:
PRI NT ' (1H<, A5, A8, 1H>) ', ' ABCDEFG ,’ 123’

The output produced by the PRI NT statement in the previous example is the string:

<ABCDE 123>

11.7.13 Z Editing (Extension)

The Zw edit descriptor is used to display the hexadecimal representation of data or read hexadecimal data.
Itisa Open Watcom FORTRAN 77 extension. The Zw edit descriptor can be used for 1/0O list items of any
type. Thefield widthis w.

On output, wmust be greater than or equal to twice the size (in bytes) of the I/O list item since each byteis
represented by two hexadecimal digits. For example, real datarequires four bytes. Hence, wmust be at
least eight.

Example:
PRINT ' (1H<, Z8, 1H>)', 256

The output produced by the PRI NT statement in the previous example is the string:
<00000100>

If wis greater then the number of hexadecimal digits required to represent the data, the leftmost print
positions of the output field are filled with blanks.

Example:
PRI NT ' (1H<, Z10, 1H>)',’ ABCD

The output produced by the PRI NT statement in the previous example is the string
< (clcec3ca>

if the EBCDIC character set is being used or
< 41424344>

if the ASCII character set isbeing used.

Oninput, if wis greater than twice the size (in bytes) of the I/O list item, the leftmost characters are
truncated from the input field. For example, if the input field contains the string

91A2C3D4

and isread into a character variable whose length is two, the character would contain the hexadecimal data
C3D4. If wislessthan twice the size (in bytes) of the 1/O item, the I/O item is padded to the left with
hexadecimal zeroes. For example, if the input field contains the string

81C1

Editing 237

Language Reference

and isread into a character variable whose length is four, the character would contain the hexadecimal data
000081Cl1.

11.8 Format-Directed Input/Output

Format-directed input/output (1/0) is formatted input or output controlled by aformat specification. The
action taken during formatted input or output depends on the next edit descriptor in the format specification
and the next item in the input/output list if one exists.

A format specification is processed from left to right. An edit descriptor or aformat specification with a
repeat specification of r isprocessed asalist of r edit descriptors or format specifications. A repeat
specification of one is equivalent to no repeat specification.

For each repeatabl e edit descriptor in the format specification, there corresponds one item in the 1/O list
except an 1/0 list item of type complex where two repeatabl e floating-point edit descriptors are required.
Non-repeatable edit descriptors do not correspond to any /O list item; they communicate information
directly with the record. Whenever arepeatable edit descriptor is encountered in aformat specification,
there must be a corresponding item in the [/O list. The edited information is transmitted appropriately
between the item and the record.

Format processing is terminated when any of the following conditions occur.

1. When an edit descriptor has no corresponding item in the I/O list.
2. When acolon edit descriptor is encountered and there are no moreitemsin the 1/O list.
3. When theright parenthesis is encountered and there are no more itemsin the 1/0 list.

If the right parenthesis of the complete format specification is encountered and the /O list has not been
exhausted, the fileis positioned at the next record and format processing resumes at the start of the format
specification terminated by the last preceding right parenthesis. If there is no such right parenthesis, format
processing resumes at the start of the complete format specification. The part of the format specification
that is reused must contain at least one repeatable edit descriptor. If format processing resumes at a left
parenthesis preceded by arepeat specification, the repeat specification is also reused. The scale factor, sign
control edit descriptors and blank control edit descriptors are not affected when part of aformat
specification is reused.

11.9 List-Directed Formatting

List-directed formatting is input/output without aformat specification.

Example:
READ(un, *) X, VY, Z
READ(UNI T=un, FMI=*) X, Y, Z
READ *, X, VY, Z
WRITE(un, *) X, Y, Z
WRI TE(UNI T=un, FMI=*) X, Y, Z
PRINT *, X Y, Z

In the previous example, an asterisk instead of aformat specification indicates list-directed formatting.

238 List-Directed Formatting

Format

Omitting the asterisk and format specification also indicates list-directed formatting.

Example:
READ, X, Y, Z
PRINT, X, Y, Z

Records used during list-directed formatting are called list-directed records. A list-directed record isa
seguence of values and value separators. Any sequence of blanksis treated as a single blank except when it
appears in a character constant. The end of arecord has the same effect as a blank character.

A valueis one of the following:

1. A constant.

2. Anullvaue

3. r*c

4. r*
where:
r is an unsigned, nonzero integer constant.
c is a constant.

Ther *c formisequivalent to r successive occurrencesof ¢c. Ther* formiseguivaent to r successive
occurrences of the null value. 1n these two forms, blanks are permitted only where they are allowed in the
constant c.

A value separator is one of the following:

1. A comma preceded and followed by any number of blanks.

2. A dash preceded and followed by any number of blanks. A slash as a value separator terminates
the execution of the input statement. The definition status of the remaining input itemsin the
input list remains the same as it was prior to the input statement.

3. Any number of blanks between two values.

A null valueis specified by having no character between successive value separators, no characters

preceding the first value separator in arecord or the r * form. It has no effect on the current value of the
input item. Note that the end of record following a value separator does not specify anull value.

11.9.1 List-Directed Input

Theinput forms acceptable to format specifications for a given type are also acceptable for list-directed
formatting with certain exceptions.

1. Blanksare never used as zeroes and blanks embedded in constants are not allowed except in
character constants.

2. Aninput item of typereal or double precision must have an input field suitable for F editing

except that no fractional digits are assumed unless adecimal point is present in thefield. Such a
field will be called a numeric input field.

List-Directed Formatting 239

Language Reference

An input item of type complex or double precision complex must consist of aleft parenthesis
followed by two numeric input fields separated by a comma and followed by aright parenthesis.
The numeric input fields may be preceded or followed by blanks. The end of record can only
appear between the first numeric field and the comma or between the comma and the second
numeric field. Note that a null value must not be used as the real or imaginary part but may
represent the entire complex constant.

Aninput item of type logical must not include either a slash or acomma among the optional
characters allowed in L editing.

An input item of type character consists of a non-empty string of characters enclosed in
apostrophes. Apostrophesin character constants are represented by two consecutive apostrophes
without a blank or end of record separating them. Character constants may span records. If this
isthe case, the end of record does cause a blanksto be inserted into the character constant. Note
that acommaor slash in a character constant is not avalue separator. A character input field is
assigned to a character input item as though it were a character assignment.

11.9.2 List-Directed Output

The form of the output field produced by list-directed output is similar to the form required by list-directed
input. The output of a character constant does not include the enclosing quotes and an apostrophein a
character constant is output as a single apostrophe. The values are separated by one or more blanks. When
printed, each record will start with ablank if thefileis a carriage-control oriented file. For example, the
source listing file produced by Open Watcom FORTRAN 77 is such afile.

11.10 Namelist-Directed Formatting (Extension)

The READ, WRI TE, and PRI NT statements may be used to transmit data between afile and the variables
specified in a NAMELI ST statement.

Example:

CHARACTER* 20 NANE
CHARACTER* 20 STREET

CHARACTER*15 CI TY

CHARACTER* 20 STATE

CHARACTER* 20 COUNTRY

CHARACTER* 10 ZI P_CODE

| NTEGER AGE

| NTEGER MARKS(10)

NAVELI ST /nl/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZI P_CODE, AGE, MARKS

READ(un, nl)

READ(UNI T=un, FMr=nl)
READ nl

VWRI TE(un, nl

VWRI TE(UNI T=un, FMT=nl)
PRI NT nl

240 Namelist-Directed Formatting (Extension)

Format

11.10.1 Namelist-Directed Input (Extension)

Theinput data must bein a specia format. The first character in each record must be blank. The second
character in the first record of agroup of data records must be an ampersand (&) or dollar sign (%)
immediately followed by the NAVELI ST name. The NAMELI ST name must be followed by a blank and
must not contain any imbedded blanks. This nameisfollowed by dataitems, optionally separated by
commas. The end of adata group is signaled by the character "&" or "$", optionally followed by the string
"END". If the"&" character was used to start the group, then it must be used to end the group. If the"$"
character was used to start the group, then it must be used to end the group.

12345678901234567890. ..
&NL
iteml, itenR, itenB,
itend, itenb,

The form of the dataitemsin an input record is:

Name = Constant
The name may be a variable name, an array element name, or a character substring name.
The constant may be integer, real, complex, logical or character. Logical constants may be
intheform"T" or ".TRUE" and "F" or ".FALSE". Character constants must be contained
within apostrophes. Subscripts and substring indices must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex, logical or
character. The constants are separated by commas. The number of constants must be less
than or equal to the number of elementsin the array. Successive occurrences of the same
constant may be represented in the form r * const ant, where r isanon-zero integer
constant specifying the number of times the constant isto occur. Consecutive commas
within alist indicate that the values of the array elements remain unchanged.

The variable and array names specified in the input file must appear in the NAMELI ST list, but the order is
not important. A name that has been made equivalent to a name in the input data cannot be substituted for
that namein the NAMELI ST list. Thelist can contain names of itemsin COMMON but must not contain
dummy argument names.

Each data record must begin with a blank followed by a complete variable or array hame or constant.
Embedded blanks are not permitted in names or constants. Trailing blanks after integers and exponents are
treated as zeros.

Example:

&PERSON
NAMVE = ' John Doe’
STREET = '22 Main St.” CITY = "Snallville’
STATE = ' Texas’ COUNTRY = "U. S. A’
ZI P_CODE = ' 78910- 1203
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
ACE = 23

&END

The input forms acceptable to format specifications for a given type are also acceptable for
namelist-directed formatting with certain exceptions.

Namelist-Directed Formatting (Extension) 241

Language Reference

1. Blanksare never used as zeroes and blanks embedded in constants are not allowed except in
character constants.

2. Aninput item of typereal or double precision must have an input field suitable for F editing
except that no fractional digits are assumed unless adecimal point is present in thefield. Such a
field will be called anumeric input field.

3. Aninput item of type complex or double precision complex must consist of aleft parenthesis
followed by two numeric input fields separated by a comma and followed by aright parenthesis.
The numeric input fields may be preceded or followed by blanks. The end of record can only
appear between the first numeric field and the comma or between the comma and the second
numeric field. Note that a null value must not be used as the real or imaginary part but may
represent the entire complex constant.

4. Aninput item of type logical must not include either a slash or a comma among the optional
characters allowed in L editing.

5. Aninput item of type character consists of a non-empty string of characters enclosed in
apostrophes. Apostrophes in character constants are represented by two consecutive apostrophes
without ablank or end of record separating them. Character constants may span records. If this
isthe case, the end of record does cause a blank to be inserted into the character constant. Note

that acomma or slash in a character constant is not avalue separator. A character input field is
assigned to a character input item as though it were a character assignment.

11.10.2 Namelist-Directed Output

The form of the dataitems in an output record is suitable for input using a namelist-directed READ
Statement.

1. Output records are written using the ampersand character (&), not the dollar sign ($), although
the dollar sign is accepted as an aternative during input. That is, the output datais preceded by
"&name" and isfollowed by "& END".

2. All variable and array names specified in the NAMELI ST list and their values are written out,
each according to itstype.

3. Character datais enclosed in apostrophes.
4. Thefieldsfor the data are made large enough to contain all the significant digits.

5. Thevalues of acomplete array are written out in columns.

242 Namelist-Directed Formatting (Extension)

12 Functions and Subroutines

12.1 Introduction

Functions and subroutines are procedures that fall into one of the following categories.

Statement functions
Intrinsic functions
External functions
Subroutines

AwWdE

First let usintroduce some terminology.

A program unit is a collection of Open Watcom FORTRAN 77 statements and comments that can be either
amain program or a subprogram.

A main program identifies the program unit where execution isto begin. A main program is a program
unit which has asits first statement a PROGRAMstatement or one which does not have a PROGRAM
FUNCTI ON, SUBROUTI NE or BLOCK DATA statement as its first statement. Complete execution of the
main program implies the complete execution of the program. Each executable program can contain only
one main program.

A subprogramis a program unit that either hasa FUNCTI ON, SUBROUTI NE or BLOCK DATA statement

asitsfirst statement. This chapter will only deal with subprograms that have a FUNCTI ON or
SUBROUTI NE statement asitsfirst statement.

12.2 Statement Functions

A statement function is a procedure defined by a single statement. Its definition must follow all
specification statements and precede the first executable statement. The statement defining a statement
function is not an executabl e statement.

A statement function has the following form.

sf ([d],d ...]) =¢e
where:
sf is the name of the statement function.
d is a statement function dummy argument.

Statement Functions 243

Language Reference

e isan expression.

The expression e and the statement function name sf must conform according to the rules of assignment as
described in the chapter entitled " Assignment Statements' on page 187.

The statement function dummy arguments are variable names and are used to indicate the order, number
and type of the arguments of the statement function. A dummy argument name of a statement function
must only appear once in the dummy argument list of the statement function. Its scope is the statement
defining the statement function. That is, it becomes defined when the statement function is referenced and
undefined when execution of the statement function is completed. A name that is a statement function
dummy argument can also be the name of avariable, acommon block, the dummy argument of another
statement function or appear in the dummy argument list of a FUNCTI ON, SUBROUTI NE or ENTRY
statement. It cannot be used in any other context.

The expression e can contain any of the following as operands.

1. A constant.

2. A symbolic constant.

3. Avaiablereference. Thiscan be areference to a statement function dummy argument or to a
variable that appears within the same program unit which defines the statement function. If the
statement function dummy argument has the same name as a variable in the same program unit,
the statement function dummy argument is used. The variable reference can also be a dummy
argument that appears in the dummy argument list of a FUNCTI ON or SUBROUTI NE statement.
If itisadummy argument that has appeared in the dummy argument list of an ENTRY statement,
then the ENTRY statement must have previously appeared.

An array element reference.

An intrinsic function reference.

A reference to a statement function whose defining statement has previously appeared.

An external function reference.

A dummy procedure reference.

An expression enclosed in parentheses which adheres to the rules specified for the expression e.

©ooNo O A

12.2.1 Referencing a Statement Function

A statement function is referenced by its use in an expression. The process of executing a statement
function involves the following steps.

The expressions that form the actual arguments to the statement function are evaluated.

The dummy arguments of the statement function are associated with the actual arguments.

The expression e is evaluated.

The value of the result is converted to the type of the statement function according to the rules of
assignment and is available to the expression that contained the reference to the statement
function.

AW PE

The actual arguments must agree in order, number and type with the corresponding dummy arguments.

244 Statement Functions

Functions and Subroutines

Example:
SUBROUTI NE CALC(U, V)
REAL POLY, X, Y, U, V, Z, CONST

: Define a Statenment Function.
POLY(X, Y) = X**2 + Y**2 + 2, 0*X*Y + CONST
I nvoke the Statenent Function.
CONST = 23.5
Z=POY(U V)

PRINT *, Z
END

In the previous example, note that after the execution of the statement function, the valuesof Xand Y are
not equal to the value of U and V respectively; they are undefined.

12.2.2 Statement Function Restrictions

1. A statement functionislocal to the program unit in which it is defined. Thus, a statement
function name is not allowed to appear in an EXTERNAL statement and cannot be passed to
another procedure as an actual argument. The following example illegally attempts to pass the
statement function F to the subroutine SAM

Example:
* |llegally passing a statement function
* to a subroutine.
PROGRAM MAI N

A = X
CALL SAM F)

END

2. If astatement function F contains areference to another statement function G, then the
statement defining G must have previously appeared. In the following example, the expression
defining the statement function F illegally references a statement function Gwhose defining
statement follows the statement defining F.

Statement Functions 245

Language Reference

Example:
* ||l egal order of statenent functions.

F(X)

+ (X
A X) + 2

X
X

3. The statement function name must not be the same name of any other entity in the program unit
except possibly the name of acommon block.

4. If adummy argument of a statement function is of type CHARACTER, then its length
specification must be an integer constant expression. The following isillegal.

Example:
SUBRQUTI NE SAM X)
CHARACTER* (*) X
* |llegal - CHARACTER*(*) dunmy argunent not
* allowed in statenent function.
F(X) =X
PRI NT *, F(' ABC)
END

5. Anactua argument to a statement function can be any expression, except character expressions
involving the concatenation of an operand whose length specificationis (*) unlessthe operand
isasymbolic constant.

12.3 Intrinsic Functions

Anintrinsic function is afunction that is provided by Open Watcom FORTRAN 77.

12.3.1 Specific Names and Generic Names of Intrinsic Functions

All intrinsic functions can be referenced by using the generic name or the specific name of theintrinsic
function. The specific name uniquely identifies the function to be performed. The type of theresultis
predefined thus its name need not appear in atype statement. For example, CLOG is a specific name of the
generic LOG function and computes the natural logarithm of a complex number. The type of the result is
also COMPLEX.

When the generic name is used, a specific name is selected based on the data type of the actual argument.
For example, the generic name of the natural logarithm intrinsic function isLOG. To compute the natural
logarithm of REAL, DOUBLE PRECISION, COMPLEX or DOUBLE PRECISION COMPLEX data, the
generic name LOG can be used. Generic names simplify the use of intrinsic functions because the same
name can be used with more than one type of argument.

246 Intrinsic Functions

Functions and Subroutines

Notes:

1. Itisaso possibleto passintrinsic functionsto subprograms. When doing so, only the specific
name of the intrinsic function can be used as an actual argument. The specific name must have
appeared inan | NTRI NSI C statement.

2. If anintrinsic function has more than one argument, each argument must be of the same type.

3. Thegeneric and specific name of an intrinsic function is the same for some intrinsic functions.
For example, the specific name of the intrinsic function which computes the sine of an argument
whose typeis REAL is called SIN which is aso the generic name of the sine function.

The following sections present all generic and specific names of intrinsic functions and describe how they
areused. Thefollowing isaguideto interpreting the information presented.

Data types are represented by letter codes.

1. CHARACTER isrepresented by CH.

2. LOGICAL isrepresented by L.

3. INTEGER isrepresented by I.

4. INTEGER*1 isrepresented by I1.

5. INTEGER*2 isrepresented by 12.

6. REAL (REAL*4) isrepresented by R.

7. DOUBLE PRECISION (REAL*8) isrepresented by D.

8. Singleprecison COMPLEX (COMPLEX*8) isrepresented by C.
9 Double precision COMPLEX (COMPLEX* 16) is represented by Z.

The "Definition" description gives the mathematical definition of the function performed by theintrinsic
function. There aretwo fields for each intrinsic function. The "Name" field lists the specific and generic
names of the intrinsic functions. When the name of an intrinsic function is a generic name, it isindicated
by the word "generic" in parentheses; all other names are specific names. The "Usage" field describes how
theintrinsic functionsareused. "R « ATAN2(R,R)" isatypical entry inthisfield. The name of the
intrinsic function alwaysfollowsthe™ ~". In this example the name of theintrinsic function is ATANZ2.
The data type of the arguments to the intrinsic function are enclosed in parentheses, are separated by
commas, and always follow the name of the intrinsic function. In this case, ATANZ2 requires two
arguments both of type REAL. The type of the result of the intrinsic function is indicated by the type
precedingthe" ~". Inthiscase, theresult of ATANZ2 isof type REAL.

Open Watcom FORTRAN 77 extensions to the FORTRAN 77 language are flagged by a dagger ().

Intrinsic Functions 247

Language Reference

12.3.2 Type Conversion: Conversion to integer

Definition:
Name:

INT (generic)
INT

HFIX

IFIX

IDINT

Notes:

int(a)

Usage:

| «INT(1),| <INT(R), | —~INT(D),| <INT(C), | ~INT(Z) *

| «INT(R)

12 < HFIX(R) t

| <IFIX(R)

| —IDINT(D)

The value of int(X) is X if X isof type INTEGER. If X is of type REAL or DOUBLE
PRECISION, then int(X) is 0 if [X|<1 and the integer whose magnitude is the largest
integer that does not exceed the magnitude of X and has the same sign of X if |X| > 1.

If X isof type COMPLEX or COMPLEX*16, int(X) isint(real part of X).

T isan extension to FORTRAN 77.

12.3.3 Type Conversion: Conversion to real

Name:

REAL (generic)
REAL

FLOAT

SNGL

Notes:

248 Intrinsic Functions

Usage:

R «REAL(l),R « REAL(R), R « REAL(D), R « REAL(C),R -« REAL(Z) t
R —REAL())

R —~FLOAT(l)

R —~SNGL(D)

For X of type COMPLEX, REAL(X) isthereal part of X. For X of type
COMPLEX*16, REAL(X) isthe single precision representation of the real part of X.

Tisan extension to FORTRAN 77.

Functions and Subroutines

12.3.4 Type Conversion: Conversion to double precision

Name:

DBLE (generic)
DREAL
DFLOAT

Notes:

Usage:

D —DBLE(l), D - DBLE(R), D — DBLE(D), D — DBLE(C), D —DBLE(Z) t
D —DREAL(Z) t

D —DFLOAT(I) t

For X of type COMPLEX, DBLE(X) is the double precision representation of the real
part of X. For X of type COMPLEX* 16, DBLE(X) isthereal part of X.

T isan extension to FORTRAN 77.

12.3.5 Type Conversion: Conversion to complex

Name:

CMPLX (generic)

Notes:

Usage:

C < CMPLX(l), C — CMPLX(l,l), C « CMPLX(R), C — CMPLX(RR), C
~CMPLX(D), C - CMPLX(D,D), C —« CMPLX(C), C - CMPLX(2) t

If X isof type COMPLEX, then CMPLX(X) isX. If X isof type COMPLEX* 16,
then CMPLX(X) is a complex number whose real part is REAL (real part of X) and
imaginary part is REAL (imaginary part of X).

If X isnot of type COMPLEX, then CMPLX(X) is the complex number whose real
partis REAL(X) and imaginary part is REAL(0). CMPLX(X,Y) isthe complex
number whose real part is REAL(X) and whose imaginary part is REAL(Y) for X,Y
not of type COMPLEX.

T isan extension to FORTRAN 77.

12.3.6 Type Conversion: Conversion to double complex

Name:

Usage:

DCMPLX (generic) t Z « DCMPLX(1), Z — DCMPLX(1,), Z < DCMPLX(R), Z — DCMPLX(RR), Z

Notes:

«~DCMPLX(D), Z « DCMPLX(D,D), Z — DCMPLX(C), Z — DCMPLX(2)

If X isof type COMPLEX* 16, then DCMPLX(X) isX. If X isof type COMPLEX,
then DCMPLX(X) isa COMPLEX*16 number whose real part is DBLE(real part of
X) and imaginary part is DBLE(imaginary part of X).

If X isnot of type COMPLEX* 16, then DCMPLX(X) isthe COMPLEX* 16 number
whose rea part is DBLE(X) and imaginary part is DBLE(0). DCMPLX(X,Y) isthe
COMPLEX*16 number whose real part is DBLE(X) and whose imaginary part is
DBLE(Y) for X,Y not of type COMPLEX.

Tisan extension to FORTRAN 77.

Intrinsic Functions 249

Language Reference

12.3.7 Type Conversion: Character conversion to integer

Name:

ICHAR

Notes:

Usage:
| «ICHAR(CH)

ICHAR returns an integer which describes the position of the character in the
processor collating sequence. Thefirst character in the collating sequenceisin
position 0 and the last character of the collating sequence isin position n—-1 wherenis
the number of charactersin the collating sequence. The value of ICHAR(X) for X a
character of length oneis such that 0 <= ICHAR(X) <= n-1. For any characters X
and Y, the following holds true.

1. X .LT. Yif and only if ICHAR(X) .LT. ICHAR(Y)
2. X.EQ. Y if and only if ICHAR(X) .EQ. ICHAR(Y)

CHARistheinverse of ICHAR.

12.3.8 Type Conversion: Conversion to character

Name:
CHAR

Notes:

12.3.9 Truncation
Definition:
Name:
AINT (generic)
AINT
DINT

Notes:

250 Intrinsic Functions

Usage:

CH —CHAR(Il)

CHAR returnsthe character in thei’th position of the processor collating sequence.
Thefirst character in the collating sequence isin position 0 and the last character of
the collating sequenceisin position n—1 where n is the number of charactersin the
collating sequence. The value of CHAR(!) is of type CHARACTER of length one.
The argument | must beintherange0 <=1 <=n-1.

ICHAR istheinverse of CHAR.

int(a)

Usage:

R <AINT(R), D —AINT(D)

R —AINT(R)

D —DINT(D)

Thevalue of int(X) is X if X isof type INTEGER. If X isof type REAL or DOUBLE
PRECISION, then int(X) is 0 if [X|<1 and the integer whose magnitude is the largest

integer that does not exceed the magnitude of X and has the same sign of X if |X| > 1.
If X isof type COMPLEX or COMPLEX*16, int(X) isint(real part of X).

Functions and Subroutines

12.3.10 Nearest Whole Number

Definition:

Name:

ANINT (generic)

ANINT

DNINT

i nt (a+.5) ifa=0;int(a-.5) ifa<0
Usage:

R < ANINT(R), D —ANINT(D)

R —ANINT(R)

D —DNINT(D)

12.3.11 Nearest Integer

Definition: i nt (a+.5) ifa>=0;int(a-.5) ifa<0

Name: Usage:

NINT (generic) | «NINT(R), | — NINT(D)

NINT | « NINT(R)

IDNINT | —IDNINT(D)

12.3.12 Absolute Value

Definition: (ar**2+ai **2)**1/ 2 if aiscomplex; | a] otherwise

Name: Usage:

ABS (generic) | «cABS(I), 11 «ABS(11) 1,12 ~AB(12) 1, R «ABS(R), D - ABS(D), R
~ABS(C),D ~ABS(2) t

IABS | «1ABY())

|1ABS 11 < 11IABS(11) T

12ABS 12 < 12AB(12) T

ABS R —«ABS(R)

DABS D —DABS(D)

CABS R — CABS(C)

CDABSt D —CDABS(Z)

Notes: A complex number is an ordered pair of real numbers, (ar, ai) where ar isthereal

part and ai istheimaginary part of the complex number.

Tisan extension to FORTRAN 77.

Intrinsic Functions 251

Language Reference

12.3.13 Remainder
Definition:
Name:

MQOD (generic)

MOD

[IMOD
12MOD
AMOD
DMOD

Notes:

nod(al, a2) = al-int(al/a2)*a2
Usage:

| «MOD(I,1), 11 «MOD(IL,I1) 1,12 < MOD(12,12) , R <« MOD(R,R), D
~MOD(D,D),

| «MOD(l,1)

11 ~11IMOD(I1,12) T

12 —«12MOD(12,12) T

R <« AMOD(R,R)

D - DMOD(D,D)

Thevalue of int(X) is X if X isof type INTEGER. If X isof type REAL or DOUBLE
PRECISION, then int(X) is 0 if |X|<1 and the integer whose magnitude is the largest
integer that does not exceed the magnitude of X and has the same sign of X if |X|> 1.

If X isof type COMPLEX or COMPLEX*16, int(X) isint(real part of X).

The value of MOD, 1IMOD, 12MOD, AMOD or DMOD is undefined if the value of
a2is0.

12.3.14 Transfer of Sign

Definition:
Name:

SIGN (generic)

ISIGN
[1SIGN
12SIGN
SIGN
DSIGN

Notes:

252 Intrinsic Functions

sign(al, a2) = |al| ifa2>=0; -| al| if a2<0
Usage:

| <SIGN(I,I), 11 «SIGN(I1,11) 1,12 « SIGN(12,12) T, R « SIGN(R,R), D
~SIGN(D,D)

| —ISIGN(I,])

11 < 11SIGN(I1,11) T
12 —12SIGN(12,12) t
R —SIGN(R,R)

D —DSIGN(D,D)

If the value of al is 0, theresult is 0 which has no sign.

Functions and Subroutines

12.3.15 Positive Difference

Definition: al- a2 if al>a2; 0 if al<=a2

Name: Usage:

DIM (generic) | «DIM(L,), 11 <DIM(1L,12) 1,12 <DIM(12,12) 1, R ~DIM(R,R), D —DIM(D,D)
IDIM | —IDIM(I,1)

[1IDIM 11 ~11DIM(1L,12) T

12IDIM 12 <12DIM(12,12) T

DIM R «DIM(R,R)

DDIM D - DDIM(D,D)

12.3.16 Double Precision Product

Definition: al*a2
Name: Usage:
DPROD D - DPROD(R,R)

12.3.17 Choosing Largest Value

Definition: max(al, a2,...)
Name: Usage:
MAX (generic) | «MAX(,..), 11 <« MAX(11,..) 1,12 < MAX(12,..) T, R « MAX(R,...), D
~MAX(D,...)
MAXO | « MAXO(,...)
IIMAXO 11 «I1IMAXO(11,...) T
I2MAXO0 12 < 12MAXO0(12,...) T
AMAX1 R « AMAX1(R,...)
DMAX1 D - DMAX1(D,...)
AMAXO0 R « AMAXO(I,...)
MAX1 | « MAXL(R,...)

Intrinsic Functions 253

Language Reference

12.3.18 Choosing Smallest Value

Definition: mn(al, a2,...)
Name: Usage:
MIN (generic) | «MIN(,..), 11 «MIN(IL,..) 1,12 < MIN(12,..) T, R <« MIN(R,...), D < MIN(D,...)
MINO | «MINO(,...)
[IMINO 11 «1IMINO(I1,...) T
[2MINO 12 «12MINO(12,...) T
AMIN1 R « AMINL(R,...)
DMIN1 D —DMIN1(D,..)
AMINO R — AMINO(,...)
MIN1 | « MINL(R,...)
12.3.19 Length
Definition: Length of character entity
Name: Usage:
LEN | — LEN(CH)
Notes: The argument to the LEN function need not be defined.

12.3.20 Length Without Trailing Blanks

Definition: Length of character entity excluding trailing blanks
Name: Usage:
LENTRIM | « LENTRIM(CH)

254 Intrinsic Functions

Functions and Subroutines

12.3.21 Index of a Substring

Definition: i ndex(al, a2) islocation of substring a2 instring al

Name: Usage:

INDEX | < INDEX(CH,CH)

Notes: INDEX(x,y) returns the starting position of asubstring in x which isidentical toy.
The position of the first such substring is returned. If y isnot contained in x, zerois
returned.

12.3.22 Imaginary Part of Complex Number
Definition: ai
Name: Usage:

IMAG (generic) ¥ R «<IMAG(C), D — IMAG(2)

AIMAG R < AIMAG(C)
DIMAG D -DIMAG(Z) t
Notes: A complex number is an ordered pair of real numbers, (ar, ai) where ar isthereal

part and ai isthe imaginary part of the complex number.

Tisan extension to FORTRAN 77.

12.3.23 Conjugate of a Complex Number
Definition: (ar,-ai)
Name: Usage:

CONJG (generic) T C — CONJG(C), Z — CONJIG(2)

CONJG C - CONJG(C)
DCONJG Z -« DCONJG(2) T
Notes: A complex number is an ordered pair of real numbers, (ar, ai) where ar isthereal

part and ai isthe imaginary part of the complex number.

T isan extension to FORTRAN 77.

Intrinsic Functions 255

Language Reference

12.3.24 Square Root
Definition:
Name:
SQRT (generic)
SQRT
DSQRT
CSQRT
CDSQRT

Notes:

12.3.25 Exponential
Definition:
Name:
EXP (generic)
EXP
DEXP
CEXP
CDEXP

Notes:

256 Intrinsic Functions

a**1/ 2

Usage:

R < SQRT(R), D « SQRT(D), C — SQRT(C), Z - SQRT(2) t

R « SQRT(R)

D — DSQRT(D)

C ~CSQRT(C)

Z - CDSQRT(Z) t

The argument to SQRT must be >= 0. The result of CSQRT and CDSQRT isthe
principa value with the real part >= 0. When thereal part of the result is O, the
imaginary partis>=0.

T isan extension to FORTRAN 77.

e**a

Usage:

R < EXP(R), D — EXP(D), C — EXP(C), Z - EXP(Z) t
R « EXP(R)

D — DEXP(D)

C ~CEXP(C)

Z - CDEXP(Z) t

Theresult of acomplex function isthe principal value.

Tisan extension to FORTRAN 77.

Functions and Subroutines

12.3.26 Natural Logarithm

Definition:

Name:

LOG (generic)
ALOG

DLOG

CLOG
CDLOG

Notes:

log (a)
e

Usage:

R «LOG(R),D —~LOG(D), C -LOG(C),Z ~LOG(Z) T

R <« ALOG(R)

D —DLOG(D)

C ~CLOG(C)

Z ~CDLOG(2) t

Thevalue of a must be > 0. The argument of CLOG and CDLOG must not be (0,0).
The result of CLOG and CDLOG is such that -t < imaginary part of the result <= Tt
The imaginary part of the result is Ttonly when the real part of the argument is< 0 and
the imaginary part of the argument = 0.

Theresult of acomplex function isthe principal value.

T isan extension to FORTRAN 77.

12.3.27 Common Logarithm

Definition:

Name:
LOG10 (generic)
ALOGI10

DLOG10

log (a)
10

Usage:
R «LOGI10(R), D ~LOG10(D)
R —«ALOGI10(R)

D —DLOG10(D)

Intrinsic Functions 257

Language Reference

12.3.28 Sine
Definition: sin(a)
Name: Usage:
SIN (generic) R ~SIN(R), D ~SIN(D), C ~SIN(C), Z ~ SIN(Z) 1
SIN R < SIN(R)
DSIN D —DSIN(D)
CSIN C ~CSIN(C)
CDSIN Z —CDSIN(Z) t
Notes: All angles are assumed to be in radians.
Theresult of acomplex function isthe principal value.
T isan extension to FORTRAN 77.
12.3.29 Cosine
Definition: cos(a)
Name: Usage:

COS (generic) R « COS(R), D — COS(D), C — COS(C), Z — COS(Z) t

COos R — COS(R)

DCOS D —DCOS(D)

CCOS C ~CCOS(C)

CDCOS Z —~CDCOS(2) t

Notes: All angles are assumed to be in radians.

Theresult of acomplex function isthe principal value.

T isan extension to FORTRAN 77.

258 Intrinsic Functions

Functions and Subroutines

12.3.30 Tangent

Definition: tan(a)

Name: Usage:

TAN (generic) R <« TAN(R), D — TAN(D)

TAN R < TAN(R)

DTAN D —DTAN(D)

Notes: All angles are assumed to be in radians.
12.3.31 Cotangent

Definition: cot an(a)

Name: Usage:

COTAN (generic) t R « COTAN(R), D — COTAN(D)

COTAN R « COTAN(R) T
DCOTAN D - DCOTAN(D) t
Notes: All angles are assumed to be in radians.

Tisan extension to FORTRAN 77.

12.3.32 Arcsine
Definition: arcsin(a)
Name: Usage:

ASIN (generic) R <ASIN(R), D —ASIN(D)

ASIN R <« ASIN(R)
DASIN D —DASIN(D)
Notes: The absolute value of the argument of ASIN and DASIN must be<=1. Theresultis

such that -172 <= result <= 172.

Intrinsic Functions 259

Language Reference

12.3.33 Arccosine
Definition: arccos(a)
Name: Usage:

ACOS (generic) R -« ACOS(R), D -« ACOS(D)

ACOS R « ACOS(R)
DACOS D —~DACOS(D)
Notes: The absolute value of the argument of ACOS and DACOS must be<=1. Theresultis

such that 0 <= result <= Tt

12.3.34 Arctangent
Definition: arctan(a)
Name: Usage:

ATAN (generic) R —ATAN(R), D — ATAN(D)

ATAN R —«ATAN(R)
DATAN D —DATAN(D)
Definition: arctan(al/ a2)
Name: Usage:

ATAN2 (generic) R —ATAN2(RR), D — ATAN2(D,D)

ATAN2 R -« ATAN2(R,R)
DATAN2 D - DATAN2(D,D)
Notes: Theresult of ATAN and DATAN is such that -1v2 <= result <= /2. If the value of

the first argument of ATAN2 and DATAN?2 is positive then the result is positive. If
the value of the first argument is O, the result is O if the second argument is positive
and 1tif the second argument is negative. |If the value of the first argument is
negative, the result is negative. If the value of the second argument is 0, the absolute
value of theresult is /2. The arguments must not both be 0. The result of ATAN2
and DATANZ issuch that -Tt< result <= Tt

260 Intrinsic Functions

Functions and Subroutines

12.3.35 Hyperbolic Sine
Definition: si nh(a)
Name: Usage:
SINH (generic) R « SINH(R) D — SINH(D)
SINH R —SINH(R)

DSINH D — DSINH(D)

12.3.36 Hyperbolic Cosine
Definition: cosh(a)
Name: Usage:
COSH (generic) R —COSH(R), D — COSH(D)
COSH R — COSH(R)

DCOSH D — DCOSH(D)

12.3.37 Hyperbolic Tangent
Definition: t anh(a)
Name: Usage:
TANH (generic) R < TANH(R), D — TANH(D)
TANH R —« TANH(R)

DTANH D — DTANH(D)

Intrinsic Functions 261

Language Reference

12.3.38 Gamma Function
Definition: ganma(a)
Name: Usage:

GAMMA (generic) R — GAMMA(R), D — GAMMA(D)
GAMMA R - GAMMA(R)

DGAMMA D - DGAMMA(D)

12.3.39 Natural Log of Gamma Function
Definition:

l'og (gammma(a))
e

Name: Usage:

LGAMMA (generic) R « LGAMMA(R), D — LGAMMA(D)

ALGAMA R -« ALGAMA(R)

DLGAMA D — DLGAMA(D)
12.3.40 Error Function

Definition: erf(a)

Name: Usage:

ERF (generic) R < ERF(R), D — ERF(D)

ERF R — ERF(R)

DERF D — DERF(D)

262 Intrinsic Functions

Functions and Subroutines

12.3.41 Complement of Error Function
Definition: 1-erf(a)
Name: Usage:
ERFC (generichc R < ERFC(R), D — ERFC(D)
ERFC R — ERFC(R)

DERFC D — DERFC(D)

12.3.42 Lexically Greater Than or Equal

Definition: al>=a2

Name: Usage:

LGE L —LGE(CH,CH)

Notes: The ASCII collating sequenceis used to evaluate the relation.

12.3.43 Lexically Greater Than

Definition: al>a2

Name: Usage:

LGT L —LGT(CH,CH)

Notes: The ASCII collating sequenceis used to evaluate the relation.

12.3.44 Lexically Less Than or Equal

Definition: al<=a2

Name: Usage:

LLE L —LLE(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

Intrinsic Functions 263

Language Reference

12.3.45 Lexically Less Than

Definition:

Name:

LLT

Notes:

al<a?
Usage:
L «LLT(CH,CH)

The ASCII collating sequenceis used to evaluate the relation.

12.3.46 Binary Pattern Processing Functions: Boolean AND

Definition:
Name:

IAND (generic)
IAND

I1AND

[2AND

i and(i,j) Boolean AND

Usage:

| <1AND(1,1), 11 —<IAND(I1,12), 12 < IAND(12,12)
| —IAND(I,1)

11 —11AND(I1,11)

12 < 12AND(12,12)

12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR

Definition:
Name:

IOR (generic)
IOR

[10R

[20R

264 Intrinsic Functions

ior(i,j) Booleaninclusive OR

Usage:

| <10R(,1), 11 <IOR(11,11), 12 — I0R(12,12)
| —10OR(l,1)

11 —110R(I1,11)

12 < 120R(12,12)

Functions and Subroutines

12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR

Definition: i eor(i,]j) Boolean exclusive OR

Name: Usage:

| EOR (generic) | <1EOR(I,I), 11 < IEOR(I1,11), 12 — IEOR(12,12)
|EOR | —IEOR(,I)

I1IEOR 11 ~11EOR(11,11)

I2EOR 12 <« 12EOR(12,12)

12.3.49 Binary Pattern Processing Functions: Boolean Complement

Definition: not (i) Boolean complement

Name: Usage:

NOT (generic) | « NOT(l), I1 < NOT(I1), 12 « NOT(I2)
NOT | « NOT(l)

IINOT 11 <« I1INOT(12)

I2NOT 12 <12NOT(12)

12.3.50 Binary Pattern Processing Functions: Logical Shift

Definition: i shl (j,n) Logica shift

Name: Usage:

ISHL (generic) | —ISHL(I,1), 11 —ISHL(I1,11), 12 < ISHL(12,12)
ISHL I < ISHL(L,I)

[1ISHL 11 <I11SHL(11,11)

121SHL 12 12SHL(12,12)

Intrinsic Functions 265

Language Reference

Definition:
Name:

ISHFT (generic)
ISHFT
[1ISHFT
I21SHFT

Notes:

i shft(j,n) Logical shift

Usage:

| <ISHFT(I,1), 11 «ISHFT(11,12), 12 < ISHFT(12,12)
| —ISHFT(,1)

11 < 11SHFT(11,12)

12 < 12SHFT(12,12)

There are three shift operations: logical, arithmetic and circular. These shift
operations are implemented as integer functions having two arguments. The first
argument, j , isthe value to be shifted and the second argument, n, isthe number of
bitsto shift. If n islessthan O, aright shift is performed. If n isgreater than 0, aleft
shift isperformed. If n isequal to 0, no shift is performed. Note that the arguments
are not modified.

Inalogica shift, bits shifted out from the left or right are lost. Zeros are shifted in
from the opposite end.

In an arithmetic shift, j isconsidered asigned integer. In the case of aright shift,
zeros are shifted into the left if j ispositive and onesif j isnegative. Bits shifted out
of theright arelost. Inthe case of aleft shift, zeros are shifted into the right and bits
shifted out of the left are lost.

In acircular shift, bits shifted out one end are shifted into the opposite end. No bits
arelost.

12.3.51 Binary Pattern Processing Functions: Arithmetic Shift

Definition:
Name:

ISHA (generic)
ISHA

[1ISHA
I21SHA

Notes:

266 Intrinsic Functions

i sha(j, n) Arithmetic shift
Usage:

I <ISHA(I,D), 11 <ISHA(I1,11), 12 ~ISHA(12,12)

| —ISHA(I)

11 —11SHA(I1,11)

12 < 12SHA(12,12)

There are three shift operations: logical, arithmetic and circular. These shift
operations are implemented as integer functions having two arguments. The first
argument, j , isthe value to be shifted and the second argument, n, isthe number of
bitsto shift. If n islessthan O, aright shift is performed. If n isgreater than O, aleft
shift isperformed. If n isequal to 0, no shift is performed. Note that the arguments

are not modified.

Inalogica shift, bits shifted out from the left or right are lost. Zeros are shifted in
from the opposite end.

Functions and Subroutines

In an arithmetic shift, j isconsidered asigned integer. In the case of aright shift,
zeros are shifted into the left if j ispositive and onesif j isnegative. Bits shifted out
of theright arelost. Inthe case of aleft shift, zeros are shifted into the right and bits
shifted out of the left arelost.

In acircular shift, bits shifted out one end are shifted into the opposite end. No bits
arelost.

12.3.52 Binary Pattern Processing Functions: Circular Shift

Definition: i shc(j, n) Circular shift

Name: Usage:

I SHC (generic) | —ISHC(I,1), I1 < ISHC(I1,11), 12 —ISHC(I12,12)

ISHC I < ISHC(I,I)

I1ISHC 11 < I11SHC(11,11)

[21SHC 12 < 12SHC(12,12)

Notes: There are three shift operations: logical, arithmetic and circular. These shift

operations are implemented as integer functions having two arguments. The first
argument, j , isthe value to be shifted and the second argument, n, isthe number of
bitsto shift. If nislessthan O, aright shift is performed. If n isgreater than O, aleft
shift isperformed. If n isequal to 0, no shift is performed. Note that the arguments
are not modified.

Inalogica shift, bits shifted out from the left or right are lost. Zeros are shifted in
from the opposite end.

In an arithmetic shift, j isconsidered asigned integer. In the case of aright shift,
zeros are shifted into the left if j is positive and onesif j isnegative. Bits shifted out
of theright arelost. Inthe case of aleft shift, zeros are shifted into the right and bits
shifted out of the left arelost.

In acircular shift, bits shifted out one end are shifted into the opposite end. No bits
arelost.

Intrinsic Functions 267

Language Reference

12.3.53 Binary Pattern Processing Functions: Bit Testing

Definition: Test bit - a2’th bit of al istested. If itis1, .TRUE. isreturned. If itisO, .FALSE. is
returned.
Name: Usage:

BTEST (generic) L «BTEST(l,l), L « BTEST(11,11), L — BTEST(I2,12)

BTEST L < BTEST(,))
|1BTEST L < I1BTEST(I1,12)
|2BTEST L < I2BTEST(12,12)

12.3.54 Binary Pattern Processing Functions: Set Bit
Definition: Set bit - Return al with a2'th bit set.
Name: Usage:

IBSET (generic) | < IBSET(I,1), 11 IBSET(I1,11), 12 IBSET(12,12)

IBSET | —IBSET(I,l)
| 1I1BSET 11 —11BSET(11,11)
121BSET 12 < 12BSET(12,12)

12.3.55 Binary Pattern Processing Functions: Clear Bit
Definition: Clear bit - Return al with a2'th bit cleared.
Name: Usage:

IBCLR (generic) | < IBCLR(l,I), 11 < IBCLR(11,11), 12 — IBCLR(I2,12)

IBCLR | —IBCLR(l,I)
|1IBCLR 11 < 11BCLR(I1,12)
121BCLR 12 < 12BCLR(12,12)

268 Intrinsic Functions

Functions and Subroutines

12.3.56 Binary Pattern Processing Functions: Change Bit
Definition: Change bit - Return al with a2’ th bit complemented.
Name: Usage:

IBCHNG (generic) | —IBCHNG(I,), 11 « IBCHNG(I1,11), 12 — IBCHNG(I2,12)

IBCHNG | < IBCHNG(,))
|11BCHNG 11 < 11BCHNG(I1,11)
121BCHNG 12 < 12BCHNG(I2,12)

12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts
Definition: [shift(j,n) Arithmeticleft shift
Name: Usage:

LSHIFT (generic) | < LSHIFT(I,1), 11 < LSHIFT(I1,11), 12 < LSHIFT(12,12)

LSHIFT | « LSHIFT(,I)

[ILSHIFT 11 < I1ILSHIFT(11,11)

I2LSHIFT 12 < 12LSHIFT(12,12)

Definition: rshift(j,n) Arithmetic right shift
Name: Usage:

RSHIFT (generic) | < RSHIFT(1,]), I1 « RSHIFT(I1,11), 12 « RSHIFT(12,12)

RSHIFT | « RSHIFT(L,I)
IIRSHIFT 11 <« I1IRSHIFT(11,12)
I2RSHIFT 12 I2RSHIFT(12,12)
Notes:

With these shift functions, n must be a non-negative integer. In an arithmetic shift, |
isconsidered asigned integer. In the case of aleft shift, zeros are shifted into the
right and bits shifted out of the left are lost. In the case of aright shift, zeros are
shifted into the left if j ispositive and onesif j isnegative. Bits shifted out of the
right are lost.

If nisequal to 0, no shift is performed. Note that the arguments are not modified.

These functions are compiled as in-line code unless they are passed as arguments.

Intrinsic Functions 269

Language Reference

12.3.58 Allocated Array

Definition:

Name:

ALLOCATED

Isarray A alocated?
Usage:

L < ALLOCATED(A)

12.3.59 Memory Location

Definition:

Name:

LOC

Location of A where A isany variable, array or array element
Usage:

| —LOC(A)

12.3.60 Size of Variable or Structure

Definition:

Name:

|SIZEOF

Notes:

Size of A in byteswhere A is any constant, variable, array, or structure
Usage:
| < ISIZEOF(A)

The size reported for a constant or simple variable is based on itstype. Thesizeof a
CHARACTER constant is the number of charactersin the constant. The size reported
for an array isthe size of the storage arearequired for the array. The size reported for
astructure is the size of the storage area required for the structure. An assumed-size
CHARACTER variable, assumed-size array, or alocatable array has size 0.

12.3.61 Volatile Reference

Definition:
Name:
VOLATILE

Notes:

270 Intrinsic Functions

A isavoldtile reference
Usage:
A < VOLATILE(A)

A volatile reference to a symbol indicates that the value of the symbol may be
modified in ways that are unknown to the subprogram. For example, a symbol in
common being referenced in a subprogram may be modified by another subprogram
that is processing an asynchronous interrupt. Therefore, any subprogram that is
referencing the symbol to determine its value should reference this symbol using the
VOLATI LE intrinsic function so that the value currently being evaluated agrees with
the value last stored.

Functions and Subroutines

12.4 External Functions

An external function is a program unit that hasa FUNCTI ON statement asitsfirst statement. It isdefined
externally to the program units that referenceit. The form of a FUNCTI ON statement is defined in the
chapter entitled "FORTRAN Statements" on page 9.

The name of an external function istreated asif it was avariable. 1t isthrough the function name that the
result of an external function becomes defined. This variable must become defined before the execution of
the external function is completed. Once defined, it can be referenced or redefined. The value of this
variable when a RETURN or END statement is executed is the result returned by the external function.

Example:
| NTEGER FUNCTI ON VECSUM A, N)
| NTEGER A(N), |
VECSUM = 0
DO10 1 =1, N
VECSUM = VECSUM + A(I)
10 CONTI NUE
END

If the variable representing the return value of the external function is of type CHARACTER with alength
specification of (*), it must not be the operand of a concatenation operator unless it appears in a character
assignment statement.

It isalso possible for an external function to return results through its dummy arguments by assigning to
them. The following example demonstrates this.

External Functions 271

Language Reference

Example:
| NTEGER MARKS(40), N
REAL AVG STDDEV, MEAN
PRI NT *, ' Enter nunber of marks’
READ(5, *) N
PRINT *, 'Enter marks’
READ(5, *) (MARKS(I), I =1, N
AVG = MEAN(MARKS, N, STDDEV)
PRINT *, "Mean ="', AVG
$ ' Standard Deviation = ', STDDEV
END
*
* Define function MEAN to return the average by
* defining the function name and return the standard
* deviation by defining a dumry argunent.
*

REAL FUNCTI ON MEAN(A, N, STDDEV)
INTEGER A, N, |
REAL STDDEV
DI MENSI ON A(N)
MEAN = 0
DO10 | =1, N
MEAN = MEAN + A(1)
10 CONTI NUE
MEAN = MEAN / N
STDDEV = 0
DO20 | =1, N
STDDEV = STDDEV + (A(l1) - MEAN)**2
20 CONTI NUE
STDDEV = SQRT(STDDEV / (N - 1))
END

12.4.1 Referencing an External Function

When an external function is referenced in an expression or a CALL statement, the following steps are
performed.

1. Theactua arguments are evaluated.
2. Theactual arguments are associated with the corresponding dummy arguments.
3. Theexternal function is executed.

The type of the external function reference must be the same as the type of the function name in the
external function subprogram. If the external function is of type CHARACTER, the length must also
match.

12.4.2 Actual Arguments for an External Function
An actual argument must be one of the following.

1. Any expression except acharacter expression involving the concatenation of an operand whose
length specification is (*) unlessthe operand is a symbolic constant.

2. Anarray name.

3. Anintrinsic function name (must be the specific name) that has appeared inan | NTRI NSI C
statement.

272 External Functions

Functions and Subroutines

4. Anexterna procedure name.
5. A dummy procedure name.

The actual arguments of an external function reference must match the order, number and type of the
corresponding dummy arguments. If a subroutine is an actual argument, then type agreement is not
required since a subroutine has no type.

12.4.3 External Function Subprogram Restrictions

1. Thename of an external function is aglobal name and must not be the same as any other global
name or name local to the subprogram whose name is that of the external function. Note that the
external function name is treated as a variable within the external function subprogram.

2. Thename of adummy argument is aname local to the subprogram and must not appear in an
EQUI VALENCE, PARAMETER, SAVE, | NTRI NSI Cor DATA statement within the same
subprogram. It may appear in a COMMON statement only as the name of a common block.

3. Thename of the external function canin no way, directly or indirectly, be referenced as a

subprogram from within the subprogram it defines. It can appear in atype statement to establish
itstype only if the type has not been established in the FUNCTI ON statement.

12.5 Subroutines

A subroutine is a program unit that has a SUBROUTI NE statement asiit first statement. It is defined
externally to the program units that referenceit. The form of a SUBROUTI NE statement can be found in
the chapter entitled "FORTRAN Statements" on page 9.

A subroutine differs from afunction in that it does not return aresult and hence has no type associated with

it. However, it is possible to return values from a subroutine by defining or redefining the dummy
arguments of the subroutine.

12.5.1 Referencing a Subroutine: The CALL Statement

Unlike a function, a subroutine cannot appear in an expression. Subroutines are referenced by using a
CALL statement. See the chapter entitled "FORTRAN Statements" on page 9 for details on the CALL
statement. When a CALL statement is executed, the following steps are performed.

1. Theactua arguments are evaluated.

2. Theactual arguments are associated with the corresponding dummy arguments.

3. Thesubroutineis executed.

A subroutine can be called from any subprogram but must not be called by itself, indirectly or directly.

12.5.2 Actual Arguments for a Subroutine
Each actual argument in a subroutine call must be one of the following.

1. Any expression except acharacter expression involving the concatenation of an operand whose
length specificationis (*) unlessthe operand is a symbolic constant.

Subroutines 273

Language Reference

N

An array name.

3. Anintrinsic function name (must be the specific name) that has appeared inan | NTRI NSI C
statement.

An external procedure name.

A dummy procedure name.

An alternate return specifier of theform * s where s is a statement number of an executable
statement in the subprogram which contained the CALL statement. Thiswill be covered in more
detail when the RETURN statement is discussed.

o 0k

The actual arguments must agree in order, number and type with the corresponding dummy arguments.
The type agreement does not apply to an actual argument which is an alternate return specifier or a
subroutine name since neither has atype.

12.5.3 Subroutine Subprogram Restrictions

1. A subroutine subprogram can contain any statement except a FUNCTI ON, BLOCK DATA or
PROGRAMstatement.

2. Thename of asubroutineis agloba name and must not be used as another global name.
Furthermore, no local name in the subroutine subprogram can have the same name as the
subroutine.

3. Thename of adummy argument islocal to the subroutine subprogram and must not appear in an
EQUI VALENCE, PARAMETER, SAVE, | NTRI NSI Cor DATA statement. It may appear in a
COMMON statement only as the name of a common block.

12.6 The ENTRY Statement

An ENTRY statement allows execution of a subprogram to begin at a particular executable statement within
the subprogram in which it appears. An ENTRY statement defines an alternate entry point into a
subprogram and can appear anywhere after the FUNCTI ON statement in a function subprogram or the
SUBROUTI NE statement in a subroutine subprogram. Also, it must not appear as a statement between the
beginning and end of a control structure. For example, an ENTRY statement cannot appear between a block
| F statement and its corresponding END | F statement or between a DO statement and the corresponding
terminal statement. It ispossible to have more than one ENTRY statement in a subprogram. An ENTRY
statement is a non-executable statement. The form of an ENTRY statement can be found in the chapter
entitled "FORTRAN Statements' on page 9.

Each entry name defines an external function if it appearsin afunction, or an external subroutineif it
appears in a subroutine and is referenced in the same way as the actual function or subroutine name would
be referenced. Execution begins at the first executable statement that followsthe ENTRY statement. The
order, number, type and names of the dummy argument lists of an ENTRY statement may be different from
that of a FUNCTI ON, SUBROUTI NE or other ENTRY statement. However, there must still be agreement
between the actual argument list used to reference an entry name and the dummy argument list in the
corresponding ENTRY statement.

274 The ENTRY Statement

Functions and Subroutines

12.6.1 ENTRY Statements in External Functions

Entry names may also appear in type statements. Their type may or may not be the same type as other
entry names or the actual name of the external function unlessthe function is of type CHARACTER. If the
function is of type CHARACTER then the type of all the entry names must be of type CHARACTER.
Conversdly, if an entry name is of type CHARACTER, then all other entry names and the function name
must be of type CHARACTER. An entry name, like external function names, is treated as a variable within
the subprogram it appears. Within afunction subprogram, there is an association between variables whose
name is an entry hame and the variable whose name corresponds to the external function. When such a
variable becomes defined, all other such variables of the same type also become defined and other such
variables not of the same type become undefined. This can be best illustrated by an example.

Example:
PRINT *, EVAL(2), EVAL3(4.0)
END

| NTEGER FUNCTI ON EVAL(X)
| NTEGER EVAL2, X
REAL EVAL3, Y
c=1
GOTO 10
ENTRY EVAL2(X)
cC=2
GOTO 10
ENTRY EVAL3(Y)
c=3

10 EVAL2 = C * X
END

In the previous example, invoking EVAL would cause the result of 2 to be returned even though EVAL was
never assigned to in the function EVAL but since EVAL2 and EVAL are of the same type they are associated
and hence defining EVAL2 causes EVAL to be defined. However, invoking EVAL3 would cause an
undefined result to be returned since EVAL3 is of type REAL and EVAL? is of type INTEGER and hence
are not associated. EVAL 3 does not become defined.

12.6.2 ENTRY Statement Restrictions

1. Anentry name may not appear in any statement previousto the ENTRY statement containing the
entry name except in atype statement.

2. If anentry namein afunction is of type CHARACTER, each entry name and the name of the
function must also be of type CHARACTER. If the name of the function or the name of any
entry point has alength specification of (*), then al such entities must have alength
specification of (*) otherwise they must al have alength specification of the same integer
value.

3. If adummy argument appears in an executable statement, then that statement can be executed
provided that the dummy argument isin the dummy argument list of the procedure name
referenced.

4. A name that appears as adummy argument in an ENTRY statement must not appear in the
expression of a statement function unlessit is a dummy argument of the statement function, it
has appeared in the dummy argument list of a FUNCTI ON or SUBROUTI NE statement, or the
ENTRY statement appears before the statement function statement.

The ENTRY Statement 275

Language Reference

5. A namethat appears as adummy argument in an ENTRY statement must not appear in an
executable statement preceding the ENTRY statement unlessit has also appeared in a
FUNCTI ON, SUBROUTI NE, or ENTRY statement that precedes the executabl e statement.

12.7 The RETURN Statement

A RETURN statement is away to terminate the execution of afunction or subroutine subprogram and return
control to the program unit that referenced it. As an extension to FORTRAN 77, Open Watcom
FORTRAN 77 permits the use of the RETURN statement in the main program. A subprogram (or main
program) may contain more than one RETURN statement or it may contain no RETURN statement. In the
latter case, the END statement has the same effect as a RETURN statement.

Execution of a RETURN or END statement causes all local entities to become undefined except for the

following.
1. Entities specified in a SAVE statement.
2. Entitiesin blank common.
3. Initialy defined entities that have neither been redefined nor become undefined.
4. Entitiesin anamed common block that appears in the subprogram and in a program unit that

references the subprogram directly or indirectly.

12.7.1 RETURN Statement in the Main Program (Extension)

The form of a RETURN statement in amain program is:

RETURN

When a RETURN statement is executed in the main program, program execution terminates in the same
manner as the STOP or END statement. Thisisan extension to FORTRAN 77.

12.7.2 RETURN Statement in Function Subprograms

The form of a RETURN statement in a function subprogram is:

RETURN

When a RETURN statement is executed in a function subprogram, the function value must be defined.
Control is then passed back to the program unit that referenced it.

276 The RETURN Statement

Functions and Subroutines

12.7.3 RETURN Statement in Subroutine Subprograms

The form of a RETURN statement in a subroutine subprogram is:

RETURN [e]

where:
e isan integer expression.

If the expression e is omitted or has a value less than one or greater than the number of asterisks appearing
in the dummy argument list of the subroutine or entry name referenced, then control is returned to the next
executable statement that followsthe CALL statement in the referencing program unit. If 1<= e <=n
where n isthe number of asterisks appearing in the SUBROUTI NE or ENTRY statement which contains the
referenced name, then the expression e identifies the eth asterisk in the dummy argument list. Control is
returned to the statement identified by the alternate return specified in the CALL statement that corresponds
to the eth asterisk in the dummy argument list of the referenced subroutine. The following example
demonstrates the use of alternate return specifiersin conjunction with the RETURN statement.

Example:

REAL X, Y
READ *, X, Y
CALL CWP(X, Y, *10, *20)
PRINT *, "X equals VY
GOTO 30

10 PRINT *, "X less than Y’
GOT0 30

20 PRINT *, "X greater than Y

30 END

SUBROUTINE CMP(X, Y, *, *)
IF(X .LT. Y)RETURN 1

IF(X .GT. Y)RETURN 2
RETURN

END

12.8 Subprogram Arguments

Arguments provide a means of communication between program units. Arguments are passed to
subprograms through argument lists and are received by subprograms through argument lists. The
argument list used to pass arguments to a subprogram is called the actual argument list and the arguments
are called actual arguments. The argument list of the receiving subprogram is called the dummy argument
list and the arguments are called dummy arguments. The actual argument list must agree with the dummy
argument list in number, order and type.

Subprogram Arguments 277

Language Reference

12.8.1 Dummy Arguments

Statement function, external functions and subroutines use dummy arguments to define the type of actual
arguments they expect. A dummy argument is one of the following.

1. Vaiable

2. Array.

3. Dummy procedure.

4. Asterisk (*) indicating a statement label.
Notes:

1. A statement function dummy argument may only be avariable.
2. Anasterisk can only be adummy argument for a subroutine subprogram.

Dummy arguments that are variables of type INTEGER can be used in dummy array declarators. No
dummy argument may appear in an EQUI VALENCE, DATA, PARAMETER, SAVE, | NTRI NSI Cor
COMMON statement except as acommon block name. A dummy argument must not be the same name as
the subprogram name specified in the FUNCTI ON, SUBROUTI NE or ENTRY statement. Other than these
restrictions, dummy arguments can be used in the same way an actual name of the same class would be
used.

12.8.2 Actual Arguments

Actual arguments specify the entities that are to be associated with the dummy arguments when referencing
asubroutine or function. Actual arguments can be any of the following.

1. Any expression, except character expression involving the concatenation of an operand whose
length specification is (*) unlessthe operand is a symbolic constant.

An array name.

Anintrinsic function name.

An external function or subroutine name.

A dummy procedure name.

An alternate return specifier of theform * s where s is a statement number of an executable
statement in the subprogram which contained the CALL statement.

o0k whN

Notes:
1. A statement function actual argument can only be a variable or an expression.

2. Anadternate return specifier can only be an actual argument in the actual argument list of a
subroutine reference.

12.8.3 Association of Actual and Dummy Arguments

When afunction or subroutine reference is executed, an association is established between the actual
arguments and the corresponding dummy arguments. The first dummy argument is associated with the first
actual argument, the second dummy argument is associated with the second actual argument, etc.
Association requires that the types of the actual and dummy arguments agree. A subroutine has no type and
when used as an actual argument must be associated with adummy procedure. An aternate return specifier

278 Subprogram Arguments

Functions and Subroutines

has no type and must be associated with an asterisk. Arguments can be passed through more than one level
of procedure reference. In this case, valid association must exist at al intermediate levels as well asthe last
level. Argument association isterminated upon the execution of a RETURN or END statement.

12.8.3.1 Length of Character Actual and Dummy Arguments

If adummy argument is of type CHARACTER, the corresponding actual argument must also be of type
CHARACTER and the length of the dummy argument must be less than or equal to the length of the actual
argument. |If the length of the dummy argument is | en then the | en leftmost characters of the actual
argument are associated with the dummy argument.

If adummy argument of type CHARACTER is an array name, then the restriction on the length is on the
whole array and not for each array element. The length of an array element of the dummy argument may
be different from the length of the array element of the corresponding actual array, array element, or array
element substring, but the dummy array argument must not extend beyond the end of the associated actual

array.

12.8.3.2 Variables as Dummy Arguments

A dummy argument that is a variable may be associated with an actual argument that is a variable, array
element, substring or expression. Only if the actual argument is avariable, array element or substring can
the corresponding actual argument be redefined.

12.8.3.3 Arrays as Dummy Arguments

A dummy argument that is an array may be associated with an actual argument that is an array, array
element or array element substring. The number and size of the dimensions in the actual argument array
declarator may be different from the number and size of the dimensions in the dummy argument array
declarator.

If the actual argument is a non-character array name, then the size of the dummy argument array must not
exceed the size of the actual argument array. An element of the actual array becomes associated with the
element in the dummy array with the same subscript value. Association by array element of character
arrays exists only if the lengths of the array elements are the same. If their lengths are not the same, the
dummy and actual array elementswill not consist of the same characters.

If the actual argument is a non-character array element name whose subscript value is asv the size of the
dummy argument array must not exceed the size of the actual argument array lessasv - 1. Furthermore, the
dummy argument array element whose subscript value is dsv becomes associated with the actual argument
array element whose subscript valueisasv + dsv - 1. Consider the following example.

Subprogram Arguments 279

Language Reference

Example:
DI MENSI ON A(10)
CALL SAM A(3))
END

SUBROUTI NE SAM_ B)
DI MENSI ON B(5)

END

In the previous example, array Aisan actual argument and the array B isthe dummy argument. Suppose
we wanted to know which element of A isassociated with the 4th element of B. Then asv would have
value 3 since the array element A(3) isthe actual argument, and dsvis4. Then the 4th elementin Bis3 +
4 -1 = 6th element of A.

If the actual argument is a character array name, character array element name or character array element
substring which begins at character storage unit ach, then the character storage unit dch of the dummy
argument array is associated with the character storage unit ach + dch - 1 of the actual array. The size of
the dummy character array must not exceed the size of the actual argument array.

12.8.3.4 Procedures as Dummy Arguments

A dummy argument that is a dummy procedure can only be associated with an actual argument that is one
of the following.

Intrinsic function.

External function.

External Subroutine.
Another dummy procedure.

PwWbdE

If the dummy argument is used as a subroutine (that isit isinvoked using a CALL statement) then the
corresponding actual argument must either be a subroutine or adummy procedure. If the dummy argument
isused as an external function, then the corresponding actual argument must be an intrinsic function,
external function or dummy procedure. Note that it may not be possible to determine in a given program
unit whether a dummy procedure is associated with a function or subroutine. In the following exampleit is
not possible to tell by looking at this program unit whether PROC is an external subroutine or function.

Example:
SUBROUTI NE SAM| PRCC)
EXTERNAL PRCC

CALL SAMI(PROC)

END

280 Subprogram Arguments

Functions and Subroutines

12.8.3.5 Asterisks as Dummy Arguments

A dummy argument that is an asterisk may only appear in the dummy argument list of a SUBROUTI NE
statement or an ENTRY statement in a subroutine subprogram and may be associated only with an actual
argument that is an alternate return specifier in a CALL statement which references the subroutine.

Example:

999

CHARACTER* 10 RECORD(5)
| =2
CALL SAM |, *999, 3HSAM)

PRINT *, "I should be skipped’
PRINT *, "1 should be printed
END

SUBROUTI NE SAM |, *, K)
CHARACTER* 3 K

PRINT *, K

RETURN 1

END

Subprogram Arguments 281

Language Reference

282 Subprogram Arguments

Appendices

Appendices

284

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

A. Open Watcom FORTRAN 77 Extensions to
Standard FORTRAN 77

This appendix summarizes the extensions supported by Open Watcom FORTRAN 77.

1. Thel NCLUDE statement for embedding source from another file is supported.

I NCLUDE * SRC

2. Symbolic names are unique up to 32 characters. Also,’'$,
in symbolic names.

and lowercase |etters are allowed

3. Lowercase and uppercase letters are treated in the same way except in:

1. character and hollerith constants
2. apostrophe and H edit descriptors

4. End-of-line comments are permitted.

PRINT *, "Hello world” ! print "Hello World’
5. Thel MPLI CI T NONE statement is supported.

6. Anasterisk enclosed in parentheses is allowed with the type CHARACTER when specified in an
| MPLI CI T statement.

| MPLI O T CHARACTER* (*) (2)

7. Length specifiers are allowed with types specified in | MPLI ClI T statements.

I MPLICI T INTEGER*2 (I-N)

8. Length specifiers are allowed with type specification statements.
LOd CAL*1, LOG CAL*4
| NTEGER*1, | NTEGER*2, | NTEGER*4
REAL*4, REAL*8
COWPLEX*8, COWPLEX*16

Length specifiers are a so allowed with the type specified in FUNCTI ON statements.
COMPLEX* 16 FUNCTI ON ZADD(X, Y)
9. Length specifiers are allowed with symbol names.
I NTEGER | *2, A*2(10), B(20)*2

COVPLEX FUNCTI ON ZADD*16(X, Y)

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 285

Appendices

10. The DOUBLE COVPLEX statement is supported (equivalent to COVPLEX* 16).

11. Double precision complex constants are allowed.
Z = (1D0, 2D0)

12. Mixing operands of type DOUBLE PRECI SI ONand COVPLEX toyield a COMPLEX* 16 result
is allowed.

DOUBLE PRECI SI ON X
COWLEX Y, Z*16
Z=X+Y

13. User-defined structures are supported.
STRUCTURE/ END STRUCTURE
UNI OV END UNI ON

VAP/ END AP
RECORD

14. Both character and non-character data are allowed in the same common block.
| NTEGER X

CHARACTER C
COWDON /BLK/ X, C

15. Datainitialization of variablesin common without a block data subprogram is allowed.

16. Equivalencing character to non-character datais permitted.
I NTEGER X
CHARACTER C
EQUI VALENCE (X, O
17. Single subscripts for multi-dimensiona arraysis permitted in EQUI VALENCE statements.
18. Datainitialization in atype specification statement is allowed.
DOUBLE PRECI SI ON X/ 4. 3D1/
19. Datainitialization with hexadecimal constantsis allowed.
| NTEGER |/ Z00000007/
20. Initializing character items with numeric datais permitted.

21. Hexadecimal and octal constants of the form ' abc’ x and’ 567’ o are supported.

22. A character constant of theform * abcdef’ ¢ placesaNUL character (CHAR(0)) at the end of
the character string.

23. Hollerith constants can be used interchangeably with character constants.
CHARACTER*10 A, B

A = 1234567890’
B = 10H123456790

286 Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

24. Severa additional intrinsic functions are supported:

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

ALGAVA ALLCCATED BTEST CDABS
CDCOs CDSI N CDEXP CDSQRT
CDLOG COTAN DCMPLX DCONIG
DCOTAN DERF DERFC DFLOAT
DGAMVA DI MAG DLGANVA DREAL
ERF ERFC GAMVA HFI X

I AND | BCHNG | BCLR | BSET

| EOR I OR | SHA I SHC

| SHFT | SHL I SI ZEOF LENTRI M
LGAMVA LCC NOT VOLATI LE

The LOC intrinsic function returns the address of an expression.

The | SI ZEOF intrinsic function returns the size of a structure name, the size of an array with a
constant array declarator, or the size of avariable.

The CHAR intrinsic function is allowed in constant expressions.

The ALLOCATE and DEAL L OCATE statements may be used to dynamically allocate and
deallocate arrays.

The ALLOCATED intrinsic function may be used to determine if an allocatable array is allocated.

The following additional 1/O specifiers for the OPEN statement are supported.

ACTI ON=

CARRI AGECONTROL=

RECORDTYPE=

RECL= is also allowed for files opened for
sequential access

ACCESS=" APPEND

BLOCKSI ZE=

SHARE=

The following additional 1/O specifiersfor the | NQUI RE statement are supported.
ACTI ON=
CARRI AGECONTROL=
RECORDTYPE=

BLOCKSI ZE=
SHARE=

Inthe | NQUI RE statement, character data may also be returned in variables or array elements
with a substring operation.

CHARACTER FN*20
I NQUI RE(UNI T=1, FI LE=FN(10: 20))

List-directed 1/O is alowed with internal files.

No asterisk is required for list-directed 1/0.
PRINT, X, Y

The NAMELI ST statement is supported.

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 287

Appendices

36.

37.

38.

39.

40.

41.

42.

45.

46.

47.

Non-character arrays are allowed as format specifiers.

The following format edit descriptors are allowed:

z for displaying datain hexadecimal format
Ew.dDe same as Ew.dEe except D is used as exponentiation character
$or\ leave cursor at end of line

A repeat count is not required for the X edit descriptor (arepeat count of one is assumed).
Commas are optional between format edit descriptors.

100 FORMAT(1X 15)

It is possible to substring the return values of functions and statement functions.
CHARACTER*7 F, G
F() = '1234567
PRINT *, F()(1:3), &)(4:7)

Functions may be invoked viathe CALL statement. This allows the return value of functionsto
be ignored.

A RETURN statement is allowed in the main program.

Integer constants with more than 5 digits are allowed in the STOP and PAUSE statements.
PAUSE 123456

STOP 123456
Multiple assignment is allowed.
X=Y=2Z=0.0
The. XOR. operator is supported (equivalent to . NEQV.).

The. AND., . OR, . NEQV., . EQV. and. XOR. operators may take integer arguments.
They can be used to perform bit operations on integers.

Several additional program structure control statements are supported:

288 Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

LOOP- ENDLOOP

UNTIL (can be used with WH LE and LOOP)
VWHI LE- ENDW LE

GUESS- ADM T- ENDGUESS

ATENDDO- ENDATEND

ATEND

SELECT- ENDSELECT

DOWHI LE- ENDDO

DO ENDDO (no st at enent numnber)
REMOTEBL OCK- ENDBL OCK

EXECUTE

QT

EXIT

CYCLE

48. Block labels can be used to identify blocks of code.

LOOP : QUTER_LOOP
<st at enent s>
LOOP : | NNER_LOCP
<st at enent s>
IF(X .GI.100) QUT : QUTER_LOOP
<st at enent s>
ENDL COP
<st at enent s>
ENDL OOP

49. Aninteger expressioninan | F, ELSE | F, DO WHI LE, WHI LE or UNTI L statement is
allowed. Theresult of the integer expression is compared for inequality to the integer value 0.

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 289

Index

$ edit descriptor 228, 231

i

AND 288
EQV 288
NEQV 288
OR 288
XOR 288

!

\ edit descriptor 228, 231

A edit descriptor 236
ABS 251
access 217

direct 217, 222

sequential 217
ACCESS= 112
ACOS 260
actual argument 23, 44, 277
actual argument list 277
actual array declarator 164
adjustable array declarator 162
ADMIT 12, 83, 122, 206-208
AIMAG 255
AINT 250
ALGAMA 262
allocatable array declarator 163
ALLOCATE 13-14, 43-44, 163, 287
ALLOCATED 270, 287
ALOG 257
ALOGI10 257
alternate return specifier 23, 274, 278
AMAXO0 253

AMAX1 253
AMINO 254
AMIN1 254
AMOD 252
ANINT 251
apostrophe edit descriptor 229
argument

actual 44, 277

dummy 44, 70, 77-78, 141, 277
arithmetic assignment statement 187
arithmetic constant expression 176
arithmetic expression 175

factor 175

primary 174

term 175

typeof 177
arithmetic operators

precedence 174
arithmetic relational expression 180
array

assumed-size 44

maximum size 160
array declarator 159

actual 164

adjustable 162

allocatable 163

assumed-size 162

constant 162

dummy 164

maximum number of elements 160
array element 160
array elements

maximum 160
ASA 223
ASIN 259

ASSIGN 16-17, 81, 118, 124, 131, 147, 188, 221

assignment statement
arithmetic 187
character 189
extended 190
logical 188
statement label 188
assumed-size array 44
assumed-size array declarator 162
AT END 18, 57, 208-212
ATAN 260
ATAN2 260

291

Index

BACKSPACE 19-20, 61, 221
binary operator 173

blank common block 31
blank line 4

BLANK= 114, 231-232
BLOCK DATA 6, 21, 121, 243, 274
block data subprogram 39
BLOCKSIZE= 113

BN edit descriptor 231
BTEST 268

BZ edit descriptor 231

CABS 251
CALL 23, 272-274, 277-278, 280-281, 288
carriage control 223
CASE 25, 66, 115, 122, 137-138, 201, 203-204
CASE DEFAULT 25, 115, 138, 201-204
caselist 137
CCOS 258
CDABS 251
CDCOS 258
CDEXP 256
CDLOG 257
CDSIN 258
CDSQRT 256
CEXP 256
CHAR 179, 250, 287
CHARACTER 26, 28, 91, 285
character assignment statement 189
character constant 155
character constant expression 179
character expression 178

primaries 178
character relational expression 180
character set

FORTRAN 3

processor 3
CLOG 257
CLOSE 29-30, 217, 219-220
CMPLX 249
collating sequence 180
colon edit descriptor 230
column major 72

292

comment line 4
comments
end-of-line 4
COMMON 21, 31-32, 44, 73, 109, 160, 164, 241,
273-274, 278
common block
blank 31
named 21, 31
COMPLEX 33-35, 286
complex constant 154
complex constant expression 176
complex edit descriptor 236
COMPLEX*16 152, 286
CONJG 255
connection
file 219
unit 219
constant 153
character 155
complex 154
double precision 154
double precision complex 154
hexadecimal 156
hollerith 155
integer 153
logical 155
octal 156
real 153
string 155
constant array declarator 162
constant expression 185
continuation line 4
CONTINUE 36, 48, 196
COS 258
COSH 261
COTAN 259
CSIN 258
CSQRT 256
CYCLE 37, 193, 195-199, 201, 210-211

D edit descriptor 234-235
DABS 251
DACOS 260
DASIN 259
data 6-7, 21, 28, 32, 35, 39, 50, 52, 101, 105, 129,
156, 164, 215, 273-274, 278
datatype
summary 152

Index

DATAN 260
DATAN2 260
DBLE 249
DCMPLX 249
DCONJD 255
DCOS 258
DCOSH 261
DCOTAN 259
DDIM 253
DEALLOCATE 14, 42, 44, 287
debug line 4
DEFAULT 25
DERF 262
DERFC 263
DEXP 256
DFLOAT 249
DGAMMA 262
DIM 253
DIMAG 255
DIMENSION 21, 44, 160, 164
dimension declarator 159
DINT 250
DIRECT 95
direct access 217, 222
disconnection 220
DLGAMA 262
DLOG 257
DLOG10 257
DMAX1 253
DMIN1 254
DMOD 252
DNINT 251
DO 6, 36-37, 45-48, 53, 59, 196-197, 210, 274
DO WHILE 37, 53, 197, 210, 289
dollar sign (%)
in symbolic names 151
DOUBLE COMPLEX 49-50, 152, 286
DOUBLE PRECISION 51-52, 286
double precision complex constant 154
double precision complex constant expression
177
double precision constant 154
double precision constant expression 176
DPROD 253
DREAL 249
DSIGN 252
DSIN 258
DSINH 261
DSQRT 256
DTAN 259
DTANH 261
dummy argument 23, 44, 70, 77-78, 141, 277
array 279
asterisk 281

dummy procedure 280
of type CHARACTER 279
variable 279
dummy argument list 277
dummy array declarator 164

E edit descriptor 234
edit descriptor
$ 231
\ 231
A 236
apostrophe 229
BN 231
Bz 231
colon 230
H 229
L 236
numeric 232-236
complex 236
D 234-235
E 234
F 233
| 232
P 230
positional 229
T 229
TL 229
TR 229
X 229
repeatable 227-228
S 230
slash 230
SP 230
SS 230
Z 237
ELSE 54-55, 63, 87, 193, 195
ELSE IF 54-55, 63, 87, 194-195, 289
END 4, 21, 32, 56, 132, 135, 212, 271, 276, 279
END AT END 57, 212
END BLOCK 58, 73, 131, 204-205
END DO 45, 53, 59, 74, 122, 196-198, 208-209
END GUESS 62, 83, 206-209
END IF 6, 54-56, 63, 87-88, 193-195, 208, 274
END LOOP 64, 74, 106, 122, 198-200, 207-211
END MAP 65, 107, 169
END SELECT 25, 66, 115, 137-138, 201-204,
208
END STRUCTURE 67, 140, 167

293

Index

END UNION 68, 142, 169
END WHILE 69, 74, 122, 145, 199-200, 208-209
end-of-file 216
end-of-file specifier 223
end-of-line
comments 4
END= 18, 211-212, 221, 223
ENDFILE 60-61, 217, 219, 221
endfilerecord 216
ENDGUESS 74, 209
ENTRY 6, 27, 70, 121, 244, 274-278, 281
entry point 274
EQUIVALENCE 21, 31-32, 71-72, 164, 169,
273-274, 278, 286
ERF 262
ERFC 263
ERR= 221-222
error specifier 222
EXECUTE 58, 73-74, 131, 204-205, 208-209
EXIT 74,193, 195-199, 201, 209-210
EXP 256
exponent 153-154
expression
arithmetic 175
arithmetic constant 176
complex constant 176
double precision complex constant 177
double precision constant 176
evaluation of 184
factor 175
integer constant 176
logical 184
logical constant 184
primary 174
real constant 176
relational 179
term 175
extended assignment statement 190
extension
$ edit descriptor 228
\ edit descriptor 228
E edit descriptor 227
X edit descriptor 228
Z edit descriptor 227
extensions
language 285
summary 285
EXTERNAL 75, 102, 245
external file 217
access 217
name 217
properties 217
record form 218
record length 218

294

external function 271
external function name 70

F edit descriptor 233
file 215, 217
external 217
internal 218
name 217
file existence 217
FILE= 93, 95, 97-98, 112, 114
FLOAT 248
FMT= 124, 147, 221-222
FORM= 112
format 6, 16, 76, 118, 124, 147, 221, 225, 231
field 228
field width 228
list-directed 118-119, 124-125, 147, 222
namelist-directed 119, 124, 147, 222
repeat specification 227
seealso 226
edit descriptor 226
format specification 226
format specifier 221
format-directed 1/0 238
FORMATTED 96
formatted input 125
formatted input/output 216
formatted record 216
FORTRAN 77
language extensions 285
FROM 137, 201
function 6, 27, 77-78, 121, 153, 243-244, 271,
273-276, 278, 285
external 271
external name 70
generic 153
intrinsic 246
statement 243

GAMMA 262
generic function 153
ABS 251
ACOS 260

Index

AINT 250
ANINT 251
ASIN 259
ATAN 260
ATAN2 260
BTEST 268
CMPLX 249
CONJG 255
COS 258
COSH 261
COTAN 259
DBLE 249
DCMPLX 249
DIM 253
ERF 262
ERFC 263
EXP 256
GAMMA 262
IAND 264
IBCHNG 269
IBCLR 268
IBSET 268
IEOR 265
IMAG 255
INT 248
IOR 264
ISHA 266
ISHC 267
ISHFT 266
ISHL 265
LOG 257
LOG10 257
LSHIFT 269
MAX 253
MIN 254
MOD 252
NINT 251
NOT 265
REAL 248
RSHIFT 269
SIGN 252
SIN 258
SINH 261
SQRT 256
TAN 259
TANH 261
generic name 246
GO TO 16-17, 79-81, 131, 188-189, 196, 198,
201, 213
GUESS 12, 62, 83, 206

H edit descriptor 229
hexadecimal constant 156
HFIX 248

hollerith constant 155

|

| edit descriptor 232
11ABS 251
I1AND 264
I1IBCHNG 269
I1BCLR 268
I1BSET 268
I1BTEST 268
11DIM 253
I1IEOR 265
I1LSHIFT 269
ITIMAXO0 253
IIMINO 254
IIMOD 252
IINOT 265
I10R 264
I1IRSHIFT 269
I1SHA 266
I1SHC 267
I1SHFT 266
I1SHL 265
11SIGN 252
12ABS 251
I2AND 264
I2BCHNG 269
I2BCLR 268
I2BSET 268
I2BTEST 268
12DIM 253
I2EOR 265
I2LSHIFT 269
I2MAXO0 253
I2MINO 254
I2MOD 252
I2NOT 265
I20R 264
I2RSHIFT 269
I2SHA 266
I2SHC 267

295

Index

I2SHFT 266
I2SHL 265
I2SIGN 252
IABS 251
IAND 264
IBCHNG 269
IBCLR 268
IBSET 268
ICHAR 250
IDIM 253
IDINT 248
IDNINT 251
IEOR 265
IF 6,9, 54-55, 63, 83-84, 86-87, 193-195, 199,
208-210, 212-213, 274, 289
IFIX 248
IMPLICIT 6, 21, 26, 33, 49, 51, 89-91, 99, 103,
116, 127, 152-153, 285
IMPLICIT NONE 91, 285
implied-DO list 39
INCLUDE 6, 285
INDEX 255
initial line 4
input
formatted 125
list-directed 125
unformatted 126
input/output
formatted 216
unformatted 216
INQUIRE 93, 97-98, 217, 219-220, 287
INT 248
INTEGER 91, 99-101
integer constant 153
integer constant expression 176
integer quotient 177
internal file 218
definition 218
position 218
properties 218
records 218
restrictions 218
INTRINSIC 102, 247, 272-274, 278
intrinsic function 246
ABS 251
ACOS 260
AIMAG 255
AINT 250
ALGAMA 262
ALLOCATED 270
ALOG 257
ALOGI10 257
AMAXO0 253
AMAX1 253

296

AMINO 254
AMIN1 254
AMOD 252
ANINT 251
ASIN 259
ATAN 260
ATAN2 260
BTEST 268
CABS 251
CCOS 258
CDABS 251
CDCOS 258
CDEXP 256
CDLOG 257
CDSIN 258
CDSQRT 256
CEXP 256
CHAR 179, 250
CLOG 257
CMPLX 249
CONJG 255
COS 258
COSH 261
COTAN 259
CSIN 258
CSQRT 256
DABS 251
DACOS 260
DASIN 259
DATAN 260
DATAN2 260
DBLE 249
DCMPLX 249
DCONJG 255
DCOS 258
DCOSH 261
DCOTAN 259
DDIM 253
DERF 262
DERFC 263
DEXP 256
DFLOAT 249
DGAMMA 262
DIM 253
DIMAG 255
DINT 250
DLGAMA 262
DLOG 257
DLOGI10 257
DMAX1 253
DMIN1 254
DMOD 252
DNINT 251
DPROD 253

Index

DREAL 249
DSIGN 252
DSIN 258
DSINH 261
DSQRT 256
DTAN 259
DTANH 261
ERF 262
ERFC 263
EXP 256
FLOAT 248
GAMMA 262
HFIX 248
I1ABS 251
I1AND 264
I1BCHNG 269
I1BCLR 268
I1BSET 268
I1BTEST 268
11DIM 253
I1EOR 265
I1LSHIFT 269
IIMAXO 253
IIMINO 254
IIMOD 252
IINOT 265
I10R 264
I1IRSHIFT 269
I1SHA 266
I1SHC 267
I1SHFT 266
I1SHL 265
I1SIGN 252
I2ABS 251
I2AND 264
I2BCHNG 269
I2BCLR 268
I2BSET 268
I2BTEST 268
12DIM 253
I2EOR 265
I2LSHIFT 269
I2MAXO0 253
12MINO 254
I2MOD 252
I2NOT 265
I20R 264
I2RSHIFT 269
I2SHA 266
I2SHC 267
I2SHFT 266
I2SHL 265
I2SIGN 252
IABS 251

IAND 264
IBCHNG 269
IBCLR 268
IBSET 268
ICHAR 250
IDIM 253
IDINT 248
IDNINT 251
IEOR 265
IFIX 248
INDEX 255
INT 248
IOR 264
ISHA 266
ISHC 267
ISHFT 266
ISHL 265
ISIGN 252
ISIZEOF 176, 270
LEN 254
LENTRIM 254
LGE 263
LGT 263
LLE 263
LLT 264
LOC 270
LSHIFT 269
MAXO 253
MAX1 253
MINO 254
MINL 254
MOD 252
NINT 251
NOT 265
REAL 248
RSHIFT 269
SIGN 252
SIN 258
SINH 261
SNGL 248
SQRT 256
TAN 259
TANH 261
VOLATILE 270

IOR 264

|OSTAT= 97-98, 221-222

ISHA 266

ISHC 267

ISHFT 266

ISHL 265

ISIGN 252

ISIZEOF 176, 270, 287

297

Index

keywords 151

L edit descriptor 236
LEN 254
length specification 26, 34, 100, 104, 128
LENTRIM 254
LGE 263
LGT 263
line
blank 4
comment 4
continuation 4
debug 4
initial 4
list-directed 219

list-directed format 118-119, 124-125, 147, 222

list-directed formatting 238
list-directed input 125
list-directed output 148
LLE 263
LLT 264
LOC 270, 287
LOCATION= 13-15, 43
LOGICAL 103-105
logical assignment statement 188
logical constant 155
logical constant expression 184
logical expression 184

logical disunct 183

logical factor 183

logical term 183
logical operator 181
LOOP 6, 37, 64, 106, 143, 198, 200, 210-211
lower case 5
lower case |etters

in symbolic names 151
LSHIFT 269

298

M

main program 6, 243
MAP 65, 68, 107, 142, 169
MAP, END MAP 21
MAXO0 253
MAX1 253
maximum
number of array elements 160
size of anarray 160
MINO 254
MIN1 254
MOD 252

named common block 21, 31

NAMELIST 108-110, 119, 124, 147, 222,
240-242, 287

namelist-directed format 119, 124, 147, 222

NINT 251

nonrepeatable edit descriptors 228

NOT 265

octal constant 156
OPEN 29, 95, 111-112, 114, 217, 219-220,
231-232, 287
operator
binary 173
precedence 174
relational 179
unary 173
order
statement 7
OTHERWISE 25, 115, 138, 201
output
list-directed 148

Index

P edit descriptor 230

PARAMETER 6-7, 21, 28, 91, 116, 118, 124,
147, 157, 184, 222, 273-274, 278

PAUSE 117, 288

positional edit descriptor 229

preconnection 219

PRINT 76, 108, 118-120, 131, 189, 205, 209-210,
215, 217, 223, 225, 229-230, 232-233,
235-237, 240

printing 223

PROGRAM 6, 121, 243, 274

program unit 4, 243

QUIT 12, 64, 83, 88, 106, 122, 193, 195-199,
201, 206-209

READ 18, 57, 108, 110, 123-126, 211-212, 215,
218-219, 240, 242

REAL 127-129, 248
real constant 153
real constant expression 176
REC= 126, 149, 221-222
RECL= 96, 112, 114
record 21, 130, 140, 167, 216

endfile 216

fixed length 215

form 218

formatted 216

length 218

unformatted 216

variable length 215
record specifier 222
RECORDTYPE= 113
relational expression 179
relational operator 179
REMOTE BLOCK 58, 73, 131, 204-205
repeatable edit descriptor 227

RETURN 32, 46, 56, 121, 132, 135, 213, 271,
274, 276-277, 279, 288

REWIND 61, 133-134, 219, 221

RSHIFT 269

S edit descriptor 230
SAVE 21, 32, 121, 135, 164, 273-274, 276, 278
scale factor 230
SELECT 6, 25, 66, 115, 137, 201-203
sequence field 4
SEQUENTIAL 95
sequential access 217
SHARE= 113
SIGN 252
simple real constant 153
SIN 258
SINH 261
slash edit descriptor 230
SNGL 248
SP edit descriptor 230
specific name 246
specifier
end-of-file 223
error 222
format 221
record 222
status 222
unit 221
SQRT 256
SS edit descriptor 230
STAT= 13-14, 42
statement 4
statement function 6, 243
statement label 4
statement label assignment 188
statement order 7
status specifier 222
STATUS= 30, 112
STOP 46, 132, 139, 213, 276, 288
string constant 155
structure 67, 140, 152, 167
STRUCTURE, END STRUCTURE 21
subprogram 6, 243
block data 39
subroutine 6, 23, 121, 141, 243-244, 273-278,
281
name 70
subscript 160

299

Index

subscript expression 161

subscript value 161

substring 165

substring expression 165

substring name 165

symbolic names 151
dollar sign ($) in 151
lower case lettersin 151
underscore () in 151

T edit descriptor 229
TAN 259

TANH 261

TL edit descriptor 229
TR edit descriptor 229

unary operator 173
underscore ()

in symbolic names 151
UNFORMATTED 96
unformatted input 126

unformatted input/output 216

unformatted record 216
UNION 68, 107, 142, 169
UNION, END UNION 21
unit 219

unit specifier 221

UNIT= 19, 29, 60, 93, 98, 111, 124, 147, 221-222
UNTIL 74, 106, 122, 143, 145, 200, 208-209, 289

VOLATILE 144, 270

300

w

WHILE 6, 9, 37, 69, 143, 145-146, 199-200, 210,
289
WRITE 108, 147-149, 215-218, 223, 240

X edit descriptor 229

Z edit descriptor 237

