
Open Watcom

Developer’s Guide

First Edition

Notice of Copyright
Copyright  2002-2006 the Open Watcom Contributors. Portions Copyright  1984-2002
Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.S.A.

ii

Table of Contents
Introduction ... 1

1 Project Overview ... 3
1.1 History .. 3
1.2 Guided Tour .. 4
1.3 The bld directory .. 5

2 First Steps .. 11
2.1 Connecting up ... 11
2.2 Gearing up for Building .. 11

Building ... 13

3 Build Architecture ... 15
3.1 Makeinit .. 15
3.2 Project Names ... 16
3.3 Makefiles .. 16
3.4 Requirements To Build ... 17
3.5 The Runtime DLL Libraries ... 18
3.6 Memory Trackers .. 19
3.7 The Clean Target .. 19
3.8 Pmake Support .. 19
3.9 Misc Conventions ... 21
3.10 DLLs and Windowed Apps .. 21
3.11 Include Paths ... 22
3.12 Executive Summary .. 22

4 Technical Notes ... 25
4.1 32-bit Windows run-time DLLs ... 25

5 Build Process ... 27
5.1 Builder .. 27
5.2 Pmake ... 28

6 Testing ... 29
6.1 Running the tests .. 30

Style ... 33

7 Programming Style ... 35

iii

Table of Contents
7.1 Source file structure .. 35
7.2 Help the compiler and it will help you ... 36

Documentation .. 39

8 Producing Documentation ... 41
8.1 Setting up .. 41
8.2 Building PostScript Documentation ... 42
8.3 Building Online Help Documentation .. 42
8.4 Editing the Documentation ... 43
8.5 Diagnostic Messages .. 46

iv

Introduction

Introduction

2

1 Project Overview

This document serves as an introduction and a guide for developers of the Open Watcom
compilers and tools. It is not particularly useful for the users (who are also developers) of
Open Watcom compilers — they are encouraged to read the User’s Guide, Programmer’s
Guide, C Language Reference and other user oriented books.

It should not be assumed that this book is in any way final or the ultimate reference. Readers
are encouraged to add, change and modify this document to better reflect evolution of the
Open Watcom project.

1.1 History
The history of the Open Watcom project is rather long, in terms of Interned years it would
probably span millennia. The origins can be traced back to 1965. That summer a team of
undergraduate students at the University of Waterloo develped a FORTRAN compiler (called
WATFOR) that ran on the University’s IBM 7040 systems. The compiler was soon ported to
IBM 360 and later to the famous DEC PDP-11.

In early 1980s a brand new version of the compiler was created that supported the FORTRAN
77 language. It ran on two platforms, the IBM 370 and the emerging IBM PC. The PC
version of WATFOR-77 was finished in 1985 and in the same year support for Japanese was
added. In 1986, WATFOR-77 was ported to the QNX operating system.

The early compilers were written in a portable language called WSL or Watcom Systems
Language. In late 1980s the developers rewrote the existing code in C and from then on all
new developments were done on C, later with traces of C++ here and there.

In parallel to the FORTRAN compilers Watcom developed optimizing C compilers. When
the first PC version (Watcom C 6.0) was introduced in 1987, it immediately attracted attention
by producing faster code than other compilers available at that time.

In 1988 work started on an advanced highly optimizing code generator that supported both the
C language and FORTRAN and was portable across multiple platforms. Generation of tight
code, availability on multiple platforms (DOS, Windows, OS/2 and Windows NT in one
package) and the ability to cross-compile made Watcom C and C++ compilers quite popular

History 3

Introduction

in mid-1990s. Around 1993-1996, nearly all DOS games were developed with Watcom C,
including famous titles such as DOOM, Descent or Duke Nukem 3D.

Watcom International, Inc. had other successful products besides its highly acclaimed
compilers. VX-REXX was a popular GUI RAD tool for OS/2 and Watcom SQL was a
cross-platform "embeddable" SQL database.

In mid-1990s, Watcom International, Inc. was acquired by PowerSoft, the maker of Power++,
PowerDesigner and other GUI RAD tools for the Windows platform. PowerSoft used
Watcom compiler technology as a back-end for their GUI tools besides continuing to market
and develop existing Watcom tools.

PowerSoft itself had merged with Sybase, Inc. in 1994. PowerSoft’s development tools
nicely complemented Sybase’s database servers. Sybase was also interested in Watcom SQL
which was enhanced and turned into Sybase SQL Anywhere.

Sybase continued to sell Watcom C/C++ and FORTRAN compilers version 11 but it was
obvious that Sybase couldn’t compete with Microsoft in the languages market. Sybase
decided to end-of-life the Watcom compilers effective 2000.

But that’s not the end of the story. Many customers did not want to give up the Watcom
compilers because there was no suitable replacement in many areas. One of these customers
was Kendall Bennett of SciTech Software, Inc. SciTech entered into negotiations with Sybase
and in an unprecedented move, Sybase agreed upon open sourcing the Watcom compilers and
tools. One of the reasons why this was possible at all was the fact that Watcom had very little
reliance on third-party tools and source code and had developed practically everything
in-house, from YACC to IDE.

The process of opening the source was longer than originally anticipated (all software related
projects tend to work out this way for some inexplicable reason) but in the first half of 2002,
the source was finally made available under the Sybase Open Watcom Public License version
1.0.

1.2 Guided Tour
This section will take you on a guided tour of the Open Watcom source tree, presenting an
overview of its structure and highlighting some of the more memorable sights.

The Open Watcom directory structure mostly mirrors the layout used by the Watcom/Sybase
build server but it has been cleaned up, straightened out and unified, although there still may
be some warts.

4 Guided Tour

Project Overview

The root of the Open Watcom directory tree can be in the root of any drive (if your OS uses
drive letters) or in any directory, for instance e:\ow. Long filenames are not recommended
if compatibility with DOS tools is desired. Directory names which include spaces are highly
discouraged in any case.

The main subdirectories in the Open Watcom root are the following:

bat currently contains mostly useless batch files and several useful ones. One
extremely important file lives here: makeinit. This file controls the operation of
wmake and is the key to understanding of the build process. Since wmake looks
for makeinit along the PATH, the bat directory should be placed at or near the
start of your PATH environment variable.

bin, binp contains miscellaneous binaries used in the build process. The binp directory
contains OS/2 executables, bin contains DOS or Win32 executables.

bld is the directory where it’s at. It contains all the Open Watcom source code. It is
so important (and huge) that it deserves its own section.

docs contains source files for the Open Watcom documentation as well as binaries
needed to translate the sources into PostScript, HTML or various online help
formats. The source files of this document are stored under this directory. For
more information please refer the the chapter entitled Documentation later in
this manual.

rel2 is the "release" directory is where the binaries and other files produced in the
course of the build process end up. The structure of this directory mirrors the
WATCOM directory of a typical Open Watcom installation.

1.3 The bld directory
Following is a brief description of all subdirectories of bld. Each subdirectory roughly
corresponds to one "project". There’s a lot of projects!

as the Alpha AXP and PowerPC assembler. The x86 assembler lives separately.

aui user interface library employed by the debugger and profiler.

bdiff binary diff and patch utilities.

bmp2eps a utility for converting Windows bitmap files into EPS format, used for building
documentation.

The bld directory 5

Introduction

brinfo part of the C++ source browser.

browser the GUI C++ source browser.

build directory holding build related files such as binaries used internally during build
process and several master make include files which lie at the heart of the build
system. Worth visiting!

builder builder tool controlled by those lang.ctl files that are all over the place.

causeway the popular CauseWay DOS extender, in a form buildable with Open Watcom
tools.

cc the C compiler front end.

cfloat utility function for conversion between various floating point binary formats.

cg Open Watcom code generators, the heart of the compilers. These are shared by
all languages (C, C++, FORTRAN). Currently supported targets are 16-bit and
32-bit x86 as well as Alpha AXP.

clib the C runtime library. Pretty big project in itself.

cmdedit command line editing utilities, pretty much obsolete.

comp_cfg compiler configuration header files for various targets.

cpp a simple C style preprocessor used by several other projects.

ctest C compiler regression tests. Run them often.

cvpack the CV pack utility (for CodeView style debugging information).

diff Open Watcom version of the popular utility.

dig files used primarily by the debugger — this directory contains files that are
shared between debugger, profiler, trap files and Dr. Watcom.

dip Debug Information Processors, used by debugger. The DIPs provide an
interface between the debugger and various debug information formats.

dmpobj a simple OMF dump utility.

6 The bld directory

Project Overview

dwarf library for reading and writing DWARF style debugging information.

editdll interface modules between the IDE and external editors.

emu 80387 emulator library.

emu86 8087 emulator library.

f77 FORTRAN 77 compiler front end, runtime library, regression tests and samples.
All the FORTRAN stuff is crowded in there.

fe_misc miscellaneous compiler front-end stuff shared between projects.

fmedit form edit library, part of the SDK tools.

graphlib Open Watcom graphics library for DOS.

gui GUI library used by IDE, debugger, source browser and other tools.

hdr source files of header files distributed with the compilers.

help character mode help viewer (WHELP).

idebatch batch processor for the IDE.

lib_misc miscellaneous files shared between clib and other tools.

mad Machine Architecture Description used by debugger.

mathlib the math library.

misc stuff that didn’t fit anywhere else. Not much really.

mstools Microsoft clone tools, front ends for compilers and utilities.

ncurses a version of the ncurses library used by Linux console tools.

ndisasm the "new" disassembler supporting variety of file format and instruction sets.
Very handy.

nwlib the "new" library manager.

online place for finished online help files and associated header files.

The bld directory 7

Introduction

orl Object Reader Library, reads OMF, COFF and ELF object files.

os2api headers and libraries for the OS/2 API (both 16-bit and 32-bit).

owl Object Writer Library, brother of ORL.

pgchart presentation graphics and chart library for DOS (part of the graph library).

plusplus another huge directory containing all C++ stuff. Compiler, runtime libraries, all
that.

plustest C++ regression test utilities. Extremely worthy of the attention of compiler
developers.

pmake parallel make, tool used in the build process to roughly control what gets built.

posix a bunch of POSIX utilites like cp, rm and so on. Not suffering from creeping
featuritis but they do the job and they’re portable.

rcsdll interface to various revision control systems, used by IDE and editor.

re2c regular expression to C converter, used in C++ compiler build.

redist miscellaneous redistributable files.

rtdll C, C++ and math runtime DLLs.

sdk SDK tools like resource editor, resource compiler or dialog editor. Also the
home of wres library which is used by many other projects.

setupgui source for the Open Watcom installer.

src sample source code distributed with the compiler, some of it is used in the
documentation.

ssl internal tool used for debugger builds.

techinfo ancient system information utility.

trap trap files (both local and remote), the heart of the debugger containing platform
specific debugging code. Heavy stuff.

trmem memory tracker library (good for discovering and plugging memory leaks).

8 The bld directory

Project Overview

ui user interface library.

vi Open Watcom vi editor, clone of the popular (or not) Unix editor.

viper the Open Watcom IDE.

viprdemo IDE demo program.

w16api headers and libraries for the Windows 3.x API.

w32api headers and libraries for the Win32 API.

w32loadr loaders for OS independent (OSI) binaries.

wasm the x86 assembler. Large parts of the source are shared between standalone
wasm and inline assembler support for compilers targeting x86 platforms.

watcom contains internal headers and libraries shared by many projects.

wclass an Open Watcom C++ class library.

wdisasm old x86 disassembler, nearly obsolete.

whpcvt Watcom Help Converter used for producing online documentation.

wic utility for converting include files between various languages.

win386 the Windows 386 extender.

wl the Open Watcom linker, also contains the overlay manager library.

wmake the make utility.

womp Watcom Object Module Processor, primarily for conversion between debug info
formats. Some source files are shared with other projects.

wpack simple file compression/decompression utility.

wpi macros and helper functions for facilitating development of Windows and OS/2
GUI programs from single source code.

wprof the Open Watcom profiler.

The bld directory 9

Introduction

wsample the execution sampler, companion tool to the profiler.

wstrip strip utility for detaching or attaching debug information and/or resources.

wstub stub program for DOS/4GW.

wtouch a touch utility.

wv the debugger (used to be called WVIDEO, hence the name).

yacc Watcom’s version of YACC used for building compilers/assemblers.

As you can see, there’s a lot of stuff! Some of these projects contain specific documentation
pertaining to them, usually located in a directory called ’doc’ or somesuch. For the most part,
the truly uptodate and comprehensive documentation is the source code.

10 The bld directory

2 First Steps

This chapter briefly describes the prerequisite steps necessary to build and/or contribute to the
Open Watcom project — how to get the source code and how to set up the build environment.

2.1 Connecting up
The most uptodate version of the Open Watcom source code lives on the Open Watcom
Perforce server. It is possible to go straight to the Perforce repository but most people will
find it much easier to get a source archive first. The source archives can be found at the Open
Watcom web site, http://www.openwatcom.org/ along with latest information on
Perforce setup. You will generally need a working installation of the previous release of
Open Watcom C/C++ and some free disk space to burn (one gigabyte should do).

The Open Watcom source tree can be located in any directory on any drive. After extracting
the source archive you will find a very important batch file called setvars in your Open
Watcom root directory. This will set up a bunch of necessary environment variables but first
you’ll have to edit it to reflect your directory structure etc. It also contains the necessary
Perforce settings.

Now is the time to connect to Perforce. Again, most uptodate information can be found on the
Open Watcom web site. If you followed the instructions correctly, no servers are down and
no other unpredictable (or maybe predictable) things happened, you will have brought your
source tree to the latest revision (aka tip or head revision).

2.2 Gearing up for Building
Before you start building the Open Watcom tools proper, you will need to build several helper
tools: builder, pmake, cdsay and a few others. These tools have to be built manually because
the build process won’t work without them.

The tools can be found in appropriately named subdirectory of the bld directory, which is
named builder (showing complete lack of imagination).

Gearing up for Building 11

Introduction

To build the required executables, go to a subdirectory of the project builder directory which
sounds like it would be appropriate for your host platform and run wmake. If you set up
everything correctly, you will end up with working binaries that were automatically copied
into the right subdirectory of the build directory, and that directory is already on the PATH.
If not, it’s back to square one — the most likely source of problems is incorrectly set up
setvars batch file.

If you’ve got this far — congratulations, you’ve finished the one-time steps. You shouldn’t
need to redo them unless you decide to start from scratch, your harddrive decides to die or
some similarly catastrophic event occurs.

You should now read the next chapter that describes the build architecture and also lists the
magic incantations necessary to invoke builds.

12 Gearing up for Building

Building

Building

14

3 Build Architecture

In an effort to clean up the build process, make it easier for projects to compile on various
people’s machines and allow for easier ports to other architectures, every project which is
developed under the Open Watcom Project should follow certain conventions as far as
makefile layout is concerned. This section describes the conventions and requirements for
these makefiles, as well as the steps needed to get projects to compile.

For those who do not desire a lecture on the preparation and maintenance of makefiles, feel
free to skip straight to the Executive Summary at the end.

Every development and build machine must have the mif project (bld\build\mif) installed.
That is taken care of by uncompressing the Open Watcom source archive and/or syncing up
with Perforce.

3.1 Makeinit
All the magic starts with makeinit. Every development machine must have a makeinit file
with the following defined therein:

mif_dir: must point to the directory in which the mif project has been installed

lang_root: the location of the installed (Open) Watcom compiler

For each project with name X you wish to have on the build machine, X_dir must be set to
the directory containing the project. That is, if you want the code generator on your machine
(and who wouldn’t?), it is officially named cg (see Project Names below) and so you would
define cg_dir.

Alternatively, if all of your projects are in directories which correspond to their project names
under a common directory, you can set dev_dir and !include cdirs.mif in your makeinit. This
is the recommended setup and default for Open Watcom. You do not have to take any extra
action to use it.

Alternatively, you can do the above and then redefine X_dir for any projects which are not
under the dev_dir.

Makeinit 15

Building

3.2 Project Names
Each project must be given a unique name, which should also be a valid directory name under
FAT file systems (8.3 convention).

3.3 Makefiles
Each makefile should be located in the object file directory - ie. no more of this silly cd’ing
into the object directory based on crystal-balls and what not. The makefile must define the
following:

host_os: os which the resulting executable code will run on

host_cpu: architecture which the resulting executable code will run on.

proj_name: the project name

Valid values for host_cpu are 386, i86, axp, ppc. These should be self-explanatory. Valid
values for host_os are dos, nt, os2, nov, qnx, win, osi, linux. These should be
self-explanatory for the most part, with one possible exception: osi stands for OS
Independent, the executables can run on multiple OSes if appropriate loader stub is provided.

The makefile must then include cproj.mif. This will define all sorts of make variables, which
can then be used to build the project. A list of the most important of these variables and what
they can be used for is included below.

A makefile should also include deftarg.mif, for definition of the required clean target, and
defrule.mif, which has the default build rules for C, C++ and assembly sources. A makefile is
free to override these defaults as long as it follows the following conventions:

1. Tools which have macros defined for them must be referred to by the macros -
these are currently (any additions should be brought to my attention):

$(CC): The C compiler

$(CPP): The C++ compiler

$(LINKER): The linker

$(LIBRARIAN): The librarian

16 Makefiles

Build Architecture

$(AS): The assembler, if applicable

$(RC): The resource compiler

$(EDIT): Our VI editor

$(YACC): Our version of yacc

$(RE2C): The regular-expression to C compiler

2. When referring to other projects, a makefile should use the X_dir macro, where X
is the name of the project.

3.4 Requirements To Build
A project should be able to build either a -d2 (if release_$(proj_name) != 1) or
releaseable (if release_$(proj_name) == 1) executable providing the following are
done:

• the project is uptodate and $(proj_name)_dir is set correctly

• the mif project is uptodate and make knows to look for .mif files in there

• lang_root is set

• all depended upon projects are uptodate and have $(proj_name)_dir set correctly

• all depended upon projects have been built

• any required executables from under bld\build are in the path

Note that there are no other requirements here — it is very annoying when a project requires
you to define handles for tools, create directories in which it can deposit stuff, scrounge up
obscure tools from who knows where or pretend to be Jim Welch in order to get a debuggable
version of the executable.

There is more than one way to switch between development and release build. A
DEBUG_BUILD environment variable provides global control. When set to 1, debug builds
are produced, otherwise release builds are created. When building individual projects with
wmake, it is also possible to give the release macro on the wmake command line (0 means
debug build, 1 means release build).

Requirements To Build 17

Building

Perhaps it should be noted that "releasable" build still contains debugging information, but
only at the -d1 level and in a separate .sym file. In case of crashes or other highly unusual
behaviour, release build should be enough to point you in the right direction but usually not
sufficient to fully diagnose and rectify the problem.

Now, if you wish to allow certain abberant behaviours based upon cryptic make variables, that
is fine, as long as the project can build both a debuggable (ie full -d2) version as well as a
release (ie no -d2, -d1 only and no memory tracker) version without these things being set.
That is, if you want stupid stuff in your makeinit — fine, but don’t require others to do this in
order to build the project.

Any non-standard makefile variables which you do use should be prepended by the name of
your project and an underscore, to prevent namespace clutter and clashes.

Tools required to build are an issue that will have to be handled on a case-by-case basis. For
example, stuff to bind up DOS protected mode apps will likely be added to the standard suite
of tools available, and macros made for them. Before we do this, we should standardize on
one extender and use it wherever possible. Any small special purpose tools should be checked
in along with the project and built as part of the build process (so that we don’t have to check
in zillions of binaries for all supported platforms). An important future consideration will be
the ability to build on a different architecture. Please try and avoid weirdo tools that have no
hope of running on an Alpha or PPC running NT or on Linux. More general tools (yacc, re2c,
w32bind) that are likely to be used by several projects should be copied up into the bin
directories under bld\build — bin for DOS, binp for OS/2, binl for Linux and binnt for some
other OS, forget which. These tools should be referenced from the makefile as
$(bld_dir)\tool. If your tool cannot run under a particular OS, you should at least put
a batchfile in that bin which echoes a message to that effect (to alert people to the fact that
you’ve just made their life difficult).

3.5 The Runtime DLL Libraries
If you set $(proj_name)_rtdll = 1, the -br switch should be thrown for you
automatically, providing the target os supports it.

18 The Runtime DLL Libraries

Build Architecture

3.6 Memory Trackers
The memory tracker is an useful development aid — it tracks all dynamic memory allocations
and deallocations, making it easy to spot memory leaks and helping to pinpoint heap
corruption or other unsociable behaviour that so rarely happens in our code.

If the memory tracker is an optional part of your project, and independant of the release mode,
it is suggested that you enable it if $(proj_name)_trmem is set to 1, and disable it
otherwise.

The source to the memory tracker can be found in bld\trmem.

3.7 The Clean Target
Each makefile should support a clean target. This should not be part of the default target list,
and should delete every makefile generated file. Which means that after running "wmake
clean", the directory should look exactly like a new installation of the project on a bare drive.
!including deftarg.mif should do for most people who do not get creative with file extensions
or generated source files. If you do get creative, you may still use the default clean rule if you
define the additional_cleanup macro that will identify your fancy file names and/or
extensions.

Do not underestimate the importance of proper cleanup. It guarantees that every part of a
project can be built from scratch, ensuring that there will be no nasty surprises when stuff
breaks for people after a clean install just because you had a generated file hanging around
and never discovered that it can no longer be made.

3.8 Pmake Support
Every makefile should contain a pmake line at the top. Pmake is a tool which was invented in
order to make life easier with the clib project — most people are not interested in building all
40+ versions of the clib when they’re working on just one version. Pmake, when run from a
root directory, crawls down all subdirectories looking for files called makefile. When it finds
one, it checks to see if there is a wmake comment which looks like:

#pmake: <some identifiers>

If there is such a comment, and any identifiers in the list given to pmake appear in the list after
the colon, then wmake is invoked in that directory. This provides a handy way to control

Pmake Support 19

Building

selective builds and destroys. Some tokens which should be used by the appropriate
makefiles are:

all is implicit in every makefile and does not need to be listed explicitly

build indicates that wmake should be run in this directory as part of the build process

os_x for each x in the list of the valid host_os tokens (os_nt, os_dos, etc)

cpu_x for each x in the list of the valid host_cpu tokens (cpu_386, cpu_ppc, etc)

target_x for each x in the list of valid host_cpu tokens (for compilers and targetted apps)

tiny, small, compact, medium, large, huge, flat, nomodel
the memory model

inline, calls whether an app uses inline 8087 stuff or fp calls

For example, an executable which is going to run on the PPC version of NT should have a
pmake line which contains, at a minimum:

#pmake: build os_nt cpu_ppc

Pmake also supports the concept of priority. The priority is specified as /nnn after the #pmake
but before the colon (:) like so:

#pmake/50: build os_nt cpu_ppc

Makefiles with lower priority are visited first. The default priority if not explicitly specified is
100. Pmake will visit subdirectories in depth first traversal order unless changed by the -r
option or the priority value.

You are free to add as many mnemonic identifiers as you want, of course, but anything which
you feel is an abstract classification that would apply to other projects, please bring to our
collective attention and if deemed useful, it will get added to the appropriate places (and the
list above).

For an example of where this is useful, if we suddenly found out that our NT headers were
bogus and everything including them needed a recompile, we could do the following on the
build machine: "pmake os_nt -h clean & pmake os_nt -h".

Another very useful property of this setup is that it allows people to build libraries/binaries
only for their host platform. This is especially convenient if they don’t have all the necessary
SDKs, Toolkits and whatnot installed and/or cannot run some or all of the platform specific

20 Pmake Support

Build Architecture

tools required during builds. And this situation is the norm rather than exception — only
dedicated build servers usually have all necessary files in place.

3.9 Misc Conventions
To make it easy to see what projects are required to make a given project, all needed projects
should be listed in a makefile comment in the main makefile of the dependant project.
Hopefully, this main makefile should be called master.mif and be in the root directory, or a
mif subdirectory thereof, of the project.

Also, it is suggested that the object file directory name be a combination of the host_os
followed by the host_cpu, if convenient. For example, NT versions for the PPC should be
genned into a ntppc directory. If a directory structure which is different than this is used for
some reason, then comments explaining exactly what is built where would be nice in the
master.mif file.

Things get more interesting if cross compilers are thrown into the mix. In that case three
components are required in the name: for instance a ntaxp.386 directory can hold the Alpha
AXP NT compiler producing 386 code.

This is also why the macro names are somewhat counterintuitive — most people would think
of the host_os and host_cpu, as target OS and CPU. However, the ’target’ designation
is reserved for the target architecture of the generated binary. In the above case of a compiler
that runs on Alpha AXP NT and produces 386 code, the makefile contains:

host_os = nt
host_cpu = axp
target_cpu = 386

3.10 DLLs and Windowed Apps
Set host_os and host_cpu as normal, and then, if creating a windowed app, set
sys_windowed = 1. If creating a DLL, set sys_dll = 1. Delightfully simple.

DLLs and Windowed Apps 21

Building

3.11 Include Paths
The inc_path macro is composed of several other variables. Projects are able to hook any
of these variables by redefining them after cproj.mif is included. The current structure looks
like this:

inc_path = inc_dirs | inc_dirs_$(host_os) |
inc_dirs_sys
inc_dirs_sys = inc_dirs_lang | inc_dirs_sys_$(host_os)
inc_dirs_lang = $(lang_root)\h

So, a project should put any include directories it needs into inc_dirs — note that this does not
include $(watcom_dir)\h which is part of the default include directory set.

If it needs to, a project can override any and all of these — for instance, the clib needs to be
built with the next release header files, and so would redefine inc_dirs_lang.

Any OS-specific header files needed by the project can be set in inc_dirs_$(host_os)
— again, this should not include the standard system header files, which will be defined in
inc_dirs_sys_$(host_os).

Note that the build system previously used to set the INCLUDE environment variable to hold
the contents of inc_dirs macro. This mechanism is now considered obsolete and should no
longer used. Instead, include paths are passed directly on the command line. This also means
that all include paths must be prepended with a -I switch, for example:

inc_dirs_sys_nt = -I$(lang_root)\h\nt

3.12 Executive Summary
In order to convert a project to this new structure or create a new (and conforming) project, do
the following:

1. Create an object file directory for each combination of host_os/host_cpu under your
project.

2. Give your project a name, for instance Foo.

3. Create a master.mif in the root of your project.

4. Put all the normal makefile gear in this master.mif.

22 Executive Summary

Build Architecture

5. Add proj_name = Foo to the top of master.mif

6. Include the following files (in this order) cproj.mif, defrule.mif, deftarg.mif in
master.mif

7. Add inc_dirs = {list of directories, separated by spaces and each prepended
with -I, which your project needs in include path - this does not include OS-specific
includes (ie \lang\h\win)}

8. Add extra_c_flags = {list of c flags, not including optimization, -w4, -zq.
-we and memory model info, needed to compile your application} These should be
host_os/host_cpu independent.

9. Add extra_l_flags = {list of linker directives, not incuding system or debug
directives} Should be host_os/host_cpu independent.

10. Use following to compile: $(cc) $(cflags) filename etc...

11. Use following to link: $(linker) $(lflags) file { list of obj files }

12. Use following to create libraries: $(librarian)

13. In each object file directory, create a makefile which looks like the following:

#pmake: build os_X cpu_Y
host_os = X
host_cpu = Y
!include ..\master.mif

That’s it! The only downside is that sticking to these guidelines will make everyone’s life less
exciting.

Executive Summary 23

Building

24 Executive Summary

4 Technical Notes

4.1 32-bit Windows run-time DLLs
Most of Open Watcom run-time Windows DLLs have predefined loading address. Bellow is
table with address for each DLL.

0x69000000 wppdxxxx.dll (C++ compiler)
0x69400000 wccdxxxx.dll (C compiler)
0x69800000 wrc.dll (Resource compiler)
0x69900000 wr.dll (Resource library)
0x69c00000 wlink.dll (Linker)
0x6a000000 wlib.dll (Librarian)
0x6e800000 javavm.dll (Debugger DIP)
0x6e900000 all trap dlls (Debugger TRAP)
0x6eb00000 madx86.dll (Debugger MAD)
0x6ec00000 export.dll (Debugger DIP)
0x6ed00000 codeview.dll (Debugger DIP)
0x6ee00000 watcom.dll (Debugger DIP)
0x6ef00000 dwarf.dll (Debugger DIP)
0x6fa00000 wrtxxxx.dll (run-time DLL combined C, math
and C++ library)
0x6fd00000 plbxxxx.dll (run-time DLL C++ library)
0x6fe00000 clbxxxx.dll (run-time DLL C library)
0x6ff00000 mtxxxx.dll (run-time DLL math library)

You shouldn’t use these addresses for your own DLLs.

32-bit Windows run-time DLLs 25

Building

26 32-bit Windows run-time DLLs

5 Build Process

We use the (Open) Watcom C/C++ compilers and Watcom wmake to build our tools, but at
the top level we have a custom tool which oversees traversing the build tree, deciding which
projects to build for what platforms, logging the results to a file, and copying the finished
software into the release tree (rel2), making fully automated builds a possibility. If nothing
goes wrong that is.

5.1 Builder
This wondrous tool is called builder. You can see bld\builder\builder.doc for detailed info on
the tool and/or look at the source if the documentation doesn’t satisfy you.

So how does builder work? Each project has a lang.ctl builder script file. If you go to a
project directory and run builder, it will make only that project; if you go to bld and run
builder, it will build everything under the sun. The overall build uses bat\lang.ctl which
includes all of the individual project lang.ctl files that we use. Note that if you run builder, it
will traverse directories upwards until it finds a lang.ctl (or it hits the root and still doesn’t
find anything, but then you must have surely done something wrong). Results are logged to
build.log in the current project directory and the previous build.log file is copied to build.lo1.
The log file contains captured console output (both stdout and stderr).

Common commands:

builder build — build the software

builder rel2 — build the software, and copy it into the "rel2" release tree

builder clean — erase object files, executables, etc. so you can build from scratch

Builder 27

Building

5.2 Pmake
Many of the projects use the "pmake" features of builder (see builder.doc) or standalone
pmake tool. If you want to see its guts, the pmake source is in bld\pmake.

Each makefile has a comment line at the top of the file which is read by pmake. Most of our
lang.ctl files will have a line similar to this:

pmake -d build -h ...

this will cause wmake to be run in every subdirectory where the makefile contains "build"
on the #pmake line. See for instance the C compiler makefiles (in bld\cc) for an example.

You can also specify more parmeters to build a smaller subset of files. This is especially
useful if you do not have all required tools/headers/libraries for all target platforms.

For example:

builder rel2 os_nt

will (generally) build only the NT version of the tools.

A word of warning: running a full build may take upwards of two hours on a 1GHz machine.
There is a LOT to build! This is not your ol’ OS kernel or a single-host, single-target C/C++
compiler.

It is generally possible to build specific binaries/libraries by going to their directory and
running wmake. For instance to build the OS/2 version of wlink you can go to bld\wl\os2386
and run wmake there (note that the process won’t successfully finish unless several required
libraries had been built). Builder is useful for making full "release" builds while running
wmake in the right spot is the thing to do during development.

Happy Building!

28 Pmake

6 Testing

There is undoubtedly a question on your mind: Now that I have the Open Watcom compilers,
libraries and tools built, what do I do next? The answer is simpler than you may have
expected: Ensure that what you built actually works.

Fortunately there is a number of more or less automated test available in the source tree.
Currently these tests are not part of the build process per se, although that might (and perhaps
should) change in future.

There are two major classes of situations when the tests should be run:

• After building on a fresh system for the first time, running (and passing) the tests
verifies that what was built behaves at least somewhat as expected. In this case it might
be prudent to run as many tests as possible, especially when building on a new, not yet
widely tested platform.

• After making modifications to a particular tool or library, run the appropriate tests
exercising the component (if available) to ensure that the changes didn’t cause any
serious regressions.

If a bug is discovered and fixed, it is a good practice to code up a simple test verifying the fix.
That way we can prevent (or at least expediently discover) regressions in future builds. In
other words, we won’t be embarrassed by the same bug cropping up again. Just because
commercial compiler vendors occasionally have this problem doesn’t mean we have to as
well!

Passing the automated tests can never completely guarantee that everything works perfectly as
designed, but it does let you sleep easier at night, comfortable in the knowledge that there
aren’t any really major problems.

Testing 29

Building

6.1 Running the tests
This section maps the major test nests and gives brief description on how to run the tests and
how they’re constructed. There is often a single batch file or script that will build and run all
the tests for a given project, the end result being either "all set to go" or "we have a bug
infestation problem at location xyz, send out bug swat team immediately".

To make automated testing feasible, the test programs do not require user input (unless they
were testing user input of course). Some test programs do their work and then decide whether
everything worked as expected or not and output a message to that effect. Other test programs
ouput messages mapping their progress as they go and the output is then compared with a file
containing the ’good’ output. Which method exactly is used depends mostly on what is being
tested. When testing error and warning messages printed by the compilers and tools, it is
natural to compare the captured output to the expected text. When testing the runtime library
for instance, it makes sense for the test program itself to decide whether the function call
results are what was expected.

Now we’ll go through the projects alphabetically and make a stop whenever there’s something
interesting to see. Note that not all of the tests are automated, the really extensive tests are
however. Being a lazy folk, programmers are likely to bang together an automated test suite if
that helps them avoid babysitting the tests.

as In bld\as\alpha\test there are several tests exercising the Alpha AXP assembler,
using C wrappers for infrastructure.

aui Not a real test, nevertheless the sample programs in bld\aui\sample are useful in
demonstrating and informally testing the user interface library.

brinfo In bld\brinfo\test there is a simple browser information test program.

browser Tests exercising the class browser are located in bld\browser\test.

cg In cg\test\far16 there is a test exercising the __far16 keyword. Real code
generator tests are found elsewhere.

clib The C runtime library tests are located in bld\clib\qa. These tests are not terribly
comprehensive but they do verify the basic C runtime functionality.

gui Again not a real test, there is a GUI library sample in bld\gui\sample.

ndisasm Tests for the ’new’ disassembler (not many at this point) are located in
bld\ndisasm\test.

30 Running the tests

Testing

orl The Object Reader Library tests are in bld\orl\test.

plustest This project holds the test suite. Ostensibly designed to exercise the C++
compiler, the tests also verify the functionality of the code generator and some
are designed for the C compiler. Running these tests can take a while as there
are over a thousand test cases. Highly recommended.

ssl In bld\ssl\test there are several simple test scripts for SSL.

trmem While the memory tracker is not a test, it bears mentioning here. This can be
used for testing many other projects for memory leaks, memory overwrites and
other cases of rude behaviour.

viprdemo Again not a test per se, the ’Viper demo’ is a good way to verify basic IDE
functionality.

wasm Extensive assembler test can be found (rather predictably) in bld\wasm\test.

wdisasm Tests for the ’old’ disassembler are located in bld\wdisasm\test.

wmake Extensive make utility tests can be found in bld\wmake\reg and
bld\wmake\regress.

wprof A profiler test program is located in bld\wprof\test.

yacc Several sample/test YACC input files are in bld\yacc\y.

Running the tests 31

Building

32 Running the tests

Style

Style

34

7 Programming Style

Programming style is, unfortunately, a religious matter. Many holy wars have been fought
over it with no clear result (because the losing side usually survives). Still, with a project the
size of Open Watcom (that is, a very big project) there is a clear need for common
programming style.

Conformance of all projects to a common style has several benefits. Programmers who know
this style will be easily able to find their way around any of the multitude of projects. Various
projects will easily fit together. And last but not least, consistent style looks good.

Note: the fact that certain Open Watcom projects do not adhere to the common programming
style should not be construed as an endorsement of non-conformance. It is simply a result of
the long and varied history of the project.

The following sections examine various aspects of programming practice and give specific
guidelines where applicable. Note that these are guidelines, not rules or laws. Violating them
is not a crime and not even a mortal sin. In fact, you might have a very good reason not to
stick to the guidelines, and we always prefer common sense to fixed rules. However breaking
the guidelines with no good reason is bad for your karma. Don’t do it!

7.1 Source file structure
First a few words on source file structure. Every source file should start with a copyright
header. This only applies to source and include files (regardless of programming language
used). Other types of files such as makefiles, scripts, etc. do not need a copyright header.
The header should also contain a short description of the source file, one or two lines is
usually enough. Longer comments explaining specifics of the implementation should be
placed after the header.

The rest of the source file structure depends on the language used. Here we will only examine
the most common kind, which is a C source file. The overall structure is as follows:

• copyright header

• #include directives

Source file structure 35

Style

• function declarations and global variable definitions

• function implementation

As you can see, nothing fancy. Many programmers prefer to order functions so as to
minimize forward declarations, ie. a main() function would be located at the end and every
function fully defined before it is first used.

You can use extern declarations but you should be very careful. It is strongly encouraged that
all declarations of external functions and variable be located in header files which are
included in modules that use them as well as modules that define them. The reason is simple
— this way the compiler will tell you if you change the definition but not the header file. If
you use ad-hoc extern declarations, you better make sure they’re in sync with the actual
definitions.

7.2 Help the compiler and it will help you
While the compiler is a rather sophisticated piece of software, it cannot divine your intentions.
Hence you have to help it a bit by giving hints here and there. And if you help the compiler in
this way, it will be better able to help you.

First of all, always compile with maximum warning level. Just because a message is called a
warning and not error doesn’t mean you can ignore it. In fact many projects treat warnings as
errors and will not build if any warnings are present. That is a Good Thing.

Use the static keyword often because it is good. This is a multi-faceted keyword and its exact
semantics depend on where it is applied:

globals here the static modifier does not change the storage class but makes the variables
local to the module where they are defined, that is they won’t be visible from
other modules. If a variable needs to be global but doesn’t have to be accessed
from other modules, you should definitely make it static. That way you will not
needlessly pollute the global namespace (reducing the chance of name clashes)
and if you stop using the variable, the compiler will warn you. If you have a
non-static global variable that is unused, the compiler cannot warn you as it has
to assume that it is used from other modules.

locals in this case the static keyword changes the storage class and the variable will be
stored in data segment instead of on stack. If you need a variable that has global
lifetime but only needs to be accessible from one function, making it local and
static is a good choice.

36 Help the compiler and it will help you

Programming Style

functions the effect of the static keyword here is similar to the global variables. The
function will not be visible from other modules. Again, the compiler will warn
you if you stop using such a function. But declaring a function static also helps
the optimizer. For instance if the optimizer inlines a static function, it can
completely remove the non-inlined version. If the function weren’t static, the
non-inlined version always has to be present for potential external callers.

Similar in vein to the static keyword is the const keyword. Again it can be applied in various
ways and it helps the compiler and optimizer by giving it hints about how you intend to use a
particular variable or argument. Saying that a variable is constant is essentially the same as
saying that it’s read-only. The compiler/linker might place such variable in a read-only
segment. While it is possible to circumvent the const modifier by taking the address of a
constant variable and modifying it through a pointer, this is a bad thing to do and it may not
work at all because the variable might be not be physically writable. It is perhaps worthwhile
to remark that there are three possible outomes of applying the const modifier to a pointer:

• a constant pointer, that is the value of the pointer is constant but the data it points to
isn’t

• a pointer to a constant, that is the pointer itself is not constant but the value it points to
cannot be modified through it

• a constant pointer to a constant, that is both the pointer itself and the value it points to
are constant.

The const keyword is especially useful when used in function declarations. Consider the
following typical declaration:

char *strcpy(char *s1, const char *s2);

Here we have a function which takes two arguments that are both pointers to char but one of
them is a pointer to a constant. In the function body the compiler will not let you modify the
contents of *s2 but the declaration is also important for the caller. In the calling funtion, the
optimizer now knows that the data the s2 argument points to will not be modified by
strcpy() and it can take advantage of this knowledge.

Help the compiler and it will help you 37

Style

38 Help the compiler and it will help you

Documentation

Documentation

40

8 Producing Documentation

The purpose of this document is twofold: to provide an overview of the Open Watcom
documentation system togehter with the steps necessary for editing and producing online or
printed documents, and at the same time serve as an example of the documentation system
usage.

It is useful to note that the online documentation is almost, but not quite, independent of the
rest of the Open Watcom compilers and tools. One important exception is online help files for
Open Watcom GUI tools. Formatting online documentation generates include files containing
symbolic constants designating help entries. These are used during building of the tools
binaries. If the binaries are not built with the right header files, the online help will be out of
sync and not all that helpful.

There’s one other link going in the other direction: certain documentation files live with their
respective projects and not in the documents tree. This is especially true for error message
documentation for the compilers and tools.

8.1 Setting up
A Win32 or OS/2 system can be used to produce most of the documentation. OS/2 Warp is
required for the final step in producing the OS/2 online help files and Win32 system is needed
for producing Windows help files (unless you can run the required help compilers on your
host platform). DOS may work for producing some of the documentation but is untested at
this time.

The environment variable doc_root must point to the root of the docunmentation tree. Add
%doc_root%\cmds to your PATH. Your PATH must also contain the Open Watcom
C/C++ binary directories appropriate for your host platform (for wmake). This is taken care
of automatically by using setvars.cmd/setvars.bat.

Note that to produce Windows and/or OS/2 online documentation, you will need the
appropriate SDKs and Toolkits containing the platform specific online help compilers.

Setting up 41

Documentation

8.2 Building PostScript Documentation
Here are the steps to formatting a book for printing on a PostScript printer.

cd %doc_root%\ps
wmake hbook=<bn>

where <bn> is one of

devguide Developer’s Guide (this document)
c_readme C/C++ Read Me First
cguide C/C++ User’s Guide
cguideq C/C++ User’s Guide for QNX
clib C Library Reference (for all systems except
QNX)
clibqnx C Library Reference for QNX (stale)
cpplib C++ Class Library Reference
ctools C/C++ Tools User’s Guide
cw CauseWay User’s Guide
f77graph F77 Graphics Library Reference
f_readme F77 Read Me First
fpguide F77 Programmer’s Guide
ftools F77 Tools User’s Guide
fuguide F77 User’s Guide
guitool Graphical Tools User’s Guide
ide IDE User’s Guide
lguide Linker User’s Guide
pguide C/C++ Programmer’s Guide
wd Debugger User’s Guide

The output file is of type .ps. You should be able to send this file to any PostScript printer
or view it in GhostScript or convert it to PDF or do whatever it is you do with PostScript files.

8.3 Building Online Help Documentation
For Microsoft Help format (old Windows 3.x help format):

• Switch to the appropriate directory:

cd %doc_root%\win

• Run wmake to create all online help.

42 Building Online Help Documentation

Producing Documentation

• Note that you must have the Microsoft Help Compiler (HC) installed.

For Microsoft Help format ("new" Windows NT/95 help format):

• Switch to the appropriate directory:

cd %doc_root%\nt

• Run wmake to create all online help.

• Note that you must have the Microsoft Help Compiler (HCRTF) installed.

For Watcom Help format (for the WHELP command):

• Switch to the appropriate directory:

cd %doc_root%\dos

• Run wmake to create all online help.

For OS/2 Help format:

• Switch to the appropriate directory:

cd %doc_root%\os2

• Run wmake to create all OS/2 online help.

• Note that this will only work on an OS/2 system with the IBM IPF Compiler (IPFC)
installed.

To format one document at a time, go to the appropriate directory (for instance docs\os2)
and run wmake with argument hbook=<book_name> where <book_name> is one of the
online books listed above.

8.4 Editing the Documentation
All the documentation is stored in ASCII text files with the file extension "GML". The files
are annotated with a combination of Script and GML (Generalized Markup Language) tags.

The Script tags are of the form ".tag" (i.e., they begin with a period and are followed by two
or more letters or digits). Script tags will be most familiar to anyone who has ever used

Editing the Documentation 43

Documentation

Waterloo Script or IBM Script. The tagged format is also similar in idea to other tagged
formatting systems like RUNOFF or ROFF.

The GML tags are of the form ":TAG." (i.e., they begin with a colon, followed by some letters
and digits and end with a period). GML tags will be most familiar to anyone who has ever
used IBM GML or Waterloo GML. This tag set is a variant of SGML. The most familiar
SGML tag format is <TAG>. In Watcom GML, the "<" and ">" are replaced by the ":" and
".". If you know HTML, you know how tags work — HTML is just another variant of
SGML.

The tag set includes a base set of predefined tags. In addition to this base set, you can define
an extended tag set using the built-in macro language. The base Script tag set employs two
letters (e.g., two, three, four or more letters (e.g. .chapter, .section, .beglevel). For a good
example of user-defined Script tags, see %doc_root%\doc\gml\fmtmacro.gml.
GML tags can also be defined. For a good example of user-defined GML tags, see
%doc_root%\doc\gml\cppextra.gml.

These tags are described here for you, not so that you can begin defining your own tags, but
so that you will recognize them in the ASCII text that comprises the documentation. But of
course no-one’s stopping you from defining your own tags should you feel so inclined.

Here’s a snippet from one of the doc files.

44 Editing the Documentation

Producing Documentation

.np
The recommended options for generating the fastest

16-bit Intel code
are:
.ix ’fastest 16-bit code’
.begnote
.note Pentium Pro
/oneatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6
.note Pentium
/oneatx /oh /oi+ /ei /zp8 /5 /fpi87 /fp5
.note 486
/oneatx /oh /oi+ /ei /zp8 /4 /fpi87 /fp3
.note 386
/oneatx /oh /oi+ /ei /zp8 /3 /fpi87 /fp3
.note 286
/oneatx /oh /oi+ /ei /zp8 /2 /fpi87 /fp2
.note 186
/oneatx /oh /oi+ /ei /zp8 /1 /fpi87
.note 8086
/oneatx /oh /oi+ /ei /zp8 /0 /fpi87
.endnote
.np
The recommended options for generating the fastest

32-bit Intel code
are:

The ".np" is a user-defined tag for "start a new paragraph". The ".ix" creates an index entry in
the index. It doesn’t appear with the text. In on-line help, this index entry becomes a
searchable item. The ".begnote", ".note", and ".endnote" user-defined tags are used to create
an unordered list. Every piece of text entered into the source file is identified by tags like
these.

The best way to understand what the tags do is to look at a printed copy of the document and
see what it looks like. Luckily for you, you don’t have to look very far:

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro /oneatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6

Pentium /oneatx /oh /oi+ /ei /zp8 /5 /fpi87 /fp5

486 /oneatx /oh /oi+ /ei /zp8 /4 /fpi87 /fp3

386 /oneatx /oh /oi+ /ei /zp8 /3 /fpi87 /fp3

Editing the Documentation 45

Documentation

286 /oneatx /oh /oi+ /ei /zp8 /2 /fpi87 /fp2

186 /oneatx /oh /oi+ /ei /zp8 /1 /fpi87

8086 /oneatx /oh /oi+ /ei /zp8 /0 /fpi87

The recommended options for generating the fastest 32-bit Intel code are:

The WATCOM GML program (WGML) is a compiler/interpreter that reads the document’s
source files to produce an output file. In our case, we want PostScript for printing and we
want another form for generation of online help. This second form is a non-printable form
that is suitable for post-processing to turn it into IPF for the OS/2 IPF compiler, RTF for the
WinHelp tools, special Watcom-defined format for use with a DOS-based help tool (WHELP)
or the ever-popular HTML.

If you are a programmer, and that is likely, you’ll be somewhat comfortable with the whole
process of turning ASCII text into documentation. WGML is a text processor (compiler) that
reads a source file (GML) which, in turn, imbeds other source files, and produces an output
file (the object file). WGML is very fast. It was very fast in the old 20MHz 386 days and is,
of course, much faster with today’s processors. The C Library Reference comprising 1,241
pages takes one minute to format into PostScript on a 600 MHz Pentium-III.

If you ever used TeX or LaTeX you will be comfortable with the concept of nonvisual
content-driven formatting. If you only know so-called WYSIWYG word processors heavily
relying on visual formatting, you might be surprised to find that it is possible to let the
computer do lot of the hard work. Just give up the idea of controlling every pixel — it never
works right anyway. Instead of saying "this is Arial 10pt Bold" you will say "this is a
keyword" or "this is a code example" and let the machine worry about formatting.

8.5 Diagnostic Messages
If you see ***WARNING*** messages issued by WGML, you can ignore them. Of course it
is better if you don’t and correct whatever is causing the warnings. If you see
ERROR messages, you cannot ignore them and have to fix them before any output is
produced.

46 Diagnostic Messages

Index

F

#include 35 fastest 16-bit code 45

B H

bld 5 history 3
build requirements 17
builder 11, 27

I

C
include paths 22
installation 41

clean target 19
const 37
conventions 21

M

D
makeinit 15
memory trackers 19

DLL runtime 18
DLLs 21

N

E
names 16

extern 36

47

Index

P W

Perforce 11 WATFOR 3
pmake 11, 19, 28 WATFOR-77 3
PostScript 42 windowed applications 21
PowerSoft 4 Windows DLLs 25

S

SciTech 4
setting up 41
source files 35
static 36-37
style 35
summary 22
Sybase 4

T

testing 29

V

VX-REXX 4

48

