Open Watcom C

Language Reference

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

Preface

This book describes the C programming language as implemented by the Open Watcom C6 and

C32 compilers for 80x86-based processors. Open Watcom C16 and C32 are implementations of ANSI/ISO
9899:1990 Programming Language C. The standard was devel oped by the ANSI X3J11 Technical
Committee on the C Programming Language. In addition to the full C language standard, the compiler
supports numerous extensions for the 80x86 environment.

Thisbook isintended to be a reference manual and hence a precise description of the C language. It also
attempts to remain readabl e by ordinary humans. When new concepts are introduced, examples are given
to provide clarity.

Since C isa programming language that is supposed to aid programmers trying to write portable programs,
this book points out those areas of the language that may vary from one system to another. Where possible,
the probable behavior of other C compilers is mentioned.

February, 2008.

Trademarks

IBM, IBM PC, PS/2, PC DOS and OS/2 are registered trademarks of International Business Machines
Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft and MS DOS are registered trademarks of Microsoft Corp. Windows is atrademark of
Microsoft Corp.

ONX isaregistered trademark of QNX Software Systems Ltd.
UNIX isaregistered trademark of The Open Group.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

1011070 18 Tox o] R

LINroduCtioN O C ...ttt et
LI HISOMY oot e
TL2USES et n
L3 AGVANLAGES ..oeeveeeerecieriee e
1.4 How to USE ThiISBOOKccoveviiiieieiieciecieecie e,

Language REFEIENCEccvv e
228 \\Lo = 1 o o SRS

3 Basic Language Elementsccoecrernennenneneeneeeseeieseeeeas
3.1 CharaCter SES ...cocvvvrerereerieneneseereee e

3.1.1 Multibyte CharaCtersccovvereeerecenierennnne

B2 KEYWOIAS ..ovveeeeeeieeceeee ettt

B3 IAENLTIENS oo

3.4 COMMENLS ..o s

A BESIC TYPES .eeeeiereeieeeieeeeiere sttt sttt et e e sne e
4.1 Declarations of ODJECESccvceveriniieriee e
4.2 NAME SCOPE ..ot
4.3 TYPE SPECITIENS oot
4.4 INEJEN TYPES ..ottt
4.5 Floating-Point TYPESccceveirieirieerecrieesesesie e
4.6 ENUMEratet TYPES ..ovvvvveierieeeeeeeeeeee st
A7 ATTAYS ettt st
RS 1] 1

S CONSLANTS ...
5.1 Integer CONSLANESccveveeriireerieeee e

5.2 Floating-Point CoNStantsccccvevreneeneeneenieenne

5.3 Character CONSLANESccoeereerereenerieneseseeeseeeseeeseees

5.3.1 Wide Character Constantscccceeereeeennen

5.4 SNG LItEralS ..ccvoveeviveeieieeieriee e
5.4.1Wide String Literalscccoovevevereevecenereenne

LSRN LT @00 017/ [0 o [
6.1 Integral Promotionccccecveeeviiceese e
6.2 Signed and Unsigned Integer Conversion
6.3 Floating-Point to Integer CoNversionc.ccccceeeveeenene
6.4 Integer to Floating-Point Conversionc.ccccoeeenee.
6.5 Arithmetic CONVErSIONcccoveireerieinieseseenes
6.6 Default Argument Promotionccccveevenrcniecnnens

AN \VZ= 1o =0 B Y/ o=
S 1 (o (1 - RS

28 T 21 1= Lo S

T2UNIONS oottt ettt et e e ste e s eneesree e
T.3POINELS ...ttt

7.3.1 Special Pointer Types for Open Watcom C16

a b woww

11
11
12
12
13
14

15
15
17
18
19
21
22
24
26

29
29
30
31
33

35

37
37
37
39
39
40
40

41
41

45
46
47

Table of Contents

7.3.1.1 The Sm
7.3.1.2 The Sm
7.3.1.3 Mixing

all and Big Code MOAES ...
all and Big Data MOdElScccooevirinineeee e
MeEMOry MOGEIS ..o

7.3.1.4 The __far Keyword for Open Watcom C16cccovvvveernicecennnnnns
7.3.1.5The __near Keyword for Open Watcom C16 cccceeernnirecnnnn
7.3.1.6 The __huge Keyword for Open Watcom C16 cccoeeeeecrrinnnnn.
7.3.2 Special Pointer Typesfor Open Watcom C32cocooeveeeeeiceeeeetee e
7.3.21The __far Keyword for Open Watcom C32c.ccoevvevvvererereeeerenee
7.3.22The __near Keyword for Open Watcom C32cccoevvvvveeeveeerenne.
7.3.2.3The_ _farl6and _Segl6 KeyWOrdsccccccovvieriieiiesieesieseesee e
7.3.3 Based Pointers for Open Watcom C18 and C32 c.ccevvvceeeccee e,
7.3.3.1 Segment Constant Based Pointers and ObJECtSccccovereieeienicncnienne.
7.3.3.2 Segment Object Based POINLESccooeeveiincirieereeesee e
7.3.3.3V0id Based POINLEFSccccoeeeieeeesere e
7.3.3.4 Self BaSed POINLErSccveeeeeeeeeeeeese e

L 0] =0 LY O = 5 =

8.1 Type Definitions

8.1.1 CoMPAELiDIE TYPES ..ottt e e e

8.2 Static Storage Duration ..
8.2.1 The static Storag

B CIESS ... et e s e raneaans

8.2.2 The extern StOrage Class ...ttt
8.3 AUtOMALIC StOrage DUIBLIONoeeviiciirieiiriei ettt
8.3.1 The a0 SLOrage ClaSScccoririririeirieierie et
8.3.2 Theregister StOrage Classccucvvivvieiirirerereeieeeese e

R aThiE T o a0 @] o= ox
9.1 Initialization Of SCAlAr TYPES ...ooviieeieeeieieere ettt b bbb e e

9.2 Initialization of Arrays ...

9.3 INItiAli ZALiON OF SITUCLUINES ..ottt e s e e st s s e e s sbe e s s bbesssaseessabeesabenssans

9.4 Initialization of Unions ..
9.5 Uninitialized Objects

LO EXPIESSIONS ...eeveueiteieteseeteseeteseetestetesae st s tesestese st et st e seebe s e ek e s e ekt s e ebeseebese e st st eneebene et et e b e e ebeneebeneebeneebeneas
FO.L LVAIUBS ..ottt n et

10.2 Primary Expressions
10.3 Postfix Operators

10.3.1 Array SUDSCIIPEING ..ceeeeererrerieniesiesie et s

10.3.2 Function Calls
10.3.3 Structureand U
10.3.4 Post-Increment
10.4 Unary Operators

NION MEMDETS ..t ar s s
aNd POSt-DECIEMENToeeiieieeeie e

10.4.1 Pre-Increment and Pre-Decrement OPEratorsoccoeerreresereseneeeseeeseeeneene

10.4.2 Address-of and

INAIreCtion OPEIratorsSccccveereeereeerieerieesie e

10.4.3 Unary ArithmetiC OPEIaLOrsScccccoueveerereresesreseseeseeseseeseeseesesseesessessessessesseses
10.4.4 The SIZEOT OPEIALONccveeeeireeeetesese e seste st e e e e eere st sresnenre e s

10.5 Cast Operator
10.6 Multiplicative Operators
10.7 Additive Operators
10.8 Bitwise Shift Operators

Vi

48
48
49
49
50
51
52
52
53
53
55
56
56
57
57
58
59

61
61
63
64
65
65
66
67
67

69
69
69
71
71
72

73
74
75
76
76
76
77
78
79
79
79
80
80
82

REA

Table of Contents

10.9 REIALiONal OPEIALOISoieieiieeeieieeiere ettt sttt sttt et e e se e seebesbesaesaesbeseeseans 85
10.10 EQUAITLY OPEIELOISeoceeeeeeeeeeierieriestestestesiestesteseessabeseesee s esseeeseesessessesbesbesaeseesbesseseans 86
10.11 BitWiSe AND OPEIEIONeceeveeetereetereeie sttt sttt sttt sttt b st se b se s sne e nnene 86
10.12 Bitwise EXCIUSIVE OR OPEIALONcovitirirrerietereetereeiesieie st st sre e ene b seereseeneseas 87
10.13 Bitwise INCIUSIVE OR OPEIELONcoueiiriieriereriereetereeie sttt s be e 87
10.14 LOgiCal AND OPEIEIONoeivireeiereetireete ettt sttt sttt et st be e s st b saene 88
10.15 LOgiCal OR OPEIGLOLccvecvereeeeieeeeesersesessestessessessessessessessessessessessssssssssessessessessessessens 88
10.16 ConditioNal OPEIAOFcceceieeeeieieeeeeerese st sesreste e sresreste e seeseesaeeesessessessesresressessens 88
10.17 ASSIGNMENE OPEIBLOLS ...eveveieeieiesieeeeeeeieeseesesessessestessessestessessessessessessessnsessessessessessens 89
10.17.1 SIMPIE ASSIONMIENT ..ottt b e s sre e e 0
10.17.2 ComMpPOUNd ASSIGNIMENEeieiierieeeeeeeeeieeiese st sre e see e see et see e e e e ens 0

10.18 COMMA OPEIBLONeieeieeiieeieesieeiesieesteeee st et sre e st st e seesaeeseesaeesbesaeesbeessesbeeasesseesesneenees 90
10.19 CoNSLANt EXPrESSIONSccveueireirreieererieiereete st sttt et ss et sre et b et be et se b e b e b e s e 91
S = 111 PSSR 93
11.1 Labelled SEAEMENES ..ovcieeecieeeeeeeee et e s e se e sresreseeseeneeneeneens 93
2 @0 4o To 1N [g10 IS\ 1= g 1= g 1L 93
HMIRCT S(o (=SSTo g IS o 1= 0 1= g1 £ 94
114 NUI SEBEEMENESeveveviieeieieeseses ettt b e e n s 94
11.5 Sel€CtiON SEAEMENTSocviieeeiieeiireeeee ettt r e 94
1151 The if SEAEIMENE ...c.ceiiieieiiereeee et 95

11.5.2 The SWitCh SEAEEMENtcciiriiree e e e 96

11.6 HEration SEALEIMENESoieeieieieeeieet et sttt st sbe b e b sbesbesbeseesbeneeseans 97
11.6.1 The While SEAtEMENLccccoeiericereee e 97

11.6.2 The dO SEAEMENLoceiiiieese et ne e enes 97

11.6.3 Thefor SEAEMENTccccveeeere et s nes 98

12,7 JUMP SEEEEMENESoeeeeeieeeie e s eee e e e steeeesseesee s e e seesneessesseessesneenseeseenseensensennes 99
11.7.1 The gOto SAEMENcecicieece e 99

11.7.2 The CoNtiNUE SEALEMENTcveueerereeeeererieie et 99

11.7.3 The break StAEMENTcccocireircereeree e 100

11.7.4 The return SEEEEMENTcoociieiicererees e 100

2 ¥ 1 o SRR 101
12.1 The Body Of the FUNCLIONcociiieiieiieeee s 103
12.2 FUNCEION PrOLOLYPES ..ovecvieeiiieeie sttt sttt s s st bbbt 104
12.2.1 Variable Argument LiStScoccveerinieneneeneeeseie s 104

12.3 The Parameters to the FUNCHION MaIN ... 106
13 THE PrEPIOCESSON ...veveieieieieteeteete e e stestestestesteseetessesee s esessesseesestesaesbesbesbeseetenteseensanseseeseesensessessens 109
131 TRENUI DITECHIVE ..ottt 109
13.2 Including Headers and SOUICE FlES ...t e 109
13.3 Conditionally INncluding SOUrCE LINESccoiiiiiiiieeeere et 110
13.3.1 The #ifdef and #ifndef DIreCtiVEScoeii i 112

13.4 MaCrO REPIBCEMENTooviiiiiieeiiitee ettt et sttt 113
13.5 Argument SUDSHTULIONcoveueiuiiiieieeerceie et 115
13.5.1 Converting An Argument t0 @ StINGcovverererieirieerees e 115

13.5.2 Concatenating TOKENScoeeeeeeeeeeeeeresee e e see s e seeseeneeae e e e e sesnessessenes 115

13.5.3 Simple Argument SUBSLITULIONccocveiieieececeece e 116

13.5.4 Variable Argument MAaCIOScccciueierieeesiesesesesie e e ae e e ssesne st e s 117

13.5.5 Rescanning for Further Replacementccocooeiirine e 118

13.6 More Examples of Macro ReplacemMentcc.ooeoeerenenenee e 119
13.7 RedefiNIiNG A IMBCIO ...ttt ettt b e b bbb e be b e 120

vii

Table of Contents

13.8 Changing the Line Numbering and File Name ... 121

13.9 Displaying @ Diagn0StiC MESSAgEccueiurieiririeierere sttt e 122

13.10 Providing Other Information to the COmpPIler ... 122

13.11 Standard Predefined MECIOSccoveiririeinese s sre e see e 122

13.12 Open Watcom C16 and C32 Predefined MacroS cocoveeveverenenenenereneneseneee s 123

13.13 The Off SELOf IMIACIOveeeeeieeeecee ettt re e sre e sne e neeneeneens 125

13. 14 THENULL MEECIO ..ot 126

14 The Order Of TraNSIBHONccoveueeiereeiereiere bbbt 127
PrOgramMMEr’ S GUITEoouiiuiiiiieie ettt sttt e et e et a e e he e st e b e ebesbeeb e e be s b e se et et e e e e eneeneeneeneneas 129
L5 MOTUIBITEY .ttt b e s b e e b e se bt st b e b st b et b et e b e e et e e et e seebe e 131
15.1 Reducing RecOMpilation TIMEcocciiiiiiieeee e 131

15.2 Grouping Code With Related FUNCHIONAITLYcccoveerieirieiieree e 132

HECTC T - = W o o 1 oo PSS 132

15.3.1 Complete Data HidiNgcccceveeeeirieecese et 132

15.3.2 Partial DataHIidiNgcccoveiiviieicere et e 133

15.4 Rewriting and Redesigning MOCUIEScoiirieiieeiesecicceese st 133

15.5 Isolating System Dependent Code in MOAUIES ... 133

16 Writing POrtall@ PrOgraimSc.cooeirieirieirieisieesi ettt 135
16.1 Isolating System Dependent COUEccoveireereirieerieeriee et 135

16.2 Beware of Long EXtErnal NAIMES ..ot s ebe s 137

16.3 Avoiding Implementation-Defined BENaVIOrccovoviirineiiee e 137

R g Te =Sy o N I3 == 137

16.5 SPECIAl FEALUINESeecvieeeie ettt et sttt sttt e e e e e e e e e e e eneenenneans 138

16.6 Using the Preprocessor to Aid Portabilitycccceeeveiciiciceeecece e 138

17 Avoiding CommON PItFAllS ..o et 141
17.1 Assignment Instead of COMPAIISONcccooeieririeiiiine e b 141

17.2 Unexpected Operator PreCEOBNCEcciieireerieireeic ettt 142

17.3 Delayed Error From INCluded FIlecooiiiiiiieee et 142

17.4 EXtraSemi-COlON iN IMBCIOScevveerieriereesieseseseesesteseeseeeeneeseeseesessesseesessessessesseseeseenss 143
17.5The DangliNg €S8 ..ottt bt 143

17.6 Missing break in switch Statementccocevevieir v 144

17.7 SIAE-EffECESIN MBLIOSviieiciicereeee e 145

18 Programming SEYIEccue ottt et et te et e s et e e aa et e et e be et e reennenneennan 147
18.1 CONSISLENCY ..cuvevevereereireaieseeeeseeeeeeseesessessesbesaesaesbe b seeseenee e e e eneeseaaeeseebesbesaesbesbeseeseentenes 147

18.2 Case Rules for Object and FUNCLION NAMEScoiiiiiiiie e e 147

18.3 Choose APPropriate NAIMEScccciriiirieiriereseete ettt b e e eb e e s ne e 149

18.4 Indent to EMPhESiZE SITUCIUIEc.oiveuiiiiirieerieeeeeeieeete et 149

18.5 Visually Align Object DECIAratioNScccevereriiririiniriineeiesieiesie e 151

18.6 Keep FUNCLIONS SMAll ..ot s 151

18.7 Use static for MOSt FUNCLIONSccviierercrceres s 152

18.8 Group Static ObjeCtS TOGELNETccceeieeceeee e s 152

18.9 Do Not Reuse the Names of Static ODJECEScccvevveviiiiesecceeee e e 152

18.10 Use Included Files to Organize SLIUCLUIEScccceecuevieeiiesieeieeeete e e eeesveesee e enaeseeas 152

18.11 USe FUNCLION PrOLOLYPESvoiviierieiiiieie ettt st st e e eneas 152

18.12 Do Not Do Too Much In ONne SEAtEMENtcceoeiiereeieirceeniesere e 153

viii

Table of Contents

18.13 D0 Not USe goto TOO MUCK ..ottt 153

18.14 USE COMIMENES ..vviiveeitieiiiesieesiteesiessteestessseesbesssteessesssseasseessasebeesseesnsessssesnsessssesnsenssnnans 154

F N o] 1< 0o o= OSSOSO P PR 155
Y @041 1 1= G (=YY o - 157
AL Standard KEYWOITSccccveeeieieiee e sttt st st st sr e e enaenneneens 157

A.2 Open Watcom Extended KEYWOITSccocviiieieiiineiesiesieeeese e se st sre e s snenean 157

L I T =" SRR 161
C. ESCAPE SEOUENCES ...ttt sttt r et s h e r e e b E e se e e e n e e e e s e eneerenns 163
D. OPErator PrECEOEINCEcouiiiiiiitiieteriete ettt ettt b e b et b e b bbb s bbb b eb s ene e 165
E. FOrMEl € GIaAIMIMETociiiiiirieiirieiriereste ettt ettt b et b e b b e b e b sae s et e ne b ene b enenaanes 167
E.LLEXICal GIaMIMErcceoiiuiieiirieiirieiesieesie sttt ettt sttt e s bt srene 167

T 0 R I 0 TSRS 167

I A =Y AT o USRS 168

IR B L L= = SRS 168

E.L.4A CONSLANES ..ioveeieieiiecie ettt sttt st e st e st e e st a e et e et e e snseenbeesnbeenseesaneans 169

E. L5 SHING LITErAlS ..ottt e e 170

E. LB OPEIBLOISeoueeieeiiriiiie et tesie st st r e r et sr e r e n e e r e e e e ene s 170

E.L.7 PUNCLUBLOISc.veeiiieieesiie ettt sttt ettt ettt s esnn e sbe e snneenee s 171

E.2 Phrase StrUCtUre GramIMElccoceeeieereerieriereeseeeeseesessessessessessessessessessesssssensessessesessessessens 171

E.2.1 EXPIESSIONSvecveveieesieieseeseeaeseeseeseesessessessessessessessessesssnsensensesessessessessessessessensenes 171

E.2.2 DECIAIALIONS ...o.eeveeeeiieeie ittt st st st sttt sttt 173

E.2.3 STAEMENTS ..o s ne s 175

E.2.4 External DEfiNITIONSccccooiririnineiesese s s e 176

E.3 Preprocessing DireCtiveS GramMalcoeceereeieeerierieniesese st siesee e et e sse e seesesseenesns 177

F. Trangation LIMILSccocoiiieie ettt et e st e e s ae et e sb e et e eae e beeaeesneennesneennas 179
CTIY IF=ex (1] o ol AN TU T 0= o R g 181
G.1 Numerical LimitSfor INEEJEr TYPES ...oiovuieriieeriees e st 181

G.2 Numerical Limitsfor Floating-POiNt TYPES ..ocvvevevevererereeseeeeeseeesese e sse e seeseeseesnens 185

H. Implementation-Defined BENAVIOLrccciieiiiiccececee s 191
H.L TEBNSIBLION ..ottt ettt eb et bbb e bt e e e e et ne s 191

[P 0 (VT (] 00 11 o | TSP P 192

L TG Lo = (11 SRS 192

[I O g7 o = (= SRS 192

HUS TNEEOENS .o et e e se e et r e r e nrens 194

H.6 FIOBLING POINLviietiictieei bbb bbbt 195

H.7 ArrayS and POINTEISc.cuiiieiiiieiieeiriisie ettt bbb 195

L IR (=0 (= £ 197

H.9 Structures, Unions, Enumerations and Bit-Fieldsccccooeoviininninniinnieeec e 197

H.L10 QUAIITIEIS ittt sttt bt s et e et e st e e nenes 198

H.11 DECIAIALONS ...eeitiiteieieeieie ettt sttt e e e ettt b e eb e be bt s b et e se e e et s 198

H.12 SEBEEMENESeeieeieeeie sttt ettt et e e bt e b e s he e b e e ae e b e eaeeebe e e e saeenesneenens 198

H.13 PreproCeSSing DIFECHIVEScoiiiiiiiiieie ettt ene s 198

Table of Contents

H.14 LiDrary FUNCLIONScooiiiiiiiie ettt bbb et 199
[. EXamMpPIES Of DECIArAIIONScvcueieeiirieiireeisiiiet ettt ettt b s nnenes 201
[.1 ODJECt DECIAIALIONS ..ottt 201
(2 g Tox o gl D T= == 1 o P 203
.3_ _far, __nearand __huge DeCIarationsSccoeerrierenerinenieenieesie et 203
0 101 (= (VT o AL = o 205
IS NS 40T o 1 . (oo = 207
J 1 ThemMEMOS N FILE ..o e 207
J2ThEMEMOS.C FIE ..o e et 208
K GHOSSAIY vttt b et b e e b e e h e b e st bt b e b e bt e b e e bt e bt e bt e en e e e r e nr e 221

Introduction

Introduction

1 Introduction to C

1.1 History

The C programming language was developed by Dennis Ritchie in 1972 for the UNIX operating system.
Over the years, the language has appeared on many other systems, satisfying a need of programmers who
want to be able to devel op applications that can run in many different environments.

Because the C language was never formally defined, each implementation interpreted the behavior of the
language in dlightly different ways, and also introduced their own extensions. Asaresult, the goa of true
software portability was not achieved.

In 1982, the American National Standards Committee formed the X3J11 Technical Committee onthe C
Programming Language, whose purpose was to formally define the C language and its library functions,
and to describe its interaction with the execution environment. The C Programming Language standard
was completed in 1989.

The Open Watcom C6 and C32 compiler has evolved from 8086 code generation technology devel oped
and refined at WATCOM International and the University of Waterloo since 1980. The first Open Watcom
C16 compiler was released in 1988. The first Open Watcom C32 compiler was released in 1989.

1.2 Uses

Cissometimes called a"low-level" language, referring to the fact that C programmers tend to think in
terms of hits, bytes, addresses and other concepts fundamental to assembly-language programming.

But Cisalso a"broad spectrum™ language. In addition to accessing the basic components of the computer,
it also provides features common to many "high-level" languages. Structured program control, data
structures and modular program design are recent additions to some high-level languages, but have been
part of the C language since itsinception.

C gives the programmer the ability to write applications at alevel just above the assembly language level,
without having to know the assembly language of the machine. Language compilers provided this ability in
the past, but the application was often quite "fat", because the code produced by the compiler was never as
good as could be written by a good assembly language programmer. But with modern code generation
techniquesit is often difficult, if not impossible, to distinguish an assembly language program written by a
human from the same program generated by a C compiler (based on code size). In fact, some compilers
now generate better code than all but the best assembly language programmers.

So, what can C be used for? It can be used to write virtually anything, the same way that assembly
language can be used. But other programming languages continue to be used for specific programming
applications at which they excel.

C tends to be used for "systems programming"”, aterm that refers to the writing of operating systems,
programming languages and other software tools that don't fall into the class of "applications

Uses 3

Introduction

programming”. A classic exampleisthe UNIX operating system, developed by Bell Laboratories. Itis
written almost entirely in C and is one of the most portable operating systems available.

Cisalso used for writing large programs that require more efficiency than the average application. Typica
examples are interpreters and compilers for programming languages.

Another areawhere C is commonly used is large-scale application programs, such as databases,
spreadshests, word processors and so on. These require a high degree of efficiency and compactness, since
they are often basic to an individual’ s or company’ s computing needs, and therefore consume alot of
computer resources.

It seemsthat C is used extensively for commercially available products, but C can also be used for any
application that just requires more efficiency. For example, alarge transaction processing system may be
written in COBOL, but to squeeze the last bit of speed out of the system, it may be desirable to rewriteitin
C. That application could certainly be written in assembly language, but many programmers now prefer to
avoid programming at such alow level, when a C compiler can generate code that is just as efficient.

Finally, of course, amajor reason for writing aprogram in C isthat it will run with little or no modification
on any system with a C compiler. In the past, with the proliferation of C compilers and no standard to
guide their design, it was much more difficult. Today, with the appearance of the 1SO standard for the C
programming language, a program written entirely in a conforming C implementation should be
transportable to a new compiler with relatively little work. Of course, issues like file names, memory
layout and command line parameter syntax will vary from one system to another, but a properly designed C
application will isolate these parts of the code in "system-dependent” files, which can be changed for each
system. (Refer to "Writing Portable Programs".)

1.3 Advantages

4

C has anumber of major advantages over other programming languages.
» Most systems provide a C compiler.

Vendors of computer systems realize that the success of a system is dependent upon the availability of
software for that system. With the large body of C-based programs in existence, most vendors providea C
compiler in order to encourage the transporting of some of these programs to their system. For systems that
don't provide a C compiler, independent companies may develop acompiler.

With the development of the ISO/ANSI C standard, the trend towards universal availability of C compilers
will probably accelerate.

» C programs can be transported easily to other computers and operating systems.

Many programming languages claim transportability. FORTRAN, COBOL and Pascal programs all have
standards describing them, so a program written entirely within the standard definition of the language will
likely be portable. The sameistrue of C. However, few languages can match portability with the other

advantages of C, including efficiency of generated code and the ability to work close to the machine level.

* Programs written in C are very efficient in both execution speed and code size.
Few languages can match C in efficiency. A good assembly language programmer may be able to produce

code better than a C compiler, but he/she will have to spend much more time in the devel opment of the
application, because assembly language programming lends itself more easily to errors. Compilers for

Advantages

Introduction to C

other languages may produce efficient code for applications within their scope, but few produce efficient
code for all applications.

* C programs can get close to the hardware, controlling devices directly if necessary.

Most programs do not need this ability, but if necessary, the program can access particular features of the
computer. For example, afixed memory location may exist that contains a certain value of use to the
program. It iseasy to accessit from C, but not from many other languages. (Of course, if the program is
designed to be portable, this section of code will be isolated and clearly marked as depending on the
operating system.)

* C programs are easy to maintain.

Assembly language code is difficult to maintain owing to the very low level of programming (registers,
addressing modes, branching). C programs provide comparable functionality, but at a higher level. The
programmer still thinks in terms of machine capabilities, but without having to know the exact operation of
the hardware, leaving the programmer free to concentrate on program design rather than the intimate details
of coding on that particular machine.

« C programs are easy to understand.

"Easy" is, of course, arelativeterm. C programs are definitely easier to understand than the equivalent
assembly language program. Another programming language may be easier to understand for a particular
kind of application, but in general C isagood choice.

« All of the above advantages apply regardless of the application or the hardware or operating system
onwhich itis running.

Thisisthe biggest advantage. Because C programs are portable, and C is not suited only to a certain class
of applications, it is often the best choice for developing an application.

1.4 How to Use This Book

This book is a description of the C programming language as implemented by the Open Watcom C16 and
C32 compilers for the 80x86 family of processors. It isintended to be an easy-to-read description of the C
language. The SO C standard is the last word on details about the language, but it describes the language
in terms that must be interpreted for each implementation of a C compiler.

This book attempts to describe the C language in terms of general behavior, and the specific behavior of the
C compiler when the standard describes the behavior as implementation-defined.

Aresas that are shaded describe the interpretation of the behavior that the Open Watcom C6 and
C32 compilersfollow.

Programmers who are writing a program that will be ported to other systems should pay particular attention
when using these features, since other compilers may behave in other ways. As much as possible, an
attempt is made to describe other likely behaviors.

This book does not describe any of the library functions that a C program might use to interact with its
environment. In particular, input and output is not described in this manual. The C language does not
contain any 1/0O capabilities. The Open Watcom C Library Reference manual describes al of the library
functions, including those used for input and output.

How to Use This Book 5

Introduction

A glossary isincluded in the appendix, and describes all terms used in the book.

6 How to Use This Book

Language Reference

Language Reference

2 Notation

The C programming language contains many useful features, each of which has a number of optional parts.
The ISO C standard describes the language in very precise terms, often giving syntax diagrams to describe
the features.

This book attempts to describe the C language in more friendly terms. Where possible, features are
described using ordinary English. Jargon is avoided, although by necessity, new terminology isintroduced
throughout the book. A glossary is provided at the end of the book to describe any terms that are used.

Where the variety of features would create excessive amounts of text, simple syntax diagrams are used. It
is hoped that these are mostly self-explanatory. However, abrief explanation of the notation used is

offered here:
1. Required keywords are in normal lettering style (for example, enum.
2. Termsthat describe a class of object that replace the term are in italics (for example, identifier).
3. When two or more optional forms are available, they are shown as follows:
form1
or
form 2
4. Any other symbol that appears isrequired, unless otherwise noted.

The following example is for an enumerated type:

enumidentifier

or

enum{ enumeration-constant-list }

or

enumidentifier { enumeration-constant-list }

An enumerated type has three forms:

1

The required keyword enumfollowed by an identifier that namesthetype. Theidentifier is
chosen by the programmer.

The required keyword enumfollowed by a brace-enclosed list of enumeration constants. The
braces are required, and enumeration-constant-list is described el sewhere.

The required keyword enumfollowed by an identifier and a brace-enclosed list of enumeration

constants. As with the previous two forms, the identifier may be chosen by the programmer, the
braces are required and enumer ation-constant-list is described elsewhere.

Notation

9

Language Reference

10 Notation

3 Basic Language Elements

The following topics are discussed:
* Character Sets
» Keywords
* |dentifiers

e Comments

3.1 Character Sets

The source character set contains the characters used during the trandation of the C source file into object
code. The execution character set contains the characters used during the execution of the C program. In
most cases, these two character sets are the same, since the program is compiled and executed on the same
machine. However, C is sometimes used to cross-compile, whereby the compilation of the program occurs
on one machine, but the compiler generates code for some other machine. If the two machines have
different character sets (say EBCDIC and ASCII), then the compiler will, where appropriate, map
characters from the source character set to the execution character set. Thismappingis
implementation-defined, but generally maps the visual representation of the character.

Regardless of which C compiler is used, the source and execution character sets contain (at least) the
following characters:

kl mnopgr stuvwxyz
KLMNOPQRSTUVWXYZ

oo

b mo
AENOO
ngwoa
VMmoo
0 oTom

aswell as the space (blank), horizontal tab, vertical tab and formfeed. Also, a new line character will exist
for both the source and execution character sets.

Any character other than those previously listed should appear in a source file in a character constant, a
string or acomment, otherwise the behavior is undefined.

If the character set of the computer being used to compile the program does not contain a certain character,
atrigraph sequence may be used to represent it. Refer to the section " Character Constants”.

Character Sets 11

Language Reference

The Open Watcom C16 and C32 compilers use the full IBM PC character set as both the source
and execution character sets. The set of values from hexadecimal 00 to 7F constitute the ASCI|
character set.

3.1.1 Multibyte Characters

A multibyte character, as its name implies, is a character whose representation consists of more than one
byte. Multibyte characters allow compilers to provide extended character sets, often for human languages
that contain more characters than those found in the one-byte character set.

Multibyte characters are generally restricted to:
* comments,
* string literals,
» character constants,
* header names.

The method for specifying multibyte characters generally varies depending upon the extended character set.

3.2 Keywords

The following words are reserved as part of the C language and are called keywords. They may not be used
for any kind of identifier, including object names, function names, labels, structure or union tags (names).

auto doubl e inline static
__Bool el se i nt struct

br eak enum | ong switch
case extern register t ypedef
char fl oat restrict uni on

__ Conmpl ex for return unsi gned
const got o short voi d
conti nue i f si gned vol atile
def aul t _|I magi nary si zeof whil e

do

The Open Watcom compilers also reserve the following extended keywords:

Microsoft compilers compatible

__asm __finally __pascal
__based __fortran ___saveregs
__cdecl __huge ___segnent
__decl spec __inline ___segnhane
__except __int64 __self
__export __interrupt __stdcal |
__far __leave __syscall
__farlé6 |l oadds _try
__fastcall __near __unaligned

IBM compilers compatible
_Cdecl _Finally _Segl6
__Except _Leave _Syscal |

12 Keywords

Basic Language Elements

__Export _Packed _System
_Far 16 _Pascal _Try
_Fastcal |

Open Watcom specific
__builtin_isfloat __ow_imaginary_unit __watcall

Note that, since C is sensitive to the case of letters, changing one or more letters in a keyword to upper case
will prevent the compiler from recognizing it as a keyword, thereby allowing it to be used as an identifier.
However, thisis not arecommended programming practice.

3.3 Identifiers

Identifiers are used as;

* object or variable names,

« function names,

* |abels,

* structure, union or enumeration tags,

» the name of a member of a structure or union,
* enumeration constants,

* Macro names,

* typedef names.

Anidentifier is formed by a sequence of the following characters:

e upper-case letters"A" through "Z",
* lower-case letters "a" through "z",
* the digits 0" through "9",

« the underscore" "

Thefirst character may not be a digit.
An identifier cannot be a member of the list of keywords.

Identifiers can consist of any number of characters, but the compiler is not required to consider more than
31 characters as being significant, provided the identifier does not have external linkage (shared by more
than one compiled module of the program). If the identifier is external, the compiler is not required to
consider more than 6 characters as being significant. External identifiers may be case-sensitive.

Of course, any particular compiler may choose to consider more characters as being significant, but a
portable C program will strictly adhere to the above rules. (Thisrestrictionislikely to be relaxed in future
versions of the ISO C standard and corresponding C compilers.)

The Open Watcom C6 and C32 compilers do not restrict the number of significant characters for
functions or objects with external or internal linkage.

The linker provided with Open Watcom C6 and C32 restricts the number of significant characters

in external identifiersto 40 characters, and by default, distinguishes between identifiers that differ
only in the case of the letters. An option may be used to force the linker to ignore case differences.

Identifiers 13

Language Reference

Any external identifier that starts with the underscore character ("_") may be reserved by the compiler.

Any other identifier that starts with two underscores, or an underscore and an upper-case letter may be
reserved. Generally, a program should avoid creating identifiers that start with an underscore.

3.4 Comments

A comment isidentified by / * followed by any characters and terminated by */ . Comments are
recognized anywhere in a program, except inside a character constant or string. Oncethe / * isfound,
characters are examined only until the */ isfound. Thisexcludes nesting of comments.

A comment istreated as a "white-space” character, meaning that it is like a space character.

For example, the program fragment,

/* Close all the files.
*/
for(i =0; i <fcount; i++) { /* loop through list */
fclose(flist[i]); /* close the file */
}

is equivaent to,

for(i =0; i < fcount; i++) {
fclose(flist[i]);
}

Comments are sometimes used to temporarily remove a section of code during testing or debugging of a
program. For example, the second program fragment could be "commented out” as follows:

/*
for(i =0; i <fcount; i++) {
fclose(flist[i]);
}

*/

This technique will not work on the first fragment because it contains comments, and comments may not be
nested. For these cases, the #i f directive of the C preprocessor may be used. Refer to the chapter "The
Preprocessor” for more details.

The Open Watcom C6 and C32 compilers support an extension for comments. The symbol //
can be used at any point in a physical source line (except inside a character constant or string
literal). Any charactersfromthe // to the end of the line are treated as comment characters. The
comment is terminated by the end of theline. Thereisno explicit symbol for terminating the
comment. For example, the program fragment used at the beginning of this section can be
rewritten as,

/!l Close all the files.

for(i =0; i <fcount; i++) { // |loop through |ist
fclose(flist[i]); /I close the file
}

This form of comment can be used to "comment out" code without the difficulties encountered
with/ *.

14 Comments

4 Basic Types

The following topics are discussed:
* Declarations of Objects
* Integer Types
* Floating-Point Types
» Enumerated Types
* Arrays

* Strings

4.1 Declarations of Objects

When aname is used in a program, the compiler needs to know what that name represents. A declaration
describes to the compiler what anameis, including:

» How much storage it occupies (objects) or how much storage is required for the value that is
returned (functions), and how the value in that storage isto be interpreted. Thisis called the type.
Examplesincludei nt,fl oat andstruct 1|ist.

» Whether the name is visible only within the module being compiled, or throughout the program.
Thisiscalled the linkage, and is part of the storage class. The keywords ext ernandstati c
determine the linkage.

* For object names, whether the object is created every time the function is called and destroyed every
time the function returns. Thisis called the storage duration, and is part of the storage class. The
keywords ext er n, st ati ¢, aut o andr egi st er determine the storage duration.

The placement of the declaration within the program determines whether the declaration applies to all
functions within the module, or just to the function within which the declaration appears.

The definition of an object issimilar to its declaration, except that the storage for the object is reserved.

Whether the declaration of an object is also a definition depends upon the placement of the declaration and
the attributes of the object.

Declarations of Objects 15

Language Reference

The usual form for defining (creating) an object is as follows:

storage-class-specifier type-specifier declarator;
or
storage-class-specifier type-specifier declarator = initializer;

The storage-class-specifier is optional, and is thoroughly discussed in the chapter " Storage Classes'. The
type-specifier isaso optional, and is thoroughly discussed in the next section and in the chapter "Advanced
Types'. At least one of the storage-class-specifier and type-specifier must be specified, and they may be
specified in either order, although it is recommended that the storage-class-specifier always be placed first.

The declarator isthe name of the object being defined along with other information about itstype. There
may be several declarators, separated by commas.

Theinitializer is discussed in the chapter "Initialization of Objects".

The following are examples of declarations of objects, along with a brief description of what each one
means. A more complete discussion of the terms used may be found in the relevant section.

int x;

Inside afunction
The object x is declared to be an integer, with automatic storage duration. Itsvalueisavailable
only within the function (or compound statement) in which it isdefined. Thisisalsoa
definition.

Outside afunction
The object x is created and declared to be an integer with static storage duration. Itsvalueis
available within the module in which it is defined, and has external linkage so that any other
module may refer to it by using the declaration,

extern int x;
Thisis aso adefinition.
regi ster void * nmenptr;
Inside afunction

The object nenpt r isdeclared to be apointer to voi d (no particular type of object), and is
used frequently in the function. Thisisalso adefinition.

Outside afunction
Not valid because of the r egi st er storage class.

auto long int x, v;
Inside afunction

The objects x and y are declared to be signed long integers with automatic storage duration.
Thisis aso adefinition.

16 Declarations of Objects

Basic Types

Outside afunction
Not valid because of the aut o storage class.

static int nuns[10];

Inside afunction
The object nurrs is declared to be an array of 10 integers with static storage duration. Its
valueis only available within the function, and will be preserved between calls to the function.
Thisis also adefinition.

Outside afunction
The object nuns is declared to be an array of 10 integers with static storage duration. Its
value is only available within the module. (The differenceisthe scope of the object nuns.)
Thisis also adefinition.

extern int x;

Inside afunction
The object x isdeclared to be an integer with static storage duration. No other functions within
the current module may refer to x unlessthey also declareit. The object is defined in another
module, or elsewhere in this function or module.

Outside afunction
The object x is declared to be an integer with static storage duration. Itsvalueis availableto
all functions within the module. The object is defined in another module, or elsewherein this
module.

The appendix "Examples of Declarations" contains many more examples of declarations of objects and
functions.

4.2 Name Scope

An identifier may be referenced only within its scope.

An identifier declared within afunction or within a compound statement within a function has block scope,
and may be referenced only in the block in which it isdeclared. The object’s scope includes any enclosed
blocks and terminates at the } which terminates the enclosing block.

An identifier declared within afunction prototype (as a parameter to that function) has function prototype
scope, and may not be referenced elsewhere. Its scope terminates at the) which terminates the prototype.

An identifier declared outside of any function or function prototype has file scope, and may be referenced
anywhere within the module in which it isdeclared. If afunction contains a declaration for the same
identifier, the identifier with file scope is hidden within the function. Following the terminating } of the
function, the identifier with file scope becomes visible again.

A label, which must appear within afunction, has function scope.

Name Scope 17

Language Reference

4.3 Type Specifiers

Every object has atype associated with it. Functions may be defined to return avalue, and that value also
has atype. The type describes the interpretation of avalue of that type, such as whether it issigned or
unsigned, a pointer, etc. The type also describes the amount of storage required. Together, the amount of
storage and the interpretation of stored values describes the range of values that may be stored in that type.

There are anumber of different types defined by the C language. They provide agreat deal of power in
selecting methods for storing and moving data, and also contribute to the readability of the program.

There are anumber of "basic types", those which will appear in virtually every program. More
sophisticated types provide methods to describe data structures, and are discussed in the chapter "Advanced

Types'.
A type specifier is one or more of:

char
doubl e

fl oat

i nt

| ong
short

si gned
unsi gned
voi d
enumeration
structure
union
typedef name

and may also include the following type qualifiers:

const
vol atile

The Open Watcom compilers a so provide the following extended type qualifiers:

___based __fortran _Segl6
_Cdecl __huge ___segnent
___cdecl ___inline __segnhane
__decl spec __int64 __self
__Export __interrupt ___stdcall
___export __| oadds _Syscal |
__far ___hear __syscal |
_Far 16 _Packed _System
__farle _Pascal __unaligned
_Fastcal | __pascal __watcal |
__fastcall ___saveregs

For the extended type qualifiers, see the appendix "Compiler Keywords".

Various combinations of these keywords may be used when declaring an object. Refer to the section on the

type being defined.

18 Type Specifiers

Basic Types

Themaintypesarechar,i nt,fl oat and doubl e. Thekeywordsshort,| ong, si gned,
unsi gned, const andvol ati | e modify these types.

4.4 Integer Types

The most commonly used type istheinteger. Integers are used for storing most numbers that do not require
adecimal point, such as counters, sizes and indices into arrays. The range of integersislimited by the
underlying machine architecture and is usually determined by the range of values that can be handled by the
most convenient storage type of the hardware. Most 16-bit machines can handle integersin the range

- 3276810 32767. Larger machinestypically handle integersin therange - 2147483648 to
2147483647.

The general integer type includes a selection of types, specifying whether or not the value isto be
considered as signed (negative and positive values) or unsigned (non-negative values), character (holds one
character of the character set), short (small range), long (large range) or long long (very large range).

Just specifying thetype i nt indicates that the amount of storage should correspond to the most convenient
storage type of the hardware. The value istreated as being a signed quantity. According to the C language
standard, the minimum range for i nt is- 32767 to 32767, although a compiler may provide a greater
range.

With Open Watcom C16, i nt hasarangeof - 32768 to 32767.
With Open Watcom C?2, i nt hasarangeof - 2147483648 to 2147483647.

Specifying the type char indicates that the amount of storage is large enough to store any member of the
execution character set. If amember of the required source character set (see "Character Sets') is stored in
an object of type char , then the value is guaranteed to be positive. Whether or not other characters are
positive isimplementation-defined. (In other words, whether char issigned or unsigned is
implementation-defined. If it is necessary for the object of type char to be signed or unsigned, then the
object should be declared explicitly, as described below.)

The Open Watcom C6 and C32 compilers define char to be unsi gned, allowing objects of
that type to store values in the range 0 to 255. A command line switch may be specified to cause
char tobetreated as si gned. This switch should only be used when porting a C program from
asystem where char issigned.

Thei nt keyword may be specified with the keywords short or | ong. These keywords provide
additional information about the range of valuesto be stored in an object of thistype. According to the C
language standard, a signed short integer has a minimum range of - 32767 to 32767. A signed long
integer hasaminimum range of - 2147483647 to 2147483647. A signed long long integer has a
minimum range of - 9223372036854775807 to 9223372036854775807.

With Open Watcom C16 and C32, short i nt hasarangeof - 32768 to 32767, whilel ong
i nt hasarangeof - 2147483648 t0 2147483647,and | ong | ong i nt hasarange of
-9223372036854775808 to 9223372036854775807.

Thechar andi nt types may be specified with the keywords si gned or unsi gned. These keywords
explicitly indicate whether the type represents a signed or unsigned (non-negative) quantity.

Integer Types 19

Language Reference

20

The following table describes all of the various integer types and their ranges as implemented by
the Open Watcom C16 and C32 compilers. Note that the table isin order of increasing storage

Thekeyword i nt may be omitted from the declaration if one (or more) of the keywords si gned,
unsi gned, short or| ong isspecified. Inother words, short isequivalentto si gned short
and unsi gned | ong isequivalent to unsi gned | ong int.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing the range and
other characteristics of the various numeric types. The macros from the header <l i mi t s. h>, which
describe the integer types, are discussed.

Size.
Minimum Maximum
Type Vaue Vaue
si gned char -128 127
unsi gned char 0 255
char 0 255
short int - 32768 32767
unsi gned short int 0 65535
int (CI9) -32768 32767
int (C%) - 2147483648 2147483647
unsi gned i nt (C16) 0 65535
unsi gned int (C32) 0 4294967295
I ong int -2147483648 2147483647
unsi gned | ong int 0 18446744073709551615
long long int -92233720368547758078 9223372036854775807
unsi gned | ong | ong 0 18446744073709551615

With Open Watcom C16, an object of type i nt has the same range as an object of type shor t

i nt.

With Open Watcom C32, an object of type i nt has the same range as an object of type | ong

int.

Integer Types

Basic Types

The following are some examples of declarations of objects with integer type:

char a;
unsi gned char b;
signed char C;
short d;
unsi gned short int e;
i nt f,g;
si gned h;
unsi gned int i;
| ong i
unsi gned | ong k
si gned | ong l;
unsigned long int m

signed | ong | ong

[ong | ong

unsi gned | ong | ong
long long int

O T o>

4.5 Floating-Point Types

A floating-point number is a number which may contain a decimal point and digits following the decimal
point. The range of floating-point numbersis usually considerably larger than that of integers, but the
efficiency of integersisusualy much greater. Integers are aways exact quantities, whereas floating-point
numbers sometimes suffer from round-off error and loss of precision.

On some computers, floating-point arithmetic is emulated (simulated) by software, rather than hardware.
Software emulation can greatly reduce the speed of a program. While this should not affect the portability
of aprogram, a prudent programmer limits the use of floating-point numbers.

There are three floating-point number types, f | oat , doubl e, and | ong doubl e.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing the range and

other characteristics of the various numeric types. The macros from the header <f | oat . h>, which
describe the floating-point types, are discussed.

The following table gives the ranges available on the 80x86/80x87 using the Open Watcom
C16 and C32 compiler. The floating-point format is the IEEE Standard for Binary Floating-Point

Arithmetic (ANSI/IEEE Std 754-1985).

Smallest Largest Digits 80x87
Absolute Absolute Of Type
Type Vaue Vaue Accuracy Name
fl oat 1. 1E- 38 3. 4E+38 6 short real
doubl e 2.2E-308 |1.7E+308 |15 long real
| ong doubl e 2.2E-308 |1.7E+308 |15 long real

Floating-Point Types 21

Language Reference

By default, the Open Watcom C26 and C32 compilers emulate floating-point arithmetic. 1f the
8087 or 80x87 Numeric Processor Extension (numeric coprocessor, math chip) will be present at
execution time, the compiler can be forced to generate floating-point instructions for the
coprocessor by specifying acommand line switch, as described in the User’s Guide. Other than an
improvement in execution speed, the final result should be the same as if the processor is not
present.

The following are some examples of declarations of objects with floating-point type:

fl oat a;
doubl e b;
| ong doubl e c;

4.6 Enumerated Types

Sometimesit is desirable to have alist of constant values representing different things, and the exact values
are not relevant. They may need to be unique or may have duplicates. For example, a set of actions, colors
or keys might be represented in such alist. An enumerated type allows the creation of alist of items.

An enumerated typeis a set of identifiers that correspond to constants of type i nt . Theseidentifiersare
called enumeration constants. The first identifier in the set has the value 0, and subsequent identifiers are
given the previous value plus one. Wherever a constant of type i nt isallowed, an enumeration constant
may be specified.

The following type specifier defines the set of actions available in a simple memo program:

enum actions { DI SPLAY, ED T, PURGE };

The enumeration constant DI SPLAY is equivalent to the integer constant 0, and EDI T and PURCE are
equivalent to 1 and 2 respectively.

An enumerated type may be given an optional tag (name) with which it may be identified elsewhere in the
program. In the example above, the tag of the enumerated typeis act i ons, which becomes a new type.
If no tag is given, then only those objects listed following the definition of the type may have the
enumerated type.

The name space for enumerated type tags is different from that of object names, |abels and member names
of structures and unions, so atag may be the same identifier as one of these other kinds. An enumerated
type tag may not be the same as the tag of a structure or union, or another enumerated type.

Enumeration constants may be given a specific value by specifying '=' followed by the value. For
example,

enumcolors { RED = 1, BLUE = 2, GREEN = 4 };

22 Enumerated Types

Basic Types

creates the constants RED, BLUE and GREEN with values 1, 2 and 4 respectively.

enum fruits { GRAPE, ORANGE = 6, APPLE, PLUM };

creates constants with values 0, 6, 7 and 8.

enum fruits { GRAPE, PLUM RAISIN = GRAPE, PRUNE = PLUM };
makes GRAPE and RAI SI N equal to 0, and PLUMand PRUNE equal to 1.
The formal specification of an enumerated typeis as follows:

enumidentifier

or

enum{ enumeration-constant-list }

or

enumidentifier { enumeration-constant-list }

enumer ation-constant-list:
enumer ation-constant
or
enumer ation-constant, enumer ation-constant-list

enumer ation-constant:
identifier

or

identifier = constant-expression

The type of an enumeration isimplementation-defined, although it must be compatible with an integer type.
Many compilerswill usei nt .

From the following table, the Open Watcom C6 and Open Watcom C%2 compilers will choose
the smallest type that has sufficient range to represent al of the constants of a particular

enumeration:

Type Smallest Value Largest Value

si gned char -128 127

unsi gned char 0 255

si gned short - 32768 32767

unsi gned short 0 65535

si gned | ong -2147483648 2147483647

unsi gned | ong 0 4294967295

signed | ong | ong -9223372036854775808 9223372036854775807
unsi gned | ong | ong 0 18446744073709551615

A command-line option may be used to force all enumerationsto i nt .

To create an object with enumerated type, one of two forms may be used. Thefirst form isto create the
type as shown above, and then to declare an object as follows:

Enumerated Types 23

Language Reference

enumtag object-name;
For example, the declaration,

enumfruits fruit;
declaresthe object f r ui t to bethe enumerated type frui t s.

The second form isto list the identifiers of the objects following the closing brace of the enumeration
declaration. For example,

enumfruits { GRAPE, ORANCE, APPLE, PLUM} fruit;

Provided no other objects with the same enumeration are going to be declared, the enumerated type tag
fruitsisnotrequired. The declaration could be specified as,

enum { GRAPE, ORANGE, APPLE, PLUM} fruit;

Anidentifier that is an enumeration constant may only appear in one enumeration type. For example, the
constant ORANGE may not be included in another enumeration, because the compiler would then have two
values for ORANGE.

4.7 Arrays

24

An array isacollection of objectswhich are all of the sametype. All elements (objects) in the array are
stored in contiguous (adjacent) memory.

Referencesto array elements are usually made through indexing into the array. To facilitate this, the
elements of the array are numbered starting at zero. Hence an array declared with n elementsisindexed
using indices between 0 and n- 1.

An array may either be given an explicit size (using a constant expression) or its size may be determined by
the number of values used to initialize it. Also, it ispossible to declare an array without any size
information, in the following cases:

 aparameter to afunction is declared as "array of type" (in which case the compiler atersthe type to
be "pointer to type"),

* an array object has external linkage (extern) and the definition which creates the array is given
elsewhere,

* the array isfully declared later in the same module.

An array of undetermined size is an incompl ete type.

Arrays

Basic Types

An array declaration is of the following form:

typeidentifier [constant-expression| ;

or
typeidentifier[] = { initializer-list };

or

type identifier[constant-expression] = { initializer-list};
or

type identifier[] ;

where type is the type of each element of the array, identifier isthe name of the array, constant-expression
is an expression that evaluates to a positive integer defining the number of elementsin the array, and
initializer-list isalist of values (of type type) to be assigned to successive elements of the array.

For example,

i nt val ues[10];

declaresval ues to be an array of 10 integers, with indicesfrom 0to 9. The expression val ues| 5]
refersto the sixth integer in the array.

char text[] = { "some stuff" };

declarest ext to bean array of 11 characters, each containing successive lettersfrom "sonme stuff".
Thevaueof t ext [10] is’ \ 0" (the null character), representing the terminating character in the string
(see Strings).

ext ern NODES nodelist[];

declaresnodel i st to be an array of NODES (defined el sewhere), and the array is of unknown size. In
another source file or later in the current file, there must be a corresponding declaration of nodel i st
which defines how big the array actually is.

It is possible to declare multi-dimensional arrays by including more than one set of dimensions. For
example,

int tbl[2][3];

defines a 2-row by 3-column array of integers. In fact, it defines an array of 2 arrays of 3 integers. The
values are stored in memory in the following order:

t bl [0] [O]
tbl [0] [1]
tbl [0] [2]
0]

The rows of the table are stored together. Thisform of storing an array is called row-major order. The
expressiont bl [1] [2] refersto the element in the last row and last column of the array.

In an expression, if an array is named without specifying any indices, the value of the array name is the
address of itsfirst element. In the example,

Arrays 25

Language Reference

i nt array[10];
int * aptr;

aptr = array,
the assignment to apt r isequivalent to,
aptr = &array[O0];

Since multi-dimensional arrays are just arrays of arrays, it follows that omission of some, but not all,
dimensionsis equivalent to taking the address of the first element of the sub-array. In the example,

i nt array[9][5][2];
int * aptr;

aptr = array[7];
the assignment to apt r isequivalent to,
aptr = &array[7][0][0];

Note that no checking of indicesis performed at execution time. Aninvalid index (less than zero or greater
than the highest index) will refer to memory asif the array was extended to accommodate the index.

4.8 Strings

A string isaspecia form of the type "array of characters’, specifically an array of characters terminated by
anull character. The null character is a character with the value zero, represented as \ 0 within a string, or
asthe character constant ' \ 0’ . Because string processing is such a common task in programming, C
provides a set of library functions for handling strings.

A string is represented by the address of the first character in the string. The length of a string isthe
number of characters up to, but not including, the null character.

An array can beinitialized to be a string using the following form:
typeidentifier[] = { "stringvalue" };
(The braces are optional.) For example,
char ident[] = "This is my prograni;

declaresi dent to be an array of 19 characters, the last of which has the value zero. The string has 18
characters plus the null character.

In the above example, i dent isan array whose value isastring. However, the quote-enclosed value used
toinitializethe array iscalled astring literal. String literals are described in the "Constants' chapter.

26 Strings

Basic Types

A string may be used anywhere in a program where a"pointer to char " may be used. For example, if the
declaration,

char * ident;
was encountered, the statement,
ident = "This is nmy prograni;

would set thevalue of i dent to bethe address of thestring " This is nmy prograni.

Strings 27

Language Reference

28 Strings

5 constants

A constant isavalue which isfixed at compilation time and is often just a number, character or string.
Every constant has a type which is determined by itsform and value. For example, the value 1 may have
thetype si gned i nt, whilethevalue 400000 may havethetype si gned | ong. In many cases, the
type of the constant does not matter. If, for example, the value 1 is assigned to an object of type | ong

i nt,thenthevaue 1 will be converted to along integer before the assignment takes place.

5.1 Integer Constants

An integer constant begins with adigit and contains no fractional or exponent part. A prefix may be
included which defines whether the constant isin octal, decimal or hexadecimal format.

A constant may be suffixed by u or Uindicating an unsi gned i nt,orby | orL indicatingal ong
i nt,or by bothindicating an unsi gned | ong int.

If a constant does not start with a zero and contains a sequence of digits, then it is interpreted as a decimal
(base 10) constant. These are decimal constants:

7
762
98765L

If the constant starts with 0x or 0X followed by the digits from 0 through 9 and the letters a (or A) through
f (or F), then the constant is interpreted as a hexadecimal (base 16) constant. The letters A through F
represent the values 10 through 15 respectively. These are hexadecimal constants:

OXO07FFF
0x12345678L
OxFABE

If aconstant starts with a zero, then it isan octal constant and may contain only the digits O through 7.
These are octal constants:

017
0735643L
0

Note that the constant 0 is actually an octal constant, but is zero in decimal, octal and hexadecimal.
The following table describes what type the compiler will giveto a constant. The left column indicates
what base (decimal, octal or hexadecimal) is used and what suffixes (Uor L) are present. The right column

indicates the types that may be given to such a constant. The type of an integer constant is the first type
from the table in which its value can be accurately represented.

Integer Constants 29

Language Reference

Constant Type

unsuffixed decimal int, I ong, unsigned | ong

unsuffixed octal i nt, unsigned int, | ong, unsi gned | ong
unsuffixed hexadecimal i nt, unsigned int, | ong, unsi gned | ong
suffix U only unsi gned int, unsigned | ong

suffix L only | ong, unsi gned | ong

suffixes U and L unsi gned | ong

suffix LL only I ong | ong, unsigned | ong | ong

suffixes U and LL unsi gned | ong | ong

The following tableillustrates a number of constants and their interpretation and type:

Hexa
Decimal -decimal Open Watcom C'6 Open Watcom C®?

Constant Value Value Type Type

33 33 21 signed int signed int
033 27 1B signed int signed int
0x33 51 33 signed int signed int
33333 33333 8235 signed | ong signed int
033333 14043 36DB signed int signed int
0xA000 40960 A000 unsi gned i nt signed int
0x33333 209715 33333 si gned | ong signed int
0x80000000 2147483648 80000000 unsi gned | ong unsi gned int
2147483648 2147483648 80000000 unsi gned | ong unsi gned int
4294967295 4294967295 FFFFFFFF unsi gned | ong unsi gned int

5.2 Floating-Point Constants

A floating-point constant may be distinguished by the presence of either aperiod, an e or E, or both. It
consists of avalue part (mantissa) optionally followed by an exponent. The mantissamay include a
seguence of digits representing a whole number, followed by a period, followed by a sequence of digits
representing a fractional part. The exponent must start with an e or E followed by an optional sign (+ or

-), and adigit sequence representing (with the sign) the power of 10 by which the mantissa should be
multiplied. Optionally, the suffix f or F may be added indicating the constant hastype f | oat , or the
suffix | or L indicating the constant hastype | ong doubl e. If no suffix is present then the constant has
typedoubl e.

In the mantissa, either the whole number part or the fractional part must be present. If only the whole
number part is present and no period is included then the exponent part must be present.

30 Floating-Point Constants

Constants

The following table illustrates a number of floating-point constants and their type:

Constant Value Type

3. 14159265 3. 14159265E0 doubl e
11E24 1. 1E25 doubl e

. 5L 5E-1 | ong doubl e
7. 234E- 22F 7. 234E- 22 fl oat

0. OEO doubl e

5.3 Character Constants

A character constant is usually one character enclosed in single-quotes, and indicates a constant whose
value is the representation of the character in the execution character set. A character constant has type
int.

The character enclosed in quotes may be any character in the source character set. Certain charactersin the
character set may not be directly representable, since they may be assigned other meanings. These
characters can be entered using the following escape sequences:

Character Character Name Escape Sequence
' single quote \’
" double quote "or\"
? question mark ? or\?
\ backslash \\
octal value \octal digits (max 3)
hexadecimal value \xhexadecimal digits

For example,
"a’ /* the letter a */
"\ /* a single quote */
e /* a question mark */
"\ /* a question mark */
A\ /* a backsl ash */

are al simple character constants.

The following are some character constants containing octal escape sequences, made up of a \ followed by
one, two or three octal digits (the digits 0 through 7):

///_
B wo

77
00’
If acharacter constant containing an octal value is found, but a non-octal character is also present, or if a

fourth octal digit isfound, it is not part of the octal character already specified, and constitutes a separate
character. For example,

Character Constants 31

Language Reference

"\ 1000’
"\ 109

the first constant is a two-character constant, consisting of the characters ' \ 100" and’ 0’ (because an
octal value consists of at most three octal digits). The second constant is also a two-character constant,
consisting of the characters’ \ 10’ and’ 9’ (because 9 isnot an octal digit).

If more than one octal value isto be specified in a character constant, then each octal value must be
specified starting with \ .

The meaning of character constants with more than one character isimplementation-defined.

The following are some character constants containing hexadecimal escape sequences, made up of a \ x
followed by one or more hexadecimal digits (the digits 0 through 9, and the letters a through f and A
through F). (The values of these character constants are the same as the first examples of octal values
presented above.)

"\ x0’
"\ XFF
"\ x40’

If acharacter constant containing a hexadecimal valueis found, but a non-hexadecimal character isalso
present, it is not part of the hexadecimal character already specified, and constitutes a separate character.
For example,

"\ XFAX’
"\ xFx’

the first constant is a two-character constant, consisting of the characters ' \ XFA' and’ x’ (because X is
not a hexadecimal digit). The second constant is also atwo-character constant, consisting of the characters
"\xF and’ x’.

If more hexadecimal digits are found than are required to specify one character, the behavior is
implementation-defined. Specifically, any sequence of hexadecimal charactersin ahexadecimal valuein a
character constant is used to specify the value of one character. |If more than one hexadecimal valueisto be
specified in a character constant, then each hexadecimal value must be specified starting with \ x.

The meaning of character constants with more than one character is implementation-defined.

In addition to the above escape sequences, the following escape sequences may be used to represent
non-graphic characters:

Escape
Sequence Meaning
\a Causes an audible or visual aert
\b Back up one character
\f Move to the start of the next page
\n Move to the start of the next line
\r Move to the start of the current line
\t Move to the next horizontal tab
\v Move to the next vertical tab

32 Character Constants

Constants

The following trigraph sequences may be used to represent characters not available on all terminals or
systems:

Character Trigraph Sequence

22(
22)
22<
22>
27!
?7=
22/
272’
272-

> — H—

l

The Open Watcom C6 and C32 compilers also allow character constants with more than one
character. These may be used to initialize larger types, such as i nt . For example, the program
fragment:

i nt code;
code = "ab’;

assignsthe constant value ' ab’ to theinteger object code. Theletter b is placed in the lowest
order (least significant) portion of the integer value and the letter a is placed in the next highest
portion.

Up to four characters may be placed in a character constant. Successive characters, starting from
the right-most character in the constant, are placed in successively higher order (more significant)
bytes of the result.

Note that a character constant suchas’ a’ is different from the corresponding string literal " a". The

former isof type i nt and hasthe value of the letter a in the execution character set. The latter is of type
"pointer to char " and its value is the address of the first character (a) of the string literal.

5.3.1 Wide Character Constants

If the value of a character constant is to be a multibyte character from an extended character set, then awide
character constant should be specified. Itsformissimilar to normal character constants, except that the
constant is preceded by the character L.

The type of awide character constant is wchar _t , which is one of the integral types, and is described in
the header <st ddef . h>.

With Open Watcom C16 and C32, wchar _t isdefined asunsi gned short .
For example, the constant L’ a’ isawide character constant containing the letter a from the source
character set, and hastype wchar _t . Incontrast, the constant * a’ isacharacter constant containing the

letter a, and hastypei nt .

How the multibyte character maps onto the wide character value is defined by the nbt owc library
function.

Character Constants 33

Language Reference

As shown above, awide character constant may also contain a single byte character, since an extended
character set contains the single byte characters. The single byte character is mapped onto the
corresponding wide character code.

5.4 String Literals

A sequence of zero or more characters enclosed within double-quotesis astring literal.

Most of the same rules for creating character constants also apply to creating string literals. However, the
single-quote may be entered directly or asthe \ ' escape sequence. The double-quote must be entered as

the\ " escape sequence.

The value of astring literal is the sequence of characters within the quotes, plus anull character at the end.
Thetype of astring literal is"array of char".

The following are examples of string literals:

"Hello there"
"\"Quotes inside string\""
"G day"

If two or more string literals are adjacent, the compiler will join them together into one string literal. The
pair of string literals,

"Hel |l 0" "there"

would be joined by the compiler to be,

"Hel | ot here"
and isan array of 11 characters, including the single terminating null character.

Thejoining of adjacent string literals occurs after the replacement of escape sequences. In the examples,

"\ xFAB\ xFA" "B"
"\ 012\ 01" "2"

thefirst string, after joining, consists of three characters, with thevalues ' \ XFAB' ,” \ xFA" and’ B’ .
The second string, after joining, also consists of three characters, with thevalues * \ 012’ ,’ \ 01’ and
12,

A program should not attempt to modify a string literal, as this behavior is undefined. On computers where
memory can be protected, it islikely that string literals will be placed where the program cannot modify
them. An attempt to modify them will cause the program to fail. On other computers without such
protection, the literal can be modified, but thisis generally considered to be a poor programming practice.
(Constants should be constant!)

A string literal normally isastring. Itisnot astring if one of the characters within double-quotes is the null
character (\ 0). If such astring literal istreated as a string, then only those characters before the first null
character will be considered part of the string. The characters following the first null character will be
ignored.

34 String Literals

Constants

If asource file uses the same string literal in several places, the compiler may combine them so that only
one instance of the string exists and each reference refersto that string. In other words, the addresses of
each of the string literals would be the same. However, no program should rely on this since other
compilers may make each string a separate instance.

The Open Watcom C6 and C32 compilers combine several instances of the same string literal in
the same module into a single string literal, provided that they occur in declarations of constant
objects or in statements other than declarations (eg. assignment).

If the program requires that severa string literals be the same instance, then an object should be declared as
an array of char with itsvalueinitialized to the string.

5.4.1 Wide String Literals

If any of the charactersin astring literal are multibyte characters from an extended character set, then a
wide string literal should be specified. Itsform issimilar to normal string literals, except that the string is
preceded by the character L.

Thetype of awide string literal is"array of wechar _t". wchar _t isone of theintegral types, and is
described in the header <st ddef . h>.

With Open Watcom C16 and C32, wchar _t isdefined asunsi gned short.
For example, the string literal L" ab" isawide string literal containing the letters a and b. Itstypeis
"array [3] of wchar _t ", andthevaluesof itselementsareL’ @’ , L’ b’ and’\ 0’ . In contrast, the string
literal " ab" hastype"array [3] of char ", and thevalues of itselementsare " a’ ," b’ and'\ 0’ .

How the multibyte characters map onto wide character valuesis defined by the nbt owce library function.

As shown above, awide string literal may also contain single byte characters, since the extended character
set contains the single byte characters. The single byte characters are mapped onto the corresponding wide
character codes.

Adjacent wide string literals will be concatenated by the compiler and a null character appended to the end.
If astring literal and awide string literal are adjacent, the behavior when the compiler attemptsto
concatentate them is undefined.

String Literals 35

Language Reference

36 String Literals

6 Type Conversion

Whenever two operands are involved in an operation, some kind of conversion of one or both of the
operands may take place. For example,ashort int andal ong i nt cannot be directly added.
Instead, the short i nt must first be convertedtoal ong i nt, then the two values can be added.

Fortunately, C provides most conversions as implicit operations. Simply by indicating that the two values
are to be added, the C compiler will check their types and generate the appropriate conversions. Sometimes
it is necessary, however, to be aware of exactly how C will convert the operands.

Conversion of operands always attempts to preserve the value of the operand. Where preservation of the
valueis not possible, the compiler will sign-extend signed quantities and discard the high bits of quantities
being converted to smaller types.

The rules of type conversions are fully discussed in the following sections.

6.1 Integral Promotion

Rule: A char,short int orint bit-fieldin either of their signed or unsigned forms, or an
object that has an enumerated type, is always convertedto an i nt . If thetypei nt cannot
contain the entire range of the object being converted, then the object will be converted to
anunsi gned int.

A si gned orunsi gned char will beconvertedtoa si gned i nt without changing the value.
With Open Watcom C16, a short i nt hasthesamerangeasi nt , thereforeasi gned
short int isconvertedtoasi gned i nt,andan unsi gned short int isconverted to

anunsi gned i nt, without changing the value.

With Open Watcom C32, a si gned or unsi gned short i nt isconvertedtoan i nt without
changing the value.

These promations are called the integral promations.

6.2 Signed and Unsigned Integer Conversion

Rule: If an unsigned integer is converted to an integer type of any size, then, if the value can be
represented in the new type, the value remains unchanged.

If an unsigned integer is converted to alonger type (type with greater range), then the value will not

change. If itis converted to atype with asmaller range, then provided the value can be represented in the
smaller range, the value will remain unchanged. If the value cannot be represented, then if the result typeis
signed, the result is implementation-defined. If the result typeis unsi gned, theresult is the integer
modulo (1+the largest unsigned number that can be stored in the shorter type).

Signed and Unsigned Integer Conversion 37

Language Reference

With Open Watcom C16, unsigned integers are promoted to longer types by extending the
high-order bits with zeros. They are demoted to shorter types by discarding the high-order portion
of the larger type.

Consider the following examples of 32-bit quantities (unsi gned | ong i nt) being converted to 16-bit
guantities (si gned short int or unsi gned short int):

32-hit 16-hit signed |unsigned
long representation representation short short
65538 0x00010002 0x0002 2 2
100000 |[0x000186A0 0x86A0 -31072 |34464
Rule: When a signed integer is converted to an unsigned integer of equal or greater length, if the

value is non-negative, the value will be unchanged.

A non-negative value stored in a signed integer may be converted to an equal or larger integer type without
affecting the value. A negative value isfirst converted to the signed type of the same length as the result,
then (1+the largest unsigned number that can be stored in the result type) is added to the value to convert it
to the unsigned type.

With Open Watcom C16, signed integers are promoted to longer types by sign-extending the value
(the high bit of the shorter type is propogated throughout the high bits of the longer type). When
the longer type is unsigned, the sign-extended bit-pattern is then treated as an unsigned value.

Consider the following examples of 16-bit signed quantities (si gned short i nt) being converted to
32-bit quantities (si gned | ong i nt and unsi gned | ong int):

si gned | 16-hit 32-hit si ghed unsi gned

short represention representation long long

-2 OxFFFE OxFFFFFFFE -2 4294967294

32766 Ox7FFE 0x00007FFE 32766 32766
Rule; When asigned integer is converted to alonger signed integer, the value will not change.
Rule: When a signed integer is converted to a shorter type, the result is implementation-defined.

With Open Watcom C16, signed integers are converted to a shorter type by preserving the
low-order (least significant) portion of the larger type.

38 Signed and Unsigned Integer Conversion

Type Conversion

6.3 Floating-Point to Integer Conversion

Rule; When afloating-point type is converted to integer, the fractional part is discarded. If the
value of theinteger part cannot be represented in the integer type, then the result is
undefined.

Hence, it isvalid only to convert a floating-point type to integer within the range of the integer type being
converted to. Refer to the section "Integer Types' for details on the range of integers.

6.4 Integer to Floating-Point Conversion

Rule: When the value of an integer type is converted to afloating-point type, and the integer
value cannot be represented exactly in the floating-point type, the value will be rounded
either up or down.

Rounding of floating-point numbers isimplementation-defined. The technique being used by the compiler
may be determined from the macro FLT_ROUNDS found in the header <f | oat . h>. The following table
describes the meaning of the various values:

FLT _ROUNDS Technique

indeterminable

toward zero

to nearest number
toward positive infinity
toward negative infinity

WNR O R

The Open Watcom C6 and C32 compilers will round to the nearest number. (The value of
FLT_ROUNDSis1)

Rule: When afloating-point value is converted to alarger floating-point type (f | oat to
doubl e, fl oat tol ong doubl e, or doubl etol ong doubl e), the value remains
unchanged.

Rule; When any floating-point type is demoted to a floating-point type with a smaller range, then

the result will be undefined if the value lies outside the range of the smaller type. If the
value lies inside the range, but cannot be represented exactly, then rounding will occur in
an implementation-defined manner.

The Open Watcom C16 and C32 compilers round to the nearest number. (The value of
FLT_ROUNDSis1)

Integer to Floating-Point Conversion 39

Language Reference

6.5 Arithmetic Conversion

Whenever two values are used with a binary operator that expects arithmetic types (integer or
floating-point), conversions may take place implicitly. Most binary operators work on two values of the
sametype. If the two values have different types, then the type with the smaller range is aways promoted
to the type with the greater range. Conceptually, each type isfound in the table below and the type found

lower in the table is converted to the type found higher in the table.

| ong doubl e
doubl e

fl oat

unsi gned | ong
| ong

unsi gned i nt

i nt

Note that any types smaller than i nt haveintegral promotions performed on them to promote them to

int.

The following table illustrates the result type of performing an addition on combinations of various types:

signed int + unsigned int
unsi gned int + signed | ong
signed int + unsigned |ong
si gned char + fl oat

signed | ong + double

float + double

float + |ong double

Operation Result Type
si gned char + signed char signed int
unsi gned char + signed int signed int
signed int + signed int signed int

unsi gned i nt
signed | ong
unsi gned | ong
fl oat

doubl e

doubl e

| ong doubl e

6.6 Default Argument Promotion

When acall is made to afunction, the C compiler checks to see if the function has been defined already, or
if aprototype for that function has been found. If so, then the arguments to the function are converted to
the specified types. If neither istrue, then the arguments to the function are promoted as follows:

« all integer types have the integral promotions performed on them, and,
« all arguments of type f | oat are promoted to doubl e.

If the definition of the function does not have parameters with types that match the promoted types, the
behavior is undefined.

40 Default Argument Promotion

/ Advanced Types

The following topics are discussed:
* Structures
* Unions
* Pointers
* Void

» The const and volatile Declarations

7.1 Structures

A structure is atype composed of a sequentia group of members of various types. Like other types, a
structure is amodel describing storage requirements and interpretations, and does not reserve any storage.
Storage is reserved when an object is declared to be an instance of the structure.

Each of the members of a structure must have a name, with the exception of bit-fields.

With Open Watcom C16 and C32, a structure member may be unnamed if the member isa
structure or union.

A structure may not contain amember with an incomplete type. In particular, it may not contain a member
with atype of the structure being defined (otherwise the structure would have indeterminate size), although
it may contain a pointer to it.

The structure may be given an optional tag with which the structure may be referenced elsewhere in the
program. If no tagis given, then only those objects listed following the definition of the structure may have
the structure type.

The name space for structure tagsis different from that of object names, labels and member names, so atag
may be the same identifier as one of these other kinds. A structure tag may not be the same asthetag of a
union or enumerated type, or another structure.

Each structure has its own name space, so an identifier may be used as a member name in more than one
structure. An identifier that is an object name, structure tag, union tag, union member name, enumeration
tag or label may also be used as a member name without ambiguity.

Structures help to organize program data by collecting several related objectsinto one object. They are aso

used for linked lists, trees and for describing externally-defined regions of data that the application must
access.

Structures 41

Language Reference

The following structure might describe a token identified by parsing atyped command:

struct tokendef {
i nt | engt h;
i nt type;
char text[80];
b

This defines a structure containing three members, an integer containing the token length, another integer
containing some encoding of the token type, and the third an array of 80 characters containing the text of
the token. Thetag of the structureis t okendef .

The above definition does not actually create an object containing the structure. Creation of an instance of
the structure requires alist of identifiers following the structure definition, or touse st ruct tokendef
in place of atype for declaring an object. For example,

struct tokendef {

i nt | engt h;

i nt type;

char text[80];
} token;

isequivalent to,
struct tokendef {
i nt | engt h;
i nt type;
char text[80];
b

struct tokendef token;

Both create the object t oken as an instance of the structure t okendef . Thetypeof t okenisst ruct
t okendef .

References to amember of a structure are made using the dot operator (.). Thefirst operand of the.
operator isthe object containing the structure. The second operand is the name of the member. For
example, t oken. | engt h refersto the | engt h member of the t okendef structure contained in
t oken.
If t okenpt r isdeclared as,

struct tokendef * tokenptr;

(t okenpt r isapointer toat okendef structure), then,

(*tokenptr).length

42 Structures

Advanced Types

refersto the | engt h member of the t okendef structurethat t okenpt r pointsto. Alternatively, to
refer to amember of a structure, the arrow operator (- >) is used:

t okenptr->l ength
is equivalent to,

(*tokenptr).length

If a structure contains an unnamed member which is a structure or union, then the members of the
inner structure or union are referenced as if they were members of the outer structure. For
example,

struct outer {
struct inner {
i nt a, b;

The members of X arereferenced as X. a, X. b and X. c.

Each member of astructureis at a higher address than the previous member. Alignment of members may
cause (unnamed) gaps between members, and an unnamed area at the end of the structure.

The Open Watcom C6 and C32 compilers provide a command-line switchanda #pr agna to
control the alignment of members of structures. See the User’s Guide for details.

In addition, the _Packed keyword is provided, and if specified beforethe st r uct keyword, will
force the structure to be packed (no alignment, no gaps) regardless of the setting of the
command-line switch or the #pr agnma controlling the alignment of members.

A pointer to an object with a structure type, suitably cast, is also a pointer to the first member of the
structure.

A structure declaration of the form,
struct tag;

can be used to declare a new structure within a block, temporarily hiding the old structure. When the block
ends, the previous structure’ s hidden declaration will be restored. For example,

struct thing { int a,b; };
[* 0.0 %
{
struct thing;
struct sl { struct thing * thingptr; } tptr;
struct thing { struct s1 * slptr; } sptr;

}

the original definition of st ruct t hi ng issuppressed in order to create anew definition. Failureto
suppress the original definition would resultin t hi ngpt r being a pointer to the old definition of t hi ng
rather than the new one.

Structures 43

Language Reference

Redefining structures can be confusing and should be avoided.

7.1.1 Bit-fields

A member of a structure can be declared as a bit-field, provided the type of the member is i nt,
unsi gned int orsigned int.

In addition, the Open Watcom C16 and C32 compilers allow thetypes char, unsi gned char,
short int andunsi gned short i nt to bebit-fields.

A bit-field declares the member to be a number of bits. A value may be assigned to the bit-field in the same
manner as other integral types, provided the value can be stored in the number of bits available. If the
value istoo big for the bit-field, excess high bits are discarded when the value is stored.

The type of the bit-field determines the treatment of the highest bit of the bit-field. Signed types cause the
high bit to be treated as a sign bit, while unsigned types do not treat it asasign bit. For abit-field defined
withtypei nt (and no si gned or unsi gned keyword), whether or not the high bit is considered asign
bit isimplementation-defined.

The Open Watcom C6 and C32 compilers treat the high bit of abit-field of type i nt asasign
bit.

A bit-field is declared by following the member name by a colon and a constant expression which evaluates
to a non-negative value that does not exceed the number of bitsin the type.

A bit-field may be declared without a name and may be used to align a structure to an imposed form. Such
ahit-field cannot be referenced.

If two bit-fields are declared sequentially within the same structure, and they would both fit within the
storage unit assigned to them by the compiler, then they are both placed within the same storage unit. If the
second bit-field doesn't fit, then whether it is placed in the next storage unit, or partialy placed in the same
unit as the first and spilled over into the next unit, isimplementati on-defined.

The Open Watcom C6 and C32 compilers place a bit-field in the next storage unit if it will not fit
in the remaining portion of the previously defined bit-field. Bit-fields are not allowed to straddle
storage unit boundaries.

An unnamed member declared as: O prevents the next bit-field from being placed in the same storage
unit as the previous bit-field.

The order that bit-fields are placed in the storage unit is implementation-defined.
The Open Watcom C6 and C32 compilers place bit-fields starting at the low-order end (least

significant bit) of the storage unit. If a 1-bit bit-field is placed alonein an unsi gned i nt thena
value of 1in the bit-field corresponds to avalue of 1 in the integer.

44 Structures

Advanced Types

Consider the following structure definition:

struct list_el {
struct list_el * link;
unsi gned short el num

unsi gned int | engt h K
signed int of f set S
i nt flag C1,
char * t ext;

b
Thestructurel i st _el contains the following members:

1. linkisapointertoal i st_el structure, indicating that instances of this structure will
probably be used in alinked list,

2. el numisan unsigned short integer,
3. | engt hisan unsigned bit-field containing 3 bits, allowing values in the range 0 through 7,

4. of f set isasigned bit-field containing 4 bits, which will be placed in the same integer with
| engt h. Sincethetypeis si gned i nt, therange of vauesfor thisbit-field is - 8 through 7,

5. fl agisal-hitfield,

Sincethetypeisi nt , the Open Watcom C6 and C32 compilers will treat the bit asa
sign bit, and the set of values for the bit-field is - 1 and O.

6. text isapointer to character, possibly astring.

7.2 Unions

A union issimilar to astructure, except that each member of a union is placed starting at the same storage
location, rather than in sequentially higher storage locations. (The Pascal term for aunion is "variant
record".)

The name space for union tagsis different from that of object names, labels and member names, so atag
may be the same identifier as one of these other kinds. The tag may not be the same identifier as the tag of
a structure, enumeration or another union.

Each union hasits own name space, so an identifier may be used as a member name in severa different
unions. Anidentifier that is an object name, structure tag, structure member name, union tag, enumeration
tag or label may also be used as a member name without ambiguity.

With Open Watcom C16 and C32, unions, like structures, may contain unnamed members that are
structures or unions. References to the members of an unnamed structure or union are made as if
the members of the inner structure or union were at the outer level.

The size of aunion isthe size of the largest of the membersit contains.

A pointer to an object that is a union points to each of the members of the union. If one or more of the

members of the union is a bit-field, then a pointer to the object also points to the storage unit in which the
bit-field resides.

Unions 45

Language Reference

Storing avalue in one member of aunion, and then referring to it via another member is only meaningful
when the different members have the same type. Members of a union may themselves be structures, and if
some or all of the members start with the same membersin each structure, then references to those structure
members may be made via any of the union members. For example, consider the following structure and
union definitions:

struct recl {

i nt rectype;

i nt vl,v2,v3;

char * t ext;
s
struct rec2 {

i nt rectype;

short int flags : 8;

enum {red, blue, green} hue;
b

union alt_rec {
struct recl val 1;
struct rec2 val 2;

s

al t _rec isaunion defining two membersval 1 and val 2, which are two different forms of arecord,
namely the structures r ec1 and r ec2 respectively. Each of the different record forms starts with the
member r ect ype. Thefollowing program fragment would be valid:

union alt_rec record,;

[* 00 %

record.recl.rectype = 33;

DoSonet hi ng(record.rec2.rectype);

However, the following fragment would exhibit implementati on-defined behavior:

record.recl.vl = 27;
DoSoret hi ngEl se(record. rec2. hue);

In other words, unless several members of a union are themselves structures where the first few members
are of the same type, a program should not store into a union member and retrieve a value using another

union member. Generaly, aflag or other indicator is kept to describe which member of the union is
currently the "active" member.

7.3 Pointers

A pointer to an object is equivalent to the address of the object in the memory of the computer.

An object may be declared to be a pointer to atype of abject, or it may be declared to be a pointer to no
particular type. Theform,

46 Pointers

Advanced Types

type * identifier;

declares the identifier to be a pointer to the given type. If typeis voi d, then theidentifier is a pointer to no
particular type of object (a generic pointer).

The following examples illustrate various pointer declarations:

int * intptr;
intptr isapointertoani nt.

char * charptr;
char ptr isapointertoachar.

struct tokendef * token;
t oken isapointer to the structure t okendef .

char * argv[];
ar gv isan array of pointersto char or an array of pointers to strings.

char ** strptr;
st rpt r isapointer to apointer to char .

void * dunpbeg;
dunpbeg isapointer, but to no particular type of object.

Any place that a pointer may be used, the constant 0 may also be used. Thisvalueisthe null pointer
constant. The value that is used internally to represent anull pointer is guaranteed not to be a pointer to an
object. It does not necessarily correspond to the integer value 0. It merely represents a pointer that does
not currently point at anything. The macro NULL, defined in the header <st ddef . h>, may also be used
in place of 0.

7.3.1 Special Pointer Types for Open Watcom C6

Note: the following sections only apply to the Open Watcom C16 (16-hit) compiler. For the
Open Watcom C32 compiler, see the section " Special Pointer Types for Open Watcom C32",

On the 8086, a normal pointer (16 bits) can only point to a 64K region of the total memory available on the
machine. This effectively limits any program to a maximum of 64K of executable code and 64K of data
For many applications, this does not pose a limitation.

Some applications need more than 64K of code or data, or both. The Open Watcom C16 compiler provides
amechanism whereby pointers can be declared that get beyond the 64K limit. This can be done either by
specifying an option when compiling the files (see the User’s Guide) or by including a special type
qualifier keyword in the declaration of the object. Later sections describe these keywords and their use.

The use of the keywords may prevent the program from compiling using other C compilers, in particular
when the program is being transported to another system. However, the preprocessor can be used to
eliminate the keywords on these other systems.

Before discussing the special pointer types, it isimportant to understand the different memory models that
are available and what they mean. The five memory models are referred to as.

small small code (code < 64K), small data (data < 64K)

Pointers 47

Language Reference

compact small code (code < 64K), big data (total data> 64K, al objects < 64K)
medium big code (code > 64K), small data (data < 64K)

large big code (code > 64K), big data (total data > 64K, all objects < 64K)
huge big code (code > 64K), huge data (total data > 64K, objects > 64K)

The following sections discuss the memory modelsin terms of "small" and "big" code and data sizes. The
terms "small", "compact”, "medium", "large" and "huge" are simply concise terms used to describe the
combinations of code and data sizes available.

7.3.1.1 The Small and Big Code Models

Each program can use either small code (less than 64K) or big code (more than 64K). Small code means
that all functions (together) must fit within the 64K limit on code size. It is possibleto call afunction using
only a 16-bit pointer. Thisisthe default.

Big code removes the restriction, but requires that all functions be called with a 32-bit pointer. A 32-bit
pointer consists of two 16-bit quantities, called the segment and offset. (When the computer uses the
segment and offset to refer to an actual memory location, the two values are combined to produce a 20-bit
memory address, which allows for the addressing of 1024K of memory.) Because of the larger pointers, the
code generated by the big code option takes more space and takes longer to execute.

When the big code option is being used, it is possible to group functions together into several 64K (or
smaller) regions. Each module can be its own region, or several modules can be grouped. It ispossibleto
call other functions within the same group using a 16-bit value. These functions are said to be near.
Functions outside the group can still be called, but must be called using a 32-bit value. These functions are
said to be far.

When the big code option is given on the command line for compiling the module, ordinary pointersto
functions will be defined automatically to be of the larger type, and function calls will be done using the
longer (32-bit) form.

It is also possible to use the small code option, and to override certain functions and pointers to functions as
being far. However, this method may lead to problems. The Open Watcom C16 compiler generates special
function calls that the programmer doesn’t see, such as checking for stack overflow when afunction is
invoked. These calls are either near or far depending entirely on the memory model chosen when the
moduleis compiled. If the small code model is being used, all callswill be near calls. If, however, severa
code groups are created with far calls between them, they will all need to access the stack overflow
checking routines. The linker can only place these special routines in one of the code groups, leaving the
other functions without access to them, causing an error.

To resolve this problem, mixing code models requires that all modules be compiled with the big code
model, overriding certain functions as being near. In this manner, the stack checking routines can be placed
in any code group, which the other code groups can still access. Alternatively, a command-line switch may
be used to turn off stack checking, so no stack checking routines get called.

7.3.1.2 The Small and Big Data Models

Each program can use either small data (less than 64K) or big data (more than 64K). Small datarequires
that all objects exist within one 64K region of memory. It ispossible to refer to each object using a 16-bit
pointer. Thisisthe default.

48 Pointers

Advanced Types

Big data removes the restriction, but all pointers to data objects require a 32-bit pointer. Aswith the big
code option, extrainstructions are required to manipulate the 32-bit pointer, so the generated code will be
larger and not as fast.

With either small or big data, each object isrestricted in size to a maximum of 64K bytes. However, an
object may be declared as huge, alowing the object to be bigger than 64K bytes. Pointers to huge objects
are the least efficient because of extra code required to handle them, especially when doing pointer
arithmetic. Huge objects are discussed in the section "The _ _huge Keyword".

When the big data option is being used, the program still retains one region up to 64K in size in which
objects can be referred to using 16-bit pointers, regardless of the code group being executed. These objects
are said to be near. Objects outside this region can still be referenced, but must be referred to using a
32-bit value. These objects are said to befar.

When the big data option is given on the command line for compiling the module, ordinary pointersto
objects other than functions will be defined automatically to be of the larger type.

It isalso possible to use the small data option, and to override certain objects as being far. The programmer
must decide which method is easier to use.

7.3.1.3 Mixing Memory Models

It is possible to mix small and big code and data pointers within one program. In fact, a programmer
striving for optimum efficiency will probably mix pointer types. But great care must be taken!

In some applications, the programmer may want the ability to have either big code or big data, but won't
want to pay the extra-code penalty required to compile everything accordingly. In the case of big data, the
programmer may realize that 99% of the data structures can reside within the 64K limit, and the remaining
ones must go beyond that limit. Similarly, it may be desirable to have only afew functions that don’t fit
within the 64K limit.

When overriding the current memory model, it is very important to declare each type properly.

The following sections describe how to override the current memory model.

7.3.1.4 The _ _far Keyword for Open Watcom C'6

When the big code memory model isin effect, functions are far and pointers to functions are declared
automatically to be pointersto far functions. Similarly, the big data model causes all pointers to objects
(other than functions) to be pointers to far objects. However, when either the small code or small data
model is being used, the keyword __ f ar may be used to override to the big model.

The __ far keyword isatype qualifier that modifies the token that followsit. If __ f ar precedes* (asin
__far *),thenthe pointer pointsto something far. Otherwise, if __f ar precedestheidentifier of the
object or function being declared (asin __far x), then the object itself isfar.

Thekeyword __ f ar can only be applied to function and object names and the indirection (pointer) symbol

* . Parametersto functions may not bedeclared as __ f ar sincethey are alwaysin the 64K data areathat is
near.

Pointers 49

Language Reference

Open Watcom C26 provides the predefined macros f ar and _f ar for convenience and
compatibility with the Microsoft C compiler. They may beusedinplaceof __ far.

The following examplesillustrate the use of the __ f ar keyword. The examples assume that the small
memory model (small code, small data) is being used.

int __far * ptr;
declares pt r to be apointer to an integer. The object pt r isnear (addressable using only 16 hits),
but the value of the pointer is the address of an integer which isfar, and so the pointer contains 32
bits.

int * __far fptr;
also declares f pt r to be apointer to aninteger. However, the object f pt r isfar, but the integer
that it pointsto is near.

int __far * __far ffptr;
declaresf f pt r to be apointer (which isfar) to an integer (which isfar).

When declaring afunction, placing the keyword __ f ar in front of the function name causes the compiler
to treat the function as being far. It isimportant, if the function is called before its definition, that a
function prototype be included prior to any calls. For example, the declaration,

void __ far BubbleSort();
declares the function Bubbl eSor t to be far, meaning that any calls to it must be far calls.

Here are afew more examples. These, too, assume that the small memory model (small code, small data) is
being used.

struct synbol * _ far FSymAll oc(void);
declaresthe function FSymAl | oc to be far, returning apointer to anear synbol structure.

struct synmbol _ far * _ far FFSymAlloc(void);
declares the function FFSynAl | oc to befar, returning a pointer to afar synbol structure.

void Indirect(float _ far fn());
declaresthe function | ndi r ect to be near, taking one parameter f n which isa pointer to afar
function that returnsa f | oat .

int AdjustLeft(struct symbol * __far synptr);
isaninvalid declaration, sinceit attemptsto declare synpt r to befar. All parameters must be
near, since they reside in the 64K data area that is always near.

7.3.1.5 The _ _near Keyword for Open Watcom C'6

When the small code memory model isin effect, functions are near, and pointers to functions are
automatically declared to be pointers to near functions. Similarly, the small data model causes all pointers
to objects (other than functions) to be pointersto near objects. However, when either the big code or big
data model is being used, the keyword __near may be used to override to the small model.

The __near keywordisatype quaifier that modifiesthe token that followsit. If ___near precedes* (as

in__near *),thenthe pointer pointsto something near. Otherwise, if __near precedesthe identifier of
the object or function being declared (asin __near x), then the object itself is near.

50 Pointers

Advanced Types

Thekeyword ___near can only be applied to function and object names and the indirection (pointer)
symbol * .

Open Watcom C26 provides the predefined macros near and _near for convenience and
compatibility with the Microsoft C compiler. They may beused in placeof __ near.

The following examplesillustrate the use of the ___near keyword. These examples assume that the large
memory module (big code, big data) is being used.

extern int __ near * X;
declares the object x to be a pointer to anear integer. (X is not necessarily within the 64K data area
that is near, but the integer that it pointstois.)

extern int * __near nx;
declares the object nx to be near, and is a pointer to afar integer. (nx iswithin the 64K data area
that is near, but the integer that it points to might not be.)

extern int __near * __near nnx;
declares the object nnx to be near, and is a pointer to anear integer. (nnx and the integer that it
points to are both within the 64K data areathat is near.)

struct synbol * _ near NSymAl |l oc(void);
declares the function NSymAl | oc to be near, and returns a pointer to afar synbol structure.

struct synbol _ near * __near NNSymAl | oc(void);
declares the function NNSynAl | oc to be near, and returns a pointer to anear synbol structure.

7.3.1.6 The _ _huge Keyword for Open Watcom C'¢

Even using the big data model, each object isrestricted in size to 64K. Some applications will need to get
beyond this limitation. The Open Watcom C16 compiler providesthe keyword _ huge to describe those
objects that exceed 64K in size. The code generated for these objectsisless efficient thanfor __ f ar
objects.

The declaration of such objects follows the same pattern as above, with the keyword __huge preceding
the name of the object if the object itself is bigger than 64K, or preceding the * if the pointer isto an object
that is bigger than 64K .

Thekeyword __ huge can only be applied to arrays. Huge objects may be used in both the small and big
data models.

Open Watcom C26 provides the predefined macros huge and _huge for convenience and
compatibility with the Microsoft C compiler. They may beusedin placeof __ huge.

These examplesillustrate the use of the _ huge keyword. They assume that big code, small data (the
medium memory model) isin effect.

int __huge iarray[50000];
declaresthe object i ar r ay to be an array of 50000 integers, for atotal size of 100000 bytes.

int __huge * iptr;

declaresi pt r to be near, and a pointer to an integer that is part of a huge array, such as an element
ofi array.

Pointers 51

Language Reference

7.3.2 Special Pointer Types for Open Watcom C*

With an 80386 processor in "protect” mode, anormal pointer (32 bits) can point to a4 gigabyte
(4,294,967,296 byte) region of the memory available on the machine. (In practice, memory limits may
mean that these regions will be smaller than 4 gigabytes.) These regions are called segments, and there may
be more than one segment defined for the memory. Each 32-bit pointer is actually an offset within a4
gigabyte segment, and the offsets within two different segments are generally not related to each other in a
known manner.

As an example, the screen memory may be set up so that it resides in a different region of the memory from
the program’s data. Normal pointers (those within the program’s data area) will not be able to access such
regions.

Like the 16-hit version of Open Watcom C (for the 8086 and 80286), Open Watcom C32 usesthe __ near
and __f ar keywordsto describe objects that are either in the normal data space or elsewhere.

Objects or functions that are near require a 32-bit pointer to access them.

Objects or functions that are far require a 48-hit pointer to access them. This 48-bit pointer consists of two
parts. aselector consisting of 16 hits, and an offset consisting of 32 bits. A selector is similar to a segment
in a16-bit program’s far pointer, except that the numeric value of the selector does not directly determine
the memory region. Instead, the processor uses the selector value in conjunction with a " descriptor table”
to determine what region of memory isto be accessed. In the discussion of far pointers on the 80386, the
terms selector and segment may be used interchangeably.

Like the 16-hit compiler, the Open Watcom C32 compiler supports the small, compact, medium and large
memory models. Throughout the discussions in the following sections, it is assumed that the small memory
model isbeing used, since it is the most likely to be used.

7.3.2.1 The _ _far Keyword for Open Watcom C%2

The __ far keyword isatype qualifier that modifies the token that followsit. If __ f ar precedes* (asin
__far *),thenthe pointer points to something that is far (not in the normal dataregion). Otherwise, if
__far precedestheidentifier of the object or function being declared (asin __f ar x), then the object or
functionisfar.

Thekeyword __f ar can only be applied to function and object names and the indirection (pointer) symbol
* . Parametersto functions may not be declared as __f ar, since they are always in the normal data region.

These examplesillustrate the use of the __ f ar keyword, and assume that the small memory model is being

used.
int __far * ptr;
declares pt r to be apointer to aninteger. The object pt r isnear but theinteger that it pointstois
far.

nt * _far fptr;
also declares f pt r to be apointer to an integer. However, the object f pt r isfar, but the integer
that it pointsto is near.

nt far * __ far ffptr;
declaresf f pt r to be apointer (which isfar) to an integer (which isfar).

52 Pointers

Advanced Types

When declaring afunction, placing the keyword __f ar in front of the function name causes the compiler
to treat the function as being far. It isimportant, if the function is called before its definition, that a
function prototype be included prior to any calls. For example, the declaration,

extern void __far SystenBervice();
declares the function Syst enSer vi ce to be far, meaning that any callsto it must be far calls.

Here are afew more examples:

extern struct systbl * _ far FSysTblPtr(void);
declaresthe function FSysTbl Pt r to befar, returning a pointer to anear syst bl structure.

extern struct systbl __far * __far FFSysTblPtr(void);
declares the function FFSysThl Pt r to befar, returning a pointer to afar syst bl structure.

extern void Indirect(char __far fn());

declaresthe function | ndi r ect to be near, taking one parameter f n which isa pointer to afar
function that returnsa char .

extern int StoreSysTbl(struct systbl * __ far sysptr);
isaninvalid declaration, sinceit attemptsto declare syspt r to befar. All parameters must be
near, since they reside in the normal data areathat is always near.

7.3.2.2 The _ _near Keyword for Open Watcom C??

The __near keyword isatype qualifier that modifies the token that followsit. If __near precedes* (as
in__near *),then the pointer points to something that is near (in the normal dataregion). Otherwise, if
__near precedestheidentifier of the object or function being declared (asin __near x), then the object
or function is near.

Thekeyword __near can only be applied to function and object names and the indirection (pointer)
symbol *.

For programmers using the small memory model, the __ near keyword is not required, but may be useful
for making the program more readable.

7.3.2.3 The _ _far16 and _Seg16 Keywords

With the 80386 processor, afar pointer consists of a 16-bit selector and a 32-bit offset. Open Watcom
C32 also supports a special kind of far pointer which consists of a 16-bit selector and a 16-hit offset. These
pointers, referred to as far 16 pointers, allow 32-bit code to access code and data running in 16-bit mode.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4 gigabyte segment
referenced by the DS register is divided into 8192 areas of 64K bytes each. A farl6 pointer consists of a
16-hit selector referring to one of the 64K byte areas, and a 16-bit offset into that area.

For compatibility with Microsoft C, Open Watcom C32 provides the
declared as,

_far 16 keyword. A pointer

Pointers 53

Language Reference

type __far1l6 * name

defines an object that isafarl6 pointer. If such apointer is accessed in the 32-bit environment, the
compiler will generate the necessary code to convert between the far16 pointer and a "flat" 32-bit pointer.

For example, the declaration,
char __farl16 * bufptr;

declares the object buf pt r to beafarl6 pointer to char .
A function declared as,

type _far 16 func(parmlist);
declares a 16-bit function. Any callsto such afunction from the 32-bit environment will cause the
compiler to convert any 32-bit pointer parameters to farl6 pointers, and any i nt parameters from 32 bits
to 16 bits. (In the 16-bit environment, an object of type i nt isonly 16 bits.) Any return value from the

function will have its return value converted in an appropriate manner.

For example, the declaration,

char * __far16 Scan(char * buffer, int buflen, short err);
declares the 16-bit function Scan. When this function is called from the 32-bit environment, the buf f er
parameter will be converted from aflat 32-bit pointer to afarl6 pointer (which, in the 16-bit environment,
would bedeclaredaschar __far *). Thebuf | en parameter will be converted from a 32-bit integer
to a16-bit integer. The er r parameter will be passed unchanged. Upon returning, the farl6 pointer (far
pointer in the 16-bit environment) will be converted to a 32-bit pointer which describes the equivalent
location in the 32-bit address space.

For compatibility with IBM C Set/2, Open Watcom C32 providesthe _ Seg16 keyword. Note that
_Seg16 isnot interchangeable with __f ar 16.

A pointer declared as,
type* _Segl6 name;

defines an object that isafarl6 pointer. Notethat the _Seg16 appears on the opposite side of the * than
the _ far 16 keyword described above.

For example,

char * _Segl6 bufptr;
declares the object buf pt r to be afarl6 pointer to char (the same as above).

The _Seg16 keyword may not be used to describe a 16-bit function. A #pr agna directive must be used.
Seethe User’s Guide for details. A function declared as,

54 Pointers

Advanced Types

type* _Segl16 func(parmtlist) ;
declares a 32-bit function that returns afar16 pointer.

For example, the declaration,

char * _Segl6 Scan(char * buffer, int buflen, short err);

declares the 32-hit function Scan. No conversion of the parameter list will take place. Thereturn valueis
afarl6 pointer.

7.3.3 Based Pointers for Open Watcom C% and C3?

Near pointers are generally the most efficient type of pointer because they are small, and the compiler can
assume knowledge about what segment of the computer’s memory the pointer (offset) refersto. Far
pointers are the most flexible because they allow the programmer to access any part of the computer’s
memory, without limitation to a particular ssgment. However, far pointers are bigger and slower because
of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of far pointers.
With based pointers, the programmer takes responsibility to tell the compiler which segment a near pointer
(offset) belongs to, but may still access segments of the computer’s memory outside of the normal data
segment (DGROUP). Theresult is apointer type which is as small as and amost as efficient as a near
pointer, but with most of the flexibility of afar pointer.

An object declared as a based pointer falls into one of the following categories:

» the based pointer isin the segment described by another object,

» the based pointer, used as a pointer to another object of the same type (asin alinked list), refersto
the same segment,

» the based pointer is an offset to no particular segment, and must be combined explicitly with a
segment value to produce avalid pointer.

To support based pointers, the following keywords are provided:
__based
__segment

___segnhane
__self

The following operator is also provided:
D>
These keywords and operator are described in the following sections.

Two macros, defined in <mal | oc. h> are also provided:

_NULLSEG
_NULLOFF

They are used in asimilar manner to NULL, but are used with objectsdeclaredas ___ segnent and
__based respectively.

Pointers 55

Language Reference

7.3.3.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named segment. A
segment constant based object is specified as:

type _based(__segname("segment")) object-name;
and a segment constant based pointer is specified as:
type _based(__segname("segment")) * object-name;

where segment is the name of the segment in which the pointer or object is based. As shown above, the
segment name is always specified asastring. There are three special segment names recognized by the
compiler:

CODE"

" CONST"
" DATA"

The" CODE" segment isthe default code segment. The" CONST" segment is the segment containing
constant values. The" _DATA" segment isthe default data segment. If the segment name is not one of the
three recognized names, then a segment will be created with that name. 1f a segment constant based object
is being defined, then it will be placed in the named segment. If a segment constant based pointer is being
defined, then it can point at objects in the named segment.

The following examples illustrate segment constant based pointers and objects:

int __based(__segnane("_CODE")) ival = 3;
int __based(__segnane("_CODE")) * iptr;

i val isan object that residesin the default code segment. i pt r isan object that residesin the data

segment (the usual place for data objects), but points at an integer which resides in the default code
segment. i ptr issuitablefor pointing at i val .

char __ based(__segnane("GOODTHI NGS")) thing;
t hi ng isan object which residesin the segment GOODTHI NGS, which will be created if it does not

already exist. (The creation of segmentsis done by the linker, and is a method of grouping objects and
functions. Nothing isimplicitly created during the execution of the program.)

7.3.3.2 Segment Object Based Pointers

A segment object based pointer derives its segment value from another named object. A segment object
based pointer is specified as follows:

type _based(segment) * name;
where segment is an object defined astype ___segnent .

An object of type __ segment may contain a segment value. Such an object is particularly designed for
use with segment object based pointers.

The following example illustrates a segment object based pointer:

56 Pointers

Advanced Types

__segnment seg;
char __ based(seg) * cptr;

The object seg contains only a segment value. Whenever the object cpt r isused to point to a character,
the actual pointer value will be made up of the segment value found in seg and the offset value found in
cpt r. Theobject seg might be assigned values such as the following:

* aconstant value (eg. the segment containing screen memory),
« the result of the library function _bheapseg,
» the segment portion of another pointer value, by casting it tothetype __segmnent .

7.3.3.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference to a memory
location. A void based pointer does not infer its segment value from another object. The : > (base)
operator is used to combine a segment value and a void based pointer.

For example, on an IBM PC or PS/2 computer, running DOS, with a color monitor, the screen memory
begins at segment 0xB800, offset 0. In avideo text mode, to examine the first character currently displayed
on the screen, the following code could be used:

extern void main()
{
__segnent screen;
char __based(void) * scrptr;

screen 0xB800;
scrptr 0;
printf("Top left character is "%’ .\n",
*(screen: >scrptr));
}

The general form of the : > operator is:
segment : > offset

where segment is an expression of type __ segmnent , and offset is an expression of type___based(
void) *.

7.3.3.4 Self Based Pointers

A self based pointer infersits segment value from itself. It is particularly useful for structures such as
linked lists, where all of the list elements are in the same segment. A self based pointer pointing to one

element may be used to access the next element, and the compiler will use the same segment as the original
pointer.

The following example illustrates a function which will print the values stored in the last two members of a

linked list:
struct a {
struct a __based(__self) * next;
i nt nunber ;

Pointers 57

Language Reference

extern void PrintLast Two(struct a far * list)

{
__segnent seg;
struct a __based(seg) * aptr;

seg = FP_SEQE list);
aptr = FP_OFF(list);
for(; aptr !'= _NULLOFF; aptr = aptr->next) {
if(aptr->next == _NULLOFF) {
printf("Last itemis %\ n", aptr->nunber);
} else if(aptr->next->next == _NULLOFF) {

printf("Second last itemis %\ n", aptr->nunber);

}
}

The parameter to the function Pr i nt Last Two isafar pointer, pointing to alinked list structure anywhere
in memory. It isassumed that all members of a particular linked list of thistype reside in the same segment
of the computer’s memory. (Another instance of the linked list might reside entirely in adifferent
segment.) The object seg is given the segment portion of the far pointer. The object apt r isgiven the
offset portion, and is described as being based in the segment stored in seg.

The expression apt r - >next referstothe next member of the structure stored in memory at the offset
stored in apt r and the segment implied by apt r , which isthe value stored in seg. So far, the behavior
isno different than if next had been declared as,

struct a * next;

The expression apt r - >next - >next illustrates the difference of using a self based pointer. Thefirst
part of the expression (apt r - >next) occurs as described above. However, using the result to point to the
next member occurs by using the offset value found in the next member and combining it with the
segment value of the pointer used to get to that member, which is still the segment implied by apt r, which
isthevalue storedin seg. If next had not been declaredusing ___based(__sel f), thenthe
second pointing operation would refer to the offset value found in the next member, but with the default
data segment (DGROUP), which may or may not be the same segment as stored in seg.

7.4 Void

58

Thevoi d type has several purposes:
1. Todeclarean object as being a pointer to no particular type. For example,
void * menbegi n;

defines menbegi n asbeing a pointer. It does not point to anything without a cast operator.
The statement,

*(char *) nenbegin = "\0’;
will place a zero in the character at which menbegi n points.

2. Todeclareafunction as not returning avalue. For example,

void rewind(FILE * stream);

declares the standard library function r ewi nd which takes one parameter and returns nothing.

Void

Advanced Types

3. Toevauate an expression for its side-effects, discarding the result of the expression. For
example,

(void) getchar();

callsthelibrary function get char , which normally returns a character. In this case, the
character is discarded, effectively advancing one character in the file without caring what
character isread. Thisuseof voi d is primarily for readability, because casting the expression
to the void type will be done automatically. The above example could also be written as,

getchar ();

The keyword voi d isalso used in one other instance. If afunction takes no parameters, voi d may be
used in the declaration. For example,

int getchar(void);
declares the standard library function get char , which takes no parameters and returns an integer.

No object (other than a function) may be declared with type voi d.

7.5 The const and volatile Declarations

An object may be declared with the keyword const . Such an object may not be modified directly by the
program. For objects with static storage duration, this type qualifier describes to the compiler which
objects may be placed in read-only memory, if the computer supports such a concept. It also providesthe
opportunity for the compiler to detect attempts to modify the object. The compiler may also generate better
code when it knows that an object will not be modified.

Even though an object is declared to be constant, it is possible to modify its value indirectly by storing its
address (using a cast) in another object declared to be a pointer to the same type (without the const), and
then using the second object to modify the value to which it points. However, this should be done with
caution, and may fail on computers with protected memory.

If the declaration of an object does not include *, that isto say it isnot a pointer of any kind, then the
keyword const appearing anywhere in the type specifier (including any t ypedef 's) indicates that the
object is constant and may not be changed. If the object isa pointer and const appearsto the left of the *,
the object is a pointer to a constant value, meaning that the value to which the pointer points may not be
modified, although the pointer value may be changed. If const appearsto theright of the *, the object is
aconstant pointer to a value, meaning that the pointer to the value may not be changed, although what the
pointer points to may be changed. If const appears on both sides of the * , the object is a constant pointer
to a constant value, meaning that the pointer and the object to which it points may not be changed.

If the declaration of a structure, union or array includes const , then each member of the type, when
referred to, istreated asif const had been specified.

The const and volatile Declarations 59

Language Reference

The declarations,

const int baseyear = 1900;
const int * byptr;

declare the object baseyear to be an integer whose value is constant and set to 1900, and the object
bypt r to be apointer to a constant object of integer type. If bypt r was made to point to another integer
that was not, in fact, declared to be constant, then bypt r could not be used to modify that value. bypt r
may be used to get a value from an integer object, and never to changeit. Another way of stating it isthat
what by pt r pointsto isconstant, but bypt r itself is not constant.

The declarations,

i nt baseyear;
int * const byptr = &baseyear;

declare the object by pt r as aconstant pointer to an integer, in this case the object baseyear. Thevalue
of baseyear may be modified via bypt r, but the value of bypt r itself may not be changed. In this
case, bypt r itself is constant, but what by pt r pointsto is not constant.

An object may be declared with the keyword vol at i | e. Such an object may be freely modified by the
program, and its value also may be modified through actions outside the program. For example, aflag may
be set when a given interrupt occurs. The keyword vol at i | e indicates to the compiler that care must be
taken when optimizing code referring to the object, so that the meaning of the program is not atered. An
object that the compiler might otherwise have been able to keep in aregister for an extended period of time
will be forced to reside in normal storage so that an external change to it will be reflected in the program’s
behavior.

If the declaration of an object does not include *, that isto say it isnot a pointer of any kind, then the
keyword vol at i | e appearing anywhere in the type specifier (including any t ypedef 's) indicates that
the object is volatile and may be changed at any time without the program knowing. If the objectisa
pointer and vol at i | e appearsto the left of the *, the object is apointer to avolatile value, meaning that
the value to which the pointer points may be changed at any time. If vol at i | e appearsto theright of the
* | the object is avolatile pointer to a value, meaning that the pointer to the value may be changed at any
time. If vol at i | e appears on both the left and the right of the *, the object isavolatile pointer to a
volatile value, meaning that the pointer or the value to which it points may be changed at any time.

If the declaration of a structure, union or array includes vol at i | e, then each member of the type, when
referred to, istreated asif vol at i | e had been specified.

The declarations,

volatile int att ncount ;
volatile int * acptr;

declare the object at t ncount to be an integer whose value may be altered at any time (say by an
asynchronous attention handler), and the object acpt r to be a pointer to avolatile object of integer type.

If both const and vol ati | e areincluded in the declaration of an object, then that object may not be
modified by the program, but it may be modified through some external action. An example of such an
object isthe clock in acomputer, which is modified periodically (every clock "tick"), but programs are not
allowed to change it.

60 The const and volatile Declarations

8 Storage Classes

The storage class of an object describes:

* the duration of the existence of the object. An object may exist throughout the execution of the
program, or only during the span of time that the function in which it is defined is executing. In the
latter case, each time the function is called, a new instance of the object is created, and that object is
destroyed when the function returns.

« the scope of the object. An object may be declared so that it is only accessible within the function in
which it is defined, within the module or throughout the entire program.

A storage class specifier is one of:

auto

regi ster

extern

static

t ypedef
t ypedef isincluded inthelist of storage class specifiers for convenience, because the syntax of atype
definition isthe same as for an object declaration. A t ypedef declaration does not create an object, only
asynonym for atype, which does not have a storage class associated with it.
Only one of these keywords (excluding t ypedef) may be specified in adeclaration of an object.

If an object or function is declared with a storage class, but no type specifier, then the type of the object or
functionisassumedtobei nt .

While a storage class specifier may be placed following atype specifier, this tends to be difficult to read. It
is recommended that the storage class (if present) always be placed first in the declaration. The SO C

standard states that the ability to place the storage class specifier other than at the beginning of the
declaration is an obsolescent feature.

8.1 Type Definitions
A typedef declaration introduces a synonym for another type. It does not introduce a new type.

The general form of atype definition is:

Type Definitions 61

Language Reference

t ypedef type-information typedef-name;

The typedef-name may be a comma-separated list of identifiers, all of which become synonyms for the
type. The names are in the same name space as ordinary object names, and can be redefined in inner
blocks. However, this can be confusing and should be avoided.

The simple declaration,

t ypedef signed int COUNTER

declares the identifier COUNTER to be equivalent to the type si gned i nt. A subsequent declaration
like,

COUNTER ctr;

declaresthe object ct r to beasigned integer. If, later on, it is necessary to change al countersto belong
signed integers, then only the t ypedef would have to be changed, as follows:

t ypedef |ong signed int COUNTER
All declarations of objects of that type will use the new type.

Thet ypedef can be used to simplify declarations elsewhere in aprogram. For example, consider the
following structure:

struct conpl ex {
doubl e real ;
doubl e i magi nary;
1

To declare an object to be an instance of the structure requires the following declaration:

struct conpl ex chum

Now consider the following structure definition with a type definition:
t ypedef struct {
doubl e real ;

doubl e i magi nary;
} COWPLEX;

In this case, the identifier COVPLEX refers to the entire structure definition, including the keyword
st ruct . Therefore, an object can be declared as follows:

COVPLEX chum
While thisisasimple example, it illustrates a method of making object declarations more readable.
Consider the following example, where the object f npt r is being declared as a pointer to afunction which

takes two parameters, a pointer to astructure di 8 and an integer. The function returns a pointer to the
structure di 8. The declarations could appear as follows:

62 Type Definitions

Storage Classes

struct dinB
int x;
int y;
int z;
b

struct dinB * (*fnptr)(struct dinB8 *, int);

or as

typedef struct {

int Xx;

int y;

int z;
} DI MB;

DM3 * (*fnptr)(DOM3 *, int);
or as.

typedef struct {

int Xx;

int y;

int z;
} DI MVB;

typedef DIM3 * DIMBFN(DIM3 *, int);
DI MBFN * fnptr;
The last example simply declares f npt r to be apointer to a DI MBFN, while DI MBFN s declared to be a

function with two parameters, apointer to a DI MB and an integer. The function returns apointer to a
DI MB. DI M3 isdeclared to be a structure of three co-ordinates.

8.1.1 Compatible Types
Some operations, such as assignment, are restricted to operating on two objects of the same type. If both
operands are already the same type, then no special conversion is required. Otherwise, the compiler may
alter automatically one or both operands to make them the same type. Theintegral promotions and

arithmetic conversions are examples. Other types may require an explicit cast.

The compiler decides whether or not an explicit cast is required based on the concept of compatible types.
The following types are compatible:

* two types that are declared exactly the same way,

* two types that differ only in the ordering of the type specifiers, for example, unsi gned | ong
int andi nt | ong unsi gned,

« two arrays of members of compatible type, where both arrays have the same size, or where one array
is declared without size information,

Type Definitions 63

Language Reference

« two functions that return the same type, one containing no parameter information, and the other
containing a fixed number of parameters(no ", . . . ") that are not affected by the default argument
promotions,

* two structures, defined in separate modules, that have the same humber and names of members, in
the same order, with compatibl e types,

* two unions, defined in separate modules, that have the same number and names of members, with
compatible types,

* two enumerated types, defined in separate modules, that have the same number of enumeration
constants, with the same names and the same values,

* two pointers to compatible types.

8.2 Static Storage Duration

An object with static storage duration is created and initialized only once, prior to the execution of the
program. Any value stored in such an object is retained throughout the program unlessit is explicitly
altered by the program (or it is declared with the vol at i | e keyword).

Any object that is declared outside the scope of afunction has static storage duration.

There are three types of static objects:

1. objectswhose values are only available within the function in which they are defined (no
linkage). For example,

extern void Fn(int x)

{

static int ObjCount;
[* .. %
}

2. objectswhose values are only available within the module in which they are defined (internal
linkage). For example,

static int ObjCount;

extern void Fn(int x)

{
I* .0 %]
}

3. objectswhose values are available to all components of the program (external linkage). For
example,

extern int ObjCount = { 0 };
extern void Fn(int x)

{

[* 0.0 %

}

64 Static Storage Duration

Storage Classes

Thefirst two types are defined with the keyword st at i ¢, while the third is defined with the (optional)
keyword ext er n.

8.2.1 The static Storage Class

Any declaration of an object may be preceded by the keyword st ati c. A declaration inside afunction
indicates to the compiler that the object has no linkage, meaning that it is available only within the function.
A declaration not inside any function indicates to the compiler that this object has internal linkage, meaning
that it isavailable in al functions within the module in which it is defined. Other modules may not refer to
the specific object. They may have their own object defined with the same name, but thisis a questionable
programming practice and should be avoided.

The value of the object will be preserved between function calls. Any value placed in an object with static
storage duration will remain unchanged until changed by a function within the same module. Itisalso
possible for a pointer to the object to be passed to a function outside the module in which the object is
defined. This pointer could be used to modify the value of the object.

8.2.2 The extern Storage Class

If an object is declared with the keyword ext er n inside afunction, then the object has external linkage,
meaning that its value is available to all modules, and to the function(s) containing the definition in the
current module. Noinitializer list may be specified in this case, which implies that the space for the object
is alocated in some other module.

If an object is declared outside of the definition of afunction, and the declaration does not contain either of
thekeywords st at i ¢ or ext er n, then the space for the object is created at this point. The abject has
external linkage, meaning that it is available to other modules in the program.

The following examples illustrate the creation of external objects, provided the declarations occur outside
any function:

i nt X;
float F;

If the declaration for an object, outside of the definition of a function, contains the keyword ext er n and
has an initializer list, then space for the object is created at this point, and the object has external linkage.
If, however, the declaration does not include an initializer list, then the compiler assumes that the object is
declared elsewhere. If, during the remainder of the compilation of the module, no further declarations of
the object are found, or more declarations with ext er n and no initializer list are found, then the object
must have space allocated for it in another module. |f a subsequent declaration in the same module does
have an initializer list or omitsthe ext er n keyword, then the space for the object is created at that point.

The following examples also illustrate the creation of external objects:

extern LI ST * ListHead
i nt St art Val

0;
17;

However, the next examplesillustrate the tentative definition of external objects. If no further definition of
the object of aform shown above isfound, then the abject is found outside of the module.

extern LIST * ListH;
extern int Z;

Static Storage Duration 65

Language Reference

Another module may define its own object with the same name (provided it has static storage class), but it
will not be able to access the external one. However, this can be confusing and is a questionable
programming practice.

Any value placed in an object declared with the ext er n keyword will remain unchanged until changed by
afunction within the same or another module.

A function that is declared without the keyword st at i ¢ has external linkage.

Suppose a modul e declares an object (outside of any function definition) as follows:

struct list_el * ListTop;

wherethe structure | i st _el isdefined elsewhere. This declaration allocates space for and declares the
object Li st Top to beapointer to astructure | i st _el , with external linkage. Another module with the
declaration,

extern struct list_el * ListTop;
refersto the same object Li st Top, and statesthat it is found outside of the module.

Within a program, possibly consisting of more than one module, each object or function with external
linkage must be defined (have space allocated for it) exactly once.

8.3 Automatic Storage Duration

The most commonly used object in a C program is one that has meaning only within the function in which
itisdefined. The object is created when execution of the function is begun and destroyed when execution
of the function is completed. Such an object is said to have automatic storage duration. The scope of the
object is said to be the function in which it is defined.

If such an object has the same name as another object defined outside the function (using st ati ¢ or
ext er n), then the outside object is hidden from the function.

Within afunction, any object that does not have its declaration preceded by the keyword st ati c or
ext er n has automatic storage duration.

It is possible to declare an object as automatic within any block of afunction. The scope of such an object
isthe block in which it is declared, including any blocks insideit. Any outside block is unable to access
such an object.

Automatic objects may beinitialized as described in the chapter "Initialization of Objects’. Initialization of
the object only occurs when the block in which the object is declared is entered normally. In particular, a
jump into ablock nested within the function will not initialize any objects declared in that block. Thisisa
guestionable programming practice, and should be avoided.

66 Automatic Storage Duration

Storage Classes

The following function checks a string to seeif it contains nothing but digits:

extern int Islnt(const char * ptr)

/**********************************/

{
if(*ptr == "'\0") return(0);
for(;;) {
char ch;
ch = *(ptr++);
if(ch =="\0) return(1);
if(lisdigit(ch)) return(0);
}
}

The object ch has a scope consisting only of the f or loop. Any statements before or after the loop cannot
accessch.

8.3.1 The auto Storage Class

The declaration of an object in afunction that does not contain the keywords st ati c, ext er n or
regi st er declares an object with automatic storage duration. Such an object may precede its declaration
with the keyword aut o for readability.

An object declared with no storage class specifier or with aut o is"addressable", which means that the
address-of operator may be applied to it.

The programmer should not assume any relationship between the storage locations of multiple aut o
objects declared in afunction. If relative placement of objectsisimportant, a structure should be used.

The following function illustrates a use for aut o objects:

extern int FindSize(struct thing * thingptr)

/**/

{
auto char * start;
auto char * finish;
Fi ndEnds(thingptr, &start, & inish);
return(finish - start + 1);
}

The addresses of the automatic objects st art and f i ni sh are passed to Fi ndEnds, which, presumably,
modifies them.

8.3.2 The register Storage Class

An object that is declared within a function, and whose declaration includes the keyword r egi st er , is
considered to have automatic storage duration. The r egi st er keyword merely provides a hint to the
compiler that this object is going to be heavily used, allowing the compiler to try to put it into a high-speed
access part of the machine, such as a machine register. The compiler may, however, ignore such adirective
for any number of reasons, such as,

Automatic Storage Duration 67

Language Reference

* the compiler does not support objects in registers,
* there are no available registers, or,
* the compiler makes its own decisions about register usage.

Only certain types of objects may be placed in registers, although the set of such typesis
implementati on-defined.

The Open Watcom C6 and C32 compilers may place any object that is sufficiently small,
including asmall structure, in one or more registers.

The compiler will decide which objectswill be placed in registers. The r egi st er keywordis
ignored, except to prevent taking the address of such an object.

Objects declared with or without r egi st er may generaly be treated in the same way. An exception to

thisruleisthat the address-of operator (&) may not be appliedtoar egi st er object, sinceregistersare
generally not within the normal storage of the computer.

68 Automatic Storage Duration

9 Initialization of Objects

Any definition of an object may include avalue or list of valuesfor initializing it, in which case the
declaration is followed by an equal sign (=) and the initial value(s).

Theinitia value for an object with static storage duration may be any expression that evaluatesto a
constant value, including using the address-of operator to take the address of afunction or object with static
storage duration.

Theinitia value for an object with automatic storage duration may be any expression that would be valid as

an assignment to that object, including references to other objects. The evaluations of the initializations
occur in the order in which the definitions of the objects occur.

9.1 Initialization of Scalar Types

Theinitia value for ascalar type (pointers, integers and floating-point types) may be enclosed in braces,
although braces are not required.

The following declarations might appear inside a function:

static i nt MaxRecLen = 1000;

static i nt MaxMentSi ze = { 1000 * 8 + 10000 };
float Pi = 3. 14159;

aut o i nt X = 3;

regi ster int y X * MaxReclLen;

9.2 Initialization of Arrays

For arrays of characters being initialized with a string literal, and for arraysof wchar _t being initialized
with awide string literal, the braces around initial values are optional. For other arrays, the braces are
required.

If an array of unknown sizeisinitialized, then the size of the array is determined by the number of
initializing values provided. In particular, an array of characters of unknown size may be initialized using a
string literal, in which case the size of the array is the number of charactersin the string, plus one for the
terminating null character. Each character of the string is placed in successive elements of the array.
Consider the following array declarations:

char StartPbt[]
i nt Tabs[]
float Roots[]

"Starting point...";
{1, 9, 17, 25, 33, 41 };
{ 1., 1.414, 1.732, 2., 2.236 };

The object St art Pt isan array of 18 characters, Tabs isan array of 6 integers, and Root s isan array of
5 floating-point numbers.

Initialization of Arrays 69

Language Reference

70

If an array is declared to have a certain number of elements, then the maximum number of valuesin the
initialization list isthe number of elementsin the array. An exception is made for arrays of characters,
where the initializer may be a string with the same length as the number of charactersin the array. Each
character from the string is assigned to the corresponding element of the array. The null character at the
end of the string literal isignored.

If there are fewer initialization values than elements of the array, then any elements not receiving avalue
from the list are assigned the value zero (for arithmetic types), or the null pointer constant (for pointers).
Consider the following examples:

char Vowel s1] 6]
char Vowel s2[6]
i nt Nunber s[10]
float Blort[5]

"aei ouy";
{1a1,1e1,1i1,101,1u1,1y1 };
{ 100, 10, 1 };

{ 5.6, -2.2};

The objects Vowel s1 and Vowel s2 are both arrays of six characters, and both contain exactly the same
valuesin each of their corresponding elements. The object Nunber s isan array of 10 integers, the first
three of which areinitialized to 100, 10 and 1, and the remaining seven are set to zero. The object Bl or t
isan array of 5 floating-point numbers. Thefirst two elements areinitializedto 5. 6 and - 2. 2, and the
remaining three are set to zero.

If an array of more than one dimension isinitialized, then each subarray may beinitialized using a
brace-enclosed list of values. Thisform will work for an arbitrary number of dimensions. Consider the
following two-dimensional case:

int Box[3][4] ={ { 11, 12, 13, 14 },
{ 21, 22, 23, 241},
{ 31, 32, 33, 34} };

The object Box isan array of 3 arrays of 4 integers. There are three valuesin the initialization list,
corresponding to the first dimension (3 rows). Eachinitiaization valueisitself alist of values
corresponding to the second dimension (4 columns). In other words, thefirst list of values { 11, 12,
13, 14 } isassignedtothefirst row of Box, thesecond list of values { 21, 22, 23, 24 }is
assigned to the second row of Box, and the third list of values { 31, 32, 33, 34 } isassigned tothe
third row of Box.

If al values are supplied for initializing an array, or if only elements from the end of the array are omitted,
then the sub-levels need not be within braces. For example, the following declaration of Box isthe same as
above:

int Box[3][4] = { 11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34 };

The same rules about incompl ete initialization lists apply to multi-dimensional arrays. The following
exampl e defines a mathematical 3-by-3 identity matrix:

int Identity[3][3] ={ { 11},
{

o

1},
{00 1} }

The missing values are replaced with zeroes. The initialization also could have been given as,

int Identity[3][3] ={ { 1, O, :
{0 1,
{0 0

}
I3
}

oo

, 0, }s

Initialization of Arrays

Initialization of Objects

or as,
int Identity[3][3] ={ 1, O, O,
0, 1, 0,
0, 0, 1}:

9.3 Initialization of Structures

Structures may be initialized in a manner similar to arrays. Theinitializer list must be specified within
braces.

For example,

struct printformat {
i nt pagewi d;
char carr_ctl;
char * buffer;

b
char PrBuffer[256];

struct printformat PrtFnt = { 80, ' ', PrBuffer };

Each value from the initializer list is assigned to each successive member of the structure. Any unnamed
gaps between members or at the end of the structure (caused by alignment) are ignored during initialization.
If there are more members of the structure than values specified by the initializer list, then the remaining
members are initialized to zero (for arithmetic types) or the null pointer constant (for pointers).

If astructure member isitself an array, structure or union, then the sub-members may be initialized using a
brace-enclosed initializer list. If braces are not specified, then for the purposes of initialization, the
sub-members are treated as if they are members of the outer structure, as each subsequent initializer value
initializes a sub-member, until no more sub-members are found, in which case the next member of the outer
structureisinitialized.

9.4 Initialization of Unions

Initializations of unionsisthe same as for structures, except that only the first member of the union may be
initialized, using a brace-enclosed initializer.

Consider the following example:

struct first3 {
char first, second, third;

1
uni on ustr {
char string[20];
struct first3 firstthree;
}s

union ustr Str = { "Hello there" };

Initialization of Unions 71

Language Reference

The object St r isdeclared to be a union of two types, the first of which isan array of 20 characters, and
the second of which is a structure that allows direct access to the first three characters of the string

contained in the array. The array isinitialized to thestring " Hel | o t here". Thethree characters of
struct first3will havethecharacters’ H , 'e’ and’ |’ . Hadthedeclaration of ust r been,

uni on ustr {
struct first3 firstthree;
char string[20];
i

then the initialization could only set the first three characters.

9.5 Uninitialized Objects

An object with static storage duration, and no explicit initialization, will be initialized as if every member
that has arithmetic type was assigned zero and every member that has a pointer type was assigned a null
(zero) pointer.

An object with automatic storage duration, and no explicit initialization, is not initialized. Hence, a

reference to such an automatic object that has not been assigned a value will yield undefined behavior. On
most systems, the value of the object will be arbitrary and unpredictable.

72 Uninitialized Objects

10 Expressions

An expression is a sequence of operators and operands that describes how to,

* calculate avalue (eg. addition)
» create side-effects (eg. assignment, increment)

or both.
The order of execution of the expression is usually determined by a mixture of,
1. parentheses (), which indicate to the compiler the desired grouping of operations,

2. the precedence of operators, which describes the relative priority of operators in the absence of
parentheses,

3. the common algebraic ordering,
4. theassociativity of operators.

In most other cases, the order of execution is determined by the compiler and may not be relied upon.
Exceptionsto this rule are described in the relevant section. Most users will find that the order of execution
iswell-defined and intuitive. However, when in doubt, use parentheses.

The table below summarizes the levels of precedence in expressions.

Operations at a higher level in the table will occur before those below. All operators involving more than
one operand associate from left to right, except for the conditional and assignment operators, which
associate from right to left. Operations at the same level, except where discussed in the relevant section,
may be executed in any order that the compiler chooses (subject to the usual algebraic rules). In particular,
the compiler may regroup sub-expressions that are both associative and commutative in order to improve
the efficiency of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is also subject to
alteration by the compiler.

An exception occurs when the operands for an operator areinvalid. For example, division by zero may
cause an exception. If an exception occurs, the behavior is undefined. If an exception is a possibility, the
program should be prepared to handle it.

In the following sections, aformal syntax is used to describe each level in the precedencetable. This
syntax is used in order to completely describe the relationships between the various levels.

Expressions 73

Language Reference

Expression Type Operators
primary identifier constant
string (expression)
postfix a[b] f()
a.b a->b a++ a- -
unary si zeof u sizeof (a)
++a --a *a
+a -a ~a la
cast (type) a
multiplicative a*b al b a %b
additive a+h a-b
shift a<<b a>bhb
relational a<b a>b a<=b a>=b
equality a == al=b
bitwise AND a&hb
bitwise exclusive OR a”™b
bitwise inclusive OR al| b
logical AND a &b
logical OR all b
conditiona T a? b: c
assignment a=bh a+=b a-=b a*=bhb
al=»b a % b a & b a”"=b
al=b a<<=b a>>=0b
comma a, b

T associates from right to left

10.1 Lvalues

In order to understand certain components of expressions, it isimportant to understand the term Ivalue.

An Ivalueis an expression that designates an object. The simplest form of Ivalueis an identifier whichis
an object (for example, an integer).

74 Lvalues

Expressions

The type of the expression may not be voi d or afunction. The term Ivalue is derived from left value,
which refers to the fact that an Ivalue is typically on the left side of an assignment expression.

If pt r isapointer to atype other than voi d or afunction, then both pt r and * pt r arelvalues.

A modifiable Ivalue is an Ivalue whose type is nhot an array or an incomplete type, whose declaration does
not contain the keyword const , and, if it isastructure or union, then none of its members contains the
keyword const .

10.2 Primary Expressions

primary-expression:
identifier
or
constant
or
string-literal
or
(expression)

A primary expression isthe simplest part of an expression. It consists of one of the following:

identifier An identifier that designates afunction is called a function designator. An identifier that
designates an object is an Ivalue.

constant A constant isa primary expression whose type depends on itsform. See "Constants'.

string-literal A string literal isaprimary expression whosetypeis"array of char". A string literal is
also an lvalue (but is not modifiable).

expression inside parentheses
The type and value of a parenthesized expression are the same as for the expression without
parentheses. It may be an Ivalue, function designator or void expression.

Given these declarations,

i nt count;
int * ctrptr;
i nt f(int);
i nt g(int);

the following are al valid primary expressions:

count

3

3.2

A

"Hell o there"

(count + 3)
(*(ctrptr+1))

(fC ++i) * g(j++))

Primary Expressions 75

Language Reference

10.3 Postfix Operators

postfix-expression:
primary-expression
or
array-subscripting-expression
or
function-call-expression
or
member -designator -expression
or
post-increment-expression
or
post-decrement-expression

10.3.1 Array Subscripting

array-subscripting-expression:
postfix-expression| expression]

The general form for array subscripting is,

array[i ndex]

where ar r ay must have the type "array of type" or "pointer to type", and i ndex must have an integral
type. Theresult has type "type".

array[index] isequivdentto (*(array+i ndex)), or the i ndex-th element of thearray ar r ay,
where the first element is numbered zero. Notethat i ndex is scaled automatically to account for the size
of the elements of ar r ay.

An aternate form for array subscripting is,
i ndex[array]

although this form is not commonly used.

10.3.2 Function Calls

function-call-expression:
postfix-expression()
or
postfix-expression (argument-expression-list)

argument-expression-list:
one or more assignment-expressions separated by commas

A postfix-expression followed by parentheses containing zero or more comma-separated expressionsis a
function-call-expression. The postfix-expression denotes the function to be called, and must evaluate to a
pointer to afunction. The simplest form of this expression is an identifier which is the name of afunction.
For example, Fn() callsthefunction Fn.

76 Postfix Operators

Expressions

The expressions within the parentheses denote the arguments to the function. If afunction prototype has
been declared, then the number of arguments must match the parameter list in the prototype, and the
arguments are converted to the types specified in the prototype.

If the postfix-expression is simply an identifier, and no function prototype declaration for that identifier is
in scope, then an implicit,

extern int identifier();

declaration is placed in the innermost block containing the function call. This declares the function as
having external linkage, no information about its parametersis available, and the function returns an
integer.

The expressions are evaluated (in an undefined order) and the values assigned to the parameters for the
function. All arguments are passed by value, allowing the function to modify its parameters without
affecting the arguments used to create the parameters. However, an argument can be a pointer to an object,
in which case the function may modify the object to which the pointer points.

If afunction prototype isin scope at both acall to afunction and its definition (and if the prototypes are the
same), then the compiler will ensure that the required number and type of parameters are present.

If no function prototype isin scope at a call to afunction, then the default argument promotions are
performed. (Integral typessuch as char and short i nt areconvertedto i nt,whilef| oat valuesare
converted to doubl e.) When the function definition is encountered, if the parameter types do not match
the default argument promotions, then the behavior is undefined. (Usualy, the parameters to the function
will receive incorrect values.)

If afunction prototype has been declared at a call to a function, then each argument is converted, asif by
assignment, to the type of the corresponding parameter. When the function definition is encountered, if the
types of the parameters do not match the types of the parametersin the function prototype, the behavior is
undefined.

If theellipsis(, . . .) notation is used in afunction prototype, then those arguments in a function call that
correspond to the ellipsis have only the default argument promotions performed on them. (See the chapter
"Functions' for a complete description of the ellipsis notation.)

Function calls may be recursive. Functions may call themselves either directly, or via other functions.

The following are some examples of function calls:

putchar('x');

chr = getchar();

valid = isdigit(chr);

printf("chr = %, valid = %®x\n", chr, valid);
fnptr = &WHFuncti on;

(*fnptr)(parml, parn®);

fnptr(parml, parn?);

10.3.3 Structure and Union Members

Postfix Operators 77

Language Reference

member -designator-expression:
postfix-expression . identifier
or
postfix-expression- >identifier

Thefirst operand of the. operator must be an object with a structure or union type. The second operand
must be the name of a member of that type. The result isthe value of the member, and isan Ivalue if the
first operand isaso an lvalue.

Thefirst operand of the - > operator must be a pointer to an object with a structure or union type. The
second operand must be the name of a member of that type. The result isthe value of the member of the
structure or union to which the first expression points, and is an lvalue.

10.3.4 Post-Increment and Post-Decrement

post-increment-expression:
postfix-expression++

post-decrement-expression:
postfix-expression- -

The operand of post-increment and post-decrement must be a modifiable Ivalue, and a scalar (not a
structure, union or array).

The effect of the operation is that the operand is incremented or decremented by 1, adjusted for the type of
the operand. For example, if the operand is declared to be a"pointer to type”, then the increment or
decrement will be by thevalue si zeof (type).

Theresult of both post-increment and post-decrement (if it is just a subexpression of alarger expression) is
the original, unmodified value of the operand. In other words, the original value of the operand isused in
the expression, and then it isincremented or decremented. Whether the operand is incremented
immediately after use or after completion of execution of the expression is undefined. Consider the
Statements,

int i = 2;

int j;

jo= (i++) + (i++);
Depending on the compiler, j may get thevalue 4 or 5. If the increments are delayed until after the
expression isevaluated, j getsthevalue2 + 2. If theincrement of i happensimmediately after its

valueisretrieved, then j getsthevalue2 + 3.

To avoid ambiguity, the above expression could be written as:

78 Postfix Operators

Expressions

10.4 Unary Operators

unary-expression:
postfix-expression
or
pre-increment-expression
or
pre-decrement-expression
or
unary-operator cast-expression
or
sizeof-expression

unary-operator: one of
& * + - ~ I

10.4.1 Pre-Increment and Pre-Decrement Operators

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
- - unary-expression

The operand of the pre-increment and pre-decrement operators must be a modifiable lvalue, and a scalar
(not a structure, union or array).

The operand is incremented or decremented by 1, adjusted for the type of the operand. For example, if the
operand is declared to be a "pointer to type", then the increment or decrement will be by the value
si zeof (type).

The expression ++obj isequivalentto (obj += 1),while--o0bj isequivalentto (obj -= 1).

10.4.2 Address-of and Indirection Operators

unary-expression;

& cast-expression
or

* cast-expression

The unary & symbol denotes the address-of operator. Its operand must designate a function or an array, or
be an lvalue that designates an object that is not a bit-field and is not declared with the r egi st er
storage-class specifier. If the type of the operand is "type", then the type of the result is "pointer to type"
and the result is the address of the operand.

If the type of the operand is "array of type", then the type of the result is "pointer to type" and theresult is
the address of the first element of the array.

The* symbol, in its unary form, denotes the indirection or pointer operator. Its operand must be a pointer

type, except that it may not be apointer to voi d. If the operand isa"pointer to type", then the type of the
result is "type", and the result is the object to which the operand points.

Unary Operators 79

Language Reference

No checking is performed to ensure that the value of the pointer isvalid. If aninvalid pointer valueis used,
the behavior of * isundefined.

Examples:
i nt counter;
int * ctrptr;

void (*fnptr)(int, int *);

ctrptr
*ctrptr

= &counter;

= 3'

fnptr = FnRet Voi d;

fnptr(*ctrptr, &counter);

10.4.3 Unary Arithmetic Operators

unary-expression;

+ cast-expression
or

- cast-expression
or

~ cast-expression
or

I cast-expression

The + symbol, in itsunary form, ssimply returns the value of its operand. The type of its operand must be
an arithmetic type (character, integer or floating-point). Integral promotion is performed on the operand,
and the result has the promoted type.

The- symbol, initsunary form, isthe negation or negative operator. The type of its operand must be an
arithmetic type (character, integer or floating-point). The result isthe negative of the operand. Integral
promotion is performed on the operand, and the result has the promoted type. The expression - obj is
equivalent to (0- obj) .

The ~ symbol is the bitwise complement, 1's complement or bitwise not operator. The type of the operand
must be an integral type, and integral promotion is performed on the operand. The type of the result isthe
type of the promoted operand. Each hit of the result is the complement of the corresponding bit in the
operand, effectively turning 0 bitsto 1, and 1 bitsto O.

The! symbol isthe logical not operator. Itsoperand must be a scalar type (not a structure, union or
array). Theresult typeisi nt . If the operand has the value zero, then the result valueis 1. If the operand
has some other value, then the result is 0.

10.4.4 The sizeof Operator

80 Unary Operators

Expressions

sizeof-expression:

si zeof unary-expression
or
si zeof (type-name)

Thesi zeof operator givesthe size (in bytes) of its operand. The operand may be an expression, or atype
in parentheses. In either case, the type must not be a function, bit-field or incomplete type (such as voi d,
or an array that has not had its length declared).

Note that an expression operand to si zeof isnot evaluated. The expression is examined to determine the
result type, from which the size is determined.

If the operand has a character type, then the result is 1.

If the type isastructure or union, then the result is the total number of bytesin the structure or union,
including any internal or trailing padding included by the compiler for alignment purposes. The size of a
structure can be greater than the sum of the sizes of its members.

If the typeisan array, then the result is the total number of bytesin the array, unless the operand isa
parameter in the function definition enclosing the current block, in which case the result isthe size of a

pointer.

The type of the result of the si zeof operator isimplementation-defined, but it is an unsigned integer type,
and isrepresented by si ze_t inthe<st ddef . h> header.

For the Open Watcom C16 and C32 compilers, themacro si ze_t isunsi gned i nt.

Example:
struct s {
struct s * next;
i nt obj 1;
i nt obj 2;
1

static struct s * SAllocAndFill(const struct s * def_s)

/***/

{
struct s * sptr;
sptr = malloc(sizeof(struct s));
if(sptr !'= NULL) {
mencpy(sptr, def_s, sizeof(struct s));
return(sptr);
}

Thefunction SAI | ocAndFi | | receivesapointertoa struct s. Itallocatessuch astructure, and
copies the contents of the structure pointed to by def _s into the allocated memory. A pointer to the
allocated structure is returned.

Thelibrary function mal | oc takes the number of bytesto alocate as a parameter and si zeof (struct

s) providesthat value. Thelibrary function mentpy also takes, as the third parameter, the number of
bytesto copy and again si zeof (struct s) providesthat value.

Unary Operators 81

Language Reference

10.5 Cast Operator

cast-expression:
unary-expression

or
(type-name) cast-expression

When an expression is preceded by atype name in parentheses, the value of the expression is converted to
the named type. Thisiscalled acast. Both the type name and the operand type must be scalar (hot a
structure, union or array), unlessthe type nameis voi d. If thetypenameis voi d, the operand type must
be a complete type (not an array of unknown size, or a structure or union that has not yet been defined).

A cast does not yield an Ivalue.

Pointers may be freely converted from "pointer to voi d" to any other pointer type without using an
explicit cast operator. Pointers also may be converted from any pointer type to "pointer to voi d".

A pointer may be converted to a pointer to another type. However, the pointer may be invalid if the
resulting pointer is not properly aligned for thetype. Converting a pointer to a pointer to atype with less
strict alignment, and back again, will yield the same pointer. However, converting it to a pointer to atype
with more strict alignment, and back again, may yield a different pointer. On many computers, where
alignment is not required (but may improve performance), conversion of pointers may take place freely.

With Open Watcom C16 and C32, alignment of integers, pointers and floating-point numbersis
not required, so the compiler does not do any alignment. However, aligning these types may make
aprogram run slightly faster.

A command line switch may be used to force the compiler to do alignment on all structures.

A pointer to afunction may be converted to a pointer to a different type of function, and back again. The
resulting pointer will be the same as the original pointer.

If apointer is converted to a pointer to a different type of function, and a call is made using that pointer, the
behavior is undefined.

A pointer may be converted to an integral type. The type of integer required to hold the value of the pointer
isimplementation-defined. If the integer is not large enough to fully contain the value, then the behavior is
undefined.

An integer may be converted to apointer. The result isimplementation-defined.

With Open Watcom C6, for the purposes of conversion between pointers and integers, __near
pointers aretreated as unsi gned int. __ far and__huge pointers are treated asunsi gned
| ong i nt, with the pointer’s segment value in the high-order (most significant) two bytes. All
the usual integer conversion rules then apply. Note that huge pointers are not normalized in any
way.

82 Cast Operator

Expressions

With Open Watcom C32, for the purposes of conversion between pointers and integers, __ near
pointersaretreated as unsi gned int. far16 and_Segl6 pointers are also treated as
unsi gned i nt, with the pointer’s segment value in the high-order (most significant) two bytes.
All the usual integer conversion rulesthen apply. Notethat __ f ar pointers may not be converted
to an integer without losing the segment information.

10.6 Multiplicative Operators

multiplicative-expression:
cast-expression

or
multiplicative-expression * cast-expression
or

multiplicative-expression / cast-expression
or
multiplicative-expression %cast-expression

The* symbol, initsbinary form, yields the product of its operands. The operands must have arithmetic
type, and have the usual arithmetic conversions performed on them.

The/ symbol yields the quotient from the division of the first operand by the second operand. The
operands must have arithmetic type, and have the usual arithmetic conversions performed on them. Note
that when adivision by zero occurs, the behavior is undefined.

When both operands of / are of integer type and positive value, and the division isinexact, the result is the
largest integer less than the algebraic (exact) quotient. (The result is rounded down.)

When one or both operands of / is negative and the division isinexact, whether the compiler rounds the
value up or down is implementation-defined.

The Open Watcom C6 and C32 compilers always round the result of integer division toward
zero. Thisactionisalso called truncation.

The %symbol yields the remainder from the division of the first operand by the second operand. The
operands of %must have integral type.

When both operands of %are positive, the result is a positive value smaller than the second operand. When
one or both operands is negative, whether the result is positive or negative is implementati on-defined.

With the Open Watcom C16 and C32 compiler, the remainder has the same sign as the first
operand.

For integral types a and b, if b isnot zero, then (a/ b) *b + a%b will equal a.

Multiplicative Operators 83

Language Reference

10.7 Additive Operators

additive-expression:
multiplicative-expression

or
additive-expression + multiplicative-expression
or

additive-expression - multiplicative-expression
The + symbol, inits binary form, denotes the sum of its operands.
If both operands have arithmetic type, then the usual arithmetic conversions are performed on them.

If one of the operandsis a pointer, then the other operand must have an integral type. The pointer operand
may not be a pointer to voi d. Before being added to the pointer value, the integral value is multiplied by
the size of the object to which the pointer points. The result type is the same as the pointer operand type. If
the pointer value is a pointer to amember of an array, then the resulting pointer will point to a member of
the same array, provided the array islarge enough. If the resulting pointer does not point to a member of
the array, then its use with the unary * (indirection) or - > (arrow) operator will yield undefined behavior.

The - symbol, inits binary form, denotes the difference resulting from the subtraction of the second
operand from the first. If both operands have arithmetic type, then the usual arithmetic conversions are
performed on them.

If the first operand is a pointer, then the second operand must either be a pointer to the same type or an
integral type.

In the same manner as for adding a pointer and an integral value, the integral value is multiplied by the size
of the object to which the pointer points. The pointer operand may not be a pointer to voi d. Theresult
type is the same type as the pointer operand.

If both operands are pointers to the same type, the difference is divided by the size of the type, representing
the difference of the subscripts of the two array members (assuming the type is "array of type"). Thetype
of the result is implementation-defined, and isrepresented by pt rdi ff _t (asigned integral type) defined
inthe <st ddef . h> header.

With Open Watcom C16and C32, ptrdiff _t isi nt, unlessthe huge memory model isbeing
used, inwhichcaseptrdi ff_t isl ong int.

10.8 Bitwise Shift Operators

84

shift-expression:
additive-expression

or
shift-expression << additive-expression
or

shift-expression >> additive-expression

The << symbol denotes the left-shift operator. Both operands must have an integral type, and the integral
promotions are performed on them. The type of the result is the type of the promoted left operand.

Bitwise Shift Operators

Expressions

Theresult of op << ant isop left-shifted ant bit positions. Zero bits are filled on the right.
Effectively, the high bits shifted out of op are discarded, and the resulting set of bitsisre-interpreted as the
result. Another interpretation isthat op is multiplied by 2 raised to the power ant .

The >> symbol denotes the right-shift operator. Both operands must have an integral type, and the integral
promotions are performed on them. The type of the result is the type of the promoted left operand.

Theresult of op >> ant isop right-shifted ant bit positions. If op has an unsigned type, or asigned
type and a non-negative value, then op isdivided by 2 raised to the power ant . Effectively, the low bits
shifted out of op are discarded, zero bits are filled on the left, and the resulting set of bitsis re-interpreted
asthe result.

If op hasasigned type and negative value, then the behavior of op >> ant isimplementation-defined.
Usually, the high bits vacated by the right shift are filled with the sign bit from before the shift (arithmetic
right shift), or with O (logical right shift).

With Open Watcom C16 and C32, aright shift of a negative value of asigned type causes the sign
bit to be propogated throughout the bits vacated by the shift. Essentialy, the vacated bits arefilled
with 1 bits.

For both bitwise shift operators, if the number of bits to shift exceeds the number of bitsin the type, the
result is undefined.

10.9 Relational Operators

relational-expression:
shift-expression

or
relational-expression < shift-expression
or

relational-expression > shift-expression
or

relational-expression <= shift-expression
or

relational-expression >= shift-expression

Each of the symbols < (lessthan), > (greater than), <= (lessthan or equal to), >= (greater than or equal
to), yieldsthe value 1 if the relation istrue, and O if the relation isfalse. Theresult typeis i nt .

If both operands have arithmetic type, then the usual arithmetic conversions are performed on them.

If one of the operandsis a pointer, then the other operand must be a pointer to a compatible type. The
result depends on where (in the address space of the computer) the pointers actually point.

If both pointers point to members of the same array object, then the pointer that points to the member with a
higher subscript will be greater than the other pointer.

If both pointers point to different members within the same structure, then the pointer pointing to the
member declared later in the structure will be greater than the other pointer.

If both pointers point to the same union object, then they will be equal.

Relational Operators 85

Language Reference

All other comparisons yield undefined behavior. As discussed above, the relationship between pointersis
determined by the locations in the machine storage that the pointers reference. Typically, the numeric
values of the pointer operands are compared.

10.10 Equality Operators

equality-expression:
relational-expression
or
equality-expression == relational-expression
or
equality-expression ! = relational-expression

The symbols == (equal to) and ! = (not equal to) yield the value 1 if therelation istrue, and O if the relation
isfalse. Theresult typeisi nt.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on them.

If both operands are pointers to the same type and they compare equal, then they are pointersto the same
object.

If both operands are pointers and oneis apointer to voi d, then the other is converted to apointer to voi d.
If one of the operandsis a pointer, the other may be a null pointer constant (zero).

No other combinations are valid.

10.11 Bitwise AND Operator

and-expression:
equality-expression
or
and-expression & equality-expression

The & symbol, in its binary form, denotes the bitwise AND operator. Each of the operands must have
integral type, and the usual arithmetic conversions are performed.

The result is the bitwise AND of the two operands. That is, the bit in theresult is set if and only if each of
the corresponding bits in the operands are set.

The following table illustrates some bhitwise AND operations:

Operation Result

0x0000 & Ox7A4C 0x0000
OxFFFF & Ox7A4C Ox7AAC
0x1001 & 0x0001 0x0001
0x29F4 & OxE372 0x2170

86 Bitwise AND Operator

Expressions

10.12 Bitwise Exclusive OR Operator

exclusive-or-expression:

and-expression

or

exclusive-or-expression * and-expression

The” symbol denotes the bitwise exclusive OR operator. Each of the operands must have integral type, and

the usual arithmetic conversions are performed.

Theresult is the bitwise exclusive OR of the two operands. That is, the bit in the result is set if and only if

exactly one of the corresponding bitsin the operandsis set.

Another interpretation isthat, if one of the operandsis treated as a mask, then every 1 bit in the mask

causes the corresponding bit in the other operand to be complemented (0 becomes 1, 1 becomes 0) before

being placed in the result, while every 0 bit in the mask causes the corresponding bit in the other operand to
be placed unchanged in the result.

The following table illustrates some exclusive OR operations:

Operation Result

0x0000 ~ 0x7A4C 0x7A4C
OxFFFF ~ Ox7A4C 0x85B3
OxFFFF ~ 0x85B3 0x7A4C
0x1001 ~ 0x0001 0x1000
0x29F4 ~ 0xE372 0xCA86

10.13 Bitwise Inclusive OR Operator

inclusive-or-expression:
exclusive-or-expression

or

inclusive-or-expression | exclusive-or-expression

The| symbol denotes the bitwise inclusive OR operator. Each of the operands must have integral type, and

the usual arithmetic conversions are performed.

Theresult isthe bitwise inclusive OR of the two operands. That is, the bit in the result is set if at least one

of the corresponding bitsin the operands is set.

The following table illustrates some inclusive OR operations:

Bitwise Inclusive OR Operator

87

Language Reference

Operation Result

0x0000 | Ox7A4C Ox7AAC
OxFFFF | Ox7A4C OxFFFF
0x1100 | 0x0022 0x1122
O0x29F4 | OxE372 OxEBF6

10.14 Logical AND Operator

logical-and-expression:
inclusive-or-expression
or
logical-and-expression && inclusive-or-expression

The && symbol denotes the logical AND operator. Each of the operands must have scalar type.

If both of the operands are not equal to zero, then theresult is 1. Otherwise, the result is zero. The result
typeisi nt .

If the first operand is zero, then the second operand is not evaluated. Any side effects that would have
happened if the second operand had been executed do not happen. Any function calls encountered in the
second operand do not take place.

10.15 Logical OR Operator

logical-or-expression:
logical-and-expression
or
logical-or-expression | | logical-and-expression

The| | symbol denotesthelogical OR operator. Each of the operands must have scalar type.

If one or both of the operandsis not equal to zero, then the result is 1. Otherwise, the result is zero (both
operands are zero). Theresult typeisi nt .

If the first operand is not zero, then the second operand is not evaluated. Any side effects that would have
happened if the second operand had been executed do not happen. Any function calls encountered in the
second operand do not take place.

10.16 Conditional Operator

conditional -expression:
logical-or-expression
or
logical-or-expression ? expression : conditional-expression

88 Conditional Operator

Expressions

The? symbol separates the first two parts of a conditional operator, and the : symbol separates the
second and third parts. The first operand must have a scalar type (not a structure, union or array).

Thefirst operand is evaluated. If itsvalueisnot equal to zero, then the second operand is evaluated and its
valueistheresult. Otherwise, the third operand is evaluated and its value is the resullt.

Whichever operand is evaluated, the other is not evaluated. Any side effects that might have happened
during the evaluation of the other operand do not happen.

If both the second and third operands have arithmetic type, then the usual arithmetic conversions are
performed on them, and the type of the result is the same type as the converted operands.

If both operands have the same structure, union or pointer type, then the result has that type.

If both operands are pointers, and one is "pointer to voi d", then the result type is "pointer to voi d".

If one operand is a pointer, and the other isanull pointer constant (0), the result type is that of the pointer.
If both operands are void expressions, then the result is avoid expression.

No other combinations of result types are permitted.

Note that, unlike most other operators, the conditional operator associates from right to left. For example,
the expression,

a=b?c:d?e: f;
istrandated asif it had been parenthesized as follows:
a=b?c: (d?e: f);

This construct is confusing, and so should probably be avoided.

10.17 Assignment Operators

assignment-expression:
conditional-expression

or
simple-assignment-expression

or
compound-assignment-expression

An assignment operator stores avalue in the object designated by the left operand. The left operand must
be amodifiable Ivalue.

Theresult type and value are those of the left operand after the assignment.
Whether the |eft or right operand is evaluated first is undefined.

Note that, unlike most other operators, the assignment operators associate from right to left. For example,
the expression,

a+=b = c;

Assignment Operators 89

Language Reference

istrandated asif it had been bracketed as follows:

a += (b =c¢);

10.17.1 Simple Assignment

simpl e-assignment-operator:
unary-expression = assignment-expression

The = symbol denotes simple assignment. The value of the right operand is converted to the type of the left
operand and replaces the value designated by the left operand.

The two operands must obey one of the following rules,
* both have arithmetic types,

» both have the same structure or union type, or the right operand differs only in the presence of the
const orvol ati | e keywords,

* both are pointers to the same type,
* both are pointers and oneis a pointer to voi d,

* the left operand is a pointer, and the right isanull pointer constant (0).

10.17.2 Compound Assignment

compound-assignment-expression:
unary-expression assignment-operator assignment-expression

assignment—operator: one of
+= -=

= [= %

= A= |:

<<= >>=

A compound assignment operator of theform a op= b isequivaent to the simple assignment expression
a = aop(b),except that the left operand a is evaluated only once.

The compound assignment operator must have operands consistent with those allowed by the
corresponding binary operator.

10.18 Comma Operator

expression:
assignment-expression
or

expression, assignment-expression

90 Comma Operator

Expressions

At the lowest precedence, the comma operator evaluates the left operand as avoid expression (it is
evaluated and its result, if any, is discarded), and then evaluates the right operand. The result has the type
and value of the second operand.

In contexts where the commais al so used as a separator (function argument lists and initializer lists), a
comma expression must be placed in parentheses.

For example,
Fn((pi=3.14159,two_pi =2*pi));
the function Fn has one parameter, which has the value 2 times pi .

for(i =0, j =0, k =0;; i++ |++ Kk++)
statement;

Thef or statement allows three expressions. In this example, the first expression initializes three objects
and the third expression increments the three objects.

10.19 Constant Expressions

A constant expression may be specified in several places:

« the size of a bit-field member of a structure,

« the value of an enumeration constant,

e aninitializer list,

« the number of elementsin an array,

« the value of acase label constant,

*withthe#i f and #el i f preprocessor directives.

In most cases, a constant expression consists of a series of constant values and operations that evaluate to a
constant value. Certain operations may only appear within the operand of the si zeof operator. These
include:

 afunction call,

* pre- or post-increment or decrement,

* assignment,

 comma operator,

* array subscripting,

* the. and, - > operators (structure member access),

* the unary & (address-of) operator (see exception below),
* the unary * (indirection) operator,

* casts to atype other than an integer type.

In a constant expression that is an initializer, floating-point constants and casts may be specified. Objects
that have static storage duration, and function designators (names), may be used to provide addresses, either
explicitly using the unary & (address-of) operator, or implicitly by specifying the identifier only.

The following examples illustrate constant expressions that may be used anywhere:
3

256*3 + 27
OPSYS == OS DOS /* These are nmacro nanes */

Constant Expressions 91

Language Reference

The next set of examples are constant expressions that are only valid in an initializer:
&Sonmehj ect

SoneFuncti on
3.5* 7.2] 6.5

In aconstant expression that is part of a #i f or #el i f preprocessor directive, only integral constants and
operators are permitted (and macros that, when replaced, follow these same rules).

92 Constant Expressions

11 Statements

A statement describes what actions are to be performed. Statements may only be placed inside functions.
Statements are executed in sequence, except where described below.

11.1 Labelled Statements

Any statement may be preceded by alabel. Labelled statements are usually the target of a got o statement,
and hence occur infrequently.

A label isanidentifier followed by acolon. Labels do not affect the flow of execution of aprogram. A
label that is encountered during execution isignored.

The following example illustrates a statement with alabel:
xyz: i = 0;
Labels can only precede statements. It follows that labels may only appear inside functions.
A label may be defined only once within any particular function.
The identifier used for alabel may be the same as another identifier for an object, function or tag, or alabel

in another function. The name space for labels is separate from non-label identifiers, and each function has
its own label name space.

11.2 Compound Statements

A compound statement is a set of statements grouped together inside braces. It may have its own
declarations of objects, with or without initializations, and may or may not have any executable statements.
A compound statement is also called a block.

The general form of a compound statement is:

{ declaration-list statement-list }

where declaration-list isalist of zero or more declarations of objects to be used in the block. statement-list
isalist of zero or more statements to be executed when the block is entered.

Any declarations for objects that have automatic storage duration and initializers for them are evaluated in
the order in which they occur.

An object declared with the keyword ext er n inside ablock may not be initialized in the declaration, since
the storage for that object is defined elsewhere.

An object declared in a block, without the keyword ext er n, may not be redeclared within the same block,
except in ablock contained within the current block.

Compound Statements 93

Language Reference

11.3 Expression Statements

A statement that is an expression is evaluated as a void expression for its side effects, such as the assigning
of avalue with the assignment operator. The result of the expression is discarded. This discarding may be
made explicit by casting the expression asa voi d.

For example, the statement,
count = 3;

consists of the expression count = 3, which has the side effect of assigning the value 3 to the object
count . Theresult of the expression is 3, with the type the same asthe type of count. Theresultisnot
used any further. Asanother example, the statement,

(void) nencpy(dest, src, len);

indicates that, regardless of the fact that mentpy returns aresult, the result should be ignored. However, it
isequaly valid, and quite common, to write,

nmencpy(dest, src, len);

As amatter of programming style, casting an expression as voi d should only be done when the result of
the expression might normally be expected to be used further. In this case, castingto voi d indicates that
the result was intentionally discarded and is not an error of omission.

11.4 Null Statements

A null statement, which is just a semi-colon, takes no action. It isuseful for placing alabel just before a
block-closing brace, or for indicating an empty block, such asin an iteration statement. Consider the
following examples of null statements:

{
gets(buffer);
while(*buffer++ 1= '\0")
LR
endbl k:
}

Thewhi | e iteration statement skips over charactersin buf f er until the null character isfound. The
body of the iteration is empty, since the controlling expression does al of thework. The endbl k:
declares alabel just before the final }, which might be used by a got o to exit the block.

11.5 Selection Statements

A selection statement evaluates an expression, called the controlling expression, then based on the result
selects from a set of statements. These statements are then executed.

94 Selection Statements

Statements

11.5.1 The if Statement

i f(expression) statement
or
i f(expression) statement el se statement

In both cases, the type of the controlling expression (inside the parentheses) is a scalar type (not a structure,
union or array). If the controlling expression evaluates to a non-zero value, then the first statement is
executed.

In the second form, the el se isexecuted if the controlling expression evaluates to zero.

Each statement may be a compound statement. For example,

if(delay >5) {
printf("Waited too long\n");

ok = FALSE;
} else {
ok = TRUE;

}

In the classic case of thedangling el se, the el se isbound to the nearest i f that does not yet have an
el se. For example,

if(x >0)
if(y >0)
printf("x >0 &y > 0\n");
el se
printf("x <= 0\n");

will printx <= Owhenx > Oistrueandy > 0 isfalse, becausethe el se isbound tothesecond i f,
not the first. To correct this example, it would have to be changed to,

if(x>0) {
if(y >0)
printf("x >0 &y > 0\n");
} else
printf("x <= 0\n");

Thisexampleillustrates why it is a good ideato aways use braces to explicitly state the subject of the
control structures, rather than relying on the fact that a single statement is al'so a compound statement. A
better way of writing the above exampleis,

if(x>0) {
if(y>0){
printf("x >0 &y > 0\n");
} else {
printf("x <= 0\n");

where all subjects of the control structures are contained within braces, leaving no doubt about the
meaning. A dangling el se cannot occur if braces are always used.

Selection Statements 95

Language Reference

If the statements between the i f and the el se arereached viaalabel, the statements following the el se
will not be executed. However, jumping into ablock is poor programming practice, since it makes the
program difficult to follow.

11.5.2 The switch Statement

swi t ch(expression) statement

Usually, statement is a compound statement or block. Embedded within the statement are case labelsand
possibly adef aul t label, of the following form:

case constant-expression : statement
default : statement

The controlling expression and the constant-expressions on each case label all must have integral type.
No two of the case constant-expressions may be the same value. The def aul t label may appear at most
onceinany swi t ch block.

The controlling statement is evaluated, and the integral promotion is performed on the result. If the
promoted value of the expression matches any of the case labels promoted to the same type, control is given
to the statement following that case label. Otherwise, control is given to the statement following the

def aul t label (if present). If no default label is present, then no statementsinthe swi t ch block are
executed.

When statements within a swi t ch block are being executed and another case or def aul t is
encountered, it isignored and execution continues with the statement following the label. The br eak
statement may be used to terminate execution of the switch block.

In the following example,

int i;
for(i =1; i <=8; i++) {
printf("% ", i);
switch(i) {
case 2:
case 4:
printf("less than 5 ");
case 6:
case 8:
printf("even\n");
br eak;
defaul t:
printf("odd\n");
}

96 Selection Statements

Statements

the following output is produced:

odd

| ess than 5 even
odd

|l ess than 5 even
odd

even

odd

even

O~NOOTRAWN B

11.6 Iteration Statements

Iteration statements control looping. There are three forms of iteration statements: whi | e, do/whi | e and
for.

The controlling expression must have a scalar type. The loop body (often a compound statement or block)
is executed repeatedly until the controlling expression is equal to zero.

11.6.1 The while Statement

whi | e (expression) statement

The evaluation of the controlling expression takes place before each execution of the loop body (statement).
If the expression evaluates to zero the first time, the loop body is not executed at all.

The statement may be a compound statement.

For example,
char * ptr;
[* .00
while(*ptr I'="\0) {
if(*ptr ==".")break;
++ptr;
}

Theloop will scan characters pointed at by pt r until either anull character or adot isfound. If theinitial
value of pt r pointsat anull character, then no part of the loop body will be executed, leaving pt r
pointing at the null character.

11.6.2 The do Statement

do statement whi | e (expression) ;

The evaluation of the controlling expression takes place after each execution of the loop body (statement).
If the expression evaluates to zero the first time, the loop body is executed exactly once.

The statement may be a compound statement.

Iteration Statements 97

Language Reference

For example,
char * ptr;
char * endptr;
[* .00
endptr = ptr + strlen(ptr);
do {
--endptr;
} while(endptr >= ptr && *endptr ==" ");

In this example, the loop will terminate when endpt r finds anon-blank character starting from the right,
or when endpt r goes past the beginning of the string. If anon-blank character isfound, endpt r will be
left pointing at that character.

11.6.3 The for Statement

98

The statement,
for (exprl; expr2; expr3) statement
isamost equivalent to,

expri;

whil e (expr2) {
statement

expr3;

}

The difference isthat the cont i nue statement will pass control to the statement expr 3 rather than to the
end of the loop body.

exprlisan initialization expression and may be omitted.

expr2 isthe controlling expression, and specifies an evaluation to be made before each iteration of the loop
body. If the expression evaluatesto zero, the loop body is not executed, and control is passed to the
statement following the loop body. If expr2 isomitted, then anon-zero (true) value is substituted in its
place. Inthiscase, the statementsin the loop must cause an explicit break from the loop.

expr3 specifies an operation to be performed after each iteration. A common operation would be the
incrementing of a counter. expr3 may be omitted.

The statement may be a compound statement.

For example,

char charvec| 256];
int count;

for(count = 0; count <= 255; count++) {
charvec[count] = count;
}

This example will initialize the character array char vec to the values from 0 to 255.

Iteration Statements

Statements

Thefollowing are examples of f or statements:

for(;;)

statement;
All statements in the body of the loop will be executed until a br eak or got o statement is executed which
passes control outside of theloop, or ar et ur n statement is executed which exits the function. Thisis
sometimes called loop forever.

for(i =0; i <= 100; ++i)

statement;
Theobjecti isgiventheinitial value zero, and after each iteration of the loop isincremented by one. The
loop is executed 101 times, with i having the successivevalues0,1,2 ... 99, 100, and having the
value 101 after termination of the loop.

for(; *bufptr '="\0"; ++bufptr)
statement;

The object buf pt r isalready initialized, and the loop will continue until buf pt r pointsat anull
character. After each iteration of the loop, buf pt r will be incremented to point at the next character.

11.7 Jump Statements

A jump statement causes execution to continue at a specific place in a program, without executing any
other intervening statements. There are four jump statements. got o, cont i hue, br eak and r et ur n.

11.7.1 The goto Statement

got o identifier;

identifier is alabel somewhere in the current function (including any block within the function). The next
statement executed will be the one following that label.

Note: it can be confusing to use the got o statement excessively. It iseasy to create spaghetti code, which

isvery difficult to understand, even by the person who wroteit. It isrecommended that the got o
statement be used, at most, to jump out of blocks, never into them.

11.7.2 The continue Statement

conti nue;

A cont i nue statement may only appear within aloop body, and causes a jump to the inner-most loop’s
loop-continuation statement (the end of the loop body).

Inawhi | e statement, the jump is effectively back to the whi | e.

Inado statement, the jump is effectively down to the whi | e.

Jump Statements 99

Language Reference

Inaf or statement, the jump is effectively to the closing brace of the compound-statement that isthe
subject of the f or loop. Thethird expressioninthe f or statement, which is often an increment or
decrement, is then executed before control is returned to the top of the loop.

11.7.3 The break Statement

br eak;
A br eak statement may only appear in an iteration (loop) body or a swi t ch statement.
Inaloop, abr eak will cause execution to continue at the statement following the loop body.
Inaswi t ch statement, a br eak will cause execution to continue at the statement following the switch. If
theloop or swi t ch that containsthe br eak is enclosed inside another loop or swi t ch, only the

inner-most loop or swi t ch isterminated. The got o statement may be used to terminate more than one
loop or swi t ch.

11.7.4 The return Statement

return;
or
r et ur n expression;

A popular variation of the second form is,
return(expression);

Ther et ur n statement causes execution of the current function to be terminated, and control is passed to
the caller. A function may contain any number of r et ur n statements.

If the function is declared with areturn type of voi d (no valueisreturned), then no r et ur n statement
within that function may return avalue.

If the function is declared as having areturn type of other than voi d, then any r et ur n statement with an
expression will evaluate the expression and convert it to the return type. That value will be the value
returned by the function. If ar et ur n is executed without an expression, and the caller uses the value
returned by the function, the behavior is undefined since no value was returned. An arbitrary value will
probably be used.

Reaching the closing brace } that terminates the function is equivalent to executing a r et ur n statement
without an expression.

100 Jump Statements

12 Functions

There are two forms for defining afunction. The first formiis,
storage-classreturn-type identifier (parameter-type-list)
{

declaration-list

statement-list

}

The storage-class may be one of ext ern or st ati c. If storage-classisomitted, ext er n isassumed.
The return-type may be any valid type except an array. If return-typeisomitted, i nt isassumed.
The identifier isthe name of the function.
The parameter-type-list is either voi d or empty, meaning the function takes no parameters, or a
comma-separated list of declarations of the objects, including both type and parameter name (identifier). If
multiple arguments of the same type are specified, the type of each argument must be given individually.
The form,

typeidl, id2
is not permitted within the parameter list.

If the parameter-type-list endswith , . . . then the function will accept a variable number of arguments.

Any parameter declared as "array of type" is changed to "pointer to type". Any parameter declared as”
function" is changed to "pointer to function".

The following examplesillustrate several function definitions:
int F(void)
The function F has no parameters, and returns an integer.
void G int x)

The function G has one parameter, an integer object named x, and does not return a value.

Functions 101

Language Reference

void * H long int len, long int wid)

The function H has two parameters, long integer objects named | en and wi d, and returns a pointer
which does not point to any particular type of object.

void I (char * format, ...)

Thefunction | has one known parameter, an object named f or mat that is a pointer to a character
(string). The function also accepts a variable number of parametersfollowing f or mat . The
function does not return a result.

Thisform of function definition also serves as a prototype declaration for any calls to the function that
occur later in the same module. With the function prototype in scope at the time of a call to the function,
the arguments are converted to the type of the corresponding parameter prior to the value being assigned.
If acal to the function is to be made prior to its definition, or from another module, a function prototype
should be specified for it in order to ensure proper conversion of argument types. Failure to do thiswill
result in the default argument promotions being performed, with undefined behavior if the function
parameter types do not match the promoted argument types.

The second form of function definition is,

storage-classreturn-type identifier (identifier-list)
declaration-list

{

declaration-list

statement-list

}

The storage-class, return-type and identifier parts are al the same as for the first form of definition. In this
form, the identifier-list is a (possibly empty) comma-separated list of identifiers (object names) without any
type information. Following the closing parenthesis, and before the opening brace of the body of the
function, the declarations for the objects are given, using the normal rules. Any object of type i nt need
not be explicitly declared.

In the declarations of the parameter identifiers, r egi st er isthe only storage-class specifier that may be
used.

A function prototype is created from the definition after the default argument promotions have been
performed on each parameter. All argumentsto a function declared in this manner will have the default
argument promotions performed on them. The resulting types must match the types of the declared
parameters, after promotion. Otherwise, the behavior is undefined.

Note that it isimpossible to pass an object of type f | oat to afunction declared in this manner. The
argument of type f | oat will automatically be promoted to doubl e, and the parameter will aso be
promoted to doubl e (assuming that it was declared as f | oat). For similar reasons, it is not possible to
pass an object of type char or short i nt without promotion taking place.

According to the 1 SO standard for the C language, this form of function definition is obsolete and should

not be used. It is provided for historical reasons, in particular, for compatibility with older C compilers.
Using the first form of function definition often allows the compiler to generate better code.

102 Functions

Functions

The following examples are the same as those given with the first form above, with the appropriate
modifications:

int F()

The function F has no parameters, and returns an integer.
void G x)

The function G has one parameter, an integer object named X, and does not return avalue. This
example could have a so been written as,

void G x)
int Xx;

which explicitly declares x to be an integer.

void * H(len, wid)
long int len;
long int wid;
The function H has two parameters, both integer objects named | en and wi d, and returns a pointer
which does not point to any particular type of object. Any call to this function must ensure that the
arguments are long integers, either by using an object so declared, or by explicitly casting the object
to the type.

Thelast example using the éllipsis (, . . .) notation is not directly representable using the second form of
function definition. With most compilersit is possible to handle variable argument listsin this form, but
knowledge of the mechanism used to pass arguments to functionsis required, and this mechanism may vary
between different compilers.

12.1 The Body of the Function

Following the declaration of the function and the opening brace is the body of the function. It consists of
two portions, both of which are optional.

Thefirst portion isthe declaration list for any objects needed within the function. These objects may have
any type and any storage class. Objectswith storage class r egi st er or aut o have automatic storage
duration, meaning they are created when the function is called, and destroyed when the function returns to
the caller. (The value of the object is not preserved between calls to the function.) Objects with storage
classext er n or st at i ¢ have static storage duration, meaning they are created once, before the function
isever called, and destroyed only when the program terminates. Any value placed in such an object will
remain even after the function has returned, so that the next time the function is called the value will still be
present (unless some other action is taken to change it, such as using another object containing a pointer to
the static object to modify the value).

Unless an explicit r et ur n statement is executed, the function will not return to the caller until the brace at
the end of the function definition is encountered. Thereturn will be asif a r et ur n statement with no
expression was executed. |If the function is declared as returning a value, and the caller attemptsto use the
value returned in this manner, the behavior is undefined. The value used will be arbitrary.

A function may call itself (recursion) directly, or it may call another function or functions which in turn call
it. Any objects declared with automatic storage duration are created as a new instance of the object upon

The Body of the Function 103

Language Reference

each recursion, while objects declared with static storage duration only have one instance shared between
the recursive instances of the function.

12.2 Function Prototypes

A function prototypeis like a definition of afunction, but without the body. A semi-colon is specified
immediately following the closing right parenthesis of the function’s declaration. The prototype describes
the name of the function, the types of parameters it expects (names are optional) and the type of the return
value. Thisinformation can be used by the C compiler to do proper argument type checking and
conversion for calsto the function, and to properly handle the return value.

If no function prototype has been found by the time a call to afunction is made, all arguments have the
default argument promotions performed on them, and the return type is assumed to be i nt . If the actual
definition of the function does not have parameters that match the promoted types, the behavior is
undefined. If thereturntypeisnot i nt and areturn value isrequired, the behavior is undefined.

The prototype for afunction must match the function definition. Each parameter type and the type of the
return value must be the same, otherwise the behavior is undefined.

All library functions have prototypes in one of several header files. That header file should be included
whenever afunction described therein is used. Refer to the Open Watcom C Library Reference manual for
details.

12.2.1 Variable Argument Lists

If the prototype (and definition) for afunction has a parameter list that endswith , . .. thenthe function
has avariable argument list or variable parameter list meaning that the number of argumentsto the
function can vary. (Thelibrary function pri nt f isan example.) At least one argument must be provided
before the variable portion. This argument usually describes, in some fashion, how many other arguments
to expect. It may be a simple count, or may involve (aswith pri nt f) an encoding of the number and
types of arguments.

All arguments that correspond to a variable argument list have the default argument promotions performed
on them, since it is not possible to determine, at compilation time, what types will be required by the
function.

Since the parameters represented by the , . . . don’'t have names, special handlingisrequired. TheC
language provides a special type and three macros for handling variable argument lists. To be able to use
these, the header <st dar g. h> must be included.

Thetypeva_l i st isanimplementation-specific type used to store information about the variable list.
Within the function, an object must be declared with type va_ | i st. Thisobject is used by the macros and
functions for processing the list.

Themacrova_st art hastheform,

voi d va_start(va_list parminfo

iastparm
)

104 Function Prototypes

Functions

The object parminfo is set up by the macro with information describing the variablelist. The argument
lastparmis the name (identifier) of the last parameter beforethe , . . . and must not have been declared
with the storage class r egi st er .

Themacrova_ st art must be executed before any processing of the variable portion of the parameter list
is performed.

va_start may be executed more than once, but only if an intervening va_ end is executed.
Themacro va_ ar g hastheform,

type
va_arg(va_list
parminfo

type
)

parminfo is the same object named in the call to va_ st art . typeisthetype of argument expected. The
types expected should only be those that result from the default argument promotions (i nt, | ong i nt
and|l ong | ong i nt andtheir unsigned varieties, doubl e and | ong doubl e), and those that are not
subject to promotion (pointers, structures and unions). The type must be determined by the program. The
va_ ar g macro expands to an expression that has the type and value of the next parameter in the variable
list.

Inthecaseof pri nt f, the parameter type expected is determined by the "conversion specifications' such
as ¥s, % and so on.

Thefirst invocation of the va__ar g macro (after executingava_ st ar t) returns the value of the
parameter following lastparm (as specified in va_ st art). Each subsequent invocation of va_ar g
returns the next parameter in thelist. At each invocation, the value of parminfo is modified (in some
implementati on-specific manner) to reflect the processing of the parameter list.

If the type of the next parameter does not match type, or if no parameter was specified, the behavior is
undefined.

Themacro va_ end hasthe form,

void va_end(va_list parminfo
)
parminfo is the same object named in the corresponding call to va_ st art . Thefunctionva_end closes
off processing of the variable argument list, which must be done prior to returning from the function. 1f
va_end isnot called before returning, the behavior is undefined.

If va_end iscalled without a corresponding call to va_ st ar t having been done, the behavior is
undefined.

After calling va_end and prior to returning, it ispossibleto call va_ st art again and reprocess the
variablelist. It will be necessary to call va_end again before returning.

The following function takes an arbitrary number of floating-point numbers as parameters along with a
count, and returns the average of the numbers:

Function Prototypes 105

Language Reference

#i ncl ude <stdarg. h>

ext ern doubl e Average(int count,
/*************************************/

{
double sum = O;
i nt i
va_list parm nfo;
if(count == 0) {
return(0.0);
}
va_start(parm nfo, count);
for(i =0; i <count; i++) {
sum += va_arg(parm nfo, double);
va_end(parmnfo);
return(sum/ count);
}

12.3 The Parameters to the Function main

The function nai n has a special meaning in C. It isthe function that receives control when aprogramis
started. The function nai n has the following definition:

extern int main(int argc, char * argv[])

{
}

The objects ar gc and ar gv have the following properties:

Statements

e ar gc isthe "argument count", or the number of parameters (including program name) supplied to
the program, and its value is greater than zero,

e ar gv isan array of pointers to strings containing the parameters,

* ar gv[O] isthe program name, if available, otherwise it is a pointer to a string containing only the
null character,

ear gv[argc] isanull pointer, representing the end of the argument list,

ear gv[1] through ar gv[ar gc- 1] are pointers to strings representing the arguments to the
program. These strings are modifiable by the program, and exist throughout the execution of the
program. The strings will generally be in mixed (upper and lower) case, although a system that

cannot provide mixed case argument strings will provide them in lower case.

The trangdlation of the arguments to the program, as provided by the operating system (often from the
command-line used to invoke the program), into the strings contained in ar gv, isimplementation-defined.

106 The Parameters to the Function main

Functions

With Open Watcom C16 and C32, each unquoted, blank-separated token on the command line is
made into a string that is an element of ar gv. Quoted strings are maintained as one element
without the quotes.

For example, the command line,

pgm 2+ 1 tokens "one token"

will result in ar gc having the value 5, and the elements of ar gv being the strings " pgni', " 2+",
"1","t okens" and "one token".

The function mai n may also be declared without any parameters, as,

extern int main(void)

{
}

statenents

Thereturn value of mai n isan integer, usualy representing atermination status. If no return valueis
specified (by using ar et ur n statement with no expression or encountering the closing brace in the
function), then the value returned is undefined.

Theexi t library function may be used to terminate the program at any point. The value of the argument
toexi t isreturned asif mai n had returned the value.

The Parameters to the Function main 107

Language Reference

108 The Parameters to the Function main

13 The Preprocessor

The preprocessor, asits name suggests, is that part of the C compiler which processes certain directives
embedded in the source file(s) in advance of the actual compilation of the program. Specifically, the
preprocessor alows a sourcefile to,

« include other files (perhaps referencing externally-defined objects, or containing the definitions of
structures or other types which are needed by more than one source file),

« compile certain portions of the code depending on some condition (such as the kind of computer for
which the code is being generated), and,

* replace macros with other text which is then compiled.
The preprocessing phase occurs after trigraphs have been converted and physical lines ending with \ have
been concatenated to create longer logical lines, but before escape sequencesin character constants have
been converted, or adjacent string literals are concatenated.
Any line whose first non-blank character is a # marks the beginning of a preprocessing directive. Spaces
may appear between the # and the identifier for the directive. The #i ncl ude and #def i ne directives
are each contained on one line (after concatenation of lines ending with \), while the conditional
compilation directives span multiple lines.

A preprocessor directive is not terminated by a semi-colon.

13.1 The Null Directive

A preprocessing directive of the form,

#

(with no other tokens on the same line) has no effect and is discarded.

13.2 Including Headers and Source Files

A directive of the form,

#i ncl ude <nane>
will search a sequence of places defined by the implementation for the header identified by nane. A
header declares a set of library functions and any necessary types or macros needed for their use. Headers
are usually provided by the compiler, or by alibrary provided for use with the compiler.

nanme may not contain a > character. If the header isfound, the entire directive is replaced by the contents
of the header. If the header is not found, an error will occur.

Including Headers and Source Files 109

Language Reference

A directive of the form,

#i ncl ude "nane"

will search for the source fileidentified by nane. name may not containa” (double-quote) character. If
the sourcefile identified by nane isfound, then the entire directive is replaced by the contents of thefile.
Otherwise, the directiveis processed asif the,

#i ncl ude <nane>
form had been used.

A third form of #i ncl ude directiveisalso supported. A directive of the form,

#i ncl ude t okens

causes all macro substitutions (described below) to take place on t okens. After substitution, the
directive must match either the <nane> or " nane" forms described above (including < and >, or quotes),
inwhich case the #i ncl ude is processed in the corresponding manner.

See the User’s Guide for details about how the compiler searches for included files.

#i ncl ude directives may be nested. Each implementation may allow different depths of nesting, but all
must allow at least 8 levels. (In other words, a source file may include another file, which includes another
file, and so on, up to a depth of eight files.)

The operating system may further limit the number of files that may be open at one time. See the
appropriate operating system manual for details.

13.3 Conditionally Including Source Lines
A directive of the form,

#i f constant-expression
body of #i f
#endi f

evaluates the constant-expression, and if it evaluates to a non-zero value, then the body of the #i f is
processed by the preprocessor. Processing of the body ends when a corresponding #el i f, #el se, or the
terminating #endi f isencountered.

The#i f directive allows source and preprocessor lines to be conditionally processed by the compiler.

If the constant-expression evaluates to zero, then the body of the #i f isnot processed, and the
corresponding #el i f or #el se (if present) isprocessed. If neither of these directives are present, then
the preprocessor skipsto the #endi f. Any preprocessing directives within the body of the #i f are not
processed, but they are examined in order to determine any nested directives, in order to find the matching
#elif, #el seor#endif.

The constant-expression is of the sameform asused inthe i f statement, except that the values used must

be integer values (including character constants). No cast or si zeof operators or enumeration constants
may be used. Each identifier that is amacro nameis replaced (as described below), and remaining

110 Conditionally Including Source Lines

The Preprocessor

identifiers are replaced with OL. All values are converted to long integers using the usual arithmetic
conversions. After each item has been converted, the evaluation of the expression takes place using the
arithmetic of the translation environment. Any character constants are evaluated as members of the source
character set.

With Open Watcom C16 and C32, character constants have the same value in both the source and
execution character sets.

The unary expression,

def i ned identifier
or
def i ned(identifier)

may be used to determine if an identifier is currently defined asamacro. Any macro name that is part of
this unary expression is not expanded. The above expressions evaluateto 1 if the named identifier is
currently a macro, otherwise they evaluate to 0.

As discussed above, if the constant-expression of the #i f evaluatesto zero, the preprocessor looks for a
corresponding #el i f . Thisdirective means"elseif", and hasasimilar form as #:i f :

#el i f constant-expression
body of #el i f

An#el i f may only be placed inside the body of an #i f. The body of the #el i f isprocessed only if the
constant-expression eval uates to a non-zero value and the constant-expressions of the corresponding #i f
and (preceding) #el i f statements evaluated to zero. Otherwise the body is not processed, and the
preprocessor skips to the next corresponding #el i f or #el se, or to the #endi f if neither of these
directivesis present.

The #el se directive has the form,

#el se
body of #el se

The body of the #el se is processed only if the constant expressions of the corresponding #i f and #el i f
statements evaluated to zero. The body of the #el se is processed until the corresponding #endi f is
encountered.

The form of the #endi f directiveis,

#endi f
and marks the end of the #i f .

The following are examples of conditional inclusion of source lines:

Conditionally Including Source Lines 111

Language Reference

#if OPSYS == OS_CMB

fn_syntax = "filename filetype fni;
#elif OPSYS == OS_MWS
fn_syntax = "’userid.library.type(nenbernane)’";
#elif OPSYS == OS_DOS || OPSYS == OS_0S82
fn_syntax = "fil enane. ext";
#el se
fn_syntax = "fil enane”;
#endi f

The object f n_synt ax is set to the appropriate filename syntax string depending on the value of the
macro OPSYS. If OPSYS does not match any of the stated values, then f n_synt ax is set to the default
string"fil enane".

#i f HARDWARE == HW_| BMB70
#if OPSYS == OS_CMs5

escape_cnd = "CWV5";
#el if OPSYS == OS_MWS
escape_cnmd = "TSO';
#el se
escape_cnmd = "SYSTEM';
#endi f
#el se
escape_cmd = "SYSTEM';
#endi f

The object escape_ cnd is set to an appropriate string depending on the values of the macros HARDWARE
and OPSYS. Theindentation of the directives clearly illustrates the flow between various conditions and
levels of directives.

13.3.1 The #ifdef and #ifndef Directives

The#i f def directiveis used to check if anidentifier is currently defined as amacro. For example, the
directive,

#i fdef xyz

processes the body of the #i f def only if theidentifier xyz is currently amacro. Thisexampleis
equivalent to,

#i f defined xyz
or
#i f defined(xyz)
In asimilar manner, the directive,
#i f ndef xyz
is equivalent to,
#if ldefined xyz

or

112 Conditionally Including Source Lines

The Preprocessor

#if ldefined(xyz)

13.4 Macro Replacement
A directive of the form,
#def i ne identifier replacement-list

defines amacro with the nameidentifier. This particular form of macro is called an object-like macro,
because it is used like an object (as opposed to afunction). Any source line that contains a token matching
the macro name has that token replaced by the replacement-list. The tokens of the replacement-list are then
rescanned for more macro replacements.

For example, the macro,

#define TABLE_LIMT 256

definesthe macro TABLE_LI M T to be equivalent to the token 256. Thisis sometimes called a manifest
constant, because it provides a descriptive term for avalue that makes programs easier to read. It isavery
good idea to use descriptive names wherever appropriate to improve the readability of a program. It may
also save timeif the same value is used many different places, and the value must be changed at some
point.

Care must be exercised when using more complicated object-like macros. Consider the following example:

#define COUNT1 10

#define COUNT2 20

#defi ne TOTAL_COUNT COUNT1+COUNT2

[* .00

menptr = malloc(TOTAL_COUNT * sizeof(int));

Ifi nt is2bytesinsize, thiscal to mal | oc will allocate 50 bytes of memory, instead of the expected 60.
This occurs because TOTAL_COUNT * si zeof (i nt) becomes10+20 * 2 after macro
replacement, and the precedence rules for expression evaluation cause the multiply to be donefirst. To
solve this problem, the macro for TOTAL_ COUNT should be defined as:

#defi ne TOTAL_COUNT (COUNT1+COUNT2)
A directive of the form,
#def i ne identifier(identifier-list) replacement-list

is caled afunction-like macro, because it is used like afunction call. No space may appear between
identifier and the left parenthesisin the macro definition. Any source ling(s) that contains what looks like a
function call, where the name of the function matches a function-like macro name, and the number of
parameters matches the number of identifiersin the identifier-list, has the entire function call replaced by
the replacement-list, substituting the actual arguments of the function call for the occurrences of the
identifiersin the replacement-list. If the left parenthesis following the macro name was created as the result
of amacro substitution, no further substitution will take place. If the macro name appears but is not
followed by aleft parenthesis, no further substitution will take place.

Macro Replacement 113

Language Reference

Consider this example:

#defi ne endof (string) \
(string + strlen(string))

The\ causesthetwo linesto be joined together into one logical line, making this equivalent to,

#defi ne endof (string) (string + strlen(string))

The function-like macro endof can be used to find a pointer to the null character terminating a string. The
statement,

endptr = endof(ptr);
will have the macro replaced, so it will then be parsed as,

endptr = (ptr + strlen(ptr));

Note that, in this case, the argument is evaluated twice. If StrFn(ptr) wasspecifiedinstead of ptr,
then the function would get called twice, because the substitution would yield,

endptr = (StrFn(ptr) + strlen(StrFn(ptr)));

In gathering up the tokens used to identify the arguments, each sequence of tokens separated by a comma
consgtitutes an argument, unless that comma happens to be within a matched pair of left and right
parentheses. When aright parenthesisis found that matches the beginning left parenthesis, and the number
of arguments matches the number of identifiers in the macro definition, then the gathering of the arguments
is complete and the substitution takes place.

For example,
#def i ne nynmencpy(dest, src, len) \
mencpy(dest, src, len)
[* o0
nynmencpy(destptr, srcptr, (t=0, t=strlen(srcptr)));

will, for the parameters dest , sr ¢ and | en, usethe arguments dest ptr, srcptr and (t =0,
t=strlen(srcptr)) respectively.

Thisform of macro isalso useful for "commenting out" a function call that is used for debugging the
program. For example,

#define alive(where) printf("Alive at" where "\n")

could later be replaced by,
#define alive(where) /* */
Alternatively, the definition,
#define alive(where)
may be used. When the module or program is recompiled using this new definition for al i ve, all of the

calstopri nt f made asaresult of the macro replacement will disappear, without the necessity of deleting
the appropriate lines in each module.

114 Macro Replacement

The Preprocessor

A directive of the form,
#undef identifier

causes the macro definition for identifier to be thrown away. No error is reported if no macro definition for
identifier exists.

13.5 Argument Substitution

The argument substitution capabilities of the C preprocessor are very powerful, but can be tricky. The
following sections illustrate the capabilities, and try to shed light on the problems that might be
encountered.

13.5.1 Converting An Argument to a String

In the replacement-string for a function-like macro, each occurrence of # must be followed by a parameter
to the macro. If so, both the # and the parameter are replaced by a string created from the characters of the
argument itself, with no further substitutions performed on the argument. Each white space within the
argument is converted to asingle blank character. If the argument contains a character constant or string
literal, any occurrences of " (double-quote) are replaced by \ ", and any occurrences of \ (backslash) are
replaced by \ \ .

The following table gives a number of examples of the result of the application of the macro,
#define string(parm) # parm

as shown in the first column:

Argument After Substitution
string(abc) "abc"

string("abc") "\ "abc\""

string("abc" "def") "\"abc\" \"def\""
string(\'/) "\

string(f(x)) "f(x)"

13.5.2 Concatenating Tokens

In the replacement-list, if a parameter is preceded or followed by ##, then the parameter is replaced by the
argument itself, without examining the argument for any further replacements. After al such substitutions,
each ## isremoved and the tokens on either side are concatenated together. The newly formed token is
then examined for further macro replacement.

may not be either the first or last token in the replacement-list.

Assuming that the following macros are defined,

Argument Substitution 115

Language Reference

#define first "Pi ece"

#defi ne | ast "of Earth"
#define firstlast "Peace on Earth"
#define firstl " Peas"

the following table gives a number of examples of the result of the application of the macro,
#define glue(x, v) x ## vy

as shown in the first column. For the examples that span several lines, each successive line of the "Result"
column indicates successive expansions of the macros.

Argument After Substitution
glue(12, 34) 1234
glue(first, 1) firstl
" Peas"
glue(first, 2) first2
glue(first, last) firstlast
"Peace on Earth"

13.5.3 Simple Argument Substitution

In the absence of either the # or ## operators, a parameter is replaced by its argument. Before this
happens, however, the argument is scanned again to see if there are any further macro substitutions to be
made, applying all of the above rules. The rescanning applies only to the argument, not to any other tokens
that might be adjacent to the argument when it replaces the parameter. In other words, if the last token of
the argument and the first token following in the replacement list together form a valid macro, no
substitution of that macro will take place.

Consider the following examples, with these macro definitions in place:

#def i ne f(a) a
#def i ne g(x) (1+x)
#define h(s,t) st
#define i(y) 2-y
#defi ne xyz printf
#define rcrs rcrs+2

116 Argument Substitution

The Preprocessor

Invocation After Substitution
f(c) c
f(f(c)) f(c)
c
f(g(c)) f((1+c))
(1+c)
h("hello",f("there")) h("hello","there")
"hell 0" "there"
f(xyz)("Hello\n") f(printf)("Hello\n")
printf("Hello\n")

13.5.4 Variable Argument Macros

Macros may be defined to take optional additional parameters. Thisisaccomplished usingthe . . .
(ellipsis) keyword as the last parameter in the macro declaration. There may be no further parameters past
the variable argument, and errors will be generated if the preprocessor finds anything other than a closing
parenthesis after the ellipsis. The variable arguments may be referenced as awhole using the

__VA ARGS__ keyword. Special behavior of pasting this parameter with a comma can result in the
comma being removed (thisis an extension to the standard). The only token to which this appliesisa
comma. Any other tokenwhich __ VA ARGS__ ispasted withisnot removed. The _ VA ARGS _
parameter may be converted to a string using the # operator. Consider the following examples of macros
with variable number of arguments:

#defi ne shufflel(a, b

#defi ne shuffle2(a, b, b,# VA ARGS _,a
#defi ne shuffle3(a, b, ... b, # VA ARGS _##, a
#define showist(...) # VA ARGS

#define args(f, ...) VA ARGS

b, VA ARGS _## a

— N —

It is safe to assume that any timeacommaisused near VA ARGS _ thé## operator should be used to
paste them together. Both shuf f | el and shuf f | e2 macros are valid examples of pasting

_ VA ARGS _ together with a comma; either the leading or trailing comma may be concatenated, and if
__ VA ARGS__ isempty, thecommaisremoved. The macroshuf f | e3 works as well; the sequence of
concantenations happens from left to right, hence first the commaand empty VA ARGS _ are
concantenated and both are removed, afterwards the trailing commais concatentated with b. Several
exampl e usages of the above macros follow:

Argument Substitution 117

Language Reference

Invocation After Substitution
shuffle(x,y, z) Y, Z, X
shuffle(x,y) Y, X
shuffle(a, b, c,d,e) b,c,d, e, a
show i st (x,y, z) "X, Y,2"
args("%+%d=%d", a, b, c) a,b,c

args("none")

13.5.5 Rescanning for Further Replacement

After all parametersin the replacement-list have been replaced, the resulting set of tokensis re-examined
for any further replacement. If, during this scan, an apparent invocation of the macro currently being
replaced isfound, it isnot replaced. Further invocations of the macro currently being replaced are not
eligible for replacement until anew set of tokens from the source file, unrelated to the tokens resulting from
the current substitution, are being processed.

Consider these examples, using the above macro definitions:

Invocation After Rescanning
f(g)(r) g(r)
(1+r)
f(f)(r) f(r)
h(f, (b)) f (b)
b
i (h(i, (b))) i (i (b))
2-i (b)
i(i (b)) i (2-b)
2-2-b
rcrs rcrs+2

In other words, if an apparent invocation of a macro appears, and its name matches the macro currently
being replaced, and the apparent invocation was manufactured by other replacements, it is not replaced. If,
however, the apparent invocation comes directly from an argument to the macro replacement, theniit is
replaced.

After al replacements have been done, the resulting set of tokens replaces the invocation of the macroin

the sourcefile, and the file is then rescanned starting at the replacement-list. Any further macro
invocations are then replaced. However, if as aresult of scanning the replacement-list with following

118 Argument Substitution

The Preprocessor

tokens another apparent invocation of the macro just replaced is found, then that macro name is not
replaced. Aninvocation of the macro will again be replaced only when a new invocation of the macro is
found, unrelated to the just-replaced macro.

If the replacement-list of tokens resembles a preprocessor directive, the preprocessor will not processit.

A macro definition lasts until it is undefined (with #undef) or until the end of the module.

13.6 More Examples of Macro Replacement

The following examples are given in the SO C standard, and are presented here as a complete guide to the
way in which macros are replaced. The expansions are shown in stages to better illustrate the process.

Thefirst set of examplesillustrates the rules for creating string literals (using the # operator) and
concatenating tokens (using the ## operator). The following definitions are used:

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" #s "= 9%, x" #1t "= 06", x ## s, x ## t)
#define | NCFILE(n) vers ## n [* coment */

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#defi ne H GHLOW "hel | 0"

#defi ne LOW Low", world"

The following replacements are made. The final result shows adjacent string literals joined together to
form asingle string. This step isnot actually part of the preprocessor stage, but is given for clarity.

debug(1, 2);
printf("x" "1" "= 9%d, x" "2" "= %", x1, x2);
printf("x1= %, x2= %", x1, x2);

fputs(str(strncnp("abc\0d", "abc", '\4’) /* this goes away */
== 0) str(: @n), s);
fputs("strncnp(\"abc\\0d\", \"abc\", "\\4") == 0" ": @n", s);
fputs("strncrmp(\"abc\\0d\", \"abc\", "\\4") == 0: @n", s);

#i ncl ude xstr (1 NCFILE(2).h)
#i ncl ude xstr(vers2.h)
#i ncl ude str(vers2.h)
#i ncl ude "vers2.h"

(and then the directive is replaced by the file contents)

glue(H GH, LOW
H GHLOW
"hel | 0"

xglue(H GH, LOW
xglue(H GH, LOW", world")
glue(HHCGH LOW", world")
H GHLOW ", worl d"
"hello" ", world"
"hell o, world"

The following examplesillustrate the rules for redefinition and re-examination of macros. The following
definitions are used:

More Examples of Macro Replacement 119

Language Reference

#define x 3

#define f(a) f(x * (a))
#undef x

#define x 2

#define g f

#define z z[0]
#define h g(~
#define n(a) a(w)
#define w 0,1
#define t(a) a

The following substitutions are made:

fly+1) + 1(f(2)) %t(t(g)(0) + t)(1)

f(x * (y+1))
f(2* (y+1))

+

+ f(f(z)) %t(t(g)(0) + t)(1)

+f(F(X* (2))) %...

+f(f(2* (2))) %...

+f(x * (f(2* (2)))) %...

+f(2* (f(2* (2)))) %...

+ (2% (f(2* (2[0])))) %t(t(g9)(0) + t)(1)
%t(g(0) + t)(1)
%t(f(0) + t)(1)
%t(f(x * (0)) + t)(1)
%t(f(z* (0)) +t)(1)

(2 * (y+1)) + £(2 * (f(2 * (2[0])))) %f(2 * (0)) + t(1)

Another example:

g(2+(3,4)-w) | h 5) & m(f)~nm(m
f(2+(3,4)-w |

f(2+(3.4)-0,1) | .
f(x * (2+(3,4)-0,
f(2 * (2+(3,4)-0,

)) [...
1)) | h5 &...
[9(~5) &...
| f(~5) &..
| f(x* (~5)) &.
[f(2* (~5)) &n(f)
&f(wn. ..
& f(0,)7 .
& f(x * (0,1))A. ..
& f(2* (0,1))" fT(fT)

f(2 % (2+(3,4)-0,1)) | f(2* (~5)) &f(2* (0,1))*n(0, 1)

13.7 Redefining a Macro

Once amacro has been defined, its definition remains until it is explicitly undefined (using the #undef
directive), or until the compilation of the sourcefileisfinished. If amacro isundefined, then it may be
redefined in some other (or the same) way. If, during a macro replacement, the name of a macro that has
been defined, undefined and then defined again is encountered, the current (most recent) definition of the
macro is used, not the one that was in effect when the macro being replaced was defined.

Consider this example:

#defi ne MAXVAL 1000
#define g(x) CheckLimt(x, MAXVAL)

#undef

MAXVAL

#defi ne MAXVAL 200

g(10);

120 Redefining a Macro

The Preprocessor

This macro invocation expands to,
CheckLim t(10, 200);

A macro that has been defined may be redefined (without undefining it first) only if the new definition has
areplacement-list that isidentical to the original definition. Each preprocessing token in both the original
and new replacement lists must have the same ordering and spelling, and there must be the same number of
tokens. The number of spaces between tokens does not matter, unless one definition has no spaces, and the
other has spaces. Comments count as one space.

The following examples illustrate valid redefinitions of macros:

#define OBJ_LIKE (1-1)

#define OBJ_LIKE [rExExEER[(L-1) [rrxx]
#defi ne FN_LI KE(a) (a)

#define FN_LIKE(a) (Rl

a /******* \

*/)
The next examplesillustrate invalid redefinitions of the same macros:
#define OBJ_LIKE (0)

The token sequence is different.
#define OBJ_LIKE (1- 1)

The spacing is different (none versus one).

#defi ne FN_LI KE(b) (a)

The parameter is adifferent name, and is used differently.

#define FN_LIKE(bD) (b))

The parameter is a different name.

13.8 Changing the Line Numbering and File Name
A directive of the form,
#l i ne number

sets the line number that the compiler associates with the current line in the source file to the specified
number.

A directive of the form,

Changing the Line Numbering and File Name 121

Language Reference

#1 i ne number string

sets the line number as above and also sets the name that the compiler associates with the sourcefile that is
being read to the name contained in the string.

If the directive is not recognized as one of the two forms described above, then macro substitution is
performed (if possible) on the tokens on the line, and another attempt is made. |If the directive still does not
match one of the two forms, an error is reported.

13.9 Displaying a Diagnostic Message
A directive of the form,
#error tokens

causes the compiler to display a diagnostic message containing the tokens from the directive.

13.10 Providing Other Information to the Compiler
A directive of the form,
#pr agma tokens
informs the compiler about some aspect of the compilation, in an implementation-defined manner.

See the User’s Guide for full details of the #pr agma directive.

13.11 Standard Predefined Macros

The following macro names are reserved by the compiler:

__DATE _
The date of tranglation of the source file (a string literal). The form of the dateis"Mmm dd yyyy"
where:
Mmm represents the month and is one of
Jan Feb Mar Apr My Jun
Jul Aug Sep Cct Nov Dec
dd isthe day of the month. Thefirst character isablank if the day islessthan 10.
yyyy isthe year.

If the compiler cannot determine the current date, another date is provided.

122 Standard Predefined Macros

The Preprocessor

With Open Watcom C16 and C32, the current date is always available.

__FILE__
The name of the current source file (astring literal). The name may be changed using the #l i ne
directive.

__LINE__
The line number of the current source line (adecimal constant). The line number may be changed
using the #l i ne directive.

__STDC__
Theinteger constant 1, indicating that the compiler is a standard-conforming implementation.

__STDC_HOSTED_ _
Theinteger constant 1, indicating that the compiler is a hosted (not freestanding) implementation.

__STDC LIB_EXT1__
Thelong integer constant 200509L , indicating conformance to the |SO/IEC Technical Report
24731, Extensionsto the C Library, Part I: Bounds-checking interfaces.

__STDC_VERSI ON__
A decimal constant indicating the version of 1SO C language standard that the compiler adheresto.
Depending on compile time switches, thiswill be either 199901L (to indicate conformance with
| SO/IEC 9899:1999) or 199409L (to indicate conformance with | SO/IEC 9899/AMD1:1995).

__TIME__
Thetime of tranglation of the source file (astring literal). The form of the timeis "hh:mm:ss", with
leading zeros provided for values less than 10.
If the compiler cannot determine the current time, another time is provided.

With Open Watcom C16 and C32, the current time is always available.

__func__
The name of the current function (a string literal).

Any other macros predefined by the compiler will begin with an underscore () character. None of the

predefined macros, nor the identifier def i ned, may be undefined (with #undef) or redefined (with
#def i ne).

13.12 Open Watcom C'6 and C* Predefined Macros

The Open Watcom C16 and C32 compilers also provide the following predefined macros for describing the
memory model being used:

__COWPACT_ _
The compact memory model is being used.

__FLAT__

Open Watcom C'¢ and C*2 Predefined Macros 123

Language Reference

The "flat" memory model is being used for the 80386 processor. All segment registers refer to the
same segment.

__FUNCTION__
The name of the current function (a string literal).

__HUGE__
The huge memory model is being used.

__LARGE _
The large memory model is being used.

__MEDIUM
The medium memory model is being used.

__SMALL_
The small memory model is being used.

The Open Watcom C16 and C32 compilers also provide the following macros for describing the target
operating system:

DCS

The program is being compiled for use on a DOS operating system.

__NETWARE_386__
The program is being compiled for use on the Novell Netware 386 operating system.

__NT__
The program is being compiled for use on the Windows NT operating system.

cs2_
The program is being compiled for use on the OS/2 operating system.

__ONX
The program is being compiled for use on the QNX operating system.

__WNDON5_
The program is being compiled for use with Microsoft Windows.

__WNDOWS_386__

The program is being compiled for use with Microsoft Windows, using the Open Watcom 32-bit
Windows interface.

The Open Watcom C16 compiler also provides the following miscellaneous macro:

__CHEAP_W NDOWS_ _
The program is being compiled for use with Microsoft Windows using the "zZW" compiler option.

124 Open Watcom C'¢ and C3? Predefined Macros

The Preprocessor

The Open Watcom C6 and C32 compilers also provide the following miscellaneous macros:

__CHAR_SIGNED__
The program is being compiled using the "j" compiler option. The default char typeistreated asa
signed quantity.

FPI _
The program is being compiled using in-line floating point instructions.

_ I NLI NE_FUNCTI ONS__
The program is being compiled using the "oi" compiler option.

__WATCOMC_
The compiler being used is the Open Watcom C1 or Open Watcom C32 compiler. The value of the
macro is the version number of the compiler times 100.

__386__
The program is being compiled for the 80386 processor, using the Open Watcom C32 compiler.

The Open Watcom C16 and C32 compilers also provide the following predefined macros for compatibility
with the Microsoft C compiler, even though most of these macros do not begin with an underscore ()
character:

MBDOS
The program is being compiled for use on a DOS operating system.

M I X86
The program is being compiled for a specific target architecture. The macro isidentically equal to
100 times the architecture compiler option value (-0, -1, -2, -3, -4, -5, etc.). If "-5" (Pentium
instruction timings) was specified as a compiler option, then thevalueof _M | X86 would be 500.

M | 86
The program is being compiled for use on the Intel 80x86 processor.

M_| 386
The program is being compiled for use on the Intel 80386 processor.

M_| 86CM
The compact memory model is being used.

M_| 86HM
The huge memory model is being used.

M_| 86LM
The large memory model is being used.

M_| 86(MM
The medium memory model is being used.

M_| 86SM
The small memory model is being used.

Open Watcom C'¢ and C*2 Predefined Macros 125

Language Reference

NO_EXT_KEYS

The program is being compiled for ISO/ANSI conformance using the "za" (no extended keywords)
compiler option.

13.13 The offsetof Macro

The macro,
of f set of (type, member) ;

expands to a constant expression with type si ze_t . Thevalue of the expression is the offset in bytes of
member from the start of the structure type. member should not be a bit-field.

To use this macro, include the <st ddef . h> header.

13.14 The NULL Macro

The NULL macro expands to a null pointer constant, which is avalue that indicates a pointer does not
currently point to anything.

It is recommended that NULL, instead of 0, be used for null pointer constants.

To use this macro, include the <st ddef . h> header.

126 The NULL Macro

14 The Order of Translation

This chapter describes the sequence of steps that the C compiler takesin order to translate a set of source
files. Most programmers do not need to thoroughly understand these steps, as they are intuitive. However,
occasionaly it will be necessary to examine the sequence to solve a problem in the translation process.

Even though the steps of trandlation are listed as separate phases, the compiler may combine them together.
However, this should be transparent to the user.

The following are the phases of tranglation:

1. Thecharacters of the source file(s) are mapped to the source character set. Any end-of-line
markers used in the file system are trand ated, as necessary, to new-line characters. Any
trigraphs are replaced by the appropriate single character.

2. Physical source lines are joined together wherever aline is terminated by abackslash (\)
character. Effectively, the\ and the new-line character are deleted, creating alonger line from
that record and the one following.

3. Thesourceisbroken down into preprocessing tokens and sequences of "white-space" (space and
tab) characters (including comments). Each token is the longest sequence of charactersthat can
be atoken. Each comment is replaced by one white-space character. The new-line characters
areretained at this point.

4. Preprocessing directives are executed and macro invocations are substituted. A header named in
a#i ncl ude directive is processed according to rules 1 to 4.

5. Members of the source character set and escape sequencesin character constants and string
literals are converted to single charactersin the execution character set.

6. Adjacent character string literal tokens and adjacent wide string literal tokens are concatenated.

7. White-space characters separating tokens are discarded. Each preprocessing token is converted
to atoken. Thetokens are trandated according to the syntactic and semantic rules.

Thefinal phase usually occurs outside of the compilation phase. In this phase, often called the linking
phase, al externa object definitions are resolved, and an executable program image is created. The
completed image contains al the information necessary to run the program in the appropriate execution
environment.

The Order of Translation 127

Language Reference

128 The Order of Translation

Programmer’s Guide

Programmer’s Guide

130

15 Modularity

For many small programs, it is possible to write a single module which contains al of the C source for the
program. This module can then be compiled, linked and run.

However, for larger applicationsit is not possible to maintain one module with everything init. Or, if itis
technically possible, compiling such alarge module every time a change is made to the source carries too
great atime penalty withit. At thispoint, it becomes necessary to break the program into pieces, or
modules.

Dividing a program can be done quite easily. If the only issueis to reduce the size of the modules that need
to be compiled, then arbitrary divisions of the code into modules will accomplish the goal.

There are other advantages, however, to planning program modularity. Some of these advantages are:
* recompilation time is reduced,
» code can be grouped into logically-connected areas, making it easier to find things,

» data structures can be hidden in one module, avoiding the temptation of letting an outside piece of
code "peek" into astructure it really should not access directly,

» whole modules can be rewritten or redesigned without affecting other modules,
» areas of the code that depend on the hardware or operating system can be isolated for easy
replacement when the program is ported. This may extend to replacing the module with an assembly

language equivalent for increased performance.

The following sections discuss each of these points in more detail.

15.1 Reducing Recompilation Time

As discussed above, merely breaking a program into pieces will reduce the amount of time spent
recompiling the source. A bug is often asimple coding error, requiring only a one or two line change.
Recompiling only asmall percentage of the code and relinking will be faster than recompiling everything.

Occasionally, recompiling all of the modules will be required. This usually arises when a data structure,

constant, macro or other item that is used by several modulesis changed. With good program design, such
a change would occur in a header file, and all modules that include that header would be recompiled.

Reducing Recompilation Time 131

Programmer’s Guide

15.2 Grouping Code With Related Functionality

The best way to break programs into modules is to designate each module as having some overall purpose.
For example, one module may deal exclusively with interacting with the user. Another module may
manage atable of names, while yet another may process some small subset of the set of actions that may be
performed by the program.

Many of the modules then become resource managers, and every part of the code that needs to do
something significant with that resource must act through that resource manager.

Using the example of the names table manager, it islikely that the manager will need to do things like
create and delete a name entry in the table. These actions would trandate directly to two functions with
external linkage.

By dividing up a program along lines of related functionality, it is usually easy to know where to look when
aproblemis being tracked.

Module names that clearly state the purpose of the module also help to locate things.

15.3 Data Hiding

Sometimes amodule is written that has exclusive ownership of a data structure, such asalinked list. All
other modules that wish to access the structure must call afunction in the module that ownsit. This
technique is known as data hiding. The actual datais hidden in the structure, and only the functional
interface (also called the procedural interface) may be used to accessit. The functional interfaceisjust the
set of functions provided for accessing the structure.

The main advantage of data hiding is that the data structure may be changed with little or no impact on
other modules. Also, accessto the structure is controlled, leading to fewer errors because of misuse of the
structure.

It is possible to have different levels of data hiding. Complete data hiding occurs when no outside module
has access to the structure at al. Partial data hiding occurs when elements of the structure can be accessed,
but the overall structure may not be manipulated.

Note that these rules work only if the programmer respects them. The rules are not enforced by the
compiler. If amoduleincludes a header that describes the data structures being used by another module
that wants exclusive access to the structures, aruleis being broken. Whether thisis good or bad depends
entirely on the judgement of the programmer.

15.3.1 Complete Data Hiding

With complete data hiding, having a pointer to an element of the structure has no intrinsic value except as a
parameter to the functional interface. Getting or setting avalue in the structure requires a function call.

The advantage of this technique is that the complete data structure may be totally redesigned without

affecting other modules. The definitions of the individual structures (st ruct’s, uni on’s, arrays) may be
changed and no other module will have to be changed, or even recompiled.

132 Data Hiding

Modularity

The main disadvantage of complete data hiding is that even simple accesses require afunction call, which is
less efficient than just referencing a storage location.

Function-like macros may also be used to implement compl ete data hiding, avoiding the function call but
hiding the true structure of the data. Recompilation of all modules may be required if the data structures
change.

15.3.2 Partial Data Hiding

Partial data hiding occurs when the structure itself (for example, alinked list) is not accessible in its
entirety, but elements of the structure (an element of the linked list) are accessible.

Using the names table manager as an example, it may be necessary to call the names table manager to
create a name entry, but once the name is created, a pointer to the name is returned as the return value of
the create function. This pointer points to a structure which is defined in a header that any module can
include. Therefore, the contents of an element of the data structure can be manipulated directly.

This method is more efficient than the complete data hiding technique. However, when the structure used
for the names table is changed, all modules that refer to that structure must be recompiled.

15.4 Rewriting and Redesigning Modules

With modular program design and data hiding, it is often possible to completely replace a module without
affecting others. Thisisusualy only possible when the functional interface does not change. With partial
data hiding, the actual types used to implement the structure would have to remain unchanged, otherwise at
least a recompilation would be required. Changing a st r uct , for example, would probably require a
recompilation if only the types changed, or new members were added. |1f, however, the names of the
members changed, or some other fundamental change occurred, then source code changes in these other
modules would be necessary.

15.5 Isolating System Dependent Code in Modules

System dependencies are only relevant if the program being developed is to be run on different computers
or operating systems. |solating system dependent code is discussed more thoroughly in the chapter
"Writing Portable Programs”.

It is quite difficult, sometimes, to identify what constitutes system dependent code. Thefirsttimea
program is ported to a new system, anumber of problem areas usually arise. These areas should be
carefully examined, and the code that is dependent on the host environment should be isolated. Isolation
may be accomplished by placing the code in a separate module marked as system dependent, or by placing
macros in the code to compile differently for the different systems.

Isolating System Dependent Code in Modules 133

Programmer’s Guide

134 Isolating System Dependent Code in Modules

16 Writing Portable Programs

Portable software is software that iswritten in such away that it is relatively easy to get the software
running on a new and different computer. By choosing the C language, the first step has been taken to
reduce the effort involved in porting, but there are many other things that must be done. Some of these
thingsinclude:

« isolating the portions of the code that depend on the hardware or operating system being used,

* being aware of what features of the C language are implementation-defined and avoiding them, or
taking them into account,

* being aware of the various ranges of values that may be stored in certain types, and declaring objects
appropriately,

* being aware of specia features available on some systems that might be useful.

No programmer can seriously expect to write alarge portable program the first time. Thefirst port of the
program will take a significant period of time, but the final result will be a program which is much more
portable than before. Generally, each subsequent port will be easier and take lesstime. Of coursg, if the
new target system has a new concept that was not considered in the original program design (such asa
totally different user-interface), then porting will necessarily take longer.

16.1 Isolating System Dependent Code

The biggest problem when trying to port a program is to uncover al the placesin the code where an
assumption about the underlying hardware or operating system was made, and which provesto be incorrect
on the new system. Many of these differences are hidden in library routines, but they can still cause
problems.

Consider, for example, the issue of distinguishing between alphabetic and non-alphabetic characters. The
library providesthe function i sal pha which takes a character argument and returns a non-zero value if
the character is aphabetic, and O otherwise. Suppose a programmer, writing a FORTRAN compiler,
wanted to know if avariable name started with the letters’I” through *N’, in order to determine if it should
be an integer variable. The programmer might write,

upl etter = toupper(nane[0]);

if(upletter >="'1" && upletter <='N) {
[* .00

}

If the program was being developed on a machine using the ASCII character set, this code would work fine,
since the upper case letters have 26 consecutive values. However, porting the program to a machine using
the EBCDIC character set, problems may arise because between the letters’|’ and’J are 7 other characters,
including '}’. Thus, the name"}VAR" might be considered avalid integer variable name, which it is not.
To solve this problem, the programmer could write,

Isolating System Dependent Code 135

Programmer’s Guide

i f(isalpha(nane[0])) {
upl etter = toupper(name[0]);
if(upletter >='1" && wupletter <= 'N) {
[* ... %
}

}

In this case, it is not necessary to isolate the code because arelatively simple coding change covers both
cases. But there are cases where each system will require a new set of functions for some aspect of the
program.

Consider the user interface of aprogram. If the program just displays lines of output to ascrolling
terminal, and accepts lines of input in the same way, the user interface probably won’t need to change
between systems. But suppose the program has a sophisticated user interface involving full-screen
presentation of data, windows, and menus, and uses a mouse and the keyboard for input. In the absence of
standards for such interfaces, it is quite likely that each system will require a customized set of functions.
Here is where program portability can become an art.

An approach to this problem isto completely isolate the user interface code of the program. The processing
of data occurs independently of what appears on the screen. At the completion of processing, afunctionis
called which updates the screen. This code may or may not be portable, depending on how many layers of
functions are built between the physical screen and the generic program. At alevel fairly close to the
screen hardware, a set of functions should be defined which perform the set of actions that the program
needs. The full set of functions will depend extensively on the requirements of the program, but they
should be functions that can reasonably be expected to work on any system to which the program will
eventually be ported.

Other areas that may be system dependent include:

» The behavior and capabilities of devices, including printers. Some printers support multiple fonts,
expanded and compressed characters, underlining, graphics, and so on. Others support only
relatively simple text output.

* Accessing memory regions outside of normally addressable storage. A good example isthe Intel
80x86 family of processors. With the Open Watcom C16 16-bit compiler, the addressable storageis
1024 kilobytes, but a 16-bit address can only address 64 kilobytes. Special steps must be taken when
compiling in order to address the full storage space. Many compilers for the 8086, including Open
Watcom C26 and C32, introduce new keywords that describe pointer types beyond the 16-bit pointer.

» Code that has been written in assembly language for speed. As code generation technology
advances, assembly language code should become less necessary.

» Code that accesses some special feature of the system. Asan example, many systems provide the
ability to temporarily exit to the operating system level, and later return to the program. The method
of doing this varies between systems, and the requirements of the program often change as well.

* Handling the command line parameters. While C breaksthe list of parameters down into strings, the
interpretation of those strings may vary between systems. A program probably should attempt to
conform to any conventions of the system on which it is being run.

 Handling other startup requirements. Allocation of memory, initializing devices, and so on, may be
done at this point.

136 Isolating System Dependent Code

Writing Portable Programs

16.2 Beware of Long External Names

According the C Language standard, a compiler may limit external names (functions and global objects) to
6 significant characters. Thislimitation is often imposed by the "linking" stage of the development process.

In practice, most systems allow many more significant characters. However, the developer of a portable
program should be aware of the potential for porting the program to a system that has a small limit, and
name external objects accordingly.

If the developer must port a program with many names that are not unique within the limitations imposed
by the target development system, the preprocessor may be used to provide shorter unique names for all
objects. Note that this method may seriously impair any symbolic debugging facilities provided by the
development system.

16.3 Avoiding Implementation-Defined Behavior

Several aspects of the code generated by the C compiler depend on the behavior of the particular C
compiler being used. A portable program should avoid these where possible, and take them into
consideration where they can’t be avoided. It may be possible to use macros to avoid some of these issues.

An important behavior that varies between systems is the number of characters of external objects and
functions that the system recognizes. The standard states that a system must recognize a minimum of 6
characters, although future standards may remove or extend thislimit. Most systems allow more than 6
characters, but several recognize only 8 characters. For true portability, afunction or object that has
external linkage should be kept unique in the first 6 characters. Sometimes this requires ingenuity when
thinking of names, but developing a system for naming objects goes a long way towards fitting within this
restriction. The goal, of course, isto still have meaningful object names. If all systemsthat will eventually
be used have a higher limit, then the programmer may decide to go past the 6 character limit. If aportis
done to a system with the 6 character limit, alot of source changes may be required.

To solve this problem, macros could be used to map the actual function names into more cryptic names that
fit within the 6 character limit. This technique may have the adverse affect of making debugging very
difficult because many of the function and object names will not be the same as contained in the source
code.

Another implementation-defined behavior occurs with the type char . The standard does not impose a
si gned or unsi gned interpretation on thetype. A program that uses an object of type char that
requires the values to be interpreted as signed or unsigned should explicitly declare the object with that

type.

16.4 Ranges of Types

Therange of an object of type i nt isnot specified by the standard, except to say that the minimum range is
- 32767 to 32767. If an object isto contain an integer value, then thought should be given as to whether or
not this range of values is acceptable on all systems. If the object is a counter that will never go outside the
range O to 255, then the range will be adequate. However, if the object is to contain values that may exceed
thisrange, thenal ong i nt may be required.

The same argument applies to objects with type f | oat . 1t may make more sense to declare them with type
doubl e.

Ranges of Types 137

Programmer’s Guide

When converting floating-point numbers to integers, the rounding behavior can also vary between
compilers and systems. If it isimportant to know how the rounding behaves, then the program should refer
to the macro FLT_ROUNDS (defined in the header <f | oat . h>), which is avalue describing the type of
rounding performed.

16.5 Special Features

Some systems provide special features that may or may not exist on other systems. For example, many
provide the ability to exit to the operating system, run some other programs, then return to the program that
was running. Other systems may not provide this ability. In an interactive program, this feature may be
very useful. By isolating the code that deals with this feature, a program may remain easily portable. On
the systems that don’t support this feature, it may be necessary to provide a stub function which does
nothing, or displays a message.

16.6 Using the Preprocessor to Aid Portability

The preprocessor is particularly useful for providing alternate code sequences to deal with portability
issues. Conditional compilation provided by the #i f directive allows the insertion of differing code
seguences depending on some criteria. Defining a set of macros which describe the various systems, and
another macro that selects a particular system, makesit easy to add system-dependent code.

For example, consider the macros,

#defi ne OS_DCS 0
#define OS_CMS 1
#define OS_MWS 2
#define OS_0S2 3
#def i ne OS_QNX 4

#defi ne HW | BVPC
#define HW | BMB70

= O

#define PR 18086 O
#defi ne PR _370 1

They describe a set of operating systems (OS) , hardware (HW and processors (PR) , which together can
completely describe a computer and its operating system. If the program was being ported to alBM 370
running the MV S operating system, then it could include a header defining the macros above, and declare
the macros,

#defi ne OPSYS CS_WS

#defi ne HARDWARE HW. | BM370
#def i ne PROCESSOR PR _370

The following code sequence would include the call only if the program was being compiled for a 370

running MVS:
#i f HARDWARE == HW | BMB70 && OPSYS == OS_MWS
DoMvSStuff(x, vy);
#endi f

138 Using the Preprocessor to Aid Portability

Writing Portable Programs

In other cases, code may be conditionally compiled based only on the hardware regardless of the operating
system, or based only on the operating system regardless of the hardware or processor.

This technique may work well if used in moderation. However, amodule that isfilled with these directives
becomes difficult to read, and that module becomes a candidate for being rewritten entirely for each

system.

Using the Preprocessor to Aid Portability 139

Programmer’s Guide

140 Using the Preprocessor to Aid Portability

17 Avoiding Common Pitfalls

Even though a C program is much easier to write than the corresponding assembly language program, there
are afew areas where most programmers make mistakes, and spend a great deal of time staring at the code
trying to figure out why the program doesn’t work.

The bugs that are the most difficult to find often occur when the compiler doesn’t give an error or warnhing,
but the code generated is not what the programmer expected. After agreat deal of looking, the programmer
spots the error and realizes that the compiler generated the correct code, but it wasn’t the code that was
wanted.

Some compilers, including Open Watcom C16 and C32, have optional checking for common errors built
into them, providing warnings when these conditions arise. It is probably better to eliminate the code that
causes the warning than to turn off the checking done by the compiler.

The following sections illustrate several common pitfalls, and discuss how to avoid them.

17.1 Assignment Instead of Comparison

The code fragment,
chr = getc();
if(chr = 7a)
printf("letter is "a' \n");
} else {
printf("letter is not "a’\n");
}

will never printthemessage | etter is not 'a’',regardlessof thevaueof chr.
The problem occurs in the second line of the example. The statement,
if(chr = 7a) {

assigns the character constant * a’ to the object chr . If thevalue of chr isnot zero, then the statement
that isthe subject of the i f isexecuted.

Thevalue of the constant * a’ isnever zero, so the first part of the i f will always be executed. The second
part might as well not even be there!

Of course, the correct way to code the second lineis,

if(chr =="a) {

changing the = to ==. This statement saysto compare the value of chr against the constant * a’ and to
execute the subject of the i f only if the values are the same.

Assignment Instead of Comparison 141

Programmer’s Guide

Using one equal sign (assignment) instead of two (comparison for equality) isacommon errors made by
programmers, often by those who are familiar with languages such as Pascal, where the single = means
"comparison for equality".

17.2 Unexpected Operator Precedence

The code fragment,
if(chr = getc() !'= EOF) {
printf("The value of chr is %\n", chr);
}

will always print 1, aslong as end-of-file is not detected in get ¢c. Theintention wasto assign the value
from get c to chr, then to test the value against EOF.

The problem occursin the first line, which saysto call the library function get c. The return value from
get ¢ (aninteger value representing a character, or EOF if end-of-file is detected), is compared against
ECF, and if they are not equal (it’s not end-of-file), then 1 is assigned to the object chr. Otherwise, they
areequal and Oisassignedto chr. Thevaueof chr is, therefore, aways0 or 1.

The correct way to write this code fragment is,
if((chr = getc()) !'= EOF)
printf("The value of chr is %\n", chr);
}

The extra parentheses force the assignment to occur first, and then the comparison for equality is done.

Note: doing assignment inside the controlling expression of loop or selection statementsis not a good
programming practice. These expressions tend to be difficult to read, and problems such asusing = instead
of == are more difficult to detect when, in some cases, = is desired.

17.3 Delayed Error From Included File

Suppose the source file nyt ypes. h contained the line,
typedef int COUNTER

and the main source file being compiled started with,
#i ncl ude "nytypes. h"

extern int main(void)
/*********************/

COUNTER x;
[* ... *
}

Attempting to compile the main source file would report a message such as,

Error! Expecting ';' but found 'extern’ on line 3

142 Delayed Error From Included File

Avoiding Common Pitfalls

Examining the main source file does not show any problem. The problem actually occurs in the included
sourcefile, sincethe t ypedef statement does not end with a semi-colon. It isthis semi-colon that the
compiler is expecting to find. The next token found isthe ext er n keyword, so the error isreported in the
main source file.

When an error occurs shortly after an #i ncl ude directive, and the error is not readily apparent, the error
may actually be caused by something in the included file.

17.4 Extra Semi-colon in Macros

The next code fragment illustrates a common error when using the preprocessor to define constants:
#def i ne MAXVAL 10;
[* o0 %
i f(value >= MAXVAL) break;

The compiler will report an error message like,

Error! Expecting ')’ but found ';’ on line 372

The problemis easily spotted when the macro substitution is performed on line 372. Using the definition
for MAXVAL, the substituted version of line 372 reads,

i f(value >= 10;) break;

The semi-colon (;) in the definition was not treated as an end-of-statement indicator as expected, but was
included in the definition of the macro (manifest constant) MAXVAL. The substitution then resultsin a
semi-colon being placed in the middle of the controlling expression, which yields the syntax error.

17.5 The Dangling else

In the code fragment,

if(valuel > 0)
if(value2 > 0)
printf("Both values greater than zero\n");
el se
printf("valuel is not greater than zero\n");

suppose val uel hasthevaue 3, while val ue2 hasthevalue - 7. This code fragment will cause the
message,

valuel is not greater than zero
to be displayed.
The problem occurs because of the el se. The program isindented incorrectly according to the syntax that

the compiler will determine from the statements. The correct indentation should clearly show where the
error lies:

The Dangling else 143

Programmer’s Guide

if(valuel > 0)
if(value2 > 0)
printf("Both values greater than zero\n");
el se
printf("valuel is not greater than zero\n");

The el se belongstothesecond i f , not the first. Whenever thereis morethanone i f statement without
braces and without an el se statement, the next el se will be matched to the most recent i f statement.

This code fragment clearly illustrates the usefulness of using braces to state program structure. The above
example would be (correctly) written as,

if(valuel > 0) {
if(value2 > 0) {
printf("Both values greater than zero\n");

} else {
printf("valuel is not greater than zero\n");

17.6 Missing break in switch Statement

In the code fragment,

switch(value) {
case 1:
printf("value is 1\n");
defaul t:
printf("value is not 1\n");

}

if val ue is1, the following output will appear:

value is 1
value is not 1

This unexpected behavior occurs because, when val ue is 1, the swi t ch causes control to be passed to
thecase 1: label, wherethefirst pri ntf occurs. Thenthe def aul t label isencountered. Labelsare
ignored in execution, so the next statement executed is the second pri nt f .

To correct this example, it should be changed to,

switch(value) {
case 1:
printf("value is 1\n");
br eak;
defaul t:
printf("value is not 1\n");

The br eak statement causes control to be passed to the statement following the closing brace of the
Swi t ch statement.

144 Missing break in switch Statement

Avoiding Common Pitfalls

17.7 Side-effects in Macros

In the code fragment,
#defi ne endof (ptr) ptr + strlen(ptr)
[* 0.0 %

endptr = endof (ptr++);

the statement gets expanded to,

endptr = ptr++ + strlen(ptr++);
The parameter pt r getsincremented twice, rather than once as expected.

The only way to avoid this pitfall isto be aware of what macros are being used, and to be careful when
using them. Several library functions may be implemented as macros on some systems. These functions

include,
getc put c
get char put char

The I SO standard requires that documentation states which library functions evaluate their arguments more
than once.

Side-effects in Macros 145

Programmer’s Guide

146 Side-effects in Macros

18 Programming Style

Programming styleis asindividual as a person’s preference in clothing. Unfortunately, just as some
programmers wouldn’t win a fashion contest, some code has poor style. This code isusually easy to spot,
because it is difficult to understand.

Good programming style can make the difference between programs that are easy to debug and modify, and
those that you just want to avoid.

There are anumber of aspectsto programming style. Thereis no perfect style that is altogether superior to
all others. Each programmer must find a style that makes him or her comfortable. The intention isto write
codethat is easy to read and understand, not to try to stump the next person who hasto fix a problem in the
code.

Good programming style will also lead to less time spent writing a program, and certainly less time spent
debugging or modifying it.

The following sections discuss various aspects of programming style. They reflect the author’s own biases,

but they are biases based on years of hacking his way through code, mostly good and some bad, and much
of it his own!

18.1 Consistency

Perhaps the most important aspect of styleis consistency. Try, as much as possible, to use the same rules
throughout the entire program. Having a mixed bag of styles within one program will confuse even the
best of programmers trying to decipher the code.

If more than one programmer isinvolved in the project, it may be appropriate, before the first line of code

iswritten, to discuss general rules of style. Some rules are more important than others. Make sure
everyone understands the rules, and are encouraged to follow them.

18.2 Case Rules for Object and Function Names

When examining a piece of code, the scope of an object is sometimes difficult to determine. One needsto
examine the declarations of objects within the function, then those declared outside of any functions, then
those declared included from other source files. If no strict rules of naming objects are followed, each
place will need to be laboriously searched each time.

Using mixed case object names, with strict rules, can make the job much easier. 1t does not matter what
rules are established, as long as the rules are consistently applied throughout the program.

Consider the following sample set of rules, used throughout this book:

1. objects declared within a function with automatic storage duration are entirely in lower case,

Case Rules for Object and Function Names 147

Programmer’s Guide

i nt X, counter, limt;
fl oat save_gl obal ;
struct s * sptr;

2. objectswith static storage duration (global objects) start with an upper case letter, and words or
word fragments also start with upper case,

static int Tot al Count ;

extern fl oat d obal Aver age;
static struct s SepStruct;

3. function names start with an upper case letter, and words or word fragments also start with upper
case, (distinguishable from global objects by the |eft parenthesis),

extern int TrimLength(char * ptr, int len);
static field * CreateField(char * nane);

4. dl constants are entirely in upper case.

#define FIELD LIMT 500
#def i ne BUFSI ZE 32

enum{ I NVALID, HELP, ADD, DELETE, REPLACE };

5. dltypedef tagsarein upper case.

typedef struct {

float real;
float inmaginary;
} COWPLEX;

Thus, the storage duration and scope of each identifier can be determined without regard to context.
Consider this program fragment:

chr = ReadChar ();
if(chr '= EOF) {
d bChr = chr;
}
Using the aboverules,
1. ReadChar isafunction,
2. chr isan object with automatic storage duration defined within the current function,
3. EOFisaconstant,
4. d bChr isan object with static storage duration.
Note: thelibrary functions do not use mixed case names. Also, the function nmai n does not begin with an

upper case M Using the above coding style, library functions would stand out from other functions
because of the letter-case difference.

148 Case Rules for Object and Function Names

Programming Style

18.3 Choose Appropriate Names

The naming of objects can be critical to the ease with which bugs can be found, or changes can be made.
Using abject namessuch as| i necount, col umms and r ownumrber will make the program more
readable. Of course, short forms will creep into the code (few programmers like to type more than is really
necessary), but they should be used judiciously.

Consistency of naming aso helps to make the code more readable. If a structure is used throughout the
program, and many different routines need a pointer to that structure, then the name of each object that
pointsto it could be made the same. Using the example of a symbol table, the object name synpt r might
be used everywhere to mean "pointer to a symbol structure”'. A programmer seeing that object will
automatically know what it is declared to be.

Appropriate function names are also very important. Names such as Dol t , while saving the original
programmer from trying to think of a good name, make it more difficult for the next programmer to figure
out what is going on.

18.4 Indent to Emphasize Structure

Thefollowing isavalid function:

static void BubbleSort(int list[], int n)

/**********************************/ { Int IndEX].

= 0; int index2; int tenp; if(n < 2)return; do {
index2 = index1l + 1; do { if(list[indexl] >

list[index2]) { temp = 1list[index1]; list]
indexl] = list[index2]; list[index2] = tenp;
} } while(++index2 < n); } while(++indexl < n-1
)}

(The compiler will know that it’s valid, but the programmer would find it difficult to validate.) Hereisthe
same function, but using indenting to clearly illustrate the function structure:

static void BubbleSort(int list[], int n)

/***/

{
int indexl = 0O;
int index2;
int tenp;
if(n<2)return;
do {
i ndex2 = indexl + 1;
do {
if(list[] index1] > list][index2]) {
tenmp = list[indexl];
list[] index1] = list[index2];

list[index2] = tenp;

}
} while(++index2 < n);
} while(++indexl < n-1);

Indent to Emphasize Structure 149

Programmer’s Guide

Generally, it isgood practice to indent each level of code by a consistent amount, for example 4 spaces.
Thus, the subject of an i f statement is always indented 4 spacesinsidethe i f . In this manner, al loop and
selection statements will stand out, making it easier to determine when the statements end.

The following are some recommended patterns to use when indenting statements. These patterns have been
used throughout the book.

int Fn(void)

/************/

/* indent 4 */
}

if(condition) {
/* indent 4 */
} else {
/* indent 4 */
}

if(condition) {
/* indent 4 */
} else if(condition) {
/* indent 4 fromfirst if */
if(condition) {
/* indent 4 fromnearest if */

} else {
/* indent 4 fromfirst if */
}
switch(condition) {
case VALUE:
/* indent 4 fromswitch */
case VALUE:
defaul t:
}
do {

/* indent 4 */
while(condition);

while(condition) {
/* indent 4 */
}

for(a; b; ¢) {
/[* indent 4 */
}

150 Indent to Emphasize Structure

Programming Style

Two other popular indenting styles are,

if(condition)
{

statement
}

and,

if(condition)

{
}

statements

It is not important which style isused. However, aconsistent style is an asset.

18.5 Visually Align Object Declarations

A lengthy series of object declarations can be difficult to read if care is not taken to improve the readability.

Consider the declarations,

struct flentry *flptr;
struct fldsym *sptr;
char *bufptr, *wsbuff;

int length;

Now, consider the same declarations, but with some visual alignment done:

struct flentry *
struct fldsym *
char *
char *
i nt

flptr;
sptr;

buf ptr;
wsbuf f;
| engt h;

It iseasier to scan alist of objects when their names all begin in the same column.

18.6 Keep Functions Small

A function that is several hundred lines long can be difficult to comprehend, especialy if it is being looked

at on aterminal, which might only have 25 lines. Large functions also tend to have alot of nesting of
program structures, making it difficult to follow the logic.

A function that fits entirely within the terminal display can be studied and understood more easily.
Program constructs don’t get as complicated. Large functions often can be broken up into smaller functions

which are easier to maintain.

Keep Functions Small 151

Programmer’s Guide

18.7 Use static for Most Functions

Most functions do not need to be called from routines outside of the current module. Yet, if the keyword
st at i c isnot used in the function declaration, then the function is automatically given external linkage.
This can lead to a proliferation of external symbols, which may cause naming conflicts. Also, some linking
programs may impose limitations.

Only those functions that must have externa linkage should be made external. All other definitions of
functions should start with the keyword st at i c.

It alsoisagood ideato start definitions for external functions with the keyword ext er n, eventhoughitis
the default case.

18.8 Group Static Objects Together

Static objects that are declared outside of any function definition, and are used throughout the module,
generally should be declared together, for example before the definition of the first function. Placing the
declarations of these objects near the beginning of the module makes them easier to find.

18.9 Do Not Reuse the Names of Static Objects

If an object with static storage duration existsin one module, but has internal linkage, then another object
with the same name should not be declared in another module. The programmer may confuse them.

Even more importantly, if an object exists with external linkage, a module should not declare another
object with the same name with internal linkage. This second object will overshadow the first within the
module, but the next programmer to look at the code will likely be confused.

18.10 Use Included Files to Organize Structures

Included source files can be used to organize data structures and related information. They should be used
when the same structure is needed in different modules. They should even be considered when the
structure is used only in one place.

Generally, each included source file should contain structures and related information for one aspect of the

program. For example, afile that describes a symbol table might contain the actual structures or other
types that are required, along with any manifest constants that are useful.

18.11 Use Function Prototypes

Function prototypes are very useful for eliminating common errors when calling functions. If every
function in aprogram is prototyped (and the prototypes are used), then it is difficult to pass the wrong
number or types of arguments, or to misinterpret the return value.

Using the symbol table example, the included source file that describes the symbol table structure and any
related global objects or constant values could a so contain the function prototypes for the functions used to

152 Use Function Prototypes

Programming Style

access the table. Another approach is to have separate source files containing the function prototypes,
possibly using a different naming convention for the file. For example,

#i ncl ude "synbol s. h"
#i ncl ude "synbol s. fn"

would include the structures and related values from synbol s. h, and the function prototypes from
symbol s. f n.

18.12 Do Not Do Too Much In One Statement

In the same manner that a big function that does too much can be confusing, so too can along statement.
Historically, a programmer might combine many operations into a single statement in order to get the
compiler to produce better code. With current compilers, splitting the statement into two or more simpler
statements will produce equivalent code, and will make the program easier to understand.
A common example of a statement that can be split is,

if((c =getchar()) !'= EOF) {

Historically, this statement might have allowed the compiler to avoid storing the value of ¢ and then
reloading it again to compare with EOF. However, the equivalent,

c getchar ();
i c !

f(: = ECF) {

is more readable, and most compilers will produce the same code.

18.13 Do Not Use goto Too Much

The got o statement is avery powerful tool, but it isvery easy to misuse. Here are some general rulesfor
theuseof got 0’s:

* don’t use them!
If that rule is not satisfactory, then these should be followed:

» Never got o alabel that isabove. That isthe beginning of spaghetti code. Loop statements can
aways be used.

* Never got o the middle of ablock (compound-statement). A block should always be entered by
passing over the opening brace.

» Use got o to jump out of nested blocks, where the br eak statement is not appropriate.

Above all, keep the use of got 0’sto aminimum.

Do Not Use goto Too Much 153

Programmer’s Guide

18.14 Use Comments

Comments are crucial to good programming style. Regardless of how well the program is written, some
code will be difficult to understand. Comments make it possibleto give afull explanation for what the
code istrying to do.

Each function definition should begin with a short comment describing what the function does.

Each modul e should begin with comments describing the purpose of the module. It isaso agood ideato
type in who wrote it, when it was written, who modified it and why, and when it was modified. Thislast
collection of information is commonly called an audit trail, asit leaves atrail allowing a programmer to see
the evolution of the module, along with who has been changing it.

The following audit trail isfrom one module in an actual product:

/* Modified: By: Reason:
¥ -~ ______
* 84/ 04/23 Dave McClurkin Initial inplenmentation
* 84/11/08 Ji m Graham I mpl enent ed TOTAL non- conbi nabl e;
* added MAXI MUM M NI MUM AVERAGE
* 84/ 12/ 12 Steve McDowel | Added call to CheckBreak
* 85/01/12 ... Fi xed overfl ow probl ems
* 85/01/29 Al ex Kachura Saves value of TYP_ field
* 86/01/31 Steve McDowell Switched to use of nuneric accunul at or
* 86/12/10 ... Rermoved sone comrent ed code
* 87/02/24 ... Made all commands conbi nabl e
*

-~

154 Use Comments

Appendices

Appendices

156

Compiler Keywords

A. Compiler Keywords

The following topics are discussed:
* Standard Keywords

» Open Watcom C6 and C32 Keywords

A.1 Standard Keywords

Thefollowing isthelist of keywords reserved by the C language:

auto doubl e inline static
_Bool el se i nt struct

br eak enum | ong sSwi tch
case extern regi ster t ypedef
char fl oat restrict uni on
__Conpl ex for return unsi gned
const got o short voi d
conti nue i f si gned vol atile
def aul t _I magi nary si zeof whil e

do

A.2 Open Watcom Extended Keywords

The Open Watcom compilers also reserve the following extended keywords:

Microsoft compilers compatible

__asm __finally __pascal
__based __fortran ___saveregs
__cdecl __huge ___segnent
__decl spec __inline ___segnhane
__except __int64 __self
__export __interrupt __stdcal |
__far __leave __syscall
__farlé6 |l oadds __try
__fastcall ___near __unaligned

IBM compilers compatible

_Cdecl _Finally _Segl6
__Except _Leave _Syscal |
__Export _Packed _System
_Far 16 _Pascal _Try
_Fastcal |

Open Watcom specific

Open Watcom Extended Keywords

157

Appendices

__builtin_isfloat __ow_inmmginary_unit __watcall

Thekeywords ___based, segnment, segnane and__sel f aredescribed in the section "Based
Pointers for Open Watcom C16 and C32". Open Watcom C16 and C32 provide the predefined macro
__based for convenience and compatibility with the Microsoft C compiler. It may be used in place of
__based. Open Watcom C6 and C32 provide the predefined macro _segment for convenience and
compatibility with the Microsoft C compiler. 1t may beused in placeof __segnent . Open Watcom

C16 and C*2 provide the predefined macro _segnane for convenience and compatibility with the
Microsoft C compiler. It may be used in placeof __segnane. Open Watcom C6 and C32 provide the
predefined macro _sel f for convenience and compatibility with the Microsoft C compiler. It may be used
inplaceof __sel f.

Thekeywords __far, huge and__ near aredescribed in the sections " Special Pointer Types for
Open Watcom C6" and " Special Pointer Types for Open Watcom C32". Open Watcom C6 and

C32 provide the predefined macros f ar and _f ar for convenience and compatibility with the Microsoft C
compiler. They may beused inplaceof __f ar. Open Watcom C6 and C32 provide the predefined
macros huge and _huge for convenience and compatibility with the Microsoft C compiler. They may be
usedinplaceof ___huge. Open Watcom C16 and C32 provide the predefined macros near and _near
for convenience and compatibility with the Microsoft C compiler. They may beusedin placeof __ near.

Thekeywords __far 16, Far 16 and_Seg16 are described in the section " Special Pointer Types for
Open Watcom C32", Open Watcom C16 and C32 provide the predefined macro _f ar 16 for convenience
and compatibility with the Microsoft C compiler. It may beusedinplaceof __far 16.

The _Packed keyword is described in the section " Structures'.

The __cdecl and_Cdecl keywordsmay be used with function definitions, and indicates that the calling

convention for the function is the same as that used by Microsoft C. All parameters are pushed onto the

stack, instead of being passed in registers. This calling convention may be controlled by a #pr agnma

directive. Seethe User's Guide. Open Watcom C6 and C32 provide the predefined macros cdecl and

_cdecl for convenience and compatibility with the Microsoft C compiler. They may be used in place of
cdecl .

The __fastcall and_Fast cal | keywordsmay be used with function definitions, and indicates that
the calling convention used is compatible with Microsoft C compiler. This calling convention may be
controlled by a#pr agna directive. Open Watcom C6 and C32 provide the predefined macro
_fastcall, for convenience and compatibility with the Microsoft C compiler. It may be used in place
of fastcall SeetheUser'sGuide.

The__fortran keyword may be used with function definitions, and indicates that the calling convention
for the function is suitable for calling a function written in FORTRAN. By default, this keyword has no
effect. Thiscalling convention may be controlled by a #pr agma directive. Seethe User’s Guide. Open
Watcom C26 and C32 provide the predefined macros f ortran and _f ort r an for convenience and
compatibility with the Microsoft C compiler. They may beusedin placeof __fortran.

The _pascal and_Pascal keywordsmay be used with function definitions, and indicates that the
calling convention for the function is suitable for calling afunction written in Pascal. All parameters are
pushed onto the stack, but in reverse order to the order specifiedby cdecl . Thiscalling convention
may be controlled by a #pr agma directive. Seethe User's Guide. Open Watcom C16 and C32 provide
the predefined macros pascal and _pascal for convenience and compatibility with the Microsoft C
compiler. They may beusedinplaceof __pascal .

The__syscal |l ,_Syscal | and_Syst emkeywords may be used with function definitions, and
indicates that the calling convention used is compatible with OS/2 (version 2.0 or higher). This calling

158 Open Watcom Extended Keywords

Compiler Keywords

convention may be controlled by a #pr agna directive. See the User’s Guide. Open Watcom C6 and
C32 provide the predefined macro _syscal | for convenience and compatibility with the Microsoft C
compiler. It may beused in placeof __syscal | .

The __stdcal | keyword may be used with function definitions, and indicates that the calling convention
used is compatible with Win32. This calling convention may be controlled by a #pr agna directive. Open
Watcom C16 and C32 provide the predefined macro st dcal |, for convenience and compatibility with
the Microsoft C compiler. It may beused in placeof _ st dcal | Seethe User's Guide.

The __wat cal | keyword may be used with function definitions, and indicates that the Open Watcom
default calling convention isused. This calling convention may be controlled by a #pr agna directive.
See the User’s Guide.

The __export and_Export keywordsmay be used with objects with static storage duration (global
objects) and with functions, and describes that object or function as being a known object or entry point
within a Dynamic Link Library in OS/2 or Microsoft Windows. The object or function must also be
declared as having external linkage (using the ext er n keyword). In addition, any call back function
whose addressis passed to Windows (and which Windows will "call back™) must be defined with the
__export keyword, otherwise the call will fail and cause unpredictableresults. The ___export
keyword may be omitted if the object or function is exported by an option specified using the linker. See
the Open Watcom Linker User's Guide. Open Watcom C26 and C32 provide the predefined macro
_export for convenience and compatibility with the Microsoft C compiler. 1t may be used in place of
__export.

The__interrupt keyword may be used with function definitions for functions that handle computer
interrupts. All registers are saved before the function begins execution and restored prior to returning from
theinterrupt. The machine language return instruction for the function ischanged to i r et (interrupt
return). Functionswrittenusing __i nt er r upt are suitable for attaching to the interrupt vector using the
library function _dos_set vect . Open Watcom C16 and C32 provide the predefined macros

i nterrupt and _i nt errupt for convenience and compatibility with the Microsoft C compiler. They
may beusedinplaceof __interrupt.

The __| oadds keyword may be used with functions, and causes the compiler to generate code that will
force the DS register to be set to the default data segment (DGROUP) so that near pointers will refer to that
segment. This keyword is normally used with functions written for Dynamic Link Librariesin Windows
and OS/2. Open Watcom C16 and C32 provide the predefined macro | oadds for convenience and
compatibility with the Microsoft C compiler. It may beused inplaceof | oadds.

The __saver egs keyword may be used with functions. It is provided for compatibility with Microsoft
C, and has no effect in Open Watcom C16 and C32. Open Watcom C16 and C32 provide the predefined
macro _saver egs for convenience and compatibility with the Microsoft C compiler. 1t may be used in
placeof __saver egs.

The__try, Try, _except, Except, finally, Finally, |eaveand_Leave
keywords may be used for exception handling, See the " Structured Exception Handling" in User’s Guide.
Open Watcom C26 and C32 provide the predefined macro _t r y for convenience and compatibility with
the Microsoft C compiler. It may beusedin placeof __t ry. Open Watcom C6 and C32 provide the
predefined macro _except for convenience and compatibility with the Microsoft C compiler. 1t may be
usedinplaceof ___except . Open Watcom C16 and C32 provide the predefined macro _fi nal | y for
convenience and compatibility with the Microsoft C compiler. It may beusedinplaceof __finally.
Open Watcom C16 and C32 provide the predefined macro _| eave for convenience and compatibility with
the Microsoft C compiler. It may beused in placeof __ | eave.

The__ow_i magi nary_uni t keyword may be used as_Imaginary constant 1.0.

Open Watcom Extended Keywords 159

Appendices

The__builtin_isfl oat keyword may be used as function for testing symbol type.

160 Open Watcom Extended Keywords

Trigraphs
|

B. Trigraphs

Thefollowing isthelist of trigraphs. In a C sourcefile, al occurrences (including inside quoted strings and
character constants) of any of the trigraph sequences below are replaced by the corresponding single
character.

Character Trigraph Sequence

?2?2(
??)
?27?<
27>
??1
?7?7=
??/
?7?
??-

> — H—

l

No other trigraphs exist. Any question mark (?) that does not belong to one of the trigraphs is not changed.
To get a sequence of characters that would otherwise be atrigraph, placea \ before the second question

mark. Thiswill cause the trigraph to be broken up so that it is not recognized, but later in the translation
process, the\ ? will be convertedto ?. For example, ?\ ?= will be translated to ??=.

Trigraphs 161

Appendices

162 Trigraphs

Escape Sequences

C. Escape Sequences

The following are the escape sequences and their meanings:

Escape
Sequence

Meaning

\a
\b
\f
\n
\r
\t
\v

Causes an audible or visual aert
Back up one character

Move to the start of the next page
Move to the start of the next line
Move to the start of the current line
Move to the next horizontal tab
Move to the next vertical tab

Each escape sequence maps to a single character. When such a character is sent to a display device, the
action corresponding to that character is performed.

Escape Sequences 163

Appendices

164 Escape Sequences

Operator Precedence
|

D. Operator Precedence

The table below summarizes the levels of precedence in expressions.

Expression Type Operators
primary identifier constant
string (expression)
postfix a[b] f()
a.b a->b a++ a- -
unary si zeof u sizeof (a)
++a --a &a *a
+a -a ~a la
cast (type) a
multiplicative a*b al b a %b
additive a+b a-b
shift a<<b a>ob
relational a<b a>b a<=b a>=b
equality a==b al=b
bitwise AND ad&b
bitwise exclusive OR a™b
bitwise inclusive OR al b
logical AND a&b
logical OR all b
conditional a? b: ¢
assignment t a=b a+=b a-=b a*=b
al=b a% b aé& b a”=b
al=b a<<=b a>»>=0b
comma a, b

T associates from right to left

Operator Precedence 165

Appendices

Operations at a higher level in the table will occur before those below. All operators involving more than
one operand associate from left to right, except for the conditional and assignment operators, which
associate from right to left. Operations at the same level, except where discussed in the relevant section,
may be executed in any order that the compiler chooses (subject to the usual algebraic rules). In particular,
the compiler may regroup sub-expressions that are both associative and commutative in order to improve
the efficiency of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by afunction call) is also subject to
alteration by the compiler.

166 Operator Precedence

Formal C Grammar

E. Formal C Grammar

This appendix presents the formal grammar of the C programming language. The following notation is

used:

{digit}(0)
Zero or more occurrences of digit are allowed.
{digit} (1)
One or more occurrences of digit are allowed.

(integer-suffix O
integer -suffix is optional, with only one occurrence being allowed if present.

A|B

E.1 Lexical Grammar

The following topics are discussed:

|C

Choose one of A, Bor C.

» Tokens

» Keywords

e |dentifiers

» Constants

e String Literals

* Operators

 Punctuators

E.1.1 Tokens

token

or
or
or
or
or

keyword
identifier
constant
string-literal
operator
punctuator

Lexical Grammar 167

Appendices

E.1.3 Identifiers

identifier
nondigit { nondigit | digit} (0)

nondigit
al b]| ... | z| A| B

168 Lexical Grammar

E.1.2 Keywords
keyword
standard-keyword
or Open Watcom-extended-keyword

standar d-keyword
aut o doubl e inline static
__Bool el se i nt struct
br eak enum | ong switch
case extern register t ypedef
char fl oat restrict uni on
_ Conmpl ex for return unsi gned
const got o short voi d
conti nue i f si gned vol atile
def aul t _lmagi nary si zeof whil e
do

Open Watcom-extended-keyword

Microsoft compilers compatible
__asm __finally __pascal
__based __fortran ___saveregs
__cdecl __huge ___segnent
__decl spec __inline ___segnhane
__except __int64 __self
__export __interrupt __stdcal |
__far __leave __syscall
__farlé6 __l oadds __try
__fastcall ___near __unaligned

IBM compilers compatible
_Cdecl _Finally _Segl6
__Except _Leave _Syscal |
__Export _Packed _System
_Far 16 _Pascal _Try
_Fastcal |

Open Watcom specific
__builtin_isfloat __ow_imaginary_unit __watcall

| Z |

Formal C Grammar

digit
o] 1| ... |9
E.1.4 Constants
constant
floating-constant
or integer-constant
or enumeration-constant
or character-constant

floating-constant
fractional -constant [éxponent-part (Il oating-suffix O
or digit-sequence exponent-part [l oating-suffix O

exponent-part
e| EF| - digit-sequence

floating-suffix
f | F| I | L

fractional -constant
[digit-sequence . digit-sequence
or digit-sequence .

digit-sequence
{digit} (1)

integer-constant
decimal-constant [integer-suffix O

or octal-constant [integer-suffix O
or hexadecimal -constant [iinteger-suffix [
integer-suffix
ulum|Lo
or L uo

decimal-constant
nonzero-digit{ digit} (0)

nonzero-digit
1] 2 ... | 9

octal-constant
O{octal-digit} (0)

Lexical Grammar 169

Appendices

octal-digit
o| 1| ... | 7

hexadecimal -constant
0x|0X{ hexadecimal-digit} (1)

hexadecimal-digit
| ... | 9]
.. f | Al B|] ... | F

enumer ation-constant
identifier

character-constant

"{c-char} (1)’
or L' {c-char}(1)’
c-char
any character in the source character set except
the single-quote ’ , backdash \ , or new-line character
or escape-seguence

escape-sequence is one of
Vvt N
\o \oo \ooo
\x{ hexadecimal-digit} (1)
\a\b\f \n\r\t\v

E.1.5 String Literals

E.1.6 Operators

string-literal
"{s-char}(0)"
or L" {s-char}(0)"
s-char
any character in the source character set except
the double-quote ", backdlash \ , or new-line character
or escape-sequence
operator isone of
(1)y . ->
++ -- & * + - ~ | sizeof
[% << > < > <= >= = = "~ | && ||
o .
= *= [= OF += -= <<= >>= &= N= | =
, ##t
>

170 Lexical Grammar

Formal C Grammar

E.1.7 Punctuators

punctuator

E.2 Phrase Structure Grammar

The following topics are discussed:
* Expressions
* Declarations
* Statements

» External Definitions

E.2.1 Expressions

constant-expression
conditional-expression

expression
assignment-expression{ , assignment-expression}(0)

assignment-expression
conditional-expression
or unary-expression assignment-operator assignment-expression

assignment-operator is one of
= *= [= O 4= -= <<= >>= &= A= | =

conditional -expression
logical-OR-expression [? expression : conditional-expression [

logical-OR-expression
logical-AND-expression{| | logical-AND-expression}(0)

logical-AND-expression
inclusive-OR-expression { && inclusive-OR-expression} (0)

inclusive-OR-expression
exclusive-OR-expression {| exclusive-OR-expression} (0)

Phrase Structure Grammar 171

Appendices

exclusive-OR-expression
AND-expression {* AND-expression}(0)

AND-expression
equality-expression { & equality-expression} (0)

equality-expression
relational-expression { ==|! = relational-expression} (0)

relational-expression
shift-expression { <|>|<=|>= shift-expression} (0)

shift-expression
additive-expression { <<|>> additive-expression} (0)

additive-expression
multiplicative-expression {+|- multiplicative-expression} (0)

multiplicative-expression
cast-expression {* |/ |%cast-expression} (0)

cast-expression
unary-expression
or (type-name) cast-expression

unary-expression
postfix-expression

or ++|-- |si zeof unary-expression
or si zeof (type-name)
or unary-operator cast-expression

unary-operator is one of
&* + - ~ |

postfix-expression
primary-expression

or postfix-expression [expression]

or postfix-expression ([@rgument-expression-list [)
or postfix-expression . identifier

or postfix-expression - > identifier

or postfix-expression ++

or postfix-expression - -

argument-expression-list
assignment-expression {, assignment-expression} (0)

172 Phrase Structure Grammar

Formal C Grammar

primary-expression

identifier
or constant
or string-literal
or (expression)
E.2.2 Declarations
declaration

declaration-specifiers [init-declarator-list G

declaration-specifiers
storage-class-specifier [dleclaration-specifiers [
or type-specifier [declaration-specifiers [

init-declarator-list
init-declarator {, init-declarator}(0)

init-declarator
declarator & initidlizer O

storage-class-specifier
typedef | extern | static | auto | register

type-specifier
void | char | short | int | long | float |
doubl e | signed | unsigned
or struct-or-union-specifier
or enum-specifier

or typedef-name
or type-qualifier

type-qualifier
const | volatile
or Open Watcom-type-qualifier

Open Watcom-type-qualifier
__based __fortran _Segl6
_Cdecl __huge ___segnent
__cdecl __inline ___segnhane
__decl spec __int64 __self
_Export __interrupt ___stdcall
__export __l oadds _Syscal |
__far __near ___syscall
_Far 16 _Packed _System
__farlé _Pascal ___unaligned
_Fastcal | __pascal __watcall
__fastcall __saveregs

Phrase Structure Grammar 173

Appendices

struct-or-union-specifier
struct-or-union Odentifier [struct-declaration-list }
or struct-or-union identifier

struct-or-union
struct | union

struct-declaration-list
{struct-declaration} (1)

struct-declaration
type-specifier-list struct-declarator-list;

type-specifier-list
{type-specifier} (1)

struct-declarator-list
struct-declarator {, struct-declarator}(0)

struct-declarator
declarator
or [declarator [0: constant-expression

enum-specifier
enumdentifier C{ enumerator-list }
or enumidentifier

enumerator-list
enumerator {, enumerator} (0)

enumerator
enumeration-constant (3 constant-expression O

declarator
(pointer [direct-declarator

direct-declarator

identifier
or (declarator)
or direct-declarator [[@onstant-expression (]
or direct-declarator (parameter-type-list)
or direct-declarator (Odentifier-list 0)

pointer
{* Oype-specifier-list (1)

174 Phrase Structure Grammar

Formal C Grammar

parameter-type-list
parameter-list0) ... O

parameter-list
parameter-declaration {, parameter-declaration}(0)

parameter-declaration
declaration-specifiers declarator
or declaration-specifiers [@bstract-declarator [

identifier-list
identifier {, identifier} (o)

type-name
type-specifier-list [@bstract-declarator [

abstract-declarator
pointer
or (pointer [direct-abstract-declarator

direct-abstract-declarator
(abstract-declarator)

or [direct-abstract-declarator ([[@onstant-expression]
or [direct-abstract-declarator [I([parameter-type-list [)
typedef-name
identifier
initializer

assignment-expression
or {iinitidlizer-list)

initializer-list
initializer {, initializer} (o)
E.2.3 Statements
statement
| abelled-statement
or compound-statement
or expression-statement
or sel ection-statement
or iteration-statement
or jump-statement

Phrase Structure Grammar 175

Appendices

|abelled-statement
identifier : statement

or case constant-expression : statement
or defaul t : statement

compound-statement
{ [declaration-list (Tstatement-list [}

declaration-list
{declaration} (1)

statement-list
{statement} (1)

expression-statement
[éxpression [

selection-statement
i f (expression) statement

or i f (expression) statement el se statement
or swi tch (expression) statement

iteration-statement
whi | e (expression) statement

or do statement whi | e (expression) ;
or for ([éxpression[] [éxpression[] [éxpression [J) statement

jump-statement
got o identifier;

or conti nue;
or br eak;
or r et ur n [éxpression [

E.2.4 External Definitions

file
{ external-definition} (1)

external-definition
function-definition
or declaration

function-definition

[declaration-specifiers [declarator [declaration-list O
compound-statement

176 Phrase Structure Grammar

Formal C Grammar

E.3 Preprocessing Directives Grammar

preprocessing-file

group
group
{ group-part} (1)
group-part
[pp-token Chew-line
or if-section
or control-line
if-section
if-group { eif-group} (0) [&se-group Cendif-line
if-group
i f const-expression new-line [group O
ifdef identifier new-line [group O
i fndef identifier new-line [group O
elif-group
el i f constant-expression new-line [group O
else-group
el se new-line [group O
endif-line
endi f new-line
control-line
i ncl ude pp-tokens new-line
defi ne identifier (pp-tokens Chew-line
defi ne identifier ([dentifier-list (0) [pp-tokens Chew-line
undef identifier new-line
| i ne pp-tokens new-line
error [pp-tokens Chew-line
pragma [pp-tokens Chew-line
new-line
pp-tokens

{ preprocessing-token} (1)

preprocessing-token
header-name (only within a #i ncl ude directive)

or identifier (no keyword distinction)

or constant

or string-literal

or operator

or punctuator

or each non-white-space character that cannot be one of the above

Preprocessing Directives Grammar 177

Appendices

header-name

<{h-char}(0)>
h-char

any character in the source character set except new-lineand >
new-line

the new-line character

178 Preprocessing Directives Grammar

Translation Limits
'

F. Translation Limits

All standard-conforming C compilers must be able to translate and execute a program that contains one
instance of every one of the following limits. Each limit isthe minimum limit (the smallest maximum) that
the compiler may impose.
The Open Watcom C6 and C32 compilers do not impose any arbitrary restrictions in any of these
areas. Restrictions arise solely because of memory limitations.
« 15 nesting levels of compound statements, iteration control structures (f or , do/whi | e, whi | e),
and selection control structures (i f, swi t ch),

* 8 nesting levels of conditional inclusion (#i f),

« 12 pointer, array and function declarators (in any order) modifying an arithmetic, structure, union or
incomplete type in adeclaration,

* 31 nesting levels of parenthesized declarators within afull declarator,

* 32 nesting levels of parenthesized expressions within afull expression,

* 31 significant initial charactersin an internal identifier or a macro name,

* 6 significant initial charactersin an external identifier,

» 511 external identifiersin one trandlation unit (module),

* 127 identifiers with block scope declared in one block,

* 1024 macro identifiers simultaneously defined in one trandlation unit (module),
» 31 parameters in one function definition,

« 31 arguments in one function call,

* 31 parameters in one macro definition,

* 31 parameters in one macro invocation,

* 509 charactersin alogical (continued) source line,

* 509 charactersin a character string literal or wide string literal (after concatenation),
* 32767 bytesin an object,

* 8 nesting levelsfor #i ncl uded files,

Translation Limits 179

Appendices

» 257 case labelsfor aswi t ch statement (excluding those for any nested swi t ch statements),
* 127 members in asingle structure or union,
* 127 enumeration constants in a single enumeration,

« 15 levels of nested structure or union definitions in a single struct-declaration-list (structure or union
definition).

180 Translation Limits

Macros for Numerical Limits

G. Macros for Numerical Limits

Although the various numerical types may have different ranges depending on the implementation of the C
compiler, it is still possible to write programs that can adapt to these changing ranges. In most
circumstances, it is clear whether an integer object is sufficiently large to contain all necessary values for it,
regardless of whether or not the integer is only 16 hits.

However, a programmer may want to be able to conditionally compile code based on information about the
range of certain types. Theheader <l i m t s. h> definesa set of macros that describe the range of the
variousinteger types. The header <f | oat . h> defines another set of macros that describe the range and
other characteristics of the various floating-point types.

G.1 Numerical Limits for Integer Types

The following macros are replaced by constant expressions that may be used in #i f preprocessing
directives. For acompiler to conform to the C language standard, the magnitude of the value of the
expression provided by the compiler must equal or exceed the | SO value given below, and have the same
sign. (Positive values must be greater than or equal to the ISO value. Negative values must be less than or
equal to the ISO value.) The values for the actual compilers are shown following the |SO value.

« the number of bitsin the smallest object that is not a bit-field (byte)

Macro: CHAR BI T Vaue
1SO >= 8
Open Watcom C16 and C32 8

« the minimum value for an object of type si gned char

Macro: SCHAR_M N Value
ISO <= -127
Open Watcom C6 and C32 -128

* the maximum value for an object of type si gned char

Numerical Limits for Integer Types 181

Appendices

Macro: SCHAR_NMAX Value
1SO >= 127
Open Watcom C16 and C32 127

« the maximum value for an object of type unsi gned char

Macro: UCHAR NMAX Vaue
1SO >= 255
Open Watcom C16 and C32 255

» the minimum value for an object of type char

If char isunsi gned (the default case)

Macro: CHAR_M N Vaue
1SO 0
Open Watcom C16 and C32 0

If char issi gned (by using the command-line switch to force it to be signed), then CHAR_M Nis

equivalent to SCHAR_M N

Macro: CHAR_M N Vaue
1SO <= -127
Open Watcom C16 and C32 -128

» the maximum value for an object of type char

If char isunsi gned (the default case), then CHAR _MAX is equivalent to UCHAR _MAX

Macro: CHAR_MAX Vaue
1SO >= 255
Open Watcom C16 and C32 255

If char issi gned (by using the command-line switch to force it to be signed), then CHAR_MAXis

equivalent to SCHAR_ MAX

182 Numerical Limits for Integer Types

Macros for Numerical Limits

Macro: CHAR MAX Value
1SO >= 127
Open Watcom C16 and C32 127

« the maximum number of bytes in a multibyte character, for any supported locale

Macro: MB_LEN MAX Vaue
1SO >= 1
Open Watcom C16 and C32 2

* the minimum value for an object of type short i nt

Macro: SHRT_M N Vaue
1SO <= -32767
Open Watcom C16 and C32 - 32768

* the maximum value for an object of type short i nt

Macro: SHRT_ MAX Vaue
ISO >= 32767
Open Watcom C6 and C32 32767

* the maximum value for an object of type unsi gned short int
Macro: USHRT _MAX Value
SO >= 65535
Open Watcom C16 and C32 65535

« the minimum value for an object of type i nt

Macro: | NT_M N Value

1SO <= -32767
Open Watcom C16 - 32768

Open Watcom C32 -2147483648

Numerical Limits for Integer Types 183

Appendices

* the maximum value for an object of type i nt

Macro: | NT_MAX Vaue

1SO >= 32767
Open Watcom C16 32767

Open Watcom C32 2147483647

« the maximum value for an object of type unsi gned i nt

Macro: Ul NT__ MAX Value

1SO >= 65535
Open Watcom C16 65535

Open Watcom C32 4294967295

« the minimum value for an object of type | ong i nt

Macro: LONG_M N

Vaue

1SO
Open Watcom C16 and C32

<= -2147483647
- 2147483648

* the maximum value for an object of type | ong i nt

Macro: LONG_MAX

Vaue

1SO
Open Watcom C16 and C32

>= 2147483647
2147483647

* the maximum value for an object of type unsi gned | ong i nt

Macro: ULONG_MAX

Vaue

ISO
Open Watcom C6 and C32

>= 4294967295
4294967295

« the minimum value for an object of type | ong | ong i nt

Macro: LLONG M N

Vaue

ISO
Open Watcom C16 and C32

<= -9223372036854775807
-9223372036854775808

184 Numerical Limits for Integer Types

Macros for Numerical Limits

* the maximum value for an object of type | ong | ong i nt

Macro: LLONG_MAX

Value

1SO
Open Watcom C16 and C32

>= 0223372036854775807
9223372036854775807

« the maximum value for an object of type unsi gned | ong | ong int

Macro: ULLONG_MAX

Vaue

1SO
Open Watcom C16 and C32

>= 18446744073709551615
18446744073709551615

G.2 Numerical Limits for Floating-Point Types

The following macros are replaced by expressions which are not necessarily constant. For a compiler to
conform to the C language standard, the magnitude of the value of the expression provided by the compiler
must equal or exceed the | SO value given below, and have the same sign. (Positive values must be greater
than or equal to the ISO value. Negative values must be less than or equal to the ISO value.) The values for
the actual compilers are shown following the ISO value. Most compilers will exceed some of these values.

For those characteristics that have three different macros, the macros that start with FLT_ refer to type
fl oat,DBL_ refertotypedoubl e and LDBL_ refertotypel ong doubl e.

* the radix (base) of representation for the exponent

Macro: FLT_RADI X Value
1SO >= 2
Open Watcom C16 and C32 2

« the precision, or number of digitsin the floating-point mantissa, expressed in terms of the

FLT_RADI X

Macro: FLT_MANT_DI G

Vaue

1SO
Open Watcom C16 and C32

no value specified
23

Numerical Limits for Floating-Point Types 185

Appendices

Macro: DBL_MANT_DI G Value

ISO no value specified
Open Watcom C16 and C32 52

Macro: LDBL_MANT_DI G Vaue

ISO no value specified
Open Watcom C16 and C832 52

* the number of decimal digits of precision

Macro: FLT_DI G Vaue
ISO >= 6
Open Watcom C16 and C32 6
Macro: DBL_DI G Value
ISO >= 10
Open Watcom C16 and C32 15
Macro: LDBL_DI G Vaue
1SO >= 10
Open Watcom C16 and C32 15

* the minimum negative integer n such that FLT_RADI X raised to the power n, minus 1, isa
normalized floating-point number, or,

* the minimum exponent valuein terms of FLT_RADI X or,
« the base FLT_RADI X exponent for the floating-point value that is closest, but not equal, to

zero
Macro: FLT_M N_EXP Value
ISO no value specified
Open Watcom C16 and C32 -127

186 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: DBL_M N_EXP Value
ISO no value specified
Open Watcom C16 and C32 -1023
Macro: LDBL_M N_EXP Vaue
ISO no value specified
Open Watcom C16 and C832 -1023

* the minimum negative integer n such that 10 raised to the power n isin the range of normalized
floating-point numbers, or,

» the base 10 exponent for the floating-point value that is closest, but not equal, to zero

Macro: FLT_M N_10_ EXP Vaue
1SO <= -37
Open Watcom C16 and C32 -38
Macro: DBL_M N_10_EXP Vaue
ISO <= -37
Open Watcom C16 and C32 -307
Macro: LDBL_M N_10_EXP Value
1SO <= -37
Open Watcom C16 and C32 - 307

* the maximum integer n such that FLT_ RADI X raised to the power n, minus 1, is arepresentable
finite floating-point number, or,

« the maximum exponent value in terms of FLT_RADI X, or,
* the base FLT__RADI X exponent for the largest valid floating-point value

Macro: FLT_MAX EXP Vaue
ISO no value specified
Open Watcom C16 and C32 127

Numerical Limits for Floating-Point Types 187

Appendices

Macro: DBL_MAX_EXP

Vaue

ISO no value specified
Open Watcom C16 and C32 1023
Macro: LDBL_MAX EXP Vaue

1SO
Open Watcom C16 and C832

no value specified
1023

* the maximum integer n such that 10 raised to the power n is a representabl e finite floating-point

number, or,

» the base 10 exponent for the largest valid floating-point value

Macro: FLT_MAX 10 EXP Vaue
1SO >= 37
Open Watcom C16 and C32 38
Macro: DBL_MAX_10_EXP Vaue
ISO >= 37
Open Watcom C16 and C32 308
Macro: LDBL_MAX_10_ EXP Value
1SO >= 37
Open Watcom C16 and C32 308

« the maximum representabl e finite floating-point number

Macro: FLT_MAX Vaue

ISO >= 1E+37

Open Watcom C16 and C32 3.402823466E+38

Macro: DBL_ MAX Vaue

ISO >= 1E+37

Open Watcom C16 and C32 1.79769313486231560E+308

188 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: LDBL_ MAX Value
ISO >= 1E+37
Open Watcom C16 and C82 1.79769313486231560E+308

« the difference between 1. 0 and the least value greater than 1. O that is representable in the given

floating-point type, or,

* the smallest number eps suchthat (1.0 + eps) != 1.0
Macro: FLT_ EPSI LON Vaue
ISO <= 1E-5
Open Watcom C16 and C32 1. 192092896E- 15
Macro: DBL_EPSI LON Vaue
SO <= 1E-9
Open Watcom C16 and C32 2.2204460492503131E- 16
Macro: LDBL_EPSI LON Vaue
ISO <= 1E-9
Open Watcom C16 and C32 2.2204460492503131E- 16

* the minimum positive normalized floating-point number

Macro: FLT_M N Vaue

ISO <= 1E- 37

Open Watcom C16 and C32 1.175494351E- 38

Macro: DBL_M N Vaue

ISO <= 1E- 37

Open Watcom C16 and C32 2.22507385850720160E- 308
Macro: LDBL_M N Vaue

ISO <= 1E- 37

Open Watcom C16 and C32 2.22507385850720160E- 308

Asdiscussed in the section "Integer to Floating-Point Conversion”, the macro FLT_ ROUNDS is replaced by
a constant expression whose value indicates what kind of rounding occurs following a floating-point
operation. The following table gives the value of FLT_ROUNDS and its meaning:

Numerical Limits for Floating-Point Types 189

Appendices

FLT_ROUNDS Technique
-1 indeterminable
0 toward zero
1 to nearest number
2 toward positive infinity
3 toward negative infinity

If FLT_ ROUNDS has any other value, the rounding mechanism is implementation-defined.

For the Open Watcom C16 and C32 compiler, the value of

FLT ROUNDS is 1, meaning that

floating-point values are rounded to the nearest representable number.

190 Numerical Limits for Floating-Point Types

Implementation-Defined Behavior

H. Implementation-Defined Behavior

This appendix describes the behavior of Open Watcom C16 and C32 when the standard describes the
behavior as implementation-defined. The term describing each behavior is taken directly from the
ISO/ANSI C Language standard. The numbersin parentheses at the end of each term refersto the section
of the standard that discusses the behavior.

H.1 Translation

How a diagnosticisid

entified (5.1.1.3).

A diagnostic message appears as.

filename(line-number): error-type! msg-number: msg_text

where:

filename

line-number

error-type

msg-number

msg-text

Example:

test.c(35):
test.c(57):

is the name of the source file where the error was detected. If the error wasfound in
afileincluded from the source file specified on the compiler command line, then the
name of the included file will appear.

is the source line number in the named file where the error was detected.

iseither theword Er r or for errorsthat prevent the compile from completing
successfully (no code will be generated), or Vr ni ng for conditions detected by
the compiler that may not do what the programmer expected, but are otherwise
valid. Warningswill not prevent the compiler from generating code. The issuance
of warnings may be controlled by a command-line switch. Seethe User’s Guide for
details.

isthe letter E (for errors) followed by afour digit error number, or the letter W(for
warnings) followed by athree digit warning number. Each message hasits own
unique message number.

is a descriptive message indicating the problem.

Warni ng! WB01: No prototype found for 'Getltem
Error! E1009: Expecting '}’ but found ',’

Translation 191

Appendices

H.2 Environment

The semantics of the argumentsto main (5.1.2.2.1).

Each blank-separated token, except within quoted strings, on the command line is made into a string
that isan element of ar gv. Quoted strings are maintained as one element.

For example, for the command line,
pgm 2+ 1 tokens "one token"
ar gc would have the value 5, and the five elements of ar gv would be,

pgm

2+

1

t okens
one token

What constitutes an interactive device (5.1.2.3).

For Open Watcom C6 and C32, the keyboard and the video display are considered interactive
devices.

H.3 Identifiers

Thenumber of significant initial characters (beyond 31) in an identifier without external linkage
(6.1.2).

Unlimited.
The number of significant initial characters (beyond 6) in an identifier with external linkage (6.1.2).

The Open Watcom C16 and C32 compilers do not impose alimit. The Open Watcom Linker limits
significant charactersto 40.

Whether case distinctions are significant in an identifier with external linkage (6.1.2).
The Open Watcom C6 and C32 compilers produce object names in mixed case. The Open Watcom

Linker provides an option to respect or ignore case when resolving linkages. By default, the linker
respects case. See the Open Watcom Linker User’s Guide for details.

H.4 Characters

The members of the source and execution character sets, except as explicitly specified in the standard
(5.2.1).

The full IBM PC character set is available in both the source and execution character sets. The set of
values between 0x20 and 0x7F are the ASCI| character set.

192 Characters

Implementation-Defined Behavior

The shift states used for the encoding of multibyte characters (5.2.1.2).
There are no shift statesin the support for multibyte characters.

Thenumber of bitsin a character in the execution character set (5.2.4.2.1).
8

The mapping of member s of the sour ce character set (in character constants and string literals) to
members of the execution character set (6.1.3.4).

Both the source and execution character sets are the full IBM PC character set for whichever code
pageisin effect. In addition, the following table shows escape sequences available in the source
character set, and what they trandate to in the execution character set.

Escape Hex

Sequence | Value Meaning

\a 07 Bell or dert

\b 08 Backspace

\ f 0oC Form feed

\n 0A New-line

\r oD Carriage return

\ 't 09 Horizontal tab

\v 0B Vertical tab

\’ 27 Apostrophe or single quote
\ " 22 Double quote

\? 3F Question mark

\\ 5C Backslash

\ ddd Octal vaue

\ xddd Hexadecimal value

Thevalue of an integer character constant that contains a character or escape sequence that is not
represented in the execution character set or the extended character set for a wide character constant
(6.1.3.4).

Not possible. Both the source and execution character sets are the IBM PC character set. Thus, all
characters in the source character set map directly to the execution character set.

Thevalue of an integer character constant that contains morethan one character or a wide character
constant that contains mor e than one multibyte character (6.1.3.4).

A multi-character constant is stored with the right-most character in the lowest-order (least
significant) byte, and subsequent characters (moving to the left) being placed in higher-order (more
significant) bytes. Up to four characters may be placed in a character constant.

Thecurrent locale used to convert multibyte character sinto corresponding wide char acter s (codes)
for awide character constant (6.1.3.4).

The Open Watcom C16 and C32 compilers currently support only the " C' locale, using North
American English, and translates code page 437 to UNICODE.

Characters 193

Appendices

To support multibyte characters, acommand line switch can be used to indicate which multibyte
character set to use. Seethe User’s Guide for details.

Whether aplain char hasthe samerange of valuesas si gned char or unsi gned char (6.2.1.1).

Open Watcom C%6 and C32treat char asunsi gned, although a compiler command line switch can
be used to make it si gned.

H.5 Integers

Therepresentations and sets of values of the varioustypes of integers (6.1.2.5).

Integers are stored using 2's complement form. The high bit of each signed integer isasign bit. If the
sign bitis 1, the valueis negative.

The ranges of the various integer types are described in the section "Integer Types'.

Theresult of converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if the value cannot berepresented (6.2.1.2).

When converting to a shorter type, the high-order bits of the longer value are discarded, and the
remaining bits are interpreted according to the new type.

For example, converting the signed long integer - 15584170 (hexadecimal OxFF123456) to a
signed short integer yields the result 13398 (hexadecimal 0x3456).

When converting an unsigned integer to asigned integer of equal length, the bits are simply
re-interpreted according to the new type.

For example, converting the unsigned short integer 65535 (hexadecima OxFFFF) to a signed short
integer yields the result - 1 (hexadecimal Ox FFFF).

Theresults of bitwise operations on signed integers (6.3).

The sign bit is treated as any other bit during bitwise operations. At the completion of the operation,
the new bit pattern is interpreted according to the result type.

Thesign of the remainder on integer division (6.3.5).
The remainder has the same sign as the numerator (left operand).
Theresult of aright shift of a negative-valued signed integral type (6.3.7).

A right shift of asigned integer will leave the higher, vacated bits with the original value of the high
bit. In other words, the sign bit is propogated to fill bits vacated by the shift.

For example, theresult of ((short) 0x0123) >> 4 would be 0x0012. Theresult of
((short) OxXFEFE) >> 4 will be OXFFEF.

194 Integers

Implementation-Defined Behavior

H.6 Floating Point

Therepresentations and sets of values of the varioustypes of floating-point numbers (6.1.2.5).

These are discussed in the section "Floating-Point Types'. The floating-point format used is the IEEE
Standard for Binary Floating-Point Arithmetic as defined in the ANSI/IEEE Standard 754-1985.

Thedirection of truncation when an integral number is converted to a floating-point number that

cannot exactly represent the original value (6.2.1.3).

Truncation is only possible when convertinga | ong i nt (signed or unsigned) to f | oat . The24
most-significant bits (including sign bit) are used. The 25th is examined, and if itis 1, thevalueis
rounded up by adding one to the 24-bit value. The remaining bits are ignored.

Thedirection of truncation or rounding when a floating-point number is converted to a narrower
floating-point number (6.2.1.4).

The value is rounded to the nearest value in the smaller type.

H.7 Arrays and Pointers

Thetype of integer required to hold the maximum size of an array — that is, thetype of the si zeof
operator, si ze_t (6.3.34,7.1.1).

unsi gned int

Theresult of casting an integer to a pointer or vice versa (6.3.4).

Open Watcom C26 conversion of pointer to integer:

Pointer
Type

short int
i nt

| ong int

near

result is pointer value

result isDS register in
high-order 2 bytes, pointer
value in low-order 2 bytes

far
huge

segment is discarded, result
is pointer offset (low-order
2 bytes of pointer)

result is segment in high-
order 2 bytes, offsetin
low-order 2 bytes

Arrays and Pointers 195

Appendices

Open Watcom C16 conversion of integer to pointer:

Integer far pointer

Type near pointer huge pointer

short int result isinteger value result segment isDS

int register, offsetis
integer value

| ong int result is low-order 2 bytes result segment is high-

of integer value order 2 bytes, offset is

low-order 2 bytes

Open Watcom C%2 conversion of pointer to integer:

Pointer i nt
Type short | ong int
near result is low-order 2 bytes result is pointer value
of pointer value
far segment is discarded, result segment is discarded, result
huge islow-order 2 bytes of is pointer offset
pointer value

Open Watcom C32 conversion of integer to pointer:

Integer far pointer
Type near pointer huge pointer
short int result isinteger value, result sesgment isDS
with zeroes for high-order register, offset isinteger
2 bytes value, with zeroes for
high-order 2 bytes
i nt result isinteger value result sesgment isDS
longint register, offsetis
integer value

Thetype of integer required to hold the difference between two pointersto elements of the same

array,ptrdi ff_t (6.3.6,7.1.1).

If the huge memory model isbeing used, ptrdi ff_t hastypel ong int.

For all other memory models, ptrdi ff _t hastypei nt.

If two huge pointers are subtracted and the huge memory model is not being used, then the result type
will bel ong i nt eventhough ptrdiff _t isint.

196 Arrays and Pointers

Implementation-Defined Behavior

H.8 Registers

The extent to which objects can actually be placed in registers by use of the r egi st er storage-class
specifier (6.5.1).

The Open Watcom C26 and C32 compilers may place any object that is sufficiently small, including a
small structure, in one or more registers.

The number of objects that can be placed in registers varies, and is decided by the compiler. The
keyword r egi st er does not control the placement of objectsin registers.

H.9 Structures, Unions, Enumerations and Bit-Fields

A member of a union object isaccessed using a member of a different type (6.3.2.3).

The behavior is undefined. Whatever bit values are present as were stored via one member will be
extracted via another.

The padding and alignment of members of structures (6.5.2.1).
The Open Watcom C6 and C32 compilers align structure members by default. A command line
switch, or the pack pragma, may be used to override the default. See the User’s Guide for default

values and other details.

Whether a" plain”" i nt bit-field istreated asa si gned i nt bit-field or asan unsi gned i nt
bit-field (6.5.2.1).

signed int

Theorder of allocation of bit-fields within a unit (6.5.2.1).
Low-order (least significant) bit to high-order bit.

Whether abit-field can straddle a storage-unit boundary (6.5.2.1).

Bit-fields may not straddle storage-unit boundaries. If thereisinsufficient room to store a subsequent
bit-field in a storage-unit, then it will be placed in the next storage-unit.

Theinteger type chosen to represent the values of an enumeration type (6.5.2.2).

By default, Open Watcom C26 and C32 will use the smallest integer type that can accommodate all
valuesin the enumeration. Thefirst appropriate type will be chosen according to the following table:

Structures, Unions, Enumerations and Bit-Fields 197

Appendices

Type Smallest Value Largest Value

si gned char -128 127

unsi gned char 0 255

si gned short - 32768 32767

unsi gned short 0 65535

signed | ong -2147483648 2147483647

unsi gned | ong 0 4294967295

signed | ong | ong -9223372036854775808 9223372036854775807
unsi gned | ong | ong 0 18446744073709551615

Both compilers have a command-line switch that force all enumerationsto type i nt. SeetheUser’'s
Guide for details.

H.10 Qualifiers

What constitutes an accessto an object that has volatile-qualified type (6.5.5.3).

Any referenceto avolatile object is also an access to that object.

H.11 Declarators

The maximum number of declaratorsthat may modify an arithmetic, structure or union type (6.5.4).

Limited only by available memory.

H.12 Statements

The maximum number of case valuesin a swi t ch statement (6.6.4.2).

Limited only by available memory.

H.13 Preprocessing Directives

Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the execution character set.
Whether such a character constant may have a negative value (6.8.1).

The character sets are the same so characters will match. Character constants are unsigned quantities,
S0 no character will be negative.

Themethod for locating includable sour ce files (6.8.2).
See the User’s Guide for full details of how included files are located.

The support of quoted namesfor includable sour cefiles (6.8.2).

198 Preprocessing Directives

Implementation-Defined Behavior

Seethe User’s Guide for full details of how included files are located.
The mapping of sourcefile character sequences (6.8.2).

The source and execution character sets are the same. Escape segquences are not supported in
preprocessor directives.

Thebehavior of each recognized #pr agnma directive (6.8.6).
See the User’s Guide.

Thedefinitionsfor __DATE__ and__ TI ME__ when respectively, the date and time of trandation
arenot available (6.8.8).

The date and time are always available.

H.14 Library Functions

Thenull pointer constant to which the macro NULL expands (7.1.6).

For Open Watcom C26, the NULL macro expands to O for the small and medium (small data) memory
models, and to OL for the compact, large and huge (big data) memory models.

For Open Watcom C32, the NULL macro expandsto 0.

The implementation-defined behavior of the library functionsis described in the Open Watcom C Library
Reference manual.

Library Functions 199

Appendices

200 Library Functions

Examples of Declarations
'

I. Examples of Declarations

This chapter presents a series of examples of declarations of objects and functions. Along with each
example is adescription that indicates how to read the declaration.

This chapter may be used as a " cookbook" for declarations. Some complicated but commonly required
declarations are given here.

Thefirst examples are very simple, and build in complexity. Some of the examples given near the end of
each section are unlikely to ever be required in areal program, but hopefully they will provide an
understanding of how to read and write C declarations.

To reduce the complexity and to better illustrate how a small differencein the declaration can mean a big
difference in the meaning, the following rules are followed:

1. if anobjectisbeing declared, itiscaled x or X,
2. if afunctionisbeing declared, itiscalled F,

3. if anobject isbeing declared, it usually hastype i nt , athough any other type may be
substituted,

4. if afunction isbeing declared, it usualy returnstype i nt , although any other type may be
substituted.

Storage class specifiers (ext ern, st ati ¢, aut o or r egi st er) have purposely been omitted.

1.1 Object Declarations

Here are some examples of object (variable) declarations:

int x;
2 1
(1) X isan (2) integer.

int * x;
3 21
(1) x isa(2) pointer to an (3) integer.

Object Declarations 201

Appendices

int ** x;
4 321
(1) X isa(2) pointer to a (3) pointer to an (4) integer.

const int x;
2 3 1
(1) X isa(2) constant (3) integer.

i nt const Xx;
3 2 1

(1) x isa(2) constant (3) integer (same as above).

const int * x;
3 4 21
(1) x isa(2) pointer to a (3) constant (4) integer. The value of x may change, but the integer that it
points to may not be changed. In other words, * x cannot be modified.

int * const x;
4 3 2 1
(1) x isa(2) constant (3) pointer to an (4) integer. The value of x may not change, but the integer
that it points to may change. In other words, x will always point at the same location, but the
contents of that location may vary.

const int * const Xx;
4 5 3 2 1
(1) x isa(2) constant (3) pointer to a (4) constant (5) integer. The value of x may not change, and
the integer that it points to may not change. In other words, x will always point at the same
location, which cannot be modified via x.

int x[];
3 12
(1) X isan (2) array of (3) integers.

int x[53];
4 123
(1) x isan (2) array of (3) 53 (4) integers.

int * x[];
4 3 12
(1) x isan (2) array of (3) pointersto (4) integer.

int (*x)[];
4 21 3
(1) x isa(2) pointer to an (3) array of (4) integers.

int * (*x)[1];
5 4 213
(1) x isa(2) pointer to an (3) array of (4) pointersto (5) integer.

202 Object Declarations

Examples of Declarations

int (*x)();

4 21 3

(1) X isa(2) pointer to a (3) function returning an (4) integer.
int (*x[25])();

6 4123 5

(1) x isan (2) array of (3) 25 (4) pointersto (5) functions returning an (6) integer.

1.2 Function Declarations

Here are some examples of function declarations:

nt F();
3 12
(1) Fisa(2)function returning an (3) integer.

nt * F();
4 3 12
(1) Fisa(2)function returning a (3) pointer to an (4) integer.

nt (*F())();
5 312 4

(1) Fisa(2)function returning a (3) pointer to a (4) function returning an (5) integer.

nt * (*F())();
6 5 312 4

(1) Fisa(2) function returning a (3) pointer to a (4) function returning a (5) pointer to an
(6) integer.

nt (*F())I[];
5 312 4

(1) Fisa(2)function returning a (3) pointer to an (4) array of (5) integers.

nt (*(*FO)LD) O
7 5312 4 6

(1) Fisa(2)function returning a (3) pointer to an (4) array of (5) pointersto (6) functions returning
an (7) integer.

nt * (*(*F())[1)(0);

8 7 5312 4 6

(1) Fisa(2)function returning a (3) pointer to an (4) array of (5) pointersto (6) functions returning
a(7) pointer to an (8) integer.

1.3 __far, _ _near and _ _huge Declarations

The following examplesillustrate the use of the __f ar and__huge keywords.

Theuse of the __near keyword is symmetrical with the use of the __ f ar keyword, so no examples of
___near areshown.

_far, _ _near and _ _huge Declarations 203

Appendices

nt far X

3 2 1

(1) Xisa(2)far (3)integer.

nt * __far x;

4 3 2 1

(1) x is(2)far, and isa(3) pointer to an (4) integer.

nt __far * x;
4 2 31
(1) x isa(2)far (3) pointer to an (4) integer.

nt far * _ far x;
5 3 4 2 1
(1) x is(2)far,andisa(3) far (4) pointer to an (5) integer.

nt _far X];
4 2 13

(1) Xisa(2)far (3) array of (4) integers.

nt __huge X];
4 2 13
(1) x isa(2) huge (3) array of (4)integers (Xisan array that can exceed 64K in size.)

nt * __far X];
5 4 2 13
(1) Xisa(2)far (3)array of (4) pointersto (5) integers.

nt __far * X1];
5 3 4 12
(1) Xisan (2) array of (3) far (4) pointersto (5) integers.

nt _far * __far X];
6 4 5 2 13

(1) Xisa(2)far (3)array of (4)far (5) pointersto (6) integers.

nt far F();
4 2 13

(1) Fisa(2)far (3)function returning an (4) integer.

nt * far F();
5 4 2 13
(1) Fisa(2)far (3)function returning a (4) pointer to an (5) integer.

nt __far * F();
5 3 4 12
(1) Fisa(2)function returning a (3) far (4) pointer to an (5) integer.

204 _ _far,_ _near and_ _huge Declarations

Examples of Declarations

int far * _far F();
6 4 5 2 13

(1) Fisa(2)far (3)function returning a (4) far (5) pointer to an (6) integer.
int (__far * x)();

5 2 314

(1) x isa(2)far (3) pointer to a (4) function returning an (5) integer.

int __far * (* x)();
6 4 5 213
(1) x isa(2) pointer to a (3) function returning a (4) far (5) pointer to an (6) integer.

int __far * (__far * x)();
7 5 6 2 314
(1) x isa(2)far (3) pointer to a (4) function returning a (5) far (6) pointer to an (7) integer.

1.4 _ _interrupt Declarations

The following example illustratesthe use of the __ i nt er r upt keyword.
void __interrupt __ far F();
5 3 2 14

(1) Fisa(2)far (3)interrupt (4) function returning (5) nothing.

_ _interrupt Declarations 205

Appendices

206 _ _interrupt Declarations

A Sample Program
|

J. A Sample Program

This chapter presents an entire C program, to illustrate many of the features of the language, and to
illustrate elements of programming style.

This program implements a memo system suitable for maintaining a set of memos, and displaying them on
the screen. The program allows the user to display memos relevant to today’ s date, move through the
memos adding new ones and replacing or deleting existing ones. The program displays help information
whenever an invalid action is entered, or when the sole parameter to the program is a question mark.

The program is in complete conformance to the ISO C standard. It should be able to run, without
modification, on any system that provides an | SO-conforming C compiler.

J.1 The memos.h File

The source file menos. h contains the structures used for storing the memos:

/* This structure is for an individual line in a neno.
*/
typedef struct text_line {
struct text_line * next;
char text[1];
} TEXT_LI NE;

/* This structure is the head of an individual neno.
*/
typedef struct meno_el {

struct nmeno_el * prev;

struct nmeno_el * next;

TEXT_LINE * t ext;
char dat e[9] ;
} MEMD_EL;

The memos.h File 207

Appendices

J.2 The memos.c File

The source for the program follows:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i nclude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <tine. h>

#i ncl ude "nenos. h"
/* This programinplenents a sinple neno facility.
* Menps nay be added to a nmeno file, displayed
* on the screen, and del eted.
*
* Modified by reason
* ———=—===== == -
* 87/ 10/ 02 Steve McDowel | Initial inplenmentation.
* 88/09/ 20 Steve McDowel | Fixed up sone style issues,
* introduced use of TRUE and
* FALSE.

/* Define sonme constants to nake the code nore readabl e.

*/
#defi ne TRUE 1
#def i ne FALSE 0
#defi ne NULLCHAR "\ O’

static const char Fil eNang[]
static const char TenpNane[]

{ "menos.db" };
{ "tenpreno. db" };

static MEMO EL * MenoHead
static int MenosModi fi ed
static int Qui tFl ag

NULL;
FALSE;
TRUE;

typedef enum {
| NVALI D,
HELP,
ADD,
DELETE,
REPLACE,
SHOW
UP,
DOWN,
TOP,
TODAY,
SAVE,
QT

} ACTI ON;

/* This table maps action keywords onto the "actions" defined
* above. The table also defines short forms for the keywords.
*/

typedef struct {

ACTI ON act;
char * keyword;

} ACTI ON_MAP;

208 The memos.c File

A Sample Program

static ACTI ON_MAP KeywordMap[] = {

HELP, "hel p",
HELP, "h",

ADD, "add",
ADD, "at
DELETE, "delete",
DELETE, "del",

REPLACE, "repl ace",
REPLACE, "rep",
SHOW "show',

SHOW "sh",
UP, "up",
UP, "u",
DOV, "down",
DOV, "d",
TOP, "top",
TCODAY, "t oday",
TODAY, "tod",
SAVE, "save",
SAVE, "sa",
QIT, "quit",
QT g,

I NVALI D, "" };

/* Maxi mum buffer | ength (maxi mum | ength of

*/

#def i ne MAXLEN 80

/* Function prototypes.

*/
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

extern int main(int argc,

AR R EE AL EEEEEEEEEEEEEEEEEEEEEEE]

{

int

C
Cc
C
Cc
C
Cc
C
Cc
C
Cc
C
C
C

TEXT_LINE * AddLi ne();
MEMO_EL * AddMeno() ;

MEMO_EL * Del et eMeno() ;
MEMO_EL * DoAct i ons();
MEMO_EL * DoDownAct i on() ;
MEMO_EL * DoUpAction();
MEMO_EL * Ent er AMeno() ;
ACTI ON Get Action();
void * MenmoMAI | oc() ;
ACTI ON Pronpt Acti on();
ACTI ON ReadAction();

MEMO_EL * ReadAMeno() ;
MEMO_EL * ShowTodaysMenos() ;

i ndex;

MEMO EL * el ;

printf("Meno facility\n");

/* Check for a single argunent that

* |f found, then display the usage notes.

*/

if(argc == 2 && strcnp(argv[1],
Usage() ;
exit(0);

}

ReadMenos();

MenosModi fi ed = FALSE;

Qi tFl ag = FALSE;

char * argv]

)
/

wou

line of meno).

)

is a question mark,

::O){

The memos.c File 209

Appendices

/* Use the command |ine paraneters, if any, as the first
* actions to be performed on the nmenos.
*/
el = NULL;
for(index = 1; index < argc; ++index) {
el = DoActions(el, GetAction(argv[index]));
if(QuitFlag) {
return(FALSE);
}

}
Handl eMenpActions(el);
return(FALSE);

}

static void ReadMenos(void)

AR E R EEEEEEEEEEEY]

/* Read the nenos file, building the structure to contain it.
*/
{

FI LE * fid,

MEMO_EL * new_ el ;

MEMO_EL * prev_el;

i nt ncount ;

fid = fopen(FileNanme, "r");
if(fid == NuLL) {
printf(“Menos file not found."
" Starting with no nmenos.\n");
return;

}

/* Loop reading entire menos.
*/
prev_el = NULL;
for(nmcount = 0;; ntount++) {
new_el = ReadAMeno(fid);
if(new el == NULL) {
printf("% meno(s) found.\n", nctount);
fclose(fid);
return;

}

if(prev_el == NULL) {
MenoHead = new el ;
new_el ->prev = NULL;

} else {
prev_el ->next = new_el;
new_el ->prev = prev_el;

}

new_el - >next = NULL;

prev_el = new_ el;

}

static int ReadLine(char buffer[], int len, FILE * fid)

AR R R R EEY]

/* Read a line fromthe nenos file. Handle any I1/O errors and
* EOF. Return the length read, not counting the newine on
* the end.
*/
if(fgets(buffer, len, fid) == NULL) {
if(feof(fid)) {
return(ECF);
}

perror("Error reading nmenos file");
abort();

return(strlen(buffer) - 1);

210 The memos.c File

A Sample Program

static MEMO_EL * ReadAMemo(FILE * fid)

AR R EE AR EEEEEEEEEELEEEEEEEEEEY]

/* Read one neno, creating the nmeno structure and filling it
* in. Return a pointer to the menmo (NULL if none read).
*/
{
MEMO_EL * el ;
i nt | en;
TEXT_LINE * line;
char buf f er [MAXLEN ;

| en = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {

return(NULL);
}

/* First line nust be of the form"Date:" or "Date:YY/ MM DD":
*/
if((len!'=5 && len != 13)
|| strncnp(buffer, "Date:", 5) !'=0) {
BadFor mat () ;

}
buffer[len] = NULLCHAR
el = MenmoMAl | oc(sizeof (MEMO_EL));
el ->text = NULL;
strcpy(el->date, buffer + 5);
l'ine = NULL;
for(;5) {
| en = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {
BadFor mat () ;

}

buffer[len] = NULLCHAR

if(strenp(buffer, "====") == 0) {
return(el);

}
l'ine = AddLine(buffer, el, line);

}

static TEXT_LINE * AddLi ne(char buffer[],
MEMO EL * el
TEXT_LINE * prevline)

/**/

/* Add a line of text to the neno, taking care of all the
* details of nodifying the structure.

*/
{
TEXT_LINE * line;
line = MenoMAI | oc(sizeof(TEXT_LINE) + strlen(buffer));
strcpy(line->text, buffer);
| i ne->next = NULL;
if(prevliine == NULL) {
el ->text = line;
} else {
prevline->next = |ine;
return(line);
}

The memos.c File 211

Appendices

static ACTION Pronpt Action(void)

AR R E R EEEEEEEEEEEE RN

/* The user didn't specify an action on the conmand Ii ne,
* so pronpt for it.

*/
{
ACTI ON act ;
for(;;)
printf("\nEnter an action:\n");
act = ReadAction();
if(act != INVALID) {
return(act);
printf("\nThat selection was not valid.\n");
Hel p();
}
}

static ACTI ON ReadAction(void)

1A R R E R EEEEEEEEEEEE LY

/* Read an action fromthe term nal.
* Return the action code.

*/
{
char buffer[80];
if(gets(buffer) == NULL) {
perror("Error reading action");
abort();
}
return(GetAction(buffer));
}

static ACTI ON Get Action(char buffer[])
/************************************* /

*

/* Gven the string in the buffer, return the action that
* corresponds to it.
* The string in the buffer is first zapped into | ower case
* so that m xed-case entries are recogni zed.
*/
{
ACTI ON_MAP * act nap;
char * buf ptr;
for(bufptr = buffer; *bufptr !'= NULLCHAR, ++bufptr) {
*puf ptr = tol ower(*bufptr);
}
for(actmap = KeywordMap; actmap->act != I NVALID;, ++actmap) {
if(strenp(buffer, actmap->keyword) == 0) break;
}
return(actmap->act);
}

static voi d Handl eMenpActi ons(MEMO EL * el)

/***/

/* Handle all the actions entered fromthe keyboard.
*/

for(;;) {

el = DoActions(el, PronptAction());
if(QuitFlag) break;

212 The memos.c File

A Sample Program

static MEMO_EL * DoActions(MEMO EL * el,

IR R EE AR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEERY)

/* Perform one action on the nenos.

*/

MEMO_EL * new_el ;
MEMO_EL * prev_el;

switch(act) {
case HELP:
Hel p();
br eak;
case ADD:
new_el = AddMeno(el);
if(new el !'= NULL) {
el = new_el;
MenosModi fied = TRUE;
}
br eak;
case DELETE:
el = Del eteMeno(el);
MenosModi fi ed = TRUE;
br eak;
case REPLACE:
prev_el = el;
new_el = AddMeno(el);
if(new el !'= NULL) {
Del et eMeno(prev_el);
MenosModi fied = TRUE;
}
br eak;
case SHOW
Di spl ayMeno(el);
br eak;
case UP:
el = DoUpAction(el);
br eak;
case DOMN:
el = DoDownAction(el);
br eak;
case TOP:
el = NULL;
br eak;
case TODAY:
el = ShowTodaysMenos();
br eak;
case SAVE:
if(SaveMenos()) {
MenosModi fi ed = FALSE;
}

br eak;
case QUIT:
if(wantToQuit()) {
QuitFlag = TRUE;
el = NULL;
}

return(el);

The memos.c File 213

Appendices

static MEMO EL * AddMeno(MEMO EL * el)

AR R EE AR EEEEEEEEEELEEEEEEEEEEY]

/* Add a neno followi ng the current one.
*/
{

MEMO_EL * new_el ;

MEMO_EL * next;

new_el = Enter AMeno();
if(new el == NULL) {
return(NULL);

}
if(el == NULL) {
next = MenoHead;
MenoHead = new el ;
} else {
next = el ->next;
el ->next = new_el;
}
new_el - >prev el ;
new_el - >next next ;
if(next !'= NULL) {
next - >prev = new_el;

return(new_ el);

}

static MEMO EL * Enter AMeno(void)

AR R R EEEEEEEEEEEEEEERY

/* Read a neno fromthe keyboard, creating the nenp structure

* and filling it in. Return a pointer to the meno (NULL if
* none read).
*/
{
MEMO_EL * el;
i nt | en;
TEXT_LINE * line;
char buf f er [MAXLEN] ;

printf("What date do you want the neno displ ayed"
" (YY/MMDD)\n");
if(gets(buffer) == NULL) {
printf("Error reading fromterminal.\n");
return(NULL);

}
len = strlen(buffer);
if(len!=0
& (len =8
|| buffer[2] ="/
|| buffer[5] '="/7")) {
printf("Date is not valid.\n");

return(NULL);

}
el = MenmoMAl | oc(sizeof (MEMO EL));
el ->text = NULL;
strcpy(el->date, buffer);
line = NULL;
printf("\nEnter the text of the nenp.\n");
printf("To term nate the neno,"
" enter a line starting with =\n");
for(;5) {
if(gets(buffer) == NULL) {
printf("Error reading fromtermnal .\n");
return(NULL);

214 The memos.c File

A Sample Program

if(buffer[0] =="'=) {
return(el);

}
l'ine = AddLine(buffer, el, line);

}
static MEMO EL * Del eteMeno(MEMO EL * el)

/***/

/* Delete the current meno.
* Return a pointer to another meno, usually the foll ow ng one.
*/
{
MEMO_EL * prev;
MEMO_EL * next;
MEMO_EL ret_el;

*

if(el == NULL) {
return(MenoHead);
}

prev = el ->prev;

next = el ->next;

ret_el = next;

if(ret_el == NULL) {
ret_el = preyv;

}

/* If it’s the first nenp, set a new MenpHead val ue.
*/
if(prev == NULL) {
MenoHead = next;
if(next !'= NULL) {
next->prev = NULL;

} else {
prev->next = next;
if(next !'= NULL) {
next->prev = prev;
}
}

Di sposeMenp(el);
return(ret_el);

}
static MEMO EL * DoUpAction(MEMO EL * el)

/*********************************_********/
/* Performthe UP action, including displaying the neno.
*/

if(el == NULL) {
Di spl ayTop() ;
} else {
el = el->prev;
Di spl ayMeno(el);

return(el);

The memos.c File 215

Appendices

static MEMO_EL * DoDownAction(MEMO EL * el)

IR AR E R AR EEEEEEEEEEEEEEEEEEEEEEEEEEY]
/*

*]
{

Performthe DOM action, including displaying the neno.

MEMO_EL * next _el;

next _el = (el == NULL) ? MenpHead :
i f(next_el NULL) {

printf(“"No nore menos.\n");
} else {

el = next_el;

Di spl ayMeno(el);

el - >next;

return(el);

}

static MEMO _EL * ShowTodaysMenos(void)

IEEEEE AR EE AR EEEEEEREEELEEEEEEEEEEY]

/* Show all nenos that either:
* (1) match today’'s date
* (2) don’t have a date stored.
* Return a pointer to the |last displayed meno.
*/
{

MEMO_EL * el;

MEMO_EL * last_el;

time_t tiner;

struct tmltine;

char date[9] ;

/* Get today’'s tinme in YY/ MM DD fornat.

*/
time(&inmer);
Itinme = *localtinme(&iner);
strftime(date, 9, "%/ %1 %", &tinme);
I ast _el = NULL;
for(el = MenpHead; el != NULL; el = el->next) {
if(el->date[0] == NULLCHAR
|| strcnp(date, el->date) == 0) {
Di spl ayMeno(el);
last _el = el;
}
return(last_el);
}

static void D splayMeno(MEMO EL * el)

/*************************************/

/* Display a nenb on the screen.

*/
{ .
TEXT_LINE * tline;
if(el == NULL) {
Di spl ayTop();
return;
}
if(el->date[0] == NULLCHAR) {
printf("\ nUndated nmenmo\n");
} else {
printf("\nDated: %\n", el->date);
for(tline = el->text; tline !'= NULL; tline = tline->next) {
printf(" o%\n", tline->text);
}

216 The memos.c File

A Sample Program

static int SaveMenos(void)

AR AR EE AR EEEEE LY

/* Save the nenbs to the nenos file.
*/
{

FILE * fid;

MEMO_EL * el ;

TEXT_LINE * tline;

char buf fer[20];

i f(MempHead == NULL) {
printf("No nenps to save.\n");
return(FALSE);

}

/* Open a tenporary filenane in case sonething goes wong
* during the save.
*/
fid = fopen(TenpNanme, "w');
if(fid == NuLL) {
printf("Unable to open \"%\" for witing.\n", TenpNane);
printf("Save not performed.\n");
return(FALSE);

}
for(el = MenpHead; el != NULL; el = el->next) {
sprintf(buffer, "Date: %", el->date);
if('WiteLine(buffer, fid)) {
return(FALSE);

tline = el ->text;
for(; tline !'= NULL; tline = tline->next) {
if('WiteLine(tline->text, fid)) {
return(FALSE);
}

}

if('WiteLine("====", fid)) {
return(FALSE);

}

}

/* Now get rid of the old file, if it’s there, then renane
* the new one.
*/
fclose(fid);
fid = fopen(FileNanme, "r");
if(fid!= NuLL) {
fclose(fid);
if(renove(FileNane) !'=0) {
perror("Can't renpve old nenos file");
return(FALSE);

}

}

if(renane(TenpNane, FileNane) '= 0) {
perror("Can't renanme new nmenos file");
return(FALSE);

}
return(TRUE);
}

static int WiteLine(char * text, FILE * fid)

IR AR EE AR EEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

if(fprintf(fid, "%\n", text) <0) {
perror("Error witing nmenos file");
return(FALSE);

}
return(TRUE);

The memos.c File 217

Appendices

/* Routines for displaying HELP and other sinple text.
*/

static void Usage(void)
/***********************/

{
printf("Usage:\n");
printf(" nenps ?\n");
printf(" di splays this text\n");
printf(" or\n");
printf(" nmenos\ n");
printf(" prompts for all actions.\n");
printf(" or\n");
printf(" nenos action\n");
printf(" performs the action.\n");
printf(" More than one action nmay be specified.\n");
printf(" action is one of:\n");
ShowAct i ons();

}

static void ShowActions(void)

IR EEE R EEEEEEEEEEEEY]

{
printf(" Hel p (display this text)\n");
printf(" Add (add new nmenp here)\n");
printf(" DELete (delete current nemp)\n");
printf(" REPl ace (replace current nemo)\n");
printf(" SHow (show the current nenp again)\n");
printf(" Up (rmove up one memo)\n");
printf(" Down (nove down one neno)\n");
printf(" TOP (move to the top of the list\n");
printf(" TCDay (di splay today’'s nenps)\n");
printf(" SAve (wite the nenps to disk)\n");

}

static void Hel p(void)

/**********************/

printf("Choose one of:\n");
ShowAct i ons();
printf(" Qit\n");

static void DisplayTop(void)

/****************************/

printf("Top of menpbs.\n");

static int Want ToQuit(void)

/***************************/

/* Check to see if the nenps have been nodified, but not saved.
* |f so, query the user to nmake sure that he/she wants to quit
* without saving the nenos.

*/

char buffer[MAXLEN] ;

if(!Menoshodified || MenpHead == NULL) {
return(TRUE);

printf("\'nThe nmenos have been nodified but not saved.\n");
printf("Do you want to | eave without saving thenfP\n");
gets(buffer);

return(tolower(buffer[0]) =="y);

218 The memos.c File

A Sample Program

static void BadFormat(void)

AR E R EEE L EEEEEY]

printf(“Invalid format for nenos file\n");
abort ();
}

static void * MenoMAl | oc(int size)
/**********************************/

/* Allocate the specified size of nenory, dealing with the
* case of a failure by displaying a message and quitting.

*/
{ .
regi ster char * mem
mem = nal |l oc(size);
if(mem== NULL) {
printf("Unable to allocate % characters of menory\n",
size);
abort ();
return(mem);
}

static void D sposeMeno(MEMO EL * el)

IR EAA R EEEREEEEEEEEEEEEEEEEEEEEEEEEEY]

/* Dispose of a neno, including its lines.
*/
{
TEXT_LINE * tline;
TEXT_LINE * next;

tline = el ->text;

while(tline I'= NULL) {
next = tline->next;
free(tline);
tline = next;

free(el);

The memos.c File 219

Appendices

220 The memos.c File

Glossary

K. Glossary

address

aggregate

alignment

argument

array

assignment

An addressis alocation in acomputer’s memory. Each storage location (byte) has an
address by which it isreferenced. A pointer isan address.

An aggregate type is either an array or astructure. The term aggregate refers to the fact
that arrays and structures are made up of other types.

On some computers, objects such as integers, pointers and floating-point numbers may be
stored only at certain addresses (for example, only at even addresses). An attempt to
reference an object that is not properly aligned may cause the program to fail. Other
computers may not require alignment, but may suggest it in order to increase the speed of
execution of programs.

C compilersaign al objectsthat require it, including putting padding characters within
structures and arrays, if necessary. However, it is still possible for a program to attempt to
reference an improperly-aligned object.

The Open Watcom C16 and C32 compilers align structure members by default. A
command line switch, or the pack pragma, may be used to control this behavior.
Other objects may also be aligned by default.

See the User’ s Guide for default values and other details.
An argument to afunction call is an expression whose value is assigned to the parameter
for the function. The function may modify the parameter, but the original argument is

unaffected. This method of passing valuesto afunction is often called call by value.

The argument may be a pointer to an object, in which case the function may modify the
object to which the pointer points, while the argument value (the pointer) is unaffected.

An array isaset of objects of the same type, grouped into adjacent memory locations.
References to elements of the array are made by subscripts or indices.

Assignment is the storing of avalue into an object, which is usually done with the =
operator.

automatic storage duration

bit

An object with automatic storage duration is created when the function in which it is
defined isinvoked, and is destroyed when the function returnsto the caller.

A bit isthe smallest possible unit of information, representing one of two values, O or 1. If
thebit is0, itissaid to be off. If thebitis 1, itissaidto beon.

A bit is not representable by an address, but is part of a byte, which does have an address.

Glossary 221

Appendices

bit-field

block

byte

cast

Most processors, including the Intel 80x86 family of processors, have 8 bitsin a

byte.
A bit-field is atype that contains a specified number of bits.
A block isapart of afunction that beginswith { and endswith } and contains declarations
of objects and statements that perform some action. A block is also called a compound

statement.

A byteisthe smallest unit of storage representable by a unique address, usually capable of
holding one character of information.

Most processors, including the Intel 80x86 family of processors, have 8 bitsin a
byte.

To cast an object isto explicitly convert it to another type.

character constant

comment

compiler

A character constant is usually one character (possibly atrigraph or escape sequence)
contained within single-quotes (for example, *a’, ' ??(’ and’\n’).

The Open Watcom C6 and C32 compilers allow character constants with one,

two, three or four characters.

A comment is a sequence of characters, outside of a string literal or character constant,
starting with / * and ending with */ . The comment is only examined to find the */ that
terminatesit. Hence, acomment may not contain another comment.

A compiler is a program which reads a file containing programming language statements
and trandates it into instructions that the computer can understand.

For example, a C compiler trandates statements described in this book.

compound statement

declaration

decrement

definition

222 Glossary

A compound statement is a part of afunction that beginswith { and endswith } and
contains declarations of objects and statements that perform some action. A compound
statement is also called a block.

A declaration describes the attributes of an object or function, such as the storage duration,
linkage, and type. The space for an object is reserved when its definition isfound. The
declaration of afunction describes the function arguments and type and isalso called a
function prototype. The declaration of afunction does not include the statements to be
executed when the function is called.

To decrement a number is to subtract (one) fromit. To decrement a pointer isto decrease
its value by the size of the object to which the pointer points.

A definition of an object is the same as a declaration, except that the storage for the object
is reserved when its definition is found. A function definition includes the statements to be
executed when the function is called.

Glossary

exception

An exception occurs when an operand to an operator has an invalid value. Division by zero
is acommon exception.

floating-point A floating-point number is amember of asubset of the mathematical set of real numbers,

function

header

identifier

containing (possibly) afraction and an exponent. The floating-point type is represented by
one of the keywords f | oat , doubl e or | ong doubl e.

A function isa collection of declarations and statements, preceded by a declaration of the
name of the function and the parametersto it, aswell asa possible return value. The
statements describe a series of stepsto be taken after the function is called, and before it
finishes.

A header contains C source, usualy function prototypes, structure and union definitions,
linkages to externally-defined objects and macro definitions. A header isincluded using
the#i ncl ude preprocessor directive.

Anidentifier is a sequence of characters, starting with aletter or underscore, and consisting
of letters, digits and underscores. Anidentifier is used as the name of an object, atag,
function, typedef, label, macro or member of a structure or union.

implementation-defined behavior

Behavior that isimplementation-defined depends on how a particular C compiler handles a
certain case. All C compilers must document their behavior in these cases.

incompl ete type

increment

index

indirection

initialization

integer

An incomplete type is one which has been declared, but its size or structure has not yet
been stated. An exampleisan array of items that was declared without specifying how
many items. The voi d typeisaso anincomplete type, but it can never be completed.

To increment anumber isto add (one) to it. To increment a pointer isto increase its value
by the size of the object to which the pointer points.

Anindex (or subscript) isanumber used to reference an element of an array. Itisan
integral value. Thefirst element of an array has the index zero.

Indirection occurs when an object that is a pointer to an object is actually used to point to it.
The unary form of the * operator, or the - > operator are used for indirection.

Theinitiaization of an object isthe act of giving it itsfirst (initial) value. This may be
done by giving an initialization value when the object is declared, or by explicitly assigning
it avalue.

Aninteger isatypethat is a subset of the mathematical set of integers. It isrepresented by
the keyword i nt , and has anumber of variationsincluding si gned char, unsi gned
char,short signed int,short unsigned int,signed int,unsigned
int,long signed int,long unsigned int,long |ong signed int and
I ong | ong unsigned int.

integral promation

An object or constant that isa char , short i nt, i nt bit-field, or of enumtype, that is
used in an expression, is promoted to an i nt (if i nt islarge enough to contain al possible
values of the smaller type) or unsi gned i nt.

Glossary 223

Appendices

keyword

[abel

A keyword is an identifier that is reserved for use by the compiler. No object name or other
use of an identifier may use a keyword.

A label isanidentifier that corresponds to a particular statement in afunction. It may be
used by the got o statement. def aul t isaspecial label which isused with the swi t ch
Statement.

library function

line

linkage

lint

Ivalue

macro

module

name space

224 Glossary

A library function is afunction provided with the C compiler that performs some
commonly needed action. The C language standard describes a set of functionsthat all C
compilers must provide. Whether or not the function actually generates afunction cal is
implementati on-defined.

A lineis conceptualy similar to aline as seen in atext editor. Thelinein atext editor may
be called aphysical line. Several physical lines may be joined together into one logical line
(or just "line") by ending al but the last linewitha \ symbol. C does not normally require
statementsto fit onto one line, so using the \ symbol is usually only necessary when
defining macros.

An object with external linkage may be referenced by any module in the program. An
object with internal linkage may be referenced only within the module in which it is
defined. An object with no linkage may only be referenced within the block in which it is
defined.

lint isautility program, often provided with the compiler, which detects problems that the
compiler will accept as syntactically valid, but likely are not what the programmer
intended.

An lvalueis an expression that designates an object. The term originally comes from the
assignment expression,

L=R

in which the left operand L to the assignment operator must be a modifiable value. The
most common form of Ivalue is the identifier of an object.

If an expression E evaluates to a pointer to an object, then * E is an lvalue that designates
the object to which E points. In particular, if Eisdeclared asa"pointer to i nt ", then both
E and * E are lvalues having the respective types "pointer to i nt " andi nt .

There are two kinds of macros. An object-like macro isan identifier that is replaced by a
sequence of tokens. A function-like macro is an apparent function call which is replaced by
a sequence of tokens.

Referred to in the C language standard as atranslation unit, amoduleis usualy afile
containing C source code. A module may include headers or other sourcefiles, and have
conditional compilation (preprocessing directives), object declarations, and/or functions. A
moduleis thus considered to be a C source file after the included files and conditional
compilation have been processed.

A name spaceis a category of identifiers. The same identifier may appear in different
name spaces. For example, theidentifier t hi ng may be alabel, object name, tag and
member of a structure or union, all at the same time, since each of these has its own name

Glossary

nesting

space. The syntax of the use of the identifier resolves which category the identifier falls
into.

Nesting is placing something inside something else. For example, a f or statement may, as
part of its body, contain another f or statement. The second f or issaid to be nested inside
thefirst. Another form of nesting occurs when source files include other files.

null pointer constant

null character

object

parameter

pointer

portable

precedence

preprocessor

recursion

register

The value zero, when used in a place where a pointer type is expected, is considered to be a
null pointer constant, which is a value that indicates that the pointer does not currently
point to anything. The compiler interprets the zero as a special value, and does not
guarantee that the actual value of the pointer will be zero.

The macro NULL is often used to represent the null pointer constant.

The character with all bits set to zero is used to terminate strings, and is called the null
character. It isrepresented by the escape sequence \ 0 in astring, or as the character
constant "\ 0’ .

An object isacollection of bytesin the storage of the computer, used to represent values.
The size and meaning of the object is determined by itstype. A scalar object is often
referred to asavariable.

A parameter to afunctionisa"local copy" of the argument values determined in the call to
the function. Any modification of a parameter value does not affect the argument to the
function call. However, an argument (and hence a parameter) may be a pointer to an
object, in which case the function may modify the object to which its parameter points.

An object that contains the address of another object is said to be a pointer to that object.

Portable software is written in such away that it is relatively easy to make the software run
on different hardware or operating systems.

Precedence is the set of implicit rules for determining the order of execution of an
expression in the absence of parentheses.

The preprocessor:
« examines tokens for macros and does appropriate substitutions if necessary,
» includes headers or other source files, and,
« includes or excludesinput lines based on #i f directives

before the compiler tranglates the source.

Recursion occurs when a function callsitself either directly, or by calling another function
which callsit. Seerecursion. (1)

A register isaspecial part of the computer, usually not part of the addressable storage.
Registers may contain values and are generally faster to use than storage.

The keyword r egi st er may be used when declaring an object with automatic storage
duration, indicating to the compiler that this object will be heavily used, and the compiler
should attempt to optimize the use of this object, possibly by placing it in amachine
register.

Glossary 225

Appendices

return value

rounding

scalar

scope

A return value is the value returned by afunction viathe r et ur n statement.

A vaueisrounded when the representation used to store avalueis not exact. Thevaue
may be increased or decreased to the nearest value that may be accurately represented.

A scalar is an object that is not a structure, union or array. Basically, itisasingleitem,
with type such as character, any of the various integer types, or floating-point.

The scope of anidentifier identifies the part of the module that may refererenceit. An
object with block scope may only be referenced within the block in which it is defined. An
object with file scope may be referred to anywhere within the file in which it is defined.

seguence point A sequence point isapoint at which all side-effects from previously executed statements

side-effect

signed

statement

will have been resolved, and no side-effects from statements not yet executed will have
occurred. Normally, the programmer will not need to worry about sequence points, asit is
the compiler’sjob to ensure that side-effects are resolved at the proper time.

A side-effect modifies a value of an object, causing a change in the state of the program.
The most common side-effect is assignment, whereby the value of the left operand is
changed.

A signed value can represent both negative and positive values.

The keyword si gned may be used with thetypes char, short int,int,long int
andl ong long int.

A statement describes the actions that are to be taken by the program. (Statements are
distinct from the declarations of objects.)

static storage duration

string

string literal

structure

subscript

226 Glossary

An object with static storage duration is created when the program is invoked, and
destroyed when the program exits. Any value stored in the object will remain until
explicitly modified.

A string is a sequence of charactersterminated by anull character. A referenceto astring
is made with the address of the first character.

A string literal is a sequence of zero or more characters enclosed within double-quotes and
isaconstant. Adjacent string literals are concatenated into one string literal. The value of
astring literal is the sequence of characters within the quotes, plus anull character (\ 0)
placed at the end.

A structure is atype which is a set of named members of (possibly different) types, which
reside in memory starting at adjacent and sequentially increasing storage locations.

A subscript (or index) is anumber used to reference an element of an array. Itisa
non-negative integral value. Thefirst element of an array has the subscript zero.

Glossary

tag

token

type

A tag is an identifier which names a structure, union or enumeration. In the declaration,

enum nuns { ZERO ONE, TWO } val ue;

nuns isthetag of the enumeration, while val ue isan object declared with the
enumeration type.

A token is the unit used by the preprocessor for scanning for macros, and by the compiler
for scanning the input source lines. Each identifier, constant and comment is one token,
while other characters are each, individually, one token.

The type of an object describes the size of the object, and what interpretation is to be used
when using the value of the object. It may include information such as whether the valueis
si gned or unsi gned, and what range of values it may contain.

undefined behavior

union

unsigned

variable

void

Undefined behavior occurs when an erroneous program construct or bad data is used, and
the standard does not impose a behavior. Possible actions of undefined behavior include
ignoring the problem, behaving in a documented manner, terminating the compilation with
an error, and terminating the execution with an error.

A union isatype which isaset of named members of (possibly different) types, which
reside in memory starting at the same memory location.

An unsigned value is one that can represent only non-negative values.

The keyword unsi gned may be used with thetypes char, short int,int,
long int andlong long int.

A variable is generally the same thing as an object. It is most often used to refer to scalar
objects.

Thevoi d typeisaspecia typethat really indicates "no particular type'. An object that is
a"pointer to voi d" may not be used to point at anything without it first being cast to the

appropriate type.

The keyword voi d isalso used as the type of a function that has no return value, and as the
parameter list of afunction that requires no parameters.

Glossary 227

Index

addition 84
address 221
address-of operator 67-69, 79
aggregate 221
aignment 43, 82, 221
argc 106, 192
argument 221, 225
argv 106, 192
arithmetic conversion 40, 63
array 24,221
index 19, 24
initialization 69
specifying size 91
subscripting 76
arrow operator 43, 78, 223
ASCII character set 135
assignment 221
assignment operator 89-90, 221
associativity of operators 73
audit trail 154
auto 67
initialization 66, 69
automatic storage duration 66, 93, 103, 147, 221

base operator 57

_based predefined macro 158
basic type 18

big code 48

big data 48, 199

bit 221

bit-field 44-45, 91, 197, 222
bitwise AND 86

bitwise complement 80
bitwise exclusive OR 87
bitwise inclusive OR 87
bitwise NOT 80

block 93, 96-97, 222

block scope 17

break statement 96, 100, 153
byte 222

call back function 159
call by value 221
calling afunction 76
caselabel 91, 96, 180, 198
case sensitive 13
cast 63, 222
cast operator 58, 82
cdecl predefined macro 158
_cdec| predefined macro 158
character constant 12, 31, 222
wide 33
character set 11
ASCIIl 135, 192
EBCDIC 135
execution 11, 192
source 11, 192
character type 194
comma operator 91
comment 12, 14, 154, 222
commenting out 114
common error
; in #define 143
=instead of == 141
dangling else 143
delayed error from included file 142
missing break in switch 144
mixing operator precedence 142
side-effectsin macros 145
compact memory model 48, 52, 123, 125, 199
compatible types 63
compiler 222
complement operator 80
complete data hiding 132
compound assignment 90
compound statement 16-17, 93, 96-97, 222
conditional compilation 110
conditional operator 89
const 59
constant 29
#define 113, 143, 148, 152
character 31, 222
enumeration 113, 143, 148, 152
floating-point 30
integer 29
manifest 113, 143, 148, 152
string-literal 34
constant expression 91
in#f or #elif 92
continuation lines 109, 127, 179

229

Index

continue statement 98-99 enumeration name 13
inado 99 equal to 86
inafor 100 escape sequences 32, 109, 127, 163, 193, 222
inawhile 99 _except predefined macro 159

controlling expression 94, 142 exception 223

conversion execution character set 11
float to integer 39 _export predefined macro 159
integer to float 39 expression 73
signed integer 37 constant 91
type 37 precedence 73, 165
unsigned integer 37 primary 75

converting types explicitly 82 priority 73, 165

creating an external object 65 extern 24

cross-compile 11 extern storage class 65

externa linkage 13, 64-65, 77, 137, 152, 159
external object

creating 65
D
g F

data hiding 132

complete 132

partial 133
declaration 222 far 48-49

of function 15 far pointer 49

of object 15 far predefined macro 50, 158
decrement 78-79, 222 _far predefined macro 50, 158
default argument promotion 40, 102 _farl6 predefined macro 158
default label 96 _fastcall, predefined macro 158
defining atype 22 file scope 17
definition 15, 222 _finally predefined macro 159
diagnostic 191 float
difference 84 conversion to integer 39
division rounding 39

rounding 83 floating-point 223

truncation 83 constant 30
do statement 97 emulation 21-22
dot operator 42, 78 limits 185

number 21

FLT_ROUNDS predefined macro 39
for statement 91, 98

E formfeed 11

fortran predefined macro 158
_fortran predefined macro 158

function 223
EBCDIC character set 135 call 76
ellipsis 77 call back 159
else statement 95 declaration 15
empty statement 94 definition 101
emulampn _ designator 75
floating-point 22 far 48
entry point 106 main 106, 148
enumerated type 22-23 name 13

enumeration constant 13, 22, 91

230

Index

near 48
prototype 50, 53, 104
recursion 77,103
scope 17
type 18
function prototype scope 17
functional interface 132

glossary 6
goto statement 94, 99, 153, 224
grammar
C language 167
greater than 85
greater than or equal to 85

header 12, 104, 109, 131, 198, 223
<float.h> 21, 39, 138, 181
<limits.h> 20, 181
<malloc.h> 55
<stdarg.h> 104
<stddef.h> 33, 35, 47, 81, 84, 126
including 109

hiding data 132

history 3

horizontal tab 11

hosted 123

huge memory model 48, 84, 124-125, 196, 199

huge pointer 51

huge predefined macro 51, 158

_huge predefined macro 51, 158

!

identifier 12-13, 223
external 13
significant characters 13
reserved 14
if statement 95

implementation-defined behavior 5, 137, 191, 223

implementation-specific behavior 5, 11, 13-14,

18-23, 33, 35, 37-39, 41, 43-45, 47, 50-51,

68, 81-85, 107, 110-111, 122-123, 179,
190, 221-222

include 109

nested 110
included file 152
incomplete type 24, 223
increment 78-79, 223
index 19, 24, 221, 223
indirection 223
indirection operator 79, 223
initialization 69, 91, 223

array 69

auto 66, 69

static 69

Struct 71

union 71
input/output 5
integer 223

constant 29

conversion 37

conversion to float 39

division 83

rounding 83
truncation 83

limits 181
integral promotion 37, 40, 63, 223
internal linkage 64-65, 152
interrupt 159
interrupt predefined macro 159
_interrupt predefined macro 159
iteration 97

keyword 12, 18, 55, 157, 168, 173, 224

auto 15, 17, 61, 67, 103, 201

_ _based 55, 158

break 96, 99-100, 144, 153

__builtin_isfloat 160

case 91, 96, 180, 198

_Cdecl 158

__cdecl 158

char 18-19, 27, 33-35, 37, 44, 47, 53-54, 75,
77,102, 137, 182, 194, 223, 226-227

const 18-19, 59-60, 75, 90

continue 98-99

default 96, 224

do 97,99, 179

231

Index

double 18-19, 21, 30, 39-40, 77, 102, 105, 137,
185, 223

else 95-96, 143-144

enum 9, 223

_Except 159

__except 159

_Export 159

___export 159

extern 15, 61, 65-67, 93, 101, 103, 152, 159,
201

_Farl6 158

_ _farl6 53-54, 83, 158

_ _far 49-53, 82-83, 158, 203

_Fastcall 158

_ _fastcall 158

_Finaly 159

_ _finaly 159

float 18-19, 21, 30, 39-40, 50, 77, 102, 137,
185, 195, 223

for 67,91, 97, 99-100, 179, 225

__fortran 158

goto 93-94, 99-100, 153, 224

_ _huge 51, 82, 158, 203

if 95-96, 110, 141, 144, 150, 179

int 18-20, 22-23, 31, 33, 37, 40, 44-45, 47, 54,
61, 77, 80, 84-86, 88, 101-102, 104-105,
113, 137, 183-184, 196-198, 201,
223-224, 226-227

int long unsigned 63

___interrupt 159, 205

_Leave 159

__leave 159

list of 12

__loadds 159

long 18-20

long double 21, 30, 39, 105, 185, 223

longint 19-20, 29, 37, 84, 105, 137, 184,
195-196, 226-227

longlongint 19, 105, 184-185, 226-227

long long signed int 223

long long unsigned int 223

long signed int 223

long unsigned int 223

_ _hear 50-53, 82-83, 158, 203

_ _Ow_imaginary_unit 159

_Packed 43, 158

_Pascal 158

__pascal 158

ptrdiff t 84, 196

register 15-16, 61, 67-68, 79, 102-103, 105,
197, 201, 225

return 99-100, 103, 107, 226

__saveregs 159

_Segl6 54, 83, 158

232

__segment 55-57, 158

_ _segname 55, 158

__self 55,158

short 18-20

short int 19-20, 37, 44, 77, 102, 183, 223,
226-227

short signed int 223

short unsigned int 223

signed 18-20, 37, 44, 137, 182, 194, 226-227

signed char 181, 194, 223

signed int 29, 37, 44-45, 62, 197, 223

signed long 29

signed longint 38

signed short int 20, 37-38

size t 81, 126, 195

sizeof 81, 91, 110, 195

static 15, 61, 65-67, 101, 103, 152, 201

_ _Stdcall 159

struct 43, 62, 132-133

switch 96, 100, 144, 179-180, 198, 224

_Syscall 158

_ _syscall 158-159

_System 158

_Try 159

__try 159

typedef 59-62, 143, 148

union 132

unsigned 18-20, 37, 44, 137, 182, 194, 227

unsigned char 37, 44, 182, 194, 223

unsigned int 29, 37, 44, 81-83, 184, 195, 197,
223

unsigned long 20

unsigned long int 20, 29, 38, 63, 82, 184

unsigned long long int 185

unsigned short 33, 35

unsigned short int 37-38, 44, 183

va list 104

void 16, 18, 47, 58-59, 75, 79, 81-82, 84, 86,
89-90, 94, 100-101, 223, 227

volatile 18-19, 60, 64, 90

__watcall 159

wchar_t 33, 35, 69

while 94, 97, 99, 179

label 93,224

name 13
large memory model 48, 52, 124-125, 199
leading underscore 14

Index

_leave predefined macro 159
left shift 84
length of astring 26
lessthan 85
lessthan or equal to 85
library function 5, 109, 145, 148, 224
_bheapseg 57
_dos setvect 159
exit 107
getc 142
getchar 59
isalpha 135
malloc 81, 113
mbtowc 33, 35
memcpy 81, 94
printf 104-105, 114, 144
rewind 58
line 224
continuation 109, 127, 179
logical 109, 179
physical 109
linkage 224
external 13, 64-65, 77, 152, 159
internal 64-65, 152
no 64-65
linker
case sensitive 13
external identifer 13
significant characters 13
linking 127
lint 224
_loadds predefined macro 159
logical AND 88
logical NOT 80
logical OR 88
long names 137
loop forever 99
looping 97
Ivalue 74-75, 224
modifiable 75

M

macro 224
defining 113
function-like 113
numerical limits 181
object-like 113
offsetof 126

predefined 39, 47, 50-51, 55, 104-105,

122-126, 158-159, 199, 225
386 125

__CHAR SIGNED__ 125
__CHEAP_WINDOWS__ 124
__COMPACT__ 123

_ _DATE__ 122,199

__DOs _ 124

__FILE__ 123

__FLAT__ 123

__FP__ 125

_ _func__ 123
__FUNCTION_ _ 124
__HUGE__ 124

_ _INLINE_FUNCTIONS__ 125
_ _LARGE__ 124

__LINE__ 123

__MEDIUM_ _ 124
__NETWARE_386__ 124
__NT__ 124

__0s2 124

__ONX__ 124
__SMALL__ 124
__STDC__ 123
__STDC HOSTED_ _ 123
__STDC LIB_EXT1 _ 123
__STDC _VERSION_ _ 123
__TIME__ 123,199
__WATCOMC__ 125
__WINDOWS_ _ 124
__WINDOWS 386__ 124
_based 158

_cdecl 158

_except 159

_export 159

_far 50, 158

_farl6 158

_fastcall, 158

_finaly 159

_fortran 158

_huge 51, 158

_interrupt 159

_leave 159

_loadds 159

_M_1X86 125

_near 51, 158

_NULLOFF 55
_NULLSEG 55

_pascal 158

_saveregs 159

_segment 158

_Segname 158

_self 158

_stdcall, 159

233

Index

_syscall 159
_try 159
cdecl 158
far 50, 158
FLT _ROUNDS 39
fortran 158
huge 51, 158
interrupt 159
M_1386 125
M_186 125
M_186CM 125
M_186HM 125
M_186LM 125
M_186MM 125
M_186SM 125
MSDOS 125
near 51, 158
NO_EXT_KEYS 126
NULL 47,55, 126, 199, 225
pascal 158
va arg 105
va end 105
va start 104-105
undefining 115
variable argument 104-105
va_arg 105
va_end 105
va start 104
macro name 13
main 106
parametersto 106
return value 107
manifest constant 113, 143, 148, 152
math chip 22
math coprocessor 22
medium memory model 48, 51-52, 124-125, 199
member 41
of structure 43, 77
of union 77
memory model 47
big code 48
big data 48, 199
compact 48, 52, 123, 125, 199
huge 48, 84, 124-125, 196, 199
large 48, 52, 124-125, 199
medium 48, 51-52, 124-125, 199
mixing 49
small 47,52, 124-125, 199
small code 48
small data 48, 199
minus
binary 84
unary 80
modifiable lvalue 75

234

modifier
type 18
modularity 131
module 224
module name 132
modulus 83
multibyte character 12, 33, 35

name
enumeration 13
function 13
label 13
macro 13
mixed case 147
object 13
scope 17
structure 13
structure member 13
union 13
union member 13
variable 13
name space 62, 224
enumeration 22
labels 93
structure members 41
structures 41
union members 45
unions 45
naming modules 132
near 48-49
near pointer 50
near predefined macro 51, 158
_near predefined macro 51, 158
negative
unary 80
nesting 225
include 110
new line 11
new type 22
no linkage 64-65
non-graphic characters
escape sequences 32, 163, 193
not equal to 86
not greater than 85
not lessthan 85
NOT operator
bitwise 80
logical 80

Index

notation 9
null
character 25-26, 34, 69, 225
macro 47
pointer 47, 90, 126, 199, 225
statement 94
NULL macro 126, 199
NULL predefined macro 47, 55, 126, 199, 225
numeric coprocessor 22
numerical limits 181
floating-point 185
integer 181

object 13, 225, 227
declaration 15
initialization 69
type 18

offset of member 126

offsetof 126

ones complement 80

operand 73

operator 73
1 80
1= 86
% 83
%= 90
& 67,69, 79, 86
&& 88
&= 90
* 79,223
*= 90
++ 78-79
+= 90
, 91
-- 78-79
=90
-> 43,78, 223
. 42,78
/ 83
/=90
1's complement 80
> 57
< 85
<<= 90
<= 85
= 90, 221

>= 85

>>= 90

? 89

n 87

A= 90

addition 84

address-of 67-69, 79
arrow 43, 78, 223
assignment 89-90
associativity 73
binary & 86

binary * 83

binary + 84

binary - 84

bitwise AND 86
bitwise complement 80
bitwise exclusive OR 87
bitwiseinclusive OR 87
bitwise NOT 80

cast 58, 82

comma 91
complement 80
compound assignment 90
conditional 89
difference 84

division 83

dot 42,78

equal to 86

greater than 85
greater than or equal to 85
indirection 79, 223
left shift 84

lessthan 85

lessthan or equal to 85
logical AND 88
logical NOT 80
logical OR 88
modulus 83

negative 80

not 80

not equal to 86

not greater than 85

not lessthan 85

plus 80

pointer 79
post-decrement 78
post-increment 78
postfix 76
pre-decrement 79
pre-increment 79
precedence 73, 165
priority 73, 165
product 83

guotient 83

235

Index

remainder 83
right shift 85
1

simple assignment 90

sizeof 81, 195
subtraction 84
sum 84

times 83

unary 79
unary & 79
unary * 79, 223
unary minus 80
| 87

on the 8086 136
segment 48, 52
selector 52-53
tovoid 47, 82
pointer operator 79
portable 135, 225
post-decrement 78
post-increment 78
postfix operator 76
pre-decrement 79
pre-increment 79
precedence 73, 165, 225
predefined macro 122-123

[= 90 preprocessor 109, 225
| 88 preprocessor directive
~ 80 # 109
order of operation 73, 165 #define 109, 113, 115, 123
order of trandlation 127 # operator 115
0S/2 convention 158 ## operator 115
output 5 #elif 91-92, 110-111
#else 110-111
#endif 110-111
#error 122
P #if 14, 91-92, 110-111, 138, 179, 181, 225
#ifdef 112
#ifndef 112
#include 109-110, 127, 143, 179, 223
parameter 221, 225 #line 121-123
tomain 106, 192 #pragma 43, 54, 122, 158-150, 199
arge 106, 192 #undef 115, 119-120, 123
parentheses 73 __VA_ARGS 117

partial datahiding 133
pascal predefined macro 158
_pascal predefined macro 158
pitfall
; in#define 143
=instead of == 141
dangling else 143

primary expression 75
priority of operators 73
procedura interface 132
product 83

production 75
programming style 147

_ . promation
dglayed error f_rom |_ncludedf|Ie 142 integer 37
missing break in switch 144 prototype
mixing operator precedence 142 function 104
side-effectsin macros 145 ptrdiff _t 84, 196

plus
binary 84
unary 80

plus operator 80 Q

pointer 46, 225
far 49
farl6 53
huge 51 qualifiers 18
near 50 quotient 83

null 47,90, 199, 225
offset 48, 52-53

236

Index

recursion 77, 103, 225
reducing recompiletime 131
reference to structure member 42
register 67, 105, 225
remainder 83

reserved identifier 12, 14
resource manager 132
return statement 100

return value 226

right shift 85

rounding 39, 83, 226

_saveregs predefined macro 159
scalar 226
scope 17, 61, 66, 226

block 17

file 17

function 17

function prototype 17
_segment predefined macro 158
_segname predefined macro 158
selection statement 94
_self predefined macro 158
seguence point 226
shift

left 84

right 85
side-effect 226
sign extension 38
signed 226
simple assignment 90
size t 81, 126, 195
sizeof operator 81
small code 48
small data 48, 199
small memory model 47, 52, 124-125, 199
source character set 11
spaghetti code 99, 153
specifier

storage class 16

type 18
standard conforming 123
statement 93, 226

break 96, 100, 153
compound 16-17, 93, 96-97
continue 98-99
do 97
empty 94
for 91, 98
goto 94, 99, 153, 224
if 95
iteration 97
label 93
looping 97
null 94
return 100
selection 94
switch 96, 180, 198
while 97
static 64
initialization 69
static storage class 65

static storage duration 103, 148, 152, 159, 226

_stdcall, predefined macro 159
storage class 61
auto 67
extern 24, 65
following atype specifier 61
register 67, 105
static 64-65
storage duration
automatic 93, 103, 147
static 103, 148, 152, 159
string 26, 75, 222, 226
length 26
string literal 12, 26, 34, 75, 179, 222, 226
wide 35, 179
struct
initialization 71
structure 41, 226
bit-field 44
member 13, 41, 43, 77
name 13
member reference 42
name 13
style 147
aligning declarations 151
caserules 147
comments 154
complicated statements 153
consistency 147
function prototypes 152
goto 153
included files 152
indenting 149
object names 149
reusing names 152

237

Index

small functions 151

static objects 152
subscript 76, 221, 226
subtraction 84
sum 84
switch statement 96, 180, 198
syntax

C language 167
_syscall predefined macro 159
system dependencies 133

tag 22, 41, 227
termination status 107
tilde 80
token 227
trandation limits 179
trandation order 127
trigraphs 11, 33, 109, 127, 161, 222
truncation 83
_try predefined macro 159
type 18, 227
aray 24
basic 18
char 19, 137, 194
compatible 63
const 59
conversion 37
defining 22
double 21
enumerated 22-23
float 21, 137
floating-point 21
int 137
integer 19
long 19
long double 21
long long 19
modifier 18
new 22
pointer 46-47
qualifiers 18
short 19
specifier 16, 18
string 26
structure 226
union 227
va list 104
void 58, 227

238

volatile 60
type definition 13, 61, 148
typedef 13, 61

unary operator 79

& 79

* 79,223

+ 80

- 80

minus 80

negative 80

plus 80
undefined behavior 227
undefining amacro 115
underscore

leading 14
uninitialized objects 72
union 45, 227

initialization 71

member 13, 77

name 13

name 13
unsigned 227
unsigned integer conversion 37
usua arithmetic conversion 40

va_arg 105
va_arg predefined macro 105
va_end 105
va_end predefined macro 105
va list type 104
va start 104
va_start predefined macro 104-105
variable 227

type 18
variable argument list 104
variable argument macros 117
variable name 13
vertical tab 11

visually aligning object declarations 151

void 47, 58, 227
pointer to 82
volatile 60

Index

w

wchar_t 33, 35, 69

while statement 97

wide character constant 33
wide string literal 35, 179
Win32 convention 158-159

239

