Open Watcom Linker

User’s Guide

First Edition

Uien Watcom

Notice of Copyright

Copyright 00 2002-2006 the Open Watcom Contributors. Portions Copyright O 1984-2002
Sybase, Inc. and itssubsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.SA.

Preface

The Open Watcom Linker User’s Guide describes how to use the Open Watcom Linker under
DOS, 052, Windows 9x, Windows NT and QNX. The Open Watcom Linker can generate
executable files that run under DOS, CauseWay DOS extender, FlashTek’s DOS extender,
Phar Lap’s 386|DOS-Extender and TNT DOS extender, Tenberry Software’ s DOS4G,
Microsoft Windows 3.x, Microsoft Windows NT/2000/XP, Microsoft Windows 95/98/Me,
IBM OS2, QNX, and Novell’s NetWare operating system. The Open Watcom Linker can
also generate ELF format executable files for those systems that will support ELF. The
Microsoft Response File conversion utility, MS2WLINK, is also described in this book.

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCI| text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on avariety of operating systems, interprets the tagsto
format the text into aform such as you see here. Writers can produce output for avariety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result is type-set
quality copy containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual
DOS/4G is atrademark of Tenberry Software, Inc.
0S/2 and Presentation Manager are trademarks of International Business Machines Corp.
IBM, IBM PC and IBM PS/2 are registered trademarks of International Business Machines
Corp.
Intel isaregistered trademark of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT isatrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.
Phar Lap, 386|DOS-Extender and TNT are trademarks of Phar Lap Software, Inc.
ONX isaregistered trademark of QNX Software Systems Ltd.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

The Open WatCom LINKE ... s st
1 The Open WatCom LiNKEN ..o

2 Linking Executable Filesfor Various SYStemS ...
2.1Using the SY STEM DIreCliVEccoceeireerieerieereenees e
2.2 Linking 16-bit x86 Executable FileSccocvvvvivevrsere e

2.2.1 Linking 16-bit x86 DOS Executable Filesccccevvvvvveiiececeenenne,
2.2.2 Linking 16-bit x86 DOS .COM Executable Filesccccueerennnee
2.2.3 Linking 16-bit x86 OS/2 Executable Filesccccccevveceveiieieene
2.2.4 Linking 16-bit x86 OS/2 Dynamic Link Librariesccccccceeue...
2.2.5 Linking 16-bit x86 QNX Executable Filesccocviiiiiieienenne.
2.2.6 Linking 16-bit x86 Windows 3.x Executable Filescccocueee.
2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries
2.3 Linking 32-bit x86 Executable FileScccoeoriirinnieeee e
2.3.1 Linking 32-bit x86 DOS/AGW Executable Filescccccvveenee.
2.3.2 Linking 32-bit x86 FlashTek Executable Filesccccocvvivrennne
2.3.3 Linking 32-bit x86 Novell NetWare Loadable Modules
2.3.4 Linking 32-bit x86 OS/2 Executable Filescccocvvveveveceennnne,
2.3.5 Linking 32-bit x86 OS/2 Dynamic Link Librariesc.cccccveue...
2.3.6 Linking 32-hit x86 OS/2 Presentation Manager Executable
FILES e e e
2.3.7 Linking 32-bit x86 Phar Lap Executable Files..........c.cccoeevneennee.
2.3.8 Linking 32-bit x86 Phar Lap TNT Executable Files
2.3.9 Linking 32-bit x86 QNX Executable Filescccoceovrviirecreenne
2.3.10 Linking 32-bit x86 Extended Windows 3.x Executable
2.3.11 Linking 32-bit x86 Extended Windows 3.x Dynamic Link
LIDraries ..o s
2.3.12 Linking 32-bit x86 Windows 3.x or 9x Virtual Device Driver
2.3.13 Linking 32-bit x86 Windows 95 Executable Files
2.3.14 Linking 32-bit x86 Windows 95 Dynamic Link Libraries
2.3.15 Linking 32-bit x86 Windows NT Character-Mode Executable
FIIES e e e e
2.3.16 Linking 32-bit x86 Windows NT Windowed Executable Files ...
2.3.17 Linking 32-bit x86 Windows NT Dynamic Link Libraries

3 Linker Directives and OPtioNScccccceveverrieieeeeeesese s sese s e e e ae e e seeneens
B LTHE ALIASDITECHVE ..ocvvieieeeiereeie ettt
3.2The ALIGNMENT OPLION ...cvveeeireeeirieirieesieesieesieses s ses s sessesseessenes
3.3 The ANONYMOUSEXPORT DIr€CtIVEcccovrveirieirieieienesiesese s
34 The AREA OpPLION ...oeiiiiiieieieeeeieeeee sttt et sne s
35 The ARTIFICIAL OPLION ..oeeviieeiieiirietesiee e steeseees st saese e seens

© © © O o1u

Table of Contents

3.6 The AUTOSECTION DIir€CVE ...c.ovveeirieiriieriiesieisiesees et

3.7 The AUTOUNLOAD Opt
3.8 The BEGIN Directive
3.9 The CACHE Ogption

[0 o [T

3.10 The CASEEXACT OPLON ...oiviirieiirieirieisiesesieresie s

3.11 The CHECK Option

3.12 The CHECKSUM OPtioN ...cccveeieeisirestesiese e seesieseeseeseeeseesessesessesseses

3.13 The # Directive
3.14 The COMMIT Directive
3.15 The COPYRIGHT Optio
3.16 The CUSTOM Option ..
3.17 The CVPACK Option ...
3.18 The DEBUG Directive .

N e

3.18.1 Line Numbering Information - DEBUG WATCOM LINES
3.18.2 Local Symbol Information - DEBUG WATCOM LOCALS
3.18.3 Typing Information - DEBUG WATCOM TYPEScccceeveen.

3.18.4 All Debugging |

nformation - DEBUG WATCOM ALL

3.18.5 Global Symbol Informationcccceecevevereereeierieeeee e
3.18.6 Globa Symbols for the NetWare Debugger - DEBUG

NOVELL

3.18.7 The ONLY EXPORTS Debugging Optionc.ccocoverereeneereeennes
3.18.8 USing DEBUG DIreClIVESccoceiirierieiiiniese e
3.18.9 Removing Debugging Information from an Executable File

3.19 The DESCRIPTION Opt
3.20 The DISABLE Directive

(Lo] [T

321 The DISTRIBUTE OPLiONcovctieiierieirieeniiesieesiesesie s esseesnenes

3.22 The DOSSEG Option ...
3.23 The DYNAMIC Option

3.24 The ELIMINATE OPLON ...c.oiiiviieiiinirieieeseseeiee st

3.25 The END Directive

3.26 The ENDLINK DIF€ClIVE ...c.oovevireeeirieirieerieesieesiee e

3.27 The EXIT Option
3.28 The EXPORT Directive

3.28.1 EXPORT - 0OS/2, Winl6, Win32 onlyccccccevevereienenenenenienens
3.28. 2 EXPORT - ELF ONlY ...eviiiiiicieriere e
3.28.3 EXPORT - NEtWar€ onlyccceceveereerieeriesensesee s

3.29 The FARCALLS Option
3.30 The FILE Directive
3.31 The FILLCHAR Option

3.32 The FIXEDLIB DITECHVEcccovrveeirreiirieirieesieesieeses e
3.33 The FORCEVECTOR DIr€CliVEcocvrereiieiinieenieesieesieesiesesie e

3.34 The FORMAT Directive

Vi

B DWW
N O

ER RR&ES

Table of Contents

3.35 ThE HEAPSIZE OPLION ...cooviieeiietisieiesieeseeesieesieesiee st 78
3.36 THEHELP OPLIONcveivieiiiiieieeeieseeie ettt sessesense e 79
3.37 ThEHSHIFT OPLioN ...cociciieeieieeesiee ettt s ssene e 80
3.38 The IMPFILE OPLiON ...ocvcviieiieiieiceeteseetesee et 81
3.39 The IMPLIB OPLION ...cuoiieiireiieieeierieicriee ettt 82
3.40 The IMPORT DITECLIVE ...ceeveeeeeeiireseseceisees e see e ee e sre e e nes 83

3.40.1 IMPORT - OS2, Winl16, Win32 0Nycccccecevereereererereseseenens 83

340.2 IMPORT - ELF ONlY .oovciiieiiieiriereses e 84

3.40.3 IMPORT - NEtWar€ ONlYoccvrveerieeerieirieesienesesesieses e 84
I X R I o SN GVl BT =o: YT 86
3.42 The INCREMENTAL OPLON ..ocvieiieiiecsieisees et 89
3.43 The INTERNALRELOCS OPLIONcccvvveiieiirieesieesienesesesesas e ene s 91
3.44 The LANGUAGE DIT€CLIVEccccvieviiieiiieiisieesieesiee st es 92
3.45 The LIBFILE DIr€CHVE ...ccccveeriectiieetisieie ettt 93
346 The LIBPATH DIr€CLIVE ...oooveeieceetecececeee ettt 95
3.47 The LIBRARY DIFECHVEcceeoviieeeteceecteeee ettt 97

3.47.1 Searching for Libraries Specified in Environment Variables 98

3.47.2 Converting Libraries Created using Phar Lap 386|LIB 99
3.48 The LINEARRELOCS OPLION ...c.coveviiiiiriiisiiisesisesie st 100
3.49 The LINKVERSION OPLION ...ccccvvveiirieiirieisieesieesees e es 101
3.50 ThHE LONGLIVED OPLON ..c.ooveviiieiirieiisieisieesieesiesisie s essesessesessenessenes 102
3.51 The MANGLEDNAMES OPLiONocvvirieeiieisieeseesieesieesieses e 103
3.52 The MANYAUTODATA OPLION ..oocvevreiieiisieeseeseseseesieses e 104
353 ThEMAP OPLION ..ovceiieeeiiteesiees ettt sttt se b e b 105
354 The MAXDATA OPLON ..cveuiriiiriieeieieie et 106
3.55 The MAXERRORS OPtiON ...coovveeeireeeeeesese st eeseenes 107
3.56 The MESSAGES OPLiONcecvveeieeesese e seeseesie e eeeese e se e sreses 108
3.57 ThHE MINDATA OPLON ...oeiviieiiieienieieneeeriee st 109
3.58 ThHe MODNAME OPLIONcvveeeiieririeiirieisieesieesieesiesesre s seesessenes 110
3.59 ThHe MODFILE DITECHVE ...cuvveevirieiirieiirieisicesieesieesie st seeesens 111
3.60 The MODTRACE DITECHVEovvvieeriiieieieiesieiesieesieesiese s es 112
3.61 The MODULE DITECHVEcvvvveeieeeirieiirieisieesieesisese st sseessens 113
3.62 The MULTILOAD OPLiON ...oovcvvieeiriiirieisieseeieseeiesie e ssssssesssenes 114
3.63 The NAME DITECLVEeviiiieieiese ettt 115
3.64 The NAMELEN OPLON ..c.cccveieiieeese e 117
3.65 ThHE NEWFILES OPLION ..ottt 118
3.66 The NEWSEGMENT DIr€CtiVEc.ccviiriiiriinieeseesie e 119
3.67 The NLMFLAGS OPLiON ...ceceeeeeeisere et e e sre e 120
3.68 The NOAUTODATA OPLION ..ot 121
3.69 The NODEFAULTLIBS OPLIONoovviieiiieienieesie s 122
3. 70 The NOEXTENSION OPLiON ..oeeviieiiieiinieisienisieeseses et sees 123
3. 71 The NOINDIRECT OPLiON ...ccvvieieeeirieesieesieeseesieessesessessesessesessesessenens 124

vii

Table of Contents

3. 72 The NORELOCS OPLIONcvvveeirieririeiisieeseeesieesieessesessesessesaesessesessesessenes
3. 73 The NOSTDCALL OPLON ...occceveeeirieiririsieseeeseeiesieeseesesesseseesessesessenessenes
3. 74 The NOVECTOR DIlrECLVEccvvvieiriieiiiieisietesieeesiee s es
3.75 The OBJALIGN OPtiON ...cccovveeviieriiieriiieisiee et ssens
3.76 The OLDLIBRARY OPLIONccovviiiiiiriininienieierieeseees e
377 The OFFSET OPLION ..c.oiieeirieiirieerieerieesieesie et
3.77.1 OFFSET - OS2, WIN32 ONlY ..ccvvvvvveirieierierieieeeeeesese e see e e
3.77.2 OFFSET - PharLap ONlYcccccvvvvevere e
3.77.30OFFSET - QNX ONlY .ecviieiiiieirieisiesee e
3.78 The ONEAUTODATA OPLION ...cvveeeirieirierieiseis e
3.79 The OPTION DIFECHVE ...c.coueieirierieriisiesie ittt
3.80 The OPTLIB DITECLIVE ...cceiiiuiriiriiriisiesie et
3.80.1 Searching for Optional Libraries Specified in Environment
RV = o] 1=
3.81 The ORDER DIFECHVEccvvuveeeeeerirriiniesieseeseeneeseeneeeeeseeessessesee e seeseeseenees
3.82 The OSDOMAIN OPLION ..ot seenes
3.83 The OSNAME OPLIONoccviviirieiesires e see e sne s
3.84 The OSVERSION OPLiONccveeeeeirire e sie e e seeseeae e seeseessessessesns
3.85 The OUTPUT DIFECHIVE ..c.eovvievieeeirieiisieiesieesieesieesie st seens
3.86 ThHE OVERLAY DITECLVE ..covvveeireeeirieirieisieiseseeie e essens
3.87 The PACKCODE OPLON ...covvvevirieeirieiirieisieesieesiesesie s saesessssesssnessenes
3.88 The PACKDATA OPLION .ocvviceiieeeirieiisieesieesteeseesesse e saesesaesessssessesessenes
3.89 The PATH DIFECIVEocveiieieeieeeeeee et e
3.90 The PRIVILEGE OPiONccocvevivietirieiiiieeseeesieesieesie e saese s ssessssenes
3.91 The PROTMODE OPLiON ...c.oovevirieiirieiirieisieisieesieesie e
3.92 The PSEUDOPREEMPTION OPtionccccvveverreriereeeeeeeseseeesee s seesee s
3.93The QUIET OPLION ...ocviveieieseeicereeeeeeese st se et e e e e enens
3.94 The REDEFSOK OPLiONccccoveiieeisiesesesiese e seesieseeseeseeeseseeese e sseses
3.95 The REENTRANT OPLON ...ooveivieiiiiiriiisieneseseseeseeieseeseseseseesessssessenessenes
3.96 The REFERENCE Dil€CLVEcvvieirieiirieirieiseesees e
3.97 The RESOURCE OPLiON ...ccvvieiirieiirieiirieisieesieesieesiesesse s ssssesseessenes
3.97.1 RESOURCE - 0S/2, Win16, Win32 onlyccoceevrereserenienenenn.
3.97.2 RESOURCE - QNX ONlY ..ocvevviieirieisieiriesesees e
3.98 The RUNTIME DITECLIVEoovieeieieiieere st
3.98. 1 RUNTIME - WIN32 0NlY ..ot
3.98.2 RUNTIME - PharLap OnlYccccveereniriinninieeseese e
3.99 The RWRELOCCHECK OptioNcccvvveieriereeseenierieseeeeeeseeeeesesessesseseeens
3.100 The SCREENNAME OPLiONoceiievieieeieeeseeeees e
3.101 The SECTION DIF€CLIVE ...c.cceereeeirieeiririsiiesieesie s seesesseessens
3.102 The SEGMENT DIr€CHVE ...c.coevvieeriiirieieienieesieiesie s
3.103 The SHARELIB OPLION ...coivcivieeirieirieisieesieesiees e sseessens
3.104 The SHOWDEAD OPLION ...c.ccvvvieiieiiriiieiesieesesiesiesesessessesessesessessssensssenes

viii

Table of Contents

3.105 The SMALL OPLiON ...oiieiieeisieesieiseresiesee et 176

3.106 The SORT DITECLIVEccoeiuiiiieiirie it 177

3.107 The STACK OPLION ..cvvveeivieiieeisieisesesesee e ssese s sesess 178

3.108 The STANDARD OPLiONcccccvveiireiriiesreseeeseee e ssesessesssesesenes 179

3.109 The START OPLION ..ot 180

3.110 The STARTLINK DITECLIVE ...ccvvceeieriereeeeeeeeees e 181

3111 The STATICS OPLION ..oeveeeeeeeeieieriese e seeseese e e e ereere e e s e snesrenees 182

3.112 The STUB OPLiON ...ocveiviieieieeieeeieeeeesese st e s sre e sresae e saesaesaeessessens 183

3. 113 The SYMFILE OPLION ...ccoviieeieeiirieierieieseee st 184

3.114 The SYMTRACE DIr€CIVEccvveeirieirieirienisees et 186

3.115 The SYNCHRONIZE OPION ...cooveirieiririsieisesieesie et es e sens 187

3.116 The SY STEM DITECHIVE ...cvvveeireeeirireirieisieesieesiesesie s sseessens 188
3.116.1 Specia SyStemM NAIMEScccvruriririirieeerreeiee e 191

3.117 The THREADNAME OPLioNcoccovviiiieiciesese e 192

3.118 The TOGGLERELOCS OPLiON ...c.covevieeereeeeeeneresieeereneseseeseeseseseeseseseesenens 193

3.119 The UNDEFSOK OPtiONccoveeeeeeeriresesiesieseesesieseeseeseseeseeeesessesessesses 194

3.120 The VECTOR DIFECLIVE ...c.ovveuireceirieiirieerieisieesieesie e 195

3.121 The VERBOSE OPLiONccccoviiieriisesestestesieseeseesae e seeeesesesessesse s sreses 196

3.122 The VERSION OPLION ..ocviviieeiieiinieiisieiesieeseeeseeesieesse s seenas 197

3.123 The VFREMOVAL OPLON ...ococvieiieirieerieesieesees e 198

3.124 The XDCDATA OPLON ...ccovveeirieeirieiirieisieeseesieses s se e ssesesseessenes 199

4 The DOS Executable FIle FOrMatccooeiriiiiesese e 201
4.1 MEMONY LAYOUL ...ttt s 203

4.2 The Open Watcom Linker Memory Requirementscccoeeveeerecereeneneenes 204
A.3USING OVENTAYS ...viiiiieiiieierieste et 204

4.3.1 Defining Overlay StTUCLUIESvoveveeieeeeeeeeee et 206

4.3.1.1 The Dynamic Overlay Managercccceeceveveeveeienieniennnns 209

4.3.2 Nested Overlay SETUCLUIEScvceeeeeeeie e eneas 211

4.3.3 RUleS ADOUL OVEIAYSceoeeeee e 212

4.3.4 Increasing the Dynamic Overlay Areaccoceoeeneenienenencnenies 214

4.3.5How Overlay Filesare Openedoovereieneneieneneeesesene e 214

4.4 Converting Microsoft Response Filesto Directive Files ... 215

5 The ELF Executable File FOrMALcccooovreieiiriene et 217
5.1 MEMONY LBYOUL ...t 219

6 The NetWare O/S Executable FIle FOrMaLcccoovirninieieneiesees e 221
6.1 NetWare Loadable MOAUIES ..o 223

6.2 MEMONY LAYOULveeeieriiieiiiicie ettt sttt sneesnne e 225

7 The OS2 Executable and DLL File FOrMALSccccooererineninene e 227

Table of Contents

7.1 Dynamic Link LiDraries ... 230

7.1.1 Creating a Dynamic Link Libraryccccooiiiennnenencinenennens 231

7.1.2Using aDynamic Link Library ..o 231

T.2MEMONY LAYOUL ..ottt 232

7.3 Converting Microsoft Response Filesto Directive Filesccccveeveenee, 232

8 The Phar Lap Executable FIl@ FOrMatcccooeereviere e 235
8.1 32-hit Protected-Mode AppliCationsccccvcevievievevene e 237

B2 MEMONY USAJEoeiiiiiieesiie ittt sttt st st sa e b saeenne s 237

8.3 MEMONY LAYOULveeieiiriiieiiiicieesies ettt e ssaesne e 238

8.4 The Open Watcom Linker Memory Requirementsccoceeereeneeienicniennens 239

9 The QNX Executable File FOrMELccocoveiiiinene e 241
0.1 MEMONY LAYOUL ...t 243

10 The Win16 Executable and DLL File FOrmMatsc.ccocevvrererieieeiereeeseseseeseesinseens 245
10.1 Fixed and Moveable SEgMENEScccvevvevereererereceeee e 248

10.2 Discardable SEgMENEScccovvereiine s et seens 248

10.3 DyNamiC Link Librariesccocviieieniese e 249

10.3.1 Creating aDynamic Link Librarycccccooeviiieiieienececee 249

10.3.2 Using aDynamic Link Librarycccoceoeoeneneininniencncnenins 250

10.4 MEMOIY LEBYOUL ..ottt sttt e e s saen 250

10.5 Converting Microsoft Response Filesto Directive Filesccoovinnenns 251

11 The Windows Virtual Device Driver File FOrmatccoovvovvenevenenereceeeeeneenene 253
11.2 M@MOIY LEBYOUL ..ottt s 255

12 The Win32 Executable and DLL Fil@ FOIMELScccovvereinirenrenenreseeseneseneeennns 257
12.1 DynamiC Link Librariesccoccviieiinie i snens 260

12.1.1 Creating aDynamic Link Libraryccccooeeviiieiieicesenecee, 260

12.1.2 Using aDynamic Link Libraryccccoceveoeneneieinicnicncncneeins 261

12.2 MEMONY LEBYOUL ..ottt ettt s s nne 261

13 Open Watcom Linker Diagn0oStic MESSAgESccevvrvireriereeiirieienieerieiesieeseeseseeeseenes 263

The Open Watcom Linker

The Open Watcom Linker

1 The Open Watcom Linker

The Open Watcom Linker isalinkage editor (linker) that takes object and library files as
input and produces executable files as output. The following object module and library
formats are supported by the Open Watcom Linker.

* The standard Intel Object Module Format (OMF).

* Microsoft’s extensions to the standard Intel OMF.

* Phar Lap's Easy OMF-386 object module format for linking 386 applications.

» The COFF object module format.

* The ELF object module format.

* The OMF library format.

» The AR (Microsoft compatible) object library format.

The Open Watcom Linker is capable of producing a number of executable file formats. The
following lists these executable file formats.

» DOS executablefiles

* ELF executablefiles

* executable files that run under FlashTek’s DOS extender

« executable files that run under Phar Lap’s 386|DOS-Extender

« executable files that run under CauseWay DOS extender, Tenberry Software’' s
DOS/4G and DOS4GW DOS extenders, and compatible products

* NetWare Loadable Modules (NLMs) that run under Novell’s NetWare operating
system

» OS/2 executable filesincluding Dynamic Link Libraries

The Open Watcom Linker 3

The Open Watcom Linker

* QNX executable files

* 16-bit Windows (Win16) executable files including Dynamic Link Libraries

* 32-bit Windows (Win32) executable filesincluding Dynamic Link Libraries

* raw binary images

* Intel Hex files (Hex80, Hex86 and extended linear)
In addition to being able to generate the above executable file formats, the Open Watcom
Linker also runs under a variety of operating systems. Currently, the Open Watcom Linker
runs under the following operating systems.

* DOS

» 0S/2

« ONX

» Windows NT/2000/XP

» Windows 95/98/Me
We refer to the operating system upon which you run the Open Watcom Linker as the "host".
The chapter entitled "Linking Executable Files for VVarious Systems' on page 5 summarizes
each of the executable file formats that can be generated by the linker. The chapter entitled

"Linker Directives and Options" on page 19 describes all of the linker directives and options.
The remaining chapters describe aspects of each of the executable file formats.

4 The Open Watcom Linker

2 Linking Executable Files for Various
Systems

The Open Watcom Linker command line format is as follows.

wlink {directive}

where directiveis a series of Open Watcom Linker directives specified on the command line
or in one or more files. If the directives are contained within afile, the"@" character is used
to reference that file. If no file extension is specified, afile extension of "Ink" is assumed.

Example:
W ink nane testprog @irst @econd option nap

In the above example, directives are specified on the command line (e.g., "name testprog" and
"option map") and infiles(e.g., fi rst. | nk and second. | nk).

2.1 Using the SYSTEM Directive

For each executable file format that can be created using the Open Watcom Linker, a specific
SYSTEM directive may be used. The SYSTEM directive selects a subset of the available
directives necessary to create each specific executable file format.

System Description

com 16-bit x86 DOS ".COM" executable
dos 16-bit x86 DOS executable

dos4g 32-hit x86 DOS/4GW executable

dos4gnz non-zero based 32-bit x86 DOS/4GW executable

Using the SYSTEM Directive 5

The Open Watcom Linker

6

netware 32-bit x86 NetWare Loadable Module. Uses original Novell developer kit
(NOVH + NOVI). Thisisalegacy systemtype. It isrecommended to use one
of the netware_clib or netware_libc system types instead.

novell synonym for "netware". Thisisalegacy systemtype. It isrecommended to use
one of the netware _clib or netware_libc system types instead.

netware_libc 32-bit x86 NetWare Loadable Module. Targetted for Novells LibC based
environment on NetWare 5 and later. Uses the full Open Watcom run-time
library for NetWare.

netware_libc_lite 32-bit x86 NetWare Loadable Module. Targetted for Novells LibC based
environment on NetWare 5 and later. Uses the thin Open Watcom run-time
library support for NetWare and consumes C library functionality from the
server libraries.

netware_clib 32-bit x86 NetWare Loadable Module. Targetted for Novells traditional CLIB
based environment on NetWare 3 and later. Usesthe full Open Watcom
run-time library for NetWare.

netware clib_lite 32-bit x86 NetWare Loadable Module. Targetted for Novells traditional
CLIB based environment on NetWare 3 and later. Uses the thin Open Watcom
run-time library support for NetWare and consumes C library functionality from
the server libraries.

0S2 16-bit x86 OS/2 executable

os2_dll 16-bit x86 OS2 Dynamic Link Library

0s2_pm 16-bit x86 OS/2 Presentation Manager executable

0s2v2 32-bit x86 OS/2 executable

os2v2 dIl 32-bit x86 OS/2 Dynamic Link Library

os2v2_pm 32-hit x86 OS/2 Presentation Manager executable

pharlap 32-hit x86 Phar Lap executable

tnt 32-hit x86 Phar Lap TNT executable

gnx 16-bit x86 QNX executable

Using the SYSTEM Directive

Linking Executable Files for Various Systems

gnx386
x32r

X32rv

x32s

X32sv

windows
windows_dll
win_vxd
win95
win95 dil

nt

nt_win
win32

nt_dll

win386

32-bit x86 QNX executable
32-bit x86 FlashTek executable using register-based calling conventions

32-bit x86 virtual-memory FlashTek executable using register-based calling
conventions

32-hit x86 FlashTek executable using stack-based calling conventions

32-hit x86 virtual-memory FlashTek executable using stack-based calling
conventions

16-bit x86 Windows 3.x executable

16-bit x86 Windows 3.x Dynamic Link Library
32-bit x86 Windows 3.x or 9x Virtual Device Driver
32-bit x86 Windows 9x executable

32-bit x86 Windows 9x Dynamic Link Library
32-bit x86 Windows NT character-mode executable
32-bit x86 Windows NT windowed executable
synonym for "nt_win"

32-hit x86 Windows NT Dynamic Link Library

32-hit x86 Open Watcom extended Windows 3.x executable or Dynamic Link
Library

The various systems that we have listed above are defined in special linker directivefiles
which are plain ASCI| text files that you can edit. Thesefilesarecalled Wl i nk. | nk and

W system

| nk.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the
Open Watcom Linker before processing any other directives. On aDOS, 0S/2, or
Windows-hosted system, this file must be located in one of the paths specified in the PATH
environment variable. On a QNX-hosted system, this file should be located in the / et ¢
directory. A default version of thisfileislocated in the \ wat com bi nwdirectory on
DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted systems, the / et ¢
directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows 95 or

Using the SYSTEM Directive 7

The Open Watcom Linker

8

Windows NT-hosted systems. Note that the file wl i nk. | nk includesthe file
w syst em | nk whichislocated in the \ wat com bi nwdirectory on DOS, OS/2, or
Windows-hosted systems and the / et ¢ directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

In the following sections, we show some of the typical directives that you might use to create
aparticular executable file format. The common directives are described in the chapter
entitled "Linker Directives and Options' on page 19. They are "common" in the sense that
they may be used with any executable format. There are other, less general, directives that
may be specified for a particular executable format. 1n each of the following sections, we
refer you to chapters in which you will find more information on the directives available with
the executable format used.

At this point, it should be noted that various systems have adopted particular executable file
formats. For example, both the Tenberry Software DOS/4G(W) and FlashTek DOS extenders
support one of the OS/2 executable file formats. It isfor this reason that you may find that we
direct you to a chapter which would, at first glance, seem unrelated to the executable file
format in which you are interested.

To summarize, the steps that you should follow to learn about creating a particular executable
are

1. Look for asection in this chapter that describes the executable format in which you
areinterested.

2. Seethechapter entitled "Linker Directives and Options" on page 19 for a
description of the common directives.

3. If you require additional information, see also the chapter to which we have
referred you.

4. Also check the Open Watcom C/C++ Programmer’s Guide or Open Watcom
FORTRAN 77 Programmer’s Guide for more information on creating specific
types of applications.

Using the SYSTEM Directive

Linking Executable Files for Various Systems

2.2 Linking 16-bit x86 Executable Files

The following sections describe how to link avariety of 16-bit executable files.

2.2.1 Linking 16-bit x86 DOS Executable Files

To create thistype of file, use the following structure.

system dos

option nap

name app_name

file obj1, obj2, ...
library 1libl, lib2, ...

For more information, see the chapter entitled "The DOS Executable File Format" on page
201.

2.2.2 Linking 16-bit x86 DOS .COM Executable Files

To create thistype of file, use the following structure.

system com

option nap

name app_name

file obj1, obj2, ...
library 1libl, lib2, ...

For more information, see the chapter entitled "The DOS Executable File Format" on page
201.

2.2.3 Linking 16-bit x86 OS/2 Executable Files

To create thistype of file, use the following structure.

system 0s2

option map

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

Linking 16-bit x86 Executable Files 9

The Open Watcom Linker

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats'
on page 227.

2.2.4 Linking 16-bit x86 0S/2 Dynamic Link Libraries

To create thistype of file, use the following structure.

system o0s2 dl|
option map

name app_name
file obj 1, obj 2,
library 1libl, |ib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats'
on page 227.

2.2.5 Linking 16-bit x86 QNX Executable Files

To create thistype of file, use the following structure.

system qnx

option nap

name app_name
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page
241.

2.2.6 Linking 16-bit x86 Windows 3.x Executable Files

To create thistype of file, use the following structure.

system w ndows
option nap

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats'
on page 245.

10 Linking 16-bit x86 Executable Files

Linking Executable Files for Various Systems

2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries

To create thistype of file, use the following structure.

system windows_dll
option nap

name app_name

file obj1, obj2, ...

library 1libl, lib2, ...

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats'
on page 245.

2.3 Linking 32-bit x86 Executable Files

The following sections describe how to create avariety of 32-bit executablefiles.

2.3.1 Linking 32-bit x86 DOS/4GW Executable Files

To create thistype of file, use the following structure.

system dos4g

option nap

name app_name

file obj 1, obj2, ...
library 1libl, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 227.

2.3.2 Linking 32-bit x86 FlashTek Executable Files

To create these files, use one of the following structures.

system x32r

option nap

name app_name
file obj 1, obj 2,
library 1ibl, lib2,

Linking 32-bit x86 Executable Files 11

The Open Watcom Linker

If the system isx32r, a FlashTek executablefileis created for an application using the register
calling convention.

system
option
name
file
library

x32rv

map
app_name
obj 1, obj 2,
libl, lib2,

If the system isx32rv, avirtual-memory FlashTek executablefile is created for an application
using the register calling convention.

system
option
name
file
library

x32s

map
app_name
obj 1, obj 2,
[ibl, lib2,

If the system is x32s, a FlashTek executablefile is created for an application using the stack
calling convention.

system
option
name
file
library

x32sv

map
app_name
obj 1, obj 2,
libl, Iib2,

If the system isx32sv, avirtual-memory FlashTek executable file is created for an application
using the stack calling convention.

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"

on page 227.

2.3.3 Linking 32-bit x86 Novell NetWare Loadable Modules

To create thistype of file, use the following structure.

system
option
name
file
library
module

netware_(clib|libc) [_1lite]
mep

app_name

obj 1, obj 2,

libl, lib2,

mod_name

12 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

For more information, see the chapter entitled "The NetWare O/S Executable File Format” on

page 221.

2.3.4 Linking 32-bit x86 0S/2 Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

0os2v2

map
app_name
obj 1, obj 2,
libl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats'

on page 227.

2.3.5 Linking 32-bit x86 0S/2 Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
l'ibrary

os2v2 di |
map
app_name
obj 1, obj 2,
libl, 1ib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats'

on page 227.

2.3.6 Linking 32-bit x86 0S/2 Presentation Manager Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

0s2v2_pm
map
app_name
obj 1, obj 2,
[ibl, |ib2,

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats'

on page 227.

Linking 32-bit x86 Executable Files 13

The Open Watcom Linker

2.3.7 Linking 32-bit x86 Phar Lap Executable Files

To create thistype of file, use the following structure.

system pharl ap
option nap

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 235.

2.3.8 Linking 32-bit x86 Phar Lap TNT Executable Files

To create thistype of file, use the following structure.

system tnt

option nap

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 257.

2.3.9 Linking 32-bit x86 QNX Executable Files

To create thistype of file, use the following structure.

system gnx386
option map

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page
241,

14 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3.10 Linking 32-bit x86 Extended Windows 3.x Executable

To create thistype of file, use the following structure.

system w n386
option nap

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

After linking this executable, you must bind the Open Watcom 32-bit Windows-extender to
the executable (a . REX file) to produce a Windows executable (a . EXE file).

wbind -n app_name

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats'
on page 245.

2.3.11 Linking 32-bit x86 Extended Windows 3.x Dynamic Link
Libraries

To create thistype of file, use the following structure.

system w n386
option nap

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

After linking this executable, you must bind the Open Watcom 32-bit Windows-extender for

DL Lsto the executable (a . REX file) to produce a Windows Dynamic Link Library (a . DLL
file).

wbind -n -d app_name

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats'
on page 245.

Linking 32-bit x86 Executable Files 15

The Open Watcom Linker

2.3.12 Linking 32-bit x86 Windows 3.x or 9x Virtual Device Driver

There are two type of the Virtual Device Driver.

Staticaly loaded Virtual Device Driver used by Windows 3.x or 9x. To create this type of file,

use the following structure.

system win_vxd
option map

name app_name
file obj 1, obj 2,

library [libl, lib2,

Dynamicaly loaded Virtual Device Driver used by Windows 3.11 or 9x. To create this type of

file, use the following structure.

system win vxd dynamic
option nap

name app_name

file obj 1, obj 2,

[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Windows Virtual Device Driver File

Format" on page 253.

2.3.13 Linking 32-bit x86 Windows 95 Executable Files

To create thistype of file, use the following structure.

system wi n95
option nap

name app_name
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"

on page 257.

16 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3.14 Linking 32-bit x86 Windows 95 Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

wi n95 dl |

mep

app_name

obj 1, obj2, ...
[ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'

on page 257.

2.3.15 Linking 32-bit x86 Windows NT Character-Mode Executable

Files

To create thistype of file, use the following structure.

system
option
name
file
library

nt

map
app_name
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"

on page 257.

2.3.16 Linking 32-bit x86 Windows NT Windowed Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

nt_win

map
app_name
obj 1, obj 2,
libl, Iib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"

on page 257.

Linking 32-bit x86 Executable Files 17

The Open Watcom Linker

2.3.17 Linking 32-bit x86 Windows NT Dynamic Link Libraries

To create thistype of file, use the following structure.

system nt_dll

option nap

name app_name

file obj1, obj2, ...
library 1libl, lib2, ...

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'
on page 257.

18 Linking 32-bit x86 Executable Files

3 Linker Directives and Options

The Open Watcom Linker supports alarge set of directives and options. The following
sections present these directives and options in alphabetical order. Not all directives and
options are supported for all executable formats. When a directive or option applies only to a
subset of the executable formats that the linker can generate, the supporting formats are noted.
In the following example, the notation indicates that the directive or option is supported for all
executable formats.

Example:
Formats: All

In the following example, the notation indicates that the directive or option is supported for
0S/2, 16-bit Windows and 32-bit Windows executable formats only.

Example:
Formats: 0OS/2, Wnl6, Wn32

Directives tell the Open Watcom Linker how to create your program. For example, using
directives you can tell the Open Watcom Linker which object files are to be included in the
program, which library filesto search to resolve undefined references, and the name of the
executablefile.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the
Open Watcom Linker before processing any other directives. OnaDOS, 0S/2, or
Windows-hosted system, this file must be located in one of the paths specified in the PATH
environment variable. On a QNX-hosted system, thisfile should be located inthe / et ¢
directory. A default version of thisfileislocated in the \ wat com bi nwdirectory on
DOS-hosted systems, the \ wat coml bi np directory on OS/2-hosted systems, the / et ¢
directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows 95 or
Windows NT-hosted systems. Notethat thefile w i nk. | nk includesthefile

w syst em | nk which islocated in the \ wat com bi nwdirectory on DOS, OS/2, or
Windows-hosted systems and the / et ¢ directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

It is also possible to use environment variables when specifying adirective. For example, if
the LIBDIR environment variable is defined as follows,

Linker Directives and Options 19

The Open Watcom Linker

set libdir=\test
then the linker directive

library Bibdir%nylib
is equivalent to the following linker directive.

library \test\nylib
Note that a space must precede areference to an environment variable.
Many directives can take alist of one or more arguments separated by commeas. Instead of a
comma-delimited list, you can specify a space-separated list provided thelist is enclosed in
braces (e.g., { space delimited list }). For example, the"FILE" directive can take alist of
object file names as an argument.

file first,second,third,fourth
The alternate way of specifying thisis asfollows.

file {first second third fourth}

Where this comesin handy isin make files, where alist of dependentsisusualy a
space-delimited list.

OBJS = first second third fourth

wink file {$(objs)}

The following notation is used to describe the syntax of linker directives and options.

ABC All itemsin upper case are required.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
{abc}+ Theitem abc may be repeated one or more times.
alb|c One of a, b or ¢ may be specified.

20 Linker Directives and Options

Linker Directives and Options

a:=b Theitem ais defined in terms of b.

Certain characters have special meaning to the linker. When a specia character must appear
in aname, you can imbed the string that makes up the name inside apostrophes (e.g.,
"name@8'’). This preventsthe linker from interpreting the special character in its usual
manner. Thisisalso truefor file or path names that contain spaces (e.g., ' \program
files\softwaré\mylib’). Normally, the linker would interpret a space or blank in afile name as
aseparator. The special characters are listed below:

R o m e e e a e +
| Character | Nane of Character |
R T +
Bl ank |
Equal s |

|

| Left Parenthesis |
| Right Parenthesis |
| Conmma |
| Period |
| Left Brace |
| Right Brace |
| At Sign |
| Hash Mark |
| Percentage Synbol [

Linker Directives and Options 21

ALIAS

3.1 The ALIAS Directive

Formats: All

The"ALIAS' directive is used to specify an equivalent name for a symbol name. The format
of the"ALIAS" directive (short form "A") isasfollows.

ALIAS alias_ name=symbol_name{, alias_hame=symbol _name}

where description:
alias name isthealiasname.
symbol_name is the symbol name to which the alias name is mapped.
Consider the following example.
al i as si ne=nysi ne

When the linker triesto resolve the reference to si ne, it will immediately substitute the name
nysi ne for si ne and begin searching for the symbol mysi ne.

22 The ALIAS Directive

ALIGNMENT (ELF, 0S/2, Win16, Win32)

3.2 The ALIGNMENT Option
Formats: ELF, 0S/2, Win16, Win32

The"ALIGNMENT" option specifies the alignment for segments in the executable file. The
format of the"ALIGNMENT" option (short form "A") is as follows.

OPTION ALIGNMENT=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the alignment for segments in the executable file and must be a power of 2.

In 16-bit applications, segments in the executabl e file are pointed to by a segment table. An
entry in the segment table contains a 16-bit value which is a multiple of the alignment value.
Together they form the offset of the segment from the start of the segment table. Note that the
smaller the value of n the smaller the executablefile.

By default, the Open Watcom Linker will automatically choose the smallest value of n

possible. Y ou need not specify this option unless you want padding between segmentsin the
executablefile.

The ALIGNMENT Option 23

ANONYMOUSEXPORT (Win16, Win32)

3.3 The ANONYMOUSEXPORT Directive
Formats: Win16, Win32

The "ANONYMOUSEXPORT" directiveis an alternative to the "EXPORT" directive
described in "The EXPORT Directive" on page 58. The symbol associated with this name
will not appear in either the resident or the non-resident names table. The entry point is,
however, still available for ordinal linking.

The format of the "ANONY MOUSEXPORT" directive (short form "ANON") is as follows.

ANONYMOUSEXPORT export{,export}
or
ANONYMOUSEXPORT =lbc file

export ::= entry_name{.ordinal][=internal_name]

where description:
entry_name isthe name to be used by other applications to call the function.

ordinal isan ordinal value for the function. If the ordinal number is specified, other
applications can reference the function by using this ordinal number.

internal_name is the actual name of the function and should only be specified if it differs
from the entry name.

Ibc_file isafile specification for the name of alibrarian command file. If no file
extension is specified, afile extension of "Ibc" isassumed. The linker will
process the librarian command file and look for commands to the librarian that
are used to create import library entries. These commands have the following

form.

++sym.dll name([.[altsym].export _name] [.ordinal]
where description:
sym is the name of asymbol in aDynamic Link Library.

dil_name isthe name of the Dynamic Link Library that defines sym

24 The ANONYMOUSEXPORT Directive

ANONYMOUSEXPORT (Win16, Win32)

altsym isthe name of a symbol in a Dynamic Link Library. When
omitted, the default symbol nameis sym

export_name is the name that an application that is linking to the Dynamic Link
Library usesto reference sym When omitted, the default export
nameissym

ordinal isthe ordinal value that can be used to identify syminstead of
using the name export _name.

All other librarian commands will be ignored.
Notes:
1. By default, the Open Watcom C and C++ compilers append an underscore (' ') to
all function names. This should be considered when specifying entry_name and

internal_namein an "ANONY MOUSEXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., anonynousexport ' nyfunc@’).

3. The symbol associated with the entry name will not appear in either the resident or
the non-resident namestable. The entry point is, however, still available for
ordinal linking. Thisdirectiveisimportant when you wish to reduce the number of
entries that are placed in the resident and non-resident names table.

The ANONYMOUSEXPORT Directive 25

AREA (DOS)

3.4 The AREA Option
Formats: DOS

The"AREA" option can be used to set the size of the memory pool in which overlay sections
are loaded by the dynamic overlay manager. The format of the "AREA™" option (short form
"AR") isasfollows.

OPTION AREA=N

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d} k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

The default size of the memory pool for a given application is selected by the Open Watcom
Linker and is equal to twice the size of the largest overlay.

Itisalso possible to add to the memory pool at run-time. If you wish to add to the memory
pooal at run-time, see the section entitled "Increasing the Dynamic Overlay Area' on page 214.

26 The AREA Option

ARTIFICIAL

3.5 The ARTIFICIAL Option

Formats: All

The"ARTIFICIAL" option should only be used if you are developing a Open Watcom C++
application. A Open Watcom C++ application contains many compiler-generated symbols.
By default, the linker does not include these symbolsin the map file. The"ARTIFICIAL"

option can be used if you wish to include these compiler-generated symbolsin the map file.

The format of the "ARTIFICIAL" option (short form "ART") is asfollows.

OPTION ARTIFICIAL

The ARTIFICIAL Option 27

AUTOSECTION (DOS)

3.6 The AUTOSECTION Directive
Formats: DOS

The"AUTOSECTION" directive specifies that each object file that appears in a subsequent
"FILE" directive, up to the next "SECTION" or "END" directive, will be assigned a different
overlay. The"AUTOSECTION" method of defining overlaysis most useful when using the
dynamic overlay manager, selected by specifying the "DYNAMIC" option. For more
information on the dynamic overlay manager, see the section entitled "Using Overlays' on
page 204.

The format of the "AUTOSECTION" directive (short form "AUTOS") isas follows.

AUTOSECTION [INTO ovl_fil€]

where description:

INTO specifiesthat all overlays are to be placed into afile, namely ovl_file. If "INTO"
(short form "IN") is not specified, the overlays are placed in the executablefile.

ovl file isthe file specification for the name of an overlay file. If nofile extensionis
specified, afile extension of "ovl" is assumed.

Placing overlays in separate files has a number of advantages. For example, if your

application was linked into one file, it may not fit on a single diskette, making distribution of
your application difficult.

28 The AUTOSECTION Directive

AUTOUNLOAD (NetWare)

3.7 The AUTOUNLOAD Option

Formats: NetWare

The"AUTOUNLOAD" option specifies that a NetWare L oadable Module (NLM) built with
this option should automatically be unloaded when all of its entry points are no longer in use.
Thisonly appliesif the NLM was automatically loaded by another modules loading.

The format of the"AUTOUNLOAD" option (short form "TAUTOUN") is as follows.

OPTION AUTOUNLOAD

The AUTOUNLOAD Option 29

BEGIN (DOS)

3.8 The BEGIN Directive
Formats: DOS

The "BEGIN" directiveis used to define the start of an overlay area. The"END" directiveis
used to define the end of an overlay area. Anoverlay areaisa piece of memory in which
overlays areloaded. All overlays defined between a"BEGIN" directive and the
corresponding "END" directive are loaded into that overlay area.

The format of the "BEGIN" directive (short form "B") is as follows.

BEGIN

The format of the "END" directive (short form "E") is as follows.

END

30 The BEGIN Directive

CACHE

3.9 The CACHE Option

Formats: All

The"CACHE" and "NOCACHE" options can be used to control caching of object and library
filesin memory by the linker. When neither the "CACHE" nor "NOCACHE" option is
specified, the linker will only cache small libraries. Object files and large libraries are not
cached. The"CACHE" and "NOCACHE" options can be used to alter this default behaviour.
The "CACHE" option enables the caching of object files and large library files while the
"NOCACHE" option disables al caching.

The format of the "CACHE" option (short form "CAC") isasfollows.

OPTION CACHE

The format of the "NOCACHE" option (short form "NOCAC") is as follows.

OPTION NOCACHE

When linking large applications with many object files, caching object files will cause
extensive use of memory by the linker. On virtual memory systems such as OS/2, Windows
NT or Windows 95, this can cause extensive page file activity when real memory resources
have been exhausted. This can degrade the performance of other tasks on your system. For
this reason, the OS/2 and Windows-hosted versions of the linker do not perform object file
caching by default. This does not imply that object file caching is not beneficial. If your
system has lots of real memory or the linker is running as the only task on the machine, object
file caching can certainly improve the performance of the linker.

On single-tasking environments such as DOS, the benefits of improved linker performance
outweighs the memory demands associated with object file caching. For this reason, object
file caching is performed by default on these systems. If the memory requirements of the
linker exceed the amount of memory on your system, the "NOCACHE" option can be
specified.

The QNX operating system is a multi-tasking real-time operating system. However, it isnot a
virtual memory system. Caching object files can consume large amounts of memory. This
may prevent other tasks on the system from running, a problem that may be solved by using
the "NOCACHE" option.

The CACHE Option 31

CASEEXACT

3.10 The CASEEXACT Option

Formats: All

The"CASEEXACT" option tells the Open Watcom Linker to respect case when resolving
references to global symbols. That is, "ScanName" and "SCANNAME" represent two
different symbols. Thisisthe default because the most commonly used languages (C, C++,
FORTRAN) are case sensitive. The format of the "CASEEXACT" option (short form "C") is
asfollows.

OPTION CASEEXACT

It is possible to override the default by using the "NOCASEEXACT" option. The
"NOCASEEXACT" option turns off case-sensitive linking. The format of the
"NOCASEEXACT" option (short form "NOCASE") isas follows.

OPTION NOCASEEXACT

Y ou can specify the "NOCASEEXACT" option in the default directive files W i nk. | nk or
W syst em | nk if required.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the
Open Watcom Linker before processing any other directives. On aDOS, OS/2, or
Windows-hosted system, this file must be located in one of the paths specified in the PATH
environment variable. On a QNX-hosted system, this file should be located inthe / et ¢
directory. A default version of thisfileislocated in the \ wat com bi nwdirectory on
DOS-hosted systems, the \ wat coml bi np directory on OS/2-hosted systems, the / et ¢
directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows 95 or
Windows NT-hosted systems. Note that thefile wl i nk. | nk includesthefile

W syst em | nk whichislocated inthe \ wat com bi nwdirectory on DOS, OS/2, or
Windows-hosted systems and the / et ¢ directory on QNX-hosted systems.

Thefilesw i nk. | nk and W syst em | nk reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

32 The CASEEXACT Option

CHECK (NetWare)

3.11 The CHECK Option

Formats: NetWare

The"CHECK" option specifies the name of a procedure to execute beforean NLM is
unloaded. This procedure can, for example, inform the operator that the NLM isin use and
prevent it from being unloaded.

The format of the "CHECK" option (short form "CH") is as follows.

OPTION CHECK=symbol _name

where description:
symbol_name specifies the name of a procedure to execute before the NLM is unloaded.

If the "CHECK" option is not specified, no check procedure will be called.

The CHECK Option 33

CHECKSUM (Win32)

3.12 The CHECKSUM Option
Formats: Win32

The"CHECKSUM" option specifies that the linker should create an MS-CRC32 checksum
for the current image. Thisis primarily used for DLL’s and device drivers but can be applied
to any PE format images. The format of the "CHECKSUM" option (no short form) isas

follows.

OPTION CHECKSUM

34 The CHECKSUM Option

COMMENT

3.13 The # Directive

Formats: All

The"#" directive is used to mark the start of acomment. All text from the "#" character to the
end of thelineis considered acomment. The format of the "#" directiveis as follows.

comment

where description:

comment isany sequence of characters.

The following directive file illustrates the use of comments.
file main, trigtest

Use nmy own version of "sin" instead of the
library version.

file nysin
[ibrary \math\trig

The # Directive 35

COMMIT (Win32)

3.14 The COMMIT Directive
Formats: Win32

When the operating system allocates the stack and heap for an application, it does not actually
allocate the whole stack and heap to the application when it isinitially loaded. Instead, only a
portion of the stack and heap are allocated or committed to the application. Any part of the
stack and heap that is not committed will be committed on demand.

The format of the "COMMIT" directive (short form "COM") is as follows.

COMMIT mem_type

mem_type ::= STACK=n | HEAP=n

where description:
n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

n represents the amout of stack or heap that isinitially committed to the
application. The short form for "STACK" is"ST" and the short form for
"HEAP" is"H".

If you do not specify the"COMMIT HEAP" directive then a4k heap is committed to the
application.

If you do not specify the "COMMIT STACK" directive then the default size isthe smaller of
64K or the size specified by the "STACK" option. See the section entitled "The STACK
Option" on page 178 for more information on specifying a stack size.

36 The COMMIT Directive

COPYRIGHT (NetWare)

3.15 The COPYRIGHT Option

Formats: NetWare

The"COPYRIGHT" option specifies copyright information that is placed in the executable
file. Theformat of the "COPYRIGHT" option (short form "COPYR") isasfollows.

OPTION COPYRIGHT ’string’

where description:

string specifies the copyright information.

The COPYRIGHT Option 37

CUSTOM (NetWare)

3.16 The CUSTOM Option

Formats: NetWare

The format of the "CUSTOM" option (short form "CUST") is as follows.

OPTION CUSTOM=file name

where description:

file_ name specifiesthe file name of the custom datafile.

The custom datafile is placed into the executable file when the application is linked but is
really not part of the program. When the application is loaded into memory, the information

extracted from a custom datafile is not loaded into memory. Instead, information is passed to
the program (as arguments) which allows the access and processing of thisinformation.

38 The CUSTOM Option

CVPACK

3.17 The CVPACK Option

Formats: All

This option is only meaningful when generating Microsoft CodeView debugging information.
This option causes the linker to automatically run the Open Watcom CodeView 4 Symbolic
Debugging Information Compactor, CVPACK, on the executable that it has created. Thisis
necessary to get the CodeView debugging information into a state where the Microsoft
CodeView debugger will accept it.

The format of the "CVPACK" option (short form "CVP") isasfollows.

OPTION CVPACK

For more information on generating CodeView debugging information into the executable,
see the section entitled "The DEBUG Directive" on page 40

The CVPACK Option 39

DEBUG

3.18 The DEBUG Directive

Formats: All

The"DEBUG" directiveis used to tell the Open Watcom Linker to generate debugging
information in the executable file. This extrainformation in the executable fileis used by the
Open Watcom Debugger. The format of the "DEBUG" directive (short form "D") isas

follows.

DEBUG dbtype [dblis] |
DEBUG [dblis]

dbtype ::= DWARF | WATCOM | CODEVIEW | NOVELL
dblist ::=[db_option{,db_option}]
db_option ::=LINES| TYPES| LOCALS| ALL

DEBUG NOVELL only
db_option ::= ONLYEXPORTS | REFERENCED

The Open Watcom Linker supports four types of debugging information, "DWARF" (the
default), "WATCOM", "CODEVIEW", or "NOVELL".

DWARF

WATCOM

(short form "D") specifies that all object files contain DWARF format
debugging information and that the executable file will contain DWARF
debugging information.

This debugging format is assumed by default when none is specified.

(short form "W") specifiesthat all object files contain Watcom format
debugging information and that the executable file will contain Watcom
debugging information. Thisformat permits the selection of specific classes of
debugging information (dblist) which are described below.

CODEVIEW

(short form "C") specifiesthat all object files contain CodeView (CV4) format
debugging information and that the executable file will contain CodeView
debugging information.

It will be necessary to run the Microsoft Debugging Information Compactor,
CVPACK, on the executable that it has created. For information on requesting

40 The DEBUG Directive

DEBUG

the linker to automatically run CVPACK, see the section entitled "The
CVPACK Option" on page 39 Alternatively, you can run CVPACK from the
command line.

NOVELL (short form "N") specifiesaform of global symbol information that can only be
processed by the NetWare debugger.

Note: Except in rare cases, the most appropriate use of the "DEBUG" directiveis
specifying "DEBUG ALL" (short form "D A") prior to any "FILE" or "LIBRARY"
directives. Thiswill cause the Open Watcom Linker to emit all available debugging
information in the default format.

For the Watcom debugging information format, we can be selective about the types of
debugging information that we include with the executable file. We can categorize the types
of debugging information as follows:

* global symbol information

* line numbering information

* local symbol information

* typing information

* NetWare global symbol information

The following options can be used with the "DEBUG WATCOM" directive to control which
of the above classes of debugging information isincluded in the executablefile.

LINES (short form "LI") specifies line numbering and global symbol information.
LOCALS (short form"LO") specifieslocal and global symbol information.
TYPES (short form "T") specifies typing and global symbol information.
ALL (short form "A") specifies all of the above debugging information.
ONLYEXPORTS

(short form "ONL") restricts the generation of global symbol information to

exported symbols. This option may only be used with Netware executable
formats.

The DEBUG Directive 41

DEBUG

The following options can be used with the "DEBUG NOVELL" directive to control which of
the above classes of debugging information isincluded in the executablefile.

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to
exported symbols.

REFERENCED
(short form "REF") restricts the generation of symbol information to referenced
symbols only.

Note: The position of the "DEBUG" directiveisimportant. The level of debugging
information specified in a"DEBUG" directive only applies to object files and libraries that
appear in subsequent "FILE" or "LIBRARY" directives. For example, if "DEBUG
WATCOM ALL" wasthe only "DEBUG" directive specified and was also the last linker
directive, no debugging information would appear in the executablefile.

Only global symbol information is actually produced by the Open Watcom Linker; the other
three classes of debugging information are extracted from object modules and copied to the
executable file. Therefore, at compile time, you must instruct the compiler to generate local
symbol, line numbering and typing information in the object file so that the information can
be transferred to the executable file. If you have asked the Open Watcom Linker to produce a
particular class of debugging information and it appears that none is present, one of the
following conditions may exist.

1. Thedebugging information is not present in the object files.
2. The"DEBUG" directive has been misplaced.

The following sections describe the classes of debugging information.

3.18.1 Line Numbering Information - DEBUG WATCOM LINES

The"DEBUG WATCOM LINES" option controls the processing of line numbering
information. Line numbering information is the line number and address of the generated
code for each line of source code in a particular module. This allows Open Watcom
Debugger to perform source-level debugging. When the Open Watcom Linker encounters a
"DEBUG WATCOM" directive with a"LINES' or "ALL" option, line number information
for each subsequent object module will be placed in the executable file. Thisincludesall
object modules extracted from object files specified in subsequent "FILE" directives and
object modules extracted from libraries specified in subsequent "LIBRARY" or "FILE"
directives.

42 The DEBUG Directive

DEBUG

Note: All modules for which line numbering information is requested must have been
compiled with the "d1" or "d2" option.

A subsequent "DEBUG WATCOM" directive without a"LINES' or "ALL" option terminates
the processing of line numbering information.

3.18.2 Local Symbol Information - DEBUG WATCOM LOCALS

The"DEBUG WATCOM LOCALS" option controls the processing of local symbol
information. Loca symbol information is the name and address of all symbolslocal to a
particular module. This allows Open Watcom Debugger to locate these symbols so that you
can reference local data and routines by name. When the Open Watcom Linker encounters a
"DEBUG WATCOM" directive with a"LOCALS" or "ALL" option, local symbol
information for each subseguent object module will be placed in the executablefile. This
includes all object modules extracted from object files specified in subsequent "FILE"
directives and object modules extracted from libraries specified in subsequent "LIBRARY" or
"FILE" directives.

Note: All modules for which local symbol information is requested must have been
compiled with the "d2" option.

A subsequent "DEBUG WATCOM" directive without a"LOCALS" or "ALL" option
terminates the processing of local symbol information.

3.18.3 Typing Information - DEBUG WATCOM TYPES

The "DEBUG WATCOM TY PES" option controls the processing of typing information.
Typing information includes a description of al types, structures and arrays that are defined in
amodule. This allows Open Watcom Debugger to display variables according to their type.
When the Open Watcom Linker encounters a"DEBUG WATCOM™" directive with a
"TYPES" or "ALL" option, typing information for each subsequent object module will be
placed in the executable file. Thisincludes all object modules extracted from object files
specified in subsequent "FILE" directives and object modul es extracted from libraries
specified in subsequent "LIBRARY" or "FILE" directives.

The DEBUG Directive 43

DEBUG

Note: All modules for which typing information is requested must have been compiled
with the "d2" option.

A subsequent "DEBUG WATCOM" directive without a"TYPES" or "ALL" option
terminates the processing of typing information.

3.18.4 All Debugging Information - DEBUG WATCOM ALL

The"DEBUG WATCOM ALL" option specifiesthat "LINES", "LOCALS", and "TY PES"
options are requested. The"LINES' option controls the processing of line numbering
information. The"LOCALS" option controls the processing of local symbol information.
The"TYPES' option controls the processing of typing information. Each of these optionsis
described in aprevious section. A subsequent "DEBUG WATCOM " directive without an
"ALL" option discontinues those options which are not specified in the list of debug options.

3.18.5 Global Symbol Information

Global symbol information consists of all the global symbolsin your program and their
address. This allows Open Watcom Debugger to |ocate these symbols so that you can
reference global data and routines by name. When the Open Watcom Linker encounters a
"DEBUG" directive, global symbol information for al the global symbols appearing in your
program is placed in the executablefile.

3.18.6 Global Symbols for the NetWare Debugger - DEBUG NOVELL

The NetWare operating system has a built-in debugger that can be used to debug programs.
When "DEBUG NOVELL" is specified, the Open Watcom Linker will generate global
symbol information that can be used by the NetWare debugger. Note that any line numbering,
local symbol, and typing information generated in the executable file will not be recognized
by the NetWare debugger. Also, WSTRIP cannot be used to remove this form of global
symbol information from the executablefile.

3.18.7 The ONLYEXPORTS Debugging Option

The"ONLYEXPORTS" option (short form "ONL") restricts the generation of global symbol
information to exported symbols (symbols appearing in an "EXPORT" directive). If
"DEBUG WATCOM ONLYEXPORTS" is specified, Open Watcom Debugger global symbol
information is generated only for exported symbols. If "DEBUG NOVELL

44 The DEBUG Directive

DEBUG

ONLYEXPORTS" is specified, NetWare global symbol information is generated only for
exported symbols.

3.18.8 Using DEBUG Directives

Consider the following directive file.

debug wat com al |

file nodul el

debug watcom | i nes
file nodul e2, nodul e3
debug wat com

library nylib

It specifies that the following debugging information is to be generated in the executablefile.
1. globa symbol information for your program
2. line numbering, typing and local symbol information for the following object files:
nodul el. obj

3. line numbering information for the following object files:

nodul e2. obj
nodul e3. obj

Note that if the"DEBUG WATCOM" directive before the "LIBRARY" directiveis not
specified, line numbering information for al object modules extracted from the library
"mylib.lib" would be generated in the executable file provided the object modules extracted
from the library have line numbering information present.

Note: A "DEBUG WATCOM" directive with no option suppresses the processing of line
numbering, local symbol and typing information for all subsequent object modules.

Debugging information can use a significant amount of disk space. As shown in the above
example, you can select only the class of debugging information you want and for those
modules you wish to debug. In thisway, the amount of debugging information in the
executable fileis minimized and hence the amount of disk space used by the executablefileis
kept to a minimum.

The DEBUG Directive 45

DEBUG

Asyou can see from the above example, the position of the "DEBUG WATCOM" directiveis
important when describing the debugging information that is to appear in the executable file.

Note: If youwant all classes of debugging information for all files to appear in the

executable file you must specify "DEBUG WATCOM ALL" beforeany "FILE" and
"LIBRARY" directives.

3.18.9 Removing Debugging Information from an Executable File

A utility called WSTRI P has been provided which takes as input an executable file and
removes the debugging information placed in the executable file by the Open Watcom Linker.

Note that global symbol information generated using "DEBUG NOVELL" cannot be removed
by WSTRIP.

For more information on this utility, see the chapter entitled "The Open Watcom Strip Utility"

in the Open Watcom C/C++ Tools User’s Guide or Open Watcom FORTRAN 77 Tools
User's Guide.

46 The DEBUG Directive

DESCRIPTION (0S/2, Win16, Win32)

3.19 The DESCRIPTION Option
Formats: 0S/2, Win16, Win32

The "DESCRIPTION" option inserts the specified text into the application or Dynamic Link
Library. Thisisuseful if you wish to embed copyright information into an application or
Dynamic Link Library. The format of the "DESCRIPTION" option (short form "DE") isas
follows.

OPTION DESCRIPTION 'string’

where description:
string is the sequence of characters to be embedded into the application or Dynamic
Link Library.

The DESCRIPTION Option 47

DISABLE

3.20 The DISABLE Directive

Formats: All
The"DISABLE" directiveis used to disable the display of linker messages.

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings.
Each message has a 4-digit number associated with it. Fatal messages start with the digit 3,
error messages start with the digit 2, and warning messages start with the digit 1. It ispossible
for amessage to be issued as awarning or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be
generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued.
However, no executable file will be generated since these errors do not permit a proper
executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually
informational and does not prevent the creation of aproper executable file. However, all
warnings should eventually be corrected.

Note that the behaviour of the linker does not change when a message is disabled. For
example, if amessage that normally terminates the linker is disabled, the linker will still
terminate but the message describing the reason for the termination will not be displayed. For
this reason, you should only disable messages that are warnings.

The linker will ignore the severity of the message number. For example, some messages can
be displayed as errors or warnings. It isnot possible to disable the message when it isissued
asawarning and display the message when it isissued as an error. In general, do not specify
the severity of the message when specifying a message number.

The format of the "DISABLE" directive (short form "DISA") is as follows.

DISABLE msg_num{, msg_num}

48 The DISABLE Directive

DISABLE

where description:

msg_num isamessage number. Seethe chapter entitled "Open Watcom Linker Diagnostic
Messages' on page 263 for alist of messages and their corresponding numbers.

Thefollowing "DISABLE" directive will disable message 28 (an undefined symbol has been
referenced).

di sabl e 28

The DISABLE Directive 49

DISTRIBUTE (DOS)

3.21 The DISTRIBUTE Option
Formats: DOS

The"DISTRIBUTE" option specifies that object modules extracted from library files are to be
distributed throughout the overlay structure. The format of the "DISTRIBUTE" option (short
form"DIS") isasfollows.

OPTION DISTRIBUTE

An object module extracted from alibrary file will be placed in the overlay section that
satisfies the following conditions.

1. Thesymbols defined in the object module are not referenced by an ancestor of the
overlay section selected to contain the object module.

2. Atleast one symbol in the object moduleis referenced by an immediate descendant
of the overlay section selected to contain the module.

Note that libraries specified in the "FIXEDLIB" directive will not be distributed. Also, if a
symbol defined in alibrary module is referenced indirectly (its address is taken), the module
extracted from the library will be placed in the root unless the "NOINDIRECT" option is
specified. For moreinformation on the "NOINDIRECT" option, see the section entitled "The
NOINDIRECT Option" on page 124.

For more information on overlays, see the section entitled "Using Overlays' on page 204.

50 The DISTRIBUTE Option

DOSSEG

3.22 The DOSSEG Option

Formats: All

The"DOSSEG" option tells the Open Watcom Linker to order segmentsin a special way.
The format of the "DOSSEG" option (short form "D") is as follows.

OPTION DOSSEG

When the "DOSSEG" option is specified, segments will be ordered in the following way.
1. all segments not belonging to group "DGROUP" with class"CODE"
2. all other segments not belonging to group "DGROUP"
3. al segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

When using Open Watcom run-time libraries, it is not necessary to specify the "DOSSEG"
option. One of the object filesin the Open Watcom run-time libraries contains a specia
record that specifies the "DOSSEG" option.

If no "DOSSEG" option is specified, segments are ordered in the order they are encountered
by the Open Watcom Linker.

The DOSSEG Option 51

DOSSEG

When the "DOSSEG" option is specified, the Open Watcom Linker defines two special
variables. _edata definesthe start of the "BSS" class of segmentsand _end defines the end
of the"BSS" class of segments. Y our program must not redefine these symbols.

52 The DOSSEG Option

DYNAMIC (DOS)

3.23 The DYNAMIC Option
Formats: DOS

The"DYNAMIC" option tells the Open Watcom Linker to use the dynamic overlay manager.
The format of the "DYNAMIC" option (short form "DYN") is asfollows.

OPTION DYNAMIC

Note that the dynamic overlay manager can only be used with applications that have been
compiled using the "of" option and a big code memory model. The "of" option generates a
special prologue/epilogue sequence for procedures that is required by the dynamic overlay
manager. See the compiler User’'s Guide for more information on the "of" option.

For more information on the dynamic overlay manager, see the section entitled "Using
Overlays' on page 204.

The DYNAMIC Option 53

ELIMINATE

3.24 The ELIMINATE Option

Formats: All

The"ELIMINATE" option can be used to enable dead code elimination. Dead code
elimination is a process the linker uses to remove unreferenced segments from the application.
The linker will only remove segments that contain code; unreferenced data segments will not
be removed.

The format of the "ELIMINATE" option (short form "EL") isas follows.

OPTION ELIMINATE

Linking C/C++ Applications
Typically, amodule of C/C++ code contains a number of functions. When this
moduleis compiled, all functionswill be placed in the same code segment. The
chances of each function in the module being unreferenced are remote and the
usefulness of the "ELIMINATE" option is greatly reduced.

In order to maximize the effect of the "ELIMINATE" option, the "zm" compiler
option isavailable to tell the Open Watcom C/C++ compiler to place each
function in its own code segment. This allows the linker to remove unreferenced
functions from modules that contain many functions.

Note, that if afunction isreferenced by data, asin ajump table, the linker will
not be able to eliminate the code for the function even if the data that references
it isunreferenced.

Linking FORTRAN 77 Applications
The Open Watcom FORTRAN 77 compiler always places each function and
subroutine in its own code segment, even if they are contained in the same
module. Therefore when linking with the "ELIMINATE" option the linker will
be able to eliminate code on a function/subroutine basis.

54 The ELIMINATE Option

END (DOS)

3.25 The END Directive
Formats: DOS

The "BEGIN" directiveis used to define the start of an overlay area. The"END" directiveis
used to define the end of an overlay area. Anoverlay areaisa piece of memory in which
overlays areloaded. All overlays defined between a"BEGIN" directive and the
corresponding "END" directive are loaded into that overlay area.

The format of the "BEGIN" directive (short form "B") is as follows.

BEGIN

The format of the "END" directive (short form "E") is as follows.

END

The END Directive 55

ENDLINK

3.26 The ENDLINK Directive

Formats: All

The "ENDLINK" directiveis used to indicate the end of a new set of linker commands that
areto be processed after the current set of commands has been processed. The format of the
"ENDLINK" directive (short form "ENDL") is asfollows.

ENDLINK

The"STARTLINK" directive, described in "The STARTLINK Directive" on page 181, is
used to indicate the start of the set of commands.

56 The ENDLINK Directive

EXIT (NetWare)

3.27 The EXIT Option

Formats: NetWare

The format of the "EXIT" option (short form "EX") is as follows.

OPTION EXIT=symbol_name

where description:

symbol _name specifies the name of the procedure that is executed when an NLM is unloaded.
The default name of the exit procedureis”_Stop".

Note that the exit procedure cannot prevent the NLM from being unloaded. Once the exit

procedure has executed, the NLM will be unloaded. The "CHECK" option can be used to
specify acheck procedure that can prevent an NLM from being unloaded.

The EXIT Option 57

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

3.28 The EXPORT Directive
Formats: ELF, NetWare, 0S/2, Win16, Win32

The "EXPORT" directive is used to tell the Open Watcom Linker which symbols are available
for import by other executables.

3.28.1 EXPORT - 0S/2, Win16, Win32 only

The "EXPORT" directive can be used to define the names and attributes of functionsin
Dynamic Link Libraries that are to be exported. An"EXPORT" definition must be specified
for every Dynamic Link Library function that is to be made available externally.

Winl6: An"EXPORT" directiveisalso required for the "window function". This
function must be defined by all programs and is called by Windows to provide
information to the program. For example, the window function is called when a
window is created, destroyed or resized, when an item is selected from a menu,
or when a scroll bar isbeing clicked with amouse.

The format of the "EXPORT" directive (short form "EXP") is asfollows.

EXPORT export{,export}
or
EXPORT =lbc file

OS2 only:
export ::= entry_name{.ordinal][=internal_name]
[PRIVATE] [RESIDENT] [iopl_bytes]

Winl6, Win32 only:
export ::= entry_name{.ordinal][=internal_name]
[PRIVATE] [RESIDENT]

where description:
entry_name isthe name to be used by other applicationsto call the function.

ordinal isan ordinal value for the function. If the ordinal number is specified, other
applications can reference the function by using this ordinal number.

58 The EXPORT Directive

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

internal_name is the actual name of the function and should only be specified if it differs

PRIVATE

RESIDENT

iopl_bytes

Ibc file

from the entry name.

(no short form) specifies that the function’ s entry name should be included in
the DLL’ s export table, but not included in any import library that the linker
generates.

(short form "RES") specifies that the function’s entry name should be kept
resident in memory (i.e., added to the resident names table).

By default, the entry name is always made memory resident if an ordinal is not
specified (i.e, itisimplicitly RESIDENT). For 16-bit Windows, the limit on the
size of the resident namestable is 64K bytes. Memory resident entry names
allow the operating system to resolve calls more efficiently when the call is by
entry name rather than by ordinal.

If an ordinal is specified and RESIDENT is not specified, the entry name is
added to the non-resident namestable (i.e., it isimplicitly non-RESIDENT). If
both the ordinal and the RESIDENT keyword are specified, the symbal is placed
in the resident names table.

If you do not want an entry name to appear in either the resident or non-resident
names table, you can use the "ANONY MOUSEXPORT" directive described in
"The ANONYMOUSEXPORT Directive" on page 24.

(OS/2 only) isrequired for functions that execute with I/O privilege. iopl_bytes
specifies that total size of the function’s argumentsin bytes. When such a
function is executed, the specified number of bytesis copied from the caller’s
stack to the I/O-privileged function’s stack. The maximum number of bytes
allowed is 63.

isafile specification for the name of alibrarian command file. If no file
extension is specified, afile extension of "Ibc" isassumed. The linker will
process the librarian command file and look for commands to the librarian that
are used to create import library entries. These commands have the following
form.

++sym.dll name[.[altsym].export_name] [.ordinal]

The EXPORT Directive 59

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

where description:
sym is the name of a symbol in aDynamic Link Library.
dil_name isthe name of the Dynamic Link Library that defines sym

altsym isthe name of a symbol in a Dynamic Link Library. When
omitted, the default symbol nameis sym

export_name isthe name that an application that is linking to the Dynamic Link
Library usesto reference sym When omitted, the default export
nameissym

ordinal isthe ordinal value that can be used to identify syminstead of
using the name export _name.

All other librarian commands will be ignored.
Notes:
1. By default, the Open Watcom C and C++ compilers append an underscore ('_’) to
all function names. This should be considered when specifying entry_name and

internal_namein an "EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ' myfunc@’).

3. If the__export declspec modifier is used in the source code, it is the equivalent of
using the following linker directive:

EXPORT entry_name RESIDENT

3.28.2 EXPORT - ELF only

The "EXPORT" directive is used to tell the Open Watcom Linker which symbols are available
for import by other executables. The format of the "EXPORT" directive (short form "EXP")
isasfollows.

60 The EXPORT Directive

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

EXPORT entry_name{,entry_name}

where description:
entry_name isthe name of the exported symbol.
Notes:
1. By default, the Open Watcom C and C++ compilers append an underscore (' _’) to
all function names. This should be considered when specifying entry_namein an

"EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ' myfunc@’).

3.28.3 EXPORT - Netware only

The "EXPORT" directive is used to tell the Open Watcom Linker which symbols are available
for import by other NLMs. The format of the "EXPORT" directive (short form "EXP") isas
follows.

EXPORT entry_name{,entry_name}

where description:
entry_name isthe name of the exported symbol.
Notes:

1. If the name contains charactersthat are special to the linker then the name may be
placed inside apostrophes (e.g., export ' nmyfunc@’).

The EXPORT Directive 61

FARCALLS

3.29 The FARCALLS Option

Formats: All

The"FARCALLS' option tells the Open Watcom Linker to optimize Far Calls. Thisisthe
default setting for Open Watcom Linker The format of the "FARCALLS" option (short form
"FAR") isasfollows.

OPTION FARCALLS

The"NOFARCALLS" option turns off Far Calls optimization. The format of the
"NOFARCALLS' option (short form "NOFAR") isasfollows.

OPTION NOFARCALLS

Y ou can specify the "NOFARCALLS" option in the default directive files Wl i nk. | nk or
w syst em | nk if required.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the
Open Watcom Linker before processing any other directives. On aDOS, 0S/2, or
Windows-hosted system, this file must be located in one of the paths specified in the PATH
environment variable. On a QNX-hosted system, thisfile should be located inthe / et ¢
directory. A default version of thisfileislocated in the \ wat com bi nwdirectory on
DOS-hosted systems, the \ wat coml bi np directory on OS/2-hosted systems, the / et ¢
directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows 95 or
Windows NT-hosted systems. Notethat thefile w i nk. | nk includesthefile

w syst em | nk which islocated in the \ wat com bi nwdirectory on DOS, OS/2, or
Windows-hosted systems and the / et ¢ directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

62 The FARCALLS Option

FILE

3.30 The FILE Directive

Formats: All

The"FILE" directive is used to specify the object files and library modules that the Open
Watcom Linker isto process. The format of the "FILE" directive (short form "F") isas
follows.

FILE obj_spec{,obj_spec}

obj_spec ::= obj_file[(obj_module)]
| library_file[(obj_module)]

where description:

obj_file isafile specification for the name of an object file. If nofile extensionis
specified, afile extension of "obj" isassumed if you are running a DOS, OS/2 or
Windows-hosted version of the Open Watcom Linker. Also, if you are running
aDOS, 0OS/2 or Windows-hosted version of the Open Watcom Linker, the
object file specification can contain wild cards (*, ?). A file extension of "0" is
assumed if you are running a UNIX-hosted version of the Open Watcom Linker.

library file isafile specification for the name of alibrary file. Note that the file extension
of the library file (usually "lib") must be specified; otherwise an object file will
be assumed. When alibrary fileis specified, all object filesin the library are
included (whether required or not).

obj_module isthe name of an object module defined in an object or library file.

Consider the following example.

Example:

wlink system my_os f \math\sin, mycos

The Open Watcom Linker isinstructed to process the following object files:

\ mat h\ si n. obj
nmycos. obj

The object file "mycos.obj" islocated in the current directory since no path was specified.

The FILE Directive 63

FILE

More than one "FILE" directive may be used. The following exampleis equivaent to the
preceding one.

Example:
wlink system my_os f \math\sin f mycos

Thus, other directives may be placed between lists of object files.

The"FILE" directive can aso specify object modules from alibrary file or object file.
Consider the following example.

Example:
wlink system my_os f \math\math.lib(sin)

The Open Watcom Linker isinstructed to process the object module "sin” contained in the
library file "math.lib" in the directory "\math".

In the following example, the Open Watcom Linker will process the object module "sin"
contained in the object file "math.obj" in the directory "\math".

Example:
wlink system my_os f \math\math(sin)

In the following example, the Open Watcom Linker will include all object modules contained
inthelibrary file "math.lib" in the directory "\math".

Example:
wlink system my_os f \math\math.lib

64 The FILE Directive

FILLCHAR

3.31 The FILLCHAR Option

Formats: All

The"FILLCHAR" option (short form "FILL") specifies the byte value used to fill gapsin the
output image.

OPTION FILLCHAR=N

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the value to be used in blank areas of the output image. The value must bein the
range of 0 to 255, inclusive.

This option is most useful for raw binary output that will be programmed into an (E)EPROM
where avalue of 255 (0xff) ispreferred. The default value of nis zero.

The FILLCHAR Option 65

FIXEDLIB (DOS)

3.32 The FIXEDLIB Directive
Formats: DOS

The"FIXEDLIB" directive can be used to explicitly place the modules from alibrary filein
the overlay section in which the "FIXEDLIB" directive appears. The format of the
"FIXEDLIB" directive (short form "FIX") isasfollows.

FIXEDLIB library file{ library_file}

where description:

library file isafile specification for the name of alibrary file. If no file extensionis
specified, afile extension of "lib" is assumed.

Consider the following example.

begi n
section filel, file2
section file3
fixedlib nylib

end

Two overlay sections are defined. Thefirst containsfil el andfil e2. The second
containsf i | €3 and all modules contained in the library file "mylib.lib".

Note that all modules extracted from library filesthat appear in a"LIBRARY" directive are

placed in the root unless the "DISTRIBUTE" option is specified. For more information on the
"DISTRIBUTE" option, see the section entitled "The DISTRIBUTE Option" on page 50.

66 The FIXEDLIB Directive

FORCEVECTOR (DOS)

3.33 The FORCEVECTOR Directive
Formats: DOS

The "FORCEVECTOR" directive forces the Open Watcom Linker to generate an overlay
vector for the specified symbols. The format of the "FORCEVECTOR" directive (short form

"FORCEVE") isasfollows.

FORCEVECTOR symbol_name{,symbol _name}

where description:

symbol_nameis asymbol name.

The FORCEVECTOR Directive 67

FORMAT

3.34 The FORMAT Directive

Formats: All

The"FORMAT" directive is used to specify the format of the executable file that the Open
Watcom Linker isto generate. The format of the "FORMAT" directive (short form "FORM")
isasfollows.

FORMAT form

form::= DOS[COM]
| WINDOWS [win_dIl] [MEMORY] [FONT]
| WINDOWS VXD [DYNAMIC]
| WINDOWS NT [TNT] [dIl_attrs]
| OS2 [0s2_type] [dIl_attrs| 0s2_attrs]
| PHARLAP [EXTENDED | REX | SEGMENTED]
| NOVELL [NLM | LAN | DSK | NAM | "number’] ’ description’
| QNX [FLAT]
| ELF [DLL]

win_dll ::= DLL [INITGLOBAL | INITINSTANCE]

dil_attrs::= DLL [INITGLOBAL | INITINSTANCE]
[TERMINSTANCE | TERMGLOBAL]

0s2_type::=FLAT|LE|LX

0s2_attrs::= PM | PMCOMPATIBLE | FULLSCREEN
| PHYSDEVICE | VIRTDEVICE

where description:

DOS (short form "D") tells the Open Watcom Linker to generate a DOS "EXE" file.
The name of the executable file will have extension "exe". If "COM" is
specified, aDOS "COM" file will be generated in which case the name of the

executable file will have extension "com". Note that these default extensions
can be overridden by using the "NAME" directive to name the executable file.

68 The FORMAT Directive

FORMAT

WINDOWS

Not all programs can be generated in the "COM™" format. The following rules
must be followed.

1. The program must consist of only one physical segment. Thisimplies
that the size of the program (code and data) must be less than 64k.

2. The program must not contain any segment relocation. A warning
message will beissued by the Open Watcom Linker each time a
segment relocation is encountered.

A DOS"COM™" file cannot contain debugging information. If you wish to
debug aDOS "COM" file, you must use the "SYMPFILE" option to instruct the
Open Watcom Linker to place the debugging information in a separate file.

For more information on DOS executable file formats, see the chapter entitled
"The DOS Executable File Format" on page 201.

tells the Open Watcom Linker to generate a Winl16 (16-bit Windows) executable
file.

The name of the executable file will have extension "exe". If "DLL" (short form
"DL") is specified, a Dynamic Link Library will be generated; the name of the
executable file will also have extension "exe". Note that these default extensions
can be overridden by using the "NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause Windowsto call
an initialization routine the first time the Dynamic Link Library isloaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the
default for Dynamic Link Libraries). If the"INITGLOBAL" option is used with
"OPTION MANYAUTODATA", theinitialization code will be called once for
the first data segment allocated but not for subsequent allocations (thisis
generaly not desirable behaviour and will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause Windows to call
an initialization routine each time the Dynamic Link Library isused by a
process. The"INITINSTANCE" option should be used with "OPTION
MANYAUTODATA" (the default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

Specifying "MEMORY" (short form "MEM") indicates that the application will
run in standard or enhanced mode. If Windows 3.0 is running in standard and

The FORMAT Directive 69

FORMAT

enhanced mode, and "MEMORY" is not specified, awarning message will be
issued. The"MEMORY" specification was used in the transition from Windows
2.0to Windows 3.0. The"MEMORY" specification isignored in Windows 3.1
or later.

Specifying "FONT" (short form "FO") indicates that the proportional -spaced
system font can be used. Otherwise, the old-style mono-spaced system font will
beused. The"FONT" specification was used in the transition from Windows
2.0to Windows 3.0. The"FONT" specification isignored in Windows 3.1 or
later.

For more information on Windows executable file formats, see the chapter
entitled "The Win16 Executable and DLL File Formats' on page 245.

WINDOWS VXD tells the Open Watcom Linker to generate a Windows VD file (Virtua
Device Driver).

The name of the file will have extension "386". Note that this default extension
can be overridden by using the "NAME" directive to name the driver file.

Specifying "DYNAMIC" (short form "DYN") , dynamicaly loadable driver will
be generated (only for Windows 3.11 or 9x). By default the Open Watcom
Linker generate staticaly loadable driver (for Windows 3.x or 9x).

For more information on Windows Virtual Device Driver file format, see the
chapter entitled "The Windows Virtual Device Driver File Format" on page 253.

WINDOWS NT tells the Open Watcom Linker to generate a Win32 executablefile ("PE"
format).

If "TNT" is specified, an executable for the Phar Lap TNT DOS extender is
created. A "PL" format (rather than "PE") executableis created so that the Phar
Lap TNT DOS extender will always run the application (including under
Windows NT).

If "DLL" (short form "DL") is specified, aDynamic Link Library will be
generated in which case the name of the executable file will have extension
"dIl". Note that these default extensions can be overridden by using the
"NAME" directive to name the executablefile.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization
routine to be called the first time the Dynamic Link Library isloaded.

70 The FORMAT Directive

FORMAT

082

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization
routine to be called each time the Dynamic Link Library isreferenced by a
process.

In either case, theinitialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

It is also possible to specify whether the initialization routine isto be called at
DLL termination or not. Specifying "TERMGLOBAL" (short form "TERMG")
will cause the initialization routine to be called when the last instance of the
Dynamic Link Library isterminated. Specifying "TERMINSTANCE" (short
form "TERMI") will cause the initialization routine to be called each time an
instance of the Dynamic Link Library isterminated. Note that theinitialization
routine is passed an argument indicating whether it is being called during DLL
initialization or DLL termination. If "INITINSTANCE" isused and no
termination option is specified, "TERMINSTANCE" is assumed. If
"INITGLOBAL" is used and no termination option is specified,
"TERMGLOBAL" isassumed.

For more information on Windows NT executable file formats, see the chapter
entitled "The Win32 Executable and DLL File Formats' on page 257.

tells the Open Watcom Linker to generate an OS/2 executable file format.

The name of the executable file will have extension "exe". If "LE" is specified,
an early form of the OS/2 32-hit linear executable will be generated. This
executable file format is required by CauseWay DOS extender, Tenberry
Software’ s DOS4G and DOS4GW DOS extenders, and similar products.

In order to improve load time and minimize the size of the executable file, the
0S/2 32-bit linear executable file format was changed. If "LX" or "FLAT"
(short form "FL") is specified, the new form of the OS/2 32-bit linear executable
will be generated. This executable file format is required by the FlashTek DOS
extender and 32-bit OS/2 executables.

If "FLAT", "LX" or "LE" is not specified, an OS/2 16-bit executable will be
generated.

If "DLL" (short form "DL") is specified, aDynamic Link Library will be
generated in which case the name of the executable file will have extension
"dIl". Note that these default extensions can be overridden by using the
"NAME" directive to name the executable file.

The FORMAT Directive 71

FORMAT

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization
routine to be called the first time the Dynamic Link Library isloaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the
default for Dynamic Link Libraries). If the"INITGLOBAL" option is used with
"OPTION MANYAUTODATA", theinitialization code will be called once for
the first data segment allocated but not for subsequent allocations (thisis
generally not desirable behaviour and will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization
routine to be called each time the Dynamic Link Library isreferenced by a
process. The"INITINSTANCE" option should be used with "OPTION
MANYAUTODATA" (the default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

For OS/2 32-hit linear executable files, it is also possible to specify whether the
initialization routineisto be called at DLL termination or not. Specifying
"TERMGLOBAL" (short form "TERMG") will cause the initialization routine
to be called when the last instance of the Dynamic Link Library isterminated.
Specifying "TERMINSTANCE" (short form "TERMI") will cause the
initialization routine to be called each time an instance of the Dynamic Link
Library isterminated. Note that the initialization routine is passed an argument
indicating whether it is being called during DLL initialization or DLL
termination. If "INITINSTANCE" is used and no termination option is
specified, "TERMINSTANCE" isassumed. If "INITGLOBAL" isused and no
termination option is specified, "TERMGLOBAL" is assumed.

If "PM" is specified, a Presentation Manager application will be created. The
application uses the API provided by the Presentation Manager and must be
executed in the Presentation Manager environment.

If "PMCOMPATIBLE" (short form "PMC") is specified, an application
compatible with Presentation Manager will be created. The application can run
inside the Presentation Manager or it can run in a separate screen group. An
application can be of thistypeif it uses the proper subset of OS/2 video,
keyboard, and mouse functions supported in the Presentation Manager
applications. Thisisthe default.

If "FULLSCREEN" (short form "FULL") is specified, an OS/2 full screen
application will be created. The application will run in a separate screen group
from the Presentation Manager.

72 The FORMAT Directive

FORMAT

PHARLAP

If "PHY SDEVICE" (short form "PHY S") is specified, the executablefileis
marked as a physical device driver.

If "VIRTDEVICE" (short form "VIRT") is specified, the executablefileis
marked as avirtual device driver.

For more information on OS/2 executable file formats, see the chapter entitled
"The OS/2 Executable and DLL File Formats' on page 227.

(short form "PHAR") tells the Open Watcom Linker to generate an executable
file that will run under Phar Lap’s 386|DOS-Extender.

There are 4 forms of executablefiles: simple, extended, relocatable and
segmented. If "EXTENDED" (short form "EXT") is specified, an extended
form of the executable file with file extension "exp" will be generated. If "REX"
is specified, arelocatable executable file with file extension "rex" will be
generated. If "SEGMENTED" (short form "SEG") is specified, a segmented
executable file with file extension "exp" will be generated. If neither
"EXTENDED", "REX" or "SEGMENTED" is specified, a simple executable file
with file extension "exp" will be generated. Note that the default file extensions
can be overridden by using the "NAME" directive to name the executablefile.

The simpleform isfor flat model 386 applications. It isthe only format that can
be loaded by earlier versions of 386|DOS-Extender (earlier than 1.2).

The extended form is used for flat model applications that have been linked in a
way which requires amethod of specifying more information for
386|DOS-Extender than possible with the simple form.

Therelocatable form is similar to the smple form. Unique to the rel ocatable
formis an offset relocation table. This allows the loader to load the program at
any location it chooses.

The segmented form is used for embedded system applications like Intel RMX.
These executables cannot be loaded by 386|DOS-Extender.

A simple form of the executable fileis generated in al but the following cases.
1. "EXTENDED" isspecified inthe"FORMAT" directive.
2. The"RUNTIME" directiveis specified. Options specified by the

"RUNTIME" directive can only be specified in the extended form of
the executablefile.

The FORMAT Directive 73

FORMAT

3. The"OFFSET" option is specified. The value specified in the
"OFFSET" option can only be specified in the extended form of the
executablefile.

4. "REX"isspecifiedin the"FORMAT" directive. Inthis case, the
relocatable form will be generated. Y ou must not specify the
"RUNTIME" directive or the "OFFSET" option when generating the
relocatable form.

5. "SEGMENTED" is specified inthe "FORMAT" directive. Inthis
case, the segmented form will be generated.

For more information on Phar Lap executable file formats, see the chapter
entitled "The Phar Lap Executable File Format" on page 235.

NOVELL (short form "NOV") tells the Open Watcom Linker to generate a NetWare
executable file, more commonly called a NetWare Loadable Module (NLM).

NLMs are further classified according to their function. The executable file will
have afile extension that depends on the class of the NLM being generated. The
following describes the classification of NLMs.

LAN

DSK

NAM

MSL

CDM

HAM

74 The FORMAT Directive

instructs the Open Watcom Linker to generate aLAN driver. A
LAN driver isadevice driver for Local Area Network hardware.
A file extension of "lan" is used for the name of the executable file.

instructs the Open Watcom Linker to generate adisk driver. A file
extension of "dsk" is used for the name of the executablefile.

instructs the Open Watcom Linker to generate afile system
name-space support module. A file extension of "nam" is used for
the name of the executablefile.

instructs the Open Watcom Linker to generate a Mirrored Server
Link module. The default file extensionis"mgl"

instructs the Open Watcom Linker to generate a Custom Device
module. The default file extension is"cdm"

instructs the Open Watcom Linker to generate a Host Adapter
module. The default file extension is"ham"

FORMAT

NLM

"number’

instructs the Open Watcom Linker to generate a utility or server
application. Thisisthe default. A file extension of "nlm" isused
for the name of the executablefile.

instructs the Open Watcom Linker to generate a specific type of
NLM using 'number’. Thisisa 32 bit value that corresponds to
Novell allocated NLM types.

These are the current defined values:

0

1

10

11

12

13

Specifies astandard NLM (default extension .NLM)

Specifies adisk driver module (default extension
.DSK)

Specifies a namespace driver module (default
extension .NAM)

Specifiesa LAN driver module (default extension
.LAN)

Specifiesa utility NLM (default extension .NLM)

SpecifiesaMirrored Server Link module (default
.MSL)

Specifies an Operating System module (default
.NLM)

Specifies a Page High OS module (default .NLM)
Specifies aHost Adapter module (default . HAM)
Specifies a Custom Device module (default .CDM)
Reserved for Novell usage

Reserved for Novell usage

Specifies a Ghost module (default .NLM)

Specifies an SMP driver module (default .NLM)

The FORMAT Directive 75

FORMAT

QNX

ELF

14 Specifies a NIOS module (default .NLM)

15 Specifies a ClIOS CAD type module (default .NLM)
16 Specifies a ClOS CL S type module (default .NLM)
21 Reserved for Novell NICI usage

22 Reserved for Novell NICI usage

23 Reserved for Novell NICI usage

24 Reserved for Novell NICI usage

25 Reserved for Novell NICI usage

26 Reserved for Novell NICI usage

27 Reserved for Novell NICI usage

28 Reserved for Novell NICI usage

description isatextua description of the program being linked.

For more information on NetWare executable file formats, see the chapter
entitled "The NetWare O/S Executable File Format" on page 221.

tells the Open Watcom Linker to generate a QNX executablefile.

If "FLAT" (short form "FL") is specified, a 32-hit flat executablefileis
generated.

Under QNX, no file extension is added to the executabl e file name.
Under other operating systems, the name of the executable file will have the
extension "gnx". Note that this default extension can be overridden by using the

"NAME" directive to name the executablefile.

For more information on QNX executable file formats, see the chapter entitled
"The QNX Executable File Format" on page 241.

tells the Open Watcom Linker to generate an ELF format executable file.

ELF format DLLs can also be created.

76 The FORMAT Directive

FORMAT

For more information on ELF executable file formats, see the chapter entitled
"The ELF Executable File Format" on page 217.

If no "FORMAT" directiveis specified, the executable file format will be selected for each of
the following host systems in the way described.

DOS If 16-bit object files are encountered, a 16-bit DOS executable will be created.
If 32-hit object files are encountered, a 32-bit DOS/4G executable will be
created.

0s/2 If 16-hit object files are encountered, a 16-bit OS/2 executable will be created.

If 32-bit object files are encountered, a 32-bit OS2 executable will be created.

QNX If 16-bit object files are encountered, a 16-bit QNX executable will be created.
If 32-hit object files are encountered, a 32-bit QNX executable will be created.

Windows NT If 16-bit object files are encountered, a 16-bit Windows executable will be
created. If 32-bit object files are encountered, a 32-bit Win32 executable will be
created.

Windows 95 If 16-bit object files are encountered, a 16-bit Windows executable will be

created. If 32-bit object files are encountered, a 32-bit Win32 executable will be
created.

The FORMAT Directive 77

HEAPSIZE (0S/2, QNX, Win16, Win32)

3.35 The HEAPSIZE Option
Formats: 0S/2, QNX, Win16, Win32

The "HEAPSIZE" option specifies the size of the heap required by the application. The
format of the "HEAPSIZE" option (short form "H") is as follows.

OPTION HEAPSIZE=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the size of the heap. The default heap sizeis 0 bytes. The maximum value of nis
65536 (64K) for 16-bit applications and 4G for 32-bit applications which is the maximum size
of aphysical segment. Actualy, for aparticular application, the maximum value of nis 64K
or 4G less the size of group "DGROUP".

78 The HEAPSIZE Option

HELP (NetWare)

3.36 The HELP Option

Formats: NetWare

The"HELP" option specifies the file name of an internationalized help file whose language
corresponds to the message file bound to this NLM.

The format of the "HELP" option (short form "HE") is asfollows.

OPTION HELP=hdlp file

where description:

help_file isthe name of the helpfile.

The HELP Option 79

HSHIFT (DOS, 0S/2, QNX, Win16)

3.37 The HSHIFT Option
Formats: DOS, 0S/2, QNX, Win16

The"HSHIFT" defines the relationship between segment and linear address in a segmented
executable. The format of the "HSHIFT" option is as follows.

OPTION HSHIFT=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the number of digits to right shift a 32-bit value containing a segment addressin its
upper 16 bitsin order to convert it to part of alinear address. In more conventional terms, (16
- n) isthe amount to shift a segment value left in order to convert it to part of alinear address.

The"HSHIFT" Option is useful for non-standard segmented architectures that have different
alignment between segments and linear addresses, such asthe IP cores by ARC, Inc. These
cores support a 24-bit addressing mode where segment addresses are shifted 8 hitsto form
part of the linear address. The n value and its semantics match the analogous variable used by
the compiler for computing addresses in the huge memory model.

The default value of nis 12, representing the 4-bit shift used in conventional x86 CPUSs.

80 The HSHIFT Option

IMPFILE (NetWare, 0S/2, Win16, Win32)

3.38 The IMPFILE Option
Formats: NetWare, 0S/2, Win16, Win32

The"IMPFILE" option requests the linker to produce a Open Watcom Library Manager
command file that can be used to create an import library that correspondsto the DLL that is
being generated. This option is useful in situations where the Open Watcom Linker cannot
create an import library file when you have specified the "IMPLIB" option (i.e., the linker
failsto launch Open Watcom Library Manager).

The format of the "IMPFILE" option (short form "IMPF") is as follows.

OPTION IMPFILE[=imp_file]

where description:

imp_file is afile specification for the name of the command file that can be used to create
the import library file using the Open Watcom Library Manager. If no file
extension is specified, no file extension is assumed.

By default, no command fileis generated. Specifying this option causes the linker to generate
an import library command file. The import library command file contains alist of the entry
pointsin your DLL. When this command file is processed by the Open Watcom Library
Manager, an import library file will be produced.

If no file name is specified, the import library command file will have a default file extension
of "Ibc" and the same file name asthe DLL file. Note that the import library command file
will be created in the same directory asthe DLL file. The DLL file path and name can be
specified in the "NAME" directive.

Alternatively, alibrary command file path and name can be specified. The following directive
instructs the linker to generate aimport library command file and call it "mylib.lcf" regardless
of the name of the executablefile.

option inpfile=nylib.Icf

Y ou can a'so specify a path and/or file extension when using the "IMPFILE=" form of the
"IMPFILE" option.

The IMPFILE Option 81

IMPLIB (NetWare, 0S/2, Win16, Win32)

3.39 The IMPLIB Option
Formats: NetWare, 0S/2, Win16, Win32

The"IMPLIB" option requests the linker to produce an import library that corresponds to the
DLL that isbeing generated. The format of the "IMPLIB" option (short form "IMPL") isas
follows.

OPTION IMPLIB[=imp_lib]

where description:

imp_lib isafile specification for the name of the import library file. If no file extension
is specified, afile extension of "lib" is assumed.

By default, no library fileis generated. Specifying this option causes the Open Watcom
Linker to generate an import library file. Theimport library file contains alist of the entry
pointsinyour DLL.

If no file name is specified, the import library file will have a default file extension of "lib"
and the same file name asthe DLL file. Notethat theimport library file will be created in the
same directory asthe DLL file. The DLL file path and name can be specified in the "NAME"
directive.

Alternatively, alibrary file path and name can be specified. The following directive instructs
the linker to generate alibrary file and call it "mylib.imp" regardless of the name of the
executablefile.

option inplib=nylib.inmp

Y ou can also specify apath and/or file extension when using the "IMPLIB=" form of the
"IMPLIB" option.

Note: At present, the linker spawns the Open Watcom Library Manager to create the
import library file.

82 The IMPLIB Option

IMPORT (ELF, NetWare, 0S/2, Win16, Win32)

3.40 The IMPORT Directive
Formats: ELF, NetWare, 0S/2, Win16, Win32

The"IMPORT" directive is used to tell the Open Watcom Linker what symbols are defined
externally in other executables.

3.40.1 IMPORT - 0S/2, Win16, Win32 only

The"IMPORT" directive describes a function that belongs to a Dynamic Link Library. The
format of the "IMPORT" directive (short form "IMP") is asfollows.

IMPORT import{,import}

import ::= internal_name module_name[.entry_name | ordinal]

where description:

internal_name is the name the application used to call the function.

module_name is the name of the Dynamic Link Library. Note that this need not be the same
as the file name of the executable file containing the Dynamic Link Library.
This name corresponds to the name specified by the "MODNAME" option when
the Dynamic Link Library was created.

entry_name isthe actual name of the function as defined in the Dynamic Link Library.

ordinal isthe ordinal value of the function. The ordinal number is an alternate method
that can be used to reference afunction in aDynamic Link Library.

Notes:
1. By default, the Open Watcom C and C++ compilers append an underscore (' ') to
all function names. This should be considered when specifying internal_name and
entry_namein an"IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., i nport ' nmyfunc@’).

The IMPORT Directive 83

IMPORT (ELF, NetWare, 0S/2, Win16, Win32)

The preferred method to resolve references to Dynamic Link Librariesis through the use of
import libraries. See the sections entitled "Using a Dynamic Link Library" on page 231,
"Using aDynamic Link Library" on page 250, or "Using a Dynamic Link Library" on page
261 for more information on import libraries.

3.40.2 IMPORT - ELF only

The "IMPORT" directiveis used to tell the Open Watcom Linker what symbols are defined
externally in other executables. The format of the "IMPORT" directive (short form "IMP") is
asfollows.

IMPORT external_name{,external_name}

where description:
external_name is the name of the external symbol.
Notes:
1. By default, the Open Watcom C and C++ compilers append an underscore (' ') to
all function names. This should be considered when specifying external_namein

an"IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., i nport ' nmyfunc@’).

3.40.3 IMPORT - Netware only

The"IMPORT" directiveis used to tell the Open Watcom Linker what symbols are defined
externaly in other NLMs. The format of the "IMPORT" directive (short form"IMP") isas
follows.

IMPORT external_name{,external_name}

84 The IMPORT Directive

IMPORT (ELF, NetWare, 0S/2, Win16, Win32)

where description:
external_name is the name of the external symbol.

Notes:

1. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., i nport ' nmyfunc@’).

If an NLM contains external symbols, the NLMs that define the external symbols must be
loaded before the NLM that references the external symbolsis|loaded.

The IMPORT Directive 85

INCLUDE

3.41 The @ Directive

The"@" directive instructs the Open Watcom Linker to process directives from an alternate
source. Theformat of the" @" directiveisasfollows.

@directive var
or
@directive file

where description:

directive var isthe name of an environment variable. The directives specified by the value of
directive_var will be processed.

directive_fileisafile specification for the name of alinker directivefile. A file extension of
"Ink" is assumed if no file extension is specified.

The environment variable approach to specifying linker directives allows you to specify
commonly used directives without having to specify them each time you invoke the Open
Watcom Linker. If the environment variable "wlink" is set asin the following example,

set W ink=debug watcom all option map, verbose library math
wink @fink

then each time the Open Watcom Linker isinvoked, full debugging information will be
generated, averbose map file will be created, and the library file "math.lib" will be searched
for undefined references.

A linker directive file is useful, for example, when the linker input consists of alarge number
of object files and you do not want to type their names on the command line each time you
link your program. Note that alinker directive file can also include other linker directive
files.

Let thefile "memos.Ink" be adirective file containing the following lines.

86 The @ Directive

INCLUDE

system my_os
nanme nmenos
file nmenos
file actions

file read
file msg
file pronpt
file memuyr

library \termo\screen
library \term o\keyboard

Win16 only: We must also use the "EXPORT" directive to define the window function. This
is done using the following directive.

export window_function
Consider the following example.

Example:
W i nk @enos

The Open Watcom Linker isinstructed to process the contents of the directive file
"memos.Ink”. The executable image file will be called "memos.exe”. The following object
fileswill be loaded from the current directory.

nmenos. obj
actions. obj
read. obj
nsg. obj
pronpt . obj
menmgr . obj

If any unresolved symbol references remain after all object files have been processed, the
library files "screen.lib" and "keyboard.lib" in the directory "\termio" will be searched (in the
order listed).
Notes:
1. Inthe above example, we did not provide the file extension when the directivefile
was specified. The Open Watcom Linker assumes afile extension of "Ink" if none

is present.

2. Itisnot necessary to list each object file and library with a separate directive. The
following linker directive fileis equivalent.

The @ Directive 87

INCLUDE

system my_os

name menos

file menos, actions, read, nsg, pronpt, nermyr
library \term o\screen,\term o\keyboard

However, if you want to selectively specify what debugging information should be
included, thefirst style of directive file will be easier to use. Thisisillustrated in
the following sample directivefile.

system my_os

name nenos

debug watcom | i nes
file menos

debug wat com al |
file actions

debug watcom | i nes

file read
file msg
file pronmpt
file nmemygr

debug wat com
[ibrary \term o\screen
[ibrary \term o\ keyboard

3. Information for aparticular directive can span directivefiles. Thisisillustrated in
the following sample directive file.

system my_oOs

file menos, actions, read, nsg, pronpt, nemyr
file @bgfiles

library \term o\screen

library \term o\keyboard

The directivefile "dbgfiles.Ink" contains, for example, those object files that are
used for debugging purposes.

88 The @ Directive

INCREMENTAL (ELF, 0S/2, PharLap, QNX, Win16, Win32)

3.42 The INCREMENTAL Option
Formats: ELF, 0S/2, PharLap, QNX, Win16, Win32

The"INCREMENTAL" option can be used to enable incremental linking. Incremental
linking is a process whereby the linker attempts to modify the existing executable file by
changing only those portions for which new object files are provided.

The format of the "INCREMENTAL" option (short form "INC") isasfollows.

OPTION INCREMENTAL[=inc_file_ name]

where description:

inc_file_nameis afile specification for the name of the incremental information file. If no
file extension is specified, afile extension of "ilk" is assumed.

This option engages the incremental linking feature of the linker. This option must be one of
the first options encountered in the list of directives and options supplied to the linker. If the
option is presented too late, the linker will issue a diagnostic message.

By default, the incremental information file has the same name as the program except with an
"ilk" extension unless the "NAME" directive has not been seen yet. If thisisthe case then the
fileiscalled = _wlink.ilk.

Thelinker’ sincremental linking technique is very resistant to changesin the underlying object
files - there are very few cases where an incremental re-link is not possible. The options
"ELIMINATE" and "VFREMOVAL" cannot be used at the same time asincremental linking.

It is possible, over time, to accumulate unneeded functions in the executable by using
incremental linking. To guarantee an executable of minimum size, you can cause a full relink
by deleting the ".ilk" file or by not specifying the "INCREMENTAL" option.

Do not use a post processor like the Open Watcom Resource Compiler on the executable file
since thiswill damage the data structures maintained by the linker. Add resources to the
executable file using the "RESOURCE" option which is described in "The RESOURCE
Option" on page 160.

The INCREMENTAL Option 89

INCREMENTAL (ELF, 0S/2, PharLap, QNX, Win16, Win32)

Note: Only DWARF debugging information is supported with incremental linking.

90 The INCREMENTAL Option

INTERNALRELOCS (05/2)

3.43 The INTERNALRELOCS Option
Formats: 0S/2

The"INTERNALRELOCS" option is used with LX format executables under 32-bit OS/2.
By default, OS/2 executables do not contain internal relocation information and OS/2
Dynamic Link Libraries do contain internal relocation information. This option causes the
Open Watcom Linker to include internal relocation information in OS/2 LX format
executables.

The format of the "INTERNALRELOCS" option (short form "INT") isasfollows.

OPTION INTERNALRELOCS

The INTERNALRELOCS Option 91

LANGUAGE

3.44 The LANGUAGE Directive

Formats: All

The"LANGUAGE" directiveis used to specify the language in which stringsin the Open
Watcom Linker directives are specified. The format of the "LANGUAGE" directive (short
form "LANG") isasfollows.

LANGUAGE lang

lang ::= JAPANESE | CHINESE | KOREAN

JAPANESE (short form "JA") specifies that strings are to be handled asif they contained
characters from the Japanese Double-Byte Character Set (DBCS).

CHINESE (short form "CH") specifies that strings are to be handled asiif they contained
characters from the Chinese Double-Byte Character Set (DBCS).

KOREAN (short form "KQO") specifies that strings are to be handled as if they contained
characters from the Korean Double-Byte Character Set (DBCS).

92 The LANGUAGE Directive

LIBFILE

3.45 The LIBFILE Directive

Formats: All

The"LIBFILE" directiveis used to specify the object files that the Open Watcom Linker isto
process. Theformat of the "LIBFILE" directive (short form "LIBF") isasfollows.

LIBFILE obj_spec{,obj_spec}

obj_spec ::=obj_file|library file

where description:

obj_file isafile specification for the name of an object file. If nofile extensionis
specified, afile extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Open Watcom Linker. Also, if you are running
aDOS, 0OS/2 or Windows-hosted version of the Open Watcom Linker, the
object file specification can contain wild cards (*, ?). A fileextension of "0" is
assumed if you are running a UNIX-hosted version of the Open Watcom Linker.

library file isafile specification for the name of alibrary file. Note that the file extension
of the library file (usually "lib") must be specified; otherwise an object file will
be assumed. When alibrary fileis specified, all object filesin thelibrary are
included (whether required or not).

The difference between the "LIBFILE" directive and the "FILE" directiveis as follows.

1. When searching for an object or library file specified in a"LIBFILE" directive, the
current working directory will be searched first, followed by the paths specified in
the "LIBPATH" directive, and finally the paths specified in the "LIB" environment
variable. Notethat if the object or library file name contains a path, only the
specified path will be searched.

2. Object or library file names specified in a"LIBFILE" directive will not be used to
create the name of the executable file when no "NAME" directive is specified.

Essentially, object files that appear in "LIBFILE" directives are viewed as components of a
library that have not been explicitly placed in alibrary file.

Consider the following linker directivefile.

The LIBFILE Directive 93

LIBFILE

i bpath \libs
libfile nystart
path \objs

file filel, file2

The Open Watcom Linker isinstructed to process the following object files:
\libs\nystart. obj
\objs\filel. obj
\objs\fil e2. obj

Note that the executable file will have file name "filel" and not "mystart".

94 The LIBFILE Directive

LIBPATH

3.46 The LIBPATH Directive

Formats: All

The"LIBPATH" directiveis used to specify the directories that are to be searched for library
files appearing in subsequent "LIBRARY ™" directives and object files appearing in subsequent
"LIBFILE" directives. Theformat of the"LIBPATH" directive (short form "LIBP") isas
follows.

LIBPATH [path_name{;path_name}]

where description:
path_name isapath name.

Consider adirective file containing the following linker directives.

file test

i bpath \math
library trig
libfile newsin

First, the Open Watcom Linker will process the object file "test.obj” from the current working
directory. The object file "newsin.obj" will then be processed, searching the current working
directory first. If "newsin.obj" is not in the current working directory, the "\math" directory
will be searched. If any unresolved references remain after processing the object files, the
library file"trig.lib" will be searched. If thefile"trig.lib" does not exist in the current
working directory, the "\math" directory will be searched.

Itisalso possible to specify alist of pathsina"LIBPATH" directive. Consider the following
example.

i bpath \ newrat h; \ mat h
library trig

When processing undefined references, the Open Watcom Linker will attempt to process the
library file"trig.lib" in the current working directory. If "trig.lib" does not exist in the current
working directory, the "\newmath" directory will be searched. If "trig.lib" does not exist in
the "\newmath" directory, the "\math" directory will be searched.

The LIBPATH Directive 95

LIBPATH

If the name of alibrary file appearing in a"LIBRARY" directive or the the name of an object
file appearing in a"LIBFILE" directive contains a path specification, only the specified path
will be searched.

Note that

i bpat h pathl
i bpat h pat h2

is equivalent to the following.

i bpat h pat h2; pat hl

96 The LIBPATH Directive

LIBRARY

3.47 The LIBRARY Directive

Formats: All

The"LIBRARY" directiveis used to specify thelibrary files to be searched when unresolved
symbols remain after processing all specified input object files. The format of the
"LIBRARY" directive (short form "L") is asfollows.

LIBRARY library file{,library file}

where description:

library file isafile specification for the name of alibrary file. If no file extensionis
specified, afile extension of "lib" is assumed.

Consider the following example.

Example:
wlink system my os file trig lib \math\trig, \cmplx\trig

The Open Watcom Linker is instructed to process the following object file:
trig. obj

If any unresolved symbol references remain after all object files have been processed, the
following library fileswill be searched:

\math\trig.lib
\cmpl x\trig.lib

More than one"LIBRARY" directive may be used. The following exampleis equivalent to
the preceding one.

The LIBRARY Directive 97

LIBRARY

Example:
wlink system my_os f trig lib \math\trig lib \cmplx\trig

Thus other directives may be placed between lists of library files.

3.47.1 Searching for Libraries Specified in Environment Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for
library files. The"LIB" environment variable can be set using the "set" command as follows:

set lib=\graphics\lib;\utility

Consider the following "LIBRARY" directive and the above definition of the"LIB"
environment variable.

[ibrary \nmylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives,
the Open Watcom Linker will resolve these references by searching the following librariesin

the specified order.
1. thelibrary file "\mylibs\util .lib"
2. thelibrary file "graph.lib" in the current directory
3. thelibrary file "\graphics\lib\graph.lib"
4. thelibrary file "\utility\graph.lib"

Notes:

1. If alibrary file specified in a"LIBRARY" directive contains an absolute path
specification, the Open Watcom Linker will not search any of the paths specified in
the "LIB" environment string for the library file. Under QN X, an absolute path
specification is one that beginsthe "/" character. Under all other operating systems,
an absolute path specification is one that begins with a drive specification or the "\"
character.

2. Oncealibrary file has been found, no further elements of the "LIB" environment
variable are searched for other libraries of the same name. That is, if thelibrary file
"\graphics\lib\graph.lib" exists, the library file "\utility\graph.lib" will not be
searched even though unresolved references may remain.

98 The LIBRARY Directive

LIBRARY

3.47.2 Converting Libraries Created using Phar Lap 386ILIB

Phar Lap’slibrarian, 386|L1B, creates libraries whose dictionary is a different format from the
one used by other librarians. For this reason, linking an application using the Open Watcom
Linker with libraries created using 386|L1B will not work. Library files created using 386|LIB
must be converted to the form recognized by the Open Watcom Linker. Thisisachieved by
issuing the following WLIB command.

Wib newib +pharlib.lib

The library file "pharlib.lib" isalibrary created using 386|LIB. Thelibrary file "newlib.lib"
will be created so that the Open Watcom Linker can now processit.

The LIBRARY Directive 99

LINEARRELOCS (QNX)

3.48 The LINEARRELOCS Option
Formats: QNX

The"LINEARRELOCS" option instructs the linker to generate offset fixups in addition to the
normal segment fixups. The offset fixups alow the system to move pieces of code and data
that were loaded at a particular offset within a segment to another offset within the same

segment.

The format of the "LINEARRELOCS" option (short form "LI") is as follows.

OPTION LINEARRELOCS

100 The LINEARRELOCS Option

LINKVERSION (Win32)

3.49 The LINKVERSION Option
Formats: Win32

The"LINKVERSION" option specifies that the linker should apply the given major and
minor version numbers to the PE format image header. If aversion number is not specified,
then the built-in value of 2.18 isused. The format of the "LINKVERSION" option (short

form "LINKV") isasfollows.

OPTION LINKVERSION = major[.minor]

The LINKVERSION Option 101

LONGLIVED (QNX)

3.50 The LONGLIVED Option
Formats: QNX

The"LONGLIVED" option specifies that the application being linked will reside in memory,
or be active, for along period of time (e.g., background tasks). The memory manager,
knowing an application is"LONGLIVED", allocates memory for the application so asto
reduce fragmentation.

The format of the "LONGLIVED" option (short form "LO") is asfollows.

OPTION LONGLIVED

102 The LONGLIVED Option

MANGLEDNAMES

3.51 The MANGLEDNAMES Option

Formats: All

The"MANGLEDNAMES' option should only be used if you are developing a Open Watcom
C++ application. Due to the nature of C++, the Open Watcom C++ compiler generates
mangled names for symbols. A mangled name for a symbol includes the following.

1. symbol name
2. scoping information
3. typing information

Thisinformation is stored in a cryptic form with the symbol. When the linker encounters a
mangled name in an object file, it formats the above information and produces this namein
the map file.

If you would like the linker to produce the mangled name as it appeared in the object file,
specify the "MANGLEDNAMES" option.

The format of the "MANGLEDNAMES" option (short form "MANG") isasfollows.

OPTION MANGLEDNAMES

The MANGLEDNAMES Option 103

MANYAUTODATA (0S/2, Win16)

3.52 The MANYAUTODATA Option
Formats: 0S/2, Win16

The"MANYAUTODATA" option specifies that a copy of the automatic data segment
(default data segment defined by the group "DGROUP"), for the program module or Dynamic
Link Library (DLL) being created, is made for each instance. The format of the
"MANYAUTODATA" option (short form "MANY") isas follows.

OPTION MANYAUTODATA

The default for a program moduleis"MANYAUTODATA" and for a Dynamic Link Library
is"ONEAUTODATA". If you do not want the data area of a DLL to be shared across
multiple applications, then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit
DLLs.

Y ou should also see the related section entitled "The FORMAT Directive" on page 68 for
information on the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and
"TERMGLOBAL" DLL attributes.

104 The MANYAUTODATA Option

MAP

3.53 The MAP Option

Formats: All

The"MAP" option controls the generation of amap file. The format of the "MAP" option
(short form "M") is asfollows.

OPTION MAP[=map_file]

where description:

map_file isafile specification for the name of the map file. If no file extensionis
specified, afile extension of "map" is assumed.

By default, no map file is generated. Specifying this option causes the Open Watcom Linker
to generate amap file. The map fileissimply amemory map of your program. That is, it
specifies the relative location of all global symbolsin your program. The map file al'so
contains the size of your program.

If no file name is specified, the map file will have a default file extension of "map" and the
same file name as the executable file. Note that the map file will be created in the current
directory even if the executable file name specified in the "NAME" directive contains a path
specification.

Alternatively, afile name can be specified. The following directive instructs the linker to
generate amap file and call it "myprog.map" regardless of the name of the executablefile.

opti on map=mnypr og

Y ou can also specify a path and/or file extension when using the "MAP=" form of the "MAP"
option.

The MAP Option 105

MAXDATA (PharLap)

3.54 The MAXDATA Option

Formats: PharLap

The format of the "MAXDATA" option (short form "MAXD") is as follows.

OPTION MAXDATA=N

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the maximum number of bytes, in addition to the memory required by executable
image, that may be allocated by 386|DOS-Extender at the end of the loaded executable image.
No more than n bytes will be allocated.

If the"MAXDATA" optionis not specified, a default value of hexadecimal ffffffff is

assumed. This means that 386|DOS-Extender will allocate al available memory to the
program at load time.

106 The MAXDATA Option

MAXERRORS

3.55 The MAXERRORS Option

Formats: All

The "MAXERRORS" option can be used to set alimit on the number of error messages
generated by the linker. Note that this does not include warning messages. When thislimit is
reached, the linker will issue afatal error and terminate.

The format of the "MAXERRORS' option (short form "MAXE") isas follows.

OPTION MAXERRORS=N

where description:

n is the maximum number of error messages issued by the linker.

The MAXERRORS Option 107

MESSAGES (NetWare)

3.56 The MESSAGES Option

Formats: NetWare

The "MESSAGES" option specifies the file name of an internationalized message file that
contains the default messages for the NLM. Thisis the name of the default message file to
load for NLMs that are enabled. Enabling allows the same NLM to display messagesin
different languages by switching message files.

The format of the "MESSAGES" option (short form "MES") is as follows.

OPTION MESSAGES=mgg _file

where description:

msg_file is the name of the message file.

108 The MESSAGES Option

MINDATA (PharLap)

3.57 The MINDATA Option

Formats: PharLap

The format of the "MINDATA" option (short form "MIND") is as follows.

OPTION MINDATA=N

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the minimum number of bytes, in addition to the memory required by executable
image, that must be allocated by 386|DOS-Extender at the end of the loaded executable
image. If n bytes are not available, the program will not be executed.

If the"MINDATA" option is not specified, a default value of zero is assumed. This means

that 386|DOS-Extender will load the program as long as there is enough memory for the load
image; no extramemory is required.

The MINDATA Option 109

MODNAME (0S/2, Win16, Win32)

3.58 The MODNAME Option
Formats: 0S/2, Win16, Win32

The"MODNAME" option specifies a name to be given to the module being created. The
format of the "MODNAME" option (short form "MODN?") is as follows.

OPTION MODNAME=module_name

where description:

module_nameisthe name of a Dynamic Link Library.

Once a module has been loaded (whether it be a program module or a Dynamic Link Library),
mod_name is the name of the module known to the operating system. If the "MODNAME"

option is not used to specify a module name, the default module name is the name of the
executable file without the file extension.

110 The MODNAME Option

MODFILE

3.59 The MODFILE Directive

Formats: All

The"MODFILE" directive instructs the linker that only the specified object files have
changed. The format of the "MODFILE" directive (short form "MODF") is as follows.

MODFILE obj_file{,0bj_file}

where description:

obj_file isafile specification for the name of an object file. If nofile extensionis
specified, afile extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Open Watcom Linker. Also, if you are running
aDOS, 0S/2 or Windows-hosted version of the Open Watcom Linker, the
object file specification can contain wild cards (*, ?). A file extension of "0" is
assumed if you are running a UNIX-hosted version of the Open Watcom Linker.

This directiveis used only in concert with incremental linking. This directive tells the linker

that only the specified object files have changed. When this option is specified, the linker will
not check the dates on any of the object files or libraries when incrementally linking.

The MODFILE Directive 111

MODTRACE

3.60 The MODTRACE Directive

Formats: All

The"MODTRACE" directive instructs the Open Watcom Linker to print alist of all modules
that reference the symbols defined in the specified modules. The format of the
"MODTRACE" directive (short form "MODT") is as follows.

MODTRACE module_name{,module_name}

where description:
module_name is the name of an object module defined in an object or library file.
Theinformation is displayed in the map file. Consider the following example.

Example:
wlink system my os op map file test 1lib math modt trig

If the module "trig" defines the symbols"sin" and "cos’, the Open Watcom Linker will list, in
the map file, all modules that reference the symbols"sin" and "cos".

112 The MODTRACE Directive

MODULE (ELF, NetWare)

3.61 The MODULE Directive
Formats: ELF, NetWare

The"MODULE" directive is used to specify the DLLs or NLMs to be loaded before this
executable isloaded. The format of the "MODULE" directive (short form "MODU") isas
follows.

MODULE module_name{,module_name}

where description:

module_nameisthe file name of aDLL or NLM.

WARNING! Versions 3.0 and 3.1 of the NetWare operating system do not support the
automatic loading of modules specified in the "MODULE" directive. You must load them
manually.

The MODULE Directive 113

MULTILOAD (NetWare)

3.62 The MULTILOAD Option

Formats: NetWare

The"MULTILOAD" option specifies that the module can be loaded more than once by a
"load" command. The format of the "MULTILOAD" option (short form "MULTIL") isas
follows.

OPTION MULTILOAD

If the"MULTILOAD" option is not specified, it will not be possible to load the module more
than once using the "load" command.

114 The MULTILOAD Option

NAME

3.63 The NAME Directive

Formats: All

The"NAME" directive is used to provide a name for the executable file generated by the
Open Watcom Linker. The format of the "NAME" directive (short form "N") is as follows.

NAME exe file
where description:
exe file isafile specification for the name of the executable file. Under UNIX, or if the

"NOEXTENSION" option was specified, no file extension is appended. Inall
other cases, afile extension suitable for the current executable file format is
appended if no file extension is specified.

Consider the following example.

Example:
wlink system my os name myprog file test, test2, test3

Thelinker isinstructed to generate an executable file called "myprog.exe" if you are running a
DOS, OS2 or Windows-hosted version of the linker. If you are running a UNIX-hosted
version of the linker, or the "NOEXTENSION" option was specified, an executable file called
"myprog” will be generated.

Notes:

1. Nofile extension was given when the executable file name was specified. The
linker assumes a file extension that depends on the format of the executable file
being generated. If you are running a UNIX-hosted version of the linker, or the
"NOEXTENSION" option was specified, no file extension will be assumed. The
section entitled "The FORMAT Directive" on page 68 describes the "FORMAT"
directive and how the file extension is chosen for each executable file format.

2. If no"NAME" directiveis present, the executable file will have the file name of the
first object file processed by the linker. If the first object file processed is called
"test.obj" and no "NAME" directive is specified, an executable file called "test.exe"
will be generated if you are running a DOS or OS/2-hosted version of the linker. |If

The NAME Directive 115

NAME

you are running a UNIX-hosted version of the linker, or the "NOEXTENSION"
option was used, an executable file called "test" will be generated.

116 The NAME Directive

NAMELEN

3.64 The NAMELEN Option

Formats: All

The"NAMELEN" option tells the Open Watcom Linker that all symbols must be uniquely
identified in the number of characters specified or less. If any symbol fails to satisfy this
condition, awarning message will be issued. The warning message will state that a symbol
has been defined more than once.

The format of the "NAMELEN" option (short form "NAMEL") is asfollows.

OPTION NAMELEN=n

where description:
n represents avalue. The complete form of n isthe following.
[0x] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.
Some computer systems, for example, require that al global symbols be uniquely identified in

8 characters. By specifying an appropriate value for the "NAMELEN" option, you can ease
the task of porting your application to other computer systems.

The NAMELEN Option 117

NEWFILES (0S/2)

3.65 The NEWFILES Option
Formats: 0S/2

The "NEWFILES" option specifies that the application uses the high-performance file system.
Thisoption is applicable to 16-bit OS/2 applications only. The format of the "NEWFILES"
option (short form "NEWF") is as follows.

OPTION NEWFILES

118 The NEWFILES Option

NEWSEGMENT (DOS, 0S/2, QNX, Win16)

3.66 The NEWSEGMENT Directive
Formats: DOS, 0S/2, QNX, Win16

Thisdirectiveisintended for 16-bit segmented applications. By default, the Open Watcom
Linker automatically groupslogical code segments into physical segments. By default, these
segments are 64K bytesin size. However, the "PACKCODE" option can be used to specify a
maximum size for all physical segments that is smaller than 64K bytes.

The "NEWSEGMENT" directive provides an aternate method of grouping code segments
into physical segments. By placing this directive after a sequence of "FILE" directives, all
code segments appearing in object modules specified by the sequence of "FILE" directives
will be packed into aphysical segment. Note that the size of a physical segment may vary in
size. Theformat of the "NEWSEGMENT" directive (short form "NEW") is as follows.

NEWSEGMENT

Consider the following example.

file filel, file2, file3

newsegment
file file4d
file fileb

Code segments from filel, file2 and file3 will be grouped into one physical segment. Code
segments from file4 and file5 will be grouped into another physical segment.

Note that code segments extracted from library files will be grouped into physical segments as

well. The size of these physical segmentsis determined by the "PACKCODE" option and is
64k by default.

The NEWSEGMENT Directive 119

NLMFLAGS (NetWare)

3.67 The NLMFLAGS Option

Formats: NetWare

The"NLMFLAGS' option is used to set bitsin the flags field of the header of the Netware
executable file. Theformat of the "NLMFLAGS" option (short form "NLMF") is as follows.

OPTION NLMFLAGS=some_value

where description:

some value isan integer valuethat is OR' ed into the flags field of the header of the Netware
executable.

120 The NLMFLAGS Option

NOAUTODATA (0S/2, Win16)

3.68 The NOAUTODATA Option
Formats: 0S/2, Win16

The"NOAUTODATA" option specifies that no automatic data segment (default data segment
defined by the group "DGROUP"), exists for the program module or Dynamic Link Library
being created. This option appliesto 16-bit applications only. The format of the
"NOAUTODATA" option (short form "NOA") isas follows.

OPTION NOAUTODATA

The NOAUTODATA Option 121

NODEFAULTLIBS

3.69 The NODEFAULTLIBS Option

Formats: All

Specia object module records that specify default libraries are placed in object files generated
by Open Watcom compilers. These libraries reflect the memory and floating-point model that
a source file was compiled for and are automatically searched by the Open Watcom Linker
when unresolved symbols are detected. These libraries can exist in the current directory, in
one of the paths specified in "LIBPATH" directives, or in one of the paths specified in the

L 1B environment variable.

Note that al library files that appear in a"LIBRARY" directive are searched before default
libraries. The"NODEFAULTLIBS' option instructs the Open Watcom Linker to ignore
default libraries. That is, only libraries appearing in a"LIBRARY" directive are searched.

The format of the "NODEFAULTLIBS" option (short form "NOD") is as follows.

OPTION NODEFAULTLIBS

122 The NODEFAULTLIBS Option

NOEXTENSION

3.70 The NOEXTENSION Option

Formats: All

The "NOEXTENSION" option suppresses automatic addition of an extension to the name of
the executable file generated by Open Watcom Linker. This affects both names specified

explicitly through the "NAME" directive as well as default names chosen in the absence of a
"NAME" directive.

The format of the "NOEXTENSION" option (short form "NOEXT") is as follows.

OPTION NOEXTENSION

The NOEXTENSION Option 123

NOINDIRECT (DOS)

3.71 The NOINDIRECT Option
Formats: DOS

The "NOINDIRECT" option suppresses the generation of overlay vectors for symbolsthat are
referenced indirectly (their address is taken) when the module containing the symbol is not an

ancestor of at least one module that indirectly references the symbol. This can greatly reduce

the number of overlay vectors and is a safe optimization provided there are no indirect callsto
these symbols. If, for example, the set of symbolsthat are called indirectly is known, you can
usethe "VECTOR" option to force overlay vectors for these symbols.

The format of the "NOINDIRECT" option (short form "NOI") is as follows.

OPTION NOINDIRECT

For more information on overlays, see the section entitled "Using Overlays' on page 204.

124 The NOINDIRECT Option

NORELOCS (QNX, Win32)

3.72 The NORELOCS Option
Formats: QNX, Win32

The "NORELOCS" option specifies that no relocation information is to be written to the
executable file. When the "NORELOCS" option is specified, the executable file can only be
run in protected mode and will not runin real mode. In real mode, the rel ocation information
isrequired; in protected mode, the relocation information is not required unless your
application isrunning at privilege level 0.

The format of the "NORELOCS" option (short form "NOR") is as follows.

OPTION NORELOCS

where description:

NORELOCS tells the Open Watcom Linker not to generate relocation information.

The NORELOCS Option 125

NOSTDCALL (Win32)

3.73 The NOSTDCALL Option
Formats: Win32

The"NOSTDCALL" option specifies that the characters unique to the __stdcall calling
convention be trimmed from all of the symbols that are exported from the DLL being created.
The format of the "NOSTDCALL" option (short form "NOSTDC") is as follows.

OPTION NOSTDCALL

Considering the following declarations.

Example:
short PASCAL __export Functionl(short varl,
| ong varl ong,
short var2);

short PASCAL __export Function2(long varlong,
short var2);

Under ordinary circumstances, these __ stdcall symbols are mappedto " Functionl@12" and
" Function2@8" respectively. The"@12" and " @8" reflect the number of bytesin the
argument list (short is passed asint). When the "NOSTDCALL" option is specified, these
symbols are stripped of the" " and "@xx" adornments. Thus they are exported from the DLL
as "Function1" and "Function2".

This option makes it easier to access functions exported from DLLSs, especially when using
other software languages such as FORTRAN which do not add on the __stdcall adornments.

Note: Usethe"IMPLIB" option to create an import library for the DLL which can be useg
with software languages that add onthe __stdcall adornments.

126 The NOSTDCALL Option

NOVECTOR (DOS)

3.74 The NOVECTOR Directive
Formats: DOS

The"NOVECTOR" directive forces the Open Watcom Linker to not generate an overlay
vector for the specified symbols. The format of the "NOVECTOR" directive (short form
"NOV") isasfollows.

NOVECTOR symbol_name{,symbol _name}

where description:
symbol_nameis asymbol name.
Thelinker will create an overlay vector in the following cases.

1. If afunctioninsection A callsafunctionin section B and section B is not an
ancestor of section A, an overlay vector will be generated for the function in
section B. See the section entitled "Using Overlays' on page 204 for adescription
of ancestor.

2. If aglobal symbol’s addressis referenced (except by adirect call) and that symbol
isdefined in an overlay section, an overlay vector for that symbol will be
generated.

Note that in the latter case, more overlay vectors may be generated that necessary. Suppose
section A contains three global functions, f, g and h. Function f passes the address of function
g to function h who can then calls function g indirectly. Also, suppose function g isonly
called from sections that are ancestors of section A. The linker will generate an overlay
vector for function g even though noneis required. In such a case, the "NOVECTOR"
directive can be used to remove the overhead associated with calling a function through an
overlay vector.

The NOVECTOR Directive 127

OBJALIGN (Win32)

3.75 The OBJALIGN Option
Formats: Win32

The"OBJALIGN" option specifies the alignment for objects in the executable file. The
format of the "OBJALIGN" option (short form "OBJA") is asfollows.

OPTION OBJALIGN=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n must be avalue that is a power of 2 and is between 16 bytes and 256
megabytesinclusive. The default is 64k.

128 The OBJALIGN Option

OLDLIBRARY (0S/2, Win16, Win32)

3.76 The OLDLIBRARY Option
Formats: 0S/2, Win16, Win32

The"OLDLIBRARY" option is used to preserve the export ordinals for successive versions of
aDynamic Link Library. This ensuresthat any application that references functionsin a
Dynamic Link Library by ordinal will continue to execute correctly. The format of the
"OLDLIBRARY" option (short form "OLD") isas follows.

OPTION OLDLIBRARY=dIl_name

where description:

dil_name isafile specification for the name of a Dynamic Link Library. If no file
extension is specified, afile extension of "DLL" is assumed.

Only the current directory or a specified directory will be searched for Dynamic Link
Libraries specified in the "OLDLIBRARY" option.

The OLDLIBRARY Option 129

OFFSET (0S/2, PharLap, QNX, Win32)

3.77 The OFFSET Option
Formats: 0S/2, PharLap, QNX, Win32

For OS2 and Win32 applications, the "OFFSET" option specifies the preferred base linear
address at which the executable or DLL will be loaded.

For 32-bit PharLap and QNX applications, the "OFFSET" option specifies the offset in the
program’ s segment in which the first byte of code or datais loaded.

3.77.1 OFFSET - 0S/2, Win32 only

The "OFFSET" option specifies the preferred base linear address at which the executable or
DLL will beloaded. The Open Watcom Linker will relocate the application for the specified
base linear address so that when it is loaded by the operating system, no relocation will be
required. This decreases the load time of the application.

If the operating system is unable to load the application at the specified base linear address, it
will load it at a different location which will increase the load time since a rel ocation phase
must be performed.

The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description:

n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

The"OFFSET" option is used to specify the base linear address (in bytes) at which the
program is loaded and must be a multiple of 64K. The linker will round the value up to a
multiple of 64K if it isnot already a multiple of 64K. The default base linear addressis 64K
for OS2 executables and 4096K for Win32 executables.

130 The OFFSET Option

OFFSET (0S/2, PharLap, QNX, Win32)

This option is most useful for improving the load time of DLLS, especially for an application
that uses multiple DLLs.

3.77.2 OFFSET - PharLap only

The "OFFSET" option specifies the offset in the program’ s segment in which the first byte of
code or dataisloaded. The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K.
The Open Watcom Linker will round the value up to amultiple of 4K if itisnot aready a
multiple of 4K.

It is possible to detect NULL pointer references by linking the program at an offset whichisa
multiple of 4K. Usually an offset of 4K is sufficient.

Example:
option of fset =4k

When the program is loaded by 386|DOS-Extender, the pages skipped by the "OFFSET"

option are not mapped. Any reference to an unmapped area (such asaNULL pointer) will
cause a page fault preventing the NULL reference from corrupting the program.

3.77.3 OFFSET - QNX only

The"OFFSET" option specifies the offset in the program’s segment in which the first byte of
code or dataisloaded. This option does not apply to 16-bit QNX applications. The format of
the "OFFSET" option (short form "OFF") is as follows.

The OFFSET Option 131

OFFSET (0S/2, PharLap, QNX, Win32)

OPTION OFFSET=n

where description:

n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K.
The Open Watcom Linker will round the value up to amultiple of 4K if it isnot already a
multiple of 4K. The following describes a use of the "OFFSET" option.

It is possible to detect NULL pointer references by linking the program at an offset whichisa
multiple of 4K. Usually an offset of 4K is sufficient.

Example:
option of fset=4k

When the program is loaded, the pages skipped by the "OFFSET" option are not mapped.

Any reference to an unmapped area (such asa NULL pointer) will cause a page fault
preventing the NULL reference from corrupting the program.

132 The OFFSET Option

ONEAUTODATA (0S/2, Win16)

3.78 The ONEAUTODATA Option
Formats: 0S/2, Win16

The"ONEAUTODATA" option specifies that the automatic data segment (default data
segment defined by the group "DGROUFP"), for the program module or Dynamic Link Library
(DLL) being created, will be shared by all instances. The format of the "ONEAUTODATA"
option (short form "ONE") is as follows.

OPTION ONEAUTODATA

The default for aDynamic Link Library is"ONEAUTODATA" and for a program moduleis
"MANYAUTODATA". If you do not want the data area of a DLL to be shared across
multiple applications, then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit
DLLs.

Y ou should also see the related section entitled "The FORMAT Directive" on page 68 for

information on the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and
"TERMGLOBAL" DLL attributes.

The ONEAUTODATA Option 133

OPTION

3.79 The OPTION Directive

Formats: All

The"OPTION" directiveis used to specify options to the Open Watcom Linker. The format
of the"OPTION" directive (short form "OP") is as follows.

OPTION option{,option}

where description:
option isany of the linker options available for the executable format that is being
generated.

134 The OPTION Directive

OPTLIB

3.80 The OPTLIB Directive

Formats: All

The"OPTLIB" directive is used to specify the library filesto be searched when unresolved
symbols remain after processing all specified input object files. The format of the "OPTLIB"
directive (no short form) is as follows.

OPTLIB library file{ library_file}

where description:

library file isafile specification for the name of alibrary file. If no file extensionis
specified, afile extension of "lib" is assumed.

This directiveis similar to the "LIBRARY" directive except that the linker will not issue a
warning message if the library file cannot be found.

Consider the following example.

Example:
wlink system my_os file trig optlib \math\trig, \cmplx\trig

The Open Watcom Linker is instructed to process the following object file:
trig.obj

If any unresolved symbol references remain after all object files have been processed, the
following library files will be searched:

\math\trig.lib
\cmpl x\trig.lib

More than one "OPTLIB" directive may be used. The following exampleisequivalent to the
preceding one.

The OPTLIB Directive 135

OPTLIB

Example:

wlink system my_os f trig optlib \math\trig optlib
\crmpl x\trig

Thus other directives may be placed between lists of library files.

3.80.1 Searching for Optional Libraries Specified in Environment

Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for
library files. The"LIB" environment variable can be set using the "set" command as follows:

set

i b=\graphics\lib;\utility

Consider the following "OPTLIB" directive and the above definition of the "LIB"
environment variable.

optlib \mylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives,
the Open Watcom Linker will resolve these references by searching the following librariesin
the specified order.

AwdE

Notes:

thelibrary file "\mylibs\util.lib"

thelibrary file "graph.lib" in the current directory
thelibrary file "\graphics\lib\graph.lib"
thelibrary file "\utility\graph.lib"

If alibrary file specified in a"OPTLIB" directive contains an absolute path
specification, the Open Watcom Linker will not search any of the paths specified in
the "LIB" environment string for the library file. On UNIX platforms, an absolute
path specification is one that beginsthe "/" character. On all other hosts, an
absolute path specification is one that begins with a drive specification or the "\"
character.

Once alibrary file has been found, no further elements of the "LIB" environment
variable are searched for other libraries of the same name. That is, if thelibrary file
"\graphics\lib\graph.lib" exists, the library file "\utility\graph.lib" will not be
searched even though unresolved references may remain.

136 The OPTLIB Directive

ORDER

3.81 The ORDER Directive

Formats: All

The "ORDER" directive is used to specify the order in which classes are placed into the
output image, and the order in which segments are linked within aclass. The directive can
optionally also specify the starting address of a class or segment, control whether the segment
appears in the output image, and facilitate copying of data from one segment to another. The
"ORDER" Directiveis primarily intended for embedded (ROMable) targets that do not run
under an operating system, or for other special purpose applications. The format of the
"ORDER" directive (short form "ORD") is as follows.

ORDER {CLNAME class name[class_options]|}+

class options::= [SEGADDR=n][OFFSET=n][copy_option][NOEMI T]{seglist}
copy_option ::=[COPY source_class hame]
seglist := {SEGMENT seg_name [SEGADDR=N][OFFSET=n][NOEMI T]}+

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

class_ hame isthe name of a class defined in one or more object files. If the classis not
defined in an object file, the class name and all associated options are ignored.
Note that the "ORDER" directive does not create classes or segments. Classes
specified with "CLNAME" keywords will be placed in the output image in the
order listed. Any classesthat are not listed will be placed after the listed ones.

SEGADDR=N (short form "SEGA") specifies the segment portion of the starting address of
the class or segment in the output image. It is combined with "OFFSET" to
represent a unique linear address. "SEGADDR" is only valid for segmented
formats. Itsusein other contextsis undefined. The "HSHIFT" value affects
how the segment value is converted to alinear address.

The ORDER Directive 137

ORDER

OFFSET=n (short form "OFF") specifies the offset portion of the starting address of the

COPY

NOEMIT

SEGMENT

class or segment in the output image. It is combined with "SEGADDR" to
represent a unique linear address. Offset islimited to arange of 0 to 65535 in
segmented architectures, but can be alarger value for non-segmented
architectures, up to the limits of the architecture.

When "SEGADDR" and/or "OFFSET" are specified, the location counter used
to generate the executabl e is advanced to that address. Any gaps are filled with
the "FILLCHAR" value, except for HEX output format, in which case they are
simply skipped. If the location counter is aready beyond the specified location,
an error message is generated. Thiswould likely be the result of having
specified classes or segmentsin incorrect order, or not providing enough room
for preceding ones. Without the "SEGADDR" and "OFFSET" options, classes
and segment are placed in the the executable consecutively, possibly with a
small gap in between if required by the alignment specified for the class.

(short form "CQ") indicates that the data from the segment named
source_class nameisto be used in this segment.

(short form "NOE") indicates that the data in this segment should not be placed
in the executable.

indicates the order of segments within a class, and possibly other options
associated with that segment. Segments listed are placed in the executablein the
order listed. They must be part of the classjust named. Any segmentsin that
class not listed will follow the last listed segment. The segment options are a
subset of the class options and conform to the same specifications.

In ROM-based applicationsit is often necessary to:

* Fix the program location

* Separate code and data to different fixed parts of memory

* Place a copy of initialized datain ROM (usually right after the code)

* Prevent the original of theinitialized data from being written to the loadfile, since it
residesin RAM and cannot be saved there.

The "ORDER" directive caters for these requirements. Classes can be placed in the
executable in a specific order, with absolute addresses specified for one or more classes, and
segments within a class can be forced into a specified order with absolute addresses specified
for one or more of them. Initialized data can be omitted at its target address, and a copy
included at a different address.

138 The ORDER Directive

ORDER

Following is a sample "ORDER" directive for an embedded target (AM186ER). The bottom
32K of memory isRAM for data. A DGROUP starting address of 0x80:0 isrequired. The
upper portion of memory is FLASH ROM. Code starts at address 0xD000:0. Theinitialized
datafrom DGROUP is placed immediately after the code.

order clname BEGDATA NOEMIT segaddr=0x80 segment _NULL
segment _AFTERNULL

clname DATA NOEMIT segment _DATA

cl name BSS

cl name STACK

cl nane START segaddr =0xD000

clname CODE segment BEGTEXT segment _TEXT

cl nane ROVDATA COPY BEGDATA

cl name ROVDATAE

DGROUP consists of classes"BEGDATA", "DATA", "BSS', "BSS2" and "STACK". Note
that these are marked "NOEMIT" (except for the BSS classes and STACK which are not
initialized, and therefore have no data in them anyway) to prevent data from being placed in
the loadfile at 0x80:0. Thefirst class of DGROUP is given the fixed starting segment address
of 0x80 (offset is assumed to be 0). The segments” NULL"," AFTERNULL" and

" _DATA" will be allocated consecutively in that order, and because they are part of
DGROUP, will all share the same segment portio of the address, with offsets adjusted
accordingly.

The code section consists of classes"START" and "CODE". These are placed beginning at
0xDO000:0. "START" contains only one segment, which will befirst. It will have aCSvaue
of 0xD00O. Code hastwo segments, "BEGTEXT" and"_TEXT" which will be placed after
"START", inthat order, and packed into a single CS value of their own (perhaps 0xDOOL in
this example), unless they exceed 64K in size, which should not be the case if the program
was compiled using the small memory model.

The classes"ROMDATA" and "ROMDATAE" were created in assembly with one segment
each and no symbols or datain them. The class hames can be used to identify the beginning
and end of initialized data so it can be copied to RAM by the startup code.

The"COPY" option actually works at the group level, because that is the way it is generally
needed. The entire dataisin DGROUP. "ROMDATA" will be placed in agroup of itsown
caled"AUTO". (Note: each group mentioned in the map file under the name"AUTQO" isa
separate group. They are not combined or otherwise related in any way, other than they
weren't explicitly created by the programmer, compiler or assembler, but rather automatically
created by the linker in the course of its work.) Therefore there is a unique group associated
with this class. The"COPY" option finds the group associated with "BEGDATA" and copies
all the object datafrom thereto "ROMDATA". Specificaly, it places acopy of this datain
the executable at the location assigned to "ROMDATA", and adjusts the length of
"ROMDATA" to account for this. All symbol referencesto this data are to its execution

The ORDER Directive 139

ORDER

address (0x80:0), not where it ended up in the executable (for instance 0xD597:0). The
starting address of "ROMDATAE" is also adjusted to account for the data assigned to
"ROMDATA". That way, the program can use the symbol "ROMDATAE" to identify the end
of the copy of DGROUP. It isalso necessary in case more than one "COPY" class exists
consecutively, or additional code or data need to follow it.

It should al so be noted that the "DOSSEG" option (whether explicitly given to the linker, or

passed in an object file) performs different class and segment ordering. If the "ORDER"
directiveisused, it overrides the "DOSSEG" option, causing it to be ignored.

140 The ORDER Directive

OSDOMAIN (NetWare)

3.82 The OSDOMAIN Option

Formats: NetWare

The"OSDOMAIN" option is used when the application isto run in the operating system
domain (ring 0).

The format of the "OSDOMAIN" option (short form "OSD") is as follows.

OPTION OSDOMAIN

The OSDOMAIN Option 141

OSNAME

3.83 The OSNAME Option

Formats: All

The"OSNAME" option can be used to set the name of the target operating system of the
executable file generated by the linker. The format of the "OSNAME" option (short form
"OSN") isasfollows.

OPTION OSNAME="string’

where description:
string is any sequence of characters.

Theinformation specified by the "OSNAME" option will be displayed in the creating a ?
executable message. Thisisthelast line of output produced by the linker, provided the
"QUIET" option is not specified. Consider the following example.

opti on osnanme=" Super CS
The last line of output produced by the linker will be asfollows.

creating a SuperOS executabl e

Some executable formats have a stub executable file that is run under 16-bit DOS. The
message displayed by the default stub executable file will be modified when the "OSNAME"
option isused. The default stub executable displays the following message:

0s/2: this is an OS/ 2 executabl e
Win16: this is a Wndows execut abl e
Win32: this is a Wndows NT execut abl e

If the"OSNAME" option used in the previous example was specified, the default stub
executable would generate the following message.

this is a SuperOS executabl e

142 The OSNAME Option

OSVERSION (Win32)

3.84 The OSVERSION Option
Formats: Win32

The "OSVERSION" option specifies that the linker should apply the given major and minor
version numbers to the PE format image header. This specifies the major and minor versions
of the operating system required to load thisimage. If aversion number is not specified, then
the built-in value of 1.11 isused. The format of the "OSVERSION" option (short form

"OSV") isasfollows.

OPTION OSVERSION = major[.minor]

The OSVERSION Option 143

ouTPUT

3.85 The OUTPUT Directive

Formats: All

The"OUTPUT" directive overrides the normal operating system specific executable format
and creates either araw binary image or an Intel Hex file. The format of the "OUTPUT"
directive (short form "OUT") is as follows.

OUTPUT RAW|HEX [OFFSET=n][HSHIFT=n][STARTREC]

where

HEX

OFFSET=n

HSHIFT

description:

represents avalue. The complete form of nisthe following.
[Ox] d{d} k| ni

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

specifies the output file to be araw binary and will contain an absolute image of
the executable’ s code and data. Default file extension is "bin".

specifies the output file to contain a representation of the absolute image of the
code and data using the Intel standard hex file format. Default file extensionis
"hex".

(short form "OFF") specifies that the linear address n should be subtracted from
all addresses being output to the executable image.

defines the relationship between segment values for type 02 records and linear
addresses. The value nisthe number of digits to right shift a 32-bit value
containing a segment address in its upper 16 bitsin order to convert it to part of
alinear address. |n more conventional terms, (16 - n) isthe amount to shift a
segment value left in order to convert it to part of alinear address.

STARTREC (short form "ST") specifies that a Starting Address record will be included in

Intel Hex output. Thisoption isignored if output typeis not Intel hex.

144 The OUTPUT Directive

OUTPUT

For raw binary files, the position in the fileis the linear address after the offset is subtracted
fromit. Any gapsfilled with the value specified through "OPTION FILLCHAR" (default is
0).

For hex files, the linear address (after subtracting the offset) is used to determine the output
record generated. Records contain 16 bytes, unless a gap occurs prior to that in which case
the record is shorter, and anew record starts after the gap. There are three types of Intel Hex
records. The oldest and most widely used is HEX80, which can only deal with 16-bit
addresses. For many ROM-based applications, thisis enough, especially once an offset has
been subtracted. For maximum versatility, all addresses less than 65536 are generated in this
form.

The HEX86 standard creates a segmentation that mirrors the CPU segmentation. Type 02
records define the segment, and all subsequent addresses are based on that segment value. For
addresses above 64K, Thisform isused. A program that understands HEX86 should assume
the segment value is zero until an 02 record is encountered. This preserves backward
compatibility with HEX80, and allows the automatic sel ection algorithm used in Open
Watcom Linker to work properly.

Type 02 records are assumed to have segment values that, when shifted left four bits, form a
linear address. However, thisis not suitable for 24-bit segmented addressing schemes.
Therefore, Open Watcom Linker uses the value specified through "OPTION HSHIFT" to
determine the relationship between segments and offsets. This approach can work with any
16:16 segmented architecture regardless of the segment alignment. The default shift valueis
12, representing the conventional 8086 architecture. Thisis not to be confused with the
optional "OUTPUT HSHIFT" value discussed below.

Of course, PROM programmers or third-party tools probably were not designed to work with
unconventional shift values, hence for cases where code for a 24-bit (or other non-standard)
target needs to be programmed into a PROM or processed by athird-party tool, the "OUTPUT
HSHIFT" option can be used to override the "OPTION HSHIFT" value. Thiswould usually
be of the form "OUTPUT HSHIFT=12" to restore the industry standard setting. The default
for "OUTPUT HSHIFT" isto follow "OPTION HSHIFT". When neither is specified, the
default "OPTION HSHIFT" value of 12 applies, providing industry standard compliance.

If the address exceeds the range of type 02 records (1 MB for HSHIFT=12 and 16 MB for
HSHIFT=8), type 04 extended linear records are generated, again ensuring seamless
compatibility and migration to large file sizes.

If "STARTREC" is specified for "OUTPUT HEX", the penultimate record in the file (just
before the end record) will be a start address record. The value of the start address will be
determined by the module start record in an object file, typically the result of an "END start"
assembler directive. If the start addressis less than 65536 (always for 16-bit applications, and
where applicable for 32-bit applications), atype 03 record with segment and offset values will

The OUTPUT Directive 145

ouTPUT

be emitted. If the start addressis equal to or greater than 65536, then atype 05 linear starting
address record will be generated. Note that neither of these cases depends directly on the
"HSHIFT" or "OUTPUT HSIFT" settings. If HSHIFT=8, then the segment and offset values
for the start symbol will be based on that number and used accordingly, but unlike other
addressinformation in a hex file, thisis not derived from alinear address and hence not
converted based on the HSHIFT value.

146 The OUTPUT Directive

OVERLAY (DOS)

3.86 The OVERLAY Directive
Formats: DOS

The"OVERLAY" directive allows you to specify the class of segments which are to be
overlayed. Theformat of the"OVERLAY" directive (short form "OV") isasfollows.

OVERLAY class{,class}
where description:
class is the class name of the segmentsto be overlayed.

The"FILE" directive is used to specify the object files that belong to the overlay structure.
Each object file defines segments that contain code or data. Segments are assigned a class
name by the compiler. A classisessentially a collection of segments with common attributes.
For example, compilers assign class names to segments so that segments containing code
belong to one class(es) and segments containing data belong to another class(es). When an
overlay structure is defined, only segments belonging to certain classes are allowed in the
overlay structure. By default, the Open Watcom Linker overlays all segments whose class
name ends with "CODE". These segments usually contain the executable code for a program.

It isalso possible to overlay other classes. Thisisdone using the"OVERLAY™" directive. For
example,

overlay code, far_data

places all segments belonging to the classes "CODE" and "FAR_DATA" in the overlay
structure. Segments belonging to the class"FAR_DATA" contain only data. The above
"OVERLAY" directive causes code and data to be overlayed. Therefore, for any module that
contains segments in both classes, datain segments with class"FAR_DATA" will bein
memory only when code in segments with class"CODE" arein memory. Thisresultsin a
more efficient use of memory. Of course the data must be referenced only by code in the
overlay and it must not be modified.

The OVERLAY Directive 147

OVERLAY (DOS)

WARNING! Care must be taken when overlaying data. If aroutine modifiesdatain an
overlayed data segment, it should not assume it contains that valueiif it isinvoked again.
The data may have been overwritten by another overlay.

Notes:

1. Youshould not specify aclassinan "OVERLAY" directive that belongs to the
group "DGROUP". These classesare "BEGDATA", "DATA", "BSS' and
"STACK".

If you are linking object files generated by a compiler that uses a class name that does not end
with "CODE" for segments containing executable code, the"OVERLAY" directive can be
used to identify the classes that belong to the overlay structure. Consider the following
example.

Example:
overl ay codel, code2

Any segment belonging to the class called "CODE1" or "CODE2" is placed in the overlay

structure. Segments belonging to a class whose name ends with "CODE" will no longer be
placed in the overlay structure.

148 The OVERLAY Directive

PACKCODE (DOS, 0S/2, QNX, Win16)

3.87 The PACKCODE Option
Formats: DOS, 0S/2, QNX, Win16

Thisoption isintended for 16-bit segmented applications. By default, the Open Watcom
Linker automatically groupslogical code segmentsinto physical segments. The
"PACKCODE" option is used to specify the size of the physical segment. The format of the
"PACKCODE" option (short form "PACKC") is asfollows.

OPTION PACKCODE=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.
n specifies the size of the physical segments into which code segments are packed. The
default value of nis 64K for 16-bit applications. Note that thisis also the maximum size of a
physical segment. To suppress automatic grouping of code segments, specify avalue of 0 for
n.
Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments
belonging to different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly
grouped.

The PACKCODE Option 149

PACKDATA (DOS, 0S/2, QNX, Win16)

3.88 The PACKDATA Option
Formats: DOS, 0S/2, QNX, Win16

Thisoption isintended for 16-bit segmented applications. By default, the Open Watcom
Linker automatically groupslogical far data segmentsinto physical segments. The
"PACKDATA" option is used to specify the size of the physical segment. The format of the
"PACKDATA" option (short form "PACKD") is asfollows.

OPTION PACKDATA=N

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.
n specifies the size of the physical segmentsinto which far data segments are packed. The
default value of nis 64K for 16-bit applications. Note that thisis also the maximum size of a
physical segment. To suppress automatic grouping of far data segments, specify avalue of 0
for n.
Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments
belonging to different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly
grouped.

150 The PACKDATA Option

PATH

3.89 The PATH Directive

Formats: All

The"PATH" directiveis used to specify the directories that are to be searched for object files
appearing in subsequent "FILE" directives. When the "PATH" directiveis specified, the
current directory will no longer be searched unlessit appearsin the "PATH" directive. The
format of the "PATH" directive (short form "P") is asfollows.

PATH path_name{; path_name}

where description:
path_name isapath name.

Consider adirective file containing the following linker directives.

path \ math

file sin

path \stats

file nmean, variance

It instructs the Open Watcom Linker to process the following object files:

\ mat h\ si n. obj
\ st at s\ mrean. obj
\stats\vari ance. obj

It isalso possible to specify alist of pathsina"PATH" directive. Consider the following
example.

path \math;\stats
file sin

First, the linker will attempt to load the file "\math\sin.obj". If unsuccessful, the linker will
attempt to load the file "\stats\sin.ohj".

It is possible to override the path specified in a"PATH" directive by preceding the object file
namein a"FILE" directive with an absolute path specification. On UNIX platforms, an
absolute path specification is one that begins the "/" character. On al other hosts, an absolute
path specification is one that begins with a drive specification or the "\" character.

The PATH Directive 151

PATH

path \ math

file sin

path \stats

file mean, \nydir\variance

The above directive file instructs the linker to process the following object files:
\ mat h\ si n. obj

\ st at s\ mean. obj
\ mydi r\vari ance. obj

152 The PATH Directive

PRIVILEGE (QNX)

3.90 The PRIVILEGE Option
Formats: QNX

The"PRIVILEGE" option specifies the privilege level (0, 1, 2 or 3) at which the application
will run. The format of the "PRIVILEGE" option (short form "PRIV") is asfollows.

OPTION PRIVILEGE=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

The default privilege level isO.

The PRIVILEGE Option 153

PROTMODE (0S/2)

3.91 The PROTMODE Option
Formats: 0S/2

The "PROTMODE" option specifies that the application will only run in protected mode.
This option appliesto 16-bit OS/2 applications only. The format of the "PROTMODE"

option (short form "PROT") is as follows.

OPTION PROTMODE

154 The PROTMODE Option

PSEUDOPREEMPTION (NetWare)

3.92 The PSEUDOPREEMPTION Option

Formats: NetWare

The "PSEUDOPREEMPTION" option specifies that an additional set of system callswill
yield control to other processes. Multitasking in current NetWare operating systemsis
non-preemptive. That is, a process must give up control in order for other processes to
execute. Using the "PSEUDOPREEM PTION" option increases the probability that all
processes are given an equal amount of CPU time.

The format of the "PSEUDOPREEMPTION" option (short form "PS') isas follows.

OPTION PSEUDOPREEMPTION

The PSEUDOPREEMPTION Option 155

QUIET

3.93 The QUIET Option

Formats: All

The"QUIET" option tells the Open Watcom Linker to suppress all informational messages.
Only warning, error and fatal messages will be issued. By default, the Open Watcom Linker

issues informational messages. The format of the "QUIET" option (short form "Q") isas
follows.

OPTION QUIET

156 The QUIET Option

REDEFSOK

3.94 The REDEFSOK Option

Formats: All

The "REDEFSOK" option tells the Open Watcom Linker to ignore redefined symbols and to
generate an executable file anyway. By default, warning messages are displayed and an
executable file is generated if redefined symbols are present.

The format of the "REDEFSOK" option (short form "RED") is as follows.

OPTION REDEFSOK

The "NOREDEFSOK" option tells the Open Watcom Linker to treat redefined symbols as an
error and to not generate an executable file. By default, warning messages are displayed and
an executable file is generated if redefined symbols are present.

The format of the "NOREDEFSOK" option (short form "NORED") is as follows.

OPTION NOREDEFSOK

The REDEFSOK Option 157

REENTRANT (NetWare)

3.95 The REENTRANT Option

Formats: NetWare

The"REENTRANT" option specifies that the moduleisreentrant. That is, if an NLM is
LOADed twice, the actual code in the server’s memory isreused. The NLM’ s start procedure

iscalled once for each LOAD. Theformat of the "/REENTRANT" option (short form "RE")
isasfollows.

OPTION REENTRANT

158 The REENTRANT Option

REFERENCE

3.96 The REFERENCE Directive

Formats: All

The "REFERENCE" directiveis used to explicitly reference a symbol that is not referenced
by any object file processed by the linker. 1f any symbol appearing in a"REFERENCE"
directive is not resolved by the linker, an error message will be issued for that symbol
specifying that the symbol is undefined.

The "REFERENCE" directive can be used to force object files from libraries to be linked with
the application. Also note that a symbol appearing in a"REFERENCE" directive will not be
eliminated by dead code elimination. For more information on dead code elimination, see the
section entitled "The ELIMINATE Option" on page 54.

The format of the "REFERENCE" directive (short form "REF") is as follows.

REFERENCE symbol _name{, symbol_name}

where description:
symbol_name is the symbol for which areference is made.

Consider the following example.
ref erence doni no
The symbol domi no will be searched for. The object module that defines this symbol will be

linked with the application. Note that the linker will also attempt to resolve symbols
referenced by this module.

The REFERENCE Directive 159

RESOURCE (0S/2, QNX, Win16, Win32)

3.97 The RESOURCE Option
Formats: 0S/2, QNX, Win16, Win32

For 16-bit OS/2 executable files and Win16 or Win32 executable files, the "RESOURCE"
option requests the linker to add the specified resource file to the executable file being
generated. For QNX executable files, the "RESOURCE" option specifies the contents of the
resource record.

3.97.1 RESOURCE - 0S/2, Win16, Win32 only

The "RESOURCE" option requests the linker to add the specified resource file to the
executablefile that is being generated. The format of the "RESOURCE" option (short form
"RES") isasfollows.

OPTION RESOURCE([=resource file]

where description:

resource_fileis afile specification for the name of the resourcefile that is to be added to the
executablefile. If nofile extension is specified, afile extension of "RES' is
assumed for all but QNX format executables.

The "RESOURCE" option cannot be used for 32-bit OS/2 executables.

3.97.2 RESOURCE - QNX only

The "RESOURCE" option specifies the contents of the resource record in QNX executable
files. Theformat of the "RESOURCE" option (short form "RES") is as follows.

OPTION RESOURCE resource_info

resource_info::="string' | =resource file

160 The RESOURCE Option

RESOURCE (0S/2, QNX, Win16, Win32)

where description:

resource_fileisafile specification for the name of the resource file. No file extension is
assumed.

string is a seguence of characterswhich is placed in the resource record.

If aresourcefileis specified, the contents of the resource file are included in the resource
record.

The resource record contains, for example, help information and is displayed when the
following command is executed.

use <execut abl e>

QNX aso provides the usemsg utility to manipulate the resource record of an executable file.
Itsuse is recommended. This utility is described in the QNX "Utilities Reference” manual.

The RESOURCE Option 161

RUNTIME (PharLap, Win32)

3.98 The RUNTIME Directive
Formats: PharLap, Win32

For Win32 applications, the "RUNTIME" directive specifies the environment under which the
application will run.

For PharLap applications, the"RUNTIME" directive describesinformation that is used by
386|DOS-Extender to setup the environment for execution of the program.

3.98.1 RUNTIME - Win32 only

The "RUNTIME" directive specifies the environment under which the application will run.
The format of the"RUNTIME" directive (short form "RU") is as follows.

RUNTIME env[=major[.minor]]

env ::= NATIVE | WINDOWS | CONSOLE | POSIX | OS2 | DOSSTYLE

where description:

env=major.minor Specifying a system version in the form "major" or "major.minor" indicates
the minimum operating system version required for the application. For
example, the following indicates that the application requires Windows 95.

runti me wi ndows=4.0

NATIVE (short form "NAT") indicates that the application is a native Windows NT
application.

WINDOWS (short form "WIN") indicates that the application is a Windows application.

CONSOLE (short form "CON") indicates that the application is a character-mode (command
line oriented) application.

POSI X (short form "POS") indicates that the application uses the POSIX subsystem
available with Windows NT.

0s2 indicates that the application is a 16-bit OS/2 1.x application.

162 The RUNTIME Directive

RUNTIME (PharLap, Win32)

DOSSTYLE (short form "DOS") indicates that the application is aPhar Lap TNT DOS

extender application that uses INT 21 to communicate to the DOS extender
rather than callstoaDLL.

3.98.2 RUNTIME - PharLap only

The"RUNTIME" directive describesinformation that is used by 386|DOS-Extender to setup
the environment for execution of the program. The format of the "RUNTIME" directive
(short form "RU") is as follows.

RUNTIME run_option{,run_option}

run_option ::= MINREAL=n | MAXREAL=n | CALLBUFS=n | MINIBuf=n

offset ::=n | symbol_name

| MAXIBUF=n | NISTACK=n | ISTKSIZE=n
| REALBREAK=0ffset | PRIVILEGED | UNPRIVILEGED

where

description:
represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a

hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

symbol_nameis a symbol name.

MINREAL

MAXREAL

(short form "MINR") specifies the minimum number of bytes of conventional
memory required to be free after a program is loaded by 386|DOS-Extender.
Note that this memory is no longer available to the executing program. The
default value of nis 0 in which case 386|DOS-Extender alocates all
conventional memory for the executing program. The Open Watcom Linker
truncates the specified value to amultiple of 16. n must be less than or equal to
hexadecimal 100000 (64K * 16).

(short form "MAXR") specifies the maximum number of bytes of conventional

memory than can be left free after a program is loaded by 386|DOS-Extender.
Note that this memory is not available to the executing program. The default

The RUNTIME Directive 163

RUNTIME (PharLap, Win32)

value of nis0in which case 386|DOS-Extender allocates all conventional
memory for the executing program. n must be less than or equal to hexadecimal
ffff0. The Open Watcom Linker truncates the specified value to a multiple of
16.

CALLBUFS (short form "CALLB") specifies the size of the call buffer allocated for

MINIBUF

MAXIBUF

NISTACK

ISTKSIZE

switching between 32-bit protected mode and real mode. This buffer is used for
communicating information between real-mode and 32-bit protected-mode
procedures. The buffer addressis obtained at run-time with a
386|DOS-Extender system call. The sizereturned is the size of the buffer in
kilobytes and is less than or equal to 64.

The default buffer sizeis zero unless changed using the "CALLBUFS" option.
The Open Watcom Linker truncates the specified value to amultiple of 1024. n
must be less than or equal to 64K. Note that n isthe number of bytes, not
kilobytes.

(short form "MINIB") specifies the minimum size of the data buffer that is used
when DOS and BIOS functions are called. The size of this buffer is particularly
important for file1/0. If your program reads or writes large amounts of data, a
large value of n should be specified. n represents the number of bytes and must
be less than or equal to 64K. The default value of nis 1K. The Open Watcom
Linker truncates the specified value to a multiple of 1024.

(short form "MAXIB") specifies the maximum size of the data buffer that is
used when DOS and BIOS functions are called. The size of this buffer is
particularly important for file I/O. If your program reads or writes large
amounts of data, alarge value of n should be specified. n represents the number
of bytes and must be less than or equal to 64K. The default value of nis4K.
The Open Watcom Linker truncates the specified value to a multiple of 1024.

(short form "NIST") specifies the number of stack buffersto be allocated for use
by 386|DOS-Extender when switching from 32-bit protected mode to real mode.
By default, 4 stack buffers are allocated. n must be greater than or equal to 4.

(short form "ISTK") specifies the size of the stack buffers allocated for use by
386|DOS-Extender when switching from 32-bit protected mode to real mode.
By default, the size of a stack buffer is 1K. The value of n must be greater than
or equal to 1K and less than or equal to 64K. The Open Watcom Linker
truncates the specified value to a multiple of 1024.

REALBREAK (short form "REALB") specifies how much of the program must be loaded into

conventional memory so that it can be accessed and/or executed in real mode. If
nis specified, the first n bytes of the program must be loaded into conventional

164 The RUNTIME Directive

RUNTIME (PharLap, Win32)

memory. If symbol is specified, all bytes up to but not including the symbol
must be loaded into conventional memory.

PRIVILEGED (short form "PRIV") specifies that the executable isto run at Ring O privilege
level.

UNPRIVILEGED (short form "UNPRIV") specifies that the executableisto run at Ring 3
privilege level (i.e., unprivileged). Thisisthe default privilege level.

The RUNTIME Directive 165

RWRELOCCHECK (Win16)

3.99 The RWRELOCCHECK Option

Formats: Win16

The "RWRELOCCHECK" option causes the linker to check for segment relocations to a
read/write data segment and issue awarning if any are found. This option isuseful if you are
building a 16-bit Windows application that may have more than one instance running at a

given time.

The format of the "RWRELOCCHECK" option (short form "RWR") is as follows.

OPTION RWRELOCCHECK

166 The RWRELOCCHECK Option

SCREENNAME (NetWare)

3.100 The SCREENNAME Option

Formats: NetWare

The"SCREENNAME" option specifies the name of the first screen (the screen that is
automatically created when an NLM isloaded). The format of the "SCREENNAME" option
(short form "SCR") is as follows.

OPTION SCREENNAME 'name’

where description:
name specifies the screen name.

If the"SCREENNAME" option is not specified, the description text specified in the
"FORMAT" directiveis used as the screen name.

The SCREENNAME Option 167

SECTION (DOS)

3.101 The SECTION Directive
Formats: DOS

The"SECTION" directive is used to define the start of an overlay. All object filesin
subsequent "FILE" directives, up to the next "SECTION" or "END" directive, belong to that
overlay. Theformat of the "SECTION" directive (short form "S") is asfollows.

SECTION [INTO ovl_fil€]

where description:

INTO specifies that the overlay isto be placed into a separate file, namely ovl_file. If
"INTO" (short form "IN") is not specified, the overlay is placed in the
executable file. Note that more than one overlay can be placed in the samefile
by specifying the same file name in multiple "SECTION" directives.

ovl_file isthefile specification for the name of an overlay file. If nofile extensionis
specified, afile extension of "ovl" isassumed.

Placing overlays in separate files has a number of advantages. For example, if your

application was linked into one file, it may not fit on a single diskette, making distribution of
your application difficult.

168 The SECTION Directive

SEGMENT (0S/2, QNX, Win16, Win32)

3.102 The SEGMENT Directive
Formats: 0S/2, QNX, Win16, Win32

The "SEGMENT" directiveis used to describe the attributes of code and data segments. The
format of the "SEGMENT" directive (short form "SEG") is asfollows.

The SEGMENT Directive 169

SEGMENT (0S/2, QNX, Win16, Win32)

SEGMENT seg_desc{,seg_desc}

seg_desc::=seg id {seg_attrs}+

seg id::="seg name | CLASS class name' | TYPE [CODE | DATA]
0s/2:
seg_attrs::= PRELOAD | LOADONCALL
| TOPL | NOIOPL
| EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE
| SHARED | NONSHARED
| CONFORMING | NONCONFORMING
| PERMANENT | NONPERMANENT
| INVALID | RESIDENT
| CONTIGUOUS | DYNAMIC
Win32:
seg_attrs::= PAGEABLE | NONPAGEABLE
| SHARED | NONSHARED

Win16:
seg_attrs::= PRELOAD | LOADONCALL
| EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE
| SHARED | NONSHARED
| MOVEABLE | FIXED
| DISCARDABLE

VxD:
seg_attrs::= PRELOAD | LOADONCALL
| TOPL | NOIOPL
| SHARED | NONSHARED
| DISCARDABLE | NONDISCARDABLE
| CONFORMING | NONCONFORMING
| RESIDENT

ONX:
seg_attrs::= EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE

170 The SEGMENT Directive

SEGMENT (0S/2, QNX, Win16, Win32)

where description:
seg_name isthe name of the code or data segment whose attributes are being specified.

class hame isaclassname. The attributes will be assigned to all segments belonging to the
specified class.

PRELOAD (short form "PR", 0S/2, VXD and Win16 only) specifies that the segment is
loaded as soon as the executable file isloaded. Thisisthe default.

LOADONCALL (short form"LO", 0S/2, VXD and Win16 only) specifies that the segment is
loaded only when accessed.

PAGEABLE (short form "PAGE", Win32 only) specifies that the segment can be paged from
memory. Thisisthe default.

NONPAGEABLE (short form "NONP", Win32 only) specifies that the segment, once loaded
into memory, must remain in memory.

CONFORMING (short form "CON", OS/2 and VxD only) specifies that the segment will

assume the 1/O privilege of the segment that referenced it. By default, the
segment is"NONCONFORMING".

NONCONFORMING (short form "NONC", OS2 and VXD only) specifies that the segment
will not assume the 1/0 privilege of the segment that referenced it. Thisisthe
default.

|OPL (short form "1", OS/2 and VXD only) specifies that the segment requires |/O
privilege. That is, they can access the hardware directly.

NOIOPL (short form "NOI", OS/2 and VXD only) specifies that the segment does not
require I/O privilege. Thisisthe default.

PERMANENT (short form "PERM", OS/2 32-bit only) specifies that the segment is
permanent.

NONPERMANENT (short form "NONPERM", OS/2 32-hit only) specifies that the segment
is not permanent.

INVALID (short form "INV", OS/2 32-hit only) specifies that the segment isinvalid.

RESIDENT (short form "RES", OS/2 32-bit and VXD only) specifies that the segment is
resident.

The SEGMENT Directive 171

SEGMENT (0S/2, QNX, Win16, Win32)

CONTIGUOUS (short form "CONT", OS/2 32-bit only) specifies that the segment is
contiguous.

DYNAMIC (short form "DYN", OS/2 32-bit only) specifies that the segment is dynamic.

EXECUTEONLY (short form "EXECUTEQ", OS2, QNX and Win16 only) specifies that the
segment can only be executed. This attribute should only be specified for code
segments. This attribute should not be specified if it is possible for the code
segment to contain jump tables which is the case with the Open Watcom C, C++
and FORTRAN 77 optimizing compilers.

EXECUTEREAD (short form "EXECUTER", 0S/2, QNX and Win16 only) specifies that the
segment can only be executed and read. This attribute, the default for code
segments, should only be specified for code segments. This attributeis
appropriate for code segments that contain jump tables as is possible with the
Open Watcom C, C++ and FORTRAN 77 optimizing compilers.

READONLY (short form "READQ", OS/2, QNX and Win16 only) specifies that the segment
can only beread. This attribute should only be specified for data segments.

READWRITE (short form "READW", OS/2, QNX and Win16 only) specifies that the
segment can be read and written. Thisisthe default for data segments. This
attribute should only be specified for data segments.

SHARED (short form "SH") specifies that asingle copy of the segment will be loaded and
will be shared by all processes.

NONSHARED (short form "NONS") specifies that a unique copy of the segment will be
loaded for each process. Thisisthe defaullt.

MOVEABLE (short form "MOV", Win16 only) specifies that the segment is moveable. By
default, segments are moveable.

FIXED (short form "FIX", Winl6 only) specifies that the segment is fixed.

DISCARDABLE (short form "DIS", Win16 and VxD only) specifies that the segment is
discardable. By default, segments are not discardable.

NONDISCARDABLE (short form "NOND", VXD only) specifies that the segment is not
discardable. By default, ssgments are not discardable.

172 The SEGMENT Directive

SEGMENT (0S/2, QNX, Win16, Win32)

Note: Attributes specified for segments identified by a segment name override attributes
specified for segments identified by a class name.

The SEGMENT Directive 173

SHARELIB (NetWare)

3.103 The SHARELIB Option

Formats: NetWare

The"SHARELIB" option specifies the file name of an NLM to be loaded as a shared NLM.
Shared NLMs contain global code and global data that are mapped into all memory protection
domains. This method of loading APIs can be used to avoid ring transitions to call other APIs
in other domains.

The format of the "SHARELIB" option (short form "SHA") is as follows.

OPTION SHARELI|B=shared_nIm

where description:

shared_nIm isthefile name of the shared NLM.

174 The SHARELIB Option

SHOWDEAD

3.104 The SHOWDEAD Option

Formats: All

The"SHOWDEAD" option instructs the linker to list, in the map file, the symbols associated
with dead code and unused C++ virtual functions that it has eliminated from the link. The
format of the "SHOWDEAD" option (short form "SHO") is as follows.

OPTION SHOWDEAD

The"SHOWDEAD" option works best in concert with the"ELIMINATE" and
"VFREMOVAL" options.

The SHOWDEAD Option 175

SMALL (DOS)

3.105 The SMALL Option
Formats: DOS

The"SMALL" option tells the Open Watcom Linker to use the standard overlay manager (as
opposed to the dynamic overlay manager) and that near calls can be generated to overlay
vectors corresponding to routines defined in the overlayed portion of your program. The
format of the "SMALL" option (short form "SM") isas follows.

OPTION SMALL

This option should only be specified in the following circumstances.
1. Your program has been compiled for a small code memory model.
2. You are creating an overlayed application.
3. Thecodein your program, including overlay areas, does not exceed 64K.
If the"SMALL" option is not specified and you are creating an overlayed application, the

linker will generate far callsto overlay vectors. In this case, your application must have been
compiled using a big code memory model.

176 The SMALL Option

SORT

3.106 The SORT Directive

Formats: All

The"SORT" directive is used to sort the symbolsin the "Memory Map" section of the map
file. By default, symbols are listed on a per module basis in the order the modules were
encountered by the linker. That is, amodule header is displayed followed by the symbols
defined by the module.

The format of the "SORT" directive (short form "SO") is as follows.

SORT [GLOBAL] [ALPHABETICAL]

If the "SORT" directive is specified without any options, asin the following example, the
module headers will be displayed each followed by the list of symbolsit defines sorted by
address.

sort

If only the "GLOBAL" sort option (short form "GL") is specified, as in the following
exampl e, the module headers will not be displayed and all symbolswill be sorted by address.

sort gl obal

If only the"ALPHABETICAL" sort option (short form "ALP") is specified, asin the
following example, the module headers will be displayed each followed by the list of symbols
it defines sorted a phabetically.

sort al phabeti cal

If both the "GLOBAL" and "ALPHABETICAL" sort options are specified, asin the following
example, the module headers will not be displayed and all symbols will be sorted
alphabetically.

sort gl obal al phabeti cal

If you are linking a Open Watcom C++ application, mangled names are sorted by using the
base name. The base name is the name of the symbol as it appeared in the sourcefile. Seethe
section entitled "The MANGLEDNAMES Option” on page 103 for more information on
mangled names.

The SORT Directive 177

STACK

3.107 The STACK Option

Formats: All

The"STACK" option can be used to increase the size of the stack. The format of the
"STACK" option (short form "ST") is as follows.

OPTION STACK=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

The default stack size varies for both 16-bit and protected-mode 32-bit applications depending
on the executable format. Y ou can determine the default stack size by looking at the map file
that can be generated when an application islinked ("OPTION MAP"). During execution of
your program, you may get an error message indicating your stack has overflowed. If you
encounter such an error, you must link your application again, this time specifying alarger
stack size using the "STACK" option.

Example:
option stack=8192

178 The STACK Option

STANDARD (DOS)

3.108 The STANDARD Option
Formats: DOS

The"STANDARD" option instructs the Open Watcom Linker to use the standard overlay
manager (as opposed to the dynamic overlay manager). Y our application must be compiled
for a big code memory model. The format of the "STANDARD" option (short form "STAN")
isasfollows.

OPTION STANDARD

The standard overlay manager isthe default. For more information on overlays, seethe
section entitled "Using Overlays® on page 204.

The STANDARD Option 179

START

3.109 The START Option

Formats: All

The format of the"START" optionis as follows.

OPTION START=symbol_name

where description:
symbol _name specifies the name of the procedure where execution begins.

For the Netware executable format, the default name of the start procedureis”_Prelude”.

180 The START Option

STARTLINK

3.110 The STARTLINK Directive

Formats: All

The "STARTLINK" directive is used to indicate the start of a new set of linker commands that
areto be processed after the current set of commands has been processed. The format of the
"STARTLINK" directive (short form "STARTL") is asfollows.

STARTLINK

The"ENDLINK" directive is used to indicate the end of the set of commands identified by the
"STARTLINK" directive.

The STARTLINK Directive 181

STATICS

3.111 The STATICS Option

Formats: All

The"STATICS" option should only be used if you are developing a Open Watcom C or C++
application. The Open Watcom C and C++ compilers produce definitions for static symbols
in the object file. By default, these static symbols do not appear in the map file. 1f you want
static symbols to be displayed in the map file, use the "STATICS" option.

The format of the"STATICS' option (short form "STAT") isasfollows.

OPTION STATICS

182 The STATICS Option

STUB (0S/2, Win16, Win32)

3.112 The STUB Option
Formats: 0S/2, Win16, Win32

The"STUB" option specifies an executable file containing a "stub” program that isto be
placed at the beginning of the executable file being generated. The "stub™ program will be
executed if the module is executed under DOS. The format of the "STUB" option isas
follows.

OPTION STUB=stub_name

where description:

stub_name isafile specification for the name of the stub executablefile. If no file
extension is specified, afile extension of "EXE" is assumed.

The Open Watcom Linker will search all paths specified in the PATH environment variable

for the stub executablefile. The stub executable file specified by the "STUB" option must not
be the same as the executabl e file being generated.

The STUB Option 183

SYMFILE

3.113 The SYMFILE Option

Formats: All

The"SYMFILE" option provides a method for specifying an aternate file for debugging
information. The format of the"SYMFILE" option (short form "SYMF") is as follows.

OPTION SYMFILE[=symbol_filg]

where description:

symbol_file isafile specification for the name of the symboal file. If nofile extensionis
specified, afile extension of "sym" is assumed.

By default, no symbol file is generated; debugging information is appended at the end of the
executable file. Specifying this option causes the Open Watcom Linker to generate a symbol
file. The symboal file contains the debugging information generated by the linker when the
"DEBUG" directiveisused. The symboal file can then be used by Open Watcom Debugger. |If
no debugging information is requested, no symbol fileis created, regardless of the presence of
the "SYMFILE" option.

If no file name is specified, the symboal file will have a default file extension of "sym" and the
same path and file name as the executable file. Note that the symbol file will be placed in the
same directory as the executablefile.

Alternatively, afile name can be specified. The following directive instructs the linker to
generate asymbol file and call it "myprog.sym"” regardless of the name of the executablefile.

option synf=nyprog

Y ou can also specify a path and/or file extension when using the "SYMFILE=" form of the
"SYMFILE" option.

Notes:
1. Thisoption should be used to debug aDOS "COM" executable file. A DOS
"COM" executable file must not contain any additional information other than the

executable information itself since DOS uses the size of the file to determine what
to load.

184 The SYMFILE Option

SYMFILE

This option should be used when creating a Microsoft Windows executable file.
Typically, before an executable file can be executed as a Microsoft Windows
application, a resource compiler takes the Windows executable file and a resource
file asinput and combines them. If the executable file contains debugging
information, the resource compiler will strip the debugging information from the
executable file. Therefore, debugging information must not be part of the
executable file created by the linker.

The SYMFILE Option 185

SYMTRACE

3.114 The SYMTRACE Directive

Formats: All

The"SYMTRACE" directive instructs the Open Watcom Linker to print alist of all modules
that reference the specified symbols. The format of the "SYMTRACE" directive (short form
"SYMT") isasfollows.

SYMTRACE symbol_name{,symbol_name}

where description:
symbol_name is the name of a symboal.
Theinformation is displayed in the map file. Consider the following example.

Example:
wlink system my_os op map file test lib math symt sin, cos

The Open Watcom Linker will list, in the map file, all modules that reference the symbols
"sin" and "cos".

186 The SYMTRACE Directive

SYNCHRONIZE (NetWare)

3.115 The SYNCHRONIZE Option

Formats: NetWare

The"SYNCHRONIZE" option forces an NLM to complete loading before starting to load
other NLMs. Normally, the other NLMs are loading during the startup procedure. The format
of the"SYNCHRONIZE" option (short form "SY") isasfollows.

OPTION SYNCHRONIZE

The SYNCHRONIZE Option 187

SYSTEM

3.116 The SYSTEM Directive

Formats: All
There are three forms of the "SY STEM" directive.

Thefirst form of the "SY STEM" directive (short form "SYS") is called a system definition
directive. It allowsyou to associate a set of linker directives with a specified name called the
system name. This set of linker directivesis called a system definition block. The format of a
system definition directiveis as follows.

SYSTEM BEGIN system _name {directive} END

where description:

system_name is a unigue system name.

directive isalinker directive.

A system definition directive cannot be specified within another system definition directive.
The second form of the "SY STEM" directiveis called a system deletion directive. It allows

you to remove the association of a set of linker directives with a system name. The format of
asystem deletion directiveis asfollows.

SYSTEM DELETE system _name

where description:
system_nameis a defined system name.

The third form of the "SY STEM" directiveis as follows.

188 The SYSTEM Directive

SYSTEM

SYSTEM system_name

where description:
system_nameis a defined system name.

When this form of the "SY STEM" directive is encountered, all directives specified in the
system definition block identified by system_name will be processed.

Let us consider an example that demonstrates the use of the "SY STEM" directive. The
following linker directives define a system called statistics.

system begin statistics
format dos

i bpath \libs

library stats, graphics
option stack=8k

end

They specify that a statistics application isto be created by using the libraries "stats.lib" and
"graphics.lib". Theselibrary files arelocated in the directory "\libs'. The application requires
a stack size of 8k and the specified format of executable will be generated.

Suppose the linker directives in the above example are contained in the file "stats.Ink". If we
wish to create a statistics application, we can issue the following command.

wWink @tats systemstatistics file nyappl

As demonstrated by the above example, the "SY STEM" directive can be used to localize the
common attributes that describe a class of applications.

The system deletion directive can be used to redefine a previously defined system. Consider
the following example.

The SYSTEM Directive 189

SYSTEM

system begin at_dos
i bpath 9MATCOMA | i b286
i bpath 9NATCOMA | i b286\ dos
format dos *
end
system begin n98 dos
sys at_dos *
| i bpat h 9A\ATCOMA | i b286\ dos\ n98
end
system begi n dos
sys at_dos *
end

If you wish to redefine the definition of the "dos" system, you can specify the following set of

directives.

system del et e dos
system begi n dos
sys n98_dos *

end

This effectively redefinesa'dos' system to be equivalent to a"n98 dos" system (NEC
PC-9800 DOS), rather than the previously defined "at_dos" system (AT-compatible DOS).

For additional examples on the use of the "SY STEM" directive, examine the contents of the

W i nk. I nk and w syst em | nk files.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the
Open Watcom Linker before processing any other directives. OnaDOS, 0OS/2, or
Windows-hosted system, this file must be located in one of the paths specified in the PATH
environment variable. On a QNX-hosted system, this file should be located inthe / et ¢
directory. A default version of thisfileislocated in the \ wat com bi nwdirectory on
DOS-hosted systems, the \ wat conml bi np directory on OS/2-hosted systems, the / et ¢
directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows 95 or
Windows NT-hosted systems. Note that thefile Wl i nk. | nk includesthefile

w syst em | nk which islocated in the \ wat com bi nwdirectory on DOS, OS/2, or

Windows-hosted systems and the / et ¢ directory on QNX-hosted systems.

Thefilesw i nk. | nk and W syst em | nk reference the WATCOM environment variable

which must be set to the directory in which you installed your software.

190 The SYSTEM Directive

SYSTEM

3.116.1 Special System Names

There are two special system names. When the linker has processed all object files and the
executable file format has not been determined, and a system definition block has not been
processed, the directives specified in the "286" or "386" system definition block will be
processed. The "386" system definition block will be processed if a 32-bit object file has been
processed. Furthermore, only arestricted set of linker directivesisalowed in a"286" and
"386" system definition block. They are asfollows.

* FORMAT

* LIBFILE

* LIBPATH

* LIBRARY

* NAME

» OPTION

* RUNTIME (for Phar Lap executable files only)

* SEGMENT (for OS/2 and QNX executable files only)

The SYSTEM Directive 191

THREADNAME (NetWare)

3.117 The THREADNAME Option

Formats: NetWare

The "THREADNAME" option is used to specify the pattern to be used for generating thread
names. The format of the"THREADNAME" option (short form "THR") is as follows.

OPTION THREADNAME ’thread_name’

where description:

thread_name specifies the pattern used for generating thread names and must be a string of 1
to 5 characters.

Thefirst thread name is generated by appending "0" to thread_name, the second by appending
"1" to thread_name, etc. If the"THREADNAME" option is not specified, thefirst 5
characters of the description specified in the "FORMAT" directive are used as the pattern for
generating thread names.

192 The THREADNAME Option

TOGGLERELOCS (0S/2)

3.118 The TOGGLERELOCS Option
Formats: 0S/2

The"TOGGLERELOCS' option is used with LX format executables under 32-bit DOS/4G
only. The"INTERNALRELOCS" option causes the Open Watcom Linker to include internal
relocation information in DOS/4G LX format executables. Having done so, the linker
normally clearsthe "internal fixups done" flag in the LX executable header (bit 0x10). The
"TOGGLERELOCS" option causes the linker to toggle the value of the "internal fixups done"
flag in the LX executable header (bit 0x10). Thisoption is used with DOS/4G non-zero based
executables. Contact Tenberry Software for further explanation.

The format of the "TOGGLERELOCS" option (short form "TOG") isas follows.

OPTION TOGGLERELOCS

The TOGGLERELOCS Option 193

UNDEFSOK

3.119 The UNDEFSOK Option

Formats: All

The "UNDEFSOK" option tells the Open Watcom Linker to generate an executable file even
if undefined symbols are present. By default, no executable file will be generated if undefined
symbols are present.

The format of the "UNDEFSOK" option (short form "U") is as follows.

OPTION UNDEFSOK

The "NOUNDEFSOK" option tells the Open Watcom Linker to not generate an executable
fileif undefined symbols are present. Thisis the default behaviour.

The format of the "NOUNDEFSOK" option (short form "NOU") is as follows.

OPTION NOUNDEFSOK

194 The UNDEFSOK Option

VECTOR (DOS)

3.120 The VECTOR Directive
Formats: DOS

The"VECTOR" directive forces the Open Watcom Linker to generate an overlay vector for
the specified symbols and is intended to be used when the "NOINDIRECT" option is
specified. Seethe section entitled "The NOINDIRECT Option" on page 124 for additional
information on the usage of the "VECTOR" directive.

The format of the "VECTOR" directive (short form "VE") isasfollows.

VECTOR symbol_name{,symbol _name}

where description:
symbol_nameis a symbol name.

For more information on overlays, see the section entitled "Using Overlays' on page 204.

The VECTOR Directive 195

VERBOSE

3.121 The VERBOSE Option

Formats: All

The"VERBOSE" option controls the amount of information produced by the Open Watcom
Linker inthe map file. The format of the "VERBOSE" option (short form "V") is asfollows.

OPTION VERBOSE

If the"VERBOSE" option is specified, the linker will list, for each object file, all segmentsit
defines and their sizes. By default, thisinformation is not produced in the map file.

196 The VERBOSE Option

VERSION (NetWare, 0S/2, Win16, Win32)

3.122 The VERSION Option
Formats: NetWare, 0S/2, Win16, Win32

The"VERSION" option can be used to identify the application so that it can be distinguished
from other versions (releases) of the same application.

This option is most useful when creating aDLL or NLM since applications that use the DLL
or NLM may only execute with a specific version of the DLL or NLM.

The format of the "VERSION" option (short form "VERS') is as follows.

0S/2, Win16, Win32:
OPTION VERSI ON=major[.minor]
Netware:
OPTION VERSI ON=major[.minor[.revision]]

where description:
major specifies the major version number.
minor specifies the minor version number and must be less than 100.

revision specifiestherevision. The revision should be anumber or aletter. If itisa
number, it must be less than 27.

The VERSION Option 197

VFREMOVAL

3.123 The VFREMOVAL Option

Formats: All

The"VFREMOVAL" option instructs the linker to remove unused C++ virtual functions. The
format of the "VFREMOVAL" option (short form "VFR") is asfollows.

OPTION VFREMOVAL

If the"VFREMOVAL" option is specified, the linker will attempt to eliminate unused virtua
functions. In order for the linker to do this, the Open Watcom C++ "zv" compiler option must
be used for all object filesin the executable. The"VFREMOVAL" option works best in
concert with the "ELIMINATE" option.

198 The VFREMOVAL Option

XDCDATA (NetWare)

3.124 The XDCDATA Option

Formats: NetWare

The"XDCDATA" option specifies the name of afile that contains Remote Procedure Call
(RPC) descriptions for callsin thisNLM. RPC descriptions for APIs make it possible for
APIsto be exported across memory-protection domain boundaries.

The format of the "XDCDATA" option (short form "XDC") is as follows.

OPTION XDCDATA=rpc file

where description:

rpc_file is the name of the file containing RPC descriptions.

The XDCDATA Option 199

The Open Watcom Linker

200 The XDCDATA Option

4 The DOS Executable File Format

This chapter deals specifically with aspects of DOS executable files. The DOS executable file
format will only run under the DOS operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
AUTOSECTION

BEGIN {section_type [INTO ovl_fil€] {directive}} END
DEBUG dbtype [dblist] | DEBUG [dblist]

DISABLE msg_num{,msg_num}

ENDLINK

FILE obj_spec{,obj_spec}

FIXEDLIB library_file{library_file}
FORCEVECTOR symbol_name{,symbol_name}
FORMAT DOS[COM]

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{ library file}

MODTRACE obj_module{,obj _module}

NAME exe file

NEWSEGMENT

NOVECTOR symbol_name{,symbol _name}

OPTION option{,option}

The DOS Executable File Format 201

The Open Watcom Linker

AREA=N
ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DISTRIBUTE
DOSSEG
DYNAMIC
ELIMINATE
[NOJFARCALLS
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
NOINDIRECT
OSNAME="string’
PACKCODE=n
PACKDATA=nN
QUIET
REDEFSOK
SHOWDEAD
SMALL
STACK=n
STANDARD
START=symbol_name
STATICS
SYMFILE[=symbol file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library_file{ library file}
OVERLAY class{,class}
PATH path_name{; path_name}
REFERENCE symbol_name{,symbol_name}
SECTION
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name

202 The DOS Executable File Format

The DOS Executable File Format

VECTOR symbol_name{,symbol_name}
comment
@directive file

Y ou can view al the directives specific to DOS executable files by simply typing the

following:
w ink ? dos
Notes:
1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"

environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

If al of the directive information does not fit on the command line, type the
following.

W i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

4.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

Memory Layout 203

The Open Watcom Linker

5. all segments belonging to group "DGROUFP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

4.2 The Open Watcom Linker Memory Requirements

The Open Watcom Linker uses all available memory when linking an application. For
DOS-hosted versions of the Open Watcom Linker, this includes expanded memory (EMS)
and extended memory. It ispossible for the size of the image being linked to exceed the
amount of memory available in your machine, particularly if theimage fileisto contain
debugging information. For this reason, atemporary disk fileis used when all available
memory is used by the Open Watcom Linker.

Normally, the temporary fileis created in the current working directory. However, by
defining the "tmp" environment variable to be adirectory, you can tell the Open Watcom
Linker where to create the temporary file. This can be particularly useful if you have a RAM
disk. Consider the following definition of the "tmp" environment variable.

set tnmp=\tnp

The Open Watcom Linker will create the temporary file in the directory "\tmp".

4.3 Using Overlays

Overlays are used primarily for large programs where memory requirements do not permit all
portions of the program to reside in memory at the sametime. An overlayed program consists
of aroot and a number of overlay areas.

Theroot always residesin memory. The root usually contains routines that are frequently

used. For example, afloating-point library might be placed in the root. Also, any modules
extracted from alibrary file during the linking process are placed in the root unless the

204 Using Overlays

The DOS Executable File Format

"DISTRIBUTE" option is specified. This option tells the Open Watcom Linker to distribute
modul es extracted from libraries throughout the overlay structure. See the section entitled
"The DISTRIBUTE Option" on page 50 for information on how these object modules are
distributed. Libraries can aso be placed in the overlay structure by using the "FIXEDLIB"
directive. See the section entitled "The FIXEDLIB Directive" on page 66 for information on
how to use this directive.

An overlay area is a piece of memory shared by various parts of aprogram. Each overlay
area has a structure associated with it. This structure defines where in the overlay area
sections of a program are loaded. Sections of a program that are loaded into an overlay area
are called overlays.

The Open Watcom Linker supports two overlay managers: the standard overlay manager and
the dynamic overlay manager. The standard overlay manager requires the user to create an
overlay structure that defines the "call” relationship between the object modules that comprise
an application. It isthe responsibility of the user to define an optimal overlay structure so as
to minimize the number of callsthat cause overlaysto beloaded. The"SMALL" and
"STANDARD" options select the standard overlay manager. The"SMALL" optionis
required if you are linking an application compiled for a small code memory model. The
"STANDARD" option isrequired if you are linking an application compiled for abig code
memory model. By default, the Open Watcom Linker assumes your application has been
compiled using a memory model with abig code model. Option "STANDARD" isthe
default.

The"DYNAMIC" option, described in the section entitled "The DY NAMIC Option" on page
53, selects the dynamic overlay manager. The dynamic overlay manager is more sophisticated
than the standard overlay manager. The user need not be concerned about the "call"
relationship between the object modules that comprise an application. Basically, each module
isplaced in its own overlay. The dynamic overlay manager swaps each module (overlay) into
asingle overlay area. Thisoverlay areais used as apool of memory from which memory for
overlaysisallocated. Thelarger the memory pool, the greater the number of modules that can
simultaneously reside in memory. The size of the overlay area can be controlled by the
"AREA" option. Seethe section entitled "The AREA Option" on page 26 for information on
using this option.

Note that the dynamic overlay manager can only be used with applications that have been
compiled using the "of" option and a big code memory model.

Using Overlays 205

The Open Watcom Linker

4.3.1 Defining Overlay Structures

Consider the following directive file.

#

Define files that belong in the root.

#

file fileO, filel

#

Define an overlay area.

#

begi n
section file file2
section file file3, filed
section file fileb

end

1. Therootconsistsof fil e0andfil el.

2. Threeoverlaysare defined. Thefirst overlay (overlay #1) contains fi | e2, the
second overlay (overlay #2) contains fi | e3 andfi | e4, andthethird overlay
(overlay #3) containsf i | e5.

The following diagram depicts the overlay structure.

e LR P P R +<- start of root
| |

| fileO |

| filel |

| |

e e e +<- start of overlay
| #1 | #2 | #3 | area

| I |

| file2 | file3 | fileb |

| [filed | |

| | I |

Fomm e e e o - Fomm e e e o - o m e e e oo +

Notes:

1. The3overlaysareadl loaded at the same memory location. Such overlays are
caled parallél.

In the previous example, only one overlay areawas defined. It is possible to define more than
one overlay area as demonstrated by the following example.

206 Using Overlays

The DOS Executable File Format

#

Define files that belong in the root.

#

file fileO, filel

#

Define an overlay area.

#

begi n
section file file2
section file file3, file4d
section file fileb

end

#

Define an overlay area.

#

begi n
section file fileb6
section file file7
section file file8

end

Two overlay areas are defined. Thefirst isidentical to the overlay area defined in the
previous example. The second overlay area contains three overlays; the first overlay (overlay
#4) containsf i | €6, the second overlay (overlay #5) contains fi | e7, and thethird overlay

(overlay #6) containsf i | 8.

The following diagram depicts the overlay structure.

e e e e e e e e e e e e e e e e e, m e, — -
I

| fileO

| filel

I

S S S
| #1 | #2 | #3

I I I

| file2 | file3 | fileb

| | filed [

I I I
. . .
| #4 | #5 | #6

I | |

| file6 | file7 | file8

I I I
R - -

start of root

start of overlay
area

start of overlay
area

Using Overlays 207

The Open Watcom Linker

In the above example, the "AUTOSECTION" directive could have been used to define the
overlaysfor the second overlay area. The following example illustrates the use of the
"AUTOSECTION" directive.

#

Define files that belong in the root.

#

file fileO, filel

#

Define an overlay area.

#

begi n
section file file2
section file file3, file4
section file fileb

end
#
Define an overlay area.
#
begi n
aut osection
file file6
file file7
file file8
end

In all of the above examples the overlays are placed in the executablefile. It ispossible to
place overlays in separate files by specifying the "INTO" option in the "SECTION" directive
that starts the definition of an overlay. By specifying the"INTO" option in the
"AUTOSECTION" directive, all overlays created as aresult of the"AUTOSECTION"
directive are placed in one overlay file.

Consider the following example. It issimilar to the previous example except for the
following. Overlay #1 isplaced in thefile"ovll.ovl", overlay #2 is placed in thefile
"ovl2.ovl", overlay #3 is placed in the file "ovI3.ovI" and overlays #4, #5 and #6 are placed in
file"ovl4.ovl".

208 Using Overlays

The DOS Executable File Format

#
Define files that belong in the root.
#
file fileO, filel
#
Define an overlay area.
#
begi n
section into ovll file file2
section into ovl2 file file3, file4
section into ovl3 file fileb
end
#
Define an overlay area.
#
begi n
aut osection into ovl 4
file file6
file file7
file file8
end

4.3.1.1 The Dynamic Overlay Manager

Let us again consider the above example but this time we will use the dynamic overlay
manager. The easiest way to take the above overlay structure and use it with the dynamic
overlay manager isto simply specify the"DYNAMIC" option.

option DYNAM C

Even though we have defined an overlay structure with more than one overlay area, the Open
Watcom Linker will allocate one overlay area and overlays from both overlay areas will be
loaded into asingle overlay area. The size of the overlay area created by the Open Watcom
Linker will be twice the size of the largest overlay area (unlessthe "AREA" option is used).

To take full advantage of the dynamic overlay manager, the following sequence of directives
should be used.

Using Overlays 209

The Open Watcom Linker

#
Define files that belong in the root.
#
file fileO, filel
#
Define an overlay area.
#
begi n
aut osection into ovl1l
file file2
aut osection into ovl2
file file3
file file4d
aut osection into ovl 3
file fileb
aut osection into ovl 4
file file6
file file7
file file8
end

In the above example, each module will bein its own overlay. Thiswill result in amodule
being loaded into memory only when it isrequired. If separate overlay files are not required,
asingle"AUTOSECTION" directive could be used as demonstrated by the following

example.
#
Define files that belong in the root.
#
file fileO, filel
#
Define an overlay area.
#
begi n
aut osection
file file2
file file3
file file4d
file fileb
file file6
file file7
file file8
end

210 Using Overlays

The DOS Executable File Format

4.3.2 Nested Overlay Structures

Nested overlay structures occur when the "BEGIN"-"END" directives are nested and are only
useful if the standard overlay manager is being used. If you have selected the dynamic
overlay manager, the nesting levels will be ignored and each overlay will be loaded into a
single overlay area.

Consider the following directive file.

#
Define files that belong in the root.
#
file fileO, filel
#
Define a nested overlay structure.
#
begi n
section file file2
section file file3
begi n
section file file4, fileb
section file file6
end
end
Notes:

1. Theroot containsfile0andfil el.

2. Four overlays are defined. Thefirst overlay (overlay #1) contains fi | e2, the
second overlay (overlay #2) contains f i | €3, thethird overlay (overlay #3)
containsfil e4 andfi | e5, andthefourth overlay (overlay #4) contains
file6.

The following diagram depicts the overlay structure.

Using Overlays 211

The Open Watcom Linker

T L R R +<- start of root
I I
| fileO |
| filel |
I I
Fomem - R +<- start of overlay
| #1 | #2 | ar ea
I I I
| file2 | file3 |
I I I
I I I
| Fomem - Fommee - +<- start of overlay
| | #3 | #4 [area
I I I I
| [filed [file6 [
| [file5 | |
I I | I
R R R +
Notes:

1. Overlay #1 and overlay #2 are parallel overlays. Overlay #3 and overlay #4 are
also parallel overlays.

2. Overlay #3 and overlay #4 are loaded in memory following overlay #2. Inthis
case, overlay #2 is called an ancestor of overlay #3 and overlay #4. Conversely,
overlay #3 and overlay #4 are descendants of overlay #2.

3. Theroot isan ancestor of all overlays.

Nested overlays are particularly useful when the routines that make up one overlay are used
only by afew other overlays. In the above example, the routinesin overlay #2 would only be
used by routines in overlay #3 and overlay #4 but not by overlay #1.

4.3.3 Rules About Overlays

The Open Watcom Linker handles all the details of loading overlays. No changesto a
program have to be made if, for example, it becomes so large that you have to change to an
overlay structure. Certain rules have to be followed to ensure the proper execution of your
program. These rules pertain more to the organization of the components of your program
and lessto the way it was coded.

212 Using Overlays

The DOS Executable File Format

1. Careshould be taken when passing addresses of functions as arguments. Consider
the following example.

A R R T +<- start of root
| I

| mai n |

| I

e e +<- start of overlay
| nodulea | noduleb | area

| | |

| f | h |

| g | |

| | |

SR SR +

Function f passes the address of static function g to function h. Function h then
callsfunction g indirectly. Function f and function g are defined in modulea and
function his defined in moduleb. Furthermore, suppose that modulea and moduleb
are paralel overlays. Thelinker will not generate an overlay vector for function g
sinceit is static so when function h calls function g indirectly, unpredictable results
may occur. Notethat if gisaglobal function, an overlay vector will be generated
and the program will execute correctly.

2. You should organize the overlay structure to minimize the number of times
overlays have to be loaded into memory. Consider aloop calling two routines,
each routine in a different overlay. If the overlay structureis such that the overlays
are parallel, that is they occupy the same memory, each iteration of the loop will
cause 2 overlaysto be loaded into memory. Thiswill significantly increase
execution time if the loop is iterated many times.

3. If anumber of overlays have a number of common routines that they all reference,
the common routines will most likely be placed in an ancestor overlay of the
overlaysthat reference them. For thisreason, whenever an overlay isloaded, all its
ancestors are a so loaded.

4. Inan overlayed program, the overlay loader isincluded in the executablefile. If
we are dealing with relatively small programs, the size of the overlay loader may be
larger than the amount of memory saved by overlaying the program. In alarger
application, the size of the overlayed version would be smaller than the size of the
non-overlayed version. Note that overlaying a program resultsin alarger
executable file but the memory requirements are less.

5. Thesymbols”__OVLTAB_ ","_OVLSTARTVEC_","_OVLENDVEC_",

" LOVLLDR_"," NOVLLDR_"," SOVLLDR_"," LOVLINIT_",

Using Overlays 213

The Open Watcom Linker

" NOVLINIT__"and"_SOVLINIT__" are defined when you use overlays.
Y our program should not define these symbols.

6. When using the dynamic overlay manager, you should not take the address of static
functions. Static functions are not given overlay vectors, so if the module in which
the address of a static function istaken, is moved by the dynamic overlay manager,
that address will no longer point to the static function.

4.3.4 Increasing the Dynamic Overlay Area

Unlessthe "AREA" option has been specified, the default size of the dynamic overlay areais
twice the size of the largest overlay (or module if each module isits own overlay). Itis
possible to add additional overlay areas at run-time so that the dynamic overlay manager can
use the additional memory. A routine has been provided, called _ovl_addarea. This
function is defined as follows.

void far _ovl addarea(unsigned segment,unsigned size);

Thefirst argument is the segment address of the block memory you wish to add. The second
argument isthe size, in paragraphs, of the memory block.

In assembly language, the function iscalled _ov1_addarea_ with the first argument being
passed in register AX and the second argument in register DX.

4.3.5 How Overlay Files are Opened

The overlay manager normally opens overlay files, including executable files containing
overlays, in compatibility mode. Compatibility modeis asharing mode. A file openedin
compatibility mode means that it can be opened any number of times provided that it is not
currently opened under one of the other sharing modes. In other words, the file must always
be opened in compatibility mode.

The overlay manager keeps most recently used overlay files open for efficiency. This means
that any application, including the currently executing application, that may want to open an
overlay file, must open it in compatibility mode. For example, the executing application may
have data at the end of the executable file that it wishes to access.

If an application wishes to open the file in a sharing mode other than compatibility mode, the
function _ov1 _openflags hasbeen defined which alows the caller to specify the sharing
mode with which the overlay files will be opened by the overlay manager. Thisfunctionis
defined asfollows.

214 Using Overlays

The DOS Executable File Format

unsigned far _ovl openflags(unsigned sharing mode);
Legal values for the sharing mode are as follows.

Sharing Mode Value

compatibility mode 0x00
deny read/write mode 0x01

deny write mode 0x02
deny read mode 0x03
deny none mode 0x04

The return value is the previous sharing mode used by the overlay manager to open overlay
files.

Note that DOS opens executable files in compatibility mode when loading them for execution.
Thisisimportant for executable files on networks that may be accessed simultaneously by
many users.

In assembly language, the functioniscalled _ov1_openflags_ withitsargument being
passed in register AX.

4.4 Converting Microsoft Response Files to Directive

Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open
Watcom Linker directive files. The response files must correspond to the linker found in
version 7 or earlier of Microsoft C. Later versions of response files such as those used with
Microsoft Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files
since the syntax is similar.

Input to MS2ZWLINK is processed in the same way as the Microsoft linker processesitsinput.
The difference is that MS2WLINK writes the corresponding Open Watcom Linker directive
file to the standard output device instead of a creating an executable file. The resulting output
can be redirected to a disk file which can then be used as input to the Open Watcom Linker to
produce an executablefile.

Converting Microsoft Response Files to Directive Files 215

The Open Watcom Linker

Suppose you have a Microsoft linker response file called "test.rsp”. You can convert thisfile
to a Open Watcom Linker directive file by issuing the following command.

Example:
ms2wW i nk @est.rsp >test. | nk

Y ou can now use the Open Watcom Linker to link your program by issuing the following
command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft
response fileis to issue the following command.

Example:
ms2wW i nk @est.rsp | wink

Since the Open Watcom Linker gets its input from the standard input device, you do not have
to create a Open Watcom Linker directivefileto link your application.

Note that MS2WLINK can also process modul e-definition files used for creating OS/2
applications.

216 Converting Microsoft Response Files to Directive Files

5 The ELF Executable File Format

This chapter deals specifically with aspects of ELF executable files. The ELF executablefile
format will only run under the operating systems that support the EL F executable file format.

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dhblist]
DISABLE msg_num{,msg_num}
ENDLINK

EXPORT entry_name {,entry_name}
FILE obj_spec{,obj _spec}

FORMAT ELF [DLL]

IMPORT external_name {,external_name}
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}
LIBRARY library file{,library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj _module}
MODULE module_name {,module_name}
NAME exe file

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT

The ELF Executable File Format 217

The Open Watcom Linker

CVPACK
DOSSEG
ELIMINATE
[NOJFARCALLS
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
OSNAME="string’
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal file]
[NOJUNDEF SOK
VERBOSE
VFREMOVAL
OPTLIB library_file{ library file}
PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END
SYSTEM system _name
comment
@directive file

Y ou can view al the directives specific to ELF executable files by simply typing the
following:

wink ? elf
Notes:
1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"

environment variable, the contents of that file will be displayed when the following
command is issued.

218 The ELF Executable File Format

The ELF Executable File Format

W ink ?

If al of the directive information does not fit on the command line, type the
following.

W i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

5.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthefirst segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

Memory Layout 219

The Open Watcom Linker

220 Memory Layout

6 The NetWare O/S Executable File Format

This chapter deals specifically with aspects of NetWare executable files. The Novell NetWare
executable file format will only run under NetWare operating systems.

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
AUTOUNLOAD

DEBUG dbtype [dblist] | DEBUG [dblist]

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT entry_name {,entry_name}

FILE obj_spec{,obj_spec}

FORMAT NOVELL [NLM | LAN | DSK | NAM | 'number’] 'description’
IMPORT external_name {,external_name}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODTRACE obj_module{,obj _module}

MODULE module_name {,module_name}

NAME exe file

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CHECK=symbol _name

The NetWare O/S Executable File Format 221

The Open Watcom Linker

COPYRIGHT ’string’
CUSTOM=file_name
CVPACK
DOSSEG
ELIMINATE
EXIT=symbol_name
[NOJFARCALLS
HELP=help file
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
MESSAGES=msg_file
MULTILOAD
NAMELEN=n
NLMFLAGS=some value
NODEFAULTLIBS
NOEXTENSION
OSDOMAIN
OSNAME="string’
PSEUDOPREEMPTION
QUIET
REDEFSOK
SHOWDEAD
REENTRANT
SCREENNAME 'name’
SHARELIB=shared nlm
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal_file]
SYNCHRONIZE
THREADNAME 'thread_name’
[NOJUNDEFSOK
VERBOSE
VERSI ON=major[.minor[.revision]]
VFREMOVAL
XDCDATA=rpc file
OPTLIB library_file{ library file}
PATH path_name{; path_name}
REFERENCE symbol_name{,symbol_name}

222 The NetWare O/S Executable File Format

The NetWare O/S Executable File Format

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name

comment

@directive file

You can view all the directives specific to NetWare executable files by simply typing the
following:

W ink ? nov
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

6.1 NetWare Loadable Modules

NetWare L oadable Modules (NLMs) are executable files that run in file server memory under
the NetWare operating system. NLMs can be loaded and unloaded from file server memory
while the server isrunning. When running they actually become part of the operating system
thus acting as building blocks for a server environment tailored to your needs.

There are multiple types of NLMs, each identified by the file extension of the executablefile
and the internal module type number.

NetWare Loadable Modules 223

The Open Watcom Linker

« Utility and server applications (executable files with extension "nim").

* LAN drivers (executable files with extension "lan").

* Disk drivers (executable files with extension "dsk").

» Modules that define file system name spaces (executable files with extension "nam™).
* Custom Device modules (executable files with extension "cdm™).

* Host Adapter modules (executable files with extension "ham").

* Mirrored server link modules (executable files with extension "mgl").

» Module types specified by number. These are the current defined values:

0 Specifies astandard NLM (default extension .NLM)

1 Specifies adisk driver module (default extension .DSK)
2 Specifies a namespace driver module (default extension .NAM)
3 Specifiesa LAN driver module (default extension .LAN)
4 Specifiesa utility NLM (default extension .NLM)

5 SpecifiesaMirrored Server Link module (default .MSL)
6 Specifies an Operating System module (default .NLM)

7 Specifies a Page High OS module (default .NLM)

8 Specifies a Host Adapter module (default . HAM)

9 Specifies a Custom Device module (default .CDM)

10 Reserved for Novell usage

11 Reserved for Novell usage

12 Specifies a Ghost module (default .NLM)

13 Specifies an SMP driver module (default .NLM)

224 NetWare Loadable Modules

The NetWare O/S Executable File Format

14

15

16

21

22

23

24

25

26

27

28

Specifies a NIOS module (default .NLM)
Specifies a ClIOS CAD type module (default .NLM)
Specifies a ClOS CL S type module (default .NLM)
Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

The Open Watcom Linker can generate all types of NLMs by utilising the numerical value of
the module type.

6.2 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP'
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Memory Layout 225

The Open Watcom Linker

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthefirst segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

226 Memory Layout

/ The 0S/2 Executable and DLL File Formats

This chapter deals specifically with aspects of OS/2 executablefiles. The OS/2 16-bit
executable file format will run under the following operating systems.

1. 16-hit OS2 1.x
2. 32-bit 0S5/2 2.x, 3.x (Warp) and 4.x
3. Phar Lap’s 286|DOS-Extender

The OS/2 32-hit linear executable file format will run under the following operating systems.

1. 0S/22xandlater (LX format only)

2. CauseWay DOS extender, Tenberry Software’s DOS/AG and DOS/AGW DOS
extenders, and compatible products (LE format only)

3. FlashTek’s DOS Extender (LX format only)

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directiveis any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj_spec}

FORMAT OS2 [exe _type] [dIl_form | exe_attrs]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

The 0S/2 Executable and DLL File Formats 227

The Open Watcom Linker

LIBPATH path_name{; path_name}
LIBRARY library_file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe file

NEWSEGMENT

PATH path_name{; path_name}
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG
ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
INTERNALRELOCS
MANGLEDNAMES
MANYAUTODATA
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NEWFILES
NOAUTODATA
NODEFAULTLIBS
NOEXTENSION
OFFSET
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME="¢tring’
PACKCODE=n
PACKDATA=nN
PROTMODE

QUIET

REDEFSOK

228 The 0S/2 Executable and DLL File Formats

The 0S/2 Executable and DLL File Formats

RESOURCE=resource file
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_fil€]
TOGGLERELOCS
[NOJUNDEFSOK
VERBOSE
VERSI ON=major[.minor]
VFREMOVAL
OPTLIB library_file{ library file}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END
SYSTEM system _name
comment
@directive file

Y ou can view al the directives specific to OS/2 executable files by simply typing the
following:

wink ? os2
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk
The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines

of directive information as required. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or

The 0S/2 Executable and DLL File Formats 229

The Open Watcom Linker

Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

7.1 Dynamic Link Libraries

The Open Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets loaded by the
operating system when you run your application. A Dynamic Link Library isreally alibrary
of routines that are called by a program module but not linked into the program module. The
executable codein aDynamic Link Library isloaded by the operating system during the
execution of a program module when aroutine in the Dynamic Link Library is called.

Program modules are contained in files whose name has afile extension of "exe". Dynamic
Link Libraries are contained in files whose name has afile extension of "dIl". The Open
Watcom Linker "FORMAT" directive can be used to select the type of executablefile to be
generated.

L et us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only
references to the functionsin Dynamic Link Libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will usethe
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also alow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

230 Dynamic Link Libraries

The 0S/2 Executable and DLL File Formats

7.1.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must place the"DLL" keyword following the system
nameinthe"SYSTEM" directive.

system os2v2Z2_dll

In addition, you must specify which functionsin the Dynamic Link Library are to be made
available to applications which useit. Thisisachieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

7.1.2 Using a Dynamic Link Library

To use aDynamic Link Library, you must tell the Open Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. Thisis
achieved in two ways.

Thefirst method isto use the "IMPORT" directive. The"IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Open Watcom Linker can
generate an import definition in the program module.

The second method is to use import libraries. Animport library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. Animport library is created from a Dynamic Link Library using the
Open Watcom Library Manager. The resulting import library can then be specifiedin a
"LIBRARY" directive in the same way one would specify a standard library. See the chapter
entitled "The Open Watcom Library Manager" in the Open Watcom C/C++ Tools User’'s
Guide or the Open Watcom FORTRAN 77 Tools User’s Guide for more information on
creating import libraries.

Using an import library isthe preferred method of providing references to functionsin
Dynamic Link Libraries. When aDynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a"LIBRARY" directive need not
be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changes in the Dynamic Link Library.

Dynamic Link Libraries 231

The Open Watcom Linker

7.2 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"
2. all other segments not belonging to group "DGROUP"
3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUFP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

7.3 Converting Microsoft Response Files to Directive
Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open
Watcom Linker directive files. The response files must correspond to the linker found in
version 7 or earlier of Microsoft C. Later versions of response files such as those used with
Microsoft Visual C++ are not entirely supported.

The same utility can aso convert much of the content of IBM OS/2 LINK 386 response files
since the syntax is similar.

232 Converting Microsoft Response Files to Directive Files

The 0S/2 Executable and DLL File Formats

Input to MS2WLINK is processed in the same way as the Microsoft linker processes itsinput.
The difference is that MS2WLINK writes the corresponding Open Watcom Linker directive
file to the standard output device instead of a creating an executable file. The resulting output
can be redirected to a disk file which can then be used as input to the Open Watcom Linker to
produce an executablefile.

Suppose you have a Microsoft linker response file called "test.rsp". You can convert thisfile
to a Open Watcom Linker directive file by issuing the following command.

Example:
ns2wW i nk @est.rsp >test.lnk

Y ou can now use the Open Watcom Linker to link your program by issuing the following
command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft
response file isto issue the following command.

Example:
nms2wW i nk @est.rsp | wink

Since the Open Watcom Linker getsits input from the standard input device, you do not have
to create a Open Watcom Linker directive fileto link your application.

Note that MS2WLINK can also process modul e-definition files used for creating OS/2
applications.

Converting Microsoft Response Files to Directive Files 233

The Open Watcom Linker

234 Converting Microsoft Response Files to Directive Files

8 The Phar Lap Executable File Format

This chapter deals specifically with aspects of Phar Lap 386|DOS-Extender executable files.
The Phar Lap executable file format will run under the following operating systems.

1. Phar Lap’'s 386|DOS-Extender
2. Open Watcom's 32-bit Windows supervisor (relocatable format only)

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directive is any of the following:

ALIAS alias name=symbol_name{,alias_ name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dblist]

DISABLE msg_num{,msg_num}

ENDLINK

FILE obj_spec{,obj_spec}

FORMAT PHARLAP [EXTENDED | REX | SEGMENTED]
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

NAME exe file

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK

The Phar Lap Executable File Format 235

The Open Watcom Linker

DOSSEG
ELIMINATE
[NOJFARCALLS
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXDATA=Nn
MAXERRORS=N
MINDATA=Nn
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
OFFSET=n
OSNAME="string’
QUIET
REDEF SOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
[NOJUNDEF SOK
VERBOSE
VFREMOVAL

OPTLIB library file{ library_file}

PATH path_name{; path_name}

REFERENCE symbol _name{,symbol_name}

RUNTIME run_option{,run_option}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

SYMTRACE symbol_name{,symbol_name}

SYSTEM BEGIN system_name {directive} END

SYSTEM system_name

comment

@directive file

You can view all the directives specific to Phar Lap 386|DOS-Extender executable files by
simply typing the following:

W ink ? phar

236 The Phar Lap Executable File Format

The Phar Lap Executable File Format

Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

8.1 32-bit Protected-Mode Applications

The Open Watcom Linker generates executable files that run under Phar Lap’s
386|DOS-Extender. 386|DOS-Extender provides a 32-bit protected-mode environment for
programs running under PC DOS. Running in 32-bit protected mode allows your program to
access all of the memory in your machine.

Essentially, what 386]|DOS-Extender does is provide an interface between your application
and DOS running in real mode. Whenever your program issues a software interrupt (DOS
and BIOS system calls), 386|DOS-Extender intercepts the requests, transfers data between the
protected-mode and real-mode address space, and calls the corresponding DOS system
function running in real mode.

8.2 Memory Usage

When running a program under 386|DOS-Extender, memory for the program is allocated from
conventional memory (memory below one megabyte) and extended memory. Conventional
memory is alocated from a block of memory that is obtained from DOS by
386|DOS-Extender at initialization time. By default, al available memory is allocated at
initialization time; no conventional memory remainsfree. The"MINREAL" and

Memory Usage 237

The Open Watcom Linker

"MAXREAL" options of the "RUNTIME" directive control the amount of conventional
memory initially left free by 386|DOS-Extender.

Part of the conventional memory allocated at initialization is required by 386|DOS-Extender.
Thefollowing is alocated from conventional memory for use by 386|DOS-Extender.

1

A data buffer is alocated and is used to pass datato DOS and BIOS system
functions. The size allocated is controlled by the "MINIBUF" and "MAXIBUF"
options of the"RUNTIME" directive.

Stack spaceis allocated and is used for switching between 32-bit protected mode
and real mode. The size alocated is controlled by the "NISTACK" and
"ISTKSIZE" options of the "RUNTIME" directive.

A call buffer isalocated and is used for passing data on function calls between
32-bit protected mode and real mode. The size allocated is controlled by the
"CALLBUFS" option of the "RUNTIME" directive.

When a program is loaded by 386|DOS-Extender, memory to hold the entire program is
allocated. In addition, memory beyond the end of the program is allocated for use by the
program. By default, all extramemory is allocated when the program isloaded. It is assumed
that any memory not required by the program is freed by the program. The amount of
memory allocated at the end of the program is controlled by the"MINDATA" and
"MAXDATA" options.

8.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They arefirst in the segment ordering so that
the"REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the
application. Currently, the "RUNTIME" directiveisvalid for Phar Lap executables
only.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

238 Memory Layout

The Phar Lap Executable File Format

5. al segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"
7. all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

8.4 The Open Watcom Linker Memory Requirements

The Open Watcom Linker uses all available memory when linking an application. For
DOS-hosted versions of the Open Watcom Linker, this includes expanded memory (EMS)
and extended memory. It is possible for the size of the image being linked to exceed the
amount of memory available in your machine, particularly if the image fileisto contain
debugging information. For this reason, atemporary disk fileis used when all available
memory is used by the Open Watcom Linker.

Normally, the temporary file is created in the current working directory. However, by
defining the "tmp" environment variable to be a directory, you can tell the Open Watcom
Linker where to create the temporary file. This can be particularly useful if you have a RAM
disk. Consider the following definition of the "tmp" environment variable.

set tmp=\tnp

The Open Watcom Linker will create the temporary file in the directory "\tmp".

The Open Watcom Linker Memory Requirements 239

The Open Watcom Linker

240 The Open Watcom Linker Memory Requirements

9 The QNX Executable File Format

This chapter deals specifically with aspects of QNX executablefiles. The QNX executable
file format will only run under the QNX operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

wlink {directive}

where directive is any of the following:

ALIAS symbol_name=symbol _name{,symbol_name=symbol _name}
DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj _spec}

FORMAT QNX [FLAT]

LANGUAGE

LIBFILE obj_file{,obj_file}

LIBPATH path_name{:path_name}
LIBRARY library file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_spec{,obj_spec}

NAME exe file

NEWSEGMENT

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DOSSEG
ELIMINATE

The QNX Executable File Format 241

The Open Watcom Linker

[NOJFARCALLS
HEAPSIZE=n
INCREMENTAL
LINEARRELOCS
LONGLIVED
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
NORELOCS
OFFSET=n
OSNAME="string’
PACKCODE=n
PACKDATA=N
PRIVILEGE=n
QUIET
REDEFSOK
RESOURCE[=resource file| string’]
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{ library file}

PATH path_name{: path_name}

REFERENCE symbol_name{,symbol _name}

SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

SYMTRACE symbol_name{,symbol _name}

SYSTEM BEGIN system_name {directive} END

SYSTEM system _name

comment

@directive file

You can view all the directives specific to QNX executable files by simply typing the
following:

wink ? gnx

242 The QNX Executable File Format

The QNX Executable File Format

Notes:

If thefile/ et ¢/ Wl i nk. hl p exists, the contents of that file will be displayed
when the following command is issued.

wink ?

If al of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

9.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1.

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Memory Layout 243

The Open Watcom Linker

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

244 Memory Layout

10 The Win16 Executable and DLL File
Formats

This chapter deals specifically with aspects of Win16 executable files. The Winl6 executable
file format will run under Windows 3.x, Windows 95, and Windows NT.

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
DEBUG dbtype [dblist] | DEBUG [dblist]

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj _spec}

FORMAT WINDOWS [dIl_form] [MEMORY] [FONT]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}

LIBRARY library file{ library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

NAME exe file

NEWSEGMENT

PATH path_name{; path_name}

The Win16 Executable and DLL File Formats 245

The Open Watcom Linker

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG

ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MANYAUTODATA
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NOAUTODATA
NODEFAULTLIBS
NOEXTENSION
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME="¢tring’
PACKCODE=n
PACKDATA=nN

QUIET

REDEFSOK
RESOURCE=resource file
RWRELOCCHECK
SHOWDEAD

STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symboal filg]
[NOJUNDEF SOK
VERBOSE

VERSI ON=major[.minor]

246 The Win16 Executable and DLL File Formats

The Win16 Executable and DLL File Formats

VFREMOVAL
OPTLIB library_file{ library file}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END
SYSTEM system_name
comment
@directive file

You can view all the directives specific to Win16 executable files by simply typing the
following:

wink ?2 win
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

The Win16 Executable and DLL File Formats 247

The Open Watcom Linker

10.1 Fixed and Moveable Segments

All segments have attributes that tell Windows how to manage the segment. One of these
attributes specifies whether the segment is fixed or moveable. Moveable segments can be
moved in memory to satisfy other memory requests. When a segment is moved, all near
pointersto that segment are still valid since a near pointer references memory relative to the
start of the segment. However, far pointers are no longer valid once a segment has been
moved. Fixed segments, on the other hand, cannot be moved in memory. A segment must be
fixed if there exists far pointers to that segment that Windows cannot adjust if that segment
were moved.

This is amemory-management issue for real-mode Windows only. However, if aDLL is
marked as "fixed", Windows 3.x will placeit in the lower 640K real-mode memory
(regardless of the mode in which Windows 3.x is running). Since the lower 640K isalimited
resource, you normally would want aDLL to be marked as "moveable”.

Most segments, including code and data segments, are moveable. Some exceptions exist. If
your program contains afar pointer, the segment which it references must be fixed. If it were
moveable, the segment address portion of the far pointer would be invalid when Windows
moved the segment.

All non-Windows programs are assigned fixed segments when they run under Windows.
These segments must be fixed since there is no information in the executable file that
describes how segments are referenced. Whenever possible, your application should consist
of moveable segments since fixed segments can cause memory management problems.

10.2 Discardable Segments

Moveable segments can also be discardable. Memory allocated to a discardable segment can
be freed and used for other memory requests. A "least recently used" (LRU) algorithm is used
to determine which segment to discard when more memory is required.

Discardable segments are usually segments that do not change once they are loaded into
memory. For example, code segments are discardable since programs do not usually modify
their code segments. When a segment is discarded, it can be reloaded into memory by
accessing the executablefile.

Discardable segments must be moveable since they can be reloaded into a different areain

memory than the area they previously occupied. Note that moveable segments need not be
discardable. Obviously, data segments that contain read/write data cannot be discarded.

248 Discardable Segments

The Win16 Executable and DLL File Formats

10.3 Dynamic Link Libraries

The Open Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module isthe executable file that gets |oaded by the
operating system when you run your application. A Dynamic Link Library isreally alibrary
of routines that are called by a program module but not linked into the program module. The
executable codein aDynamic Link Library isloaded by the operating system during the
execution of a program module when aroutine in the Dynamic Link Library is called.

Program modules are contained in files whose name has afile extension of "exe". Dynamic
Link Libraries are contained in files whose name has afile extension of "dIl". The Open
Watcom Linker "FORMAT" directive can be used to select the type of executablefile to be
generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only
references to the functionsin Dynamic Link Libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link

Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

10.3.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must place the"DLL" keyword following the system
nameinthe"SYSTEM" directive.

system windows_dll

Dynamic Link Libraries 249

The Open Watcom Linker

In addition, you must specify which functionsin the Dynamic Link Library are to be made
available to applications which useit. Thisisachieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

10.3.2 Using a Dynamic Link Library

To use aDynamic Link Library, you must tell the Open Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. Thisis
achieved in two ways.

Thefirst method isto use the "IMPORT" directive. The"IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Open Watcom Linker can
generate an import definition in the program module.

The second method is to use import libraries. Animport library is astandard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. Animport library is created from a Dynamic Link Library using the
Open Watcom Library Manager. The resulting import library can then be specifiedina
"LIBRARY" directive in the same way one would specify a standard library. See the chapter
entitled "The Open Watcom Library Manager" in the Open Watcom C/C++ Tools User’s
Guide or the Open Watcom FORTRAN 77 Tools User’s Guide for more information on
creating import libraries.

Using an import library isthe preferred method of providing references to functionsin
Dynamic Link Libraries. When a Dynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a"LIBRARY" directive need not
be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directivesto reflect the changes in the Dynamic Link Library.

10.4 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

250 Memory Layout

The Win16 Executable and DLL File Formats

2. all other segments not belonging to group "DGROUP"
3. al segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

10.5 Converting Microsoft Response Files to Directive

Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open
Watcom Linker directive files. The response files must correspond to the linker found in
version 7 or earlier of Microsoft C. Later versions of response files such as those used with
Microsoft Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files
since the syntax is similar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processes its input.
The difference is that MS2WLINK writes the corresponding Open Watcom Linker directive
file to the standard output device instead of a creating an executable file. The resulting output
can be redirected to a disk file which can then be used asinput to the Open Watcom Linker to
produce an executablefile.

Suppose you have a Microsoft linker response file called "test.rsp". You can convert thisfile
to a Open Watcom Linker directive file by issuing the following command.

Converting Microsoft Response Files to Directive Files 251

The Open Watcom Linker

Example:
ns2wW i nk @est.rsp >test. | nk

Y ou can now use the Open Watcom Linker to link your program by issuing the following
command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft
response file isto issue the following command.

Example:
ne2wW i nk @est.rsp | wink

Since the Open Watcom Linker getsitsinput from the standard input device, you do not have
to create a Open Watcom Linker directive fileto link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2
applications.

252 Converting Microsoft Response Files to Directive Files

11 The Windows Virtual Device Driver File
Format

This chapter deals specifically with aspects of WinVxD executable files.

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directive is any of the following:

ALIAS alias name=symbol_name{,alias_ name=symbol _name}
DISABLE msg_num{,msg_num}
ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj_spec}

FORMAT WINDOWS VXD [DYNAMIC]
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}
LIBRARY library file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe file

PATH path_name{; path_name}

OPTION option{,option}

The Windows Virtual Device Driver File Format 253

The Open Watcom Linker

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
DESCRIPTION ’string’
ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
OSNAME="gtring’
QUIET
REDEFSOK
RESOURCE=resource file
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symboal file]
[NOJUNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{ library file}

REFERENCE symbol_name{,symbol_name}

SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

SYMTRACE symbol_name{,symbol_name}

SYSTEM BEGIN system _name {directive} END

SYSTEM system _name

comment

@directive file

254 The Windows Virtual Device Driver File Format

The Windows Virtual Device Driver File Format

You can view all the directives specific to WinVxD executable files by simply typing the

following:

wink ? win vxd

Notes:

1

If thefile "wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

If al of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

11.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1.

2.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Memory Layout 255

The Open Watcom Linker

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthefirst segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

256 Memory Layout

12 The Win32 Executable and DLL File
Formats

This chapter deals specifically with aspects of Win32 executable files. The Win32 executable
file format will run under Windows 95, Windows NT, and Phar Lap’'s TNT DOS extender. It
may also run under Windows 3.x using the Win32S subsystem (you are restricted to a subset
of the Win32 API).

Input to the Open Watcom Linker is specified on the command line and can be redirected to
one or more files or environment strings. The Open Watcom Linker command line format is
asfollows.

WLINK {directive}

where directiveis any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
COMMIT mem_type

DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc_file

FILE obj_spec{,obj_spec}

FORMAT WINDOWSNT [TNT] [dll_form]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

The Win32 Executable and DLL File Formats 257

The Open Watcom Linker

NAME exe file
PATH path_name{; path_name}
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CHECKSUM

CVPACK

DESCRIPTION ’string’
DOSSEG

ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
LINKVERSION=major[.minor]
MANGLEDNAMES
MAP[=map_fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
NORELOCS
NOSTDCALL
OBJALIGN=n

OFFSET
OLDLIBRARY=dll_name
OSNAME="string’
OSVERSI ON=major[.minor]
QUIET

REDEFSOK
RESOURCE-=resource file
SHOWDEAD

STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symboal_file]

258 The Win32 Executable and DLL File Formats

The Win32 Executable and DLL File Formats

[NOJUNDEF SOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL
OPTLIB library file{ library_file}
REFERENCE symbol _name{,symbol_name}
RUNTIME run_option
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END
SYSTEM system_name
comment
@directive file

Y ou can view al the directives specific to Win32 executable files by simply typing the
following:

wink ? nt
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Open Watcom Linker. Press"Ctrl/D" to
terminate the input of directive information if you are running a UNIX-hosted
version of the Open Watcom Linker.

The Win32 Executable and DLL File Formats 259

The Open Watcom Linker

12.1 Dynamic Link Libraries

The Open Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module isthe executable file that gets |oaded by the
operating system when you run your application. A Dynamic Link Library isreally alibrary
of routines that are called by a program module but not linked into the program module. The
executable codein aDynamic Link Library isloaded by the operating system during the
execution of a program module when aroutine in the Dynamic Link Library is called.

Program modules are contained in files whose name has afile extension of "exe". Dynamic
Link Libraries are contained in files whose name has afile extension of "dIl". The Open
Watcom Linker "FORMAT" directive can be used to select the type of executablefile to be
generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only
references to the functionsin Dynamic Link Libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

12.1.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must place the"DLL" keyword following the system
nameinthe"SYSTEM" directive.

system nt_dll

260 Dynamic Link Libraries

The Win32 Executable and DLL File Formats

In addition, you must specify which functionsin the Dynamic Link Library are to be made
available to applications which useit. Thisisachieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

12.1.2 Using a Dynamic Link Library

To use aDynamic Link Library, you must tell the Open Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. Thisis
achieved in two ways.

Thefirst method isto use the "IMPORT" directive. The"IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Open Watcom Linker can
generate an import definition in the program module.

The second method is to use import libraries. Animport library is astandard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. Animport library is created from a Dynamic Link Library using the
Open Watcom Library Manager. The resulting import library can then be specifiedina
"LIBRARY" directive in the same way one would specify a standard library. See the chapter
entitled "The Open Watcom Library Manager" in the Open Watcom C/C++ Tools User’s
Guide or the Open Watcom FORTRAN 77 Tools User’s Guide for more information on
creating import libraries.

Using an import library isthe preferred method of providing references to functionsin
Dynamic Link Libraries. When a Dynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a"LIBRARY" directive need not
be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directivesto reflect the changes in the Dynamic Link Library.

12.2 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

Memory Layout 261

The Open Watcom Linker

5.

6.

all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

262 Memory Layout

13 Open Watcom Linker Diagnostic
Messages

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings.
Each message has a 4-digit number associated with it. Fatal messages start with the digit 3,
error messages start with the digit 2, and warning messages start with the digit 1. Itispossible
for amessage to be issued as awarning or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be
generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued.
However, no executable file will be generated since these errors do not permit a proper
executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually
informational and does not prevent the creation of a proper executable file. However, all
warnings should eventually be corrected.

The messages listed contain referencesto %, %5, %, %%, %, %, and % . They
represent strings that are substituted by the Open Watcom Linker to make the error message
more precise.

1. % representsastring. This may be a segment or group name, or the name of a
linker directive or option.

2. YS represents the name of asymbol.

3. % represents an address. The format of the address depends on the format of the
executable file being generated.

4. Y% represents a hexadecimal number.
5. %l representsintegersin the range -32768 and 32767.

6. 9% representsintegersin the range -2147483648 and 2147483647.

Open Watcom Linker Diagnostic Messages 263

The Open Watcom Linker

7. 9% represents an executable file format such as DOS, WINDOWS, PHARLAP,
NOVELL, OS2, QNX or ELF.

Thefollowingisalist of all warning and error messages produced by the Open Watcom
Linker followed by adescription of the message. A message may contain more than one
reference to "%s'. In such acase, the description will reference them as "%sn" where n isthe
occurrence of "%s" in the message.

MSG 2002 ** internal ** - %s
If this message occurs, you have found a bug in the linker and should report it.
MSG 2008 cannot open %sl: %s2

An error occurred while trying to open the file "%s1". The reason for the error
isgiven by "%s2". Generaly this error message isissued when the linker cannot
open afile (e.g., an object file or an executablefile).

MSG 3009 dynamic memory exhausted

The linker uses all available memory when linking an application. For
DOS-hosted versions of the linker, thisincludes expanded memory (EMS) and
extended memory. When all available memory is used, a spill file will be used.
Therefore, unless you are low on disk space, the linker will always be able to
generate the executable file. Dynamic memory is the memory the linker uses to
build itsinternal data structures and symbol table. Dynamic memory isthe
amount of unallocated memory available on your machine (including virtual
memory for those operating systems that support it). A spill fileis not used for
dynamic memory. If the linker issues this message, it cannot link your
application. The following are suggestions that may help you in this situation.

1. Concatenate all your object files into one and specify only the
resulting object file asinput to the linker. For example, if you are
linking in a DOS environment, you can issue the following DOS
command.

C>copy/b *.obj all. obj

This technique only works for OMF-type object files. This
significantly reduces the size of thefile list the linker must maintain.

2. Object files may contain arecord which specifies the module name.

Thisinformation is used by Open Watcom Debugger to locate
modules during a debugging session and usually contains the full path

264 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

of the sourcefile. This can consume a significant amount of memory
when many such object files are being linked. 1f your source is being
compiled by the Open Watcom C or C++ compiler, you can use the
"nm" option to set the module name to just the file name. This
reduces the amount of memory required by the linker. If your are
using Open Watcom Debugger to debug your application, you may
have to use the "set source" command so that the source
corresponding to amodule can be located.

3. Typically, when you are compiling a program for alarge code model,
each module defines a different "text" segment. If you are compiling
your application using the Open Watcom C or C++ compiler, you can
reduce the number of "text" segments that the linker has to process by
specifying the "nt" option. The "nt" option allows you to specify the
name of the "text" segment so that a group of object files define the
same "text" segment.

MSG 2010,3010 /O error processing %sl: %s2

MSG 2011

MSG 2012

MSG 3013

MSG 1014

An error has occurred while processing the file "%s1". The cause of the error is
given by "%s2". Thiserror isusualy detected while reading from object and
library files or writing to the spill file or executable file. For example, this error
would beissued if a"disk full* condition existed.

invalid object file attribute

The linker encountered an object file that was not of the format required of an
object file.

invalid library file attribute

The linker encountered alibrary file that was not of the format required of a
library file.

break key detected

The linking process was interrupted by the user from the keyboard.

stack segment not found

The linker identifies the stack segment by a segment defined as having the
"STACK" attribute. This messageisissued if no such segment is encountered.

Thisusualy happensif the linker cannot find the run-time libraries required to
link your application.

Open Watcom Linker Diagnostic Messages 265

The Open Watcom Linker

MSG 2015 bad relocation type specified

Thismessageisissued if aarelocation isfound in an object file which the linker
does not support.

MSG 2016 %a: absolutetarget invalid for self-relative relocation

This message isissued, for example, if anear call or jump is made to an external
symbol which is defined using the "EQU" assembler directive. "%a" identifies
the location of the near call or jump instruction.

MSG 2017 bad location specified for self-relativerelocation at % a

This messageisissued if abad fixup is encountered. "%a" defines the location
of the fixup.

MSG 2018 relocation offset at % ais out of range

This message is issued when the offset part of arelocation exceeds 64K ina
16-hit executable or an Alpha executable. "%a" defines the location of the
fixup. Theerror is most commonly caused by errors in coding assembly
language routines. Consider a module that references an external symbol that is
defined in a segment different from the one in which the reference occurred.
The module, however, specifies that the segment in which the symbol is defined
is the same segment as the segment that references the symbol. Thiserror is
most commonly caused when the "EXTRN" assembler directiveis placed after
the"SEGMENT" assembler directive for the segment referencing the symbol. If
the segment that references the symbol is allocated far enough away from the
segment that defines the symbol, the linker will issue this message.

MSG 1019 segment relocation at %a

This message is issued when a 16-bit segment relocation is encountered and
"FORMAT DOS COM", "FORMAT PHARLAP" or "FORMAT NOVELL" has
been specified. None of the above executable file formats allow segment
relocation. "%a" identifies the location of the segment relocation.

MSG 2020 size of group % s exceeds 64k by %] bytes
The group "%s" has exceeded the maximum size (64K) allowed for agroupin a
16-bit executable by "%l" bytes. Usually, the group is "DGROUP" (the default

data segment) and your application has placed too much datain this group. One
of the following may solve this problem.

266 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2021

MSG 2022

MSG 1023

MSG 2024

MSG 2025

1. If you are using the Open Watcom C or C++ compiler, you can place
some of your datain afar segment by using the "far" keyword when
defining data. Y ou can a so decrease the value of the data threshold
by using the "zt" compiler option. Any datum whose size exceeds the
value of the data threshold will be placed in afar segment.

2. If you are using the Open Watcom FORTRAN 77 compiler, you can
decrease the value of the data threshold by using the "dt" compiler
option. Any datum whose size exceeds the value of the data threshold
will be placed in afar segment.

size of segment % s exceeds 64k by %! bytes

The segment "%s" has exceeded the maximum size (64K) for asegment in a
16-bit executable. Thisusually occursif you are linking a 16-bit application that
has been compiled for asmall code model and the size of the application has
grown in such away that the size of the code segment (*_TEXT") has exceeded
64K. You can overlay your application or compile it for alarge code model if
you cannot reduce the amount of code in your application.

cannot have a starting address with an imported symbol

When generating an OS/2 executable file, a symbol imported from aDLL
cannot be a start address. When generating a NetWare executable file, a symbol
imported from an NLM cannot be a start address.

no starting addressfound, using %a

The starting address defines the location where execution is to begin and must
be defined by a specia "module end" record in one of the object files linked into
your application. This message isissued if no such record is encountered in
which case a default starting address, namely "%a", will be used. This usually
happens if the linker cannot find the run-time libraries required to link your
application.

missing overlay loader
This message isissued when an overlayed 16-bit DOS executable is being linked
and the overlay manager has not been encountered. This usually happensif the

linker cannot find the run-time libraries required to link your application.

short vector %d isout of range

Open Watcom Linker Diagnostic Messages 267

The Open Watcom Linker

This message is issued when the linker is creating an overlayed 16-bit DOS
executable and "OPTION SMALL" is specified. Since an overlay vector
contains a near call to the overlay loader followed by a near jump to the routine
corresponding to the overlay vector, al code including the overlay manager and
all overlay vectors must be less than 64K. This messageisissued if the offset of
an overlay vector from the overlay loader or the corresponding routine exceeds
64K.

MSG 2026 redefinition of reserved symbol %s

The linker defines certain reserved symbols. These symbolsare”_edata’,

" end","__OVLTAB_"," OVLSTARTVEC_"," OVLENDVEC_ ",

" LOVLLDR_"," NOVLLDR_"," SOVLLDR_ _"," LOVLINIT_",
" NOVLINIT_"and"__SOVLINIT__". Thesymbols" OVLTAB_ ",

" OVLSTARTVEC "," OVLENDVEC "," LOVLLDR ",

" NOVLLDR_"," SOVLLDR_ "," LOVLINIT_"," NOVLINIT_ "
and"_SOVLINIT__" are defined only if you are using overlaysin 16-bit DOS
executables. The symbols"_edata’ and"_end" are defined only if the
"DOSSEG" option is specified. Y our application must not attempt to define
these symbols. "%s" identifies the reserved symbol.

MSG 1027 redefinition of % Signored

The symbol "%S" has been defined by more that one module; the first definition
isused. Thisisonly awarning message. Note that if a symbol is defined more
than once and its address is the same in both cases, no warning will be issued.
This prevents the warning message from being issued when linking FORTRAN
77 modules that contain common blocks.

MSG 1028,2028 % Sis an undefined reference
The symbol "%S" has been referenced but not defined. Check that the spelling
of the symbol is consistent. If you wish the linker to ignore undefined
references, use the "UNDEFSOK" option.

MSG 2029 premature end of file encountered
This error isissued while processing object files and object modules from
libraries and is caused if the end of the file or module is reached before the
"module end" record is encountered. The probable cause is atruncated object

file.

MSG 2030 multiple starting addr esses found

268 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2031

MSG 1032

The starting address defines the location where execution isto begin and is
defined by a"module end" record in a particular object file. Thismessageis
issued if more than one object file contains a "module end" record that defines a
starting address.

segment %sisin group %sand group %s

The segment "%s1" has been defined to be in group "%s2" in one module and in
group "%s3" in another module. A segment can only belong to one group.

record (type 0x% x) not processed
An object record type not supported by the linker has been encountered. This

message is issued when linking object modules created by other compilers or
assemblers that create object files with records that the linker does not support.

MSG 2033,3033 directiveerror near '%s

MSG 2034

MSG 1038

MSG 2039

A syntax error occurred while the linker was processing directives. "%s"
specifies where the error occurred.

% a cannot have an offset with an imported symbol

An imported symbol is one that was specified in an "IMPORT" directive.
Imported symbols are defined in Windows or OS/2 16-bit DLLs and in Netware
NLMs. Referencestoimported symbols must always have an offset value of O.
If "DosWrite" is an imported symbol, then referencing "DosWrite+2" isillegal.
"%a" defines the location of theillegal reference.

DEBUG directive appears after object files

Thismessageisissued if thefirst "DEBUG" directive appears after a"FILE"
directive. A common error isto specify a"DEBUG" directive after the "FILE"
directives in which case no debugging information for those object filesis
generated in the executable file.

ALIGNMENT valuetoo small

The value specified in the "ALIGNMENT" option refers to the alignment of
segmentsin the executable file. For 16-hit Windows or 16-hit OS/2, segments
in the executable file are pointed to by a segment table. An entry in the segment
table contains a 16-bit value which is amultiple of the alignment value.
Together they form the offset of the segment from the start of the segment table.
The smaller the alignment, the bigger the value required in the segment table to

Open Watcom Linker Diagnostic Messages 269

The Open Watcom Linker

MSG 2040

MSG 2041

MSG 2042

MSG 1043

point to the segment. If thisvalue exceeds 64K, then alarger aignment valueis
required to decrease the size that goes in the segment table.

ordinal in IMPORT directive not valid

The specified ordinal in the "IMPORT" directive isincorrect (e.g., -1). An
ordinal number must be in the range 0 to 65535.

ordinal in EXPORT directive not valid

The specified ordinal in the "EXPORT" directiveisincorrect (e.g., -1). An
ordinal number must be in the range 0 to 65535.

too many |OPL wordsin EXPORT directive

The maximum number of |OPL words for a 16-bit executable is 63.

duplicate exported ordinal

This message isissued for ordinal numbers specified in an "EXPORT" directive
for symbols belonging to DLLs. This message isissued if an ordinal number is

assigned to two different symbols. A warning isissued and the linker assigns a
non-used ordinal number to the symbol that caused the warning.

MSG 1044,2044 exported symbol % s not found

MSG 1045

MSG 1046

MSG 1047

MSG 1048

This message isissued when generating aDLL or NetWare NLM. An attempt
has been made to define an entry point into aDLL or NLM that does not exist.

segment attribute defined mor e than once

A segment appearing in a"SEGMENT" directive has been given conflicting or
duplicate attributes.

segment name %s not found

The segment name specified in a"SEGMENT" directive has not been defined.
class name % s not found

The class name specified in a"SEGMENT" directive has not been defined.

inconsistent attributesfor automatic data segment

270 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2049

MSG 1050

MSG 2051

MSG 2052

MSG 2053

MSG 1054

MSG 2055

This message isissued for Windows or OS/2 16-bit executable files. Two
conflicting attributes were specified for the automatic data segment. For
example, "LOADONCALL" and "PRELOAD" are conflicting attributes. Only
thefirst attribute is used.

invalid STUB file

The stub fileis not avalid executable file. The stub fileisonly used for OS/2
executable files and Windows (both Winl16 and Win32) executablefiles.

invalid DLL specified in OLDLIBRARY option

The DLL specified in an "OLDLIBRARY" option is not avalid dynamic link
library.

STUB file name same as executable file name

When generating an OS/2 or Windows (Winl16, Win32) executable file, the stub
file name must not be same as the executabl e file name.

relocation at % a not in the same segment

Thismessage is only issued for Windows (Win16), OS/2, Phar Lap, and QNX
executables. A relative fixup must relocate to the same segment. "%a" defines
the location of the fixup.

%a: cannot reach a DLL with arelativerelocation

A reference to a symbol in an OS/2 or Windows 16-bit DLL must not be
relative. "%a" defines the location of the reference.

debugging information incompatible: using line numbersonly

An attempt has been made to link an object file with out-of-date debugging
information.

%a: framemust bethe sameasthetarget in protected mode

Each relocation consists of three components; the location being relocated, the
target (or address being referenced), and the frame (the segment to which the
target is adjusted). In protected mode, the segment of the target must be the
same asthe frame. "%a" defines the location of the fixup. This message does
not apply to 32-bit OS2 and Windows (Win32).

Open Watcom Linker Diagnostic Messages 271

The Open Watcom Linker

MSG 2056 cannot find library member % s(%9)
Library member "%s2" in library file "%s1" could not be found. This message
isissued if thelibrary file could not be found or the library file did not contain
the specified member.

MSG 3057 executable format has been established
Thismessage isissued if there is more than one "FORMAT" directive.

MSG 1058 % s option not valid for %s executable

The option "%s1" can only be specified if an executable file whose format is
"%0s2" is being generated.

MSG 1059,2059 value for % stoo large

The value specified for option "%s" exceedsits limit.
MSG 1060 valuefor %sincorrect

The value specified for option "%s" is not in the allowable range.
MSG 1061 multiple values specified for REALBREAK

The"REALBREAK" option for Phar Lap executables can only be specified
once.

MSG 1062 export and import recordsnot valid for %f
Thismessage isissued if areferenceto a DLL isencountered and the executable
fileformat is not one that supports DLLs. Thefileformat is represented by
"0%f".

MSG 2063 invalid relocation for flat memory model at %a

A segment relocation in the flat memory model was encountered. "%a" defines
the location of the fixup.

MSG 2064 cannot combine 32-bit segments (% sl1) with 16-bit segments (% s2)
A 32-bit segment "%s1" and a 16-bit segment "%s2" have been encountered.

Mixing object files created by a 286 compiler and object files created by a 386
compiler isthe most probable cause of this error.

272 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2065

MSG 2066

MSG 2067

MSG 2068

MSG 1069

MSG 2070

MSG 2071

REALBREAK symbol %snot found

The symbol specified in the "REALBREAK" option for Phar Lap executables
has not been defined.

invalid relativerelocation type for an import at %a

Thismessageisissued only if a NetWare executable fileis being generated. An
imported symbol is one that was specified in an "IMPORT" directive or an
import library. Any reference to an imported symbol must not refer to the
segment of the imported symbol. "%a" defines the location of the reference.

%a: cannot relocate between code and data in Novell formats

This message isissued only if a NetWare executable fileis being generated.
Segment relocation is not permitted. "%a" defines the location of the fixup.

absolute segment fixup not valid in protected mode

A reference to an absolute location is not allowed in protected mode. A
protected-mode application is one that is being generated for OS/2, FlashTek’s
DOS extender, Phar Lap’s 386|DOS-Extender, Tenberry Software’s DOS/4G or
DOS/4GW DOS extender, Novell’s NetWare operating systems, Windows NT,
or Windows 95. An absolute location is most commonly defined by the "EQU"
assembler directive.

unload CHECK procedure not found

Thismessageisissued only if a NetWare executable file is being generated. The
symbol specified in the "CHECK" option has not been defined.

START procedure not found

This message isissued only if a NetWare executable fileis being generated. The
symbol specified in the "START" option has not been defined. The default
"START" symbol is"_Prelude".

EXIT procedure not found

This message isissued only if a NetWare executable file is being generated. The

symbol specified in the "EXIT" option has not been defined. The default
"STOP" symbol is"_Stop".

Open Watcom Linker Diagnostic Messages 273

The Open Watcom Linker

MSG 1072 SECTION directive not allowed in root

When describing 16-bit overlays, "SECTION" directives must appear between a
"BEGIN" directive and its corresponding "END" directive.

MSG 2073 bad Novell file format specified

Aninvalid NetWare executable file format was specified. Valid formats are
NLM, DSK, NAM, LAN, MSL, HAM, CDM or a numerical module type.

MSG 2074 circular aliasfound for %s

An attempt was made to circularly define the symbol name specified in an
ALIAS directive. For example:

ALI AS fool=fo02, foo2=fool

MSG 2075 expecting an END directive
A "BEGIN" directiveis missing its corresponding "END" directive.

MSG 1076 %s option multiply specified
The option "%s" can only be specified once.

MSG 1080 file%sisa%d-bit object file
A 32-hit attribute was encountered while generating a 16-bit executablefile
format, or a 16-hit attribute was encountered while generating a 32-bit
executable file format.

MSG 2082 invalid record type 0x% x
An object record type not recognized by the linker has been encountered. This
message is issued when linking object modules created by other compilers or
assemblers that create object files with records that the linker does not
recognize.

MSG 2083 cannot reference address % a from frame % x

When generating a 16-bit executable, the offset of areferenced symbol was
greater than 64K from the location referencing it.

274 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2084

MSG 2086

MSG 1087

MSG 3088

MSG 2089

MSG 1090

MSG 2091

target offset exceeds 64K at % a

When generating a 16-bit executable, the computed offset for a symbol exceeds
64K. "%a" defines the location of the fixup.

invalid starting addressfor .COM file

The value of the segment of the starting address for a 16-bit DOS "COM" file, as
specified in the map file, must be 0.

stack segment ignored in .COM file

A stack segment must not be defined when generating a 16-bit DOS "COM™" file.
Only asingle physical segment is allowed inaDOS"COM" file. Thestack is
allocated from the high end of the physical segment. That is, theinitial value of
SP is hexadecimal FFFE.

virtual memory exhausted

Thismessage is similar to the "dynamic memory exhausted" message. The
DOS-hosted version of the linker has run out of memory trying to keep track of
virtual memory blocks. Virtual memory blocks are allocated from expanded
memory, extended memory and the spill file.

program too largefor a .COM file

Thetotal size of a16-bit DOS"COM" program must not exceed 64K. That is,
the total amount of code and data must be less than 64K since only asingle
physical segment isallowed inaDOS"COM" file. You must decrease the size
of your program or generate a DOS "EXE" file.

redefinition of % sby %signored

The symbol "%s1" has been redefined by module "%s2". This messageisissued
when the size specified in the "NAMELEN" option has caused two symbols to
map to the same symbol. For example, if the symbols routinel and routine2 are
encountered and "OPTION NAMELEN=7" is specified, then this message will
be issued since the first seven characters of the two symbols are identical.

group %sisin morethan one overlay

A group that spans more than one section in a 16-bit DOS executable has been
detected.

Open Watcom Linker Diagnostic Messages 275

The Open Watcom Linker

MSG 2092

MSG 2093

MSG 2094

MSG 3097

MSG 1098

MSG 2099

MSG 1101

MSG 1102

NEWSEGMENT directive appear s befor e object files
The 16-bit "NEWSEGMENT" directive must appear after a"FILE" directive.
cannot open %s

This message is issued when the linker is unable to open afile and is unable to
determine the cause.

i/loerror processing %s

This message isissued when the linker has encountered an i/o error while
processing the file and is unable to determine the cause. This message may be
issued when reading from object and library files, or writing to the executable
and spill file.

too many library modules

This message is similar to the "dynamic memory exhausted" message. This
message if issued when the "DISTRIBUTE" option for 16-bit DOS executables
isspecified. The linker has run out of memory trying to keep track of the
relationship between object modules extracted from libraries and the overlays
they should be placed in.

Offset option must be a multiple of % dK

The value specified with the "OFFSET" option must be a multiple of 4K (4096)
for Phar Lap and QNX executables and a multiple of 64K (65536) for OS/2 and
Windows 32-bit executables.

symbol nametoo long: %s

The maximum size (approximately 2048) of a symbol has been exceeded.
Reduce the size of the symbol to avoid this error.

invalid incremental information file
Theincremental information file is corrupt or from an older version of the
compiler. The old information file and the executable will be deleted and new

ones will be generated.

object file % snot found for tracing

276 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1103

MSG 1105

MSG 1107

MSG 1108

MSG 1109

MSG 1110

MSG 1111

MSG 3114

A "SYMTRACE" or "MODTRACE" directive contained an object file (namely
%s) that could not be found.

library module %s(%s) not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object module
(namely module %s1 in library %s2) that could not be found.

cannot reserve %l bytes of extra overlay space

The value specified with the "AREA™" option for 16-bit DOS executables results
in an executable file that requires more than 1 megabyte of memory to execute.

undefined system name: %s

The name %s was referenced in a"SY STEM" directive but never defined by a
system block definition.

system % s defined morethan once
The name %s has appeared in a system definition block more than once.
OFFSET option islessthan the stack size

For the QNX operating system, the stack is placed at the front of the executable
image and thus the initial load address must |eave enough room for the stack.

library membersnot allowed in libfile

Only object filesare allowed in a"LIBFILE" directive. This message will be
issued if amodule from alibrary fileis specified ina"LIBFILE" directive.

error in default system block

The default system block definition (system name "286" for 16-bit applications)
and (system name "386" for 32-hit applications) contains adirective error. The
system name "286" or "386" is automatically referenced by the linker when the
format of the executable cannot be determined (i.e. no "FORMAT" directive
has been specified).

environment name specified incor rectly

This message is specified if the environment variable is not properly enclosed
between two percent (%) characters.

Open Watcom Linker Diagnostic Messages 277

The Open Watcom Linker

MSG 1115

MSG 1116

MSG 1117

MSG 1118

MSG 2119

MSG 2120

MSG 1121

MSG 3122

environment name %s not found
The environment variable %s has not been defined in the environment space.
overlay areamust be at least %1 bytes

Thismessage isissued if the size of the largest overlay exceeds the size of the
overlay area specified by the "AREA" option for 16-bit DOS executables.

segment number too high for a movable entry point

The segment number of a moveable segment must not exceed 255 for 16-hit
executables. Reduce the number of segments or use the "PACKCODE" option.

heap sizetoo large

This message isissued if the size of the heap, stack and the default data segment
(group DGROUP) exceeds 64K for 16-bit executables.

wlib import statement incorrect

The "EXPORT" directive allows you to specify alibrary command file. This
command fileis scanned for any librarian commands that create import library
entries. Aninvalid command was detected. See the section entitled "The
EXPORT Directive" for the correct format of these commands.

application too largeto run under DOS

Thismessage isissued if the size of the 16-hit DOS application exceeds 1M.
"%$s has already been exported

The linker has detected an attempt to export a symbol more than once. For
example, a name appearing in more than one "EXPORT" directive will cause
this message to be issued. Also, if you have declared a symbol as an export in
your source and have also specified the same symbol in an "EXPORT" directive,
this message will be issued. This message isonly awarning.

no FILE directives found

Thismessageisissued if no "FILE" directive has been specified. In other
words, you have specified no object filesto link.

278 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 3123

MSG 1124

MSG 1125

MSG 1126

MSG 2127

MSG 3128

MSG 3129

MSG 1130

overlaysarenot supported in thisversion of thelinker

This version of the linker does not support the creation of overlaid 16-bit
executables.

lazy reference for % S has different default resolutions

A lazy external reference is one which has two resolutions: a preferred one and
adefault one which is used if the preferred oneis not found. In this case, the
linker has found two lazy references that have the same preferred resolution but
different default resolutions.

multiple aliases found for %S

The linker has found a name which has been aliased to two different symbols.
% s has been modified: doing full relink

The linker has determined that the time stamps on the executable file and
symbolic information file (.sym) are different. Anincremental link will not be
done.

cannot export symbol % S

An attempt was made to export a symbol defined with an absolute address or to
export an imported symbol. It isnot possible to export these symbols with the
"EXPORT" directive.

directive error near beginning of input

The linker detected an error at the start of the command line.
addressinformation too large

The linker has encountered a segment that appears in more than 11000 object
files. An empty segment does not affect thislimit. This can only occur with
Watcom debugging information. If this message appears, switch to DWARF
debugging information.

%sisan invalid shared nlm file

The NLM specified in a"SHAREDNLM" option is not valid.

Open Watcom Linker Diagnostic Messages 279

The Open Watcom Linker

MSG 3131

MSG 2132

MSG 1133

MSG 1134

MSG 3135

MSG 1136

MSG 3137

MSG 3138

cannot open spill file: file already exists

All 26 of the DOS-hosted linker’ s possible spill file names arein use. Spill files
can accumulate when linking on a multi-tasking system and the directory in
which the spill fileis created isidentical for each invocation of the linker.

curly brace delimited list incorrect

A list delimited by curly bracesis not correct. The most likely causeisa
missing right brace.

no realbreak specified for 16-bit code

While generating a Phar Lap executable file, both 16-bit and 32-bit code was
linked together and no "REALBREAK" option has been specified. A warning
message is issued since this may be a potentia problem.

%sisan invalid messagefile

Thefile specified in a"MESSAGE" option for NetWare executablefilesis
invalid.

need exactly 1 overlay area with dynamic overlay manager

Only asingle overlay areais supported by the 16-bit dynamic overlay manager.
segment relocation to a read/write data ssgment found at % a(% S)

The "RWRELOCCHECK" option for 16-hit Windows (Win16) executables has
been specified and the linker has detected a segment rel ocation to aread/write
data segment. Where the name of the offending symbol is not available,
"identifier unavailable" is used.

too many errorsencountered

This message is issued when the number of error messages issued by the linker
exceeds the number specified by the"MAXERRORS" option.

invalid filename’%s
The linker performs a simple filename validation whenever afilenameis

specified to the linker. For example, adirectory specification is not avalid
filename.

280 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 3139

MSG 1140

MSG 1141

MSG 1143

MSG 1145

MSG 2146

MSG 3147

MSG 1148

cannot have both 16-bit and 32-bit object files

It isimpossible to mix 16-bit code and 32-bit code in the same executable when
generating a QNX executable file.

invalid message number

Aninvalid message number has been specified in a"DISABLE" directive.
virtual function tablerecord for % s mismatched

The linker performs a consistency check to ensure that the C++ compiler has not
generated incorrect virtual function information. If the messageisissued, please
report this problem.

not enough memory to sort map file symbols

There was not enough memory for the linker to sort the symbolsin the "Memory
Map" portion of the map file. Thiswill only occur when the "SORT GLOBAL"
option has been specified.

% Sisboth purevirtual and non-purevirtual

A function has been declared both as "pure" and "non-pure” virtual.

%sisan invalid object file

Something was encountered in the object file that cannot be processed by the
linker.

Ambiguous format specified

Not enough of the FORMAT directive attributes were specified to enable the
linker to determine the executable file format. For example,

FORMAT OS2
will generate this message.
Invalid segment type specified

The segment type must be one of CODE or DATA.

Open Watcom Linker Diagnostic Messages 281

The Open Watcom Linker

MSG 1149

MSG 1150

MSG 2151

MSG 2152

MSG 2154

MSG 2155

MSG 2156

MSG 3157

MSG 1158

Only one debugging format can be specified

The debugging format must be one of Watcom, CodeView, DWARF (default),
or Novell. You cannot specify multiple debugging formats.

file % s has code for a different processor

An object file has been encountered which contains code compiled for a
different processor (e.g., an Intel application and an Alpha object file).

big endian code not supported
Big endian code is not supported by the linker.
no dictionary found

No symbol search dictionary was found in alibrary that the linker attempted to
process.

cannot execute %sl: %s2

An attempt by the linker to spawn another application failed. The application is
specified by "%s1" and the reason for the failure is specified by "%s2".

relocation at % ato an improperly aligned tar get

Some relocations in Alpha executables require that the object be aligned on a4
byte boundary.

OPTION INCREMENTAL must beone of thefirst directives specified

The option must be specified before any option or directive which modifies the
linker's symbol table (e.g., IMPORT, EXPORT, REFERENCE, ALIAS).

no code or data present

The linker requires that there be at least 1 byte of either code or datain the
executable.

problem adding resour ce infor mation

Theresourcefileisinvalid or corrupt.

282 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 3159

MSG 3160

MSG 1162

MSG 1163

MSG 3164

MSG 1165

MSG 2166

MSG 1167

incremental linking only supports DWARF debugging information

When OPTION INCREMENTAL isused, you cannot specify non-DWARF
debugging information for the executable. Y ou must specify DEBUG DWARF
when requesting debugging information.

incremental linking does not support dead code elimination

When OPTION INCREMENTAL is used, you cannot specify OPTION
ELIMINATE.

relocations on iterated data not supported

An object file was encountered that contained an iterated data record that
requiresrelocation. Thisis most commonly caused by a module coded in
assembly language.

module has not been compiled with the" zv" option

When OPTION VFREMOVAL isused, all object files must be compiled with
the"zv" option. The linker has detected an object file that has not been
compiled with this option.

incremental linking does not support virtual function removal

When OPTION INCREMENTAL is used, you cannot also specify OPTION
VFREMOVAL.

resour ce file % stoo big

The resource file specified in OPTION RESOURCE was too hig to fit inside the
QNX executable. The maximum sizeis approximately 32000 bytes.

both %s1 and %s2 marked as starting symbols

If the linker seesthat there is more than one starting address specified in the
program and they have symbol names associated with them, it will emit this
error message. If there is more than one starting address specified and at least
one of them is unnamed, it will issue message 2030.

The NLM internal name (%) has been truncated asit exceedsthe
maximum size.

Open Watcom Linker Diagnostic Messages 283

The Open Watcom Linker

This message isissued when generating a NetWare NLM. The output file name
as specified by the NAME directive has specified along file name (exceeds 8.3).
The linker will truncate the generated file name by using the first eight
characters of the specified file name and the first three characters of thefile
extension (if supplied), separated by a period.

284 Open Watcom Linker Diagnostic Messages

Index

directive 35

16-bit DOS.COM 9

16-bit DOS executables 9

16-bit executables 9

16-bit OS/2 DLLs 10

16-bit OS/2 executables 9

16-bit QNX executables 10

16-bit Windows 3.x DLLs 11
16-bit Windows 3.x executables 10

32-bit DOS/AGW executables 11
32-bit executables 11

32-bit FlashTek executables 11
32-bit Netware NLMs 12

32-bit OS/2DLLs 13

32-hit OS/2 executables 13
32-bit 0S/2 PM executables 13
32-bit Phar Lap executables 14
32-bit QNX executables 14
32-bit TNT executables 14

32-bit Win NT character-mode executables 17

32-bit Win NT DLLs 18

32-bit Win NT windowed executables 17

32-bit Windows 3.x DLLs 15
32-bit Windows 3.x executables 15
32-bit Windows 95 DLLs 17

32-bit Windows 95 executables 16
32-bit Windows VxD 16
386|DOS-Extender 237

ALIASdirective 22
ALIGNMENT option 23

ANONYMOUSEXPORT directive 24

apostrophes 21, 83

applications
creating for 16-bit OS2 227
creating for 32-bit 052 227
creating for 32-bit Windows 257
creating for DOS 201
creating for DOS/AG 227
creating for ELF 217
creating for FlashTek 227
creating for NetWare 221

creating for Phar Lap 286|Dos-Extender 227
creating for Phar Lap 386|Dos-Extender 235

creating for QNX 241
creating for Win32 257
creating for Windows 3.x 245
creating for Windows NT 257
AR-format 3
AREA option 26
ARTIFICIAL option 27
AUTOSECTION directive 28
AUTOUNLOAD option 29

BEGIN directive 30
blanksin file names 21

285

Index

CACHE option 31

CALLBUFS runtime option 164
CASEEXACT option 32
CHECK option 33
CHECKSUM option 34

class name 147

CodeView 39

COFF 3

command line format

WLINK 5, 201, 217, 221, 227, 235, 241, 245,

253, 257
comment (#) directive 35
COMMIT directive 36
Compactor 39
CONSOLE runtime option 162
COPYRIGHT option 37
CUSTOM option 38
Cv4 39
CVPACK 39-40
CVPACK option 39

DBCS
Chinese 92
Japanese 92
Korean 92

dead code elimination 54, 159, 175

DEBUG directive 40

DEBUG options
ALL 41
CODEVIEW 40
DWARF 40
LINES 41
LOCALS 41

286

NOVELL 41
ONLYEXPORTS 41-42, 44
REFERENCED 42
TYPES 41
Watcom 40

debugging information
al 44
for NetWare debugger 44
global symbol 41, 44
line numbering 41-42
local symbol 41, 43
NetWare global symbol 41
strip from "EXE" file 46
typing 41, 43

Debugging Information Compactor 39-40
default directivefile 7,19, 32, 62, 190

wlink.Ink 32, 62
DESCRIPTION option 47
directives 19

35

ALIAS 22

ANONYMOUSEXPORT 24

AUTOSECTION 28

BEGIN 30

comment 35

COMMIT 36

DEBUG 40

DISABLE 48

END 55

ENDLINK 56

EXPORT 58

FILE 63

FIXEDLIB 66

FORCEVECTOR 67

FORMAT 68

IMPORT 83

include 86

LANGUAGE 92

LIBFILE 93

LIBPATH 95

LIBRARY 97

MODFILE 111

MODTRACE 112

MODULE 113

Index

NAME 115
NEWSEGMENT 119
NOVECTOR 127
OPTION 134
OPTLIB 135
ORDER 137
OUTPUT 144
OVERLAY 147
PATH 151
REFERENCE 159
RUNTIME 162
SECTION 168
SEGMENT 169
SORT 177
STARTLINK 181
SYMTRACE 186
SYSTEM 188
VECTOR 195
DISABLE directive 48
DISTRIBUTE option 50
DOS applications
creating 201
DOS/4G applications
creating 227
DOSSEG option 51
DOSSTYLE runtime option 163
DYNAMIC option 53
dynamic overlay manager
increasing dynamic overlay area at run-time
214

_edatalinker symbol 52

ELF 3

ELF applications
creating 217

ELIMINATE option 54

END directive 55

_end linker symbol 52

ENDLINK directive 56
environment variables
LIB 98,122, 136
LIBDIR 19
PATH 7,19, 32, 62, 183, 190
tmp 204, 239
WATCOM 8, 19, 32, 62, 190
errors 48, 263
executable formats 3
EXIT option 57
__export 60
EXPORT directive 58

FARCALLSoption 62
fatal errors 48, 263
FILE directive 63
FILLCHAR option 65
FIXEDLIB directive 66
FlashTek applications

creating 227
FORCEVECTOR directive 67
FORMAT directive 68

general directives/options 19

HEAPSIZE option 78
HELP option 79

287

Index

host 4 linker symbols
host operating system 4 _edata 52
HSHIFT option 80 _end 52

_ LOVLINIT__ 213
__ LOVLLDR__ 213

__NOVLINIT__ 213
__NOVLLDR__ 213
__OVLENDVEC__ 213
__OVLSTARTVEC__ 213

. _OVLTAB__ 213

IMPFILE option 81 SOVLINIT 213

IMPLIB option 82 __SOVLLDR _ 213

import definitions 230, 249, 260 linking notation 20

IMPORT directive 83 LINKVERSION option 101

import library 81-82, 231, 250, 261 LONGLIVED option 102

import library command file 81 __LOVLINIT__linker symbol 213
include directive 86 __LOVLLDR__linker symbol 213

incremental linking 89

INCREMENTAL option 89

Intel OMF 3

internal relocation 91, 193 M

INTERNALRELOCS option 91

invoking Open Watcom Linker 5, 201, 217, 221,
227, 235, 241, 245, 253, 257

ISTKSIZE runtime option 164 mangled namesin C++ 103, 177

MANGLEDNAMES option 103

MANYAUTODATA option 104

map file 105

L MAP option 105

MAXDATA option 106

MAXERRORS option 107

MAXIBUF runtime option 164

LANGUAGE directive 92 MAXREAL runtime option 163

LANGUAGE options memory layout 51, 203, 219, 225, 232, 238, 243,
CHINESE 92 250, 255, 261
JAPANESE 92 memory requirements 204, 239
KOREAN 92 message

LIB environment variable 98, 122, 136 1014 265

LIBDIR environment variable 19 1019 266

LIBFILE directive 93 1023 267

LIBPATH directive 95 1027 268

LIBRARY directive 97 1028,2028 268

library file 81-82 1032 269

LINEARRELOCS option 100 1038 269

288

Index

1043

1044,2044 270

1045
1046
1047
1048
1050
1054
1058

1059,2059 272

1060
1061
1062
1069
1072
1076
1080
1087
1090
1098
1101
1102
1103
1105
1107
1108
1109
1110
1111
1115
1116
1117
1118
1121
1124
1125
1126
1130
1133
1134
1136
1140
1141
1143

270

270
270
270
270
271
271
272

272
272
272
273
274
274
274
275
275
276
276
276
277
277
277
277
277
277
277
278
278
278
278
278
279
279
279
279
280
280
280
281
281
281

1145
1148
1149
1150
1158
1162
1163
1165
1167
2002
2008

2010,3010 265

2011
2012
2015
2016
2017
2018
2020
2021
2022
2024
2025
2026
2029
2030
2031

2033,3033 269

2034
2039
2040
2041
2042
2049
2051
2052
2053
2055
2056
2063
2064
2065
2066
2067

281
281
282
282
282
283
283
283
283
264
264

265
265
266
266
266
266
266
267
267
267
267
268
268
268
269

269
269
270
270
270
271
271
271
271
271
272
272
272
273
273
273

289

Index

2068
2070
2071
2073
2074
2075
2082
2083
2084
2086
2089
2091
2092
2093
2094
2099
2119
2120
2127
2132
2146
2151
2152
2154
2155
2156
2166
3009
3013
3057
3088
3097
3114
3122
3123
3128
3129
3131
3135
3137
3138
3139
3147
3157

290

273
273
273
274
274
274
274
274
275
275
275
275
276
276
276
276
278
278
279
280
281
282
282
282
282
282
283
264
265
272
275
276
277
278
279
279
279
280
280
280
280
281
281
282

3159 283

3160 283

3164 283
MESSAGES option 108
Microsoft OMF 3
MINDATA option 109
MINIBUF runtime option 164
MINREAL runtime option 163
MODFILE directive 111
MODNAME option 110
MODTRACE directive 112
MODULE directive 113
MS2WLINK command 215, 232, 251
MULTILOAD option 114

NAME directive 115
NAMELEN option 117
NATIVE runtime option 162
NetWare applications

creating 221
NetWare debugger 44
NEWFILES option 118
NEWSEGMENT directive 119
NISTACK runtime option 164
NLMFLAGS option 120
NOAUTODATA option 121
NODEFAULTLIBS option 122
NOEXTENSION option 123
NOINDIRECT option 124
NOREDEFSOK option 157
NOREL OCS option 125
NOSTDCALL option 126
notation 20
NOUNDEFSOK option 194
NOVECTOR directive 127
__ NOVLINIT__ linker symbol 213
__ NOVLLDR__ linker symbol 213

Index

OBJALIGN option 128
OFFSET option 130
OLDLIBRARY option 129
OMF 3
OMF library 3
ONEAUTODATA option 133
Open Watcom C/C++ options
zm 54
operating system
host 4
OPTION directive 134
options
ALIGNMENT 23
AREA 26
ARTIFICIAL 27
AUTOUNLOAD 29
CACHE 31
CASEEXACT 32
CHECK 33
CHECKSUM 34
COPYRIGHT 37
CUSTOM 38
CVPACK 39
DESCRIPTION 47
DISTRIBUTE 50
DOSSEG 51
DYNAMIC 53
ELIMINATE 54
EXIT 57
FARCALLS 62
FILLCHAR 65
HEAPSIZE 78
HELP 79
HSHIFT 80
IMPFILE 81
IMPLIB 82
INCREMENTAL 89
INTERNALRELOCS 91

LINEARRELOCS 100
LINKVERSION 101
LONGLIVED 102
MANGLEDNAMES 103
MANYAUTODATA 104
MAP 105

MAXDATA 106
MAXERRORS 107
MESSAGES 108
MINDATA 109
MODNAME 110
MULTILOAD 114
NAMELEN 117
NEWFILES 118
NLMFLAGS 120
NOAUTODATA 121
NODEFAULTLIBS 122
NOEXTENSION 123
NOINDIRECT 124
NOREDEFSOK 157
NORELOCS 125
NOSTDCALL 126
NOUNDEFSOK 194
OBJALIGN 128
OFFSET 130
OLDLIBRARY 129
ONEAUTODATA 133
OSDOMAIN 141
OSNAME 142
OSVERSION 143
PACKCODE 149
PACKDATA 150
PRIVILEGE 153
PROTMODE 154
PSEUDOPREEMPTION 155
QUIET 156
REDEFSOK 157
REENTRANT 158
RESOURCE 160
RWRELOCCHECK 166
SCREENNAME 167
SHARELIB 174
SHOWDEAD 175
SMALL 176

291

Index

STACK 178

STANDARD 179

START 180 P

STATICS 182

STUB 183

SYMFILE 184 PACKCODE option 149
SYNCHRONIZE 187 PACKDATA option 150
THREADNAME 192 paralel overlays 206
TOGGLERELOCS 193 PATH directive 151
UNDEFSOK 194 PATH environment variable 7, 19, 32, 62, 183,
VERBOSE 196 190

VERSION 197 PE format executable 70

VFREMOVAL 198 Phar Lap 286|Dos-Extender applications

XDCDATA 199 creating 227
OPTLIB directive 135 Phar Lap 386|Dos-Extender applications
ORDER directive 137 creating 235
0S/2 16-bit applications Phar Lap OMF-386 3
creating 227 Phar Lap TNT 70
OS2 32-bit applications PL format executable 70
creating 227 POSIX runtime option 162
0OS/2 Dynamic Link Libraries 230 privilege
0OS/2 program modules 230 ring 0 165
OS2 runtime opti_on 162 ring 3 165
OSDOMAIN option 141 PRIVILEGE option 153
OSNAME option 142 PRIVILEGED runtime option 165
OSVERSION option 143 PROTMODE option 154
OOVL(J;;JT directive 144 PSEUDOPREEMPTION option 155

punctuation characters 21
ancestor of 212

descendant of 212
overlay area 204
overlay classes 147 Q
OVERLAY directive 147
overlay loader 213
overlaying data 148

overlaying segmentsin "FAR_DATA" class 147 QNX applications
overlays 204-205 creating 241
increasing dynamic overlay area at run-time QUIET option 156
214

overlays parallel 206

__ OVLENDVEC ___ linker symbol 213
__OVLSTARTVEC__ linker symbol 213
__OVLTAB__ linker symbol 213

292

Index

REALBREAK runtime option 164
REDEFSOK option 157
REENTRANT option 158
REFERENCE directive 159
relocation

internal 91, 193
resource file 160
RESOURCE option 160
response files

conversion 215, 232, 251
ring 0 165
ring 3 165
root 204

running in 32-bit protected mode 237

RUNTIME directive 162
RUNTIME options
CALLBUFS 164
CONSOLE 162
DOSSTYLE 163
ISTKSIZE 164
MAXIBUF 164
MAXREAL 163
MINIBUF 164
MINREAL 163
NATIVE 162
NISTACK 164
0s2 162
POSIX 162
PRIVILEGED 165
REALBREAK 164
UNPRIVILEGED 165
version 162
WINDOWS 162
runtime version option 162
RWRELOCCHECK option 166

SCREENNAME option 167

SECTION directive 168

SEGMENT directive 169

segment ordering 51, 203, 219, 225, 232, 238,
243, 250, 255, 261

SHARELIB option 174

SHOWDEAD option 175

SMALL option 176

SORT directive 177

_ SOVLINIT__linker symbol 213

__ SOVLLDR__ linker symbol 213

space character 21

specia characters 21

STACK option 178

STANDARD option 179

START option 180

STARTLINK directive 181

STATICS option 182

__ stdcall 126

STUB option 183

symbol file 184

SYMFILE option 184

SYMTRACE directive 186

SYNCHRONIZE option 187

SYSTEM directive 5, 188

system name 188

THREADNAME option 192

tmp environment variable 204, 239
TNT DOS extender 70
TOGGLERELOCS option 193

293

Index

UNDEFSOK option 194

UNPRIVILEGED runtime option 165
USE16 segments 238

usemsg 161

using environment variablesin directives 19

VECTOR directive 195
VERBOSE option 196
VERSION option 197
VFREMOVAL option 198
virtual functions 175, 198
VxD format executable 70

w

warnings 48, 263
WATCOM environment variable 8, 19, 32, 62,
190

Win16 applications

creating 245
Win16 Dynamic Link Libraries 249
Win16 program modules 249
Win32 applications

creating 257
Win32 Dynamic Link Libraries 260
Win32 program modules 260
window function 58, 87
Windows 3.x applications

creating 245

294

Windows 32-bit applications
creating 257
Windows NT applications
creating 257
WINDOWS runtime option 162
WLINK
command lineformat 5, 201, 217, 221, 227,
235, 241, 245, 253, 257
WLINK command line
invoking WLINK 5, 201, 217, 221, 227, 235,
241, 245, 253, 257
WLINK notation 20
wlink.Ink
default directivefile 7, 19, 32, 62, 190
wlsystem.Ink
directivefile 8, 19, 32, 62, 190
WSTRIP 44, 46
WSTRIP command 46

x32r 12
x32rv 12
XDCDATA option 199

zm compiler option (Open Watcom C/C++) 54

