Open Watcom FORTRAN 77

User’s Guide

First Edition

Uien Watcom

Notice of Copyright

Copyright 00 2002-2006 the Open Watcom Contributors. Portions Copyright O 1984-2002
Sybase, Inc. and itssubsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.SA.

Preface

The Open Watcom FORTRAN 77 Optimizing Compiler (Open Watcom F77) isan
implementation of the American National Standard programming language FORTRAN, ANSI
X3.9-1978, commonly referred to as FORTRAN 77. Thelanguage level supported by this
compiler includes the full language definition as well as significant extensions to the
language. Open Watcom F77 evolved out of the demands of our users for a companion
optimizing compiler to Open Watcom’s WATFOR-77 "load-and-go" compiler.

The "load-and-go" approach to processing FORTRAN programs emphasizes fast compilation
rates and quick placement into execution of FORTRAN applications. Thistype of compiler is
used heavily during the debugging phase of the application. At this stage of application
development, the "load-and-go" compiler optimizes the programmer’stime ... not the
program’ stime. However, once parts of the application have been thoroughly debugged, it
may be advantageous to turn to a compiler which will optimize the execution time of the
executable code.

Open Watcom F77 is ahighly optimizing compiler based on the code generation technology
that was developed for Open Watcom'’ s highly-praised C and C++ optimizing compilers.
Open Watcom F77 isatraditional compiler in the sense that it creates object files which must
be linked into an executable program.

The Open Watcom FORTRAN 77 User’s Guide describes how to use Open Watcom
FORTRAN 77 with DOS, 0OS/2, Windows 3.x, Windows NT, and Windows 95.

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCII text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on avariety of operating systems, interprets the tagsto
format the text into aform such as you see here. Writers can produce output for a variety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result istype-set
quality copy containing integrated text and graphics.

We would like to thank IMSL of Houston, Texas for providing us with copies of their
Mathematics and Statistics libraries. The IMSL Math Library is a collection of subprograms
for mathematical problem solving and the Statistics Library is a collection of subprograms for
statistical analysis. The self test procedures provided with these libraries proved to be an
immense help in testing Open Watcom F77 on the personal compulter.

We also used the "FORTRAN Compiler Validation System, Version 2.0" to test the
conformance of Open Watcom F77 with the full FORTRAN 77 language standard. This
package is provided by the National Technical Information Service of the U.S. Department of
Commercein Springfield, Virginia. The validation system was developed by the Federal
Software Testing Center.

If you find problems in the documentation or have some good suggestions, we would like to
hear from you.

July, 1997.

Trademarks Used in this Manual

AutoCAD Development System is atrademark of Autodesk, Inc.

DOS/4G is atrademark of Tenberry Software, Inc.

IBM Developer’s WorkFrame/2, Presentation Manager, and OS/2 are trademarks of
International Business Machines Corp. IBM isaregistered trademark of International
Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT isatrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender, and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

QNX isatrademark of QNX Software Systems Ltd.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

Open Watcom FORTRAN 77 User’s Guide

1 About ThisManuacccceevevernneee.

2 Open Watcom FORTRAN 77 Compiler OptioNSccceveerieienenereneseresie e
2.1 Open Watcom F77 OptionS SUMMETYccooeeereeereeninenieesiere s sesieees

2.2 Compiler Options

3 The Open Watcom FORTRAN 77 COMPIENcocveeeeeecececese e
3.1 Open Watcom FORTRAN 77 Command Line Formatccccoeeveneneenne.
3.2 WFC/WFC386 Environment Variablescccoeoveineiineinesnenesesesee
3.3 Open Watcom FORTRAN 77 Command Line Examplescccccveervenuenn.

3.4 Compiler Diagnostics

3.5 Open Watcom FORTRAN 77 INCLUDE File Processingccccccvveeuee.

4 The Open Watcom FORTRAN 77 Librariesccccoeernienneneseneeseesee e
4.1 Open Watcom FORTRAN 77 80x87 Emulator Librariescccccocvevvvnene.
4.2 The"NO87" Environment Variablecccoeeveiivniivniennieneere e

5 Open Watcom FORTRAN 77 Compiler DIreCtiVeSccocovirerenieneiereeeeeeeeeeieees

5.1 Introductioncceceveeieenne

5.2 The EJECT Compiler DIr€CLIVEcceiiieirieieieeceein e e
5.3 The INCLUDE Compiler DIF€CHIVEccooeerieerieireirieisieese e
5.4 The PRAGMA Compiler DIreCliVeccoeovvieerieirereresee e
5.5 The DEFINE Compiler DIirECIVEccoevriiririnieinieenie e
5.6 The UNDEFINE Compiler DIireCtIVEc.cccevueerieniriireneesees e
5.7 The IFDEF, IFNDEF and ENDIF Compiler Directiveccccoevvivvivvvrennn.
5.8 The ELSE COMPIler DIFECHIVEcceviereeeeeeeeececeses e
5.9 The EL SEIFDEF and EL SEIFNDEF Compiler Directiveccccceeeeeennnne.
5.10 Debugging statements ("D" in ColuMN 1)cccooveevviieeneeceese e vesee e
5.11 General Notes About Compiler DIreCtiVESccooeverererenienienie e

6 Open Watcom FORTRAN 77 File Handlingccceovveireineineneeeeeeese e

6.1 Record ACCESScoovvreueenn.
6.2 Record Formatccccouee..

6.2.1 FORMATTED RECOIASoeeeiveeeeeeee et e e e eaee e
6.2.2 UNFORMATTED RECOIAScveeivevceieeiei et
6.2.3 Files with N0 ReCOrd StrUCLUIEcoeveeeeieeieecee et

6.3 Attributes of Files
6.3.1 Record Type
6.3.2 Record Size

6.3.3 Print File Attributes

(620

29
29
30
31
32
35

37
40
41

43

SRR

46
46
47
48
48
49
49

51
51
52
52

GELER

56
56

Table of Contents

6.3.4 Input/Output BUFFEr SIZEocoieiiiiee e 57

6.3.5 FIle Sharingccccooiriiieeee e 58

6.4 File Namesinthe FAT File SyStem ... 59
6.4.1 Special DOS DeVIiCE NAMES ..ot 60

6.4.2 Examples of FAT File Specificationsccocvvveveveenccnnicnieens 60

6.5 File Namesin the High Performance File Systemccccoevvevninnennenens 61
6.5.1 Special OS/2 DEVICE NAMESeovvvvieviereeiceeeeeeere et neens 62

6.5.2 Examples of HPFS File Specificationscccccccvevevvercecenienesenn, 62

6.6 Establishing Connections Between Unitsand Filesccccevevevcviccecenen, 63
6.7 A Preconnection TULOM@lcccoeeiiiinene i 67
6.8 Logical File Name SUPPOITcoovrerererenisiesie e 69
6.9 Terminal or Console Device SUPPOITccoererireriniene e 73
6.10 Printer DeViCe SUPPOITcceoeeeirerrireeririeieseeie e 75
6.11 Serial DEVICE SUPPOITc.eieeireierteirtesest ettt 75
6.12 File Handling DEfAUILSccoviieriiirieeeee s 76
7 The Open Watcom F77 Subprogram Libraryccccceceeeeevieveesieseseseseseeseseeseeeenens 79
7.1 SUBFOULINE FEXIT oottt 79
7.2 INTEGER FUNCtion FGETCMDc.coviriirisee s 79
7.3 INTEGER FUNction FGETENVcccoiiiiirieseeee e 80
7.4 INTEGER FUNCEION FILESIZEoovoiieiecesee e 81
7.5 SUDLFOULINE FINTR. ...t e 82
7.6 INTEGER Function FLUSHUNIT ..ot 84
7.7 INTEGER FUnction FNEXTRECLccociviiiinreieereres e 85
7.8 INTEGER FUNCHON FSIGNAL .o e 87
7.9 INTEGER FUNCtioN FSPAWN ..o 88
7.10 INTEGER FUNCLiON FSY STEMcoiiiiriiece e 89
7.11 Subroutine FTRACEBACK ..o 90
7.12 SUDIrOUtiNE GETDAT ..ottt 91
7.13 SUBroUtiNE GETTIM ...eiiciiee ettt st 92
7.14 INTEGER Function GROWHANDLESccccoviiiniinnensene e 93
7.15 Functions IARGC and IGETARGcccoeiieineiseeses e 93
7.16 Math Error FUNCHIONScooiiineie ettt 94
7.17 INTEGER Function SEEKUNIT ... 96
7.18 INTEGER Function SETIMP/Subroutine LONGIMPcccoeovvvvvnnnnen. 97
7.19 INTEGER Function SETSY SHANDLEccoocvvoiviivrreereeeeeeeeeeeesees 98
7.20 INTEGER*2 Function SYSHANDLEccccooiiiiiinieeee e 99
7.21 REAL FUNction URANDoovoiiiiiiieriereeseeses e 100
7.22 Default Windowing FUNCLIONScccovevieieieececeeeseeee e 101
7.22.1 dWFDEIELEONCIOSEcvvvviveiiieiiieie et 102

7.22.2 AWESELADOULDIG ...ooveiiieiireeres s 102

7.22.3 AWESELAPPTILIE e 103

Vi

Table of Contents

7.22.4 AWESELCONTIHIE .veeviieeeeeeeere s 104

7.22.5 AWFSHUIDOWN ..ottt e 105

7.22.6 AWEYTEI vt 106

8 Data Representation On x86-based Platforms ..o 109
8. LLOGICAL*L DABTYPE .eevuereeererreriesrisresieseessesiesseseeeees e esessesse s sre e snesnes 109
8.2LOGICAL and LOGICAL*4 DAa TYPES ...cocererrereriereriererieresieseeieseeeseesesens 110

8.3 INTEGER* L DAA TYPE ..eeceveeerrierrireeierietesieieseeresieseseesessesessesessessssessesessens 110

8.4 INTEGER*2 DAa TYPE ..eeevveerrieriereeteseniesieiesiesesessessesessesessessssessssessssessenes 110

8.5 INTEGER and INTEGER*4 Data TYPES ..ccceevrvereriererierenienesiesesie s 110

8.6 REAL and REAL*4 DA@ TYPES ..cvvveerurerererieniesesiesesiesesiesessesessesessenessessens 110

8.7 DOUBLE PRECISION and REAL*8 Data TYPESccvvevreeeriereriereniesenienens 111

8.8 COMPLEX, COMPLEX*8, and DOUBLE COMPLEX Data Types 113

8.9 COMPLEX*16 DAATYPE .eceveerireeririerisieesieesteessessssessesessessssesessssssssssssenes 113

8.10 CHARACTER DAATYPE ..ocvvoverceeeeeeeeeeereessessesssesssesssssssssesssssssssesssnsens 113

8.11 Storage Organization Of DA@ TYPEScoveverereereeireeerieesiee e 114

8.12 Floating-point Accuracy On x86-based Platformsccccoceveveveevencencennne 115

8.13 Floating-point Exceptions On x86-based Platformsccocevevvicvicenene 116

8.14 Compiler Options Relating to Floating-pointcccccevvieeienieniesesiesennens 120

8.15 Floating-point Exception HaNAIiNGccocevirininininene e 122

L6-DIT TOPICS ..veeeeetiteiestee sttt ettt b ekt b et bt b et b e e bt s e eb e seebese e bt st ebenbene b e e nreneas 125
9 16-bit MEMOry MOUELSooviiieiieeere e 127
LS 50 1 11 o 11T £ o o 127

9.2 16-hit COUEMOUELSovieiiiiriereeie et ere e 127

9.3 16-hit DAAMOEISc.ovveviriiirieeeree e 127

9.4 Summary of 16-bit Memory Modelsccccevviveieiine e, 128

9.5 Mixed 16-hit Memory Modelcccceoieecicecece e 129

9.6 Linking Applications for the Various 16-bit Memory Models 129

0.7 MEMONY LBYOULooeiieiiiieiesee ettt s ee e 130

10 16-bit Assembly Language ConSIErationsSccoeveeereerireeenieenieeseeeseeeseeeseenes 133
0 50 I 1 o [Tox 4o o 133

10.2 Calling CONVENLIONSceiieirieeriereeie sttt 133

10.2.1 Processing Function Return Vaues with no 80x87c...c...... 135

10.2.2 Processing Function Return Values Using an 80x87 136

10.2.3 Processing Alternate RELUINSccccceveeveeeeeniecieeese e 136

10.2.4 Alternate Method of Passing Character Argumentsc......... 136

10.2.4.1 Character FUNCLIONScccoueeeeeieereeesieneee e 137

T1O0.3 MEMOIY LABYOUL ..ottt sttt ettt nneen 137

vii

Table of Contents

10.4 Writing Assembly Language Subprogramscoceeerereeneneeneeneeesenenne
10.4.1 Returning Values from Assembly Language Functions

11 16-DIt PragiMasc.ccccereeiirieiirieerieesie ettt
0 1 o [T o o
11.2 Using Pragmas to Specify Default Libraries ...,
I AN U =V o o 0T

11.3.1 Specifying Symbol AttribUESccccceveeveeeeeeeeeee e
11.3.2 AlIaSNEIMES ..ot
11.3.3 Predefined AlIGSESoceirrieeeirree e
11.3.3.1 Predefined "__cdecl" Aliascccccvvreinnineeenrieeene
11.3.3.2 Predefined "__pascal" Aliasccccoveevnnneiencniniceens
11.3.3.3 Predefined "__watcall" Aliasc.covenrennenneneee
11.3.4 Alternate Names for SymbolSsccoceeveineineinereneeseeeee
11.3.5 Describing Caling INfOrmationcccoeevernennenneseeseeee
11.3.5.1 Loading Data Segment RegIiSterccoovvevverenencnenennn.
11.3.5.2 Defining Exported Symbolsin Dynamic Link
LIDraries ..o
11.3.5.3 Defining Windows Callback Functionsccccccue.....
11.3.6 Describing Argument INformationccceevvvceevievceevesceesieeenn
11.3.6.1 Passing Arguments to non-FORTRAN Subprograms ...
11.3.6.2 Passing Arguments in REQISLErSccocevevereereeneesenennes
11.3.6.3 Forcing Arguments into Specific Registerso......
11.3.6.4 Passing Arguments to In-Line Subprograms
11.3.6.5 Removing Arguments from the Stackc.cccceeeveenee
11.3.6.6 Passing Argumentsin Reverse Orderccocevvvenenenns
11.3.7 Describing Subprogram Return Informationccoceevevvvveenen.
11.3.7.1 Returning Subprogram Valuesin Registersccoenen.
11.3.7.2 Returning Structures and Complex Numbers
11.3.7.3 Returning Floating-Point Dataccccceeveveieeiieseenen,
11.3.8 A Subprogram that Never REtUINScccooevereneneneeieeeeeenns
11.3.9 Describing How Subprograms Use Variablesin Common
11.3.10 Describing the Registers Modified by a Subprogram
11.3.11 Auxiliary Pragmas and the 80X87cccoeeereveneieneienenenieenns
11.3.11.1 Using the 80x87 to Pass Argumentsc.ccoceveveeeneas
11.3.11.2 Using the 80x87 to Return Subprogram Vaues
11.3.11.3 Preserving 80x87 Floating-Point Registers Across
CalS e

1y o 1 A oo L ox S S STSUP VPR

viii

Table of Contents

12 32-bit MEMOIY MOUEIS ...t s e 189
2280 1 oo [FTox o) o [OOSR 189
12.2 32-bit COAE MOEIScceeieiiiieieeee e 189
12.3 32-bit DAAMOAELSooveieiiicririeers e 190
12.4 Summary of 32-bit Memory MOdels ... 190
125 Flat MemOory MOGE! ..o 191
12.6 Mixed 32-bit Memory Modelccooovievereeeeeeee e 191
12.7 Linking Applications for the Various 32-bit Memory Modéls 192
12.8 MEMOIY LAYOUL ...oocviieiiiiiiiiiie ettt st 192

13 32-bit Assembly Language CoNSIAErationscocceeeerereerienieniereeneeee e 195
ST I 1 oo [FTox o) [OOSR 195
13.2 Calling CONVENLIONScceruiirieinienenie sttt 195

13.2.1 Stack-Based Calling ConVENtioncocccverrenneneieneeseeeene 196

13.2.2 Processing Function Return Vaues with no 80x87 197

13.2.3 Processing Function Return Vaues Using an 80x87 198

13.2.4 Processing Alternate RELUINSccccovevveveeeeerieniesese e sese e e 198

13.2.5 Alternate Method of Passing Character Argumentsc.cc...... 198
13.2.5.1 Character FUNCLIONSccccvvvvirieinieinieese s 199

13. 3 MEMOIY LAYOUL ...iiveieiiieiiisie ettt sttt st 200
13.4 Writing Assembly Language Subprogramsccoeeereneeneneeneeneeieeenene 201
13.4.1 Using the Stack-Based Calling Conventionc.cccceceveereneennn. 203

13.4.2 Returning Values from Assembly Language Functions 206

14 32-DIt PragiMaSc.ooveuirieierieierierieni ettt b 213
7250 I 1 o [T 4o o 213
14.2 Using Pragmas to Specify Default Librariescccceveveivevisiescnveseniene 214
14.3 AUXITIArY Pragmascccccveveiesesecieseeseee sttt 215

14.3.1 Specifying Symbol AttribULEScccccvevveveicieececere e 215
14.3.2 AlI@SNGAIMESooveviecieieieee et saenea 216
14.3.3 Predefined AlIGSEScccovveiieeiriecseesees s 217
14.3.3.1 Predefined "__cdecl” Aliascccccvvevvveienenineneeesenens 218
14.3.3.2 Predefined "__pascal" AliaSccccoveevennneienninieeens 219
14.3.3.3 Predefined "__stdcall" Aliascccoveeeennineienrreeens 219
14.3.3.4 Predefined "__syscall” AliaScccooevvenninninnceee 220
14.3.3.5 Predefined "__watcall" Alias (register calling
(o00] 177 1 (0]) 220
14.3.3.6 Predefined " watcall" Alias (stack calling
(o0] 1Y/ 1 (0]) 221
14.3.4 Alternate Names for Symbolsccccvveeve e 222
14.3.5 Describing Calling INformationcocooereneneieeieieeeeeneneeens 223
14.3.5.1 Loading Data Segment Registercocovevvererieneeieeenes 225

Table of Contents

14.3.5.2 Defining Exported Symbolsin Dynamic Link

LIDFaITES ..ot 226
14.3.6 Describing Argument INformationcccooeeeeneienenenenenenennens 226
14.3.6.1 Passing Arguments to non-FORTRAN Subprograms ... 227
14.3.6.2 Passing Argumentsin RegiSterscccoeeevevenenenenennnn. 230
14.3.6.3 Forcing Arguments into Specific Registersc..c.o...... 233
14.3.6.4 Passing Arguments to In-Line Subprograms 234
14.3.6.5 Removing Arguments from the Stackccccceeveenene 235
14.3.6.6 Passing Arguments in Reverse Orderccccceeveeeeeenene 236
14.3.7 Describing Subprogram Return Informationcccoevvevenenne. 237
14.3.7.1 Returning Subprogram Valuesin Registersc....... 237
14.3.7.2 Returning Structures and Complex Numbers 239
14.3.7.3 Returning Floating-Point Datacccoeeveeneccnieene 240
14.3.8 A Subprogram that Never REIUINScccocvirrineieneieneeneeeee 241
14.3.9 Describing How Subprograms Use Variablesin Common 242
14.3.10 Describing the Registers Modified by a Subprogram 247
14.3.11 Auxiliary Pragmas and the 80X87cccccveveevivceneeieniesesnseneens 249
14.3.11.1 Using the 80x87 to Pass Argumentscccceeeeerernenn 249
14.3.11.2 Using the 80x87 to Return Subprogram Values 253

14.3.11.3 Preserving 80x87 Floating-Point Registers Across
CalS e 253
APPENTICES ..ottt bbbt e b e e b e e b e e b bRt bbbttt b e 255
A. Use of Environment VariableS ... e 257
A LFINCLUDE ..ottt 257
AL2LIB s 257
A.BLIBDOS ..ottt 258
AL LIBWIN oottt 258
AL LIBOS2 ...ttt 258
ABLIBPHAR .ttt b b 259
ALT INOBT ottt et b bbbttt 259
ALB PATH e e e bbbt b e s 260
ALGTIMP e ettt es 261
ALOWATCOM ..ottt ae e nee e tenne e e nneenes 261
ALLWECL e 261
ALL2WECLSBB ..oceeveieereiereie sttt 262
A LBWCGMEMORY ..ot 262
ALLAWD ottt 263
ALLSWDW ettt bbb bbb 264
ALLBWEC .ottt s bbbt 264

Table of Contents

ALLT WEC3SBE ...ttt ettt sttt 265
ALLB WL ettt et et 265
ALLOWELSBBB ...oovcvieeiiieiirieisieesie ettt b et 266
A20WLANG ..ot 266
B. Open Watcom F77 DiagnostiC MESSAEScoveuereeierieerieirieenieesieesieses e seens 269

Xi

Xi

Open Watcom FORTRAN 77
User’s Guide

Open Watcom FORTRAN 77 User’s Guide

1 About This Manual

Thismanual contains the following chapters:
Chapter 1 — "About This Manua".

This chapter provides an overview of the contents of this guide.
Chapter 2— "Open Watcom FORTRAN 77 Compiler Options' on page 5.

This chapter also provides a summary and reference section for the valid
compiler options.

Chapter 3— "The Open Watcom FORTRAN 77 Compiler" on page 29.
This chapter describes how to compile an application from the command line,
describes compiler environment variables, provides examples of command line
use of the compiler, and and describes compiler diagnostics.

Chapter 4 — "The Open Watcom FORTRAN 77 Libraries" on page 37.
This chapter describes the Open Watcom FORTRAN 77 run-time libraries.

Chapter 5— "Open Watcom FORTRAN 77 Compiler Directives' on page 43.

This chapter describes compiler directives including INCLUDE file processing.

Chapter 6 — "Open Watcom FORTRAN 77 File Handling" on page 51.

This chapter describes run-time file handling.
Chapter 7— "The Open Watcom F77 Subprogram Library" on page 79.

This chapter describes subprograms available for special operations.
Chapter 8 — "16-bit Memory Models" on page 127.

This chapter describes the Open Watcom FORTRAN 77 memory models
(including code and data models), the tiny memory model, the mixed memory

About This Manual

3

Open Watcom FORTRAN 77 User’s Guide

4

model, linking applications for the various memory models, creating atiny
memory model application, and memory layout in an executable.

Chapter 9 — "16-bit Assembly Language Considerations’ on page 133.

This chapter describes issues relating to 16-bit interfacing such as parameter
passing conventions.

Chapter 10 — "16-bit Pragmas" on page 149.
This chapter describes the use of pragmas with the 16-bit compilers.

Chapter 11 — "32-bit Memory Models" on page 189.
This chapter describes the Open Watcom FORTRAN 77 memory models
(including code and data models), the flat memory model, the mixed memory
model, linking applications for the various memory models, and memory layout
in an executable.

Chapter 12 — "32-bit Assembly Language Considerations" on page 195.

This chapter describes issues relating to 32-bit interfacing such as parameter
passing conventions.

Chapter 13 — "32-bit Pragmas" on page 213.
This chapter describes the use of pragmas with the 32-bit compilers.
Appendix A. — "Use of Environment Variables' on page 257.

This appendix describes all the environment variables used by the compilers and
related tools.

Appendix B. — "Open Watcom F77 Diagnostic Messages' on page 269.

This appendix lists all of the Open Watcom F77 diagnostic messages with an
explanation for each.

About This Manual

2 Open Watcom FORTRAN 77 Compiler

Options

Source files can be compiled using either the IDE, command-line compilers or IBM
WorkFrame/2. This chapter describes all the compiler options that are available.

For information about compiling applications from the IDE, see the Open Watcom Graphical
Tools User’s Guide.

For information about compiling applications from the command line, see the chapter entitled

"The Open Watcom FORTRAN 77 Compiler" on page 29.

For information about creating applications using IBM WorkFrame/2, refer to IBM’s OS/2

Programming Guide for more information.

2.1 Open Watcom F77 Options Summary

In this section, we present aterse summary of the Open Watcom F77 options. The next

section describes these options in more detail. This summary is displayed on the screen by

simply entering the "WFC" or "WFC386" command with no arguments.

Compiler options;

OO WNEO

[NOJALign
[NO]JAUtomatic
BD

BM

Description:

(16-hit only) assume 8088/8086 processor
(16-bit only) assume 188/186 processor
(16-bit only) assume 286 processor
assume 386 processor

assume 486 processor

assume Pentium processor

assume Pentium Pro processor

align COMMON segments

all local variables on the stack

(32-bit only) dynamic link library
(32-bit only) multithread application

Open Watcom F77 Options Summary

Open Watcom FORTRAN 77 User’s Guide

[NO]BOunds generate subscript bounds checking code

BW (32-bit only) default windowed application

[NOJCC carriage control recognition regquested for output devices such asthe
console

CHlnese Chinese character set

[NO]COde constants in code segment

D1 include line # debugging information

D2 include full debugging information

[NO]DEBug perform run-time checking

DEFine=<macro> define macro
[NO]DEPendency generate file dependencies
[NO]DEScriptor pass character arguments using string descriptor

Dlsk write listing file to disk

DT=<size> set data threshold

[NOJERrorfile generate an error file

[NOJEXPIicit declare type of all symbols
[NOJEXtensions issue extension messages

[NOJEZ (32-bit only) Easy OMF-386 object files
FO=<obj_default> set default object file name
[NO]JFORmat relax format type checking

FPC generate calls to floating-point library
FPD enable generation of Pentium FDIV bug check code
FPI generate inline 80x87 instructions with emulation
FP187 generate inline 80x87 instructions

FPR floating-point backward compatibility
FP2 generate inline 80x87 instructions

FP3 generate inline 80387 instructions

FP5 optimize floating-point for Pentium

FP6 optimize floating-point for Pentium Pro
[NOJF Sfloats FS not fixed

[NO]|GSfloats GS not fixed

HC Codeview debugging information

HD DWAREF debugging information

HW Open Watcom debugging information
[NO]JINCList write content of INCLUDE filesto listing

INCPath=[d:]path [d:]path... pathfor INCLUDE files
[NQO]I Promote promote INTEGER* 1 and INTEGER*2 arguments to INTEGER* 4

Japanese Japanese character set

KOrean Korean character set

[NOJLFwithff LF with FF

[NO]JLIBinfo include default library information in object file
[NOJLISt generate alisting file

6 Open Watcom F77 Options Summary

Open Watcom FORTRAN 77 Compiler Options

[NOJMANgle
MC
MF
MH
ML
MM
MS
OB
OBP
oC
oD
ODO
OF
OH
ol
OK
oL
OL+
oM
ON
oP
OR
(O]
oT
OX

PRint
[NOJQuiet
[NO]Reference
[NOJRESource
[NOJSAve
[NOJSC
[NO]SEpcomma
[NOJSG
[NOJSHort
[NOJSR
[NO]SSfloats
[NO]STack
[NO]SYntax
[NO]TErminal
[NO]TRace
TYpe

mangle COMMON segment names

(32-bit only) compact memory model

(32-bit only) flat memory model

(16-bit only) huge memory model

large memory model

medium memory model

(32-bit only) small memory model

(32-bit only) base pointer optimizations

branch prediction

do not convert "call" followed by "ret" to "jmp"
disable optimizations

DO-variables do not overflow

always generate a stack frame

enable repeated optimizations (longer compiles)
generate statement functionsin-line

enable control flow prologues and epilogues
perform loop optimizations

perform loop optimizations with loop unrolling
generate floating-point 80x87 math instructionsin-line
numeric optimizations

precision optimizations

instruction scheduling

optimize for space

optimize for time

equivalent to OBP, ODO, OlI, OK, OL, OM, OR, and OT (16-hit) or OB,
OBP, ODO, OlI, OK, OL, OM, OR, and OT (32-hit)
writelisting file to printer

operate quietly

issue unreferenced warning

messages in resource file

SAVE local variables

(32-bit only) stack calling convention

allow comma separator in formatted input
(32-bit only) automatic stack growing

set default INTEGER/LOGICAL sizeto 2/1 bytes
save/restore segment registers

(16-bit only) SSis not default data segment
generate stack checking code

syntax check only

messages to terminal

generate code for run-time traceback

write listing file to terminal

Open Watcom F77 Options Summary 7

Open Watcom FORTRAN 77 User’s Guide

[NOJWArnings issue warning messages

[NOJwILd relax wild branch checking
[NOJWIndows (16-bit only) compile code for Windows
[NO]XFloat extend floating-point precision
[NO]XLine extend line length to 132

A summary of the option defaults follows:

0 16-hit only
5 32-bit only
ALign

NOAUtomatic

NOBOunds

NOCC

NOCOde

NODEBug

DEPendency

DEScriptor

DT=256

ERrorfile

NOEXPIlicit

NOEXtensions

NOEZ 32-bit only
NOFORmat

FPI

FP2 16-bit only
FP3 32-bit only
NOFPD

FSfloats all but flat memory model
NOF Sfloats flat memory model only
GSfloats

NOINCList

NOI Promote

NOL Fwithff

LIBinfo

NOLI St

NOMAnNgle

ML 16-hit only
MF 32-bit only
NOQuiet

Reference

NORESource

8 Open Watcom F77 Options Summary

Open Watcom FORTRAN 77 Compiler Options

NOSAve

NOSC 32-bit only
NOSEpcomma

NOSG 32-bit only
NOSHort

NOSR

NOSSfloats 16-bit only
NOSTack

NOSYntax

TErminal

NOTRace

WArnings

NOwILd

NOWI ndows 16-bit only
NOXFloat

NOXLine

2.2 Compiler Options

Compiler options may be entered in one of two places. They may be included in the options
list of the command line or they may be included as comments of the form "C$option",
"c$option", or "*$option" in the source input stream. The compiler recognizes these special
comments as compiler directives.

Some options may only be specified in the optionslist of the command line. Unless otherwise
stated, an option can appear on the command line only. We also indicate what the default is
for an option or group of options.

When specifying optionsin the sourcefile, it is possible to specify more than one option on a
line. For example, the following source line tells Open Watcom F77 to not issue any warning
or extension messages.

Example:
*$nowar n noext

Note that only the first option must contain the "*$", "C$", or "c$" prefix.

Short forms are indicated by upper case letters.

Compiler Options 9

Open Watcom FORTRAN 77 User’s Guide

Option: Description:

0 (16-bit only) Open Watcom F77 will make use of only 8088/8086 instructionsin
the generated object code. The resulting code will run on 8086 and all upward
compatible processors. Thisisthe default option for the 16-bit compiler.

1 (16-bit only) Open Watcom F77 will make use of 188/186 instructionsin the
generated object code whenever possible. The resulting code probably will not
run on 8086 compatible processors but it will run on 186 and all upward
compatible processors.

2 (16-bit only) Open Watcom F77 will make use of 286 instructionsin the
generated object code whenever possible. The resulting code probably will not
run on 8086 or 186 compatible processors but it will run on 286 and al upward
compatible processors.

3 Open Watcom F77 will assume a 386 processor and will generate instructions
based on 386 instruction timings.

4 Open Watcom F77 will assume a 486 processor and will generate 386
instructions based on 486 instruction timings. The code is optimized for 486
processors rather than 386 processors.

5 Open Watcom F77 will assume a Pentium processor and will generate 386
instructions based on Pentium instruction timings. The code is optimized for
Pentium processors rather than 386 processors. Thisisthe default option for the
32-bit compiler.

6 Open Watcom F77 will assume a Pentium Pro processor and will generate 386
instructions based on Pentium Pro instruction timings. The code is optimized
for Pentium Pro processors rather than 386 processors.

[NOJALign The"align" option tells the compiler to allocate al COMMON blocks on
paragraph boundaries (multiples of 16). If you do not want COMMON blocks
to be aligned, specify "noalign”. The default is"align”.

[NOJAUtomatic

The "automatic" option tells the compiler to allocate all local variables,
including arrays, on the stack. Thisis particularly useful for recursive functions
or subroutines that require a new set of local variablesto be allocated for each
recursive invocation. Note that the "automatic" option may significantly
increase the stack requirements of your application. Y ou can increase your stack
size by using the "STACK" option when you link your application.

10 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

BD

BM

(32-bit only, OS/2 and Windows NT only) This option causes the compiler to
imbed the appropriate DLL library name in the object file and to include the
appropriate DLL initialization code sequence when the application is linked.

(32-bit only, OS/2 and Windows NT only) This option causes the compiler to
imbed the appropriate multi-thread library name in the object file.

[NO]BOunds

BW

[NOJCC

CHlnese

[NO]COde

D1

D2

The "bounds" option causes the generation of code that performs array subscript
and character substring bounds checking. Note that this option may significantly
reduce the performance of your application but is an excellent way to eliminate
many programming errors. The default option is "nobounds’.

(OS2, Windows 3.x, and Windows NT only) This option causes the compiler to
import a special symbol so that the default windowing library code islinked into
your application.

The"cc" option specifies that the output to devices contains carriage control
information that is to be interpreted appropriately for the output device (e.g.,
console device). ASA carriage control characters are converted to ASCI|
vertical spacing control characters. Note that a blank carriage control character
will automatically be generated for list-directed output and will be interpreted as
a single-line spacing command.

Thisoption is part of the national language support provided by Open Watcom
F77. It instructs the compiler that the source code contains characters from the
Traditional Chinese character set. Thisincludes double-byte characters. This
option enables the use of Chinese variable names. The compiler’srun-time
system will ensure that character strings are not split in the middle of a
double-byte character when output spans record boundaries (as can happen in
list-directed output).

The "code" option causes the code generator to place character and numeric
constants in code segment. Data generated for FORMAT statements will also be
placed in the code segment. The default option is"nocode”.

Line number information is included in the object file ("type 1 debugging
information"). This option provides additional information to Open Watcom
Debugger (at the expense of larger object files and executable files). Line
numbers are handy when debugging your application with Open Watcom
Debugger.

In addition to line number information, local symbol and data type information
isincluded in the object file ("type 2 debugging information"). Although global

Compiler Options 11

Open Watcom FORTRAN 77 User’s Guide

symbol information can be made available to Open Watcom Debugger through a
Open Watcom Linker option, local symbol and typing information must be
requested when the source file is compiled. This option provides additional
information to Open Watcom Debugger (at the expense of larger object files and
executablefiles). However, it will make the debugging chore somewhat easier.

[NO]DEBug
The "debug" option causes the generation of run-time checking code. This
includes subscript and substring bounds checking as well as code that allows a
run-time traceback to be issued when an error occurs. The default optionis
"nodebug”.

DEFine=<macro>
This option is equivalent to specifying the following "define" compiler directive.

*$defi ne <macr o>

The macro specified by the "define" option or compiler directive becomes
defined. The definition status of the specified macro can be checked using the
"ifdef", "ifndef", "elseifdef" or "elseifndef" compiler directives. Thisalows
source code to be conditionally compiled depending on the definition status of
the macro.

Themacro __i86__ isaspecia macro that is defined by the compiler and
identifies the target as a 16-bit Intel 80x86 compatible environment.

Themacro _ 386 __ isaspecial macro that is defined by the compiler and
identifies the target as a 32-bit Intel 386 compatible environment.

Themacro __stack_conventions__ isaspecia macro that isdefined by
the 32-bit compiler when the "sc" compiler option is specified to indicate that
stack calling conventions are to be used for code generation.

Themacro __fpi__ isaspecia macro that is defined by the compiler when
one of the following floating-point optionsis specified: "fpi" or "fpi87".

[NO]DEPendency
The "dependency" option specifies that file dependencies are to be included in
the object file. Thisisthe default option. Thisoption is used by the Open
Watcom Integrated Development Environment to determine if an object fileis
up-to-date with respect to the source files used to build it. Y ou can specify the
"nodependency” option if you do not want file dependencies to be included in
the object file.

12 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

[NO]|DEScriptor

DIsk

DT=<size>

The "descriptor” option specifies that string descriptors are to be passed for
character arguments. Thisisthe default option. Y ou can specify the
"nodescriptor” option if you do not want string descriptors to be passed for
character arguments. Instead, the pointer to the actual character data and the
length will be passed as two arguments. The arguments for the length will be
passed as additional arguments following the normal argument list. For
character functions, the pointer to the data and the length of the character
function will be passed as the first two arguments.

When this option is used in conjunction with the "list" option, the listing file is
written to the current directory of the default disk. The listing file name will be
the same as the source file name but the file extension will be . | st . By default,
listing files are written to disk. The "disk" option will override any previously
specified "type" or "print" option.

The "data threshold" option is used to set the minimum size for data objects to
be included in the default data segment. Normally, all data objects smaller than
256 bytesin size are placed in the default data segment. When thereisalarge
amount of static data, it is often useful to set the data threshold size so that all
objects of the specified size or larger are placed into another segment. For
example, the option:

/ DT=100

causes all data objects of 100 bytes or more to be placed in afar data segment.
The "data threshold" only applies to the large and huge memory models where
there can be more than one data segment. The default data threshold valueis
256.

[NOJERrorfile

Thisoption is used to control whether error messages are output to a separate
error file. Theerror fileisadisk file of type . err andis produced if any
diagnostic messages are issued by the compiler. Specifying "noerrorfile"
prevents the creation of an error file. By default, an error fileis created.

If an error file exists before compilation begins, it will be erased. 1f no
diagnostic messages are produced then an error file will not be created even
though the "errorfile" option is selected. This option has no effect on the
inclusion of diagnostic messages in the source listing file or the production of
diagnostic messages on the screen.

[NOJEXPlicit

The "explicit" option requires the type of all symbols to be explicitly declared.

Compiler Options 13

Open Watcom FORTRAN 77 User’s Guide

An error message will be issued by the compiler if a symbol that does not appear
in atype declaration statement is encountered. Specifying thisoptionis
equivalent to using the IMPLICIT NONE statement. By default, symbols do
not have to be explicitly typed.

[NOJEXtensions

[NOJEZ

Thisoption is used to control the printing of extension messages. This option
may be specified on the command line or it may be placed anywhere in the
source input stream. In a source file, the option appears as acomment line and
takes the following form.

*$[N EXt ensi ons

The "extensions" option enables the printing of extension messages, while
"noextensions" disables the printing of these messages. By default, extension
messages are not printed.

(32-hit only) Open Watcom F77 will generate an object filein Phar Lap Easy
OMF-386 (object module format) instead of the default Microsoft OMF. The
default option is "noez".

FO=<obj_default>

By default, the object file name is constructed from the source file name. Using
the "fo" option, the default object file drive, path, file name and extension can be
specified.

Example:
Cwf c386 report /fo=d:\prograns\obj\

A trailing "\" must be specified for directory names. If, for example, the option
was specified as "/fo=d:\programs\obj" then the object file would be called

D: \ PROGRAMS\ OBJ. OBJ.

A default extension must be preceded by a period (".").

Example:
Cwf c386 report /fo=d:\prograns\obj\.dbo

[NOJFORmat

The "format" option suppresses the run-time checking that ensures that the type
of an input/output list item matches the format edit descriptor in a format
specification. This alows an input/output list item of type INTEGER to be
formatted using an F, E or D edit descriptor. It also allows an input/output list
item of afloating-point type to be formatted using an | edit descriptor.

14 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

FPC

FPI

FPI87

Normally, this generates an error. The "format” option is particularly useful for
applications that use integer arrays to store integer and floating-point data. The
default option is "noformat".

All floating-point arithmetic is done with calls to a floating-point emulation
library. Thisoption should be used when speed of floating-point emulation is
favoured over code size.

(16-bit only) Open Watcom F77 will generate in-line 80x87 numeric data
processor instructions into the object code for floating-point operations.
Depending on which library the codeis linked against, these instructions will be
left asis or they will be replaced by special interrupt instructions. In the latter
case, floating-point will be emulated if an 80x87 is not present. Thisisthe
default floating-point option if noneis specified.

(32-bit only) Open Watcom F77 will generate in-line 80x87 numeric data
processor instructions into the object code for floating-point operations. When
any module containing floating-point operations is compiled with the "fpi"
option, coprocessor emulation software will be included in the application when
itislinked. Thus, an 80x87 coprocessor need not be present at run-time. Thisis
the default floating-point option if noneis specified.

(16-bit only) Open Watcom F77 will generate in-line 80x87 numeric data
processor instructions into the object code for floating-point operations. An
80x87 coprocessor must be present at run-time. If the"2" optionisused in
conjunction with this option, Open Watcom F77 will generate 287/387
compatible instructions; otherwise Open Watcom F77 will generate 8087
compatible instructions.

(32-bit only) Open Watcom F77 will generate in-line 80x87 numeric data
processor instructions into the object code for floating-point operations. When
the "fpi87" option is used exclusively, coprocessor emulation software is not
included in the application when it islinked. A 80x87 coprocessor must be
present at run-time.

16-bit Notes:

1. When any modulein an application is compiled with a particular
"floating-point" option, then all modules must be compiled with the
same option.

2. Different math libraries are provided for applications which have

been compiled with a particular floating-point option. See the chapter
entitled "The Open Watcom FORTRAN 77 Libraries' on page 37.

Compiler Options 15

Open Watcom FORTRAN 77 User’s Guide

FP2

FP3

FP5

FP6

32-bit Notes:

1. When any modulein an application is compiled with the "fpc" option,
then all modules must be compiled with the "fpc" option.

2. When any modulein an application is compiled with the "fpi" or
"fpi87" option, then all modules must be compiled with one of these
two options.

3. If you wish to have floating-point emulation software included in the
application, you should select the "fpi" option. A 387 coprocessor
need not be present at run-time.

4. Different math libraries are provided for applications which have
been compiled with a particular floating-point option. See the chapter
entitled "The Open Watcom FORTRAN 77 Libraries' on page 37.

Open Watcom F77 will generate in-line 80x87 numeric data processor
instructions into the object code for floating-point operations. For Open
Watcom compilers generating 16-bit, thisisthe default. For 32-bit applications,
use this option if you wish to support those few 386 systems that are equipped
with an 80287 numeric data processor ("fp3" is the default for Open Watcom
compilers generating 32-bit code). However, for 32-bit applications, the use of
this option will reduce execution performance.

Open Watcom F77 will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. For 16-bit
applications, the use of this option will limit the range of systems on which the
application will run but there are execution performance improvements.

Open Watcom F77 will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. The sequence of
floating-point instructions will be optimized for greatest possible performance
on the Intel Pentium processor. For 16-bit applications, the use of this option
will limit the range of systems on which the application will run but there are
execution performance improvements.

Open Watcom F77 will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. The sequence of
floating-point instructions will be optimized for greatest possible performance
on the Intel Pentium Pro processor. For 16-bit applications, the use of this
option will limit the range of systems on which the application will run but there
are execution performance improvements.

16 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

[NOJFPD

FPR

A subtle problem was detected in the FDIV instruction of Intel’s original
Pentium CPU. In certain rare cases, the result of afloating-point divide could
have less precision than it should. Contact Intel directly for more information on
theissue.

As aresult, the run-time system startup code has been modified to test for a
faulty Pentium. If the FDIV instruction isfound to be flawed, the low order bit
of the run-time system variable __chipbug will be set.

If the FDIV instruction does not show the problem, the low order bit will be
clear. If the Pentium FDIV flaw is aconcern for your application, there are two
approaches that you could take:

1. Youmay testthe __chipbug variablein your codein all
floating-point and memory models and take appropriate action (such
as display awarning message or discontinue the application).

2. Alternately, you can use the "fpd" option when compiling your code.
This option directs the compiler to generate additional code whenever
an FDIV ingtruction is generated which tests the low order bit of
__chipbug and, if on, calls the software workaround code in the
math libraries. If the bit is off, an in-line FDIV instruction will be
performed as before.

If you know that your application will never run on a defective Pentium CPU, or
your analysis shows that the FDIV problem will not affect your results, you need
not use the "fpd" option.

Use this option if you want to generate floating-point instructions that will be
compatible with version 9.0 or earlier of the compilers. For more information
on floating-point conventions see the sections entitled "Using the 80x87 to Pass
Arguments" on page 182 and "Using the 80x87 to Pass Arguments’ on page
249.

[NOJF Sfloats

The "fsfloats" option enables the use of the FS segment register in the generated
code. Thisisthe default for al but the flat memory model. In the flat memory
model, the default is "nofsfloats" (the FS segment register is not used in the
generated code).

[NO]|GSfloats

The "gsfloats" option enables the use of the GS segment register in the generated
code. Thisisthe default. If you would like to prevent the use of the GS
segment register in the the generated code, specify the "nogsfloats" option.

Compiler Options 17

Open Watcom FORTRAN 77 User’s Guide

HC The type of debugging information that isto be included in the object fileis
"Codeview". The default type of debugging information is"Dwarf" (HD). If
you wish to use the Microsoft Codeview debugger, then choose the "HC" option.
When linking the application, you must also choose the appropriate Open
Watcom Linker DEBUG directive. Seethe Open Watcom Linker User’s Guide
for more information.

HD The type of debugging information that isto be included in the object fileis
"Dwarf". Thisisthe default type of debugging information. If you wish to use
the Microsoft Codeview debugger, then choose the "HC" option. When linking
the application, you must also choose the appropriate Open Watcom Linker
DEBUG directive. Seethe Open Watcom Linker User’s Guide for more
information.

HW The type of debugging information that is to be included in the object fileis
"Open Watcom". The default type of debugging information is "Dwarf" (HD).
If you wish to use the Microsoft Codeview debugger, then choose the "HC"
option. When linking the application, you must also choose the appropriate
Open Watcom Linker DEBUG directive. See the Open Watcom Linker User’s
Guide for more information.

[NO]INCList
This option is used to control the listing of the contents of INCLUDE filesto the
listing file. The"inclist" option enablesthelisting of INCLUDE files, while
"noinclist" disables the listing of these files. The default option is"noinclist”.

INCPath=[d:]path
[d:]path... Thisoption isused to specify directories that are to be searched for
include files. Each path is separated from the previous by a semicolon (*;").
These directories are searched in the order listed before those in the
FINCL UDE environment variable.

[NO]I Promote
The "ipromote" option causes the compiler to promote the INTEGER* 1 and
INTEGER* 2 arguments of some INTEGER* 4 intrinsics without issuing an error
diagnostic. Thisallows code such as the following to be compiled without error:

18 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

Japanese

KORean

Example:

Thisworks for the following intrinsic functions: ABS(), IABS(), DIM(),
IDIM(), SIGN(), ISIGN(), MAX(), AMAXO0(), MAXO(), MIN(), AMINO(), and
MINO(). When the "ipromote" option is specified, al integer arguments that are
passed to these functions are promoted to INTEGER* 4.

Thisoption is part of the national language support provided by Open Watcom
F77. 1t instructs the compiler that the source code contains characters from the
Japanese character set. Thisincludes double-byte characters. This option
enables the use of Japanese variable names. The compiler’s run-time system
will ensure that character strings are not split in the middle of a double-byte
character when output spans record boundaries (as can happen in list-directed
output).

Thisoption is part of the national language support provided by Open Watcom
F77. It instructs the compiler that the source code contains characters from the
Korean character set. Thisincludes double-byte characters. This option enables
the use of Korean variable names. The compiler’s run-time system will ensure
that character strings are not split in the middle of a double-byte character when
output spans record boundaries (as can happen in list-directed output).

[NOJL Fwithff

[NO]JLIBinfo

This option is used to control whether aline-feed character (LF=CHAR(10)) is
to be emitted before a form-feed character (FF=CHAR(12)) is emitted. This
option appliesto carriage control handling. Normally, the run-time system will
emit only aform-feed character to cause a page g ect when the ASA control
character "1" isfound in the first column of arecord. The "Ifwithff" option will
cause the run-time system to emit aline-feed character and then aform-feed
character.

The "Ifwithff" option will have little effect on printers, but it will change the
appearance of output to the screen by eliminating overwritten text when
form-feed characters are not handled by the output device. The default optionis
"nolfwithff".

Thisoption is used to control the inclusion of default library information in the
object file. The"libinfo" option enables the inclusion of default library

Compiler Options 19

Open Watcom FORTRAN 77 User’s Guide

[NOJLISt

information, while "nolibinfo" disables the inclusion of thisinformation. The
default option is"libinfo".

This option may be specified on the command line or it may be placed anywhere
in the source input stream. On the command line, this option is used to control
the creation of alisting file. The"list" option causes alisting file to be created
while "nolist" requests that no listing file be created. The default optionis
"nolist".

In a source file, the option appears as a comment line and takes the following
form.

*$[NJ LI St

Specifying *$LIST causes the source lines that follow this option to be listed in
the source listing file while * $NOLIST disables the listing of the source lines
that follow. This option cannot appear on the same source line with other
options.

[NO]MANgle

MC

MF

This option is used to alter COMMON block segment and class names.

Example:
REAL R, S
COMWON /BLK/ R, S
END

For anamed COMMON block called "BLK", the default convention is to name
the segment "BLK" and the class "BLK".

BLK SEGVENT PARA COMMON USE32 ' BLK'
When you use the "mangle” option, the segment is named"_COMMON_BLK"
andtheclassisnamed " COMMON_BLK_DATA".

_COMMON_BLK SEGMENT PARA COMMON USE32 ’_COMMON_BLK_DATA’
(32-bit only) The "compact" memory model (small code, big data) is selected.
The various models supported by Open Watcom F77 are described in the

chapters entitled "16-bit Memory Models' on page 127 and "32-bit Memory
Models' on page 189.

(32-bit only) The "flat" memory model (code and data up to 4 gigabytes) is
selected. The various models supported by Open Watcom F77 are described in

20 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

MH

ML

MM

MS

OB

OBP

oC

the chapters entitled "16-bit Memory Models' on page 127 and "32-bit Memory
Models' on page 189. Thisisthe default memory model option.

(16-bit only) The "huge" memory model (big code, huge data) is selected. The
various models supported by Open Watcom F77 are described in the chapters
entitled "16-bit Memory Models' on page 127 and "32-bit Memory Models' on
page 189.

The"large" memory model (big code, big data) is selected. The various models
supported by Open Watcom F77 are described in the chapters entitled " 16-bit
Memory Models' on page 127 and "32-bit Memory Models' on page 189. This
is the default 16-bit memory model option.

The "medium™ memory model (big code, small data) is selected. The various
model s supported by Open Watcom F77 are described in the chapters entitled
"16-bit Memory Models' on page 127 and "32-bit Memory Models' on page
189.

(32-bit only) The "small" memory model (small code, small data) is selected.
The various models supported by Open Watcom F77 are described in the
chapters entitled "16-bit Memory Models" on page 127 and "32-bit Memory
Models" on page 189.

(32-hit only) This option alows the use of the ESP register as a base register to
reference local variables and subprogram arguments in the generated code. This
can reduce the size of the prologue/epilogue sequences generated by the
compiler thus improving overall performance. Note that when this option is
specified, the compiler will abort when there is not enough memory to optimize
the subprogram. By default, the code generator uses more memory-efficient
algorithms when alow-on-memory condition is detected.

This option causes the code generator to try to order the blocks of code emitted
such that the "expected" execution path (as determined by a set of simple
heuristics) will be straight through, with other cases being handled by jumpsto
separate blocks of code "out of ling". Thiswill result in better cache utilization
on the Pentium. If the heuristics do not apply to your code, it could result in a
performance decrease.

This option may be used to disable the optimization wherea"CALL" followed
by a"RET" (return) is changed into a"JMP" (jump) instruction. Thisoptionis
required if you wish to link an overlayed program using the Microsoft DOS
Overlay Linker. The Microsoft DOS Overlay Linker will create overlay calls
for a"CALL" instruction only. This option is not required when using the Open
Watcom Linker. Thisoption isnot assumed by default.

Compiler Options 21

Open Watcom FORTRAN 77 User’s Guide

22

oD

ODO

OF

Non-optimized code sequences are generated. The resulting code will be much
easier to debug when using Open Watcom Debugger. By default, Open Watcom
F77 will select "od" if "d2" is specified.

Optimized DO-loop iteration code is generated. Caution should be exercised
with the use of this option since the case of an iterating value overflowing is
assumed to never occur. The following example should not be compiled with
this option since the terminal value of | X wraps from a positive integer to a
negative integer.

Example:
| NTEGER*2 | X
DO | X=32766, 32767

ENDDO

Thevaluesof | X are 32766, 32767, -32768, -32767, ... since | Xis
INTEGER* 2 (a 16-bit signed value) and it never exceeds the terminal value.

This option selects the generation of traceable stack frames for those functions
that contain calls or require stack frame setup. To use Open Watcom's
"Dynamic Overlay Manager" (DOS only), you must compile all modules using
the "of" option. For near functions, the following function prologue sequenceis
generated.

16-bit:
push BP
nmov BP, SP
32-hit:
push EBP

nmov EBP, ESP

For far functions, the following function prologue sequence is generated.

16-hit:
inc BP
push BP
nov BP, SP

Compiler Options

Open Watcom FORTRAN 77 Compiler Options

32-hit:

inc EBP
push EBP
nmov EBP, ESP

The BP/EBP value on the stack will be even or odd depending on the code
model. For 16-bit DOS systems, the Dynamic Overlay Manager uses this
information to determine if the return address on the stack is a short address
(16-bit offset) or long address (32-bit segment:offset). Thisoption is not

assumed by default.
OH This option enables repeated optimizations (which can result in longer
compiles).
ol This option causes code for statement functions to be generated in-line.
OK This option enables flowing of register save (from prologue) down into the

subprogram’ s flow graph.

oL L oop optimizations are performed. This includes moving loop-invariant
expressions outside the loops. This option is not assumed by default.

OL+ Loop optimizations are performed including loop unrolling. Thisincludes
moving loop-invariant expressions outside the loops and can cause |oops to be
turned into straight-line code. This option is not assumed by default.

oM Generate inline 80x87 code for math functions like sin, cos, tan, etc. If this
option is selected, it is the programmer’ s responsibility to make sure that
arguments to these functions are within the range accepted by the f si n,
f cos, etc. instructions since no run-time check is made.

If the "ot" option is also specified, the exp function is generated inline as well.
This option is not assumed by default.

ON This option alows the compiler to perform certain numerical calculationsin a
more efficient manner. Consider the following example.

Z1
Z2

X1/1'Y
X2 /Y

If the "on" option is specified, the code generator will generate code that is
equivalent to the following.

Compiler Options 23

Open Watcom FORTRAN 77 User’s Guide

=1/

NN -
* o g

X1 T
X2 T

1
2
Since floating-point multiplication is more efficient that division, the code

generator decided to first compute the reciprocal of Y and then multiply X1 and
X2 by thereciprocal of Y.

Note that this optimization may produce less slightly different results since
some, for certain values, precision is lost when computing the reciprocal. By
using this option, you are indicating that you are willing to accept theloss in
precision for the gain in performance.

OoP By default, floating-point variables may be cached in 80x87 floating-point
registers across statements when compiling with the "fpi" or "fpi87" options.
Floating-point register temporaries use 64 bits of precision in the mantissa
whereas single and double-precision variables use fewer hits of precision in the
mantissa. The use of this option will force the result to be stored in memory
after each FORTRAN statement is executed. Thiswill produce less accurate but
more predictable floating-point results. The code produced will also be less
efficient when the "op" option is used.

Example:
XMAX = X + Y/ Z
YMAX = XMAX + Q

When the "op" option is used in conjunction with the "fpi" or "fpi87" option, the
compiler’s code generator will update XMAX before proceeding with the second
statement. In the second statement, the compiler will reload XMAX from
memory rather than using the result of the previous statement. The effect of the
"op" option on the resulting code can be seen by the increased code size statistic
aswell as through the use of the Open Watcom Disassembler. Thisoptionis not
assumed by default.

OR This option enables reordering of instructions (instruction scheduling) to achieve
better performance on pipelined architectures such asthe 486. Selecting this
option will make it slightly more difficult to debug because the assembly
language instructions generated for a source statement may be intermixed with
instructions generated for surrounding statements. This option is not assumed
by default.

24 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

oS

oT

OoX

PRint

[NO]Quiet

Space is favoured over time when generating code (smaller code but possibly
slower execution). By default, Open Watcom F77 selects a balance between
"space" and "time".

Timeisfavoured over space when generating code (faster execution but possibly
larger code). By default, Open Watcom F77 selects a balance between " space”
and "time".

Specifying the "ox" option is equivalent to specifying the "ob" (32-bit only),
"obp", "odo", "ai", "ok", "al", "om", "or", and "ot" options.

Thisoption is used to direct the listing file to the printer (device name "PRN")
instead of the disk. The"print" option will override any previously specified
"type" or "disk" option. The default isto create alisting file on the disk.

The"quiet" option suppresses the banner and summary information produced by
the compiler. Only diagnostic messages will be displayed. The default optionis
"noquiet”.

[NOJReference

When the "reference” option is specified, warning messages will be issued for all
unreferenced symbols. In a source file, the option appears as a comment line
and takes the following form.

*$[NQ Ref er ence

This option is most useful when used in an include file that is included by
several subprograms. Consider an include file that defines many parameter
constants and only afew are referenced by any one subprogram. If the first line
of theincludefileis

*$nor ef er ence
and thelast lineis
*$r ef erence

warning messages for all unused parameter constants in the include file would
be suppressed. The default option is "reference’.

[NOJRESource

The "resource" option specifies that the run-time error messages are contained as
resource information in the executable file. All messages will be extracted from

Compiler Options 25

Open Watcom FORTRAN 77 User’s Guide

[NO]SAve

[NOJSC

the resource area of the executable file when they are required; no messages will
be linked with the application. The default option is "noresource”.

The "save" option is used to instruct Open Watcom F77 to "save" al local
variables of subprograms. All local variables are treated as if they had appeared
in FORTRAN 77 SAVE statements. By default, local variables are not saved
unless named in a SAVE statement (i.e., "nosave" isthe default option).

(32-bit only) If the "sc" option is used, Open Watcom F77 will pass all
arguments on the stack. The resulting code will be larger than that which is
generated for the register method of passing arguments. The default option is
"nosc".

[NO]SEpcomma

[NOJSG

The "sepcomma’ option alows the comma (*,") to be used as field separator in
formatted input. Thus the following code would work with the input described.

Example:
REAL R, S

READ(5,21) R S
PRINT *, R S

21 FORVAT(2F11. 3)
END

Normally the following input would result in a run-time error message.

0.79,0.21

(32-hit only) The "sg" option is useful for 32-bit OS2 multi-threaded
applications. It requests the code generator to emit arun-time call at the start of
any function that has more than 4K bytes of automatic variables (variables
located on the stack). Under 32-bit OS/2, the stack is grown automatically in 4K
pages using the stack "guard page" mechanism. The stack consists of in-use
committed pages topped off with a special guard page. A memory referenceinto
the 4K guard page causes OS/2 to grow the stack by one 4K page and to add a
new 4K guard page. Thisworks fine when thereisless than 4K of automatic
variablesin afunction. When thereis more than 4K of automatic data, the stack
must be grown in an orderly fashion, 4K bytes at atime, until the stack has
grown sufficiently to accommodate all the automatic variable storage
requirements.

The "stack growth" run-time routineiscalled __GRO.

26 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

The default option is "nosg".

[NOJSHort The"short" option is used to instruct Open Watcom F77 to set the default
INTEGER size to 2 bytes and the default LOGICAL sizeto 1 bytes. Asrequired
by the FORTRAN 77 language standard, the default INTEGER size is 4 bytes
and the default LOGICAL sizeis4 bytes. The default option is "noshort”.

[NOJSR The"sr" option instructs Open Watcom F77 to generate subprogram prologue
and epilogue sequences that save and restore any segment registersthat are
modified by the subprogram. Caution should be exercised when using this
option. If the value of the segment register being restored matches the value of a
segment that was freed within the subprogram, a general protection fault will
occur in protected-mode environments. The default, "nosr”, does not save and
restore segment registers.

[NO]SSfloats
(16-bit only) The "ssfloats" option specifies that the segment register SS does
not necessarily point to the default data segment. The "ssfloats" option must be
specified when compiling a module that is part of an OS/2 multi-threaded
application or dynamic link library. By default, it is assumed that the SS
segment register contains the segment address of the default data segment (i.e.,
"nossfloats").

[NO]STack If "stack" is specified, Open Watcom F77 will emit code at the beginning of
every subprogram that will check for the "stack overflow" condition. By
default, stack overflow checking is omitted from the generated code (" nostack™).

[NO]SYntax If "syntax" is specified, Open Watcom F77 will check the source code only and
omit the generation of object code. Syntax checking, type checking, and so on
are performed as usual. By default, code is generated if there are no source code
errors (i.e., "nosyntax” is the default).

[NO]TErminal
The "notermina™ option may be used to suppress the display of diagnostic
messages to the screen. By default, diagnostic messages are displayed.

[NOJTRace The"trace" option causes the generation of code that allows a traceback to be
issued when an error occurs during the execution of your program. The default
option is"notrace”.

TYpe This option is used to direct the listing file to the terminal (device name "CON")

instead of the disk. The "type" option will override any previously specified
"print" or "disk" option. The default isto create alisting file on the disk.

Compiler Options 27

Open Watcom FORTRAN 77 User’s Guide

[NOJWArnings
This option is used to control the printing of warning messages. By default,
warning messages are printed. This option may be specified on the command
line or it may be placed anywhere in the source input stream. In asourcefile,
the option appears as a comment line and takes the following form.

*$[N WAr ni ngs

The "warnings' option enables the printing of warning messages, while
"nowarnings" disables the printing of these messages.

[NOJWILd The"wild" option suppresses the compile-time checking that normally causes an
error to be issued when an attempt is made to transfer control into a block
structure from outside the block structure and vice versa. For example, this
option will allow atransfer of control into an IF-block from outside the 1F-block
(which is normally prohibited). The default option is"nowild".

Extreme caution should be exercised when using this option. For example,
transfer of control into a DO-loop from outside the DO-loop can cause
unpredictable results. This programming style is not encouraged by this option.
The option has been made available so that existing programs that do not adhere
to the branching restrictions imposed by the FORTRAN 77 standard (i.e.
mainframe applications that are being ported to the PC environment), can be
compiled by Open Watcom FORTRAN 77.

[NOJWIndows
(16-bit only) The "windows" option causes the compiler to generate the
prologue/epil ogue code sequences necessary for use in Microsoft Windows
applications. The default option is"nowindows".

[NO]XFloat The"xfloat" option specifiesthat all REAL variables are treated as if they had
been declared as "DOUBLE PRECISION". This effectively increases the
precision of REAL variables. Note that the "xfloat" option hasimplications on
the alignment of variables in common blocks. The default option is "noxfloat".

[NOJXline The"xline" option informs the Open Watcom F77 compiler to extend the last
column of the statement portion of aline to column 132. The default is 72.

28 Compiler Options

3 The Open Watcom FORTRAN 77 Compiler

This chapter describes the following topics:
» Command line syntax (see "Open Watcom FORTRAN 77 Command Line Format")

* Environment variables used by the compilers (see "WFC/WFC386 Environment
Variables' on page 30)

» Examples of command line syntax (see "Open Watcom FORTRAN 77 Command Line
Examples' on page 31)

* Interpreting diagnostic messages (see "Compiler Diagnostics' on page 32)

* Include file handling (see "Open Watcom FORTRAN 77 INCLUDE File Processing"
on page 35)

3.1 Open Watcom FORTRAN 77 Command Line Format

The formal Open Watcom FORTRAN 77 command line syntax is shown below.

WFC [options] [d:][path]filename].ext] [options]
WFC386 [options] [d:][path]filename].ext] [options]

The square brackets [] denote items which are optional.
WFC is the name of the 16-bit Open Watcom F77 compiler.
WFC386 isthe name of the 32-bit Open Watcom F77 compiler.

d: isan optional drive specification such as"A:", "B:", etc. If not specified, the
default drive is assumed.

path isan optional path specification such as \ PROGRAMB\ SRC\ . If not specified,
the current directory is assumed.

Open Watcom FORTRAN 77 Command Line Format 29

Open Watcom FORTRAN 77 User’s Guide

filename isthefile name of the file to be compiled.

ext isthe file extension of the file to be compiled. If omitted, afile extension of
"FOR" isassumed. If the period "." is specified but not the extension, the fileis
assumed to have no file extension.

options isalist of valid Open Watcom F77 options, each preceded by aslash (/") or a
dash ("—"). Certain options can include a"no" prefix to disable an option.
Options may be specified in any order, with the rightmost option taking
precedence over any conflicting options specified to its left.

3.2 WFC/WFC386 Environment Variables

The WFC environment variable can be used to specify commonly used WFC options. The
WFC386 environment variable can be used to specify commonly used WFC386 options.
These options are processed before options specified on the command line.

Example:
C>set wfc=/d1l /ot
C>set wfc386=/d1 /ot

The above example defines the default options to be "d1" (include line number debugging
information in the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use
the "#" character initsplace. Thisisrequired by the syntax of the "SET" command.

Once a particular environment variable has been defined, those options listed become the
default each time the associated compiler is used. The compiler command line can be used to
override any options specified in the environment string.

These environment variables are not examined by the Open Watcom Compile and Link
utilities. Since the Open Watcom Compile and Link utilities pass the relevant options found
in their associated environment variables to the compiler command line, their environment
variable options take precedence over the options specified in the environment variables
associated with the compilers.

30 WFC/WFC386 Environment Variables

The Open Watcom FORTRAN 77 Compiler

Hint: If you are running DOS and you use the same compiler options al the time, you
may find it handy to define the environment variable in your DOS system initialization
file, AUTCEXEC. BAT.

If you are running Windows NT, use the "System" icon in the Control Panel to define
environment variables.

If you are running OS/2 and you use the same compiler options all the time, you may find

it handy to define the environment variable in your OS/2 system initiaization file,
CONFI G SYS.

3.3 Open Watcom FORTRAN 77 Command Line
Examples

The following are some examples of using Open Watcom FORTRAN 77 to compile
FORTRAN 77 source programs.

Example 1:
C>wfc386 report /dl /stack

The 32-bit Open Watcom F77 compiler processes REPORT. FOR producing an object file
which contains source line number information. Stack overflow checking codeisincluded in
the object code.

Example 2:
Cwfc kwi kdraw /2 /fpi 87

The 16-bit Open Watcom F77 compiler processes KW KDRAW FOR producing object code
for an Intel 286 system equipped with an Intel 287 numeric data processor (or any upward
compatible 386/387, 486 or Intel Pentium system). While the choice of these options narrows
the number of microcomputer systems where this code will execute, the resulting code will be
highly optimized for this type of system.

Open Watcom FORTRAN 77 Command Line Examples 31

Open Watcom FORTRAN 77 User’s Guide

Example 3:
Cwfc ..\source\nodabs /d2

The 16-bit Open Watcom F77 compiler processes . . \ SOURCE\ MODABS. FOR (afileina
directory which is adjacent to the current one). The object fileis placed in the current
directory. Included with the object code and data is information on local symbols and data
types. The code generated is straight-forward, unoptimized code which can be readily
debugged with Open Watcom Debugger.

Example 4:
Cwfc386 /nf calc

The 32-bit Open Watcom F77 compiler compiles CALC. FOR for the "flat" memory model.
32-bit memory models are described in the chapter entitled "32-bit Memory Models" on page
189. 32-bit argument passing conventions are described in the chapter entitled "32-bit
Assembly Language Considerations' on page 195.

Example 5:
Cwf c386 kwi kdraw /f pi 87

The 32-bit Open Watcom F77 compiler processes KW KDRAW FOR producing object code
for an Intel 386 system equipped with an Intel 80x87 numeric data processor.

Example 6:
C>set wfc=/short /d2 /fo#*. dbj
Cwfc . .\source\nodabs

Theoptions/ short, /d2 and/f o=*. dbj are established as defaults using the WFC
environment variable. The 16-bit compiler processes . . \ SOURCE\ MODABS. FOR (afilein
adirectory which is adjacent to the current one). The object fileis placed in the current
directory and it will have a default file extension of "DBJ". All INTEGER and LOGICAL
variables will have a default type of INTEGER*2 and LOGICAL* 1 unless explicitly typed as
INTEGER*4 or LOGICAL*4. Source line number and local symbol information are included
with the object file.

3.4 Compiler Diagnostics

If the Open Watcom F77 compiler prints diagnostic messages to the screen, it will also placea
copy of these messagesin afilein your current directory (unless the "noerrorfile" optionis
specified). Thefilewill have the same file name as the source file and an extension of "err".
The compiler issues three types of diagnostic messages, namely extensions, warnings and
errors. An extension message indicates that you have used a feature which is supported by

32 Compiler Diagnostics

The Open Watcom FORTRAN 77 Compiler

Open Watcom F77 but that is not part of the FORTRAN 77 language standard. A warning
message indicates that the compiler has found a questionable problem in the source code (e.g.,
an unreachabl e statement, an unreferenced variable or statement number, etc.). A warning
message does not prevent the production of an object file. An error message indicates that a
problem is severe enough that it must be corrected before the compiler will produce an object
file. Theerror fileisahandy reference when you wish to correct the errorsin the sourcefile.

Just to illustrate the diagnostic features of Open Watcom F77, we will compile the following
program called "DEMO1".

This program denonstrates the foll ow ng features of
Open WAt comis FORTRAN 77 conpil er:

1. Extensions to the FORTRAN 77 standard are flagged.

errors as possible are di agnosed.

*
*
*
*
*
* 2. Conpile time error diagnostics are extensive. As many
*
*
* 3. Warning nessages are displayed where potential problens
* can ari se.
*

PROGRAM MAI N

DI MENSI ON A(10)

DO I =1, 10

ACl) =1
I =1 +1

ENDL COP

GO TO 30

J=J+1
30 END

If we compile this program with the "extensions" option, the following output appears on the
screen.

Cwf ¢ denpl /exten

WATCOM FORTRAN 77/ 16 Optimi zing Conpiler Version 1.5 1997/07/16 09: 22: 47
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

denol.for(14): *EXT* DO-05 this DO loop formis not FORTRAN 77 standard
denol.for(16): *ERR* DO 07 colum 13, DO variabl e cannot be redefined
while DO loop is active

denpol.for(17): *ERR* SP-19 ENDLOOP statenent does not match with DO

st at ement

denpol.for(19): *WRN* ST-08 this statement will never be executed due to
the preceding branch

denpl.for: 9 statenments, O bytes, 1 extensions, 1 warnings, 2 errors

Here we see an example of the three types of messages, extension (*EXT*), error (* ERR*)
and warning (*WRN¥*).

Compiler Diagnostics 33

Open Watcom FORTRAN 77 User’s Guide

Diagnostic messages are also included in the listing file if the "list" option is specified. If we
recompile our program and include the "list" option, alisting file will be created.

Cw c denpl /exten/li st
or
Cwf c386 denpl /exten/li st

The contents of thelisting file are:

WATCOM FORTRAN 77/ 16 Optimi zing Conpiler Version 1.5 1997/07/16 09:22: 47
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

Options: |ist,disk,errorfile,extensions,reference,warnings,fpi,oc, of,om
os,ot,ox,m,0,term nal, dependency, fsfl oats, gsfl oats, |ibinfo, dt =256,
align
1 * This program denpnstrates the follow ng features of
2 * Open Watcomi s FORTRAN 77 conpiler:

3 *
4 * 1. Extensions to the FORTRAN 77 standard are flagged.
5 *
6 * 2. Compile time error diagnostics are extensive. As many
7 * errors as possible are diagnosed.
8 *
9 * 3. Warning nessages are di spl ayed where potential problens
10 * can ari se.
11 *
12 PROGRAM MAI N
13 DI MENSI ON A(10)
14 DO 1=1, 10
EXT DO-05 this DO loop formis not FORTRAN 77 standard
15 ACl) =1
16 =1 +1
$
ERR DO 07 DO variabl e cannot be redefined while DO loop is active
17 ENDL OOP
ERR SP-19 ENDLOOP st atenent does not match with DO statenent
18 GO TO 30
19 J=J+1
WRN ST-08 this statenent will never be executed due to the preceding
branch
20 30 END

Code size (in bytes): 0 Nunber of errors:

Conpile tine (in seconds): 0 MNunmber of warnings:

Nunber of statenents conpil ed: 9 Nunber of extensions:

As part of the diagnostic capability of Open Watcom F77, a"$" is often used to indicate the
particular place in the source line where an error has been detected.

34 Compiler Diagnostics

(SN)

The Open Watcom FORTRAN 77 Compiler

The complete list of Open Watcom F77 diagnostic messages is presented in the appendix
entitled "Open Watcom F77 Diagnostic Messages" on page 269.

3.5 Open Watcom FORTRAN 77 INCLUDE File
Processing

For information on include file processing, see the section entitled "The INCLUDE Compiler
Directive" on page 44 in the chapter entitled "Open Watcom FORTRAN 77 Compiler
Directives'

Open Watcom FORTRAN 77 INCLUDE File Processing 35

Open Watcom FORTRAN 77 User’s Guide

36 Open Watcom FORTRAN 77 INCLUDE File Processing

4 The Open Watcom FORTRAN 77 Libraries

The Open Watcom FORTRAN 77 library routines (intrinsic functions) are described in the
Open Watcom FORTRAN 77 Language Reference manual. Additional run-time routines are
described in the chapter entitled "The Open Watcom F77 Subprogram Library" on page 79.
Since Open Watcom FORTRAN 77 supports two major architectures, the 286 architecture
(which includes the 8088) and the 386 architecture (which includes the 486 and Pentium
processors), libraries are grouped under two major directories.

For the 286 architecture, the processor dependent libraries are placed under the
\ WATCOM LI B286 directory.

For the 386 architecture, the processor dependent libraries are placed under the
\ WATCOM LI B386 directory.

Since Open Watcom FORTRAN 77 also supports severa operating systems, including DOS,
Windows 3.x, Windows 95, Windows NT, OS/2 and NetWare, system-dependent libraries are
grouped under different directories underneath the processor-dependent directories.

System 16-bit applications 32-bit applications
DOS \WATCOMLIB286\DOS \VATCOM LI B386\DCS
oS/ 2 \ WATCOM LI B286\ OS2 \ WATCOM LI B386\ OS2

W ndows 3.x \ WATCOM LI B286\ W N \ WATCOM LI B386\ W N

W ndows NT \ WATCOM LI B386\ NT

W ndows 95

Net War e \ WATCOM LI B386\ NETWARE

The Open Watcom FORTRAN 77 Libraries 37

Open Watcom FORTRAN 77 User’s Guide

\ wat com
I
___________ e,
I I
i b286 i b386
| I
_______ . e
I I I I I I I I
dos 0s?2 win dos 0s?2 W n nt net war e

Due to the many code generation strategies possible in the 80x86 family of processors, a
number of versions of the libraries are provided. Y ou must use the libraries which coincide
with the particular architecture, operating system, and code generation strategy or model that
you have selected. For the type of code generation strategy or model that you intend to use,
refer to the description of the "m?' memory model compiler option in the chapter entitled
"Open Watcom FORTRAN 77 Compiler Options' on page 5. The various code models
supported by Open Watcom FORTRAN 77 are described in the chapters entitled " 16-bit
Memory Models' on page 127 and "32-bit Memory Models" on page 189.

We have selected a simple naming convention for the libraries that are provided with Open
Watcom FORTRAN 77. Letters are affixed to the file name to indicate the particular strategy
with which the modules in the library have been compiled.

M denotes a version of the 16-bit Open Watcom FORTRAN 77 libraries which
have been compiled for the "medium" memory model (big code, small data).

L denotes a version of the 16-bit Open Watcom FORTRAN 77 libraries which
have been compiled for the "large" or "huge" memory models (big code, big data
or huge data).

7 denotes a version of the Open Watcom FORTRAN 77 libraries which should be
used when compiling with the "fpi" or "fpi87" option. Otherwise the libraries
have been compiled using the "fpc" compiler option.

S denotes a version of the 32-bit Open Watcom FORTRAN 77 libraries which
have been compiled using the "sc" option (stack calling conventions).

The 16-bit Open Watcom FORTRAN 77 libraries are listed below by directory.

38 The Open Watcom FORTRAN 77 Libraries

The Open Watcom FORTRAN 77 Libraries

Under \ WATCOM LI B286\ DOS

FLIBM LIB (DOS nedi um nodel)

FLIB7M LI B (DOS medi um nodel, in-1ine 80x87)
FLIBL.LIB (DCS | arge/ huge nodel)

FLI B7L. LI B (DOS | arge/ huge nodel, in-1ine 80x87)
CLIBMLIB (DOS i/o system nedi um nodel)
CLIBL.LIB (DOs i/o system | arge/ huge nodel)
GRAPH. LI B (DOS graphics support)

Under \ WATCOM LI B286\ W N

FLIBM LIB (W ndows nedi um nodel)

FLIB7/M LI B (W ndows nedi um nodel, in-1line 80x87)
FLIBL.LIB (W ndows | arge/ huge nodel)

FLIB7L.LIB (W ndows | arge/ huge nodel, in-line 80x87)
CLIBMLIB (Wndows i/o system nedi um nodel)
CLIBL.LIB (Wndows i/o0o system | arge/ huge nodel)

W NDOWS. LI B (W ndows APl [ibrary)

Under \ WATCOM LI B286\ CS2

FLIBM LIB (0OS/2 medi um nodel)

FLIB7TM LIB (0OS/2 medi um nodel, in-line 80x87)
FLIBL.LIB (0Os/2 | arge/ huge nodel)

FLI B7L.LIB (0OS/ 2 | arge/ huge nodel, in-line 80x87)
CLIBMLIB (0OS/2 i/0o system medi um nodel)
CLIBL.LIB (0OS/2 i/o system | arge/ huge nodel)
DOSPMM LI B (Phar Lap 286 PM nedi um nodel)

DOSPML. LI B (Phar Lap 286 PM | arge/ huge nodel)

The 32-bit Open Watcom FORTRAN 77 libraries are listed below.

Under \ WATCOM LI B386\ DOS

FLI B. LI B (fl oating-point calls)

FLIB7.LIB (in-1ine 80x87)

FLI BS. LI B (floating-point calls, stack conventions)
FLIB7S.LIB (in-line 80x87, stack conventi ons)
CLIB3R. LIB (i/o system

CLIB3S.LIB (i/o system stack conventions)

GRAPH. LI B (DOS graphics support)

The graphics library GRAPH. LI B isindependent of the argument passing conventions or
floating-point model.

The Open Watcom FORTRAN 77 Libraries 39

Open Watcom FORTRAN 77 User’s Guide

Under \ WATCOM LI B386\ W N

FLIB.LIB (fl oati ng-point calls)

FLI B7. LI B (in-1ine 80x87)

stack conventi ons)

FLI BS. LI B (floating-point calls,
FLIB7S.LIB (in-line 80x87, stack conventions)

CLIB3R. LIB (i/o system

CLIB3S.LIB (i/o system stack conventi ons)

WN386.LIB (32-bit Wndows API)

Under \ WATCOM LI B386\ OS2

FLIB. LI B (fl oating-point calls)

FLIB7.LIB (in-line 80x87)

stack conventions)

FLIBS. LI B (fl oating-point calls,
FLIB7S.LIB (in-line 80x87, stack conventi ons)

CLIB3R. LIB (i/o system

CLIB3S.LIB (i/o system stack conventions)

Under \ WATCOM LI B386\ NT

FLIB.LIB (fl oating-point calls)

FLIB7.LIB (in-1ine 80x87)

FLI BS. LI B (floating-point calls,
FLIB7S.LIB (in-line 80x87, stack conventions)

CLIB3R. LIB (i/o system

stack conventi ons)

CLIB3S.LIB (i/o system stack conventi ons)

4.1 Open Watcom FORTRAN 77 80x87 Emulator

Libraries

One of the following libraries must be used if any of the modules of your application were

compiled with the "fpi" option.
16-bit Libraries

NOEMU87. LI B

DOS\ EMJ87. LI B (DOS dependent)
W N EMJ87. LI B (W ndows dependent)
OS2\ EMJUB7. LI B (OS/ 2 dependent)

40 Open Watcom FORTRAN 77 80x87 Emulator Libraries

The Open Watcom FORTRAN 77 Libraries

32-bit Libraries

NOEMJU387. LI B

DOS\ EMJ387. LI B (DOS dependent)

W N EMU387. LI B (W ndows dependent)
OS2\ EMJ387. LI B (OS/ 2 dependent)

NT\ EMJ387. LI B (W ndows NT dependent)

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your
application. Thisemulator will decode and emulate 80x87 instructions when an 80x87 is not
present in the system or if the environment variable NO87 has been set (thisvariableis
described below).

If you have compiled your application using the "fpi" option, you can also link with the 16-bit
"noemu87.lib" or 32-bit "noemu387.lib" library, depending on which compiler you are using.
However, your application will only run on a machine equipped with a 80x87 numeric data
processor since the actual emulator is not linked into your application.

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the
application must be run on personal computer systems equipped with the numeric data
processor.

4.2 The "NO87" Environment Variable

If you have a math coprocessor in your system but you wish to test a version of your
application that will use floating-point emulation ("fpi" option) or ssimulation ("fpc" option),
you can define the NO87 environment variable. The 16-bit application must be compiled
using the "fpc" (floating-point calls) option and linked with the appropriate f1i b?. 11 b
library or the "fpi" option (default) and linked with the appropriate f I i b7?.11i b and
emu87. | i b libraries. The 32-bit application must be compiled using the "fpc"
(floating-point calls) option and linked with the appropriate f 1 i b?. 1'i b library or the "fpi"
option (default) and linked with the appropriate f 1 i b7?. 1 i b and enu387. | i b libraries.
Using the "SET" command, define the environment variable as follows:

CSET NO87=1

Now, when you run your application, the 80x87 will beignored. To undefine the
environment variable, enter the command:

C>SET NO87=

The "NO87" Environment Variable 41

Open Watcom FORTRAN 77 User’s Guide

42 The "NO87" Environment Variable

5 Open Watcom FORTRAN 77 Compiler
Directives

5.1 Introduction

A number of compiler directives are available that allow, for example, conditional
compilation of source code and the inclusion of source code from other files. A compiler
directiveis specified by placing acomment character ('c’, 'C’, or "*’) in column one followed
by adollar sign ('$') immediately followed by the compiler directive. The following lists all
of the compiler directives available with Open Watcom F77.

EJECT
INCLUDE
PRAGMA
DEFINE
UNDEFINE
IFDEF
IFNDEF
ENDIF
ELSE
ELIFDEF
11. ELIFNDEF

BOO~NoGOA®DNE

o

These compiler directives will be described in the following sections.

In addition to the above compiler directives, it is aso possible to specify certain compiler
options in the same way. The following lists these options.

[NOJEXTENSIONS
[NOJLIST
[NO]REFERENCE
[NO]WARNINGS

AwdE

For more information on these options, see the the chapter entitled "Open Watcom
FORTRAN 77 Compiler Options' on page 5.

Introduction 43

Open Watcom FORTRAN 77 User’s Guide

5.2 The EJECT Compiler Directive

This compiler directive causes aform-feed to be generated in the listing file. Thelisting fileis
acarriage-control filethat is created by the compiler when the "list" compiler optionis
specified. Inthe following example, aform-feed character will be generated immediately
before the source for subroutine sub2 and immediately before the source for subroutine

sub3.
Example:
subroutine subl
| source code
end
*$ej ect
subrouti ne sub2
I source code
end
*$ej ect

subrouti ne sub3
I source code
end

5.3 The INCLUDE Compiler Directive

The INCLUDE compiler directive or INCLUDE statement may be used to imbed source code
into the file being compiled. Either form may be used.

Example:
*$I NCLUDE DOCS. Fl

I NCLUDE ' DCS. FI’

When the INCLUDE statement is used the name of the file must be placed inside single
guotes (apostrophes). The file name may include drive, path, and file extension. The default
fileextensionis. f or.

It is not necessary to include the drive and path specifiers in the file specification when the file
resides on adifferent drive or in a different directory. Open Watcom F77 provides a
mechanism for looking up include files which may be located in various directories and disks
of the computer system. When the drive and path are omitted from afile specification, Open
Watcom F77 searches directories for include filesin the following order.

1. First, the current directory is searched.

44 The INCLUDE Compiler Directive

Open Watcom FORTRAN 77 Compiler Directives

2. Secondly, each directory listed with the "INCPath" option is searched (in the order
that they were specified).

3. Thirdly, each directory listed in the FINCL UDE environment variable is searched
(in the order that they were specified).

The compiler will search the directories listed with the "INCPath" option or in the
FINCL UDE environment variable in a manner analogous to that which used by the operating
system when searching for programs by using the PATH environment variable.

The"INCPath" option takes the following form.

/1 NCPat h=[d:] path; [d:]path...

The"SET" command is used to define an FINCL UDE environment variable that contains a
list of directories. A command of the form

SET FI NCLUDE=[d:]path;[d:]path...

isissued before running Open Watcom F77 the first time. The brackets indicate that the drive
d: isoptional and the elipsisindicates that any number of paths may be specified.

Weillustrate the use of the INCLUDE statement in the following example.

subroutine Cl earScreen()

inplicit none

i ncl ude ' dos.fi

integer VIDEO_CALL, SCROLL_UP
parameter (VIDEO_CALL=16, SCROLL_UP=6)

DS=ES=FS=GS=0 ! for safety on 386 DOS extender
AH = SCROLL_UP I scroll up

AL =0 ! blank entire w ndow

CX =0 ! set row, col um of upper left
DX = 24*256 + 80 | set row, col um of |ower right
BH =7 ! attribute "white on bl ack"
call fintr(VIDEO_CALL, regs)

end

The third line of this subroutine contains an INCLUDE statement for the file DOS. FI . If the
above source code is stored in the file CLRSCR. FOR in the current directory then we can
issue the following commands to compile the application.

Csset finclude=c:\watcom src\fortran\dos
Cwfc cl sscr

In the above example, the "SET" command is used to define the FINCL UDE environment
variable. It specifiesthat the \ WATCOM SRC\ FORTRAN\ DOS directory isto be searched for
include files that cannot be located in the current directory and that have no drive or path
specified. The advantage of the FINCL UDE environment variable is that drives and paths

The INCLUDE Compiler Directive 45

Open Watcom FORTRAN 77 User’s Guide

can be omitted from the INCLUDE file specifications in the source code. This allowsthe
source code to be independent of the disk/directory structure of your computer system.

5.4 The PRAGMA Compiler Directive

This compiler directive is described in the chapters entitled "16-bit Pragmas" on page 149 and
"32-bit Pragmas’ on page 213.

5.5 The DEFINE Compiler Directive

The DEFINE compiler directive sets the definition status of amacro to defined. If amacro
does not appear in a DEFINE directive, its definition statusis undefined.

Example:
*$def i ne debug

In the above example, the macro debug is defined.
The DEFINE compiler option can aso be used to define a macro.

Example:
Cwf c / defi ne=debug test
Cwf c386 /defi ne=debug test

5.6 The UNDEFINE Compiler Directive

The UNDEFINE compiler directive sets the definition status of a macro to undefined.

Example:
*$undefi ne debug

In the above example, the definition status of the macro debug is set to undefined.

46 The UNDEFINE Compiler Directive

Open Watcom FORTRAN 77 Compiler Directives

5.7 The IFDEF, IFNDEF and ENDIF Compiler Directive

The IFDEF and IFNDEF compiler directives check the definition status of a macro. If the
macro appearing in an IFDEF directive is defined or the macro appearing in an IFNDEF
directive is not defined, then all source code up to the corresponding ENDIF compiler
directive will be compiled. Otherwise, it will be ignored.

In the following example, the FORTRAN 77 statements represented by
<debugging_statements> will be compiled.

Example:
*$defi ne debug

*$i f def debug
<debugging_statements>
*$endi f

In the following example, the FORTRAN 77 statements represented by
<debugging_statements> will not be compiled.

Example:
*$undefi ne debug

*$i f def debug
<debugging_ statements>
*$endi f

In the following example, the FORTRAN 77 statements represented by
<debugging_statements> will be compiled.

Example:
*$undefi ne debug
*$i f ndef debug
<debuggi ng st at erment s>
*$endi f

The IFDEF, IFNDEF and ENDIF Compiler Directive 47

Open Watcom FORTRAN 77 User’s Guide

5.8 The ELSE Compiler Directive

The EL SE compiler directive must be preceded by an IFDEF, IFNDEF, EL SEIFDEF or

EL SEIFNDEF compiler directive. If the condition of the preceding compiler directive was
satisfied, then all source code between the EL SE compiler directive and the corresponding
ENDIF compiler directive will be ignored. If the condition of the preceding compiler
directive was not satisfied, then all source code between the EL SE compiler directive and the
corresponding ENDIF compiler directive will be compiled.

In the following example, the FORTRAN 77 statements represented by
<debugging_level_2_statements> will be compiled.

Example:
*Sundefine debug_level 1

*$ifdef debug_level 1
<debugging level 1 statements>
*$el se

<debugging level 2 statements>
*$endi f

5.9 The ELSEIFDEF and ELSEIFNDEF Compiler
Directive

The ELSEIFDEF and EL SEIFNDEF compiler directives must be preceded by an IFDEF,
IFNDEF, EL SEIFDEF or EL SEIFNDEF compiler directive. If the condition of the preceding
compiler directive was satisfied, then all source code between the EL SEIFDEF or

EL SEIFNDEF compiler directive and the corresponding ENDIF compiler directive will be
ignored. If the condition of the preceding compiler directive was not satisfied, then the
definition status of the macro specified in the ELSEIFDEF or EL SEIFNDEF compiler
directive is checked. If the macro appearing in the EL SEIFDEF compiler directive is defined,
or the macro appearing in the EL SEIFNDEF compiler directive is not defined, then al source
up to the next EL SEIFDEF, EL SEIFNDEF, EL SE or ENDIF compiler directive will be
compiled.

In the following example, the FORTRAN 77 statements represented by
<debugging level 2 statements> will becompiled.

48 The ELSEIFDEF and ELSEIFNDEF Compiler Directive

Open Watcom FORTRAN 77 Compiler Directives

Example:
*Sdefine debug_level 2

*$ifdef debug_level 1
<debugging level 1 statements>
*Selseifdef debug _level 2
<debugging_level_2_statements>
*$endi f

5.10 Debugging statements ("D" in Column 1)

If the character "D" or "d" appearsin column 1, that line will be conditionally compiled
depending on the definition status of the macro __debug__ . Statementsthat containa"D"
or "d" in column 1 are called debugging statements. If the __debug__ macro is defined, the
line will be compiled; otherwiseit will beignored. The __debug__ macro can be defined
by using the DEFINE compiler directive or the "define” option. In the following example, the
"define" option is used to force compilation of debugging statements.

Example:
C>wfc /def=__debug__ test
C>wfc386 /def=__debug_ _ test

5.11 General Notes About Compiler Directives

1. Compiler directives must not contain embedded blanks. The following isnot a
valid ENDIF compiler directive.

Example:
*$end if

2. Nesting isalowed up to amaximum of 16 levels.

Example:
*$i fdef syntl
<st at enent s>
*$i f def synP
<st at enent s>
*$endi f
*$endi f

3. Themacro __i86__ isaspecial macro that is defined by the compiler and
identifies the target as a 16-bit Intel 80x86 compatible environment.

General Notes About Compiler Directives 49

Open Watcom FORTRAN 77 User’s Guide

4. Themacro __386__ isaspecial macro that is defined by the compiler and
identifies the target as a 32-bit Intel 80386 compatible environment.

5. Themacro __stack_conventions__ isaspecia macro that is defined by the
32-bit compiler when stack conventions are used for code generation. Stack
conventions are used when the "sc" or "3s" compiler options are specified.

6. Themacro __fpi__ isaspecial macro that is defined by the compiler when one
of the following floating-point optionsis specified: "fpi" or "fpi87".

7. Themacro __debug__ isaspecia macro that can be used to conditionally

compile debugging statements. A debugging statement is one that contains the
character "D" or "d" in column one.

50 General Notes About Compiler Directives

6 Open Watcom FORTRAN 77 File Handling

This chapter describes the file handling and naming conventions of Open Watcom F77. We
discussfiles and devices which are used to store, retrieve and display data. For example, a
disk can be used to store afile of student marks. Thisfileis accessible by other programsin
order to produce summaries of the data such as marks reports. A device such as a printer can
also be treated asiif it were afile, athough it isonly useful for displaying data; an attempt to
read information from this deviceisinvalid.

In the following sections, we shall describe:

1. thetechniquesthat Open Watcom F77 adopts for implementing FORMATTED and
UNFORMATTED records and SEQUENTIAL and DIRECT access to these records,
the handling of "print" files,

file naming conventions,

logical file names,

the preconnection of files to units, and

special device support.

oukwd

6.1 Record Access

Two types of record access are supported by Open Watcom F77:

Sequential Sequential access meansthat records in afile are accessed in order, starting with
the first record in the file and proceeding to the last. Sequential accessis
permitted to records in both variable-length and fixed-length record files.

Direct Direct access means that recordsin afile are accessed in random order. For
example, the fifth record could be accessed, then the second, and then the tenth.
Direct accessis permitted for fixed-length record files only.

The access method is described using the ACCESS= specifier of the FORTRAN OPEN
statement. The default accessis"SEQUENTIAL".

Record Access 51

Open Watcom FORTRAN 77 User’s Guide

6.2 Record Format

There are two record formats, "FORMATTED" and "UNFORMATTED", which are
supported by Open Watcom F77. The record format is described using the FORM= specifier
of the FORTRAN OPEN statement. The default format is"FORMATTED" for files
connected for sequential access and "UNFORMATTED" for files connected for direct access.

In describing these two formats, we also refer to the two methods of record access,
"SEQUENTIAL" and "DIRECT", which are supported by Open Watcom F77.

6.2.1 FORMATTED Records

A FORMATTED record is one that contains an arbitrary number of ASCII characters. The
end of arecord is marked by an ASCII "LF" (line feed) character optionally preceded by an
ASCII "CR" (carriage return) character. Thus this special sequence may not appear in the
middle of arecord.

FORMATTED records may vary in length. If al the recordsin the file have the same length
then the records may be accessed both "sequentially" and "directly". If therecordsvary in
length then it is only possible to access the records sequentialy.

For direct access, the length of the recordsis specified by the RECL = specifier of the
FORTRAN OPEN statement. The specified length must not include the record separator
since it does not form part of the record.

As an extension to the FORTRAN 77 language standard, Open Watcom F77 also supports the
use of the RECL = specifier for sequential access. The maximum length of the records may be
specified by the RECL = specifier of the FORTRAN OPEN statement. The specified length
must not include the record separator since it does not form part of therecord. Thelengthis
used to allocate arecord buffer for sequential access. If the record length is not specified, a
default maximum length of 1024 charactersis assumed.

6.2.2 UNFORMATTED Records

52

An UNFORMATTED record is one that contains an arbitrary number of binary storage units.
Theinterpretation of the datain such arecord depends on the FORTRAN program that is
processing the record. An UNFORMATTED record may contain integers, real numbers,
character strings, or any other type of FORTRAN data.

Record Format

Open Watcom FORTRAN 77 File Handling

UNFORMATTED records may also vary in length. If al recordsin the file have the same
length then the records may be accessed both "sequentially” and "directly”. If the records
vary in length then it is only possible to access the records sequentially.

When afile containing UNFORMATTED records is accessed sequentially, each record must
begin and end with a descriptor that contains the length of the record. The length of the
record is represented in 32 bits or 4 bytes INTEGER*4). The UNFORMATTED records of a
file which are written using sequential access will be automatically supplied with the
appropriate length descriptors. When such afileisread, it is assumed that each record has the
appropriate length descriptors.

Depending on the record length, the output produced by a single unformatted sequential

WRI TE statement may cause multiple records to be written. As previously mentioned, each
record begins and ends with alength descriptor. The length descriptors for the first record
contain the length of the record. The length descriptors for the remaining records contain the
length of the record with the high bit (bit 31) set to one. In thisway, an unformatted
sequential file can be viewed as a number of logical records (alogical record corresponding to
the output produced by a WRI TE statement) with each logical record composed of a number
of physical records. Files created in thisway cannot be accessed directly unless each logical
record is composed of asingle physical record and each record isthe same size.

As an extension to the FORTRAN 77 language standard, Open Watcom F77 also supports the
use of the RECL = specifier for sequential access. The maximum length of the records may be
specified by the RECL = specifier of the FORTRAN OPEN statement. The specified length
must not include the length descriptors since they do not form part of the record. The length
is used to alocate arecord buffer for sequential access. If the record length is not specified, a
default maximum length of 1024 charactersis assumed.

When afile containing UNFORMATTED records is accessed directly, each record must be
the same length. In this case, the length of the records is specified by the RECL = specifier of
the FORTRAN OPEN statement. If the file was originally created with sequential access then
the specified length must include any length descriptors which form part of the record. In the
direct access mode, no interpretation is placed on any of the datain an UNFORMATTED
record and the programmer must account for any record length descriptors which may form
part of the record.

Any records which are written using direct access must include record length descriptorsif the
fileisto be accessed sequentially at alater time. Asan aternative, you may specify
RECORDTYPE=" VARI ABLE’ inthe FORTRAN OPEN statement. This specifier isan
extension to the FORTRAN 77 language standard and will cause length descriptors to be
generated automatically. In this case, the record length should not include the record length
descriptors.

Record Format 53

Open Watcom FORTRAN 77 User’s Guide

6.2.3 Files with no Record Structure

Certain files, for example afile created by a program written in another language, do not have
any internal record structure that matches any of the record structures supported by Open
Watcom F77. These filesare simply streams of data. There are two ways in which these files
can be processed.

1. Youcan use unformatted direct access. In this case, the value specified by the
RECL = specifier inthe OPEN statement determines the amount of data read or
written by aREAD or WRITE statement.

2. Alternatively, you can use unformatted sequential access. In this case, the amount
of dataread or written to the file is determined by the itemsin the input/output list
of the READ or WRITE statement. When using unformatted sequential access,
you must specify RECORDTYPE=" FI XED' to indicate that no record boundaries
are present. Otherwise, the default value of ' VARI ABLE' will be used.

6.3 Attributes of Files

Thefile system does not retain any information on the contents of afile. Unlike more
sophisticated file systems, it cannot report whether afile consists of fixed-length or
variable-length records, how records are delimited in afile, the maximum length of the
records, etc. Therefore, we have provided a mechanism which will allow you to specify
additional information about afile. This mechanism should be used when the default
assumptions about recordsin afile are not true for the file in question.

The RECORDTYPE= specifier of the FORTRAN OPEN statement can be used to specify
additional information about the type of recordsin thefile. This specifier is an extension to
the FORTRAN 77 language standard.

The RECL = specifier of the FORTRAN OPEN statement can be used to specify additional
information about the length of recordsin the file. When used with sequential access, this
specifier is an extension to the FORTRAN 77 language standard.

The CARRIAGECONTROL = specifier of the FORTRAN OPEN statement can be used to
specify additional information about the handling of ASA carriage control characters for an
output file. This specifier is an extension to the FORTRAN 77 language standard.

The BLOCKSI ZE= specifier of the FORTRAN OPEN statement can be used to specify the

size of the internal input/output buffer. A buffer reduces the number of system input/output
calls during input/output to a particular file and hence improves the overall performance of a

54 Attributes of Files

Open Watcom FORTRAN 77 File Handling

program. The default buffer size is4K. This specifier is an extension to the FORTRAN 77
language standard.

The following sections describe the attributes of records supported by the Open Watcom F77
run-time system.

6.3.1 Record Type

The RECORDTYPE= specifier of the FORTRAN OPEN statement can be used to specify
additional information about the type of recordsin thefile. This specifier is an extension to
the FORTRAN 77 language standard. The following types may be specified.

RECORDTYPE=" TEXT’
RECORDTYPE=" VARI ABLE’
RECORDTYPE=" FI XED

TEXT

VARIABLE

indicates that the file contains variable-length or fixed-length records of ASCII
characters separated by an ASCII "LF" (line feed) character optionally preceded
with an ASCII "CR" (carriage return) character. By default, the Open Watcom
F77 run-time system assumes that FORMATTED records are of TEXT format
in both the sequential and direct access modes.

By default, the Open Watcom F77 run-time system uses variable-length record
TEXT filesto implement FORMATTED recordsin the sequential access mode.
Of course, all records may be the same length. The record separator is not
included in calculating the maximum size of recordsin the file.

By default, the Open Watcom F77 run-time system uses fixed-length record
TEXT filesto implement FORMATTED records in the direct access mode.
Each record must be the same length. The record separator is not included in
calculating the size of recordsin the file.

indicates that the file contains variable-length or fixed-length records in which
special descriptors are employed to describe the length of each record. The
length of each record is contained in a doubleword (INTEGER* 4 item) at the
beginning and end of the record. These descriptors determine the bounds of the
records.

By default, the Open Watcom F77 run-time system uses VARIABLE format
filesto implement UNFORMATTED recordsin the sequential access mode.
The length descriptors are required to support the FORTRAN BACKSPACE
statement since no other method exists for determining the bounds of a
variable-length unformatted record in afile.

Attributes of Files 55

Open Watcom FORTRAN 77 User’s Guide

FIXED indicates that the file contains no extra information that determines the record
structure. If thefileisadirect accessfile, the value specified by the RECL=
specifier determines the size of each record in thefile.

By default, the Open Watcom F77 run-time system uses FI XED format filesto
implement UNFORMATTED records in the direct access mode.

If you specify FIXED with an unformatted sequential file, the size of the records
is determined by the items in the input/output list.

6.3.2 Record Size

When accessis direct, the record length must be specified in the RECL = specifier of the
FORTRAN OPEN statement.

OPEN(UNI T=1, FILE=" TEST. DAT', ACCESS=' Dl RECT', RECL=size, ...)

As an extension to the FORTRAN 77 language standard, the record length may aso be
specified when the accessis sequential. This should be done whenever accessis "sequential”
and the maximum record length is greater than the default.

OPEN(UNIT=1, FILE=" TEST.DAT', ACCESS=' SEQUENTI AL’, RECL=size, ...)

The record length specified by size should not include record separators such as CR and LF,
nor should it include record length descriptors when sequentially accessing afile containing
unformatted records. However, for al files, records longer than the size specified will be
truncated. The default record sizeis 1024. The maximum record size is 65535 for the 16-bit
run-time system. Since record buffers are allocated in the dynamic storage region, the size
will be restricted to the amount of dynamic storage available.

6.3.3 Print File Attributes

When the first character of each record written to afile will contain an ASA (American
Standards Association) carriage control character, the CARRIAGECONTROL = specifier of
the FORTRAN OPEN statement should be used. This specifier is an extension to the
FORTRAN 77 language standard. The ASA character is used for vertical spacing control.
The valid characters and their interpretation are:

56 Attributes of Files

Open Watcom FORTRAN 77 File Handling

"1t Advance to Top of Page

" Advance Zero Lines (overprint)

Advance 1 Line

"o Advance 2 Lines

- Advance 3 Lines

If CARRI AGECONTROL=" YES' is specified then the Open Watcom F77 run-time system
will automatically allocate an extra character at the beginning of arecord for the vertical

spacing control.

Upon transmitting a record to a file which has the "carriage” attribute, the Open Watcom F77
run-time system will substitute the appropriate ASCII carriage control characters as follows.

"1 Substitute a FF (form feed) for the "1".

E Append only aCR (carriage return) to the previous record.
Throw away the blank character.

"0" Substitute CR (carriage return) and LF (line feed) for the"0".

" Substitute two pairs of CR and LF for the "-".

Any other character in this position will be treated asif a blank character had
been found (i.e., it will be discarded).

If the "carriage” attribute is not specified for afile then records will be written to thefile
without placing any interpretation on the first character position of the record.

6.3.4 Input/Output Buffer Size

The BLOCKSI ZE= specifier is optional. However if you would like to change the default
buffer size of 16K for 32-bit applications and 4K for 16-bit applications, you must specify the
buffer sizein the BLOCKSI ZE= specifier of the OPEN statement.

OPEN(UNIT=1, FILE=" TEST.DAT', BLOCKSIZE=1024, ...)

Attributes of Files 57

Open Watcom FORTRAN 77 User’s Guide

6.3.5 File Sharing

On systems that support multi-tasking or networking, it is possible for for afile to be accessed
simultaneously by more that one process. There are two specifiersin the OPEN statement
that can be used to control the way in which files are shared between processes.

The ACTION= specifier indicates the way in which thefileisinitially accessed. That is, the
way in which the first process to open the file accesses the file. The values allowed for the
ACTION= specifier are the following.

"READ’ thefileis opened for read-only access

"WRITE’ thefileis opened for write-only access

"READWRITE’ thefileis opened for both read and write access

The SHARE= specifier can be used to indicate the manner in which subsequent processes are
allowed to access the file while the file is open. The values allowed for the SHARE=
specifier are the following.

"COMPAT’ no other process may open thefile

"DENYRW' other processes are denied read and write access

"DENYWR' other process are denied write access (allowed read-only access)

"DENYRD’ other process are denied read access (allowed write-only access)

"DENYNONE’ other processes are allowed read and write access

Let us consider the following scenario. Suppose you want several processes to read afile and
prevent any process that is reading the file from changing its contents. We first must establish
the method of access for the first process that opens the file. In this case, we want read-only
access so the ACTI ON=" READ' specifier must be used. Next, we must establish the method
of access for subsequent processes. In our example, we do not want any process to make

changesto thefile. Therefore, we use the SHARE=" DENYWR' specifier. Thefile would be
opened using the following OPEN statement.

OPEN(UNI T=1, FILE="TEST. DAT', ACTI ON=" READ' , SHARE="DENYWR , ...)

58 Attributes of Files

Open Watcom FORTRAN 77 File Handling

6.4 File Names in the FAT File System

The FAT file system is supported by DOS and 0S/2. OS/2 aso supports the High
Performance File System (HPFS) which will be discussed in alater section. File naming
conventions are used to form file designations in a given file system. The file designation for
aFAT file system has the following form.

[d:][path]filename[.ext]

path

filename

ext

The square brackets denote items which are optional .
isthedrive name. If omitted, the default drive is assumed.
Examples of drive namesare: a:,b:,c:,andd: .

iscalled a"path" specification. The path may be used to refer to filesthat are
stored in sub-directories of the disk. The complete file specification (including
drive, path and file name) cannot exceed 143 characters.

Some examples of path specifications are:

\ pl ot\
\ bench\t ool s\
\fortran\ pgns\

Y our operating system manuals can tell you more about directories: how to
create them, how to store files in them, how to specify a path, etc.

isthemain part of thefile's name. The filename can contain up to 8 characters.
If more than 8 characters are used, only the first 8 are meaningful. For example,
"COUNTRIES' and "COUNTRIE" are treated as the same name for afile.

isan optional extension consisting of 1 to 3 characters (e.g., DOC). If an
extension is specified, it is separated from the filename by aperiod. Extensions
are normally used to indicate the type of information stored in the file. For
example, afile extension of f or isacommon convention for FORTRAN
programs.

File Names in the FAT File System 59

Open Watcom FORTRAN 77 User’s Guide

Note: Thefile specification is case insensitive in that upper and lower case |etters can be
used interchangeably.

6.4.1 Special DOS Device Names

Certain file names are reserved for devices. These special device names are:

CON the console (or termnal)

AUX the serial port

COML anot her nanme for the serial port
COW2 a second serial port

PRN the parallel printer

LPT1 another nanme for the printer
LPT2 a second parallel printer

LPT3 a third parallel printer

NUL nonexi stent device

When using one of these specia device names, no other part of the file designation should be
specified. A common mistake isto attempt to create a disk file such as PRN. DAT and attempt
to writerecordsto it. If you do not have aparallel printer attached to your PC, there may be a
long delay before the output operation times out.

6.4.2 Examples of FAT File Specifications
The following are some examples of valid file specifications.

1. Thefollowing file designation refersto afile in the current directory of the default
disk.

OPEN(UNI T=1, FILE="DATA FIL, ...)

2. Thefollowing file designation refersto a print file in the current directory of drive
c: . ASA carriage control characters will be converted to the appropriate ASCI|
control codes.

OPEN(UNIT=2, FILE="C:report.|lst’,
CARRI AGECONTROL=" YES', ...)

3. Thefile specification below indicates that the file is to have fixed format records of
length 80.

60 File Names in the FAT File System

Open Watcom FORTRAN 77 File Handling

OPEN(UNIT=3, FILE="final.tst",
RECL=80, RECORDTYPE='FIXED', ...)

4. Thefile specification below indicates that the fileis to have variable format records
of maximum length 145.

OPEN(UNIT=4, FILE="termrpt’,
RECL=145, RECORDTYPE=' VARI ABLE', ...)

5. Thefile designation below indicates that the file residesin the r ecor ds directory
of driveb: .

OPEN(UNIT=5, FILE="b:\records\custoners.dat’, ...)

Note that the trailing "S" in the file name will be ignored. Thus the following
designation is equivalent.

OPEN(UNIT=5, FILE="b:\records\custoner.dat’, ...)

6. Thefile designation below refersto the second seria port.

OPEN(UNIT=6, FILE= conm2', ...)

7. Thefile designation below refersto a second parallel printer.

OPEN(UNIT=7, FILE=' I pt2, ...)

6.5 File Names in the High Performance File System

0S/2, in addition to supporting the FAT file system, also supports the High Performance File
System (HPFS). Therulesfor forming file namesin the High Performance File System are
different from those used to form file namesin the FAT file system. In HPFS, file names and
directory names can be up to 254 charactersin length. However, the complete path (including
drive, directories and file name) cannot exceed 259 characters. The period isavalid file name
character and can appear in afile name or directory name as many times as required; HPFS
file names do not require file extensions asin the FAT file system. However, many
applications still use the period to denote file extensions.

The HPFS preserves case in file names only in directory listings but ignores casein file

searches and other system operations. For example, adirectory cannot have more than one
file whose names differ only in case.

File Names in the High Performance File System 61

Open Watcom FORTRAN 77 User’s Guide

6.5.1 Special 0S/2 Device Names

The OS/2 operating system has reserved certain file names for character devices. These
special device names are:

CLOCK$ C ock

cow First serial port

cowe Second serial port

covB Third serial port

cova Fourth serial port

CON Consol e keyboard and screen

KBD$ Keyboar d

LPT1 First parallel printer

LPT2 Second parallel printer

LPT3 Third parallel printer

MOUSE$ Mouse

NUL Nonexi stent (dummy) device

PO NTERS$ Poi nter draw device (nouse screen support)
PRN The default printer, usually LPT1
SCREENS$ Screen

When using one of these special device names, no other part of the file designation should be
specified.

6.5.2 Examples of HPFS File Specifications
The following are some examples of valid file specifications.

1. Thefollowing file designation refersto afile in the current directory of the default
disk.

OPEN(UNI T=1, FILE="DATA FIL, ...)

2. Thefollowing file designation refersto a print filein the current directory of drive
c: . ASA carriage control characters will be converted to the appropriate ASCI|
control codes.

OPEN(UNIT=2, FILE="cC:report.|lst’,
CARRI AGECONTROL=" YES', ...)

3. Thefile specification below indicates that the file is to have fixed format records of
length 80.

OPEN(UNIT=3, FILE=final.tst’,
RECL=80, RECORDTYPE='FIXED', ...)

62 File Names in the High Performance File System

Open Watcom FORTRAN 77 File Handling

4. Thefile specification below indicates that the fileis to have variable format records
of maximum length 145.

OPEN(UNIT=4, FILE="termrpt’,
RECL=145, RECORDTYPE=' VARI ABLE', ...)

5. Thefile designation below indicates that the file residesin the r ecor ds directory
of driveb: .

OPEN(UNIT=5, FILE="b:\records\custoners.dat’, ...)

Note that thetrailing "S" in the file name is not ignored asisthe casein aFAT file
system.

6. Thefile designation below refers to the second serial port.

OPEN(UNIT=6, FILE= con®', ...)

7. Thefile designation below refers to a second parallel printer.

OPEN(UNIT=7, FILE=' I pt2, ...)

6.6 Establishing Connections Between Units and Files

Using Open Watcom F77, FORTRAN unit numbers may range from 0 to 999. Input/output
statements such as READ and WRITE refer to files by aunit number. All input/output
statements except OPEN, CLOSE, and INQUIRE must refer to a unit that is connected to a
file. The Open Watcom F77 run-time system automatically establishes the connection of a
unit to afile if no connection previously existed. Any connection between a unit and afile
that is established before execution beginsis called a preconnection.

The Open Watcom F77 run-time system defines a preconnection of the unit designated by "*"
to the standard input and output devices (by this we generally mean the keyboard and screen
of the personal computer but input/output can be redirected from/to afile using the standard
input/output redirectors <" and ">" on the command line). This preconnection cannot be
altered in any way. Unit "*" isexplicitly or implicitly referred to by the following input

statements:
READ, ...
READ *, ..
READ format spec,
READ(*, .. .)

READ(UNI T=*, . . .)

Establishing Connections Between Units and Files 63

Open Watcom FORTRAN 77 User’s Guide

Unit "*" isexplicitly or implicitly referred to by the following output statements:

PRI NT,

PRI NT *,

PRI NT for mat - spec,
WRI TE(*, ...)

WRI TE(UNI T=*, . . .)

The Open Watcom F77 run-time system also defines a preconnection of unit 5 to the standard
input device (by this we generally mean the keyboard of the personal computer but input can
be redirected from afile using the standard input redirector "<" on the command line).

The Open Watcom F77 run-time system also defines a preconnection of unit 6 to the standard
output device (by this we generally mean the screen of the personal computer but output can
be redirected to afile using the standard output redirector ">" on the command line).

For al other allowable units, a default preconnection between unit number "nnn" and the file
FORNNn is assumed when no connection between a unit and afile has been established. nnn
isathree-digit FORTRAN unit number. Unit 0is"000", unit 1is"001", unit 2is"002", and
soon. Thereisno file extension in this case. In other words, a default file nameis
constructed for any unit number for which no other connection has been established.
Input/output statements of the following forms refer to these units.

CLCSE(nnn, ...) OPEN(nnn, .. .)
CLOSE(UNI T=nnn, . . .) OPEN(UNI T=nnn, . . .)
BACKSPACE nnn READ(nnn, . . .)
BACKSPACE(nnn) READ(UNI T=nnn, .. .)
BACKSPACE(UNI T=nnn) REW ND nnn

ENDFI LE nnn REW ND(nnn)

ENDFI LE(nnn) REW ND(UNI T=nnn)
ENDFI LE(UNI T=nnn) WRI TE(nnn, ...) ...

I NQUI RE(nnn, . ..) WRI TE(UNI T=nnn, . . .)

| NQUI RE(UNI T=nnn, . . .)

Of course, it is unlikely that one would be satisfied with using such undistinguished file names
suchasf or 000, f or 001, and so on. Therefore, the Open Watcom F77 run-time system
provides additional ways of establishing a preconnection between a FORTRAN UNIT and a
file

The Open Watcom F77 run-time system supports the use of the "SET" command to establish a
connection between aunit and afile. The"SET" command is used to create, modify and

remove "Environment Variables'. The"SET" command must be issued before running a
program. The format for a preconnection using the "SET" command is:

SET unit=file spec

64 Establishing Connections Between Units and Files

Open Watcom FORTRAN 77 File Handling

where description:

unit isa FORTRAN unit number in the range 0 to 999.
If thisform of the "SET" command is used then FORTRAN unit number unit is
preconnected to the specified file. FORTRAN input/output statements which
refer to the unit number will access the records in the specified file.

file_spec isthe file specification of the preconnected file.

Here are some sample "SET" commands.

Example:
C>set 1=i nput. dat
C>set 2=out put . dat
C>set 3=d:\dat abase\custoner.fil

The above example establishes the following preconnections:

1. Betweenunit 1 andthefilei nput . dat which resides (or will reside) in the
current directory.

2. Between unit 2 and the file out put . dat which resides (or will reside) in the
current directory.

3. Betweenunit 3andthefile d: \ dat abase\ cust oner. fi | which resides (or
will reside) in another disk and directory.

Any FORTRAN input/output statements which refer to units 1, 2 or 3 will act upon one of
these 3 datafiles.

Notes:
1. The"SET" command must be issued before running the program.

2. No spaces should be placed before or after the "=" in the "SET" command. The
following two examples are quite distinct from each other:

Establishing Connections Between Units and Files 65

Open Watcom FORTRAN 77 User’s Guide

Example:
C>set 55=t est bed. dat
C>set 55 = testbed. dat

To verify this, simply enter the two commands and then enter the "SET" command
again with no arguments. The current environment strings will be displayed. Y ou
should find two entries, one for "55" and one for "55".

3. Sincethe number in front of the "=" is simply a character string, you should not
specify any leading zeroes either.

Example:
C>set 01=i nput . dat
C>set 1=i nput. dat

In this case, we again have two distinct environment variables. The variable "01"
will beignored by the Open Watcom F77 run-time system.

4. Anenvironment variable will remain in effect until you explicitly removeit or you
turn off the personal computer. To discontinue the preconnection between a unit
number and afile, you must issue a"SET" command of the following form.

C>set <uni t>=

In the above command, <uni t > isthe unit number for which the preconnection is
to be discontinued.

By omitting the character string after the "=", the environment variable will be
removed. For example, to remove the environment variable "01" from the li<t,
reenter the "SET" command specifying everything up to and including the "="
character.

Example:
C>set 01=

5. Any time you wish to see the current list of environment strings, ssmply enter the
"SET" command with ho arguments.

66 Establishing Connections Between Units and Files

Open Watcom FORTRAN 77 File Handling

Example:
Csset
PROMPT=5d S$t S$p$_S$nsSg
COVBPEC=d: \ dos\ conmand. com
PATH=G \; E:\ CMDS; C: \WATCOM BI N; D: \ DCS; D: \ BI N
LI B=c:\wat com | i b286\ dos
1=i nput . dat
2=out put . dat
3=d: \ dat abase\ custoner. fil

An aternative to preconnecting filesis provided by the FORTRAN OPEN
statement which allows files to be connected at execution time.

The preconnection of units 5 and 6 may be overridden using preconnection
specifications or the FORTRAN OPEN statement. The precedence of a connection
between a unit number and afileisasfollows:

Precedence: User option:

L owest Preconnection Specifications

Highest OPEN statement

In other words, the OPEN statement overrides a preconnection.

6.7 A Preconnection Tutorial

In this section, we will ook at some examples of how to establish the link between afile and a
FORTRAN unit.

Exhibit 1:

Consider the following example which reads pairs of numbers from afile and writes out the
numbers and their sum.

* File "iodeno.for’

10

20
99

READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2
GO TO 10

FORMAT(3F6.2)

END

A Preconnection Tutorial 67

Open Watcom FORTRAN 77 User’s Guide

The FORTRAN READ statement will read records from afile connected to unit 1. The
FORTRAN WRITE statement will write records to a file connected to unit 6. Aswe
described in the previous section, unit 6 is preconnected by the Open Watcom F77 run-time
system to the screen.

What file will be read when the READ statement refers to unit 1? By default, we know that it
will read afile called f or 001. However, suppose the data was actually stored in thefile
caled nunber s. dat . We can direct the program to read the datain thisfile by using a
"SET" command before running the program.

Example:
C>set 1=nunbers. dat
C>i odeno
1.40 2.50 3.90
3.90 8.70 12.60
1.10 9.90 11.00
8.30 7.10 15.40
8.20 3.50 11.70
Exhibit 2:

Suppose that we now wish to write the output from the above program to adisk file instead of
the screen. We can do this without modifying the program. Since we know that the WRITE
statement refers to unit 6, we can alter the default preconnection of unit 6 to the screen by
issuing another "SET" command.

Example:

C>set 6=nunbers. r pt

C>i odeno

Cstype nunbers. rpt
1.40 2.50 3.90
3.90 8.70 12.60
1.10 9.90 11.00
8.30 7.10 15.40
8.20 3.50 11.70

Now any time a program writes or prints to unit 6, the output will be written to the disk file
nunbers. r pt . If you are going to run other programs, it would be wise to remove the
connection between unit 6 and this file so that it is not accidentally overwritten. This can be
done by issuing the following command.

68 A Preconnection Tutorial

Open Watcom FORTRAN 77 File Handling

Example:
Cset 6=

Y ou should also do the same for unit 1.
Exhibit 3:

Must we always use "SET" commands to establish the connection between a unit and afile?
Suppose that you want to run the program quite often and that you do not want to issue "SET"
commands every time. We can do this by modifying the program to include FORTRAN
OPEN statements.

* File "iodeno.for’
OPEN(1, FILE=" NUMBERS. DAT')
OPEN(6, FILE="NUVBERS. RPT')
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

Thisis an example of a connection that is established at execution time. The connection that
is established by the OPEN statement overrides any preconnection that we might have
established using a"SET" command. We say that the OPEN statement has a higher
precedence. However, even the OPEN statement does not have the final word on which files
will be accessed. Y ou may wish to read the next section on the Open Watcom F77 run-time
system logical file name support to find out why thisis so.

6.8 Logical File Name Support

The Open Watcom F77 run-time system supports logical or symbolic file names using the
"SET" command. The"SET" command may be used to define alogical file name and its
corresponding actual file name. The format for defining alogical file nameis asfollows:

SET name=file spec
where description:
name isany character string. The lettersin "name" may be specified in upper or lower
case. Lower case letters are treated as if they had been specified in upper case.

Thus"SYSINPUT" and "sysinput” are equivalent. Note, however, that blank
characters must not be specified before and after the "=" character.

Logical File Name Support 69

Open Watcom FORTRAN 77 User’s Guide

file_spec

isthe file specification of logical file.

Notes and Examples:

1

A logicadl file name may be used in the FI LE= specifier of the FORTRAN OPEN
and INQUI RE statements.

Example:
* File 'iodeno.for’
OPEN(1, FILE=" SYSINPUT')
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

In the following example, we define the logical file name"SY SINPUT" to
correspond to the file nunber s. dat .

Example:
C>set sysi nput =nunber s. dat
C>i odeno
1.40 2.50 3.90
3.90 8.70 12.60
1.10 9.90 11.00
8.30 7.10 15.40
8.20 3.50 11.70

If the namein a FILE= specifier is not included in one of the environment variable
names then it is assumed to be the actual name of afile.

Example:
OPEN(2, FILE= sysouT')

Thelogical file name feature can also be used to provide additional information
regarding the file name at execution time.

70 Logical File Name Support

Open Watcom FORTRAN 77 File Handling

Example:
* File "iodeno.for’
OPEN(1, FILE=" nunbers.dat’)
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

In the following example, the actual location (and name) of the file
nunber s. dat isdescribed through the use of an environment variable.

Example:
C>set nunbers. dat =b: \ dat a\i nput . dat
C>i odeno

Asyou can see, alogical file name can resemble an actual file name.

Of course, the entire file name could have been specified in the FORTRAN
program.

Example:
OPEN(1, FILE='b:\data\input.dat’)

Only one level of lookup is performed.

Example:
* File 'iodeno.for’
OPEN(1, FILE= sysinput’)
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

Thisisillustrated by the following commands.

Logical File Name Support

71

Open Watcom FORTRAN 77 User’s Guide

Example:
C>set sysinput=datafile
C>set datafil e=i nput. dat
C>i odenp

In the above example, unit 1 is connected to the file dat af i | e and not the file
i nput . dat .

5. Logical file names can be used to direct output normally intended for one deviceto
another device. Consider the following examples.

Example:
Csset | ptil=lpt2

If the FORTRAN program specifies the name "LPT1" in an OPEN or INQUIRE
statement, the Open Watcom F77 run-time system will map thisname to "LPT2".
In an INQUIRE statement, the NAME= specifier will return the name"LPT2".

6. Aswementioned earlier, the case of the name does not matter. Upper or lower
case can be used interchangeably.

Example:
C>set sysi nput =b: \ dat a\i nput . dat
C>set SYSI NPUT=Db: \ dat a\i nput . dat

7. No spaces should be placed before or after the"=" inthe"SET" command. The
following two examples are considered quite distinct from each other:

Example:
C>set sysi nput =t est bed. dat
C>set sysinput = testbed. dat

This example will define two variables, "SY SINPUT" and "SY SINPUT ".

8. Anenvironment variable will remain in effect until you explicitly removeit or you
turn off the personal computer. To remove an environment variable from thelist,
reenter the "SET" command specifying everything up to and including the "="
character. For example, to remove the definition for "SY SINPUT", the following
command can be issued.

72 Logical File Name Support

Open Watcom FORTRAN 77 File Handling

Example:
C>set sysinput =

9. Any time you wish to see the current list of environment strings, smply enter the
"SET" command with ho arguments.

Example:
Csset
PROMPT=Sd St S$pS_$nSg
COMSPEC=d: \ dos\ command. com
PATH=G \ ; E: \ CMDS; C: \ WATCOM BI N; D: \ DCS; D: \ BI N
LI B=c: \wat com | i b286\ dos
1=i nput . dat
2=out put . dat
3=d: \ dat abase\ custoner.fil
SYSI NPUT=b: \ dat a\ i nput . dat
LPT1=l pt 2

6.9 Terminal or Console Device Support

Input can come from the console or output can be written to the console by using the console
device name con asthefile name. The console can be specified ina"SET" command or
through the FILE= specifier of the FORTRAN OPEN statement.

The default action for any fileis to open the file for both read and write access (i.e.,
ACTION="READWRITE’). Under Win32, thereis a problem accessing the console device
con for both read and write access. This problem is overcome by using the ACTION=
specifier inthe OPEN statement. The ACTION= specifier indicates the way in which thefile
isinitially accessed. The values allowed for the ACTION= specifier are the following.
"READ’ thefile is opened for read-only access

"WRITE’ thefileis opened for write-only access

"READWRITE’ thefile is opened for both read and write access

To open the console device under Win32, you must specify whether you are going to "READ"

or "WRITE" to thefile. If you wish to do both reading and writing, then you must use two
Separate units.

Terminal or Console Device Support 73

Open Watcom FORTRAN 77 User’s Guide

Example:
OPEN(UNIT=1, FILE="CON , ACTI ON=" READ)
OPEN(UNI T=2, FILE="CON , ACTION="WRITE')

The console can be treated as a carriage control device. Thisis requested by using the
CARRI AGECONTROL=" YES' specifier of the FORTRAN OPEN statement.

Example:
OPEN(UNI T=1, FILE="con’, CARRI AGECONTROL='YES')

Carriage control handling is described in the section entitled "Print File Attributes’ on page
56.

The console is not capable of supporting carriage control in afashion identical to a printer.
For example, overprinting of records on the console is destructive in that the previous
characters are erased.

End of fileissignalled by first pressing the Ctrl/Z key combination and then the line entering
key. End of file may be handled by using the END= specification of the FORTRAN READ
statement.

Example:
READ(UNI T=*, FMr=*, END=100) X, Y

100 . code to handle "End of File"

End of file may also be handled by using the |OSTAT= specifier of the FORTRAN READ
statement.

Example:
READ(UNI T=*, FMr=*, |ICOSTAT=I0CS) X, Y
IF(10S .NE. 0) THEN
code to handle "End of File"
ENDI F

74 Terminal or Console Device Support

Open Watcom FORTRAN 77 File Handling

6.10 Printer Device Support

Output can be written to a printer by using a printer device name asthe file name. A printer
can be specified ina"SET" command or through the FILE= specifier of the FORTRAN
OPEN statement. Several device names may be used:

prn or |ptl
| pt2
| pt3

The printer can be treated as a carriage control device. Thisisregquested by using the
CARRI AGECONTROL=" YES' specifier of the FORTRAN OPEN statement.

Example:
OPEN(UNI T=1, FILE="prn’, CARRI AGECONTROL='YES')

Carriage control handling is described in the section entitled "Print File Attributes’ on page
56.

6.11 Serial Device Support

Output can be written to a serial port by using a seria device name asthefile name. A serial
device can be specified in a"SET" command or through the FILE= specifier of the
FORTRAN OPEN statement. Three device names may be used:

aux or coml
conm

The serial device can be treated as a carriage control device. Thisis requested by using the
CARRI AGECONTROL=" YES' specifier of the FORTRAN OPEN statement.

Example:
OPEN(UNI T=1, FILE="contl’, CARRI AGECONTROL='YES)

Carriage control handling is described in the section entitled "Print File Attributes" on page
56.

To set serial characteristics such as speed, parity, and word length, the "MODE" command
may be used.

Serial Device Support 75

Open Watcom FORTRAN 77 User’s Guide

Example:
C>node comtl: 9600, n, 8, 1

The above example sets serial port 1 to a speed of 9600 BAUD with no parity, aword length
of 8 and 1 stop bit.

6.12 File Handling Defaults

The following defaults apply to file specifications:

* The following table indicates the default record type for the allowabl e access methods

and forms.

File Form

Access Formatt ed Unf or mat t ed
S S +

Sequenti al | Text | Variable |
Fom e Fom e +

Direct | Text | Fixed |
R R +

Unless the record type of the file does not correspond to the default assumed by Open
Watcom F77, the record type attribute should not be specified.

* Unless otherwise stated, the default record length for afile is 1024 characters. When
accessis"direct", the record length must be specified in the RECL = specifier of the
FORTRAN OPEN statement. The record length may also be specified when the access
is"sequential". This should be done whenever accessis "sequential” and the maximum
record length is greater than the default.

» The default record accessis "sequential”.
» When reading from or writing to a unit for which no preconnection has been specified

or no "FILE=" form of the FORTRAN OPEN statement has been executed, the default
file name takes the form:

FORNNNn

nnn isathree-digit FORTRAN unit number. Unit 0is"000", unit 1is"001", unit 2is
"002", and so on. Thereisno file extension in this case.

76 File Handling Defaults

Open Watcom FORTRAN 77 File Handling

« If the connection between a unit number and afile is discontinued through use of the
FORTRAN CLOSE statement, the same rule for constructing a file name will apply on
the next attempt to read from or write to the specified unit.

File Handling Defaults 77

Open Watcom FORTRAN 77 User’s Guide

78 File Handling Defaults

/ The Open Watcom F77 Subprogram Library

Open Watcom FORTRAN 77 includes additional FORTRAN subprograms which can be
called from programs compiled by Open Watcom F77. The following sections describe these
subprograms.

7.1 Subroutine FEXIT

The subroutine FEXI T allows an application to terminate execution with areturn code. 1t
requires one argument of type INTEGER that represents the value to be returned to the

system.

Example:
| NCLUDE ' FSUBLI B. FI’
CALL FEXIT(-1)
END

Notes:

1. TheFORTRAN includefile f subl i b. fi ,located in the
\'wat com sr c\ fortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file.

7.2 INTEGER Function FGETCMD

The INTEGER function FGETCVD allows an application to obtain the command line from
within an executing program.

The function FGETCNMD requires one argument of type CHARACTER and returns the length
of the command line.

INTEGER Function FGETCMD 79

Open Watcom FORTRAN 77 User’s Guide

Example:
I NCLUDE ' FSUBLI B. FI’
| NTEGER CVDLEN
CHARACTER* 128 CMDLI N
CMDLEN = FGETCVMD(CMDLIN)
PRINT *, 'Command | ength ="', CMDLEN
PRI NT *, ' Conmand |ine ="', CMDLIN
END
Notes:

1. TheFORTRAN includefile f subl i b. fi,located inthe
\'wat com src\ fortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file.

2. If theargument to FGETCVD is not long enough then only the first part of the
command lineis returned.

7.3 INTEGER Function FGETENV

The INTEGER function FGETENV allows an application to obtain the value of an
environment string from within an executing program.

The function FGETENV requires two arguments of type CHARACTER. Thefirst argument is
the character string to look for. FGETENV places the associated environment string value in
the second argument and returns the length of the environment string. If no such string is
defined, the length returned is zero.

Example:
| NCLUDE ' FSUBLI B. FI’
| NTEGER STRLEN
CHARACTER* 80 STRVAL

STRLEN = FGETENV(' PATH , STRVAL)

PRI NT *, ’Environnment string length =, STRLEN
PRINT *, 'Environment string value ="', STRVAL
END

80 INTEGER Function FGETENV

The Open Watcom F77 Subprogram Library

Notes:

The FORTRAN includefile f subl i b. fi , located in the

\'wat com src\ fortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file

If the second argument to FGETENV is not long enough then only the first part of
the value is returned.

7.4 INTEGER Function FILESIZE

The INTEGER function FI LESI ZE allows an application to determine the size of afile
connected to a specified unit.

The function FI LESI ZE requires one argument of type INTEGER, the unit number and
returns the size, in bytes, of thefile. If no fileis connected to the specified unit, avalue of -1
isreturned.

Example:

Notes:

I NCLUDE ' FSUBLI B. FI’

OPEN(UNI T=1, FILE= sanple.fil’)
PRINT *, FILESIZE(1)
END

The FORTRAN includefile f subl i b. fi , located in the

\wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file.

INTEGER Function FILESIZE 81

Open Watcom FORTRAN 77 User’s Guide

7.5 Subroutine FINTR

The subroutine FI NTR allows the user to execute any software interrupt from a FORTRAN
77 program.

Note: This subroutineis only supported by the DOS and Windows libraries.

The subroutine FI NTR requires two arguments.

1. Thefirst argument is an interrupt number. The subroutine FI NTRwill generate the

software interrupt given by the first argument. The type of this argument must be
| NTEGER

2. Thesecond argument isan | NTEGER array of ten elements.

When FI NTRis called, the array contains the values to be assigned to the registers prior to
issuing the software interrupt. When control isreturned from FI NTR, it contains the values
of the registers after the software interrupt has completed. The registers are mapped onto the
array REGS asfollows.

31 0
REGS(1) EAX
REGS(2) EBX
REGS(3) ECX
REGS(4) EDX
REGS(5) EBP
REGS(6) ESI
REGS(7) EDI
REGS(8) FS | DS
REGS(9) GS | ES
REGS(10) ef | ags

For 16-hit systems (e.g., 8088, 8086, 186, 286), only the low-order 16 bits of each register
contain meaningful results.

82 Subroutine FINTR

The Open Watcom F77 Subprogram Library

31 0

REGS(1) AX
REGS(2) BX
REGS(3) CX
REGS(4) DX
REGS(5) BP
REGS(6) S|

REGS(7) DI

REGS(8) DS
REGS(9) ES
REGS(10) flags

Thefiledos. fi , located inthe \ WATCOM sr c\ f or t r an\ dos directory, defines a set of
equivalences for ease of use. The contents of thisfile are reproduced below.

* Define registers: These correspond to the el enent of an
* array which is to contain the values of the registers.

i nteger*4 regd(10),
integer*2 regw 2*10)
integer*1 regh(4*4)

regs(10)

i nt eger *4 EAX, EBX, ECX, EDX, EBP, EDI , ESI , EFLAGS

i nteger*2 AX, BX, CX, DX, BP, DI, SI, DS, ES, FS, GS, FLAGS
integer*1 AH, AL, BH, BL, CH, CL, DH, DL

equi val ence (regd, regs), (regd, regw), (regd, regb),

1(EAX regd(1)),
2(EBP, regd(5)),

3(AX, regw(1)),
4(BP, regw(9)),

5(FS, regw 16)),

6(AL, regb(1)),
7(CL, regh(9)),

(EBX, regd(2)),
(EDI, regd(6)),

(BX, regw(3)),

(DI, regwm(11)),
(ES, regw(17)),

(AH regh(2)),

(CH, regh(10)),

(ECX, regd(3)),
(ESI,regd(7)),

(CX, regw(5)),

(Sl,regw(13)),
(GS, regw(18)),

(BL, regh(5)),

(DL, regh(13)),

(EDX, regd(4)),

(EFLAGS, r egd(10)),
(DX, regw(7)),

(DS, regw(15)),
(FLAGS, regw 19)),
(BH, regh(6)),

(DH, regbh(14))

Thefollowing is extracted from the "CALENDAR" program. It demonstrates the use of the
FI NTR subroutine.

Subroutine FINTR 83

Open Watcom FORTRAN 77 User’s Guide

subroutine Cl earScreen()
*$noext ensi ons

inplicit none

i ncl ude 'dos.fi
* Define BICS functions

integer VIDEO_CALL, SCROLL_UP
parameter (VIDEO_CALL=16, SCROLL_UP=6)

DS=ES=FS=GS=0

AH = SCROLL_UP ! scroll up

AL = 0 I blank entire w ndow

CX =0 ! set row, col um of upper left
DX = 24*256 + 80 ! set row, col um of |ower right
BH =7 I attribute "white on bl ack"
call fintr(VIDEO_CALL, regs)

end

7.6 INTEGER Function FLUSHUNIT

84

The INTEGER function FLUSHUNI T flushes the internal input/output buffer for a specified
unit. Each file, except special devices such as con, has an internal buffer. Buffered
input/output is much more efficient since it reduces the number of system calls which are
usually quite expensive. For example, many WRI TE operations may be required before
filling the internal file buffer and datais physically transferred to thefile.

Thisfunction is particularly useful for applications that call non-FORTRAN subroutines or
functions that wish to perform input/output to a FORTRAN file.

The function FLUSHUNI T requires one argument, the unit number, of type INTEGER. It
returns an INTEGER value representing the return code of the input/output operation. A
return value of 0 indicates success; otherwise an error occurred.

The following example will flush the contents of the internal input/output buffer for unit 7.

Example:
| NCLUDE ' FSUBLI B. FI'’
| NTEGER | STAT

| STAT = FLUSHUNIT(7)
I F(1 STAT .NE. 0) THEN

PRINT *, Error in FLUSHUNI T’
END | F

END

INTEGER Function FLUSHUNIT

The Open Watcom F77 Subprogram Library

Notes:
1. TheFORTRAN includefile f subl i b. f i, located in the
\'wat com src\ fortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in

the FINCL UDE environment variable so that the compiler can locate the include
file

7.7 INTEGER Function FNEXTRECL

The INTEGER function FNEXTRECL reports the record length of the next unformatted record
to be read sequentialy from the specified unit.

The function FNEXTRECL requires one argument, the unit number, of type INTEGER. It
returns an INTEGER value representing the size of the next record to be read.

The following example creates an unformatted file and then reads the recordsin the file
sequentialy.

Example:

INTEGER Function FNEXTRECL 85

Open Watcom FORTRAN 77 User’s Guide

| NCLUDE ' FSUBLI B. FI’
CHARACTER* 80 | NPUT

OPEN(UNI T=2, FI LE=" UNFORM TXT', FORMF' UNFORVATTED ,

& ACCESS=" SEQUENTI AL")

VWRI TE(UNI T=2) ’ A sonewhat |ongish first record’

VWRI TE(UNIT=2) ’ A short second record’

VWRITE(UNIT=2) *A very, very nuch longer third
record’

CLOSE(UNIT=2)

OPEN(UNI T=2, FI LE= UNFORM TXT’, FORME' UNFORMATTED |
& ACCESS=' SEQUENTI AL’)

| = FNEXTRECL(2)

PRINT *, '"Record length=", |
READ(UNI T=2) INPUT(1:1)
PRINT *, I NPUT(1:1)

| = FNEXTRECL(2)

PRINT *, 'Record length=, |
READ(UNIT=2) INPUT(1:1)
PRINT *, | NPUT(1:1)

| = FNEXTRECL(2)

PRINT *, 'Record length=", |
READ(UNI T=2) INPUT(1:1)
PRINT *, I NPUT(1:1)

CLOSE(UNIT=2)

END

Notes:

1. TheFORTRAN includefile f subl i b. f i, located in the
\'wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file

86 INTEGER Function FNEXTRECL

The Open Watcom F77 Subprogram Library

7.8 INTEGER Function FSIGNAL

The INTEGER function FSI GNAL allows your application to respond to certain events that
occur during execution.

Event Meaning
SIGBREAK an interactive attention (Ctrl/Break on keyboard) is signalled
SIGFPE an erroneous floating-point operation occurs (such as division by zero,

overflow and underflow)

SIGILL illegal instruction encountered

SIGINT an interactive attention (Ctrl/C on keyboard) is signalled
SIGSEGV an illegal memory reference is detected

SIGTERM atermination request is sent to the program

SIGIDIVZ integer division by zero

SIGIOVFL integer overflow

The function FSI GNAL requires two arguments. The first argument isan INTEGER
argument and must be one of the events described above. The second argument, called the
handler, is one of the following.

1. asubprogram that is called when the event occurs
2. thevalue SIG_DFL, causing the default action to be taken when the event occurs
3. thevalue SIG_IGN, causing the event to be ignored

FSI GNAL returns SIG_ERR if the request could not be processed, or the previous event
handler.

INTEGER Function FSIGNAL 87

Open Watcom FORTRAN 77 User’s Guide

Example:
| NCLUDE ’ FSI GNAL. FI’

EXTERNAL BREAK_ HANDLER

LOGICAL BREAK FLAG

COMMON BREAK_FLAG

BREAK _FLAG = .FALSE.

CALL FSIGNAL(SIGBREAK, BREAK HANDLER
WHILE(.NOT. VOLATILE(BREAK FLAG))
PRINT *, " Program Interrupted

END

SUBROUTINE BREAK_HANDLER()
LOGICAL BREAK_FLAG

COMMON BREAK_FLAG
BREAK_FLAG = .TRUE.

END

Notes:

1. TheFORTRAN includefile f si gnal . fi containstyping and calling information
for FSI GNAL and should be included when using this function. Thisfileislocated
inthe\ wat com src\ fortran directory. The\wat comi src\fortran
directory should be included in the FINCL UDE environment variable so that the

compiler can locate the include file.

2. Theintrinsic function VOLATI LE is used to indicate that the reference to the
variadble break _flagisvoldtile. A volatile reference prevents the compiler from
caching avariablein aregister. In this case, we want to retrieve the value of

break_flag from memory each timetheloop isiterated.

7.9 INTEGER Function FSPAWN

88

The INTEGER function FSPAWN allows an application to run another program as a
subprocess. When the program completes, execution is returned to the invoking application.
There must be enough available free memory to start the subprocess.

The function FSPAWN requires two arguments of type CHARACTER. Thefirst argumentisa
character string representing the name of the program to be run. The string must end in a
NULL character (i.e., acharacter with the binary value 0).

The second argument is a character string argument list to be passed to the program. Thefirst
character of the second argument must contain, in binary, the length of the remainder of the

INTEGER Function FSPAWN

The Open Watcom F77 Subprogram Library

argument list. For example, if the argument is the string "HELLO" then the first character
would be CHAR(5) and the remaining characters would be "HELLO" (see the example
below).

FSPAWN returns an INTEGER value representing the status of subprocess execution. If the
valueis negative then the program could not be run. If the value is positive then the value
represents the program’ s return code.

Example:
| NCLUDE ' FSUBLI B. FI’
| NTEGER CVDLEN, STATUS
CHARACTER CVD* 128, CMDLI N*128

* COWPEC will tell us where DOS ' COMMAND. COM is hiding
CMDLEN = FGETENV(' COVBPEC , CMD)
CVD(CVDLEN+1: CVMDLEN+1) = CHAR(0)

CMDLIN ="/c dir *.for’
CMVDLI N(13:13) = CHAR(0)

STATUS = FSPAWN(CMD, CMDLIN)
PRINT *, 'Program status = ', STATUS
END

Notes:

1. TheFORTRAN includefile f subl i b. fi, located in the
\'wat coml src\f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file

2. ThelINTEGER function FSYSTEM which is described in alater section,

implements a more genera form of the example given above. We recommend its
use.

7.10 INTEGER Function FSYSTEM

The INTEGER function FSYSTEMallows an application to run another program or execute
an operating system command.

The function FSYSTEMrequires one argument of type CHARACTER. Thisargument
represents a operating system command or a program name together with any arguments.

INTEGER Function FSYSTEM 89

Open Watcom FORTRAN 77 User’s Guide

FSYSTEMreturns an INTEGER value representing the status of subprocess execution. If the
value is negative, the operating system command interpreter or shell could not be run (an
attempt is made to invoke the system command interpreter to run the program). If thevalueis
positive, the value represents the program’ s return code.

In the following example, a"COPY" command is executed and then a hypothetical sorting
program is run.

Example:
I NCLUDE * FSUBLI B. FI '’
| NTEGER STATUS
STATUS = FSYSTEM ' COPY *. FOR \ BACKUP\ FOR\ SRC)
PRINT *, ' Status of COPY conmmand = ', STATUS
STATUS = FSYSTEM ' SORTFI LE/ | N=I NP. DAT/ QUT=QUT. DAT")
PRINT *, ' Status of SORT program ="', STATUS
END
Notes:

1. TheFORTRAN includefile f subl i b. fi ,located in the
\'wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The \ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file.

7.11 Subroutine FTRACEBACK

The subroutine FTRACEBACK allows your application to generate a run-time traceback. The
application must be compiled with the "DEBUG" or "TRACE" option. It is useful when you
wish to disclose a problem in an application and provide an informative report of where the
problem occurred in the application.

The FTRACEBACK subroutine requires no arguments. The FTRACEBACK subroutine does
not terminate program execution.

90 Subroutine FTRACEBACK

The Open Watcom F77 Subprogram Library

Example:
SUBROUTI NE READREC(UN)

| NCLUDE ' FSUBLI B. FI’

| NTEGER UN
| NTEGER RLEN
CHARACTER* 35 | NPUT

RLEN = FNEXTRECL(UN)

| F(RLEN . GT. 35) THEN
PRINT *, "Error: Record too long', RLEN
CALL FTRACEBACK
STOP

ELSE
PRINT *, '"Record length=", RLEN
READ(UNI T=UN) | NPUT(1: RLEN)
PRI NT *, | NPUT(1: RLEN)

ENDI F

END

Notes:
1. TheFORTRAN includefile f subl i b. fi ,located in the
\'wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in

the FINCL UDE environment variable so that the compiler can locate the include
file.

7.12 Subroutine GETDAT

The subroutine GETDAT allows an application to obtain the current date.

The subroutine GETDAT has three arguments of type | NTEGER* 2. When control is
returned from GETDAT, they contain the year, month and day of the current date.

The following program prints the current date in the form "Y'Y-MM-DD".

Subroutine GETDAT 91

Open Watcom FORTRAN 77 User’s Guide

Example:
| NCLUDE ' FSUBLI B. FI’
| NTEGER*2 YEAR, MONTH, DAY
CALL GETDAT(YEAR, MONTH, DAY)
PRI NT 100, YEAR, MONTH, DAY

100 FORMAT(1X, 14, '-', 12.2, "-', 12.2)

END

Notes:

1. TheFORTRAN includefile f subl i b. fi, located in the
\'wat com src\f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include

file.

2. Theargumentsto GETDAT must be of type INTEGER* 2 in order to obtain correct

results.

7.13 Subroutine GETTIM

The subroutine GETTI Mallows an application to obtain the current time.

The subroutine GETTI Mhas four arguments of type | NTEGER* 2. When control is returned
from GETTI M they contain the hours, minutes, seconds, and hundredths of seconds of the

current time.

The following program prints the current time in the form "HH:MM:SS.TT".

Example:
| NCLUDE ' FSUBLI B. FI’
I NTEGER*2 HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)
PRI NT 100, HRS, M NS, SECS, HSECS

100 FORMAT(1X, 12.2, ":', 12.2, ":",

END

Notes:

1. TheFORTRAN includefile f subl i b. fi, located in the
\'wat coml sr c\ f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in

92 Subroutine GETTIM

The Open Watcom F77 Subprogram Library

the FINCL UDE environment variable so that the compiler can locate the include
file.

2. Theargumentsto GETTI Mmust be of type INTEGER* 2 in order to obtain correct
results.

7.14 INTEGER Function GROWHANDLES

The INTEGER function GROAHANDL ES allows an application to increase the maximum
number of files that can be opened. It requires one argument of type INTEGER representing
the maximum number of files that can be opened and returns an INTEGER value representing
the actual limit. The actua limit may differ from the specified limit. For example, memory
constraints or system parameters may be such that the request cannot be satisfied.

The following example attempts to increase the limit on the number of open files to sixty-four.

Example:
| NCLUDE ' FSUBLI B. FI’
INTEGER NEW_LIMIT
NEW_LIMIT = GROWHANDLES(64)
END
Notes:

1. TheFORTRAN includefile f subl i b. fi, located in the
\'wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file

7.15 Functions IARGC and IGETARG

The function | ARGC alows an application to determine the number of arguments (including
the program name) used to invoke the program. The function | GETARG can be used to
retrieve an argument.

Arguments supplied to a program are assigned indices. Argument zero is the program name,

argument oneisthefirst argument, etc. The function | GETARG requires two arguments. The
first argument isthe index of the argument to retrieve and is of type INTEGER. The second

Functions IARGC and IGETARG 93

Open Watcom FORTRAN 77 User’s Guide

argument is of type CHARACTER and is used to return the argument. The size of the

argument (number of characters) is returned.

Example:
| NCLUDE ' FSUBLI B. FI'’
CHARACTER* 128 ARG
| NTEGER ARGC, ARGLEN

ARGC = | ARGC()
ARGLEN = | GETARG 0, ARG)

PRINT *, 'Programnane is ', ARE 1l: ARGLEN)

DOl =1, ARGC - 1
ARGLEN = | GETARE |, ARG)
PRINT ' (A, 12, 2A)’, ' Argument

o, sy

1 ARG(1: ARGLEN)

END DO
END

Notes:

1. TheFORTRAN includefile f subl i b. f i, located in the
\'wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The \ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include

file.

7.16 Math Error Functions

Math error functions are called when an error is detected in a math library function. For
example, if the second argument to the AMOD intrinsic function is zero, a math error function
will be caled. A number of math error functions are defined in the FORTRAN run-time
libraries and perform default actions when an error is detected. These actions typically

produce an error message to the screen.

It is possible to replace the FORTRAN run-time library version of the math error functions

with your own versions. Thefile _matherr. for located inthe

\'wat com src\ fortran directory can be used as atemplate for defining your own math
error functions. The following functions represent the set of math error functions.

1. Thefunction __imath2err iscaled for math functions of type INTEGER that
take two arguments of type INTEGER. The first argument represents the error
information and is an argument of type INTEGER that is passed by value. The
second argument is a pointer to the first argument passed to the math function and

94 Math Error Functions

The Open Watcom F77 Subprogram Library

the third argument is a pointer to the second argument passed to the math function.
The error function returns a value that is then used as the return value for the math
function.

Thefunction __amathlerr iscaled for math functions of type REAL that take
one argument of type REAL. The first argument represents the error information
and is an argument of type INTEGER that is passed by value. The second
argument is a pointer to the argument passed to the math function. The error
function returns avalue that is then used as the return value for the math function.
Thefunction __amath2err iscalled for math functions of type REAL that take
two arguments of type REAL. Thefirst argument represents the error information
and is an argument of type INTEGER that is passed by value. The second
argument is a pointer to the first argument passed to the math function and the third
argument is a pointer to the second argument passed to the math function. The
error function returns avalue that is then used as the return value for the math
function.

Thefunction __mathlerr iscalled for math functions of type DOUBLE
PRECISION that take one argument of type DOUBLE PRECISION. The first
argument represents the error information and is an argument of type INTEGER
that is passed by value. The second argument is a pointer to the argument passed to
the math function. The error function returns a value that is then used as the return
value for the math function.

Thefunction - _math2err iscalled for math functions of type DOUBLE
PRECISION that take two arguments of type DOUBLE PRECISION. Thefirst
argument represents the error information and is an argument of type INTEGER
that is passed by value. The second argument is a pointer to the first argument
passed to the math function and the third argument is a pointer to the second
argument passed to the math function. The error function returns avalue that is
then used as the return value for the math function.

Thefunction __zmath2err iscaled for math functions of type COMPLEX that
take two arguments of type COMPLEX. The first argument represents the error
information and is an argument of type INTEGER that is passed by value. The
second argument is a pointer to the first argument passed to the math function and
the third argument is a pointer to the second argument passed to the math function.
The error function returns a value that is then used as the return value for the math
function.

Thefunction __gmath2err iscaled for math functions of type DOUBLE
COMPLEX that take two arguments of type DOUBLE COMPLEX. Thefirst
argument represents the error information and is an argument of type INTEGER
that is passed by value. The second argument is a pointer to the first argument
passed to the math function and the third argument is a pointer to the second
argument passed to the math function. The error function returns avalue that is
then used as the return value for the math function.

Math Error Functions 95

Open Watcom FORTRAN 77 User’s Guide

Theincludefile mat hcode. fi isincluded by thefile _matherr.for andislocated inthe
\'wat com src\fortran directory. It definestheinformation that is contained in the error
information argument that is passed to all math error functions.

7.17 INTEGER Function SEEKUNIT

The INTEGER function SEEKUNI T permits seeking to a particular byte offset within afile
connected to a FORTRAN unit. The file must be opened with the following attributes:

FORM="UNFORMATTED’
ACCESS="SEQUENTIAL’
RECORDTY PE="FIXED’

The function SEEKUNI T requires three arguments of type INTEGER, the unit number, the
offset to seek, and the type of positioning to do. The seek positioning may be absolute
(indicated by 0) or relative to the current position (indicated by 1). It returns an INTEGER
value representing the new offset in thefile. A returned value of -1 indicates that the function
cal failed.

Thisfunction is particularly useful for applications that wish to change the input/output
position for afile connected to a unit.

The following example will set the current input/output position of the file connected to the
specified unit.

Example:
EXTERNAL SEEKUNI T
| NTEGER SEEKUNI T
INTEGER SEEK_SET, SEEK_CUR
PARAMETER (SEEK_SET=0, SEEK_CUR=1)

| NTEGER POSI TI ON
CHARACTER* 80 RECORD

OPEN(UNI T=8, FILE="file, FORME' UNFORMATTED ,
1 ACCESS=" SEQUENTI AL’ , RECORDTYPE=' FI XED')
POSITION = SEEKUNIT(8, 10, SEEK_SET)
IF(POSITION .NE. -1)THEN
PRI NT *, "New position is’, PQOSITION
READ(UNI T=8) RECORD
PRI NT *, RECORD
ENDI F
END

96 INTEGER Function SEEKUNIT

The Open Watcom F77 Subprogram Library

Notes:

1. TheFORTRAN includefile f subl i b. f i, located in the
\'wat com src\ fortran directory, contains typing and calling information for
this subprogram. The\ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file

2. Avaueof -1isreturned if the requested positioning cannot be done.

7.18 INTEGER Function SETJMP/Subroutine
LONGJMP

The INTEGER function SETJMP saves the current executing environment, making it possible
to restore that environment by subsequently calling the LONGJ MP subroutine. For example, it
is possible to implement error handling by using SETJMP to record the point to which a
return will occur following an error. When an error is detected in a called subprogram, that
subprogram uses LONGJ MP to jump back to the recorded position. The original subprogram
which called SETJMP must still be active (it cannot have returned to the subprogram which
caledit).

The SETJMP function requires one argument. The argument is a structure of type jmp_buf
and is used to save the current environment. The return value is an integer and is zero when
initially called. Itisnon-zeroif the return isthe result of acall to the LONGI MP subroutine.
An | F statement is often used to handle these two cases. Thisis demonstrated in the
following example.

Example:

INTEGER Function SETJMP/Subroutine LONGJMP 97

Open Watcom FORTRAN 77 User’s Guide

i nclude 'fsignal.fi

i nclude "setjnp.fi’

record /jmp_buf/ jmp_buf

common Jjmp_buf

external break_handler

integer rc

call fsignal(SIGBREAK, break _handler)
rc = setjmp(jmp_buf)

if(rc .eq. 0)then

call do_it ()
el se

print *, 'abnormal termination:’, rc
endi f

end

subroutine do_it ()
| oop

end | oop

end

subroutine break_handler ()
i nclude "setjnp.fi’

record /jmp_buf/ jmp_buf
common jmp_buf

call longjmp(jmp_buf, -1)
end

Notes:

1. TheFORTRAN includefile setj np. fi containstyping and calling information
for SETJMP and LONGI MP and must beincluded. Similarly, f si gnal . fi must
be included when using the FSI GNAL function. Thesefiles are located in the
\wat coml src\ fortran directory. The \ wat com src\ f ort ran directory
should be included in the FINCL UDE environment variable so that the compiler
can locate these include files.

7.19 INTEGER Function SETSYSHANDLE

The INTEGER function SETSYSHANDLE allows an application to set the system file handle
for a specified unit.

The function SETSYSHANDLE requires an argument of type INTEGER, the unit number, and
an argument of type INTEGER* 2, the handle, and returns an INTEGER value representing

98 INTEGER Function SETSYSHANDLE

The Open Watcom F77 Subprogram Library

the success or fail status of the function call. A returned value of -1 indicates that the function
call failed and O indicates that the function call succeeded.

Thisfunction is particularly useful for applications that wish to set the system file handle for a
unit. The system file handle may have been obtained from a non-FORTRAN subroutine or
function.

The following example will set the system file handle for a paricular unit.

Example:
I NCLUDE ' FSUBLI B. FI ’
I NTEGER STDI N, STDOUT
PARAMETER (STDI N=0, STDOUT=1)
OPEN(UNI T=8, FORME' FORMATTED)
| = SYSHANDLE(8)
PRINT *, "Ad handle was’', |
| = SETSYSHANDLE(8, STDOUT)
IF(| .EQ 0)THEN
WRI TE(UNI T=8, FMI=*) 'Qutput to UNIT 8 which is stdout’
ENDI F
END
Notes:

1. TheFORTRAN includefile f subl i b. f i, located in the
\'wat com src\ f ortran directory, contains typing and calling information for
this subprogram. The \ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file.

2. Avadueof -1isreturned if the unit is not connected to afile.

3. Units5 and 6 are preconnected to the standard input and standard output devices
respectively.

7.20 INTEGER*2 Function SYSHANDLE

The INTEGER* 2 function SYSHANDLE allows an application to obtain the system file handle
for a specified unit.

The function SYSHANDLE requires one argument of type INTEGER, the unit number. and
returns an INTEGER* 2 value representing the system file handle.

INTEGER*2 Function SYSHANDLE 99

Open Watcom FORTRAN 77 User’s Guide

Thisfunction is particularly useful for applications that wish to pass the system file handle to
non-FORTRAN subroutines or functions that wish to perform input/output to a FORTRAN 77
file.

The following example will print the system file handles for the standard input and standard
output devices.

Example:
I NCLUDE ' FSUBLI B. FI’
PRINT *, "Unit 5 file handle is’, SYSHANDLE(5)
PRINT *, "Unit 6 file handle is’, SYSHANDLE(6)
END

Notes:

1. TheFORTRAN includefile f subl i b. fi,located inthe
\'wat com src\fortran directory, contains typing and calling information for
this subprogram. The \ wat com sr c\ f or t r an directory should be included in
the FINCL UDE environment variable so that the compiler can locate the include
file

2. Avaueof -lisreturned if the unit is not connected to afile.

3. Units5 and 6 are preconnected to the standard input and standard output devices
respectively.

7.21 REAL Function URAND

The REAL function URAND returns pseudo-random numbers in the range (0,1).

The function URAND requires one argument of type INTEGER, theinitial seed. The seed can
contain any integer value. URAND returns a REAL value which is a pseudo-random number
in the range (0.0,1.0).

In the following example, 100 random numbers are printed.

100 REAL Function URAND

The Open Watcom F77 Subprogram Library

Example:
REAL URAND
| NTEGER SEED

SEED = 75347
DO =1, 100
PRI NT *, URAND(SEED)
ENDDO
END

Notes:

1. Upon each invocation of URAND, the seed argument is updated by the random
number generator. Therefore, the argument must not be a constant and, once the
seed value has been set, it must not be modified by the programmer.

7.22 Default Windowing Functions

The functions described in the following sections provide the capability to manipulate
attributes of various windows created by Open Watcom' s default windowing system for
Microsoft Windows 3.x, Windows 95, Windows NT, and IBM OS/2. A simple default
windowing FORTRAN application can be built using the following command(s):

16-bit Windows Cwf | [fnl] [fn2] ... [bw /w ndows /| =w ndows

32-bit Windows C>wf 1386 [fnl] [fn2] ... [bw/I=w n386
Cwbind -n [fnl]

32-bit Windows NT or Windows 95
C>wfl386 [fnl] [fn2] ... /bw /l=nt_win

32-bit OS/2 Presentation Manager
C>wfl386 [fnl] [fn2] ... /bw /l=0s2v2_pm

Note: At present, arestriction in Windows NT prevents you from opening the console
device (CON) for both read and write access. Therefore, it isnot possible to
open additional windows for both input and output under Windows NT. They
must be either read-only or write-only windows.

Default Windowing Functions 101

Open Watcom FORTRAN 77 User’s Guide

7.22.1 dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

The dwfDeleteOnClose function tells the console window that it should close itself when the
corresponding fileis closed. The argument uni t isthe unit number associated with the

opened console.

This function is one of the support functions that can be called from an application using

Open Watcom’ s default windowing support.

The dwfDeleteOnClose function returns 1 if it was successful and O if not.

Example:
PROGRAM rmai n
| NCLUDE * FSUBLI B. FI *

I NTEGER rc
CHARACTER r esponse

rc dwf Set About Dl g('Hell o World About Dial og’,

1 " About Hel | o Wrl d' // CHAR(13)//

2 " Copyright 1994 by WATCOM // CHAR(13))

rc
rc
PRINT *, ’Hello Wrld’

OPEN(unit=3, file=' CON)

dwf Set AppTitle("Hello Wrld Application Title’
dwf Set ConTitle(5, 'Hello Wrld Console Title’

)
)

rc = dwf SetConTitle(3, "Hello Wrld Second Console Title')

rc = dwfDel eteOnd ose(3)
WRI TE(unit=3, fnt=*) "Hello to second consol e’

WRI TE(unit=3, fnm=*) 'Press Enter to close this console’

READ(unit=3, fnt="(A)’, end=100, err=100) response

100 CLOSE(unit=3)
END

7.22.2 dwfSetAboutDlg

i nteger function dwfSetAboutDi g(title, text)

character*(*) title
character*(*) text

The dwfSetAboutDlg function sets the " About" dialog box of the default windowing system.
Theargument t i t | e isacharacter string that will replace the current title. If titl eis
CHAR(0) then the title will not be replaced. Theargument t ext isacharacter string which
will be placed in the "About" box. To get multiple lines, embed a new line character
(CHAR(13)) after each logical linein the string. If t ext is CHAR(Q), then the current text in

the "About" box will not be replaced.

102 Default Windowing Functions

The Open Watcom F77 Subprogram Library

This function is one of the support functions that can be called from an application using
Open Watcom'’ s default windowing support.

The dwfSetAboutDIg function returns 1 if it was successful and O if not.

Example:
PROGRAM mai n
| NCLUDE * FSUBLI B. FI *

I NTEGER rc
CHARACTER r esponse

rc = dwf Set About Dl g("Hello Wrld About Dialog,

1 " About Hello World'//CHAR(13)//
2 " Copyright 1994 by WATCOM // CHAR(13))
rc dwf Set AppTitle("Hello Wrld Application Title')

rc dwf Set ConTitle(5, 'Hello Wrld Console Title)
PRINT *, 'Hello World’
OPEN(unit=3, file="CON)
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnC ose(3)
WRI TE(unit=3, fm=*) "Hello to second consol e’
WRI TE(unit=3, fnmt=*) "Press Enter to close this console’
READ(unit=3, fm="(A)’, end=100, err=100) response
100 CLOSE(unit=3)
END

7.22.3 dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

The dwfSetAppTitle function sets the main window’ stitle. Theargument titl eisa
character string that will replace the current title.

This function is one of the support functions that can be called from an application using
Open Watcom' s default windowing support.

The dwfSetAppTitle function returns 1 if it was successful and O if not.

Default Windowing Functions 103

Open Watcom FORTRAN 77 User’s Guide

Example:
PROGRAM mai n
I NCLUDE ' FSUBLI B. FI ’
I NTEGER rc
CHARACTER r esponse
rc = dwf Set AboutDig('Hello Wrld About Dialog,
1 " About Hello World' //CHAR(13)//
2 " Copyright 1994 by WATCOM // CHAR(13))
rc = dwf Set AppTitle("Hello World Application Title')
rc = dwfSetConTitle(5, 'Hello Wrld Console Title')

PRINT *, ' Hello Wrld
OPEN(unit=3, file=' CON)

rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')

rc = dwfDel eteOnC ose(3)

WRI TE(unit=3, fnm=*) "Hello to second consol e’
WRI TE(unit=3, fmt=*) 'Press Enter to close this console’
READ(unit=3, fm="(A)’, end=100, err=100) response

100 CLOSE(unit=3)
END

7.22.4 dwfSetConTitle

i nteger function dwfSetConTitle(unit,
i nteger unit
character*(*) title

title)

The dwfSetConTitle function sets the console window’ s title which corresponds to the unit
number passed to it. The argument uni t isthe unit number associated with the opened
console. Theargument ti t | e isthe character string that will replace the current title.

This function is one of the support functions that can be called from an application using

Open Watcom’ s default windowing support.

The dwfSetConTitle function returns 1 if it was successful and O if not.

104 Default Windowing Functions

The Open Watcom F77 Subprogram Library

Example:
PROGRAM rmai n
| NCLUDE * FSUBLI B. FI ’

I NTEGER rc
CHARACTER r esponse

rc = dwf Set AboutDig('Hello Wrld About Dialog,
1 " About Hello World' //CHAR(13)//
2 " Copyright 1994 by WATCOM //CHAR(13))
rc dwf Set AppTitle("Hello Wrld Application Title')
rc dwf Set ConTitle(5, 'Hello Wrld Console Title')
PRINT *, "Hello World’
OPEN(unit=3, file="CON)
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnC ose(3)
WRI TE(unit=3, fnm=*) "Hello to second consol e’
WRI TE(unit=3, fmt=*) 'Press Enter to close this console’
READ(unit=3, fm="(A)’, end=100, err=100) response

100 CLOSE(unit=3)
END

7.22.5 dwfShutDown

i nteger function dwf Shut Down()
The dwfShutDown function shuts down the default windowing I/O system. The application
will continue to execute but no windows will be available for output. Care should be
exercised when using this function since any subsequent output may cause unpredictable
results.
When the application terminates, it will not be necessary to manually close the main window.

Thisfunction is one of the support functions that can be called from an application using
Open Watcom' s default windowing support.

The dwfShutDown function returns 1 if it was successful and O if not.

Default Windowing Functions 105

Open Watcom FORTRAN 77 User’s Guide

Example:
PROGRAM rmai n
| NCLUDE * FSUBLI B. FI ’

I NTEGER rc
CHARACTER r esponse

rc = dwf Set AboutDig('Hello Wrld About Dialog,

1 " About Hello World' //CHAR(13)//

2 " Copyright 1994 by WATCOM // CHAR(13))
rc = dwf Set AppTitle("Hello World Application Title')

rc = dwfSetConTitle(5, 'Hello Wrld Console Title')

PRINT *, ' Hello Wrld
OPEN(unit=3, file=' CON)

rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')

rc = dwfDel eteOnC ose(3)

WRI TE(unit=3, fnm=*) "Hello to second consol e’

WRI TE(unit=3, fmt=*) 'Press Enter to close this console’

READ(unit=3, fm="(A)’, end=100, err=100) response

100 CLOSE(unit=3)
rc = dwf Shut Down()

END

7.22.6 dwfYield

i nteger function dwf vel d()

do nore conputing that does not involve consol e input/output

The dwfYield function yields control back to the operating system, thereby giving other

processes a chance to run.

Thisfunction is one of the support functions that can be called from an application using

Open Watcom' s default windowing support.

The dwfYield function returns 1 if it was successful and O if not.

106 Default Windowing Functions

The Open Watcom F77 Subprogram Library

Example:

100

* ok ok ok

PROGRAM mai n
| NCLUDE ' FSUBLI B. FI'’

I NTEGER rc
CHARACTER r esponse
| NTEGER i

rc = dwf Set About Dl g(" Hello Wrld About Dialog,

" About Hello World'//CHAR(13)//

" Copyright 1994 by WATCOM // CHAR(13))
rc dwf Set AppTitle("Hello Wrld Application Title')
rc dwf Set ConTitle(5, '"Hello Wrld Console Title)
PRINT *, 'Hello World’
OPEN(unit=3, file=" CON
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnC ose(3)
WRI TE(unit=3, fm=*) '"Hello to second consol e’
WRI TE(unit=3, fnmt=*) "Press Enter to close this console’
READ(unit=3, fnt="(A)’, end=100, err=100) response
CLOSE(unit=3)

DOi = 0, 1000
rc = dwfYield()
do CPU-intensive cal cul ation

ENDDO
PRINT *, i

END

Default Windowing Functions 107

Open Watcom FORTRAN 77 User’s Guide

108 Default Windowing Functions

8 Data Representation On x86-based

Platforms

This chapter describes the internal or machine representation of the basic types supported by
Open Watcom F77. The following table summarizes these data types.

Data Type Size FORTRAN 77
(in bytes) Standard

LOGICAL 4

LOGICAL*1 1 (extension)
LOGICAL*4 4 (extension)
INTEGER 4

INTEGER* 1 1 (extension)
INTEGER*2 2 (extension)
INTEGER*4 4 (extension)
REAL 4

REAL*4 4 (extension)
REAL*8 8 (extension)
DOUBLE PRECISION 8

COMPLEX 8

COMPLEX*8 8 (extension)
COMPLEX*16 16 (extension)
DOUBLE COMPLEX 16 (extension)
CHARACTER 1

CHARACTER*n n

8.1 LOGICAL*1 Data Type

Anitem of type LOGICAL*1 occupies 1 byte of storage. It can only have two values,
namely .TRUE. (avalueof 1) and .FALSE. (avaueof 0).

LOGICAL*1 Data Type 109

Open Watcom FORTRAN 77 User’s Guide

8.2 LOGICAL and LOGICAL*4 Data Types

Anitem of type LOGICAL or LOGICAL*4 occupies 4 bytes of storage. It can only have
two values, namely .TRUE. (avaueof 1) and .FALSE. (avaue of 0).

8.3 INTEGER*1 Data Type

Anitem of type INTEGER* 1 occupies 1 byte of storage. Itsvalueisin the following range.
An integer n can be represented in 1 byte if

-128 <= n <= 127

8.4 INTEGER*2 Data Type

An item of type INTEGER*2 occupies 2 bytes of storage. Aninteger n can be represented in
2 bytesif

-32768 <= n <= 32767

8.5 INTEGER and INTEGER*4 Data Types

Anitem of type INTEGER or INTEGER*4 occupies 4 bytes of storage (one numeric storage
unit). Aninteger n can be represented in 4 bytes if

- 2147483648 <= n <= 2147483647

8.6 REAL and REAL*4 Data Types

Anitem of type REAL or REAL*4 is an approximate representation of areal number and
occupies 4 bytes (one numeric storage unit). If misthe magnitude of areal number x, then x
can be approximated if

-126 128
2 <= m< 2

or in more approximate terms if

110 REAL and REAL*4 Data Types

Data Representation On x86-based Platforms

1.175494e-38 <= m <= 3. 402823e38

Items of type REAL or REAL*4 are represented internally asfollows. Note that bytes are
stored in memory with the least significant byte first and the most significant byte | ast.

S Biased Significand
Exponent
31 30-23 22-0
S S = Sign bit (O=positive, 1=negative)

Exponent The exponent biasis 127 (i.e., exponent value 1 represents 2* *-126; exponent
value 127 represents 2** 0; exponent value 254 represents 2**127; etc.). The
exponent field is 8 bits long.

Significand Theleading bit of the significand is always 1, henceit is not stored in the
significand field. Thusthe significand is always "normalized”. The significand
field is 23 bitslong.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field isall 1 bits and the significand field is all zero bits then
the quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field isall 1 bits and the significand field is hon-zero then
the quantity is a special value called aNAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then
the quantity is a special value called a"denormal” or nonnormal number.

8.7 DOUBLE PRECISION and REAL*8 Data Types

An item of type DOUBLE PRECISION or REAL*8 is an approximate representation of a
real number, occupies 8 bytes (two numeric storage units) and has precision greater than or
equal to that of anitem of type REAL or REAL*4. If misthe magnitude of areal number X,
then x can be approximated if

DOUBLE PRECISION and REAL*8 Data Types 111

Open Watcom FORTRAN 77 User’s Guide

-1022 1024
2 <=m< 2

or in more approximate terms if
2.2250738585072e-308 <= m <= 1.79769313486232e308
Items of type DOUBLE PRECISION or REAL*8 are represented internally as follows.

Note that bytes are stored in memory with the least significant byte first and the most
significant byte last.

S Biased Significand
Exponent
63 62-52 51-0
S S = Sign bit (O=positive, 1=negative)

Exponent The exponent biasis 1023 (i.e., exponent value 1 represents 2**-1022; exponent
value 1023 represents 2** 0; exponent value 2046 represents 2** 1023; etc.).
The exponent field is 11 bits long.

Significand The leading bit of the significand is always 1, henceit is not stored in the
significand field. Thusthe significand is always "normalized”. The significand
field is 52 bitslong.

Zero A double precision zero quantity occurs when the sign bit, exponent, and
significand are all zero.

Infinity When the exponent field isall 1 bits and the significand field isall zero bits then
the quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field isall 1 bits and the significand field is non-zero then
the quantity is a special value called aNAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then
the quantity is a special value called a"denormal” or nonnormal number.

112 DOUBLE PRECISION and REAL*8 Data Types

Data Representation On x86-based Platforms

8.8 COMPLEX, COMPLEX*8, and DOUBLE COMPLEX
Data Types

An item of type COMPLEX or COMPLEX*8 is an approximate representation of a complex
number. The representation is an ordered pair of real numbers, the first representing the real
part of the complex number and the second representing the imaginary part of the complex
number. Each item of type COMPLEX or COM PL EX*8 occupies 8 bytes (two consecutive
numeric storage units), the first being the real part and the second the imaginary part. The
approximation of the real and imaginary parts of a complex number is the same degree of
approximation used for items of type REAL.

8.9 COMPLEX*16 Data Type

An item of type COMPL EX* 16 is an approximate representation of a complex number. The
representation is an ordered pair of real numbers, the first representing the real part of the
complex number and the second representing the imaginary part of the complex number.

Each item of type COMPL EX* 16 occupies 16 bytes (four consecutive numeric storage
units), the first two being the real part and the last two the imaginary part. The approximation
of the real and imaginary parts of acomplex number is the same degree of approximation used
for items of type DOUBLE PRECISION.

8.10 CHARACTER Data Type

An item of type CHARACTER represents a sequence of characters. Each character occupies
1 byte of storage (1 character storage unit). Thelength of an item of type CHARACTER is
the number of charactersit contains. Each character is assigned an integer that represents its

position. Characters are numbered from 1 to n starting from the left, n being the number of
characters.

Items of type CHARACTER are represented by a string descriptor. A string descriptor has
the following format.

CHARACTER Data Type 113

Open Watcom FORTRAN 77 User’s Guide

Offset
0 pointer to data
4 length of data

The pointer to the actual datais a 32-bit offset in the default data segment. Thelengthis
represented as a 32-bit unsigned integer.

8.11 Storage Organization of Data Types

The following illustrates the relative size of the data typesin terms of bytes. LOGICAL is
equivalent to LOGICAL*4, INTEGER isequivaent to INTEGER*4, DOUBLE
PRECISION isequivalent to REAL*8, and COMPLEX isequivalent to COMPLEX*8. If
the "short" optionis used, LOGICAL isequivalentto LOGICAL*1 and INTEGER is
equivalent to INTEGER*2.

Offset 012 3456 7 89 101112131415

in bytes

LOGICAL*1

LOGICAL*4

INTEGER* 1

INTEGER*2

INTEGER*4

REAL*4

REAL*8

COMPLEX*8 real imaginary

COMPLEX*16 real part imaginary part

114 Storage Organization of Data Types

Data Representation On x86-based Platforms

8.12 Floating-point Accuracy On x86-based Platforms

There are a number of issues surrounding floating-point accuracy, calculations, exceptions,
etc. on the x86-based personal computer platform that we will address in the following
sections. Some result from differences in the behaviour of standard-conforming FORTRAN
77 compilers. Other result from idiosyncrasies of the |EEE Standard 754 floating-point that is
supported on the x86 platform.

Some FORTRAN 77 compilers extend the precision of single-precision constantsin DATA
statement initialization lists when the corresponding variable is double precision. Thisis
permitted by the FORTRAN 77 Standard. Open Watcom FORTRAN 77, however, does not
dothis. Thisisillustrated by the following example.

Example:
doubl e precision pil, pi2
data pil /3.141592653589793/
data pi2 /3.141592653589793d0/
wite(unit=* fm="(1x,z16, 1x,f18.15)') pil, pil
wite(unit=* fnm="(1x,z16, 1x,f18.15)’) pi2, pi?2
end

The output produces two very different results for our pi variables. Thevariable Pl 1 is
initialized with asingle precision (i.e., REAL) constant.

400921FB60000000 3.141592741012573
400921FB54442D18 3.141592653589793

A single precision datum has 23 bits in the mantissa; a double precision datum has 52 bitsin
the mantissa. Hence PI 1 has 29 fewer bits of accuracy in the mantissa (the difference
between 52 and 23) sinceit isinitialized with asingle precision constant. Y ou can verify this
by examining the hexadecimal output of thetwo pi’s. The bottom 29 bits of the mantissain
Pl 1 areall zero.

To be on the safe side, the rule is always use double precision constants (even in DATA
statements) if you want as much accuracy as possible.

This behaviour treats DATA statement initialization as equivalent to simple assignment as
shown in the following example.

Floating-point Accuracy On x86-based Platforms 115

Open Watcom FORTRAN 77 User’s Guide

Example:
doubl e precision pil, pi2
pil = 3.141592653589793
pi 2 = 3.141592653589793d0
wite(unit=* fm="(1x,z16, 1x,f18.15)’) pil, pil
wite(unit=* fnm="(1x,z16, 1x,f18.15)') pi2, pi?2
end

The output follows:

400921FB60000000 3.141592741012573
400921FB54442D18 3.141592653589793

A second consideration isillustrated by the next example. On some computer architectures,
there is no difference in the exponent range between single and double precision
floating-point representation. One such architecture is the IBM mainframe computer (e.g.,
IBM System/370). When a double precision result is assigned to asingle precision (REAL)
variable, only precision in the mantissaislost.

The x86 platform uses the |EEE Standard 754 floating-point representation. Inthis
representation, the range of exponent valuesis greater in double precision thanin single
precision. Asdescribed in the section entitled "REAL and REAL*4 Data Types' on page 110,
therange for single precision (REAL, REAL*4) numbersis:

1.175494e- 38 <= m <= 3. 402823e38

On the other hand, the range for double precision (DOUBLE PRECISION, REAL*8) numbers
is:

2.2250738585072e-308 <= m <= 1.79769313486232e308

Double precision is described in the section entitled "DOUBLE PRECISION and REAL*8
Data Types' on page 111. So you can see that a number like 1.0E234 can easily be
represented in double precision but not in single precision since the maximum positive
exponent value for single precision is 38.

8.13 Floating-point Exceptions On x86-based
Platforms

The following types of exceptions can be enabled/disabled on PC’ s with an 80x87
floating-point unit (either areal FPU or atrue emulator).

116 Floating-point Exceptions On x86-based Platforms

Data Representation On x86-based Platforms

DENORMAL

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

INVALID

The result has become denormalized. When the exponent field isall O bits
and the significand field is non-zero then the quantity is a special value
called a"denormal” or nonnormal number. By providing a significand with
leading zeros, the range of possible negative exponents can be extended by
the number of bitsin the significand. Each leading zero is abit of lost
accuracy, so the extended exponent range is obtained by reducing
significance.

A division by zero was attempted. A real zero quantity occurs when the
sign bit, exponent, and significand are all zero.

Theresult has overflowed. The correct answer isfinite, but has a magnitude
too great to be represented in the destination floating-point format.

The result has numerically underflowed. The correct answer is non-zero but
has a magnitude too small to be represented as a normal number in the
destination floating-point format. 1EEE Standard 754 specifies that an
attempt be made to represent the number as adenormal. This
denormalization may result in aloss of significant bits from the significand.

A calculation does not return an exact answer. This exception is usually
masked (disabled) and ignored. It isused in extremely critical applications,
when the user must know if the results are exact. The precision exception is
called "inexact" in |[EEE Standard 754.

Thisisthe exception condition that covers all cases not covered by the other
exceptions. Included are FPU stack overflow and underflow, NAN inputs,
illegal infinite inputs, out-of-range inputs, and inputs in unsupported
formats.

Which exceptions does Open Watcom FORTRAN 77 catch and which ones does it ignore by
default? We can determine the answer to this with the following program.

Floating-point Exceptions On x86-based Platforms 117

Open Watcom FORTRAN 77 User’s Guide

* This program uses the C Library routine "_control87"
* to obtain the math coprocessor exception mask

inplicit none
include 'fsignal.fi

character*8 status
integer fp_cw, bits

fp_cw = _control87(0, 0)
bits = IAND(fp_cw, MCW_EM)
print '(a,1x,z4)’, 'Interrupt exception mask’', bits

print *,’Invalid operation exception ’, status(bits, EM_INVALID)
print *, 'Denormalized exception ’, status(bits, EM_DENORMAL)
print *,’Divide by 0 exception ’, status(bits, EM_ZERODIVIDE)
print *,’Overflow exception ’, status(bits, EM_OVERFLOW)

print *,’Underflow exception ’, status(bits, EM_UNDERFLOW)

print *, ’Precision exception ’, status(bits, EM_PRECISION)

end

character*8 function status(bits, mask)
integer bits, mask

if(IAND(bits, mask) .eq. 0) then

status = 'enabl ed
el se

status = 'disabl ed
endi f
end

If you compile and run this program, the following output is produced.

Interrupt exception nmask 0032
Invalid operation exception enabl ed
Denor nal i zed exception di sabl ed

Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed

Under f | ow excepti on di sabl ed

Preci si on exception disabl ed

So, by default, the Open Watcom FORTRAN 77 run-time system will catch "invalid
operation”, "divide by 0", and "overflow" exceptions. It ignores"denormal”, "underflow"”,
and "precision” exceptions. Thus calculations that produce very small results trend towards
zero. Also, calculations that produce inexact results (a very common occurrence in
floating-point calculations) are allowed to continue.

Suppose that you were interested in flagging cal cul ations that result in denormalized or

underflowed results. To do this, we need to enable both DENORMAL and UNDERFLOW
exceptions. Thisfollowing program illustrates how to do this.

118 Floating-point Exceptions On x86-based Platforms

Data Representation On x86-based Platforms

*$ifdef __386__

*$ifdef __stack_conventions__
*Spragma aux _clear87 "I"
*$el se

*Spragma aux _clear87 "!_"
*$endi f

*$el se

*Spragma aux _clear87 "!_"
*$endi f

inplicit none
include 'fsignal.fi

character*8 status
integer fp_cw, fp_mask, bits

* get rid of any errors so we don’t cause an instant exception
call _clear87

* fp_mask determines the bits to enable and/or disable
fp_mask = 0
1 + EM_DENORMAL
2 + EM_UNDERFLOW

fp_cw determines whether to enable(0) or disable(l)

* (in this case, nothing is disabled)
fp_cw = 70000"'x
fp_cw = _control87(fp_cw, fp_mask)

bits = IAND(fp_cw, MCW_EM)
print '(a,1x,z4)’, 'Interrupt exception mask’', bits

print *,’Invalid operation exception ’, status(bits, EM_INVALID)
print *, 'Denormalized exception ’, status(bits, EM_DENORMAL)
print *,’Divide by 0 exception ’, status(bits, EM_ZERODIVIDE)
print *,’Overflow exception ’, status(bits, EM_OVERFLOW)

print *,’Underflow exception ’, status(bits, EM_UNDERFLOW)

print *, ’Precision exception ’, status(bits, EM_PRECISION)

end

character*8 function status(bits, mask)
integer bits, mask

if(IAND(bits, mask) .eq. 0) then

status = 'enabl ed
el se

status = 'disabl ed’
endi f
end

If you compile and run this program, the following output is produced.

Floating-point Exceptions On x86-based Platforms 119

Open Watcom FORTRAN 77 User’s Guide

Interrupt exception mask 0020

I nval i d operation exception enabl ed
Denor nal i zed excepti on enabl ed

Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed

Under f| ow excepti on enabl ed

Preci si on exception disabl ed

8.14 Compiler Options Relating to Floating-point

Let us take the program that we developed in the previous section and test it out. If you
introduce the variable FLT to the program and cal cul ate the expression "2e-38 x 2e-38", you
would expect to see 0.0 printed when underflow exceptions are disabled and a run-time
diagnostic when underflow exceptions are enabled. The statements that you would add are

show in the following.
real flt

flt=2e-38
print *, flt*flt

* code to enabl e exceptions goes here
print *, flt*flt

end

If you compile the modified program with default options and run it, the result is as follows.

0. 0000000
Interrupt exception mask 0020
I nval i d operation exception enabl ed
Denor nal i zed excepti on enabl ed
Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed
Under f| ow excepti on enabl ed
Preci si on exception disabl ed

0. 0000000

Thisis not what we expected. Evaluation of the second expression did not produce the
run-time diagnostic that we expected. The reason this happened is related to the compiler’s
processing of the source code. By default, the compiler optimized the generated code by
evaluating the expression "2e-38 x 2e-38" at compile time producing 0.0 as the result (dueto

the underflow).

120 Compiler Options Relating to Floating-point

Data Representation On x86-based Platforms

flt=2e-38
print *, flt*flt

reduces to
print *, 2e-28*2e-38
whi ch further reduces to
print *, 0.0
Recompile the program using the "OP" option and run it. Theresult is asfollows.

0. 0000000
Interrupt exception mask 0020
I nval i d operation exception enabl ed
Denor nal i zed excepti on enabl ed
Di vide by 0 exception enabl ed
Overfl ow exception enabl ed
Under f| ow excepti on enabl ed
Preci si on exception disabl ed
ERR KO- 03 floating-point underflow

The use of the "OP" option will force the result to be stored in memory after each FORTRAN
statement is executed. Thus, the source code is not optimized across statements.
Compile-time versus run-time evaluation of expressions can lead to different results. Itis
very instructive to compile and then run your application with a variety of compile-time
options to see the effect of optimizations. See the chapter entitled "Open Watcom FORTRAN
77 Compiler Options' on page 5 for more information on compiler options.

Before we end this section, there is another important aspect of floating-point exceptions to
consider. A floating-point exception is triggered upon the execution of the next FPU
instruction following the one that caused the exception.

implicit none

real *4 a
real *8 b

b=12.0d123
a=b*b

b=1.0

a=b/ 2.0

print *, a, b
end

Compile this program with the "OP" and "DEBUG" options and then run it. Theresultis
displayed next.

Compiler Options Relating to Floating-point 121

Open Watcom FORTRAN 77 User’s Guide

ERR KO 02 floating-point overflow
- Executing line 9 in file pid4.for

Line 9 istheline containing the statement a=b/ 2. 0 which could not possibly be responsible
for an overflow. However, it contains the first floating-point instruction following the
instruction in line 7 where the overflow actually occurred. To seethis, it helpsto disassemble
the object file.

a=b*b
0029 B8 07 00 00 00 nov eax, 0x00000007
002E E8 00 00 00 00 cal | RT@set Li ne
0033 DD 45 F4 fld gword ptr -0xc[ebp]
0036 D8 C8 f mul st, st
0038 D9 5D FC fstp dword ptr -0x4[ebp]

b=1.0
003B B8 09 00 00 00 nov eax, 0x00000009
0040 E8 00 00 00 00 cal | RT@set Li ne
0045 31 DB xor ebx, ebx
0047 89 5D F4 nmv - 0xc[ebp], ebx
004A C7 45 F8 00 00 FO 3F

nmv dword ptr -0x8[ebp], Ox3ff 00000

a=b/ 2.0
0051 B8 OA 00 00 00 nov eax, 0x0000000a
0056 E8 00 00 00 00 cal | RT@Bet Li ne
005B DD 45 F4 fld gword ptr -0xc[ebp]
005E DC OD 08 00 00 00

f mul gword ptr L$2

0064 D9 5D FC fstp dword ptr -0x4[ebp]

The overflow occurred when the "fstp" was executed but is signalled when the subsequent
"fld" is executed. The overflow could also be signalled while executing down in arun-time
routine. This behaviour of the FPU can be somewhat exasperating.

8.15 Floating-point Exception Handling

In certain situations, you want to handl e floating-point exceptions in the application itself
rather than let the run-time system terminate your application. The following example
illustrates how to do this by installing a FORTRAN subroutine as a floating-point exception
handler.

122 Floating-point Exception Handling

Data Representation On x86-based Platforms

inplicit none
include 'fsignal.fi

real flt
external fpehandler
integer signal_count, signal_number, signal_type

common /fpe/ signal_count, signal_number, signal_type

* begi n the signal handling process for floating-point exceptions
call fsignal (SI GFPE, fpehandler)

mai n body of application goes here
flt =2.0
print *, ’number of signals’, volatile(signal_count)
print *, flt / 0.0
print *, ’number of signals’, volatile(signal_count)

end

*$ifdef __386__

*$ifdef __stack_conventions__
*Spragma aux _clear87 "I"
*$el se

*Spragma aux _clear87 "!_"
*$endi f

*$el se

*Spragma aux _clear87 "!_"
*$endi f

*$pragma aux fpehandl er parn(val ue, value)
subroutine fpehandler(sig_num, fpe_type)
inplicit none

* sig_num and fpe_type are passed by value, not by reference
integer sig_num, fpe_type

include 'fsignal.fi

integer signal_count, signal_number, signal_type

common /fpe/ signal_count, signal_number, signal_type
* we could add this to our common bl ock

integer signal_split(FPE_INVALID:FPE_IOVERFLOW)

signal_count = signal_count + 1

signal_number = sig_num

signal_type = fpe_type

*

fl oati ng- poi nt exception types

* FPE_INVALID = 129 (0)
* FPE_DENORMAL = 130 (1)
* FPE_ZERODIVIDE = 131 (2)
* FPE_OVERFLOW = 132 (3)
* FPE_UNDERFLOW = 133 (4)
* FPE_INEXACT = 134 (5)

Floating-point Exception Handling

123

Open Watcom FORTRAN 77 User’s Guide

* FPE_UNEMULATED = 135 (6)
* FPE_SQRTNEG = 136 (7)
* undef i ned = 138 (8)
* FPE_STACKOVERFLOW = 137 (9)
* FPE_STACKUNDERFLOW = 138 (10)
* FPE_EXPLICITGEN = 139 (11)
* FPE_IOVERFLOW = 140 (12)
* log the type of error for interest only */
signal_split(fpe_type) =
lsignal_split(fpe_type) + 1
* get rid of any errors
call _clear87
* resignal for nore exceptions
call fsignal (SI GFPE, fpehandler)
* if we don't then a subsequent exception wll
* cause an abnormal programterm nation

end

Note the use of the VOLATI LE intrinsic function to obtain up-to-date contents of the variable
SIGNAL COUNT.

124 Floating-point Exception Handling

16-bit Topics

16-bit Topics

126

9 16-bit Memory Models

9.1 Introduction

This chapter describes the various 16-bit memory models supported by Open Watcom F77.
Each memory model is distinguished by two properties; the code model used to implement
subprogram calls and the data model used to reference data.

9.2 16-bit Code Models

There are two code models;

1. thesmall code model and
2. thebig code model.

A small code model is onein which al calls to subprograms are made with near calls. Ina
near call, the destination address is 16 bits and is relative to the segment value in segment
register CS. Hence, in asmall code model, all code comprising your program, including
library subprograms, must be less than 64K. Open Watcom F77 does not support the small
code model.

A big code model isonein which al calls to subprograms are made with far calls. Inafar

call, the destination address is 32 bits (a segment value and an offset relative to the segment
value). Thismodel allows the size of the code comprising your program to exceed 64K.

9.3 16-bit Data Models

There are three data models;
1. thesmal datamode,

2. thebig datamodel and
3. the huge data model.

16-bit Data Models 127

16-bit Topics

A small datamodel isonein which all references to data are made with near pointers. Near
pointers are 16 bits; al data references are made relative to the segment value in segment
register DS. Hence, in asmall datamodel, all data comprising your program must be less than
64K.

A big data model isonein which all references to data are made with far pointers. Far
pointers are 32 bits (a segment value and an offset relative to the segment value). This
removes the 64K limitation on data size imposed by the small datamodel. However, when a
far pointer isincremented, only the offset is adjusted. Open Watcom F77 assumes that the
offset portion of afar pointer will not be incremented beyond 64K. The compiler will assign
an object to a new segment if the grouping of datain a segment will cause the object to cross a
segment boundary. Implicit in thisis the requirement that no individual object exceed 64K
bytes. For example, an array containing 40,000 integers does not fit into the big data model.
An object such as this should be described as huge.

A huge data model is one in which all references to data are made with far pointers. Thisis
similar to the big datamodel. However, in the huge data model, incrementing a far pointer
will adjust the offset and the segment if necessary. The limit on the size of an object pointed
to by afar pointer imposed by the big data model is removed in the huge data model.

Notes:

1. Thehuge datamodel hasthe same characteristics as the big data model, but formal
array arguments are assumed to exceed 64K bytes. Y ou should use the huge data
model whenever any arraysin your application exceed 64K bytesin size.

2. If your program contains less than 64K of data, you should use the small data
model. Thiswill result in smaller and faster code since references using near
pointers produce fewer instructions.

3. Thehuge datamodel should be used only if needed. The code generated in the
huge data model is not very efficient since arun-time routineis called in order to

increment far pointers. Thisincreases the size of the code significantly and
increases execution time.

9.4 Summary of 16-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and a data
model. The following table describes the memory models supported by Open Watcom F77.

128 Summary of 16-bit Memory Models

16-bit Memory Models

Menory Code Dat a Def aul t Def aul t

Model Model Model Code Dat a
Poi nt er Poi nt er

medi um bi g smal | far near

| ar ge bi g big far far

huge bi g huge far huge

9.5 Mixed 16-bit Memory Model

A mixed memory model application combines elements from the various code and data
models. A mixed memory model application might be characterized as one that includes
arrays which are larger than 64K bytes.

For example, a medium memory model application that uses some arrays which exceed 64K
bytesin total size can be described as a mixed memory model. In an application such asthis,
most of the dataisin a 64K segment (DGROUP) and hence can be referenced with near
pointers relative to the segment value in segment register DS. This results in more efficient
code being generated and better execution times than one can expect from a big data model.

9.6 Linking Applications for the Various 16-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library
assumes a particular memory model and should be linked only with modules that have been
compiled with the same memory model. The following table lists the libraries that are to be
used to link an application that has been compiled for a particular memory model.

Li brary Menory Fl oat i ng- poi nt
nodel nodel

flibmlib / mm /fpc

flibl.lib /m, [nmh / fpc

flib7mlib / mm /fpi, [fpi87

flib7l.1ib /m, /mh [fpi, [fpi87

clibmlib / mm /fpc, /fpi, /fpi87

clibl.lib /m, /mh [fpc, [fpi, /fpi87

mathmlib [mm /fpc

mathl . 1ib /m, [mh / fpc

mat h87mlib [mm [fpi, /[fpi87

mat h871 . 1i b /m, /mh [fpi, [fpi87

emu87.1ib /mm /m, /nmh /fpi

noemu87.1ib /rm /nm, /nmh / f pi 87

Linking Applications for the Various 16-bit Memory Models 129

16-bit Topics

9.7 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom

Linker

1

2.

5.

6.

. Note that this assumes that the "DOSSEG" linker option has been specified.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

In addition to these special segments, the following conventions are used by Open Watcom

F77.

The"CODE" class contains the executable code for your application. Inasmall
code model, this consists of the segment " _TEXT". In abig code model, this
consists of the segments "<subprogram>_TEXT" where <subprogram> is the name
of a subprogram.

The"FAR_DATA" class consists of the following:

130 Memory Layout

16-bit Memory Models

@ arrays whose size exceeds the data threshold in large data memory
models (the data threshold is 256 bytes unless changed using the "dt"
compiler option)

(b) equivalenced variables in large data memory models

Memory Layout 131

16-bit Topics

132 Memory Layout

10 16-bit Assembly Language
Considerations

10.1 Introduction

This chapter will deal with the following topics.

1

2.

The memory layout of a program compiled by Open Watcom F77.
The method for passing arguments and returning values.

The two methods for passing floating-point arguments and returning floating-point
values.

One method is used when one of the Open Watcom F77 "fpi", "fpi87" or "fpi387"
options is specified for the generation of in-line 80x87 instructions. When the "fpi"
option is specified, an 80x87 emulator isincluded from a math library if the
application includes floating-point operations. When the "fpi87" or "fpi387" option
isused exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom F77 "fpc" option is specified. In
this case, the compiler generates calls to floating-point support routinesin the
alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Calling Conventions

The following sections describe the method used by Open Watcom F77 to pass arguments.

The FORTRAN 77 language specifically requires that arguments be passed by reference.

This means that instead of passing the value of an argument, its addressis passed. Thisalows
a called subprogram to modify the value of the actual arguments. The following illustrates the
method used to pass arguments.

Calling Conventions 133

16-bit Topics

Type of Argument Method Used to Pass Argument
non-character constant address of constant
non-character expression address of value of expression
non-character variable address of variable

character constant address of string descriptor
character expression address of string descriptor
character variable address of string descriptor
non-character array address of array

non-character array element address of array

character array address of string descriptor
character array element address of string descriptor
character substring address of string descriptor
subprogram address of subprogram
alternate return specifier no argument passed
user-defined structure address of structure

When passing a character array as an argument, the string descriptor contains the address of
the first element of the array and the length of an element of the array.

The address of arguments are either passed in registers or on the stack. The registers used to
pass the address of argumentsto a subprogram are AX, BX, CX and DX. The address of
arguments are passed in the following way.

1

For memory models with a big data model, address of arguments consist of a 16-bit
offset and a 16-bit segment. Hence, two registers are required to pass the address
of an argument. The first argument will be passed in registers DX:AX with register
DX containing the segment and register AX containing the offset. The second
argument will be passed in registers CX:BX with register CX containing the
segment and register BX containing the offset.

For memory models with a small data model, address of arguments consists of only
a 16-hit offset into the default data segment. Hence, only asingle register is
required to pass the address of an argument. The first argument is passed in
register AX, the second argument is passed in register DX, the third argument is
passed in register BX, and the fourth argument is passed in register CX.

For any remaining arguments, their address is passed on the stack. Note that
addresses of arguments are pushed on the stack from right to | eft.

134 Calling Conventions

16-bit Assembly Language Considerations

10.2.1 Processing Function Return Values with no 80x87

The way in which function values are returned is also dependent on the data type of the
function. The following describes the method used to return function values.

1

2.

10.

11.

LOGICAL*1 valuesarereturned in register AL.

LOGICAL*4 values arereturned in registers DX:AX.

INTEGER*1 values are returned in register AL.

INTEGER*2 values are returned in register AX.

INTEGER*4 values are returned in registers DX:AX.

REAL*4 values are returned in registers DX:AX.

REAL*8 values are returned in registers AX:BX:CX:DX.

For COMPL EX*8 functions, space is allocated on the stack by the caller for the
return value. Register Sl is set to point to the destination of the result. The called
function places the result at the location pointed to by register Sl.

For COMPL EX* 16 functions, spaceis allocated on the stack by the caller for the
return value. Register Sl is set to point to the destination of the result. The called
function places the result at the location pointed to by register Sl.

For CHARACTER functions, an additional argument is passed. Thisargument is
the address of the string descriptor for the result. Note that the address of the string
descriptor can be passed in any of the registers that are used to pass actual
arguments.

For functions that return a user-defined structure, space is allocated on the stack by
the caller for the return value. Register Sl is set to point to the destination of the
result. The called function places the result at the location pointed to by register Sl.

Note that a structure of size 1, 2 or 4 bytesisreturned in register AL, AX or
DX:AX respectively.

Calling Conventions 135

16-bit Topics

10.2.2 Processing Function Return Values Using an 80x87

The following describes the method used to return function values when your application is
compiled using the "fpi87" or "fpi" option.

1. For REAL*4 functions, the result isreturned in floating-point register ST(0).
2. For REAL*8functions, the result isreturned in floating-point register ST(0).
3. All other function values are returned in the way described in the previous section.

10.2.3 Processing Alternate Returns

Alternate returns are processed by the caller and are only allowed in subroutines. The called
subroutine places the value specified in the RETURN statement in register AX. Note that the
value returned in register AX isignored if there are no aternate return specifiersin the actual
argument list.

10.2.4 Alternate Method of Passing Character Arguments

As previously described, character arguments are passed using string descriptors. Recall that
astring descriptor contains a pointer to the actual character data and the length of the
character data. When passing character data, both a pointer and length are required by the
subprogram being called. When using a string descriptor, thisinformation can be passed
using a single argument, namely the pointer to the string descriptor.

An alternate method of passing character arguments is also supported and is selected when the
"nodescriptor” option is specified. In this method, the pointer to the character data and the
length of the character data are passed as two separate arguments. The character argument
lengths are appended to the end of the actual argument list.

Let us consider the following example.

I NTEGER A, C
CHARACTER B, D
CALL SUB(A B, C, D)

In the above example, the first argument is of type INTEGER, the second argument is of type
CHARACTER, thethird argument is of type INTEGER, and the fourth argument is of type
CHARACTER. If the character arguments were passed by descriptor, the argument list would
resemble the following.

1. Thefirst argument would be the address of A.
2. The second argument would be the address of the string descriptor for B.

136 Calling Conventions

16-bit Assembly Language Considerations

3.
4.

The third argument would be the address of C.
The fourth argument would be the address of the string descriptor for D.

If we specified the "nodescriptor option, the argument list would be as follows.

oukwbdpE

The first argument would be the address of A.

The second argument would be the address of the character datafor B.
The third argument would be the address of C.

The fourth argument would be the address of the character datafor D.
A hidden argument for the length of B would be the fifth argument.

A hidden argument for the length of D would be the sixth argument.

Note that the arguments corresponding to the length of the character arguments are passed as
INTEGER* 2 arguments.

10.2.4.1 Character Functions

By default, when a character function is called, a hidden argument is passed at the end of the
actual argument list. This hidden argument is a pointer to the string descriptor used for the
return value of the character function. When the alternate method of passing character
arguments is specified by using the "nodescriptor” option, the string descriptor for the return
value is passed to the function as two hidden arguments, similar to the way character
arguments were passed. However the two hidden arguments for the return value of the
character function are placed at the beginning of the actual argument list. The first argument
is the the pointer to the storage immediately followed by the size of the storage.

10.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP'
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

Memory Layout 137

16-bit Topics

6.

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01"
and isthe first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

In addition to these special segments, the following conventions are used by Open Watcom

F77.

The "CODE" class contains the executable code for your application. Inasmall
code model, this consists of the segment " _TEXT". In abig code model, this
consists of the segments "<subprogram>_TEXT" where <subprogram> is the name

of a subprogram.

The"FAR_DATA" class consists of the following:

(a arrays whose size exceeds the data threshold in large data memory
models (the data threshold is 256 bytes unless changed using the "dt"
compiler option)

(b) equivalenced variables in large data memory models

10.4 Writing Assembly Language Subprograms

When writing assembly language subprograms, use the following guidelines.

138

1

All used registers must be saved on entry and restored on exit except those used to
pass arguments and return values. Note that segment registers only have to be
saved and restored if you are compiling your application with the "sr" option.

The direction flag must be clear before returning to the caller.
In asmall code model, any segment containing executable code must belong to the

segment " _TEXT" and the class "CODE". The segment " _TEXT" must have a
"combine" type of "PUBLIC". On entry, register CS contains the segment address

Writing Assembly Language Subprograms

16-bit Assembly Language Considerations

8.

of thesegment *_TEXT". Inabig code model thereis no restriction on the naming
of segments which contain executable code.

In asmall data model, segment register DS contains the segment address of the
default data segment (group "DGROUP"). In abig data model, segment register
SS (not DS) contains the segment address of the default data segment (group
"DGROUP").

When writing assembly language subprograms for the small code model, you must
declarethem as "near". If you wish to write assembly language subprograms for
the big code model, you must declare them as "far”.

Use the ".8087" pseudo-op so that floating-point constants are in the correct format.

The called subprogram must remove arguments that were passed on the stack in the
"ret" instruction.

In general, when naming segments for your code or data, you should follow the
conventions described in the section entitled "Memory Layout” in this chapter.

Consider the following example.

100

| NTEGER HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)

PRINT 100, HRS, M NS, SECS, HSECS

FORMAT(1X,12.2,7:°,12.2,7:",12.2,".7,12.2)
END

CGETTI Mis an assembly language subroutine that gets the current time. 1t requires four
integer arguments. The arguments are passed by reference so that the subroutine can return
the hour, minute, seconds and hundredths of a second for the current time. These arguments
will be passed to GETTI Min the following way.

AL PE

The address of the first argument will be passed in registers DX:AX.
The address of the second argument will be passed in registers CX:BX.
The address of the third argument will be passed on the stack.

The address of the fourth argument will be passed on the stack.

The following is an assembly language subprogram which implements GETTI M

Large Memory Model (big code, big data)

Writing Assembly Language Subprograms 139

16-bit Topics

GETTIM _TEXT segment byte public ’'CODE’
assume CS:GETTIM_TEXT
public GETTIM

GETTIM proc far

push Dl ; save register(s)
push ES HE
push DS A
push BP ; get addressability to argunents
nov BP, SP R
mv ES, DX ; ES: Dl points to hours
nmov D, AX R
mv DS, CX ; DS:BX points to minutes
nov AH, 2ch ; set DOS "get tinme" function
int 21h ; issue DOS function call
nov AL, CH ; get hours
cbw M
nov ES:[DI],AX ; return hours
sub AX; AX ;
nov ES:2[DI],AX ; ...
nov AL, CL ; get minutes
cbw R
mv [BX], AX ; return mnutes
sub AX, AX ;
nmov 2[BX], AX HE
nov DS, 14[BP] ; get address of seconds
nov D,12[BP] ; ...
nov AL, DH ; get seconds
cbw M
nov [DI], AX ; return seconds
sub AX; AX ;
nov 2[DI], AX R
nmv DS, 18[BP] ; get address of ticks
nov D, 16[BP] R
mv AL, DL ; get ticks
cbw R
cwd T
nov [DI], AX ; return ticks
nmov 2[DI], DX HE
pop BP ; restore register(s)
pop DS R
pop ES ;
pop DI R
ret 8 ; return
GETTIM endp

GETTIM_TEXT ends

end
Notes:

1. Two arguments were passed on the stack so a"ret 8" instruction is used to return to
thecaller.

140 Writing Assembly Language Subprograms

16-bit Assembly Language Considerations

2. Registers AX, BX, CX and DX were not saved and restored since they were used to
pass arguments. However, registers DS, ES, DI and BP were modified in the
subprogram and hence must be saved and restored.

Let uslook at the stack upon entry to GETTI M

Large Model (big code, big data)

O fset

0 R LT + <- SP points here
| return address |

4 oo o - +
| argument #3 |

8 Fom e e e e +
| argument #4 |

12 S +
| I

Notes:

1. Thetop element of the stack is a segment/offset pair forming a 32-hit return
address. Hence, the third argument will be at offset 4 from the top of the stack and
the fourth argument at offset 8.

Register SP cannot be used as a base register to address the arguments on the stack. Register
BPisnormally used to address arguments on the stack. Upon entry to the subroutine,
registers that are modified (except those used to pass arguments) are saved and register BP is
set to point to the stack. After performing this prologue sequence, the stack looks like this.

Writing Assembly Language Subprograms 141

16-bit Topics

Large Model (big code, big data)

O f set

0 R LR + <- BP and SP point here
| saved BP |

2 o e +
| saved DS |

4 o e +
| saved ES |

6 oo o - +
| saved D |

8 Fom e e e e +
| return address

12 R +
| argument #3 |

16 o a o +
| argument #4

20 o +

As the above diagram shows, the third argument is at offset 12 from register BP and the fourth
argument is at offset 16.

10.4.1 Returning Values from Assembly Language Functions

The following illustrates the way function values are to be returned from assembly language
functions.

1. A LOGICAL*1 function.

L1_TEXT segment byte public ’'CODE’
assume CS:L1_TEXT

public L1
L1 proc far
nmov AL, 1
ret
L1 endp
L1_TEXT ends
end

2. A LOGICAL*4 function.

L4_TEXT segment byte public ’'CODE’
assume CS:L4_TEXT

public L4
L4 proc far
nmov AX, 0

142 Writing Assembly Language Subprograms

16-bit Assembly Language Considerations

L4
L4_TEXT

cwd
ret
endp
ends
end

3. AnINTEGER*1 function.

I1_TEXT segment byte public

11

11
I1_TEXT

assume
public
proc
nmov
ret
endp
ends
end

"CODE’
CS:I1_TEXT

11

far

AL, 73

4. AnINTEGER*2 function.

I2_TEXT segment byte public

12

12
I2_TEXT

assume
public
proc
nov
ret
endp
ends
end

"CODE’
CS:I2_TEXT

12

far

AX, 7143

5. AnINTEGER*4 function.

I4_TEXT segment byte public

14

14
I4_TEXT

assume
public
proc
nmov
cwd
ret
endp
ends
end

6. A REAL*4 function.

. 8087

DGROUP

R4_TEXT

R4

"CODE "
CS:I4_TEXT

1 4

far

AX, 383

group R4_DATA

segment
assume
assune
public
proc

Writing Assembly Language Subprograms

byte public ’'CODE’
CS:R4_TEXT

SS: DGROUP

R4

far

143

16-bit Topics

R4
R4_TEXT
R4_DATA
R4Val
R4_DATA

nmov AX,word ptr SS: R4Va
nov DX, word ptr SS: R4Val +2
ret

endp

ends

segment byte public ’'DATA’
dd 1314.3
ends

end

7. A REAL*8function.

. 8087

DGROUP

R8_TEXT

R8
R8_TEXT
R8_DATA
R8Val
R8_DATA

group R8_DATA

segment byte public ‘CODE’
assume CS:R8_TEXT
assune SS: DGROUP

public R8

proc far

nmov DX, word ptr SS: R8Va
nmv CX,word ptr SS:R8Val +2
nmov BX, word ptr SS: R8Val +4
nmv AX,word ptr SS:R8Val +6
ret

endp

ends

segment byte public ’'DATA’

dg 103.3

ends

end

8. A COMPLEX*8 function.

. 8087

DGROUP

C8_TEXT

group C8_DATA

segment byte public ‘CODE’
assume CS:C8_TEXT
assune SS: DGROUP

public C8

proc far

push D

push ES

xchg D, Sl

push SS

pop ES

nov Sl, of fset SS: C8Val
novsw

novVSsw

144 Writing Assembly Language Subprograms

16-bit Assembly Language Considerations

c8
C8_TEXT

C8_DATA
C8val

C8_DATA

noVSW
nMoVSW
pop
pop
ret
endp

ends

ES

segment byte public ’'DATA’

dd 2.2
dd 2.2

ends

end

9. A COMPLEX*16 function.

. 8087

DGROUP group Cl16_DATA

Cl6_TEXT segment byte public ‘CODE’

Cl6

Cl6

assume
assune
public
proc
push
push
push
xchg
push
pop
nov
nov
repe
pop
pop
pop
ret
endp

Cl6_TEXT ends

CS:Cl6_TEXT
SS: DGROUP
C16

far

Sl, of fset SS: Cl6Va
CX, 8

noVSW

CX

ES

Dl

Cl6_DATA segment byte public ’'DATA’

Cl6Va

dg 3.3
dg 3.3

C16_DATA ends

end

10. A CHARACTER function.

CHR_TEXT segment byte public ’CODE’

CHR

assume
public
proc
push

CS:CHR_TEXT
CHR

far

Dl

Writing Assembly Language Subprograms 145

16-bit Topics

push ES
nmv ES, DX
nov DI, AX
| es D, ES:[D]
nmov byte ptr ES:[D],'F
pop ES
pop DI
ret
CHR endp

CHR_TEXT ends

end

11. A function returning a user-defined structure.
DGROUP group STRUCT_DATA
STRUCT_TEXT segment byte public 'CODE’

assume CS:STRUCT_TEXT
assune SS: DGROUP

public C16

STRUCT proc far
push DI
push ES
push CX
xchg D, Sl
push SS
pop ES
nov Sl, of fset SS: Struct Val
nmov CX 4
repe novsw
pop CX
pop ES
pop DI
ret

STRUCT endp

STRUCT_TEXT ends
STRUCT_DATA segment byte public ’DATA’
StructVal dd 7
dd 3
STRUCT_DATA ends
end

If you are using an 80x87 to return floating-point values, only assembly language functions of
type REAL*4 and REAL *8 need to be modified.

1. A REAL*4function using an 80x87.

146 Writing Assembly Language Subprograms

16-bit Assembly Language Considerations

. 8087
DGROUP group R4_DATA
R4_TEXT segment byte public ’CODE’

assume CS:R4_TEXT
assune SS: DGROUP

public R4

R4 proc far
flid dword ptr SS: R4Val
ret

R4 endp

R4_TEXT ends

R4_DATA segment byte public ’'DATA’
R4Val dd 1314.3

R4_DATA ends

end
2. A REAL*8function using an 80x87.

. 8087
DGROUP group R8_DATA
R8_TEXT segment byte public ’CODE’

assume CS:R8_TEXT
assune SS: DGROUP

public R8

R8 proc far
fld gword ptr SS: R8Val
ret

R8 endp

R8_TEXT ends

R8_DATA segment byte public ’'DATA’
R8Val dq 103.3

R8_DATA ends

end
Notes:

1. The".8087" pseudo-op must be specified so that all floating-point constants are
generated in 8087 format.

2. When returning values on the stack, remember to use a segment override to the
stack segment (SS).

Thefollowing is an example of a Open Watcom F77 program calling the above assembly
language subprograms.

Writing Assembly Language Subprograms 147

16-bit Topics

logical 11*1, 14*4
integer i1*1, i2*2, i4*4
real r4*4, r8*8
conpl ex ¢8*8, cl16*16
character chr
structure /coord/

i nteger x, vy
end structure
record /coord/ struct

print *, 11()
print *, 14()
print *, i1()
print *, i2()
print *, i4()
print *, r4()
print *, r8()
print *, ¢8()
print * ¢l6()
print *, chr()
print *, struct()
end

148 Writing Assembly Language Subprograms

11 16-bit Pragmas

11.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas can be used to direct the Open Watcom F77 code generator to emit
specialized sequences of code for calling functions which use argument passing and
value return techniques that differ from the default used by Open Watcom F77.

* Pragmas can be used to describe attributes of functions (such as side effects) that are
not possible at the FORTRAN 77 language level. The code generator can use this
information to generate more efficient code.

 Any sequence of in-line machine language instructions, including DOS and BIOS
function calls, can be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is
used to describe the syntax of pragmas.

keywords A keywor d isshown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-itemisa
symbol name or numeric value supplied by the programmer.

punctuation A punctuati on charact er showninamono-spaced courier font must be
entered asis.

A punctuation character shown in aroman bold-italics font is used to describe
syntax. The following syntactical notation is used.

[abc] Theitem abc is optional.
{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

Introduction 149

16-bit Topics

a:=b The item a is defined in terms of b.
(@ Item ais evaluated first.
The following classes of pragmas are supported.
* pragmas that specify default libraries

* pragmas that provide auxiliary information used for code generation

11.2 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted
from these special records by the Open Watcom Linker. When unresolved references remain
after processing all object modules specified in linker "FILE" directives, these default libraries
are searched after al libraries specified in linker "LIBRARY" directives have been searched.

By default, that isif no library pragmais specified, the Open Watcom F77 compiler generates,
in the object file defining the main program, default libraries corresponding to the memory
model and floating-point model used to compilethefile. For example, if you have compiled
the source file containing the main program for the medium memory model and the
floating-point calls floating-point model, the library "flibm" will be placed in the object file.

If you wish to add your own default libraries to thislist, you can do so with alibrary pragma.
Consider the following example.

*$pragma library nylib
The name "mylib" will be added to the list of default libraries specified in the object file.

If you wish to specify more than one library in alibrary pragmayou must separate them with
spaces as in the following example.

*$pragma library nylib \watcom |ib286\dos\graph.lib
*$pragma library nylib \watcom |ib386\dos\graph.lib

If no libraries are specified as in the following example,
*$pragma library

the run-time libraries corresponding to the memory and floating-point models used to compile
the file will be generated.

150 Using Pragmas to Specify Default Libraries

16-bit Pragmas

11.3 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

The backslash character ('\') is used to continue a pragma on the next line. Text following the
backslash character isignored. The line continuing the pragma must start with a comment
character ('c’,’C’ or '*’).

11.3.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initialy, the
compiler defines a default set of attributes. Each auxiliary pragma refersto one of the
following.

1. asymbol (such as avariable or function)
2. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefers to a particular symbol, a copy of the current set of default
attributes is made and merged with the attributes specified in the auxiliary pragma. The
resulting attributes are assigned to the specified symbol and can only be changed by another
auxiliary pragmathat refers to the same symbol.

When "default” is specified instead of a symbol name, the attributes specified by the auxiliary
pragma change the default set of attributes. The resulting attributes are used by all symbols
that have not been specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the
following example.

code in which synbol x is referenced
*Spragma aux y <attrs_1>

code in which synbol y is referenced
code in which synbol z is referenced
*Spragma aux default <attrs_ 2>
*Spragma aux x <attrs_ 3>

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes
specified by <attrs 2> and <attrs_3>.

Auxiliary Pragmas 151

16-bit Topics

2. Symbol y isassigned theinitial default attributes merged with the attributes
specified by <attrs_1>.

3. Symbol z isassigned theinitial default attributes merged with the attributes
specified by <attrs_2>.

11.3.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an aias name, the attributes of the
alias name are also assumed by the specified symbol.

There are two methods of specifying aliasinformation. In the first method, the symbol
assumes only the attributes of the alias name; no additional attributes can be specified. The
second method is more general sinceit is possible to specify an alias name as well as
additional auxiliary information. In this case, the symbol assumes the attributes of the alias
name as well as the attributes specified by the additional auxiliary information.

The simple form of the auxiliary pragma used to specify an aliasis as follows.

*$pragma aux (sym, alias)

where description:
sym isany valid FORTRAN 77 identifier.
alias isthe alias name and is any valid FORTRAN 77 identifier.

Consider the following example.

*Spragma aux value_args parm (value)
*Spragma aux (rtn, value_args)

Theroutine r t n assumes the attributes of the alias name push _args which specifiesthat
the argumentsto r t n are passed by value.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

152 Auxiliary Pragmas

16-bit Pragmas

*$pragma aux (alias) sym aux_attrs

where description:
alias isthe alias name and is any valid FORTRAN 77 identifier.
sym isany valid FORTRAN 77 identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

*Spragma aux WC "*_" parm (value)
*$pragma aux (WC) rtnil
*$pragma aux (WC) rtn2
*$pragma aux (WC) rtn3

Theroutinesr t n1, rtn2 andrt n3 assume the same attributes as the alias name WC which
defines the calling convention used by the Open Watcom C compiler. Whenever calls are
madetortnl, rtn2 andrtn3, the Open Watcom C calling convention will be used.
Note that arguments must be passed by value. By default, Open Watcom F77 passes
arguments by reference.

Note that if the attributes of WC change, only one pragma needs to be changed. |f we had not
used an alias name and specified the attributes in each of the three pragmasfor rt nl, rtn2
and r t n3, wewould haveto change all three pragmas. This approach also reduces the
amount of memory required by the compiler to process the sourcefile.

WARNING! The alias name WC s just another symbol. If WC appeared in your source
code, it would assume the attributes specified in the pragmafor WC.

11.3.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a
particular calling convention. These symbols can be used as aliases. Thefollowingisalist of
these symbols.

Auxiliary Pragmas 153

16-bit Topics

__cdecl
__fastcall

_ fortran

__pascal

__gdeall

__watcall

__cdec] definesthe calling convention used by Microsoft compilers.
__fastcall definesthe calling convention used by Microsoft compilers.

__fortran definesthe caling convention used by Open Watcom FORTRAN
compilers.

__pascal definesthe calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall definesthe caling convention used by Microsoft compilers.

__watcall definesthe calling convention used by Open Watcom compilers.

The following describes the attributes of the above aias names.

11.3.3.1 Predefined " cdecl" Alias

Spragma aux __cdecl "_" \

parmcaller [] \
val ue struct float struct routine [ax] \
nmodi fy [ax bx cx dx es]

All symbols are preceded by an underscore character.

Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

Floating-point values are returned in the same way as structures. When a structure
isreturned, the called routine all ocates space for the return value and returns a
pointer to the return value in register AX.

Registers AX, BX, CX and DX, and segment register ES are not saved and restored
when acall is made.

11.3.3.2 Predefined "__pascal” Alias

*Spragma aux __pascal "' \

Cc
Cc
Cc

parmreverse routine [] \
val ue struct float struct caller [] \
modi fy [ax bx cx dx es]

154 Auxiliary Pragmas

16-bit Pragmas

Notes:
1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is
pushed first, the second argument is pushed next, and so on. The routine being
called will remove the arguments from the stack.

3. Foating-point values are returned in the same way as structures. When a structure
isreturned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon
returning from the call, register AX will contain address of the space allocated for
the return value.

4. RegistersAX, BX, CX and DX, and segment register ES are not saved and restored
when acall is made.

11.3.3.3 Predefined " _watcall" Alias

*Spragma aux __watcall "*_" \
c parmroutine [ax bx cx dx] \
c val ue struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used
for argument passing have been exhausted). Arguments that are passed on the
stack are pushed from right to left. The calling routine will remove the arguments
if any were pushed on the stack.

3. When astructureis returned, the caller allocates space on the stack. The address of
the allocated spaceis put into Sl register. The called routine then places the return
value there. Upon returning from the call, register AX will contain address of the
space alocated for the return value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using
80x87 floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

Auxiliary Pragmas 155

16-bit Topics

11.3.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol
from its source form to its object form.

*$pragma aux sym obj_name

where description:
sym isany valid FORTRAN 77 identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj_name, some characters have a special meaning:

where description:
* isunmodified symbol name
n is symbol name converted to uppercase

! is symbol name converted to lowercase

is aplaceholder for "@nnn", where nnn is size of al function parameters on the
stack.
\ next character istreated as litera

Severa examples of source to object form symbol name trandation follow: By default, the
upper caseversion "MYRTN" or "MYVAR" is placed in the object file.

In the following example, the name "MyRtn" will be replaced by "MYRTN_" in the object
file.

*Spragma aux MyRtn """

In the following example, the name "MyVar" will bereplaced by "_MYVAR" in the object
file

*Spragma aux MyVar "_""

In the following example, the lower case version "myrtn” will be placed in the object file.

156 Auxiliary Pragmas

16-bit Pragmas

*$pragma aux MyRtn "I"

In the following example, the name "MyRtn" will be replaced by " MyRtn@nnn" in the
object file. "nnn" represents the size of all function parameters.

Spragma aux MyRtn "_#"

In the following example, the name "MyRtn" will be replaced by *_MyRtn#" in the object
file.

Spragma aux MyRtn "_\#"

The default mapping for al symbols can also be changed asillustrated by the following
example.

*Spragma aux default "_~_"

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an
underscore character (").

11.3.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a subprogram is
to be called.

*$pragma aux sym far
or

*$pragma aux sym near
or

*$pragnma aux sym = in_line

in_line::={const |"asm" | (f| oat fpinst)}

where description:
sym is a subprogram name.
const isavaid FORTRAN 77 hexadecimal constant.

Auxiliary Pragmas 157

16-bit Topics

fpinst is a sequence of bytesthat forms avalid 80x87 instruction. The keyword float
must precede f pi nst so that special fixups are applied to the 80x87
instruction.

asm is an assembly language instruction or directive.

In the following example, Open Watcom F77 will generate afar call to the subprogram
nyrtn.

*$pragma aux nyrtn far

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, afar call will be generated even if you are compiling for a
memory model with asmall code model.

In the following example, Open Watcom F77 will generate anear call to the subprogram
nyrtn.

*$pragna aux nyrtn near

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, anear call will be generated even if you are compiling for a
memory model with abig code model.

In the following DOS example, Open Watcom F77 will generate the sequence of bytes
following the"=" character in the auxiliary pragmawhenever acall to node4 is encountered.
node4 iscaled an in-line subprogram.

*$pragma aux node4d = \

* zb4 z00 \ mov AH O
* zb0 z04 \ nmov AL, 4
* zcd z10 \ int 10h

*

modify [AH AL]

The sequence in the above DOS example represents the following lines of assembly language

instructions.
nov AH, 0 ; select function "set nopde"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing
an assembly language function and calling it from your FORTRAN 77 program.

158 Auxiliary Pragmas

16-bit Pragmas

The following DOS example is equivaent to the above example but mnemonics for the
assembly language instructions are used instead of the binary encoding of the assembly
language instructions.

*$pragma aux node4d = \
* "mov AH, 0" \
* "mov AL, 4" \
* "int 10H" \
*

modi fy [AH AL]

If a sequence of in-line assembly language instructions contains 80x87 floating-point
instructions, each floating-point instruction must be preceded by "float". Note that thisisonly
required if you have specified the "fpi" compiler option; otherwiseit will be ignored.

The following example generates the 80x87 "square root" instruction.

*$pragma aux nysqgrt parm(value) [8087] =\
* float zd9fa

11.3.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the
segment address of the default data segment (group "DGROUP"). Thisisusually the case if
you are using alarge data memory model. Suppose you wish to call a subprogram that
assumes that the segment register DS contains the segment address of the default data
segment. It would be very cumbersome if you were forced to compile your application so that
the segment register DS contained the default data segment (a small data memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded
with the segment address of the default data segment before calling the specified subprogram.

*$pragnma aux sym parm | oadds

where description:
sym is a subprogram name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS

to be loaded with the segment address of the default data segment as part of the prologue
sequence for the specified subprogram.

Auxiliary Pragmas 159

16-bit Topics

*$pragma aux sym | oadds

where description:

sym is a subprogram name.

11.3.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library isasymbol that can be referenced by an
application that is linked with that dynamic link library. Normally, symbolsin dynamic link
libraries are exported using the Open Watcom Linker "EXPORT" directive. An alternative
method is to use the following form of the auxiliary pragma.

*$pragma aux sym export

where description:

sym is a subprogram name.

11.3.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "windows" option so
that special prologue/epilogue sequences are generated. Furthermore, callback functions
require larger prologue/epilogue sequences than those generated when the "windows'
compiler option is specified. The following form of the auxiliary pragmawill cause a

callback prologue/epilogue sequence to be generated for a callback function when compiled
using the "windows" option.

*$pragna aux sym export

where description:

sym isacalback function name.

160 Auxiliary Pragmas

16-bit Pragmas

11.3.6 Describing Argument Information

Using auxiliary pragmas, you can describe the calling convention that Open Watcom F77 isto
use for calling subprograms. Thisis particularly useful when interfacing to subprograms that
have been compiled by other compilers or subprograms written in other programming
languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

*$pragnma aux sym parm {arg_info|pop_info|reverse {reg_set} }

arg info::= (arg_attr {, arg_ attr})

arg_attr ::= val ue [v_attr]
| reference [r_attr]

| data_reference [d_attr]

v attr ;= far | near | *1 | *2 | *4 | *8

r_attr ::= [far | near] [descriptor | nodescri ptor]
d_attr ::= [far | near]

pop_info::= caller | routine

where description:
sym is a subprogram name.
reg_set iscalled aregister set. Theregister sets specify the registers that are to be used

for argument passing. A register setisalist of registers separated by spaces and
enclosed in square brackets.

11.3.6.1 Passing Arguments to non-FORTRAN Subprograms

When calling a subprogram written in a different language, it may be necessary to provide the
arguments in aform different than the default methods used by Open Watcom F77. For
example, C functions require scalar arguments to be passed by value instead of by reference.
For information on the methods Open Watcom F77 uses to pass arguments, see the chapter
entitled "Assembly Language Considerations”.

Auxiliary Pragmas 161

16-bit Topics

The following form of the auxiliary pragma can be used to alter the default calling mechanism
used for passing arguments.

v_attr ::

d_attr ::

*$pragna aux sym parm (arg attr {, arg attr})

arg_attr ::= val ue [v_attr]

| reference [r_attr]
| data_reference [d_attr]

=far | near | *1 | *2 | *4 | *8

r_attr :;= [far | near] [descriptor | nodescri ptor]

= [far | near]

where

sym

description:

is a subprogram name.

REFERENCE specifies that arguments are to be passed by reference. For non-character

arguments, the address is a pointer to the data. For character arguments, the
addressis a pointer to astring descriptor. See the chapter entitled "Assembly
Language Considerations' for a description of a string descriptor. Thisisthe
default calling mechanism. If "NEAR" or "FAR" is specified, a near pointer or
far pointer is passed regardless of the memory model used at compile-time.

If the "DESCRIPTOR" attribute is specified, a pointer to the string descriptor is
passed. Thisisthe default. If the "NODESCRIPTOR" attribute is specified, a
pointer to the the actual character datais passed instead of a pointer to the string
descriptor.

DATA_ REFERENCE specifiesthat arguments are to be passed by data reference. For

VALUE

non-character items, thisisidentical to passing by reference. For character
items, a pointer to the actual character data (instead of the string descriptor) is
passed. If "NEAR" or "FAR" is specified, a near pointer or far pointer is passed
regardless of the memory model used at compile-time.

specifies that arguments are to be passed by value. Character arguments are
treated specially when passed by value. Instead of passing a pointer to a string
descriptor, a pointer to the actual character datais passed. See the chapter
entitled " Assembly Language Considerations' for a description of astring
descriptor.

162 Auxiliary Pragmas

16-bit Pragmas

Notes:

1. Arraysand subprograms are aways passed by reference, regardless of the argument
attribute specified.

2. When character arguments are passed by reference, the address of a string
descriptor is passed. The string descriptor contains the address of the actual
character data and the number of characters. When character arguments are passed
by value or datareference, the address of the actual character datais passed instead
of the address of a string descriptor. Character arguments are passed by value by
specifying the"VALUE" or "DATA_REFERENCE" attribute. If "NEAR" or
"FAR" is specified, anear pointer or far pointer to the character datais passed
regardless of the memory model used at compile-time.

3. When complex arguments are passed by value, the real part and the imaginary part
are passed as two separate arguments.

4. When an argument is a user-defined structure and is passed by value, a copy of the
structure is made and passed as an argument.

5. For scalar arguments, arguments of type INTEGER*1, INTEGER*2,
INTEGER*4, REAL or DOUBLE PRECISION, alength specification can be
specified when the "VALUE" attribute is specified to pass the argument by value.
This length specification refers to the size of the argument; the compiler will
convert the actual argument to a type that matchesthe size. For example, if an
argument of type REAL is passed to a subprogram that has an argument attribute
of "VALUE*8", the argument will be converted to DOUBLE PRECISION. If an
argument of type DOUBLE PRECISION is passed to a subprogram that has an
argument attribute of "VALUE*4", the argument will be converted to REAL. If an
argument of type INTEGER*4 is passed to a subprogram that has an argument
attribute of "VALUE*2" or VALUE* 1, the argument will be converted to
INTEGER*2 or INTEGER*1. If an argument of type INTEGER*2 is passed to
a subprogram that has an argument attribute of "VALUE*4 or VALUE*1", the
argument will be converted to INTEGER*4 or INTEGER*1. If an argument of
type INTEGER* 1 is passed to a subprogram that has an argument attribute of
"VALUE*4 or VALUE*2", the argument will be converted to INTEGER*4 or
INTEGER*2.

6. If the number of arguments exceeds the number of entries in the argument-attribute
list, the last attribute will be assumed for the remaining arguments.

Consider the following example.

Auxiliary Pragmas 163

16-bit Topics

*Spragma aux printf "*_" parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf('values: %d, %d //cr//nullchar,
77, 31410)
end

The C "printf" function is called with three arguments. The first argument is of type
CHARACTER and is passed as a C string (address of actual dataterminated by anull
character). The second and third arguments are passed by value. Also note that "printf" isa
function that takes a variable number of arguments, all passed on the stack (an empty register
set was specified), and that the caller must remove the arguments from the stack.

11.3.6.2 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to pass arguments to a particular subprogram.

*$pragma aux sym parm {reg_set}

where description:
sym is a subprogram name.
reg_set iscalled aregister set. The register sets specify the registers that are to be used

for argument passing. A register setisalist of registers separated by spaces and
enclosed in square brackets.

Register sets establish a priority for register allocation during argument list processing.
Register sets are processed from left to right. However, within aregister set, registers are
chosen in any order. Onceall register sets have been processed, any remaining arguments are
pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will
be selected for arguments of a particular type.

Note that arguments of type REAL and DOUBLE PRECI SION are always pushed on the
stack when the "fpi" or "fpi87" option is used.

164 Auxiliary Pragmas

16-bit Pragmas

DOUBLE PRECISION
Arguments of type DOUBL E PRECISION, when passed by value, can only be
passed in the following register combination: AX:BX:CX:DX. For example, if
the following register set was specified for a routine having an argument of type
DOUBLE PRECISION,

[AX BX SI DI]

the argument would be pushed on the stack since avalid register combination
for 8-byte arguments is not contained in the register set. Note that this method
for passing arguments of type DOUBL E PRECISION is supported only when
the "fpc" option isused. Note that this argument passing method does not
include arguments of type COM PL EX*8 or user-defined structures whose size
is 8 bytes when these arguments are passed by value.

far pointer A far pointer can only be passed in one of the following register pairs: DX:AX,
CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:Sl, DI:BX, SI:AX,
CX:DX, DX:DI, DI:Sl, SI:BX, BX:AX, DS.CX, DS.DX, DS:DI, DS:S,
DS:BX, DS.AX, ES:.CX, ES:.DX, ES.DI, ES:SI, ES:BX or ES:AX. For
example, if afar pointer is passed to a function with the following register set,

[ES BP]

the argument would be pushed on the stack since avalid register combination
for afar pointer is not contained in the register set. Far pointers are used to pass
arguments by reference in a big data memory model.

INTEGER*4, REAL
The only registersthat will be assigned to 4-byte arguments (e.g., arguments of
type INTEGER* 4, when passed by value) are: DX:AX, CX:BX, CX:AX,
CX:Sl, DX:BX, DI:AX, CX:DI, DX:Sl, DI:BX, SI:AX, CX:DX, DX:DI, DI:Sl,
SI:BX and BX:AX. For example, if the following register set was specified for
aroutine with one argument of type INTEGER* 4,

[ES DI]

the argument would be pushed on the stack since avalid register combination
for 4-byte argumentsis not contained in the register set. Note that this argument
passing method includes arguments of type REAL but only when the "fpc"
option is used.

INTEGER*2

The only registersthat will be assigned to 2-byte arguments (e.g., arguments of
type INTEGER*2 when passed by value or arguments passed by referencein a

Auxiliary Pragmas 165

16-bit Topics

small data memory model) are: AX, BX, CX, DX, Sl and DI. For example, if
the following register set was specified for a routine with one argument of type
INTEGER*2,

[BF]

the argument would be pushed on the stack since avalid register combination
for 2-byte arguments is not contained in the register set.

INTEGER*1
Arguments whose sizeis 1 byte (e.g., arguments of type INTEGER* 1 when
passed by value) are promoted to 2 bytes and are then assigned registers as if
they were 2-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in
registers and are pushed on the stack. Once an argument has been assigned a
position on the stack, all remaining arguments will be assigned a position on the
stack even if all register sets have not yet been exhausted.

Notes:
1. Thedefault register set is[AX BX CX DX].

2. Specifying registers AH and AL is equivalent to specifying register AX.
Specifying registers DH and DL is equivalent to specifying register DX.
Specifying registers CH and CL is equivalent to specifying register CX. Specifying
registers BH and BL is equivalent to specifying register BX.

3. If you are compiling for amemory model with a small data model, any register
combination containing register DS becomesillegal. In asmall data model,
segment register DS must remain unchanged as it points to the program’ s data
segment.

Consider the following example.

*$pragnma aux nyrtn parm (val ue) \
* [ax bx cx dx] [bp si]

Suppose myr t n isaroutine with 3 arguments each of type INTEGER. Note that the
arguments are passed by value.

1. Thefirst argument will be passed in the register pair DX:AX.
2. The second argument will be passed in the register pair CX:BX.

166 Auxiliary Pragmas

16-bit Pragmas

3. Thethird argument will be pushed on the stack since BP:SI isnot avalid register
pair for arguments of type INTEGER.

Itis possible for registers from the second register set to be used before registers from the first
register set are used. Consider the following example.

*$pragma aux nyrtn parm (val ue) \
* [ax bx cx dx] [si di]

Suppose nyr t n isaroutine with 3 arguments, the first of type INTEGER and the second
and third of type INTEGER. Notethat all arguments are passed by value.

1. Thefirst argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. Thethird argument will be passed in the register set DI:Sl.

Note that registers are no longer selected from aregister set after registers are selected from
subsequent register sets, even if all registers from the original register set have not been
exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty
register set areignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [AX BX CX DX] is used.

11.3.6.3 Forcing Arguments into Specific Registers

It is possible to force argumentsinto specific registers. Suppose you have a subprogram, say
"mycopy", that copiesdata. The first argument is the source, the second argument is the
destination, and the third argument is the length to copy. If we want the first argument to be
passed in the register Sl, the second argument to be passed in register DI and the third
argument to be passed in register CX, the following auxiliary pragma can be used.

*$pragnma aux nycopy parm (val ue) \
*

[SI] [D] [CX]
character*10 dst
call mycopy(dst, ’'0123456789', 10)

end

Auxiliary Pragmas 167

16-bit Topics

Note that you must be aware of the size of the arguments to ensure that the arguments get
passed in the appropriate registers.

11.3.6.4 Passing Arguments to In-Line Subprograms

For subprograms whose code is generated by Open Watcom F77 and whose argument list is
described by an auxiliary pragma, Open Watcom F77 has some freedom in choosing how
arguments are assigned to registers. Since the code for in-line subprogramsis specified by the
programmer, the description of the argument list must be very explicit. To achieve this, Open
Watcom F77 assumes that each register set corresponds to an argument. Consider the
following DOS example of an in-line subprogram called scr ol | acti vepgup.

*$pragma aux scrollactivepgup = \
* "mov AH, 6" \
"int 10h" \
parm (val ue) \
[ch] [cl] [dh] [dI] [al] [bh] \
nodi fy [ah]

b T

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in
registers CH and CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in
registers DH and DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.
4. Theattribute to be used on the blank linesis passed in register BH.

When passing arguments, Open Watcom F77 will convert the argument so that it fitsin the
register(s) specified in the register set for that argument. For example, in the above example,
if the first argument to scrol | act i vepgup was caled with an argument whose type was
INTEGER, it would first be converted to INTEGER* 1 before assigning it to register CH.
Similarly, if an in-line subprogram required its argument in register pair DX:AX and the
argument was of type INTEGER* 2, the argument would be converted to INTEGER*4
before assigning it to register pair DX:AX.

In general, Open Watcom F77 assigns the following types to register sets.

1. A register set consisting of asingle 8-bit register (1 byte) is assigned atype of
INTEGER* 1.

168 Auxiliary Pragmas

16-bit Pragmas

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned a type of
INTEGER*2.

3. A register set consisting of two 16-bit registers (4 bytes) is assigned a type of
INTEGER*4.

4. A register set consisting of four 16-bit registers (8 bytes) is assigned a type of
DOUBLE PRECISION.

If the size of an integer argument is larger than the size specified by the register set, the

argument will be truncated to the required size. If the size of an integer argument is smaller
than the size specified by the register set, the argument will be padded (to the left) with zeros.

11.3.6.5 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments
that were pushed on the stack.

*$pragnma aux sym parm (cal l er | routine)

where description:
sym is a subprogram name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that
the called routine will pop the arguments from the stack. If "caller" or "routine" is omitted,
"routine” is assumed unless the default has been changed in a previous auxiliary pragma, in
which case the new default is assumed.

Consider the following example. It describes the pragma required to call the C "printf"
function.

*Spragma aux printf "*_" parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf("value is %d //cr//nullchar,
1 7143)
end

The first argument must be passed as a C string, a pointer to the actual character data
terminated by anull character. By default, the address of a string descriptor is passed for
arguments of type CHARACTER. See the chapter entitled "Assembly Language
Considerations' for more information on string descriptors. The second argument is of type

Auxiliary Pragmas 169

16-bit Topics

INTEGER and is passed by value. Also note that "printf" is afunction that takes a variable
number of arguments, all pushed on the stack (an empty register set was specified).

11.3.6.6 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse
order.

*$pragma aux sym parmreverse

where description:
sym is a subprogram name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used for
argument passing have been exhausted). Arguments that are passed on the stack are pushed
from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost
arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for subprograms that require arguments to be passed on
the stack in an order opposite from the default. The following auxiliary pragma demonstrates
such a subprogram.

*$pragma aux rtn parmreverse []

11.3.7 Describing Subprogram Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. Thisis
particularly useful when interfacing to functions that have been compiled by other compilers

or functions written in other programming languages.

The general form of an auxiliary pragmathat describes the way afunction returnsitsvalueis
the following.

170 Auxiliary Pragmas

16-bit Pragmas

*$pragma aux sym val ue {no8087 | reg_set | struct_info}
struct_info::= struct {float | struct | (routine | caller) | reg_set}

where description:
sym isafunction name.
reg_set iscalled aregister set. Theregister sets specify the registers that are to be used

for argument passing. A register setisalist of registers separated by spaces and
enclosed in square brackets.

11.3.7.1 Returning Subprogram Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to return a function’ s value.

*$pragne aux sym val ue reg_set

where description:
sym is a subprogram name.
reg_set isaregister set.

Note that the method described below for returning values of type REAL or DOUBLE
PRECISION is supported only when the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX,
CX, Sl or DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (except far pointers), only the following register pairs

aredlowed: DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DlI, DX:Sl,
DI:BX, SI:AX, CX:DX, DX:DI, DI:Sl, SI:BX or BX:AX. If noregister setis

Auxiliary Pragmas 171

16-bit Topics

specified, registers DX:AX will be used. Thisform of the auxiliary pragmais
legal for functions of type REAL when using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX,
SI:AX, CX:DX, DX:DI, DI:Sl, SI:BX, BX:AX, DS.CX, DS.DX, DS.DI, DS:SI,
DS:BX, DS.AX, ES.CX, ES.DX, ES.DI, ES:SI, ES:BX or ES.AX. If no
register set is specified, the registers DX:AX will be used.

8-byte For 8-byte return values (including functions of type DOUBL E PRECISION),
only the following register combination is allowed: AX:BX:CX:DX. If no
register set is specified, the registers AX:BX:CX:DX will beused. Thisform of
the auxiliary pragmaislegal for functions of type DOUBL E PRECISION
when using the "fpc" option only.

Notes:
1. Anempty register set isnot allowed.
2. If you are compiling for amemory model which has a small data model, any of the
above register combinations containing register DS becomesillegal. 1nasmall

data model, segment register DS must remain unchanged asit points to the
program’s data segment.

11.3.7.2 Returning Structures and Complex Numbers

Typically, structures and complex numbers are not returned in registers. Instead, the caller
allocates space on the stack for the return value and sets register Sl to point to it. The called
routine then places the return value at the location pointed to by register Sl.

Complex numbers are not scalars but rather an ordered pair of real numbers. One can aso
view complex numbers as a structure containing two real numbers.

The following form of the auxiliary pragma can be used to specify the register that isto be
used to point to the return value.

*$pragnma aux sym val ue struct (caller|routine) reg set

172 Auxiliary Pragmas

16-bit Pragmas

where description:
sym is a subprogram name.
reg set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the
memory allocated for the return value is placed in the register specified in the register set by
the caller before the function is called. If an empty register set is specified, the address of the
memory allocated for the return value will be pushed on the stack immediately before the call
and will be returned in register AX by the called routine. It is assumed that the memory for
the return value is allocated from the stack segment (the stack segment is contained in
segment register SS).

"routing”" specifies that the called routine will allocate memory for the return value. Upon
returning to the caller, the register specified in the register set will contain the address of the
return value. An empty register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, Sl or DI. Note
that in a big data model, the address in the return register is assumed to be in the segment
specified by the value in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The
return register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers. AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers. AX, DX, BX,
CX, Sl or DI. If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX,
CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:Sl, DI:BX, SI:AX, CX:DX,
DX:DlI, DI:SlI, SI:BX or BX:AX. If no register set is specified, register pair
DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size

is1, 2 or 4 bytesare not to be returned in registers. Instead, the caller will allocate space on
the stack for the structure return value and point register Sl to it.

Auxiliary Pragmas 173

16-bit Topics

*$pragma aux sym val ue struct struct

where description:

sym is a subprogram name.

11.3.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for afunction whose typeis
REAL or DOUBLE PRECISION isto be returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose typeis REAL or DOUBLE PRECISION are not to be returned in registers. Instead,
the caller will allocate space on the stack for the return value and point register Sl to it.

*$pragnma aux sym val ue struct fl oat

where description:
sym isafunction name.

In other words, floating-point values are to be returned in the same way complex numbers are
returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose typeis REAL or DOUBLE PRECISION are not to be returned in 80x87 registers
when compiling with the "fpi" or "fpi87" option. Instead, the value will be returned in 80x86
registers. Thisisthe default behaviour for the "fpc" option. Function return values whose
typeis REAL will be returned in registers DX:AX. Function return values whose typeis
DOUBLE PRECISION will be returned in registers AX:BX:CX:DX. Thisisthe default
method for the "fpc" option.

*$pragna aux sym val ue no8087

174 Auxiliary Pragmas

16-bit Pragmas

where description:
sym isafunction name.

The following form of the auxiliary pragma can be used to specify that function return values
whose typeis REAL or DOUBLE PRECISION are to be returned in ST(0) when compiling
with the "fpi" or "fpi87" option. Thisform of the auxiliary pragmais not legal for the "fpc"
option.

*$pragma aux sym val ue [8087]

where description:

sym isafunction name.

11.3.8 A Subprogram that Never Returns

The following form of the auxiliary pragma can be used to describe a subprogram that does
not return to the caller.

*$pragma aux sym aborts

where description:
sym is a subprogram name.
Consider the following example.

*$pragma aux exitrtn aborts

call exitrtn()
end

exi t rt n isdefined to be afunction that does not return. For example, it may call exi t to

return to the system. In this case, Open Watcom F77 generatesa"jmp" instruction instead of
a"cal" instruction toinvoke exi t rt n.

Auxiliary Pragmas 175

16-bit Topics

11.3.9 Describing How Subprograms Use Variables in Common

The following form of the auxiliary pragma can be used to describe a subprogram that does
not modify any variable that appears in acommon block defined by the caller.

*$pragma aux sym nodi fy nonenory

where description:
sym is a subprogram name.

Consider the following example.

i nteger i

conmon /bl k/ i

while(i .lIt. 1000)do
i =i + 383

endwhi | e

call myrtn()
i =i + 13143
end

bl ock dat a
common /bl k/ i
i nteger i/1033/
end

To compile the above program, "rtn.for", we issue the following command.

Cwic rtn /nmm/dl
Cw c386 rtn /dil

The"d1" compiler option is specified so that the object file produced by Open Watcom F77
contains source line information.

We can generate afile containing a disassembly of rt n. obj by issuing the following
command.

Cwdis rtn /1 /s

The"s" option is specified so that the listing file produced by the Open Watcom Disassembler
contains source linestakenfromrt n. for. Thelistingfilertn. | st appearsasfollows.

176 Auxiliary Pragmas

16-bit Pragmas

Let us add the following auxiliary pragmato the sourcefile.

*$pragna aux nyrtn nodi fy nonenory

If we compile the source file with the above pragma and disassemble the object file using the

Open Watcom Disassembler, we get the following listing file.

Modul e: rtn. for
Group: ’‘DGROUP’ _DATA,LDATA,CDATA,BLK

Segment: ’'FMAIN_TEXT’ BYTE 00000024 bytes

*$pragma aux nmyrtn nodi fy nomenory

integer*2 i
common / bl k/
0000 52 FMAI N push
0001 8b 16 00 00 nmov
while(i .It. 1000)do
0005 81 fa e8 03 L1 cnp
0009 7d 06 jge
i =i + 383
endwhi | e
000b 81 c2 7f 01 add
000f eb f4 jmp
call myrtn()
0011 89 16 00 00 L2 nmov
0015 9a 00 00 00 00 cal
i =i + 13143
00la 81 c2 57 33 add
00le 89 16 00 00 nov
end
bl ock data

common / bl k/
integer*2 i/1033/

end
0022 5a pop
0023 c¢b retf

No di sassenbly errors

dx
dx, L3

dx, 03e8H
L2

dx, 017fH
L1

L3, dx
far MYRTN

dx, 3357H
L3, dx

dx

Auxiliary Pragmas

177

16-bit Topics

Li st of external synbols

Segnent: ' BLK PARA 00000002 bytes
0000 09 04 L3

No di sassenbly errors

Notice that thevalue of i isin register DX after completion of the "while" loop. After the call
tonyrtn, thevaueof i isnotloaded from memory into aregister to perform the final
addition. The auxiliary pragmainforms the compiler that nyrt n does not modify any
variable that appearsin a common block defined by Rt n and hence register DX contains the
correct valueof i .

The preceding auxiliary pragma deals with routines that modify variablesin common. Let us
consider the case where routines reference variablesin common. The following form of the
auxiliary pragma can be used to describe a subprogram that does not reference any variable
that appears in acommon block defined by the caller.

*$pragna aux sym parm nonenory nodi fy nonenory

where description:
sym is a subprogram name.
Notes:

1. Youmust specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

*$pragnma aux nyrtn parm nonenory nodi fy nomenory

178 Auxiliary Pragmas

16-bit Pragmas

If you now compile our source file and disassemble the object file using WDIS, the result is

the following listing file.

Modul e: rtn. for

Group:

"DGROUP’ _DATA, LDATA, CDATA, BLK

Segment: ’'FMAIN_TEXT’ BYTE

*$pragma aux myrtn parm nonmenory nodi fy nonenory

0000
0001

0005
0009

000b
000f

0011

0016
00la

001le
001f

integer*2 i
common / bl k/

52 FMAI N

8b 16 00 00

while(i .It. 1000)do

81 fa e8 03 L1
7d 06

i =i + 383
endwhi | e
81 c2 7f 01
eb f4

call myrtn()
9a 00 00 00 00 L2

i =i + 13143
81 c2 57 33
89 16 00 00

end

bl ock data
conmmon / bl k/
integer*2 i/1033/
end

5a

cb

No di sassenbly errors

Li st of external synbols

00000020 bytes

push
nov

cnp
j ge

add
jmp

cal

add

pop
retf

dx
dx, L3

dx, 03e8H
L2

dx, 017fH
L1

far MYRTN

dx, 3357H
L3, dx

dx

Segrent: ' BLK' PARA 00000002 bytes

0000

09 04

No di sassenbly errors

Auxiliary Pragmas

179

16-bit Topics

Li st of public synbols

Notice that after completion of the "while" loop we did not have to update i with the valuein
register DX before calling myrt n. The auxiliary pragmainforms the compiler that myrt n
does not reference any variable that appearsin acommon block defined by myrt n so
updating i was not necessary before calling myrt n.

11.3.10 Describing the Registers Modified by a Subprogram

The following form of the auxiliary pragma can be used to describe the registers that a
subprogram will use without saving.

*$pragna aux sym nodi fy [exact] reg_set

where description:
sym is a subprogram name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom F77 that the registers belonging to the register
set are modified by the subprogram. That is, the value in aregister before calling the
subprogram is different from its value after execution of the subprogram.

Registers that are used to pass arguments are assumed to be modified and hence do not have to
be saved and restored by the called subprogram. Also, since the AX register is frequently
used to return avalue, it is always assumed to be modified. |f necessary, the caller will
contain code to save and restore the contents of registers used to pass arguments. Note that
saving and restoring the contents of these registers may not be necessary if the called
subprogram does not modify them. The following form of the auxiliary pragma can be used
to describe exactly those registers that will be modified by the called subprogram.

180 Auxiliary Pragmas

16-bit Pragmas

*$pragma aux sym nodi fy exact reg set

where description:
sym is a subprogram name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom F77 not to assume that the
registers used to pass arguments will be modified by the called subprogram. Instead, only the
registers specified in the register set will be modified. Thiswill prevent generation of the
code which unnecessarily saves and restores the contents of the registers used to pass
arguments.

Also, any registers that are specified in the val ue register set are assumed to be unmodified
unless explicitly listed in the exact register set. In the following example, the code
generator will not generate code to save and restore the value of the stack pointer register
since we have told it that "GetSP" does not modify any register whatsoever.

Example:
*Sifdef __386__
*$pragma aux Get SP
*$el se
*$pragnma aux Get SP = value [sp] nodify exact []
*$endi f

val ue [esp] nodify exact []

program mai n

i nteger GetSP

print *, 'Current SP =", GetSP()
end

11.3.11 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The
discussion in this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile
subprograms. The following areas are affected by the use of these options.

1. passing floating-point arguments to functions,

2. returning floating-point values from functions and

3. which 80x87 floating-point registers are allowed to be modified by the called
routine.

Auxiliary Pragmas 181

16-bit Topics

11.3.11.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are
never used to pass floating-point arguments when a subprogram is compiled with the "fpi" or
"fpi87" option. However, they can be used to pass arguments whose type is not floating-point
such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be
used to pass arguments to subprograms.

*$pragma aux sym parm {reg_set}

where description:

sym is a subprogram name.

reg set isaregister set. Theregister set can contain 80x86 registers and/or the string
"8087".

Notes:

1. If an empty register set is specified, all arguments, including floating-point
arguments, will be passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it ssimply means that floating-point arguments
can be passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or
"fpi87" option. Before discussing argument passing in detail, some general notes on the use
of the 80x87 floating-point registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack
pointer is called ST and is a number between 0 and 7 identifying which 80x87 floating-point
register is at the top of the stack. ST isinitially 0. 80x87 instructions reference these registers
by specifying a floating-point register number. This number is then added to the current value
of ST. The sum (taken modulo 8) specifies the 80x87 floating-point register to be used. The
notation ST(n), where"n" is between 0 and 7, is used to refer to the position of an 80x87
floating-point register relative to ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is
decremented (modulo 8), and the value is loaded into ST(0). When afloating-point valueis
stored and popped from the 80x87 floating-point register stack, ST isincremented (modulo 8)
and ST(1) becomes ST(0). Thefollowing illustrates the use of the 80x87 floating-point

182 Auxiliary Pragmas

16-bit Pragmas

registers as a stack, assuming that the value of ST is 4 (4 values have been |oaded onto the
80x87 floating-point register stack).

S +

0 | 4th fromtop | ST(4)
oo +

1 | 5th fromtop | ST(5)
oo +

2 | 6th fromtop | ST(6)
oo +

3 | 7th fromtop | ST(7)
e +

ST -> 4 | top of stack | ST(O0)
S +

5 | 1st fromtop | ST(1)
oo +

6 | 2nd fromtop | ST(2)
oo +

7 | 3rd fromtop | ST(3)
oo +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registersas a
stack. Theinitial state of the 80x87 register stack is empty before a program begins
execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can
compile with the "fpr" option. In this case only four of the eight 80x87 registers
are used as astack. These four registers were used to pass arguments. The other
four registers form what was called the 80x87 cache. The cache was used for
local floating-point variables. The state of the 80x87 registers before a program
began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are
uninitialized.

2. Thefour 80x87 floating-point registers that form the 80x87 cache are
initialized with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and
ST(3). ST had the value 4 asin the above diagram. When a floating-point value
was pushed on the stack (as is the case when passing floating-point arguments),
it became ST(0) and the 80x87 cache was comprised of ST(1), ST(2), ST(3) and
ST(4). When the 80x87 stack was full, ST(0), ST(1), ST(2) and ST(3) formed
the stack and ST(4), ST(5), ST(6) and ST(7) formed the 80x87 cache. Version
9.5 and later no longer use this strategy.

Auxiliary Pragmas 183

16-bit Topics

Therules for passing arguments are as follows.

1

If the argument is not floating-point, use the procedure described earlier in this
chapter.

If the argument is floating-point, and a previous argument has been assigned a
position on the 80x86 stack (instead of the 80x87 stack), the floating-point
argument is also assigned a position on the 80x86 stack. Otherwise proceed to the
next step.

If the string "8087" appearsin aregister set in the pragma, and if the 80x87 stack is
not full, the floating-point argument is assigned floating-point register ST(0) (the
top element of the 80x87 stack). The previous top element (if there was one) is
now in ST(1). Since arguments are pushed on the stack from right to left, the
leftmost floating-point argument will bein ST(0). Otherwise the floating-point
argument is assigned a position on the 80x86 stack.

Consider the following example.

*$pragma aux nyrtn parm (val ue) [8087];

real x

doubl e precision vy
integer*2 i

i nteger j

X 7.7

i 7

y = 77.77

i 77

call nmyrtn(x, i, vy, j)
end

nyr t n isan assembly language subprogram that requires four arguments. The first argument
of type REAL (4 bytes), the second argument is of type INTEGER*2 (2 bytes), the third
argument is of type DOUBL E PRECISION (8 bytes) and the fourth argument is of type
INTEGER*4 (4 bytes). These arguments will be passed to myr t n in the following way.

1

Since "8087" was specified in the register set, the first argument, being of type
REAL, will be passed in an 80x87 floating-point register.

The second argument will be passed on the stack since no 80x86 registers were
specified in the register set.

The third argument will aso be passed on the stack. Remember the following rule;
once an argument is assigned a position on the stack, all remaining arguments will

184 Auxiliary Pragmas

16-bit Pragmas

4.

be assigned a position on the stack. Note that the above rule holds even though
there are some 80x87 floating-point registers available for passing floating-point
arguments.

The fourth argument will also be passed on the stack.

L et us change the auxiliary pragmain the above example as follows.

*$pragma aux nyrtn parm[ax 8087]

The arguments will now be passed to nmyr t n in the following way.

1

Since "8087" was specified in the register set, the first argument, being of type
REAL will be passed in an 80x87 floating-point register.

The second argument will be passed in register AX, exhausting the set of available
80x86 registers for argument passing.

The third argument, being of type DOUBL E PRECI SION, will also be passed in
an 80x87 floating-point register.

The fourth argument will be passed on the stack since no 80x86 registers remain in
the register set.

11.3.11.2 Using the 80x87 to Return Subprogram Values

The following form of the auxiliary pragma can be used to describe a subprogram that returns
afloating-point valuein ST(0).

*$pragma aux sym val ue reg set

where

sym

reg_set

description:
is a subprogram name.

isaregister set containing the string "8087", i.e. [8087].

Auxiliary Pragmas 185

16-bit Topics

11.3.11.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use
within a subprogram unless the "fpr" option is used to generate backward compatible code
(older Open Watcom compilers used four registers as a cache). The following form of the
auxiliary pragma specifies that the floating-point registersin the 80x87 cache may be
modified by the specified subprogram.

*$pragma aux sym nodi fy reg_set

where description:
sym is a subprogram name.
reg set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom F77 to save any local variablesthat are located in the 80x87
cache before calling the specified routine.

186 Auxiliary Pragmas

32-bit Topics

32-bit Topics

188

12 32-bit Memory Models

12.1 Introduction

This chapter describes the various 32-bit memory models supported by Open Watcom F77.
Each memory model is distinguished by two properties; the code model used to implement
subprogram calls and the data model used to reference data.

12.2 32-bit Code Models

There are two code models;

1. thesmall code model and
2. thebig code model.

A small code model is onein which al calls to subprograms are made with near calls. Ina
near call, the destination address is 32 bits and is relative to the segment value in segment
register CS. Hence, in asmall code model, all code comprising your program, including
library subprograms, must be less than 4GB.

A big code model isonein which al calls to subprograms are made with far calls. Inafar
call, the destination address is 48 bits (a 16-bit segment value and a 32-bit offset relative to
the segment value). This model allows the size of the code comprising your program to
exceed 4GB.

Note: If your program contains less than 4GB of code, you should use a memory model
that employs the small code model. Thiswill result in smaller and faster code since near
calls are smaller instructions and are processed faster by the CPU.

32-bit Code Models 189

32-bit Topics

12.3 32-bit Data Models

There are two data models;

1. thesmal datamodel and
2. thebig data model.

A small datamodel isonein which all referencesto data are made with near pointers. Near
pointers are 32 bits; al data references are made relative to the segment value in segment
register DS. Hence, in asmall datamodel, all data comprising your program must be less than
4GB.

A big data model is onein which all referencesto data are made with far pointers. Far
pointers are 48 bits (a 16-bit segment value and a 32-bit offset relative to the segment value).
This removes the 4GB limitation on data size imposed by the small data model. However,
when afar pointer isincremented, only the offset is adjusted. Open Watcom F77 assumes that
the offset portion of afar pointer will not be incremented beyond 4GB. The compiler will
assign an object to anew segment if the grouping of datain a segment will cause the object to
cross a segment boundary. Implicit in thisis the requirement that no individual object exceed
4GB.

Note: If your program contains less than 4GB of data, you should use the small data
model. Thiswill result in smaller and faster code since references using near pointers
produce fewer instructions.

12.4 Summary of 32-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and a data
model. The following table describes the memory models supported by Open Watcom F77.

190 Summary of 32-bit Memory Models

32-bit Memory Models

Menory Code Dat a Def aul t Def aul t
Model Model Model Code Dat a
Poi nt er Poi nt er
flat smal | smal | near near
smal | smal | smal | near near
nmedi um bi g smal | far near
conpact smal | bi g near far
| ar ge bi g bi g far far

12.5 Flat Memory Model

In the flat memory model, the application’s code and data must total less than 4GB in size.
Segment registers CS, DS, SS and ES point to the same linear address space (this does not
imply that the segment registers contain the same value). That is, agiven offset in one
segment refers to the same memory location as that offset in another segment. Essentialy, a
flat model operates asif there were no segments.

12.6 Mixed 32-bit Memory Model

A mixed memory model application combines elements from the various code and data
models. A mixed memory model application might be characterized as one that includes
arrays which are larger than 4GB.

For example, a medium memory model application that uses some arrays which exceed 4GB
in total size can be described as a mixed memory model. In an application such as this, most
of the dataisin a4GB segment (DGROUP) and hence can be referenced with near pointers
relative to the segment value in segment register DS. Thisresults in more efficient code being
generated and better execution times than one can expect from a big data model.

Mixed 32-bit Memory Model 191

32-bit Topics

12.7 Linking Applications for the Various 32-bit
Memory Models

Each memory model requires different run-time and floating-point libraries. Each library
assumes a particular memory model and should be linked only with modules that have been
compiled with the same memory model. The following table lists the libraries that are to be
used to link an application that has been compiled for a particular memory model. Currently,
only libraries for the flat/small memory model are provided. The following table lists the
run-time libraries used by FORTRAN 77 and the compiler options that cause their use.

1. The"Library" column specified the library name.

2. The"Memory model" column indicates the compiler options that specify the
memory model of the library.

3. The"Floating-point column" indicates the compiler options that specify the
floating-point model of the library.

4. The"Calling convention" column indicates the compiler option that specifiesthe
calling convention of the library (register-based or stack-based).

Li brary Menor y Fl oat i ng- poi nt Cal I'i ng

nodel nodel convention

flib.lib /nf, /s /fpc

flibs.lib Inf, /s /fpc /'sc

flib7.1ib Inf, /s /fpi, /fpis7

flib7s.1ib Inf, /s /fpi, [fpis7 I'sc

clib3r.lib /nf, Ins [fpc, /[fpi, /fpi87

clib3r.lib Inf, /s [fpc, [fpi, /fpi87 /'sc

mat h387r.lib Inf, /s /fpi, /fpis7

mat h387s.1ib Inf, /s [fpi, /[fpi87 /'sc

math3r.lib /nf, Ins /fpc

math3s.1ib Inf, /s /fpc /'sc

emu387.1ib Inf, /s / f pi

noemu387.1ib Inf, /s [fpi87

12.8 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They arefirst in the segment ordering so that
the"REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the

192 Memory Layout

32-bit Memory Models

6.

7.

application. Currently, the "RUNTIME" directiveisvalid for Phar Lap executables
only.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

In addition to these special segments, the following conventions are used by Open Watcom

F77.

The "CODE" class contains the executable code for your application. Inasmall
code model, this consists of the segment " _TEXT". In abig code model, this
consists of the segments "<subprogram>_TEXT" where <subprogram> is the name
of a subprogram.

The"FAR_DATA" class consists of the following:
(@ arrays whose size exceeds the data threshold in large data memory
models (the data threshold is 256 bytes unless changed using the "dt"

compiler option)

(b) equivalenced variables in large data memory models

Memory Layout 193

32-bit Topics

194 Memory Layout

13 32-bit Assembly Language
Considerations

13.1 Introduction

This chapter will deal with the following topics.

1

2.

The memory layout of a program compiled by Open Watcom F77.
The method for passing arguments and returning values.

The two methods for passing floating-point arguments and returning floating-point
values.

One method is used when one of the Open Watcom F77 "fpi", "fpi87" or "fpi287"
options is specified for the generation of in-line 80x87 instructions. When the "fpi"
option is specified, an 80x87 emulator isincluded from a math library if the
application includes floating-point operations. When the "fpi87" or "fpi287" option
isused exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom F77 "fpc" option is specified. In
this case, the compiler generates calls to floating-point support routinesin the
alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

13.2 Calling Conventions

The following sections describe the method used by Open Watcom F77 to pass arguments.

The FORTRAN 77 language specifically requires that arguments be passed by reference.

This means that instead of passing the value of an argument, its addressis passed. Thisalows
a called subprogram to modify the value of the actual arguments. The following illustrates the
method used to pass arguments.

Calling Conventions 195

32-bit Topics

Type of Argument Method Used to Pass Argument
non-character constant address of constant
non-character expression address of value of expression
non-character variable address of variable

character constant address of string descriptor
character expression address of string descriptor
character variable address of string descriptor
non-character array address of array

non-character array element address of array

character array address of string descriptor
character array element address of string descriptor
character substring address of string descriptor
subprogram address of subprogram
alternate return specifier no argument passed
user-defined structure address of structure

When passing a character array as an argument, the string descriptor contains the address of
the first element of the array and the length of an element of the array.

The address of arguments are either passed in registers or on the stack. The registers used to
pass the address of argumentsto a subprogram are EAX, EBX, ECX and EDX. The address
of arguments are passed in the following way.

1. Thefirst argument is passed in register EAX, the second argument is passed in
register EDX, the third argument is passed in register EBX, and the fourth
argument is passed in register ECX.

2. For any remaining arguments, their address is passed on the stack. Note that
addresses of arguments are pushed on the stack from right to | eft.

13.2.1 Stack-Based Calling Convention

The previous section described a register-based calling convention in which registers were
used to pass arguments to subprograms. A stack-based calling convention is another method
that can be used to pass arguments. The calling convention is selected when the "sc" compiler
option is specified.

The most significant difference between the stack-based calling convention and the
register-based calling convention is the way the arguments are passed. When using the

196 Calling Conventions

32-bit Assembly Language Considerations

stack-based calling conventions, no registers are used to pass arguments. Instead, all
arguments are passed on the stack.

13.2.2 Processing Function Return Values with no 80x87

The way in which function values are returned is also dependent on the data type of the
function. The following describes the method used to return function values.

1

2.

10.

11.

LOGICAL*1 valuesarereturned in register AL.

LOGICAL*4 vauesarereturned in register EAX.

INTEGER*1 values arereturned in register AL.

INTEGER*2 values are returned in register AX.

INTEGER*4 values are returned in register EAX.

REAL*4 values are returned in register EAX.

REAL*8 values are returned in registers EDX:EAX.

For COMPL EX*8 functions, space is allocated on the stack by the caller for the
return value. Register ESI is set to point to the destination of the result. The called
function places the result at the location pointed to by register ESI.

For COMPL EX* 16 functions, spaceis alocated on the stack by the caller for the
return value. Register ES| is set to point to the destination of the result. The called
function places the result at the location pointed to by register ESI.

For CHARACTER functions, an additional argument is passed. Thisargument is
the address of the string descriptor for the result. Note that the address of the string
descriptor can be passed in any of the registers that are used to pass actual
arguments.

For functions that return a user-defined structure, space is allocated on the stack by
the caller for the return value. Register ESI is set to point to the destination of the
result. The called function places the result at the location pointed to by register

ESI. Note that a structure of size 1, 2 or 4 bytesis returned in register AL, AX or
EAX respectively.

Calling Conventions 197

32-bit Topics

Note: Theway in which afunction returnsits value does not change when the stack-based
calling convention is used.

13.2.3 Processing Function Return Values Using an 80x87

The following describes the method used to return function values when your application is
compiled using the "fpi87" or "fpi" option.

1. For REAL*4functions, the result isreturned in floating-point register ST(0).
2. For REAL*8 functions, theresult isreturned in floating-point register ST(0).
3. All other function values are returned in the way described in the previous section.

Note: When the stack-based calling convention is used, floating-point values are not

returned using the 80x87. REAL*4 values arereturned in register EAX. REAL*8 values
arereturned in registers EDX:EAX.

13.2.4 Processing Alternate Returns

Alternate returns are processed by the caller and are only allowed in subroutines. The called
subroutine places the value specified in the RETURN statement in register EAX. Note that

the value returned in register EAX isignored if there are no aternate return specifiersin the
actual argument list.

Note: Theway in which a aternate returns are processed does not change when the
stack-based calling convention is used.

13.2.5 Alternate Method of Passing Character Arguments

As previously described, character arguments are passed using string descriptors. Recall that
astring descriptor contains a pointer to the actual character data and the length of the
character data. When passing character data, both a pointer and length are required by the
subprogram being called. When using a string descriptor, thisinformation can be passed
using a single argument, namely the pointer to the string descriptor.

198 Calling Conventions

32-bit Assembly Language Considerations

An alternate method of passing character arguments is also supported and is selected when the
"nodescriptor” option is specified. In this method, the pointer to the character data and the
length of the character data are passed as two separate arguments. The character argument
lengths are appended to the end of the actual argument list.

Let us consider the following example.

| NTEGER A, C
CHARACTER B, D
CALL SUB(A B, C, D)

In the above example, the first argument is of type INTEGER, the second argument is of type
CHARACTER, the third argument is of type INTEGER, and the fourth argument is of type
CHARACTER. If the character arguments were passed by descriptor, the argument list would
resemble the following.

The first argument would be the address of A.

The second argument would be the address of the string descriptor for B.
The third argument would be the address of C.

The fourth argument would be the address of the string descriptor for D.

AwWdE

If we specified the "nodescriptor” option, the argument list would be as follows.

The first argument would be the address of A.

The second argument would be the address of the character datafor B.
The third argument would be the address of C.

The fourth argument would be the address of the character datafor D.
A hidden argument for the length of B would be the fifth argument.

A hidden argument for the length of D would be the sixth argument.

oukwbdpE

Note that the arguments corresponding to the length of the character arguments are passed as
INTEGER* 4 arguments.

13.2.5.1 Character Functions

By default, when a character function is called, a hidden argument is passed at the end of the
actual argument list. This hidden argument is a pointer to the string descriptor used for the
return value of the character function. When the alternate method of passing character
arguments is specified by using the "nodescriptor” option, the string descriptor for the return
value is passed to the function as two hidden arguments, similar to the way character
arguments were passed. However the two hidden arguments for the return value of the
character function are placed at the beginning of the actual argument list. The first argument
is the the pointer to the storage immediately followed by the size of the storage.

Calling Conventions 199

32-bit Topics

13.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1

6.

7.

all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They arefirst in the segment ordering so that
the"REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the
application. Currently, the"RUNTIME" directive isvalid for Phar Lap executables
only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

In addition to these special segments, the following conventions are used by Open Watcom

F77.

The "CODE" class contains the executable code for your application. Inasmall
code model, this consists of the segment " _TEXT". In abig code model, this
consists of the segments "<subprogram>_TEXT" where <subprogram> is the name
of asubprogram.

The"FAR_DATA" class consists of the following:

200 Memory Layout

32-bit Assembly Language Considerations

@ arrays whose size exceeds the data threshold in large data memory
models (the data threshold is 256 bytes unless changed using the "dt"
compiler option)

(b) equivalenced variables in large data memory models

13.4 Writing Assembly Language Subprograms

When writing assembly language subprograms, use the following guidelines.

1

8.

All used registers must be saved on entry and restored on exit except those used to
pass arguments and return values. Note that segment registers only have to be
saved and restored if you are compiling your application with the "sr"* option.

The direction flag must be clear before returning to the caller.

Inasmall code model, any segment containing executable code must belong to the
segment "_TEXT" and the class "CODE". The segment"_TEXT" must have a
"combine" type of "PUBLIC". On entry, register CS contains the segment address
of the segment "_TEXT". In abig code model thereis no restriction on the naming
of segments which contain executable code.

In asmall data model, segment register DS contains the segment address of the
default data segment (group "DGROUP"). In abig data model, segment register
SS (not DS) contains the segment address of the default data segment (group
"DGROUP").

When writing assembly language subprograms for the small code model, you must
declare them as "near". If you wish to write assembly language subprograms for
the big code model, you must declare them as "far".

Use the ".8087" pseudo-op so that floating-point constants are in the correct format.

The called subprogram must remove arguments that were passed on the stack in the
"ret" instruction.

In general, when naming segments for your code or data, you should follow the
conventions described in the section entitled "Memory Layout" in this chapter.

Consider the following example.

Writing Assembly Language Subprograms 201

32-bit Topics

| NTEGER HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)
PRINT 100, HRS, M NS, SECS, HSECS

100 FORMAT(1X,12.2,°:°,12.2,°:",12.2,°.",12.2)
END

CGETTI Misan assembly language subroutine that gets the current time. 1t requires four
integer arguments. The arguments are passed by reference so that the subroutine can return
the hour, minute, seconds and hundredths of a second for the current time. These arguments
will be passed to GETTI Min the following way.

The address of the first argument will be passed in register EAX.
The address of the second argument will be passed in register EDX.
The address of the third argument will be passed in register EBX.
The address of the fourth argument will be passed in register ECX.

PwWbdE

The following is an assembly language subprogram which implements GETTI M

Small or Flat Memory Model (small code, small data)

_TEXT segment byte public ’'CODE’
assume CS:_TEXT
public GCETTIM

GETTIM proc near

push EAX ; save registers nodified by
push ECX ; ... DOS function call
push EDX HE
nmv AH, 2ch ; set DOS "get time" function
int 21h ; issue DOS function call
nmovzx EAX, DH ; get seconds
nmov [EBX], EAX ; return seconds
pop EBX ; get address of mnutes
nmovzx EAX, CL ; get minutes
nmv [EBX], EAX ; return mnutes
pop EBX ; get address of ticks
nmvzx EAX, DL ; get ticks
nmov [EBX], EAX ; return ticks
pop EBX ; get address of hours
nmovzx EAX, CH ; get hours
nmv [EBX], EAX ; return hours
ret ; return
GETTIM endp

_TEXT ends

end

202 Writing Assembly Language Subprograms

32-bit Assembly Language Considerations

Notes:

No arguments were passed on the stack so asimple "ret" instruction is used to
return to the caller. If asingle argument was passed on the stack, a"ret 4"
instruction would be required to return to the caller.

Registers EAX, EBX, ECX and EDX were not saved and restored since they were
used to pass arguments.

13.4.1 Using the Stack-Based Calling Convention

When writing assembly language subprograms that use the stack-based calling convention,
use the following guidelines.

1.

N

N o

All used registers, except registers EAX, ECX and EDX must be saved on entry
and restored on exit. Also, if segment registers ES and DS are used, they must be
saved on entry and restored on exit. Note that segment registers only have to be
saved and restored if you are compiling your application with the "sr"* option.

The direction flag must be clear before returning to the caller.

Inasmall code model, any segment containing executable code must belong to the
segment "_TEXT" and the class"CODE". Thesegment" TEXT" must have a
"combine" type of "PUBLIC". On entry, register CS contains the segment address
of thesegment *_TEXT". Inabig code model thereis no restriction on the naming
of segments which contain executable code.

In asmall data model, segment register DS contains the segment address of the
default data segment (group "DGROUP"). In abig data model, segment register
SS (not DS) contains the segment address of the default data segment (group
"DGROUP").

When writing assembly language subprograms for the small code model, you must
declarethem as "near". If you wish to write assembly language subprograms for
the big code model, you must declare them as "far".

Use the ".8087" pseudo-op so that floating-point constants are in the correct format.
The caller will remove arguments that were passed on the stack.

In general, when naming segments for your code or data, you should follow the
conventions described in the section entitled "Memory Layout" in this chapter.

Consider the following example.

Writing Assembly Language Subprograms 203

32-bit Topics

END

| NTEGER HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)
PRINT 100, HRS, M NS, SECS, HSECS

100 FORMAT(1X,12.2,°:°,12.2,°:",12.2,°.",12.2)

CGETTI Misan assembly language subroutine that gets the current time. 1t requires four
integer arguments. The arguments are passed by reference so that the subroutine can return
the hour, minute, seconds and hundredths of a second for the current time. These arguments
will be passed to GETTI Mon the stack.

The following is an assembly language subprogram which implements GETTI M

Small or Flat Memory Model (small code, small data)

_TEXT segment byte public

assume
public
CGETTIM proc
push
nov
push
nov
int
novzx
nov
nov
novzx
nov
nov
novzx
nov
nov
novzx
nov
nov
pop
nov
pop
ret
GETTIM endp
_TEXT ends

end

CS:_TEXT
CETTIM
near

EBP

EBP, ESP
ES|

AH, 2ch
21h

EAX, CH

[ESI], EAX
EAX, CL

[ESI], EAX
EAX, DH

[ESI], EAX
EAX, DL

[ESI], EAX
ESI

ESP, EBP
EBP

"CODE’

; save registers

; set DOS "get tinme" function
; issue DOS function cal

; get hours

ESI, 8[EBP] ;
; return hours
; get minutes
ESI, 12[BP] ;
; return mnutes
; get seconds
ESI, 16[BP] ;
; return seconds
; get ticks

ESI, 20[BP] ;
; return ticks

; restore registers

get address of hours

get address of mnutes

get address of seconds

get address of ticks

;o return

204 Writing Assembly Language Subprograms

32-bit Assembly Language Considerations

Notes:
1. Thefour arguments that were passed on the stack will be removed by the caller.
2. Registers ESI and EBP were saved and restored since they were used in GETTI M

Let uslook at the stack upon entry to GETTI M

O f set

0 Fom - + <- ESP points here
| return address |

4 oo o - +
| argument #1 |

8 Fom e e e e +
| argument #2 |

12 S +
| argument #3 |

16 . +
| argument #4 |

20 o +
| |

Notes:

1. Thetop element of the stack is athe 32-bit return address. The first argument is at
offset 4 from the top of the stack, the second argument at offset 8, the third
argument at offset 12, and the fourth argument at offset 16.

Register EBP is normally used to address arguments on the stack. Upon entry to the
subroutine, registers that are modified (except registers EAX, ECX and EDX) are saved and
register EBPis set to point to the stack. After performing this prologue sequence, the stack
looks like this.

Writing Assembly Language Subprograms 205

32-bit Topics

O fset from EBP

-4 R LR + <- ESP point here
| saved ESI |
0 Fom e + <- EBP point here
| saved EBP |
4 oo o - +
| return address |
8 Fom e e e o +
| argument #1 |
12 R +
| argument #2 |
16 e a o +
| argument #3 |
20 e +
| argument #4 |
24 oo +

Asthe above diagram shows, the first argument is at offset 8 from register EBP, the second
argument is at offset 12, the third argument is at offset 16, and the fourth argument is at offset
20.

13.4.2 Returning Values from Assembly Language Functions

The following illustrates the way function values are to be returned from assembly language
functions.

Note: Theway in which afunction returnsits value does not change when the stack-based
calling convention is used.

1. A LOGICAL*1 function.

_TEXT segment byte public ’'CODE’
assume CS:_TEXT

public L1
L1 proc near
nov AL, 1
ret
L1 endp
_TEXT ends
end

2. A LOGICAL*4 function.

206 Writing Assembly Language Subprograms

32-bit Assembly Language Considerations

_TEXT segment
assume
public
proc
nmov

ret
endp
ends
end

L4

L4
_TEXT

byte public ’'CODE’
CS: _TEXT

L4

near

EAX, 0

3. AnINTEGER*1 function.

_TEXT segment
assume
public
proc
nmov

ret
endp
ends
end

11

11
_TEXT

byte public ’'CODE’
CS: _TEXT

11

near

AL, 73

4. AnINTEGER*2 function.

_TEXT segment
assume
public
proc
nov

ret
endp
ends
end

12

12
_TEXT

byte public ’'CODE’
CS: _TEXT

12

near

AX, 7143

5. AnINTEGER*4 function.

_TEXT segment
assume
public
proc
nmov

ret
endp
ends
end

14

14
_TEXT

6. A REAL*4 function.

Writing Assembly Language Subprograms

byte public ’'CODE’
CS: _TEXT

14

near

EAX, 383

207

32-bit Topics

. 8087
DGROUP group R4_DATA
_TEXT segment byte public ’'CODE’

assume CS:_ TEXT
assune DS: DGROUP

public R4

R4 proc near
nmov EAX, dword ptr R4Val
ret

R4 endp

_TEXT ends

R4_DATA segment byte public ’DATA’
R4Val dd 1314.3

R4_DATA ends

end

7. A REAL*8function.
. 8087
DGROUP group R8_DATA
_TEXT segment byte public ‘CODE’

assume CS:_ TEXT
assune DS: DGROUP

public R8

R8 proc near
nmov EAX, dword ptr R8Val
nmv EDX, dword ptr R8Val +4
ret

R8 endp

_TEXT ends

R8_DATA segment byte public ’DATA’
R8Val dgq 103.3

R8_DATA ends

end

8. A COMPLEX*8 function.
. 8087
DGROUP group C8_DATA
_TEXT segment byte public ’'CODE’
assume CS:_TEXT

assune DS: DGROUP
public C8

208 Writing Assembly Language Subprograms

32-bit Assembly Language Considerations

Cc8 proc near
push EAX
nmov EAX, C8Val
nov [ESI], EAX
mv EAX, C8Val +4
nov 4[ESI], EAX
pop EAX
ret
cs8 endp
_TEXT ends
C8_DATA segment byte public ’'DATA’
C8Val dd 2.2
dd 2.2
C8_DATA ends
end
9. A COMPLEX*16 function.
. 8087
DGROUP group C1l6_DATA
_TEXT segment byte public ’'CODE’
assume CS:_TEXT
assune DS: DGROUP
public C16
Cl16 proc near
push EAX
nov EAX, dword ptr Cl6Val
nmv [ESI], EAX
nmov EAX, dword ptr Cl6Val +4
nmv 4[ESI], EAX
nmov EAX, dword ptr Cl6Val +8
nmv 8[ESI], EAX
nmov EAX, dword ptr Cl6Val +12
nmv 12[ESI], EAX
pop EAX
ret
C16 endp
_TEXT ends
Cl6_DATA segment byte public ’'DATA’
Cléval dqgq 3.3
dg 3.3
C16_DATA ends
end
10. A CHARACTER function.
_TEXT segment byte public ‘CODE’
assume CS:_TEXT
public CHR
CHR proc near
push EAX

Writing Assembly Language Subprograms

209

32-bit Topics

nov EAX, [EAX]

nov byte ptr [EAX],'F
pop EAX
ret
CHR endp
_TEXT ends
end

Remember, if you are using stack calling conventions (i.e., you specified the "sc"
compiler option), arguments will be passed on the stack. The above character
function must be modified as follows.

_TEXT segment byte public ’'CODE’
assume CS:_TEXT

public CHR

CHR proc near
push EAX
nov EAX, 8[ESP]
nov EAX, [EAX]
nmv byte ptr [EAX],'F
pop EAX
ret

CHR endp

_TEXT ends
end

11. A function returning a user-defined structure.
DGROUP group STRUCT_DATA

_TEXT segment byte public ‘CODE’
assume CS:_TEXT
assune DS: DGROUP
public STRUCT

STRUCT proc near

push EAX
nmv EAX, dword ptr Struct Val
nov [ESI], EAX
nmv EAX, dword ptr StructVal +4
nov 4] ESI], EAX
pop EAX
ret
STRUCT endp

_TEXT ends

STRUCT_DATA segment byte public ’DATA’
StructVal dd 7

dd 3
STRUCT_DATA ends

end
If you are using an 80x87 to return floating-point values, only REAL*4 and REAL*8

assembly language functions need to be modified. Remember, this does not apply if you are
using the stack-based calling convention.

210 Writing Assembly Language Subprograms

32-bit Assembly Language Considerations

1. A REAL*4 function using an 80x87.
. 8087
DGROUP group R4_DATA
_TEXT segment byte public ‘CODE’

assume CS:_ _TEXT
assune DS: DGROUP

public R4

R4 proc near
fld dword ptr R4Val
ret

R4 endp

_TEXT ends

R4_DATA segment byte public ’'DATA’
R4Val dd 1314.3

R4_DATA ends

end

2. A REAL*8function using an 80x87.
. 8087
DGROUP group R8_DATA
_TEXT segment byte public ‘CODE’

assume CS:_ TEXT
assune DS: DGROUP

public R8

R8 proc near
fld gword ptr R8Val
ret

R8 endp

_TEXT ends
R8_DATA segment byte public ’'DATA’
R8Val dgq 103.3
R8_DATA ends
end

Thefollowing is an example of a Open Watcom F77 program calling the above assembly
language subprograms.

Writing Assembly Language Subprograms 211

32-bit Topics

logical 11*1, 14*4
integer i1*1, i2*2, i4*4
real r4*4, r8*8
conpl ex ¢8*8, cl16*16
character chr
structure /coord/

i nteger x, vy
end structure
record /coord/ struct

print *, 11()
print *, 14()
print *, i1()
print *, i2()
print *, i4()
print *, r4()
print *, r8()
print *, ¢8()
print * ¢l6()
print *, chr()
print *, struct()
end

212 Writing Assembly Language Subprograms

14 32-bit Pragmas

14.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas can be used to direct the Open Watcom F77 code generator to emit
specialized sequences of code for calling functions which use argument passing and
value return techniques that differ from the default used by Open Watcom F77.

* Pragmas can be used to describe attributes of functions (such as side effects) that are
not possible at the FORTRAN 77 language level. The code generator can use this
information to generate more efficient code.

 Any sequence of in-line machine language instructions, including DOS and BIOS
function calls, can be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is
used to describe the syntax of pragmas.

keywords A keywor d isshown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-itemisa
symbol name or numeric value supplied by the programmer.

punctuation A punctuati on charact er showninamono-spaced courier font must be
entered asis.

A punctuation character shown in aroman bold-italics font is used to describe
syntax. The following syntactical notation is used.

[abc] Theitem abc is optional.
{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

Introduction 213

32-bit Topics

a:=b The item a is defined in terms of b.
(@ Item ais evaluated first.
The following classes of pragmas are supported.
* pragmas that specify default libraries

* pragmas that provide auxiliary information used for code generation

14.2 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted
from these special records by the Open Watcom Linker. When unresolved references remain
after processing all object modules specified in linker "FILE" directives, these default libraries
are searched after al libraries specified in linker "LIBRARY" directives have been searched.

By default, that isif no library pragmais specified, the Open Watcom F77 compiler generates,
in the object file defining the main program, default libraries corresponding to the memory
model and floating-point model used to compilethefile. For example, if you have compiled
the source file containing the main program for the flat memory model and the floating-point
calls floating-point model, the library "flib" will be placed in the object file.

If you wish to add your own default libraries to thislist, you can do so with alibrary pragma.
Consider the following example.

*$pragma library nylib
The name "mylib" will be added to the list of default libraries specified in the object file.

If you wish to specify more than one library in alibrary pragmayou must separate them with
spaces as in the following example.

*$pragma library nylib \watcom |ib286\dos\graph.lib
*$pragma library nylib \watcom |ib386\dos\graph.lib

If no libraries are specified as in the following example,
*$pragma library

the run-time libraries corresponding to the memory and floating-point models used to compile
the file will be generated.

214 Using Pragmas to Specify Default Libraries

32-bit Pragmas

14.3 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

The backslash character ('\') is used to continue a pragma on the next line. Text following the
backslash character isignored. The line continuing the pragma must start with a comment
character ('c’,’C’ or '*’).

14.3.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initialy, the
compiler defines a default set of attributes. Each auxiliary pragma refersto one of the
following.

1. asymbol (such as avariable or function)
2. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefers to a particular symbol, a copy of the current set of default
attributes is made and merged with the attributes specified in the auxiliary pragma. The
resulting attributes are assigned to the specified symbol and can only be changed by another
auxiliary pragmathat refers to the same symbol.

When "default” is specified instead of a symbol name, the attributes specified by the auxiliary
pragma change the default set of attributes. The resulting attributes are used by all symbols
that have not been specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the
following example.

code in which synbol x is referenced
*Spragma aux y <attrs_1>

code in which synbol y is referenced
code in which synbol z is referenced
*Spragma aux default <attrs_ 2>
*Spragma aux x <attrs_ 3>

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes
specified by <attrs 2> and <attrs_3>.

Auxiliary Pragmas 215

32-bit Topics

2. Symbol y isassigned theinitial default attributes merged with the attributes
specified by <attrs_1>.

3. Symbol z isassigned theinitial default attributes merged with the attributes
specified by <attrs_2>.

14.3.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an aias name, the attributes of the
alias name are also assumed by the specified symbol.

There are two methods of specifying aliasinformation. In the first method, the symbol
assumes only the attributes of the alias name; no additional attributes can be specified. The
second method is more general sinceit is possible to specify an alias name as well as
additional auxiliary information. In this case, the symbol assumes the attributes of the alias
name as well as the attributes specified by the additional auxiliary information.

The simple form of the auxiliary pragma used to specify an aliasis as follows.

*$pragma aux (sym, alias)

where description:
sym isany valid FORTRAN 77 identifier.
alias isthe alias name and is any valid FORTRAN 77 identifier.

Consider the following example.

*Spragma aux value_args parm (value)
*Spragma aux (rtn, value_args)

Theroutine r t n assumes the attributes of the alias name push _args which specifiesthat
the argumentsto r t n are passed by value.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

216 Auxiliary Pragmas

32-bit Pragmas

*$pragma aux (alias) sym aux_attrs

where description:
alias isthe alias name and is any valid FORTRAN 77 identifier.
sym isany valid FORTRAN 77 identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

*Spragma aux WC "*_" parm (value)
*$pragma aux (WC) rtnil
*$pragma aux (WC) rtn2
*$pragma aux (WC) rtn3

Theroutinesr t n1, rtn2 andrt n3 assume the same attributes as the alias name WC which
defines the calling convention used by the Open Watcom C compiler. Whenever calls are
madetortnl, rtn2 andrtn3, the Open Watcom C calling convention will be used.
Note that arguments must be passed by value. By default, Open Watcom F77 passes
arguments by reference.

Note that if the attributes of WC change, only one pragma needs to be changed. |f we had not
used an alias name and specified the attributes in each of the three pragmasfor rt nl, rtn2
and r t n3, wewould haveto change all three pragmas. This approach also reduces the
amount of memory required by the compiler to process the sourcefile.

WARNING! The alias name WC s just another symbol. If WC appeared in your source
code, it would assume the attributes specified in the pragmafor WC.

14.3.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a
particular calling convention. These symbols can be used as aliases. Thefollowingisalist of
these symbols.

Auxiliary Pragmas 217

32-bit Topics

__cdecl
__fastcall

_ fortran

__pascal

__gdeall

__syscall

__watcall

__cdec] definesthe calling convention used by Microsoft compilers.
__fastcall definesthe calling convention used by Microsoft compilers.

__fortran definesthe caling convention used by Open Watcom FORTRAN
compilers.

__pascal definesthe calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall definesaspecia caling convention used by the Win32 API
functions.

__syscall definesthe calling convention used by the 32-bit OS/2 AP
functions.

__watcall definesthe calling convention used by Open Watcom compilers.

The following describes the attributes of the above alias names.

14.3.3.1 Predefined " __cdecl" Alias

Spragma aux __cdecl "_" \

c parmcaller [] \

c val ue struct float struct routine [eax] \

c nmodi fy [eax ecx edx]

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. Hoating-point values are returned in the same way as structures. When a structure
isreturned, the called routine all ocates space for the return value and returns a
pointer to the return value in register EAX.

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

218 Auxiliary Pragmas

32-bit Pragmas

14.3.3.2 Predefined "__pascal” Alias

*Spragma aux __pascal "'\

c parmreverse routine [] \

c val ue struct float struct caller [] \

c nmodi fy [eax ebx ecx edx]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is
pushed first, the second argument is pushed next, and so on. The routine being
called will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure
isreturned, the caller alocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon
returning from the call, register EAX will contain address of the space all ocated for
the return value.

4. Registers EAX, EBX, ECX and EDX are not saved and restored when acall is

made.

14.3.3.3 Predefined " _stdcall" Alias

Spragma aux __stdcall "_@nnn" \

c parmroutine [] \

c val ue struct struct caller [] \

c nmodi fy [eax ecx edx]

Notes:

1. All symbols are preceded by an underscore character.

2. All Csymbols (extern "C" symbolsin C++) are suffixed by "@nnn" where "nnn" is
the sum of the argument sizes (each size is rounded up to a multiple of 4 bytes so
that char and short are size 4). When the argument list contains™...", the " @nnn"
suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is

pushed first. The called routine will remove the arguments from the stack.

Auxiliary Pragmas 219

32-bit Topics

4. When astructureisreturned, the caller allocates space on the stack. The address of
the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of the
space allocated for the return value. Floating-point values are returned in 80x87
register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

14.3.3.4 Predefined "__syscall" Alias

Spragma aux __syscall "" \
c parmcaller [] \
c val ue struct struct caller [] \
c nodi fy [eax ecx edx]
Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or
trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. When asdtructure is returned, the caller allocates space on the stack. The address of
the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of the
space alocated for the return value. Floating-point values are returned in 80x87
register ST(0).

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

14.3.3.5 Predefined "__watcall" Alias (register calling convention)

*Spragma aux __watcall "*_" \
c parmroutine [eax ebx ecx edx] \
c val ue struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used

220 Auxiliary Pragmas

32-bit Pragmas

for argument passing have been exhausted). Arguments that are passed on the
stack are pushed from right to left. The calling routine will remove the arguments
if any were pushed on the stack.

When a structure is returned, the caller allocates space on the stack. The address of
the allocated space is put into ESI register. The called routine then places the
return value there. Upon returning from the call, register EAX will contain address
of the space allocated for the return value.

Floating-point values are returned using 80x86 registers ("fpc" option) or using
80x87 floating-point registers ("fpi" or "fpi87" option).

All registers must be preserved by the called routine.

14.3.3.6 Predefined "__watcall" Alias (stack calling convention)

Spragma aux __watcall "" \

c parmcaller [] \

c val ue no8087 struct caller \

c nmodi fy [eax ecx edx 8087]

Notes:

1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. When astructureis returned, the caller allocates space on the stack. The address of
the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of the
space alocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variablesthat are located in the 80x87 cache are not preserved by the

called routine.

Auxiliary Pragmas 221

32-bit Topics

14.3.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol
from its source form to its object form.

*$pragma aux sym obj_name

where description:
sym isany valid FORTRAN 77 identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj_name, some characters have a special meaning:

where description:
* isunmodified symbol name
n is symbol name converted to uppercase

! is symbol name converted to lowercase

is aplaceholder for "@nnn", where nnn is size of al function parameters on the
stack.
\ next character istreated as litera

Severa examples of source to object form symbol name trandation follow: By default, the
upper caseversion "MYRTN" or "MYVAR" is placed in the object file.

In the following example, the name "MyRtn" will be replaced by "MYRTN_" in the object
file.

*Spragma aux MyRtn """

In the following example, the name "MyVar" will bereplaced by "_MYVAR" in the object
file

*Spragma aux MyVar "_""

In the following example, the lower case version "myrtn” will be placed in the object file.

222 Auxiliary Pragmas

32-bit Pragmas

*$pragma aux MyRtn "I"

In the following example, the name "MyRtn" will be replaced by " MyRtn@nnn" in the
object file. "nnn" represents the size of all function parameters.

Spragma aux MyRtn "_#"

In the following example, the name "MyRtn" will be replaced by *_MyRtn#" in the object
file.

Spragma aux MyRtn "_\#"

The default mapping for al symbols can also be changed asillustrated by the following
example.

*Spragma aux default "_~_"

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an
underscore character (").

14.3.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a subprogram is
to be called.

*$pragma aux sym far
*$prggr;ma aux sym farlé
*$prggr;ma aux sym near
*$prggr;ma aux sym = in_line

in_line::={const |"asm" }

where description:
sym is a subprogram name.
const isavalid FORTRAN 77 hexadecimal constant.

Auxiliary Pragmas 223

32-bit Topics

asm is an assembly language instruction or directive.

In the following example, Open Watcom F77 will generate afar call to the subprogram
nyrtn.

*$pragma aux nyrtn far

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, afar call will be generated even if you are compiling for a
memory model with asmall code model.

In the following example, Open Watcom F77 will generate a near call to the subprogram
nyrtn.

*$pragma aux myrtn near

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, anear call will be generated even if you are compiling for a
memory model with a big code model.

In the following DOS example, Open Watcom F77 will generate the sequence of bytes
following the "=" character in the auxiliary pragmawhenever acall to node4 is encountered.
node4 is called an in-line subprogram.

*$pragnma aux noded = \

* zb4 z00 \ nov AH, O
* zb0 z04 \ nov AL, 4
* zcd z10 \ int 10h
*

modi fy [AH AL]

The sequence in the above DOS example represents the following lines of assembly language

instructions.
nov AH, 0 ; select function "set node"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing
an assembly language function and calling it from your FORTRAN 77 program.

The following DOS example is equivalent to the above example but mnemonics for the

assembly language instructions are used instead of the binary encoding of the assembly
language instructions.

224 Auxiliary Pragmas

32-bit Pragmas

*$pragnma aux noded = \
* “mov AH, 0" \
* "mov AL, 4" \
* "int 10H' \
*

modi fy [AH AL]

Thef ar 16 attribute should only be used on systems that permit the calling of 16-bit code
from 32-bit code. Currently, the only supported operating system that allows thisis 32-bit
0S/2. If you have any libraries of subprograms or APIs that are only available as 16-bit code
and you wish to access these subprograms and APIs from 32-bit code, you must specify the

f ar 16 attribute. If the f ar 16 attribute is specified, the compiler will generate special code
which allows the 16-bit code to be called from 32-bit code. Notethat a f ar 16 function must
be a function whose attributes are those specified by one of the aliasnames __cdecl or
__pascal. Theseaiasnameswill be described in alater section.

Thefilebsesub. f ap inthe\ wat com src\ f ortran\ 0s2 directory contains examples
of pragmas that usethe f ar 16 attribute to describe the 16-bit VIO, KBD and MOU
subsystems available in 32-bit OS/2.

14.3.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the
segment address of the default data segment (group "DGROUP"). Thisisusually the case if
you are using alarge data memory model. Suppose you wish to call a subprogram that
assumes that the segment register DS contains the segment address of the default data
segment. It would be very cumbersome if you were forced to compile your application so that
the segment register DS contained the default data segment (a small data memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded
with the segment address of the default data segment before calling the specified subprogram.

*$pragna aux sym parm | oadds

where description:
sym is a subprogram name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS

to be loaded with the segment address of the default data segment as part of the prologue
sequence for the specified subprogram.

Auxiliary Pragmas 225

32-bit Topics

*$pragma aux sym | oadds

where description:

sym is a subprogram name.

14.3.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library isasymbol that can be referenced by an
application that is linked with that dynamic link library. Normally, symbolsin dynamic link
libraries are exported using the Open Watcom Linker "EXPORT" directive. An alternative
method is to use the following form of the auxiliary pragma.

*$pragma aux sym export

where description:

sym is a subprogram name.

14.3.6 Describing Argument Information

Using auxiliary pragmas, you can describe the calling convention that Open Watcom F77 isto
use for calling subprograms. Thisis particularly useful when interfacing to subprograms that
have been compiled by other compilers or subprograms written in other programming
languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

226 Auxiliary Pragmas

32-bit Pragmas

*$pragma aux sym parm {arg_info|pop_info|reverse {reg_set}}
arg info::= (arg_attr {, arg_ attr})

arg_attr ::= val ue [v_attr]
| reference [r_attr]
| data_reference [d_attr]

v attr ;= far | near | *1 | *2 | *4 | *8

r_attr ::= [far | near] [descriptor | nodescriptor]

d_attr ::= [far | near]

pop_info::= caller | routine

where description:
sym is a subprogram name.
reg_set iscalled aregister set. The register sets specify the registers that are to be used

for argument passing. A register setisalist of registers separated by spaces and
enclosed in square brackets.

14.3.6.1 Passing Arguments to non-FORTRAN Subprograms

When calling a subprogram written in a different language, it may be necessary to provide the
arguments in aform different than the default methods used by Open Watcom F77. For
example, C functions require scalar arguments to be passed by value instead of by reference.
For information on the methods Open Watcom F77 uses to pass arguments, see the chapter
entitled "Assembly Language Considerations".

The following form of the auxiliary pragma can be used to ater the default calling mechanism
used for passing arguments.

Auxiliary Pragmas 227

32-bit Topics

v_attr i
r_attr ::

d_attr ::

*$pragma aux sym parm (arg_attr {, arg_attr})

arg_attr ::= val ue [v_attr]

| reference [r_attr]
| data_reference [d_attr]

=far | near | *1 | *2 | *4 | *8
= [far | near] [descriptor | nodescri ptor]

= [far | near]

where

sym

description:

is a subprogram name.

REFERENCE specifies that arguments are to be passed by reference. For non-character

arguments, the address is a pointer to the data. For character arguments, the
addressis a pointer to a string descriptor. See the chapter entitled " Assembly
Language Considerations' for a description of a string descriptor. Thisisthe
default calling mechanism. If "NEAR" or "FAR" is specified, a near pointer or
far pointer is passed regardless of the memory model used at compile-time.

If the "DESCRIPTOR" attribute is specified, a pointer to the string descriptor is
passed. Thisisthe default. If the "NODESCRIPTOR" attribute is specified, a
pointer to the the actual character datais passed instead of a pointer to the string
descriptor.

DATA_REFERENCE specifies that arguments are to be passed by data reference. For

VALUE

non-character items, thisisidentical to passing by reference. For character
items, a pointer to the actual character data (instead of the string descriptor) is
passed. If "NEAR" or "FAR" is specified, a near pointer or far pointer is passed
regardless of the memory model used at compile-time.

specifies that arguments are to be passed by value. Character arguments are
treated specially when passed by value. Instead of passing a pointer to a string
descriptor, a pointer to the actual character datais passed. See the chapter
entitled " Assembly Language Considerations’ for a description of a string
descriptor.

228 Auxiliary Pragmas

32-bit Pragmas

Notes:

1. Arraysand subprograms are aways passed by reference, regardless of the argument
attribute specified.

2. When character arguments are passed by reference, the address of a string
descriptor is passed. The string descriptor contains the address of the actual
character data and the number of characters. When character arguments are passed
by value or datareference, the address of the actual character datais passed instead
of the address of a string descriptor. Character arguments are passed by value by
specifying the"VALUE" or "DATA_REFERENCE" attribute. If "NEAR" or
"FAR" is specified, anear pointer or far pointer to the character datais passed
regardless of the memory model used at compile-time.

3. When complex arguments are passed by value, the real part and the imaginary part
are passed as two separate arguments.

4. When an argument is a user-defined structure and is passed by value, a copy of the
structure is made and passed as an argument.

5. For scalar arguments, arguments of type INTEGER*1, INTEGER*2,
INTEGER*4, REAL or DOUBLE PRECISION, alength specification can be
specified when the "VALUE" attribute is specified to pass the argument by value.
This length specification refers to the size of the argument; the compiler will
convert the actual argument to a type that matchesthe size. For example, if an
argument of type REAL is passed to a subprogram that has an argument attribute
of "VALUE*8", the argument will be converted to DOUBLE PRECISION. If an
argument of type DOUBLE PRECISION is passed to a subprogram that has an
argument attribute of "VALUE*4", the argument will be converted to REAL. If an
argument of type INTEGER*4 is passed to a subprogram that has an argument
attribute of "VALUE*2" or VALUE* 1, the argument will be converted to
INTEGER*2 or INTEGER*1. If an argument of type INTEGER*2 is passed to
a subprogram that has an argument attribute of "VALUE*4 or VALUE*1", the
argument will be converted to INTEGER*4 or INTEGER*1. If an argument of
type INTEGER* 1 is passed to a subprogram that has an argument attribute of
"VALUE*4 or VALUE*2", the argument will be converted to INTEGER*4 or
INTEGER*2.

6. If the number of arguments exceeds the number of entries in the argument-attribute
list, the last attribute will be assumed for the remaining arguments.

Consider the following example.

Auxiliary Pragmas 229

32-bit Topics

*Spragma aux printf "*_" parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf('values: %d, %d //cr//nullchar,
77, 31410)
end

The C "printf" function is called with three arguments. The first argument is of type
CHARACTER and is passed as a C string (address of actual dataterminated by anull
character). The second and third arguments are passed by value. Also note that "printf" isa
function that takes a variable number of arguments, all passed on the stack (an empty register
set was specified), and that the caller must remove the arguments from the stack.

14.3.6.2 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to pass arguments to a particular subprogram.

*$pragma aux sym parm {reg_set}

where description:
sym is a subprogram name.
reg_set iscalled aregister set. The register sets specify the registers that are to be used

for argument passing. A register setisalist of registers separated by spaces and
enclosed in square brackets.

Register sets establish a priority for register allocation during argument list processing.
Register sets are processed from left to right. However, within aregister set, registers are
chosen in any order. Onceall register sets have been processed, any remaining arguments are
pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will
be selected for arguments of a particular type.

Note that arguments of type REAL and DOUBLE PRECI SION are always pushed on the
stack when the "fpi" or "fpi87" option is used.

230 Auxiliary Pragmas

32-bit Pragmas

DOUBLE PRECISION

far pointer

INTEGER

Arguments of type DOUBL E PRECISION, when passed by value, can only be
passed in one of the following register pairs: EDX:EAX, ECX:EBX,
ECX:EAX, ECX:ESl, EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI, EDI:EBX,
ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. For
example, if the following register set was specified for aroutine having an
argument of type DOUBLE PRECISION,

[EBP EBX]

the argument would be pushed on the stack since avalid register combination
for 8-byte arguments is not contained in the register set. Note that this method
for passing arguments of type DOUBLE PRECISION is supported only when
the "fpc" option isused. Note that this argument passing method does not
include arguments of type COM PL EX*8 or user-defined structures whose size
is 8 bytes when these arguments are passed by value.

A far pointer can only be passed in one of the following register pairs:
DX:EAX, CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI,
DI:EBX, SI:EAX, CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS.ECX,
FS.EDX, FS.EDI, FS:ESI, FS.EBX, FS.EAX, GS.ECX, GS.EDX, GS.EDI,
GS.ESI, GS.EBX, GS.EAX, DS.ECX, DS.EEDX, DS.EDI, DS.ESI, DS:EBX,
DS.EAX, ES.ECX, ES.EDX, ES.EDI, ES.ESI, ES.EBX or ES.EAX. For
example, if afar pointer is passed to a function with the following register set,

[ES EBP|

the argument would be pushed on the stack since avalid register combination
for afar pointer is not contained in the register set. Far pointers are used to pass
arguments by reference in a big data memory model.

The only registersthat will be assigned to 4-byte arguments (e.g., arguments of
type INTEGER when passed by value or arguments passed by referencein a
small data memory model) are: EAX, EBX, ECX, EDX, ESI and EDI. For
example, if the following register set was specified for a routine with one
argument of type INTEGER,

[EBP]

the argument would be pushed on the stack since avalid register combination
for 4-byte arguments is not contained in the register set. Note that this argument
passing method also includes arguments of type REAL but only when the "fpc"
option is used.

Auxiliary Pragmas 231

32-bit Topics

INTEGER*1, INTEGER*2

others

Notes:

Arguments whose sizeis 1 byte or 2 bytes (e.g., arguments of type
INTEGER*1 and INTEGER*2 aswell as 2-byte structures when passed by
value) are promoted to 4 bytes and are then assigned registers asif they were
4-byte arguments.

Arguments that do not fall into one of the above categories cannot be passed in
registers and are pushed on the stack. Once an argument has been assigned a
position on the stack, all remaining arguments will be assigned a position on the
stack even if all register sets have not yet been exhausted.

The default register set is[EAX EBX ECX EDX].

Specifying registers AH and AL is equivalent to specifying register AX.
Specifying registers DH and DL is equivalent to specifying register DX.
Specifying registers CH and CL is equivalent to specifying register CX. Specifying
registers BH and BL is equivalent to specifying register BX. Specifying register
EAX impliesthat register AX has been specified. Specifying register EBX implies
that register BX has been specified. Specifying register ECX implies that register
CX has been specified. Specifying register EDX implies that register DX has been
specified. Specifying register EDI impliesthat register DI has been specified.
Specifying register ESI implies that register Sl has been specified. Specifying
register EBP implies that register BP has been specified. Specifying register ESP
implies that register SP has been specified.

If you are compiling for amemory model with a small data model, any register
combination containing register DS becomesillegal. In asmall data model,
segment register DS must remain unchanged as it points to the program’ s data
segment.

If you are compiling for the flat memory model, any register combination
containing DS or ES becomesillegal. In aflat memory model, code and data reside
in the same segment. Segment registers DS and ES point to this segment and must
remain unchanged.

Consider the following example.

*$pragma aux nyrtn parm (val ue) \
*

[eax ebx ecx edx] [ebp esi]

Suppose myr t n isaroutine with 3 arguments each of type DOUBL E PRECISION. Note
that the arguments are passed by value.

232 Auxiliary Pragmas

32-bit Pragmas

=

Thefirst argument will be passed in the register pair EDX:EAX.

The second argument will be passed in the register pair ECX:EBX.

3. Thethird argument will be pushed on the stack since EBP:ESI is not avalid
register pair for arguments of type DOUBL E PRECISION.

N

It is possible for registers from the second register set to be used before registers from the first
register set are used. Consider the following example.

*$pragma aux nyrtn parm (val ue) \
* [eax ebx ecx edx] [esi edi]

Suppose myr t n isaroutine with 3 arguments, the first of type INTEGER and the second
and third of type DOUBLE PRECISION. Notethat all arguments are passed by value.

1. Thefirst argument will be passed in the register EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. Thethird argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from aregister set after registers are selected from
subsequent register sets, even if all registers from the original register set have not been
exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty
register set areignored; al remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, all arguments are passed on the stack.

2. If noregister set is specified, the default register set [EAX EBX ECX EDX] is
used.

14.3.6.3 Forcing Arguments into Specific Registers

It is possible to force argumentsinto specific registers. Suppose you have a subprogram, say
"mycopy", that copies data. The first argument is the source, the second argument is the
destination, and the third argument is the length to copy. If we want the first argument to be
passed in the register ESI, the second argument to be passed in register EDI and the third
argument to be passed in register ECX, the following auxiliary pragma can be used.

Auxiliary Pragmas 233

32-bit Topics

*$pragnma aux nmycopy parm (val ue) \

* [ESI] [ED] [ECX
character*10 dst
call mycopy(dst, '0123456789’, 10)

end

Note that you must be aware of the size of the arguments to ensure that the arguments get
passed in the appropriate registers.

14.3.6.4 Passing Arguments to In-Line Subprograms

For subprograms whose code is generated by Open Watcom F77 and whose argument list is
described by an auxiliary pragma, Open Watcom F77 has some freedom in choosing how
arguments are assigned to registers. Since the code for in-line subprograms is specified by the
programmer, the description of the argument list must be very explicit. To achieve this, Open
Watcom F77 assumes that each register set corresponds to an argument. Consider the
following DOS example of an in-line subprogram called scr ol | acti vepgup.

*$pragnma aux scrollactivepgup = \
* "mov AH, 6" \
"int 10h" \
parm (val ue) \
[ch] [cl] [dh] [dI] [al] [bh] \
nodi fy [ah]

* F * X

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in
registers CH and CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in
registers DH and DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.
4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom F77 will convert the argument so that it fitsin the
register(s) specified in the register set for that argument. For example, in the above example,
if thefirst argument to scrol | acti vepgup was caled with an argument whose type was

INTEGER, it would first be converted to INTEGER* 1 before assigning it to register CH.
Similarly, if an in-line subprogram required its argument in register EAX and the argument

234 Auxiliary Pragmas

32-bit Pragmas

was of type INTEGER*2, the argument would be converted to INTEGER*4 before
assigning it to register EAX.

In general, Open Watcom F77 assigns the following types to register sets.

1. A register set consisting of asingle 8-bit register (1 byte) is assigned atype of
INTEGER* 1.

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned a type of
INTEGER*2.

3. A register set consisting of asingle 32-bit register (4 bytes) is assigned atype of
INTEGER*4.

4. A register set consisting of two 32-bit registers (8 bytes) is assigned a type of
DOUBLE PRECISION.

If the size of an integer argument is larger than the size specified by the register set, the

argument will be truncated to the required size. If the size of an integer argument is smaller
than the size specified by the register set, the argument will be padded (to the left) with zeros.

14.3.6.5 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments
that were pushed on the stack.

*$pragna aux sym parm (cal l er | routine)

where description:

sym is a subprogram name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that
the called routine will pop the arguments from the stack. If "caller” or "routine" is omitted,
"routine” is assumed unless the default has been changed in a previous auxiliary pragma, in

which case the new default is assumed.

Consider the following example. It describes the pragma required to call the C "printf"
function.

Auxiliary Pragmas 235

32-bit Topics

*Spragma aux printf "*_" parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf("value is %d //cr//nullchar,
7143)
end

The first argument must be passed as a C string, a pointer to the actual character data
terminated by anull character. By default, the address of a string descriptor is passed for
arguments of type CHARACTER. See the chapter entitled "Assembly Language
Considerations' for more information on string descriptors. The second argument is of type
INTEGER and is passed by value. Also note that "printf" is afunction that takes a variable
number of arguments, all pushed on the stack (an empty register set was specified).

14.3.6.6 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse
order.

*$pragma aux sym parmreverse

where description:
sym is a subprogram name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used for
argument passing have been exhausted). Arguments that are passed on the stack are pushed
from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost
arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for subprograms that require arguments to be passed on
the stack in an order opposite from the default. The following auxiliary pragma demonstrates
such a subprogram.

*$pragma aux rtn parmreverse []

236 Auxiliary Pragmas

32-bit Pragmas

14.3.7 Describing Subprogram Return Information

Using auxiliary pragmas, you can describe the way functions are to return values. Thisis
particularly useful when interfacing to functions that have been compiled by other compilers
or functions written in other programming languages.

The general form of an auxiliary pragmathat describes the way afunction returnsitsvalueis
the following.

*$pragnma aux sym val ue {no8087 | reg_set | struct_info}
struct_info::= struct {float | struct | (routine | caller) | reg_set}

where description:
sym isafunction name.
reg_set iscaled aregister set. Theregister sets specify the registers that are to be used

for argument passing. A register setisalist of registers separated by spaces and
enclosed in square brackets.

14.3.7.1 Returning Subprogram Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to return afunction’s value.

*$pragnma aux sym val ue reg_set

where description:
sym is a subprogram name.
reg_set isaregister set.

Note that the method described below for returning values of type REAL or DOUBLE
PRECI SION is supported only when the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

Auxiliary Pragmas 237

32-bit Topics

1-byte For 1-byte return values, only the following registers are dlowed: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX,
CX, Sl or DI. If noregister set is specified, register AX will be used.

4-byte For 4-byte return values (including near pointers), only the following register are
allowed: EAX, EDX, EBX, ECX, ESI or EDI. If noregister set is specified,
register EAX will beused. Thisform of the auxiliary pragmaislegal for
functions of type REAL when using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed:
DX:EAX, CX:EBX, CX:EAX, CX:ESl, DX:EBX, DI:EAX, CX:EDI, DX:ESI,
DI:EBX, SI:EAX, CX:EDX, DX:EDI, DI:ES|, SI:EBX, BX:EAX, FS:ECX,
FS.EDX, FS:EDI, FS:ESI, FS.EBX, FS.EAX, GS.ECX, GS.EDX, GS.EDI,
GS:ESI, GS.EBX, GSEAX, DS.ECX, DS.EDX, DS:EDI, DS:ESI, DS:EBX,
DS.EAX, ES.ECX, ES.EDX, ES.EDI, ES.ESI, ES.EBX or ES.EAX. If no
register set is specified, the registers DX:EAX will be used.

8-byte For 8-byte return values (including functions of type DOUBL E PRECISION),
only the following register pairs are allowed: EDX:EAX, ECX:EBX,
ECX:EAX, ECX:ESl, EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI, EDI:EBX,
ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. If no
register set is specified, the registers EDX:EAX will beused. Thisform of the
auxiliary pragmais lega for functions of type DOUBL E PRECISION when
using the "fpc" option only.

Notes:
1. Anempty register set isnot allowed.

2. If you are compiling for amemory model which has a small data model, any of the
above register combinations containing register DS becomesillegal. Inasmall
data model, segment register DS must remain unchanged as it points to the
program’s data segment.

3. If you are compiling for the flat memory model, any register combination
containing DS or ES becomesillegal. In aflat memory model, code and datareside
in the same segment. Segment registers DS and ES point to this segment and must
remain unchanged.

238 Auxiliary Pragmas

32-bit Pragmas

14.3.7.2 Returning Structures and Complex Numbers

Typically, structures and complex numbers are not returned in registers. Instead, the caller
allocates space on the stack for the return value and setsregister ESI to point to it. The called
routine then places the return value at the location pointed to by register ESI.

Complex numbers are not scalars but rather an ordered pair of real numbers. One can also
view complex numbers as a structure containing two real numbers.

The following form of the auxiliary pragma can be used to specify the register that isto be
used to point to the return value.

*$pragma aux sym value struct (caller|routine) reg_set

where description:
sym is a subprogram name.
reg_set isaregister set.

"caller" specifiesthat the caller will allocate memory for the return value. The address of the
memory allocated for the return value is placed in the register specified in the register set by
the caller before the function is called. 1f an empty register set is specified, the address of the
memory allocated for the return value will be pushed on the stack immediately before the call
and will be returned in register EAX by the called routine.

"routing" specifiesthat the called routine will allocate memory for the return value. Upon
returning to the caller, the register specified in the register set will contain the address of the
return value. An empty register set isnot allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or
EDI. Notethat in abig data model, the addressin the return register is assumed to bein the
segment specified by the value in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The
return register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

Auxiliary Pragmas 239

32-bit Topics

2. A 2-byte structure will be returned in one of the following registers. AX, DX, BX,
CX, Sl or DI. If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following registers: EAX, EDX,
EBX, ECX, ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size
is1, 2 or 4 bytesare not to be returned in registers. Instead, the caller will alocate space on
the stack for the structure return value and point register ESI to it.

*$pragma aux sym val ue struct struct

where description:

sym is a subprogram name.

14.3.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for afunction whose typeis
REAL or DOUBLE PRECISION isto be returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose typeis REAL or DOUBLE PRECISION are not to be returned in registers. Instead,
the caller will allocate space on the stack for the return value and point register ES to it.

*$pragnma aux sym val ue struct fl oat

where description:
sym isafunction name.

In other words, floating-point values are to be returned in the same way complex numbers are
returned.

The following form of the auxiliary pragma can be used to specify that function return values
whosetypeis REAL or DOUBLE PRECISION are not to be returned in 80x87 registers
when compiling with the "fpi" or "fpi87" option. Instead, the value will be returned in 80x86
registers. Thisisthe default behaviour for the "fpc" option. Function return values whose
typeis REAL will be returned in register EAX. Function return values whose typeis

240 Auxiliary Pragmas

32-bit Pragmas

DOUBLE PRECISION will be returned in registers EDX:EAX. Thisisthe default method
for the "fpc" option.

*$pragna aux sym val ue no8087

where description:
sym isafunction name.

The following form of the auxiliary pragma can be used to specify that function return values
whose typeis REAL or DOUBLE PRECISION areto be returned in ST(0) when compiling
with the "fpi" or "fpi87" option. Thisform of the auxiliary pragmais not legal for the "fpc"
option.

*$pragnma aux sym val ue [8087]

where description:

sym isafunction name.

14.3.8 A Subprogram that Never Returns

The following form of the auxiliary pragma can be used to describe a subprogram that does
not return to the caller.

*$pragnma aux sym aborts

where description:

sym is a subprogram name.

Auxiliary Pragmas 241

32-bit Topics

Consider the following example.
*$pragna aux exitrtn aborts

call exitrtn()
end

exi t rt n isdefined to be afunction that does not return. For example, it may call exi t to
return to the system. In this case, Open Watcom F77 generates a"jmp" instruction instead of
a"cal" instructiontoinvoke exi t rt n.

14.3.9 Describing How Subprograms Use Variables in Common

The following form of the auxiliary pragma can be used to describe a subprogram that does
not modify any variable that appearsin a common block defined by the caller.

*$pragnma aux sym nodi fy nonenory

where description:
sym is a subprogram name.

Consider the following example.

i nteger i

conmon /bl k/ i

while(i .lIt. 1000)do
i =i + 383

endwhi | e

call myrtn()

i =i + 13143

end

bl ock data
common /bl k/ i

i nteger i/1033/
end

To compile the above program, "rtn.for", we issue the following command.

Cwic rtn /nmm/dl
Cw c386 rtn /dil

242 Auxiliary Pragmas

32-bit Pragmas

The"d1" compiler option is specified so that the object file produced by Open Watcom F77
contains source line information.

We can generate a file containing adisassembly of rt n. obj by issuing the following

command.

Cwdis rtn /1

/s Ir

The"s" option is specified so that the listing file produced by the Open Watcom Disassembler
contains source linestakenfromrt n. f or. Thelistingfilert n. | st appearsasfollows.

Modul e
Group:

Segment: 'FMAIN_TEXT’ BYTE USE32

0000
0001

0007
000d

000f
0015

0017
001d
0022

0028
002e

0034
0035

rtn. for

"DGROUP’ _DATA,LDATA,CDATA,BLK

integer i

common /bl k/
52 FMAI N
8b 15 00 00 00 00

while(i .It. 1000)do
81 fa e8 03 00 00 L1
7d 08

i =i + 383
endwhi | e
81 c2 7f 01 00 00
eb fO

call myrtn()
89 15 00 00 00 00 L2

e8 00 00 00 00
8b 15 00 00 00 00

i =1 + 13143
81 c2 57 33 00 00
89 15 00 00 00 00

end

bl ock data
conmon / bl k/
integer i/1033/
end

5a

c3

No di sassenbly errors

00000036 bytes

push
nov

cnp
jge

add
jmp

pop
ret

edx
edx, L3

edx, 000003e8H
L2

edx, 0000017fH
L1

L3, edx
MYRTN
edx, L3

edx, 00003357H
L3, edx

edx

Auxiliary Pragmas

243

32-bit Topics

Li st of external synbols

Segnent: ' BLK PARA USE32 00000004 bytes
0000 09 04 00 00 L3 -

No di sassenbly errors

Let us add the following auxiliary pragmato the sourcefile.

*$pragma aux nyrtn nodi fy nonmenory
If we compile the source file with the above pragma and disassemble the object file using the
Open Watcom Disassembler, we get the following listing file.

Modul e: rtn.for
Group: ’‘DGROUP’ _DATA,LDATA,CDATA,BLK

Segment: ’‘FMAIN_TEXT’ BYTE USE32 (00000030 bytes

*$pragma aux nmyrtn nodi fy nonmenory

integer i

common / bl k/
0000 52 FMAI N push edx
0001 8b 15 00 00 00 00 mov edx, L3

while(i .lt. 1000)do
0007 81 fa e8 03 00 00 L1 cnp edx, 000003e8H
000od 7d 08 ige L2

i =i + 383

endwhi | e
0oof 81 c2 7f 01 00 00 add edx, 0000017fH
0015 eb fO jnmp L1

244 Auxiliary Pragmas

32-bit Pragmas

call nmyrtn()
0017 89 15 00 00 00 00 L2 nov L3, edx
001d e8 00 00 00 0O cal | MYRTN
i =i + 13143
0022 81 c2 57 33 00 00 add edx, 00003357H
0028 89 15 00 00 00 0O nov L3, edx
end
bl ock data

common / bl k/
integer i/1033/

end
002e 5a pop edx
002f ¢3 ret

No di sassenbly errors

Li st of external synbols

Segrent: ' BLK PARA USE32 00000004 bytes
0000 09 04 00 00 L3

No di sassenbly errors

Notice that the value of i isinregister EDX after completion of the "whil€e" loop. After the
cal tonyrtn, thevalueof i isnotloaded from memory into aregister to perform the final
addition. The auxiliary pragmainforms the compiler that myr t n does not modify any
variable that appearsin a common block defined by Rt n and hence register EDX contains the
correct valueof i .

The preceding auxiliary pragma deals with routines that modify variablesin common. Let us
consider the case where routines reference variables in common. The following form of the
auxiliary pragma can be used to describe a subprogram that does not reference any variable
that appears in acommon block defined by the caller.

Auxiliary Pragmas 245

32-bit Topics

*$pragma aux sym parm normenory nodi fy nonmenory

where description:
sym is a subprogram name.
Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

*$pragna aux nyrtn parm nonenory nodi fy nonenory
If you now compile our source file and disassemble the object file using WDIS, the result is
the following listing file.

Modul e: rtn. for
Group: ’‘DGROUP’ _DATA,LDATA,CDATA,BLK

Segment: ’'FMAIN_TEXT’ BYTE USE32 0000002a bytes

*$pragma aux myrtn parm nonmenory nodi fy nomenory

integer i

common / bl k/
0000 52 FMAI N push edx
0001 8b 15 00 00 00 00 nov edx, L3

while(i .It. 1000)do
0007 81 fa e8 03 00 00 L1 cnp edx, 000003e8H
000d 7d 08 j ge L2

i =i + 383

endwhi | e
000f 81 c2 7f 01 00 00 add edx, 0000017fH
0015 eb fO jmp L1

call myrtn()
0017 e8 00 00 00 0O L2 cal | MYRTN

i =i + 13143
001c 81 c2 57 33 00 00 add edx, 00003357H
0022 89 15 00 00 00 00 nov L3, edx

end

246 Auxiliary Pragmas

32-bit Pragmas

bl ock data
common / bl k/
integer i/1033/

end
0028 5a pop edx
0029 «c3 ret

No di sassenbly errors

Li st of external synbols

Segrent: ' BLK PARA USE32 00000004 bytes
0000 09 04 00 00 L3

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the valuein
register EDX before calling myrt n. The auxiliary pragmainforms the compiler that nyrt n
does not reference any variable that appearsin acommon block defined by myrt n so
updating i was not necessary before calling myrt n.

14.3.10 Describing the Registers Modified by a Subprogram

The following form of the auxiliary pragma can be used to describe the registers that a
subprogram will use without saving.

*$pragnma aux sym nodi fy [exact] reg_set

Auxiliary Pragmas 247

32-bit Topics

where description:
sym is a subprogram name.
reg set isaregister set.

Specifying aregister set informs Open Watcom F77 that the registers belonging to the register
set are modified by the subprogram. That is, the value in aregister before calling the
subprogram is different from its value after execution of the subprogram.

Registers that are used to pass arguments are assumed to be modified and hence do not have to
be saved and restored by the called subprogram. Also, since the EAX register is frequently
used to return avalue, it is always assumed to be modified. If necessary, the caller will
contain code to save and restore the contents of registers used to pass arguments. Note that
saving and restoring the contents of these registers may not be necessary if the called
subprogram does not modify them. The following form of the auxiliary pragma can be used
to describe exactly those registers that will be modified by the called subprogram.

*$pragma aux sym nodi fy exact reg set

where description:
sym is a subprogram name.
reg set isaregister set.

The above form of the auxiliary pragmatells Open Watcom F77 not to assume that the
registers used to pass arguments will be modified by the called subprogram. Instead, only the
registers specified in the register set will be modified. Thiswill prevent generation of the
code which unnecessarily saves and restores the contents of the registers used to pass
arguments.

Also, any registers that are specified in the val ue register set are assumed to be unmodified
unless explicitly listed in the exact register set. In the following example, the code
generator will not generate code to save and restore the value of the stack pointer register
since we havetold it that "GetSP" does not modify any register whatsoever.

248 Auxiliary Pragmas

32-bit Pragmas

Example:
*Sifdef __386__
*$pragna aux Cet SP = val ue [esp] nodify exact []
*$el se
*$pragma aux Get SP
*$endi f

val ue [sp] nodify exact []

program mai n

i nteger Get SP

print *, 'Current SP =", GetSP()
end

14.3.11 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The
discussion in this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile
subprograms. The following areas are affected by the use of these options.

1. passing floating-point arguments to functions,

2. returning floating-point values from functions and

3. which 80x87 floating-point registers are allowed to be modified by the called
routine.

14.3.11.1 Using the 80x87 to Pass Arguments

By defaullt, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are
never used to pass floating-point arguments when a subprogram is compiled with the "fpi" or
"fpi87" option. However, they can be used to pass arguments whose type is not floating-point
such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be
used to pass arguments to subprograms.

*$pragma aux sym parm {reg_set}

where description:

sym is a subprogram name.

reg_set isaregister set. Theregister set can contain 80x86 registers and/or the string
"8087".

Auxiliary Pragmas 249

32-bit Topics

Notes:

1. If an empty register set is specified, all arguments, including floating-point
arguments, will be passed on the 80x86 stack.

When the string "8087" appears in aregister set, it simply means that floating-point arguments
can be passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or
"fpi87" option. Before discussing argument passing in detail, some general notes on the use
of the 80x87 floating-point registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack
pointer is called ST and is a number between 0 and 7 identifying which 80x87 floating-point
register is at the top of the stack. ST isinitially 0. 80x87 instructions reference these registers
by specifying afloating-point register number. This number isthen added to the current value
of ST. The sum (taken modulo 8) specifies the 80x87 floating-point register to be used. The
notation ST(n), where"n" is between 0 and 7, is used to refer to the position of an 80x87
floating-point register relative to ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is
decremented (modulo 8), and the value is loaded into ST(0). When afloating-point valueis
stored and popped from the 80x87 floating-point register stack, ST isincremented (modulo 8)
and ST(1) becomes ST(0). Thefollowing illustrates the use of the 80x87 floating-point
registers as a stack, assuming that the value of ST is4 (4 values have been |oaded onto the
80x87 floating-point register stack).

e +

0 | 4th fromtop | ST(4)
S +

1 | 5th fromtop | ST(5)
oo +

2 | 6th fromtop | ST(6)
oo +

3 | 7th fromtop | ST(7)
o m e e e e e oo +

ST -> 4 | top of stack | ST(0)
e +

5 | 1st fromtop | ST(1)
S +

6 | 2nd fromtop | ST(2)
oo +

7 | 3rd fromtop | ST(3)
oo +

250 Auxiliary Pragmas

32-bit Pragmas

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registersas a
stack. Theinitial state of the 80x87 register stack is empty before a program begins
execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can
compile with the "fpr" option. In this case only four of the eight 80x87 registers
are used as astack. These four registers were used to pass arguments. The other
four registers form what was called the 80x87 cache. The cache was used for
local floating-point variables. The state of the 80x87 registers before a program
began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are
uninitialized.

2. Thefour 80x87 floating-point registers that form the 80x87 cache are
initialized with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and
ST(3). ST had the value 4 asin the above diagram. When afloating-point value
was pushed on the stack (as is the case when passing floating-point arguments),
it became ST(0) and the 80x87 cache was comprised of ST(1), ST(2), ST(3) and
ST(4). When the 80x87 stack was full, ST(0), ST(1), ST(2) and ST(3) formed
the stack and ST(4), ST(5), ST(6) and ST(7) formed the 80x87 cache. Version
9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this
chapter.

2. If the argument isfloating-point, and a previous argument has been assigned a
position on the 80x86 stack (instead of the 80x87 stack), the floating-point
argument is also assigned a position on the 80x86 stack. Otherwise proceed to the
next step.

3. If thestring "8087" appearsin aregister set in the pragma, and if the 80x87 stack is
not full, the floating-point argument is assigned floating-point register ST(0) (the
top element of the 80x87 stack). The previous top element (if there was one) is
now in ST(1). Since arguments are pushed on the stack from right to l€eft, the
leftmost floating-point argument will bein ST(0). Otherwise the floating-point
argument is assigned a position on the 80x86 stack.

Consider the following example.

Auxiliary Pragmas 251

32-bit Topics

*$pragnma aux nyrtn parm (val ue) [8087];

real x

doubl e precision y
i nteger i

i nteger j

X 7.7

i 7

y = 77.77

j 77

J
call myrtn(x, i, vy, j)

end

nyr t n isan assembly language subprogram that requires four arguments. The first argument
of type REAL (4 bytes), the second argument is of type INTEGER (4 bytes), the third
argument is of type DOUBL E PRECISION (8 bytes) and the fourth argument is of type
INTEGER*4 (4 bytes). These argumentswill be passed to myr t n in the following way.

1

4.

Since "8087" was specified in the register set, the first argument, being of type
REAL, will be passed in an 80x87 floating-point register.

The second argument will be passed on the stack since no 80x86 registers were
specified in the register set.

The third argument will also be passed on the stack. Remember the following rule:
once an argument is assigned a position on the stack, all remaining arguments will
be assigned a position on the stack. Note that the above rule holds even though
there are some 80x87 floating-point registers available for passing floating-point
arguments.

The fourth argument will also be passed on the stack.

Let us change the auxiliary pragmain the above example as follows.

*$pragnma aux nyrtn parm [eax 8087]

The arguments will now be passed to myr t n in the following way.

1.

2.

Since "8087" was specified in the register set, the first argument, being of type
REAL will be passed in an 80x87 floating-point register.

The second argument will be passed in register EAX, exhausting the set of
available 80x86 registers for argument passing.

252 Auxiliary Pragmas

32-bit Pragmas

3. Thethird argument, being of type DOUBL E PRECISION, will also be passed in
an 80x87 floating-point register.

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in
the register set.

14.3.11.2 Using the 80x87 to Return Subprogram Values

The following form of the auxiliary pragma can be used to describe a subprogram that returns
afloating-point value in ST(0).

*$pragma aux sym val ue reg set

where description:
sym is a subprogram name.
reg_set isaregister set containing the string "8087", i.e. [8087].

14.3.11.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use
within a subprogram unless the "fpr" option is used to generate backward compatible code
(older Open Watcom compilers used four registers as a cache). The following form of the
auxiliary pragma specifies that the floating-point registers in the 80x87 cache may be
modified by the specified subprogram.

*$pragma aux sym nodi fy reg set

where description:
sym is a subprogram name.
reg_set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom F77 to save any local variables that are located in the 80x87
cache before calling the specified routine.

Auxiliary Pragmas 253

32-bit Topics

254 Auxiliary Pragmas

Appendices

Appendices

256

Use of Environment Variables
'

A. Use of Environment Variables

In the Open Watcom FORTRAN 77 software devel opment package, a number of environment
variables are used. This appendix summarizes their use with a particular component of the
package.

A.1 FINCLUDE

The FINCL UDE environment variable describes the location of the Open Watcom
FORTRAN 77 includefiles. Thisvariableisused by Open Watcom FORTRAN 77.

SET FINCLUDE=[d:][path];[d:][path]...

The FINCLUDE environment string is like the PATH string in that you can specify one or
more directories separated by semicolons (";").

A2LIB

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM"
directive is recommended over the use of this environment variable.

The L1B environment variable is used to select the libraries that will be used when the
application islinked. Thisvariableisused by the Open Watcom Linker (WLINK.EXE). The
L 1B environment string is like the PATH string in that you can specify one or more
directories separated by semicolons (*;").

If you have the 286 development system, 16-bit applications can be linked for DOS,
Microsoft Windows, OS/2, and QNX depending on which libraries are selected. If you have
the 386 development system, 32-bit applications can be linked for DOS Extender systems,
Microsoft Windows and QNX.

LIB 257

Appendices

A.3 LIBDOS

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM"
directive is recommended over the use of this environment variable.

If you are developing a DOS application, the LI BDOS environment variable must include the
location of the 16-bit Open Watcom F77 DOS library files (fileswith the ".lib" filename
extension). Thisvariableisused by the Open Watcom Linker (WLINK.EXE). The default
installation directory for the 16-bit Open Watcom F77 DOS librariesis

\ WATCOM LI B286\ DCS.

Example:
C>set |ibdos=c:\watcom | i b286\ dos

A.4 LIBWIN

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM"
directive is recommended over the use of this environment variable.

If you are developing a 16-bit Microsoft Windows application, the LIBWIN environment
variable must include the location of the 16-bit Open Watcom F77 Windows library files
(fileswith the".lib" filename extension). Thisvariableis used by the Open Watcom Linker
(WLINK.EXE). If you are developing a 32-bit Microsoft Windows application, see the
description of the LIBPHAR environment variable. The default installation directory for the
16-bit Open Watcom F77 Windows librariesis \ WATCOM LI B286\ W N.

Example:
Csset |ibwi n=c:\watcom|ib286\win

A.5LIBOS2

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM"
directive is recommended over the use of this environment variable.

If you are developing an OS/2 application, the LIBOS2 environment variable must include
the location of the 16-bit Open Watcom F77 OS/2 library files (fileswith the ".lib" filename
extension). Thisvariableisused by the Open Watcom Linker (WLINK.EXE). The default
installation directory for the 16-bit Open Watcom F77 OS2 librariesis

\ WATCOM LI B286\ OS2. TheLIBOS2 environment variable must also include the
directory of the OS/2 DOSCALLS. LI Bfilewhichisusualy \ OS2.

258 LIBOS2

Use of Environment Variables

Example:
C>set libos2=c:\watcom | i b286\0s2;c:\os2

A.6 LIBPHAR

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM"
directive is recommended over the use of this environment variable.

If you are developing a 32-bit Windows or DOS Extender application, the LIBPHAR
environment variable must include the location of the 32-bit Open Watcom F77 DOS
Extender library files or the 32-bit Open Watcom F77 Windows library files (files with the
"lib" filename extension). Thisvariableisused by the Open Watcom Linker (WLINK.EXE).
The default installation directory for the 32-bit Open Watcom F77 DOS Extender librariesis
\ WATCOM LI B386\ DOS. The default installation directory for the 32-bit Open Watcom
F77 Windows librariesis \ WATCOM LI B386\ W N.

Example:
C>set |i bphar=c:\watcom i b386\dos
or
C>set |ibphar=c:\watcom i b386\w n

A.7 NO87

The NO87 environment variable is checked by the Open Watcom FORTRAN 77 run-time
libraries that include floating-point emulation support. Normally, these libraries will detect
the presence of a numeric data processor (80x87) and useit. If you have a numeric data
processor in your system but you wish to test a version of your application that will use
floating-point emulation, you can define the NO87 environment variable. Using the "SET"
command, define the environment variable as follows:

SET NO87=1

Now, when you run your application, the 80x87 will beignored. To undefine the
environment variable, enter the command:

SET NCB87=

NO87 259

Appendices

A.8 PATH

The PATH environment variable is used by DOS "COMMAND.COM" or OS/2 "CMD.EXE"
to locate programs.

PATH [d:][path];[d:][path]...
The PATH environment variable should include the disk and directory of the Open Watcom
FORTRAN 77 binary program files when using Open Watcom FORTRAN 77 and its related
tools.

If your host systemis DOS

The default installation directory for 16-bit Open Watcom F77 and 32-bit Open Watcom F77
DOS hinariesis called \ WATCOM BI NW

Example:
C>pat h c:\wat com bi nw; c:\dos; c: \ wi ndows

If your host systemis OS2:

The default installation directories for 16-bit Open Watcom F77 and 32-bit Open Watcom F77
0S/2 binaries are called \ WATCOM BI NP and \ WATCOM BI NW

Example:
[C\]path c:\watcom binp; c:\wat com bi nw

If your host systemis Windows NT:

The default installation directories for 16-bit Open Watcom F77 and 32-bit Open Watcom F77
Windows NT binaries are called \ WATCOM Bl NNT and \ WATCOM BI NW

Example:
C>pat h c:\wat com bi nnt; c:\wat com bi nw

The PATH environment variable is also used by the following programsin the described
manner.

1. Open Watcom Compile and Link to locate the 16-bit Open Watcom F77 and 32-bit

Open Watcom F77 compilers and the Open Watcom Linker.
2. "WD.EXE" tolocate programs and debugger command files.

260 PATH

Use of Environment Variables

A.9 TMP

The TM P environment variable describes the location (disk and path) for temporary files
created by the 16-bit Open Watcom F77 and 32-bit Open Watcom F77 compilers and the
Open Watcom Linker.

SET TMP=[d:] [pat h]

Normally, Open Watcom FORTRAN 77 will create temporary spill filesin the current
directory. However, by defining the TM P environment variable to be a certain disk and
directory, you can tell Open Watcom FORTRAN 77 where to placeits temporary files. The
same istrue of the Open Watcom Linker temporary file.

Consider the following definition of the TM P environment variable.

Example:
C>set tnp=d:\wat comtnp

The Open Watcom FORTRAN 77 compiler and Open Watcom Linker will create its
temporary filesin d: \ wat com t np.

A.10 WATCOM

In order for the Open Watcom Linker to locate the 16-bit Open Watcom F77 and 32-bit Open
Watcom F77 library files, the WATCOM environment variable should be defined. The
WATCOM environment variable is used to locate the libraries that will be used when the
application islinked. The default directory for 16-bit Open Watcom F77 and 32-bit Open
Watcom F77 filesis"\WATCOM".

Example:
C>set wat comec: \ wat com

A.11 WCL

The WCL environment variable can be used to specify commonly-used WFL options.

SET WCL=/optionl /option2 ...

These options are processed before options specified on the command line. The following
exampl e defines the default options to be "mm" (compile code for medium memory modd!),

WCL 261

Appendices

"d1" (include line number debug information in the object file), and "ox" (compile for
maximum number of code optimizations).

Example:
Csset wel=/mm/dl /ox

Once the WCL environment variable has been defined, those options listed become the
default each time the WFL command is used.

A.12 WCL386

The WCL 386 environment variable can be used to specify commonly-used WFL 386 options.

SET WCL386=/optionl /option2 ...

These options are processed before options specified on the command line. The following
exampl e defines the default options to be "3s" (compile code for stack-based argument
passing convention), "d1" (include line number debug information in the object file), and "ox"
(compile for maximum number of code optimizations).

Example:
C>set wcl 386=/3s /d1l /ox

Once the WCL 386 environment variable has been defined, those options listed become the
default each time the WFL 386 command is used.

A.13 WCGMEMORY

The WCGMEMORY environment variable may be used to request areport of the amount of
memory used by the compiler’s code generator for its work area.

Example:
Cset WCGAVEMORY=?

When the memory amount is"?" then the code generator will report how much memory was
used to generate the code.

It may also be used to instruct the compiler’ s code generator to alocate a fixed amount of
memory for awork area

262 WCGMEMORY

Use of Environment Variables

Example:
Cset WCGVEMORY=128

When the memory amount is"nnn" then exactly "nnnK" bytes will be used. In the above
example, 128K bytesisrequested. If lessthan "nnnK" is available then the compiler will quit
with afatal error message. If more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more
memory available to the code generator, the more optimal code it will generate. Thus, for two
personal computers with different amounts of memory, the code generator may produce
different (although correct) object code. If you have a software quality assurance requirement
that the same results (i.e., code) be produced on two different machines then you should use
thisfeature. To generate identical code on two personal computers with different memory
configurations, you must ensure that the WCGMEM ORY environment variableis set
identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g.,
0S/2) where an unlimited amount of memory can be used by the code generator. If avery
large module is being compiled, it may take a very long time to compile it. The code
generator will continue to allocate more and more memory and cause an excessive amount of
paging. By restricting the amount of memory that the code generator can use, you can reduce
the amount of time required to compile aroutine.

A.14 WD

The WD environment variable can be used to specify commonly-used Open Watcom
Debugger options. This environment variable is not used by the Windows version of the
debugger, WDW.

SET WD=/ optionl /option2 ...
These options are processed before options specified on the command line. The following

exampl e defines the default options to be "noinvoke" (do not executethe pr ofi | e. dbg
file) and "reg=10" (retain up to 10 register sets while tracing).

WD 263

Appendices

Example:
C>set wd=/ noi nvoke /reg#10

Once the WD environment variable has been defined, those options listed become the default
each time the WD command is used.

A.15 WDW

The WDW environment variable can be used to specify commonly-used Open Watcom
Debugger options. This environment variable is used by the Windows version of the
debugger, WDW.

SET WDW&/ optionl /option2 ...

These options are processed before options specified in the WDW prompt dialogue box. The
following example defines the default options to be "noinvoke" (do not execute the
profil e. dbg file) and "reg=10" (retain up to 10 register sets while tracing).

Example:
C>set wdw=/ noi nvoke /reg#10

Once the WDW environment variable has been defined, those options listed become the
default each time the WDW command is used.

A.16 WFC

The WFC environment variable can be used to specify commonly-used Open Watcom F77
options.

SET WFC=/optionl /option2 ...
These options are processed before options specified on the command line. The following

exampl e defines the default options to be "d1" (include line number debug information in the
object file) and "om" (compile with math optimizations).

264 WFC

Use of Environment Variables

Example:
C>set wfc=/dl /om

Once the WFC environment variable has been defined, those options listed become the
default each time the WFC command is used.

A.17 WFC386

The WFC386 environment variable can be used to specify commonly-used Open Watcom
F77 options.

SET WFC386=/optionl /option2 ...

These options are processed before options specified on the command line. The following
exampl e defines the default options to be "d1" (include line number debug information in the
object file) and "om" (compile with math optimizations).

Example:
C>set wfc386=/dl /om

Once the WFC386 environment variable has been defined, those options listed become the
default each time the WFC386 command is used.

A.18 WFL

The WFL environment variable can be used to specify commonly-used WFL options.

SET WFL=/optionl /option2 ...

These options are processed before options specified on the command line. The following
exampl e defines the default options to be "mm" (compile code for medium memory model),
"d1" (include line number debug information in the object file), and "ox" (default
optimizations).

WFL 265

Appendices

Example:
Cset wil=/mm/dl /ox

Once the WFL environment variable has been defined, those options listed become the
default each time the WFL command is used.

A.19 WFL386

The WFL 386 environment variable can be used to specify commonly-used WFL 386 options.

SET WFL386=/optionl /option2 ...

These options are processed before options specified on the command line. The following
exampl e defines the default options to be "mf" (flat memory model), "d1" (include line
number debug information in the object file), and "ox" (default optimizations).

Example:
C>set wfl 386=/nf /dl /ox

Once the WFL 386 environment variable has been defined, those options listed become the
default each time the WFL 386 command is used.

A.20 WLANG

The WLANG environment variable can be used to control which language is used to display
diagnostic and program usage messages by various Open Watcom software tools. The two
currently-supported values for this variable are "English" or "Japanese”.

SET WLANG=Engl i sh
SET WLANG=Japanese

Alternatively, anumeric value of O (for English) or 1 (for Japanese) can be specified.

266 WLANG

Use of Environment Variables

Example:
C>set w ang=0

By default, Japanese messages are displayed when the current codepage is 932 and English

messages are displayed otherwise. Normally, use of the WL ANG environment variable
should not be required.

WLANG 267

Appendices

268 WLANG

Open Watcom F77 Diagnostic Messages

B. Open Watcom F77 Diagnostic Messages

The Open Watcom FORTRAN 77 compiler checks for errors both at compile time and
execution time.

Compile time errors may result from incorrect program syntax, violations of the rules of the
language, underflow and overflow as aresult of evaluation of expressions, etc. Three types of
messages are issued:

EXTENSION *EXT* - Thisindicates that the programmer has used a feature which is strictly
an extension of the FORTRAN 77 language definition. Such extensions may
not be accepted by other FORTRAN 77 compilers.

WARNING *WRN* - Thisindicates that a possible problem has been detected by the
compiler. For example, an unlabelled executable statement which follows an
unconditional transfer of control can never be executed and so the compiler will
issue a message about this condition.

ERROR *ERR* - Thisindicates that some error was detected which must be corrected by
the programmer.

An object file will be created aslong as no ERROR type messages are issued.

Execution or run time errors may result from arithmetic underflow or overflow, input/output
errors, etc. An execution time error causes the program to cease execution.

Consider the following program, named "DEMO1.FOR", which contains errors.

Open Watcom F77 Diagnostic Messages 269

Appendices

Example:
This program denonstrates the follow ng features of
Open WAt conmis FORTRAN 77 conpil er:

1. Extensions to the FORTRAN 77 standard are flagged.

errors as possible are di agnosed.

*
*
*
* 2. Conpile time error diagnostics are extensive. As many
*
* 3. Warning nessages are di spl ayed where potential problens
* can ari se.
*
PROGRAM MAI N
DI MENSI ON A(10)
DO =1, 10
A(l) =1
I =1 +1
ENDL OOP
GO TO 30
J=J+1
30 END

If we compile this program with the "extensions" option, the following output appears on the
screen.

Cwfc denpl /exten
WATCOM FORTRAN 77/ 16 Optimi zing Conpiler Version 1.5 1997/07/16 09:22: 47
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
denpol.for(14): *EXT* DO-05 this DO loop formis not FORTRAN 77 standard
denpl.for(16): *ERR* DO 07 colum 13, DO variabl e cannot be redefined
while DO loop is active
denpl. for(17): *ERR* SP-19 ENDLOOP statenent does not match with DO
st at enent
denpl.for(19): *WRN* ST-08 this statement will never be executed due
to the precedi ng branch
denpl.for: 9 statements, 0 bytes, 1 extensions, 1 warnings, 2 errors

The diagnostic messages consist of the following information:

the name of the file being compiled,

the line number of the line containing the error (in parentheses),

amessage type of either extension (*EXT*), error (*ERR*) or warning (* WRN¥),
amessage class and number (e.g., ST-08), and

text explaining the nature of the error.

akrwNpE

In the above example, the first error occurred on line 16 of the file"DEMO1.FOR". Error
number DO-07 was diagnosed. The second error occurred on line 17 of thefile
"DEMOL.FOR". Error number SP-20 was diagnosed. The other errors are informational
messages that do not prevent the successful compilation of the sourcefile.

270 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

Thefollowingisalist of all messages produced by Open Watcom F77 followed by a brief
description. Run-time messages (messages displayed during execution) are also presented.
The messages contain referencesto % and %a. They represent strings that are substituted by
Open Watcom F77 to make the error message more exact. % represents a string of digits; %s
any string, usually a symbolic name such as AMOUNT, atype such as | NTEGER, or asymbol
class such as SUBROUTI NE. An error message may contain more than one reference to %d.
In such a case, the description will reference them as %dn where n is the occurrence of %d in
the error message. The same istrue for references to %es.

Subprogram Arguments

AR-01 invalid number of argumentsto intrinsic function %sl
The number of actual arguments specified in the argument list for the intrinsic
function %s1 does not agree with the dummy argument list. Consult the
Language Reference for information on intrinsic functions and their arguments.

AR-02 dummy argument %s1 appears more than once

The same dummy argument %s1 is named more than once in the dummy
argument list.

AR-12 dummy argument %s1 must not appear before definition of ENTRY %s2

The dummy argument %s1 has appeared in an executable statement beforeits
appearance in the definition of %s2 inan ENTRY statement. Thisisillegal.

Block Data Subprograms
BD-01 %s1 wasinitialized in a block data subprogram but is notin COMMON

The variable or array element, %sl, wasinitialized in aBLOCK DATA
subprogram but was not specified in anamed COMMON block.

BD-02 %s1 statement is not permitted in a BLOCK DATA subprogram
The statement, %s1, is not allowed in aBLOCK DATA subprogram. The only
statements which are allowed to appear are: IMPLICIT, PARAMETER,

DIMENSION, COMMON, SAVE, EQUIVALENCE, DATA, END, and type
statements.

Open Watcom F77 Diagnostic Messages 271

Appendices

Source Format and Contents

CC-01 invalid character encountered in source input
The indicated statement contains an invalid character. Valid characters are:
letters, digits, $,*, ., +,—, /, ., =, (,), !, %, ', and ,(comma). Any character may
be used inside a character or hollerith string.

CC-02 invalid character in statement number columns
A column in columns 1 to 5 of the indicated statement contains a non-digit
character. Columns 1 to 5 contain the statement number label. 1t is made up of
digitsfrom 0 to 9 and is greater than 0 and less than or equal to 99999.

CC-03 character in continuation column, but no statement to continue

The character in column 6 indicates that thisline is a continuation of the
previous statement but there is no previous statement to continue.

CC-04 character encountered isnot FORTRAN 77 standard

A non-standard character was encountered in the source input stream. Thisis
most likely caused by the use of lower case |etters.

CC-05 columns 1-5 in a continuation line must be blank

When column 6 is marked as a continuation statement to the previousline,
columns 1 to 5 must be left blank.

CC-06 more than 19 continuation linesis not FORTRAN 77 standard
More than 19 continuation linesis an extension to the FORTRAN 77 language.
CC-07 end-of-line comment isnot FORTRAN 77 standard

End-of-line comments are an extension to the FORTRAN 77 language.
End-of-line comments start with the exclamation mark (!) character.

CC-08 D in column 1isnot FORTRAN 77 standard
A "D" in column 1 signifies a debug statement that is compiled when the
" _debug__" macro symbol isdefined. If the"__debug " macro symbol is not

defined, the statement isignored. The "c$defing" compiler directive or the
"define" compiler option can be used to definethe”__debug_ " macro symbol.

272 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

CC-09 too many continuation lines
The limit on the number of continuation lines has been reached. Thislimit
depends on the size of each continuation line. A minimum of 61 continuation
linesis permitted. If the "xline" option is used, a minimum of 31 continuation
linesis permitted.

COMMON Blocks

CM-01 %sl already in COMMON

The variable or array name, %s1, has already been specified in this or another
COMMON block.

CM-02 initializing %s1 in COMMON outside of block data subprogram is not FORTRAN
77 standard

The symbol %s1, in anamed COMMON block, has been initialized outside of a
block data subprogram. Thisis an extension to the FORTRAN 77 language.

CM-03 character and non-character datain COMMON isnot FORTRAN 77 standard
The FORTRAN 77 standard specifies that a COMMON block cannot contain
both numeric and character data. Allowing COMMON blocks to contain both
numeric and character datais an extension to the FORTRAN 77 standard.

CM-04 COMMON block %s1 has been defined with a different size
The COMMON block %sl has been defined with a different size in another
subprogram. A named COMMON block must define the same amount of
storage units where ever named.

CM-05 named COMMON block %s1 appearsin more than one BLOCK DATA subprogram

The named COMMON block, %s1, may not appear in more than one BLOCK
DATA subprogram.

CM-06 blank COMMON block has been defined with a different size

The blank COMMON block has been defined with a different size in another
subprogram. Thisislegal but awarning message is issued.

Open Watcom F77 Diagnostic Messages 273

Appendices

Constants

CN-01 DOUBLE PRECISION COMPLEX constants are not FORTRAN 77 standard
Double precision complex numbers are an extension to the FORTRAN 77
language. The indicated number isacomplex number and at least one of the
parts, real or imaginary, is a double precision constant. Both real and imaginary
parts will be double precision.

CN-02 invalid floating-point constant %s1

The floating-point constant %s1 isinvalid. Refer to the chapter entitled "Names,
Data Types and Constants' in the Language Reference.

CN-03 zero length character constants are not allowed

FORTRAN 77 does not allow character constants of length O (i.e., an empty
string).

CN-04 invalid hexadecimal/octal constant
Aninvalid hexadecimal or octal constant was specified. Hexadecimal constants
can only contain digits or the letters’a through ’f" and'A’ through'F'. Octal
constants can only contain the digits’ 0’ through’7’.
CN-05 hexadecimal/octal constant is not FORTRAN 77 standard
Hexadecimal and octal constants are extensions to the FORTRAN 77 standard.
Compiler Options

CO-01 %sl is already being included

An attempt has been made to include afile that is currently being included in the
program.

CO-02'%s1’ option cannot take a NO prefix
The compiler option %sl1, cannot have the NO prefix specified. The NO prefix
is used to negate an option. Certain options, including all options that require a

value cannot have a NO prefix.

CO-03 expecting an equals sign following the %s1 option

274 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

The compiler option %s1, requires an equal sign to be between the option
keyword and its associated value.

CO-04 the’%s1’ option requires a number

The compiler option %s1 and an equal sign has been detected but the required
associated value is missing.

CO-05 option "%s1’ not recognized - ignored

The option %s1 is not a recognized compiler option and has been ignored.
Consult the User’s Guide for acomplete list of compiler options.

CO-06"%s1’ option not allowed in sourceinput stream

The option %s1 can only be specified on the command line. Consult the User’'s
Guide for a description of which options are allowed in the source input stream.

CO-07 nesting level exceeded for compiler directives

Use of the C$IFDEF or C$IFNDEF compiler directives has caused the
maximum nesting level to be exceeded. The maximum nesting level is 16.

CO-08 mismatching compiler directives

This error message isissued if, for example, a CSENDIF directive is used and no
matching C$IFDEF or C$IFNDEF precedesit. Incorrect nesting of C$IFDEF,
C3$IFNDEF, C$EL SE and C$ENDIF directives will also cause this message to
be issued.

Compiler Errors
CP-01 program abnormally terminated

This message isissued during the execution of the program. If you are running
WATFOR-77, this message indicates that an internal error has occurred in the
compiler. Please report this error and any other helpful information about the
program being compiled to Watcom so that the problem can be fixed.

If you are running an application compiled by the Watcom FORTRAN 77
optimizing compiler, this message may indicate a problem with the compiler or a
problem with your program. Try compiling your application with the "debug"”
option. This causes the generation of run-time checking code to validate, for
example, array subscripts and will help ensure that your program isnot in error.

Open Watcom F77 Diagnostic Messages 275

Appendices

CP-02 argument %d1 incompatible with register

The register specified in an auxiliary pragma for argument number %d1 is
invalid.

CP-03 subprogram %s1 hasinvalid return register

Theregister specified in an auxiliary pragmafor the return value of function
%sl isinvalid. Thiserror isissued when, for example, an auxiliary pragmais
used to specify EAX as the return register for adouble precision function.

CP-04 low on memory - unable to fully optimize %sl

There is not enough memory for the code generator to fully optimize
subprogram %s1.

CP-05internal compiler error %d1

Thiserror isan internal code generation error. Please report the specified
internal compiler error number and any other helpful information about the
program being compiled to Watcom so that the problem can be fixed.

CP-06 illegal register modified by %s1

Anillegal register was said to be modified by %s1 in the auxiliary pragmafor
%s1. Ina32-bit flat memory model, the base pointer register EBP and segment
registers CS, DS, ES, and SS cannot be modified. In small data models, the base
pointer register (32-bit EBP or 16-bit BP) and segment registers CS, DS, and SS
cannot be modified. In large data models, the base pointer register (32-bit EBP
or 16-bit BP) and segment registers CS, and SS cannot be modified.

CP-07 %s1
The message specified by %sl indicates an error during the code generation
phase. The most probable causeisan invalid instruction in the in-line assembly
code specified in an auxiliary pragma.

CP-08 fatal: %s1

The specified error indicates that the code generator has been abnormally
terminated. This message will beissued if any internal limit isreached or a
keyboard interrupt sequence is pressed during the code generation phase.

276 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

CP-09 dynamic memory not freed
This message indicates an internal compiler error. Please report this error and
any other helpful information about the program being compiled to Watcom so
that the problem can be fixed.

CP-10 freeing unowned dynamic memory
This message indicates an internal compiler error. Please report this error and
any other helpful information about the program being compiled to Watcom so
that the problem can be fixed.

CP-11 The automatic equivalence containing %s1 exceeds 32K limit

In 16-bit environments, the size of an equivalence on the stack must not exceed
32767 bytes.

CP-12 Thereturn value of %s1 exceeds 32K limit

In 16-bit environments, the size of the return value of a function must not exceed
32767 bytes.

CP-13 The automatic variable %sl exceeds 32K limit

In 16-bit environments, the size of any variable on the stack must not exceed
32767 bytes.

Character Variables

CV-01 CHARACTER variable %s1 with length (*) not allowed in this expression
The length of the result of evaluating the expression isindeterminate. One of
the operands has an indeterminate length and the result is being assigned to a
temporary.

CV-02 character variable %sl with length (*) must be a subprogram argument
The character variable %s1 with alength specification (*) can only be used to

declare dummy argumentsin the subprogram. The length of a dummy argument
assumes the length of the corresponding actual argument.

Open Watcom F77 Diagnostic Messages 277

Appendices

Data I nitialization
DA-01 implied DO variable %s1 must be an integer variable

The implied DO variable %s1 must be declared as a variable of type INTEGER
or must have an implicit INTEGER type.

DA-02 repeat specification must be a positive integer

The repeat specification in the constant list of the DATA statement must be an
unsigned positive integer.

DA-03 %s1 appearsin an expression but isnot an implied DO variable

The variable %sl is used to express the array elementsin the DATA statement
but the variable is not used as an implied DO variable.

DA-04 %s1 in blank COMMON block cannot beinitialized
A blank or unnamed COMMON block isa COMMON statement with the block
name omitted. The entriesin blank COMMON blocks cannot be initialized
using DATA statements.

DA-05 data initialization with hexadecimal constant is not FORTRAN 77 standard

Data initiadlization with hexadecimal constantsis an extension to the FORTRAN
77 language.

DA-06 cannot initialize %s1 %s2
Symbol %s2 was used asa %sl. Itisillega for such asymbol to be initialized
inaDATA statement. The DATA statement can only be used to initialize
variables, arrays, array elements, and substrings.

DA-07 data initialization in %sl statement isnot FORTRAN 77 standard
Datainitialization in type specification statementsis an extension to the
FORTRAN 77 language. Theseincludee CHARACTER, COMPLEX,
DOUBLE PRECISION, INTEGER, LOGICAL, and REAL.

DA-08 not enough constants for list of variables

There are not enough constants specified to initialize all of the nameslisted in
the DATA statement.

278 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

DA-10 too many constants for list of variables

There are too many constants specified to initialize the names listed in the
DATA statement.

DA-12 cannot initialize %s1 variable %s2 with %s3 constant

The constant of type %s3 cannot be used to initialize the variable %s2 of type
%osl.

Dimensioned Variables

DM-01 using %sl incorrectly in dimension expression
The name used as a dimension declarator has been previously declared as type
%s1 and cannot be used as a dimension declarator. A dimension declarator must
be an integer expression.

DO-loops

DO-01 statement number %d1 already defined in line %d2 - DO loop is backwards
The statement number to indicate the end of the DO control structure has been
used previoudly in the program unit and cannot be used to terminate the DO
loop. Thetermina statement named in the DO statement must follow the DO
Statement.

DO-02 %s1 statement not allowed at termination of DO range
A non-executable statement cannot be used as the terminal statement of aDO
loop. These statementsinclude: all declarative statements, ADMIT, AT END,
BLOCK DATA, CASE, DO, ELSE, ELSE IF, END, END AT END, END
BLOCK, END GUESS, END IF, END LOOP, END SELECT, END WHILE,
ENTRY, FORMAT, FUNCTION, assigned GO TO, unconditional GO TO,
GUESS, arithmetic and block IF, LOOP, OTHERWISE, PROGRAM,
RETURN, SAVE, SELECT, STOP, SUBROUTINE, UNTIL, and WHILE.

DO-03 improper nesting of DO loop

A nested DO loop has not been properly terminated before the termination of the
outer DO loop.

DO-04 ENDDO cannot terminate DO loop with statement label

Open Watcom F77 Diagnostic Messages 279

Appendices

The ENDDO statement can only terminate a DO loop in which no statement
label was specified in the defining DO statement.

DO-05 this DO loop form is not FORTRAN 77 standard

As an extension to FORTRAN 77, the following forms of the DO loop are a'so
supported.

1. A DO loop with no statement label specified in the defining DO
statement.

2. TheDO WHILE form of the DO statement.
DO-06 expecting comma or DO variable
Theitem following the DO keyword and the terminal statement-label (if present)

must be either acommaor aDO variable. A DO variableisan integer, real or
double precision variable name. The DO statement syntax is as follows:

DO <tsl> <,> DO var = ex, ex <, ex>
DO-07 DO variable cannot be redefined while DO loop is active

The DO variable named in the DO statement cannot have its value altered by a
statement in the DO loop structure.

Equivalence and/or Common

EC-01 equivalencing %s1 has caused extension of COMMON block %s2 to the left
The name %s1 has been equivalenced to anamein the COMMON block %s2.
This relationship has caused the storage of the COMMON block to be extended
to theleft. FORTRAN 77 does not allow a COMMON block to be extended in
thisway.

EC-02 %s1 and %s2 in COMMON are equivalenced to each other

The names %s1 and %s2 appear in different COMMON blocks and each
occupies its own piece of storage and therefore cannot be equivalenced.

280 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

END Statement
EN-01 missing END statement

The END statement for a PROGRAM, SUBROUTINE, FUNCTION or BLOCK
DATA subprogram was not found before the next subprogram or the end of the
source input stream.

Equal Sign

EQ-01 target of assignment isillegal
The target of an assignment statement, an input/output status specifier in an
input/output statement, or an inquiry specifier in an INQUIRE statement, is
illegal. Thetarget in any of the above cases must be a variable name, array
element, or a substring name.

EQ-02 cannot assign value to %s1

An attempt has been made to assign a value to a symbol with class %sl. For
example, an array hame cannot be the target of an assignment statement. This
error may also be issued when aniillegal target is used for the input/output status
specifier in an input/output statement or an inquiry specifier in an INQUIRE
statement.

EQ-03illegal use of equal sign

An equal sign has been found in the statement but the statement is not an
assignment statement.

EQ-04 multiple assignment is not FORTRAN 77 standard
More than one egual sign has been found in the assignment statement.

EQ-05 expecting equals sign
The equal sign ismissing or misplaced. The PARAMETER statement uses an
equal sign to equate a symbolic hame to the value of a constant expression. The
I/O statements use an equal sign to equate the appropriate values to the various

specifiers. The DO statement uses an equal sign to assign the initial value to the
DO variable.

Open Watcom F77 Diagnostic Messages 281

Appendices

Equivalenced Variables

EV-01 %s1 has been equivalenced to 2 different relative positions
The storage unit referenced by %s1 has been equivalenced to two different
storage units starting in two different places. One name cannot be associated to
two different values at the sametime.

EV-02 EQUIVALENCE list must contain at least 2 names

The list of names to make a storage unit equivalent to several names must
contain at least two names.

EV-03 %sl incorrectly subscripted in %s2 statement
The name %s1 has been incorrectly subscripted in a %s2 statement.

EV-04 incorrect substring of %s1 in %s2 statement
An attempt has been made to incorrectly substring %sl in a %s2 statement. For
example, if aCHARACTER variable was declared to be of length 4 then (2:5)

would be an invalid substring expression.

EV-05 equivalencing CHARACTER and non-CHARACTER data is not FORTRAN 77
standard

Equivalencing numeric and character datais an extension to the FORTRAN 77
language.

EV-06 attempt to substring %sl in EQUIVALENCE statement but type is %s2
An attempt has been made to substring the symbolic name %sl in an
EQUIVALENCE statement but the type of the nameis %s2 and should be of
type CHARACTER.

Exponentiation

EX-01 zero**J where J <= 0isnot allowed
Zero cannot be raised to a power less than or equal to zero.

EX-02 X**Y where X < 0.0, Y isnot of type INTEGER, is not allowed

When X isless than zero, Y may only be of type INTEGER.

282 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

EX-03 (0,0)**Y where Y isnot real is not allowed

In complex exponentiation, when the base is zero, the exponent may only be a
real number or a complex number whose imaginary part is zero.

ENTRY Statement
EY-01 type of entry %s1 does not match type of function %s2

If the type of afunctionis CHARACTER or a user-defined STRUCTURE, then
the type of all entry names must match the type of the function name.

EY-02 ENTRY statement not allowed within structured control blocks

FORTRAN 77 does not allow an ENTRY statement to appear between the start
and end of a control structure.

EY-03 size of entry %sl does not match size of function %s2
The name %sl1 found in an ENTRY statement must be declared to be the same
size asthat of the function name. If the name of the function or the name of any
entry point has alength specification of (*), then all such entries must have a
length specification of (*) otherwise they must all have alength specification of
the same integer value.

Format

FM-01 missing delimiter in format string, comma assumed
The omission of a comma between the descriptorslisted in aformat string is an
extension to the FORTRAN 77 language. Care should be taken when omitting
the comma since the assumed separation may not occur in the intended place.

FM-02 missing or invalid constant

An unsigned integer constant was expected with the indicated edit descriptor but
was not correctly placed or was missing.

FM-03 Ew.dDe format code is not FORTRAN 77 standard
The edit descriptor Ew.dDe is an extension to the FORTRAN 77 language.

FM-04 missing decimal point

Open Watcom F77 Diagnostic Messages 283

Appendices

Theindicated edit descriptor must have a decimal point and an integer to
indicate the number of decimal positions. These edit descriptorsinclude: F, E,
D and G.

FM-05 missing or invalid edit descriptor in format string

In the format string, two delimiters were found in succession with no valid
descriptor in between.

FM-06 unrecognizable edit descriptor in format string
An edit descriptor has been found in the format string that is not avalid code.
Valid codes are: apostrophe ('), I, F,E,D, G, L, A, Z,H, T, TL, TR, X, /, :, S,
SP, SS, P, BN, B, $, and \.

FM-07 invalid repeat specification
Theindicated repeatable edit descriptor isinvalid. The forms of repeatable edit
descriptorsare: Iw, lw.m, Fw.d, Ew.d, Ew.dEe, Dw.d, Gw.d, Gw.dEe, Lw, A,
Aw, Ew.dDe, and Zw where w and e are positive unsigned integer constants,
and d and m are unsigned integer constants.

FM-08 $ or \ format code is not FORTRAN 77 standard

The non-repeatable edit descriptors $ and \ are extensions to the FORTRAN 77
language.

FM-09 invalid field modifier

Theindicated edit descriptor for afield isincorrect. Consult the Language
Reference for the correct form of the edit descriptor.

FM-10 expecting end of FORMAT statement but found more text

The right parenthesis was encountered in the FORMAT statement to terminate
the statement and more text was found on the line.

FM-11 repeat specification not allowed for thisformat code
A repeat specification was found in front of aformat code that is a nonrepeatable

edit descriptor. Theseinclude: apostrophe, H, T, TL, TR, X, /, :, S, SP, SS, P,
BN, BZ, $,and \.

284 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

FM-12 no statement number on FORMAT statement

The FORMAT statement must have a statement label. This statement number is
used by 1/0 statements to reference the FORMAT statement.

FM-13 no closing quote on apostrophe edit descriptor
The closing quote of an apostrophe edit descriptor was not found.
FM-14 field count greater than 256 isinvalid

The repeat specification of the indicated edit descriptor is greater than the
maximum allowed of 256.

FM-15invalid field width specification
The width specifier on the indicated edit descriptor isinvalid.
FM-16 Z format code is not FORTRAN 77 standard

The Z (hexadecimal format) repeatable edit descriptor is an extension to the
FORTRAN 77 language.

FM-17 FORMAT statement exceeds allotted storage size

The maximum alowable size of a FORMAT statement has exceeded. The
statement must be split into two or more FORMAT statements.

FM-18 format specification not allowed on input
A format specification, in the FORMAT statement, is not allowed to be used as
an input specification. Valid specificationsinclude: T, TL, TR, X, /, :, P, BN,
BzZ,I,F ED,G,L,A,and Z

FM-19 FORMAT missing repeatable edit descriptor
An attempt has been made to read or write a piece of data without avalid
repeatable edit descriptor. All datarequires a repeatable edit descriptor in the
format. The forms of repeatable edit descriptorsare: Iw, lw.m, Fw.d, Ew.d,
Ew.dEe, Dw.d, Gw.d, Gw.dEe, Lw, A, Aw, Ew.dDe, and Zw wherew and e are
positive unsigned integer constants, and d and m are unsigned integer constants.

FM-20 missing constant before X edit descriptor, 1 assumed

Open Watcom F77 Diagnostic Messages 285

Appendices

The omission of the constant before an X edit descriptor in aformat
specification is an extension to the FORTRAN 77 language.

FM-21 Ew.dQe format code is not FORTRAN 77 standard
The edit descriptor Ew.dQe is an extension to the FORTRAN 77 language.
FM-22 Qw.d format code is not FORTRAN 77 standard
The edit descriptor Qw.d is an extension to the FORTRAN 77 language.
GOTO and ASSIGN Statements
GO-01 %s1 statement label may not appear in ASSIGN statement but did in line %d2
The statement label in the ASSIGN statement in line %d2 references a %s1
statement. The statement label in the ASSIGN statement must appear in the
same program unit and must be that of an executable statement or a FORMAT
statement.
GO-02 ASSIGN of statement number %d1 in line %d2 not allowed
The statement label %d1 in the ASSIGN statement is used in the line %d2 which
references a non-executable statement. A statement label must appear in the
same program unit as the ASSIGN statement and must be that of an executable
statement or a FORMAT statement.
GO-03 expecting TO
The keyword TO ismissing or misplaced in the ASSIGN statement.
Hollerith Constants
HO-01 hollerith constant is not FORTRAN 77 standard
Hollerith constants are an extension to the FORTRAN 77 language.
HO-02 not enough charactersfor hollerith constant
The number of characters following the H or his not equal to the constant
preceding the H or h. A hollerith constant consists of a positive unsigned integer

constant n followed by the letter H or h followed by a string of exactly n
characters.

286 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

| F Statements
| F-01 EL SE block must be the last block in block | F

Another ELSE IF block has been found after the ELSE block. The ELSE block
must be the last block in an |F block. The form of the block IF is as follows:

IF (logical expression) THEN [: bl ock-I abel]
{statement}

{ ELSE I F
{statenment} }

[ELSE
{statenent}]

ENDI F

| F-02 expecting THEN

The keyword THEN is missing or misplaced in the block IF statement. The
form of the block IF is asfollows:

I F (1 ogical expression) THEN [: bl ock-I abel]
{statenent}

{ ELSE I F
{statenent} }

[ELSE
{statenent}]

ENDI F

/O Lists
IL-01 missing or invalid format/FMT specification

A valid format specification isrequired on all READ and WRITE statements.
The format specification is specified by:

[FMr=] <format identifier>

<format identifier> isone of the following: statement label, integer
variable-name, character array-name, character expression, or *.

IL-02 the UNIT may not be an internal file for this statement
Aninternal file may only be referenced in aREAD or WRITE statement. An

internal file may not be referenced in a BACKSPACE, CLOSE, ENDFILE,
INQUIRE, OPEN, or REWIND statement.

Open Watcom F77 Diagnostic Messages 287

Appendices

IL-03 %s1 statement cannot have %s2 specification
The /O statement %s1 may not have the control information %s2 specified.
IL-04 variable must have a size of 4
The variable used as a specifier in an 1/0O statement must be of size 4 but another
size was specified. These include the EXIST, OPENED, RECL, IOSTAT,
NEXTREC, and NUMBER. The name used in the ASSIGN statement must also
be of size 4 but a different size was specified.
IL-05 missing or unrecognizable control list item %s1
A control list item %s1 was encountered in an 1/O statement and is not avalid
control list item for that statement, or a control list item was expected and was
not found.

I L-06 attempt to specify control list item %sl more than once

The control list item %s1 in the indicated 1/0 statement, has been named more
than once.

IL-07 implied DO loop has no input/output list

The implied DO loop specified in the I/O statement does not correspond with a
variable or expression in the input/output list.

IL-08 list-directed input/output with internal filesisnot FORTRAN 77 standard

List-directed input/output with internal filesis an extension to the FORTRAN 77
language.

IL-09 FORTRAN 77 standard requires an asterisk for list-directed formatting
An optional asterisk for list-directed formatting is an extension to the
FORTRAN 77 language. The standard FORTRAN 77 language specifies that an
asterisk is required.

IL-10 missing or improper unit identification
The control specifier, UNIT, in the /O statement is either missing or identifies

an improper unit. The unit specifier specifies an external unit or interna file.
The external unit identifier is a non-negative integer expression or an asterisk.

288 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

Theinternal file identifier is character variable, character array, character array
element, or character substring.

IL-11 missing unit identification or file specification
An identifier to specificaly identify the required fileismissing. The UNIT
specifier is used to identify the external unit or internal file. The FILE specifier
in the INQUIRE and OPEN statementsis used to identify the file name.

IL-12 asterisk unit identifier not allowed in %s1 statement
The BACKSPACE, CLOSE, ENDFILE, INQUIRE, OPEN, and REWIND
statements require the external unit identifier be an unsigned positive integer
from 0 to 999.

IL-13 cannot have both UNIT and FILE specifier
There are two valid forms of the INQUIRE statement; INQUIRE by FILE and
INQUIRE by UNIT. Both of these specifiers cannot be specified in the same
statement.

IL-14 internal filesrequire sequential access

An attempt has been made to randomly access an internal file. Internal files may
only be accessed sequentially.

IL-15 END specifier with REC specifier isnot FORTRAN 77 standard
The FORTRAN 77 standard specifies that an end-of-file condition can only
occur with afile connected for sequential access or an internal file. The REC
specifier indicates that the file is connected for direct access. This extension
allows the programmer to detect an end-of-file condition when reading the
records sequentially from a file connected for direct access.

IL-16 %s1 specifier in i/olist isnot FORTRAN 77 standard

The specifiedi/o list item is provided as an extension to the FORTRAN 77
language.

IL-17 i/olist is not allowed with NAMEL I ST-directed format

Ani/olist isnot allowed when the format specificationisa NAMELIST.

Open Watcom F77 Diagnostic Messages 289

Appendices

IL-18 non-character array as format specifier is not FORTRAN 77 standard
A format specifier must be of type character unlessit is an array name.
Allowing a non-character array name is an extension to the FORTRAN 77
standard.

IMPLICIT Statements

IM-01illegal range of characters

Inthe IMPLICIT statement, the first letter in the range of characters must be
smaller in the collating sequence than the second letter in the range.

IM-02 letter can only be implicitly declared once

Theindicated letter has been named more than oncein this or a previous
IMPLICIT statement. A letter may only be named once.

I M-03 unrecognizable type

The type declared in the IMPLICIT statement is not one of INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL or CHARACTER.

IM-04 (*) length specifier in an IMPLICIT statement is not FORTRAN 77 standard

A character length specified of (*) inan IMPLICIT statement is an extension to
the FORTRAN 77 language.

IM-05 IMPLICIT NONE allowed once or not allowed with other IMPLICI T statements
The IMPLICIT NONE statement must be the only IMPLICIT statement in the
program unit in which it appears. Only one IMPLICIT NONE statement is
allowed in a program unit.

I nput/Output

| O-01 BACKSPACE statement requires sequential access mode

The file connected to the unit specified in the BACK SPACE statement has not
been opened for sequential access.

0-02 input/output is already active

290 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

An attempt has been made to read or write arecord when there is an already
active read or write in progress. The execution of a READ or WRITE statement
has caused transfer to a function that contains a READ or WRITE statement.

|0-03 ENDFILE statement requires sequential access mode

The specified external unit identifier must be connected for sequential access but
was connected for direct access.

| O-04 formatted connection requires formatted input/output statements
The FORM specifier in the OPEN statement specifies FORMATTED and the
subsequent READ and/or WRITE statement does not use formatted 1/O. If the
FORM specifier has been omitted and accessis SEQUENTIAL then
FORMATTED isassumed. If the accessis DIRECT then UNFORMATTED is
assumed.

| O-05 unformatted connection requires unformatted input/output statements
The FORM specifier in the OPEN statement specifies UNFORMATTED and
the subsequent READ and/or WRITE statement uses formatted 1/0. If the
FORM specifier has been omitted and accessis SEQUENTIAL then
FORMATTED isassumed. If the accessis DIRECT then UNFORMATTED is
assumed.

|0-06 REWIND statement requires sequential access

The external unit identifier is not connected to a sequential file. The REWIND
statement positionsto the first record in thefile.

O-07 bad character in input field

The data received from the record in afile does not match the type of the input
list item.

I O-08 BLANK specifier requires FORM specifier to be’ FORMATTED’
In the OPEN statement, the BLANK specifier may only be used when the
FORM specifier has the value of FORMATTED. The BLANK specifier

indicates whether blanks are treated as zeroes or ignored.

10-09 system file error - %s1

Open Watcom F77 Diagnostic Messages 291

Appendices

A system error has occurred while attempting to access afile. The I/O system
error message is displayed.

I O-10 format specification does not match data type

A format specification in the FMT specifier or FORMAT statement specifies
data of one type and the variable list specifies data of a different type.

| O-11 input item does not match the data type of list variable
In the READ statement, the data type of avariable listed is not of the same data
typein the datafile. For example, non-digit character data being read into an
integer item.

|O-12 internal fileisfull
Theinternd fileisfull of data. If afileisavariable then the file may only
contain one record. If thefileisacharacter array then there can be one record
for each array element.

|O-13 RECL specifier isinvalid

In the OPEN statement, the record length specifier must be a positive integer
expression.

|O-14 invalid STATUS specifier in CLOSE statement
The STATUS specifier can only have avalue of KEEP or DELETE. If the
STATUS in the OPEN statement is SCRATCH then the KEEP status on the
CLOSE statement cannot be used.

| O-15 unit specified is not connected

The unit number specified in the I/O statement has not been previously
connected.

| O-16 attempt to perform data transfer past end of file

An attempt has been made to read or write data after the end of file has been
read or written.

10-17 invalid RECL specifier/ACCESS specifier combination

292 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

In the OPEN statement, if the ACCESS specifier is DIRECT then the RECL
specifier must be given.

I O-18 REC specifier required in direct access input/output statements
In the OPEN statement, the ACCESS specified was DIRECT. All subsequent
input/output statements for that file must use the REC specifier to indicate which
record to access.

|O-19 REC specifier not allowed in sequential access input/output statements
In the OPEN statement, the ACCESS specified was SEQUENTIAL. The REC
specifier may not be used in subsequent 1/O statements for that file. The REC
specifier is used to indicate which record to access when accessis DIRECT.

| O-20 %s1 specifier may not changein a subsequent OPEN statement

The %s1 specifier may not be changed on a subsequent OPEN statement for the
same file, in the same program. Only the BLANK specifier may be changed.

10-21 invalid STATUS specifier for given file
In the OPEN statement, the STATUS specifier does not match with the actual
file status: OLD meansthe file must exist, NEW means the file must not exist.
If the STATUS specifier is omitted, UNKNOWN is assumed.

|0-22 invalid STATUS specifier/FILE specifier combination

In the OPEN statement, if the STATUS is SCRATCH, the FILE specifier cannot
beused. If the STATUSisNEW or OLD, the FILE specifier must be given.

I O-23 record size exceeded during unformatted input/output
This error isissued when the size of ani/o list item exceeds the maximum record
size of thefile. The record size can be specified using the RECL = specified in
the OPEN statement.

| O-24 unit specified does not exist
The external unit identifier specified in the input/output statement has not yet

been connected. Use preconnection or the OPEN statement to connect afileto
the external unit identifier.

Open Watcom F77 Diagnostic Messages 293

Appendices

1O-25 REC specifier isinvalid

The REC specifier must be an unsigned positive integer.
|O-26 UNIT specifier isinvalid

The UNIT specifier must be an unsigned integer between 0 and 999 inclusive.
| O-27 formatted record or format edit descriptor istoo large for record size

This error isissued when the amount of formatted datain a READ, WRITE or
PRINT statement exceeds the maximum record size of thefile. Therecord size
can be specified using the RECL = specified in the OPEN statement.

10-28 illegal ' %s1=" specifier

In the OPEN or CL OSE statement the value associated with the %sl specifier is
not avalid value. Inthe OPEN statement, STATUS may only be one of OLD,
NEW, SCRATCH or UNKNOWN; ACCESS may only be one of
SEQUENTIAL, APPEND or DIRECT; FORM may only be one of
FORMATTED or UNFORMATTED; CARRIAGECONTROL may only be one
of YES or NO; RECORDTY PE may only be one of FIXED, TEXT or
VARIABLE; ACTION may only be one of READ, WRITE or READ/WRITE;
and BLANK may only be one of NULL, or ZERO. Inthe CLOSE statement the
STATUS may only be one of KEEP or DELETE.

10-29 invalid CARRIAGECONTROL specifier/FORM specifier combination

The CARRIAGECONTROL specifier isonly allowed with formatted i/o
statements.

O-30 i/o operation not consistent with file attributes
An attempt was made to read from afile that was opened with
ACTION=WRITE or writeto afile that was opened with ACTION=READ.
Thismessageis also issued if you attempt to write to aread-only file or read
from awrite-only file.

| O-31 symbol %sl not found in NAMELIST

During NAMELIST-directed input, a symbol was specified that does not belong
to the NAMELIST group specified in thei/o statement.

294 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

O-32 syntax error during NAMELI ST-directed input

Bad input was encountered during NAMELIST-directed input. Data must bein
aspecial form during NAMEL IST-directed input.

| O-33 subscripting error during NAMELIST-directed i/o
An array was incorrectly subscripted during NAMEL|ST-directed inpuit.
|O-34 substring error during NAMELIST-directed i/o

An character array element or variable was incorrectly substrung during
NAMELIST-directed input.

| O-35 BLOCKSI ZE specifier isinvalid

In the OPEN statement, the block size specifier must be a positive integer
expression.

|O-36 invalid operation for fileswith no record structure
An attempt has been made to perform an i/o operation on afile that requires a
record structure. For example, it isillegal to use a BACKSPACE statement for a
file that has no record structure.

| O-37 integer overflow converting character data to integer

An overflow has occurred while converting the character data read to its internal
representation as an integer.

I O-38 range exceeded converting character data to floating-point

An overflow or underflow has occurred while converting the character data read
toitsinternal representation as afloating-point number.

Program Termination
KO-01 floating-point divide by zero

An attempt has been made to divide a number by zero in a floating-point
expression.

KO-02 floating-point overflow

Open Watcom F77 Diagnostic Messages 295

Appendices

The floating-point expression result has exceeded the maximum floating-point
number.

KO-03 floating-point underflow

The floating-point expression result has exceeded the minimum floating-point
number.

KO-04 integer divide by zero
An attempt has been made to divide a number by zero in an integer expression.
KO-05 program interrupted from keyboard

The user has interrupted the compilation or execution of a program through use
of the keyboard.

KO-06 integer overflow

Theinteger expression result has exceeded the maximum integer number.
Library Routines
L1-01 argument must be greater than zero

The argument to the intrinsic function must be greater than zero (i.e., a positive
number).

L1-02 absolute value of argument to arcsine, arccosine must not exceed one

The absolute value of the argument to the intrinsic function ASIN or ACOS
cannot be greater than or equal to the value 1.0.

L1-03 argument must not be negative

The argument to the intrinsic function must be greater than or equal to zero.
L1-04 argument(s) must not be zero

The argument(s) to the intrinsic function must not be zero.

LI-05 argument of CHAR must be in the range zero to 255

296 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

The argument to the intrinsic function CHAR must be in the range 0 to 255
inclusive. CHAR returns the character represented by an 8-bit pattern.

L1-06 %s1 intrinsic function cannot be passed 2 complex arguments

The second argument to the intrinsic function CMPLX and DCMPLX cannot be
acomplex number.

L1-07 argument types must be the same for the %sl intrinsic function
The second argument to the intrinsic function CMPLX or DCMPLX must be of
the same type as the first argument. The second argument may only be used
when the first argument is of type INTEGER, REAL or DOUBLE PRECISION.

L1-08 expecting numeric argument, but %s1 argument was found

The argument to the intrinsic function, INT, REAL, DBLE, CMPLX, or
DCMPLX was of type %sl and a numeric argument was expected.

L1-09 length of ICHAR argument greater than one
The length of the argument to the intrinsic function ICHAR must be of type
CHARACTER and length of 1. ICHAR converts a character to its integer
representation.

L1-10 cannot pass %s1 as argument to intrinsic function
Theitem %s1 cannot be used as an argument to an intrinsic function. Only
constants, simple variables, array elements, and substrung array elements may be
used as arguments.

LI-11 intrinsic function requires argument(s)

An attempt has been made to invoke an intrinsic function and no actual
arguments were listed.

L1-12 %s1 argument typeisinvalid for this generic function
The type of the argument used in the generic intrinsic function is not correct.

LI-13 thisintrinsic function cannot be passed as an argument

Open Watcom F77 Diagnostic Messages 297

Appendices

Only the specific name of the intrinsic function can be used as an actual
argument. The generic name may not be used. When the generic and intrinsic
names are the same, use the INTRINSIC statement.

L1-14 expecting %s1 argument, but %s2 argument was found

An argument of type %s2 was passed to afunction but an argument of type %sl
was expected.

LI-15intrinsic function was assigned wrong type
The declared type of an intrinsic function does not agree with the actual type.
LI-16 intrinsic function %sl isnot FORTRAN 77 standard

The specified intrinsic function is provided as an extension to the FORTRAN 77
language.

LI-17 argument to ALLOCATED intrinsic function must be an allocatable array or
character* (*) variable

The argument to the intrinsic function ALLOCATED must be an allocatable
array or character* (*) variable.

LI-18 invalid argument to | SIZEOF intrinsic function

The argument to the intrinsic function | SIZEOF must be a user-defined structure
name, a symbol name, or a constant.

Mixed Mode
MD-01 relational operator has a logical operand

The operands of arelational expression must either be both arithmetic or both
character expressions. The operand indicated is alogical expression.

MD-02 mixing DOUBLE PRECISION and COMPLEX typesis not FORTRAN 77 standard

The mixing of items of type DOUBLE PRECISION and COMPLEX inan
expression is an extension to the FORTRAN 77 language.

MD-03 operator not expecting %s1 operands

298 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

Operands of type %s1 cannot be used with the indicated operator. The operators
** [, *, +, and — may only have numeric type data. The operator // may only
have character type data.

MD-04 operator not expecting %s1 and %s2 operands
Operands of conflicting type have been encountered. For example, ina
relational expression, it is not possible to compare a character expression to an
arithmetic expression. Also, the type of the left hand operand of the field
selection operator must be a user-defined structure.

MD-05 complex quantities can only be compared using .EQ. or .NE.

Complex operands cannot be compared using lessthan (.LT.), less than or equa
(.LE.), greater than (.GT.), or greater than or equal (.GE.) operators.

MD-06 unary operator not expecting %sl type
The unary operators, + and —, may only be used with numeric types. The unary
operator NOT. may be used only with alogical or integer operand. The
indicated operand was of type %s1 which is not one of the valid types.

MD-07 logical operator with integer operandsis not FORTRAN 77 standard

Integer operands are permitted with the logical operators .AND., .OR., .EQV .,
NEQV., .NOT. and .XOR. asan extension to the FORTRAN 77 language.

MD-08 logical operator %sl isnot FORTRAN 77 standard

The specified logical operator is an extension to the FORTRAN 77 standard.
Memory Overflow
MO-01 %s1 exceeds compiler limit of %d2 bytes

An internal compiler limit has been reached. %s1 describes the limit and %d2
specifies the limit.

MO-02 out of memory
All available memory has been used up. During the compilation phase, memory
isprimarily used for the symbol table. During execution, memory is used for

file descriptors and buffers, and dynamically allocatable arrays and character* (*)
variables.

Open Watcom F77 Diagnostic Messages 299

Appendices

MO-03 dynamic memory exhausted due to length of this statement - statement ignored
There was not enough memory to encode the specified statement. This message
is usualy issued when the compiler islow on memory or if the statement isa
very large statement that spans many continuation lines. This error does not
terminate the compiler since it may have been caused by avery large statement.
The compiler attempts to compile the remaining statements.

MO-04 attempt to deallocate an unallocated array or character*(*) variable
An attempt has been made to deallocate an array that has not been previously
allocated. An array or character* (*) variable must be allocated using an
ALLOCATE statement.

MO-05 attempt to allocate an already allocated array or character*(*) variable

An attempt has been made to allocate an array or character* (*) variable that has
been previously allocated in an ALLOCATE statement.

Parentheses
PC-01 missing or misplaced closing parenthesis

An opening parenthesis’ (" was found but no matching closing parenthesis’)’
was found before the end of the statement.

PC-02 missing or misplaced opening parenthesis

A closing parenthesis’)’ was found before the matching opening parenthesis’(’.
PC-03 unexpected parenthesis

A parenthesis was found in a statement where parentheses are not expected.
PC-04 unmatched parentheses

The parentheses in the expression are not balanced.
PRAGMA Compiler Directive
PR-01 expecting symbolic name

Every auxiliary pragmamust refer to asymbol. This error isissued when the
symbolic nameisillegal or missing. Valid symbolic names are formed from the

300 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

following characters: adollar sign, an underscore, digits and any letter of the
alphabet. Thefirst character of a symbolic name must be alphabetic, a dollar
sign, or an underscore.

PR-02 illegal size specified for VALUE attribute

The VALUE argument attribute of an auxiliary pragma containsinillegal length
specification. Valid length specificationsare 1, 2, 4 and 8.

PR-03 illegal argument attribute

Anillegal argument attribute was specified. Valid argument attributes are
VALUE, REFERENCE, or DATA_REFERENCE.

PR-04 continuation line must contain a comment character in column 1
When continuing aline of an auxiliary pragmadirective, the continued line must
end with aback-dlash ('\") character and the continuation line must begin with a
comment character ('c’, 'C’ or '*") in column 1.

PR-05 expecting ' %s1’ near '%s2’
A syntax error was found while processing a PRAGMA directive. %sl
identifies the expected information and %s2 identifies where in the pragmathe
error occurred.

PR-06 in-line byte sequence limit exceeded

The limit on the number of bytes of code that can be generated in-line using aan
auxiliary pragma has been exceeded. Thelimit is 127 bytes.

PR-07 illegal hexadecimal data in byte sequence
Anillegal hexadecimal constant was encountered while processing ain-line byte
seguence of an auxiliary pragma. Valid hexadecimal constantsin an in-line byte
sequence must begin with the letter Z or z and followed by a string of
hexadecimal digits.

PR-08 symbol '%s1’ in in-line assembly code cannot be resolved

The symbol %s1, referenced in an assembly language instruction in an auxiliary
pragma, could not be resolved.

Open Watcom F77 Diagnostic Messages 301

Appendices

RETURN Statement
RE-01 alternate return specifier only allowed in subroutine

An alternate return specifier, in the RETURN statement, may only be specified
when returning from a subroutine.

RE-02 RETURN statement in main program is not FORTRAN 77 standard

A RETURN statement in the main program is allowed as an extension to the
FORTRAN 77 standard.

SAVE Statement
SA-01 COMMON block %s1 saved but not properly defined

The named COMMON block %s1 was listed in a SAVE statement but thereis
no named COMMON block defined by that name.

SA-02 COMMON block %s1 must be saved in every subprogram in which it appears
The named COMMON block %s1 appearsin a SAVE statement in another
subprogram and is not in a SAVE statement in this subprogram. If a named
COMMON block is specified in a SAVE statement in a subprogram, it must be
specified in a SAVE statement in every subprogram in which that COMMON
block appears.

SA-03 name already appeared in a previous SAVE statement

Theindicated name has already been referenced in another SAVE statement in
this subprogram.

Statement Functions
SF-01 statement function definition contains duplicate dummy arguments

A dummy argument is repeated in the argument list of the statement function.
SF-02 character length of statement function name must not be (*)

If the type of acharacter function is character, its length specification must not
be (*); it must be a constant integer expression.

302 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

SF-03 statement function definition containsillegal dummy argument

A dummy argument of type CHARACTER must have alength specification of
an integer constant expression that is not (*).

SF-04 cannot pass %s1 %s2 to statement function
The actual arguments to a statement function can be any expression except
character expressions involving the concatenation of an operand whose length
specification is (*) unless the operand is a symbolic constant.

SF-05 %s1 actual argument was passed to %s2 dummy argument

The indicated actual argument is of type %s1 which is not the same type as that
of the dummy argument of type %s2.

SF-06 incorrect number of arguments passed to statement function %s1

The number of arguments passed to statement function %s1 does not agree with
the number of dummy arguments specified in its definition.

SF-07 type of statement function name must not be a user-defined structure
The type of a statement function cannot be a user-defined structure. Valid types
for statement functionsare: LOGICAL*1, LOGICAL, INTEGER*1,
INTEGER* 2, INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
DOUBLE COMPLEX, and CHARACTER. If the statement function is of type
CHARACTER, its length specification must not be (*); it must be an integer
constant expression.

Source Management

SM-01 system file error reading %s1 - %s2

An 1/O error, described by %s2, has occurred while reading the FORTRAN
source file %sl.

SM-02 error opening file %sl - %s2

The FORTRAN source file %s1 could not be opened. The error is described by
%s2.

SM-03 system file error writing %s1 - %s2

Open Watcom F77 Diagnostic Messages 303

Appendices

An /O error, described by %s2, has occurred while writing to the file %s1.
SM-06 error opening %sl - too many temporary files exist

The compiler was not able to open atemporary file for intermediate storage
during code generation. Temporary files are created in the directory specified
by the TMP environment variable. If the TMP environment variableis not set,
the temporary file is created in the current directory. Thiserror isissued if an
non-existent directory is specified in the TMP environment variable, or more
than 26 concurrent compiles are taking place in a multi-tasking environment and
the directory in which the temporary files are created is the same for all
compilation processes.

SM-07 generation of browsing information failed
An error occurred during the generation of browsing information. For example,
adisk full condition encountered during the creation of the browser module file
will cause this message to beissued. Browsing information is generated when
the /db switch is specified.

Structured Programming Features

SP-01 cannot have both ATEND and the END= specifier
Itisnot valid to usethe AT END control statement and the END= option on the
READ statement. Only one method can be used to control the end-of-file
condition.

SP-02 ATEND must immediately follow a READ statement
Theindicated AT END control statement or block does not immediately follow
aREAD statement. The AT END control statement or block is executed when
an end-of-file condition is encountered during the read.

SP-03 block label must be a symbolic name
Theindicated block label must be a symbolic name. A symbolic name must
start with aletter and contain no more than 32 |etters and digits. A letter isan
upper or lower case letter of the alphabet, adollar sign ($), or an underscore ().
A digit isacharacter intherange’0’' to'9'.

SP-04 could not find a structure to %s1 from

This message isissued in the following cases.

304 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

1. Thereisno control structureto QUIT from. The QUIT statement will
transfer control to the statement following the currently active control
structure or return from aREMOTE BLOCK if no other control
structures are active within the REMOTE BLOCK.

2. Thereisno control structureto EXIT from. The EXIT statement is
used to exit aloop-processing structure such as DO, DO WHILE,
WHILE and LOORP, to return from a REMOTE BLOCK regardless of
the number of active control structures within the REMOTE BLOCK,
or to transfer control from a GUESS or ADMIT block to the
statement following the ENDGUESS statement.

3. Thereisno active looping control structure from which a CYCLE
statement can be used. A CY CLE statement can only be used within
aDO, DO WHILE, WHILE and LOOP control structure.

SP-05 REMOTE BLOCK is not allowed in the range of any control structure
An attempt has been made to define aREMOTE BLOCK inside a control
structure. Control structuresinclude IF, LOOP, WHILE, DO, SELECT and
GUESS. When aREMOTE BLOCK definition is encountered during execution,

control istransferred to the statement following the corresponding END BLOCK
Statement.

SP-06 the SELECT statement must be followed immediately by a CASE statement
The statement immediately after the SELECT statement must be a CASE
statement. The SELECT statement allows one of a number of blocks of code
(case blocks) to be selected for execution by means of an integer expression in
the SELECT statement.

SP-07 cases are overlapping
The case lists specified in the CASE statements in the SELECT control structure
arein conflict. Each case list must specify a unique integer constant expression
or range.

SP-08 select structure requires at least one CASE statement
In the SELECT control structure, there must be at least one CASE statement.

SP-09 cannot branch to %d1 from outside control structurein line %d2

Open Watcom F77 Diagnostic Messages 305

Appendices

The statement in line %d2 passes control to the statement %d1 in a control
structure. Control may only be passed out of a control structure or to another
placein that control structure. Control structuresinclude DO, GUESS, IF,
LOOP, SELECT, and WHILE.

SP-10 cannot branch to %d1 inside structure on line %d2

The statement attempts to pass control to statement %d1 in line %d2 whichisin
acontrol structure. Control may only be passed out of a control structure or to
another placein that control structure. Control structuresinclude DO, GUESS,
IF, LOOP, SELECT, and WHILE.

SP-11 low end of range exceeds the high end

Thefirst number, the low end of the range, is greater than the second number,
the high end of the range.

SP-12 default case block must follow all case blocks

The default case block in the SELECT control structure must be the last case
block. A case block may not follow the default case block.

SP-13 attempt to branch out of a REMOTE BLOCK
An attempt has been made to transfer execution control out of aREMOTE
BLOCK. A REMOTE BLOCK may only be terminated with the END BLOCK
statement. Execution of aREMOTE BLOCK is similar in concept to execution
of asubroutine.
SP-14 attempt to EXECUTE undefined REMOTE BLOCK %s1
The REMOTE BLOCK %sl referenced in the EXECUTE statement does not
exist in the current program unit. A REMOTE BLOCK islocal to the program
unitin which it is defined and may not be referenced from another program unit.
SP-15 attempted to use REMOTE BLOCK recursively
An attempt was made to execute a REMOTE BLOCK which was aready active.
SP-16 cannot RETURN from subprogram within a REMOTE BLOCK

Anillegal attempt has been made to execute a RETURN statement within a
REMOTE BLOCK in a subprogram.

306 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

SP-17 %s1 statement is not FORTRAN 77 standard
The statement %s1 is an extension to the FORTRAN 77 language.
SP-18 %s1 block is unfinished
The block starting with the statement %s1 does not have the ending block
statement. For example: ATENDDO-ENDATEND, DO-ENDDO,
GUESS-ENDGUESS, IF-ENDIF, LOOP-ENDLOOP, SELECT-ENDSELECT,
STRUCTURE-ENDSTRUCTURE and WHILE-ENDWHILE.
SP-19 %s1 statement does not match with %s2 statement
The statement %s1, which ends a control structure, cannot be used with
statement %s2 to form a control structure. Valid control structures are: LOOP -
ENDLOOP, LOOP - UNTIL, WHILE - ENDWHILE, and WHILE - UNTIL.
SP-20 incomplete control structure found at %s1 statement
The ending control structure statement %s1 was found and there was no
preceding matching beginning statement. Valid control structures include:
ATENDDO - ENDATEND, GUESS - ENDGUESS, IF - ENDIF, LOOP -
ENDLOOP, REMOTE BLOCK - ENDBLOCK, and SELECT - ENDSELECT.
SP-21 %s1 statement is not allowed in %s2 definition
Statement %sL is not allowed between a %s2 statement and the corresponding
END %s2 statement. For example, an EXTERNAL statement is not allowed
between a STRUCTURE and END STRUCTURE statement, a UNION and
END UNION statement, or aMAP and END MAP statement.

SP-22 no such field name found in structure %s1

A structure reference contained afield name that does not belong to the
specified structure.

SP-23 multiple definition of field name %sl
The field name %s1 has already been defined in a structure.
SP-24 structure %s1 has not been defined

An attempt has been made to declare a symbol of user-defined type %s1. No
structure definition for %s1 has occurred.

Open Watcom F77 Diagnostic Messages 307

Appendices

SP-25 structure %s1 has already been defined

The specified structure has already been defined as a structure.
SP-26 structure %s1 must contain at least onefield

Structures must contain at least one field definition.
SP-27 recursion detected in definition of structure %sl

Structure %s1 has been defined recursively. For example, itisillegal for
structure X to contain afield that isitself a structure named X.

SP-28 illegal use of structure %s1 containing union

Structures containing unions cannot be used in formatted |/O statements or data
initialized.
SP-29 allocatable arrays cannot be fields within structures
An allocatable array cannot appear as a field name within a structure definition.
SP-30 an integer conditional expression is not FORTRAN 77 standard
A conditional expression isthe expression that is evaluated and checked to
determine a path of execution. A conditional expression can be found in an IF
or WHILE statement. FORTRAN 77 requires that the conditional expression be
alogical expression. Asan extension, an integer expression is also allowed.
When an integer expression is used, it is converted to alogical expression by
comparing the value of the integer expression to zero.

SP-31 %sl statement must be used within %s2 definition

The statement identified by %s1 must appear within a definition identified by
%s2.

Subprograms
SR-01 name can only appear in an EXTERNAL statement once

A function/subroutine name appears more than once in an EXTERNAL
Statement.

308 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

SR-02 character function %s1 may not be called since size was declared as (*)
In the declaration of the character function name, the length was defined to be
(*). The (*) length specification is only allowed for external functions, dummy
arguments or symbolic character constants.

SR-03 %s1 can only be used an an argument to a subroutine
The specified class of an argument must only be passed to a subroutine. For
example, an alternate return specifier isillegal as a subscript or an argument to a
function.

SR-04 name cannot appear in both an INTRINSIC and EXTERNAL statement

The same name appearsin an INTRINSIC statement and in an EXTERNAL
Statement.

SR-05 expecting a subroutine name

The subroutine named in the CALL statement does not define a subroutine. A
subroutine is declared in a SUBROUTINE statement.

SR-06 %s1 statement not allowed in main program
The main program can contain any statements except a FUNCTION,
SUBROUTINE, BLOCK DATA, or ENTRY statement. A SAVE statement is
allowed but has no effect in the main program. A RETURN statement in the
main program is an extension to the FORTRAN 77 language.

SR-07 not an intrinsic FUNCTION name

A namein the INTRINSIC statement is not an intrinsic function name. Refer to
the Language Reference for a complete list of the intrinsic functions.

SR-08 name can only appear in an INTRINSI C statement once
An intrinsic function name appears more than once in the intrinsic function list.
SR-09 subprogram recursion detected

An attempt has been made to recursively invoke a subprogram, that is, to invoke
an aready active subprogram.

Open Watcom F77 Diagnostic Messages 309

Appendices

SR-10 two main program unitsin the samefile
There are two places in the program that signify the start of amain program.
The PROGRAM statement or the first statement that is not enclosed by a
PROGRAM, FUNCTION, SUBROUTINE or BLOCK DATA statement
specifies the main program start.

SR-11 only one unnamed %s1 is allowed in an executable program

There may only be one unnamed BLOCK DATA subprogram or main program
in an executable program.

SR-12 function referenced as a subroutine
An attempt has been made to invoke a function using the CALL statement.
Subscripts and Substrings

SS-01 substringing of function or statement function return valueis not FORTRAN 77
standard

The character value returned from a CHARACTER function or statement
function cannot be substrung. Only character variable names and array element
names may be substrung.

SS-02 substringing valid only for character variables and array elements

An attempt has been made to substring a name that is not defined to be of type
CHARACTER and is neither avariable nor an array element.

SS-03 subscript expression out of range %s1 does not exist

An attempt has been made to reference an element in an array that is out of
bounds of the declared array size. The array element %s1 does not exist.

SS-04 substring expression (%d1:%d?2) is out of range

An expression in the substring is larger than the string length or less than the
value 1. The substring expression must be one in which

1 <= %1 <= %2 <= | en

310 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

Statements and Statement Numbers
ST-01 statement number %d1 has already been defined in line %d2

The two statements, in line %d2 and the current line, in the current program unit
have the same statement label number, namely %d1.

ST-02 statement function definition appears after first executable statement

Thereis a statement function definition after the first executable statement in the
program unit. Statement function definitions must follow specification
statements and precede executabl e statements. Check that the statement function
name is not an undeclared array name.

ST-03 %s1 statement must not be branched to but was in line %d2

Line %d2 passed execution control down to the statement %sl1. The
specification statements, ADMIT, AT END, BLOCK DATA, CASE, ELSE,
ELSE IF, END AT END, END BLOCK, END DO, END LOOP, END
SELECT, END WHILE, ENTRY, FORMAT, FUNCTION, OTHERWISE,
PROGRAM, QUIT, REMOTE BLOCK, SAVE, SUBROUTINE, and UNTIL
statements may not have control of execution transferred to it.

ST-04 branch to statement %d1 in line %d2 not allowed

An attempt has been made to pass execution control up to the statement |abelled
%d1 in line %d2. The specification statements, ADMIT, AT END, BLOCK
DATA, CASE, ELSE, ELSE IF, END AT END, END BLOCK, END DO, END
LOOP, END SELECT, END WHILE, ENTRY, FORMAT, FUNCTION,
OTHERWISE, PROGRAM, QUIT, REMOTE BLOCK, SAVE,
SUBROUTINE, and UNTIL statements may not have control of execution
transferred to it.

ST-05 specification statement must appear before %sl isinitialized
The variable %s1 has been initialized in a specification statement. A COMMON
or EQUIVALENCE statement then references the variable. The COMMON or
EQUIVALENCE statement must appear before the item can beinitialized. Use
the DATA statement to initialize datain this case.

ST-06 statement %d1 was referenced asa FORMAT statement in line %d2
The statement in line %d2 references statement label %d1 asa FORMAT
statement. The statement at that label isnot a FORMAT statement.

Open Watcom F77 Diagnostic Messages 311

Appendices

ST-07 IMPLICIT statement appearstoo late

The current IMPLICIT statement is out of order. The IMPLICIT statement may
be interspersed with the PARAMETER statement but must appear before other
specification statements.

ST-08 this statement will never be executed due to the preceding branch

Because execution control will always be passed around the indicated statement,
the statement will never be executed.

ST-09 expecting statement number

The keyword GOTO or ASSIGN has been detected and the next part of the
statement was not a statement number as was expected.

ST-10 statement number %d1 was not used asa FORMAT statement in line %d2

The statement at line %d2 with statement number %d1 is not a FORMAT
statement but the current statement uses statement number %d1 asif it labelled a
FORMAT statement.

ST-11 specification statement appearstoo late

Theindicated specification statement appears after a statement function
definition or an executable statement. All specification statements must appear
before these types of statements.

ST-12 %sl1 statement not allowed after %s2 statement

The statement %s1 cannot be the object of a %s2 statement. %s2 represents a
logical IF or WHILE statement. These statementsinclude: specification
statements, ADMIT, AT END, CASE, DO, ELSE, ELSE IFEND, END AT
END, END BLOCK, END DO, END GUESS, ENDIF, END LOOP, END
SELECT, END WHILE, ENTRY, FORMAT, FUNCTION, GUESS, logica IF,
block IF, LOOP, OTHERWISE, PROGRAM, REMOTE BLOCK, SAVE,
SELECT, SUBROUTINE, UNTIL, and WHILE.

ST-13 statement number must be 99999 or less

The statement label number specified in the indicated statement has more than 5
digits.

312 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

ST-14 statement number cannot be zero

The statement label number specified in the indicated statement is zero.
Statement label numbers must be greater than 0 and less than or equal to 99999.

ST-15 this statement could branch to itself

Theindicated statement refers to a statement label number which appears on the
statement itself and therefore could branch to itself, creating an endless loop.

ST-16 missing statement number %d1 - used in line %d2
A statement with the statement 1abel number %d1 does not exist in the current
program unit. The statement label number is referenced in line %d2 of the
program unit.

ST-17 undecodeabl e statement or misspelled word %s1
The statement cannot be identified as an assignment statement or any other type
of FORTRAN statement. The first word of a FORTRAN statement must be a
statement keyword or the statement must be an assignment statement.

ST-18 statement %d1 will never be executed due to the preceding branch
The statement with the statement label number of %d1 will never be executed
because the preceding statement will always pass execution control around the
statement and no other reference is made to the statement label.

ST-19 expecting keyword or symbolic name
Thefirst character of a statement is not an alphabetic. The first word of a
statement must be a statement keyword or a symbolic name. Symbolic names
must start with aletter (upper case or lower case), adollar sign ($) or an
underscore ().

ST-20 number in %sl statement islonger than 5 digits
The number in the PAUSE or STOP statement is longer than 5 digits.

ST-21 position of DATA statement is not FORTRAN 77 standard
The FORTRAN 77 standard requires DATA statements to appear after al

specification statements. As an extension to the standard, Watcom FORTRAN
77 allows DATA statements to appear before specification statements. Note that

Open Watcom F77 Diagnostic Messages 313

Appendices

in the latter case, the type of the symbol must be established before data
initialization occurs.

Subscripted Variables

SV-01 variable %sl in array declarator must bein COMMON or a dummy argument
The variable %sl was used as an array declarator in a subroutine or function but
the variable was not in a COMMON block nor was it adummy argument in the
FUNCTION, SUBROUTINE or ENTRY statement.

SV-02 adjustable/assumed size array %s1 must be a dummy argument
The array %s1 used in the current subroutine or function must be a dummy
argument. When the array declarator is adjustable or assumed-size, the array
name must be a dummy argument.

SV-03 invalid subscript expression
Theindicated subscript expression is not avalid integer expression or the high
bound of the array is less than the low bound of the array when declaring the
size of the array.

SV-04 invalid number of subscripts
The number of subscripts used to describe an array element does not match the
number of subscriptsin the array declaration. The maximum number of
subscripts allowed is 7.

SV-05 using %sl name incorrectly without list
An attempt has been made to assign a value to the declared array %s1. Values
may only be assigned to elementsin the array. An array element isthe array
name followed by integer expressions enclosed in parentheses and separated by
commeas.

SV-06 cannot substring array name %sl

An attempt has been made to substring the array %sl1. Only an array element
may be substrung.

SV-07 %sl treated as an assumed size array

314 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

A dummy array argument has been declared with 1 in the last dimension. The
array istreated asif an’*’ had been specified in place of the 1. Thisisdoneto
support afeature called "pseudo-variable dimensioning” which was supported by
some FORTRAN 1V compilers and isidentical in concept to FORTRAN 77
assumed-size arrays.

SV-08 assumed size array %s1 cannot be used asan i/o list item or a format/unit identifier
Assumed size arrays (arrays whose last dimension is’*") must not appear as an
i/folistitem (i.e. inaPRINT statement), aformat identifier or aninternal file
specifier.

SV-09 limit of 65535 elements per dimension has been exceeded

Onthe IBM PC, for 16-bit real mode applications, the number of elementsin a
dimension must not exceed 65535.

Syntax Errors

SX-01 unexpected number or name %s1
The number or name %sl isin an unexpected place in the statement.

SX-02 bad sequence of operators
The indicated arithmetic operator is out of order. An arithmetic operator is one
of thefollowing: **,*,/, +, and —. All arithmetic operators must be followed
by at least aprimary. A primary isan array element, constant, (expression),
function name, or variable name.

SX-03 invalid operator
Theindicated operator between the two arithmetic primariesis not avalid
operator. Valid arithmetic operatorsinclude: **,*,/, +, and —. A primary isan
array element, constant, (expression), function name, or variable name.

SX-04 expecting end of statement after right parenthesis
The end of the statement is indicated by the closing right parenthesis but more
characters were found on the line. Multiple statements per line are not allowed

in FORTRAN 77.

SX-05 expecting an asterisk

Open Watcom F77 Diagnostic Messages 315

Appendices

The next character of the statement should be an asterisk but another character
was found instead.

SX-06 expecting colon

A colon (:) was expecting but not found. For example, the colon separating the
low and high bounds of a character substring was not found.

SX-07 expecting colon or end of statement
On acontrol statement, aword was found at the end of the statement that cannot
be related to the statement. The last word on several of the control statements
may be ablock label. All block labels must be preceded by a colon (:).

SX-08 missing comma
A commawas expected and ismissing. There must be a comma after the
statement keyword AT END when a statement follows. A comma must occur
between the two statement labels in the GO TO statement. A comma must occur
between the expressions in the DO statement. A comma must occur between the
names listed in the DATA statement and specification statements. A comma
must occur between the specifiersin I/O statements.

SX-09 expecting end of statement
The end of the statement was expected but more words were found on the line
and cannot be associated to the statement. FORTRAN 77 only allows for one
statement per line.

SX-10 expecting integer variable
The name indicated in the statement must be of type INTEGER but is not.

SX-11 expecting %s1 name

A name with the characteristic %s1 was expected at the indicated placein the
statement but is missing.

SX-12 expecting an integer
The length specifier, asin the IMPLICIT statement, must be an integer constant
or an integer constant expression. The repeat specifier of the value to be

assigned to the variables, asin the DATA statement, must be an integer constant
or an integer constant expression.

316 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

SX-13 expecting INTEGER, REAL, or DOUBLE PRECISION variable

Theindicated DO variable is not one of the types INTEGER, REAL, or
DOUBLE PRECISION.

SX-14 missing operator
Two primaries were found in an expression and an operator was not found in
between. A primary isan array element, constant, (expression), function name,
or variable name.

SX-15 expecting a slash
A slash is expected in the indicated place in the statement. Slashes must be
balanced as parentheses. Slashes are used to enclose the initial datavaluesin
specification statements or to enclose names of COMMON blocks.

SX-16 expecting %os1 expression
An expression of type %sl isrequired.

SX-17 expecting a constant expression
A constant expression is required.

SX-18 expecting INTEGER, REAL, or DOUBLE PRECISION expression
Theindicated expression is not one of type INTEGER, REAL, or DOUBLE
PRECISION. Each expression following the DO variable must be an expression
of one of these types.

SX-19 expecting INTEGER or CHARACTER constant
In the PAUSE and STOP statement, the name following the keyword must be a
constant of type INTEGER or of type CHARACTER. This constant will be
printed on the console when the statement is executed.

SX-20 unexpected operator
An operand was expected but none was found. For example, inan 1/0O

statement, the comma s used to separate I/O list items. Two consecutive
commas without an 1/0 list item between them would result in this error.

Open Watcom F77 Diagnostic Messages 317

Appendices

SX-21 no closing quote on literal string

The closing quote of aliteral string was not found before the end of the
statement.

SX-22 missing or invalid constant

InaDATA statement, the constant required to initialize a variable was not found
or incorrectly specified.

SX-23 expecting character constant
A character constant is required.
Type Statements
TY-01 length specification before array declarator is not FORTRAN 77 standard

An array declarator specified immediately after the length specification of the
array is an extension to the FORTRAN 77 language.

TY-02 %d1 isan illegal length for %s2 type
The length specifier %d1 is not valid for the type %s2. For type LOGICAL,
valid lengthsare 1 and 4. For thetype INTEGER, valid lengthsare 1, 2, and 4.
For the type REAL, valid lengths are 4 and 8. For the type COMPLEX, valid
lengths are 8 and 16. On the IBM PC, the length specifier for items of type
CHARACTER must be greater than 0 and not exceed 65535.

TY-03 length specifier in %sl statement is not FORTRAN 77 standard
A length specifier in certain type specification statementsis an extension to the
FORTRAN 77 language. Theseinclude: LOGICAL*1, LOGICAL*4,
INTEGER*1, INTEGER*2, INTEGER*4, REAL*4, REAL*8, COMPLEX*8,
and COMPLEX*16.

TY-04 length specification not allowed with type %sl

A length specification is not allowed in a DOUBLE PRECISION or DOUBLE
COMPLEX statement.

TY-05 type of %s1 has already been established as %s2

318 Open Watcom F77 Diagnostic Messages

Open Watcom F77 Diagnostic Messages

Theindicated name %s1 has already been declared to have a different type,
namely %s2. The name %s1 cannot be used in this specification statement.

TY-06 type of %s1 has not been declared

Theindicated name %s1 has not been declared. This messageisonly issued
when the IMPLICIT NONE specification statement is used.

TY-07 %s1 of type %s2 isillegal in %s3 statement

The symbol %s1 with type %s2 cannot be used in statement %s3. For example,
asymbol of type STRUCTURE cannot be used in a PARAMETER statement.

Variable Names
VA-0lillegal use of %sl name %s2 in %s3 statement

The name %s2 has been defined as %s1 and cannot be used as aname in the
statement %s3.

VA-02 symbolic name %sl islonger than 6 characters

Symbolic names greater than 6 charactersis an extension to the FORTRAN 77
language. The maximum length is 32 characters.

VA-03 %sl has already been defined as a %s2

The name %s1 has been previously defined as a %s2 in another statement and
cannot be redefined as specified in the indicated statement.

VA-04 %s1 %s2 has not been defined

The name %s2 has been referenced to be a %0s1 but has not been defined as such
in the program unit.

VA-05 %sl is an unreferenced symbol
The name %sL1 has been defined but not referenced.
VA-06 %sl already belongs to thisNAMELIST group

The name %s1 can only appear inaNAMELIST group once. However, aname
can belong to multiple NAMELIST groups.

Open Watcom F77 Diagnostic Messages 319

Appendices

VA-07 %sl has been used but not defined
%s1 has not been defined before using it in away that requires its definition.
Note that symbols that are equivalenced, belong to a common block, are dummy
arguments, or passed as an argument to a subprogram, will not be checked to
ensure that they have been defined before requiring a value.

VA-08 dynamically allocating %sl is not FORTRAN 77 standard
Allocatable storage are extensions to the FORTRAN 77 standard.

VA-09 %slin NAMELIST %s2 isillegal

Symbol %s1 appearing in NAMELIST %s2 isillegal. Symbols appearing in a
NAMELIST cannot be dummy arguments, allocatable, or of a user-defined type.

320 Open Watcom F77 Diagnostic Messages

Index

386 12

aborts (pragma) 175, 241
ACCESS= 51
ACTION= 58, 73
addressing arguments 141, 205
alias name (pragma) 152, 216
alias names
__cdecl 154,218
_ fastcall 154, 218
__fortran 154, 218
__pascal 154, 218
__stdcall 154, 218
__syscall 218
__watcall 154, 218
ALIGN option 10
AR-01 271
AR-02 271
AR-12 271
argument list (pragma) 161, 226
arguments 79, 93
passing by data reference 162, 228
passing by reference 162, 228
passing by value 162, 228
removing from the stack 169, 235
arguments on the stack 167, 233
assembl er subprograms
subroutine FINTR 82
AUTOEXEC.BAT 31
AUTOMATIC option 10
AUX 60
auxiliary pragma 151, 215

BACKSPACE 55

BD option 11

BD-01 271

BD-02 271

big code moddl 127, 189
big data model 128, 190
BINNT directory 260
BINP directory 260
BINW directory 260
BIOScal 168, 234
BLOCKSIZE= 54, 57
BM option 11
BOUNDS option 11
buffer size 57

BW option 11

callback functions 160
calling conventions 133, 195
caling information (pragma) 157, 223
calling subprograms
far 157,223
near 157, 223
CARRIAGECONTROL= 54, 56
CCoption 11
CC-01 272
CC-02 272
CC-03 272
CC-04 272
CC-05 272
CC-06 272
CC-07 272
CC-08 272
CC-09 273

321

Index

COMPAT 58
compiletime 263

322

__cdecl 154, 218, 225 compiler 29
__cdecl adiasname 154, 218 compiler directives
CHARACTER datatype 113 define 12, 46
CHINESE option 11 gect 44
class else 48
CODE 130, 138, 193, 200 elseifdef 48
FAR_DATA 130, 138, 193, 200 elseifndef 48
CLOCK$ 62 endif 47
CLOSE 63, 77 ifdef 47
CM-01 273 ifndef 47
CM-02 273 include 44
CM-03 273 pragma 46
CM-04 273 undefine 46
CM-05 273 compiler options 5
CM-06 273 compiler options summary 5
CN-01 274 compiling
CN-02 274 command line format 29
CN-03 274 COMPLEX datatype 113
CN-04 274 COMPLEX*16 datatype 113
CN-05 274 COMPLEX*8 datatype 113
CO-01 274 CON 60, 62
CO-02 274 Win32 73
CO-03 274 conditional compilation 12, 43
CO-04 275 CONFIG.SYS 31
CO-05 275 connection precedence 67
CO-06 275 console device 73
CO-07 275 CP-01 275
CO-08 275 CP-02 276
CODE class 130, 138, 193, 200 CP-03 276
code generation CP-04 276
memory requirements 262 CP-05 276
code models CP-06 276
big 127, 189 CP-07 276
small 127, 189 CP-08 276
CODE option 11 CP-09 277
COM1 60, 62 CP-10 277
COM2 60, 62 CP-11 277
COM3 62 CP-12 277
COM4 62 CP-13 277
command line 79, 93 Ctrl/Break 87
command line format 29 Cv-01 277
compact memory model 190 Cv-02 277

Index

Dincolumnl 49

D1 option 11

D2 option 11

DA-01 278

DA-02 278

DA-03 278

DA-04 278

DA-05 278

DA-06 278

DA-07 278

DA-08 278

DA-10 279

DA-12 279

data models
big 128, 190
huge 128
small 128, 190

data types
CHARACTER 113
COMPLEX 113
COMPLEX*16 113
COMPLEX*8 113
DOUBLE PRECISION 111
INTEGER 110
INTEGER*1 110
INTEGER*2 110
INTEGER*4 110
LOGICAL 110
LOGICAL*1 109
LOGICAL*4 110
REAL 110
REAL*4 110
REAL*8 111

DEBUG option 12

debugging
bounds check 11-12
di 11
d2 12

traceback 12
debugging macro

__debug _ 49-50
debugging statements 49
default libraries

using pragmas 150, 214
default memory model 20, 21
default options 8
default windowing

dwfDeleteOnClose 102

dwfSetAboutDIlg 102

dwfSetAppTitle 103

dwfSetConTitle 104

dwfShutDown 105

dwfYield 106
defaults

file name 64, 76

record access 76

record length 76

record type 76
DEFINE compiler directive 46
DEFINE=<macro> option 12
DENYNONE 58
DENYRD 58
DENYRW 58
DENYWR 58
DEPENDENCY option 12
descriptor option 13, 136, 199
device

AUX 60

CLOCK$ 62

COM1 60, 62

COM2 60, 62

COM3 62

COM4 62

CON 60, 62

console 73

KBD$ 62

LPT1 60, 62

LPT2 60, 62

LPT3 60, 62

MOUSE$ 62

NUL 60, 62

POINTER$ 62

323

Index

printer 75

PRN 60, 62

SCREEN$ 62

serial 75
device names 60, 62
diagnostic messages

language 266
diagnostics

error 33

Open Watcom F77 32

warning 33
DISK option 13
DLL applications 11, 27
DM-01 279
DO-01 279
DO-02 279
DO-03 279
DO-04 279
DO-05 280
DO-06 280
DO-07 280
DOS subdirectory 37
DOSCALLS.LIB 258
DOSPML.LIB 39
DOSPMM.LIB 39
DOUBLE PRECISION datatype 111
drive name 59
DT=<size> option 13
dwfDeleteOnClose function 102
dwfSetAboutDlg function 102
dwfSetAppTitle function 103
dwfSetConTitle function 104
dwfShutDown function 105
dwfYield function 106
dynamic link library applications 11, 27

EC-01 280
EC-02 280

324

EJECT compiler directive 44
EL SE compiler directive 48
EL SEIFDEF compiler directive 48
EL SEIFNDEF compiler directive 48
emu87.lib 41
EN-01 281
END= 74
ENDIF compiler directive 47
English diagnostic messages 266
environment string

30

= substitute 30
environment variable 64
environment variables

FINCLUDE 18, 45, 79-81, 85-86, 88-94,

97-100, 257

LIB 257
LIBDOS 258
LIBOS2 258
LIBPHAR 258-259
LIBWIN 258
NO87 41, 259
PATH 45, 257, 260
TMP 261
use 257
WATCOM 257-259, 261
WCGMEMORY 262-263
WCL 261-262
WCL386 262
WD 263-264
WDW 264
WFC 30, 32, 264-265
WFC386 30, 265
WFL 265-266
WFL 386 266
WLANG 266-267

EQ-01 281

EQ-02 281

EQ-03 281

EQ-04 281

EQ-05 281

error file
.ERR 32

ERROR message 269

Index

ERRORFILE option 13
EV-01 282

EV-02 282

EV-03 282

EV-04 282

EV-05 282

EV-06 282

EX-01 282

EX-02 282

EX-03 283

execute aprogram 89
exiting with return code 79
EXPLICIT option 13
export (pragma) 160, 226

exporting symbolsin dynamic link libraries 160,

226
extension 59
EXTENSION message 269
EXTENSIONS option 14
EY-01 283
EY-02 283
EY-03 283
EZ option 14

far (pragma) 157, 223

far call 127,189

farl6 225

farl6 (pragma) 223

FAR _DATA class 130, 138, 193, 200
__fastcall 154,218

__fastcall dliasname 154, 218
FAT file system 59

FDIV bug 17

FEXIT subroutine 79
FGETCMD function 79
FGETENV function 80

file connection 63

file defaults 76

file designation 59
file handling 51

file name

case sensitivity 60
default 64, 76
file naming 51
file sharing 58
FILE= 70, 73,75
filename 59
FILESIZE 81

FINCLUDE environment variable 18, 45, 79-81,

85-86, 88-94, 97-100, 257
FINTR subroutine 82

FIXED 56

FIXED record type 56
flat memory model 190

flat model

libraries 38, 192

float 158

floating-point
consistency of options 15-16
option 15

FLUSHUNIT function 84

FM-01
FM-02
FM-03
FM-04
FM-05
FM-06
FM-07
FM-08
FM-09
FM-10
FM-11
FM-12
FM-13
FM-14
FM-15
FM-16
FM-17
FM-18
FM-19
FM-20
FM-21

283
283
283
283
284
284
284
284
284
284
284
285
285
285
285
285
285
285
285
285
286

325

Index

FM-22 286
FNEXTRECL function 85
FO=<obj_default> option 14
FORM= 52
FORMAT option 14
FORMATTED 55
formatted record 52
__ fortran 154, 218
FORTRAN 77 libraries
flat 38
huge 38
in-line 80x87 instructions 38
large 38
medium 38
small 38
_ fortran dliasname 154, 218
FORTRAN libraries
flat 192
small 192
FP2 option 16
FP3 option 16
FP5 option 16
FP6 option 16
FPC option 15
FPD option 17
FPI option 15
FPI87 option 15
fpi 12
FPR option 17
FSFLOATS option 17
FSIGNAL function 87
FSPAWN function 88
FSY STEM function 89
FTRACEBACK subroutine 90

general protection fault 27
GETDAT subroutine 91
GETTIM subroutine 92

326

GO-01 286
GO-02 286
GO-03 286
GPF 27
__GRO
stack growing 26
GROWHANDLES function 93
GSFLOATS option 17

HC option 18
HD option 18
header file
including 35
searching 44
HO-01 286
HO-02 286
HPFSfile system 59, 61
huge data model 128
huge memory model 128
huge model
libraries 38
HW option 18

!

_i86__ 12

IARGC function 93

IF 97

IF-01 287

IF-02 287

IFDEF compiler directive 47
IFNDEF compiler directive 47
IGETARG function 93

IL-01 287

Index

IL-02 287
IL-03 288
IL-04 288
IL-05 288
IL-06 288
IL-07 288
IL-08 288
IL-09 288
IL-10 288
IL-11 289
IL-12 289
IL-13 289
IL-14 289
IL-15 289
IL-16 289
IL-17 289
IL-18 290
IM-01 290
IM-02 290
IM-03 290
IM-04 290
IM-05 290
IMPLICIT NONE 14

in-line 80x87 floating-point instructions 159

in-line 80x87 instructions
libraries 38
in-line assembly
in pragmas 157, 223
in-line assembly language instructions
using mnemonics 159, 224
in-line subprograms 158, 224
in-line subprograms (pragma) 168, 234
INCLIST option 18
INCLUDE 44-45
directive 35
header file 35
source file 35
INCLUDE compiler directive 44
includefile
searching 44
INCPATH option 18, 45
increased precision 28
INQUIRE 63, 70, 72
INTEGER datatype 110

INTEGER*1 datatype 110
INTEGER*2 data type 110
INTEGER*4 data type 110
invoking Open Watcom FORTRAN 77 29
10-01 290

10-02 290

10-03 291

10-04 291

10-05 291

10-06 291

10-07 291

10-08 291

10-09 291

10-10 292

10-11 292

10-12 292

10-13 292

10-14 292

10-15 292

10-16 292

10-17 292

10-18 293

10-19 293

10-20 293

10-21 293

10-22 293

10-23 293

10-24 293

10-25 294

10-26 294

10-27 294

10-28 294

10-29 294

10-30 294

10-31 294

10-32 295

10-33 295

10-34 295

10-35 295

10-36 295

10-37 295

10-38 295

IOSTAT= 74
IPROMOTE option 18

327

Index

LI-11 297
LI-12 297
J LI-13 297
LI-14 298
LI-15 298

Japanese diagnostic messages 266 L1-16 298

JAPANESE option 19 LI-17 298
LI-18 298

LIB environment variable 257

LIBDOS environment variable 258
K LIBINFO option 19
LIBOS2 environment variable 258
LIBPHAR environment variable 258-259
library path 261

KBD$ 62 LIBWIN environment variable 258
KO-01 295 LIST option 20
KO-02 295 loadds (pragma) 159, 225
KO-03 296 loading DS before calling a subprogram 159, 225
KO-04 296 loading DS in prologue sequence of a subprogram
KO-05 296 159, 225
KO-06 296 LOGICAL datatype 110
KOREAN option 19 logical file name 69
device remapping 72
display 73
extended file names 70
L LOGICAL*1 datatype 109

LOGICAL*4 datatype 110
LONGJIMP subroutine 97

LPT1 60, 62
language 266 LPT2 60, 62
large memory model 128, 190 LPT3 60, 62
large model
libraries 38
LFWITHFF option 19
LI-01 296 M
LI-02 296
LI1-03 296
LI-04 296
LI-05 296 macros 12
LI-06 297 predefined 12
LI-07 297 MANGLE option 20
LI-08 297 math coprocessor 41
LI-09 297 option 15
LI-10 297 math error functions 94

328

Index

MC option 20

MD-01 298

MD-02 298

MD-03 298

MD-04 299

MD-05 299

MD-06 299

MD-07 299

MD-08 299

medium memory model 128, 190

medium model
libraries 38

memory layout 130, 137, 192, 200

memory model 32

memory models
16-bit 127
32-bit 189
compact 190
flat 190-191
huge 128
large 128, 190
libraries 129, 192
medium 128, 190
mixed 129, 191
small 190

MF option 20

MH option 21

mixed memory model 129, 191

ML option 21

MM option 21

MO-01 299

MO-02 299

MO-03 300

MO-04 300

MO-05 300

modify exact (pragma) 180, 247-248
modify nomemory (pragma) 176, 178, 242, 245

modify reg_set (pragma) 186, 253
MOUSE$ 62
MSoption 21

multi-threaded applications 11, 26-27

NAME= 72
near (pragma) 157, 223
near call 127, 189
NETWARE subdirectory 37
no8087 (pragma) 170, 237
NO87 environment variable 41, 259
NT subdirectory 37
NUL 60, 62
numeric data processor 41
option 15

OB option 21
OBP option 21
OC option 21
OD option 22
ODO option 22
OF option 22
OH option 23
Ol option 23
OK option 23
OL option 23
OL+ option 23
OM option 23
ON option 23
OP option 24
OPEN 51-58, 63, 67, 69-70, 72-76
options 5

329

Index

6 10,5

ALIGN 10,5
AUTOMATIC 10,5
BD 11,5

BM 11,5
BOUNDS 11, 6

BW 11,6

CC 11,6

CHINESE 11,6
CODE 11,6

D1 11,6

D2 11,6

DEBUG 12,6
define 6
DEFine=<macro> 12, 46
DEPENDENCY 12,6
descriptor 13, 6, 136, 199
DISK 13,6

dt 6

DT=<size> 13
ERRORFILE 13,6
EXPLICIT 13,6
EXTENSIONS 14, 6
EZ 14,6

fo 6
FO=<obj_default> 14
FORMAT 14,6
FP2 16,6

FP3 16,6

FP5 16,6

FP6 16,6

fpc 15, 6, 41

FPD 17,6

fpi 15, 6, 40-41
fpi87 15, 6, 41

FPR 17,6
FSFLOATS 17,6
GSFLOATS 17,6
HC 18,6

HD 18,6

HW 18, 6

INCLIST 18,6
INCPATH 18, 6
IPROMOTE 18, 6

330

JAPANESE 19, 6
KOREAN 19, 6
LFWITHFF 19, 6
LIBINFO 19, 6
LIST 20,6

m? 38
MANGLE 20, 7
MC 20,7

MF 20,7

MH 21,7

ML 21,7

MM 21,7

MS 21,7

OB 21,7

OBP 21,7

ocC 21,7

oD 22,7

ODO 22,7

OF 22,7

OH 23,7

Ol 23,7

OK 23,7

oL 23,7

OL+ 23,7

OM 23,7

ON 23,7

OP 24,7

OR 24,7

OS 25,7

OT 25,7

OX 25,7

PRINT 25,7
QUIET 25,7
REFERENCE 25, 7
RESOURCE 25, 7
SAVE 26,7

SC 26,7
SEPCOMMA 26, 7
SG 26,7
SHORT 27,7
SR 27,7
SSFLOATS 27,7
STACK 27,7
SYNTAX 27,7

Index

TERMINAL 27,7
TRACE 27,7
TYPE 27,7
WARNINGS 28, 8
WILD 28,8
WINDOWS 28, 8
XFLOAT 28,8
XLINE 28,8
options summary 5
OR option 24
OS option 25
0s/2
DOSCALLS.LIB 258
OS2 subdirectory 37
OT option 25
overview of contents 3
OX option 25

parm (pragma) 164, 230
parm caller (pragma) 169, 235
parm nomemory (pragma) 178, 245
parm reg_set (pragma) 182, 249
parm reverse (pragma) 170, 236
parm routine (pragma) 169, 235
__pascal 154, 218, 225
__pascal diasname 154, 218
passing arguments 134, 196
in 80x87 registers 182, 250
inregisters 134, 196
passing arguments by value 153, 217
path 59
PATH environment variable 45, 257, 260
PC-01 300
PC-02 300
PC-03 300
PC-04 300
Pentium bug 17
POINTER$ 62

PR-01 300

PR-02 301

PR-03 301

PR-04 301

PR-05 301

PR-06 301

PR-07 301

PR-08 301

pragma 149, 213

PRAGMA compiler directive 46

pragmas
=const 157, 223
aborts 175, 241
diasname 152, 216
aternate name 156, 222
auxiliary 151, 215
caling information 157, 223
describing argument lists 161, 226
describing return value 170, 237
export 160, 226
far 157,223
farlé 223
in-line assembly 157, 223
in-line subprograms 168, 234
loadds 159, 225
modify exact 180, 247-248
modify nomemory 176, 178, 242, 245
modify reg_set 186, 253
near 157, 223
no8087 170, 237
notation used to describe 149, 213
parm 164, 230
parm caller 169, 235
parm nomemory 178, 245
parmreg_set 182, 249
parm reverse 170, 236
parm routine 169, 235
specifying default libraries 150, 214
struct caller 170, 172, 237, 239
struct float 170, 174, 237, 240
struct routine 170, 172, 237, 239
value 170-172, 174, 237, 239-240
value [8087] 175, 241
value no8087 174, 241

331

Index

valuereg_set 185, 253
preconnecting files 67
preconnection 63, 67
predefined macros

386 12,50
_fpi__ 12,50
86 12,49

__stack _conventions 12, 50
predictable code size 262
print file 56
PRINT option 25
printer device 75
PRN 60, 62

QUIET option 25

random number generator 100
RE-01 302
RE-02 302
READ 54, 63, 68, 74
REAL datatype 110
REAL*4 datatype 110
REAL*8 datatype 111
RECL= 52-54, 56, 76
record
formatted 52
unformatted 52
record access 51
default 76
record format 52
record length
default 76

332

record size 56
record type 55

default 76
RECORDTYPE

FIXED 56

TEXT 55

VARIABLE 55
RECORDTY PE= 54-55
REFERENCE option 25
RESOURCE option 25
RETURN 136, 198
return code 79
return value (pragma) 170, 237

SA-01 302
SA-02 302
SA-03 302
SAVE 26
SAVE option 26
SC option 26
SCREENS$ 62
SEEKUNIT function 96
segment
_TEXT 130, 138, 193, 200

segment ordering 130, 137, 192, 200

SEPCOMMA option 26
serial device 75
SET 30

FINCLUDE environment variable 45

NOB87 environment variable 41

SET command 64, 69

SETIMP function 97
SETSYSHANDLE function 98
SF-01 302

SF-02 302

SF-03 303

SF-04 303

SF-05 303

Index

SF-06 303 SP-25 308
SF-07 303 SP-26 308
SG option 26 SP-27 308
SHARE= 58 SP-28 308
short option 27, 114 SP-29 308
side effects of subprograms 176, 242 SP-30 308
SM-01 303 SP-31 308
SM-02 303 SR option 27
SM-03 303 SR-01 308
SM-06 304 SR-02 309
SM-07 304 SR-03 309
small code model 127, 189 SR-04 309
small datamodel 128, 190 SR-05 309
small memory model 190 SR-06 309
small model SR-07 309
libraries 38, 192 SR-08 309
software quality assurance 263 SR-09 309
sourcefile SR-10 310
including 35 SR-11 310
searching 44 SR-12 310
SP-01 304 SS-01 310
SP-02 304 SS-02 310
SP-03 304 SS-03 310
SP-04 304 SS-04 310
SP-05 305 SSFLOATS option 27
SP-06 305 ST-01 311
SP-07 305 ST-02 311
SP-08 305 ST-03 311
SP-09 305 ST-04 311
SP-10 306 ST-05 311
SP-11 306 ST-06 311
SP-12 306 ST-07 312
SP-13 306 ST-08 312
SP-14 306 ST-09 312
SP-15 306 ST-10 312
SP-16 306 ST-11 312
SP-17 307 ST-12 312
SP-18 307 ST-13 312
SP-19 307 ST-14 313
SP-20 307 ST-15 313
SP-21 307 ST-16 313
SP-22 307 ST-17 313
SP-23 307 ST-18 313
SP-24 307 ST-19 313

333

Index

ST-20 313

ST-21 313

stack growing 26
__GRO 26

STACK option 27

stack size 10

stack-based calling convention 196, 198, 206, 210
writing assembly language subprograms 203

__stack_conventions 12
stacking arguments 167, 233
__stdcall 154, 218

__stdcall aliasname 154, 218
string descriptor 113

struct caller (pragma) 170, 172, 237, 239
struct float (pragma) 170, 174, 237, 240
struct routine (pragma) 170, 172, 237, 239

subprograms
FEXIT subroutine 79
FGETCMD function 79
FGETENV function 80
FILESIZE 81
FLUSHUNIT function 84
FNEXTRECL function 85
FSIGNAL function 87
FSPAWN function 88
FSY STEM function 89

FTRACEBACK subroutine 90

function IARGC 93
function IGETARG 93

GROWHANDLES function 93

LONGJIMP subroutine 97
math error functions 94
SEEKUNIT function 96
SETIMP function 97

SETSYSHANDLE function 98

subroutine GETDAT 91
subroutine GETTIM 92
SYSHANDLE function 99

SvV-01 314

SV-02 314

SV-03 314

SV-04 314

SV-05 314

SV-06 314

334

SV-07 314

SV-08 315

SvV-09 315

SX-01 315

SX-02 315

SX-03 315

SX-04 315

SX-05 315

SX-06 316

SX-07 316

SX-08 316

SX-09 316

SX-10 316

SX-11 316

SX-12 316

SX-13 317

SX-14 317

SX-15 317

SX-16 317

SX-17 317

SX-18 317

SX-19 317

SX-20 317

SX-21 318

SX-22 318

SX-23 318

symbol attributes 151, 215

SYNTAX option 27

__syscall 218

__syscall aliasname 218

SYSHANDLE function 99

system initialization
WindowsNT 31

systeminitiaization file
AUTOEXEC.BAT 31
CONFIG.SYS 31

terminal device 73

Index

TERMINAL option 27

TEXT 55

TEXT record type 55

_TEXT segment 130, 138, 193, 200
TMP environment variable 261
TRACE option 27

TY-01 318

TY-02 318

TY-03 318

TY-04 318

TY-05 318

TY-06 319

TY-07 319

TYPE option 27

UNDEFINE compiler directive 46

UNFORMATTED 55-56

unformatted record 52

UNIT 64

unit* 63

unit5 64

unit 6 64

unit connection 63

URAND function 100

USE16 segments 192, 200

utility subprograms
FEXIT subroutine 79
FGETCMD function 79
FGETENV function 80
FILESIZE 81
FLUSHUNIT function 84
FNEXTRECL function 85
FSIGNAL function 87
FSPAWN function 88
FSY STEM function 89
FTRACEBACK subroutine 90
function IARGC 93
function IGETARG 93

function URAND 100
GROWHANDLES function 93
LONGJIMP subroutine 97

math error functions 94
SEEKUNIT function 96
SETIMP function 97
SETSYSHANDLE function 98
subroutine FINTR 82
subroutine GETDAT 91
subroutine GETTIM 92
SYSHANDLE function 99

VA-01 319

VA-02 319

VA-03 319

VA-04 319

VA-05 319

VA-06 319

VA-07 320

VA-08 320

VA-09 320

value (pragma) 170-172, 174, 237, 239-240
value [8087] (pragma) 175, 241
value no8087 (pragma) 174, 241
value reg_set (pragma) 185, 253
VARIABLE 55

VARIABLE record type 55

w

WARNING message 269
WARNINGS option 28
__watcall 154, 218

__watcall alias name 154, 218

335

Index

WATCOM environment variable 257-259, 261
WCGMEMORY environment variable 262-263
WCL environment variable 261-262
WCL 386 environment variable 262
WD environment variable 263-264
WDW environment variable 264
WFC environment variable 30, 32, 264-265
WFC386 environment variable 30, 265
WEFL environment variable 265-266
WFL 386 environment variable 266
WILD option 28
WIN subdirectory 37
Win32
CON 73
Windows NT
systeminitialization 31
WINDOWS option 28
Windows SDK
Microsoft 39
WINDOWS.LIB 39
WLANG environment variable 266-267
WRITE 53-54, 63, 68, 84

XFLOAT option 28
XLINE option 28

336

