Open Watcom FORTRAN 77 Tools

User’s Guide

First Edition

Uien Watcom

Notice of Copyright

Copyright 00 2002-2006 the Open Watcom Contributors. Portions Copyright O 1984-2002
Sybase, Inc. and itssubsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.SA.

Preface

The Open Watcom FORTRAN 77 Tools User’s Guide describes how to use Open Watcom's
software development tools on Intel 80x86-based personal computers with DOS, Windows, or
0S/2. The Open Watcom FORTRAN 77 Tools User’s Guide describes the following tools:

 compile and link utility

* assembler

* object file library manager

* object file disassembler

* exe2hin utility

« far call optimization utility

* patch utility

* executablefile strip utility

» make utility

* touch utility

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCII text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on avariety of operating systems, interprets the tagsto
format the text into aform such as you see here. Writers can produce output for avariety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result is type-set
quality copy containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

0OS/2 isatrademark of International Business Machines Corp. I1BM is aregistered trademark
of International Business Machines Corp.

Intel are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT isatrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender, and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

OQNX isaregistered trademark of QNX Software Systems Ltd.
UNIX isaregistered trademark of The Open Group.

WATCOM is atrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

The Open Watcom Compile and Link Utilityccccoovinienene.

1 The Open Watcom FORTRAN 77 Compile and Link Utilitycccccveinenncnennnn.

1.1 WFL/WFL386 Command Line Format

1.2 Open Watcom Compile and Link Options SUMMarycccceveverenerenennen.

1.3 WFL/WFL 386 Environment Variables
1.4 WFL/WFL386 Command Line Examples

The Open Watcom Assembler ..o

2 The Open Watcom Assemblercocooieviieininicnene,
2.2 INtrodUCtioncceveieenere e

2.2 Assembly Directives and Opcodes

2.3 Unsupported Directivesccoeeereeenencrienenn

2.4 Open Watcom Assembler Specific

2.4.1 Naming conventioncccceceeeeerenne.

2.4.2 Open Watcom "C" name mangler

2.4.3 Calling conventionccccceeveeenenne.

2.5 Open Watcom Assembler Diagnostic MESSAgEScovevvererieeererenenenieneens

Object File ULHHTIES ...

3 The Open Watcom Library Managercccoevvveene
G50 1 1o [UTox i o) o

3.2 The Open Watcom Library Manager Command Lineccocevevvvveresennne
3.3 Open Watcom Library Manager Module Commandsccocvevvvneveenennn.

3.4 Adding Modulesto aLibrary File
3.5 Deleting Modulesfrom a Library File
3.6 Replacing Modulesin aLibrary File
3.7 Extracting aModule from aLibrary File
3.8 Creating Import Librariesc..cccoeevernenene
3.9 Creating Import Library Entriesc........

3.10 Commands from aFile or Environment Variablecccccevveeeiirceeeeiieenne

3.11 Open Watcom Library Manager Options

3.11.1 Suppress Creation of Backup File-"b" Optionccccccceevveenene

3.11.2 Case Sensitive Symbol Names - "c"

(©]]10) o [

3.11.3 Specify Output Directory - "d" Optioncccccceeevveveeveeienereerenn,

3.11.4 Specify Output Format - "f* Option

3.11.5 Generating Imports - "i" Option

3.11.6 Creating a Listing File - "I" Option

QW hrhww

1

13

15
15
17
26
26
27
27
28
28

39

41
41

GRES

45
46
47
48
49
49
49
49
50
50
50
51

Table of Contents

3.11.7 Display C++ Mangled Names - "m" Optionc.cccceverererennenee
3.11.8 Always Create aNew Library - "n" Optioncccocevenvrenennenee
3.11.9 Specifying an Output File Name - "0" Optionc.ccccoeeeveerenne
3.11.10 Specifying a Library Record Size - "p" Optioncccccvveerenne
3.11.11 Operate QUIetly - "g" OPtioNcceceveeriererenererere e
3.11.12 Strip Line Number Records - "S" Optionc.ccoceeeveerecrinennes
3.11.13 Trim Module Name - "t" OPtionccceeevievevvreneseereeseereeeenens
3.11.14 Operate Verbosely - "v" Optionccccvevvievvveseniesereeeeeeenens
3.11.15 Explode Library File - "X" Optioncccccevevienienenienesesiese e
3.12 Librarian Error MESSAgESccvveieerieeieiteeieseesee e ste s steesae st ete e snaenes

4 The Object File DIiSasSemMbIEr ..o

4.1 Introduction

4.2 Changing the Internal Label Character - "i=<char>"c.ccccovvviinniinnenn
4.3 The Assembly Format Option - "&8"cccoerrinnienne e
4.4 The External SymbolsOption - "€" ...
4.5 The No Instruction Name Pseudonyms Option - "fp"ccccvevveevivvivvvvinnene
4.6 The No Register Name Pseudonyms Option - "fr'"cccceceveveeveeencereeenn,
4.7 The Alternate Addressing Form Option - "fi" ...
4.8 The Uppercase Instructions/Registers Option - "fu"cccceveveieieneicnene.
4.9 The Listing Option - "I[=<list_fil&>]" ..o
4.10 The Public Symbols Option - "P" ..o
4.11 Retain C++ Mangled NameS - "M" ..o
4.12 The Source Option - "g=<source_file>]" ...

4.13 An Example

5 Optimization of Far Calls

5.1 Far Call Optimizations for Non-Open Watcom Object Modules
5.1.1 The Open Watcom Far Call Optimization Enabling Utility

6 The Open Watcom Exe2bi

U UBTEY o cceeoeeeesesesessesseeeeeeeeeeeeesesese s

6.1 The Open Watcom Exe2bin Utility Command Linecccceveveieeiennencennne
6.2 EXE2DIN MESSA0ESceeieiiiieiirieesieesie ettt

Executable Image Utilities

7 The Open Watcom Patch ULHItYcocvieiiiiie et

7.1 Introduction
7.2 Applying a Patch

7.3 DiagNOStiC MESSAgESocveiverieiieieieeeeeiee ettt st e se et e eneas

Vi

52
52
52
53
53

GELES

59
59
60
60
61
61
62
62
62
62
63
64

65

69
70
70

73
74
76

79

81
81
81
82

Table of Contents

8 The Open Watcom SEHP ULHITY ..ooooeieiiieee e 85
LS00V 011 oo [UTox i o) o [OOSR 85
8.2 The Open Watcom Strip Utility Command Lineccccevevveeneinenenenens 86
8.3 SHriP Utility MESSAOESoveviieiireiierieirietees et 87

The MaKe/TOUCH ULHTTIES ..o 89

9 The Open Watcom Make ULtcccveiiiiii et 91
Q.1 INErOTUCTION ..ottt 91
9.2 Open Watcom Make REFEIENCEcccovereeiieieeeeenes e e 91

9.2.1 Open Watcom Make Command Line Formatc.ccocevceverennne 91

9.2.2 Open Watcom Make Options SUMMAIYcoccoeveererenenenenenenens 92

9.2.3 Command Lin€ OPLioNScceeeruireriirinirieinieese e 93

9.2.4 SPECIAl MBEIOS ...ttt 102
9.3 Dependency DECIArationsScccoveereireerieerieerieesee s 103
9.4 MUItiple DEPENTENESocveieiereeeee e s e e e e enens 105
9.5 MUILIPIE TAIGELS ..veeeeeeeeeeeeeeee et s re e resresae e 105
9.6 MUIIPIE RUIES ...ttt sttt 106
9.7 COMMENG LISESovieiirieerereerc et 108
9.8 Final Commands ((AFTER)oooiieecene s 109
9.9 Ignoring Dependent Timestamps (ALWAY'S) .. 110
9.10 Automatic Dependency Detection (AUTODEPEND)ccccccveinieenenne, 110
9.11 Initial Commands (.BEFORE)cccoeorinirieeeese e 111
9.12 Disable Implicit RUIES (.BLOCK)c.cciiieirieirieerieerieeseese e 111
9.13 Ignoring Errors ((CONTINUE)cccviiiirireeese e 111
9.14 Default Command List (DEFAULT) ..o 111
9.15 Erasing Targets After Error (ERASE)cccoveviveceeceeeeere s 112
9.16 Error Action (.ERROR)ccocviiiiiise et sre s 113
9.17 Ignoring Target Timestamp (.EXISTSONLY) ..ccooiiiiiireninenenesesie s 113
9.18 Specifying Explicitly Updated Targets (.EXPLICIT) oo, 113
9.19 Defining Recognized File Extensions (EXTENSIONYS)cccccoeveenvenienne. 114
9.20 Approximate Timestamp Matching (FUZZY) ..o 115
9.21 Preserving Targets After Error ((HOLD)cooviviinnerceeeee e 115
9.22 Ignoring Return Codes (IGNORE)cccviireninirenneees e 116
9.23 Minimising Target Timestamp (JUST_ENOUGH)cccoeeveevneneennns 117
9.24 Updating Targets Multiple Times (MULTIPLE)ccccvvveveveereeeeeneenne 117
9.25 Ignoring Target Timestamp (NOCHECK)cccocvvvvvievevene e 118
9.26 Cache Search Path ((OPTIMIZE)ccooiiiiinrseereeeese e 118
9.27 Preserving Targets (PRECIOUS) ..o 119
9.28 Name Command Sequence (.PROCEDURE)ccccccorininininneneneie 119
9.29 Re-Checking Target Timestamp (.RECHECK)cccccoorninininincncn 120

vii

Table of Contents

9.30 Suppressing Termina Output (.SILENT)ooiiiieieiereeesere e 120
9.31 Defining Recognized File Extensions ((SUFFIXES)ccccvviiieninenn. 121
9.32 Targets Without Any Dependents (.SYMBOLIC)cccoevvennenneneenens 121
.33 MACIOS ...ttt sttt sttt b ettt sae e te st e saesseesbesntesbenntenreans 123
9.34 IMPLICIt RUIES ...t 134
9.35 Double Colon EXPlICIt RUIESccueireirieirieerieneee e 145
9.36 Preprocessing DITECHIVESccvcvieeieere e se e 146
9.36.1 FIlE INCIUSIONooveiiiiiiieeeee s 146
9.36.2 Conditional ProCESSINGcceeveiierierieriesieseeseeseeseesesessesessessessesnens 150

9.36.3 Loading Dynamic Link Librariesccccocevievieeneseennseeseeeenns 155

9.37 Command LiSt DIFECLIVESccceiiriririiesierie e 157
9.38 MAKEINIT FilE veieeeiiieieiieisiee ettt st e b 159
9.39 Command LisSt EXECULIONc.coceiiriririiiriese e 159
9.40 Compatibility Between Open Watcom Make and UNIX Make 167
9.41 Open Watcom Make DiagnostiCc MESSAgESccevvveeerieerieerienesie e 168
0 R I = 010 o 0 173
05 g1 T [T ' o SRS 173
10.2 WTOUCH OPEFAION ...ccveueeieieierieiesieiesieiesieesiesesiesestesessesessesessesessesessesessens 174

viii

The Open Watcom Compile and
Link Utility

The Open Watcom Compile and Link Utility

1 The Open Watcom FORTRAN 77 Compile
and Link Utility

The Open Watcom FORTRAN 77 Compile and Link Utility is designed for generating
applications, smply and quickly, using a single command line. On the command line, you
can list source file names as well as object file names. Source files are compiled; object files
and libraries are simply included in the link phase. Options can be passed on to both the
compiler and linker.

1.1 WFL/WFL386 Command Line Format

The format of the command lineis:

WEFL [files] [options]
WFL 386 [files] [optiong]

The square brackets [] denote items which are optional.

WFL is the name of the Open Watcom Compile and Link utility that invokes the
16-hit compiler.

WFL386 isthe name of the Open Watcom Compile and Link utility that invokes the
32-bit compiler.

Thefiles and options may be specified in any order. The Open Watcom Compile and Link
utility uses the extension of the file name to determineif it is a source file, an object file, or a
library file. Fileswith extensions of "OBJ' and "LIB" are assumed to be object files and
library files respectively. Fileswith any other extension, including none at all, are assumed to
be FORTRAN 77 source files and will be compiled. Pattern matching characters ("*" and
"?") may be used in the file specifications. If no file extension is specified for afile name then
"FOR" is assumed.

Options are prefixed with aslash (/) or adash (-) and may be specified in any order. Options
can include any of the Open Watcom F77 compiler options plus some additional options

WFL/WFL386 Command Line Format 3

The Open Watcom Compile and Link Utility

specific to the Open Watcom Compile and Link utility. Certain options can include a"NO"
prefix to disable an option. A summary of optionsis displayed on the screen by simply
entering the "WFL" or "WFL 386" command with no arguments.

General options:

C
Y

Compiler options:

OO WNEO

[NOJALign
[NOJAUtomatic
BD

BM
[NO]BOunds
BW

[NOJCC

CHlnese
[NO]COde
D1

D2
[NO]DEBug

DEFine=<macro>
[NO]DEPendency

[NO]DEScriptor
Dl sk
DT=<size>
[NOJERrorfile
[NOJEXPIicit

1.2 Open Watcom Compile and Link Options Summary

Description:

compile the files only, do not link them
ignore the WFL/WFL 386 environment variable

Description:

(16-bit only) assume 8088/8086 processor
(16-bit only) assume 188/186 processor
(16-bit only) assume 286 processor
assume 386 processor

assume 486 processor

assume Pentium processor

assume Pentium Pro processor

align COMMON segments

all local variables on the stack

(32-bit only) dynamic link library

(32-bit only) multithread application
generate subscript bounds checking code
(32-bit only) default windowed application
carriage control recognition reguested for output devices such asthe
console

Chinese character set

constants in code segment

include line # debugging information
include full debugging information
perform run-time checking

define macro

generate file dependencies

pass character arguments using string descriptor
write listing file to disk

set data threshold

generate an error file

declare type of all symbols

Open Watcom Compile and Link Options Summary

The Open Watcom FORTRAN 77 Compile and Link Utility

[NOJEXtensions issue extension messages

[NOJEZ (32-bit only) Easy OMF-386 object files
FO=<obj_default> set default object file name

[NOJFORmat relax format type checking

FPC generate calls to floating-point library

FPD enable generation of Pentium FDIV bug check code
FPI generate inline 80x87 instructions with emulation
FPI87 generate inline 80x87 instructions

FPR floating-point backward compatibility

FP2 generate inline 80x87 instructions

FP3 generate inline 80387 instructions

FP5 optimize floating-point for Pentium

FP6 optimize floating-point for Pentium Pro

[NO]JF Sfloats FS not fixed

[NO]|GSfloats GS not fixed

HC Codeview debugging information

HD DWARF debugging information

HW Open Watcom debugging information
[NOJINCList write content of INCLUDE filesto listing

INCPath=[d:]path [d:]path... pathfor INCLUDE files
[NO]I Promote promote INTEGER* 1 and INTEGER* 2 arguments to INTEGER* 4

Japanese Japanese character set

KOrean Korean character set

[NO]LFwithff LFwith FF

[NOJLIBinfo include default library information in object file
[NOJLI st generate alisting file

[NO]JMANgle mangle COMMON segment names

MC (32-bit only) compact memory model

MF (32-bit only) flat memory model

MH (16-bit only) huge memory model

ML large memory model

MM medium memory model

MS (32-bit only) small memory model

OB (32-hit only) base pointer optimizations

OBP branch prediction

oC do not convert "cal" followed by "ret" to "jmp"
oD disable optimizations

ODO DO-variables do not overflow

OF always generate a stack frame

OH enable repeated optimizations (longer compiles)
0] generate statement functionsin-line

OK enable control flow prologues and epilogues

Open Watcom Compile and Link Options Summary 5

The Open Watcom Compile and Link Utility

oL
OL+
oM
ON
OoP
OR
oS
oT
OoX

PRint
[NO]JQuiet
[NO]Reference
[NOJRESource
[NO]SAve
[NOJSC
[NO]SEpcomma
[NOJSG
[NOJSHort
[NOJSR
[NO]SSfloats
[NO]STack
[NO]SYntax
[NOJTErminal
[NO]TRace
TYpe
[NOJWArnings
[NOJwILd
[NOJWIndows
[NO]XFloat
[NO]XLine

Linker options:

perform loop optimizations

perform loop optimizations with loop unrolling
generate floating-point 80x87 math instructionsin-line
numeric optimizations

precision optimizations

instruction scheduling

optimize for space

optimize for time

equivaent to OBP, ODO, OlI, OK, OL, OM, OR, and OT (16-hit) or OB,
OBP, ODO, Ol, OK, OL, OM, OR, and OT (32-hit)
write listing file to printer

operate quietly

issue unreferenced warning

messages in resource file

SAVE local variables

(32-bit only) stack calling convention

allow comma separator in formatted input

(32-bit only) automatic stack growing

set default INTEGER/LOGICAL sizeto 2/1 bytes
save/restore segment registers

(16-bit only) SSis not default data segment
generate stack checking code

syntax check only

messages to terminal

generate code for run-time traceback

writelisting file to terminal

i Ssue warning messages

relax wild branch checking

(16-bit only) compile code for Windows

extend floating-point precision

extend line length to 132

Description:

FD[=<directive file>] keep directivefile and, optionaly, rename it (default nameis

FE=<executable>
Fl=<fn>
FM[=<map _file>]
K=<stack_size>
LP

LR

" WFL__.LNK").

name executable file

include additional directivefile

generate map file and, optionally, name it

set stack size

(16-bit only) create an OS2 protected-mode program
(16-bit only) create a DOS real-mode program

Open Watcom Compile and Link Options Summary

The Open Watcom FORTRAN 77 Compile and Link Utility

L=<system _name> link aprogram for the specified system. Among the supported systems

are:

286

386

COM

DOS
DOSAG
DOSAGNZ

NETWARE
NOVELL

NT
NT_DLL
NT_WIN
OS2

0S2 DLL
0S2_PM
0S2v2

16-bit DOS executables (synonym for "DOS") under DOS
and NT hosted platforms; 16-bit OS/2 executables
(synonym for "OS2") under 32-bit OS/2 hosted 0S/2
session.

32-bit DOS executables (synonym for "DOSAG") under
DOS; 32-hit NT character-mode executables (synonym for
"NT") under Windows NT; 32-bit OS/2 executables
(synonym for "OS2V2") under 32-bit OS/2 hosted OS/2
session.

16-bit DOS"COM" files

16-bit DOS executables

32-bit Tenberry Software DOS Extender executables
32-bit Tenberry Software DOS Extender non-zero base
executables

32-bit Novell NetWare 386 NLMs

32-bit Novell NetWare 386 NLMs (synonym for
NETWARE)

32-bit Windows NT character-mode executables

32-bit Windows NT DLLs

32-bit Windows NT windowed executables

16-bit 0S/2 V1.x executables

16-bit OS/2DLLs

16-bit OS/2 PM executables

32-bit OS/2 executables

0OS2v2_DLL 32-bit OS/2DLLs

0S2V2_PM
PHARLAP
QNX
QNX386
TNT
WIN386
WING5

32-bit OS/2 PM executables

32-hit PharLap DOS Extender executables
16-bit QNX executables

32-bit QNX executables

32-bit Phar Lap TNT DOS-style executable
32-bit extended Windows 3.x executables/DLLs
32-bit Windows 9x executables/DLLs

WINDOWS 16-bit Windows executables
WINDOWS _DLL 16-bit Windows Dynamic Link Libraries

X32R
X32RV

X32S
X325V

32-hit FlashTek (register calling convention) executables
32-hit FlashTek Virtual Memory (register calling
convention) executables

32-bit FlashTek (stack calling convention) executables
32-bit FlashTek Virtual Memory (stack calling convention)
executables

Open Watcom Compile and Link Options Summary 7

The Open Watcom Compile and Link Utility

8

These names are among the systemsidentified in the Open Watcom
Linker initialization file, "WLSY STEM.LNK". The Open Watcom
Linker "SYSTEM" directives, found in thisfile, are used to specify
default link options for particular (operating) systems. Users can
augment the Open Watcom Linker initiaization file with their own

option. The "system_name" specified in the "I=" option is used to create
a"SYSTEM system _name" Open Watcom Linker directive when
linking the application.

"<linker directives>" specify additional linker directives

A summary of the option defaults follows:

0 16-bit only
5 32-bit only
ALign

NOAUtomatic

NOBOunds

NOCC

NOCOde

NODEBug

DEPendency

DEScriptor

DT=256

ERrorfile

NOEXPIlicit

NOEXtensions

NOEZ 32-bit only
NOFORmat

FPI

FP2 16-bit only
FP3 32-bit only
NOFPD

FSfloats al but flat memory model
NOF Sfloats flat memory model only
GSfloats

NOINCList

NOI Promote

NOLFwithff

LIBinfo

NOLI St

NOMAnNgle

Open Watcom Compile and Link Options Summary

The Open Watcom FORTRAN 77 Compile and Link Utility

ML 16-bit only
MF 32-bit only
NOQuiet

Reference

NORESource

NOSAve

NOSC 32-bit only
NOSEpcomma

NOSG 32-bit only
NOSHort

NOSR

NOSSfloats 16-bit only
NOSTack

NOSYntax

TErminal

NOTRace

WArnings

NOWILd

NOWI ndows 16-hit only
NOXFloat

NOXLine

1.3 WFL/WFL386 Environment Variables

The WFL environment variable can be used to specify commonly used WFL options. The
WL 386 environment variable can be used to specify commonly used WFL 386 options.
These options are processed before options specified on the command line.

Example:
C>set wil =/dl /ot

C>set wfl 386=/d1 /ot

The above example defines the default options to be "d1" (include line number debugging
information in the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use
the "#" character initsplace. Thisisrequired by the syntax of the "SET" command.

Once the appropriate environment variable has been defined, those options listed become the
default each time the WFL or WFL386 command is used.

WFL/WFL386 Environment Variables 9

The Open Watcom Compile and Link Utility

The WFL environment variable is used by WFL only. The WFL 386 environment variableis
used by WFL 386 only. Both WFL and WFL 386 pass the relevant options to the Open
Watcom F77 compiler and linker. This environment variable is not examined by the Open
Watcom F77 compiler or the linker when invoked directly.

Hint: If you are running DOS and you use the same WFL or WFL 386 options al the
time, you may find it handy to place the "SET WFL" or "SET WFL 386" command in your
DOS system initialization file, AUTOEXEC. BAT. If you are running OS/2 and you use
the same WFL or WFL 386 options al the time, you may find it handy to place the "SET
WFL" or "SET WFL386" command in your OS/2 system initiaization file,

CONFI G SYS.

1.4 WFL/WFL386 Command Line Examples

For most small applications, the WFL or WFL 386 command will suffice. We have only
scratched the surface in describing the capabilities of the WFL and WFL386 commands. The
following examples describe the WFL and WFL 386 commands in more detail.

Suppose that your application is contained in three files called apdeno. f or,
aputils.for,and apdat a. f or. We can compileand link all three files with one
command.

Example 1:
Cwil /d2 apdeno. for aputils.for apdata.for
Cwfl 386 /d2 apdeno. for aputils.for apdata.for

The executable program will be stored in apdenp. exe since apdeno appeared first in the
list. Each of the three filesis compiled with the "d2" debug option. Debugging information is
included in the executablefile.

We can issue asimpler command if the current directory contains only our three FORTRAN
77 source files.

Example 2:
Cwil /d2 *.for
Cw 1386 /d2 *.for

WFL or WFL386 will locate all files with the ".for" filename extension and compile each of
them. The name of the executable file will depend on which of the FORTRAN 77 source files

10 WFL/WFL386 Command Line Examples

The Open Watcom FORTRAN 77 Compile and Link Utility

isfound first. Sincethisisasomewhat haphazard approach to naming the executable file,
WFL and WFL 386 have an option, "fe", which will allow you to specify the name to be used.

Example 3:
Cwil /d2 /fe=apdenp *.for
Cwil 386 /d2 /fe=apdeno *.for

By using the "fe" option, the executable file will always be called apdeno. exe regardless of
the order of the FORTRAN 77 source filesin the directory.

If the directory contains other FORTRAN 77 source files which are not part of the application
then other tricks may be used to identify a subset of the files to be compiled and linked.

Example 4:
Cwl /d2 /fe=apdenp ap*.for
Cwfl 386 /d2 /fe=apdenpo ap*.for

Here we compile only those FORTRAN 77 source files that begin with the letters "ap".

In our examples, we have recompiled all the source files each time. In general, we will only
compile one of them and include the object code for the others.

Example 5:
Cwil /d2 /fe=apdenp aputils.for ap*.obj
Cwil 386 /d2 /fe=apdenp aputils.for ap*.obj

Thesourcefileaputi | s. f or isrecompiled and apdeno. obj and apdat a. obj are
included when linking the application. The".obj" filename extension indicates that thisfile
need not be compiled.

Example 6:
Cwil /fe=denp *.for utility. obj
Cwil 386 /fe=denp *.for utility. obj

All of the FORTRAN 77 source files in the current directory are compiled and then linked
withutility. obj togenerate deno. exe.

Example 7:
Csset wil=/mm/dl /op /k=4096
Cwl /fe=grdemp gr*.for graph.lib /fd=grdeno

C>set wfl 386=/d1l /op /k=4096
Cwfl 386 /fe=grdeno gr*.for graph.lib /fd=grdeno

WFL/WFL386 Command Line Examples 11

The Open Watcom Compile and Link Utility

All FORTRAN 77 source files beginning with the letters "gr" are compiled and then linked
with gr aph. | i b to generate gr deno. exe which usesa 4K stack. The temporary linker
directivefilethat is created by WFL or WFL 386 will be kept and renamed to gr deno. | nk.

Example 8:
C>set |ibos2=c:\watcom|ib286\0s2;c:\os2
C>set lib=c:\watconm | i b286\dos
Cset wil=/mm/Ip
Cwil grdenmpl \watcom | i b286\ 0s2\ graphp. obj phapi.lib

Thefilegr denol iscompiled for the medium memory model and then linked with
graphp. obj and phapi . | i b togenerate gr denpl. exe whichisto be used with Phar
Lap’'s 286 DOS Extender. The"Ip" option indicates that an OS/2 format executableisto be
created. Thefile gr aphp. obj inthedirectory "\WATCOM\LIB286\0S2" contains specia
initialization code for Phar Lap’'s 286 DOS Extender. Thefile phapi . | i b ispart of the
Phar Lap 286 DOS Extender package. The L1BOS2 environment variable must include the
location of the OS/2 libraries and the L | B environment variable must include the location of
the DOS libraries (in order to locate gr aph. | i b). The LIBOS2 environment variable must
aso include the location of the OS/2 file doscal | s. | i b whichisusualy "C:\OS2".

For more complex applications, you should use the "Make" utility.

12 WFL/WFL386 Command Line Examples

The Open Watcom Assembler

The Open Watcom Assembler

14

2 The Open Watcom Assembler

2.1 Introduction

This chapter describes the Open Watcom Assembler. It takes asinput an assembler source
file (afile with extension ".asm") and produces, as output, an object file.

The Open Watcom Assembler command line syntax is the following.

WASM [options] [d:][path]filename].ext] [options] [@env_var]

The square brackets [] denote items which are optional.
WASM is the name of the Open Watcom Assembler.

d: is an optional drive specification such as"A:", "B:", etc. If not specified, the
default drive is assumed.

path isan optional path specification such as "\PROGRAMSAASM\". If not
specified, the current directory is assumed.

filename isthe file name of the assembler source file to be assembled.
ext is the file extension of the assembler source file to be assembled. If omitted, a
file extension of ".asm" is assumed. If the period "." is specified but not the

extension, thefile is assumed to have no file extension.

options isalist of valid options, each preceded by adash (/") or adash ("-"). Options
may be specified in any order.

The options supported by the Open Watcom Assembler are;

Introduction 15

The Open Watcom Assembler

16

{0,1,2,3,4,5,6}{pHr,s}

bt=<o0s>

c

di
e

fpc
fpi
fpi87
fpo
fp2
fp3
fp5
fp6

jors

Introduction

0
1

2{p}
3{p}

4{p}
5{p}
&{p}

p
addr

add s

Example:
-2

same as ".8086"

sameas ".186"

same as".286" or ".286p"

sameas".386" or ".386p" (aso defines"_ 386 " and changesthe
default USE attribute of segments from "USE16" to "USE32")
sameas".486" or ".486p" (aso defines”_ 386 " and changesthe
default USE attribute of segments from "USE16" to "USE32")
same as ".586" or ".586p" (also defines”_ 386 " and changesthe
default USE attribute of segments from "USE16" to "USE32")
same as".686" or ".686p" (also defines”__386_ " and changesthe
default USE attribute of segments from "USE16" to "USE32")
protect mode

defines"__REGISTER__"

defines" _STACK__ "

-3p - 4pr -5p

defines" _<os> " and checksthe "<os> INCLUDE" environment variable for

include files

do not output OMF COMENT records that allow WDISASM to figure out when
data bytes have been placed in a code segment

d<name>[=text] define text macro

line number debugging support

stop reading assembler source file at END directive. Normally, anything
following the END directive will cause an error.

e<number> set error limit number

fe=<file_name> set error file name

fo=<file_name> set object file name

fi=<file_name> force <file_name> to be included

same as".no87"

inline 80x87 instructions with emulation

inline 80x87 instructions

same as".8087"

same as".287" or ".287p"

same as".387" or ".387p"

same as".587" or ".587p"

same as".687" or ".687p"

i=<directory> add directory to list of include directories

force signed types to be used for signed values

m{t,s,m,c,|,h,f} memory model: (Tiny, Small, Medium, Compact, Large, Huge, Flat)

The Open Watcom Assembler

-mt Same as".model tiny"

-ms Same as ".model small”
-mm Same as".model medium”
-mc Same as".model compact"
-ml Same as".model large"
-mh Same as ".model huge"
-mf Same as ".model flat"

Each of the model directives also defines”__<model>__ " (e.g., ".model small"
defines” SMALL__"). They also affect whether something like "foo proc" is
considered a"far" or "near" procedure.

nd=<name> set data segment name

nm=<name> set module name

nt=<name> set hame of text segment

0 allow C form of octal constants

zcm set C name mangler to MASM compatible mode

2d remove file dependency information

zqor q operate quietly

z remove " @size" from STDCALL function names

zZ0 don’'t mangle STDCALL symbols (WASM backward compatible)
? orh print this message

w<number> set warning level number

we treat all warnings as errors

WX set warning level to maximum setting

2.2 Assembly Directives and Opcodes

It is not the intention of this chapter to describe assembly-language programming in any
detail. Y ou should consult abook that deals with thistopic. However, we present an
alphabetically ordered list of the directives, opcodes and register names that are recognized by
the assembler.

Assembly Directives and Opcodes 17

The Open Watcom Assembler

. 186

. 386

. 386p

. 586p

. 686

aad

aam
addpd
addps
addsubpd
ah

and
andnpd
assume
ax

bp

. break
bt c

btr

cal |
cal | f

ch

c

clts

cnc
crovc
cnove
cnovna
cnovnae
cnovng
cnovnge
cnovns
crmovnz
cnovs
cnovz
cnpeqsd
cnpl epd
cnpl t pd
cnpl t sd
cnpnegsd
cnpnl epd
cnpnl t pd
cnpnl tsd
cnpor dsd
cnppd
cnpss
cnpsw

18 Assembly Directives and Opcodes

. 286

. 387

. 686p
aas
addr
addsubps
a
andnps
basi c
bsf

bts
casenap
clc
cnova
cnovg
cnmovnb
cnovnl

cnovo

cnp
cnpeqgss
cnpl eps
cnpl t ps
cnpl tss
cnpneqgss
cnpnl eps
cnpnl t ps
cnpnl tss
cnpor dss

cnpps
cnpunor dpd

. 286¢

. 486

. 8086
abs
addsd
alias
andpd

bh

bsr

bx
catstr
cld
cnovae
cnovge
cnovnbe
cnmovnl e
cnovp
cnpeqgpd
cnpl esd
cnpnegpd
cnpnl esd
cnpor dpd
cnps
cnpunor dps

. 286p . 287

. 486p . 586

. 8087 aaa
adc add
addss

align . al pha
andps ar pl

bl bound
bswap bt

byt e c

cbw cdq

cl flush cli
cnmovb cnmovbe
crovl cnovl e
cnovnc cnovne
cnovno cnovnp
cnovpe cnovpo
cnpeqps

cnpl ess

cnpnegps

cnpnl ess

cnpor dps

cnpsb cnpsd
cnpunor dsd

The Open Watcom Assembler

cnpunor dss

cnpxchg8b
coment
conmon
cr0

cr2

cvt dg2pd
cvt dq2ps
cvt pi 2pd
cvt ps2dq
cvt sd2ss
cvtsi 2ss
cvtt pd2pi
cvtt ps2pi
CX

daa

dd

dec

di vpd

di vps

. dosseg
dp

dr3

dr6

dw

cnpxchg
. code

conpact
cr3

cvt pd2dq
cvt pi 2ps
cvt ps2pd
cvtsi 2sd
cvt ss2sd
cvtt ps2dqg
cvttsd2s

das
df

di vsd
dosseg
dq

dr7

com sd

. const
cré

cvt pd2pi
cvt ps2pi
cvtss2s
cvttss2s
. data
dh

di vss
drO

ds

com ss
.continue
.cref

cvt pd2ps
cvtsd2s
cvt t pd2dq
cwd

. dat a?

d

d

drl

dt

comm

cpuid

cwde
db

div

dr 2

dup

Assembly Directives and Opcodes 19

The Open Watcom Assembler

dwor d
echo
ecx

el sei f
enms
endp
ends
equ2
.err
.errdif
.erridn
error
es
exitm
export

f abs

f add

. fardata?
fbld

f cnovbe
f cnove
f cnovnu
fcom
fcos
fdecstp
fdivrp
fems
ficonp
fidiv
fincstp
fist
flat
fld

fl denvd
fldl2e
fldz

f mul
fninit
f nop

f nsaved
f nsavew
f nst envw
for
fpremt
f ptan
frstorw
f save
fsin

dx

edi
end

. endw

.errb
.erre
.erridni

esi
extern

f addp
farstack
fbstp

f cnovnb
f cnovu
fcom

fdi si
f eni

fidivr
finit
fistp
fldl

fl denvw
fldl 2t

frul p
fnrstor
fnstcw
fnstsw
forc
frndi nt

fs
f saved

20 Assembly Directives and Opcodes

eax
edx
.endi f
ent er
.errdef
.errnb
esp
ext er ndef
far

fchs

f cmovnbe
fcomp
fdiv
ffree
fild
fisttp
fldcw
fldlg2

f ncl ex
fnrstord
fnstenv
fortran
frstor

f savew

ebp

. el se
endi f

eq
.errdif

. errndef
even
extrn
.fardata
fcl ex

f cmovne
fconp
fdivp
fiadd
fimul
fisub

fl denv
fldln2

f ndi si
fnrstorw
fnstenvd
f pat an
frstord

fscal e

ebx
el se
endm

equ

.errnz

.exit

f 2xml

f cmovb

f conmpp

fdivr

ficom

fisubr

f1 dpi

f neni

f nsave

fprem

fset pm

The Open Watcom Assembler

f si ncos
f st envd
fstenvw
f subr
fsubrp
fuconi p
f uconpp
f xrstor
f xsave
gl obal
group

hi gh

hi ghwor d
idiv

i f

i fdef

i fdif

i fnb

i f ndef

i ncl ude

i ncludelib
i nt

into
iretd

fsqrt
fstp
ftst
fuconp
fwai t
fxtract
gs

hi t

if

i fdifi
i gnore
i ns

i nvd

f st
fstsw
fucom
fword
fyl 2x
gt
hsubpd

ifl

i mul
i nsh

i nvl pg

fstcw
fsub
fucom
f xam
fyl 2xpl
haddpd
hsubps
if2

ifidn

i nsd

i nvoke

f st env

f subp

fxch
ge
haddps
huge
ifb

i fidni

i nsw

iret

Assembly Directives and Opcodes 21

The Open Watcom Assembler

22

i retdf

j ae

ib

j ecxz
19

J pf

j na

j ne

ing
jnp
jns

I po

is

| ar

| ar ge

| ea

| eave

.1 fcond
[fs
.listall
distif
| ocal

| ock

| oop

| oopd

| oopned
| oopnew
| oopz

| oopzd

I rof fset
| ss
masknmovdqu
masknovq
medi um
nmenory
nm nss
0

nmb

nmB
noni t or
nov
novddup
novdga
nmovl hps
novl| pd
novnt dg
novnt pd
novg2dqg

iretf

j be
jge

j nae

j nge

j nz

jz

| ddqu

[ength
| fence
| gdt
.listmacro
| ods

| oope

| oopnz
| oopzw
| sl

It
maxpd
nf ence
mi
mv/
nmovapd
novdqg2q
novdqu
novl ps
novnt i

movnt ps
movs

Assembly Directives and Opcodes

jo

. k3d

[dnmxcsr
| engt hof
I gs
.listmacroall
| odsb

| ooped

| oopnzd
| ow

[tr
maxps

m npd

novaps
novhl ps
novneskpd

movnt q

i rpc

j cxz
jle

j nbe
jnle

ip

| abel

I ds

I es
l'idt

[l dt

| odsd

| oopew
| oopnzw
| ownor d
nmaecr o
maxsd
nm nps
m8

nod
novd
novhpd
novnekps

mov(

j nc
j no
jpe
| ahf

st
| mew
| odsw
| oopne

| oopw

mask

nmaxss

m nsd

. hodel

novhps

The Open Watcom Assembler

novsbh
novVsSw
nDVSX
nmul pd
nmul ps
ne

near

. nocr ef
nop
option
or
0S_0s2
out
oword
packssdw
paddq
paddsb
page
pand
pavgb
pavgushb
pcrpegw
pcnpgtd
pfacc

novsd
novupd
nmul sd
near st ack
. hol i st
not

org

outs
packsswb
paddsw
pandn
pavgw

pcnpgt b
pcnpgt w

novshdup
movups
nul ss
neg
not hi ng
or pd

out sb
packuswb
paddusb
par a
pcnpegb

pextrw

novsl dup
nmovzx
miai t

. no87
of f set
or ps
out sd
paddb
paddusw
pascal
pcnpeqd
pf 2id

novss
mul

nanme

opattr
os_dos
out sw
paddd
paddw

pause

pf 2i w

Assembly Directives and Opcodes 23

The Open Watcom Assembler

pf add
pfm n

pf rul
pfrcpitl
pfrsqgitl
pi 2f w

pi nsrw
pm nub
provirskb
prul udg
pop

popf d

por
prefetchtl
pref et chw
pshufd
pshuf hw
psllq
psl | w
psrlq
psrlw
psubsw
psubushb
public
punpckhbw
punpckl bw
punpckl qdqg
pushad
pushcont ext
pwor d
pxor
rcpss

rcr
readonl y
rep

repnz

r ept
retfd
retn
rsqrtps
sahf
shyte
scas

seg
segment
set be
setc
setle

pf cnpeq
pf nacc
pfrcpit2
pfrsqgrt
prmaddwd
prrul hr w
popa
prefetch
prefetcht?2
private
pshuf | w
psrad
psubb
psubusw
punpckhdq
punpckl dq
punpckl wd
pushd
gwor d
rdmsr
record
repe

repz

rol
rsqgrtss
sal

scash

. seq

sete

24 Assembly Directives and Opcodes

pf cnmpge
pf pnacc
pf sub
pMaxXSW
prul huw
popad
prefetchnta
proc
pshuf w
psraw
psubd
psubw
punpckhqdq
pur ge
pushf

. radi x
rdpnc

. repeat
ret

ror
.sall
scasd
seta

setg

pf cnpgt
pfrcp

pf subr
prmaxub
prmul hw
popcont ext
prefetchtO
proto
psl1d
psrld
psubq
pswapd
punpckhwd
push
pushfd
rcl

rdtsc

r epeat
retd

rsm

sar
scasw

set ae

set ge

pf max

pi 2f d
pm nsw
prul | w

popf

psadbw
psl 1 dqg
psrl dqg
psubsb

ptr

pusha

pushw

rcpps

repne

retf

sbb
sdword
setb

set|

The Open Watcom Assembler

set na
set ne
set ng
setnp
set ns
set po
sets
shl
shl d
shuf ps
S

smal |
STBW
sqgrtss
SS

std
stdcal |
st osd
st osw
subpd
subps
swor d
syscal |
textequ
.tfcond
tr4
tr5
ucom sd
uni on
unpckl ps
usel6
verw
wai t
wor d
Wr BT
x|l atb
.xlist
xnmt

. XmB
xmmi/
xor

set nae
set nge
setnz
setz
short

si dt

sp

st

st

str
subsd
sysent er
this
tro6
ucom ss
unpckhpd
.until
use32
watcom_c
xadd

. Xnmm

xmm®B

xor pd

set nb
set nl
seto

. sfcond
shr

si ze
sqrtpd
. stack
st nxcsr
struc
subss
sysexit
tiny
tr7
unpckhps
uses
wbinvd
xchg
xmD
xnmmé

Xor ps

set nbe
setnle
setp
sfence
shrd

si zeof
sqrtps
.startup
stos
struct
subtitle
t byte
title

t ypedef
unpckl pd
vararg
.while

. xcr ef
xmmi

xnmb

setnc
set no
set pe
sgdt
shuf pd
sl dt
sqrtsd
stc
stosb
sub
subttl
t est

tr3

verr
width
x| at
41111

Xnmb

Assembly Directives and Opcodes 25

The Open Watcom Assembler

2.3 Unsupported Directives

Other assemblers support directives that this assembler does not. The following isalist of
directives that are ignored by the Open Watcom Assembler (use of these directives resultsin a

warning message).
. al pha .cref .1 fcond
.listall distif .listmacro
. nocr ef .nol i st page
. seq . sfcond subtitle
.tfcond title . xcref

.l st

.listmacroal |

.sal |

subtt |

.xli st

Thefollowingisalist of directivesthat are flagged by the Open Watcom Assembler (use of

these directives resultsin an error message).

addr . break casenap
.conti nue echo .el se
.endif . endw .exit

hi ghwor d i f i nvoke
| owmnwor d | rof fset mask
option popcont ext proto
pushcont ext .radi x record
.startup this t ypedef
.until .while wi dt h

2.4 Open Watcom Assembler Specific

There are afew specific featuresin Open Watcom Assembler

26 Open Watcom Assembler Specific

catstr
endmacr o
hi gh

| ow
opattr
pur ge

. repeat
uni on

The Open Watcom Assembler

2.4.1 Naming convention

Procedur e Vari abl e

Conventi on Narme Nane
C (MASM Tt Tt see note 1
WATCOM_C Tkt r_xs
SYSCALL Tx? TR
STDCALL ! _*@nn’ roxs
STDCALL r_x7r r_x7r see note 2
STDCALL TR TR see note 3
BASI C A A
FORTRAN AN AN
PASCAL A A
Notes:

1. WASM uses MASM compatible names when -zcm command line option is used.

2. InSTDCALL procedures name’nn’ is overall parametrs sizein bytes. ’@nn’ is
suppressed when -zz command line option is used (WATCOM 10.0 compatibility).

3. STDCALL symbols mangling is suppressed by -zzo command line option (WASM
backward compatible).

2.4.2 Open Watcom "C" name mangler

Command | ine Procedure O hers
option Name Nanes
On 112 rx /7 rox
3,4,5,6 with r rx 7 %
3,4,5,6 with s * *

Open Watcom Assembler Specific 27

The Open Watcom Assembler

2.4.3 Calling convention

Par anmet er s Par anmet er s

cal l er

Conventi on Var ar g passed by or der

C yes st ack right to left
WATCOM_C yes registers right to left
SYSCALL yes st ack right to left
STDCALL yes st ack right to left
note 1

BASI C no st ack left to right
FORTRAN no st ack left to right
PASCAL no st ack left to right

Notes:

Cl eanup

st ack

no
no
no
yes see

yes
yes
yes

1. For STDCALL procedures WASM automaticaly cleanup caller stack, except case

when vararg parameter is used.

2.5 Open Watcom Assembler Diagnostic Messages

1 Size doesn’t match with previous definition

2 Invalid instruction with current CPU setting

3 LOCK prefix isnot allowed on thisinstruction

4 REP prefix isnot allowed on thisinstruction

5 Invalid memory pointer

6 Cannot use 386 addressing mode with current CPU setting
7 Too many base registers

8 Invalid index register

9 Scale factor must be 1, 2,4 or 8

10 invalid addressing mode with current CPU setting

28 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

11 ESP cannot be used as index

12 Too many base/index registers

13 Memory offset cannot reference to more than one label
14 Offset must be relocatable

15 Memory offset expected

16 Invalid indirect memory operand

17 Cannot mix 16 and 32-bit registers

18 CPU type already set

19 Unknown directive

20 Expecting comma

21 Expecting number

22 Invalid label definition

23 Invalid use of SHORT, NEAR, FAR operator

24 No memory

25 Cannot use 386 segment register with current CPU setting
26 POP CSisnot allowed

27 Cannot use 386 register with current CPU setting
28 Only MOV can use special register

29 Cannot use TR3, TR4, TR5 in current CPU setting
30 Cannot use SHORT with CALL

31 Only SHORT displacement is allowed

32 Syntax error

Open Watcom Assembler Diagnostic Messages

29

The Open Watcom Assembler

33 Prefix must be followed by an instruction
34 No size given before’ PTR’ operator

35 Invalid IMUL format

36 Invalid SHLD/SHRD format

37 Too many commas

38 Syntax error: Unexpected colon

39 Operands must be the same size

40 Invalid instruction operands

41 mmediate constant too large

42 Can not use short or near modifierswith thisinstruction
43 Jump out of range

44 Displacement cannot be larger than 32k
45 I nitializer valuetoo large

46 Symbol already defined

47 Immediate data too large

48 | mmediate data out of range

49 Can not transfer control to stack symbol
50 Offset cannot be smaller than WORD size
51 Can not take offset of stack symbol

52 Can not take segment of stack symbol

53 Segment too large

54 Offset cannot be larger than 32k

30 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

55 Operand 2 too big

56 Operand 1 too small

57 Too many arithmetic operators
58 Too many open sgquare brackets
59 Too many close square brackets
60 Too many open brackets

61 Too many close brackets

62 Invalid number digit

63 Assembler Code istoo long

64 Brackets are not balanced

65 Operator is expected

66 Operand is expected

67 Too many tokensin aline

68 Bracket is expected

69 Illegal use of register

70 Illegal use of label

71 Invalid operand in addition

72 Invalid operand in subtraction
73 One operand must be constant
74 Constant operand is expected
75 A constant operand is expected in addition

76 A constant operand is expected in subtraction

Open Watcom Assembler Diagnostic Messages 31

The Open Watcom Assembler

77 A constant operand is expected in multiplication
78 A constant operand is expected in division

79 A constant operand is expected after a positive sign
80 A constant operand is expected after a negative sign
81 Label isnot defined

82 Morethan one override

83 Label is expected

84 Only segment or group label is allowed

85 Only register or label is expected in override

86 Unexpected end of file

87 Label istoo long

88 Thisfeature has not been implemented yet

89 Internal Error #1

90 Can not take offset of group

91 Can not take offset of segment

92 Invalid character found

93 Invalid operand size for instruction

94 Thisinstruction is not supported

95 size not specified -- BYTE PTR is assumed

96 size not specified -- WORD PTR is assumed

97 size not specified -- DWORD PTR is assumed

500 Segment parameter is defined already

32 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

501 Model parameter is defined already

502 Syntax error in segment definition

503 AT’ isnot supported in segment definition
504 Segment definition is changed

505 Lnameistoo long

506 Block nesting error

507 Ends a segment which is not opened
508 Segment option is undefined

509 Model option is undefined

510 No segment is currently opened

511 Lname is used already

512 Segment is not defined

513 Public is not defined

514 Colon is expected

515 A token is expected after colon

516 Invalid qualified type

517 Qualified type is expected

518 External definition different from previous one
519 Memory model is not found in .MODEL
520 Cannot open includefile

521 Nameis used already

522 Library nameismissing

Open Watcom Assembler Diagnostic Messages 33

The Open Watcom Assembler

523 Segment name is missing

524 Group nameis missing

525 Data emitted with no segment

526 Seglocation is expected

527 Invalid register

528 Cannot address with assumed register
529 Invalid start address

530 Label isalready defined

531 Token istoo long

532 Thelineistoo long after expansion
533 A label is expected after colon

534 Must be associated with code

535 Procedure must have a name

536 Procedureis alreadly defined

537 Language type must be specified
538 End of procedureis not found

539 Local variable must immediately follow PROC or MACRO statement
540 Extra character found

541 Cannot nest procedures

542 No procedureis currently defined
543 Procedure name does not match

544 Vararg requires C calling convention

34 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

545 Model declared already

546 Model is not declared

547 Backquote expected

548 COMMENT delimiter expected

549 End directive required at end of file

550 Nesting level too deep

551 Symbol not defined

552 Insert Stupid warning #1 here

553 Insert Stupid warning #2 here

554 Spaces not allowed in command line options
555 Error:

556 Source File

557 No filename specified.

558 Out of Memory

559 Cannot Open File -

560 Cannot Close File -

561 Cannot Get Start of Source File -

562 Cannot Set to Start of Source File -

563 Command Line Contains More Than 1 File To Assemble
564 include path %s.

565 Unknown option %s. Use /? for list of options.

566 read more command line from %s.

Open Watcom Assembler Diagnostic Messages

35

The Open Watcom Assembler

567 Internal error in %s(%u)

568 OBJECT WRITE ERROR !'!

569 NO LOR PHARLAP !!

570 Parameter Required

571 Expecting closing square bracket

572 Expecting file name

573 Floating point instruction not allowed with /fpc
574 Too many errors

575 Build target not recognised

576 Public constants should be numeric

577 Expecting symbol

578 Do not mix simplified and full segment definitions
579 Parms passed in multiple registers must be accessed separately, use %s
580 Ten byte variables not supported in register calling convention
581 Parameter type not recognised

582 forced error:

583 forced error: Value not equal to 0 : %d

584 forced error: Value equal to 0: %d

585 forced error: symbol defined: %s

586 forced error: symbol not defined: %s

587 forced error: string blank : <%s>

588 forced error: string not blank : <%s>

36 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

589 forced error: stringsnot equal : <%s> : <%s>
590 forced error: strings equal : <%s> : <%s>
591 included by file %s(%d)

592 macro called from file %s(%d)

593 Symbol %s not defined

594 Extending jump

595 Ignoring inapplicable directive

596 Unknown symbol class’%s

597 Symbol classfor '%s already established
598 number must be a power of 2

599 alignment request greater than segment alignment
600 '%s is already defined

601 %u unclosed conditional directive(s) detected

Open Watcom Assembler Diagnostic Messages 37

The Open Watcom Assembler

38 Open Watcom Assembler Diagnostic Messages

Object File Utilities

Object File Utilities

40

3 The Open Watcom Library Manager

3.1 Introduction

The Open Watcom Library Manager can be used to create and update object library files. It
takes asinput an object file or alibrary file and creates or updates alibrary file. For OS/2,
Win16 and Win32 applications, it can also create import libraries from Dynamic Link
Libraries.
An object library is essentially a collection of object files. These object files generally contain
utility routines that can be used as input to the Open Watcom Linker to create an application.
The following are some of the advantages of using library files.
1. Only those modulesthat are referenced will be included in the executable file. This
eliminates the need to know which object files should be included and which ones
should be left out when linking an application.

2. Librariesare agood way of organizing object files. When linking an application,
you need only list one library file instead of several object files.

The Open Watcom Library Manager currently runs under the following operating systems.
*DOS
* OS2
« QONX

* Windows

Introduction 41

Object File Utilities

3.2 The Open Watcom Library Manager Command Line

The following describes the Open Watcom Library Manager command line.

WLIB [options_1] lib_file[options_2] [emd_list]

The square brackets "[]" denote items which are optional.

lib file isthefile specification for the library file to be processed. If nofile extensionis
specified, afile extension of "lib" is assumed.

options 1 isalist of valid options. Options may be specified in any order. If you are using
aDOS, 0S/2 or Windows-hosted version of the Open Watcom Library
Manager, options are preceded by a"/" or "—" character. If you are using a
UNIX-hosted version of the Open Watcom Library Manager, options are
preceded by a"—" character.

options 2 isalist of valid options. These options are only permitted if you are running a
DOS, OS2 or Windows-hosted version of the Open Watcom Library Manager
and must be preceded by a"/" character. The"—" character cannot be used as
an option delimiter for options following the library file name sinceit will be
interpreted as a del ete command.

cmd_list isalist of commands to the Open Watcom Library Manager specifying what
operations are to be performed. Each command in cmd_list is separated by a
space.

Thefollowing is asummary of valid options. Items enclosed in square brackets "[]" are
optional. Items separated by an or-bar "|" and enclosed in parentheses ()" indicate that one of
the items must be specified. Items enclosed in angle brackets "<>" are to be replaced with a
user-supplied name or value (the "<>" are not included in what you specify).

? display the usage message
b suppress creation of backup file
c perform case sensitive comparison
d=<output_directory>

directory in which extracted object modules will be placed
fa output AR format library
fm output MLIB format library

42 The Open Watcom Library Manager Command Line

The Open Watcom Library Manager

fo output OMF format library
h display the usage message
ia generate AXP import records
i generate X86 import records
ip generate PPC import records
ie generate ELF import records
ic generate COFF import records
io generate OMF import records
i(rln)(njo) importsfor the resident/non-resident names table are to be imported by
name/ordinal.
[[=<list_file>]
create alisting file
m display C++ mangled names
n always create anew library

o=<output_file>
set output file name for library
p=<record_size>
set library page size (supported for "OMF" library format only)

q suppress identification banner

S strip line number records from object files (supported for "OMF" library format
only)

t remove path information from module name specified in THEADR records
(supported for "OMF" library format only)

% do not suppress identification banner

X extract all object modules from library

2d strip file dependency info from object files (supported for "OMF" library format
only)

The following sections describe the operations that can be performed on alibrary file. Note
that before making a change to alibrary file, the Open Watcom Library Manager makes a
backup copy of the original library file unlessthe "0" option is used to specify an output
library file whose name is different than the original library file, or the "b" option isused to
suppress the creation of the backup file. The backup copy has the same file name asthe
origina library file but has afile extension of "bak". Hence, lib_file should not have afile
extension of "bak".

The Open Watcom Library Manager Command Line 43

Object File Utilities

3.3 Open Watcom Library Manager Module Commands

Thefollowing is a summary of basic Open Watcom Library Manager module manipulation

commands:

+ add moduleto alibrary

- remove module from alibrary

*or: extract module from alibrary (: isused with a UNIX-hosted version of the
Open Watcom Library Manager, otherwise * is used)

++ add import library entry

3.4 Adding Modules to a Library File

An object file can be added to alibrary file by specifying a+obj_file command where
obj_fileisthefile specification for an object file. If you are using aDOS, OS2 or
Windows-hosted version of the Open Watcom Library Manager, afile extension of "obj" is
assumed if noneis specified. If you are using a UNIX-hosted version of the Open Watcom
Library Manager, afile extension of "0" is assumed if noneis specified. If thelibrary file
does not exist, awarning message will beissued and the library file will be created.

Example:
wWib nmylib +nyobj

In the above example, the abject file "myobj" is added to the library file "mylib.lib".

When amodule is added to alibrary, the Open Watcom Library Manager will issue awarning
if asymbol redefinition occurs. Thiswill occur if asymbol in the module being added is
already defined in another module that already existsin the library file. Note that the module
will be added to the library in any case.

It is also possible to combine two library filestogether. The following example adds all
modulesin the library "newlib.lib" to the library "mylib.lib".

44 Adding Modules to a Library File

The Open Watcom Library Manager

Example:
Wib nmylib +newib.lib

Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library
Manager will assume you are adding an object file.

3.5 Deleting Modules from a Library File

A module can be deleted from alibrary file by specifying a-mod_name command where
mod_name isthe file name of the object file when it was added to the library with the
directory and file extension removed.

Example:
wib nylib -nyobj

In the above example, the Open Watcom Library Manager isinstructed to delete the module
"myobj" from thelibrary file "mylib.lib".

It isalso possible to specify alibrary fileinstead of a module name.

Example:
Wib nmylib -oldlib.lib

In the above example, all modulesin the library file "oldlib.lib" are removed from the library
file"mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open
Watcom Library Manager will assume you are removing an object module.

3.6 Replacing Modules in a Library File

A module can be replaced by specifying a-+mod_name or +-mod_name command. The
module mod_name is deleted from the library. The object file "mod_name" is then added to
thelibrary.

Replacing Modules in a Library File 45

Object File Utilities

Example:
wWib nmylib -+myobj

In the above example, the module "myobj" is replaced by the object file "myabj".
It is also possible to merge two library files.

Example:
wWib nylib -+updlib.lib

In the above example, all modulesin the library file "updlib.lib" replace the corresponding
modulesin the library file "mylib.lib". Any modulein the library "updlib.lib" not in library
"mylib.lib" is added to the library "mylib.lib". Note that you must specify the "lib" file
extension. Otherwise, the Open Watcom Library Manager will assume you are replacing an
object module.

3.7 Extracting a Module from a Library File

A module can be extracted from alibrary file by specifying a*mod_name [=file_namg]
command for aDOS, OS/2 or Windows-hosted version of the Open Watcom Library Manager
or a:mod_name [=file_name] command for a UNIX-hosted version of the Open Watcom
Library Manager. The module mod_nameis not deleted but is copied to adisk file. If
mod_name s preceded by a path specification, the output file will be placed in the directory
identified by the path specification. If mod_nameisfollowed by afile extension, the output
filewill contain the specified file extension.

Example:
wib nylib *nyobj DOS, OS/2 or W ndows- host ed
or
wib nmylib :nyobj UNI X- host ed

In the above example, the module "myobj" is copied to adisk file. Thedisk file will be an
object file with file name "myobj". If you are running a DOS, OS/2 or Windows-hosted
version of the Open Watcom Library Manager, afile extension of "obj" will be used. If you
are running a UNIX-hosted version of the Open Watcom Library Manager, afile extension of
"0" will be used.

46 Extracting a Module from a Library File

The Open Watcom Library Manager

Example:
wWib nylib *myobj. out DOS, Os/2 or W ndows- hosted
or
wWib nylib :myobj. out UNI X- host ed

In the above example, the module "myobj" will be extracted from the library file "mylib.lib"
and placed in the file "myobj.out"

The following form of the extract command can be used if the module name is not the same as
the output file name.

Example:
W ib nylib *myobj =newnyobj . out DCS, Os/ 2 or
W ndows- host ed
or
wWib nylib :myobj=newnyobj . out UNI X- host ed

Y ou can extract a module from afile and have that module deleted from the library file by
specifying a*-mod_name command for a DOS, OS/2 or Windows-hosted version of the
Open Watcom Library Manager or a:-mod_name command for a UNIX-hosted version of
the Open Watcom Library Manager. The following example performs the same operations as
in the previous example but, in addition, the module is deleted from the library file.

Example:
wWib nylib *-nyobj. out DOS, Os/2 or W ndows- hosted
or
wib nylib :-nyobj. out UNI X- host ed

Note that the same result is achieved if the delete operator precedes the extract operator.

3.8 Creating Import Libraries

The Open Watcom Library Manager can also be used to create import libraries from Dynamic
Link Libraries. Import libraries are used when linking OS/2, Win16 or Win32 applications.

Creating Import Libraries 47

Object File Utilities

Example:
Wib inplib +dynamic.dll

In the above example, the following actions are performed. For each external symbol in the
specified Dynamic Link Library, a special object moduleis created that identifies the external
symbol and the actual name of the Dynamic Link Library it isdefined in. This object module
is then added to the specified library. The resulting library is called an import library.

Note that you must specify the "dIl" file extension. Otherwise, the Open Watcom Library
Manager will assume you are adding an object file.

3.9 Creating Import Library Entries

An import library entry can be created and added to alibrary by specifying a command of the
following form.

++sym.dll_name[. [altsym] .export_name] [.ordinal]
where description:
sym is the name of asymbol in aDynamic Link Library.

dll_name isthe name of the Dynamic Link Library that defines sym

altsym is the name of asymbol in aDynamic Link Library. When omitted, the default
symbol nameissym

export_name is the name that an application that is linking to the Dynamic Link Library uses
to reference sym When omitted, the default export nameis sym

ordinal isthe ordinal value that can be used to identify syminstead of using the name
export_name.

Example:

wlib math ++_ _sin.trig.sin.l

In the above example, an import library entry will be created for symbol si n and added to the
library "math.lib". The symbol si n isdefined in the Dynamic Link Library called "trig.dll"
as__sin. Whenan application is linked with the library "math.lib", the resulting
executable file will contain an import by ordinal value 1. If the ordinal value was omitted, the
resulting executable file would contain an import by name si n.

48 Creating Import Library Entries

The Open Watcom Library Manager

3.10 Commands from a File or Environment Variable

The Open Watcom Library Manager can be instructed to process all commandsin adisk file
or environment variable by specifying the @name command where name is afile
specification for the command file or the name of an environment variable. A file extension
of "Ibc" isassumed for filesif noneis specified. The commands must be one of those
previously described.

Example:
wib nylib @ycnd

In the above example, all commands in the environment variable "mycmd" or file
"mycmd.lbc" are processed by the Open Watcom Library Manager.

3.11 Open Watcom Library Manager Options

The following sections describe the list of options allowed when invoking the Open Watcom
Library Manager.

3.11.1 Suppress Creation of Backup File - "b" Option

The"b" option tells the Open Watcom Library Manager to not create a backup library file. In
the following example, the object fileidentified by "new" will be added to the library file
"mylib.lib".

Example:
Wib -b nylib +new

If thelibrary file "mylib.lib" already exits, no backup library file ("mylib.bak") will be
created.

3.11.2 Case Sensitive Symbol Names - “c" Option

The"c" option tells the Open Watcom Library Manager to use a case sensitive compare when
comparing a symbol to be added to the library to a symbol aready in thelibrary file. This
will cause the names "myrtn" and "MYRTN" to be treated as different symbols. By default,
comparisons are case insensitive. That isthe symbol "myrtn" is the same as the symbol
"MYRTN".

Open Watcom Library Manager Options 49

Object File Utilities

3.11.3 Specify Output Directory - "d" Option

The"d" option tells the Open Watcom Library Manager the directory in which all extracted
modules are to be placed. The default isto place all extracted modulesin the current
directory.

In the following example, the module "mymod" is extracted from the library "mylib.lib". If
you are running a DOS, OS/2 or Windows-hosted version of the Open Watcom Library
Manager, the module will be placed in the file "\obj\mymod.obj". If you are running a
UNIX-hosted version of the Open Watcom Library Manager, the module will be placed in the
file"/o/mymod.o".

Example:
wib -d=\obj nynod DOS, OS/ 2 or W ndows- host ed
or
Wib -d=/o nynod UNI X- host ed

3.11.4 Specify Output Format - "f" Option

The"f" option tells the Open Watcom Library Manager the format of the output library. The
default output format is determined by the type of object files that are added to the library
when it iscreated. The possible output format options are:

fa output AR format library
fm output MLIB format library
fo output OMF format library

3.11.5 Generating Imports - "i" Option
The"i" option can be used to describe type of import library to create.
ia generate AXP import records
i generate X86 import records
ip generate PPC import records

ie generate ELF import records

50 Open Watcom Library Manager Options

The Open Watcom Library Manager

ic generate COFF import records
io generate OMF import records
When creating import libraries from Dynamic Link Libraries, import entries for the namesin

the resident and non-resident names tables are created. The"i" option can be used to describe
the method used to import these names.

iro Specifying "iro" causesimports for namesin the resident names table to be
imported by ordinal.
irn Specifying "irn" causes imports for names in the resident names table to be

imported by name. Thisisthe default.

ino Specifying "ino" causes imports for names in the non-resident names table to be
imported by ordinal. Thisisthe default.

inn Specifying "inn" causes imports for names in the non-resident names table to be
imported by name.

Example:
Wib -iro -inn inplib +dynamc.dll

Note that you must specify the "dll" file extension for the Dynamic Link Library. Otherwise
an object file will be assumed.

3.11.6 Creating a Listing File - "I" Option

The"I" (lower case "L") option instructs the Open Watcom Library Manager to produce alist
of the names of all symbolsthat can be found in the library fileto alisting file. The file name
of theligting file is the same as the file name of thelibrary file. Thefile extension of the
listing fileis"Ist".

Example:
wWib -1 nmylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of
thelibrary file "mylib.lib" and produce the output to alisting file called "mylib.Ist".

An dternate form of thisoptionis —-1=1ist_file. Withthisform, you can specify the

name of thelisting file. When specifying alisting file name, afile extension of "Ist" is
assumed if noneis specified.

Open Watcom Library Manager Options 51

Object File Utilities

Example:
Wib -l=nylib.out nylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of
thelibrary file "mylib.lib" and produce the output to alisting file called "mylib.out".

Y ou can get alisting of the contents of alibrary file to the terminal by specifying only the
library name on the command line as demonstrated by the following example.

Example:
wib nmylib

3.11.7 Display C++ Mangled Names - "m" Option
The"m" option instructs the Open Watcom Library Manager to display C++ mangled names
rather than displaying their demangled form. The default isto interpret mangled C++ names
and display them in a somewhat more intelligible form.

3.11.8 Always Create a New Library - "n" Option
The"n" option tells the Open Watcom Library Manager to always create anew library file. If
thelibrary file already exists, a backup copy is made (unlessthe "b" option was specified).
The original contents of the library are discarded and anew library is created. If the"n"

option was not specified, the existing library would be updated.

Example:
Wib -n nylib +myobj

In the above example, alibrary file called "mylib.lib" is created. It will contain a single object

module, namely "myobj", regardless of the contents of "mylib.lib" prior to issuing the above
command. If "mylib.lib" aready exists, it will be renamed to "mylib.bak".

3.11.9 Specifying an Output File Name - "0" Option

The"o" option can be used to specify the output library file name if you want the original
library to remain unchanged and a new library created.

52 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
Wib -o=newlib libl +lib2.1ib

In the above example, the modules from "libl.lib" and "lib2.l1ib" are added to the library
"newlib.lib". Note that since the original library remains unchanged, no backup copy is
created. Also, if the"|" option isused to specify alisting file, the listing file will assume the
file name of the output library.

3.11.10 Specifying a Library Record Size - "p" Option

The "p" option specifies the record size in bytes for each record in the library file. The record
size must be apower of 2 and in the range 16 to 32768. If therecord sizeislessthan 16, it
will berounded up to 16. If the record sizeis greater than 16 and not a power of 2, it will be
rounded up to the nearest power of 2. The default record sizeis 256 bytes.

Each entry in the dictionary of alibrary file contains an offset from the start of the file which
pointsto amodule. The offset is 16 bits and isamultiple of the record size. Since the default
record size is 256, the maximum size of alibrary file for arecord size of 256 is 256*64K. If
the size of the library file increases beyond this size, you must increase the record size.

Example:
Wib -p=512 libl +lib2.1ib

In the above example, the Open Watcom Library Manager is instructed to create/update the

library file"libl.lib" by adding the modules from the library file "lib2.lib". The record size of
the resulting library fileis 512 bytes.

3.11.11 Operate Quietly - "q" Option

The"q" option suppressing the banner and copyright notice that is normally displayed when
the Open Watcom Library Manager is invoked.

Example:
wib -q -l nmylib
3.11.12 Strip Line Number Records - "s" Option
The"s" option tells the Open Watcom Library Manager to remove line number records from

object filesthat are being added to alibrary. Line number records are generated in the object
fileif the"d1" option is specified when compiling the source code.

Open Watcom Library Manager Options 53

Object File Utilities

Example:
Wib -s nmylib +myobj

3.11.13 Trim Module Name - "t" Option

The"t" option tells the Open Watcom Library Manager to remove path information from the
module name specified in THEADR records in object files that are being added to alibrary.
The module name is created from the file name by the compiler and placed in the THEADR
record of the object file. The module name will contain path information if the file name
given to the compiler contains path information.

Example:
Wib -t nylib +myobj
3.11.14 Operate Verbosely - "v" Option

The"v" option enables the display of the banner and copyright notice when the Open Watcom
Library Manager isinvoked.

Example:
Wib -v -1 nylib

3.11.15 Explode Library File - "x" Option

The"x" option tells the Open Watcom Library Manager to extract all modules from the
library. Note that the modules are not deleted from the library. Object modules will be placed
in the current directory unlessthe "d" option is used to specify an alternate directory.

In the following example all modules will be extracted from the library "mylib.lib" and placed
in the current directory.

Example:
Wib -x nmylib

In the following example, all modules will be extracted from the library "mylib.lib". 1f you
are running a DOS, OS2 or Windows-hosted version of the Open Watcom Library Manager,
the module will be placed in the "\obj" directory. If you are running a UNIX-hosted version
of the Open Watcom Library Manager, the module will be placed in thefile "/0" directory.

54 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
Wib -x -d=\obj nylib DOS, Os/2 or W ndows- hosted
or
Wib -x -d=/o nylib UNI X- host ed

3.12 Librarian Error Messages

The following messages may be issued by the Open Watcom Library Manager.

Error! Could not open object file'%s'.
Object file’%s' could not be found. This message is usually issued when an
attempt is made to add a non-existent object file to the library.

Error! Could not open library file’%s'.
The specified library file could not be found. Thisisusually issued for input
library files. For example, if you are combining two library files, the library file
you are adding is an input library file and the library file you are adding to or
creating is an output library file.

Error! Invalid object modulein file’%s' not added.
The specified file contains an invalid object module.

Error! Dictionary too large. Recommend split library into two libraries.
The size of the dictionary in alibrary file cannot exceed 64K. Y ou must split
thelibrary file into two separate library files.

Error! Redefinition of module’%s' in file’%s .
This message is usually issued when an attempt is made to add amoduleto a
library that already contains a module by that name.

Warning! Redefinition of symbol '%s' in file’%s' ignored.
Thismessage isissued if asymbol defined by a module already in the library is
a so defined by amodule being added to the library.

Error! Library too large. Recommend split library into two libraries or try a larger
page bound than %xH.
The record size of the library file does not allow the library file to increase
beyond its current size. The record size of the library file must be increased
using the "p" option.

Error! Expected '%s' in'%s but found'%s'.
An error occurred while scanning command input.

Librarian Error Messages 55

Object File Utilities

Warning! Could not find module’%s' for deletion.
Thismessageisissued if an attempt is made to del ete a module that does not
exist inthelibrary.

Error! Could not find module’%s' for extraction.
This message isissued if an attempt is made to extract a module that does not
exist in thelibrary.

Error! Could not rename old library for backup.
The Open Watcom Library Manager creates a backup copy before making any
changes (unlessthe "b" option is specified). This messageisissued if an error
occurred while trying to rename the original library file to the backup file name.

Warning! Could not open library '%s’ : will be created.
The specified library does not exist. 1t isusually issued when you are adding to
anon-existent library. The Open Watcom Library Manager will create the
library.

Warning! Output library name specification ignored.
Thismessage isissued if the library file specified by the "0" option could not be
opened.

Warning! Could not open library '%s and no operations specified: will not be created.
This messageisissued if the library file specified on the command line does not
exist and no operations were specified. For example, asking for alisting file of a
non-existent library will cause this message to be issued.

Warning! Could not open listing file'%s'.
Thelisting file could not be opened. For example, this message will be issued
when a"disk full" condition is present.

Error! Could not open output library.
The output library could not be opened.

Error! Unable to write to output library.
An error occurred while writing to the output library.

Error! Unable to write to extraction file’ %s'.
This message isissued when extracting an object module from alibrary file and
an error occurs while writing to the output file.

Error! Out of Memory.
There was not enough memory to processthe library file.

56 Librarian Error Messages

The Open Watcom Library Manager

Error! Could not open file’%s'.
Thismessageisissued if the output file for amodule that is being extracted from
alibrary could not be opened.

Error! Library'%s isinvalid. Contentsignored.
Thelibrary file does not contain the correct header information.

Error! Library’'%s hasan invalid page size. Contentsignored.
Thelibrary file has an invalid record size. Therecord sizeis contained in the
library header and must be a power of 2.

Error! Invalid object record found in file ' %s'.
The specified file contains an invalid object record.

Error! No library specified on command line.
This messageisissued if alibrary file nameis not specified on the command
line.

Error! Expecting library name.
This message isissued if the location of the library file name on the command
lineisincorrect.

Warning! Invalid file name’ %s'.
Thismessageisissued if aninvalid file name is specified. For example, afile
name longer that 127 charactersis not alowed.

Error! Could not open command file’%s'.
The specified command file could not be opened.

Error! Could not read from file’%s . Contentsignored as command input.
An error occurred while reading a command file.

Librarian Error Messages 57

Object File Utilities

58 Librarian Error Messages

4 The Object File Disassembler

4.1 Introduction

This chapter describes the Open Watcom Disassembler. It takes asinput an object file (afile
with extension ".obj") and produces, as output, the Intel assembly language equivalent. The
Open Watcom compilers do not produce an assembly language listing directly from a source
program. Instead, the Open Watcom Disassembler can be used to generate an assembly
language listing from the object file generated by the compiler.

The Open Watcom Disassembler command line syntax is the following.

WDI S [optiong] [d:][path]filename].ext] [options]

The square brackets [] denote items which are optional.
WDIS is the name of the Open Watcom Disassembler.

d: isan optional drive specification such as"A:", "B:", etc. If not specified, the
default drive is assumed.

path isan optional path specification such as "\PROGRAMS\OBJ\". If not specified,
the current directory is assumed.

filename isthefile name of the object file to disassemble.
ext isthe file extension of the object file to disassemble. If omitted, afile extension
of ".obj" isassumed. If the period"." is specified but not the extension, thefile

is assumed to have no file extension.

options isalist of valid options, each preceded by adash (/") or adash ("-"). Options
may be specified in any order.

The options supported by the Open Watcom Disassembler are:

Introduction 59

Object File Utilities

a write assembly instructions only to thelisting file

e include list of external names

fp do not use instruction name pseudonyms

fr do not use register name pseudonyms [Alpha only]

fi use aternate indexing format [80(x)86 only]

fu instructions/registers in upper case

i=<char> redefinetheinitia character of internal labels (default: L)
[[=<list_file>]

create alisting file

m leave C++ names mangled
p include list of public names
g=<source file>]

using object file source line information, imbed original source linesinto the
output file

The following sections describe the list of options.

4.2 Changing the Internal Label Character - "i=<char>"

The"i" option permits you to specify the first character to be used for internal labels. Internal
labels take the form "Ln" where "n" is one or more digits. The default character "L" can be
changed using the "i" option. The replacement character must be aletter (a-z, A-Z). A
lowercase |etter is converted to uppercase.

Example:
Cwdi s cal endar /i =x

4.3 The Assembly Format Option - "a"

The"a" option controls the format of the output produced to the listing file. When specified,
the Open Watcom Disassembler will produce alisting file that can be used as input to an
assembler.

60 The Assembly Format Option - "a"

The Object File Disassembler

Example:
Cwdi s calendar /a /| =cal endar. asm

In the above example, the Open Watcom Disassembler isinstructed to disassemble the
contents of thefile cal endar . obj and produce the output to thefile cal endar . asmso
that it can be assembled by an assembler.

4.4 The External Symbols Option - "e"

The"€" option controls the amount of information produced in the listing file. When
specified, alist of al externally defined symbolsis produced in thelisting file.

Example:
Cwdi s calendar /e

In the above example, the Open Watcom Disassembler isinstructed to disassemble the
contents of thefile cal endar . obj and produce the output, with alist of all external
symbols, on the screen. A samplelist of external symbolsis shown below.

Li st of external synbols

Synbol

CALENDAR 000000cf 0000008b 00000047
CLEARSCREEN 0000000a

GETDAT 00000018

POSCURSOR 000000e8

Each externally defined symbol is followed by alist of location counter values indicating
where the symboal is referenced.

The"€" option isignored when the "a" option is specified.

4.5 The No Instruction Name Pseudonyms Option -
"fp n

By default, AXP instruction name pseudonyms are emitted in place of actual instruction

names. The Open Watcom AXP Assembler accepts instruction name pseudonyms. The "fp"
option instructs the Open Watcom Disassembler to emit the actua instruction names instead.

The No Instruction Name Pseudonyms Option - "fp" 61

Object File Utilities

4.6 The No Register Name Pseudonyms Option - "fr"

By default, AXP register names are emitted in pseudonym form. The Open Watcom AXP
Assembler accepts register pseudonyms. The "fr" option instructs the Open Watcom
Disassembler to display register namesin their non-pseudonym form.

4.7 The Alternate Addressing Form Option - "fi"

The"fi" option causes an alternate syntactical form of the based or indexed addressing mode
of the 80x86 to be used in an instruction. For example, the following form is used by default
for Intel instructions.

nov ax, - 2[bp]
If the "fi" option is specified, the following form is used.

nov ax, [bp- 2]

4.8 The Uppercase Instructions/Registers Option - "fu"

The"fu" option instructs the Open Watcom Disassembler to display instruction and register
names in uppercase characters. The default isto display them in lowercase characters.

4.9 The Listing Option - "I[=<list_file>]"

By default, the Open Watcom Disassembler produces its output to the terminal. The"I"
(lowercase L) option instructs the Open Watcom Disassembler to produce the output to a
listing file. The default file name of the listing file is the same as the file name of the object
file. Thedefault file extension of thelisting fileis . | st.

62 The Listing Option - "I[=<list_file>]"

The Object File Disassembler

Example:
Cwdi s cal endar /1

In the above example, the Open Watcom Disassembler isinstructed to disassemble the
contents of thefile cal endar . obj and produce the output to alisting file called
cal endar. | st.

An dternate form of this option is"l=<list_file>". With thisform, you can specify the name
of thelisting file. When specifying alisting file, afile extension of . | st isassumed if none
is specified.

Example:
Cwdi s calendar /l=calendar.lis

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of thefile cal endar . obj and produce the output to alisting file called
cal endar.lis.

4.10 The Public Symbols Option - “p"

The"p" option controls the amount of information produced in the listing file. When
specified, alist of al public symbolsis produced in thelisting file.

Example:
C>wdi s cal endar /p

In the above example, the Open Watcom Disassembler isinstructed to disassemble the
contents of thefile cal endar . obj and produce the output, with alist of all exported
symbols, to the screen. A samplelist of public symbolsis shown below.

Li st of public synbols

SYMBOL GROUP SEGVENT ADDRESS
BOX BOX_TEXT 00000000
CALENDAR CALENDAR_TEXT 00000000
CLEARSCREEN CLEARSCREEN_TEXT 00000000
FMAI N FMAIN_TEXT 00000000
LI NE LINE_TEXT 00000000
POSCURSOR POSCURSOR_TEXT 00000000

The"p" option isignored when the "a" option is specified.

The Public Symbols Option - "p" 63

Object File Utilities

4.11 Retain C++ Mangled Names - "m"

The"m" option instructs the Open Watcom Disassembler to retain C++ mangled names rather
than displaying their demangled form. The default isto interpret mangled C++ names and
display them in a somewhat more intelligible form.

4.12 The Source Option - "s[=<source_file>]"

The"s" option causes the source lines corresponding to the assembly language instructions to
be produced in the listing file. The object file must contain line numbering information. That
is, the"d1" or "d2" option must have been specified when the source file was compiled. If no
line numbering information is present in the object file, the "s" option isignored.

The following defines the order in which the source file name is determined when the "s'
option is specified.

1. If present, the source file name specified on the command line.
2. The name from the modul e header record.
3. Theobject file name.

In the following example, we have compiled the source file mysr c. f or with"d1"
debugging information. We then disassemble it as follows:

Example:
Cwdis nysrc /s /1

In the above example, the Open Watcom Disassembler isinstructed to disassemble the
contents of thefile mysr c. obj and produce the output to the listing file mysrc. | st. The
source lines are extracted from the file mysrc. f or.

An aternate form of this option is"s=<source file>". With thisform, you can specify the
name of the sourcefile.

64 The Source Option - "s[=<source_file>]"

The Object File Disassembler

Example:
Cwdi s nysrc /s=nyprog.for /I

The above example produces the same result as in the previous example except the source
lines are extracted from the file nypr og. f or .

4.13 An Example

Consider the following program contained in thefile hel | o. f or.

pr ogram mai n
print *, "Hello world’
end

Compileit with the "d1" option. An object filecalled hel | 0. obj will be produced. The
"d1" option causes line numbering information to be generated in the object file. We can use
the Open Watcom Disassembler to disassemble the contents of the object file by issuing the
following command.

Cwdis hello /I /e /p /s /fu

The output will bewrittento alisting filecalled hel | 0. | st (the"I" option was specified").
It will contain alist of external symbols (the"€" option was specified), alist of public symbols
(the "p" option was specified) and the source lines corresponding to the assembly language
instructions (the "s" option was specified). The sourceinput fileiscalled hel | 0. for. The
register names will be displayed in upper case (the "fu" option was specified). The output,
shown below, isthe result of using the Open Watcom F77 compiler.

Modul e: hel | o. for

Group: ’‘DGROUP’ CONST,_DATA,_BSS

G oup: ' FLAT

Segment: 'FMAIN_TEXT’ BYTE USE32 00000014 bytes

program mai n
print *, "Hello world

0000 e8 00 00 00 0O FMAI N cal | RT@OWite
0005 b8 00 00 00 00 nov EAX, of fset L2
000a e8 00 00 00 0O cal | RT@ut CHAR
000f €9 00 00 00 0O jnmp RT@ndl O

An Example 65

Object File Utilities

No di sassenbly errors

Li st of external synbols

Synbo

RT@ndl O 00000010
RT@OWite 00000001
RT@ut CHAR 0000000b

Segnent: ' CONST' WORD USE32 0000000b bytes

0000 48 65 6¢c 6¢c 6f 20 77 6f L1 - Hello wo
0008 72 6¢c 64 - rld

No di sassenbly errors

Segment: /_DATA’ WORD USE32 00000008 bytes

0000 00 00 00 00 L2 DD DGROUP: L1
0004 Ob 00 00 00 -

No di sassenbly errors

Let us create aform of the listing file that can be used as input to an assembler.

Cwdis hello /l=hello.asm/r /a

The output will be produced inthefile hel | 0. asm The output, shown below, isthe result
of using the Open Watcom F77 compiler.

66 An Example

The Object File Disassembler

. 387
. 386p

DGROUP
CONST
L$1:

CONST
_DATA
L$2:

_DATA
_BSS
_BSS
_TEXT

FMAI N:
CALL

CALL

_TEXT

PUBLIC FMAIN

EXTRN ‘RT@OWite':BYTE
EXTRN ‘ RT@ut CHAR : BYTE
EXTRN ‘' RT@ndl O : BYTE

EXTRN __init_error:BYTE

EXTRN __init _english:BYTE
EXTRN __init_387_emulator:BYTE
EXTRN _cstart_:BYTE

GROUP CONST, _DATA, _BSS
SEGVENT PARA PUBLI C USE32 ' DATA

DB 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, Ox6f
DB 0x72, 0x6c, 0x64

ENDS

SEGVENT PARA PUBLI C USE32 ' DATA

DD L$1

DB 0x0b, 0x00, 0x00, 0x00

ENDS

SEGVENT PARA PUBLI C USE32 ' BSS

ENDS

SEGVENT BYTE PUBLI C USE32 ' CODE’
ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP

near ptr ‘RT@OWite'
EAX, of f set L$2
near ptr ‘RT@ut CHAR
near ptr ‘RT@ndl O
ENDS
END

An Example 67

Object File Utilities

68 An Example

5 Optimization of Far Calls

Optimization of far calls can result in smaller executable files and improved performance. It
is most useful when the automatic grouping of logical segments into physical segments takes
place. Note that, by default, automatic grouping is performed by the Open Watcom Linker.

The Open Watcom C, C++ and FORTRAN 77 compilers automatically enable the far call
optimization. The Open Watcom Linker will optimize far calls to procedures that reside in the
same physical segment asthe caller. For example, alarge code model program will probably
contain many far calls to procedures in the same physical segment. Since the segment address
of the caller is the same as the segment address of the called procedure, only anear call is
necessary. A near call does not require a relocation entry in the relocation table of the
executable file whereas afar call does. Thus, the far call optimization will result in smaller
executable files that will load faster. Furthermore, a near call will generally execute faster
than afar call, particularly on 286 and 386-based machines where, for applications running in
protected mode, segment switching isfairly expensive.

The following describes the far call optimization. The call far label instruction is converted
to one of the following sequences of code.

push cS seg Ss

cal | near | abel push cSs

nop cal | near | abel
Notes:

1. Thenop or seg ssinstruction is present since a call far label instruction isfive
bytes. The push csinstruction is one byte and the call near label instruction is
three bytes. The seg ssinstruction is used because it is faster than the nop
instruction.

2. Thecalled procedure will still use aretf instruction but since the code segment and
the near address are pushed on the stack, the far return will execute correctly.

3. Theposition of the padding instruction is chosen so that the return addressis word
aligned. A word aligned return address improves performance.

Optimization of Far Calls 69

Object File Utilities

4. When two consecutive call far label instructions are optimized and the first call
far label instruction is word aligned, the following sequence replaces both call far
label instructions.

push CS
cal | near | abel 1
seg SS
push cs
seg cs
cal | near | abel 2

5. If your program contains only near calls, this optimization will have no effect.

A far jJump optimization is also performed by the Open Watcom Linker. This has the same
benefits as the far call optimization. A jmp far label instruction to alocation in the same
segment will be replaced by the following sequence of code.

jmp near | abel
nov ax, ax

Note that for 32-bit segments, this instruction becomes nov eax, eax.

5.1 Far Call Optimizations for Non-Open Watcom
Object Modules

Thefar call optimization is automatically enabled when object modules created by the Open
Watcom C, C++, or FORTRAN 77 compilers are linked. These compilers mark those
segments in which this optimization can be performed. The following utility can be used to
enable this optimization for object modules that have been created by other compilers or
assemblers.

5.1.1 The Open Watcom Far Call Optimization Enabling Utility

Only DOS, 0OS/2 and Windows-hosted versions of the Open Watcom Far Call Optimization
Enabling Utility are available. A QNX-hosted version is not necessary since QNX-hosted
development tools that generate object files, generate the necessary information that enables
the far call optimization.

The format of the Open Watcom Far Call Optimization Enabling Utility isasfollows. Items

enclosed in square brackets are optional; items enclosed in braces may be repeated zero or
more times.

70 Far Call Optimizations for Non-Open Watcom Object Modules

Optimization of Far Calls

FCENABLE { [option] [file] }

where
option

file

description:
isan option and must be preceded by adash ('-') or slash ('/").
isafile specification for an object file or library file. If no file extensionis

specified, afile extension of "obj" isassumed. Wild card specifiers may be
used.

The following describes the command line options.

b

Notes:

1.

Do not create abackup file. By default, abackup file will be created. The
backup file name will have the same file name as the input file and afile
extension of "bob" for object files and "bak" for library files.

Specify alist of class names, each separated by acomma. This enables the far
call optimization for all segments belonging to the specified classes.

Specify alist of segment names, each separated by acomma. This enablesthe
far call optimization for all specified segments.

Specify alist of ranges, each separated by a comma, for which no far call
optimizations are to be made. A range has the following format.

seg_name start-end
or
seg_name start:length

seg_nameisthe name of asegment. start isan offset into the specified segment
defining the start of the range. end is an offset into the specified segment
defining the end of the range. length is the number of bytes from start to be
included in therange. All values are assumed to be hexadecimal.

If more than one class list or segment list is specified, only the last oneisused. A
class or segment list appliesto all object and library files regardless of their
position relative to the class or segment list.

Far Call Optimizations for Non-Open Watcom Object Modules 71

Object File Utilities

2. Arangelist applies only to thefirst object file following the range specification. 1f
the object file contains more than one module, the range list will only apply to the
first module in the object file.

The following examples illustrate the use of the Open Watcom Far Call Optimization
Enabling Utility.

Example:
fcenable /c code *. obj

In the above example, the far call optimization will be enabled for all segments belonging to
the "code" class.

Example:
fcenable /s _text *.obj

In the above example, the far call optimization will be enabled for all segments with name
Il_textll i

Example:
fcenable /x special 0:400 asnfile.obj

In the above example, the far call optimization will be disabled for the first 1k bytes of the
segment named "specia” in the object file "asmfile".

Example:
fcenable /x special O-ffffffff asnfile. obj

In the above example, the far call optimization will be disabled for the entire segment named
"specia" in the object file "asmfile".

72 Far Call Optimizations for Non-Open Watcom Object Modules

6 The Open Watcom Exe2bin Utility

The exe2bin utility strips off the header of a DOS executable file and applies any necessary
fixups. In addition, it is able to display the header and rel ocations of an executable filein
human readable format.

When DOS executes a program (supplied as an ".exe" file) it first reads the header of the
executable file and ensures there is enough memory to load the program. If thereis, DOS
loads the file — excluding the header — to memory. Before jumping to the entry point, DOS
has to adjust a number of certain locations that depend on the |oad address of the program.
These adjustments consist of the addition of the load address to each entry in the above
mentioned list of relocations. These relocations are part of the header of an executablefile.
The load address may vary from invocation to invocation, this creates the need for the
existence of relocations.

As exe2bin strips the executable header, the rel ocations are lost (among other things). This
would render the resulting output useless, if exe2bin were not to apply the relocations as part
of the conversion process. Just like DOS, exe2bin therefore needs to know the load address.
Thisis supplied viaan argument to exe2bin.

Some programs do not rely on the address they are being loaded at, and consequently do not
contain any relocations. In this case exe2bin merely copies the contents of the input file (apart
from the header) to the output file.

The phrase "binary part" (also "binary data") is used as atechnical term in the documentation
of exe2bin. It denotes the data following the header. The length of the binary datais
determined by the header entries"Size mod 512", "Number of pages’ and "Size of header". It
isnot directly related to the actual size of the input file.

Note: Although Open Watcom Exe2bin is capable of producing DOS".COM"
executables, this functionality isonly provided for compatibility with other tools. The
preferred way of generating ".COM" executablesis to use the Open Watcom Linker with
directive" f or mat dos coni. Refer tothe Open Watcom Linker Guide for details.

The Open Watcom Exe2bin Utility 73

Object File Utilities

6.1 The Open Watcom Exe2bin Utility Command Line

The format of the Open Watcom Exe2bin command lineis asfollows. Itemsenclosed in
square brackets ("[]") are optional.

EXE2BIN [options] exe file [bin_file]

where description:

options isalist of options, each preceded by adash ("-"). On non-UNIX platforms, a
slash ("/") may be also used instead of adash. Options may be specified in any
order. Supported options are:
h display the executable file header
r display the relocations of the executablefile
|=<seg> specify the load address of the binary file
X enable extended capabilities of Open Watcom Exe2bin

exe file isafile specification for a 16-bit DOS executable file used asinput. If no file
extension is specified, afile extension of ".exe" isassumed. Wild card specifiers
may not be used.

bin_file is an optiona file specification for abinary output file. 1f no file nameis given,
the extension of the input file is replaced by "bin" and taken as the name for the
binary output file.

Description:

1. If areany relocationsin the input file, the /I option becomes mandatory (and is
usel ess otherwise).

2. If exe2biniscalled without the /x option, certain restrictions to the input file apply
(apart from being avalid DOS executable file):

» the size of the binary data must be <= 64 KByte

* no stack must be defined, i.e. ss:sp = 0x0000:0x0000

74 The Open Watcom Exe2bin Utility Command Line

The Open Watcom Exe2bin Utility

« the code segment must be always zero, i.e. ¢s = 0x0000
* the initial instruction pointer must be either ip = 0x0000 or ip = 0x0100
None of the above restrictions apply if the /x option is supplied.

3. If csiip = 0x0000:0x0100 and the /x option is not specified, no relocations are
allowed in theinput file. Furthermore, exe2bin skips another 0x100 bytes
following the header (in addition to the latter).

This behaviour allows the creation of DOS".COM" executables and is

implemented for backward compatibility. It ishowever strongly suggested to use
the Open Watcom Linker instead (together with directive " f or mat dos conf

).
The examples below illustrate the use of Open Watcom Exe2bin.

Example:
exe2bi n prog. exe

Strips off the executable header from pr og. exe and writes the binary part to pr og. bi n.
If there are any relocationsin pr og. exe or if the input file violates any of the restrictions
listed above, the execution of exe2bin fails.

Example:
exe2bin -x prog. exe

Same as above but the " - x" option relaxes certain restrictions.

Note: Evenif exe2bin is sucessfully invoked with identical input files as in the preceding
examples (i.e. withvs. without /x) the output files may differ. This happenswhen cs:ip =
0x0000:0x0100 causes exe2hin to skip additional 0x100 bytes from the input file, if the
user did not specify /x.

The Open Watcom Exe2bin Utility Command Line 75

Object File Utilities

Example:
exe2bin /h prog.exe test.bin

Displaysthe header of pr og. exe , stripsit off and copiesthe binary part to t est . bi n.

Example:
exe2bin /h /r /x /1 =0xE000 bi os.exe bios.rom

Displays the header and the relocations (if any) of bi 0s. exe strips the header and applies
any fixupsto (i.e. relocates) bi os. exe asif it were to be loaded at 0xE000:0x0000. The
result will be writtento bi 0s. rom

The above command line may serve as an example of creating a 128 KByte BIOS image for
the PC-AT architecture.

6.2 Exe2bin Messages

Thisisalist of the diagnostic messages exe2bin may display, accompanied by more verbose
descriptions and some possible causes.

Error opening %s for reading.
Theinput executable file could not be opened for reading.

Check that the input file exists and exe2bin has read permissions.

Error opening %s for writing.
The output binary file could not be opened for writing.

Make sure the mediais not write protected, has enough free space to hold the
output file, and exe2bin has write permissions.

Error allocating file I/O buffer.
Thereis not enough free memory to allocate afile buffer.

Error reading while copying data.
An error occured while reading the binary part of the input file.

Thisismost likely due to a corrupted executable header. Run exe2bin with the
/h option and check the size reported. The size of the input file must be at |east
("Number of pages' - 1) * 512 + "Size mod 512". Omit decrementing the
number of pagesif "Size mod 512" happensto equal zero.

76 Exe2bin Messages

The Open Watcom Exe2bin Utility

Error writing while copying data.
The output binary file can not be written to.

Make sure the media has enough free space to hold the output file and is not
removed while writing to it.

Error. %s has no valid executable header.
The signature (the first two bytes of the input file) does not match "MZ".

exe2hin can only use valid DOS executable files as input.

Error allocating/reading reloc-table.
Thereis either not enough free memory to allocate a buffer for the relocations
(each relocation takes about 4 bytes) or there was an error while reading from
theinput file.

Error. Option " -I=<seg>" mandatory (there are relocations).
The executable file contains relocations. Therefore, exe2bin needs to know the
segment the binary output file is supposed to reside at.

Either provide a segment as an argument to the /I option or rewrite your
executable file to not contain any relocations.

Error: Binary part exceeds 64 KBytes.
The binary part of theinput fileislarger than 64 KBytes.

The restriction applies because the /x option was not specified. Check if the
extended behaviour is suitable or rewrite the program to shorten the binary part.

Error: Stack segment defined.
The header defines an initia stack, i.e. ss:sp != 0x0000:0x0000.

The restriction applies because the /x option was not specified. Check if the
extended behaviour is suitable or rewrite the program to not have a segment of
class "stack”.

Error: CS:IP neither 0x0000: 0x0000 nor 0x0000: 0x0100.
The header definesan initia cs:ip not matching any of the two values.

The restriction applies because the /x option was not specified. Check if the

extended behaviour is suitable or rewrite the program to have a different entry
point (cf. Open Watcom Linker "opti on start"”).

Exe2bin Messages 77

Object File Utilities

Error: com-file must not have relocations.
Although the binary part is <= 64 KByte in length, there is no stack defined and
the csip is 0x0000:0x0100, i.e. exe2bin assumesyou try to generate a".COM"
executable, there are relocations in the input file.

".COM" files are not allowed to contain relocations. Either produce an ".EXE"
fileinstead or rewrite the program to avoid the need for relocations. In order to
do the latter, look for statements that refer to segments or groups such as nov
ax, _TEXTornmov ax, DGROUP.

78 Exe2bin Messages

Executable Image Utilities

Executable Image Utilities

80

/ The Open Watcom Patch Utility

7.1 Introduction

The Open Watcom Patch Utility is a utility program which may be used to apply patches or
bug fixes to Open Watcom’s compilers and its associated tools. As problems are reported and
fixed, patches are created and made available on Open Watcom’s BBS, Open Watcom’s FTP
site, or CompusServe for usersto download and apply to their copy of the tools.

7.2 Applying a Patch

The format of the BPATCH command lineis:

BPATCH [options] patch_file

The square brackets [] denote items which are optional.
where description:

options isalist of valid Open Watcom Patch Utility options, each preceded by a dash
("-"). Options may be specified in any order. The possible options are:

-p Do not prompt for confirmation
-b Do not create a .BAK file
-q Print current patch level of file

patch_file isthefile specification for a patch file provided by Open Watcom.

Suppose a patch file called "wlink.a" is supplied by Open Watcom to fix abug in thefile
"WLINK.EXE". The patch may be applied by typing the command:

bpatch wink.a

Applying a Patch 81

Executable Image Utilities

The Open Watcom Patch Utility locates the file C: \ WATCOM BI NW WLI NK. EXE using the
PATH environment variable. The actual name of the executable file is extracted from thefile
w i nk. a. Itthen verifiesthat the file to be patched is the correct one by comparing the size
of the file to be patched to the expected size. If the file sizes match, the program responds
with:

Ok to nodify ' C\WATCOM Bl N\ LI NK. EXE’ ? [y] n]

If you respond with "yes', BPATCH will modify the indicated file. If you respond with "no",
BPATCH aborts. Once the patch has been applied the resulting fileis verified. First thefile
sizeis checked to make sure it matches the expected file size. If the file size matches, a
check-sum is computed and compared to the expected check-sum.

Notes:

1. If anerror message isissued during the patch process, the file that you specified to
be patched will remain unchanged.

2. If asequence of patch files exist, such as "wlink.a", "wlink.b" and "wlink.c", the
patches must be applied in order. That is, "wlink.a" must be applied first followed
by "wlink.b" and finally "wlink.c".

7.3 Diagnostic Messages

82

If the patch cannot be successfully applied, one of the following error messages will be
displayed.

Usage: BPATCH {-p} {-q} {-b} <file>
-p = Do not prompt for confirmation
-b = Do not create a .BAK file
-q = Print current patch level of file
The command line was entered with no arguments.

File’%s has not been patched
This message isissued when the "-q" option is used and the file has not been
patched.

File'%s hasbeen patched to level ' %s
This message isissued when the "-q" option is used and the file has been
patched to the indicated level.

Diagnostic Messages

The Open Watcom Patch Utility

File’%s has already been patched to level *%s’ - skipping
This message is issued when the file has already been patched to the same level
or higher.

Command line may only contain one file name
More than one file name is specified on the command line. Make surethat "/" is
not used as an option delimiter.

Command line must specify a file name
No file name has been specified on the command line.

"%s' isnot a Open Watcom patch file
The patch fileis not of the required format. The required header information is
not present.

"%s' isnot a valid Open Watcom patch file
The patch fileis not of the required format. The required header information is
present but the remaining contents of the file have been corrupted.

"%s’ isthewrong size (%lul). Should be (%lu2)
The size of the file to be patched (%lul) is not the same as the expected size
(%6lu2).

Cannot find* %s
Cannot find the executabl e to be patched.

Cannot open ’%s
An error occurred while trying to open the patch file, the file to be patched or the
resulting file.

Cannot read ' %s
An input error occurred while reading the old version of the file being patched.

Cannot rename’ %s’ to '%s
The file to be patched could not be renamed to the backup file name or the
resulting file could not be renamed to the name of the file that was patched.

Cannot writeto’ %s
An output error occurred while writing to the new version of thefileto be
patched.

/O error processing file’ %s
An error occurred while seeking in the specified file.

Diagnostic Messages 83

Executable Image Utilities

No memory for %s
An attempt to allocate memory dynamically failed.

Patch program aborted!
Thismessageisissued if you answered no to the "OK to modify" prompt.

Resulting file has wrong checksum (%lu) - Should be (%6lu2)
The check-sum of the resulting file (%lu) does not match the expected
check-sum (%lu2). This messageisissued if you have patched the wrong
version.

Resulting file haswrong size (%lul) - Should be (%lu2)

The size of the resulting file (%lul) does not match the expected size (%0lu2).
This message isissued if you have patched the wrong version.

84 Diagnostic Messages

8 The Open Watcom Strip Utility

8.1 Introduction

The Open Watcom Strip Utility may be used to manipulate information that is appended to the
end of an executablefile. The information can be either one of two things:

1. Symbolic debugging information
2. Resourceinformation

This information can be added or removed from the executable file. Symbolic debugging
information is placed at the end of an executable file by the Open Watcom Linker or the Open
Watcom Strip Utility. Resourceinformationis placed at the end of an executable by a
resource compiler or the Open Watcom Strip Utility.
Once a program has been debugged, the Open Watcom Strip Utility allows you to remove the
debugging information from the executable file so that you do not have to remove the
debugging directives from the linker directive file and link your program again. Removal of
the debugging information reduces the size of the executable image.
All executable files generated by the Open Watcom Linker can be specified as input to the
Open Watcom Strip Utility. Notethat for executable files created for Novell’s NetWare
operating system, debugging information created using the "NOVELL" optionin the
"DEBUG" directive cannot be removed from the executable file. Y ou must remove the
"DEBUG" directive from the directive file and re-link your application.
The Open Watcom Strip Utility currently runs under the following operating systems.

* DOS

» 0S/2

* QONX

» Windows NT/2000/XP

» Windows 95/98/Me

Introduction 85

Executable Image Utilities

8.2 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility command line syntax is:

WSTRIP [optiong] input_file [output_fil€] [info_fil€]

where:
1 The square brackets denote items which are optional .
options
/n (noerrors) Do not issue any diagnostic message.
/q (quiet) Do not print any informational messages.
Ir (resources) Process resource information rather than debugging
information.
/a (add) Add information rather than remove information.

input_file isafile specification for the name of an executable file. If no file extension is
specified, the Open Watcom Strip Utility will assume one of the following
extensions: "exe", "dIl", "exp", "rex", "nlm", "dsk", "lan", "nam", "md", "cdm",
"ham", "gnx" or no file extension. Note that the order specified in the list of file
extensionsis the order in which the Open Watcom Strip Utility will select file

extensions.

output_file isan optional file specification for the output file. If no file extension is
specified, the file extension specified in the input file name will be used for the
output file name. If "." is specified, the input file name will be used.

info_file isan optional file specification for the file in which the debugging or resource
information is to be stored (when removing information) or read (when adding
information). If no file extension is specified, afile extension of "sym" is
assumed for debugging information and "res" for resource information. To
specify the name of the information file but not the name of an output file, a"."
may be specified in place of output_file.

86 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility

Description:

1

If the"r" (resource) option is not specified then the default action isto add/remove
symbolic debugging information.

If the"a" (add) option is not specified then the default action isto remove
information.

If output_file is not specified, the debugging or resource information is added to or
removed from input_file.

If output_file is specified, input_fileis copied to output_file and the debugging or
resource information is added to or removed from output_file. input_file remains
unchanged.

If info_fileis specified then the debugging or resource information that is added to
or removed from the executable fileis read from or written to thisfile. The
debugging or resource information may be appended to the executable by
specifying the "a"' (add) option. Also, the debugging information may be appended
to the executable by concatenating the debugging information file to the end of the
executable file (the files must be treated as binary files).

During processing, the Open Watcom Strip Utility will create atemporary file,
ensuring that afile by the chosen name does not already exist.

8.3 Strip Utility Messages

The following messages may be issued by the Open Watcom Strip Utility.

Usage: WSTRIP [optiong] input_file [output_file] [info_fil€]

options: (-option is also accepted)
/n don’t print warning messages
/g don’t print informational messages
/v process resource information rather than debugging information
/a add information rather than delete information
input_file: executablefile
output_file: optional output executableor ’.’
info_file: optional output debugging or resource information file
or input debugging or resource informational file
The command line was entered with no arguments.

Strip Utility Messages 87

Executable Image Utilities

Too low on memory
Thereis not enough free memory to allocate file buffers.

Unableto find ' %s
The specified file could not be located.

Cannot create temporary file
All the temporary file names arein use.

Unable to open '%s' toread
Theinput executable file cannot be opened for reading.

'%s isnot a valid executablefile
The input file has invalid executable file header information.

"%s' does not contain debugging information
There is nothing to strip from the specified executablefile.

Seek error on ' %s
An error occurred during a seek operation on the specified file.

Unableto create output file’ %s
The output file could not be created. Check that the output disk is not
write-protected or that the specified output fileis not marked "read-only".

Unable to create symbol file’ %s
The symbol file could not be created.

Error reading ' %s
An error occurred while reading the input executable file.

Error writing to ' %s
An error occurred while writing the output executabl e file or the symbol file.
Check the amount of free space on the output disk. If the input and output files
reside on the same disk, there might not be enough room for a second copy of
the executable file during processing.

Cannot erasefile’ %s
Theinput executable file is probably marked "read-only" and therefore could not
be erased (the input file is erased whenever the output file has the same name).

Cannot rename file ' %s’

The output executable file could not be renamed. Ordinarily, this should never
occur.

88 Strip Utility Messages

The Make/Touch Utilities

The Make/Touch Utilities

90

9 The Open Watcom Make Utility

9.1 Introduction

The Open Watcom Make utility is useful in the development of programs and text processing
but is general enough to be used in many different applications. Make uses the fact that each
file has atime-stamp associated with it that indicates the last time the file was updated. Make
uses this time-stamp to decide which files are out of date with respect to each other. For
instance, if we have an input data file and an output report file we would like the output report
file to accurately reflect the contents of the input datafile. In terms of time-stamps, we would
like the output report to have a more recent time-stamp than the input data file (we will say
that the output report file should be "younger" than the input datafile). If theinput file had
been modified then we would know from the younger time-stamp (in comparison to the report
file) that the report file was out of date and should be updated. Make may be used in this and
many other situations to ensure that files are kept up to date.

Some readers will be quite familiar with the concepts of the Make file maintenance tool.
Open Watcom Make is patterned after the Make utility found on UNIX systems. The next
major section is simply intended to summarize, for reference purposes only, the syntax and
options of Make's command line and special macros. Subsequent sections go into the
philosophy and capabilities of Open Watcom Make. |f you are not familiar with the

capabilities of the Make utility, we recommend that you skip to the next major section entitled
"Dependency Declarations' and read on.

9.2 Open Watcom Make Reference

The following sub-sections serve as a reference guide to the Open Watcom Make utility.

9.2.1 Open Watcom Make Command Line Format

The formal Open Watcom Make command line syntax is shown below.

Open Watcom Make Reference 91

The Make/Touch Utilities

WMAKE [options] [macro_defs] [targets]

Asindicated by the square brackets|[], al items are optional .

options isalist of valid Open Watcom Make options, each preceded by aslash (/") or a
dash ("—"). Options may be specified in any order.

macro_defs isalist of valid Open Watcom Make macro definitions. Macro definitions are
of the form:

A=B

and are readily identified by the presence of the "=" (the "#" character may be
used instead of the "=" character if necessary). Surround the definition with
quotes (") if it contains blanks (e.g., "debug_opt=debug all"). The macro
definitions specified on the command line supersede any macro definitions
defined in makefiles. Macro names are case-insensitive unless the "ms" option
is used to select Microsoft NMAKE mode.

targets is one or more targets described in the makefile.

9.2.2 Open Watcom Make Options Summary

92

In this section, we present aterse summary of the Open Watcom Make options. This
summary is displayed on the screen by smply entering "WMAKE ?' on the command line.

Example:
Cwrake ?
/a make all targets by ignoring time-stamps
/b block/ignore all implicit rules
lc do not verify the existence of files made
/d debug mode - echo all work as it progresses
le always erase target after error/interrupt (disables prompting)
/f the next parameter is aname of dependency description file
/h do not print out Make identification lines (no header)
/i ignore return status of all commands executed
Kk on error/interrupt: continue on next target
Nl the next parameter is the name of a output log file

Open Watcom Make Reference

The Open Watcom Make Utility

/m do not search for MAKEINIT file

/ms Microsoft NMAKE mode

/n no execute mode - print commands without executing
/o use circular implicit rule path

Ip print the dependency tree as understood from the file
/q guery mode - check targets without updating them

Ir do not use default definitions

Is silent mode - do not print commands before execution
/sn noisy mode - always print commands before execution
It touch filesinstead of executing commands

fu UNIX compatibility mode

v verbose listing of inlinefiles

ly show why atarget will be updated

/z do not erase target after error/interrupt (disables prompting)

9.2.3 Command Line Options

Command line options, available with Open Watcom Make, alow you to control the
processing of the makefile.

a
make all targets by ignoring time-stamps
The"d" option is a safe way to update every target. For program maintenance, it isthe
preferred method over deleting object files or touching source files.

b
block/ignore al implicit rules
The"b" option will indicate to Make that you do not want any implicit rule checking done.
The"b" option is useful in makefiles containing double colon *::" explicit rules because an
implicit rule search is conducted after a double colon "::" target is updated. Including the
directive . BLOCK in a makefile also will disable implicit rule checking.

c

do not verify the existence of files made

Make will check to ensure that atarget exists after the associated command list is executed.
The target existence checking may be disabled with the "c" option. The"c" option isuseful in
processing makefiles that were developed with other Make utilities. The . NOCHECK
directive is used to disable target existence checksin a makefile.

Open Watcom Make Reference 93

The Make/Touch Utilities

debug mode - echo all work as it progresses

The"d" option will print out information about the time-stamp of files and indicate how the
makefile processing is proceeding.

always erase target after error/interrupt (disables prompting)
The"€e" option will indicate to Make that, if an error or interrupt occurs during makefile

processing, the current target being made may be deleted without prompting. The . ERASE
directive may be used as an equivalent option in a makefile.

the next parameter is a name of dependency description file

The "f" option specifies that the next parameter on the command line is the name of a
makefile which must be processed. If the"f" option is specified then the search for the default
makefile named "MAKEFILE" is not done. Any number of makefiles may be processed with
the "f" option.

Example:
wrake /f nyfile
wrake /f nyfilel /f nyfile2

do not print out Make identification lines (no header)

The"h" option is useful for less verbose output. Combined with the"q" option, thisallows a
batch file to silently query if an application is up to date. Combined with the "n" option, a
batch file could be produced containing the commands necessary to update the application.

ignore return status of all commands executed

The"i" option is equivalent to the . | GNORE directive.

on error/interrupt: continue on next target

94 Open Watcom Make Reference

The Open Watcom Make Utility

ms

Make will stop updating targets when a non-zero statusis returned by a command. The "k"
option will continue processing targets that do not depend on the target that caused the error.
The . CONTI NUE directive in amakefile will enable this error handling capability.

the next parameter is the name of a output log file

Make will output an error message when a hon-zero status is returned by a command. The"l"
option specifies afile that will record all error messages output by Make during the processing
of the makefile.

do not search for the MAKEINIT file

The default action for Make is to search for aninitiaization file called "MAKEINIT" or
"TOOLS.INI" if the "ms" optionis set. The"m" option will indicate to Make that processing
of the MAKEINIT fileis not desired.

Microsoft NMAKE mode

The default action for Make is to process makefiles using Open Watcom syntax rules. The
"ms" option will indicate to Make that it should process makefiles using Microsoft syntax
rules. For example, the line continuation in NMAKE is abackslash ("\") at the end of the line.

no execute mode - print commands without executing

The"n" option will print out what commands should be executed to update the application
without actually executing them. Combined with the "h" option, a batch file could be
produced which would contain the commands necessary to update the application.

Example:
wrake /h /' n >update. bat
updat e

Thisisuseful for applications which require all available resources (memory and devices) for
executing the updating commands.

Open Watcom Make Reference 95

The Make/Touch Utilities

use circular implicit rule path
When this option is specified, Make will use a circular path specification search which may

save on disk activity for large makefiles. The"o" option isequivalent to the . OPTI M ZE
directive.

print out makefile information

The"p" option will cause Make to print out information about all the explicit rules, implicit
rules, and macro definitions.

guery mode - check targets without updating them

The"q" option will cause Make to return a status of 1 if the application requires updating; it
will return a status of 0 otherwise. Hereis a example batch file using the "g" option:

Example:
wrake /g
if errorstatus 0 goto noupdate
wrake /g /h /n >\tnp\update. bat
call \tnp\update. bat
: noupdat e

do not use default definitions

The default definitions are:

96 Open Watcom Make Reference

The Open Watcom Make Utility

_ _MAKEOPTS_ _ = <options passed to WMAKE>
__MAKEFILES__ = <list of makefiles>
__VERSION__ = <version number>

_ _LOADDLL__= defined if DLL loading supported
__MSDOS__ = defined if MS/DOS version

__NT__ = defined if Windows NT version
__NT386__ = defined if x86 Windows NT version
__082__ = defined if 0S/2 version

__ONX__ = defined if QNX version

__LINUX__ = defined if Linux version
__LINUX386__ = defined if x86 Linux version
__UNIX__ = defined if QNX or Linux version
MAKE = <nane of file containing WAKE>

#endi f

clear .EXTENSIONS |i st

. EXTENSI ONS

In general,
set .EXTENSIONS |ist as follows
.EXTENSIONS: .exe .nIm.dsk .lan .exp &
.lib .obj &
&
.asm.c .cpp .cxx .cc .for .pas .cob &
.h .hpp .hxx .hh .fi .mf .inc

For Microsoft NMAKE compatibility (when you use the "ms" option), the following default
definitions are established.

Open Watcom Make Reference 97

The Make/Touch Utilities

For Mcrosoft NMAKE conpatibility swtch,
set .EXTENSIONS |ist as follows
. EXTENSI ONS: .exe .obj .asm.c .cpp .cxx &
.bas .cbl .for .f .f90 .pas .res .rc

$MAKEFLAGS=$ ($MAKEFLAGS) $(__MAKEOPTS_)
MAKE=<nanme of file containing WRAKE>

AS=mi
BC=bc
CC=cl
COBOL=cobol
CPP=cl
CXX=cl
FOR=f |
PASCAL =pl
RC=rc
. asm exe:

$(AS) $(AFLAGS) $*.asm
.asm obj :

$(AS) $(AFLAGS) /c $*.asm
. C. exe:

$(CC) $(CFLAGS) $*.c
.C.obj:

$(CCO $(CFLAGS) /c $*.c
. Cpp. exe:

$(CPP) $(CPPFLAGS) $*.cpp
. cpp. obj :

$(CPP) $(CPPFLAGS) /c $*.cpp
. CXX. exe:

$(CXX) $(CXXFLAGS) $*.cxx
. CXX. 0obj :

$(CXX) $(CXXFLAGS) $*.cxx
. bas. obj :

$(BC) $(BFLAGS) $*. bas
. cbl . exe:

$(COBOL) $(COBFLAGS) $*.cbl, $*.exe;
.cbl . obj:

$(COBAL) $(COBFLAGS) $*.chl;
.f.exe:

$(FOR) $(FFLAGS) $*.f
.f.obj:

$(FOR) /c $(FFLAGS) $*.f
. 190. exe:

$(FOR) $(FFLAGS) $*.f90
.190. obj :

$(FOR) /c $(FFLAGS) $*.f90
.for.exe:

98 Open Watcom Make Reference

The Open Watcom Make Utility

$(FOR) $(FFLAGS) $*.for
.for.obj:

$(FOR) /c $(FFLAGS) $*.for
. pas. exe:

$(PASCAL) $(PFLAGS) $*. pas
. pas. obj :

$(PASCAL) /c $(PFLAGS) $*.pas
.rc.res:

$(RC) $(RFLAGS) /r $*

For OS/2, the __MsDOS__ macro will bereplaced by __0s2__ and for Windows NT, the
__MsDOS__ macrowill bereplacedby __NT__.

For UNIX make compatibility (when you use the "u" option), the following default definition
is established.

Open Watcom Make Reference 99

The Make/Touch Utilities

.EXTENSI ONS: .exe .obj .c .y .|l .f

$MAKEFLAGS=$ ($MAKEFLAGS) $(__MAKEOPTS__)
MAKE=<nane of file containi ng WAKE>
YACC=yacc
YFLAGS=
LEX=I ex
LFLAGS=
LDFLAGS=
CC=cl
FC=f I
. asm exe:
$(AS) $(AFLAGS) $*.asm
. C. exe:
$(CC $(CFLAGS) $(LDFLAGS) -0 $@ $<
.f.exe:
$(FC $(FFLAGS) $(LDFLAGS) -0 $@ $<
. C.0bj:
$(CC) $(CFLAGS) -c $<
.f.obj:
$(FC) $(FFLAGS) -c $<
.y.obj:
$(YACO) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c

del y.tab.c
move y.tab.obj $@
1. obj:

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
del lex.yy.c
nove | ex.yy.obj $@
y.C:
$(YACO) $(YFLAGS) $<
nmove y.tab.c $@
e
$(LEX) $(LFLAGS) $<
nmove |lex.yy.c $@

The"r" option will disable these definitions before processing any makefiles.

silent mode - do not print commands before execution

The"s' option isequivaent to the . SI LENT directive.

100 Open Watcom Make Reference

The Open Watcom Make Utility

Sn

noisy mode - always print commands before execution

The"sn" option overrules all silencing controls. It can be used to assist in debugging a
makefile.

touch filesinstead of executing commands
Sometimes there are changes which are purely cosmetic (adding a comment to a source fil€)
that will cause targets to be updated needlessly thus wasting computer resources. The "t"

option will make files appear younger without altering their contents. The "t" option is useful
but should be used with caution.

UNIX compatibility mode

The"u" option will indicate to Make that the line continuation character should be a backslash
"\" rather than an ampersand "&".

The"v" option enables averbose listing of inline temporary files.

The"y" option enables the display of a progress line denoting which dependent file has
caused atarget to be updated. Thisisauseful option for helping to debug makefiles.

do not erase target after error/interrupt (disables prompting)
The"Z" option will indicate to Make that if an error or interrupt occurs during makefile

processing then the current target being made should not be deleted. The . HOLD directivein
amakefile has the same effect asthe "z" option.

Open Watcom Make Reference 101

The Make/Touch Utilities

9.2.4 Special Macros
Open Watcom Make has many different special macros. Here are some of the simpler ones.
Macro Expansion
$$ represents the character "$"
$# represents the character "#"
$@ full file name of the target
$ target with the extension removed
$< list of all dependents
$? list of dependents that are younger than the target

The following macros are for more sophisticated makefiles.

Macro
__MSDOSs__
_NT__
_0s2

_ LINUX__
ONX
__UNIX__

__MAKEOPTS__

__MAKEFILES _

MAKE

__VERSION__

Expansion

This macro is defined in the MS/DOS environment.
Thismacro is defined in the Windows NT environment.
This macro is defined in the OS/2 environment.

This macro is defined in the Linux environment.

This macro is defined in the QNX environment.

This macro is defined in the Linux or QNX environment.

contains all of the command line options that WMAKE was invoked
with except for any use of the "f" or "n" options.

contains the names of all of the makefiles processed at the time of
expansion (includes the file currently being processed)

contains the full name of the file that contains WMAKE

contains the wmake version.

The next three tables contain macros that are valid during execution of command lists for
explicit rules, implicit rules, and the . ERROR directive. The expansion is presented for the

following example:

102 Open Watcom Make Reference

The Open Watcom Make Utility

Example:

a:\dir\target. ext

Macro

@
$/\~k
&
.
N

Macro

s@
>
$[&
9.
9

Macro

$@
$*
$l&

$):

Expansion

a\dir\target.ext
a\dir\target
target
target.ext
a\din\

Expansion

b:\dir1\depl.ex1
b:\dir1\depl
depl

depl.exl
b:\dir1\

Expansion

c:\dir2\dep2.ex2
c:\dir2\dep2
dep2

dep2.ex2
c:\dir2\

b:\diri\depl. exl c:\dir2\dep2. ex2

9.3 Dependency Declarations

In order for Open Watcom Make to be effective, alist of file dependencies must be declared.
The declarations may be entered into atext file of any name but Make will read afile called
"MAKEFILE" by default if it isinvoked as follows:

Example:

Cwrake

If you want to use afile that is not called "MAKEFILE" then the command line option "f" will
cause Make to read the specified file instead of the default "MAKEFILE".

Dependency Declarations 103

The Make/Touch Utilities

Example:
Cwrake /f nmyfile

We will now go through an example to illustrate how Make may be used for asimple
application. Suppose we have an input file, areport file, and areport generator program then
we may declare a dependency as follows:

#
(a comrent in a makefile starts with a "#")
sinpl e dependency decl aration
#
bal ance. |l st : |edger. dat
dor eport

Note that the dependency declaration starts at the beginning of aline while commands always
have at least one blank or tab before them. Thisform of a dependency declarationis called an
explicit rule. Thefile"BALANCE.LST" iscalled thetarget of the rule. The dependent of the
ruleisthefile"LEDGER.DAT" while "DOREPORT" forms one line of the rule command
list. The dependent is separated from the target by a colon.

Hint: A good habit to develop is to always put spaces around the colon so that it will not
be confused with drive specifications (e.g., &).

The explicit rule declaration indicates to Make that the program "DOREPORT" should be
executed if "LEDGER.DAT" isyounger than "BALANCE.LST" or if "BALANCE.LST" does
not yet exist. In general, if the dependent file has a more recent modification date and time
than the target file then Open Watcom Make will execute the specified command.

Note: The terminology employed hereis used by S.I.Feldman of Bell Laboratoriesin
Make - A Program for Maintaining Computer Programs.
http://www.softlab.ntua.gr/facilities’documentati on/unix/docs/make.txt has a copy of this
seminal article. Confusion often arises from the use of the word "dependent”. In this
context, it means "a subordinate part". Inthe example, "LEDGER.DAT" is a subordinate
part of the report "BALANCE.LST".

104 Dependency Declarations

The Open Watcom Make Utility

9.4 Multiple Dependents

Suppose that our report "BALANCE.LST" becomes out-of-date if any of the files
"LEDGER.DAT", "SALES.DAT" or "PURCHASE.DAT" are modified. We may modify the
dependency rule asfollows:

#

multiple dependents rule

#

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

Thisis an example of arule with multiple dependents. In this situation, the program
"DOREPORT" should be executed if any of "LEDGER.DAT", "SALES.DAT" or
"PURCHASE.DAT" are younger than "BALANCE.LST" or if "BALANCE.LST" does not
yet exist. In cases where there are multiple dependents, if any of the dependent files has a
more recent modification date and time than the target file then Open Watcom Make will
execute the specified command.

9.5 Multiple Targets

Suppose that the "DOREPORT" program produces two reports. If both of these reports
require updating as aresult of modification to the dependent files, we could change the rule as

follows:
#
multiple targets and multiple dependents rule
#
bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

dor eport
Suppose that you entered the command:
wnake
which causes Make to start processing the rules described in "MAKEFILE". Inthe case
where multiple targets are listed in the makefile, Make will, by default, process only the first
target it encounters. In the example, Make will check the date and time of "BALANCE.LST"
against its dependents since thisis the first target listed.

To indicate that some other target should be processed, the target is specified as an argument
to the Make command.

Multiple Targets 105

The Make/Touch Utilities

Example:
wrake sunmary. | st

There are a number of interesting points to consider:

1. By default, Make will only check that the target file exists after the command
("DOREPORT" in this example) is executed. It does not check that the target’s
time-stamp shows it to be younger. If the target file does not exist after the
command has been executed, an error is reported.

2. Thereisno guarantee that the command you have specified does update the target
file. In other words, smply because you have stated a dependency does not mean
that one exists.

3. Furthermore, it isnot implied that other targetsin our list will not be updated. In
the case of our example, you can assume that we have designed the "doreport"
command to update both targets.

9.6 Multiple Rules

A makefile may consist of any humber of rules. Note that the following:

targetl target2 : dependentl dependent2 dependent3
command | i st

isequivalent to:

targetl : dependentl dependent2 dependent 3
command |i st

target2 : dependentl dependent2 dependent3
conmand |i st

Also, the rules may depend on the targets of other rules.

106 Multiple Rules

The Open Watcom Make Utility

#

rule 1: this rule uses rule 2

#

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat
doreport

#

rule 2. used by rules 1 and 3

#

sal es. dat : canada. dat engl and. dat usa. dat
dosal es

#

rule 3: this rule uses rule 2

#

year.|st : |edger.dat sal es.dat purchase. dat
doyearly

The dependents are checked to seeif they are the targets of any other rulesin the makefilein
which case they are updated. This process of updating dependents that are targets in other
rules continues until aruleis reached that has only simple dependents that are not targets of
rules. Atthispoint, if thetarget does not exist or if any of the dependents is younger than the
target then the command list associated with the rule is executed.

Hint: Theterm "updating”, in this context, refers to the process of checking the
time-stamps of dependents and running the specified command list whenever they are
out-of-date. Whenever adependent is the target of some other rule, the dependent must bej
brought up-to-date first. Stated another way, if "A" dependson "B" and "B" depends on
"C" and "C" isyounger than "B" then we must update "B" before we update "A".

Make will check to ensure that the target exists after its associated command list is executed.
The target existence checking may be disabled in two ways:

1. usethe command line option "c"
2. usethe. NOCHECK directive.

The rule checking returns to the previous rule that had the target as a dependent. Upon
returning to the rule, the command list is executed if the target does not exist or if any of the
updated dependents are now younger than the target. If you were to type:

wrake

Multiple Rules 107

The Make/Touch Utilities

here are the steps that would occur with the previous makefile:

updat e(bal ance.lst) (rule 1)

updat e(| edger . dat) (not a target)
updat e(sal es. dat) (found rule 2)
updat e(canada. dat) (not a target)
updat e(engl and. dat) (not a target)
updat e(usa. dat) (not a target)
| F sal es. dat does not exi st OR

any of (canada. dat, engl and. dat, usa. dat)
i s younger than sal es. dat
THEN execut e "dosal es"

updat e(pur chase. dat) (not a target)
| F bal ance. | st does not exi st OR
any of (| edger.dat, sal es. dat, purchase. dat)
i s younger than (bal ance. |l st)
THEN execute "doreport™”

The third rule in the makefile will not be included in this update sequence of steps. Recall
that the default target that is "updated” isthe first target in the first rule encountered in the
makefile. Thisisthe default action taken by Make when no target is specified on the
command line. If you wereto type:

wnake year. | st

then thefile"YEAR.LST" would be updated. AsMakereadstherulesin"MAKEFILE", it
discoversthat updating "Y EAR.LST" involves updating "SALES.DAT". The update
sequence is similar to the previous example.

9.7 Command Lists

A command list is a sequence of one or more commands. Each command is preceded by one
or more spaces or tabs. Command lists may also be used to construct inline files "on the fly".
Macros substitute in command listsand in inlinefiles. Aninlinefileisintroduced by "<<" in
acommand in acommand list. Datato insert into that fileis placed (left-justified) in the
command list. Thedataisterminated by "<<" inthefirst column. Itisnot possibleto placea
line which starts "<<" in an inline file. More than one inline file may be created in a
command. Datafor each isplaced in order of reference in the command.

In building the Open Watcom system, it is sometimes necessary to do some text substitution
with aprogram called vi. Thisneedsafile of instructions. The following simplifies an

108 Command Lists

The Open Watcom Make Utility

example used to build Open Watcom so that inline files may be shown. Without inlinefiles,
thisisdone as:

$(dl I name).inp : $(dllnanme).lbc ../../trimbc.vi
cp $(dl I name). | bc $(dl I nane).inp
$(vi) -s ../../trimbc.vi $(dllnane).inp

where trimbc.vi consists of

set magic

set magicstring = ()

atom c

O%s/\.dl1 /"]

%/ NN) L F)ONT)N [0-9] 4B/ VIV 2 V3. T 27
X

A doubled "$" to produce a single dollar is notable when an inlinefile is used:

$(dl I name).inmp : $(dllname). | bc
cp $(dl I name).lbc $(dl I nane).inp
$(vi) -s << $(dllnane).inp
set magic
set magicstring = ()
atom c
Ys/\.dll]
s/ AN+)(LF) N)V [0-9] +$S/ V1V 2\ 3.\ 2"
X
<<

A filename may follow a"<<" on acommand line to cause afile with that name to be created.
(Otherwise, "WMAKE' chooses aname.) "keep" or "nokeep" may follow aterminating "<<"
to show what to do with the file after usage. The default is"nokeep” which zapsit.

9.8 Final Commands (.AFTER)

The . AFTER directive specifies commands for Make to run after it has done all other
commands. See the section entitled "Command List Directives' on page 157 for afull
description of its use.

Final Commands (.AFTER) 109

The Make/Touch Utilities

9.9 Ignoring Dependent Timestamps ((ALWAYS)
The. ALWAYS directive indicates to Make that the target should always be updated regardless
of the timestamps of its dependents.

#
.always directive
#

foo : bar .always
wt ouch $@

foo is updated each time Make isrun.

9.10 Automatic Dependency Detection
((AUTODEPEND)

Explicit listing of dependenciesin a makefile can often be tedious in the development and
maintenance phases of a project. The Open Watcom F77 compiler will insert dependency
information into the object file asit processes source files so that a complete snapshot of the
files necessary to build the object file are recorded. Since al files do not have dependency
information contained within them in a standard form, it is necessary to indicate to Make
when dependencies are present.

To illustrate the use of the . AUTODEPEND directive, we will show itsusein an implicit rule
and in an explicit rule.

#
. AUTODEPEND exanpl e
#
.for.obj: . AUTODEPEND
wfc386 S$[* $(compile options)

test.exe : a.obj b.obj c.obj test.res
w ink FILE a.obj, b.obj, c.obj
wec /q /bt=windows test.res test.exe

test.res : test.rc test.ico . AUTODEPEND
wc /ad /g /bt=windows /r $[@$"@

In the above example, Make will use the contents of the object file to determine whether the

object file has to be built during processing. The Open Watcom Resource Compiler can also
insert dependency information into a resource file that can be used by Make.

110 Automatic Dependency Detection (AUTODEPEND)

The Open Watcom Make Utility

9.11 Initial Commands (.BEFORE)

The . BEFORE directive specifies commands for Make to run before it does any other
command. See the section entitled "Command List Directives' on page 157 for afull
description of its use.

9.12 Disable Implicit Rules (.BLOCK)

The . BLOCK directive and the "b" command line option are alternative controls to cause
implicit rulesto beignored. See the section entitled "Command Line Options' on page 93 for
afull description of its use.

9.13 Ignoring Errors (.CONTINUE)

The . CONTI NUE directive and the "b" command line option are alternative controls to cause
failing commandsto be ignored. See the section entitled "Command Line Options' on page
93 for afull description of its use.

#
.continue exanple
#

.continue

all: bad good
@mul |

bad:
fal se

good:
touch $@

Although the command list for bad fails, that for good is done. Without the directive, good is
not built.

Ignoring Errors (.CONTINUE) 111

The Make/Touch Utilities

9.14 Default Command List (DEFAULT)

The . DEFAULT directive provides a default command list for those targets which lack one.
See the section entitled "Command List Directives' on page 157 for afull description of its

use.

#

.default exanple

#

. def aul t
@cho Using default rule to update target "$@
@cho because of dependent(s) "$<"
w ouch $@

all: foo

f oo:

wt ouch foo

"al" has no command list. The one supplied to the default directive is executed instead.

9.15 Erasing Targets After Error (ERASE)

Most operating system utilities and programs have special return codes that indicate error
conditions. Open Watcom Make will check the return code for every command executed. |If
the return code is non-zero, Make will stop processing the current rule and optionally delete
the current target being updated. By default, Make will prompt for deletion of the current
target. The . ERASE directive indicates to Make that the target should be deleted if an error
occurs during the execution of the associated command list. No prompt isissued in this case.
Here is an example of the . ERASE directive:

#

. ERASE exanpl e

#

. ERASE

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will attempt
to delete"BALANCE.LST".

112 Erasing Targets After Error (.ERASE)

The Open Watcom Make Utility

9.16 Error Action (.ERROR)

The . ERROR directive supplies acommand list for error conditions. See the section entitled
"Command List Directives' on page 157 for afull description of its use.

#
.error exanple
#

.error:
@cho it is good that "$@ is known

all : .synbolic
fal se

9.17 Ignoring Target Timestamp (.EXISTSONLY)

The. EXI STSONLY directive indicates to Make that the target should not be updated if it
already exists, regardless of its timestamp.

#
.existsonly directive
#

foo: .existsonly
wt ouch $@

If absent, thisfile creates foo; if present, this file does nothing.

9.18 Specifying Explicitly Updated Targets (.EXPLICIT)

The. EXPLI CI T directive may me used to specify atarget that needs to be explicitly
updated. Normally, the first target in a makefule will be implicitly updated if no target is
specified on Make command line. The . EXPLI Cl T directive prevents this, and is useful for
instance when creating files designed to be included for other make files.

#
.EXPLICI T exanple
#
target : .synbolic .explicit
@cho updating first target
next : .synbolic

@cho updati ng next target

Specifying Explicitly Updated Targets (.EXPLICIT) 113

The Make/Touch Utilities

In the above example, Make will not automatically update "target”, despite the fact that it is
thefirst onelisted.

9.19 Defining Recognized File Extensions
(.EXTENSIONS)

The . EXTENSI ONS directive and its synonym, the . SUFFI XES directive declare which
extensions are allowed to be used in implicit rules and how these extensions are ordered.

. EXTENSI ONS isthetraditional Watcom name; . SUFFI XES is the corresponding POSIX
name. Thedefault . EXTENSI ONS declarationis:

. EXTENSI ONS:

.EXTENSIONS: .exe .nlm.dsk .lan .exp .lib .obj &
.i .asm.c .cpp .cxx .cc .for .pas .cob &
.h .hpp .hxx .hh .fi .mf .inc

A . EXTENSI ONS directive with an empty list will clear the . EXTENSI ONS list and any
previously defined implicit rules. Any subsequent . EXTENSI ONS directives will add
extensions to the end of thelist.

Hint: Thedefault . EXTENSI ONS declaration could have been coded as:

.EXTENSIONS:

.EXTENSIONS: .exe

.EXTENSIONS: .nlm .dsk .lan .exp
.EXTENSIONS: .lib

.EXTENSIONS: .obj

.EXTENSIONS: .i .asm.c.cpp .CXx .cc
.EXTENSIONS: .for .pas.cob
.EXTENSIONS: .h .hpp .hxx .hh fi .mif .inc
.EXTENSIONS: .inc

with identical results.

Make will not allow any implicit rule declarations that use extensions that are not in the
current . EXTENSI ONS list.

114 Defining Recognized File Extensions (.EXTENSIONS)

The Open Watcom Make Utility

#
.extensions and .suffixes directives
#
.suffixes : # Cear list
.extensions : .foo .bar
. bar . f oo:
copy $< $@
f ubar. f oo:

fubar. bar: .existsonly
wt ouch $@

The first time this example runs, Make creates fubar.foo. This example always ensures that
fubar.foo is a copy of fubar.bar. Note the implicit connection beween the two files.

9.20 Approximate Timestamp Matching (.FUZZY)

The. FUZZY directive allows . AUTODEPEND times to be out by a minute without
considering atarget out of date. It isonly useful in conjunction with the . JUST_ENOUGH
directive when Make is calculating the timestamp to set the target to.

9.21 Preserving Targets After Error (HOLD)

Most operating system utilities and programs have special return codes that indicate error
conditions. Open Watcom Make will check the return code for every command executed. |If
the return code is non-zero, Make will stop processing the current rule and optionally delete
the current target being updated. By default, Make will prompt for deletion of the current
target. The. HOLD directive indicates to Make that the target should not be deleted if an error
occurs during the execution of the associated command list. No prompt isissued in this case.
The. HOLD directive issimilar to . PRECI QUS but appliesto all targets listed in the
makefile. Hereisan example of the . HOLD directive:

#

. HOLD exanpl e

#

. HOLD

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

Preserving Targets After Error (HOLD) 115

The Make/Touch Utilities

If the program "DOREPORT" executes and its return code is non-zero then Make will not
delete "BALANCE.LST".

9.22 Ignoring Return Codes (.IGNORE)

Some programs do not have meaningful return codes so for these programs we want to ignore
the return code completely. There are different waysto ignore return codes namely,

1. usethe command line option "i"
2. puta"-"infront of specific commands, or
3. usethe. | GNORE directive.

In the following example, the rule:

#

ignore return code exanple

#

bal ance. |l st : |edger.dat sal es.dat purchase. dat

- doreport
will ignore the return status from the program "DOREPORT". Using the dash in front of the
command is the preferred method for ignoring return codes because it allows Make to check
all the other return codes.

The. | GNORE directive is used as follows;

#

.1 GNORE exanpl e

#

. | GNORE

bal ance. | st : |edger.dat sal es.dat purchase. dat

dor eport

Using the . | GNORE directive will cause Make to ignore the return code for every command.
The"i" command line option and the . | GNORE directive prohibit Make from performing any
error checking on the commands executed and, as such, should be used with caution.

Another way to handle non-zero return codes is to continue processing targets which do not
depend on the target that had a non-zero return code during execution of its associated
command list. There are two ways of indicating to Make that processing should continue after
anon-zero return code;

1. usethe command line option "k"

116 Ignoring Return Codes (.IGNORE)

The Open Watcom Make Utility

2. usethe. CONTI NUE directive.

9.23 Minimising Target Timestamp (.JUST_ENOUGH)

The . JUST_ENOUGH directiveis equivalent to the"j" command line option. The timestamps
of created targets are set to be the same as those of their youngest dependendents.

#

.JUST_ENOUGH example
#

. just_enough

. C. exe:
wel 386 -zq $<

hel | 0. exe:

hello.exe is given the same timestamp as hello.c, and not the usual timestamp corresponding
to when hello.exe was built.

9.24 Updating Targets Multiple Times (.MULTIPLE)

The. MULTI PLE directiveis used to update a target multiple times. Normally, Make will
only update each target once while processing a makefile. The . MULTI PLE directiveis
useful if atarget needs to be updated more than once, for instance in case the target is
destroyed during processing of other targets. Consider the following example:

#

exanple not using .nmultiple
#

all: targl targ2

target:
wt ouch target

targl: target
rmtarget
wt ouch targl

targ2: target

rmtarget
wt ouch targ2

Updating Targets Multiple Times (MULTIPLE) 117

The Make/Touch Utilities

This makefile will fail because "target” is destroyed when updating "targl”, and later is
implicitly expected to exist when updating "targ2". Usingthe . MULTI PLE directive will
work around this problem:

#
. MULTI PLE exanpl e
#

all : targl targ2

target : .nultiple
wt ouch target

targl : target
rmtarget
wt ouch targl

targ2 : target
rmtarget
wt ouch targ2

Now Make will attempt to update "target”" again when updating "targ2", discover that "target”
doesn’t exist, and recreateit.

9.25 Ignoring Target Timestamp (NOCHECK)

The . NOCHECK directive is used to disable target existence checksin amakefile. Seethe
section entitled "Command Line Options" on page 93 for afull description of its use.

9.26 Cache Search Path (.OPTIMIZE)

The. OPTI M ZE directive and the equivalent "0" command line option cause Make to use a
circular path search. If afileisfound in aparticular directory, that directory will be the first
searched for the next file. See the section entitled "Command Line Options' on page 93 for a
full description of its use.

118 Cache Search Path (.OPTIMIZE)

The Open Watcom Make Utility

9.27 Preserving Targets (.PRECIOUS)

Most operating system utilities and programs have special return codes that indicate error
conditions. Open Watcom Make will check the return code for every command executed. If
the return code is non-zero, Make will stop processing the current rule and optionally delete
the current target being updated. If afileis precious enough that this treatment of return
codes is not wanted then the . PRECI OUS directive may be used. The . PRECI OUS directive
indicates to Make that the target should not be deleted if an error occurs during the execution
of the associated command list. Here isan example of the . PRECI OUS directive:

#

. PRECI QUS exanpl e

#

bal ance sunmary : sal es. dat purchase. dat . PRECI QUS

dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will not
attempt to delete "BALANCE" or "SUMMARY". If only one of thefilesis precious then the
makefile could be coded as follows:

#

. PRECI QUS exanpl e

#

bal ance : . PRECI QUS

bal ance sunmmary : sal es. dat purchase. dat
dor eport

Thefile"BALANCE.LST" will not be deleted if an error occurs while the program
"DOREPORT" is executing.

9.28 Name Command Sequence (.PROCEDURE)

The . PROCEDURE directive may be used to construct "procedures’ in a makefile.

#

.procedure exanple
#

all: .symbolic

@trake proc

proc: .procedure
@cho Executing procedure "proc"

Name Command Sequence (PROCEDURE) 119

The Make/Touch Utilities

9.29 Re-Checking Target Timestamp (.RECHECK)

Make will re-check the target’ s timestamp, rather than assuming it was updated by its
command list. Thisisuseful if the target is built by another make- style toal, asin the
following example:

#

. RECHECK exanpl e
#

foo.gz : foo

gzip foo

foo : .ALWAYS . RECHECK
nant -buildfile:foo.build

foo's command list will always be run, but foo will only be compressed if the timestamp is
actually changed.

9.30 Suppressing Terminal Output (.SILENT)

As commands are executed, Open Watcom Make will print out the current command before it
is executed. It ispossible to execute the makefile without having the commands printed.
There are three ways to inhibit the printing of the commands before they are executed,
namely:

1. usethe command line option "s"
2. putan"@" infront of specific commands, or
3. usethe. SI LENT directive.

In the following example, the rule:

#

silent command exanpl e

#

bal ance sunmary : | edger. dat sal es. dat purchase. dat

@lor eport

will prevent the string "doreport” from being printed on the screen before the command is
executed.

The. SI LENT directiveis used as follows:

120 Suppressing Terminal Output (.SILENT)

The Open Watcom Make Utility

#

. S| LENT exanpl e

#

. SI LENT

bal ance sunmary : | edger. dat sal es. dat purchase. dat
dor eport

Using the . SI LENT directive or the"s' command line option will inhibit the printing of all
commands before they are executed. The "sn" command line option can be used to veto any
silencing control.

At this point, most of the capability of Make may be realized. Methods for making makefiles
more succinct will be discussed.

9.31 Defining Recognized File Extensions (.SUFFIXES)

The . SUFFI XES directive declares which extensions are allowed to be used in implicit rules

and how these extensions are ordered. It isasynonym for the . EXTENSI ONS directive. See
the section entitled "Defining Recognized File Extensions (EXTENSIONS)" on page 114 for

afull description of both directives.

9.32 Targets Without Any Dependents (.SYMBOLIC)

There must always be at least onetarget in arule but it is not necessary to have any
dependents. If atarget does not have any dependents, the command list associated with the
rule will always be executed if the target is updated.

Y ou might ask, "What may arule with no dependents be used for?'. A rule with no
dependents may be used to describe actions that are useful for the group of files being
maintained. Possible usesinclude backing up files, cleaning up files, or printing files.

Toillustrate the use of the . SYMBCOLI Cdirective, we will add two new rules to the previous

example. First, wewill omit the . SYNMBCOLI Cdirective and observe what will happen when it
is not present.

Targets Without Any Dependents (SYMBOLIC) 121

The Make/Touch Utilities

#
rule 4: backup the data files
#
backup :
echo "insert backup disk"
pause
copy *.dat a:
echo "backup conpl ete”
#
rule 5: cleanup tenporary files
#
cl eanup :
del *.tnp
del \tnp*.*

and then execute the command

wrake backup

Make will execute the command list associated with the "backup" target and issue an error
message indicating that the file "BACKUP" does not exist after the command list was
executed. The same thing would happen if we typed:

wrake cl eanup

In this makefile we are using "backup" and "cleanup" to represent actions we want performed.
The names are not real files but rather they are symbolic names. This special type of target
may be declared with the . SYMBCOLI Cdirective. Thistime, we show rules 4 and 5 with the
appropriate addition of . SYMBOLI Cdirectives.

#
rule 4: backup the data files
#
backup : .SYMBCOLIC
echo "insert backup disk"
pause
copy *.dat a:
echo "backup conpl ete"

#
rule 5: cleanup tenporary files
#
cleanup : .SYMBOLIC
del *.tnp
del \tnp*.*

122 Targets Without Any Dependents (.SYMBOLIC)

The Open Watcom Make Utility

The use of the . SYMBOLI Cdirective indicates to Make that the target should always be
updated internally after the command list associated with the rule has been executed. A short
form for the common idiom of singular . SYMBOLI Ctargets like:

target : .SYMBOLIC
conmands

t ar get
conmands

Thiskind of target definition is useful for many types of management tasks that can be
described in a makefile.

9.33 Macros

Open Watcom Make has a simple macro facility that may be used to improve makefiles by
making them easier to read and maintain. A macro identifier may be composed from a string
of aphabetic characters and numeric characters. The underscore character isalso allowed in a
macro identifier. If the macro identifier starts with a"%" character, the macro identifier
represents an environment variable. For instance, the macro identifier "%path" represents the
environment variable "path”.

Macro identifiers Valid?
2morrow yes
stitch_in 9 yes
invalid~id no
2b_or_not_2b yes

% path yes
reports yes
l@#* % no

We will use a programming example to show how macros are used. The programming
example involves four FORTRAN 77 source files and two include files. Hereistheinitial
makefile (before macros):

Macros 123

The Make/Touch Utilities

#
progranmmi ng exanpl e
(before macros)

#
p

| ot.exe : main.obj input.obj calc.obj output.obj
w i nk @l ot

mai n.obj : nmain.for defs.fi globals.fi
wfc386 main /nf /dl /warn

calc.obj : calc.for defs.fi globals.fi
wfc386 calc /nf /dl /warn

i nput.obj : input.for defs.fi globals.fi
wfc386 input /nf /dl /warn

out put.obj : output.for defs.fi globals.fi
wfc386 output /nf /dl /warn

Macros become useful when changes must be made to makefiles. If the programmer wanted
to change the compiler options for the different compiles, the programmer would have to
make a global change to the makefile. With this simple example, it is quite easy to make the
change but try to imagine a more complex example with different programs having similar
options. The global change made by the editor could cause problems by changing the options
for other programs. A good habit to develop is to define macros for any programs that have
command line options. In our example, we would change the makefile to be:

#

progranmmi ng exanpl e

(after macros)

#

link_options =

conpil er = wfc386

compile _options = /mf /dl /warn

pl ot.exe : nmin.obj input.obj calc.obj output.obj
wlink $(link_options) @plot

main.obj : main.for defs.fi globals.fi
S(compiler) main $(compile options)

124 Macros

The Open Watcom Make Utility

calc.obj : calc.for defs.fi globals.fi
S (compiler) calc $(compile_options)

input.obj : input.for defs.fi globals.fi
S(compiler) input $(compile options)

out put.obj : output.for defs.fi globals.fi
S(compiler) output $(compile_options)

A macro definition consists of a macro identifier starting on the beginning of the line followed
by an "=" which in turn is followed by the text to be replaced. A macro may be redefined,
with the latest declaration being used for subsequent expansions (no warning is given upon
redefinition of amacro). The replacement text may contain macro references.

A macro reference may occur in two forms. The previous example illustrates one way to
reference macros whereby the macro identifier is delimited by "$(" and ")". The parentheses
are optional so the macros "compiler" and "compile_options" could be referenced by:

mai n.obj : main.for defs.fi globals.fi
Scompiler main S$Scompile options

Certain ambiguities may arise with this form of macro reference. For instance, examine this
makefile fragment:

Example:
temporary_dir = \tmp\
temporary file = $temporary dirtmpO000.tmp

Theintention of the declarations is to have a macro that will expand into afile specification
for atemporary file. Make will collect the largest identifier possible before macro expansion
occurs. The macro reference is followed by text that looks like part of the macro identifier
("tmp000") so the macro identifier that will be referenced will be "temporary_dirtmp000".
The incorrect macro identifier will not be defined so an error message will be issued.

If the makefile fragment was:

temporary dir = \tmp\
temporary file = $(temporary dir)tmp000.tmp

there would be no ambiguity. The preferred way to reference macrosis to enclose the macro
identifier by "$(" and ")".

Macro references are expanded immediately on dependency lines (and thus may not contain
references to macros that have not been defined) but other macro references have their
expansion deferred until they are used in acommand. In the previous example, the macros

Macros 125

The Make/Touch Utilities

"link_options’, "compiler”, and "compile_options" will not be expanded until the commands
that reference them are executed.

Another use for macros isto replace large amounts of text with amuch smaller macro
reference. In our example, we only have two include files but suppose we had very many
include files. Each explicit rule would be very large and difficult to read and maintain. We
will use the previous example makefile to illustrate this use of macros.

#

progranm ng exanpl e
(with nore macros)
#

link _options =

conpil er = wfc386

compile options = /mf /dl /warn

include _files = defs.fi globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
wlink $(link_options) @plot

main.obj : main.for $(include files)
S (compiler) main $(compile_options)

calc.obj : calc.for $(include_files)
S (compiler) calc $(compile_options)

input.obj : input.for $(include_files)
S(compiler) input $(compile options)

output.obj : output.for $(include files)
S (compiler) output $(compile options)

Notice the ampersand ("&") at the end of the macro definition for "object_files'. The
ampersand indicates that the macro definition continues on the next line. In general, if you
want to continue aline in amakefile, use an ampersand ("&") at the end of theline.

There are special macros provided by Make to access environment variable names. To access

the PATH environment variable in a makefile, we use the macro identifier "%path". For
example, if we have the following linein acommand list:

126 Macros

The Open Watcom Make Utility

Example:
echo $(%pat h)

it will print out the current value of the PATH environment variable when it is executed.

There are two other special environment macros that are predefined by Make. The macro
identifier "%cdrive" will expand into one letter representing the current drive. Notethat itis
operating system dependent whether the cd command changes the current drive. The macro
identifier "%cwd" will expand into the current working directory. These macro identifiers are
not very useful unless we can specify that they be expanded immediately. The
complementary macros"$+" and "$—" respectively turn on and turn off immediate expansion
of macros. The scope of the "$+" macro is the current line after which the default macro
expansion behaviour isresumed. A possible use of these macrosisillustrated by the
following example makefile.

#
$(%drive), $(%wd), $+, and $- exanple
#
dirl = $(%drive): $(%ewd)
dir2 = $+ $(dirl) $-
exanmple : .SYMBOLIC
cd ..

echo $(dir1l)
echo $(dir2)

Which would produce the following output if the current working directory is
C\WATCOM\SOURCE\EXAMPLE:

Example:
(command out put only)
C: \ WATCOM SCQURCE
C: \ WVATCOM SCQURCE\ EXAMPLE

The macro definition for "dir2" forces immediate expansion of the "%cdrive" and "%cwd"
macros thus defining "dir2" to be the current directory that Make was invoked in. The macro
"dirl" is not expanded until execution time when the current directory has changed from the
initial directory.

Combining the $+ and $— special macros with the specia macro identifiers "%cdrive" and
"%cwd" is auseful makefile technique. The $+ and $— special macros are general enough to
be used in many different ways.

Constructing other macrosis another use for the $+ and $- specia macros. Make allows

macros to be redefined and combining this with the $+ and $- special macros, similar looking
macros may be constructed.

Macros 127

The Make/Touch Utilities

#

macro construction with $+ and $-

#

tenplate = filel. $(ext) file2. $(ext) file3.$(ext) filed. $(ext)
ext = dat

data_files = $+ $(template) $-

ext = Ist

listing_files = $+ S$(template) S-
exanple : .SYMBOLIC

echo $(data_files)
echo $(listing_files)

This makefile would produce the following output:

Example:
filel.dat file2.dat file3.dat file4. dat
filel.lst file2.lst file3.lst filed.lst

Adding more text to amacro can also be done with the $+ and $- special macros.

#

macro addition with $+ and $-

#

objs = filel.obj file2.0bj file3.obj
objs = $+$(objs)$- fil e4. obj

objs = $+$(objs)$- file5. obj

exanple : .SYMBOLIC
echo $(objs)

This makefile would produce the following output:

Example:
filel.obj file2.obj file3.0bj filed.obj file5. obj

Make provides a shorthand notation for this type of macro operation. Text can be added to a
macro by using the "+=" macro assignment. The previous makefile can be written as:

#

macro addition with +=

#

objs = filel.obj file2.0bj file3.obj
objs += file4. obj

objs += fil eb. obj

exanmpl e : .SYMBOLIC
echo $(objs)

128 Macros

The Open Watcom Make Utility

and still produce the same results. The shorthand notation "+=" supported by Make provides a
quick way to add more text to macros.

Make provides the "linject" preprocessor directive to append a"word" (one or more graphic
characters) to one or more macros. The previous makefile is adapted to show the usage:

#

macro construction with !inject

#

linject filel.obj objs objsl2 objsl1l3 objsl4 objsl5
linject file2.0obj objs objsl2 objsl3 objsl4 objsl5

linject file3.obj objs obj s13 obj s14 objsi5
linject filed.obj objs obj s14 obj s15
linject fileb.obj objs obj s15

exanple : .SYMBOLIC
echo $(objs)
echo $(objs12)
echo $(objs13)
echo $(objsi4)
echo $(objs1b)

This makefile would produce the following output:

Example:
filel.obj file2.obj file3.0bj filed.obj file5. obj
filel.obj file2. obj
filel.obj file2.obj file3. obj
filel.obj file2.0obj file3.0bj file4. obj
filel.obj file2.0obj file3.0bj filed.obj fileb5. obj

The "linject" preprocessor directive supported by Make provides away to append aword to
several macros.

There are instances when it is useful to have macro identifiers that have macro references
contained in them. If you wanted to print out an informative message before linking the
executable that was different between the debugging and production version, we would
expressit asfollows:

Macros 129

The Make/Touch Utilities

#
progranmmi ng exanpl e
(macro sel ection)

#

versi on = debuggi ng # debuggi ng version
msg_production = linking production version
msg_debugging = linking debug version

link options_production =
link options_debugging = debug all
link _options = $(link_options_$(version))

conpil er = wfc386

compile options_production = /mf /warn
compile_options_debugging = /mf /dl /warn
compile_options = $(compile_options_$(version))

include files = defs.fi globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object _files)
echo $(msg_$(version))

wlink $(link options) @plot

main.obj : main.for $(include_files)
S(compiler) main $(compile options)

calc.obj : calc.for $(include_files)
S (compiler) calc $(compile_options)

input.obj : input.for $(include_files)
S(compiler) input $(compile options)

output.obj : output.for $(include files)
S(compiler) output $(compile options)

Take notice of the macro references that are of the form:
S(<partial macro_identifier>$(version))
The expansion of a macro reference begins by expanding any macros seen until a matching

right parenthesisisfound. The macro identifier that is present after the matching parenthesis
isfound will be expanded. The other form of macro reference namely:

130 Macros

The Open Watcom Make Utility

S<macro_identifier>

may be used in asimilar fashion. The previous example would be of the form:

S<partial macro_identifier>$version

Macro expansion occurs until a character that cannot be in a macro identifier is found (on the
same line asthe "$") after which the resultant macro identifier is expanded. If you want two
macros to be concatenated then the line would have to be coded:

$(macrol) $(macr 02)

The use of parentheses is the preferred method for macro references because it completely
specifies the order of expansion.

In the previous example, we can see that the four command lines that invoke the compiler are
very similar in form. We may make use of these similarities by denoting the command by a
macro reference. We need to be able to define a macro that will expand into the correct
command when processed. Fortunately, Make can reference the first member of the
dependent list, the last member of the dependent list, and the current target being updated with
the use of some special macros. These specia macros have the form:

$<file specifier><form qualifier>

where <file_specifier> is one of:

A represents the current target being updated
" represents the first member of the dependent list
" represents the last member of the dependent list

and <form_qualifier> is one of:

"@" full file name
o file name with extension removed
"&" file name with path and extension removed

file name with path removed

Macros 131

The Make/Touch Utilities

path of file name

If thefile"D:\DIRI\DIR2ZANAME.EXT" isthe current target being updated then the following
example will show how the form qualifiers are used.

Macro Expansion for D:\DIR1\DIR2ANAME.EXT
@ D: \ DI R1\ DI R2\ NAME. EXT
$* D: \ DI R1\ DI R2\ NAME
& NANVE
. NAME. EXT
N D: \ DI R1\ DI R2\
These special macros provide the capability to reference targets and dependentsin a variety of
ways.
#

132 Macros

progranmmi ng exanpl e
(nore nacros)

#

versi on = debuggi ng # debuggi ng version
msg_production = linking production version
msg_debugging = linking debug version

link options_production =
link options_debugging = debug all
link options = $(link_options_$(version))

compile options_production = /mf /warn
compile options_debugging = /mf /dl /warn
compile_options = $(compile_options_$(version))

compiler command = wfc386 $[* $(compile_options)
include files = defs.fi globals.fi

object_files = main.obj input.obj calc.obj &
out put . obj

The Open Watcom Make Utility

plot.exe : $(object _files)
echo $(msg_$(version))
wlink $(link _options) @$"*

main.obj : main.for $(include_files)
S (compiler_command)

calc.obj : calc.for $(include_files)
S (compiler_command)

input.obj : input.for $(include_files)
$ (compiler command)

output.obj : output.for $(include_files)
S (compiler_command)

This example illustrates the use of the special dependency macros. Notice the use of "$*" in
the linker command. The macro expands into the string "plot" since "plot.exe" isthe target
when the command is processed. The use of the specia dependency macrosis recommended
because they make use of information that is already contained in the dependency rule.

At this point, we know that macro references begin with a"$" and that comments begin with a
"#'. What happens if we want to use these characters without their special meaning? Make
has two special macros that provide these charactersto you. The specia macro "$$" will
resultin a"$" when expanded and "$#" will expand into a"#". These special macros are
provided so that you are not forced to work around the special meanings of the"$" and "#"
characters.

Thereis also asimple macro text substitution facility. We have previously seen that a macro
call can be made with $(macroname). The construct $(macroname:stringl=string2)
substitutes macroname with each occurrence of stringl replaced by string2. We have aready
seen that it can be useful for amacro to be a set of object file names separated by spaces. The
file directive in wlink can accept a set of names separated by commas.

Macros 133

The Make/Touch Utilities

#

progranmmi ng exanpl e
(macro substitution)
#

. C.0bj:

wf c386 -zq $*.c
object _files = main.obj input.obj calc.obj output.obj

plot.exe : $(object _files)
wlink name $@ file $(object_files: =,)

Note that macro substitution cannot be used with special macros.

It is also worth noting that although the above example shows a valid approach, the same
problem, that is, providing alist of object filesto wlink, can be solved without macro
subsitutions. The solution isusing the{} syntax of wlink, as shown in the following example.
Refer to the Open Watcom Linker Guide for details.

#

progranm ng exanpl e

(not using macro substitution)
#

.C.obj:
wfc386 -zq $*.c

object_files = main.obj input.obj calc.obj output.obj

plot.exe : S$(object _files)
wlink name $@ file { $(object _files) }

9.34 Implicit Rules

Open Watcom Make is capable of accepting declarations of commonly used dependencies.
These declarations are called "implicit rules' as opposed to "explicit rules’ which were
discussed previously. Implicit rules may be applied only in instances where you are able to
describe a dependency in terms of file extensions.

134 Implicit Rules

The Open Watcom Make Utility

Hint: Recall that afile extension isthe portion of the file name which follows the period.
In the file specification:

c:\dos\ansi. sys

thefile extensionis"SYS".

Animplicit rule provides acommand list for a dependency between files with certain
extensions. The form of animplicit ruleisasfollows:

.<dependent_extension>.<target_extension>:
<command_list>

Implicit rules are used if afile has not been declared as atarget in any explicit rule or the file
has been declared as atarget in an explicit rule with no command list. For agiven target file,
asearch is conducted to seeif there are any implicit rules defined for the target file's
extension in which case Make will then check if the file with the dependent extension in the
implicit rule exists. If the file with the dependent extension exists then the command list
associated with the implicit rule is executed and processing of the makefile continues.

Other implicit rules for the target extension are searched in asimilar fashion. The order in
which the dependent extensions are checked becomes important if there is more than one
implicit rule declaration for atarget extension. If we have the following makefile fragment:

Example:
. pas. obj :
(command i st)
.for.obj:
(command i st)

an ambiguity arises. If we have atarget file"TEST.OBJ" then which do we check for first,
"TEST.PAS' or "TEST.FOR"? Make handles this with the previously described
. EXTENSI ONS directive. Returning to our makefile fragment:

. pas. obj :

(command i st)
.for.obj:

(conmmand i st)

and our target file"TEST.OBJ", we know that the . EXTENSI ONS list determinesin what

order the dependents "TEST.PAS' and "TEST.FOR" will betried. If the . EXTENSIONS
declaration is:

Implicit Rules 135

The Make/Touch Utilities

Example:
. EXTENSI ONS:
. EXTENSI ONS: .exe .obj .asm.pas .for .c .cob

we can see that the dependent file "TEST.PAS" will betried first as a possible dependent with
"TEST.FOR" being tried next.

One apparent problem with implicit rules and their associated command listsis that they are
used for many different targets and dependents during the processing of a makefile. The same
problem occurs with commands constructed from macros. Recall that there is a set of specia
macros that start with "$™", "$[", or "$]" that reference the target, first dependent, or last
dependent of an explicit dependency rule. In animplicit rule there may be only one
dependent or many dependents depending on whether the rule is being executed for atarget
with asingle colon ":" or double colon "::" dependency. If thetarget hasasingle colon or
double colon dependency, the "$™", "$[", and "$]" special macros will reflect the valuesin the
rule that caused the implicit rule to beinvoked. Otherwise, if the target does not have a
dependency rule then the "$[" and "$]" special macros will be set to the same value, namely,
the file found in the implicit rule search.

We will use the last programming example to illustrate a possible use of implicit rules.

#
progranm ng exanmpl e
(implicit rules)

#
versi on = debuggi ng # debuggi ng version
msg_production = linking production version ...

msg_debugging = linking debug version ...
link_options_production =

link options_debugging = debug all
link options = $(link options_$ (version))

136 Implicit Rules

The Open Watcom Make Utility

conpil er = wfc386

compile options_production = /mf /warn
compile options_debugging = /mf /dl /warn
compile options = $(compile options_$(version))

include_files = defs.fi globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object _files)
echo $(msg_$(version))
wlink $(link _options) @$"*

.for.obj:

S(compiler) $[* $(compile_options)
main.obj : main.for $(include_files)
calc.obj : calc.for S$(include_files)
input.obj : input.for $(include_files)

output.obj : output.for $(include_files)

Asthis makefile is processed, any time an object file is found to be older than its associated
source file or include files then Make will attempt to execute the command list associated with
the explicit rule. Since there are no command lists associated with the four object file targets,
an implicit rule search is conducted. Suppose "CALC.OBJ' was older than "CALC.FOR".
Thelack of acommand list in the explicit rule with "CALC.OBJ' as atarget causes the
".for.obj" implicit rule to be invoked for "CALC.OBJ'. Thefile"CALC.FOR" isfound to
exist so the commands

wfc386 calc /nf /dl /warn
echo linking debug version ...
w i nk debug all @l ot

are executed. The last two commands are aresult of the compilation of "CALC.FOR"
producing a"CALC.OBJ' filethat is younger than the "PLOT.EXE" file that in turn must be
generated again.

The use of implicit rulesis straightforward when all the files that the makefile deals with are

in the current directory. Larger applications may have filesthat are in many different
directories. Suppose we moved the programming example files to three sub-directories.

Implicit Rules 137

The Make/Touch Utilities

Files Sub-directory
includefiles \ EXAMPLE\ | NC
sourcefiles \ EXAMPLE\ SRC

rest \ EXAMPLE\ O

Now the previous makefile (located in the \EXAMPLE\O sub-directory) would look like this:

#

progranm ng exanpl e

(inplicit rules)

#

i dir = \example\inc\ #sub-directory containing include files
s_dir \example\src\ #sub-directory containing source files

version = debugging # debuggi ng version

msg_production = linking production version ...
msg_debugging = linking debug version ...

link_options_production =
link_options_debugging = debug all

link_options = $(link_options_$ (version))

conpi l er = wf c386

compile_options_production = /mf /warn
compile_options_debugging = /mf /dl /warn
compile options = $(compile options_$(version))

include files = $(i_dir)defs.fi $(i_dir)globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object _files)
echo $(msg_S$(version))
wlink $(link _options) @$"*

.for.obj:

S(compiler) S$[* S$(compile_options)
main.obj : $(s_dir)main.for $(include_files)
calc.obj : $(s_dir)calc.for $(include_files)

input.obj : $(s_dir)input.for $(include_files)

output.obj : S$(s_dir)output.for $(include_files)

Suppose "\EXAMPLE\O\CALC.OBJ" was older than "\EXAMPLE\SRC\CALC.FOR". The
lack of acommand list in the explicit rule with "CALC.OBJ" as atarget causes the ".for.obj"

implicit ruleto beinvoked for "CALC.OBJ". At thistime, thefile

"\EXAMPLE\O\CALC.FOR" is not found so an error is reported indicating that "CALC.OBJ"
could not be updated. How may implicit rules be useful in larger applications if they will only

138 Implicit Rules

The Open Watcom Make Utility

search the current directory for the dependent file? We must specify more information about
the dependent extension (in this case ".FOR"). We do this by associating a path with the
dependent extension as follows:

.<dependent_extension> : <path_specification>

This allows the implicit rule search to find the files with the dependent extension.

Hint: A valid path specification is made up of directory specifications separated by
semicolons (';"). Here are some path specifications:

D.;C\DCS;, C\UTILS; C\WC
C:\ SYS
A \BIN; D:

Notice that these path specifications are identical to the form required by the operating
system shell’s "PATH" command.

Our makefile will be correct now if we add the new declaration as follows:

#

progranm ng exanpl e

(inmplicit rules)

#

i dir = \example\inc\ #sub-directory containing include files
s_dir = \example\src\ #sub-directory containing source files
versi on = debuggi ng # debuggi ng version

msg_production = linking production version ...

msg_debugging = linking debug version ...

link_options_production =
link_options_debugging = debug all
link_options = $(link_options_$(version))

conpi l er = wf c386

compile_options_production = /mf /warn
compile_options_debugging = /mf /dl /warn
compile options = $(compile options_$(version))

include files = $(i_dir)defs.fi $(i_dir)globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object _files)

echo $(msg_S$(version))
wlink $(link_options) @$"*

Implicit Rules 139

The Make/Touch Utilities

.for: $S(s_dir)
.for.obj:
S(compiler) S$[* S$(compile_options)

main.obj : $(s_dir)main.for $(include_files)
calc.obj : S$(s_dir)calc.for $(include_files)
input.obj : $(s_dir)input.for $(include_files)

output.obj : S$(s_dir)output.for $(include_files)

Suppose "\EXAMPLE\O\CALC.OBJ" isolder than "\EXAMPLE\SRC\CALC.FOR". The
lack of acommand list in the explicit rule with "CALC.OBJ" as atarget will cause the

" for.obj" implicit rule to be invoked for "CALC.OBJ'. The dependent extension ".FOR" has
a path associated with it so the file \EXAMPLE\SRC\CALC.FOR" isfound to exist. The
commands

wf c386 \ EXAMPLE\ SRC\ CALC /nf /d1 /warn

echo linking debug version ...
w i nk debug all @l ot

are executed to update the necessary files.

If the application requires many source filesin different directories Make will search for the
files using their associated path specifications. For instance, if the current example files were
setup as follows:

Sub-directory Contents

\EXAMPLE\INC
DEFS. FI , GLOBALS. FI

\EXAM PLE\SRC\PROGRAM
MAI'N. FOR, CALC. FOR

\EXAMPL E\SRC\SCREEN
I NPUT. FOR, OQUTPUT. FOR

\EXAMPLE\O
PLOT. EXE, MAKEFI LE, MAI N. OBJ, CALC. OBJ, | NPUT. OBJ,
QUTPUT. OBJ

the makefile would be changed to:

140 Implicit Rules

The Open Watcom Make Utility

#

progranm ng exanpl e

(inplicit rules)

#

i dir = ..\inc\ # sub-directory with include files
sub-directories with FORTRAN 77 source files

program_dir = ..\for\program\ # - MAIN.FOR, CALC.FOR

screen_dir = ..\for\screen\ # - INPUT.FOR, OUTPUT.FOR

version = debuggi ng # debuggi ng version

msg_production = linking production version ...

msg_debugging = linking debug version ...

link_options_production =
link_options_debugging = debug all
link_options = $(link_options_$(version))

conpi l er = wf c386

compile_options_production = /mf /warn
compile_options_debugging = /mf /dl /warn
compile options = $(compile options_$(version))

include files = $(i_dir)defs.fi $(i_dir)globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object _files)
echo $(msg_S$(version))
wlink $(link_options) @$"*

.for: $ (program_dir); $(screen_dir)
.for.obj:
$(compiler) $[* $(compile options)

main.obj : $(program dir)main.for $(include_files)
calc.obj : $(program dir)calc.for $(include_files)
input.obj : $(screen _dir)input.for $(include files)
output.obj : $(screen dir)output.for $(include_files)

Suppose that there is a change in the "DEFS.FI" file which causes all the sourcefilesto be
recompiled. Theimplicit rule".for.obj" isinvoked for every object file so the corresponding
".FOR" file must be found for each ".OBJ" file. We will show where Make searches for the
FORTRAN 77 source files.

updat e mai n. obj
t est ..\ for\program nuin. for (it does exist)
execute wfc386 ..\for\programinmain /nf /dl /warn

updat e cal c. obj

t est ..\for\programcalc.for (it does exist)
execute wfc386 ..\for\programicalc /nf /dl /warn

Implicit Rules 141

The Make/Touch Utilities

updat e i nput . obj
t est ..\for\programi nput.for (it does not exist)
t est ..\for\screen\input.for (it does exist)

execute wfc386 ..\for\screen\input /nf /dl /warn

updat e out put . obj
t est ..\for\program output.for (it does not exist)
t est ..\for\screen\output.for (it does exist)
execute wfc386 ..\for\screen\output /nf /dl /warn

etc.

Notice that Make checked the sub-directory ".\SRC\PROGRAM" for the files"INPUT.FOR"
and "OUTPUT.FOR". Make optionally may use acircular path specification search which
may save on disk activity for large makefiles. The circular path searching may be used in two
different ways:

1. usethe command line option "0"
2. usethe. OPTI M ZE directive.

Make will retain (for each suffix) what sub-directory yielded the last successful search for a
file. The search for afileisresumed at this directory in the hope that wasted disk activity will
be minimized. If the file cannot be found in the sub-directory then Make will search the next
sub-directory in the path specification (cycling to the first sub-directory in the path
specification after an unsuccessful search in the last sub-directory).

Changing the previous example to include this feature, results in the following:
#
programmi ng exanpl e
(optim zed path searching)
#

. OPTIM ZE

i dir ..\inc\ # sub-directory with include files
sub-directories with FORTRAN 77 source files
..\for\program\ # - MAIN.FOR, CALC.FOR

..\for\screen\ # - INPUT.FOR, OUTPUT.FOR

program_dir
screen_dir

ver si on debuggi ng # debuggi ng version
msg_production = linking production version ...
msg_debugging = linking debug version ...

link_options_production =
link_options_debugging = debug all
link options = $(link_options_$(version))

conpi l er = wf c386

compile options_production = /mf /warn
compile_options_debugging = /mf /dl /warn
compile options = $(compile options_$(version))

142 Implicit Rules

The Open Watcom Make Utility

include_files = $(i_dir)defs.fi $(i_dir)globals.fi
object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object_files)
echo $(msg_$(version))
wlink $(link_options) @S$7*

.for: S (program_dir);$(screen_dir)
.for.obj:
S(compiler) S$[* S$(compile_options)

main.obj : $(program_dir)main.for $(include_files)
calc.obj : S$(program_dir)calc.for $(include_files)
input.obj : $(screen_dir)input.for $(include_files)
output.obj : S$(screen_dir)output.for $(include_files)

Suppose again that there is a change in the "DEFS.FI" file which causes all the sourcefilesto
be recompiled. We will show where Make searches for the FORTRAN 77 source files using
the optimized path specification searching.

updat e mai n. obj
t est ..\for\program main. for (it does exist)
execute wfc386 ..\for\programimain /nf /dl /warn

updat e cal c. obj
t est ..\for\programcalc.for (it does exist)
execute wfc386 ..\for\programicalc /nf /dl /warn

updat e i nput . obj
t est ..\for\programinput.for (it does not exist)
t est ..\for\screen\input.for (it does exist)

execute wfc386 ..\for\screen\input /nf /dl /warn

updat e out put . obj
t est ..\for\screen\output.for (it does exist)
execute wfc386 ..\for\screen\output /nf /dl /warn

etc.

Make did not check the sub-directory ".\SRC\PROGRAM" for the file"OUTPUT.FOR"
because the last successful attempt to find a".FOR" file occurred in the ". \SRC\SCREEN"
sub-directory. Inthis small example, the amount of disk activity saved by Makeis not
substantial but the savings become much more pronounced in larger makefiles.

Implicit Rules 143

The Make/Touch Utilities

Hint: The simple heuristic method that Make uses for optimizing path specification
searches namely, keeping track of the last successful sub-directory, is very effectivein
reducing the amount of disk activity during the processing of a makefile. A pitfall to
avoid is having two files with the same namein the path. The version of thefilethat is
used to update the target depends on the previous searches. Care should be taken when
using files that have the same name with path specifications.

Large makefiles for projects written in FORTRAN 77 may become difficult to maintain with
all the include file dependencies. Ignoring include file dependencies and using implicit rules
may reduce the size of the makefile while keeping most of the functionality intact. The
previous example may be made smaller by using this idea.

#

progranmi ng exanpl e

(no include dependenci es)

#

. OPTIM ZE

i_dir = ..\inc\ # sub-directory with include files

sub-directories with FORTRAN 77 source files
..\for\program\ # - MAIN.FOR, CALC.FOR
..\for\screen\ # - INPUT.FOR, OUTPUT.FOR

program dir
screen_dir

ver si on debuggi ng # debuggi ng version
msg_production = linking production version ...
msg_debugging = linking debug version ...

link_options_production =
link_options_debugging = debug all
link _options = $(link_options_$(version))

conpi l er = wfc386

compile_options_production = /mf /warn
compile_options_debugging = /mf /dl /warn
compile_options = $(compile_options_$(version))

object_files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object _files)
echo $(msg_S$(version))
wlink $(link _options) @$"*

.for: $ (program_dir); $(screen_dir)
.for.obj:
$(compiler) $[* $(compile options)

Implicit rules are very useful in this regard providing you are aware that you have to make up
for the information that is missing from the makefile. In the case of FORTRAN 77 programs,
you must ensure that you force Make to compile any programs affected by changesin include
files. Forcing Make to compile programs may be done by touching source files (not

144 Implicit Rules

The Open Watcom Make Utility

recommended), deleting object files, or using the "a" option and targets on the command line.
Here ishow thefiles"INPUT.OBJ' and "MAIN.OBJ" may be recompiled if a changein some
include file affects both files.

Example:
del input. obj
del main. obj
whake

or using the "a" option

Example:
wrake /a i nput.obj main. obj

The possibility of introducing bugsinto programsis present when using this makefile
technique because it does not protect the programmer compl etely from object modules
becoming out-of-date. The use of implicit rules without header file dependenciesisaviable
makefile technique but it is not without its pitfalls.

9.35 Double Colon Explicit Rules

Single colon ":" explicit rules are useful in many makefile applications. However, the single
colon rule has certain restrictions that make it difficult to express more complex dependency
relationships. The restrictions imposed on single colon ":" explicit rules are:

1. only onecommand list is allowed for each target
2. after the command list is executed, the target is considered up to date

Thefirst restriction becomes evident when you want to update atarget in different ways (i.e.,
when the target is out of date with respect to different dependents). The double colon explicit
rule removes this restriction.

#

multiple conmand |ists

#

targetl :: dependentl dependent 2

commandl

targetl :: dependent3 dependent4
command?2

Notice that if "targetl" is out of date with respect to either "dependent1” or "dependent2” then
"commandl" will be executed. The double colon "::" explicit rule does not consider the target

Double Colon Explicit Rules 145

The Make/Touch Utilities

(in this case "target1") up to date after the command list is executed. Make will continue to
attempt to update "target1l”. Afterwards"command2" will be executed if "target1" is out of
date with respect to either "dependent3" or "dependent4". It is possible that both "commandl1”
and "command2" will be executed. Asaresult of the target not being considered up to date,
an implicit rule search will be conducted on "target1" also. Make will process the double
colon "::" explicit rulesin the order that they are encountered in the makefile.

9.36 Preprocessing Directives

One of the primary objectives in using a make utility isto improve the development and
maintenance of projects. A programming project consisting of many makefiles in different
sub-directories may become unwieldy to maintain. The maintenance problem stems from the
amount of duplicated information scattered throughout the project makefiles. Make provides
amethod to reduce the amount of duplicated information present in makefiles. Preprocessing
directives provide the capability for different makefiles to make use of common information.

9.36.1 File Inclusion

A common solution to the "duplicated information” problem involves referencing text
contained in one file from many different files. Make supports file inclusion with the

I'i ncl ude preprocessing directive. The development of object libraries, using 16-bit Open
Watcom FORTRAN 77, for the different 80x86 16-bit memory models provides an ideal
exampletoillustrate the use of the ! i ncl ude preprocessing directive.

Sub-directory Contents
\WINDOW W NDOW CVD, W NDOW M F

\WINDOW\INC
PROTO. FI, G_LOBALS. FI, BIOS_DEF.FI

\WINDOW\SRC
W NDOW FOR, KEYBOARD. FOR, MOUSE. FOR, BI OS. FOR

\WINDOW\BCSD
medium model object files, MAKEFI LE, WINDOW_M.LIB

\WINDOW\BCBD
large model object files, MAKEFI LE, WINDOW L.LIB

146 Preprocessing Directives

The Open Watcom Make Utility

\WINDOW\BCHD
huge model object files, MAKEFI LE, WINDOW_L.LIB

The WLIB command file "WINDOW.CMD" contains the list of library operations required to
build the libraries. The contents of "WINDOW.CMD" are:

- +wi ndow

- +bi os

- +keyboard
- +nouse

The"—+" library manager command indicates to WLIB that the object file should be replaced
inthelibrary.

Thefile"WINDOW.MIF" contains the makefile declarations that are common to every
memory model. The".MIF" extension will be used for al the Make Include Files discussed in
thismanual. Thisextensionisalsoin the default extension list so it is arecommended
extension for Make include files. The contents of the "WINDOW.MIF" fileis asfollows:

#

exanpl e of a Make Include File

#

common = /d1 /warn # common options

obj s = wi ndow. obj bi os.obj keyboard. obj nouse. obj

.for: ..\src
.for.obj:
wfc $[* $(common) $(local) /nH(nodel)

window_$ (model) .lib : $(objs)
wlib window_$ (model) @..\window

The macros "model" and "local" are defined by the file "MAKEFILE" in each object
directory. Anexample of thefile"MAKEFILE" in the medium memory model object
directory is:

#

linclude exanpl e

#

nodel = m # menory nodel required

| ocal = # menmory nodel specific options
l'include ..\w ndow. mi f

Notice that changes that affect all the memory models may be made in one file, namely
"WINDOW.MIF". Any changesthat are specific to amemory model may be made to the

Preprocessing Directives 147

The Make/Touch Utilities

"MAKEFILE" in the object directory. To update the medium memory model library, the
following commands may be executed:

Example:
C>cd \wi ndow\ bcsd
Cwrake

A DOS".BAT" or OS/2".CMD" file may be used to update all the different memory models.
If the following DOS"MAKEALL.BAT" (OS2 "MAKEALL.CMD") fileislocated
somewherein the "PATH", we may update all the libraries.

cd \'wi ndow\ bcsd
wrake % %® 98 %l % % %W Y8 9O
cd \'wi ndow\ bchd
wrake % %® 98 % % % % Y8 9O
cd \'wi ndow\ bchd
wrake % %® 98 % % % % Y8 %O

The batch file parameters are useful if you want to specify optionsto Make. For instance, a
global recompile may be done by executing:

Example:
C>nmakeal | /a

The!i ncl ude preprocessing directive isagood way to partition common information so
that it may be maintained easily.

Another use of the ! i ncl ude involves program generated makefile information. For
instance, if we have a program called "WMKMK" that will search through source files and
generate afile called "WMKMK.MIF" that contains:

#
program generated nekefile infornation

FOR_to_OBJ = $(compiler) $[* $(compile_options)

OBJECTS = W NDOW OBJ BI 0S. OBJ KEYBOARD. OBJ MOUSE. OBJ

WNDOW OBJ : ..\SRC\WNDOW FOR ..\ INC\PROTO FI ..\INC GLOBALS. FI
$ (FOR_to_OBJ)

BIOS.OBJ : ..\SRC\BIOS.FOR ..\INC\BIOS_DEF.FI ..\INC\GLOBALS.FI
$ (FOR_to_OBJ)

KEYBOARD. OBJ : ..\ SRC\ KEYBOARD. FOR ..\ I NC\ PROTO. FI ..\INC GLOBALS. FI
$ (FOR_to_OBJ)

MOUSE. OBJ : ..\ SRC\MOUSE. FOR ..\ I NC\ PROTO. FI ..\INC GLOBALS. FI

$ (FOR_to_OBJ)

In order to use this program generated makefile information, we use a"MAKEFILE"
containing:

148 Preprocessing Directives

The Open Watcom Make Utility

#

makefile that nakes use of generated nakefile infornation
#

compile_options = /mf /dl /warn

first target : window.lib .SYMBOLIC
echo done

linclude wrknk. m f

wi ndow. | ib : $(OBJECTS)
W ib wi ndow $(OBJECTS)

make : . SYMBOLIC
wnknk /r .. \src*.for+..\inc

Notice that thereis a symbolic target "first_target” that is used asa"place holder”. The
default behaviour for Makeisto "make" the first target encountered in the makefile. The
symbolic target "first_target" ensures that we have control over what file will be updated first
(inthiscase "WINDOW.LIB"). Theuseof the ! i ncl ude preprocessing directive simplifies
the use of program generated makefile information because any changes are localized to the
file"MAKEFILE". Asprogram development continues, the file"WMKMK.MIF" may be
regenerated so that subsequent invocations of WMAKE benefit from the new makefile
information. Thefile"MAKEFILE" even contains the command to regenerate the file
"WMKMK.MIF". The symbolic target "make" has an associated command list that will
regenerate the file "WMKMK.MIF". The command list can be executed by typing the
following command:

Example:
C>wrake nake

Theuseof the! i ncl ude preprocessing directive is asimple way to reduce maintenance of
related makefiles.

Preprocessing Directives 149

The Make/Touch Utilities

Hint: Macros are expanded on ! i ncl ude preprocessor control lines. This allows many
benefits like:

linclude $(%env_var)

so that the files that Make will process can be controlled through many different avenues
like internal macros, command line macros, and environment variables.

Another way to access files is through the suffix path feature of Make. A definition like

.mif : c:\mymifs; d:\some\mor e\mifs

will cause Make to search different paths for any make include files.

9.36.2 Conditional Processing

Open Watcom Make has conditional preprocessing directives available that allow different
declarations to be processed. The conditional preprocessing directives allow the makefile to

1. check whether amacro is defined, and
2. check whether amacro has a certain value.

The macros that can be checked include

1. normal macros"$(<macro_identifier>)"
2. environment macros "$(%<environment_var>)"

The conditional preprocessing directives allow a makefile to adapt to different external
conditions based on the values of macros or environment variables. We can define macros on
the WMAKE command line as shown in the following example.

Example:
C>wrake "nmacro=sone text with spaces in it"

Alternatively, we can include a makefile that defines the macrosif all the macros cannot fit on
the command line. Thisis shown in the following example:

150 Preprocessing Directives

The Open Watcom Make Utility

Example:
Cwreke /f macdef.mf /f makefile

Also, environment variables can be set before WMAKE isinvoked. Thisisshown inthe
following example:

Example:
C>set macro=sone text with spaces in it
Cwrake

Now that we know how to convey information to Make through either macros or environment
variables, we will look at how thisinformation can be used to influence makefile processing.

Make has conditional preprocessing directives that are similar to the C preprocessor
directives. Make supports these preprocessor directives:

lifeq
l'ifneq
l'ifeqi
l'i fneqi
i fdef
l'i f ndef

along with

lel se
lendif

Together these preprocessor directives allow selection of makefile declarations to be based on
either the value or the existence of a macro.

Environment variables can be checked by using an environment variable name prefixed with a
"%". A common use of a conditional preprocessing directive involves setting environment
variables.

#
setting an environment variable
#
lifndef %ib
. BEFORE
set |ib=c:\watcomlib386\dos
l'endi f

If you are writing portable applications, you might want to have:

Preprocessing Directives 151

The Make/Touch Utilities

#

checking a nacro

#

i nclude version.nmf

lifdef OS2

machine = /2 # compile for 286
lel se

machine = /0 # default: 8086
lendi f

The!i f def ("if defined”)and!i f ndef ("if not defined") conditional preprocessing
directives are useful for checking boolean conditions. In other words, the ! i f def and

I'i f ndef areuseful for "yes-no" conditions. There are instances where it would be useful to
check amacro against avalue. In order to use the value checking preprocessor directives, we
must know the exact value of amacro. A macro definition is of the form:

<macro_identifier> = <text> <comment>

Make will first strip any comment off the line. The macro definition will then be the text
following the equal "=" sign with leading and trailing blanks removed. Initially this might not
seem like a sensible way to define a macro but it does lend itself well to defining macros that
are common in makefiles. For instance, it allows definitions like:

#
sanpl e macro definitions
#

link options
compile_options

debug line # line number debugging
/dl /nostack # line numbers, no stack checking

These definitions are both readable and useful. A makefile can handle differences between
compilerswiththe!ifeq, 'ifneq, !'ifeqi and!ifneqi conditional preprocessing
directives. Thefirst two perform case sensitive comparisons while the last two perform case
insensitive comparisons. One way of setting up adaptive makefilesis:

#

options made sinple

#

conpi |l er = wf c386

stack_overflow = No # yes —-> check for stack overflow

line_info

Yes # yes —> generate line numbers

152 Preprocessing Directives

The Open Watcom Make Utility

lifeq conpiler wc386

!ifnegi stack_overflow yes
stack_option = /nostack
lendi f

!ifegi line_info yes
line_option = /dl
l'endi f

l'endi f

lifeq conpiler fl32

!ifegi stack_overflow yes
stack_option = -Ge
l'endi f

!ifegi line_info yes
line option = -zd
lendi f

l'endi f

#

make sure the macros are defined
#

!ifndef stack_option
stack_option =
l'endi f

!ifndef line option
line_option =
lendi f

exanple : .SYMBOLIC

echo $(compiler) $(stack_option) $(line_option)
The conditional preprocessing directives can be very useful to hide differences, exploit

similarities, and organize declarations for applications that use many different programs.

Another directiveisthe ! def i ne directive. Thisdirectiveisequivaent to the normal type of
macro definition (i.e., macro = text) but will make C programmers feel more at home. One
important distinction isthat the ! def i ne preprocessor directive may be used to reflect the
logical structure of macro definitionsin conditional processing. For instance, the previous
makefile could have been written in this style:

!ifndef stack_option

! define stack_option
lendi f

!ifndef line option

! define line_option
l'endi f

Preprocessing Directives 153

The Make/Touch Utilities

The"!" character must be in the first column but the directive keyword can be indented. This
freedom appliesto all of the preprocessing directives. The ! el se preprocessing directive
benefits from this type of style because ! el se can also check conditions like:

lelse ifeq

lel se ifneq
lelse ifeqi

lel se ifneqi
lel se ifdef
|

el se ifndef

so that logical structures like:

l'i fdef %version

I ifeq %ersion debuggi ng

! define option debug all

I else ifeq %ersion beta

! define option debug |ine

I else ifeq %Wersion production
! define option debug

I else

! error invalid value in VERSI ON
I endif

l'endi f

can be used. The above example checks the environment variable "VERSION" for three
possible values and acts accordingly.

Another derivative from the C language preprocessor isthe ! er r or directive which hasthe
form of

lerror <text>

in Make. Thisdirective will print out the text and terminate processing of the makefile. Itis
very useful in preventing errors from macros that are not defined properly. Hereisan
example of the! er r or preprocessing directive.

!ifndef stack_option

! error stack _option is not defined
l'endi f

!ifndef line option

! error line option is not defined
l'endi f

There is one more directive that can be used in amakefile. The ! undef preprocessing
directive will clear amacro definition. The ! undef preprocessing directive has the form:

154 Preprocessing Directives

The Open Watcom Make Utility

'undef <macro_identifier>

The macro identifier can represent anormal macro or an environment variable. A macro can
be cleared after it is no longer needed. Clearing a macro will reduce the memory
requirements for amakefile. If the macro identifier represents an environment variable (i.e.,
the identifier has a"%" prefix) then the environment variable will be deleted from the current
environment. The! undef preprocessing directiveis useful for deleting environment
variables and reducing the amount of internal memory required during makefile processing.

9.36.3 Loading Dynamic Link Libraries

Open Watcom Make supports loading of Dynamic Link Library (DLL) versions of Open
Watcom software through the use of the ! | oaddl | preprocessing directive. Thissupport is
available on Win32 and 32-bit OS/2 platforms. Performance is greatly improved by avoiding
areload of the software for each file to be processed. The syntax of the ! | oaddl |
preprocessing directiveis:

'l oaddl | $(exenanme) $(dl | name)
where $(exenane) isthe command name used in the makefileand $(dl | nane) isthe

name of the DLL to be loaded and executed in its place. For example, consider the following
makefile which contains alist of commands and their corresponding DLL versions.

Preprocessing Directives 155

The Make/Touch Utilities

Default conpilation nmacros for sanple prograns
#
Conpile switches that are enabl ed

CFLAGS = -d1

cC = wpp386 $(CFLAGS)
LFLAGS = DEBUG ALL

LINK = wink $(LFLAGS)

!ifdef __LOADDLL_ _

I loaddl | wcc wced

I loaddll wccaxp wecdaxp
I loaddll wcc386 wccd386
I loaddll wpp wppdi 86
I loaddl |l wppaxp wppdaxp
I loaddll wpp386 wppd386
I loaddl | wink w i nk

I loaddll Wib w i bd
l'endi f

.C.obj:
$(CO $*.c

The __LoADDLL__ symbol is defined for versions of Open Watcom Make that support the
I'l oaddl | preprocessing directive. The !ifdef __LOADDLL__ construct ensures that
the makefile can be processed by an older version of Open Watcom Make.

Make will look up the wop386 command inits DLL load table and find a match. 1t will then
attempt to load the corresponding DLL (i.e., wppd386. dl |) and passit the command line
for processing. Thelookup is case insensitive but must match in all other respects. For
example, if apath isincluded with the command name then the same path must be specified in
the! | oaddl | preprocessing directive. This problem can be avoided through the use of
macros asillustrated below.

156 Preprocessing Directives

The Open Watcom Make Utility

Default conpilation nmacros for sanple prograns

#

Conpile switches that are enabl ed
#

cc286 = wpp

cc286d = wppdi 86

cc386 = wpp386

cc386d = wppd386

linker = wink

l'inkerd = wink

CFLAGS = -d1

cc = $(cc386) $(CFLAGS)
LFLAGS = DEBUG ALL

LI NK = wink $(LFLAGS)

lifdef __LOADDLL__

'l oaddl | $(cc286) $(cc286d)
'l oaddl | $(cc386) $(cc386d)
'l oaddl | $(linker) $(linkerd)
l'endi f

.C.obj:
$(CO $*.c

A path and/or extension may be specified with the DLL name if desired.

9.37 Command List Directives

Open Watcom Make supports special directives that provide command lists for different
purposes. If acommand list cannot be found while updating atarget then the directive

. DEFAULT may be used to provide one. A simple . DEFAULT command list which makes
the target appear to be updated is:

. DEFAULT
wt ouch $"@

The Open Watcom Touch utility sets the time-stamp on the file to the current time. The effect
of the above rule will be to "update" the file without altering its contents.

In some applications it is necessary to execute some commands before any other commands
are executed and likewise it is useful to be able to execute some commands after all other

Command List Directives 157

The Make/Touch Utilities

commands are executed. Make supports this capability by checking to seeif the . BEFORE
and . AFTER directives have been used. If the . BEFORE directive has been used, the

. BEFORE command list is executed before any commands are executed. Similarly the

. AFTER command list is executed after processing isfinished. Itisimportant to note that if
all the files are up to date and no commands must be executed, the . BEFORE and . AFTER
command lists are never executed. |f some commands are executed to update targets and
errors are detected (non-zero return status, macro expansion errors), the . AFTER command
list is not executed (the . ERROR directive supplies acommand list for error conditionsand is
discussed in this section). These two directives may be used for maintenance asillustrated in
the following example:

#
.BEFORE and . AFTER exanpl e
#
. BEFORE
echo . BEFORE command |ist executed
. AFTER
echo . AFTER command |i st executed
#
rest of makefile foll ows
#

If al the targets in the makefile are up to date then neither the . BEFORE nor the . AFTER
command lists will be executed. If any of the targets are not up to date then before any
commands to update the target are executed, the . BEFORE command list will be executed.
The. AFTER command list will be executed only if there were no errors detected during the
updating of thetargets. The . BEFORE, . DEFAULT, and . AFTER command list directives
provide the capability to execute commands before, during, and after the makefile processing.

Make also supports the . ERROR directive. The . ERROR directive supplies a command list to
be executed if an error occurs during the updating of a target.

#
. ERROR exanmpl e
#
. ERROR
beep
#
rest of makefile foll ows
#

158 Command List Directives

The Open Watcom Make Utility

The above makefile will audibly signal you that an error has occurred during the makefile
processing. If any errors occur during the . ERROR command list execution, makefile
processing is terminated.

9.38 MAKEINIT File

As you become proficient at using Open Watcom Make, you will probably want to isolate
common makefile declarations so that there is less duplication among different makefiles.
Make will search for afile called "MAKEINIT" (or "TOOLS.INI" when the "ms" option is
set) and processit before any other makefiles. The search for the "MAKEINIT" file will

occur aong the current "PATH". If thefile"MAKEINIT" isnot found, processing continues
without any errors. By default, Make defines a set of data described at the "r" option. The use
of a"MAKEINIT" filewill alow you to reuse common declarations and will result in simpler,
more maintainable makefiles.

9.39 Command List Execution

Open Watcom Make is a program which must execute other programs and operating system
shell commands. There are three basic types of executable filesin DOS.

1. . COMfiles
2. . EXEfiles
3. . BATfiles

There are two basic types of executable filesin Windows NT.

1. . EXEfiles
2. . BAT files

There are two basic types of executable filesin OS/2.

1. . EXEfiles
2. . CMDfiles

The. COMand . EXE files may be loaded into memory and executed. The . BAT files must be
executed by the DOS command processor or shell, "COMMAND.COM". The . CMDfiles
must be executed by the OS/2 command processor or shell, "CMD.EXE" Make will search
along the "PATH" for the command and depending on the file extension the file will be
executed in the proper manner.

Command List Execution 159

The Make/Touch Utilities

If Make detects any input or output redirection characters (these are ">", "<", and "[") in the
command, it will be executed by the shell.

Under DOS, an asterisk prefix (*) will cause Make to examine the length of the command
argument. If itistoolong (> 126 characters), it will take the command argument and stuff it
into atemporary environment variable and then execute the command with " @env_var" asits
argument. Suppose the following sample makefile fragment contained a very long command

line argument.
#
Asterisk exanple
#
*foo nyfile /fa/b/c ... Ixly /lz

Make will perform something logically similar to the following steps.

set TEMPVAROO1=nyfile /fa /b /c ... Ix |y [z
foo @EMPVAROO1

The command must, of course, support the " @env_var" syntax. Typicaly, DOS commands
do not support this syntax but many of the Open Watcom tools do.

The exclamation mark prefix (1) will force acommand to be executed by the shell. Also, the
command will be executed by the shell if the command is an internal shell command from the

following list:

break (check for Ctrl+Break)

call (nest batch files)

chdir (change current directory)

cd (change current directory)

cls (clear the screen)

cmd (start NT or OS/2 command processor)

command (start DOS command processor)

copy (copy or combine files)

ctty (DOS redirect input/output to COM port)

d: (change drive where "d" represents a drive specifier)
date (set system date)

del (erasefiles)

dir (display contentsin adirectory)

echo (display commands as they are processed)

erase (erasefiles)

for (repetitively process commands, intercepted by WMAKE)

160 Command List Execution

The Open Watcom Make Utility

if

md
mkdir
path
pause
prompt
ren
rename
rmdir
rd

rm

set
time
type
ver
verify
vol

(allow conditional processing of commands)
(make directory)

(make directory)

(set search path)

(suspend batch operations)

(change command prompt)

(renamefiles)

(renamefiles)

(remove directory)

(remove directory)

(erasefiles, intercepted by WMAKE)

(set environment variables, intercepted by WMAKE)
(set system time)

(display contents of afile)

(display the operating system version number)
(set data verification)

(display disk volume label)

The operating system shell "SET" command is intercepted by Make. The"SET" command
may be used to set environment variables to values required during makefile processing. The
environment variable changes are only valid during makefile processing and do not affect the
values that were in effect before Make was invoked. The"SET" command may be used to
initialize environment variables necessary for the makefile commands to execute properly.
The setting of environment variables in makefiles reduces the number of "SET" commands
required in the system initialization file. Hereis an example with the Open Watcom F77

compiler.

#

SET exampl e

#

. BEFORE
set finclude=c:\special\inc;$(%include)
set |ib=c:\watcomlib386\dos

#

rest of mmkefile foll ows

#

Thefirst "SET" command will set up the FINCL UDE environment variable so that the Open
Watcom F77 compiler may find header files. Notice that the old value of the FINCL UDE
environment variable is used in setting the new value.

Command List Execution 161

The Make/Touch Utilities

The second "SET" command indicates to the Open Watcom Linker that libraries may be
found in the indicated directories.

Environment variables may be used also as dynamic variables that may communicate
information between different parts of the makefile. An example of communication within a
makefileisillustrated in the following example.

#

internal nmakefile communi cation
#

. BEFORE

set message=nessage text 1
echo *$(%ressage) *

set nmessage=

echo *$(%ressage) *

.example : another target .SYMBOLIC
echo *$(%ressage) *

another_target : .SYMBOLIC
set nessage=nessage text 2

The output of the previous makefile would be:

(command out put only)
message text 1

* %

message text 2

Make handles the "SET" command so that it appears to work in an intuitive manner similar to
the operating system shell’s"SET" command. The "SET" command aso may be used to
allow commands to relay information to commands that are executed afterwards.

The DOS "FOR" command is intercepted by Make. The reason for thisis that DOS has a
fixed limit for the size of a command thus making it unusable for large makefile applications.
One such application that can be done easily with Make is the construction of a WLINK
command file from amakefile. The idea behind the next example isto have onefile that
contains the list of object files. Anytimethisfileischanged, say, after anew module has been
added, a new linker command file will be generated which in turn, will cause the linker to
relink the executable. First we need the makefile to define the list of object files, thisfileis
"OBJDEF.MIF" and it declares amacro "objs’ which has asits value the list of object filesin
the application. The content of the "OBJDEF.MIF" fileis:

162 Command List Execution

The Open Watcom Make Utility

#
list of object files
#
objs = &
wi ndow. obj &
bi 0s. obj &
keyboard. obj &
nmouse. obj

The main makefile ("MAKEFILE") is:

#

FOR command exanpl e
#

l'include objdef.mf

plot.exe : $(objs) plot.Ink
w i nk @l ot

plot.Ink : objdef.mf
echo NAME $"& >$"@
echo DEBUG all >>$"@
for % in ($(objs)) do echo FILE % >>3%$"@

This makefile would produce afile "PLOT.LNK" automatically whenever the list of object
filesis changed (anytime "OBJDEF.MIF" is changed). For the above example, thefile
"PLOT.LNK" would contain:

NAME pl ot

DEBUG al |

FI LE wi ndow. obj
FI LE bi os. obj

FI LE keyboard. obj
FI LE nouse. obj

Make supports nine internal commands;

%abort
Y%append
%reate
%er ase
%rake
%ul |
Ygui t
Y%t op

©ONO Ok WNE

Command List Execution 163

The Make/Touch Utilities

9. %wite

The%abort and %gui t internal commands terminate execution of Make and return to the
operating system shell: %abort setsanon-zero exit code; Y%gui t setsazero exit code.

#
Y%abort and %guit example
#

done_enough :

%gui t

sui ci de :
%abor t

The %append, %reate, %erase, and % it e internal commands allow WMAKE to
generate files under makefile control. Thisis useful for filesthat have contents that depend on
makefile contents. Through the use of macros and the "for" command, Make becomes avery
powerful tool in maintaining lists of files for other programs.

The ¥%append internal command appends atext line to the end of afile (which is created if
absent) whilethe % i t e internal command creates or truncates a file and writes one line of
text into it. Both commands have the same form, namely:

Y%append <file> <text>
%wite <file> <text>

where<f i | e> isafile specification and <t ext > isarbitrary text.
The %r eat e internal command will create or truncate afile so that the file does not contain

any text while the %er ase internal command will delete afile. Both commands have the
same form, namely:

%create <fil e>
% rase <fil e>

where<f i | e> isafile specification.

Full macro processing is performed on these internal commands so the full power of WMAKE
can be used. The following example illustrates a common use of these internal commands.

164 Command List Execution

The Open Watcom Make Utility

#

Y%append, %reate, %erase, and %wite exanple
#
l'incl ude objdef.mf

pl ot.exe : $(objs) plot.Ink
w ink @l ot

plot.Ink : objdef.mf
Yereate $"@
Yappend $"@ NAME $"&
Next line equivalent to previous two |ines.
%ecreate $"@ NAME $"&
Y%append $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

clean : .SYMBCLIC
%erase plot.Ilnk

The above code demonstrates a valuable technique that can generate directive files for
WLINK, WLIB, and other utilities.

The %rake internal command permits the updating of a specific target and has the form:

%rake <t arget>

where <t ar get > isatarget in the makefile.

#

% ake exanpl e

#

l'include objdef.mf

pl ot.exe : $(objs)
%rake plot. | nk
wink @I ot

plot.lnk : objdef.mf
Yereate $"'@
Yappend $"@ NAME $"&
Yappend $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

There seem to be other ways of doing the same thing. Among them is putting plot.Ink into the
list of dependencies:

Command List Execution 165

The Make/Touch Utilities

#

%ake counter-exanpl e
#

l'incl ude objdef.mf

pl ot.exe : $(objs) plot.Ink
w ink @l ot

plot.Ink : objdef.mf
Y%create $"@
Yappend $"@ NAME $"&
Y%append $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

and using a make variable;

#

%rake counter-exanpl e
#

l'include objdef.mf

pl ot.exe : $(objs)
w i nk NAME $"& DEBUG all FILE { $(objs) }

The%ul | internal command does absolutely nothing. 1t isuseful because Make demands
that acommand list be present whenever atarget is updated.

#

%ul |l exanpl e

#

all : applicationl application2 .SYMBOLIC

%nul |

applicationl : appll.exe .SYMBCLIC
%ul |

application2 : appl 2.exe .SYMBOLIC
%ul |

appl 1. exe : (dependents ...)
(conmands)

appl 2. exe : (dependents ...)
(commands)

166 Command List Execution

The Open Watcom Make Utility

Through the use of the %mul | internal command, multiple application makefiles may be
produced that are quite readable and maintainable.

The %t op internal command will temporarily suspend makefile processing and print out a
message asking whether Makefile processing should continue. Make will wait for either the
"y" key (indicating that the Makefile processing should continue) or the"n" key. If the"n"
key is pressed, makefile processing will stop. The %st op internal command is very useful
for debugging makefiles but it may be used also to develop interactive makefiles.

#

Ustop exanpl e

#

all : appll.exe . SYMBOLIC

oul |

appl 1. exe : (dependents ...)
@cho Are you feeling |ucky? Punk!
@st op

(conmands)

9.40 Compatibility Between Open Watcom Make and
UNIX Make

Open Watcom Make was originally based on the UNIX Make utility. The PC’s operating
environment presents a base of users which may or may not be familiar with the UNIX
operating system. Make is designed to be a PC product with some UNIX compatibility. The
line continuation in UNIX Makeis abackslash ("\") at the end of the line. The backdash ("\")
is used by the operating system for directory specifications and as such will be confused with
line continuation. For example, you could type:

cd \

along with other commands ... and get unexpected results. However, if your makefile does
not contain path separator characters ("\") and you wish to use "\" as aline continuation
indicator then you can use the Make "u" (UNIX compatibility mode) option.

Also, in the UNIX operating system there is no concept of file extensions, only the concept of

afile suffix. Make will accept the UNIX Make directive . SUFFI XES for compatibility with
UNIX makefiles. The UNIX compatible special macros supported are:

Compatibility Between Open Watcom Make and UNIX Make 167

The Make/Touch Utilities

Macro Expansion

$@ full name of the target

$* target with the extension removed

$< list of all dependents

$? list of dependents that are younger than the target

The extra checking of makefiles done by Make will require modificationsto UNIX makefiles.
The UNIX Make utility does not check for the existence of targets after the associated
command list is executed so the "c" or the . NOCHECK directive should be used to disable this
checking. The lack of acommand list to update atarget is ignored by the UNIX Make utility
but Open Watcom Make requires the special internal command % ul | to specify anull
command list. In summary, Make supports many of the features of the UNIX Make utility but
isnot 100% compatible.

9.41 Open Watcom Make Diagnostic Messages

This section lists the various warning and error messages that may be issued by the Open
Watcom Make. In the messages below, %? character sequences indicate placesin the
message that are replaced with some other string.

1 Out of memory

2 Make execution terminated

3 Option %c%c invalid

4 %c%c must be followed by a filename

5 No targets specified

6 Ignoring first target in MAKEINIT

7 Expecting a %M

8 Invalid macro name %E

9 Ignoring out of place %M

10 Macros nested too deep

168 Open Watcom Make Diagnostic Messages

The Open Watcom Make Utility

11 Unknown internal command

12 Program nameistoo long

13 No control characters allowed in options
14 Cannot execute %E: %Z

15 Syntax error in %s command

16 Nested %s loops not allowed

17 Token too long, maximum sizeis %d chars
18 Unrecognized or out of place character ' %C’
19 Target %E already declared %M

20 Command list does not belong to any target
21 Extension(s) %E not defined

22 No existing file matches %E

23 Extensionsreversed in implicit rule

24 More than one command list found for %E
25 Extension %E declared more than once

26 Unknown preprocessor directive: %s

27 Macro %E is undefined

28 !l f statements nested too deep

29 1%s has no matching !if

30 Skipping ! %1 block after !9%62

31 %1 not allowed after %2

32 Opening file %E: %z

Open Watcom Make Diagnostic Messages

169

The Make/Touch Utilities

34 1%s pending at end of file

35 Trying to ! %s an undefined macro

36 Illegal attempt to update special target %E

37 Target %E isdefined recursively

38 %E does not exist and cannot be made from existing files
39 Target %E not mentioned in any makefile

40 Could not touch %E

41 No %s commands for making %E

42 Last command making (%L) returned a bad status
43 Deleting %E: %Z

44 %s command returned a bad status

45 Maximum string length exceeded

46 |llegal character value %xH in file

47 Assuming target(s) are .%s

48 Maximum %%make depth exceeded

49 Opening (%s) for write: %Z

50 Unable to write: %Z

51 CD’ing to %E: %Z

52 Changing to drive %C:

53 DOS memory inconsistency detected! System may halt ...
53 OS corruption detected

54 While reading (%s): %Z

170 Open Watcom Make Diagnostic Messages

The Open Watcom Make Utility

59 !IF Parse Error

60 TMP Path/File Too Long

61 Unexpected End of File

62 Only NO(KEEP) allowed here

63 Non-matching "

64 Invalid String Macro Substitution

65 File Name Length Exceeded

66 Redefinition of DEFAULT Command List
67 Non-matching { In Implicit Rule

68 Invalid I mplicit Rule Definition

69 Path Too Long

70 Cannot Load/Unload DLL %E

71 Initialization of DLL %E returned a bad status
72 DLL %E returned a bad status

73 Illegal Character %C in macro name

74 in closing file %E

75 in opening file %E

76 in writing file %E

77 User Break Encountered

78 Error in Memory Tracking Encountered

79 Makefile may be Microsoft try /ms switch

Open Watcom Make Diagnostic Messages 171

The Make/Touch Utilities

172 Open Watcom Make Diagnostic Messages

10 The Touch Utility

10.1 Introduction

This chapter describes the Open Watcom Touch utility. Open Watcom Touch will set the
time-stamp (i.e., the modification date and time) of one or more files. The new modification
date and time may be the current date and time, the modification date and time of another file,
or adate and time specified on the command line. This utility is normally used in conjunction
with the Open Watcom Make utility. The rationale for bringing a file up-to-date without
altering its contents is best understood by reading the chapter which describes the Make
utility.

The Open Watcom Touch command line syntax is:

WTOUCH [optiong] file_spec [file_spec...]

The square brackets [] denote items which are optional.

options isalist of valid options, each preceded by adash (/") or adash ("-"). Options
may be specified in any order.

file_spec isthe file specification for the file to be touched. Any number of file
specifications may be listed. Thewild card characters"*" and "?' may be used.

Thefollowing is a description of the options available.

c do not create an empty fileif the specified file does not exist
d <date> specify the date for the file time-stamp in "mm-dd-yy" format
f <file> use the time-stamp from the specified file

[increment time-stamp before touching the file

q suppress informational messages

r touch file even if it is marked read-only

t <time> specify the time for the file time-stamp in "hh:mm:ss® format
u use USA date/time format regardless of country

Introduction 173

The Make/Touch Utilities

? display help screen

10.2 WTOUCH Operation

WTOUCH isused to set the time-stamp (i.e., the modification date and time) of afile. The
contents of the file are not affected by this operation. If the specified file does not exist, it will
be created as an empty file. This behaviour may be altered with the "c" option so that if the
fileisnot present, a new empty file will not be created.

Example:
(will not create nyfile.dat)
Cwt ouch /c nyfile. dat

If awild card file specification is used and no files match the pattern, no files will have their
time-stamps altered. The date and time that all the specified files are set to is determined as
follows:

1. Thecurrent date and timeis used as a default value.

2. Atime-stamp from an "age file" may replace the current date and time. The "f"
option is used to specify the file that will supply the time-stamp.

Example:
(use the date and tine fromfile "last.tini)
Cwouch /f last.timfile*. dat

3. Thedate and/or time may be specified from the command line to override a part of
the time-stamp that will be used. The"d" and "t" options are used to override the
date and time respectively.

Example:
(use current date but use different tine)
Cw ouch /t 2:00p file*. dat
(compl etely specify date and tine)
Cwt ouch /d 10-31-90 /t 8:00:00 file*. dat
(use date fromfile "last.tini but set tine)
Cwouch /f last.tim/t 12:00 file*. dat

The format of the date and time on the command line depends on the country
information provided by the host operating system. Open Watcom Touch should
accept dates and times in asimilar format to any operating system utilities (i.e., the
DATE and TIME utilities provided by DOS). The"a" and "p" suffix isan
extension to the time syntax for specifying whether thetimeis A.M. or P.M., but

174 WTOUCH Operation

The Touch Utility

thisisonly available if the operating system is not configured for military or
24-hour time.

WTOUCH Operation 175

Index

i

.186 17
.286 17
.286¢c 17
.286p 17
.287 17
.386 17
.386p 17
.387 17
486 17
A486p 17
.586 17
.586p 17
.686 17
.686p 17
.8086 17
.8087 17
.apha 17, 26
.break 17,26
.code 17
.const 17
.continue 17, 26
.cref 17,26
.data 17
data? 17
.dosseg 17
.else 26
.endif 26
.endw 17, 26
.er 17

.erb 17
.errdef 17
errdif 17
errdifi 17
.ere 17
.erridn 17
.erridni 17
.errnb 17
.errndef 17

.ermz 17
.exit 17, 26
fardata 17
fardata? 17
if 26

fcond 17, 26
Jist 17, 26
Jistall 17, 26
Jistif 17, 26
Jistmacro 17, 26
Jistmacroall 17, 26
.model 17
.nocref 17, 26
.nolist 17, 26
radix 17, 26
repeat 17, 26
sl 17, 26
.seq 17, 26
.sfcond 17, 26
.Stack 17
Startup 17, 26
tfcond 17, 26
.until 17, 26
while 17, 26
xcref 17,26
Xlist 17, 26

addr 26
AFTER

WMAKE directive 109, 157
ALWAYS

WMAKE directive 110
assembler 15
AUTODEPEND

WMAKE directive 110, 115
AUTOEXEC.BAT

system initialization file 10

177

Index

batch files 148
BEFORE
WMAKE directive 111, 157
Bell Laboratories 104
BLOCK
WMAKE directive 93, 111
BPATCH
command line format 81
diagnostics 82
bugs 81

casemap 26
catstr 26
checking macro values 152
CMD.EXE shell 159
colon (:)

behaviour in WMAKE 107

explicit rulein WMAKE 104
command execution 159
command line format

BPATCH 81

WASM 15

WDIS 59

WFL 3

WFL386 3

WLIB 42

WMAKE 91

WSTRIP 86

WTOUCH 173
COMMAND.COM shell 159
common information 146
communication 162
CONFIG.SYS

178

system initialization file 10
CONTINUE
WMAKE directive 95, 111

debug information

removal 85
debugging makefiles 94, 167
declarations 103
DEFAULT

WMAKE directive 112, 157
default options 8
dependency 103
dependent 104
dependent extension 135
diagnostics

BPATCH 82

WSTRIP 87

different memory model libraries 146

disassembler 59
disassembly example 65
DLL support 155
DOS Extender
Phar Lap 286 12
DOSCALLS.LIB 12
double colon explicit rule 145
double-colon (::)
explicit rulein WMAKE 145
duplicated information 146
Dynamic Link Library
imports 47-48, 51
dynamic variables 162

Index

echo 26
WMAKE 158
endmacro 26
environment string
#9
= substitute 9

environment variables 126, 150-151, 161

FINCLUDE 161
LIB 12,151, 161
LIBOS2 12

PATH 82, 126-127

WFL 9-10

WFL386 9-10
ERASE

WMAKE directive
ERROR

WMAKE directive
executablefiles

reducing size 85
EXISTSONLY

WMAKE directive
EXPLICIT

WMAKE directive
explicit rule 104, 145
EXTENSIONS

WMAKE directive

far call optimization
enabling 70

94,112

113, 158

113

113

114, 135

far call optimizations 69

far jump optimization
FCENABLE options
b 71

70

c71

s71

x 71
Feldman, S.I 104
FINCLUDE environment variable 161
finding targets 139
FOR

using Open Watcom Make 162
FUzzYy

WMAKE directive 115

global recompile 93, 148
GRAPH.LIB 12
GRAPHP.OBJ 12

high 26
highword 26
HOLD
WMAKE directive 101, 115

!

IGNORE

WMAKE directive 94, 116
ignoring return codes 116
implicit rule 134
implicit rules

$[form 136

$] form 136

179

Index

$" form 136
import library 47-48, 50
initialization file 159
invoke 26

invoking Open Watcom Make 103, 148-149
invoking Open Watcom Touch 173

JUST_ENOUGH
WMAKE directive 115, 117

large projects 146
larger applications 140
LBC command file 49
LIB environment variable 12
LIBOS2 environment variable 12
libraries 146
library
import 50
library file
addingtoa 44
deleting froma 45
extracting from a 46
replacing amodulein a 45
library manager 41
line continuation 126
__LOADDLL__ 156
low 26
lowword 26
Iroffset 26

180

M

macro construction 127
macro definition 152
macro identifier 150
macro text 152
macros 123, 152
maintaining libraries 146
maintenance 91
make

includefile 147

reference 91

Touch 173

WMAKE 91
MAKEFILE 94, 103
MAKEFILE comments 104
MAKEINIT 159
mask 26
memory model 146
message passing 162
Microsoft compatibility

NMAKE 95
modification 173
MULTIPLE

WMAKE directive 117
multiple dependents 105
multiple source directories 140
multiple targets 105

NMAKE 93, 95
NOCHECK

WMAKE directive 93, 107, 118, 168

Index

opattr 26
Open Watcom Far Call Optimization Enabling
Utility 70
Open Watcom Make
WMAKE 91
OPTIMIZE
WMAKE directive 96, 118, 142
option 26
options
04
14
24
34
44
54
6 4
aign 4
automatic 4
bd 4
bm 4
bounds 4
bw 4
cc 4
chinese 4
code 4
dl 4
d2 4
debug 4
define 4
dependency 4
descriptor 4
disk 4
da 4
errorfile 4
explicit 4
extensions 5
ez 5
fo 5

format 5
fp2 5
fp3 5
fp5 5
fp6 5
fpc 5
fpd 5

fpi 5
fpi87 5
fpr 5
fsfloats 5
gsfloats 5
hc 5

hd 5

hw 5
inclist 5
incpath 5
ipromote 5
japanese 5
korean 5
Ifwithff 5
libinfo 5
list 5
mangle 5
mc 5

mf 5

mh 5

ml 5
mm 5
ms 5

ob 5
obp 5
oc 5

od 5
odo 5

of 5

oh 5

oi 5

ok 5

ol 6

ol+ 6
om 6

on 6

op 6

181

Index

or 6
os 6
ot 6
oX 6
print 6
quiet 6
reference 6
resource 6
save 6
sC 6
sepcomma 6
sg 6
short 6
s 6
ssfloats 6
stack 6
syntax 6
terminal 6
trace 6
type 6
warnings 6
wild 6
windows 6
xfloat 6
xline 6
0s2 12
DOSCALLS.LIB 12

page 26
patches 81

path 139
PATH environment variable 82, 126-127
pause
WMAKE 158
PHAPI.LIB 12
Phar Lap
286 DOS Extender 12
popcontext 26

182

PRECIOUS
WMAKE directive 115, 119
preprocessing directives
WMAKE 146
PROCEDURE
WMAKE directive 119
program maintenance 91
proto 26
purge 26
pushcontext 26

RECHECK

WMAKE directive 120
recompile 93, 144, 148
record 26
reducing maintenance 149
removing debug information 85
replace 147
return codes 112, 115, 119
rule command list 104

SET
FINCLUDE environment variable 161
LIB environment variable 12, 161
LIBOS2 environment variable 12
using Open Watcom Make 161-162
WEFL environment variable 9, 11-12
WFL 386 environment variable 9, 11-12
Setting
modification date 173
modification time 173
setting environment variables 151, 161

Index

shell
CMD.EXE 159
COMMAND.COM 159
SILENT
WMAKE directive 120
single colon explicit rule 104
strip utility 85
subtitle 26
subttl 26
SUFFIXES
WMAKE directive 121, 167
suppressing output 120
SYMBOLIC
WMAKE directive 121, 127-129, 166
system initiaization file 161
AUTOEXEC.BAT 10
CONFIG.SYS 10

target 104

target deletion prompt 94, 101
this 26

time-stamp 91, 173

title 26

Touch 93, 101, 157, 173
touch utility 173

typedef 26

union 26
UNIX 104, 167
UNIX compatibility modein Make 101

w

WASM

command line format 15
WDIS

command line format 59
WDIS example 65
WDIS options 60

a 60

e 61

fi 62

fp 61

fr 62

fu 62

i 60

| (lowercaseL) 62

m 64

p 63

s 64
WFL 9-12

command line format 3
WFL environment variable 9-10, 12
WFL options

"<linker directives>" 8

c4

FD[=<directive file>] 6

FE=<executable> 6

Fl=<fn> 6

FM[=<map_file>] 6

K=<stack size> 6

L=<system_name> 7

Ip 6,12

LR 6

Y 4
WFL386 9-12

command lineformat 3
WFL 386 environment variable 9-10, 12
WFL 386 options

"<linker directives>" 8

c4

183

Index

FD[=<directive file>] 6 declarations 103
FE=<executable> 6 dependency 103
Fl=<fn> 6 dependent 104
FM[=<map_file>] 6 dependent extension 135
K=<stack_size> 6 different memory model libraries 146
L=<system_name> 7 double colon explicit rule 145
Ip 12 duplicated information 146
Y 4 dynamic variables 162
width 26 environment variables 126, 150-151, 161
WLIB explicit rule 104, 145
command file 49 Feldman, S.I 104
command line format 42 finding targets 139
operations 43 ignoring return codes 116
WLIB options 49 implicit rule 134
b 49 include file 147
c 49 initialization file 159
d 50 large projects 146
f 50 larger applications 140
i 50 libraries 146
| (lower caseL) 51 line continuation 126
m 52 macro construction 127
n 52 macro definition 152
0 52 macro identifier 123, 150
p 53 macro text 152
q 53 macros 123, 152
s 53 maintaining libraries 146
t 54 MAKEFILE 94, 103
v 54 MAKEFILE comments 104
x 54 MAKEINIT 159
WLINK debug options 129 memory model 146
WMAKE multiple dependents 105
I command execution 160 multiple source directories 140
":" behaviour 107 multiple targets 105
":" explicit rule 104 path 139
":" explicit rule 145 preprocessing directives 146
* command execution 160 recompile 144
<redirection 160 reducing maintenance 149
> redirection 160 reference 91
batch files 148 return codes 112, 115, 119
Bell Laboratories 104 rule command list 104
checking macro values 152 setting environment variables 151, 161
command execution 159 single colon explicit rule 104
common information 146 special macros 102
debugging makefiles 94, 167 suppressing output 120

184

Index

target 104
target deletion prompt 94, 101
time-stamp 91
touch 93, 101, 157
UNIX 104, 167
UNIX compatibility mode 101
WTOUCH 157
| redirection 160
WMAKE command line
defining macros 92, 150
format 91
help 92

invoking WMAKE 91, 103, 148-149

options 92
summary 92
targets 92, 149

WMAKE command prefix
- 116
@ 120

WMAKE directives
AFTER 109, 157
ALWAYS 110
AUTODEPEND 110, 115
.BEFORE 111, 157
.BLOCK 93, 111
.CONTINUE 95, 111
.DEFAULT 112, 157
.ERASE 94, 112
.ERROR 113, 158
.EXISTSONLY 113
.EXPLICIT 113
.EXTENSIONS 114, 135
FUZzY 115
.HOLD 101, 115
IGNORE 94, 116
JUST_ENOUGH 115, 117
.MULTIPLE 117
.NOCHECK 93, 107, 118, 168
.OPTIMIZE 96, 118, 142
.PRECIOUS 115, 119
.PROCEDURE 119
.RECHECK 120
SILENT 120
SUFFIXES 121, 167

SYMBOLIC 121, 127-129, 166

WMAKE interna commands

%abort 163-164
Y%append 163-164
%create 163-164
%erase 163-164
%make 163, 165
%null 163, 166, 168
%quit 163-164
%stop 163, 167
%write 164

WMAKE options

a 93, 144, 148
b 93

c 93

d 94

e 9N

f 94, 103, 150
h 94

i 94,116
k 94

| 95

m 95

ms 95

n 95

0 96

p 96

q 96

r 96

s 100, 120
sn 101

t 101

u 101

v 101

y 101

z 101

WMAKE preprocessing

ldefine 153
lelse 151
lendif 151
lerror 154
lifdef 151
lifeq 151
lifegi 151

185

Index

lifndef 151 command lineformat 173

lifneq 151 WTOUCH options 174

lifnegi 151

linclude 146

linject 129

Hoaddll 155

lundef 154

DLL support 155

__LOADDLL__ 156
WMAKE special macros

$# 102, 133

$$ 102, 133

$(%o<environment_var>) 126, 150

$(%cdrive) 127

$(%cwd) 127

$(%path) 126, 161

$ 102, 168

$+ 127

$ 127

$< 102, 168

$? 102, 168

$@ 102, 168

$ 103,131

$[form 103, 131, 136

$& 103, 131

$* 103, 131

$[: 103,131

$@ 103, 131

$] 103,131

$] form 103, 131, 136

$]& 103,131

$]* 103, 131

$]: 103,131

$)@ 103, 131

$ 103, 131

$" form 103, 131, 136

$& 103,131

$* 103, 131

$ 103, 131

$@ 103, 131
WSTRIP 85

command line format 86

diagnostics 87
WTOUCH 93, 101, 157

186

