Open Watcom FORTRAN 77

Programmer’s Guide

First Edition

Uien Watcom

Notice of Copyright

Copyright 00 2002-2006 the Open Watcom Contributors. Portions Copyright O 1984-2002
Sybase, Inc. and itssubsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

Printed in U.S.A.

Preface

The Open Watcom FORTRAN 77 Programmer’ s Guide includes the following major
components:

» DOS Programming Guide

* The DOS/AGW DOS Extender

» Windows 3.x Programming Guide
» Windows NT Programming Guide
» OS/2 Programming Guide

* Novell NLM Programming Guide
» Mixed Language Programming

* Common Problems

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCI| text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on avariety of operating systems, interprets the tagsto
format the text into aform such as you see here. Writers can produce output for a variety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result is type-set
quality copy containing integrated text and graphics.

Many users have provided valuable feedback on earlier versions of the Open Watcom
FORTRAN 77 compilers and related tools. Their comments were greatly appreciated. If you
find problems in the documentation or have some good suggestions, we would like to hear
from you.

July, 1997.

Trademarks Used in this Manual
DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.
0S/2 isatrademark of International Business Machines Corp. IBM Developer’s Toolkit,
Presentation Manager, and OS/2 are trademarks of International Business Machines Corp.
IBM is aregistered trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT is atrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

UNIX isaregistered trademark of The Open Group.

WATCOM is atrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

1 Open Watcom FORTRAN 77 Application Developmentccccccevrinienenieneneenen.

DOS Programming GUITEcoueerueeriiiriierieisienieies ettt

2 Creating 16-bit DOS APPHICALIONSceoevuiririireeirieierieesieere e
2.1 The Sample APPHCALIONcccvceeeierises e
2.2 Building and Running the Sample DOS Applicationcccccevvevevericieenene
2.3 Debugging the Sample DOS AppliCationc.ccoceveveverevereeiecesee e

3 Creating 32-bit Phar Lap 386|DOS-Extender Applicationsccccoveveeerierienccnenenn
3.1 The Sample APPHICALTIONccccoieriiiiies e
3.2 Building and Running the Sample 386|DOS-Extender Application
3.3 Debugging the Sample 386|DOS-Extender Applicationcccceovvevvvnennnn.

4 Creating 32-bit DOS/AGW APPIICALIONSccoveeeierieierieie e
4.1 The Sample APPlICALIONccoceieiicese e
4.2 Building and Running the Sample DOS/4GW Applicationcccccccveuenee.
4.3 Debugging the Sample DOS/AGW Applicationcccceeveevevieniecenenesienn,

5 32-bit Extended DOS Application Developmentcccoerereeerrerieninene e
5.1 INIIOTUCTION ..ttt
5.2 How can | write directly to video memory using a DOS extender?
5.3 How do | issue interruptsin a DOS/IAGW application?cceeeveneeenenne.
5.4 How do | get information about free memory in the 32-bit environment? ..

The DOS/AGW DOS EXENUEYc.oiveeirieirieirieesie sttt sttt se e sestesesseseesesens
6 The Tenberry Software DOS/AGW DOS EXtENderc.ccovveevivveerieceeeceesie e,

7 LiNEar EXECULBDIEScccveeiiiieieece ettt ettt ettt et s ae e sae e e ebeeeane et
7.1 The Linear Executabl@ FOrmMatccoveeeeiiiiiiecee et

7.1.1 The StUb Programccoceveirieeneeneesieseeieseee e

T2MEMONY USE ..ottt e

8 Configuring DOSIAGWV ...ttt s e e sn et st see e nes
8.1 The DOSAG Environment Variableccocoveiveinnnnnnineneseeens

8.2 Changing the Switch Mode SEttingccccecevevinieve e

8.3 Fine Control of Memory USAJEcccceeveieeie ettt

8.3.1 Specifying a Range of Extended Memorycccoeveeieieneecnenne.

8.3.2USING EXIraMEMOIYoouiiieeieieieeeeeeeeeie st

~N o oro

Table of Contents

8.4 Setting Runtime Options
8.5 Controlling Address Line 20 ..

GVMM e
9.1 VMM Default Parameters........

9.2 Changing the Defaullts
9.2.1 The VMCFile

10 Interrupt 21H Functionscccceee.e..

10.1 Functions 25H and 35H: Interrupt Handling in Protected Mode

10.1.1 32-Bit Gates

10.1.2 Chaining 16-bit and 32-bit Handlerscccccooivninininncies
10.1.3 Getting the Address of the Interrupt Handler ...

11 Interrupt 31H DPMI Functions

11.1 Using Interrupt 31H Function

11.2 Int31H Function Cdlls

CallS e

11.2.1 Local Descriptor Table (LDT) Management Services
11.2.2 DOS Memory Management SEIVICESccccvevvereeveereeesieseseseennens

11.2.3 Interrupt Services ...

11.2.4 Trandation Services

11.2.5DPMI Version

11.2.6 Memory Management SENVICESccevveerererenenienesesese e
11.2.7 Page LOCKING SEIVICEScovcuirieiireeireeeseeisieesieses e
11.2.8 Demand Paging Performance Tuning Servicescovvvenneneas
11.2.9 Physical AddressS Mappingcccceeereeereerieenieenieeseeseeeseseeeees
11.2.10 Virtual Interrupt State FUNCLIONScccoeivveveevierere e
11.2.11 Vendor Specific EXIENSIONScccccveveeeeveeieieeceeece e sie e

11.2.12 Coprocessor Status

T2 ULHHTIES oo
12.1 DOSAGWccvcvviiirinninene,
122 PMINFO ..o,
123 PRIVATXM e,
124 RMINFO ..o,

13 Error MEeSSagescccceevvreeeriereeneennnnns

13.1 Kernel Error Messages
13.2 DOS/AG EITOrscccvvevrvenen

14 DOS/AGW Commonly AsKed QUESLIONSccereriereerierierieneeeeesee et seens

14.1 Accessto Technical Support

Vi

36
38

39
39
40
40

41
45
45
46
46

47
47
48
49
55
56
59
68
68
70
72
73
74
76
77

79
80
81
83

87
87
91

99
99

Table of Contents

14.2 Differences Within the DOS/4G Product Linecccccoevnenncnnennenen, 101

G N (o = o [USRS 104

14.4 Interrupt and Exception Handlingcccveerirninneneneecceseeeens 106

14.5 MemOory ManagemeNtccocevirirere e 109

14.6 DOS, BIOS, and MOUSE SEIVICESeeeeveeieeereeiteeseeeeeeseeeseeesresssveesseesanes 109

TA.7 Virtual MEMOIY ..ottt et e 110

IR T o0 oo 1 o 113

14.9 ComMPALiDIlITY .vocveeeeeecceeec e s 118
Windows 3.X Programming GUITEccceeeeieeirirene s 121
15 Creating 16-bit Windows 3.X APPliCALIONSccceoereereriireriinieinieesieeseeeseeieseeeseens 123
15.1 The Sample GUI APPlICALTIONccoveoiiirerireceneee s 123

15.2 Building and Running the GUI Applicationcccecerrineienencneneneneeen, 124

15.3 Debugging the GUI APPliCaLIONcoveeerieirieiriireseeeeseees s 125

16 Porting Non-GUI Applications to 16-bit WindowS 3.Xcccccveeveveeenenieniesesesee s 127
16.1 Console Devicein aWindowed ENVironmentccccoevvreeienerescenenennns 127

16.2 The Sample Non-GUI AppliCationccceoereiinenenenenesee e 128

16.3 Building and Running the Non-GUI Applicationccoceveieiriniencnene 128

16.4 Debugging the Non-GUI AppliCationccccooeorinininieneneeese e 129

16.5 Default Windowing Library FUNCLIONScccviieineiinecneesees e 130

17 Creating 32-bit Windows 3.X APPliCALIONScoeeeruireriiririiieerieesieesee e 133
17.1 The Sample GUI APPlICALIONccoveviirerietneereeeree e 133

17.2 Building and Running the GUI Applicationcccccoovvivvvvenvneneeseeieeene 134

17.3 Debugging the GUI AppliCationcccccvvveievenenereseeeeeeeee e 136

18 Porting Non-GUI Applications to 32-bit WindowWS 3.Xccccceeeeieienininc e 139
18.1 Console Devicein aWindowed Environmentccccoeenennennenennenenn 139

18.2 The Sample Non-GUI AppliCationcceoeverenene e 140

18.3 Building and Running the Non-GUI Applicationc.ccccoeeeveieneieneennnn 140

18.4 Debugging the Non-GUI AppliCationccoeeverrininineeseeseese e 143

18.5 Default Windowing Library FUNCLIONScccoverrinieinecneenees s 144

19 The Open Watcom 32-bit Windows 3.X EXENdErcccvvvvrereverereeeeseeeseeeens 147
LO. 1 POINTESS ..ot se st 147

19.2 Implementation OVEIVIEWccccveeeeieeeeieseeese e sres e seesaesesaeseesesesseenens 148

19.3 SYSLEIM SITUCLUIEveeeeeeiee ettt 150

19.4 SYSLEM OVEIVIEW ...veeiieiiieeeeresie ettt sn b 151

19.5 Stepsto Obtaining a 32-bit Applicationcccceieriieirireeeeeee 152

vii

Table of Contents

20 Windows 3.x 32-bit Programming OVEIVIEWcccccceeerirenienenenene e 153
20.LWINAPLFL ottt bbb 154

20.2 ENVIroNMENt NOESooviiieierieieiereeeee et sttt e s eneas 154

20.3 Floating-point EMUIELIONcccoeireirieinieereeneseseseee s 155

20.4 MUILIPIE INSLBNCESeviiereeienieisieseete sttt sb e ebe e 155

20.5 PoINter HANAING ...oveveiieiiiieicrieseeeees et 156

20.5.1 When To Convert Incoming POINLESccceveverereereereeenienennens 157

20.5.2 When To Convert Outgoing POINLErSccceeveeeeenienesesene e 158

20.5.2.1 SendMessage and SendDlIgltemMessageccceeevunee. 158

20.5.3 GlobalAlloc and LOCAIAIIOCccvcvveirieiieeeeeeee e 160

20.5.4 Callback FUNCtion POINLErScccoireeireeireisee e 160

20.5.4.1 Window Sub-Classingc.ccoceverenerienieieneeeeesese e 162

20.6 Calling 16-Dit DLLScueiiiicieeresisie ettt 164

20.7 _L16 FUNCLIONSooviuiitieeteneete st sttt b e st s ebe e snenesrene s 165

21 Windows 32-Bit Dynamic Link Librariesccocovereeneeneneneeseeseseseseenes 167
21.1 Introduction t0 32-Bit DLLScvorirereirenisrccereeeeeres e 167

21.2 A SaMPlE 32-Dit DLL ..o 168

21.3 Cdlling Functionsin a 32-bit DLL from a 16-bit Application 170

21.4 Calling Functionsin a 32-bit DLL from a 32-bit Application 172

21.5 A Sample 32-bit DLL USING @ SErUCIUIEc.evuiieirieieerieieee e 173

21.6 Creating and Debugging Dynamic Link Librariesccocooeveieininccnnene 178

21.6.1 Building the ApPliCatioNScccoeereiiriennieeee e 179

21.6.2 Ingtalling the Examples under Windowsc.ccoevernennienneneas 179

21.6.3 Running the EXamples ... 179

21.6.4 Debugging @32-Dit DLL ...occeiviirieiriecrierereeeee e 180

21.6.5 SUMMEIY .ocviieeeeeiiee e stee et ee e ee e e aeeee e e seesneeseeeneesrenneens 181

22 Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLS ...ccccccvvevvevnenene 183
22.1 Introduction to Visual Basic and DLLScc.cccoeinenncnnenneneseseee 183

22.2 A WOrKiNg EXGMPIEccoiiiiiiiieiereeeeee et e 185

22.3 Sample Visual Basic DLL Programscccccoeeeeeienienienenenesese e 187

22.3.1 Source Code for VBDLL32.DLL ..cooviviiiiiienee e 187

22.3.2 Source code for COVERLB.DLLoccovvvvievivereeneereeeeeeeens 189

22.4 Compiling and Linking the EXamples ... 190

23 WINSB6 Library SUDPrOgramscccvvvererieierseesieneeseeeesesseeessessesesreseesseseessesseseens 191
AIOCATESLE ... 192

AlOCHUQGEALIBSLOocveeeiiiecieeceeeeetee et 193

QLB s 194

DEfINEDLLENLIY ..ot 196

DefiNEUSEIPIOCLEooeeieieieeeereeeei e 198

viii

Table of Contents

FrEEATIBSLEooveiceeireriete et 200
FreeHUGEATBSLEc.ccieierecieeiieee e 201
FreelndirectFunctionHandle ... 202
GetIndirectFunctionHandlecocovevereiereieenere e 204
LTS 1 ool £ S 206
INVOKEINAIFECEFUNCLION ...cveveeeiee e 208
V= oA L 1S o = | 210
PASS WORD_AS _POINTERcocoeiirreeenre e 211
REIEASEPIOCLE ..o 212
24 32-bit Extended Windows Application Developmentcccecervererenieneseseniens 213
24.1 Can you call 16-bit code from a 32-bit Windows application? 213
24.2 How do | add my WindOWS reSOUICES?ccoeeerrererierenienenienesie s 214

24.3 All function pointers passed to Windows must be 16-bit far pointers,
(00 1= o 2SR 214
24.4 Why are 32-bit callback routineS FAR?ccoeviiinninneneereesee e 214
24.5Why usethe 16 APl fUNCLIONS?ccoovviverescerie e 215
25 Special Windows APl FUNCLIONScccociiiiiiice et sre e snens 217
Windows NT Programming GUIAEcoeoueeereeiiriiene s s 223
26 Windows NT Programming OVEIVIEWc..cceeerieerienenenesesesiesee e 225
26.1 Windows NT Character-mode Versus GUIccocvevvvvvveneneneneeneeeenenn 225
27 Creating Windows NT Character-mode AppliCationsccccceeveeevievievesesnseseeniens 227
27.1 The Sample Character-mode Applicationccccevevverieveveseseeseeee e 227
27.2 Building and Running the Character-mode Applicationccccecvvvennee. 228
27.3 Debugging the Character-mode AppliCationcccoorvrenienienenenenenene 229
28 Windows NT Multi-threaded APPliCaLIONScccoerererierenesese e 231
28.1 Programming CONSIAErationsScccoeereeerienerienesieneseseeesiees e 231
28.2 Creating THreadscoceieiiieesee e 231
28.2.1 Creating aNew Thread ... 232
28.2.2 Terminating the Current Threadcccoooveieveiencenceneeeee 232
28.2.3 Getting the Current Thread Identifiercocoveeeveercccvciccen, 233
28.3 A Multi-threaded EXamPleccocceeerierecece e 233
29 Windows NT Dynamic LinK Librariesccccccovveeveieese e 237
29.1 Creating Dynamic Link Librariesccocoevirineneneneeeeeeee e 237
29.2 Creating a Sample Dynamic Link Libraryccccoevenieneneieieneeenenen 238

Table of Contents

29.3 Using Dynamic LinK Librariesc.ccoooerereneicinieeeesene e 242

29.4 The Dynamic Link Library Data Areaccccveveerereereeienerenesese s 243

29.5 Dynamic Link Library Initialization/Terminationccccocevvvenniennennns 244

OS/2 Programming GUIGEcoceereirieiriee ettt st st sttt 247
30 Creating 16-bit OS/2 1.X APPlICALIONSocecviieiriiese e e 249
30.1 The Sample APPlIiCaLIONcccovceieeisese e e 249

30.2 Building and Running the Sample OS/2 1.x Applicationccccoceeeenuene. 250

30.3 Debugging the Sample OS/2 1.X ApPliCatioNcccoceerierieninenenesese e 251

31 Creating 32-bit OS/2 APPIICALIONSoceevirieeirieiirieiirieiriees et 255
31.1 The Sample APPHICALIONccovveireeeireeierieereere s 255

31.2 Building and Running the Sample OS/2 Applicationcccovvvirrenenne. 256

31.3 Debugging the Sample OS/2 AppliCationcccoceveerriereieneiere e 257

32 052 2.x Multi-threaded APPliCALIONSccccvveiiiire e 259
32.1 Programming CONSIAErationSccccevveveeieereeieeecesieseees e seesre e ssesnessesee s 259

32.2 Creating THIrEadScc.ocveeieceee e e 259

32.2.1 Creating aNew Threadcocovireierieneeee e 260

32.2.2 Terminating the Current Thread ... 260

32.2.3 Getting the Current Thread Identifiercccocoeveveiieincineens 261

32.3 A Multi-threaded EXaMPIEccoeiiiiinieeeeeees s 261

A I 0 "= o T £SO 263
33052 2.x Dynamic Link LiDrariesccccoveieviviniesiesnseneseseseeeeeeesseses e sse e e 265
33.1 Creating Dynamic Link Librariescccoovevveviniennsereseseeseeeeses e 265

33.2 Creating a Sample Dynamic Link Libraryccccoocveevieiivevcicseesececeenenns 266
33.3Using Dynamic Link Librariesccccooeveievieiiese e 268

33.4 The Dynamic Link Library Data Areacccoereereereeneeienerenesesesee e 269

33.5 Dynamic Link Library Initialization/Terminationcccccceeeeereeneeniennens 270

34 Programming for OS/2 Presentation Managercooeveereieneeneiene s 273
34.1 Porting Existing FORTRAN 77 AppliCationscccvevvveneenneneicneens 273

3411 ANEXAMPIE et 274

34.2 Calling Presentation Manager APl FUNCLIONSccoevveveeeceeene e 274

Novell NLM Programming GUIAEcccueieeiiiieeceesie e see ettt 279
35 Creating NetWare 386 NLM ApPPlICALIONSccccorirerenirieiesese e 281

Table of Contents

Mixed Language Programimingcoccoeeerererenieseereeseseeseseses e sieste e seesteseeseessessesseseensssessesns 283
36 Inter-Language calls: C and FORTRAN ..ot 285
36.1 Symbol Naming CONVENLIONccccereireeriereesenees e 285
36.2 Argument Passing CONVENLIONcccoerenirininieee e 286
36.3 Memory Model Compatibilitycccoeeverninnie e 287
36.4 Linking CONSIAEIELIONSccveverierieriesesieseeseeseseeseeeeseeeesessessessessessesnesseses 287
36.5 Integer Type CompatibDilityccccceeveeieeieeicere e 288
36.6 How do | passintegers from C to a FORTRAN function?cccccevnenne. 288
36.7 How do | passintegers from FORTRAN to a C function?ccccceeuene. 289
36.8 How do | pass a string from a C function to FORTRAN?cccccceeeenene. 291
36.9 How do | pass a string from FORTRAN to a C function?ccccceceeuenee. 292
36.10 How do | access a FORTRAN common block from within C? 293
36.11 How do | call aC function that accepts a variable number of
AIGUIMENES? ..ottt r e r e sn e sn e e e e e enen 295
ComMON ProbIEMS ... 297
37 Commonly Asked QUESEIONS 8N ANSWESSccererererere e 299
37.1 Determining my current patch level ... 300
37.2 Converting to Open WatCom F77cooeiiiinineieneee e 301
37.3 What you should know about optimizationccoeceveeeneienencnenenenennens 301
37.4 Reading a stream of binary datafrom afile ..., 302
37.5 Redefining math error handling with Open Watcom F77ccocccveeenne. 303
37.6 The compiler cannot find my include files ... 310
37.7 Thelinker reports a"stack segment not found" errorccocvevvvveveveennn, 311
37.8 Resolving an "Undefined Reference” linker errorccoceveveveevecceecencennnns 311
37.9 Why local variable values are not maintained between subprogram
CAIIS bbb 312
37.10 What "Stack Overflow!" Means ..o 312
37.11 What are the probable causes of a General Protection Fault in 32-bit
APPIICALIONS? ...ttt 313
37.12 Which floating-point compiler option should | use for my
APPIICALTIONT ..ot bbb 314
37.13 How more than 20 files at atime can be openedccccovevvincencens 315
37.14 How source files can be seen in the debuggerccceoeveveeiecvcicciciiene 317
37.15 The difference between the "d1" and "d2" compiler options 319
37.16 The difference between the "debug" and "d2" compiler options 320

Xi

List of Figures

Figure 1. BasiC MEMOIY LAYOULoouiiiieieieiieeee ettt bbb s e e eneas 29
Figure 2. Physical Memory/Linear AAAreSS SPACEccoceririererinienerie e s 30
Figure 3. ACCESS RIGNES/ TYPE ...oviuiiieiiiieerieisieee ettt ne e 52
Figure 4. Extended ACCESS RIGNES/ TYPE ...ooviiiiiiriiiriiieeeere et 53
FIgUre 5. WINS8E SITUCLUIEcecviieiirieiirieicrieieei ettt ettt eb et neenes 150
Figure 6. 32-bit APPliCation SLIUCLUIEcc.ciriieirieirierieree et e 151

Xii

1 Open Watcom FORTRAN 77 Application
Development

This document contains guides to application development for several environments including
16-bit DOS, 32-hit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows
NT/2000/XP, Win9x, OS/2, and Novell NLMs. It also describes mixed language (C,
FORTRAN) application development. It concludes with a chapter on some general questions
and the answers to them.

This document covers the following topics:
* DOS Programming Guide

Creating 16-bit DOS Applications

Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/AGW Applications

32-hit Extended DOS Application Devel opment

* The DOS/4GW DOS Extender

The Tenberry Software DOS/AGW DOS Extender
Linear Executables

Configuring DOS/4GW

VMM

Interrupt 21H Functions

Interrupt 31H DPMI Functions

Utilities

Error Messages

DOS/4GW Commonly Asked Questions

» Windows 3.x Programming Guide

Open Watcom FORTRAN 77 Application Development 1

Chapter 1

Creating 16-bit Windows 3.x Applications

Porting Non-GUI Applicationsto 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications

Porting Non-GUI Applications to 32-bit Windows 3.x
The Open Watcom 32-bit Windows Extender
Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs
WIN386 Library Subprograms

32-hit Extended Windows Application Devel opment
Special Windows API Functions

» Windows NT Programming Guide
Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applications to Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries
» OS/2 Programming Guide
Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications
0S/2 Multi-threaded Applications
OS/2 Dynamic Link Libraries
Programming for OS/2 Presentation Manager
* Novell NLM Programming Guide
Creating NetWare 386 NLM Applications
» Mixed Language Programming
Inter-Language calls: C and FORTRAN

* Common Problems

Commonly Asked Questions and Answers

2 Open Watcom FORTRAN 77 Application Development

DOS Programming Guide

DOS Programming Guide

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample
application and showing you how to compile, link, run and debug it.

2.1 The Sample Application

To demonstrate the creation of 16-bit DOS applications using command-line oriented tools,
we introduce a simple sample program. For our example, we are going to use the "sieve"
program.

* This program conputes the prinme nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOGE CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15,A/15)")
DO 1 = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO 1 = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Primes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

The Sample Application 5

DOS Programming Guide

2.2 Building and Running the Sample DOS Application

To compile and link our example program which is stored in thefile si eve. f or, enter the

6

following command:

Cwil /I =dos sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw |l /1 =dos sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc sieve.for
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

sieve.for: 21 statements, 311 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a DOS executabl e

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

Cssi eve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. for) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe

that is run by DOS when you enter the "sieve' command.

Building and Running the Sample DOS Application

Creating 16-bit DOS Applications

2.3 Debugging the Sample DOS Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Open Watcom F77 compiler
"debug” options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwl /I =dos /d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwfl /1=dos /d2 sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc sieve.for /d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statenents, 392 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a DOS executabl e

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option

results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult

Debugging the Sample DOS Application 7

DOS Programming Guide

for yourself to determine the relationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, the following
command may be issued.

Cwd si eve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

8 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386/DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender
applications simply and quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by
taking a small sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application

To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using
command-line oriented tools, we introduce a simple sample program. For our example, we
are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER* 11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO I = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The Sample Application 9

DOS Programming Guide

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

3.2 Building and Running the Sample
386/DOS-Extender Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

Cwfl 386 /| =pharl ap sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wil 386 /1 =pharl ap sieve. for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

wf c386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

C>run386 sieve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. for) and si eve. exp (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exp
that is run by DOS when you enter the "run386 sieve" command.

10 Building and Running the Sample 386/DOS-Extender Application

Creating 32-bit Phar Lap 386/|DOS-Extender Applications

3.3 Debugging the Sample 386/DOS-Extender
Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the

WFL 386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open
Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwf |1 386 /| =pharlap /d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wil 386 /| =pharlap /d2 sieve.for
Open WAt com F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

wf c386 sieve.for /d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

The"d2" option requests the maximum amount of debugging information that can be provided

by the Open Watcom F77 compiler. WFL386 will make sure that this debugging information
isincluded in the executable file that is produced by the linker.

Debugging the Sample 386|DOS-Extender Application 11

DOS Programming Guide

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, the following
command may be issued.

Cwd /trap=pls sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

12 Debugging the Sample 386/DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/AGW applications simply and
quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample
application and showing you how to compile, link, run and debug it.

4.1 The Sample Application

To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented
tools, we introduce a simple sample program. For our example, we are going to use the
"sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOGE CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15,A/15)")
DO |1 = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO |l = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Primes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program isto count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

The Sample Application 13

DOS Programming Guide

4.2 Building and Running the Sample DOS/4GW
Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

Cwfl 386 /1 =dos4g sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wil 386 /1 =dos4g sieve. for
Open WAt com F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

wf c386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpiler
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwatcomorg/ for details.

| oadi ng object files

searching libraries

creating a DOS/ 4G executabl e

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

C>si eve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe
that is run by DOS when you enter the "sieve" command.

14 Building and Running the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

4.3 Debugging the Sample DOS/4GW Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open
Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwfl 386 /1 =dos4g /d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw | 386 /| =dos4g /d2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc386 sieve.for /d2
Open WAt com FORTRAN 77/32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a DOS/ 4G executabl e

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL 386 will make sure that this debugging information
isincluded in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option

results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult

Debugging the Sample DOS/4GW Application 15

DOS Programming Guide

for yourself to determine the relationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, the following
command may be issued.

Cwd /trap=rsi sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

16 Debugging the Sample DOS/AGW Application

5 32-bit Extended DOS Application
Development

5.1 Introduction

The purpose of this chapter is to anticipate common programming questions for 32-bit
extended DOS application development. Note that these programming solutions may be
DOS-extender specific and therefore may not work for other DOS extenders.

The following topics are discussed in this chapter:

* How can | write directly to video memory using DOS/AGW?

* How do | issueinterruptsin a DOS/4GW application?

* How do | get information about free memory with DOS/AGW?
Please refer to the DOS Protected-Mode | nterface (DPMI) Specification for information on
DPMI services. Inthe past, the DPMI specification could be obtained free of charge by
contacting Intel Literature JP26 at 800-548-4725 or by writing to the address below. We have
been advised that the DPMI specification is no longer available in printed form.

Intel Literature JP26

3065 Bowers Avenue

P.O. Box 58065

Santa Clara, California

U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmivl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Introduction 17

DOS Programming Guide

5.2 How can | write directly to video memory using a

DOS extender?

Many programmers require access to video RAM in order to directly manipulate data on the
screen. Under DOS, it was standard practice to use afar pointer, with the segment part of the
far pointer set to the screen segment. Under DOS extenders, this practice is not so standard.
Each DOS extender provides its own method for accessing video memory. The following

program demonstrates the method used with DOS/AGW.

*

*

*

*

L A

FSCREEN. FOR
The foll ow ng program shows how to access screen menory
froma FORTRAN program under the DOS/ 4GW DOS ext ender

Conpile & Link: wil 386 -1=dos4g fscreen
program screen

Al l ocat abl e arrays nust be declared by specifying their
di nensi ons using colons only (see Open Watcom FORTRAN 77
Language Reference on the ALLOCATE statenent for details)

character*1 screen(:,:)
i nt eger SCRSI ZE,

paraneter (SCRSIZE = 80*25)
Under DCS/4GWN the first negabyte of physical nenory - the
real nenory - is napped as a shared linear address space
This allows your application to access video RAMusing its
linear address. The DOS segnent: of fset of B800: 0000
corresponds to a |linear address of B8000

al | ocate(screen(0:1, 0: SCRSI ZE- 1), |ocation="B8000’ x)
doi =0, SCRSIZE - 1

screen(0,i) = "'*’
enddo

end

5.3 How do | issue interrupts in a DOS/4GW
application?

The Open Watcom F77 library files contain the FINTR subroutine which allows the user to
perform interrupt calls within a FORTRAN 77 program. This subroutine is described in the
Subprogram Library section of the Open Watcom FORTRAN 77 User’s Guide.

18 How do Il issue interrupts in a DOS/AGW application?

32-bit Extended DOS Application Development

The following sample program illustrates the use of the FINTR subroutine to set up the
register information required for Interrupt 21h. The register information is loaded into the
regs structure. This structure is defined in the DOS.FI file located in the
\WATCOM\SRC\FORTRAN\DOS directory. Assign valuesto the register elements
according to the interrupt call requirements. For example, Interrupt 21h, function 4Eh needs
valid values for the AH, ECX, DS and EDX to set up the registers for the Interrupt 21h call.
This procedure can be used to perform any interrupt calls that are supported in protected mode
by DOS/4AGW.

* DTA. FOR
* This program denonstrates the use of the FINTR
* function to list the files of the current directory.
* Interrupt 21 Functions for FIND FIRST, FIND NEXT
* and GET DTA are used
* Conpile & Link: set finclude=\watcom src\fortran\dos
* wfl 386 -1=dos4g dta
*$pragma aux GetDS = "npv ax, ds" val ue [ax]

program dta

implicit integer*2 (i-n)

integer*2 res

i nteger*2 GetDS

integer*4 dir, addr

integer*1 dta(:)

character fname*1(12), fname2*12

equi val ence (fnane, fnane2)
* DTA is declared as a FAR array. \When referencing an array
* element, the pointer to the array is a FAR pointer. Wth a
* character variable, the result is a pointer to a string
* control block (SCB). The run-tine library expects the SCB
* to contain a near pointer. To get around the problem we
* define the DTA as a byte array, then use the CHAR function
*

to get the character equivalent for printing a fil enane

*$pragma array dta far

include 'dos.fi
*

* Listing of current directory
*

call fsystem('dir/w *.*"//char(0))
dir = loc('"*.*" //char(0))

10 i =

How do I issue interrupts in a DOS/4GW application? 19

DOS Programming Guide

if(i .eq. 1)then

* Find first file

AH = " 4FE x
ECX = 0
DS = Get DS()
EDX = dir

el se

* Find next file

AH = " 4F x
endi f
call fintr("21'x, regs)
res = AX

if(res .eq. 0)then
* Extract filenanme from DTA

AH = " 2F x
call fintr("21'x, regs)

addr = ISHL(I AND(INT(ES), 'O0000FFFF x), 16)
addr = | OR(addr, I AND(INT(BX), 'O0000FFFF x))
al l ocate(dta(0:42), |ocation=addr)

fname2 ="'

do j = 30, 41

if(dta(j) .eq. 0) goto 20
fname(j - 29) = char(dta(j))
enddo
20 print *, fname2
deal | ocate(dta)
goto 10
endi f

end

5.4 How do | get information about free memory in the
32-bit environment?

Under avirtual memory system, programmers are often interested in the amount of physical
memory they can allocate. Information about the amount of free memory that is availableis
always provided under a DPMI host, however, the manner in which thisinformation is
provided may differ under various environments. Keep in mind that in a multi-tasking
environment, the information returned to your task from the DPMI host can easily become
obsolete if other tasks allocate memory independently of your task.

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI

service 0x0500 to get free memory information. The following program illustrates this
procedure.

20 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

FMEMORY. FOR

Thi s exanpl e shows how to get information about free

menory using DPM call 0500h under DOS/ 4GW using Open Watcom
FORTRAN 77. Note that only the first field of the

structure is guaranteed to contain a valid val ue; any

field not returned by DOS/4GWNis set to -1 (OFFFFFFFFh).

N

*

Conpi |l e & Link: set finclude=\watcom src\fortran\dos
* wf | 386 -1 =dos4g fnenory

* Pragma to get the default data segnent
*$pragma aux GetDS = "npv ax, ds" value [ax] nodify exact [ax]

pr ogr am menory
inplicit none
include 'dos.fi’

structure /meni nfo/
nt eger*4 Largest Bl ockAvai |
nt eger *4 MaxUnl ockedPage
nt eger *4 Lar gest Lockabl ePage
nt eger *4 Li nAddr Space
nt eger *4 Nunfr eePagesAvai |
nt eger *4 NunPhysi cal PagesFr ee
nt eger *4 Tot al Physi cal Pages
nt eger *4 FreelLi nAddr Space
nteger*4 SizeOf PageFil e
nt eger *4 Reservedl
nt eger *4 Reserved2

end structure
* Set up the register information for the interrupt call

record /mem nfo/ Mem nfo
integer interrupt_no
i nteger*2 Get DS

parameter (interrupt_no=’31'x)
DS=FS =G5S =0

EAX = ' 00000500’ x

ES = Get DS()

EDI = | oc(Mem nf o)

call fintr(interrupt_no, regs)

How do I get information about free memory in the 32-bit environment? 21

DOS Programming Guide

* Report the information returned by the DPM host

PriNt * e !

print *,’Largest available block (in bytes): ',
Mem nf o. Lar gest Bl ockAvai |

int *,’ Maxi mum unl ocked page al |l ocation: ',
Menl nf 0. MaxUnl ockedPage

int *, ' Pages that can be allocated and |ocked: ',
Mem nf o. Lar gest Lockabl ePage

int *, ' Total |inear address space including //
' allocated pages:’, Mem nfo.LinAddr Space

int *,’ Nunber of free pages available: ',
Mem nf o. Nunfr eePagesAvai |

int *,’ Nunber of physical pages not in use: ',
Mem nf o. NunPhysi cal PagesFr ee

int *, ' Total physical pages managed by host: ',
Mem nf o. Tot al Physi cal Pages

int *,"Free |linear address space (pages): ',
Menl nf o. Fr eeLi nAddr Space

int *,’Size of paging/file partition (pages): ',
Mem nf o. Si zeOf PageFi | e

el el el el el el el
= = = = = = =

20_020 R__RR__R_R_R_R_ R

end

22 How do I get information about free memory in the 32-bit environment?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

24

6 The Tenberry Software DOS/4GW DOS
Extender

The chaptersin this section describe the 32-bit Tenberry Software DOS4GW DOS Extender
which is provided with the Open Watcom F77 package. DOS4GW is a subset of Tenberry
Software’ s DOS/4G product. DOS4GW is customized for use with the Open Watcom F77
package. Key differencesare:

» DOS4GW will only execute programs built with a Open Watcom 32-bit compiler such
as Open Watcom F77 and linked with its run-time libraries.

* The DOS4GW virtual memory manager (VMM), included in the package, isrestricted
to 32MB of memory.

» DOS/4GW does not provide extra functionality such as TSR capability and VMM
performance tuning enhancements.

If your application has requirements beyond those provided by DOS4GW, you may wish to
acquire DOS/AGW Professional or DOS/4G from:

Tenberry Software, Inc.
PO Box 20050

Fountain Hills, Arizona
U S.A 85269-0050

WA http://ww.tenberry. com dos4g/

Email: info@enberry.com
Phone: 1.480.767. 8868
Fax: 1. 480. 767. 8709

Programs devel oped to use the restricted version of DOS4GW which isincluded in the Open
Watcom F77 package can be distributed on aroyalty-free basis, subject to the licensing terms
of the product.

The Tenberry Software DOS/4GW DOS Extender 25

The DOS/4GW DOS Extender

26 The Tenberry Software DOS/4GW DOS Extender

/ Linear Executables

To build alinear executable, compile and link it as described in the chapter entitled "Creating
32-bit DOS/AGW Executables’. The resulting file will not run independently: you can run it
under the Open Watcom Debugger, Tenberry Software Instant-D debugger, or with the
standalone "DOSAGW.EXE".

7.1 The Linear Executable Format

DOS4GW works with files that use the Linear Executable (LE) file format. The format
represents a protected-mode program in the context of a 32-bit 386 runtime environment with
linear to physical address tranglation hardware enabled. It uses aflat address space.

Thisfile format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS
Windows. Both support Dynamic Linking, Resources, and are geared toward protected-mode
programs. Both formats use tables of "counted ASCII" names, and they use similar relocation
formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub
program executes when the DOS4GW loader is not present, displaying the message, This
program cannot run in DOS mode.

When the Open Watcom Linker is used to link a DOS4GW application, it automatically
replaces the default stub program with one that calls DOSAGW.

7.1.1 The Stub Program

The stub at the beginning of alinear executable is a real-mode program that you can modify
asyou like. For example, you can:

» make the stub program do a checksum on the "DOSAGW.EXE" file to make sureit’s
the correct version.

* COpy protect your program.

» specify a search path for the "DOSAGW.EXE" file.

The Linear Executable Format 27

The DOS/4GW DOS Extender

* add command line arguments.

The SRC directory contains source code for a sample stub program. "WSTUB.C" isasimple
example, agood base to start from when you construct your own stub. Please note that you
will require a 16-bit C compiler to compile a new stub program. Following isthe codein
"WSTUB.C":

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <process. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>

/* Add environnent strings to be searched here */
char *paths_to_check[] = {

" DOS4GPATH",
"PATH'};
char *dos4g_path()
{
static char full path[80];
int i;
for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4gw.exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
}
for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
return("dos4gw. exe");
}
mai n(int argc, char *argv[])
{
char *av[4] ;
auto char cmdl i ne[128] ;
av|[0] = dos4g_path(); /* Locate the DOS/ 4G | oader */
av[1l] = argv[O0]; /* name of executable to run */
av[2] = getcnd(cmdline); /* command |ine */
av[3] = NULL; /* end of list */
#i fdef QU ET
put env(" DOSAG=QUI ET"); /* di sabl es DOS/ 4G Copyri ght banner */
#endi f
execvp(av[O0], av);
puts("Stub exec failed:");
puts(av[O0]);
puts(strerror(errno));
exit(1); /* indicate error */
}

28 The Linear Executable Format

Linear Executables

If you do not have a C compiler, you can create an assembly language version of the above
sample stub program and use it to create your own version of the stub program.

7.2 Memory Use

This section explains how a DOS4GW application uses the memory on a 386-based PC/AT.
The basic memory layout of an AT machine consists of 640KB of DOS memory, 384K B of
upper memory, and an undetermined amount of extended memory. DOS memory and upper
memory together compose real memory, the memory that can be addressed when the
processor isrunning in real mode.

Extended
Memory
imMB —»
ROMs and
Upper Hardware
Memory D
640KB —»
DOS DOSand
Memory Real-Mode
Software
1KB —» Interrupt
Vectors

Figure 1. Basic Memory Layout

Under DOS4GW, the first megabyte of physical memory — the real memory — is mapped as
ashared linear address space. This allows your application to use absolute addresses in real
memory, to access video RAM or BIOS ROM, for example. Because the real memory is
available to all processes, you are not guaranteed to be able to allocate a particular areain real
memory: another process may have allocated it already.

Memory Use 29

The DOS/4GW DOS Extender

Most code and datais placed in apaged linear address space starting at 4AMB. The linear
address space starts at 4AMB, the first address in the second page table, to avoid conflicts with
VCPI system software.

This split mapping — an executable that is linked to start at 4AMB in the linear address space,
with the first MB in the address space mapped to the first MB of physical memory — is called
asplit flat model.

Theillustration bel ow shows the layout of physical memory on the left, and the layout of the
linear address space on the right.

Process code
4 AMB —» and data
Mapped
as 1-4 MB unmapped
needed VCPI code for VCPI
compatibility
4KB pages
1MB—» A A
DOS and
640 KB Real-Mode
Software
Mapped Mapped into
toal process as
processes needed
4KB—»>
1KB—P> v v

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks
the end of the first page.

30 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOSAG environment
variable including how to suppress the banner that is displayed by DOS4GW at startup. It
also explains how to use the DOS16M environment variable to select the switch mode setting,
if necessary, and to specify the range of extended memory in which DOS4GW will operate.
DOY4GW is based on Tenberry Software’'s DOS/16M 16-bit Protected-M ode support; hence
the DOS16M environment variable name remains unchanged.

8.1 The DOS4G Environment Variable

A number of options can be selected by setting the DOSAG environment variable. The syntax
for setting optionsis:

set

DOS4G=opt i onl, option2, ...

Do not insert a space between DOSAG and the equal sign. A space to the right of the equal
sign isoptional.

Options:

QUIET

VERBOSE

Use this option to suppress the DOS4GW banner.

The banner that is displayed by DOS4GW at startup can be suppressed by
issuing the following command:

set DOS4G=qui et

Note: Use of the quiet switch isonly permitted pursuant to the terms and
conditions of the WATCOM Software License Agreement and the additional
redistribution rights described in the Getting Started manual. Under these
terms, suppression of the copyright by using the quiet switch is not permitted for
applications which you distribute to others.

Use this option to maximize the information available for postmortem
debugging.

The DOS4G Environment Variable 31

The DOS/4GW DOS Extender

Before running your application, issue the following command:
set DOS4G=ver bose
Reproduce the crash and record the output.
NULLP Use this option to trap references to the first sixteen bytes of physical memory.
Before running your application, issue the following command:

set DOS4G=nul | p
To select acombination of options, list them with commas as separators.

Example:
set DOS4G=nul | p, ver bose

8.2 Changing the Switch Mode Setting

In almost all cases, DOS4GW programs can detect the type of machine that is running and
automatically choose an appropriate real- to protected-mode switch technique. For the few
casesin which this default setting does not work we provide the DOS16M DOS environment
variable, which overrides the default setting.

Change the switch mode settings by issuing the following command:

set DOS16Meval ue

Do not insert a space between DOS16M and the equal sign. A space to the right of the equal
signisoptional.

The table below lists the machines and the settings you would use with them. Many settings
have mnemonics, listed in the column "Alternate Name", that you can use instead of the
number. Settings that you must set with the DOS16M variable have the notation req’'d in the
first column. Settings you may use are marked option, and settings that will automatically be
set are marked auto.

32 Changing the Switch Mode Setting

Configuring DOS/4GW

Alternate
Status | Machine Setting Name Comment
auto | 386/486 w/ DPMI 0 None Set automatically if DPMI is active
regd |[NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 | Set automatically for 386 or 486
auto | 386 INBOARD None 386 with Intel Inboard
req’'d |Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI 11 None Set automatically if VCPI detected
req’d |Hitachi B32 14 None Must be set for Hitachi B32
req’d |OKI if800 15 None Must be set for OK1 if800
option |IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment
variable to the value shown for that machine and specify arange of extended
memory. For example, if your machineisaNEC 98-series, set DOS16M=1
@M 4M Seethe section entitled "Fine Control of Memory Usage" on page 34 in
this chapter for more information about setting the memory range.

Machine Setting
NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OK1 if800 15

Before running DOS4GW applications, check the switch mode setting by
following this procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display.
(PMINFO, which reports on the protected-mode resources available to your
programs, is described in more detail in the chapter entitled "Utilities" on page 79)

If PMINFO runs, the setting is usable on your machine.

3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT

file.

Changing the Switch Mode Setting 33

The DOS/4GW DOS Extender

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does
not run, and PMINFO does, check the CPU type reported on the first line of the display.

Y ou are authorized (and encouraged) to distribute PMINFO to your customers. Y ou may aso
include a copy of this section in your documentation.

8.3 Fine Control of Memory Usage

In addition to setting the switch mode as described above, the DOS16M environment variable
enables you to specify which portion of extended memory DOS4GW will use. The variable
also alows you to instruct DOS/4GW to search for extramemory and useit if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify arange of memory with the DOS16M variable. You
must use the variable, however, in the following cases:

* You are running on a Fujitsu FMR-series, NEC 98-series, OK| if800-series or Hitachi
B-series machine.

* You have older programs that use extended memory but don’t follow one of the
standard disciplines.

* You want to shell out of DOS4GW to use another program that requires extended
memory.

If none of these conditions applies to you, you can skip this section.

The genera syntax is:

set DOS1léM= [switch_mode] [@start_address [- end_address]] [:size]

In the syntax shown above, start _address, end _address and si ze represent
numbers, expressed in decimal or in hexadecimal (hex requiresa Ox prefix). The number
may end with aK to indicate an address or size in kilobytes, or an M to indicate megabytes. If
no suffix is given, the address or size is assumed to be in kilobytes. If both asize and arange
are specified, the more restrictive interpretation is used.

The most flexible strategy is to specify only asize. However, if you are running with other
software that does not follow a convention for indicating its use of extended memory, and
these other programs start before DOS4GW, you will need to calculate the range of memory
used by the other programs and specify arange for DOS4GW programs to use.

34 Fine Control of Memory Usage

Configuring DOS/4GW

DOS4GW ignores specifications (or parts of specifications) that conflict with other
information about extended memory use. Below are some examples of memory usage
control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use
extended memory between 2.0 and 4.0MB.

set DOS16M=:1M Use the last full megabyte of extended memory, or
as much as available limited to 1IMB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @0 - 5m Use any available extended memory from 0.0

(really 1.0) to 5.0MB.
set DOS16M=:0 Use no extended memory.

As adefault condition DOS/4GW applications take all extended memory that is not otherwise
inuse. Multiple DOS4GW programs that execute simultaneously will share the reserved
range of extended memory. Any non-DOS4GW programs started while DOS4GW programs
are executing will find that extended memory above the start of the DOS4GW range is
unavailable, so they may not be ableto run. Thisisvery safe. Therewill be aconflict only if
the other program does not check the BIOS configuration call (Interrupt 15H function 88H,
get extended memory size).

To create a private pool of extended memory for your DOS4GW application, use the
PRIVATXM program, described in the chapter entitled "Utilities" on page 79.

The default memory allocation strategy is to use extended memory if available, and overflow
into DOS (low) memory.

InaVCPI or DPMI environment, the start _address and end_address arguments are
not meaningful. DOS4GW memory under these protocolsis not allocated according to
specific addresses because VCPI and DPMI automatically prevent address conflicts between
extended memory programs. Y ou can specify a si ze for memory managed by VCPI or
DPMI, but DOS4GW will not necessarily allocate this memory from the highest available
extended memory address, as it does for memory managed under other protocols.

Fine Control of Memory Usage 35

The DOS/4GW DOS Extender

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB.
When DOS/4GW runs on a Compaq 386, it automatically uses this memory because the
memory is alocated according to a certain protocol, which DOS4GW follows. Other
machines have no protocol for allocating this memory. To use the extra memory that may
exist on these machines, set DOS16M with the + option.

set DOS16M:=+

Setting the + option causes DOS/4GW to search for memory in the range from FA000O to
FFFFFF and determine whether the memory is usable. DOS4GW does this by writing into
the extramemory and reading what it has written. In some cases, this memory is mapped for
DOS or BIOS usage, or for other system uses. |f DOS4GW finds extra memory that is
mapped this way, and is not marked read-only, it will write into that memory. Thiswill cause
acrash, but won’'t have any other effect on your system.

8.4 Setting Runtime Options

The DOS16M environment variable sets certain runtime options for all DOS4GW programs
running on the same system.

To set the environment variable, the syntax is:

set DOS16M=[switch mode_setting]“options.

Note: Some command line editing TSRs, such as CED, use the caret (*) asadelimiter. If
you want to set DOS16M using the syntax above while one of these TSRs is resident, modify
the TSR to use a different delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS4GW to wait until the A20 lineis
enabled before switching to protected mode. When DOS/4GW switches to real
mode, this option suspends your program’s execution until the A20 lineis
disabled, unless an XM S manager (such asHIMEM.SY S) isactive. If an XMS
manager is running, your program’ s execution is suspended until the A20 lineis
restored to the state it had when the CPU waslast in real mode. Specify this
option if you have amachine that runs DOS4GW but is not truly
AT-compatible. For more information on the A20 line, see the section entitled
"Controlling Address Line 20" on page 38.

36 Setting Runtime Options

Configuring DOS/4GW

0x02

0x04

0x10

0x20

0x40

0x80

prevent initialization of VCPI -- By default, DOS4GW searches for a VCPI
server and, if oneis present, forcesit on. Thisoption isuseful if your
application does not use EM S explicitly, is not aresident program, and may be
used with 386-based EMS simulator software.

directly pass down keyboard status calls -- When this option is set, status
requests are passed down immediately and unconditionally. When disabled,
pass-downs are limited so the 8042 auxiliary processor does not become
overloaded by keyboard polling loops.

restore only changed interrupts -- Normally, when a DOS4GW program
terminates, all interrupts are restored to the values they had at the time of
program startup. When you use this option, only the interrupts changed by the
DOS4GW program are restored.

set new memory to 00 -- When DOS/4GW allocates a new segment or increases
the size of a segment, the memory is zeroed. This can help you find bugs having
to do with uninitialized memory. You can also useit to provide a consistent
working environment regardless of what programs were run earlier. Thisoption
only affects segment allocations or expansions that are made through the
DOS4GW kernel (with DOS function 48H or 4AH). This option does not affect
memory allocated with acompiler’s mal | oc function.

set new memory to FF -- When DOS/4GW allocates a new segment or increases
the size of a segment, the memory is set to OxFF bytes. Thisishelpful in
making reproducible cases of bugs caused by using uninitialized memory. This
option only affects segment allocations or expansions that are made through the
DOS4GW kernel (with DOS function 48H or 4AH). This option does not affect
memory allocated with acompiler’s mal | oc function.

new selector rotation -- When DOS4GW allocates a new selector, it usually
looks for the first available (unused) selector in numerical order starting with the
highest selector used when the program was loaded. When this option is set, the
new selector search begins after the last selector that was alocated. This causes
new selectors to rotate through the range. Use this option to find references to
stale selectors, i.e., segments that have been cancelled or freed.

Setting Runtime Options 37

The DOS/4GW DOS Extender

8.5 Controlling Address Line 20

This section explains how DOS4GW uses address line 20 (A20) and describes the related
DOS16M environment variable settings. It is unlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable
memory location is one byte below 1IMB. If you specify an address at 1MB or over, which
would require a twenty-first bit to set, the address wraps back to zero. Some parts of DOS
depend on this wrap, so on the 286 and 386, the twenty-first address bit isdisabled. To
address extended memory, DOS/4GW enables the twenty-first address bit (the A20line). The
A20 line must be enabled for the CPU to run in protected mode, but it may be either enabled
or disabled in real mode.

By default, when DOS/AGW returns to real mode, it disablesthe A20 line. Some software
depends on the line being enabled. DOS4GW recognizes the most common software in this
class, the XMS managers (such as HIMEM.SY S), and enables the A20 line when it returns to
real mode if an XM S manager is present. For other software that requires the A20 line to be
enabled, use the A20 option. The A20 option makes DOSAGW restore the A20 lineto the
setting it had when DOS/4GW switched to protected mode. Set the environment variable as
follows:

set DOS16M=A20
To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable also lets you to specify the length of the delay between a DOS4GW
instruction to change the status of the A20 line and the next DOS/4GW operation. By defaullt,
this delay is 1 loop instruction when DOS4GW is running on a 386 machine. 1n some cases,
you may need to specify alonger delay for amachine that will run DOS4GW but is not truly
AT-compatible. To changethe delay, set DOS16M to the desired number of loop
instructions, preceded by a comma:

set DOS16M=, | oops

38 Controlling Address Line 20

9 vmm

The Virtual Memory Manager (VMM) uses aswap file on disk to augment RAM. With
VMM you can use more memory than your machine actually has. When RAM is not
sufficient, part of your program is swapped out to the disk file until it is needed again. The
combination of the swap file and available RAM isthe virtual memory.

Y our program can use VMM if you set the DOS environment variable, DOSAGVM, as
follows. To set the DOSAGVM environment variable, use the format shown below.

set DOSAGVME= [option[#val ue]] [option[#val ue]]
A "#" is used with options that take values since the DOS command shell will not accept "=".
If you set DOSAGVM equal to 1, the default parameters are used for all options.

Example:
Cset DOS4GVMEL

9.1 VMM Default Parameters

VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The defaultis
512KB.

MAXMEM The maximum amount of RAM managed by VMM. The default is
4AMB.

SWAPMIN The minimum or initial size of the swap file. If thisoption is not used,
the size of the swap fileis based on VIRTUALSI ZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is"DOSAGVM.SWP'. By

default the fileisin the root directory of the current drive. Specify the
complete path name if you want to keep the swap file somewhere else.

VMM Default Parameters 39

The DOS/4GW DOS Extender

DELETESWAP Whether the swap file is deleted when your program exits. By default
thefileisnot deleted. Program startup is quicker if thefileis not
deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

9.2 Changing the Defaults

Y ou can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOSAGVM environment
variable, as shown in the example below.

set DOS4GVM=del et eswap maxmen#8192

2. Create aconfiguration file with the filetype extension ".VMC", and use that as an
argument to the DOSAGVM environment variable, as shown below.

set DOSAGYME@NEWMIG VMC

9.2.1 The .VMC File

A " VMC" file contains VMM parameters and settings as shown in the example below.
Comments are permitted. Comments on lines by themselves are preceded by an exclamation
point (). Comments that follow option settings are preceded by white space. Do not insert
blank lines: processing stops at the first blank line.

| Sanple .VMC file
!This file shows the default paraneter val ues

m nmem = 512 At | east 512K bytes of RAMis required.
maxmem = 4096 Uses no nore than 4MB of RAM
virtual size = 16384 Swap file plus allocated nenory is 16MB

!To delete the swap file automatically when the programexits, add
I del et eswap

!To store the swap file in a directory called SWAPFI LE, add

I swapnane = c:\swapfil e\ dos4gvm swp

40 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS4GW, the 32-hit registers in which you
pass values are trand ated into the appropriate 16-bit registers, since DOS works only with 16
bits. However, you can use 32-bit valuesin your DOS calls. Y ou can allocate blocks of
memory larger than 64K B or use an address with a 32-bit offset, and DOS4GW will translate
the call appropriately, to use 16-bit registers. When the Interrupt 21H function returns, the
value iswidened - placed in a 32-bit register, with the high order bits zeroed.

DOS4GW uses the following rules to manage registers:

» When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity
in agenera register (for example, AX), pass a 32-hit quantity in the corresponding
extended register (for example, EAX). When a DOS function returns a 16-bit quantity
in ageneral register, expect to receiveit (with high-order zero bits) in the corresponding
extended register.

» When an Interrupt 21H function expectsto receive a 16:16 pointer in a
segment:general register pair (for example, ES:BX), supply a 16:32 pointer using the
same segment register and the corresponding extended general register (ES:EBX).
DOS4GW will copy data and translate pointers so that DOS ultimately receives a 16:16
real-mode pointer in the correct registers.

» When DOS returns a 16:16 real-mode pointer, DOS4GW trand ates the segment value
into an appropriate protected-mode selector and generates a 32-bit offset that resultsin a
16:32 pointer to the same location in the linear address space.

» Many DOS functions return an error code in AX if the function fails. DOS4GW
checks the status of the carry flag, and if it is set, indicating an error, zero-extends the
code for EAX. It does not change any other registers.

* If the valueis passed or returned in an 8-hit register (AL or AH, for example),
DOS4GW puts the value in the appropriate location and leaves the upper half of the
32-bit register untouched.

The table below lists al the Interrupt 21h functions. For each, it shows the registersthat are
widened or narrowed. Footnotes provide additional information about some of the interrupts
that require special handling. Following the table is a section that provides a detailed
explanation of interrupt handling under DOS4GW.

Interrupt 21H Functions 41

The DOS/4GW DOS Extender

Function Purpose Managed Registers
O00H Terminate Process None
01H Character Input with Echo None
02H Character Output None
03H Auxiliary Input None
04H Auxiliary Output None
05H Print Character None
06H Direct Console 1/O None
07H Unfiltered Character Input Without Echo None
08H Character Input Without Echo None
09H Display String EDX
0AH Buffered Keyboard Input EDX
0BH Check Keyboard Status None
OCH Flush Buffer, Read Keyboard EDX
ODH Disk Reset None
OEH Select Disk None
OFH Open File with FCB EDX
10H Close File with FCB EDX
11H Find First File EDX
12H Find Next File EDX
13H Delete File EDX
14H Sequential Read EDX
15H Sequentia Write EDX
16H Create File with FCB EDX
17H Rename File EDX
19H Get Current Disk None
1AH Set DTA Address EDX
1BH Get Default Drive Data Returnsin EBX, ECX, and EDX
1CH Get Drive Data Returnsin EBX, ECX, and EDX
21H Random Read EDX
22H Random Write EDX
23H Get File Size EDX
24H Set Relative Record EDX
25H Set Interrupt Vector EDX
26H Create New Program Segment Prefix None
27H Random Block Read EDX, returnsin ECX
28H Random Block Write EDX, returnsin ECX
29H Parse Filename ESl, EDI, returnsin EAX, ESI and EDI (1.)
2AH Get Date Returnsin ECX
2BH Set Date None
2CH Get Time None

42 Interrupt 21H Functions

Interrupt 21H Functions

2DH
2EH
2FH

30H
31H
33H
34H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

40H
41H
42H
43H
44H

45H
46H
47H
48H

OOH
01H
02H
03H
04H
O5H
06H
O7H
08H
O9H
0AH
0BH
OCH
ODH
OEH
OFH

Set Time
Set/Reset Verify Flag
Get DTA Address

Get MS-DOS Version Number
Terminate and Stay Resident
Get/Set Control-C Check Flag
Return Address of InDOS Flag
Get Interrupt Vector

Get Disk Free Space

Get/Set Current Country
Create Directory

Remove Directory

Change Current Directory
Create File with Handle

Open File with Handle
CloseFile

Read File or Device

Write File or Device

Delete File

Move File Pointer

Get/Set File Attribute

IOCTL

Get Device Information
SetDevice Information

Read Control Datafrom CDD
Write Control Datato CDD

Read Control Datafrom BDD
Write Control Datato BDD
Check Input Status

Check Output Status

Check if Block Deviceis Removeable
Check if Block Device is Remote
Check if Handle is Remote
Change Sharing Retry Count

Generic /O Control for Character Devices
Generic 1/0O Control for Block Devices

Get Logical Drive Map

Set Logical Drive Map
Duplicate File Handle
Force Duplicate File Handle
Get Current Directory
Allocate Memory Block

None
None
Returnsin EBX

Returnsin ECX

None

None

Returnsin EBX

Returnsin EBX

Returnsin EAX, EBX, ECX, and EDX
EDX, returnsin EBX

EDX

EDX

EDX

EDX, returnsin EAX

EDX, returnsin EAX

None

EBX, ECX, EDX, returnsin EAX (2.)

EBX, ECX, EDX, returnsin EAX (2.)
EDX

Returnsin EDX, EAX
EDX, returnsin ECX
3)

Returnsin EDX
None

EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
None

None

Returnsin EAX
Returnsin EDX
Returnsin EDX
None

EDX

EDX

None

None

Returnsin EAX
None

ESI

Returnsin EAX

Interrupt 21H Functions 43

The DOS/4GW DOS Extender

44

49H

4AH
4BH
4CH
4DH
4EH
4FH

52H
54H
56H
57H
58H
59H
5AH
5BH
5CH
SEH

5FH

62H
63H
65H
66H
67H

OOH
02H
O3H

02H
03H
04H

Free Memory Block

Resize Memory Block

L oad and Execute Program (EXEC)
Terminate Process with Return Code
Get Return Code of Child Process
Find First File

Find Next File

Get List of Lists

Get Verify Flag

Rename File

Get/Set Date/Time of File
Get/Set Allocation Strategy

Get Extended Error Information
Create Temporary File

Create New File

Lock/Unlock File Region

Network Machine Name/Printer Setup

Get Machine Name

Set Printer Setup String

Get Printer Setup String
Get/Make Assign List Entry
Get Redirection List Entry
Redirect Device

Cancel Device Redirection

Get Program Segment Prefix Address

Get Lead Byte Table (version 2.25 only)

Get Extended Country Information
Get or Set Code Page
Set Handle Count

None
None
EBX, EDX (4.)
None
None
EDX
None

(not supported)

None

EDX, EDI

Returnsin ECX, and EDX
Returnsin EAX

Returnsin EAX

EDX, returnsin EAX and EDX
EDX, returnsin EAX

None

EDX
ESI
EDI, returnsin ECX

ESI, EDI, returnsin ECX
ESI, EDI
ESI

Returnsin EBX
Returnsin ESI
EDI

None

None

Thislist of functionsis excerpted from The MS-DOS Encyclopedia, Copyright (c) 1988 by
Microsoft Press. All Rights Reserved.

1.

by the call.

For Function 29H, DS.ESI and ES.EDI contain pointer values that are not changed

Y ou can read and write quantities larger than 64K B with Functions 3FH and 40H.

DOS4GW bresks your request into chunks smaller than 64K B, and callsthe DOS
function once for each chunk.

Interrupt 21H Functions

Interrupt 21H Functions

3. Youcan't transfer more than 64K B using Function 44h, subfunctions 02H, O3H,
04H, or 05H. DOS/4GW does not break larger requests into DOS-sized chunks, as
it does for Functions 3FH and 40H.

4. When you cal Function 4B under DOS/4GW, you pass it a data structure that
contains 16:32 bit pointers. DOS4GW tranglates these into 16:16 bit pointersin
the structure it passes to DOS.

10.1 Functions 25H and 35H: Interrupt Handling in
Protected Mode

By default, interrupts that occur in protected mode are passed down: the entry inthe IDT
pointsto code in DOS4GW that switches the CPU to real mode and resignals the interrupt. If
you install aninterrupt handler using Interrupt 21H, Function 25H, that handler will get
control of any interrupts that occur while the processor isin protected mode. If the interrupt
for which you installed the handler isin the autopassup range, your handler will also get
control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If theinterrupt is
in the autopassup range, the real-mode vector will be modified when you install the
protected-mode handler to point to code in the DOS4AGW kernel. This code switches the
processor to protected mode and resignals the interrupt-where your protected-mode handler
will get control.

10.1.1 32-Bit Gates

The DOSAGW kernel always assigns a 32-hit gate for the interrupt handlersit installs. 1t does
not distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-hit gate points into the DOS4GW kernel. When DOS4GW handles the interrupt, it
switches to its own 16-bit stack, and from there it calls the interrupt handler (yours or the
default). Thistranglation istransparent to the handler, with one exception: since the current
stack is not the one on which the interrupt occurred, the handler cannot look up the stack for
the address at which the interrupt occurred.

Functions 25H and 35H: Interrupt Handling in Protected Mode 45

The DOS/4GW DOS Extender

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write a normal service routine that either handles the
interrupt and IRETs or chains to the previous handler. As part of handling the interrupt, your
handler can PUSHF/CALL to the previous handler. The handler must IRET (or IRETD) or
chain.

For each protected-mode interrupt, DOS4GW maintains separate chains of 16-bit and 32-bit
handlers. If your 16-bit handler chains, the previous handler is a 16-bit program. If your
32-hit handler chains, the previous handler is a 32-hit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit
chain is executed first. If al the 16-bit handlers unhook later and a new 16-bit program hooks
the interrupt while 32-bit handlers are still outstanding, the 32-bit handlers will be executed
first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no
other program of your bitness (i.e., 16-bit or 32-bit) has hooked the interrupt. The address
points to adummy handler that looks to you as though it does an IRET to end the chain. This
means that you can’t find an unused interrupt by looking for aNULL pointer. Sincethis
technique is most frequently used by programs that are looking for an unclaimed real-mode
interrupt on which to install a TSR, it shouldn’t cause you problems.

46 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS4GW application runs under aDPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or
QEMM/QDPMI (with EXTCHKOFF), the DPMI host provides the DPMI services, not
DOS4GW. The DPMI host also provides virtual memory, if any. Performance (speed and
memory use) under different DPMI hosts varies greatly due to the quality of the DPMI
implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS4GW and DOS/AGW Professional in
the absence of aDPMI host. DOS4GW supports many of the common DPMI system
services. Not all of the services described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-Mode

Interface (DPMI) specification. Itisno longer in print; however the DPMI 1.0 specification
can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmivl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls
Interrupt 31H DPMI function calls can be used only by protected-mode programs.
The general ground rules for Interrupt 31H calls are as follows:

* All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful calls
return an error codein AX. Other registers are saved unless they contain specified
return values.

o All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the

carry flag set. Successful calls clear the carry flag. Only memory management and
interrupt flag management calls modify the interrupt flag.

Using Interrupt 31H Function Calls 47

The DOS/4GW DOS Extender

» Memory management calls can enable interrupts.
* All calls are reentrant.

The flag and register information for each call islisted in the following descriptions of
supported Interrupt 31H function calls.

11.2 Int31H Function Calls

The Interrupt 31H subfunction calls supported by DOS4GW are listed below by category:
» Local Descriptor Table (LDT) management services
» DOS memory management services
e Interrupt services
* Tranglation services
* DPMI version
» Memory management services
* Page locking services
» Demand paging performance tuning services
* Physical address mapping
* Virtual interrupt state functions
* Vendor specific extensions
 Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

48 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and
returns the base selector. Pass the following information:

AX = 0000H
CX =number of descriptorsto be allocated

If the call succeeds, the carry flag is clear and the base selector is returned in
AX. If the call fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of
zero. The privilege level of an allocated descriptor is set to match the code
segment privilege level of the application. To find out the privilege level of a
descriptor, usethe | ar instruction.

Allocated descriptors must be filled in by the application. If more than one
descriptor is allocated, the returned selector isthe first of a contiguous array.
Use Function 0003H to get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

AX = 0001H
BX =the selector to free

Use the selector returned with function 0000h when the descriptor was all ocated.
To free an array of descriptors, call this function for each descriptor. Use
Function 0003H to find out the increment for each descriptor in the array.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Y ou can use this function to free the descriptors allocated for the program’s
initial CS, DS, and SS segments, but you should not free other segments that
were not allocated with Function 0000H or Function O00DH.

Function 0002H This function converts a real-mode segment to a descriptor that a
protected-mode program can address. Pass the following information:

Int31H Function Calls 49

The DOS/4GW DOS Extender

AX = 0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the
real-mode segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment
address, you get the same selector value each time. The descriptor limit is set to
64KB.

The purpose of this function is to give protected-mode programs easy accessto
commonly used real-mode segments. However, because you cannot modify or
free descriptors created by this function, it should be used infrequently. Do not
use this function to get descriptors for private data areas.

To examine real-mode addresses using the same selector, first allocate a
descriptor, and then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Usethis
function to get the value you add to the base address of an allocated array of
descriptors to get the next selector address. Pass the following information:
AX =0003H

This call always succeeds. Theincrement valueisreturned in AX. Thisvalueis
always a power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following
information:

AX = 0006H
BX = selector

If the call succeeds, the carry flagis clear and CX:DX contains the 32-bit linear
base address of the segment. If the call fails, it sets the carry flag.

If the selector you specify in BX isinvalid, the call fails.
Function 0007H This function changes the base address of a specified selector. Only

descriptors allocated through Function 0000H should be modified. Passthe
following information:

50 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0007H
BX = selector
CX:DX =the new 32-bit linear base addressfor the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.
If the selector you specify in BX isinvalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function
to modify descriptors allocated with Function 0000H only. Pass the following
information:

AX = 0008H
BX = selector
CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The cdll failsif the specified selector isinvalid, or if the specified limit cannot
be set.

Segment limits greater than 1IMB must be page-aligned. This means that limits
greater than IMB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of | sl for segment limits
greater than 64KB.

Function 0009H This function sets the descriptor access rights. Use this function to modify
descriptors allocated with Function 0000H only. To examine the access rights
of adescriptor, usethe | ar instruction. Pass the following information:

AX = 0009H

BX = selector

CL = Accessrightstype byte

CH = 386 extended accessrights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.
If the selector you specify in BX isinvalid, the call fails. Thecall also failsif
the access rights/type byte does not match the format and meet the requirements
shown in the figures below.

Int31H Function Calls 51

The DOS/4GW DOS Extender

The access rights/type byte passed in CL has the format shown in the figure
below.

P DPL 1 C/D E/C WIR A

i

0 => Not accessed
1=> Accessed

Data: 0 => Read, 1=> R/'W
v Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
v Code: Must be 0 (non-conform)

0 => Data, 1=> Code

v
Must be 1

v
Must equal caller's CPL

v
0 => Absent, 1=> Present

Figure 3. Access Rights/Type

52 Int31H Function Calls

Interrupt 31H DPMI Functions

The extended access rights/type byte passed in CH has the following format.

G B/D 0 Avl Reserved
7 6 5 4 3 2 1 0
Ignored
v
CanbeOorl
v
Must be 0
v
0 => Default 16-bit., 1=> Default 32-bit
v

0 => Byte Granular, 1=> Page Granular

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a
data descriptor that has the same base and limit as the specified code segment
descriptor. Pass the following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flagis clear and the new data selector is returned
in AX. If the call fails, the carry flagis set. The call failsif the selector passed
in BX isnot avalid code segment.

To deallocate an dias to a code segment, use Function 0001H.

After the dliasis created, it does not change if the code segment descriptor

changes. For example, if the base or limit of the code segment change later, the
alias descriptor stays the same.

Int31H Function Calls 53

The DOS/4GW DOS Extender

54

Function 000BH This function copies the descriptor table entry for a specified descriptor.

The copy iswritten into an 8-byte buffer. Pass the following information:

AX =000BH
BX = selector
ES.EDI = apointer to the 8-byte buffer for the descriptor copy

If the call succeeds, the carry flagis clear and ES.EDI contains a pointer to the
buffer that contains a copy of the descriptor. If the call fails, the carry flag is set.
The call failsif the selector passed in BX isinvalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified

descriptor. The descriptor must first have been allocated with Function O000H.
Pass the following information:

AX =000CH
BX = selector
ES.EDI = apointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flagis clear; if it fails, the carry flag isset. The
call failsif the descriptor passed in BX isinvalid.

The type byte, byte 5, has the same format and requirements as the access
rights/type byte passed to Function 0009H in CL. The format is shown in the
first figure presented with the description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the
extended access rights/type byte passed to Function 0009H in CH, except that
the limit field can have any value, and the low order bits marked reserved are
used to set the upper 4 bits of the descriptor limit. The format is shown in the
second figure presented with the description of Function 0009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following

information:

AX = 000DH
BX = selector

If the call succeeds, the carry flagis clear and the specified descriptor is
allocated. If thecall fails, the carry flag is set.

The call failsif the specified selector isalready in use, or if itisnot avalid LDT
descriptor. The first 10h (16 decimal) descriptors are reserved for this function,

Int31H Function Calls

Interrupt 31H DPMI Functions

and should not be used by the host. Some of these descriptors may bein use,
however, if another client application is aready |oaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services

Function 0100H This function alocates memory from the DOS free memory pool. This
function returns both the real-mode segment and one or more descriptors that
can be used by protected-mode applications. Pass the following information:

AX =0100H
BX =the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flagisclear. AX containstheinitial real-mode
segment of the allocated block and DX contains the base selector for the
allocated block.

If the call fails, the carry flag isset. AX contains the DOS error code. If
memory is damaged, code 07H isreturned. If there is not enough memory to
satisfy the request, code 08H isreturned. BX contains the number of paragraphs
in the largest available block of DOS memory.

If you request a block larger than 64K B, contiguous descriptors are allocated.
Use Function 0003H to find the value of the increment to the next descriptor.
The limit of the first descriptor is set to the entire block. Subsequent descriptors
have alimit of 64KB, except for the final descriptor, which hasalimit of

bl ocksi ze MOD 64KB.

Y ou cannot modify or deallocate descriptors allocated with this function.
Function 101H deall ocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H.
Pass the following information:

AX = 0101H
DX = sdlector of the block to be freed

If the call succeeds, the carry flag is clear.
If the call fails, the carry flag is set and the DOS error code isreturned in AX. If

the incorrect segment was specified, code 09H isreturned. If memory control
blocks are damaged, code O7H is returned.

Int31H Function Calls 55

The DOS/4GW DOS Extender

All descriptors allocated for the specified memory block are deallocated
automatically and cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H.

Pass the following information:

AX = 0102H
BX =the number of paragraphs (16-byte blocks) in theresized block
DX = selector of block toresize

If the call succeeds, the carry flagis clear.

If the call fails, the carry flag is set, the maximum number of paragraphs
availableisreturned in BX, and the DOS error codeisreturned in AX. If
memory code blocks are damaged, code 07H isreturned. If thereisn’t enough
memory to increase the size as requested, code 08H is returned. If the incorrect
segment is specified, code 0%h is returned.

Because of the difficulty of finding additional contiguous memory or
descriptors, this function is not often used to increase the size of a memory
block. Increasing the size of amemory block might well fail because other DOS
allocations have used contiguous space. If the next descriptor inthe LDT is not
free, alocation also fails when the size of ablock grows over the 64KB
boundary.

If you shrink the size of amemory block, you may a so free some descriptors
allocated to the block. The initial selector remains unchanged, however; only
the limits of subsequent selectors will change.

11.2.3 Interrupt Services

56

Function 0200H This function gets the value of the current task’ s real-mode interrupt vector

for the specified interrupt. Pass the following information:

AX = 0200H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are
supported by the host. When the call returns, the carry flag is clear, and the
segnent : of f set of thereal-mode interrupt handler isreturned in CX:DX.

Int31H Function Calls

Interrupt 31H DPMI Functions

Because the address returned in CX is a segment, and not a selector, you cannot
put it into a protected-mode segment register. If you do, a general protection
fault may occur.

Function 0201H This function sets the value of the current task’ s real-mode interrupt vector
for the specified interrupt. Pass the following information:

AX =0201H
BL =interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be areal-mode segnent : of f set,
such as function 0200H returns. For this reason, the interrupt handler must
reside in DOS addressable memory. Y ou can use Function 0100H to allocate
DOS memory. This version does not support the real-mode callback address
function.

If you are hooking a hardware interrupt, you have to lock all segmentsinvolved.
These segments include the segment in which the interrupt handler runs, and any
segment it may touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function
returns the CS:EIP of the current protected-mode exception handler for the
specified exception number. Pass the following information:

AX =0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flagisclear and the sel ect or: of f set of the
protected-mode exception handler isreturned in CX:EDX. If it fails, the carry
flagis set.

The value returned in CX isavalid protected-mode selector, not a real-mode
segment.

Function 0203H This function sets the processor exception handler vector. Thisfunction
allows protected-mode applications to intercept processor exceptions that are not
handled by the DPMI environment. Programs may wish to handle exceptions
such as "not present segment faults" which would otherwise generate a fatal
error. Passthe following information:

Int31H Function Calls 57

The DOS/4GW DOS Extender

58

AX =0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flagisclear. If it fails, the carry flag is set.

The address passed in CX must be avalid protected-mode selector, such as
Function 204H returns, and not a real-mode segment. A 32-bit implementation
must supply a 32-bit offset in the EDX register. If the handler chainsto the next
handler, it must use a 32-bit interrupt stack frame to do so.

The handler should return using afar return instruction. The original SS:ESP,
CS:EIP and flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error codeis only valid
for exceptions 08h, 0Ah, OBh, OCh, ODh, and OEh.

The handler must preserve and restore al registers.

The exception handler will be called on alocked stack with interrupts disabled.
The original SS, ESP, CS, and EIP will be pushed on the exception handler stack
frame.

The handler must either return from the call by executing afar return or jump to
the next handler in the chain (which will execute afar return or chain to the next
handler).

The procedure can modify any of the values on the stack pertaining to the
exception before returning. This can be used, for example, to jump to a
procedure by modifying the CS.EIP on the stack. Note that the procedure must
not modify the far return address on the stack — it must return to the original
caller. The caller will then restore the flags, CS:EIP and SS:ESP from the stack
frame.

If the DPMI client does not handle an exception, or jumps to the default
exception handler, the host will reflect the exception as an interrupt for
exceptions 0, 1, 2, 3,4, 5and 7. Exceptions 6 and 8 - 1Fh will be treated as fatal
errors and the client will be terminated.

Exception handlers will only be called for exceptions that occur in protected
mode.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0204H Thisfunction getsthe CS:EIP sel ect or : of f set of the current
protected-mode interrupt handler for a specified interrupt number. Passthe
following information:

AX =0204H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are
supported by the host. When the call returns, the carry flag is clear and
CX:EDX containsthe protected-mode sel ect or : of f set of the exception
handler.

A 32-bit offset isreturned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt
vector. Pass the following information:

AX = 0205H
BL =interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
The address passed in CX must be avalid protected-mode selector, such as
Function 204H returns, and not a real-mode segment. A 32-bit implementation

must supply a 32-bit offset in the EDX register. If the handler chains to the next
handler, it must use a 32-bit interrupt stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that
DPMI does not support directly. The protected-mode program must set up a data structure
with the appropriate register values. This "real-mode call structure” is shown below.

Int31H Function Calls 59

The DOS/4GW DOS Extender

Offset Register
OO0H EDI
04H ESI

08H EBP
OCH Reserved by system
10H EBX
14H EDX
18H ECX
1CH EAX
20H Flags
22H ES

24H DS

26H FS

28H GS
2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and
IP will be copied back to the real-mode call structure so that the caller can examine the
real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode
selectors.

60 Int31H Function Calls

Interrupt 31H DPMI Functions

The trangdlation services will provide a real-mode stack if the SS:SP fields are zero. However,
the stack provided isrelatively small. If the real-mode procedure/interrupt routine uses more
than 30 words of stack space then you should provide your own real-mode stack.

Function 0300H This function simulates areal-mode interrupt. This function simulates an
interrupt in real mode. 1t will invoke the CS:IP specified by the real-mode
interrupt vector and the handler must return by executingan i r et . Passthe
following information:;

AX =0300H

BL =interrupt number

BH =flags Bit 0= 1 resetstheinterrupt controller and A20 line. Other flags
are reserved and must be O.

CX =number of wordsto copy from protected-mode stack to real-mode

stack

ES.EDI =theselector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flagis clear and ES.EDI contains the
sel ect or: of f set of the modified real-mode call structure.

The CS:IPin the real-mode call structureisignored by this service. The
appropriate interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the
real-mode stack i r et frame. Theinterrupt handler will be called with the
interrupt and trace flags clear.

It isup to the caller to remove any parameters that were pushed on the
protected-mode stack.

Theflag to reset the interrupt controller and the A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls areal-mode procedure

with a FAR return frame. The called procedure must execute a FAR return
when it completes. Pass the following information:

Int31H Function Calls 61

The DOS/4GW DOS Extender

AX = 0301H
BH =flags Bit 0= 1 resetstheinterrupt controller and A20 line. Other flags

reserved and must be O.

CX = Number of wordsto copy from protected-modeto real-mode stack
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and ES.EDI containsthe
sel ect or : of f set of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1

The CS:IPin the real-mode call structure specifies the address of the
real-mode procedure to call.

The real-mode procedure must execute a FAR return when it has
compl eted.

If the SS:SP fields are zero then areal-mode stack will be provided by
the DPMI host. Otherwise, the real-mode SS:SP will be set to the
specified values before the procedureis called.

When the Int 31h returns, the real-mode call structure will contain the
valuesthat were returned by the real-mode procedure.

It isup to the caller to remove any parameters that were pushed on the
protected-mode stack.

The flag to reset the interrupt controller and A20 lineisignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real-mode
State.

Function 0302H (DOS/AGW Professional only) This function calls a real-mode procedure
withani r et frame. The called procedure must executean i r et when it
completes. Pass the following information:;

62 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0302H
BH =flags Bit 0= 1 resetstheinterrupt controller and A20 line. Other flags

reserved and must be O.

CX = Number of wordsto copy from protected-modeto real-mode stack
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and ES.EDI containsthe
sel ect or : of f set of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1

The CS:IPin the real-mode call structure specifies the address of the
real-mode procedure to call.

The real-mode procedure must execute an i r et when it has
compl eted.

If the SS:SP fields are zero then areal-mode stack will be provided by
the DPMI host. Otherwise, the real-mode SS:SP will be set to the
specified values before the procedureis called.

When the Int 31h returns, the real-mode call structure will contain the
values that were returned by the real-mode procedure.

The flags specified in the real-mode call structure will be pushed the
real-mode stack i r et frame. The procedure will be called with the
interrupt and trace flags clear.

It isup to the caller to remove any parameters that were pushed on the
protected-mode stack.

The flag to reset the interrupt controller and A20 line isignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real-mode
state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback
address. This serviceis used to obtain a unique real-mode SEG:OFFSET that
will transfer control from real mode to a protected-mode procedure.

Int31H Function Calls 63

The DOS/4GW DOS Extender

64

At timesit is necessary to hook areal-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address
whenever the mouse is moved. Software running in protected mode can use a
real-mode callback to intercept the mouse driver calls. Pass the following
information:

AX =0303H
DS.ESI = selector:offset of procedureto call
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and CX:DX contains the
segnent : of f set of real-mode callback address.

If the call fails, the carry flag is set.
Callback Procedure Parameters

Interrupts disabled

DS.ESI = selector:offset of real-mode SS;SP
ES.EDI = selector:offset of real-mode call structure
SS:ESP = Locked protected-mode API stack

All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES.EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Sincethereal-mode call structureis static, you must be careful when
writing code that may be reentered. The simplest method of avoiding
reentrancy isto leave interrupts disabled throughout the entire call.
However, if the amount of code executed by the callback islarge then
you will need to copy the real-mode call structure into another buffer.
Y ou can then return with ES:EDI pointing to the buffer you copied
the data to — it does not have to point to the original real mode call
structure.

2. Thecalled procedureis responsible for modifying the real-mode
CS:IP before returning. 1If the real-mode CS:IP isleft unchanged then
the real-mode callback will be executed immediately and your
procedure will be called again. Normally you will want to pop a

Int31H Function Calls

Interrupt 31H DPMI Functions

return address off of the real-mode stack and place it in the real-mode
CS:IP. The example code in the next section demonstrates chaining
to another interrupt handler and simulating areal-mode i r et .

3. Toreturn valuesto the real-mode caller, you must modify the
real-mode call structure.

4. Remember that all segment valuesin the real-mode call structure will
contain real-mode segments, not selectors. If you need to examine
data pointed to by a real-mode seg:offset pointer, you should not use
the segment to selector service to create a new selector. Instead,
allocate a descriptor during initialization and change the descriptor’s
base to 16 times the real-mode segment’ svalue. Thisisimportant
since selectors alocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per
task.

The following code is a sample of areal-mode interrupt hook. It hooksthe DOS
Int 21h and returns an error for the delete file function (AH=41h). Other cals
are passed through to DOS. This example is somewhat silly but it demonstrates
the techniques used to hook areal modeinterrupt. Note that since DOS calls are
reflected from protected mode to real mode, the following code will intercept al
DOS calls from both real mode and protected mode.

Int31H Function Calls 65

The DOS/4GW DOS Extender

B R R R R
’

This procedure gets the current Int 21h real - node
Seg: O fset, allocates a real -npde cal |l back address
and sets the real -node Int 21h vector to the call-
back address

ckkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkk*

Initialization_Code:

Create a code segnent alias to save data in

nmov ax, 000Ah
nmv bx, cs
int 31h

jc ERROR
nmov ds, ax

ASSUMES DS, _TEXT

Get current Int 21h real - node SEG OFFSET

nov ax, 0200h

nov bl, 21h

int 31h

jc ERROR

mov [Orig_Real_Seg], cx
mov [Orig_Real Offset], dx

All ocate a real -npde call back

nov ax, 0303h

push ds

nov bx, cs

nov ds, bx

mov si, OFFSET My_Int_21_Hook

pop es

mov di, OFFSET My_Real Mode_Call_Struc
int 31h

jc ERROR

Hook real -node int 21h with the cal |l back address

nmov ax, 0201h
nov bl, 21h
int 31h

jc ERROR

khkkhkkhkkhkkhkkhkkhkkhkhkhhhkhhkkhhhkhhkhkhhkhhkhkhkhkkhkhkhkhkhkhkkhkhkhkkkhkkkkkkkkkkk*k**x*%

This is the actual Int 21h hook code. It will return
an "access denied" error for all calls made in rea
mode to delete a file. Oher calls will be passed
through to DOCS.

ENTRY:
DS: SI -> Real -npbde SS: SP
ES: DI -> Real -nobde call structure
Interrupts disabled

EXIT

66 Int31H Function Calls

Interrupt 31H DPMI Functions

; ES: DI -> Real -node call structure
z**

My_Int_21_Hook:
cmp es: [di.RealMode_AH], 4lh
jne Chain_To_DOS

This is a delete file call (AH=41h). Sinmulate an
iret on the real -node stack, set the real - node

carry flag, and set the real-nbde AXto 5 to indicate
an access denied error.

cld

| odsw ; CGet real-node ret IP
mov es: [di.RealMode_IP], ax

| odsw ; Get real-node ret CS
mov es: [di.RealMode_CS], ax

| odsw ; Get real -node flags
or ax, 1 ; Set carry flag

mov es: [di.RealMode_Flags], ax

add es: [di.RealMode_SP], 6

mov es: [di.RealMode_AX], 5

Jjmp My_Hook_Exit

: Chain to original Int 21h vector by replacing the
; real-node CS:IP with the original Seg: Offset.

Chain_To_DOS:

mov ax, cs:[Orig_Real_Segqg]
mov es: [di.RealMode_CS], ax
mov ax, cs:[Orig_Real_ Offset]
mov es: [di.RealMode_IP], ax

My_Hook_Exit:
iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback
address that was allocated through the all ocate real-mode callback address
service. Passthe following information:

AX = 0304H
CX:DX = Real-mode callback addressto free

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.
Notes:

1. Rea-mode callbacks are alimited resource. Y our code should free
any break point that it is no longer using.

Int31H Function Calls 67

The DOS/4GW DOS Extender

11.2.5 DPMI Version

Function 0400H This function returns the version of DPMI services supported. Note that this

is not necessarily the version of any operating system that supports DPMI. 1t
should be used by programs to determine what calls are legal in the current
environment. Pass the following information:

AX = 0400H
The information returned is;

AH = Major version

AL =Minor version

BX =Flags Bit 0=1if running under an 80386 DPMI implementation. Bit 1
= 1if processor is returned to real mode for reflected interrupts (as
opposed to Virtual 8086 mode). Bit 2 =1 if virtual memory is
supported. Bit 3isreserved and undefined. All other bits are zero
and reserved for later use.

CL = Processor type

02 = 80286

03 = 80386

04 = 80486

05 = Pentium
DH = Current value of virtual master PIC baseinterrupt
DL = Current value of virtual dave PIC baseinterrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

68

Function 0500H This function gets information about free memory. Pass the following

information:

AX = 0500H
ES.EDI =the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flagis clear and ES.EDI containsthe
sel ect or: of f set of abuffer with the structure shown in the figure below.

Int31H Function Calls

Interrupt 31H DPMI Functions

Offset Description

OOH Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

OCH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pagesnot in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved

2FH

Only thefirst field of the structure is guaranteed to contain avalid value. Any
field that is not returned by DOS4GW is set to -1 (OFFFFFFFFH).

Function 0501H This function allocates and commits linear memory. Pass the following
information:

AX =0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flagis clear, BX:CX contains the linear address of
the allocated memory, and SI:DI contains the memory block handle used to free
or resizethe block. If the call fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and
initialize selectors needed to access the memory.

Int31H Function Calls 69

The DOS/4GW DOS Extender

If VMM is present, the memory is allocated as unlocked, page granular blocks.
Because of the page granularity, memory should be allocated in multiples of
4KB.

Function 0502H This function frees ablock of memory alocated through function 0501H.
Pass the following information:

AX = 0502H
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flagisset. You
must also free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H
function. If you resize ablock of linear memory, it may have anew linear
address and anew handle. Pass the following information:

AX = 0503H
BX:CX = new size of memory block, in bytes
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flagis clear, BX:CX contains the new linear
address of the memory block, and SI:DI contains the new handle of the memory
block. If the call fails, the carry flag is set.

If either the linear address or the handle has changed, update the selectors that
point to the memory block. Use the new handle instead of the old one.

Y ou cannot resize amemory block to zero bytes.

11.2.7 Page Locking Services

70

These services are only useful under DPMI implementations that support virtual memory.
Although memory ranges are specified in bytes, the actual unit of memory that will be locked
will be one or more pages. Page locks are maintained as a count. When the count is
decremented to zero, the page is unlocked and can be swapped to disk. Thismeansthat if a
region of memory is locked three times then it must be unlocked three times before the pages
will be unlocked.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following
information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI =size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flagisclear. If the specified region overlaps part
of apage at the beginning or end of aregion, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously
locked using the "lock linear region” function (0600h). Pass the following
information:

AX =0601H
BX:CX = starting linear address of memory to unlock
SI:DI =size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked.
An error will be returned if the memory was not previously locked or if the
specified region isinvalid.

If the call succeeds, the carry flagis clear. If the specified region overlaps part
of apage at the beginning or end of aregion, the page(s) will be unlocked. Even

if the call succeeds, the memory will remain locked if the lock count is not
decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. This
function returns the size of a single memory page in bytes. Pass the following
information:

AX =0604H
If the call succeeds, the carry flagis clear and BX:CX = Page size in bytes.

If the cal fails, the carry flag is set.

Int31H Function Calls 71

The DOS/4GW DOS Extender

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of
time. These services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual
memory, other implementations will ignore these functions (it will always return carry clear).
Therefore your code can always call these functions regardless of the environment it is
running under.

Since both of these functions are smply advisory functions, the operating system may choose
to ignore them. In any case, your code should function properly even if the functions fail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand
paging candidate. Thisfunction is used to inform the operating system that a
range of pages should be placed at the head of the page out candidate list. This
will force these pages to be swapped to disk ahead of other pages even if the
memory has been accessed recently. However, all memory contents will be
preserved.

Thisisuseful, for example, if aprogram knows that a given piece of data will
not be accessed for along period of time. That dataisideal for swapping to disk
since the physical memory it now occupies can be used for other purposes. Pass
the following information:

AX =0702H

BX:CX = Starting linear address of pagesto mark

SI:DI = Number of bytesto mark as paging candidates

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Thisfunction does not force the pages to be swapped to disk
immediately.

2. Partial pageswill not be discarded.
Function 0703H (DOS/4GW Professional only) This function discards page contents. This
function discards the entire contents of a given linear memory range. Itisused

after amemory object that occupied a given piece of memory has been
discarded.

72 Int31H Function Calls

Interrupt 31H DPMI Functions

The contents of the region will be undefined the next time the memory is
accessed. All values previoudly stored in this memory will belost. Passthe
following information:

AX =0703H

BX:CX = Starting linear address of pagesto discard

SI:DI = Number of bytesto discard

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Partial pageswill not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory
mapped at physical addresses that lie outside of the normal 1Mb of memory that is
addressable in real mode. Under many implementations of DPMI, all addresses are linear
addresses since they use the paging mechanism of the 80386. This service can be used by
device driversto convert a physical addressinto alinear address. The linear address can then
be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.
Some implementations of DPMI may not support this call becauseit could be
used to circumvent system protection. This call should only be used by
programs that absolutely require direct access to a memory mapped device.
Pass the following information:
AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can
be used to access the physical memory.

If the call fails, the carry flag is set.

Int31H Function Calls 73

The DOS/4GW DOS Extender

Notes:
1. Under DPMI implementations that do not use the 80386 paging
mechanism, the call will always succeed and the address returned will
be equal to the physical address parameter passed into this function.

2. Itisuptothecaler to build an appropriate selector to access the
memory.

3. Do not use this service to access memory that is mapped in the first
megabyte of address space (the real-mode addressable region).

Function 0801H This function is used to free Physical Address Mapping. Passthe following
information:

AX =0801H
BX:CX = Linear addressreturned by Function 0800H.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.
Notes:
1. Theclient should call thisfunction when it is finished using a device

previously mapped to linear addresses with the Physical Address
Mapping function (Function 0800H).

11.2.10 Virtual Interrupt State Functions

74

Under many implementations of DPMI, the interrupt flag in protected mode will always be set
(interrupts enabled). Thisis because the program is running under a protected operating
system that cannot allow programs to disable physical hardware interrupts. However, the
operating system will maintain a"virtual" interrupt state for protected-mode programs. When
the program executes a CL1 instruction, the program’ s virtual interrupt state will be disabled,
and the program will not receive any hardware interrupts until it executes an ST1 to reenable
interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will
be pushed onto the stack. Thus, examining the flags pushed on the stack is not sufficient to
determine the state of the program’ s virtual interrupt flag. These services enable programs to
get and modify the state of their virtual interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtual
interrupt state to it’s previous state.

Int31H Function Calls

Interrupt 31H DPMI Functions

; Disable interrupts and get previous interrupt state

nov ax, 0900h
int 31h

. At this point AX = 0900h or 0901h

; Restore previous state (assunes AX unchanged)
i nt 31h
Function 0900H This function gets and disables Virtual Interrupt State. This function will
disable the virtual interrupt flag and return the previous state of the virtual
interrupt flag. Pass the following information:

AX =0900H

After the call, the carry flag is clear (this function always succeeds) and virtual
interrupts are disabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the
previous state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will
enable the virtual interrupt flag and return the previous state of the virtual
interrupt flag. Pass the following information:

AX =0901H

After the call, the carry flag is clear (this function always succeeds) and virtual
interrupts are enabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Int31H Function Calls 75

The DOS/4GW DOS Extender

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the
previous state, simply execute an Int 31h.

Function 0902H This function getsthe Virtual Interrupt State. This function will return the
current state of the virtual interrupt flag. Pass the following information:

AX =0902H
After the call, the carry flag is clear (this function always succeeds).
AL = 0if virtual interrupts are disabled.
AL = 1if virtual interrupts are enabled.
11.2.11 Vendor Specific Extensions
Some DOS extenders provide extensions to the standard set of DPMI calls. Thiscall isused
to obtain an address which must be called to use the extensions. The caller points DS:ESI to a
null terminated string that specifies the vendor name or some other unique identifier to obtain

the specific extension entry point.

Function OAOOH This function gets Tenberry Software’s APl Entry Point. Passthe following
information:

AX = 0AO0H
DS.ESI = Pointer to null terminated string " RATIONAL DOS/4G"

If the call succeeds, the carry flagis clear and ES.EDI = Extended APl entry
point. DS, FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.
Notes:
1. Executeafar cal to call the API entry point.
2. All extended API parameters are specified by the vendor.

3. Thestring comparison used to return the API entry point is case
sensitive.

76 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.12 Coprocessor Status
Function OEOOH This function gets the coprocessor status. Pass the following information:
AX = OEOOH

If the call succeeds, the carry flagis clear and AX contains the coprocessor

status.
Bit Significance
0 MPv (MP bit in the virtual MSW/CROQ).

0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.
1 EMv (EM bit in the virtual MSW/CRO).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.
2 MPr (MP bit from the actual M SW/CRO).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.
1 EMr (EM hit from the actual MSW/CRO0).
0 = Host is not emulating coprocessor instructions.
1 =Host is emulating coprocessor instructions.
4-7 Coprocessor type.

O0H = no coprocessor.

02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium
8-15 Not applicable.

If the call fails, the carry flag is set.
Notes:

1. If therea EM (EMr) bit is set, the host is supplying or is capable of
supplying floating-point emulation.

2. If the MPv bit is not set, the host may not need to save the

coprocessor state for this virtual machine to improve system
performance.

Int31H Function Calls 77

The DOS/4GW DOS Extender

3. The MPr bit setting should be consistent with the setting of the
coprocessor type information. Ignore MPr bit information if itisin
conflict with the coprocessor type information.

4. If thevirtual EM (EMv) bit is set, the host delivers all coprocessor
exceptions to the client, and the client is performing its own
floating-point emulation (wether or not a coprocessor is present or the
host aso has a floating-point emulator). In other words, if the EMv
bit is set, the host sets the EM bit in the real CRO while the virtual
machineis active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

5. A client can determine the CPU type with int 31H Function 0400H,
but a client should not draw any conclusions about the presence or
absence of a coprocessor based on the CPU type aone.

Function OEO1H This function sets coprocessor emulation. Pass the following information:

AX =0EO1H
BX = coprocessor bits
Bit Significance
0 New value of MPv bit for client’s virtual CRO.

0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for this client.
1 New value of EMv bit for client’ s virtual CRO.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.
2-15 Not applicable.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

78 Int31H Function Calls

12 utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the
Open Watcom F77 package. Each program is described using the following format:

Purpose: Thisisabrief statement of what the utility program does. More specific
information is provided under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each commandisin a
typewriter font, whilevariable partsof the command areinitalics.
Optional parts are enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We
explain anything special that you might need to know about the program.

See Also: Thisisacross-reference to any information that is related to the program.

Example: You'll find one or more sample uses of the utility program with an explanation of
what the program is doing.

Some of the utilities are DOS/4GW-based, protected-mode programs. To determine which

programs run in protected mode and which in real, run the program. If you see the DOS4GW
banner, the program runs in protected mode.

Utilities 79

The DOS/4GW DOS Extender

12.1 DOS4GW

Purpose: Loads and executes linear executables.

Syntax: linear_executable

Notes: The stub program at the beginning of the linear executable invokes this program,
which loads the linear executable and starts up the DOS extender. The stub
program must be able to find DOSAGW: make sureit isin the path.

80 DOS4GW

Utilities

12.2 PMINFO

Purpose: Measures the performance of protected/real-mode switching and extended memory.
Syntax: PM NFO. EXE
Notes: We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary dightly from run to
run.

Example: The following example shows the output of the PMINFO program on a 386
AT-compatible machine.

C>pmi nfo
Protect ed Mbde and Extended Menory Performance Measurenment --
5.00
Copyright (c) Tenberry Software, Inc. 1987 - 1993

DCS nmenory Ext ended menory CPU perfornmance equivalent to 67.0

MHz 80486
736 8012 K bytes configured (according to
BI CS) .
640 15360 K bytes physically present (SETUP).
651 7887 K bytes avail able for DOS/ 16M
prograns.
22.0 (3.0) 18.9 (4.0) MB/ sec word transfer rate (wait
states).
42.9 (3.0) 37.0 (4.0) MB/ sec 32-bit transfer rate (wait
states).

Overal |l cpu and nenory performance (non-floating point) for typical
DCS prograns is 10.36 & 1.04 tinmes an 8VHz | BM PC/ AT.

Protected/ Real switch rate = 36156/sec (27 usec/sw tch, 15 up + 11
down),
DOs/ 16M swi tch node 11 (VCPI).

The top information line shows that the CPU performanceis equivalent to a67.0
MHz 80486. Below are the configuration and timings for both the DOS memory
and extended memory. If the computer is not equipped with extended memory, or
none is available for DOS4GW, the extended memory measurements may be
omitted ("--").

Theline "according to BIOS' shows the information provided by the BIOS
(interrupts 12h and 15h function 88h). Theline"SETUP", if displayed, isthe

PMINFO 81

The DOS/4GW DOS Extender

82 PMINFO

configuration obtained directly from the CMOS RAM as set by the computer’s
setup program. It isdisplayed only if the numbers are different from those in the
BIOSline. They will be different for computers where the BIOS has reserved
memory for itself or if another program has allocated some memory and is
intercepting the BIOS configuration requests to report less memory available than
is physically configured. The"DOS/16M memory range", if displayed, shows the
low and high addresses available to DOS4GW in extended memory.

Below the configuration information isinformation on the memory speed (transfer
rate). PMINFO tries to determine the memory architecture. Some architectures
will perform well under some circumstances and poorly under others, PMINFO
will show both the best and worst cases. The architectures detected are cache,
interleaved, page-mode (or static column), and direct. Measurements are made
using 32-bit accesses and reported as the number of megabytes per second that can
be transferred. The number of wait statesis reported in parentheses. The wait
states can be afractional number, like 0.5, if there is await state on writes but not
on reads. Memory bandwidth (i.e., how fast the CPU can access memory) accounts
for 60% to 70% of the performance for typical programs (that are not heavily
dependent on floating-point math).

A performance metric developed by Tenberry Software is displayed, showing the
expected throughput for the computer relative to a standard 8VIHz IBM PC/AT
(disk accesses and floating point are excluded). Finally, the speed with which the
computer can switch between real and protected mode is displayed, both as the
maximum number of round-trip switches that can occur per second, and the time
for asingle round-trip switch, broken out into the real-to-protected (up) and
protected-to-real (down) components.

Utilities

12.3 PRIVATXM

Purpose:

Syntax:

Notes:

Example:

Creates a private pool of memory for DOS/4GW programs.
PRI VATXM [- r]
This program may be distributed to your users.

Without PRIVATXM, a DOS4GW program that starts up while another DOS4GW
program is active uses the pool of memory built by the first program. The new
program cannot change the parameters of this memory pool, so setting DOS16M to
increase the size of the pool has no effect. To specify that the two programs use
different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS4GW programs as private, preventing
subsequent DOS4GW programs from using the same memory pool. The first
DOS4GW program to start after PRIVATXM sets up anew pool of memory for
itself and any subsequent DOS4AGW programs. To release the memory used by the
private programs, use the PRIVATXM - r option.

PRIVATXM isa TSR that requires less than 500 bytes of memory. It is not
supported under DPMI.

The following example creates a 512K B memory pool that is shared by two
DOS4GW TSRs. Subsequent DOS4GW programs use a different memory pool.

C>set DOS16M=:512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOS4GW programs use a new
memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512K B memory pool used by the TSRs. (If

the TSRs shut down, their memory is not released unless
PRIVATXM isreleased.)

PRIVATXM 83

The DOS/4GW DOS Extender

12.4 RMINFO

Purpose: Supplies configuration information and the basis for real/protected-mode switching

Syntax:

Notes:

Example:

84 RMINFO

in your machine.

RM NFO. EXE

This program may be distributed to your users.

RMINFO starts up DOS4GW, but stops your machine just short of switching from
real mode to protected mode and displays configuration information about your
computer. The information shown by RMINFO can help determine why
DOS4GW applications won't run on a particular machine. Run RMINFO if

PMINFO does not run to completion.

The following example shows the output of the RMINFO program on an 386

AT-compatible machine.

Crmnfo

DOS/ 16M Real
Copyright (C) Tenberry Software,

Machi ne and Envi ronnent:

Processor

Machi ne type

A20 now

A20 switch rigor

DPM host found
Swi t chi ng Functi ons:

To PM switch:

To RM switch:

Nomi nal switch node:

Switch control flags
Menmory Interfaces

DPM nmay provi de:

Cont i guous DOS nenory:

Mode | nformation Program 5. 00

Inc. 1987 - 1993

i 386, coprocessor present
10 (AT-conpati bl e)
enabl ed

di sabl ed

DPM
DPM
0
0000

16384K returnabl e
463K

The information provided by RMINFO includes:

Machine and Environment:
Processor:

Machine type:

processor type, coprocessor present/not present

Utilities

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)

(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)

(Zenith)

(Hitachi)
(Okidata)

(PS/55)

A20 now: Current state of Addressline 20.

A20 switch rigor: Whether DOSAGW rigorously controls enabling and disabling of
Address line 20 when switching modes.

PSfeatureflag

XMS host found Whether your system has any software using extended memory
under the XM S discipline.

VCPI host found Whether your system has any software using extended memory
under the VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory
Switching Functions:

A20 switching:

To PM switch: reset catch:

pre-PM prep:
post-PM-switch:

RMINFO 85

The DOS/4GW DOS Extender

To RM switch:
pre-RM prep:
reset method:
post-reset:
reset uncatch:
Nominal switch mode: x
Switch control flags: xxxxh
Memory I nterfaces:
(VCPI remapping in effect)
DPMI may provide: xxxxxK returnable
VCPI may provide: xxxxxK returnable
Top-down
Other16M
Forced

Contiguous DOS memory:

86 RMINFO

13 Error Messages

The following lists DOS/4AG error messages, with descriptions of the circumstances in which
the error is most likely to occur, and suggestions for remedying the problem. Some error
messages pertaining to features— like DLLs— that are not supported in DOS4GW will not
arise with that product. In the following descriptions, referencesto DOS/4G, DOSAG, or
DOSAG.EXE may be replaced by DOS/AGW, DOSAGW, or DOSAGW.EXE should the error
message arise when using DOS4AGW.

13.1 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded in DOS/AG.
Kernel error messages may occur because of severe resource shortages, corruption of
DOSAGW.EXE, corruption of memory, operating system incompatibilities, or internal errors
in DOS/4GW. All of these messages are quite rare.

0. involuntary switch to real mode
The computer was in protected mode but switched to real mode without going through
DOS/16M. Thiserror most often occurs because of an unrecoverable stack segment
exception (stack overflow), but can also occur if the Global Descriptor Table or Interrupt
Descriptor Table is corrupted. Increase the stack size, recompile your program with stack
overflow checking, or look into ways that the descriptor tables may have been overwritten.
1. not enough extended memory

2. not aDOS/16M executable <filename>

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way.
Rebuild or recopy thefile.

3. no DOS memory for transparent segment
4. cannot make transparent segment

5. too many transparent segments

Kernel Error Messages 87

The DOS/4GW DOS Extender

6. not enough memory to load program

There is not enough memory to load DOS/4G. Make more memory available and try
again.

7. no relocation segment
8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file
units. Set alarger FILES= entry in CONFIG.SY S, reboot, and try again.

9. cannot allocate tstack

There is not enough memory to load DOS/AG. Make more memory available and try
again.

10. cannot allocate memory for GDT

There is not enough memory to load DOS/4G. Make more memory available and try
again.

11. no passup stack selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
12. no control program selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try
again.

14. premature EOF

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way.
Rebuild or recopy thefile.

15. protected mode available only with 386 or 486

DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

88 Kernel Error Messages

Error Messages

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications
Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode.
Thisis done to provide special memory services to DOS programs, such asEMS
simulation (EMS interface without EM S hardware) or high memory. Inthismode, itis
not possible to switch into protected mode unless the resident software follows a standard
that DOS/16M supports (DPMI, VCPI, and XM S are the most common). Contact the
vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)
On some Japanese machines that are not IBM AT-compatible, and have no protocol for
managing extended memory, you must set the DOS16M environment variable to specify
the range of available extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmaode choice

21. requiresDOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your
program.

23. no memory for VCPI pagetable

There is not enough memory to load DOS/4G. Make more memory available and try
again.

24. VCPI page table addressincorrect
Thisisan internal error.
25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that
VCPI is present, but VCPI returns an error when DOS/16M tries to initialize the interface.

26. 8042 timeout

Kernel Error Messages 89

The DOS/4GW DOS Extender

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop
This error probably indicates that memory was corrupted during execution of your
program. Using aninvalid or stale alias selector may cause this error. Incorrect
manipulation of segment descriptors may also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your
program. Writing through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMYS)

34. DPMI host error (cannot lock stack)
Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI.
Under Windows, you might try making more physical memory available by eliminating or
reducing any RAM drives or disk caches. Y ou might also try editing DEFAULT.PIF so
that at least 64KB of XMS memory is available to non-Windows programs. Under OS/2,
you want to increase the DPMI_MEMORY_LIMIT in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your
program should cause error 2001 instead.

36. The DOS16M .386 virtual device driver was never loaded
37. Unableto reserve selectors for DOS16M.386 Windows driver
38. Cannot use extended memory: HIMEM.SYS not version 2
This error indicates an incompatibility with an old version of HHIMEM.SY S.

39. An obsolete version of DOS16M.386 was |oaded

90 Kernel Error Messages

Error Messages

40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its
configuration. Try configuring the memory manager to provide more extended memory,
or change memory managers.

13.2 DOS/4G Errors

1000

1001 "

1003 "

1004 "

1005 "

1007 "

1008 "

"can’t hook interrupts”

A DPMI host has prevented DOS/AG from loading. Please contact Tenberry Technical
Support.

error in interrupt chain"
DOS/4G internal error. Please contact Tenberry Technical Support.
can’t lock extender kernel in memory"

DOS/AG couldn't lock the kernel in physical memory, probably because of a memory
shortage.

syntax is DOSAG <executable.xxx>"
Y ou must specify a program name.
not enough memory for dispatcher data”

There is not enough memory for DOS/4G to manage user-installed interrupt handlers
properly. Free some memory for the DOS/AG application.

can’t find file <program> to load"

DOS/4G could not open the specified program. Probably thefiledidn’t exist. Itis
possible that DOS ran out of file handles, or that a network or similar utility has
prohibited read access to the program. Make sure that the file name was spelled
correctly.

can’t load executable format for file <filename> [<error code>]"

DOS/4G Errors 91

The DOS/4GW DOS Extender

DOS/4G did not recognize the specified file as avalid executable file. DOS/4G can
load linear executables (LE and LX) and EXPs (BW). Theerror codeisfor Tenberry
Software’ s use.

1009 " program <filename> is not bound"
This message does not occur in DOS/4G, only DOS/AGW Professional; the latter
requires that the DOS extender be bound to the program file. The error signals an
attempt to load

1010 " can’t initialize loader <loader> [<error code>]"
DOS/4G could not initialize the named loader, probably because of aresource
shortage. Try making more memory available. If that doesn’'t work, please contact
Tenberry Technical Support. The error codeisfor Tenberry Software’ use.

1011 " VMM initialization error [<error code>]"
DOS/4G could not initialize the Virtual Memory Manager, probably because of a
resource shortage. Try making more memory available. If that doesn’t work, please
contact Tenberry Technical Support. The error codeisfor Tenberry Software’ use.

1012 " <filename> is not a WATCOM program’

This message does not occur in DOS/4G, only DOS/4GW and DOS/AGW
Professional. Those extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because
of aninternal error. Please call Tenberry Technical Support.

1100 " assertion \" <statement>\" failed (<file>:<line>)"

DOS/AG internal error. Please contact Tenberry Technical Support.
1200 " invalid EXP executable format"

DOS/4G tried to load an EXP, but couldn’t. The executablefileis probably corrupted.
1201 " program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPsthat have been linked with the GLU
-AUTO or -DPMI switch.

92 DOS/4G Errors

Error Messages

1202 " can’t allocate memory for GDT"

There is not enough memory available for DOS/4G to build a Global Descriptor Table.
Make more memory available.

1203 " premature EOF"
DOS/4G tried to load an EXP but couldn’t. Thefileis probably corrupted.
1204 " not enough memory to load program”

There is not enough memory available for DOS/AG to load your program. Make more
memory available.

1301 "invalid linear executable format"

DOS/AG cannot recognize the program file as a LINEXE format. Make sure that you
specified the correct file name.

1304 " file I/O seek error"
DOS/4G was unable to seek to afile location that should exist. Thisusually indicates
truncated program files or problems with the storage device from which your program
loads. Run CHKDSK or asimilar utility to begin determining possible causes.

1305 " file /O read error"
DOS/4G was unable to read afile location that should contain program data. This
usually indicates truncated program files or problems with the storage device from
which your program loads. Run CHKDSK or asimilar utility to begin determining
possible causes.

1307 " not enough memory"

Asit attempted to load your program, DOS/4G ran out of memory. Make more
memory available, or enable VMM.

1308 " can’t load requested program"
1309 " can’t load requested program"

1311 " can’t load requested program"

DOS/4G Errors 93

The DOS/4GW DOS Extender

1312 " can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical
Support.

1313 " can't resolve external references”
DOS/4G was unable to resolve al references to DLLs for the requested program, or the
program contained unsupported fixup types. Use EXEHDR or asimilar LINEXE
dump utility to see what references your program makes and what special fixup records
might be present.

1314 " not enough lockable memory"
Asit attempted to load your program, DOS/4G encountered arefusal to lock avirtual
memory region. Some memory must be locked in order to handle demand-load page
faults. Make more physical memory available.

1315 " can’t load requested program"

1316 " can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical
Support.

1317 " program has no stack"

DOS/4G reports this error when you try to run a program with no stack. Rebuild your
program, building in a stack.

2000 " deinitializing twice"
DOS/4G internal error. Please contact Tenberry Technical Support.
2001 " exception <exception_number> (<exception_description>) at <selector:offset>"

Y our program has generated an exception. For information about interpreting this
message, see the file COMMON.DOC.

2002 " transfer stack overflow at <selector: offset>"

Y our program has overflowed the DOS/AG transfer stack. For information about
interpreting this message, see the file COMMON.DOC.

94 DOS/4G Errors

Error Messages

2300 " can’t find <DLL>.<ordinal> - referenced from <module>"
DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the
DLL at al. Correct or remove the reference, and make sure that DOS/4G can find the
DLL.
DOS/AG looks for DLLsin the following directories:

» The directory specified by the Libpath32 configuration option (which defaults
to the directory of the main application file).

* The directory or directories specified by the LIBPATH32 environment variable.
* Directories specified in the PATH.
2301 " can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or
remove the reference, and make sure that DOS/4G can find the DLL.

2302 " DLL modules not supported”

This DOS/4GW Professional error message arises when an application references or
triesto explicitly load aDLL. DOS/4GW Professional does not support DLLSs.

2303 "internal LINEXE object limit reached"
DOS/4G currently handles a maximum of 128 LINEXE objects, including al .DLL
and .EXE files. Most .EXE or .DLL files use only three or four objects. If possible,
reduce the number of objects, or contact Tenberry Technical Support.

2500 " can’t connect to extender kernel"
DOS/AG internal error. Please contact Tenberry Technical Support.

2503 " not enough disk space for swapping - <count> byes required"

VMM was unable to create a swap file of the required size. Increase the amount of
disk space available.

2504 " can’t create swap file \<filename>\

DOS/4G Errors 95

The DOS/4GW DOS Extender

VMM was unable to create the swap file. This could be because the swap fileis
specified for a nonexistent drive or on adrivethat is read-only. Set the SWAPNAME
parameter to change the location of the swap file.

2505 " not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more
memory available. If <table> is page buffer, make more DOS memory available.

2506 " not enough physical memory (minmem)"

Thereisless physical memory available than the amount specified by the MINMEM
parameter. Make more memory available.

2511 " swap out error [<error code>]"
Unknown disk error. The error codeisfor Tenberry Software’ use.
2512 " swapin error [<error code>]"
Unknown disk error. The error code isfor Tenberry Software’ use.
2514 " can’t open tracefile"
VMM could not open the VMM.TRC filein the current directory for writing. If the
directory already hasaVMM.TRC file, deleteit. If not, there may not be enough
memory on the drive for the trace file, or DOS may not have any more file handles.
2520 " can’t hook int 31h"
DOS/4G internal error. Please contact Tenberry Technical Support.
2523 " page fault on non-present mapped page”
Y our program references memory that has been mapped to a nonexistent physical
device, using DPMI function 508h. Make sure the device is present, or remove the
reference.
2524 " page fault on uncommitted page"

Y our program references memory reserved with acall to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before
you reference it.

96 DOS/4G Errors

Error Messages

3301 " unhandled EMPTYFWD, GATE16, or unknown relocation”

3302 "unhandled ALIAS16 reference to unaliased object"

3304 " unhandled or unknown relocation”
If your program was built for another platform that supports the LINEXE format, it
may contain a construct that DOS/4G does not currently support, such asacall gate.

This message may also occur if your program has a problem mixing 16- and 32-bit
code. A linker error is another likely cause.

DOS/4G Errors 97

The DOS/4GW DOS Extender

98 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/AGW
and DOS/AGW Professional product. The content of this chapter has been edited by Open
Watcom. In most cases, the information is applicable to both products.
This chapter covers the following topics:

» Access to technical support

« Differences within the DOS/4G product line

» Addressing

* Interrupt and exception handling

» Memory management

* DOS, BIOS, and mouse services

* Virtual memory

* Debugging

» Compatibility

14.1 Access to Technical Support

la. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

Access to Technical Support 99

The DOS/4GW DOS Extender

VAN http://ww.tenberry. com dos4g/

Emai |l : 4gwhel p@enberry. com
Phone: 1.480.767. 8868

Fax: 1.480. 767. 8709

Mai | : Tenberry Software, Inc.

PO Box 20050
Fountain Hlls, Arizona
U S.A 85269-0050
PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

1b. When to contact Open Watcom, when to contact Tenberry.

Since DOS/AGW Professional isintended to be completely compatible with DOS4AGW,
you may wish to ascertain whether your program works properly under DOS/AGW before
contacting Tenberry Software for technical support. (Thisislikely to be the second
guestion we ask you, after your serial number.)

If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect
your own code or a problem compiling or linking, you may wish to contact Open Watcom
first. Tenberry Software support personnel are not able to help you with most
programming questions, or questions about using the Open Watcom tools.

If your program only fails with DOS/AGW Professional, you have probably found abug in
DOS/4GW Professional, so please contact us right away.

1c. Telephone support.

Tenberry Software’ s hours for telephone support are 9am-6pm EST. Please note that
telephone support is free for the first 30 daysonly. A one-year contract for continuing
telephone support on DOS/AGW Professional is US$500 per devel oper, including an
update subscription for one year, to customers in the United States and Canada; for
overseas customers, the price is $600. Site licenses may be negotiated.

Thereis no time limit on free support by fax, mail, or electronic means.

1d. References.
The DOS4GW documentation from Open Watcom is the primary reference for
DOS/4AGW Professional aswell. Another useful reference is the DPMI specification. In
the past, the DPMI specification could be obtained free of charge by contacting Intel

Literature. We have been advised that the DPMI specification is no longer availablein
printed form.

100 Access to Technical Support

DOS/4GW Commonly Asked Questions

However, the DPMI 1.0 specification can be obtained at:

http://ww. del ori e. conf dj gpp/ doc/ dpmi /

Online HTML aswell as a downloadable archive are provided.

14.2 Differences Within the DOS/4G Product Line

2a. DOS/4GW Professional versus DOS/4GW

DOS/4AGW Professional was designed to be a higher-performance version of DOS/4AGW
suitable for commercia applications. Hereisasummary of the advantages of DOS/4AGW
Professional with respect to DOS/AGW:

* Extender binds to the application program file

* Extender startup time has been reduced

* Support for Open Watcom floating-point emulator has been optimized

* Virtual memory manager performance has been greatly improved

» Under VMM, programs are demand loaded

* Virtual address spaceis4 GB instead of 32 MB

* Extender memory requirements have been reduced by more than 50K

* Extender disk space requirements have been reduced by 40K

 Can omit virtual memory manager to save 50K more disk space

* Support for INT 31h functions 301h-304h and 702h-703h
DOS/4GW Professional is intended to be fully compatible with programs written for
DOS/4GW 1.9 and up. The only functional difference isthat the extender is bound to
your program instead of residing in a separate file. Not only does this help reduce startup

time, but it eliminates version-control problems when someone has both DOS/4AGW and
DOS/4GW Professiona applications present on one machine.

Differences Within the DOS/4G Product Line 101

The DOS/4GW DOS Extender

2b. DOS/4GW Professional versus DOS/4G.

DOS/4AGW Professional is not intended to provide any other new DOS extender
functionality. Tenberry Software’ s top-of-the-line 32-bit extender, DOS/4G, is not sold on
aretail basisbut is of special interest to devel opers who require more flexibility (such as
OEMs). DOS/AG offers these additional features beyond DOS/AGW and DOS/AGW
Professional:

» Compl ete documentation

* DLL support

* TSR support

* Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

* A Clanguage API that offers more control over interrupt handling and program
loading, aswell as making it easier to use the extender

» An optional (more protected) nonzero-based flat memory model
» Remappable error messages

» More configuration options

* The D32 debugger, GLU linker, and other tools

* Support for other compilers besides Open Watcom

* A higher level of technical support

» Custom work is available (e.g., support for additional executable formats, operating
system APl emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or
future) in the DOS/4G line.

102 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

2c. DPMI functions supported by DOS/AGW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in
enhanced mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY),
or QDPMI (with EXTCHKOFF), the DPMI host provides the DPMI services, not
DOS/4GW. The DPMI host also provides virtual memory, if any. Performance (speed
and memory use) under different DPMI hosts varies greatly due to the quality of the DPMI
implementation.

These are the services provided by DOS/AGW and DOS/AGW Professional in the absence

of aDPMI host.

0000 Allocate LDT Descriptors

0001 Free LDT Descriptor

0002 Map Real-Mode Segment to Descriptor

0003 Get Selector Increment Value

0006 Get Segment Base Address

0007 Set Segment Base Address

0008 Set Segment Limit

0009 Set Descriptor Access Rights

000A Create Alias Descriptor

000B Get Descriptor

000C Set Descriptor

000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block

0101 Free DOS Memory Block

0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector

0201 Set Real-Maode Interrupt Vector

0202 Get Processor Exception Handler

0203 Set Processor Exception Handler

0204 Get Protected-Mode Interrupt Vector

0205 Set Protected-Mode Interrupt V ector

0300 Simulate Real-Mode I nterrupt

0301 Call Real-Mode Procedure with Far Return Frame (DOS/4GW Professional
only)

0302 Call Real-Mode Procedure with IRET Frame (DOS/4GW Professional only)

0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)

0304 Free Real-Mode Callback Address (DOS/AGW Professional only)

Differences Within the DOS/4G Product Line 103

The DOS/4GW DOS Extender

0400

0500
0501
0502
0503

0600
0601
0604

0702
0703

0800
0801

0900
0901
0902
0A00

OEO00
OEO1

Get DPMI Version

Get Free Memory Information
Allocate Memory Block

Free Memory Block

Resize Memory Block

Lock Linear Region
Unlock Linear Region
Get Page Size (VM only)

Mark Page as Demand Paging Candidate (DOS/4GW Professional only)
Discard Page Contents (DOS/4GW Professional only)

Physical Address Mapping
Free Physical Address Mapping

Get and Disable Virtua Interrupt State
Get and Enable Virtua Interrupt State
Get Virtua Interrupt State

Get Tenberry Software API Entry Point

Get Coprocessor Status
Set Coprocessor Emulation

14.3 Addressing

3a. Converting between pointers and linear addresses.

Because DOS/AGW uses a zero-based flat memory model, converting between pointers
and linear addressesistrivial. A pointer valueis always relative to the current segment
(the value in CSfor acode pointer, or in DS or SSfor adata pointer). The segment bases
for the default DS, SS, and CS are all zero. Hence a near pointer is exactly the same thing
asalinear address. anull pointer pointsto linear address 0, and a pointer with value
0x10000 points to linear address 0x10000.

104 Addressing

DOS/4GW Commonly Asked Questions

3b.

3c.

3d.

3e.

Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other.
To create adata alias for a code pointer, merely create a data pointer and set it equal to the
code pointer. It’'s not necessary for you to create your own alias descriptor. Similarly, to
create a code dias for adata pointer, merely create a code pointer and set it equal to the
data pointer.

Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode
interrupt vector tableis at address O, the BIOS data segment is at address 0x400, the
monochrome video memory is at address 0xB00OO, and the color video memory is at
address 0xB8000. To read and write any of these, you can just use a pointer set to the
proper address. Y ou don't need to create afar pointer, using some magic segment value.

Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can
not in general read or write extended memory directly, nor can you tell how a particular
block of extended memory has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addressesto
linear addresses. In other words, if you have a peripheral device in your machine that has
memory at a physical address of 256 MB, you can issue this call to create alinear address
that points to that physical memory. The linear addressis the same thing as a near pointer
to the memory and can be manipulated as such.

Thereisno way in a DPMI environment to determine the physical address corresponding
to agiven linear address. Thisis part of the design of DPMI. Y ou must design your
application accordingly.

Null pointer checking.

DOS/4AGW will trap references to the first sixteen bytes of physical memory if you set the
environment variable DOSAG=NULLP. Thisis currently the only null-pointer check
facility provided by DOS/AGW.

As of release 1.95, DOS/4GW traps both reads and writes. Prior to this, it only trapped
writes.

Y ou may experience problems if you set DOSAG=NULLP and use some versions of the

Open Watcom Debugger with a1.95 or later extender. These problems have been
corrected in later versions of the Open Watcom Debugger.

Addressing 105

The DOS/4GW DOS Extender

14.4 Interrupt and Exception Handling

4a. Handling asynchronous interrupts.

Under DOS/AGW, thereis a convenient way to handle asynchronous interrupts and an
efficient way to handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or
real mode (a DOS or BIOS call) when a hardware interrupt comes in, you have to be
prepared to handle interruptsin either mode. Otherwise, you may miss interrupts.

Y ou can handle both real-mode and protected-mode interrupts with asingle handler, if 1)
the interrupt isin the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT
21h/25h or _dos_setvect(); 3) you do not install a handler for the same interrupt using any
other mechanism. DOS/AGW will route both protected-mode interrupts and real-mode
interrupts to your protected-mode handler. Thisisthe convenient way.

The efficient way isto install separate real-mode and protected-mode handlers for your
interrupt, so your CPU won't need to do unnecessary mode switches. Writing areal-mode
handler istricky; all you can reasonably expect to do is save datain a buffer and IRET.

Y our protected-mode code can periodically check the buffer and process any queued data.
(Remember, protected-mode code can access data and execute code in low memory, but
real-mode code can't access data or execute code in extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we
recommend the DPMI function INT 31h/201h for portability.

It does matter how you install the protected-mode handler. You can’t install it directly
into the IDT, because a DPMI provider must distinguish between interrupts and exceptions
and maintain separate handler chains. Installing with INT 31h/205h is the recommended
way to install your protected-mode handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions
will be funneled to your handler, to mimic DOS. Since DPMI exception handlers and
interrupt handlers are called with different stack frames, DOS/AGW executes a layer of
code to cover these differences up; the same layer is used to support the DOS/4G API (not
part of DOS/AGW). Thislayer isthe reason that hooking with INT 21h/25h is less
efficient than hooking with INT 31h/205h.

106 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b.

4c.

4d.

4e,

Handling asynchronousinterruptsin the second I RQ range.

Because the second IRQ range (nhormally INTs 70h-77h) is outside the DOS/AGW
auto-passup range (8-2Eh, excluding 21h) you may not handle these interrupts with a
single handler, as described above (the "convenient" method). You must install separate
real-mode and protected-mode handlers (the "efficient” method).

DOS/4G does alow you to specify additional passup interrupts, however.
Asynchronousinterrupt handlers and DPMI.

The DPMI specification requiresthat all code and data referenced by a hardware interrupt
handler MUST be locked at interrupt time. A DPMI virtual memory manager can use the
DOS file system to swap pages of memory to and from the disk; because DOS is not
reentrant, aDPMI host is not required to be able to handle page faults during
asynchronous interrupts. Use INT 31h/600h (Lock Linear Region) to lock an address
range in memory.

If you fail to lock al of your code and data, your program may run under DOS/4GW, but
fail under the DOS/4GW Virtual Memory Manager or under another DPMI host such as
Windows or OS/2.

Y ou should also lock the code and data of a mouse callback function.

Open Watcom signal() function and Ctrl-Break.

In earlier versions of the Open Watcom C/C++ library, there was a bug that caused

signal (SIGBREAK) not to work. Calling signal(SIGBREAK) did not actually install an
interrupt handler for Ctrl-Break (INT 1Bh), so Ctrl-Break would terminate the application
rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking
INT 1Bh directly. With release 10.0, this problem has been fixed.

Moretips on writing hardware interrupt handlers.

* [t'smore like handling interrupts in real mode than not.
The same problems arise when writing hardware interrupt handlers for protected mode as
arise for real mode. We assume you know how to write real-mode handlers; if our
suggestions don’t seem clear, you might want to brush up on real-mode interrupt

programming.

» Minimize the amount of time spent in your interrupt handlers.

Interrupt and Exception Handling 107

The DOS/4GW DOS Extender

When your interrupt handlers are called, interrupts are disabled. This means that no other
system tasks can be performed until you enable interrupts (an STI instruction) or until
your handler returns. In general, it's agood idea to handle interrupts as quickly as
possible.

» Minimize the amount of time spent in the DOS extender by installing separate real-mode
and protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode are
resignalled in protected mode by the extender, your application has to switch from real
mode to protected mode to real mode once per interrupt. Mode switchingisa
time-consuming process, and interrupts are disabled during a mode switch. Therefore, if
you' re concerned about performance, you should install separate handlers for real-mode
and protected-mode interrupts, eliminating the mode switch.

* If you can't just set aflag and return, enable interrupts (STI).

Handlers that do more than just set aflag or store datain a buffer should re-enable
interrupts as soon asit’s safe to do so. In other words, save your registers on the stack,
establish your addressing conventions, switch stacks if you' re going to — and then enable
interrupts (ST1), to give priority to other hardware interrupts.

« If you enable interrupts (ST1), you should disable interrupts (CL1).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler,
you should be sure to do a CLI before you return. (CLI, then switch back to the original
stack if you switched away, then restore registers, then IRET.) If you don’t do this, the
IRET will not necessarily restore the previous interrupt flag state, and your program may
crash. Thisisadifference from real-mode programming, and it tends to show up asa
problem when you try running your program in a Windows or OS/2 DOS hox for the first
time (but not before).

» Add areentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then
interrupts can quickly nest to the point of overflowing the transfer stack. Thisisadesign
flaw in your program, not in the DOS extender; areal-mode DOS program can have
exactly the same behavior. If you can conceive of a situation where your interrupt
handler can be called again before the first instance returns, you need to code in a
reentrancy check of some sort (before you switch stacks and enable interrupts (ST1),
obvioudly).

Remember that interrupts can take different amounts of time to execute on different
machines; the CPU manufacturer, CPU speed, speed of memory accesses, and CMOS

108 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

settings (e.g. "system BIOS shadowing") can all affect performance in subtle ways. We
recommend you program defensively and always check for unexpected reentry, to avoid
transfer stack overflows.

* Switch to your own stack.
Interrupt handlers are called on a stack that typically has only a small amount of stack
available (512 bytes or less). If you need to use more stack than this, you have to switch
to your own stack on entry into the handler, and switch back before returning.
If you want to use C run-time library functions, which are compiled for flat memory
model (SS== DS, and the base of CS == the base of DS), you need to switch back to a
stack in the flat data segment first.

Note that switching stacks by itself won't prevent transfer stack overflows of the kind
described above.

14.5 Memory Management

5a. Using therealloc() function.
In versions of Open Watcom C/C++ prior to 9.5b, there was a bug in the library
implementation of realloc() under DOS/AGW and DOS/AGW Professional. This bug was
corrected by Open Watcom in the 9.5b release.

5b. Using all of physical memory.
DOS/4GW Professional is currently limited to 64 MB of physical memory. We do not

expect to be able to fix this problem for at least six months. 1f you need more than 64 MB
of memory, you must use virtual memory.

14.6 DOS, BIOS, and Mouse Services

6a. Speeding up file I/O.

The best way to speed up DOS file I/0O in DOS/AGW isto write large blocks (up to 65535
bytes, or the largest number that will fit in a 16-bit int) at atime from a buffer in low
memory. Inthiscase, DOS/AGW hasto copy the least amount of data and make the
fewest number of DOS callsin order to process the 1/0 request.

DOS, BIOS, and Mouse Services 109

The DOS/4GW DOS Extender

6b.

6c.

6d.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You
can convert the real-mode segment address returned by INT 31h/0100h to a pointer
(suitable for passing to setvbuf()) by shifting it left four bits.

Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of
the DOS extender will be loaded into memory. DOS/4G supports loading of multiple
programs atop a single extender, aswell asDLLs.

Mouse callbacks.

DOS/AGW Professional now supportsthe INT 31h interface for managing real-mode
callbacks. However, you don’t need to bother with them for their single most important
application: mouse callback functions. Just register your protected-mode mouse callback
function as you would in real mode, by issuing INT 33h/0Ch with the event mask in CX
and the function address in ES:EDX, and your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking
requirement exists for a mouse callback function as for a hardware interrupt handler. See
(4c) above.

VESA support.
While DOS/AGW automatically handles most INT 10h functions so that you can you can

issue them from protected mode, it does not translate the INT 10h VESA extensions. The
workaround isto use INT 31h/300h (Simulate Real-Maode Interrupt).

14.7 Virtual Memory

7a. Testing for the presence of VMM.

INT 31h/400h returns avalue (BX, bit 2) that tellsif virtual memory is available. Under a
DPMI host such as Windows 3.1, thiswill be the host’ s virtual memory manager, not
DOS/4AGW's.

You can test for the presence of a DOS/4G-family DOS extender with INT 31h/0OA00h,
with a pointer to the null-terminated string "RATIONAL DOS/4G" in DS.ESI. If the
function returns with carry clear, a DOS/AG-family extender is running.

110 Virtual Memory

DOS/4GW Commonly Asked Questions

7b.

7c.

7d.

Te.

f.

Reserving memory for a spawned application.

If you spawn one DOS/AGW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOSAGV M=del eteswap) so that the two applications don’'t
try to use the same swap file. Y ou should also set the MAXMEM option low enough so
that the parent application doesn’t take all available physical memory; memory that’s been
reserved by the parent application is not available to the child application.

I nstability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes
sporadically with it, probably needs to lock the code and data for its hardware interrupt
handlers down in memory. DOS/AGW does not support page faults during hardware
interrupts, because DOS services may not be available at that time. See (4c) and (6¢)
above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).
Running out of memory with a huge virtual address space.

Because DOS/4AGW hasto create page tables to describe your virtual address space, we
recommend that you set your VIRTUALSIZE parameter just large enough to
accommodate your program. If you set your VIRTUALSIZE to 4 GB, the physical
memory occupied by the page tables will be 4 MB, and that memory will not be available
to DOS/AGW.

Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for
efficiency. However, if you set the SWAPMIN parameter to asize (in KB), DOS/4GW
will start with aswap file of that size, and will grow the swap file when it hasto. The
SWAPINC value (default 64 KB) controls the incremental size by which the swap file will
grow.

Deleting the swap file.
The DELETESWAP option has two effects. telling DOS/4GW to delete the swap file
when it exits, and causing DOS/AGW to provide a unique swap file name if an explicit

SWAPNAME setting was not given.

DELETESWAP isrequired if one DOS/AGW application isto spawn another; see (7b)
above.

Virtual Memory 111

The DOS/4GW DOS Extender

7g. Improving demand-load performance of large static arrays.

DOS/4GW demand-loading feature normally cuts the load time of a large program
drastically. However, if your program has large amounts of global, zero-initialized data
(storage class BSS), the Open Watcom startup code will explicitly zero it (version 9.5a or
earlier). Because the zeroing operation touches every page of the data, the benefits of
demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/AGW
automatically zeroes pages of BSS data as they are loaded. Y ou can make this change
yourself by inserting afew lines into the startup routine, assembling it (MASM 6.0 will
work), and listing the modified object module first when you link your program.

Here are the changes for \ wat com sr c\ st art up\ 386\ cst art 3r. asm(startup
module from the C/C++ 9.5 compiler, library using register calling conventions). Y ou can
modify the workaround easily for other Open Watcom compilers:

; cstart3r.asm circa line 332
; end of _BSS segment (start of STACK)

4
mov ecx,offset DGROUP:_end
; start of _BSS segment
mov edi,offset DGROUP:_edata
e ; RSl OPTI M ZATI ON
mov eax, edi ; minimize _BSS initialization loop
or eax, OFFFh ; conpute address of first page after
inc eax ; start of _BSS
cmp eax, ecx ; 1f _BSS extends onto that page,
j ae all zero ; then we can rely on the | oader
nmov ecx, eax ; zeroi ng the remaini ng pages
all zero: ;
e ; END RSI OPTI M ZATI ON
sub ecx, edi ; calc # of bytes in _BSS segment
nmv dl,cl ; save bottom 2 bits of count in edx
shr ecx, 2 ; calc # of dwords
sub eax, eax ; zero the _BSS segment
rep st osd N
nmv cl,dl ; get bottom 2 bits of count
and cl,3 ;
rep st osb

Note that the 9.5b and later versions of the Open Watcom C library aready contain this
enhancement.

112 Virtual Memory

DOS/4GW Commonly Asked Questions

7h. How should | configure VM for best performance?
Here are some recommendations for setting up the DOS/AGW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and
otherwise) your program requires. If your program has 16 MB of code and
data, set to 32 MB. (Thereisonly asmall penalty for setting this value
larger than you will need, but your program won't run if you set it too low.)
See (7d) above.

MINMEM Set to the minimum hardware requirement for running your application. (If
you require a2 MB machine, set to 2048).

MAXMEM Set to the maximum amount of memory you want your application to use. If
you don’t spawn any other applications, set thislarge (e.g., 32000) to make
sure you can use al available physical memory. If you do spawn, see (7b)
above.

SWAPMIN Don't usethisif you want the best possible VM performance. The trade-off
isthat DOS/AGW will create aswap file asbig as your VIRTUALSIZE.

SWAPINC Don't usethisif you want the best possible VM performance.
DELETESWAP DOS/AGW’s VM will start up slightly slower if it has to create the swap
file afresh each time. However, unless your swap fileisvery large,

DELETESWAP is areasonable choice; it may be required if you spawn
another DOS/AGW program at the sametime. See (7b) above.

14.8 Debugging

8a. Attempting to debug a bound application.

You can't debug a bound application. The 4GWBIND utility (included with DOS/AGW
Professional) will allow you to take apart a bound application so that you can debug it:

4GBl ND - U <boundapp. exe> <your app. exe>

Debugging 113

The DOS/4GW DOS Extender

8b.

8c.

Debugging with an old version of the Open Watcom debugger .

DOS/4GW supports versions 8.5 and up of the Open Watcom C, C++ and FORTRAN
compilers. However, in order to debug your unbound application with a Open Watcom
debugger, you must have version 9.5a or later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact
Open Watcom to upgrade your compiler and tools. The only way to debug a DOS/4GW
Professional application with an old version of the debugger isto rename 4GWPRO.EXE
to DOSAGW.EXE and make sure that it's either in the current directory or the first
DOSAGW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it's up to you to keep
track of which DOS extender iswhich.

Meaning of " unexpected interrupt" message/error 2001.

Inversion 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it
easier to understand.

For example, the message:

Unexpected interrupt OE (code 0) at 168:10421034

ishow printed:

error (2001): exception OEh (page fault) at 168:10421034
followed by aregister dump, as before.
This message indicates that the processor detected some form of programming error and

signaled an exception, which DOS/AGW trapped and reported. Exceptions which can be
trapped include:

114 Debugging

DOS/4GW Commonly Asked Questions

00h
01h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
OEh

di vide by zero

debug exception OR null pointer used
br eakpoi nt

overfl ow

bounds

i nval i d opcode

device not avail abl e
doubl e fault

overrun

invalid TSS

segment not present
stack fault

general protection fault
page fault

When you receive this message, this is the recommended course of action:

1

2.

Record all of the information from the register dump.

Determine the circumstances under which your program fails.

Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’s
Reference Manual, to determine the circumstances under which the processor

will generate the reported exception.

Get the program to fail under your debugger, which should stop the program as
soon as the exception occurs.

Determine from the exception context why the processor generated an
exception in this particular instance.

8d. Meaning of " transfer stack overflow" message/error 2002.

In version 1.95 of DOS/AGW, we added more information to the "transfer stack overflow"
message. The message (which is now followed by aregister dump) is printed:

error (2002): transfer stack overflow
on interrupt <nunber> at <address>

This message means DOS/AGW detected an overflow onitsinterrupt handling stack. It
usually indicates either arecursive fault, or a hardware interrupt handler that can’t keep up
with the rate at which interrupts are occurring. The best way to understand the problem is
to use the VERBOSE option in DOS/4GW to dump the interrupt history on the transfer
stack; see (8¢e) below.

Debugging 115

The DOS/4GW DOS Extender

8e. Making the most of a DOS/4AGW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/AGW
register dump isyour best debugging tool. To maximize the information available for

postmortem debugging, set the environment variable DOSAG to VERBOSE, then

reproduce the crash and record the output.

Here' satypical register dump with VERBOSE turned on, with annotations.

1 DOS/4GWerror (2001): exception OEh (page fault)

at 170: 0042C1B2

2 TSF32: prev_tsf32 67D8

3 SS 178 DS 178 ES 178 FS 0 GS 20
EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E ED 0 EBP 431410 ESP 4313FC
CS: 1P 170:0042C1B2 | D OE COD 0 FLG 10246

4 CS= 170, USE32, page granular, limt FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, |limt FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limt 0, base 15, acc O
GS= 20, USE16, byte granular, limt FFFF, base 6AA0, acc 93

5 CR0: PG1 ET:1 TS0 EMO MP: 0 PE 1 CR2: 1F000000 CR3: 9067

6 Crash address (unrel ocated) = 1:000001B2

7 Opcode stream 8A 18 31 D2 88 DA EB OE 50 68 39 00 43 00 E8 1D
St ack:

8 0178: 004313FC O00OE 0000 0000 0000 C2D5 0042 CO57 0042 0170 0000 0000 0000
0178: 00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178:0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178: 00431444 0000 0000 0000 0000 0000 0000 0000 OOOO OOOO OOOO OOOO 0000
0178: 0043145C 0000 0000 0000 0000 0000 0000 O0OOO 0000 0000 0000 0000 0000
0178: 00431474 0000 0000 0000 0000 0000 0000 0000 OOOO 0000 OOOO OOOO 0000

9 Last 4 ints: 21 @170: 42CF48/ 21 @ 170: 42CF48/ 21 @ 170: 42CF48/ E @

170: 42C1B2/

1. Theerror message includes a synopsis of the problem. In this case, the

processor signaled a page fault exception while executing at address

170:0042C1B2.

2. Theprev_tsf32fieldis not usualy of interest.

3. Thesearetheregister values at the time of the exception. The interrupt number
and error code (pushed on the stack by the processor for certain exceptions) are

also printed.

4. The descriptors referenced by each segment register are described for your
convenience. USE32 segmentsin general belong to your program; USE16
segments generally belong to the DOS extender. Here, CS points to your

program’s code segment, and SS, DS, and ES point to your data segment. FSis

NULL and GS pointsto a DOS extender segment.

116 Debugging

DOS/4GW Commonly Asked Questions

The control register information is not of any general interest, except on a page
fault, when CR2 contains the address value that caused the fault. Since EAX in
this case contains the same value, an attempt to dereference EAX could have
caused this particular fault.

If the crash address (unrelocated) appears, it tells you where the crash occurred
relative to your program’slink map. Y ou can therefore tell where a crash
occurred even if you can't reproduce the crash in a debugger.

The opcode stream, if it appears, shows the next 16 bytes from the code
segment at the point of the exception. If you disassemble these instructions,
you can tell what instructions caused the crash, even without using a debugger.
In this case, 8A 18 istheinstruction mov bl , [eax] .

72 words from the top of the stack, at the point of the exception, may be listed
next. You may be able to recognize function calls or data from your program
on the stack.

The four interrupts least to most recently handled by DOS/4GW in protected
mode are listed next. In this example, the last interrupt issued before the page
fault occurred was an INT 21h (DOS call) at address 170:42CF48. Sometimes,
thisinformation provides helpful context.

Here' s an abridged register dump from a stack overflow.

DOs/ 4GW error (2002):

transfer stack overflow
on interrupt 70h at 170: 0042C002
prev_tsf32 48C8

C8 DS 170 ES 28 FS 0 GS 20

EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD

51515151 EDI Di1D1D1D1 EBP B1B1B1B1 ESP 4884
CS:IP 170:0042C002 I D 70 COD 0 FLG 2
Previ ous TSF:
TSF32: prev_tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4960
CS:IP 170:0042C002 ID 70 COD 0 FLG 2
Pr evi ous TSF:
TSF32: prev_tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1Bl1 ESP 42FFEOQ
CS:IP 170:0042C039 ID 70 COD 0 FLG 202

Opcode stream CF 66 B8 62 25 66 8C CB
70 @170:42C002/ 70 @ 170: 420002/ 70 @ 170: 42C002/ 70 @

Last 4 ints:

170: 420002/

66 8E DB BA 00 C0 42 00

Debugging 117

The DOS/4GW DOS Extender

1. Weoverflowed the transfer stack while trying to process an interrupt 70h at
170:0042C002.

2. Theentireinterrupt history from the transfer stack is printed next. The
prev_tsf32 numbers increase as we progress from most recent to least recent
interrupt. All of these interrupts are still pending, which iswhy we ran out of
stack space.

3. Beforewe overflowed the stack, we got the same interrupt at the same address.
For arecursive interrupt situation, thisistypical.

4. The oldest frame on the transfer stack shows the recursion was touched off at a
dightly different address. Looking at this address may help you understand the
recursion.

5. The opcode stream and last four interrupt information comes from the newest
transfer stack frame, not the oldest.

14.9 Compatibility

9a. Running DOS/4GW applications from inside Lotus 1-2-3.

9.

In order to run DOS/AGW applications while "shelled out" from Lotus 1-2-3, you must use
the PRIVATXM program included with your Open Watcom compiler. Otherwise, 1-2-3
will take all of the memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus
memory use (see your Open Watcom manual). After shelling out, you must run
PRIVATXM, then clear the DOS16M environment variable before running your
application.

EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS
6.0, one involving mis-counting the amount of available memory, one involving mapping
too little of the High Memory Area (HMA) into its page tables, and one involving
alocation of EMS memory. Version 1.95 of DOS/AGW contains workarounds for some
of these prablems.

If you are having problems with DOS/4GW and you are using an EMM 386.EXE dated
3-10-93 at 6:00:00, or later, you may wish to try the following workarounds, in sequence,
until the problem goes away.

118 Compatibility

DOS/4GW Commonly Asked Questions

* Configure EMM 386 with both the NOEM S and NOV CPI options.

* Convert the DEVICEHIGH statements in your CONFIG.SY Sto DEVICE
statements, and remove the LH (Load High) commands from your
AUTOEXEC.BAT.

* Run in aWindows DOS box.

* Replace EMM 386 with another memory manager, such as QEMM-386, 386Max, or
an older version of EMM386.

* Run with HIMEM.SY S done.

Y ou may also wish to contact Microsoft Corporation to inquire about the availability of a
fix.

9c. Spawning under OS2 2.1.

We know of abug in OS/2 2.1 that prevents one DOS/4GW application from spawning
another over and over again. The actual number of repeated spawns that are possible
under OS/2 varies from machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet
found aworkaround, other than linking your two programs together as a single program.

9d. " DPMI host error: cannot lock stack" .

This error message almost always indicates insufficient memory, rather than areal
incompatibility. If you seeit under an OS/2 DOS box, you probably need to edit your
DOS Session settings and make DPMI_MEMORY _LIMIT larger.

9e. Bugin Novell TCPIP driver.

Some versions of a program from Novell called TCPIP.EXE, areal-mode program, will
cause the high words of EAX and EDX to be altered during a hardware interrupt. This
bug breaks protected-mode software (and other real-mode software that uses the 80386
registers). Novell has released a newer version of TCPIP that fixes the problem; contact
Novell to obtain the fix.

Compatibility 119

The DOS/4GW DOS Extender

of. Bugsin Windows NT.

Theinitia release of Windows NT includes a DPMI host, DOSX.EXE, with several
serious bugs, some of which apparently cannot be worked around. We cannot warranty
operation of DOS/4GW under Windows NT at this time, but we are continuing to exercise
our best efforts to work around these problems.

Y ou may wish to contact Microsoft Corporation to inquire about the availability of a new
version of DOSX.EXE.

120 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

122

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications smply and
quickly. Inthis chapter, we look at applications written to exploit the Windows 3.x
Application Programming Interface (API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small
sample application and showing you how to compile, link, run and debug it.

15.1 The Sample GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

*$i ncl ude wi napi . fi
*$nor ef erence

| NTEGER*2 FUNCTI ON FW NVAI N(hl nst ance, hPrevl nstance,

& | pszCndLi ne, nCrdShow)

*$ref erence

I MPLI CI' T NONE

I NTEGER*2 hl nstance, hPrevlnstance, nCndShow

| NTEGER*4 | pszCndLi ne

i ncl ude ' w ndows. fi’

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRIMES
LOG CAL*1 NUVBERS(2: UPBOUND)
CHARACTER* 11 FORM
CHARACTER*60 BUFFER
PARAMETER (FORME' (A, 15, A 15)")
DO = 2, UPBOUND

NUVBERS(1) = . TRUE.
ENDDO

The Sample GUI Application 123

Windows 3.x Programming Guide

=0
2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DO K =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
WRI TE(BUFFER, FORM) ' The Nunmber of Prines between 1 and ',
& UPBOUND, ' are: ', PRIMES
CALL MessageBox(0, BUFFER,
& ' Si eve of Eratosthenes’c,
& MB_OK .OR. MB_TASKMODAL)
END

PRI MES
DO 1 =

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

15.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

Cwil -l =wi ndows -wi n sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwil -1 =wi ndows -wi n sieve.for
Open WAt com F77/ 16 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

wfc sieve.for -win
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al Ri ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 4305 statenents, 356 bytes, 1524 extensions, 0 warnings, O
errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

124 Building and Running the GUI Application

Creating 16-bit Windows 3.x Applications

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.X.

15.3 Debugging the GUI Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Open Watcom F77 compiler
"debug” options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwl -1 =wi ndows -win -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwil -1 =wi ndows -win -d2 sieve.for
Open Watcom F77/16 Conpile and Link Uility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc sieve.for -win -d2
Open WAt com FORTRAN 77/ 16 Optim zi ng Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 4305 statenents, 467 bytes, 1524 extensions, 0 warnings, O
errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

Debugging the GUI Application 125

Windows 3.x Programming Guide

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
resultsin fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open
Watcom Debugger icon. 1t would be too ambitious to describe the debugger in this
introductory chapter so we refer you to the book entitled Open Watcom Debugger User’s
Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the

\ WATCOM SAMPLES\ FORTRAN\ W N directory. The example programs are
ELLI PSE. FOR and FWCOPY. FOR.

126 Debugging the GUI Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. There isa steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of Open
Watcom'’ s default windowing support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like
DOS and you now wish to run them under Windows 3.x. To achieve this, you can ssmply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows 3.x Graphical User Interface (GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. Thisis achieved by our
default windowing system. The following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the
standard input and standard output devices respectively. It isnot arecommended practiceto
read directly from the standard input device or write to the standard output device when
running in awindowed environment. For this reason, a default windowing environment is
created for FORTRAN 77 applications that read from unit 5 or write to unit 6. When your
application is started, awindow is created in which output to unit 6 is displayed and input
from unit 5 is requested.

In addition to the standard 1/O device, it is a so possible to perform I/O to the console by
explicitly opening afile whose nameis"CON". When this occurs, another window is created

Console Device in a Windowed Environment 127

Windows 3.x Programming Guide

and displayed. Thiswindow is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of datato and from the
console device.

16.2 The Sample Non-GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME’ (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this programis to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

16.3 Building and Running the Non-GUI Application

Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

Y ou must compile and link thefile si eve. f or specifying the "bw" option.

Cwl -1 =wi ndows -bw -wi n sieve.for

128 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 16-bit Windows 3.x

The typical messages that appear on the screen are shown in the following illustration.

Cw |l -1 =wi ndows -bw -wi n sieve.for
Open Watcom F77/16 Conpile and Link Uility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wic sieve.for -bw -win
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statements, 311 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. for) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.x asaWindows GUI application.

16.4 Debugging the Non-GUI Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Open Watcom F77 compiler
"debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cw il -l =wi ndows -bw -win -d2 sieve.for

Debugging the Non-GUI Application 129

Windows 3.x Programming Guide

The typical messages that appear on the screen are shown in the following illustration.

Cw |l -1 =wi ndows -bw -win -d2 sieve.for
Open Watcom F77/16 Conpile and Link Uility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wic sieve.for -bw -win -d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open
Watcom Debugger icon. It would be too ambitious to describe the debugger in this

introductory chapter so we refer you to the book entitled Open Watcom Debugger User’s
Guide.

16.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

130 Default Windowing Library Functions

Porting Non-GUI Applications to 16-bit Windows 3.x

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis
closed. You must passto it the unit number associated with the opened console.

dwfSetAboutDlg
i nteger function dwf Set AboutDi g(title, text)

character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "titl€"

points to the string that will replace the current title. If titleis CHAR(O) then the title

will not be replaced. The "text" pointsto a string which will be placed in the about

box. To get multiple lines, embed a new line after each logical linein the string. If

"text" is CHAR(0), then the current text in the about box will not be replaced.
dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.
dwfSetConTitle
i nteger function dwfSetConTitle(unit, title)
i nteger unit

character*(*) title

This function sets the console window’ s title which corresponds to the unit number
passed to it.

dwfShutDown
i nteger function dwf Shut Down()

This function shuts down the default windowing I/O system. The application will
continue to execute but no windows will be available for outpuit.

dwfYield

Default Windowing Library Functions 131

Windows 3.x Programming Guide

i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the Open Watcom FORTRAN 77 User’s Guide.

132 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications smply and
quickly. Inthis chapter, we look at applications written to exploit the Windows 3.x
Application Programming Interface (API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small
sample application and showing you how to compile, link, run and debug it.

17.1 The Sample GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

*$i ncl ude wi napi . fi
*$nor ef erence

| NTEGER*2 FUNCTI ON FW NVAI N(hl nst ance, hPrevl nstance,

& | pszCndLi ne, nCrdShow)

*$ref erence

I MPLI CI' T NONE

I NTEGER*2 hl nstance, hPrevlnstance, nCndShow

| NTEGER*4 | pszCndLi ne

i ncl ude ' w ndows. fi’

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRIMES
LOG CAL*1 NUVBERS(2: UPBOUND)
CHARACTER* 11 FORM
CHARACTER*60 BUFFER
PARAMETER (FORME' (A, 15, A 15)")
DO = 2, UPBOUND

NUVBERS(1) = . TRUE.
ENDDO

The Sample GUI Application 133

Windows 3.x Programming Guide

=0
2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DO K =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
WRI TE(BUFFER, FORM) ' The Nunmber of Prines between 1 and ',
& UPBOUND, ' are: ', PRIMES
CALL MessageBox(0, BUFFER,
& ' Si eve of Eratosthenes’c,
& MB_OK .OR. MB_TASKMODAL)
END

PRI MES
DO 1 =

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

17.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

Cw | 386 -1 =wi n386 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwfil 386 -1=wi n386 sieve.for
Open WAt com F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

wf c386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al Ri ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 4390 statenents, 207 bytes, 1585 extensions, 0 warnings, O
errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

134 Building and Running the GUI Application

Creating 32-bit Windows 3.x Applications

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. r ex (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). The".rex" file
must now be combined with Open Watcom'’s 32-bit Windows supervisor W N386. EXT
using the Open Watcom Bind utility. VBl ND. EXE combines your 32-bit application code
and data (".rex" file) with the 32-bit Windows supervisor. The processinvolves the following

steps:
1. \ABI NDcopies W N386. EXT into the current directory.

2. VBl ND. EXE optionally runs the resource compiler on the 32-bit Windows
supervisor so that the 32-bit executable can have access to the applications
resources.

3. VBI ND. EXE concatenates W N386. EXT and the ".rex" file, and createsa".exe"
file with the same name asthe ".rex" file.

The following describes the syntax of the VABI ND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

WBIND is the name of the Open Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational
messages are displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound

with the application. If not specified, a search of the pathslisted in
the PATH environment variableis performed. If this searchis not
successful and the WATCOM environment variable is defined, the
SMMATCOWRA BI NWdirectory is searched.

-Rrc_options all options after -R are passed to the resource compiler.

Building and Running the GUI Application 135

Windows 3.x Programming Guide

To bind our example program, the following command may be issued:
C>wbi nd sieve -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the
WB86DLL. EXT file (if you are buildingaDLL).

Example:
Cwhi nd sieve -n -s c:\wat com bi nwA wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined
or the"BINW" directory must be listed in your PATH environment variable.

Example:
C>set wat comec: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\wi ndows

The resultant 32-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.X.

17.3 Debugging the GUI Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open
Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cw | 386 -1 =wi n386 -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

136 Debugging the GUI Application

Creating 32-bit Windows 3.x Applications

Cwf| 386 -1=wi n386 -d2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wf c386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 4390 statenments, 293 bytes, 1585 extensions, 0 warnings, O
errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL 386 will make sure that this debugging information
isincluded in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
resultsin fewer code optimizations by default. 'Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

Once again, the ".rex" file must be combined with Open Watcom’ s 32-bit Windows
supervisor W N386. EXT using the Open Watcom Bind utility. This step is described in the
previous section.

To request the Open Watcom Debugger to assist in debugging the application, select the Open
Watcom Debugger icon. It would be too ambitious to describe the debugger in this
introductory chapter so we refer you to the book entitled Open Watcom Debugger User’'s
Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the

\ WATCOM SAMPLES\ FORTRAN\ W N directory. The example programs are
ELLI PSE. FOR and FWCOPY. FOR.

Debugging the GUI Application 137

Windows 3.x Programming Guide

138 Debugging the GUI Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. There isa steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of Open
Watcom'’ s default windowing support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like
DOS and you now wish to run them under Windows 3.x. To achieve this, you can ssmply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows 3.x Graphical User Interface (GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. Thisis achieved by our
default windowing system. The following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the
standard input and standard output devices respectively. It isnot arecommended practiceto
read directly from the standard input device or write to the standard output device when
running in awindowed environment. For this reason, a default windowing environment is
created for FORTRAN 77 applications that read from unit 5 or write to unit 6. When your
application is started, awindow is created in which output to unit 6 is displayed and input
from unit 5 is requested.

In addition to the standard 1/O device, it is a so possible to perform I/O to the console by
explicitly opening afile whose nameis"CON". When this occurs, another window is created

Console Device in a Windowed Environment 139

Windows 3.x Programming Guide

and displayed. Thiswindow is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of datato and from the
console device.

18.2 The Sample Non-GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME’ (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this programis to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

18.3 Building and Running the Non-GUI Application

Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

Y ou must compile and link thefile si eve. f or specifying the "bw" option.

Cw | 386 -1 =wi n386 -bw si eve. for

140 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

The typical messages that appear on the screen are shown in the following illustration.

Cw | 386 -1 =wi n386 sieve. for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc386 sieve.for -bw
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. for) and si eve. r ex (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). The".rex" file
must now be combined with Open Watcom’s 32-bit Windows supervisor W N386. EXT
using the Open Watcom Bind utility. WABI ND. EXE combines your 32-bit application code
and data (".rex" file) with the 32-bit Windows supervisor. The process involves the following

steps:
1. VBl NDcopies W N386. EXT into the current directory.
2. VBl ND. EXE optionally runs the resource compiler on the 32-bit Windows
supervisor so that the 32-bit executable can have access to the applications

resources.

3. \VBI ND. EXE concatenates W N386. EXT and the".rex" file, and creates a".exe"
file with the same name asthe ".rex" file.

The following describes the syntax of the VABI ND command.

WBIND file_spec[-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

Building and Running the Non-GUI Application 141

Windows 3.x Programming Guide

WBIND is the name of the Open Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational
messages are displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound

with the application. If not specified, a search of the pathslisted in
the PATH environment variableis performed. If this search is not
successful and the WATCOM environment variable is defined, the
YMATCOMA BI NWdirectory is searched.

-Rrc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbhi nd sieve -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the
WB86DLL. EXT file (if you are building aDLL).

Example:
Cwbi nd sieve -n -s c:\wat com bi nwA wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined
or the"BINW" directory must be listed in your PATH environment variable.

Example:
C>set wat convc: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\wi ndows

The resultant 32-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.x asaWindows GUI application.

142 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

18.4 Debugging the Non-GUI Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open
Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwfl 386 -1 =wi n386 -bw -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw 1 386 -1 =wi n386 -d2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc386 sieve.for -bw -d2
Open WAt com FORTRAN 77/32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL 386 will make sure that this debugging information
isincluded in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option

results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult

Debugging the Non-GUI Application 143

Windows 3.x Programming Guide

for yourself to determine the relationship between the object code and the original source
language code.

Once again, the ".rex" file must be combined with Open Watcom'’s 32-bit Windows
supervisor W N386. EXT using the Open Watcom Bind utility. This step is described in the
previous section.

To request the Open Watcom Debugger to assist in debugging the application, select the Open
Watcom Debugger icon. It would be too ambitious to describe the debugger in this
introductory chapter so we refer you to the book entitled Open Watcom Debugger User’s
Guide.

18.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis
closed. You must passto it the unit number associated with the opened console.

dwfSetAboutDlg

i nteger function dwfSetAboutDi g(title, text)
character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If titleis CHAR(O) then the title
will not bereplaced. The"text" points to a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical linein the string. If
"text" is CHAR(0), then the current text in the about box will not be replaced.

dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.

144 Default Windowing Library Functions

Porting Non-GUI Applications to 32-bit Windows 3.x

awfSetConTitle
i nteger function dwfSetConTitle(unit, title)
i nteger unit
character*(*) title

This function sets the console window’ s title which corresponds to the unit number
passed to it.

dwfShutDown

i nteger function dwf Shut Down()

This function shuts down the default windowing I/O system. The application will
continue to execute but no windows will be available for output.

dwfYield

i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the Open Watcom FORTRAN 77 User’s Guide.

Default Windowing Library Functions 145

Windows 3.x Programming Guide

146 Default Windowing Library Functions

19 The Open Watcom 32-bit Windows 3.x
Extender

Open Watcom FORTRAN 77 contains the necessary tools and libraries to create 32-hit
applications for Windows 3.x. Using Open Watcom FORTRAN 77 gives the programmer the
benefits of a 32-hit flat memory model and access to the full Windows API (along with the
usual FORTRAN 77 and C library functions).

The general model of the environment is asfollows: The 32-bit flat memory model program
islinked against a special 32-bit Windows library. This library contains the necessary
information to invoke special 16-bit functions, which liein the supervisor (W N386. EXT) .
The 32-bit program is then bound (using VBl ND. EXE) with the supervisor to create a
Windows executable. At the same time as the 32-bit program is being bound, the resource
compiler is run on the supervisor, and all the resources for the application are placed there.
When the application is started, the supervisor obtains the 32-bit memory, rel ocates the 32-bit
application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within
the supervisor. Thelocal heap resides within the supervisor as well.

If you are starting from a 16-bit Windows application, most of the code will not change when
you port it to the 32-bit Windows environment. However, because of the nature of the
Windows API and itsimplicit dependencies on a 16-bit environment, some source changes are
necessary. These source changes are minimal, and are backwards compatible with the 16-bit
environment.

19.1 Pointers

Throughout this document, there will be references to both near and far, and 16-bit and 32-bit
pointers. Since this can rapidly become confusing, someinitial explanations will be given
here.

A far pointer is apointer that is composed of both a selector and an offset. A selector
determines a specific region of memory, and the offset is relative to the start of thisregion. A
near pointer isapointer that has an offset only, the selector is automatically assumed by the
CPU.

Pointers 147

Windows 3.x Programming Guide

The problem with far pointersis the selector overhead. Using afar pointer is much more
expensive than using a near pointer. Thisisthe advantage of the 32-bit flat memory model -
all pointers within the program are near, and yet you can address up to 4 gigabytes of
memory.

A 16-bit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bitslong). This
pointer can reference up to 64K of data.

A 16-hit far pointer occupies 4 bytes of memory. Thereisa 16-bit selector and a 16-bit
offset. This pointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bitslong). This
pointer can reference up to 4 gigabytes of data.

A 32-bit far pointer occupies 6 bytes of memory. Thereisa 16-bit selector and a 32-bit
offset. This pointer can reference up to 4 gigabytes of data.

Windows, in general, uses 16-bit far pointers to pass information around. These 16-bit far
pointers can also be used by a 32-bit Windows application. The conversion from a 16-bit
pointer to a 32-hit pointer will occur automatically when you map a dynamically allocatable
array to the memory pointed to by the 16-bit pointer using the LOCATI ON= specifier of the
ALLOCATE statement. Y ou must also declare the alocatable array asfar using the array
pragma. The syntax for the array pragmais:

S$S*pragma array ARRAY NAME far

where ARRAY NAME isthe array name.

19.2 Implementation Overview

This section provides an overview of the issues that require consideration when creating a
32-bit Windows application for a 16-bit Windows environment.

First, al modules have to be recompiled for the 32-bit flat memory model with a compiler
capable of generating 32-hit instructions.

Pointers to data passed to Windows are all far pointers. We will be passing pointersto datain
our 32-hit flat address space, and these pointers are near pointers. Aswell, notice that these
32-hit near pointers are the same size as as their 16-bit far pointer counterparts (4 bytes). This
isgood, since al data structures containing pointers will remain the same size.

148 Implementation Overview

The Open Watcom 32-bit Windows 3.x Extender

Windows cannot be called from 32-bit code on a 32-bit stack. This meansthat in order to call
the API functions, it is necessary to write a set of cover functions that will accept the
parameters, switch into a 16-bit environment, and then call Windows. There is another issue,
though. Windows only understands 16-hit pointers, so before calling Windows, all pointers
being passed to Windows must be converted to 16-bit far pointers.

It turns out that Windows can also call back to your application. Windows can only call
16-hit code, though, so there is a need for a bridge from the 16-bit side to the 32-hit side. It is
necessary to allocate 16-bit call back routines that can be passed to Windows. These call back
routines will then switch into the 32-bit environment and call whatever 32-bit function is
required. The 32-bit call back has to be declared as afar function, sinceit is necessary to
issue afar call to enter it from the 16-bit side. If it isafar function, then the compiler will
generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointersin along (4 byte)
parameter. This pointer can only be used in the 32-bit environment if it is a 32-bit far pointer,
not a 16-bit far pointer. The conversionissimple: the 16-bit offset is extended to a 32-bit
offset (the high word is zeroed out). Any far pointer that Windows hands to you must be
converted in thisway. This conversion is performed automatically when adynamically
allocatable array is mapped to a 16-hit far pointer using the LOCATION specifier of the Open
Watcom FORTRAN 77 ALLOCATE statement and the array pragma. The syntax for the
array pragmais:

$*pragma array ARRAY NAME far
where ARRAY_NAME isthe array name.

Example:
subroutine DLLSUB(arg_list)

structure /argtypes/

i nt eger wil
i nteger w2
i nteger w3
i nt eger sum

end structure

record /argtypes/ args(:)
*$pragma array args far

integer*4 arg_list

allocate(args(l), location=arg list)
In the preceding example, arg_1ist isal6-bit far pointer to a structure with the elements

described by the ar gt ypes structure. The allocatable array ar gs isdescribed asfar using
the array pragma.

Implementation Overview 149

Windows 3.x Programming Guide

Sometimes, a Windows application wantsto call aprocedurein aDLL. The procedure
addressis a 16-bit far pointer. It isnot possible to issue anindirect call to this address from
the 32-bit environment, so some sort of interfaceis needed. Thisinterface would switch into
the 16-bit environment, and then call the 16-bit function.

These issues, along with other minor items, are handled by Open Watcom FORTRAN 77, and
are discussed in more technical detail in later sections.

19.3 System Structure

32-hit
Application

Callback

32-bit 3216 Windows 3216 32-bit

FORTRAN 77 | _ Transition Supervisor Tranglation Windows
Library (DOS Calls Only) API

Callback
API/DOS Call

Windows
3.X

Figure 5. WIN386 Sructure

150 System Structure

The Open Watcom 32-bit Windows 3.x Extender

o
v

Global

Stack Code Data Heap

Figure 6. 32-bit Application Sructure

19.4 System Overview

* W N386. EXT isthe key component of a 32-bit Windows application. It isa 16-bit
Windows application which contains:

* All application resources.
* A 16-bit local heap.
* A 16-hit stack.
*WB86DLL. EXT issimilar to W N386. EXT, only it providesaDLL interface.

W N386. EXT isbound to your 32-bit application to create a 32-bit application that
will run under Windows 3.x. W N386. EXT provides the following functionality:

* supervisor to bring the 32-bit application into memory and start it running.

« "glue" functions to connect to Windows for both APl and DOS functionality.
Thisinterface is designed to transparently set up the calling functions' pointers
and parametersto their 16-bit counterparts.

* "glue-back" functions to allow Windowsto call back 32-bit routines.

« specia code to allow debugging of 32-bit applications.

» A number of fileswith file extension . f i arelocated in the
\ WATCOM SRC\ FORTRAN\ W Ndirectory. Thefile W NAPI . FI describesthe

calling convention of each Windows APl function. Other files define Windows
constants and data structures.

System Overview 151

Windows 3.x Programming Guide

W N386. LI B contains al the necessary library functions to connect to the 32-bit
supervisor W N386. EXT. All Windows API calls and Open Watcom FORTRAN 77
library DOS calls are found here.

* The standard FORTRAN 77 and C library functions, specially modified to run in the
32-bit environment, are located in the \ WATCOM LI B386\ W N directory.

« \\BI ND. EXE merges your 32-hit executable and the appropriate Supervisor into a
single executable.

19.5 Steps to Obtaining a 32-bit Application

The following is an overview of the procedure for creating a 32-bit Windows Application:

1

gk wh

If you are starting with a 16-bit Windows application, you must adapt your source
code to the 32-bit environment.

Y ou must compile the application using a 32-bit compiler.

Y ou must link the application with the 32-bit libraries.

Y ou must bind the 32-bit application with the 32-bit supervisor.

Y ou can then run and/or debug the application.

152 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming
Overview

This chapter includes the following topics:
* WINAPI.FI and WINDOWS.FI
* Environment Notes
* Floating-point Emulation
* Multiple Instances
* Pointer Handling
» When To Convert Incoming Pointers
» When To Convert Outgoing Pointers
* SendMessage and SendDlgltemMessage
* GlobalAlloc and LocalAlloc
* Callback Function Pointers
» Window Sub-classing
« Calling 16-bit DLLs

» 16 Functions

Windows 3.x 32-bit Programming Overview 153

Windows 3.x Programming Guide

20.1 WINAPI.FI

When devel oping programs, make sure W NAPI . Fl isincluded at the start of all sourcefiles
and the necessary include files (particularly W NDOWS. FI) are included in each function or
subroutine.

It is especially important to get the correct function and argument typing information for
Windows API functions. Due to the default typing rules of FORTRAN, many Windows AP
functions have a default result type of REAL when they may in fact return an INTEGER or
INTEGER* 2 result. By including the appropriate include files, you ensure that this never
happens. For example, the function Cr eat eDi al og isdescribedin WNDLG. FI . asa
function returning an INTEGER* 2 resullt.

Example:
external CreateD al og
i nteger*2 CreateD al og

Failure to specify the correct type of afunction will result in code that looks correct but does
not execute correctly. Similarly, you should make sure that all symbolic constants are
properly defined by including the appropriate include files. For example, the constant
DEFAULT_QUALITY isdescribedin W NFONT. FI asan INTEGER constant whose value is
0.

Example:
integer DEFAULT QUALITY
parameter (DEFAULT_QUALITY = 0)

Without thisinformation, DEFAULT _QUALITY would be assumed to be a REAL variable
and would not have any assigned value.

The"EXPLICIT" compiler option is useful in thisregard. It requiresthat al symbols be
explicitly typed.

20.2 Environment Notes

154

* The 32-bit Windows Supervisor uses the first 256 bytes of the 32-bit application’s
stack to save state information. If thisis corrupted, your application will abnormally
terminate.

* The 32-bit Windows Supervisor provides resources for up to 512 callback routines.
Note that thisrestriction is only on the maximum number of active callbacks.

Environment Notes

Windows 3.x 32-bit Programming Overview

20.3 Floating-point Emulation

Thefile WEMU387. 386 isincluded to support floating-point emulation for 32-bit
applications running under Windows. Thisfileisinstalled inthe [386Enh] section of your
SYSTEM | NI file. By using the floating-point emulator, your application can be compiled
with the "fpi87" option to use inline floating-point instructions, and it will run on a machine
without a numeric coprocessor.

Only one of WEMU387. 386 and WDEBUG. 386 may beinstalled in your [386Enh] section.
VEMU387. 386 may be distributed with your application.

20.4 Multiple Instances

Since the 32-bit application resides in aflat memory space, it isNOT possible to share code
with other instances. This means that you must register new window classes with callbacks
into the new instance’s code space. A simple way of accomplishing thisis as follows:

integer*2 function FWNMAIN(hl nstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Ro Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*2 nCnmdShow

i nteger*4 | pszCndLi ne

include 'w n386.fi’

include "wincreat.fi’
include "w ncurs.fi’
include 'wi ndefn.fi’
i ncl ude ' windisp.fi’
include "w nnsg. fi’

i ncl ude ' wi nnsgs. fi’
include 'wi ndtool.fi’
include "winutil.fi’

external WhdProc
i nteger*2 hwhd
record / MSE nmsg

record /WNDCLASS/ wndcl ass
character*14 cl ass

Multiple Instances 155

Windows 3.x Programming Guide

wndclass.style = CS_HREDRAW .or. CS_VREDRAW

wndcl ass. | pf nwhdProc = | oc(WhdProc)

wndcl ass. cbCl sExtra = 0

wndcl ass. cbWwidExtra = 0

wndcl ass. hl nstance = hl nstance

wndclass.hIcon = NULL_HANDLE

wndclass.hCursor = LoadCursor (NULL_HANDLE, IDC_ARROW)
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH)
wndcl ass. | pszMenuNane = NULL

wite(class, '(''Ellipses’’,i5.5,a)’) hlnstance, char(0)
wndcl ass. | pszCl assNane = Loc(class)

call RegisterC ass(wndclass)

hwd = Creat eW ndow(cl ass,
"Application'c
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
0
CW_USEDEFAULT,
0
NULL_HANDLE,
NULL_HANDLE,
hl nst ance
NULL)

R0 Ro Ro Ro Ro Ro Ro Ro Ro Ro

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling

Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are
16-bit far pointers, and any data you communicate to Windows with are 16-bit far pointers.
16-bit far pointers occupy 4 bytes of data, and are capable of addressing up to 64K. For data
objects larger than 64K, huge pointers are used (a sequence of far pointers that map out
consecutive 64K segments for the data object). 16-bit far pointers are expensive to use due to
the overhead of selector loads (each time you use the pointer, a segment register must have a
valueputinit). 16-bit huge pointers are even more expensive: not only is there the overhead
of selector loads, but arun-time cal is necessary to perform any pointer arithmetic.

In a 32-bit flat memory model, such as that of the Open Watcom F77 for Windows
environment, all pointers are 32-bit near pointers (occupying 4 bytes of data as well).
However, these pointers may access objects of up to 4 gigabytesin size, and there is no
selector load overhead.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations.
All pointers sent to Windows must be converted from 32-bit near pointers to 16-bit far
pointers. These conversions are handled by the Supervisor.

156 Pointer Handling

Windows 3.x 32-bit Programming Overview

It isimportant to remember that all API functions which accept pointers (with the exception of
functions that accept function pointers) accept 32-bit near pointersin this 32-bit model. If you
attempt to pass a 32-hit far pointer, the conversion will not take place correctly.

16-bit far pointers to data may be passed into the API functions, and the Supervisor will not
do any conversion.

Incoming pointers must be converted from 16-hit far pointersto 32-bit far pointers. This
conversionisatrivial one: the offset portion of the 16-bit far pointer is extended to 32-bits.
The pointer conversion will occur automatically when you map a dynamically alocatable
array to the memory pointed to by the 16-bit pointer using the LOCATI ON= specifier of the
ALLOCATE statement. You must also declare the array asfar using the array pragma. The
syntax for the array pragmais:

S$S*pragma array ARRAY NAME far

where ARRAY_NAME isthe array name. Pointers from Windows are by their nature far (that
is, the datais pointed to by its own selector), and must be used as far in the 32-hit
environment. Of course, conversions are only required if you actually need to reference the
pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from
32-hit to 16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-hbit
environment to the 32-bit environment must be used. This thunking layer is provided by the
Supervisor.

20.5.1 When To Convert Incoming Pointers

Whenever you wish to use a pointer passed to you by Windows, you must map a dynamically
allocatable array to the memory pointed to by the pointer using the LOCATION specifier of
the ALLOCATE statement. Y ou must also declare the array as far using the array pragma.
The pointer conversion will occur automatically.

Some places where pointer conversion may be required are:
* LocalLock

* Global Lock
* the IParam in awindow callback routine (if it is a pointer)

Pointer Handling 157

Windows 3.x Programming Guide

20.5.2 When To Convert Outgoing Pointers

Typically, thereis no need to do any kind of conversions on your pointers when passing them
to Windows. The Supervisor handles all 32-bit to 16-bit trandlations for you, in the case of
the regular Windows API functions. However, if you are passing a 32-bit pointer to some
other 16-bit application in the Windows environment, then pointer conversions must by done.
There are two types of "outgoing" pointers. data pointers and function pointers.

Function pointers (to callback routines) must have athunking layer provided, using the
GetProc16 function (thisis explained in detail in alater section).

Data pointers can be translated from 32-bit to 16-bit using the AllocAlias16 and
AllocHugeAlias16 functions. These functions create 16-bit far pointers that have the same
linear address as the 32-bit near pointer that was converted.

It isimportant to remember that when passing a pointer to a data structure in this fashion, any
pointersin the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some
complications created by the fact that Windows allows you to pass pointersin functions that
are prototyped to take along integer.

The Windows API functions SendM essage and SendDIgltemMessage rely on other fields
determining the nature of the long data item that they accept; thisis discussed in detail in the
next section.

20.5.2.1 SendMessage and SendDlgltemMessage

SendM essage and SendDI gl temM essage have special cover functions that determine when
the 32-bit integer is really a pointer and needs to be converted. These cover functions are
used automatically, unless the macro NOCOVERSENDS is defined before including

W NAPI . FI asinthefollowing example.

*$def i ne NOCOVERSENDS
*$i ncl ude winapi . fi

SendM essage and SendDIgltemMessage will do pointer conversions automatically using

AllocAliasl6 and FreeAliasl6 (unlessNOCOVERSENDS is defined) for the following
message types:

158 Pointer Handling

Windows 3.x 32-bit Programming Overview

» combo boxes (CB_ messages)

* edit controls (EM__ messages)

* list boxes (LB_ messages)

» certain windows messages (WM __ messages);

The messages that are intercepted by the cover functions for SendM essage and
SendDlIgltemMessage are:

CB_ADDSTRING CB_DIR CB_FINDSTRING
CB_GETLBTEXT CB_INSERTSTRING CB_SELECTSTRING
EM_GETLINE EM_GETRECT EM_REPLACESEL
EM_SETRECT EM_SETRECTNP EM_SETTABSTOPS
LB_ADDSTRING LB_DIR LB_FINDSTRING

LB_GETITEMRECT LB_GETSELITEMS LB_GETTEXT
LB_INSERTSTRING LB_SELECTSTRING LB_SETTABSTOPS

WM_MDICREATE WM_NCCALCSIZE

Note that for SendMessage and SendDlgltemMessage, some of the messages may NOT
require pointer conversion:

* CB_ADDSTRING, CB_FINDSTRING, CB_INSERTSTRING will not need a
conversion if the combo box was created as owner-draw style without
CBS_HASSTRINGS style.

* LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING will not need a
conversion if the list box was created as owner-draw style without LBS HASSTRINGS
style.

The macro NOCOVERSENDS should be defined in modules where messages like these are
being sent. With these messages, the |Param data item does not contain a pointer, and the
automatic pointer conversion would be incorrect. By doing

*$def i ne NOCOVERSENDS
*$i ncl ude winapi.fi

modules that send messages like the above will not have the pointer conversion performed.

Pointer Handling 159

Windows 3.x Programming Guide

20.5.3 GlobalAlloc and LocalAlloc

The functions Global Alloc and Local Allac are the typical way of allocating memory in the
16-bit Windows environment. 1n the 32-bit environment, there is no need to use these
functions. The only time GlobalAlloc is needed is when alocating shared memory, i.e.,
GMEM_DDESHARE.

The ALLOCATE and DEALLOCATE statements can be used to allocate memory from your
32-hit near heap. By alocating memory in this way, you may create data objects as large as
the enhanced mode Windows memory manager will permit.

20.5.4 Callback Function Pointers

To access a callback function, an instance of it must be created using MakeProcl nstance.
This creates a "thunk" (a special piece of code) that automatically puts the application’ s data
segment into the AX register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcl nstance directly on a 32-bit callback
routine, since Windows 3.x does not understand 32-bit applications. Therefore, it is necessary
to use a 16-bit callback routine that passes control to the 32-bit callback routine. This 16-bit
callback routine is automatically created by the Supervisor when using any of the standard
Windows API functions that accept a callback routine.

The 16-bit callback routine for a 32-bit application is aspecial layer that transfers the
parameters from a 16-bit stack to the 32-bit stack, and then passes control to 32-bit code.
These 16-bit callback routines are found in the Supervisor. The function GetProc16 provides
pointers to these 16-hit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit
callback interface function.

In the general case, one would have to write code as follows:

160 Pointer Handling

Windows 3.x 32-bit Programming Overview

i nteger*4 pCh, fpProc

PCb = GetProcl6(A _Function, GETPROC_callbacktype)
fpProc = MakeProcl nstance(pCh, hlnstance)

* do stuff
call Do_it(..., fpProc, ...)
* do nore stuff

call FreeProclnstance(fpProc)
call Rel easeProcl16(pCbh)

It is not necessary to use this general code in the case of the regular Windows API functions.
The following functions will automatically allocate the correct 16-bit/32-bit callback interface
functions:

* ChooseColor

* ChooseFont

* CreateDialog

* CreateDialogl ndirect

» CreateDial ogl ndirectParam
* CreateDialogParam

* DialogBox

* DialogBoxIndirect

« DialogBoxIndirectParam
* DialogBoxParam

* EnumChildwWindows

e EnumFonts

* EnumMetaFile

» EnumObjects

* EnumProps

* EnumTaskWindows

* EnumWindows

* Escape (SETABORTPROC option)
* FindText

* GetOpenFileName

* GetSaveFileName

* GlobalNotify

* GrayString

e LineDDA

* PrintDlg

* RegisterClass

Pointer Handling 161

Windows 3.x Programming Guide

* ReplaceText

* SetClassLong (GCL_WNDPROC option)

* SetResourceHandler

* SetTimer

* SetWindowLong (GWL_WNDPROC option)
* SetWindowsHook

Aswell, the following functions are covered to provide support for automatic creation of
16-bit callback routines:

» FreeProclnstance
» MakeProcl nstance
» UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must
code the general case. Typicaly, thisisrequired when aDLL needs a callback routine. In
modules where this is necessary, you define the macro NOAUTOPROCS before you include
W NAPI . FI asin thefollowing example.

*$def i ne NOAUTOPROCS
*$i ncl ude winapi.fi

Be careful of the following when using NOAUTOPROCS.

1. Thecall to MakeProcl nstance and FreeProcl nstance for the callback function
occurs in amodule with NOAUTOPROCS defined.

2. No Windows API functions (listed above) are used in the module with
NOAUTOPROCS defined. If they are, you must code the general case to use them.

Note that NOAUTOPROCS isin effect on a module-to-module basis only.

RegisterClass automatically does a GetProcl6 for the callback function, unless the macro
NOCOVERRC is specified before including W NAPI . FI asin the following example.

*$def i ne NOCOVERRC
*$i ncl ude winapi.fi

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the
codeisidentical to the code used in the 16-bit environment. A simple exampleis:

162 Pointer Handling

Windows 3.x 32-bit Programming Overview

*$i ncl ude W napi . fi
*$pragma aux (callback) SubC assProc parn(val ue, value, value, value)

i nteger*4 function Subd assProc(hwWhd, nsg, wp, Ip)
i nteger*2 hwd

i nteger*2 nsg

i nteger*2 wp

integer*4 Ip

i ncl ude ' wi ndows. fi’

comon f pd dProc
i nteger*4 fpd dProc

! code for sub-classing here
Subd assProc = Cal | WndowProc(fpd dProc, hwd, msg, wp, Ip)
end

program SubC assDenp
i nteger*2 hControl
comon f pA dProc

i nteger*4 fpd dProc

i nteger*4 fp;

i ncl ude ' wi ndows. fi’

i nt eger*4 Subd assProc
external SubC assProc

i nt eger*4 Programn nstance
external Program nstance

I assune hControl gets created in here

fpOldProc = GetWindowLong(hControl, GWL_WNDPROC)
fp = MakeProcl nstance(Subd assProc, Programni nstance)
call SetWindowLong(hControl, GWL_WNDPROC, fp)

| set it back
call SetWindowLong(hControl, GWL_WNDPROC, fpOldProc)
call FreeProclnstance(fp)

end
Note that SetWindowLong is covered to recognize GWL_WNDPROC and automatically
creates a 16-hit callback for the 32-bit callback. When replacing the callback routine with the

original 16-hit routine, the covered version of SetWindowl ong recognizes that the functionis
not a 32-bit callback, and so passes the pointer right through to Windows unchanged.

Pointer Handling 163

Windows 3.x Programming Guide

20.6 Calling 16-bit DLLs

A 16-hit functionin aDLL can be called using the _Call16 function. The first argument to
_Call16 isthe address of the 16-bit function. This addressis usually obtained by calling
GetProcAddress with the name of the desired function. The second argument to _Call16isa
string identifying the types of the parametersto be passed to the 16-bit function.

Character Parameter Type

(¢]

call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be
listed first)

unsigned BY TE

16-bit WORD

32-bit DWORD

doubl e precision floating-point

32-hit flat pointer (converted to 16:16 far pointer)

T *taso

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL
calling convention is the default. If the function uses the CDECL calling convention, then
you must specify the letter "c" asthe first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointersto 16-bit far pointers
before the function isinvoked. Note that this pointer is only valid over the period of the call;
after control returns to the 32-bit application, the 16-bit pointer created by the Supervisor is no
longer valid.

Thereturn value from _Call16 isa DWORD.

164 Calling 16-bit DLLs

Windows 3.x 32-bit Programming Overview

*$i ncl ude W napi . fi

integer*2 function FWnMi n(hl nstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Qo Ro

i nt eger*2 hl nstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCndLi ne

i nt eger*2 nCndShow

include 'w ndows. fi’

integer*2 hDrv, hWd
integer*4 I pfn, cb

hDrv = LoadLi brary('your.dll’'c)
if(hDrv .1t. 32)then
return
end if
| pfn = Get ProcAddress(hDrv, 'ExtDeviceMde' c)
if(Ipfn .eq. 0)then

return

end if

! Invoke the function.

cb = _Calll6(lpfn, ’wwdppddw’c,
& hwid, hDrv, NULL,
& " POSTSCRI PT PRI NTER c,
& " LPTY c,
& NULL, NULL, 0)

20.7 16 Functions

Every Windows API function that accepts a pointer has a corresponding _16 function. The
_16 version of the function will not convert any of the pointers that it accepts; it will assume
that all pointers are 16-bit far pointers already. This applies to both data and function
pointers.

_16 Functions 165

Windows 3.x Programming Guide

166 16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs

Open Watcom FORTRAN 77 allows the creation of 32-bit Dynamic Link Libraries (DLL). In
fact, 32-bit DLLs are smpler to write than 16-bit DLLs. A 16-bit DLL runsonthe caller's
stack, and thus DS !'= SS. This creates difficultiesin the small and medium memory models
because near pointersto local variables are different from near pointers to global variables.
The 32-bit DLL runs on its own stack, in the usual flat memory space, which eliminates these
concerns.

Thereisaspecial version of the supervisor, WB86DLL. EXT that performsasimilar job to

W N386. EXT. However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a
16-bit Windows application. On the first use of the 32-bit DLL, the DLL supervisor |oads the
32-bit DLL and invokes the 32-hit initialization routine (the DLL’s FW nMai n routine). The
initialization routine declares all entry points (via Def i neDLLEnNt r y) and performs any
other necessary initialization. Anindex number in the range 1 to 128 is used to identify all
external 32-bit DLL routines. Def i neDLLENt ry isused to assign an index number to each
routine, aswell as to identify the arguments.

The DLL supervisor contains a general entry point for Windows applicationsto call into
called W n386Li bEnt ry. Itaso contains 128 specific entry pointscalled DLL1 to
DLL128 which correspond to the entry points established via Def i neDLLENt ry (thefirst
argument to Def i neDLLENt r y isan index number in the range 1 to 128). All applications
call into the 32-bit DLL viathese entry points. They build the necessary stack frame and
switch to the 32-bit DLL’ s data space.

If you call viaW n386Li bEnt r y then you passthe DLL entry point number or index (1 to
128) asthe last argument. W n386Li bEnt ry usesthisindex number to call the appropriate
32-bit DLL routine. From a pseudo-code point of view, the 16-bit supervisor might look like
the following:

Introduction to 32-Bit DLLs 167

Windows 3.x Programming Guide

DLL1:: set index=1
i nvoke 32bi t DLLi ndi rect

DLL2:: set index=2
i nvoke 32bit DLLi ndirect

DLL128: : set index=128
i nvoke 32bi t DLLi ndi rect

W n386Li bEntry::
set index from index argument

i nvoke 32bit DLLi ndirect

32bi t DLLi ndi rect :
set up stack frame
switch to 32-bit data space
call indirect registration list[index]

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be
invoked by a 16-bit application as well as a 32-hit application. Itisfor thisreason that all far
pointers passed to a 32-bit DLL are 16-bit far pointers. Hence, whenever a pointer is passed
as an argument to a 32-bit DLL entry point and you wish to access the data it points to, you
must convert the pointer appropriately. To do this, you must map adynamically allocatable
array to the memory pointed to by the 16-bit far pointer.

21.2 A Sample 32-bit DLL

Let us begin our discussion of DLLs by showing the code for asimple DLL. The source code
for these examplesis provided in the \ WATCOM SAMPLES\ FORTRAN\ W N\ DLL directory.
We describe how to compile and link the examples in the section entitled " Creating and
Debugging Dynamic Link Libraries" on page 178.

*$i ncl ude W napi . fi

* W NDLLV. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w1386 windllv -explicit -d2 -bd -1=w n386
* Bind: wbind windllv -d -n

168 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

*Spragma aux (dll_function) Add3

integer function Add3(wl, w2, w3)
integer*4 wi, w2, w3

i ncl ude ' wi ndows. fi’

character*128 str

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) wl, w2, w3,
& char (0)
call MessageBox(NULL, str, ’DLL Function 1’c, MB_OK)
Add3 = wl + w2 + w3

end

*Spragma aux (dll_function) Add2

integer function Add2(wl, w2)
integer*4 wl, w2

i ncl ude ' wi ndows. fi’

character*128 str

wite(str, '(16hDLL 2 arguments:, 2i10, a)’) wl, w2, char(0)
call MessageBox(NULL, str, ‘DLL Function 2’c, MB_OK)

Add2 = wl + w2

end

integer*2 function FW nMi n(hl nstance

hPrevl nst ance

| pszCndLi ne
nCndShow)

R0 o @

i nt eger*2 hl nstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCndLi ne

i nt eger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc

cal | BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,
& DLL_ENDLIST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

A Sample 32-bit DLL 169

Windows 3.x Programming Guide

rc = DefineDLLEntry(2, Add2, DLL_DWORD, DLL_DWORD,
& DLL_ENDLIST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
call MessageBox(NULL, '32-bit DLL started' c
& 'WINDLLV’c, MB_OK)
FWnMain =1

end

There are two entry points defined, Add3 (index number 1) and Add2 (index number 2).
Add3 has three INTEGER*4 arguments and Add2 has two INTEGER*4 arguments. The
argument lists are described by calling Def i neDLLEnt ry. All arguments are passed by
value. As previously mentioned, all pointers passed to 32-bit DLLs are 16-bit far pointers.
Since, by default, FORTRAN 77 passes arguments by reference (a pointer to the datais
passed instead of the actual data), alevel of complexity isintroduced since some pointer
conversions must take place when accessing the data pointed to by a 16-bit far pointer in a
32-bit environment. We will deal with this problem in afollowing example. First, let us deal
with passing arguments by value to 32-bit DLLs from 16 and 32-bit Windows applications.

Note that each entry name must be giventhe d11 _function attribute using an auxiliary
pragma. Thisaliasnameisdefined inthefile W NAPI . FI .

FW nMai n returns zero to notify Windows that the DLL initialization failed, and returns a
one if initialization succeeds.

FW nMai n accepts the same arguments as the FW nMai n procedure of aregular Windows

program, however, only two arguments areused. hl nst ance isthe DLL handle and
| pszCndLi ne isthe command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

Thefollowing is a 16-bit Windows program that demonstrates how to call the two routines
defined in our DLL example.

170 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

*$i ncl ude W napi . fi

* GEN16V. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wWfl genl6v -explicit -d2 -w ndows -|=w ndows
* -"op desc '16-bit DLL Test'"

*Spragma aux (dll32 call) indirect_ 1 \

* parm(val ue*4, value*4, value*4)
*Spragma aux (dll32 call) indirect_2 \

* parm(val ue*4, value*4)

integer*2 function FWnMin(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

i nt eger*2 hPrevl nst ance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' wi ndows. fi’

integer*2 hlib

integer*4 indirect_1, indirect_2
integer*4 dl1_1, dll1_ 2, cb
character*128 str

hl'ib = LoadLibrary("windllv.dll’'c)
if(hlib .1t. 32) then
call MessageBox(NULL, 'Can’’'t |oad WNDLLV c,

& ’Genl6V’c, MB_OK)
st op
endi f
dll_1 = GetProcAddress(hlib, ’'DLL1l’c)

dll_2 GetProcAddress(hlib, ’'DLL2’c)

cb = indirect_1(111, 22222, 3333, dll1_1)

wite(str, '(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'GenléV Test 1’c, MB_OK)

cb = indirect_2(4444, 55, dl1_2)

wite(str, '(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'GenléV Test 2’c, MB_OK)
FWnMain = 0

end

The addresses of the routines DLL1 and DLL2 in the 32-bit DLL are obtained and stored in
thevariablesd11_1andd11_2. Sincethe FORTRAN 77 language does not support
indirect function calls, we need a mechanism to call these functionsindirectly. We do this
using the two indirect functions called indirect_1 and indirect_2. Thesetwo
functionsare giventhe d1132 _call attribute using an auxiliary pragmawhich is defined in

Calling Functions in a 32-bit DLL from a 16-bit Application 171

Windows 3.x Programming Guide

thefile W NAPI . FI . Note that the last argument of the callsto indirect_1 or
indirect_2 istheactual address of the DLL routine.

What you should reglizeisthat the indirect 1 and indirect_2 functionsdo not realy
exist. The codethat is generated for statements like the following is really an indirect call to
the function whose address is represented in the last argument.

cb = indirect_1(111, 22222, 3333, dll1_.1)
cb = indirect_2(4444, 55, dll1 2)

Thisisaresult of usingthe d1132_call auxiliary pragma attribute to describe both
indirect_1and indirect_2. You can verify thisby disassembling the object file that
is generated when this code is compiled.

21.4 Calling Functions in a 32-bit DLL from a 32-bit
Application

The following is a 32-bit Windows program that demonstrates how to call the two routines
defined in our 32-bit DLL example. Sincethisisa 32-bit Windows program, we will use the
_Callle functionto call functionsin our 32-bit DLL. Note that we get to the 32-bit DLL
functions by going indirectly through the 16-bit supervisor that forms the "front end" for our
32-bit DLL.

*$i ncl ude wi napi . fi

* GEN32V. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wfl386 gen32v -explicit -d2 -I1=w n386
* Bind: wbi nd gen32v -n -D "32-bit DLL Test"

integer*2 function FWnMi n(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' w ndows. fi’
integer*2 hlib

integer*4 dl11_1, dll1_2, cb
character*128 str

172 Calling Functions in a 32-bit DLL from a 32-bit Application

Windows 32-Bit Dynamic Link Libraries

hl'ib = LoadLibrary("windllv.dll’'c)
if(hlib .It. 32) then
call MessageBox(NULL, 'Can’’'t |oad WNDLLV c,

& ’Gen32V’c, MB_OK)
st op
endi f
dll_1 GetProcAddress(hlib, ’DLL1’c)

dll_2 GetProcAddress(hlib, ’DLL2'c)

cb = _Calllé(dl1_1, ’'ddd’c, 111, 22222, 3333)
wite(str, '(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'Gen32V Test 1’c, MB_OK)

cb = _Calllée(dl1_2, ’'dd’c, 4444, 55)
wite(str, '(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'Gen32V Test 2’c, MB_OK)

FWnMain = 0

end

Note that the first argument of acall to _call16 isthe DLL function address returned by
Get Pr ocAddr ess and must be a 32-bit argument. The second argument of acall to
_Callle isastring describing the types of arguments that will be passed to the DLL
function.

21.5 A Sample 32-bit DLL Using a Structure

As previously mentioned, passing pointers from a 16 or 32-bit Windows application to a
32-hit DLL poses aproblem since al pointers are passed as 16-bit far pointers. The pointer
must be converted from a 16-bit far pointer to a 32-bit far pointer. Thisisachieved by
mapping adynamically allocatable array to each argument that is passed by reference using
the LOCATI ON specifier of the ALLOCATE statement. Furthermore, you must specify the

f ar attribute for each such array using the ar r ay pragma. Sincethisis cumbersomeif you
wish to pass many arguments, it is recommended that a single argument be passed that is
actually a pointer to a structure that contains the actual arguments. Furthermore, since each
call toaDLL routineis made indirectly through one of W n386Li bEnt ry or DLL1 through
DLL128, you should aso return any valuesin the same structure since the return value from
any of these functionsis only 32-bits wide.

The following example is a 32-bit DLL that receives its arguments and returns values using a
structure. The source code for these examplesis provided in the

\ WVATCOM SAMPLES\ FORTRAN\ W N\ DLL directory. We describe how to compile and
link the examplesin the section entitled "Creating and Debugging Dynamic Link Libraries"
on page 178.

A Sample 32-bit DLL Using a Structure 173

Windows 3.x Programming Guide

*$i ncl ude w napi . f

* W NDLL. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w1386 windll -explicit -d2 -bd -1=w n386
* Bind: wbind windll -d -n

*Spragma aux (dll_function) Add3

subroutine Add3(arg_list)
integer*4 arg_list
structure /argtypes/

i nt eger wl
i nt eger w2
i nt eger w3
i nt eger sum

end structure
record /argtypes/ args(:)
*$pragma array args far

include 'w ndows. fi’
character*128 str

allocate(args(l), location=arg_list)

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) args(1l).wl,
args(1).w2,
args(1).ws,
char (0)
call MessageBox(NULL, str, ’DLL Function 1’c, MB_OK)
args(1).sum= args(1).wl + args(1).w2 + args(1).w3
deal | ocate(args)

Ro Qo Ro

end
*Spragma aux (dll_function) Add2
subroutine Add2(arg_list)

integer*4 arg_list
structure /argtypes/

real
r eal w2
real sum

end structure

record /argtypes/ args(:)
*$pragma array args far

i ncl ude ' wi ndows. fi’

character*128 str

174 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

allocate(args(l), location=arg_list)

wite(str, '(16hDLL 2 argunents:, 2f10.2, a)’) args(1l).wl,
& args(1).w2,
& char (0)
call MessageBox(NULL, str, ’DLL Function 2’c, MB_OK)
args(1).sum= args(1).wl + args(1).w2

deal | ocate(args)

end

integer*2 function FW nMin(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

i nt eger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' wi ndows. fi’

external Add3, Add2
integer rc

cal | BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_PTR, DLL_ENDLIST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
rc = DefineDLLEntry(2, Add2, DLL_PTR, DLL_ENDLIST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
call MessageBox(NULL, '32-bit DLL started'c
& "WINDLL’c, MB_OK)

FWnMain =1

end

The following example is a 16-bit Windows application that passes arguments to a 32-bit DLL
using a structure.

*$i ncl ude w napi . f

*

GEN16. FOR

Set up: set finclude=\WATCOM src\fortran\w n
Conpil e and Link: wil genl6 -explicit -d2 -wi ndows -I|=w ndows

-"op desc '16-bit DLL Test'"

*Spragma aux (dl132_call) indirect_1 parm(reference, value*4)
*Spragma aux (dll32 call) indirect_ 2 parm(reference, value*4)

A Sample 32-bit DLL Using a Structure 175

Windows 3.x Programming Guide

integer*2 function FW nMin(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

nt eger *2 hPrevl nst ance
i nteger*4 | pszCndLi ne
nt eger *2 nCndShow

ncl ude ' w ndows. fi’

integer*2 hlib
integer*4 dl1_1, dll1_2
character*128 str

structure /args_1/

i nt eger wil
i nt eger w2
i nt eger w3
i nt eger sum

end structure

structure /args_2/

r eal wl
real w2
r eal sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hl'ib = LoadLi brary("windll.dll'c)
if(hlib .lIt. 32) then

call MessageBox(NULL, 'Can’’t |oad WNDLL' c

& "Genl6’c, MB_OK)
st op
endi f

dll_1 = GetProcAddress(hlib, ’'DLL1l’c)
dll_2 = GetProcAddress(hlib, ’DLL2’c)

call indirect_1(args_1, dll_1)

write(str, ’(15hDLL 1 returned , 110, a)’)
&

call MessageBox(NULL, str, ’'Genl6 Test 1'c,

call indirect_2(args_2, dll_2)

write(str, ' (15hDLL 2 returned , £10.2, a)’
&

call MessageBox(NULL, str, ’Genl6 Test 2’'c,
FWnMain = 0

end

args_1.sum,
char (0)
MB_OK)

) args_2.sum,
char (0)
MB_OK)

The following example is a 32-bit Windows application that passes arguments to a 32-bit DLL

using a structure.

176 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

*$i ncl ude W napi . fi

* GEN32. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w386 gen32 -explicit -d2 -1=w n386
* Bind: wbind gen32 -n -D "32-bit DLL Test"

integer*2 function FW nMi n(hl nstance
hPrevl nst ance
| pszCndLi ne
nCrrdShow)

Ro Qo Ro

i nt eger*2 hl nstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCndLi ne

i nt eger*2 nCndShow

i ncl ude ' w ndows. fi’
integer*2 hlib

integer*4 dl1_1, dll1_ 2, cb
character*128 str

structure /args_1/

i nt eger wl
i nt eger w2
i nt eger w3
i nteger sum

end structure

structure /args_2/

real wil
r eal w2
real sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hl'ib = LoadLi brary("windll.dll’'c)
if(hlib .I1t. 32) then
call MessageBox(NULL, "Can’’'t |load WNDLL' c

& ’Gen32’c, MB_OK)
st op
endi f
dll_1 = GetProcAddress(hlib, ’'DLL1l’c)
dll_2 = GetProcAddress(hlib, ’'DLL2’c)
cb = _Calllée(dll1_1, ’'p’c, loc(args_1l))
write(str, ’(15hDLL 1 returned , 110, a)’) args_l.sum,
& char (0)

call MessageBox(NULL, str, ’Gen32 Test 1’c, MB_OK)

A Sample 32-bit DLL Using a Structure 177

Windows 3.x Programming Guide

cb = _Calllée(dl1_2, ’'p’c, loc(args_2))

write (

&

" (15hDLL 2 returned , £10.2, a)’) args_2.sum,
char (0)

call MessageBox(NULL, str, ’Gen32 Test 2’c, MB_OK)

FWnMain = 0

end

21.6 Creating and Debugging Dynamic Link Libraries

In the following sections, we will take you through the steps of compiling, linking, and
debugging 32-bit Dynamic Link Libraries (DLLS).

We will use example programs that are provided in source-code form in the Open Watcom
F77 package. The files described in this chapter are located in the directory
\ WATCOM SAMPLES\ FORTRAN\ W N\ DLL. Thefollowing files are provided:

WINDLLV.FOR

GEN16V.FOR

GEN32V.FOR

WINDLL.FOR

GEN16.FOR

GEN32.FOR

MAKEFILE

is the source code for asimple 32-bit DLL containing two library
routines that use integer arguments to pass information.

is the source code for a generic 16-bit Windows application that
calsfunctionsin the"WINDLLV" 32-bit Windows DLL.

is the source code for a generic 32-bit Windows application that
callsfunctionsin the"WINDLLV" 32-bit Windows DLL.

is the source code for asimple 32-bit DLL containing two library
routines that use structures to pass information.

is the source code for a generic 16-bit Windows application that
calsfunctionsin the "WINDLL" 32-bit Windows DLL.

is the source code for a generic 32-bit Windows application that
callsfunctionsin the "WINDLL" 32-bit Windows DLL.

isamakefile for compiling and linking the programs described
above.

178 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

21.6.1 Building the Applications

To create the DLLs and test applications, we will use the WATCOM Open Watcom Make
utility and the supplied makefile.

Example:
Cwnake -f nmakefile

21.6.2 Installing the Examples under Windows

Start up Microsoft Windows 3.x if you have not already done so. Add the GEN16V. EXE and
GEN32V. EXE filesto one of your Window groups using the Microsoft Program Manager.

1. Select the"New..." entry from the "File" menu of the Microsoft Windows Program
Manager.

2. Select "Program Item" from the "New Program Object" window and press the
"OK" button.

3. Enter "16-bit DLL Test" as adescription for the GEN16V program. Enter the full
path to the GEN16V program as a command line.

Example:
Descri pti on: 16-bit DLL Test
Conmand Li ne: c:\work\dll\genl6v. exe

4. Enter "32-bit DLL Test" asadescription for the GEN32V program. Enter the full
path to the GEN32V program as a command line.

Example:
Descri pti on: 32-bit DLL Test
Command Li ne: c:\work\dlI\gen32v. exe

Use asimilar procedureto install the GEN16. EXE and GEN32. EXE programs.

21.6.3 Running the Examples

Start the 16-bit application by double clicking onitsicon. A number of message boxes are
presented. Y ou may wish to compare the output in each message box with the source code of
the program to determine if the correct results are being obtained. Click on the "OK" button
as each of them are displayed.

Creating and Debugging Dynamic Link Libraries 179

Windows 3.x Programming Guide

Similarly, start the 32-bit application by double-clicking on itsicon and observe the results.

21.6.4 Debugging a 32-bit DLL

The Open Watcom Debugger can be used to debug aDLL. To debug a32-bit DLL, a
"breakpoint" instruction must be inserted into the source code for the DLL at the "FWinMain"
entry point. Thisisdone using the "pragma’ compiler directive. We have already added the
breakpoint to the source code for the 32-bit DLL.

integer*2 functi on FWnMi n(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Qo Ro

i nteger*2 hlnstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCndLi ne

i nt eger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc

cal |l BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,
& DLL_ENDLIST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

The pragmafor "BreakPoint" is defined in the "WINAPI.FI" file.

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by
double-clicking on the Open Watcom Debugger icon. At the prompt, enter the path
specification for the application. When the debugger has successfully loaded GEN32v, start
execution of the program. When the breakpoint is encountered in the 32-bit DLL, the
debugger isre-entered. The debugger will automatically skip past the breskpoint.

From this point on, you can symbolically debug the 32-bit DLL. You might, for example, set
breakpoints at the start of each DLL routine to debug each of them as they are called.

180 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

21.6.5 Summary

Note that the "FWinMain" entry point is only called once, at the start of any application
requesting it. After this, the "FWinMain" entry point isno longer called. Y ou may have to
restart Windows to debug this section of code a second or third time.

Creating and Debugging Dynamic Link Libraries 181

Windows 3.x Programming Guide

182 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Open
Watcom FORTRAN 77 DLLs

22.1 Introduction to Visual Basic and DLLs

This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-hit
Dynamic Link Libraries (DLLS) created by Open Watcom FORTRAN 77. It describes how to
write functions for a 32-bit DLL, how to compile and link them, and how to call these
functions from Visual Basic. One of the proposed techniques involves the use of a set of
cover functionsin a 16-bit DLL so, indirectly, this chapter also describes interfacing to 16-bit
DLLs.

Itis possibleto invoke the W n386Li bEnt r y function (Open Watcom'’s 32-bit function
entry point, described below) directly from Visual Basic. However, this technique limits the
arguments that can be passed to a 32-bit DLL. The procedure and problems are explained
below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL.
Within the 16-bit DLL, we will place cover functions that will call the corresponding 32-bit
function in the 32-bit DLL. We illustrate the creation of the 16-bit DLL using the 16-bit C
compiler in Open Watcom C/C++.

Before we begin our example, there are some important technical issues to consider.

The discussion in this chapter assumes that you, the developer, have a working knowledge of
Visua Basic, including how to bring up the general declarations screen, how to create
command buttons, and how to associate code with command buttons. Y ou must use Visual
Basic 3.0 or later. Visua Basic Version 2.x will not work because of adeficiency in this
product regarding the calling of functionsin DLLs.

For the purposes of the following discussion, you should have installed the 32-bit version of
Open Watcom FORTRAN 77, aswell asversion 3.0 or later of Visual Basic. If you aso have
the 16-bit Open Watcom C compiler, you can use thisto create a 16-bit DLL containing the
16-bit cover functions. Ensure that the PATH amd FINCL UDE environment variables are
defined to include at least the directoriesindicated. We have assumed that Open Watcom
FORTRAN 77 isinstaled inthe c: \ wat comdirectory, and Visual Basicisinthe c: \ vb
directory:

Introduction to Visual Basic and DLLs 183

Windows 3.x Programming Guide

set path=c:\wat com bi nw; c:\vb; c:\dos; c:\w ndows
set finclude=c:\watcomsrc\fortran\w n

Open Watcom's 32-bit DLL supervisor contains a general entry point for Windows
applicationsto call into called W n386Li bEnt ry. It also contains 128 specific entry
points called DLL1 to DLL128 which correspond to the entry points established via

Def i neDLLENt ry (thefirst argument to Def i neDLLENt r y isan index number in the
range 1 to 128). All applications call into the 32-bit DLL viathese entry points. They build
the necessary stack frame and switch to the 32-bit DLL’ s data space.

If you call viaW n386Li bEnt r y then you passthe DLL entry point number or index (1 to
128) asthe last argument. W n386Li bEnt ry usesthisindex number to call the appropriate
32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very
flexible. In other words, a function can be called with different argument types each time.
Thisis generally necessary for calling W n386Li bEnt r y in a32-hit extended DLL
function. The reason isthat this function takes the same arguments as the function being
called, as well astheindex number of the called function. After the 32-bit flat model has been
set up, W n386Li bEnt ry then calsthisfunction. In Visual Basic, once afunctionis
declared as having certain arguments, it cannot be redeclared. For example, suppose we have
adeclaration asfollows:

Example:
Decl are Functi on Wn386Li bEntry Lib "c:\path\vbdl132.dlI"
=> (ByVal vl1 As Long, ByVal v2 As Long, ByVal
=> v3 As Long, ByVal | As Integer) As Long

(Note: the => meansto continue the statement on the same line.) In this example, we could
only call afunction in any 32-bit extended DLL with three 32-bit integers as arguments.
There are three ways to work around this deficiency in Visual Basic:

1. UsetheVisua Basic "Alias' attribute to declare W n386Li bEnt r y differently
for each DLL routine. Reference the different DLL routines using these aliases.

2. Usethe specific entry point, one of DLL1 through DLL128, corresponding to the
DLL routine that you want to call. Each entry point can be described to take
different arguments. We can till use the "Alias" attribute to make the link between
the name we use in the Visua Basic function and the name in the 32-bit extended
DLL. Thisisthe method that we will usein the "Direct Call" technique discussed
below. Itissimpler to use sinceit requires one less argument (you don’t require
the index number).

184 Introduction to Visual Basic and DLLs

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

3. Useamethod which involves calling functions in a 16-bit "cover" DLL writtenina
flexible-argument language, which then calls the functionsin the 32-bit DLL. This
isthe "Indirect Call" method discussed below.

22.2 A Working Example

The best way to demonstrate these techniques is through an example. This example consists
of aVisual Basic application with 3 push buttons. The first push button invokes a direct call
to a32-bit DLL which will display a message window with its arguments, the second push
button invokes an indirect call to the same function through a 16-bit DLL, and the third button
exitsthe Visual Basic application.

To create a Visual Basic application:

D
)
©)

(4)

()

Start up a new project folder from the "File" menu.
Select " View Form" from the "Project” window.

Draw three command buttons on the form by selecting command buttons from the
"Toolbox" window.

Change the caption on each button. To do this, highlight the first button. Then, open
the "Properties” window. Double click on the "Caption window", and change the
caption to "Direct call". Highlight the second button, and change its caption to "Indirect
cal". Highlight the third, changing the caption to "Exit".

Now, your Visual Basic application should have three push buttons, "Direct call”,
"Indirect call", and "Exit".

Doubleclick on the" Direct Call" button.

An edit window will pop up. Enter the following code:

A Working Example 185

Windows 3.x Programming Guide

Sub Commandl_Click ()
Dimvarl, var2, var3, worked As Long

varl = 230
var2 = 215
var3 = 32

wor ked = Add3(varl, var2, var3)
Print worked
wor ked = Add2(var2, var3)
Print worked
End Sub

(6) Doubleclick onthe" Indirect Call" button.

Another edit window will pop up. Enter the following code:

Sub Command2_Click ()
Dimvarl, var2, var3, worked As Long

varl = 230
var2 = 215
var3 = 32

wor ked = Functionl(varl, var2, var3)
Print worked
wor ked = Function2(var2, var3)
Print worked
End Sub

(7) Doubleclick onthe" Exit" command button and enter the following code in the
pop-up window:

Sub Command3_Click ()

End
End Sub

(8 Select"View Code" from the "Project” window. To interface these Visual Basic
functionsto the DLLs, the following code is needed in the

oj ect: [general] Proc: [declarations]
section of the code. This code assumesthat VBDLL32. DLL and COVER16. DLL arein

thec: \ pat h directory. Modify the pathnames appropriately if thisis not the case.
(Note: the => means to continue the statement on the same line.)

186 A Working Example

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

Decl are Function Functionl Lib "c:\path\coverl16.dlIl"
=> (ByVal vl As Long, ByVal v2 As Long, ByVal v3 As
Long)

=> As Long

Decl are Function Function2 Lib "c:\path\coverl16.dlI"
=> (ByVval v1 As Long, ByVal v2 As Long) As Long

Decl are Function Add3 Lib "c:\path\vbdlI32.dl1"

=> Alias "DLL1"

=> (ByVval v1 As Long, ByVal v2 As Long, ByVal v3 As
Long)

=> As Long

Decl are Function Add2 Lib "c:\path\vbdl|32.dlI"
=> Alias "DLL2"
=> (ByVval v1 As Long, ByVal v2 As Long) As Long

Now, when all of the code below is compiled correctly, and the Visual Basic program isrun,
the "Direct cal" button will call the DLL1 and DLL2 functions directly, aliased asthe
functions Add3 and Add2 respectively. The"Indirect call" button will call the 16-bit DLL,
which will then call the 32-bit DLL, for both Functi onl and Functi on2. Torunthe
Visual Basic program, select "Start" from the "Run" menu.

22.3 Sample Visual Basic DLL Programs

The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which
will call the two functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

*$i ncl ude wi napi . fi

* VBDLL32. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wfl386 vbdl|132 -explicit -d2 -bd -1 =w n386
* Bind: wbi nd vbdl 132 -d -n

Sample Visual Basic DLL Programs 187

Windows 3.x Programming Guide

*Spragma aux

*Spragma aux

Ro Ro Ro

(dll_function) Add3

integer function Add3(wl, w2, w3)
integer wi, w2, w3

i ncl ude ' wi ndows. fi’
character*128 str
3i 10

wite(str, '(16hDLL 1 argunents:

call MessageBox(NULL,
Add3 = wl + w2 + w3

str,

end
(dll_function) Add2

integer function Add2(wl, w2)
integer wi, w2

i ncl ude ' wi ndows. fi’
character*128 str

wite(str, 2i 10,

call MessageBox(
Add2 = wl + w2

" (16hDLL 2 argunents:,
NULL, str,

end

integer*2 function FW nMi n(hl nstance

"F77 VBDLL32'c,

'F77 VBDLL32'c,

a)’) wl, w2, w3,

hPrevl nst ance

| pszCmdLi ne

nCndShow)
i nteger*2 hlnstance
i nteger*2 hPrevlnstance
i nteger*4 | pszCmiLi ne
i nt eger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc
rc = DefineDLLEntry(1, Add3, DLL_DWORD,
DLL_ENDLIST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
rc = DefineDLLEntry(2, Add2, DLL_DWORD,
DLL_ENDLIST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

188 Sample Visual Basic DLL Programs

char (0)
MB_OK)
a)’) wl, w2, char(0)
MB_OK)
DLL_DWORD, DLL_DWORD,
DLL_DWORD,

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

call MessageBox(NULL, '32-bit DLL started' c
& "F'77 VBDLL32'c, MB_OK)
FWnMain =1

end

22.3.2 Source code for COVER16.DLL

The functionsin this 16-bit DLL will call the functionsin the 32-bit DLL, VBDLL32. DLL,

shown above, with the appropriate W n386Li bEnt r y call for each function.
/ *
* COVERL6. C
*)

#i ncl ude <stdio. h>

#i ncl ude <w ndows. h> /* required for all Wndows applications */

typedef |ong (FAR PASCAL *FPRCOC) ();

FPROC DLL_1;
FPROC DLL_2;

long FAR PASCAL __export Functionl(long varl,

I ong var 2,
long var3)
{
return((long) DLL_1(varl, wvar2, var3));
}

long FAR PASCAL __export Function2(long varl, long var2)

{
}

#pragma of f (unreferenced);

BOOL FAR PASCAL Li bMai n(HANDLE hl nstance, WORD wDat aSegment ,
WORD wHeapSi ze, LPSTR | pszCndLi ne)

#pragma on (unreferenced);

return((long) DLL_2(varl, varz));

HANDLE hl i b;

/* Do our DLL initialization */
hlib = LoadLibrary("vbdlI32.dlII");
if(hlib <32) {
MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
"COVER16", MB_OK | MB_ICONEXCLAMATION);
return(FALSE);
}
DLL_1 = (FPROC) GetProcAddress(hlib, "DLL1");
DLL_2 = (FPROC) GetProcAddress(hlib, "DLL2");
return(TRUE);

Sample Visual Basic DLL Programs

189

Windows 3.x Programming Guide

22.4 Compiling and Linking the Examples

To createthe 32-bit DLL VBDLL32. DLL, typethefollowing at the command line (make
surethat VBDLL32. f or isinyour current directory):

set finclude=c:\watcom src\fortran\w n
wfl 386 vbdl 32 -explicit -bd -d2 -1 =wi n386
wbi nd vbdl 132 -d -n

To create the 16-bit DLL COVER16. DLL, typethefollowing at the command line (make
sure that COVER16. Careinyour current directory):

wcl coverl6e —-mc —-bt=windows -bd —-zu -d2 -l=windows_dll
Notes:

1. Anobjectfileisprovided for COVER16. Cif you do not have access to the 16-bit
Open Watcom C compiler. Inthiscase, the DLL can be generated from the object
file using the following command:

wfl coverl6.obj -d2 -l=windows_dll

2. The"mc" option selects the compact memory model (small code, big data). The
code for 16-bit DLLs must be compiled with one of the big data models.

3. The"bd" option indicatesthat a DLL will be created from the object files.

4. The"bt" option selects the "windows' target. This option causesthe C or C++
compiler to generate Windows prologue/epil ogue code sequences which are
required for Microsoft Windows applications. It also causes the compiler to use the
WINDOWS INCLUDE environment variable for header file searches. It also
causes the compiler to define the macro —_ WINDOWS__ and, for the 32-bit C or
C++ compiler only, themacro . WINDOWS 386 .

5. The"zu" optionis used when compiling 16-bit code that isto be placed in a
Dynamic Link Library (DLL) since the SS register points to the stack segment of
the calling application upon entry to the function.

6. The"d2" option is used to disable optimizations and include debugging information
in the object fileand DLL. Thetechniques for debugging DLLs are described in
the chapter entitled "Windows 32-Bit Dynamic Link Libraries' on page 167.

Y ou are now ready to run the Visual Basic application.

190 Compiling and Linking the Examples

23 WIN386 Library Subprograms

Each special Windows subprogram in the Open Watcom F77 library is described in this
chapter. Each description consists of a number of subsections:

Synopsis. This subsection gives the include files that should be included within a source file that
references the subprogram. It also shows an appropriate declaration for the function or for a
function that could be substituted for amacro. This declaration is not included in your
program; only the include file(s) should be included.

Description: This subsection is a description of the subprogram.

Returns: This subsection describes the return value (if any) for the subprogram.

See Also: Thisoptional subsection providesalist of related subprograms.

Example: This optional subsection consists of one or more examples of the use of the subprogram. The
examples are often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the subprogram is commonly found. The

subprograms in this section are all classified as "WIN386" (i.e., they pertain to 32-bit
Windows programming).

WIN386 Library Subprograms 191

AllocAlias16

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function AllocAliasl6(ptr)
i nteger*4 ptr

Description: The Al | ocAl i as16 function obtains a 16-bit far pointer equivalent of a 32-bit near
pointer. These pointers are used when passing data pointers to Windows through functions
that have INTEGER* 4 arguments, and for any pointers within data structures passed this

way.

Returns:. The Al | ocAl i as16 function returns a 16-bit far pointer (as an INTEGER*4) usable by
Windows, or returns O if the alias cannot be allocated.

See Also: FreeAl i as16

Example: integer*4 mcs_16
record / MDI CREATESTRUCT/ nts
ncs.szTitle = AllocAliasl6(loc("Title' c))
ncts.szCass = AllocAliasl6(loc('ndichild c))
ncs. hOmer = hl nst
mcs.x = mcs.cx = CW_USEDEFAULT
mcs.y = mcs.cy = CW_USEDEFAULT
ncs.style = 0
I Send a nmessage to an MDI client to create a w ndow.
I Since the pointer to the structure is passed in an
I argunment that nmay not be a pointer (depending on the
I type of message), there is no inplicit 32 to 16-bit
I conversion done so the conversion rmust be done by the
I programrer.
mcs_16 = AllocAliasl6e(loc(mcs))
hwnd = SendMessage(hwndMDI, WM_MDICREATE, 0, mcs_16)
FreeAliasl6(mcs_16)
FreeAli as16(nts.szd ass)
FreeAl i asl16(nts.szTitle)

Classification: WIN386

192 WIN386 Library Subprograms

AllocHugeAlias16

Synopsis:

Description:

Returns:

See Also;

Example:

c$i ncl ude ' wi napi . fi’
i nteger*4 function AllocHugeAliasl6(ptr, size)
i nteger*4 ptr, size

The Al | ocHugeAl i as16 function obtains a 16-bit far pointer to a 32-bit memory object
that issize bytesin size. Thisissimilar tothefunction Al | ocAl i as16, except that

Al l ocAl i as16 will only give 16-bit far pointers to 32-bit memory objects of up to 64K in
size. To get 16-bit far pointers to 32-bit memory objects larger than 64K,

Al'l ocHugeAl i as16 should be used.

The Al | ocHugeAl i as16 function returns a 16-bit far pointer (as an INTEGER*4) usable
by Windows, or returns O if the alias cannot be allocated.

Al l ocAl i asl6, FreeAliasl6, FreeHugeAl i asl6

integer ierr, SIZE

i nteger*4 alias

par anmet er (Sl ZE=300000)
i nteger*1 tnp(SlZE)

all ocate(tmp(SIZE), stat=ierr)
if(ierr .ne. 0)then
alias = All ocHugeAl i as16(loc(tmp), SIZE)

I Wndows calls using the alias ...

call FreeHugeAliasl6(alias, SIZE)
endi f

Classification: WIN386

WIN386 Library Subprograms 193

_Call16

Synopsis:

Description:

Returns:

See Also;

c$i ncl ude ' wi napi . fi’
integer*4 function _Calllé(lpFunc, fmt, ...)
i nteger*4 | pFunc
character*(*) fnt

The _cal116 function performs the same function as

Get | ndi r ect Funct i onHandl e, I nvokel ndi r ect Functi onHandl e, and
Freel ndi r ect Funct i onHandl e but is much easier to use. The first argument IpFunc
is the address of the 16-bit function to be called. Thisaddressis usually obtained by calling
Get Pr ocAddr ess with the name of the desired function. The second argument f nt isa
string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

(¢

call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be
listed first)

unsigned BYTE

16-bit WORD (INTEGER*2)

32-bit DWORD (INTEGER* 4, REAL*4)

double precision floating-point (DOUBLE PRECISION, REAL*8)

32-bit flat pointer (converted to 16:16 far pointer) (LOC(x))

T *rtaso

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL
calling convention isthe default. If the function uses the CDECL calling convention, then
you must specify the letter "c" asthe first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointersto 16-bit far pointers
before the function isinvoked. Note that this pointer is only valid over the period of the call;
after control returns to the 32-bit application, the 16-bit pointer created by the Supervisor is
no longer valid.

The _call116 function returns a 32-bit DWORD (as an INTEGER*4) which represents the
return value from the 16-bit function that was called.

Cet | ndi r ect Functi onHandl e, | nvokel ndi r ect Functi onHandl e,
Fr eel ndi rect Functi onHandl e

194 WIN386 Library Subprograms

_Call16

Example:

c$i ncl ude winapi.fi

i ncl ude " wi ndows. fi’
integer*2 hlib
integer*4 dll 1, cb
character*128 str

hiib = LoadLibrary("windllv.dll’c)
dll_1 = GetProcAddress(hlib, ’'DLL1l’c)

cb = _Calllée(dl11_1, ’'ddd’c, 111, 22222,

Classification: WIN386

3333

)

WIN386 Library Subprograms 195

DefineDLLEntry

Synopsis:

c$i ncl ude ' wi napi . fi’
i nteger*4 function DefineDLLEntry(index, routine, ...)
i nteger*4 index
external routine

Description: The Def i neDLLENt r y function defines an index number for the 32-bit DLL procedure

Returns:

Example:

routine. The parameter index defines the index number that must be used in order to invoke
the 32-bit FAR procedure routine. The variable argument list defines the types of parameters
that will be received by the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer

DLL_DWORD 32-bits

DLL_WORD 16-hits

DLL_CHAR 8-hits

DLL_ENDLIST Marks the end of the variable argument list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

Note that all pointers are received as 16-bit far pointers. To access the data from the 32-bit
DLL, adynamically allocatable array must be mapped to the memory pointed to by the
16-bit far pointer using the LOCATI ON specifier of the ALLOCATE statement and assigning
the FAR attribute to the array using the array pragma

The Def i neDLLENt ry function returns zero if successful, and a non-zero value otherwise.

c$i ncl ude wi napi . fi
cSpragma aux (dll_function) DLL_1

integer function DLL_1(wl, w2, w3)

integer*4 wl, w2, w3

include 'win386.fi’

include 'wi ndefn.fi’

include "winerror.fi’

character*128 str

wite(str, "(16hDLL 1 argunents:, 3i10, a)’) wi,

& w2, w3, char(0)
call MessageBox(NULL, str,

& "DLL Function 1’c, MB_OK)
DLL_1 = wl + w2 + w3
end

196 WIN386 Library Subprograms

DefineDLLEntry

Ro Ro Ro

Classification: WIN386

i nteger*2 function FWNMAI N(hlnstance,
hPrevl nst ance,

| pszCndLi ne,
nCrrdShow)
i nteger*2 hlnstance, hPrevlnstance, nCrdShow
i nteger*4 | pszCndLi ne
i nclude ' wi n386.fi
i nclude ' wi ndefn.fi
include "winerror.fi
external DLL_1
i nteger rc
rc = DefineDLLEntry(1, DLL_1, DLL _ DWORD,
DLL_DWORD, DLL_DWORD,
DLL_ENDLIST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
call MessageBox(NULL,
"32-bit DLL started’ c,
’32-bit DLL’c, MB_OK)
FWnMain = 1
end

WIN386 Library Subprograms 197

DefineUserProc16

Synopsis:

Description:

Returns:

See Also:

*$i ncl ude ' wi napi.fi’
i nteger*4 function DefineUserProcl6(typ, routine, ...)
i nteger*4 typ
external routine

The Def i neUser Pr oc16 function defines the arguments accepted by the user defined
callback procedure routine. There may be up to 32 user defined callbacks. The parameter
typ indicates which one of GETPROC_USERDEFINED_1 through
GETPROC_USERDEFINED_32 isbeing defined (see Get Proc16). The callback routine
must be declared as FAR PASCAL, or as FAR cdecl. The variable argument list defines the
types of parameters that will be received by the user defined callback procedure routine.
Valid parameter types are;

UDP16 PTR 16-bit far pointer

UDP16_DWORD 32-bits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16 CDECL callback routine will be declared astype cdecl rather than as

type PASCAL. This keyword may be placed anywhere before the
UDP16_ENDLIST keyword.

UDP16 ENDLIST Marks the end of the variable argument list.
Oncethe Def i neUser Pr oc16 function has been used to declare the user callback routine,
then Get Pr oc16 may be used to get a 16-bit function pointer that may be used by

Windows.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

The Def i neUser Pr oc16 function returns zero if it succeeds and non-zero if it fails.

Get Procl6

198 WIN386 Library Subprograms

DefineUserProc16

Example: c¢$i ncl ude wi napi . f
cPpragma aux TestProc parm(val ue)

subroutine TestProc(i)

i nteger i

character*128 str

wite(str, '(2hi=, i10, a)’) i, char(0)
call MessageBox(NULL, str, ’'TEST’c, MB_OK)
end

i nteger function DefineTest ()

i nteger*4 cb

external TestProc

call DefineUserProcl6 (GETPROC_USERDEFINED_1,

& Test Pr oc,
& UDP16_DWORD,
& UDP16 ENDLIST)

cb = GetProcl6(TestProc, GETPROC_USERDEFINED_1)
I cb may then be used whenever a pointer to the

I callback is required by 16-bit W ndows

end

Classification: WIN386

WIN386 Library Subprograms 199

FreeAlias16

Synopsis: ¢$i ncl ude ' wi napi . fi’
subroutine FreeAliasl6(fpl6)
i nteger*4 fpl6

Description: Fr eeAl i as16 frees a 16-bit far pointer alias for a 32-bit near pointer that was all ocated
with Al | ocAl i as16. Thisisimportant to do when thereis no further use for the pointer
since there are alimited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns: Fr eeAl i as16 isasubroutine.
SeeAlso: Al locAliasl6

Example: integer*4 mcs_16

record / MDI CREATESTRUCT/ nts

ncs.szTitle = AllocAliasl6(loc("Title' c))

nts.szCass = AllocAliasl6(loc('ndichild c))

ncs. hOmer = hl nst

mcs.x = mcs.cx = CW_USEDEFAULT

mcs.y = mcs.cy = CW_USEDEFAULT

ncs.style = 0

I Send a nmessage to an MDI client to create a w ndow.

I Since the pointer to the structure is passed in an

I argunent that nay not be a pointer (depending on the
I type of nmessage), there is no inplicit 32 to 16-bit
|
|

conversion done so the conversion nust be done by the
pr ogr anmer .
mcs_16 = AllocAliasl6e(loc(mcs))
hwnd = SendMessage(hwndMDI, WM_MDICREATE, 0, mcs_1l6)
FreeAliasl6(mcs_16)
FreeAli as16(nts.szd ass)
FreeAl i asl16(nts.szTitle)

Classification: WIN386

200 WIN386 Library Subprograms

FreeHugeAlias16

Synopsis: ¢$i ncl ude ' wi napi . fi’
subroutine FreeHugeAl i asl16(fpl6, size)
i nteger*4 fpl6, size

Description: Fr eeHugeAl i as16 freesa 16-bit far pointer alias that was allocated with
Al l ocHugeAl i as16. Thesizeof theoriginal 32-bit memory object must be specified.
It isimportant to use Fr eeHugeAl i as16 when thereis no further use for the pointer,
since there are alimited number of 16-hit aliases available (due to limited space in the local
descriptor table).

Returns: Fr eeHugeAl i as16 isasubroutine.
SeeAlso: Al ocHugeAl i as16, Al l ocAli asl6, FreeAliasl6
Example: integer ierr, SIZE

i nteger*4 alias

par anet er (Sl ZE=300000)
i nteger*1 t np(Sl ZE)

allocate(tmp(SIZE), stat=ierr)

if(ierr .ne. 0)then
alias = All ocHugeAlias16(loc(tnmp), SIZE)
I Wndows calls using the alias ...

call FreeHugeAliasl6(alias, SIZE)
endi f

Classification: WIN386

WIN386 Library Subprograms 201

FreelndirectFunctionHandle

Synopsis:

c$i ncl

ude 'w napi.fi’
subroutine Freelndirect Functi onHandl e(handl e)
i nteger*4 handl e

Description: Fr eel ndi r ect Funct i onHandl e frees a handle that was obtained using

Returns:
See Also;

Example:

CGet | nd

i rect Functi onHandl e. Thisisimportant to do when thereis no further use

for the pointer since there are alimited number of 16-bit aliases available (due to limited
space in the local descriptor table).

Freeln
_Calll

c¢$i ncl

&

R R R R R R R

di rect Funct i onHandl e isasubroutine.
6, CGetl ndirect Functi onHandl e, |1 nvokel ndi rect Functi on
ude winapi.fi

i nteger*2 hDrv
integer*4 | pfn

hDrv = LoadLi brary("your.lib' c)
if(hDrv .1t. 32) return
| pfn = Get ProcAddress(hDrv,
" Ext Devi ceMbde’ ¢)
if(Ipfn .eq 0) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
INDIR_WORD,
INDIR_WORD,
INDIR_DWORD,
INDIR_PTR,
INDIR_PTR,
INDIR_DWORD,
INDIR_DWORD,
INDIR_WORD,
INDIR_ENDLIST)

202 WIN386 Library Subprograms

FreelndirectFunctionHandle

cb = I nvokel ndi rect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER' c,
"LPT1 c,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 203

GetindirectFunctionHandle

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function GetlndirectFunctionHandl e(prc, ...)
i nteger*4 prc

Description: The Get | ndi r ect Funct i onHandl e function gets a handle for a 16-bit procedure that
isto be invoked indirectly. The procedure is assumed to have PASCAL calling convention,
unlessthe INDIR_CDECL parameter is used, to indicate that Microsoft C calling convention
isto beused. The 16-bit far pointer prcissuppliedto CGet | ndi r ect Funct i onHandl e,
and alist of the type of each parameter (in the order that they will be passed to the 16-bit
function). The parameter types are:

INDIR_DWORD A INTEGER*4 will be passed.

INDIR_WORD A INTEGER* 2 will be passed.

INDIR_CHAR A INTEGER* 1 will be passed.

INDIR_PTR A pointer will be passed. Thisisonly used if pointer conversion
from 32-bit to 16-bit is required, otherwise; INDIR_DWORD is
specified.

INDIR_CDECL This option may be included anywhere in the list before the

INDIR_ENDLIST keyword. When thisis used, the calling
convention used to invoke the 16-bit function will be the
Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

This handle is adata structure that was created using the mal | oc function. To freethe
handle, just use one of the Fr eel ndi r ect Funct i onHandl e or f r ee functions.

You may find it easier touse _Cal1l16 rather than Get | ndi r ect Functi onHandl e
followed by acall to | nvokel ndi r ect Functi on.

Returns: The Get | ndi r ect Funct i onHandl e function returns a handle to the indirect function,
or NULL if ahandle could not be allocated. Thishandleisused in conjunction with
I nvokel ndi rect Funct i on to call the 16-bit procedure.

SeeAlso: _callleé, Freel ndirect Functi onHandl e, | nvokel ndi rect Functi on

204 WIN386 Library Subprograms

GetindirectFunctionHandle

Example: c¢$i ncl ude wi napi . f

i nteger*2 hDrv
i nteger*4 | pfn

hDrv = LoadLi brary('your.lib' c)
if(hDrv .It. 32) return
| pfn = Get ProcAddress(hDrv,
& ' Ext Devi ceMbde’ ¢)
if(Ipfn .eq O) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
INDIR_WORD,
INDIR_WORD,
INDIR_DWORD,
INDIR_PTR,
INDIR_PTR,
INDIR_DWORD,
INDIR_DWORD,
INDIR_WORD,
INDIR_ENDLIST)

R R R R

cb = I nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER c,
"LPT?1 ¢,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 205

GetProc16

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function GetProcl6(fcn, type)
i nteger*4 fcn, type

Description: The Get Pr oc16 function returns a 16-bit far function pointer suitable for use asa
Windows callback function. This callback function will invoke the 32-bit far procedure
specified by fcn. Thetypes of callback functions that may be allocated are:

GETPROC_CALLBACK Thisisthe most common form of callback; suitable as the callback
routine for awindow.

GETPROC_ABORTPROC Thisisthe callback type used for trapping abort requests when
printing.

GETPROC_ENUMCHILDWINDOWS This callback is used with the
EnuntChi | dW ndows Windows function.

GETPROC_ENUMFONTS This callback typeis used with the Enunfont s Windows
function.

GETPROC_ENUMMETAFILE This callback is used with the Enum\vet aFi | e Windows
function.

GETPROC_ENUMOBJECTS This callback is used with the Enuntbj ect s Windows
function.

GETPROC_ENUMPROPS FIXED_DS This callback is used with the EnunPr ops
Windows function, when the fixed data segments callback is needed.

GETPROC_ENUMPROPS MOVEABLE_DS This callback is used with the EnunPr ops
Windows function, when the moveable data segments callback is needed.

GETPROC_ENUMTASKWINDOWS This callback is used with the Enunirask W ndows
Windows function.

GETPROC_ENUMWINDOWS This callback is used with the EnumW ndows Windows
function.

GETPROC_GLOBALNOTIFY This calback isused with the A obal Not i f y Windows
function.

GETPROC_GRAYSTRING This callback is used with the G- ay St r i ng Windows
function.

206 WIN386 Library Subprograms

GetProc16

Returns:

See Also:

Example:

GETPROC_LINEDDA This callback is used with the Li ne DDA Windows function.

GETPROC_SETRESOURCEHANDLER This callback is used with the
Set Resour ceHandl er Windows function.

GETPROC_SETTIMER This callback is used with the Set Ti nmer Windows function.

GETPROC_SETWINDOWSHOOK This callback is used with the Set W ndows Hook
Windows function.

GETPROC_USERDEFINED_x Thiscalback is used in conjunction with
Def i neUser Pr oc16 function to create a callback routine with an arbitrary
set of parameters. Up to 32 user defined callbacks are allowed, they are
identified by using GETPROC_USERDEFINED _1 through
GETPROC_USERDEFINED_32. The user defined callback must be declared
asaFAR PASCAL function, or as a FAR cdecl function.

The Get Pr oc 16 function returns a 16-bit far pointer to a callback procedure. This pointer
may then be fed to any Windows function that requires a pointer to a function within the
32-hit program. Note that the callback function within the 32-bit program must be declared
as FAR

Rel easeProc16

c$i ncl ude wi napi . fi

i nteger*4 cbp
i nteger*4 | pProcAbout

| get a 16-bit callback routine to point at
! our About dial ogue procedure, then create
I the dial ogue.
cbp = GetProcl6 (About, GETPROC_CALLBACK)
| pProcAbout = MakeProcl nstance(cbp, hlnst)
call D al ogBox(hlnst,
& " About Box’ c,
hwhd,
| pProcAbout)
call FreeProcl nstance(| pProcAbout)
call Rel easeProcl16(chp)

Classification: WIN386

WIN386 Library Subprograms 207

InvokelndirectFunction

Synopsis:

c$i ncl ude ' wi napi . fi’
i nteger*4 function | nvokelndirectFunction(handle, ...)
i nteger*4 handl e

Description: The | nvokel ndi r ect Funct i on function invokes the 16-bit function pointed to by the

Returns:

See Also:

Example:

specified handle. The handle must have been previously allocated using the
CGet | ndi r ect Funct i onHandl e function. The handle isfollowed by thelist of
parameters to be passed to the 16-bit function.

If you specified INDIR_PTR asaparameter when allocating the handle, then a 16-bit
pointer is allocated for a 32-hit pointer that you pass. However, this pointer is freed when
the 16-hit function being invoked returns.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

Thel nvokel ndi r ect Funct i on function returns the value which the 16-bit function
returned.

_Callle, Freel ndirect Functi onHandl e, Getl ndirect Functi onHandl e

c$i ncl ude wi napi . fi

i nteger*2 hDrv
integer*4 | pfn

hDrv = LoadLi brary("your.lib' c)

if(hDrv .It. 32) return

| pfn = Get ProcAddress(hDrv,

& ' Ext Devi ceMbde’ ¢)
if(Ipfn .eq 0) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
INDIR_WORD,
INDIR_WORD,
INDIR_DWORD,
INDIR_PTR,
INDIR_PTR,
INDIR_DWORD,
INDIR_DWORD,
INDIR_WORD,
INDIR_ENDLIST)

R R R R R R R RO

208 WIN386 Library Subprograms

InvokelndirectFunction

cb = I nvokel ndi rect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER' c,
"LPT1 c,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 209

MapAliasToFlat

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function MapAliasToFlat(alias)
i nteger*4 alias

Description: The MapAl i asToFl at function returns a 32-bit near pointer equivalent of a pointer
allocated previously with Al | ocAl i as16 or Al | ocHugeAl i as16. Thisisuseful if
you are communicating with a 16-bit application that is returning pointers that you
previously gaveit.

Returns:. The MapAl i asToFl at function returns a 32-bit near pointer (as an INTEGER* 4) usable
by the 32-bit application.

SeeAlso: Al locAliasl6, Al l ocHugeAl i asl6
Example: c¢$i ncl ude wi napi . fi

i nteger alias
i nteger ptr

alias = AllocAlias16(loc(alias))
alias += 5
ptr = MapAliasToFl at(alias)
if(ptr .eq. loc(alias) + 5)then

call MessageBox(NULL, "It Worked’c, ’'’'c, MB_OK)
el se

call MessageBox(NULL, ’'It Failed’c, ’''c, MB_OK)
end if

Classification: WIN386

210 WIN386 Library Subprograms

PASS_WORD_AS_POINTER

Synopsis: ¢$i ncl ude ' wi napi . fi’
integer*4 function PASS WORD_AS POINTER(dw)
i nteger*4 dw
Description: Some Windows API functions have pointer parameters that do not always take pointers.

Sometimes these parameters are pure data. In order to stop the supervisor from trying to
convert the data into a 16-bit far pointer, the PASS_WORD_AS_POINTER functionis used.

Returns:. ThePASS_WORD_AS_POINTER returnsa 32-hit "near" pointer, that isreally the parameter
dw.

Example: c¢$i ncl ude wi napi . fi

call Func(PASS_WORD_AS_POINTER(1l))

Classification: WIN386

WIN386 Library Subprograms 211

ReleaseProc16

Synopsis: ¢$i ncl ude ' wi napi . fi’
subrouti ne Rel easeProcl6(cbp)
i nteger*4 cbhp

Description: Rel easePr oc16 releases the callback function allocated by Get Proc16. Sincethe
callback routines are alimited resource, it isimportant to release the routines when they are
no longer required.

Returns:; Rel easePr oc16 isasubroutine.
See Also: Cet Proc16

Example c$i ncl ude wi napi.fi

i nteger*4 cbhp
i nteger*4 | pProcAbout
| get a 16-bit callback routine to point at
I our About dial ogue procedure, then create
I the dial ogue.
cbp = GetProcl6 (About, GETPROC_CALLBACK)
| pProcAbout = MakeProcl nstance(cbp, hlnst)
call Dial ogBox(hlnst, ’AboutBox’c,
& hwid, | pProcAbout)
call FreeProcl nstance(| pProcAbout)
call Rel easeProcl16(chp)

Classification: WIN386

212 WIN386 Library Subprograms

24 32-bit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows
application development.

The following topics are discussed in this chapter:

* Can you call 16-bit code from a 32-bit Windows application?

» How do | add my Windows resources?

* All function pointers passed to Windows must be 16-bit far pointers, correct?
» Why are 32-bit callback routines FAR?

* Why usethe _16 API functions?

24.1 Can you call 16-bit code from a 32-bit Windows
application?

A 32-bit Windows application can make a call to 16-bit code through the use of the Open
Watcom _Callle or I nvokel ndirect Functi on procedures. These functions ensure
that the Open Watcom Windows Supervisor prepares the stack for the 16-bit call and return to
the 32-bit code. The 32-hit application uses LoadLi br ary function to bring the 16-bit DLL
into memory and then calls the 16-bit procedures. To invoke 16-bit procedures, use

Get Pr ocAddr ess to get the 16-bit far pointer to the function. Usethe _cal116
procedure to call the 16-bit function sinceit is ssmpler to use than the

Get I ndi rect Funct i onHandl e, | nvokel ndi rect Functi on, and

Fr eel ndi r ect Funct i onHandl e sequence. Anexample of this processis provided
under the _Cal1l1le Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any

32-bit extended DLL procedure from within a 32-bit application, including DLLsthat are
available as products through Independent Software Vendors (ISVs).

Can you call 16-bit code from a 32-bit Windows application? 213

Windows 3.x Programming Guide

24.2 How do I add my Windows resources?

The WBI ND utility automatically runs the resource compiler to add the resources to the 32-hbit
Windows supervisor (since the supervisor is a 16-bit Windows application). Note that
resource compiler options may be specified by using the "R" option of WBI ND.

24.3 All function pointers passed to Windows must be
16-bit far pointers, correct?

All function pointers passed to Windows must be 16-bit far pointers since no translation is
applied to any function pointers passed to Windows. Trandation is often not possible, since
any functions that Windows isto call back must be exported, and only 16-bit functions can be
exported.

A 16-hit far pointer to afunction is obtained in one of two ways. either Windows givesit to

you (via Get Pr ocAddr, for example), or you obtain a pointer from the supervisor, via
Cet Proclé.

Function pointers obtained from Windows may either be fed into other Windows functions
requiring function pointers, or called indirectly by using _Ca1116 or by using the

Get I ndi rect Funct i onHandl e, | nvokel ndi rect Functi on, and

Fr eel ndi r ect Funct i onHandl e sequence.

The function Get Pr oc 16 returns a 16-bit far pointer to a callback function that Windows
canuse. This callback function will direct control into the desired 32-bit routine.

24.4 Why are 32-bit callback routines FAR?

The callback routines are declared as FAR so that the compiler will generate afar return from
the procedure. Thisis necessary since the 32-hit callback routineis"far" called from the
supervisor.

The callback routineis still "near” in the sense that it lies within the 32-bit flat address space
of the application. Thismeansthat Get Pr oc16 only needsthe offset of the 32-bit callback
function in order to set up the 16-bit procedure to call back correctly. Thus, Get Proc16
accepts type PROCPTR whichisin fact only 4 byteslong. The compiler will provide the
offset only, which is, as already stated, al that is needed.

214 Why are 32-bit callback routines FAR?

32-bit Extended Windows Application Development

24.5 Why use the _16 API functions?

The regular Windows API functions used in Open Watcom F77 automatically convert any
pointersto 16-bit far pointers for use by Windows. Sometimes, you may have a set of
pointersthat are 16-bit far pointers already (e.g., obtained from G obal Lock), and do not
need any conversion. The"_16..." API functions do not convert pointers, they simply pass
them on directly to Windows. See the appendix entitled " Special Windows APl Functions'
on page 217 for alist of the"_16..." API functions.

Why use the _16 API functions? 215

Windows 3.x Programming Guide

216 Why use the _16 API functions?

25 Special Windows API Functions

On rare occasions, you want to use 16-bit far pointers directly in a Windows function. Since
all Windows functions in the 32-bit environment are expecting 32-bit near pointers, you
cannot simply use the 16-bit far pointer directly in the function.

The following functions are specia versions of Windows API functions that do NOT convert
any of the pointers from 32-bit to 16-bit. Thereare 16 versions of all Windows API
functions that accept data pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem

_16Ansi ToOemBuUff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmaplndirect
_16CreateBrushindirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDial oglndirect
_16CreateDial oglndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnindirect

Special Windows API Functions 217

Windows 3.x Programming Guide

_16CreateFont
_16CreateFontIndirect
_16CreatelC
_16Createlcon
_16CreateMetaFile
_16CreatePalette
_16CreatePenindirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnindirect
_16CreateWindow
_16CreateWindowEx
_16DialogBox

_16Dia ogBoxIndirect
_16DialogBoxIndirectParam
_16Dia ogBoxParam
_16DispatchM essage
_16DIgDirList
_16DIgDirListComboBox
_16DIgDirSelect
_16DIgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildwWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumwWindows
_16EqualRect

_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProclnstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos

218 Special Windows API Functions

Special Windows API Functions

_16GetCharWidth
_16GetClasslnfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodelnfo
_16GetCommeError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDIgltemint
_16GetDIgltemText
_16GetEnvironment
_16GetK eyboardState
_16GetK eyNameT ext
_16GetMenuString
_16GetMetaFile
_16GetModuleFileName
_16GetModuleHandle
_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfilelnt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfilelnt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16GlobalAddAtom
_16Global FindAtom

Special Windows API Functions 219

Windows 3.x Programming Guide

_16Global GetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_l16InvalidateRect
_16InvertRect
_16lsDialogMessage
_16lsRectEmpty
_16LineDDA

_16L oadAccelerators
_16L oadBitmap

_16L oadCursor

_16L oadicon
_16LoadLibrary
_l16LoadMenu

_16L oadMenulndirect
_16LocadModule

_16L oadString
_16LPtoDP
_16MakeProclnstance
_16MapDialogRect
_16MessageBox
_160emToAnsi
_160emToAnsi Buff
_160ffsetRect
_160penComm
_160penFile
_160utputDebugString
_16PlayMetaFileRecord
_16Polygon
_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowM essage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrolIDC
_16ScrollWindow

220 Special Windows API Functions

Special Windows API Functions

_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDlIgltemText
_16SetEnvironment
_16SetKeyboardState
_16SetPaletteEntries
_16SetProp

_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut

_16ToAscii
_16TrackPopupMenu
_16TrandateAccelerator
_16Trand ateMDISysAccel
_16Trand ateMessage
_16UnhookWindowsHook
_16UnionRect
_l16UnregisterClass
_l6ValidateRect
_16WinExec
_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16 Iread

_16 lwrite

Special Windows API Functions 221

Windows 3.x Programming Guide

222 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

224

26 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed
Graphical User Interface (GUI) applications. In addition, Windows NT supports Dynamic
Link Libraries and applications with multiple threads of execution.

We have supplied al the necessary tools for native development on Windows NT. You can
also cross develop for Windows NT using either the DOS-hosted compilers and tools, the
Windows 95-hosted compilers and tools, or the OS/2-hosted compilers and tools. Testing and
debugging of your Windows NT application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in a special DOS
extender from Phar Lap (TNT) that can run your Windows NT character-mode application
under DOS.

26.1 Windows NT Character-mode Versus GUI

Basically, there are two classes of FORTRAN 77 applications that can run in awindowed
environment like Windows NT.

Thefirst are those FORTRAN 77 applications that do not use any of the Win32 AP
functions; they are strictly FORTRAN 77 applications that do not rely on the features of a
particular operating system.

* This Application must be created as Windows NT Character-mode Application.

The second class of FORTRAN 77 applications are those that actually call Win32 API
functions directly. These are applications that have been tailored for the Win32 operating
environment.

*» Open Watcom FORTRAN 77 does not provide direct support for these types of
applications. While we do provide include files that map out 16-bit Windows structures
and the interface to 16-bit Windows API calls, we do not provide this for Win32 API.
The Win32 application devel oper must create these as required.

« An alternate solution, for those so-inclined, isto develop the GUI part of the interface
in C and call these functions from FORTRAN code.

Windows NT Character-mode Versus GUI 225

Windows NT Programming Guide

A subsequent chapters deal with the creation of different application types for Windows NT
target.

226 Windows NT Character-mode Versus GUI

27 Creating Windows NT Character-mode
Applications

This chapter describes how to compile and link Windows NT Character-mode applications
simply and quickly. In this chapter, we look at applications written to exploit the Windows
NT Application Programming Interface (API).

We will illustrate the steps to creating Windows NT Character-mode applications by taking a
small sample application and showing you how to compile, link, run and debug it.

27.1 The Sample Character-mode Application

To demonstrate the creation of Windows NT Character-mode applications, we introduce a
simple sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI' T NONE
I NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
CHARACTER* 60 BUFFER
PARAMETER (FORME’ (A 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0O
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Primes between 1 and ', UPBOUND,
1 ' are: ', PRI MES
END

The Sample Character-mode Application 227

Windows NT Programming Guide

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

27.2 Building and Running the Character-mode
Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

Cw 386 -I=nt sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwf| 386 -1=nt sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

wf c386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 4390 statenents, 207 bytes, 1585 extensions, 0 warnings, O
errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Porti ons Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating a Wndows NT Character-node executable

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant Windows NT Character-mode application SI EVE. EXE can now be run under
Windows NT.

228 Building and Running the Character-mode Application

Creating Windows NT Character-mode Applications

27.3 Debugging the Character-mode Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open
Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cw 386 -I=nt -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw 386 -1=nt -d2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 4390 statenents, 293 bytes, 1585 extensions, 0 warnings, O
errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating a Wndows NT Character-node executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL386 will make sure that this debugging information
isincluded in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by

Debugging the Character-mode Application 229

Windows NT Programming Guide

specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open
Watcom Debugger icon. It would be too ambitious to describe the debugger in this
introductory chapter so we refer you to the book entitled Open Watcom Debugger User’'s
Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the
\ WATCOM SAMPLES\ FORTRAN\ W Ndirectory. The example programs are
ELLI PSE. FORand FWCOPY. FOR.

230 Debugging the Character-mode Application

28 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded
application is one whose tasks are divided among several threads of execution. A processis
an executing application and the resources it uses. A thread isthe smallest unit of execution
within aprocess. Each thread hasits own stack and a set of machine registers and shares all
resources with its parent process. The path of execution of one thread does not affect that of
another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, all
tasks, once initiated, are completed before the next task begins. In contrast, tasksin a
multi-threaded application can be performed concurrently since more than onethread is
executing at once. For example, each thread may be designed to perform a separate task.

28.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number
of issues that you must consider.

Since threads share the resources of its parent, it may be necessary to serialize accessto these
resources. For example, if your application contains more than one thread of execution and
each thread uses the PRI NT statement to display output to the console, it would be necessary
for the 1/0O support routines to allow only one thread to use the PRI NT facility at any time.
That is, once athread issues a PRI NT request, the 1/0O support routines should ensure that no
other thread displays information until all information for the initial thread has been

displayed.

28.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two
functions that create and terminate threads of execution. The function begi nt hr ead
creates a thread of execution and the function endt hr ead ends athread of execution. The
function t hr eadi d can be used to determine the current thread identifier.

Creating Threads 231

Windows NT Programming Guide

WARNING! If any thread uses an I/O statement or calls an intrinsic function, you must
usethe begi nt hr ead function to create the thread. Do not usethe Cr eat eThr ead
API function.

28.2.1 Creating a New Thread

The begi nt hr ead function creates a new thread. It isdefined asfollows.
integer function beginthread(start_address,
stack_size)

integer stack_size
end

where description:

start_addressis the address of the subroutine that will be called when the newly created
thread is executed. When the thread returns from that subroutine, the thread will
be terminated. Note that acall to the endt hr ead subroutine will also
terminate the thread.

stack_size specifiesthe size of the stack to be allocated by the operating system for the new
thread. The stack size should be amultiple of 4K.

If anew thread is successfully created, the thread identifier of the new thread is returned.
Otherwise, avalue of -1 is returned.

Theincludefilet hr ead. f i containsthe definition of the begi nt hr ead function.
Another thread related function for Windows NT is _beginthreadex. Seethe Open
Watcom C Library Reference for more information.

28.2.2 Terminating the Current Thread

The endt hr ead subroutine terminates the current thread. 1t is defined as follows.

subrouti ne endt hread()
end

Theincludefilet hr ead. fi contains the definition of the endt hr ead function.

232 Creating Threads

Windows NT Multi-threaded Applications

28.2.3 Getting the Current Thread Identifier

Thet hr eadi d function can be used to determine the current thread identifier. It isdefined

as follows.

i nteger function threadid()

end

Theincludefilet hr ead. fi containsthe definition of the t hr eadi d function.

28.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be
found in\ wat com sanpl es\ fortran\w n32.

* MIHREAD. FOR

*Spragma
*Spragma
*Spragma
*Spragma
*Spragma

aux
aux
aux
aux
aux

(__stdcall) Sleep parm(value)

(__stdcall) InitializeCriticalSection parm(reference)
(__stdcall) DeleteCriticalSection parm(reference)
(__stdcall) EnterCriticalSection parm(reference)
(__stdcall) LeaveCriticalSection parm(reference)

structure /RTL_CRITICAL_SECTION/

nt eger *4 Debugl nfo

nt eger *4 LockCount

nt eger *4 Recur si onCount
nt eger *4 Owni ngThr ead
nt eger*4 LockSemaphore
nt eger *4 Reserved

end structure

i nt eger NuniThr eads

| ogi cal Hol dThr eads

vol atil e Hol dThreads, NumThreads

record /RTIL_CRITICAL_SECTION/ CriticalSection
common NunTThr eads, Hol dThreads, Critical Section

integer STACK_SIZE
parameter (STACK_SIZE=8192)
integer NUM_THREADS
parameter (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

A Multi-threaded Example 233

Windows NT Programming Guide

print "(''main thread id ="'',i4)’, threadid()
Nunirhreads = 0

Hol dThreads = .true.

! main thread counts as 1

call InitializeCritical Section(Critical Section)
do i = 2, NUM_THREADS

if(beginthread(a_thread, STACK_SIZE) .eq. -1)then
print '('’'creation of thread ',i4, ' failed '), i
el se
Nunirhr eads = NuniThreads + 1
end if
end do

Hol dThreads = .fal se.
whi | e(NunThreads .ne. 0) do
call Sleep(1)

end while
call DeleteCritical Section(Critical Section)
end

subroutine a_thread()

structure /RIL_CRITICAL_SECTION/
nt eger *4 Debugl nfo

nt eger *4 LockCount

nt eger *4 Recur si onCount

nt eger *4 Omni ngThr ead

nt eger *4 LockSemaphore

nt eger *4 Reserved

end structure

i nt eger NuniThr eads

| ogi cal Hol dThr eads

vol ati |l e Hol dThr eads

record /RTL_CRITICAL_SECTION/ CriticalSection
comon NunThreads, Hol dThreads, Critical Section

integer threadid

whi | e(Hol dThreads) do

call Sleep(1)
end while
print "("'H fromthread "', i4)’, threadid()
call EnterCritical Section(Critical Section)
NuniThr eads = NuniThreads - 1
call LeaveCritical Section(Critical Section)
cal |l endthread()
end

Note:

1. Inthesubroutine a_thread, EnterCriti cal Secti on and
LeaveCritical Secti on arecaled when we modify the variable
Numrhr eads. Thisensuresthat the action of extracting the value of
NumThr eads from memory, incrementing the value, and storing the new result
into memory, occurs without interruption. If these functions were not called, it

234 A Multi-threaded Example

Windows NT Multi-threaded Applications

would be possible for two threads to extract the value of Nunmirhr eads from
memory before an update occurred.

Let usassume that thefile nt hr ead. f or contains the above example. Before compiling the
file, make sure that the WATCOM environment variable is set to the directory in which you
installed Open Watcom FORTRAN 77. Also, the FINCLUDE environment variable must
contain the\ wat com sr c\ f or t r an directory where " \WATCOM" is the name of the
directory in which you installed Open Watcom FORTRAN 77.

We can now compile and link the application by issuing the following command.

C:\>wf1386 -bm-I=nt mnthread

The"bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled
using the "bm" switch.

The"I" option specifies the target system for which the application isto be linked. The
system name nt isdefined inthefilew syst em | nk whichislocated in the "BINW"
subdirectory of the directory in which you installed Open Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

A Multi-threaded Example 235

Windows NT Programming Guide

236 A Multi-threaded Example

29 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application
uses functions from a standard library, the library functions referenced by the application
become part of the executable module. Thisform of linking is called static linking. When an
application uses functions from adynamic link library, the library functions referenced by the
application are not included in the executable module. Instead, the executable module
contains references to these functions which are resolved when the application isloaded. This
form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only
references to the functions in dynamic link libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
dynamic link library, the saving in disk space can be significant.

2. Since program modules only reference dynamic link libraries and do not contain
the actual executable code, adynamic link library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications
that use them. If many applications that use the same dynamic link library are
executing concurrently, the sharing of code and data segments improves memory
utilization.

29.1 Creating Dynamic Link Libraries

Once you have developed the source for alibrary of functions, a number of steps are required
to create adynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the

compiler that the module you are compiling is part of adynamic link library. Once you have
successfully compiled your source, you must create a linker directive file that describes the

Creating Dynamic Link Libraries 237

Windows NT Programming Guide

attributes of your dynamic link library. The following lists the most common linker directives
required to create a dynamic link library.

1. The"SYSTEM" directiveisused to specify that adynamic link library isto be
created.

2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link
library are to be exported.

3. The"OPTION" directiveis used to specify attributes such as the name of the
dynamic link library and how to allocate the automatic data segment when the
dynamic link library is referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example,
a segment may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to
client applications that wish to useit. This can be done by creating an import library for the
dynamic link library or creating alinker directive file that contains "IMPORT" directives for
each of the entry pointsin the dynamic link library.

29.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example. The source code for
this example can befound in \ wat coml sanpl es\fortran\wi n\dl . Unlike
applications developed in the C or C++ language, the FORTRAN 77 devel oper must not
provideaLi bMai n entry point. Thisentry point isalready defined in the Open Watcom
FORTRAN 77 run-time libraries. Therun-time system’s Li bMai n provides for the proper
initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are
optional but we show skeleton versions in the following example so that you can develop your
own if required.

* DLLSAMP. FOR

integer function __fdll_initialize_ ()
* Call ed from Li bMain during "DLL PROCESS ATTACH'
* do process initialization

print *, "H fromprocess attach’

* returning O indicates failure
__fdll initialize_ =1
return
end

238 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

integer function __ fthrd initialize ()
* Cal l ed from Li bMain during "DLL THREAD ATTACH"
* do thread initialization

print *, "H fromthread attach’

* returning O indicates failure
__fthrd_initialize_ =1
return
end
integer function __fthrd_terminate_ ()
* Cal l ed from Li bMain during "DLL THREAD DETACH'
* do thread cl eanup

print *, "H fromthread detach’

* returning O indicates failure

__fthrd _terminate_ =1

return

end

integer function __fdll terminate_ ()
* Cal |l ed from Li bMain during "DLL PROCESS DETACH'
* do process cl eanup

print *, "Hi from process detach’

* returning O indicates failure
__fdll terminate_ =1
return
end

subroutine dll_entry_1()
print *, "H fromdll entry #1
end

subroutine dll_entry_2()
print *, "H fromdll entry #2'
end

Here are some explanatory notes on this example.
Function Description

__ FDLL_INITIALIZE_ Thisfunctionis called when the DLL is attaching to the address
space of the current process as a result of the process starting up or as aresult of
acal toLoadLi brary. A DLL can usethis opportunity to initialize any
instance data.

During initial process startup or after acall to LoadLi br ary, theoperating
system scans the list of loaded DLL s for the process. For each DLL that has not
already been called with the DLL_PROCESS_ATTACH value, the system calls
theDLL’sLi bMai n entry-point (in the Open Watcom FORTRAN 77 run-time

Creating a Sample Dynamic Link Library 239

Windows NT Programming Guide

system). Thiscall is madein the context of the thread that caused the process
address space to change, such as the primary thread of the process or the thread
that called LoadLi brary.

_ FTHRD_INITIALIZE_ Thisfunction is called when the current processis creating a new
thread. When this occurs, the system callsthe Li bMai n entry-point (in the
Open Watcom FORTRAN 77 run-time system) of all DLLs currently attached to
the process. The call is madein the context of the new thread. DLLs can use
this opportunity to initialize thread specific data. A thread callingthe DLL's
Li bMai n withthe DLL_PROCESS_ATTACH valuedoesnot call Li bMai n
withthe DLL_THREAD_ATTACH value. Notethat Li bMai n iscalled with this
value only by threads created after the DLL is attached to the process. When a
DLL isattached by LoadLi br ary, existingthreadsdo not call the Li bMai n
entry-point of the newly loaded DLL.

__ FTHRD_TERMINATE_ Thisfunction is called when athread is exiting normally. The
DLL usesthis opportunity to do thread specific termination such as closing files
that were opened by the thread. The operating system callsthe Li bMai n
entry-point (in the Open Watcom FORTRAN 77 run-time system) of all
currently loaded DLLswith thisvalue. The call is made in the context of the
exiting thread. There are casesin which Li bMai n iscalled for aterminating
thread even if the DLL never attached to the thread. For example, Li bMai n is
never called with the DLL_THREAD ATTACH vauein the context of the thread
in either of these two situations:

» The thread was the initial thread in the process, so the system called
Li bMai n withthe DLL_PROCESS_ATTACH value.

* The thread was already running when acall to the LoadLi br ary
function was made, so the system never called Li bMai n for it.

__FDLL_TERMINATE_ Thisfunction is called when the DLL is detaching from the address
space of the calling process as aresult of either anormal termination or of a call
toFreeLi brary. WhenaDLL detachesfrom aprocess as aresult of process
termination or asaresult of acall to Fr eelLi br ary, theoperating system
doesnot call theDLL’s Li bMai n withthe DLL _THREAD_DETACH vaue for
theindividual threads of the process. The DLL isonly given
DLL_PROCESS_DETACH notification. DLLs can take this opportunity to clean
up all resources for al threads attached and known to the DLL.

Note: These functions return 1 if initialization succeeds or O if initialization fails.
Subsequently, this value will be returned by the run-time system’s Li bMai n
function.

240 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

If thereturn value is O when Li bMai n is called because the process uses the
LoadLi brary function, LoadLi brary returns NULL.

If thereturn value is O when Li bMai n is called during process initialization, the
process terminates with an error.

DLL_ENTRY_1, DLL_ENTRY_2 These are sample DLL entry points that we will call from
our simple test program.

Some further explanation and an example are provided in alater section.

Assume the above exampleis contained in thefile dl | sanp. f or. We can compile thefile
using the following command. Note that we must specify the "bd" compiler option.

C:\>wfc386 -bd dllsanp

Before we can link our example, we must create alinker directive file that describes the
attributes and entry points of our dynamic link library. The following isalinker directivefile,
caleddl | sanmp. | nk, that can be used to create the dynamic link library.

system nt_dll initinstance terminstance
export DLL_ENTRY_1

export DLL_ENTRY_2

file dllsanp

Notes:

1. The"SYSTEM" directive specifies that we are creating a Windows NT dynamic
link library.

2. When adynamic link library uses the Open Watcom FORTRAN 77 run-time
libraries, an automatic data segment is created each time a new process accesses the
dynamic link library. For this reason, initialization code must be executed when a
process accesses the dynamic link library for the first time. To achieve this,
"INITINSTANCE" must be specified in the "SY STEM" directive. Similarly,
"TERMINSTANCE" must be specified so that the termination code is executed
when a process has completed its access to the dynamic link library. 1f the Open
Watcom FORTRAN 77 run-time libraries are not used, these options are not
required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library.

Note that in Open Watcom FORTRAN 77, names of al symbols are uppercased.
Regardless of the case used in source files, linker directives must use uppercased

Creating a Sample Dynamic Link Library 241

Windows NT Programming Guide

symbol names. The linker is case sensitive by default, although the "OP
NOCASEEXACT" directive may be used to override this.

We can now create our dynamic link library by issuing the following command.
C\>wink @lllsanmp

Afilecaled dl | sanp. dl | will be created.

29.3 Using Dynamic Link Libraries

Once we have created adynamic link library, we must allow other applications to access the
functions available in the dynamic link library. There are two waysto achieve this.

Thefirst method isto create alinker directive file which contains an "IMPORT" directive for
all entry pointsin the dynamic link library. The "IMPORT" directive provides the name of
the entry point and the name of the dynamic link library. When creating an application that
references afunction in the dynamic link library, this linker directive file would be included
as part of the linking process that created the application.

The second method is to use import libraries. Animport library isastandard library that is
created from adynamic link library by using the Open Watcom Library Manager. It contains
object modules that describe the entry pointsin a dynamic link library. The resulting import
library can then be specified in a"LIBRARY" directive in the same way one would specify a
standard library.

Using an import library isthe preferred method of providing references to functionsin
dynamic link libraries. When adynamic link library is modified, typically the import library
corresponding to the modified dynamic link library is updated to reflect the changes. Hence,
any directive file that specifies the import library in a"LIBRARY" directive need not be
modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directivesto reflect the changes in the dynamic link library.

Let us create an import library for our sample dynamic link library we created in the previous
section. We do this by issuing the following command.

C\>wib dllsanmp +dlIlsanp.dll
A standard library called dl | sanp. | i b will be created.

Suppose the following sample program, contained in thefile dl | t est . f or, callsthe
functions from our sample dynamic link library.

242 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

* DLLTEST. FOR

call dll _entry_1¢()
call dll_entry_2()
end

We can compile and link our sample application by issuing the following command.

C\>wil 386 -l=nt dlltest dllsanp.lib

If we had created alinker directive file of "IMPORT" directivesinstead of an import library
for the dynamic link library, the linker directivefile, say dl | i nps. | nk, would be as
follows.

import DLL_ENTRY_1 dllsamp
import DLL_ENTRY 2 dllsamp

To compile and link our sample application, we would issue the foll owing command.

C\>wfl386 -I=nt dlltest -"@l!linps"

29.4 The Dynamic Link Library Data Area

The Open Watcom FORTRAN 77 32-bit run-time library does not support the general case
operation of DLLsin an execution environment where there is only one instance of the DATA
segment (DGROUP) for that DLL.

There are two cases that can lead to a DL L executing with only one instance of the DGROUP.
1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.
2. DLLslinked for the Win32 API and executing under Win32s.
In these cases the run-time library startup code detects that there is only one instance of the
DGROUP when a second process attemptsto attach to the DLL. At that point, it issuesa
diagnostic for the user and then notifies the operating system that the second process cannot
attachtothe DLL.
Developers who require DLLs to operate when there is only one instance of the DGROUP can

suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL.

The Dynamic Link Library Data Area 243

Windows NT Programming Guide

Doing so requires good behaviour on the part of processes attaching to the DLL. This good
behaviour consists primarily of ensuring that the first process to attach to the DLL isalso the
last process to detach from the DLL thereby ensuring that the DATA segment is not rel eased
back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DL L, the devel oper must provide a replacement entry
point with the following prototype:

int _ _disallow_single dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA
segment is allowed.

29.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with
it. Theinitialization routine can either be called the first time any process accesses the DLL
("INITGLOBAL" is specified at link time) or each time a process accesses the DLL
("INITINSTANCE" is specified at link time). Similarly, the termination routine can either be
called when all processes have completed their access of the DLL ("TERMGLOBAL" is
specified at link time) or each time a process completes its access of the DLL
("TERMINSTANCE" is specified at link time).

For aDLL that usesthe FORTRAN 77 run-time libraries, initialization and termination of the
FORTRAN 77 run-time environment is performed automatically. Itisalso possiblefor a
DLL to doitsown specid initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL
initialization and termination code. The __fdl11l initialize_ routineiscalledfor DLL
processinitialization. The ~_fthrd initialize routineiscalled for DLL thread
initialization. The __fthrd terminate_ routineiscalled for DLL thread termination.
The _fdll terminate_ routineiscalled for DLL processtermination. Default stub
versions of these routines are included in the run-time library. If you wish to perform
additional initialization/termination processing that is specific to your dynamic link library,
you may write your own versions of these routines.

When a process first attaches to the DLL, the FORTRAN 77 run-time environment is
initialized and then theroutine __fdll initialize_ iscalled. When athread is started,
theroutine __fthrd_initialize_ iscaled. When athread isterminated, the routine
__fthrd terminate_iscalled. When the main process relinquishesthe DLL, the

244 Dynamic Link Library Initialization/Termination

Windows NT Dynamic Link Libraries

routine __fdll terminate_ iscaled and then the FORTRAN 77 run-time environment
is terminated,

Theinitiaization and termination routines return an integer. A value of O indicates failure; a
value of 1 indicates success. The following example illustrates sample
initialization/termination routines.

* DLLINIT. FOR

integer function __fdll_initialize_ ()
integer __fthrd_initialize_, __fthrd_terminate_
integer __fdll terminate_, dll_entry

integer WORKING_SIZE

parameter (WORKING_SIZE = 16*1024)
integer ierr, WrkingStorage

di nensi on Wor ki ngSt or age(:)

allocate(WorkingStorage (WORKING_SIZE), stat=ierr)
if(ierr .eq. 0)then

__fdll_initialize_ =1
el se

__fdll_initialize_ = 0
endi f
return

entry __fthrd initialize ()
__fthrd_initialize_ =1
return

entry __ fthrd terminate_ ()
__fthrd_terminate_ =1
return

entry __fdll terminate ()
* Note: no run-time calls allowed under OS/2 Warp
deal | ocat e(Wor ki ngSt or age)
__fdll terminate_ =1
return

entry dll_entry()
I use WorkingStorage
return
end
In the above example, the process initialization routine all ocates storage that the dynamic link

library needs, theroutine d11 _entry usesthe storage, and the process termination routine
frees the storage alocated in the initialization routine.

Dynamic Link Library Initialization/Termination 245

Windows NT Programming Guide

246 Dynamic Link Library Initialization/Termination

0S/2 Programming Guide

0S/2 Programming Guide

248

30 Creating 16-bit 0S/2 1.x Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible
application, or a Presentation Manager application. A fullscreen application runsin its own
screen group. A PM-compatible application will run in an OS/2 fullscreen environment or in
awindow in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on
creating Presentation Manager applications, refer to the section entitled "Programming for
0S/2 Presentation Manager" on page 273.

We will illustrate the stepsto creating 16-bit OS/2 1.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

30.1 The Sample Application

To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented
tools, we introduce a simple sample program. For our example, we are going to use the
"sieve" program.

The Sample Application 249

0S/2 Programming Guide

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRI MES + 1
DOK =1 + |, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRINT FORM ' The Nunber of Prines between 1 and ', UPBOUND,
1 ' are: ', PRI MES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

30.2 Building and Running the Sample 0S/2 1.x
Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

[C\]wfl -l1=0s2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

250 Building and Running the Sample 0S/2 1.x Application

Creating 16-bit 0S/2 1.x Applications

[C\]wf]l -1=0s2 sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wf ¢ sieve.for
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 21 statenments, 311 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

[C\]sieve
The Nunmber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. for) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe
that is run by OS/2 when you enter the "sieve" command.

30.3 Debugging the Sample 0S/2 1.x Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Open Watcom F77 compiler
"debug” options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Debugging the Sample 0S/2 1.x Application 251

0S/2 Programming Guide

[C\]wfl -l=0s2 -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

[C\]wf]l -1=0s2 -d2 sieve.for
Open Watcom F77/16 Conpile and Link Uility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.

wfc sieve.for -d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statenments, 392 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

For OS/2, you should also include the BI NP\ DLL directory inthe "LIBPATH" directive of

the system configuration file CONFI G. SYS. It contains the Open Watcom Debugger
Dynamic Link Libraries (DLLS).

252 Debugging the Sample 0S/2 1.x Application

Creating 16-bit 0S/2 1.x Applications

Example:
I i bpat h=c: \wat com bi np\ dl |

To request the Open Watcom Debugger to assist in debugging the application, the following
command may be issued.

[C\]wd sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

Debugging the Sample 0S/2 1.x Application 253

0S/2 Programming Guide

254 Debugging the Sample 0S/2 1.x Application

31 Creating 32-bit 0S/2 Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible
application, or a Presentation Manager application. A fullscreen application runsin its own
screen group. A PM-compatible application will run in an OS/2 fullscreen environment or in
awindow in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on
creating Presentation Manager applications, refer to the section entitled "Programming for
0S/2 Presentation Manager" on page 273.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample
application and showing you how to compile, link, run and debug it.

31.1 The Sample Application

To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools,
we introduce a simple sample program. For our example, we are going to use the "sieve"
program.

The Sample Application 255

0S/2 Programming Guide

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRI MES + 1
DOK =1 + |, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRINT FORM ' The Nunber of Prines between 1 and ', UPBOUND,
1 ' are: ', PRI MES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

31.2 Building and Running the Sample 0S/2
Application

To compile and link our example program which is stored in thefile si eve. f or, enter the
following command:

[C\]wfl 386 -1=0s2v2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

256 Building and Running the Sample 0S/2 Application

Creating 32-bit 0S/2 Applications

[C\]wil386 -1=0s2v2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wf 386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat com org/ for details.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

[C\]sieve
The Nunmber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. for) and si eve. exe (the result of linking
si eve. obj with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe
that is run by OS/2 when you enter the "sieve" command.

31.3 Debugging the Sample 0S/2 Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open
Watcom Linker.

Debugging the Sample 0S/2 Application 257

0S/2 Programming Guide

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

[C\]wfl 386 -]1=0s2v2 -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

[C\]wfl 386 -1=0s2v2 -d2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1990, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.

wfc386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1984, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See http://ww. openwat comorg/ for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2006 the Open Watcom Contributors. Al R ghts Reserved.
Portions Copyright (c) 1985, 2002 Sybase, Inc. Al Rights Reserved.
Source code is avail abl e under the Sybase Qpen Watcom Public License.
See http://ww. openwat com org/ for details.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Open Watcom F77 compiler. WFL386 will make sure that this debugging information
isincluded in the executable file that is produced by the linker.

The "bytes" value islarger than in the previous example since selection of the "d2" option
resultsin fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Open Watcom Debugger to assist in debugging the application, the following
command may be issued.

[C\]wd sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

258 Debugging the Sample 0S/2 Application

32 0S/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded
application is one whose tasks are divided among several threads of execution. A processis
an executing application and the resources it uses. A thread isthe smallest unit of execution
within aprocess. Each thread hasits own stack and a set of machine registers and shares all
resources with its parent process. The path of execution of one thread does not affect that of
another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, all
tasks, once initiated, are completed before the next task begins. In contrast, tasksin a
multi-threaded application can be performed concurrently since more than onethread is
executing at once. For example, each thread may be designed to perform a separate task.

32.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number
of issues that you must consider.

Since threads share the resources of its parent, it may be necessary to serialize accessto these
resources. For example, if your application contains more than one thread of execution and
each thread uses the PRI NT statement to display output to the console, it would be necessary
for the 1/0O support routines to allow only one thread to use the PRI NT facility at any time.
That is, once athread issues a PRI NT request, the 1/0O support routines should ensure that no
other thread displays information until all information for the initial thread has been

displayed.

32.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two
functions that create and terminate threads of execution. The function begi nt hr ead
creates a thread of execution and the function endt hr ead ends athread of execution. The
function t hr eadi d can be used to determine the current thread identifier.

Creating Threads 259

0S/2 Programming Guide

WARNING! If any thread uses an I/O statement or calls an intrinsic function, you must
usethe begi nt hr ead function to create the thread. Do not use the
DosCr eat eThr ead API function.

32.2.1 Creating a New Thread

The begi nt hr ead function creates a new thread. It isdefined asfollows.
integer function beginthread(start_address,
stack_size)

integer stack_size
end

where description:

start_addressis the address of the subroutine that will be called when the newly created
thread is executed. When the thread returns from that subroutine, the thread will
be terminated. Note that acall to the endt hr ead subroutine will also
terminate the thread.

stack_size specifiesthe size of the stack to be allocated by the operating system for the new
thread. The stack size should be amultiple of 4K.

If anew thread is successfully created, the thread identifier of the new thread is returned.
Otherwise, avalue of -1 is returned.

Theincludefilet hr ead. f i containsthe definition of the begi nt hr ead function.

32.2.2 Terminating the Current Thread

The endt hr ead subroutine terminates the current thread. It is defined as follows.

subrouti ne endt hread()
end

Theincludefilet hr ead. fi containsthe definition of the endt hr ead function.

260 Creating Threads

0S/2 2.x Multi-threaded Applications

32.2.3 Getting the Current Thread Identifier

Thet hr eadi d function can be used to determine the current thread identifier. It isdefined
as follows.

i nteger function threadid()
end

Theincludefilet hr ead. fi containsthe definition of the t hr eadi d function.

32.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be
found in\ wat com sanpl es\fortran\ os2.

* MTHREAD. FOR
*$pragma aux DosSleep parn(value) [] caller

i nteger NuniThr eads
| ogi cal Hol dThr eads
common NuniThr eads, Hol dThr eads

integer STACK_SIZE

parameter (STACK_SIZE=32768)
integer NUM_THREADS
parameter (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

print *("’main thread id =", i4)’, threadid()
Nunirhreads = 0

Hol dThreads = .true

! main thread counts as 1

do i = 2, NUM_THREADS

if(beginthread(a_thread, STACK_SIZE) .eq. -1)then
print ('’ creation of thread ', i4, ''failed '), i
el se
NunmThr eads = NunThreads + 1
end if
end do

Hol dThreads = .fal se

whi | e(Nunirhreads .ne. 0)do
call DosSleep(1)

end while

end

A Multi-threaded Example 261

0S/2 Programming Guide

subroutine a_thread()
i nt eger NunThr eads
| ogi cal Hol dThr eads
common NuniThr eads, Hol dThr eads
integer threadid
whi | e(Hol dThreads)do
call DosSleep(1)

end while
call DosEnterCritSec()
print "("'H fromthread "', i4)’, threadid()

NuniThr eads = NuniThreads - 1
call DosExitCritSec()

call endthread()

end

Note:

1. Inthesubroutine a_thread, DosEnterCrit Sec and DosExi t Crit Sec are
called when we modify the variable NuniThr eads. Thisensuresthat the action
of extracting the value of Numrhr eads from memory, incrementing the value,
and storing the new result into memory, occurs without interruption. If these
functions were not called, it would be possible for two threads to extract the value
of NunThr eads from memory before an update occurred.

Let usassumethat thefile nt hr ead. f or contains the above example. Before compiling the
file, make sure that the WATCOM environment variable is set to the directory in which you
installed Open Watcom FORTRAN 77. Also, the FINCL UDE environment variable must
contain the\ wat com sr c\ f ort r an\ os2 directory where \WATCOM" is the name of
the directory in which you installed Open Watcom FORTRAN 77.

We can now compile and link the application by issuing the following command.

[C\]w] 386 -bm-1=0s2v2 nt hread
The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled
using the "bm" switch.
The"I" option specifies the target system for which the application isto be linked. The
system name 0s2v2 isdefined in thefile w syst em | nk whichislocated in the "BINW"
subdirectory of the directory in which you installed Open Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

262 A Multi-threaded Example

0S/2 2.x Multi-threaded Applications

32.4 Thread Limits

Thereis alimit to the number of threads an application can create under 16-bit 0OS/2. The
default limit is 32. Thislimit can be adjusted by defining the integer function
__getmaxthreads which returns the new thread limit.

Under 32-bit OS/2, there is no limit to the number of threads an application can create.
However, due to the way in which multiple threads are supported in the Open Watcom
libraries, there is a small performance penalty once the number of threads exceeds the default
limit of 32 (this number includes the initial thread). If you are creating more than 32 threads
and wish to avoid this performance penalty, you can redefine the threshold value of 32. You
can statically initialize the global variable __MaxThreads.

Thislimit can be adjusted by defining the integer function __getmaxthreads which
returns the new thread limit. By defining __getmaxthreads asfollows, the new threshold
value will be set to 48.

integer function _ _getmaxthreads()
__getmaxthreads = 48
end

Thisversion of __getmaxthreads will replace the default function that isincluded in the
run-time library. The default function simply returns the current value of the internal variable

__MaxThreads. Your version of thisfunction will return anew value for this variable.
Internally, the run-time system executes code similar to the following:

__MaxThreads = __getmaxthreads()

Thus, the default _ _getmaxthreads function does not ater thevalue of __MaxThreads
but your version will.

Thread Limits 263

0S/2 Programming Guide

264 Thread Limits

33 0S/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application
uses functions from a standard library, the library functions referenced by the application
become part of the executable module. Thisform of linking is called static linking. When an
application uses functions from adynamic link library, the library functions referenced by the
application are not included in the executable module. Instead, the executable module
contains references to these functions which are resolved when the application isloaded. This
form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only
references to the functions in dynamic link libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
dynamic link library, the saving in disk space can be significant.

2. Since program modules only reference dynamic link libraries and do not contain
the actual executable code, adynamic link library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications
that use them. If many applications that use the same dynamic link library are
executing concurrently, the sharing of code and data segments improves memory
utilization.

33.1 Creating Dynamic Link Libraries

Once you have developed the source for alibrary of functions, a number of steps are required
to create adynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the

compiler that the module you are compiling is part of adynamic link library. Once you have
successfully compiled your source, you must create a linker directive file that describes the

Creating Dynamic Link Libraries 265

0S/2 Programming Guide

attributes of your dynamic link library. The following lists the most common linker directives
required to create a dynamic link library.

1. The"SYSTEM" directiveisused to specify that adynamic link library isto be
created.

2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link
library are to be exported.

3. The"OPTION" directiveis used to specify attributes such as the name of the
dynamic link library and how to allocate the automatic data segment when the
dynamic link library is referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example,
a segment may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to
client applications that wish to useit. This can be done by creating an import library for the
dynamic link library or creating alinker directive file that contains "IMPORT" directives for
each of the entry pointsin the dynamic link library.

33.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example. The source code for
this example can befound in \ wat com sanpl es\fortran\os2\dl I . Unlike
applications developed in the C or C++ language, the FORTRAN 77 devel oper must not
provideaLi bMai n entry point. Thisentry point isalready defined in the Open Watcom
FORTRAN 77 run-time libraries. Therun-time system’s Li bMai n provides for the proper
initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are
optional but we show skeleton versions in the following example so that you can develop your
own if required.

* DLLSAMP. FOR

integer function __fdll_initialize_ ()
* Call ed from Li bMain during "DLL PROCESS ATTACH'
* do process initialization

print *, "H fromprocess attach’

* returning O indicates failure
__fdll initialize_ =1
return
end

266 Creating a Sample Dynamic Link Library

0S/2 2.x Dynamic Link Libraries

integer function __fdll terminate_ ()
Cal l ed from Li bMain during "DLL PROCESS DETACH

do process cl eanup
print *, "Hi from process detach

returning O indicates failure
__fdll terminate_ =1

return

end

subroutine dll_entry_1()
print *, "H fromdll entry #1
end

subroutine dll_entry_2()
print *, "H fromdll entry #2
end

Assume the above exampleis contained in thefile dl | sanp. f or. We can compile thefile
using the following command. Note that we must specify the "bd" compiler option.

[C\]wfc386 -bd dllsanp

Before we can link our example, we must create alinker directive file that describes the
attributes and entry points of our dynamic link library. The following isalinker directivefile,
caleddl | sanmp. | nk, that can be used to create the dynamic link library.

system os2v2 dl |l initinstance term nstance
opti on manyaut odat a

export DLL_ENTRY 1

export DLL_ENTRY 2

file dllsanp
Notes:
1. The"SYSTEM" directive specifies that we are creating a 32-bit OS/2 dynamic link

library.

The"MANYAUTODATA" option specifies that the automatic data segment is
allocated for every instance of the dynamic link library. This option must be
specified only for adynamic link library that uses the Open Watcom FORTRAN 77
run-time libraries. If the Open Watcom FORTRAN 77 run-time libraries are not
used, this option is not required. Our example does use the Open Watcom
FORTRAN 77 run-time libraries so we must specify the "MANYAUTODATA"
option.

Aswas just mentioned, when adynamic link library uses the Open Watcom
FORTRAN 77 run-time libraries, an automatic data segment is created each time a

Creating a Sample Dynamic Link Library 267

0S/2 Programming Guide

process accesses the dynamic link library. For this reason, initialization code must
be executed when a process accesses the dynamic link library for thefirst time. To
achieve this, "INITINSTANCE" must be specified in the"SY STEM" directive.
Similarly, "TERMINSTANCE" must be specified so that the termination codeis
executed when a process has compl eted its access to the dynamic link library. If
the Open Watcom FORTRAN 77 run-time libraries are not used, these options are
not required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library.
Note that in Open Watcom FORTRAN 77, names of all symbols are uppercased.
Regardless of the case used in source files, linker directives must use uppercased
symbol names. The linker is case sensitive by default, although the "OP
NOCASEEXACT" directive may be used to override this.

We can now create our dynamic link library by issuing the following command.
[C\]Wink @IIsanp

Afilecaled dl | sanp. dl | will be created.

33.3 Using Dynamic Link Libraries

Once we have created adynamic link library, we must allow other applications to access the
functions available in the dynamic link library. There are two ways to achieve this.

Thefirst method isto create alinker directive file which contains an "IMPORT" directive for
all entry pointsin the dynamic link library. The"IMPORT" directive provides the name of
the entry point and the name of the dynamic link library. When creating an application that
references afunction in the dynamic link library, this linker directive file would be included
as part of the linking process that created the application.

The second method is to use import libraries. Animport library isastandard library that is
created from adynamic link library by using the Open Watcom Library Manager. It contains
object modules that describe the entry pointsin adynamic link library. The resulting import
library can then be specified in a"LIBRARY" directive in the same way one would specify a
standard library.

Using an import library isthe preferred method of providing references to functionsin
dynamic link libraries. When adynamic link library is modified, typically the import library
corresponding to the modified dynamic link library is updated to reflect the changes. Hence,
any directive file that specifies the import library in a"LIBRARY" directive need not be

268 Using Dynamic Link Libraries

0S/2 2.x Dynamic Link Libraries

modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directivesto reflect the changes in the dynamic link library.

Let us create an import library for our sample dynamic link library we crested in the previous
section. We do this by issuing the following command.

[C\]Wib dllsanp +dl|sanp.dll
A standard library called dl | sanp. | i b will be created.

Suppose the following sample program, contained in thefile dl | t est . f or, callsthe
functions from our sample dynamic link library.

* DLLTEST. FOR

call dll _entry_1¢()
call dll_entry_2()
end

We can compile and link our sample application by issuing the following command.
[C\]wf] 386 -1=0s2v2 dlltest dllsamp.lib

If we had created alinker directive file of "IMPORT" directivesinstead of an import library

for the dynamic link library, the linker directivefile, say dl | i nps. | nk, would be as

follows.

import DLL_ENTRY 1 dllsamp
import DLL_ENTRY 2 dllsamp

To compile and link our sample application, we would issue the following command.

[C\]wfl 386 -1=0s2v2 dlltest -"@ll!linps"

33.4 The Dynamic Link Library Data Area

The Open Watcom FORTRAN 77 32-bit run-time library does not support the general case
operation of DLLsin an execution environment where there is only one instance of the DATA
segment (DGROUP) for that DLL.

There are two cases that can lead to a DL L executing with only one instance of the DGROUP.

1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.

The Dynamic Link Library Data Area 269

0S/2 Programming Guide

2. DLLslinked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the
DGROUP when a second process attempts to attach to the DLL. At that point, it issuesa
diagnostic for the user and then notifies the operating system that the second process cannot
attachtothe DLL.

Developers who require DL Ls to operate when there is only one instance of the DGROUP can
suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good
behaviour consists primarily of ensuring that the first process to attach to the DLL isaso the
last process to detach from the DLL thereby ensuring that the DATA segment is not rel eased
back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DL L, the devel oper must provide a replacement entry
point with the following prototype:

int _ _disallow_single dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA
segment is allowed.

33.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with
it. Theinitialization routine can either be called the first time any process accesses the DLL
("INITGLOBAL" is specified at link time) or each time a process accesses the DLL
("INITINSTANCE" is specified at link time). Similarly, the termination routine can either be
called when all processes have completed their access of the DLL ("TERMGLOBAL" is
specified at link time) or each time a process completes its access of the DLL
("TERMINSTANCE" is specified at link time).

For aDLL that usesthe FORTRAN 77 run-time libraries, initialization and termination of the
FORTRAN 77 run-time environment is performed automatically. Itisalso possiblefor a
DLL to doitsown special initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL

initialization and termination code. The = _fd1l1l initialize routineiscalled for DLL
processinitialization. The = _fd11l terminate_ routineiscalled for DLL process

270 Dynamic Link Library Initialization/Termination

0S/2 2.x Dynamic Link Libraries

termination. Default stub versions of these routines are included in the run-time library. 1If
you wish to perform additional initialization/termination processing that is specific to your
dynamic link library, you may write your own versions of these routines.

Once the FORTRAN 77 run-time environment is initialized, the routine
__fdll_initialize_iscaled. After the FORTRAN 77 run-time environment is
terminated, theroutine __fdl1l terminate_ iscaled. Thislast pointisimportant sinceit
means that you cannot do any run-time callsin the termination routine.

Theinitialization and termination routines return an integer. A value of O indicates failure; a
value of 1 indicates success. The following example illustrates sample
initialization/termination routines.

* DLLINIT. FOR

integer function _ _fdll initialize ()
integer __fdll terminate_, dll_entry

integer WORKING_SIZE

parameter (WORKING_SIZE = 16*1024)
integer ierr, WrkingStorage

di nensi on Wor ki ngSt or age(:)

allocate(WorkingStorage (WORKING_SIZE), stat=ierr)
if(ierr .eq. 0)then

__fdll_initialize_ =1
el se

__fdll_initialize_ = 0
endi f
return

entry __fdll terminate ()
* Note: no run-tinme calls allowed under OS/2 Warp
deal | ocat e(Wor ki ngSt or age)
__fdll terminate_ =1
return

entry dll_entry()
I use WorkingStorage
return
end
In the above example, the process initialization routine allocates storage that the dynamic link

library needs, theroutine d11 _entry usesthe storage, and the process termination routine
frees the storage alocated in the initialization routine.

Dynamic Link Library Initialization/Termination 271

0S/2 Programming Guide

272 Dynamic Link Library Initialization/Termination

34 Programming for 0S/2 Presentation
Manager

Basically, there are two classes of FORTRAN 77 applications that can run in awindowed
environment.

Thefirst are those FORTRAN 77 applications that do not use any of the Presentation Manager
API functions; they are strictly FORTRAN 77 applications that do not rely on the features of a
particular operating system.

The second class of FORTRAN 77 applications are those that actually call Presentation
Manager API functions directly. These are applications that have been tailored for the
Presentation Manager operating environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager
programming.

34.1 Porting Existing FORTRAN 77 Applications

Suppose you have a set of FORTRAN 77 applications that previously ran under DOS and you
now wish to run them under OS/2. To achieve this, simply recompile your application and
link with the appropriate libraries. Depending on the method with which you linked your
application, it can runin an OS/2 fullscreen environment, a PM-compatible window, or as a
Presentation Manager application. An OS/2 fullscreen application runsin its own screen
group. A PM-compatible application will run in an OS/2 fullscreen environment or in a
window in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc. However, porting a console oriented application to Presentation
Manager often requires significant effort and a substantial redesign of the application.

Porting Existing FORTRAN 77 Applications 273

0S/2 Programming Guide

34.1.1 An Example

Very little effort is required to port an existing FORTRAN 77 application to OS/2. Let ustry
to run the following sample program (contained in thefile hel | 0. f or).

print *, "Hello world!”’
end

First we must compilethefile hel | o. f or by issuing the following command.

[C\]wfc386 hello

Once we have successfully compiled the file, we can link it by issuing the following
command.

[C\]wWink sys os2v2 file hello

It isalso possible to compile and link in one step, by issuing the following command.

[C\]wf]l 386 -1=0s2v2 hello

Thiswill create a PM-compatible application. If you wish to create afullscreen application,
link with the following command.

[C\]Wink sys os2v2 fullscreen file hello

34.2 Calling Presentation Manager API Functions

Itisalso possible for aFORTRAN 77 application to create its own windowing environment.
Thisis achieved by calling PM API functions directly from your FORTRAN 77 program.
The techniques for devel oping these applications can be found in the OS/2 Technical Library.

A number of FORTRAN 77 include files (fileswith extension . fi or . f ap) are provided
which define Presentation Manager data structures and constants. They are located in the
\wat com src\ fortran\ os2 directory. Theseinclude filesare equivalent to the C
header filesthat are available with the IBM OS/2 Developer’s Toolkit.

A sample FORTRAN 77 Presentation Manager application is also located in the

\'wat coml sanpl es\ fortran\ os2 directory. Itiscontained inthefiles f shapes. f or
andf shapes. fi. Thefilef shapes. f or containsthe following.

274 Calling Presentation Manager API Functions

Programming for 0S/2 Presentation Manager

c$define
cSdefine
c$define
cSdefine
c$define

INCL_WINFRAMEMGR
INCL_WINMESSAGEMGR
INCL_WINWINDOWMGR
INCL_WINTIMER
INCL_GPIPRIMITIVES
c$i ncl ude os2.fap

program f shapes

i nt eger

style

record / QvBSGE qnsg

character*7 wat com
par anet er (wat com=" WATCOM c)
i nclude ' fshapes.fi

AnchorBl ock = Wnlnitialize(0)

if(AnchorBlock .eq. 0) stop

hMessageQueue = W nCreat eMsgQueue(AnchorBl ock, 0)
if(hMessageQueue .eq. 0) stop

i f(WnRegi sterd ass(Anchor Bl ock, watcom Mui nDriver

style =

CS_SIZEREDRAW, 0) .eg. 0) stop

FCF_TITLEBAR .or. FCF_SYSMENU .or. FCF_SIZEBORDER .or.

FCF_MINMAX .or. FCF_SHELLPOSITION .or. FCEF_TASKLIST

FrameHandle = WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE,

style, watcom
char(0), 0, NULL,
0, WnHandle)

if(FrameHandle .eq. 0) stop

whi l e(WnGet Msg(AnchorBl ock, gqnsg, NULL, O, 0)) do

cal

W nDi spat chMsg(Anchor Bl ock, gnsg)

end while

call WnDestroyWndow FrameHandl e)
call W nDestroyMsgQueue(hMessageQueue)
call WnTerm nate(AnchorBl ock)

end

function MainDriver(hwnd, nsg, npl, nmp2)

i nt eger
i nt eger
i nt eger
i nt eger

hwnd
nmsg
mpl
m2

Calling Presentation Manager API Functions

275

0S/2 Programming Guide

i nclude ' fshapes.fi’

i nt eger ps
record /RECTL/ rcl

sel ect case (nsg)
case (WM_CREATE)
W nHandl e = hwnd
call WnStartTimer(AnchorBl ock, WnHandl e, 1, 150)
case (WM_TIMER)
call Drawkl lipse()
Mai nDriver =0
return
case (WM_SIZE)
Si zeX = SHORT1FROMVP(np2)
Si zeY = SHORT2FROWP(np2)
Mai nDriver =0
return
case (WM_PAINT)
ps = WinBeginPaint (WinHandle, NULL, NULL_POINTER)
call WnQueryW ndowRect (WnHandl e, rcl)
call WinFillRect(ps, rcl, CLR_WHITE)
call WnEndPaint(ps)
Mai nDriver =0
return
end sel ect

Mai nDri ver = W nDef W ndowPr oc(W nHandl e, msg, npl, np2)
return

end

subroutine Drawkl | i pse

record /PO NTL/ ptl

i nt eger ps

i nt eger Gdd / 0/
i nt eger par mlL

i nt eger par n@

i nclude ' fshapes.fi’

ps = WnGet PS(W nHandl e)
ptl.x = Randon{ SizeX)
ptl.y = Randon(SizeY)
call Gpi Move(ps, ptl)
ptl.x = Randon(SizeX)

ptl.y = Randon(SizeY)
parml = Random(32767)
parn2 = Randon(32767)

276 Calling Presentation Manager API Functions

Programming for 0S/2 Presentation Manager

if(Randon{ 10) .ge. 5) then
execut e NewCol or
call GpiBox(ps, DRO_FILL, ptl, 0, 0)
execut e NewCol or
call GpiBox(ps, DRO_OUTLINE, ptl, 0, 0)
el se
execut e NewCol or
call GpiBox(ps, DRO_FILL, ptl, parml, parm2)
execut e NewCol or
call GpiBox(ps, DRO_OUTLINE, ptl, parml, parm2)
end if

Qdd Qdd + 1
Qdd Qdd .and. 1
call WnRel easePS(ps)

remot e bl ock NewCol or

call Gpi SetColor(ps, Randon(15) + 1)
end bl ock

end

i nteger function Randon(high)

i nt eger hi gh

ext er nal ur and

real ur and

i nt eger seed / 75347/

Random = urand(seed) * high

end

Theincludefile f shapes. fi containsthe following.

include 'os2.fi’

i nt eger Si zeX
i nt eger Si zeY
i nt eger Fr ameHandl e
i nt eger W nHandl e
i nt eger hMessageQueue
i nt eger Anchor Bl ock
common / gl obal s/
+ SizeX,
+ Sizey,
+ FraneHandl e,
+ W nHandl e,
+ hMessageQueue,
+ Anchor Bl ock
ext ernal Random
i nt eger Random
ext ernal Mai nDri ver
i nt eger Mai nDri ver
cSpragma aux (FNWP) Mai nDri ver

Calling Presentation Manager API Functions

277

0S/2 Programming Guide

Notes:

1. Includefileswith extension . f ap define the calling conventions for each of the
0S/2 AP functions. These files must be included at the top of each FORTRAN 77
source module.

2. Includefileswith extension . f i define the data structures and constants used by
the OS/2 API functions. These files must be included in each subprogram that
requires them.

3. Each cal-back function (i.e. window procedure) must be defined using the
following pragma.

c$pragma aux (FNWP) W ndowPr oc

4. Theincludefile os2. f ap isincluded at the beginning of the source file and
os2. fi isincluded in each subprogram. Also note that a number of macros were
defined at the top of the file. By defining these macros, only those components of
the OS/2 API required by the module will be compiled.

Y ou can compile, link and run this demonstration by issuing the following commands.
[C\]set finclude=\watcom src\fortran\os2

[C:\]wfl386 —-1l=0s2v2_pm fshapes
[C\]fshapes

278 Calling Presentation Manager API Functions

Novell NLM Programming Guide

Novell NLM Programming Guide

280

395 Creating NetWare 386 NLM Applications

Open Watcom FORTRAN 77 supports version 4.0 of the Netware 386 API. We include the
following components:

header files Header files for the Netware 4.0 API are located in the \ WATCOM NOVH
directory.

import libraries
Import libraries for the Netware 4.0 API are located in the \ WATCOM NOVI
directory.

libraries The FORTRAN 77 libraries for Netware 4.0 is located in the
\ WATCOM LI B386 and \ WATCOM LI B386\ NETWARE directories.

debug servers
Servers for remote debugging of Netware 4.0 NLMs are located in the
\ WATCOM NLMdirectory. The same directory also contains the Open Watcom
Execution Sampler for NLMs.

Applications built for version 4.0 will run on 4.1. We do not include support for any API
specific to version 4.1. Netware developers must use the support included with Open Watcom
FORTRAN 77 version 10.0 or greater since the version supplied by Novell only works with
Open Watcom FORTRAN 77 version 9.5. Netware 4.1 support requires modification to the
header files supplied by Novell. Contact Novell for more information.

The following special notes apply to developing applications for NetWare.

1. Youmust compile your source files with the small memory model option ("ms").

2. You must compile your source files with the stack-based calling convention option
("sc").

3. You must specify
syst em NETWARE

when linking an NLM. Thisisautomatic if you are using WFL 386 and the
"-[=NETWARE" option.

Creating NetWare 386 NLM Applications 281

Novell NLM Programming Guide

282 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

284

36 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language
development using Open Watcom C/C++ and Open Watcom FORTRAN 77.

The following topics are discussed in this chapter:
» Symbol Naming Convention
» Argument Passing Convention
* Memory Model Compatibility
* Integer Type Compatibility
* How do | passintegers from C to a FORTRAN function?
» How do | passintegers from FORTRAN to a C function?
* How do | pass astring from a C function to FORTRAN?
* How do | pass astring from FORTRAN to a C function?
* How do | access a FORTRAN common block from within C?

* How do | call aC function that accepts a variable number of arguments?

36.1 Symbol Naming Convention

The symbol naming convention describes how a symbol in source form is mapped to its object
form. Because of this mapping, the name generated in the object file may differ fromits
original source form.

Default symbol naming conventions vary between compilers. Open Watcom C/C++ prefixes
an underscore character to the beginning of variable names and appends an underscore to the
end of function names during the compilation process. Open Watcom FORTRAN 77 converts
symbolsto upper case. Auxiliary pragmas can be used to resolve this inconsistency.

Symbol Naming Convention 285

Mixed Language Programming

Pragmas are compiler directives which can provide several capabilities, one of which isto
provide information used for code generation. When calling a FORTRAN subprogram from
C, wewant to instruct the compiler NOT to append the underscore at the end of the function
name and to convert the name to upper case. Thisis achieved by using the following C
auxiliary pragma:

#pragma aux ftnname """;

The """ character tells the compiler to convert the symbol name "ftnname" to upper case; no
underscore character will be appended. This solves potential linker problems with "ftnname”
since (by C convention) the linker would attempt to resolve a reference to "ftnname_".

When calling C functions from FORTRAN, we need to instruct the compiler to add the
underscore at the end of the function name, and to convert the name to lower case. Since the
FORTRAN compiler automatically converts identifiers to uppercase, it is necessary to force

the compiler to emit an equivalent lowercase name. Both of these things can be done with the
following FORTRAN auxiliary pragma:

*$pragma aux CNAME "!_"

There is another less convenient way to do this as shown in the following:
*Spragma aux CNAME "cname "

In the latter example, the case of the name in quotation marksis preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing
must still be resolved.

36.2 Argument Passing Convention

In general, C uses call-by-value (passes argument values) while FORTRAN uses
call-by-reference (passes pointers to argument values). Thisimpliesthat to pass arguments to
aFORTRAN subprogram we must pass the addresses of arguments rather than their values. C
usesthe"&" character to signify "address of".

286 Argument Passing Convention

Inter-Language calls: C and FORTRAN

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming
conventions must also instruct the compiler that the C function is expecting values, not
addresses.

*Spragma aux CNAME "!_" parm (value)

The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of
addresses.

Character data (strings) are an exception to the general case when used as arguments. InC,
strings are not thought of as awhole entity, but rather as an "array of characters'. Since
strings are not considered scalar arguments, they are referenced differently in both C and
FORTRAN. Thisisdescribed in more detail in afollowing section.

36.3 Memory Model Compatibility

Whileitisreally not an issue with the 32-bit compilers (both use the default "flat" memory
model), it isimportant to know that the default memory model used in Open Watcom
FORTRAN 77 applicationsisthe "large” memory model ("ml") with "medium" and "huge"
memory models as options. Since the 16-bit Open Watcom C/C++ default is the "small”
memory model, you must specify the correct memory model when compiling your C/C++
code with the 16-bit C or C++ compiler.

36.4 Linking Considerations

When both C/C++ and FORTRAN object files are combined into an executable program or
dynamic link library, it isimportant that you list aleast one of the FORTRAN object filesfirst
in the Open Watcom Linker (WLINK) "FILES" directive to guarantee the proper search order
of the FORTRAN and C run-time libraries. If you place a C/C++ object file first, you may
inadvertently cause the wrong version of run-time initialization routines to be loaded by the
linker.

Linking Considerations 287

Mixed Language Programming

36.5 Integer Type Compatibility

In general, the number of bytes used to store an integer type is implementation dependent. In
FORTRAN, the default size of an integer type is always 4 bytes, whilein C/C++, the sizeis
architecture dependent. The size of an "int" is 2 bytes for the 16-bit Open Watcom C/C++
compilers and 4 bytes for the 32-bit compilers while the size of a"long" is 4 bytes regardless
of architecture. It issafest to prototype the function in C, specifying exactly what size
integers are being used. The byte sizes are asfollows:

1. LONG -4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses adefault of 4 bytes, we should specify the "long" keyword in C for
integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "fthname" takes three "pointersto long ints" as arguments, and returnsa"long
int". By specifying that the arguments are pointers, and not values, and by specifying "long
int" for the return type, this prototype has solved the problems of argument passing and
integer type compatibility.

36.6 How do I pass integers from C to a FORTRAN
function?

288

The following Open Watcom C/C++ routine passes three integers to a FORTRAN function
that returns an integer value.

/* MXLC.C - This C programcalls a FORTRAN function to
* comput e the max of three nunbers.

* Conpile/Link: wel /m mxlc nmix1f.obj /fe=m x1
* wel 386 mi xlc mix1f.obj /fe=nmix1
*/

#i ncl ude <stdio. h>

#pragma aux tmax3 "/,
long int tmax3(long int *, long int *, long int *);

How do I pass integers from C to a FORTRAN function?

Inter-Language calls: C and FORTRAN

void main()

long int result;
long int i, j, Kk;
i -1;

i 12;

k 5;

result = tmax3(&, &, &);
printf("Maxinmumis %d\n", result);

}
The FORTRAN function:

* M X1F. FOR - This FORTRAN function accepts three integer
* argunents and returns their naxi mum

* Conpile: wic[386] mx1f.for

i nteger function tmax3(arga, argb, argc)
i nteger arga, argb, argc

tmax3 = arga

if (argb .gt. tmax3) tmax3
if (argc .gt. tmax3) tmax3
end

argb
argc

36.7 How do | pass integers from FORTRAN to a C
function?

The following Open Watcom FORTRAN 77 routine passes three integers to a Open Watcom
C/C++ function that returns an integer value.

How do I pass integers from FORTRAN to a C function? 289

Mixed Language Programming

M X2F. FOR - This FORTRAN programcalls a C function to
conpute the nmax of three nunbers.

Conpi | e/ Li nk: wfl[386] m x2f mix2c.obj /fe=nm x2
*Spragma aux tmax3 "!_" parm (value)
pr ogram m x2f

i nteger*4 tnmax3
integer*4 result

integer*4 i, j, k

i =-1

j =12

k =5

result = tmax3(i, j, k)
print *, *Maximumis ', result
end

The C function "tmax3" is shown below.

/* MX2C.C - This C function accepts 3 integer argunents
* and returns their maxi num

*

* Conpile: wee /ml m x2c

* wce386 mi x2c

*/

long int tnmax3(long int arga,
| ong int argb,
long int argc)

{
| ong int result;
result = arga;
if(argb > result) result = argb;
if(argc > result) result = argc;
return(result);

}

290 How do I pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

36.8 How do | pass a string from a C function to
FORTRAN?

Character strings are referenced differently in C and FORTRAN. The C language terminates
its strings with anull character as an End-Of-String (EOS) marker. In this case, C need not
store the length of the string in memory. FORTRAN, however, does not use any EOS marker;
hence it must store each string’ s length in memory.

The structure FORTRAN uses to keep track of character datais called a " string descriptor"
which consists of a pointer to the character data (2, 4, or 6 bytes, depending on the data
model) followed by an unsigned integer length (2 bytes or 4 bytes, depending on the data

mode!).
system option size of pointer size of length
16-bit /MW 16 bits 16 bits
16-bit /M 32 bits 16 bits
32-bit /M 32 bits 32 bits
32-bit /M 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data’ s string
descriptor. Hence, FORTRAN expects a pointer to a string descriptor to be passed as an
argument for character data.

Passing string arguments between C and FORTRAN isasimple task of describing a struct
typein C containing the two fields described above. Thefirst field must contain the pointer to
the character data, and the second field must contain the length of the string being passed. A
pointer to this structure can then be passed to FORTRAN.

* M X3F. FOR - This FORTRAN programcalls a function witten
* in Cthat passes back a string.
*
* Conpil e/ Link: wfl[386] m x3f m x3c.obj /fe=nm x3
pr ogram m x3f

character*80 sendstr
character*80 cstring

cstring = sendstr()
print *, cstring(1:lentrimcstring))
end

The C function "sendstr” is shown below.

How do I pass a string from a C function to FORTRAN? 291

Mixed Language Programming

/* MX3C.C - This C function passes a string back to its

* cal ling FORTRAN program
* Conmpile: weec /ml m x3c

* wcc386 i x3c

*/

#i ncl ude <string. h>

#pragm aux sendstr "/";

typedef struct descriptor {

char
unsi gned
} descriptor;

*addr;
| en;

void sendstr(descriptor *ftn_str_desc)

{

ftn_str_desc->addr
ftn_str_desc->len

"This is a C string";

strlen(ftn_str_desc->addr);

36.9 How do I pass a string from FORTRAN to a C

function?

By default, FORTRAN passes the address of the string descriptor when passing strings. |If the
C function knowsit is being passed a string descriptor address, then it is very similar to the
above example. If the C function is expecting normal C-type strings, then a FORTRAN
pragma can be used to pass the string correctly. When the Open Watcom FORTRAN 77
compiler pragmato pass by value is used for strings, then just a pointer to the string is passed.

Example:

*Spragma aux cname "!_" parm

(value)

The following example FORTRAN mainline defines a string, and passesit to a C function that

printsit out.

292 How do I pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

M X4F. FOR - This FORTRAN programcalls a function witten
in C and passes it a string.

Conpi | e/ Li nk: wfl[386] mix4f mi x4c.obj /fe=nix4
*Spragma aux cstr "!_" parm (value)

program m x4f

character*80 forstring

forstring = "This is a FORTRAN string’//char(0)
call cstr(forstring)

end
The C function:
[* MX4C.C - This C function prints a string passed from

* FORTRAN.

*

* Compile: wee /ml m x4c

* wcc386 mi x4c

*

/

#i ncl ude <stdio. h>
void cstr(char *instring)

printf("%\n", instring);

36.10 How do | access a FORTRAN common block
from within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a
Croutine. The C routine defines an extern struct to correspond to the FORTRAN common
block.

How do I access a FORTRAN common block from within C? 293

Mixed Language Programming

M X5F. FOR - This program shows how a FORTRAN conmon

bl ock can be accessed fromC

pr ogr am mi x5f
ext ernal put
comon/ cbl k/ i, j

i =12
j =10
call put
print * i =", i
print *, j =",]
end

The C function:

/ *

* common bl ock from C
*
* Conmpile: wee /m m x5¢
* wcc386 m x5c
* [
#i ncl ude <stdi o. h>

#pragma aux put "/~";
#pragma aux chbl k "~";

#ifdef __386__
#defi ne FAR

#el se

#defi ne FAR far
#endi f

extern struct cb {
long int i,j;
} FAR cbl k;

void put(void)

printf("i = 9%d\n", cblk.i);
printf("j = %d\n", chlk.j);
chl k. i ++;
cbl k. j ++;

Conpi | e/ Li nk: wfl[386] mi x5f mi x5c. obj

M X5C. C - This code shows how to access a FORTRAN

294 How do | access a FORTRAN common block from within C?

Inter-Language calls: C and FORTRAN

For the 16-bit C compiler, the common block "cblk" is described as f ar to force aload of the
segment portion of the address. Otherwise, since the object is smaller than 32K (the default
datathreshold), it is assumed to be located in the DGROUP group which is accessed through
the SS segment register.

36.11 How do I call a C function that accepts a variable
number of arguments?

One capability that C possessesis the ability to define functions that accept variable number
of arguments. Thisfeatureis not present, however, in the definition of the FORTRAN 77
language. Asaresult, aspecial pragmaisrequired to call these kinds of functions.

*Spragma aux printf "!_" parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The"[]" indicates
that there are no arguments passed in registers because the pri nt f function takes avariable
number of arguments passed on the stack. The following exampleisa FORTRAN function
that uses this pragma. It callsthe pri nt f function to print the value 47 on the screen.

* M X6.FOR - This FORTRAN programcalls the C
* printf function.

* Conpile/Link: wl[386] mnix6

*Spragma aux printf "!_" parm (value) caller []
program mi x6
character cr/z0d/, nullchar/z00/

call printf("Value is %d.’//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language

programming, please refer to the chapter entitled "Pragmas’ in both the Open Watcom C/C++
User’s Guide and the Open Watcom FORTRAN 77 User’s Guide.

How do | call a C function that accepts a variable number of arguments? 295

Mixed Language Programming

296 How do I call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

298

37 Commonly Asked Questions and Answers

As with any sophisticated piece of software, there are topics that are not directly addressed by
the descriptive portions of the manuals. The purpose of this chapter is to anticipate common
guestions concerning Open Watcom F77. It isdifficult to predict what topics will prove to be
useful but with that in mind, we hope that this chapter will help our customers make full use
of Open Watcom F77.

A number of example programs are presented throughout. The source text for these files can
be found in the \ WATCOM SAMPLES\ GOCDI ES directory.

The purpose of this chapter is to present some of the more commonly asked questions from
our users and the answers to these questions. The following topics are discussed:

* How do | determine my current patch level?

* How do | convert to Open Watcom F777?

» What should | know about optimization?

* How do | read a stream of binary data from afile?

» How do | redefine math error handling with Open Watcom F777?

» Why can’t the compiler find my include files?

» Why does the linker report a"stack segment not found" error?

* How do | resolve an "Undefined Reference” linker error?

» Why aren’t local variable values maintained between subprogram calls?
» What does " Stack Overflow!" mean?

» What are the probable causes of a General Protection Fault in 32-bit applications?
» Which floating-point compiler option should | use for my application?

» How can | open more than 20 files at atime?

* How can | see my source filesin the debugger?

» What is the difference between the "d1" and "d2" compiler options?

» What is the difference between the "debug" and "d2" compiler options?

Commonly Asked Questions and Answers 299

Common Problems

37.1 Determining my current patch level

In an effort to immediately correct any problems discovered in the originally shipped product,
Open Watcom provides patches as a continued serviceto its customers. To determine the
current patch level of your Open Watcom software, a TECHINFO utility program has been
provided. This program will display your current environment variables, the patch level of
various Open Watcom software programs, and other pertinent information, such as your
AUTOEXEC. BAT and CONFI G. SYSfiles. Thisinformation proves to be very useful when
reporting a problem to the Technical Support team.

To run TECHINFO, you must ensure the Open Watcom environment variable has been set to
the directory where your Open Watcom software has been installed. TECHINFO will pause
after each screenful of information. The output isalso placed in the file TECHI NFO. OUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Example:
WATCOM s Techinfo Utility, Version 1.4
Current Time: Thu Cct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterl oo, Ontario

CANADA N2L 3X2

------------- WATCOM C Environnent Variables -------------
WATCOMVE<c: \ wat con®

EDPATH=<c: \ wat com eddat >

| NCLUDE=<c: \ wat com h; c: \ wat com h\ 0s2>

FI NCLUDE=<c: \wat com src\fortran;c:\watcom src\fortran\w n>

LI BOS2=<c: \wat com | i b286\ 0s2; c: \wat com | i b286>

PATH=<c: \ dos; c: \ wi ndows; c: \ wat com\ bi nw>

TMP=<h: \t enp>

File ’'c:\watcom bi nwA wcc386. exe’ has been patched to level '.d’
...etc...

In this example, the software has been patched to level "d". In most cases, al toolswill share
acommon patch level. However, there are instances where certain tools have been patched to
one level while others are patched to adifferent level. For example, the compiler may be
patched to level "d" while the debugger is only patched to level "c". Basically, this means that
there were no debugger changes in the D-level patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it
is recommended that you update your software. Patches are available on Open Watcom’s
bulletin board, Open Watcom’'s FTP site and CompuServe. They are available 24 hours a day.
Patches are also available on the current release CD-ROM. Each patch will include a batch

300 Determining my current patch level

Commonly Asked Questions and Answers

file that allows you to apply the patches to your existing software. Note that patches must be
applied in sequential order, as each patch depends on the previous one.

37.2 Converting to Open Watcom F77

Applications written in ANSI standard FORTRAN 77 code usually only need to be
recompiled with the Open Watcom F77 compiler. In addition to the ANSI standard, many
compilers support specific extensions. If you are porting code from a UNIX platform or other
DOS compilers, check Appendix A - Extensions to Sandard FORTRAN 77 of the Open
Watcom FORTRAN 77 Language Reference, to determine which FORTRAN 77 extensions
are supported.

By default, most FORTRAN 77 compilers preserve the values of local variablesin a
subprogram between calls. With Open Watcom F77, local variables are kept on the stack and
their values are popped from the stack when exiting a subprogram. To preserve local
variables, use the FORTRAN 77 SAVE statement for variables that you wish to preserve, or
the "save" compiler option to preserve al local variables. Note that the use of the "save"
compiler option causes an overall performance degradation.

Open Watcom F77 uses register-based parameter passing as a default, however, the compiler
is flexible enough to use different calling conventions on a per function basis. Auxiliary
pragmas can be used to specify the calling convention that isto be used to interface with
assembler code. This enablesyou to explicitly state how parameters are to be passed to the
assembler code. Thistopic isdescribed in the "Pragmas’ chapter of the Open Watcom F77
User’s Guide under "Describing Argument Information”. See also the chapter entitled
"Inter-Language calls: C and FORTRAN" on page 285.

37.3 What you should know about optimization

The Open Watcom F77 User’s Guide contains a detailed description for each of the
optimization options supported by the compiler. These options allow you to customize the
type of code optimizations that are performed. For instance, the "OS" option can be used to
reduce the size of your code, but this may affect the execution speed. To ensure that the speed
of the code is optimized, possibly at the cost of code size, use the "OT" option. The "OX"
option, intended for the maximum number of optimizations, generates code that is a
combination of "OM" (inline math functions), "OL" (loop), "OT" (time) and the "OR"
(instruction scheduling) optimization options. Note that when you are using the "OM" option
to generate inline math functions no argument validation will be done for the intrinsic math
functions such as"sin" or "cos'. Consider the needs of your application and select the
optimization options that best meet your requirements.

What you should know about optimization 301

Common Problems

Hint: The definitive reference on compiler design is the "dragon” book "Compilers -
Principles, Techniques, and Tools', Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
published by Addison-Wesley, Reading, Massachusetts, 1986. The authors of the
"dragon" book advocate a conservative approach to code generation where optimizations
must preserve the semantics of the original program. The conservative approach is used
throughout the Open Watcom F77 compiler to ensure that programmers can use the
compiler without worrying about the semantics of their program being changed.

There are certain pieces of information which the compiler cannot derive from the source
code. The"*$pragma’ compiler directive is used to provide extrainformation to the
compiler. It isnecessary to have a complete understanding of both FORTRAN 77 and the
machine architecture (i.e., 80x86) before using the powerful pragma compiler directives. See
the "Pragmas" chapter in the Open Watcom F77 User’s Guide for more details.

Debugging optimized programs is difficult because variables can be assigned to different
locations (i.e., memory or registers) in different parts of the function. The "d2" compiler
option will restrict the amount of optimization so that variables occupy one location and can
be easily displayed. It follows that the "d2" option is useful for initial development but
production programs should be compiled with only the "d1" option for the best code quality.
Before you distribute your application to others, you may wish to use the Open Watcom Strip
Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The"d2" compiler option will generate symbolic information (for every local
variable) and line number information for the source file. The"d1" compiler option will
only generate line number information for the source file. The use of these options
determines what kind of information will be available for the particular module during the
debugging session.

37.4 Reading a stream of binary data from a file

302

The Open Watcom F77 allows for three types of binary data file formats:
* Variable length, unformatted sequential access binary records,
* Fixed length, unformatted direct access binary records, and

» Unformatted, sequential, binary data with afixed record type.

Reading a stream of binary data from a file

Commonly Asked Questions and Answers

Variable length binary records are preceded by afour byte descriptor that indicates the length
of the record in bytes. The end of the binary record is also marked by another descriptor tag
specifying the length. Binary records that are of afixed length are kept in adirect access,
unformatted file. Refer to the Open Watcom F77 User’s Guide section on File Handling for
more information on file formats.

Binary data files that have no structure or record length information may be read if you open
the file as a sequential, unformatted file with a fixed record type. Thisallowsyou to read files
that contain a stream of binary data without any inherent record format. 1f you know the type
of datathat is contained in the binary file, you may then read the binary data directly into
variables. The following program provides an example of reading binary stream data.

* BI NDATA. FOR - This program denponstrates how to read a
* binary data file that does not have any defined records.

program bi ndat a

i nteger Bi nArray(20)
i nteger i

open(unit=1, file="bindata.fil’,

+ access='sequential ',
+ forme" unformatted’,
+ recordtype='fixed)
* Read 20 integers fromthe binary data file
doi =1, 20
read(1) BinArray(i)
end do

* Wite the extracted values to standard out put

doi =1, 20

wite(*, *) BinArray(i)
end do
end

37.5 Redefining math error handling with Open
Watcom F77

If you wish to customize math error handling for your application, you can create your own
math error handling procedure. The following illustrates the procedures for trapping errors by
way of an example. See the Open Watcom F77 User’s Guide for a description of the

f si gnal subroutine and math library error handling.

Redefining math error handling with Open Watcom F77 303

Common Problems

The main program example "MATHDEMO" isa FORTRAN program that contains a
floating-point divide by zero error, afloating-point overflow error, a floating-point underflow
error, and an invalid argument to a math library function.

*

*%k ok ok ok Ok Ok *

pr ogr am mat hdeno

MATHDEMO. FOR - This programforns part of a collection of FORTRAN
code that denonstrates how to take over control of
math error handling fromthe run-time system

Compile: wfl[386] mathdemo cw87 _matherr

Not es

(1) We call "cw87" to enabl e underfl ow exceptions which are
masked (ignored) by default.

(2) The signal handler nust be re-installed after each signa
(it can also be re-installed even when there is no signal)

(3) To prevent conpile-tine constant folding in expressions
we add log(1.0) which is 0. W do this for the sake of
denonstrating exception handling.

implicit none

doubl e precision x, vy, z

call cw87 ! init 80x87 control word
call reset FPE ! install signal handler
print *, '~

print *, 'Divide by zero will be attenpted
X = 1.0d0 + DLOE 1.0d0)

y = 0.0d0
z=x11vy
call chkFPE I check for exception

print *, z

call reset FPE I install signal handler
print *,

print *, "Overflow will be attenpted

X = 1.2d300 + DLOG 1.0d0)

y = 1.2d300

z =x*y

call chkFPE I check for exception

print *, z

call reset FPE ! install signal handler
print *, '~

print *, *Underflow will be attenpted

X = 1.14d-300 + DLOE 1.0d0)

y = 2.24d-308
zZ =xX*y
call chkFPE I check for exception

print *, z

304 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

call reset FPE ! install signal handler
print *, '~

print *, "Math error will be attenpted

x =-12.0

I an exception will not be generated since the intrinsic function

' will validate the argunent - if you conpile with /f/om the "fsqrt"

I 80x87 instruction will be generated in-line and an exception
' will occur

y = SQRT(x)

call chkFPE ! check for exception
print *, x, vy

end

subroutine reset FPE

include 'fsignal.fi’

external fpe_handler

logical fpe_flag

integer fpe_sig, fpe_fpe

common fpe_flag, fpe_sig, fpe_fpe

fpe_flag = .false.
call fsignal(SIGFPE, fpe_handler)
end

*Spragma aux fpe_handler parm(value)

subroutine fpe_handler(sig, fpe)
i nteger sig, fpe

logical fpe_flag

integer fpe_sig, fpe_fpe

common fpe_flag, fpe_sig, fpe_fpe
fpe_flag = .true.

fpe_sig = sig

fpe_fpe = fpe

end

*$pragma aux fwait = "fwait"

* %k ok

subroutine chkFPE

include 'fsignal.fi’

logical fpe_flag

integer fpe_sig, fpe_fpe

common fpe_flag, fpe_sig, fpe_fpe

Not es:
(1) An fwait is required to make sure that the |ast

fl oating-point instruction has conpl eted.

(2) "volatile" is not needed here but would be

needed in main program if it references "fpe_flag"
call fwait()

Redefining math error handling with Open Watcom F77

305

Common Problems

if(volatile(fpe_flag)) then
print *, '*ERROR* exception occurred’,
& fpe_sig, fpe_fpe

if(fpe_fpe .eq. FPE_INVALID)then
print *, 'lInvalid

else if(fpe_fpe .eq. FPE_DENORMAL)then
print *, 'Denormalized operand error’

else if(fpe_fpe .eq. FPE_ZERODIVIDE)then
print *, 'Divide by zero error’

else if(fpe_fpe .eq. FPE_OVERFLOW)then
print *, 'Overflow error’

else if(fpe_fpe .eq. FPE_UNDERFLOW)then
print *, ’'Underflow error’

else if(fpe_fpe .eq. FPE_INEXACT)then
print *, 'lInexact result (precision)then error’

else if(fpe_fpe .eq. FPE_UNEMULATED)then
print *, 'Unenulated instruction error’

else if(fpe_fpe .eq. FPE_SQRINEG)then
print *, ’'Square root of a negative nunber error’

else 1if(fpe_fpe .eq. FPE_STACKOVERFLOW)then
print *, 'NDP stack overflow error’

else if(fpe_fpe .eq. FPE_STACKUNDERFLOW)then
print *, 'NDP stack underflow error’

else if(fpe_fpe .eq. FPE_EXPLICITGEN)then
print *, ' SIGFPE signal raised (software)’

else if(fpe_fpe .eq. FPE_IOVERFLOW)then

print *, ’'Integer overflow error’
endi f
el se
print *, '*OK* no exception occurred’
endi f

end
The following subroutine illustrates how to enable or disable particular types of floating-point
exceptions.
subroutine cwg7
* CWB7. FOR
* This subroutine uses the C Library routine "_control87"
* to nodify the math coprocessor exception mask.
* Conpile: wc[386] cwd7
include "fsignal.fi’

character*9 status(0:1)/’ disabled ,’ enabled /
integer fp_cw, fp_mask, bits, 1i

306 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

Enabl e fl oating-point underflow since default is disabled

The mask defines which bits we want to change (1 means change

0 nmeans do not change). The corresponding bit in the contro
word (fp_cw) 1is set to 0 to enable the exception or 1 to disable
the exception. In this exanple, we change only the underflow
bit and | eave the others unchanged

fp_mask = EM_UNDERFLOW ! mask for the bits to set/reset
fp_cw = '0000’x ! new bit settings (O=enabl e/ 1=di sabl e)
fp_cw = _control87(fp_cw, fp_mask)

Now get up-to-date setting
fp_cw = _control87(0, 0)

bits = IAND(fp_cw, MCW_EM)

print '(a,1x,z4)’, 'Interrupt Exception Mask’', bits
i =0

if (IAND(fp_cw, EM_INVALID) .eq. 0) i =1

print *, ' Invalid Operation exception , status(i)
i =0

if (IAND(fp_cw, EM DENORMAL) .eq. 0) i =1
print *, ' Denornalized exception’, status(i)

i =0

if (IAND(fp_cw, EM_ZERODIVIDE) .eq. 0) i =1
print *, ' Divide-By-Zero exception', status(i)
i =0

if (IAND(fp_cw, EM_OVERFLOW) .eq. 0) i =1
print *, ' Overflow exception’, status(i)

i =0

if (IAND(fp_cw, EM_UNDERFLOW) .eqg. 0) i =1

print *, ' Underflow exception', status(i)

i =0

if (IAND(fp_cw, EM_PRECISION) .eq. 0) i =1
print *, ' Precision exception', status(i)
end

The following subroutine illustrates how to replace the run-time system’ s math error handler.
Source code similar to this example is provided with the software (look for the file
_matherr. for).

*

*
*

*

_MATHERR.FOR : math error handler

Compile: wfc([386] _matherr

*S$pragma aux __imath2err "*_" parm(value, reference, reference)
*Spragma aux __amathlerr "*_" parm(value, reference)

*S$pragma aux __amath2err "*_" parm(value, reference, reference)
*Spragma aux __mathlerr "*_ " parm(value, reference)

*Spragma aux __mathZerr "*_" parm(value, reference, reference)
*Spragma aux __zmathZerr "*_" parm(value, reference, reference)
*Spragma aux __gmath2err "*_" parm(value, reference, reference)

Redefining math error handling with Open Watcom F77 307

Common Problems

integer function __imathZerr(err _info, argl, arg2)
integer err_info
integer argl, arg2
i ncl ude ' mat hcode. fi’
argl = argl I to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info .and. M_DOMAIN) .ne.) then
select(err_info .and. FUNC_MASK)
case(FUNC_POW)
print *, 'arg2 cannot be <= 0’
case(FUNC_MOD)
print *, 'arg2 cannot be 0O’
end sel ect
end if
__imath2err = 0
end
real function __amathlerr(err_info, argl)
integer err_info
real argl
i ncl ude ' mat hcode. fi’
argl = argl | to avoid unreferenced warning nessage
if((err_info .and. M_DOMAIN) .ne.)then
select(err_info .and. FUNC_MASK)
case(FUNC_COTAN)
print *, 'overflow
end sel ect
end if
__amathlerr = 0.0
end
real function __amath2err(err_info, argl, arg2)
integer err_info
real argl, arg2
i ncl ude ' mat hcode. fi’
argl = argl ! to avoid unreferenced warning nessage
arg2 = arg2 I to avoid unreferenced warning nessage
if((err_info .and. M_DOMAIN) .ne.)then

select(err_info .and. FUNC_MASK)

case(FUNC_MOD)
print *, ’'arg2 cannot be 0’
end sel ect
end if
__amath2err = 0.0
end

double precision function __mathlerr(err_info, argl)

integer err_info

double precision argl, __mathZerr
__mathlerr = __math2err(err_info, argl,
end

argl)

308 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

double precision function __math2err(err_info, argl, arg2)
integer err_info

doubl e precision argl, arg2

i ncl ude ' mat hcode. fi

argl = argl I to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_SQRT)
print *, ’argunent cannot be negative
case(FUNC_ASIN, FUNC_ACOS)
print *, "argunent nust be | ess than or equal to one
case(FUNC_ATANZ)
print *, ’'both argunents nust not be zero’
case(FUNC_POW)
if(argl .eq. 0.0)then
print *, 'a zero base cannot be raised to a’
& 'negative power’
else | base < 0 and non-integer power
print *, 'a negative base cannot be raised to a’
& "non-integral power’
endi f
case(FUNC_LOG, FUNC_LOG10)
print *, ’argunent nust not be negative

end sel ect
else if((err_info .and. M_SING) .ne. 0O)then
if(((err_info .and. FUNC_MASK) .eq. FUNC_LOG) .or.
& ((err_info .and. FUNC_MASK) .eq. FUNC_LOG10))then
print *, ’"argunent nust not be zero
endi f
else if((err_info .and. M_OVERFLOW) .ne. 0)then
print *, ’'value of argument wll cause overflow condition’
else if((err_info .and. M_UNDERFLOW) .ne. 0)then
print *, 'value of argument wll cause underflow ',
& ‘condition - return zero
end if
__math2err = 0
end
complex function __zmath2err(err_info, argl, arg2)

integer err_info

conpl ex argl, arg2

i ncl ude ' mat hcode. fi

argl = argl | to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage

Redefining math error handling with Open Watcom F77 309

Common Problems

if((err_info .and. M_DOMAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_POW)
! argl is (0,0)
if(imag(arg2) .ne. 0)then
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-zero imaginary part
el se
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-positive real part
endi f
end sel ect
end if
__zmath2err = (0,0)
end

double complex function __gmathZerr(err_info, argl, arg2)
integer err _info

doubl e conpl ex argl, arg2

i ncl ude ' mat hcode. fi

argl = argl ! to avoid unreferenced warning nessage
arg2 = arg2 | to avoid unreferenced warning nessage
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_POW)
I argl is (0,0)
if(imag(arg2) .ne. 0)then
print *, 'a zero base cannot be raised to a’

& ' conpl ex power with non-zero i magi nary part
el se
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-positive real part
endi f
end sel ect
end if
__gmathZerr = (0,0)
end

37.6 The compiler cannot find my include files

In order to locate your INCLUDE files, the compiler first searches your current directory, then
each directory listed in the FINCL UDE environment variable (in the order that they are
specified). If the compiler reportsthat it is unable to find one of your include files, change the
FINCL UDE environment variable by adding the directory path to your include files. For
more information on setting the environment variable, refer to the "Compiling an Application”
chapter of the Open Watcom F77 User’s Guide.

310 The compiler cannot find my include files

Commonly Asked Questions and Answers

37.7 The linker reports a "stack segment not found"
error

Thelinker usually reports the error "1014: stack segment not found" when it is unable to find
the run-time libraries required to link your application. To ensure you are linking with the
correct run-time libraries, check to see that your link command contains the correct
"SYSTEM" directive. Aswell, the WATCOM environment variable should be pointing to
the directory containing the Open Watcom F77 software. For a Open Watcom F77
application, if thiserror isfollowed by the error "1023: no starting address found", it may
indicate that you are attempting to link code that does not have a main program procedure.
Ensure that you include your main program object module with your linker directives.

With FORTRAN 77, "STACK" isareserved word. If you use"STACK" asthe name of a
common block, this may also result in the " Stack Segment Not Found" error. Check the
names of your common blocks and rename them if necessary.

37.8 Resolving an "Undefined Reference” linker error

The Open Watcom Linker builds an executable file by a process of resolving referencesto
functions or data items that are declared in other sourcefiles. Certain conditions arise that
cause the linker to generate an "Undefined Reference" error message. An "Undefined
Reference" error message will be displayed by the linker when it cannot find a function or
dataitem that was referenced in the program. Verify that you have included all the required
object modulesin the linker command and that you are linking with the correct libraries.

The"SYSTEM" linker directive should be used to indicate the target environment for the
executable. This directive specifies the format of the executable and the libraries for the
target environment. Verify that the WATCOM environment variable is set to the directory
that Open Watcom F77 was installed in since it is used to complete the library path in the
"SYSTEM" directive. Y ou may also explicitly include alibrary using the "LIBRARY" linker
directive.

If the linker reports an unresolved reference for *_cstart_", thisindicates that the linker could
not find the FORTRAN 77 run-time libraries. 1n 16-bit applications, the FORTRAN 77
run-time libraries for the medium memory model (/mm) and the floating-point calls
floating-point model (/fpc) wouldbe f i bm |'i b. In 32-bit applications, the FORTRAN 77
run-time libraries for the flat memory model wouldbe f i b. | i b. Verify that the"LIB"
environment variable has been set to point to the correct WATCOM library directories and
that the library corresponds to the memory and floating-point model that you selected.

Resolving an "Undefined Reference" linker error 311

Common Problems

37.9 Why local variable values are not maintained
between subprogram calls

By default, the local variables for a subprogram are stored on the stack and are not initialized.
When the subprogram returns, the variables are popped off the stack and their values are lost.
If you want to preserve the value of alocal variable, after the execution of a RETURN or
END statement in a subprogram, the FORTRAN 77 SAVE statement or the "save" compiler
option can be used.

Using the FORTRAN 77 SAVE statement in your program allows you to explicitly select
which values you wish to preserve. The SAVE statement ensures that space is allocated for a
local variable from static memory and not the stack. Include a SAVE statement in your
FORTRAN 77 code for each local variable that you wish to preserve.

To automatically preserve all local variables, you can use the "save' compiler option. This
option adds code to initialize and allocate space for each local variable in the program. Thisis
equivalent to specifying a SAVE statement. The "save" option makesit easier to ensure that
all the variables are preserved during program execution, but it increases the size of the code
that is generated. Y ou may wish to use this option during debugging to help diagnose bugs
caused by corrupted local values. Usually, it is more efficient to use SAVE statements rather
than the general "save"' compiler option. Y ou should selectively use the SAVE statement for
each subprogram variable that you want to preserve until the next call. Thisleadsto smaller
code than the "save" option and avoids the overhead of allocating space and initializing values
unnecessarily.

37.10 What "Stack Overflow!" means

The memory used for local variablesis alocated from the function call stack athough the
Open Watcom compilers will often use registers for local variables. The size of the function
call stack islimited at link-time and it is possible to exceed the amount of stack space during
execution.

There are various ways of protecting against stack overflow errors. First, one should
minimize the number of recursive functions used in an application program. This can be done
by recoding recursive functions to use loops.

The user may also optionally force the compiler to use static storage for all local variables
(Open Watcom F77 "save" option). Thiswould eliminate most stack problems for
FORTRAN programs. These techniques will reduce the amount of stack space required but
there still may be times where the default amount of stack space isinsufficient. The Open

312 What "Stack Overflow!" means

Commonly Asked Questions and Answers

Watcom Linker (WLINK) allows the user to set the amount of stack space at link-time
through the directive "OPTION STACK=size" where size may be specified in byteswith an
optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Note that with the Open Watcom F77 run-time system, the I/O routines require 4k of stack
space. If your application requires 5K of stack space, set aside 9K to allow for 4K of I/0O
stack space in addition to the stack space required by the application.

Debugging a program that reports a stack overflow error can be accomplished with the
following sequence.

1. Load your application into the debugger
2. Setabreakpointat = STKOVERFLOW
3. Runthe application until the breakpoint at __STKOVERFLOW istriggered

4. Issuethe debugger "show calls' command. Thiswill display astack traceback
giving you the path of callsthat led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

37.11 What are the probable causes of a General
Protection Fault in 32-bit applications?

If you are running a 32-hit application using DOS/4GW, a program crash may report an
"Unexpected Interrupt OD" general protection fault error. The Phar Lap DOS extender would
report an "Abnormal Program Termination” general protection fault error. This often
indicates that something in your program has tried to access an invalid memory location. Ina
Open Watcom F77 application, the most likely causes of a general protection fault are:

* Attempting to access an array out of bounds.

* Running out of stack space.

» Passing incorrect parameter typesto afunction.

What are the probable causes of a General Protection Fault in 32-bit appli 313

Common Problems

To help locate the cause of the protection fault, compile your program with the "debug” and
"stack" options. With these options, code will be added to your application to help identify
these problems and generate run-time error messages when they are encountered. In addition,
the "stack" option checks for stack overflow conditions by including code at the beginning of
each subprogram.

If you still encounter general protection faults after compiling with "debug" and "stack", then
debug the program using the debugger. Thiswill help to identify the location of the crash and
the state of your parameters and variables at the time of the crash.

37.12 Which floating-point compiler option should |
use for my application?

The answer to this question depends on the expected target machines for your application. If
you know that a co-processor will be available, use the "fpi87" compiler option to optimize
the run-time performance of the application.

When you are running a FORTRAN 77 application on a machine with or without a
co-processor and you want to favour the use of emulation libraries over code size, use the
"fpc" option. The "fpc" option will also take advantage of an 80x87 co-processor if itis
available. If your application needs to be flexible enough to run either with or without a
co-processor, the "fpc" option is recommended.

The"fpi" option is the default floating-point option and can be used with or without a
co-processor. On machines that do not have a co-processor, you may notice that programs
compiled using "fpc" run faster than those compiled with "fpi". This occurs because the "fpc"
option uses the floating-point libraries directly whereas the "fpi" option interfaces with an
emulator interrupt handler. Although the "fpi" option is slower than "fpc" without a
co-processor, the code that it generatesis smaller.

When you are running an application that has been compiled with "fpi", the startup code
checks to determine whether a math co-processor is present. If it isnot present, the emulator
hook isinstalled at the INT 7h interrupt to manage the co-processor requests and convert them
to the emulation library calls. Each time a floating-point operation is requested, the processor
issuesan INT 7h.

For 16-bit applications, the interrupt handler overhead accounts for the performance
discrepancy between the "fpc" and "fpi" options.

For 32-hit applications, the manner in which thisinterrupt is handled depends on the DOS
extender. Depending on the DOS extender, there are two methods of managing floating-point

314 Which floating-point compiler option should | use for my application?

Commonly Asked Questions and Answers

instructions through the interrupt handler. The DOS extender will either pass the interrupt
directly to the INT 7h handler or it will perform some intermediary steps. Similarly, thereisa
delay after the interrupt as control is passed back through the DOS extender. Passing
floating-point handling from the DOS extender to the interrupt handler resultsin the
performance degradation. This performance degradation may vary across DOS extenders. It
isthe overhead of transferring the call through an interrupt that leads to the speed difference
between "fpi" and "fpc". If you need to run an application on machines without math
co-processors, and you want to ensure that your performance is optimal, build your
application using the "fpc" option rather than "fpi".

In a Windows environment, both the "fpi87" and the "fpi" options will use floating-point
emulation if a co-processor isnot available. Windows floating-point emulation is provided
through Open Watcom’s"WEMU387.386". "WEMU387.386" isroyalty free and may be
redistributed with your application. For machines that do not have a math co-processor,
install "WEMU387.386" as a device in the [386Enh] section of the Windows SY STEM.INI
file to handle the floating-point operations. Note that the speed of code using
"WEMU387.386" on machines without a co-processor will be much slower than code
compiled with the "fpc" option that always uses floating-point libraries.

37.13 How more than 20 files at a time can be opened

The number of file handles allowed by Open Watcom F77 isinitializedto 20in st di o. h,
but this can be changed by the application developer. To change the number of file handles
allowed with Open Watcom F77, follow the steps outlined below.

1. Letn represent the number of filesthe application devel oper wishes to have open.
Ensure that the stdin, stdout, stderr, stdaux, and stdprn files are included in the
count.

2. Change the CONFI G. SYS fileto include "files=n" where "n" is the number of file
handles required by the application plus an additional 5 handles for the standard
files (this appliesto DOS 5.0). The number "n" may vary depending on your
operating system and version. If you are running a network such as Novell’'s
NetWare, thiswill also affect the number of available file handles. In this case,
you may have to increase the number specified in the "files=n" statement.

3. Add acall to GROAHANDLES in your application.

The following example illustrates the use of GROAHANDLES.

How more than 20 files at a time can be opened 315

Common Problems

Example:
* FHANDLES. FOR

Thi s FORTRAN program grows t he nunber of file handles so
nore than 16 files can be opened. This program
illustrates the interacti on between GROANHANDLES and

the DOS 5.0 file system If you are running a network
such as Novell’'s NetWare, this will also affect the
nunber of available file handles. In the actual trial

FI LES=40 was specified in CONFlI G SYS.

* % kX X X X F

Conpi | e/ Li nk: set finclude=\watcom src\fortran
* wfl[386] fhandles

* Get proper typing information frominclude file
include ’fsublib.fi

integer i, j, maxh, maxo
i nteger tmpfile
i nteger units(7:57)

do i = 25, 40
Count 5 for stdin, stdout, stderr, stdaux,
and stdprn
print 100, 5 + i
maxh = growhandles(5 + i)
print *, ' G owhandl es=", maxh
maxo = 0

doj =7, 7 + maxh
print *, 'Attenpting file', |j
units(j) = tnpfile(j)
if(units(j) .eq. 0)goto 10
maxo = maxo + 1

enddo

10 print 101, maxo, maxh
doj =7, 7 + maxo
close(units(j))
enddo
enddo

100 format(’Trying for ',12,’ handles... ', %)

101 format (12, /',12," temp files opened’)
end

316 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

i nteger function tnpfile(un)

i nteger un, ios

open(unit=un, status=" SCRATCH , iostat=ios)

if(ios .eq. 0)then
wite(unit=un, fnt="(12)", err=20) un
tmpfile = un
return

endi f

20 tnpfile = 0
end

37.14 How source files can be seen in the debugger

The selection and use of debugging information isimportant for getting the most out of the
Open Watcom Debugger. If you are not able to see your source code in the Open Watcom
Debugger source window, there are three areas where things may have gone wrong, namely:

1. usingthe correct option for the Open Watcom F77.
2. using the correct directives for the Open Watcom Linker.
3. using the right commands in the Open Watcom Debugger.

The Open Watcom F77 compiler takes FORTRAN 77 source and creates an object file
containing the generated code. By default, no debugging information is included in the object
file. The compiler will output debugging information into the object file if you specify a
debugging option during the compile. There are two levels of debugging information that the
compiler can generate:

1. Linenumbersand local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you
are debugging a particular module. If you use the "d2" option, you will be able to see your
source file and display your local variables. The"d1" option will display the source but will
not give you access to local variable information.

The Open Watcom Linker (WLINK) isthetool that puts together a compl ete program and sets
up the debugging information for all the modules in the executable file. Thereisalinker
directive that indicates to the linker when it should include debugging information from the
modules. There are five levels of debugging information that can be collected during the link.
These are:

1. global names (DEBUG)

How source files can be seen in the debugger 317

Common Problems

2. global names, line numbers (DEBUG LINE)

3. global names, types (DEBUG TY PES)

4. globa names, local variables (DEBUG LOCALYS)
5. all of the above (DEBUG ALL)

Notice that global names will always be included in any request for debugging information.
The debugging options can be combined

DEBUG LI NE, TYPES

with the above directive resulting in full line number and typing information being available
during debugging. The directives are position dependent so you must precede any object files
and libraries with the debugging directive. For instance, if thefile myl i nk. | nk contained:

#

invoke with: wink @ylink
#

file main

debug line

file input, output

debug al

file process

then themodules i nput and out put will have global names and source line information
available during debugging. All debugging information in the module pr ocess will be
available during debugging.

Hint: A subtle point to debugging information isthat al the modules will have global
names available if any debugging directiveis used. In the above example, the module

mai n will have global name information even though it does not have a DEBUG directive
preceding it.

It is preferable to have one DEBUG directive before any FILE and LIBRARY directives.

Y ou might wonder if thisincreases the size of the executable file so that it will occupy too
much memory during debugging. The debugging information isloaded "on demand" by the
debugger during the debugging session. A small amount of memory (40k default, selectable
with the Open Watcom Debugger "dynamic" command line option) is used to hold the most
recently used module debugging information. In practice, this approach saves alot of
memory because most debugging information is never used. The overhead of accessing the
disk for debugging information is negligible compared to accessing the source file
information. In other words, you can have as much debugging information as you want
included in the executabl e file without sacrificing memory required by the program. Seethe

318 How source files can be seen in the debugger

Commonly Asked Questions and Answers

section entitled "The DEBUG Directive" in the Open Watcom Linker User’s Guide for more
details.

If the previous steps have been followed, you should be well on your way to debugging your
programs with source line information. There are instances where the Open Watcom
Debugger cannot find the appropriate source file even though it knows al the line numbers.
The problem that has surfaced involves how the source file is associated with the debugging
information of the module. The original location of the sourcefile isincluded in the
debugging information for amodule. The name that isincluded in the debugging information
isthe original name that was on the Open Watcom F77 command line. If the original
filename is no longer valid (i.e., you have moved the executable to another directory), the
Open Watcom Debugger must be told where to find the source files. The Open Watcom
Debugger "Source Path" menu item (under "File") can be used to supply new directoriesto
search for sourcefiles. If your source files are located in two directories, the following paths
can be added in the Open Watcom Debugger:

c:\programfortran*.for
c:\programinew\ fortran*.for

The"*" character indicates where the module name will be inserted while the Open Watcom
Debugger is searching for the sourcefile. See the description of the "Source Path" menu item
in the Open Watcom Debugger User’s Guide for more details.

37.15 The difference between the "d1" and "d2"
compiler options

The reason that there are two levels of debugging information availableis that the code
optimizer can perform many more optimizations and still maintain "d1" (line) information.
The"d2" option forces the code optimizer to ensure that any local variable can be displayed at
any timein the function.

The"d2" option will always generate code and debugging information so that you can print
the value of any variable during the execution of the function. In order to get the best code
possible and still see your source file while debugging, the "d1" option only generates line
number information into the object file. With line number information, much better code can
be generated. The debugging of programs that have undergone extensive optimization can be
difficult, but with the source line information it is much easier. To summarize, use the "d2"
compiler option if you are developing a module and you would like to be able to display each
local variable. The"d1" compiler option will give you line number information and the best
generated code possible. There is absolutely no reason not to specify the "d1" option because
the code quality will be identical to code generated without the "d1" option.

The difference between the "d1" and "d2" compiler options 319

Common Problems

37.16 The difference between the "debug” and "d2"
compiler options

The"d2" (and "d1") compiler options are used to add debugging information to your
executable. The"d2" option makes line numbering, local symbol and typing information
available to the debugger whereas "d1" only provides line number debugging information to
the debugger. Thisinformation is used during a debugging session to examine the state of
variables and to provide the source code display.

The "debug" option provides run-time error messages that are independent of the Open
Watcom Debugger. The "debug" option causes the generation of run-time error checking
code. Thisincludes subscript and substring bounds checking as well as code that allows a
run-time traceback to be issued when an error occurs. During the execution of the application,
if an error occurs, the code added with the "debug" option will halt the program and provide
an informative error message.

320 The difference between the "debug"” and "d2" compiler options

Index

16-bit 147

16-bit DLL 183

16-bit DOS applications 5

16-bit far pointer 148

16-bit near pointer 148

16-bit OS/2 1.x applications 249

16-bit Windows 3.x applications 123

16-bit Windows 3.x non-GUI applications 127
_16xxx functions 217

32-bit 147

32-bitDLL 167, 183

32-bit DOS/AGW applications 13

32-bit far pointer 148

32-bit gates 45

32-bit near pointer 148

32-bit OS/2 applications 255

32-hit Phar Lap 386|DOS-Extender applications 9
32-bit Windows 3.x applications 133

32-bit Windows 3.x non-GUI applications 139
386enh 155

4GWPRO.EXE 114

8042 auxiliary processor 37

A20line 36, 38

addressline 20 38

AllocAliasl6 192, 158, 193, 200-201, 210
ALLOCATE 148-149, 157, 160, 173, 196
AllocHugeAliasl6 193, 158, 193, 201, 210
answers to general problems 299

API specid functions 217

application development 1

array 148-149, 157

autopassup range 45

BBS 300

beginthread function 232, 260

binary data 302

binding 32-bit applications 135, 141
binding a32-bit DLL 136, 142

BINP directory 252

BINW directory 136, 142

building 386|DOS-Extender applications 10
building DOS applications 6

building DOS/AGW applications 14
building OS/2 1.x applications 250
building OS/2 applications 256

building Windows 3.x applications 124, 134
building Windows NT applications 228

321

Index

bulletin board 300

_Call16 194, 164, 202, 204, 208, 213-214
cdecl 164, 194, 198
class 156
common questions 299
DOS/AGW 99
Compaq 386 memory 36
CompuServe 300
CONFIG.SYS 252
converting to Open Watcom F77 301
common problems 301
what you need to know 301
cstart 311

dl 302
dl versusd2 319
d2 302
d2 versus debug 320
DEALLOCATE 160
DEBUG option 313
debug versusd2 320
debugger option
dl 320
d2 320
debugging 302
optimized programs 302
stack overflow 312
techniques 312
debugging 386|DOS-Extender applications 11
debugging DOS applications 7
debugging DOS/4GW applications 15

322

debugging information
global variables 317
line numbering 317
local variables 317
Open Watcom Debugger 319
Open Watcom F77 317
source file 317
types 317
WLINK 317
debugging Non-GUI 16-bit Windows 3.x
applications 129
debugging Non-GUI 32-bit Windows 3.x
applications 143
debugging OS/2 1.x applications 251
debugging OS/2 applications 257
debugging Windows 3.x applications 125, 136
debugging Windows NT applications 229
default type 154
default windowing library functions 130, 144
DefineDLLEnNtry 196
DefineUserProc16 198, 207
DELETESWAP virtual memory option 40, 111,
113
distribution rights 155
DLL
16-bit 183
16-bit callsinto 32-bit DLLs 170
32-bit 167, 183
32-bit callsinto 32-bit DLLs 172
32-bit Windows example 168
creating 178-179
debugging 178
debugging example 180
installing example 179
0S/22.x 265
passing information in a structure 173
running example 179
summary 181
Windows NT 237
DLL access
0S/22.x 268
Windows NT 242
DLL creation
0S/22.x 265

Index

Windows NT 237
DLL directory 252
DLL initialization
0S/22.x 270
Windows NT 244
DLL sample
0S/22.x 266
Windows NT 238
DLL termination
0S/22x 270
Windows NT 244
DLL_CHAR 196
DLL_DWORD 196
DLL_ENDLIST 196
DLL PTR 196
DLL_WORD 196
DOS extenders
common problems 17
DOsfilel/O 109
DOS memory management 55
DOS Protected-Maode Interface 47
DOS/AGW
AGWPRO.EXE 114
addressline 20 38
asynchronous interrupts 106
cannot lock stack 119
chaining handlers 46
code and data addresses 105
common questions 99
contacting Tenberry 100
Ctrl-Break handling 107
debugger version 114
debugging bound applications 113
demand-loading 112
differences with DOS4G 102
differences with Professional version 101
documentation 100
DOSfilel/O 109
DOSX.EXE 120
DPMI support 103
EMM386.EXE 118
error messages 91
extender messages 87
extramemory 36

int 70h-77h 107

interrupt handler address 46

interrupt handlers 46, 107

kernel error messages 87

linear vs physical addresses 105

locking memory 107

Lotus 1-2-3 118

low memory access 105

memory addressability 109

memory control 34

memory range 34

memory use 29

mouse support 110

NULL pointer references 105

0S/2bug 119

out of memory 111

pointers vs linear addresses 104

realloc 109

register dump 116

runtime options 36

spawning 110

switch mode setting 32

TCPIP.EXE 119

telephone support 100

transfer stack overflow 115

TSR not supported 25

unexpected interrupt 114

utilities 79

VESA support 110

VM configuration 113

VMM 110

VMM instability 111

VMM restriction 25

Windows NT bug 120
DOS/AGW DOS extender 25
DOS16M

+ option 36

A20 option 38

loops option 38

runtime options 36
DOS16M environment variable 31-34, 36, 38, 83
DOsAG

NULLP option 32, 105

QUIET option 31

323

Index

VERBOSE option 31, 116
DOSAG environment variable 31
DOSAGPATH environment variable 28
DOAGVM
DELETESWAP 111, 113
MAXMEM 113
MINMEM 113
SWAPINC 111, 113
SWAPMIN 111, 113
SWAPNAME 111
VIRTUALSIZE 111, 113
DOSAGVM environment variable 39-40
DOSAGVM.SWP 39
DO4AGW 80
DOSAGW.EXE 27
DOSX.EXE 120
DPMI 35, 45, 47
alocate DOS memory block 55
allocate memory block 69
allocate real-mode callback address 63
demand paging 72
discard page 72
free DOS memory block 55
free memory block 70
free physical address mapping 74
free real-mode callback address 67
function calls 48
get and disable virtua interrupt state 75
get and enable virtual interrupt state 75
get API entry point 76
get coprocessor status 77
get DPMI version 68
get exception handler vector 57
get free memory information 68
get page size 71
get protected-mode interrupt vector 59
get real-mode interrupt vector 56
get virtual interrupt state 76
lock linear region 71
mark page 72
physical address mapping 73
resize DOS memory block 56
resize memory block 70
set coprocessor emulation 78

324

set exception handler vector 57
set protected-mode interrupt vector 59
set real-mode interrupt vector 57
simulate real-mode far call 61
simulate real-mode interrupt 61
simulate real-modeiret call 62
unlock linear region 71
vendor extensions 76
virtual interrupt state 74
DPMI host
386Max 47
0S/2VDM 47
QEMM QDPMI 47
Windows 3.1 47
DPMI specification 17, 100
DPMI_MEMORY_LIMIT
DOS setting 119
dragon book 301
dwfDeleteOnClose 131, 144
dwfSetAboutDIg 131, 144
dwfSetAppTitle 131, 144
dwfSetConTitle 131, 145
dwfShutDown 131, 145
dwfYield 131, 145
DWORD 164
dynamic link libraries 252
0S/22.x 265
Windows NT 237
dynamic link library 167, 183
dynamic link library access
0S/22.x 268
Windows NT 242
dynamic link library creation
0S/22.x 265
Windows NT 237
dynamic link library initialization
0S/22.x 270
Windows NT 244
dynamic link library sample
0S/22.x 266
Windows NT 238
dynamic link library termination
0S/22.x 270
Windows NT 244

Index

dynamic linking 237, 265

EMM386.EXE 118
endthread subroutine 232, 260
EnumChildWindows 206
EnumFonts 206
EnumMetaFile 206
EnumObjects 206
EnumProps 206
EnumTaskWindows 206
EnumWindows 206
environment variables
DOS16M 31-34, 36, 38, 83
DOs4G 31
DOSAGPATH 28
DOSAGVM 39-40
FINCLUDE 183, 235, 262, 310
PATH 135-136, 142, 183
WATCOM 135-136, 142, 235, 262, 311
WINDOWS INCLUDE 190
error messages
DOS/4GW 91
kernel 87
executable
linear 27
segmented 27
executablefile 6, 10, 14, 125, 129, 135, 141, 228,
251, 257
EXPLICIT option 154
extended memory 31
extender messages
DOS/4GW 87

far 147-149, 157, 173, 196, 207, 295
far pointer 147
__fdll_initialize_ 244, 270
__fdll_terminate_ 244, 270
files
more than 20 315
unableto find 310
FINCLUDE environment variable 183, 235, 262,
310
fixed record type 302
floating-point options 314
formatted 302
FORTRAN 77
Extensions 301
fpc option 314
fpi option 314
fpi87 option 314
free 204
free memory 20
FreeAliasl6 200, 158, 192-193, 201
FreeHugeAliasl6 201, 193, 201
FreelndirectFunctionHandle 202, 194, 204, 208,
213-214
FreeLibrary 240
FreeProclnstance 162
fsignal 303
__fthrd_initialize _ 244
__fthrd_terminate_ 244
FTP site 300
Fujitsu FMR-70 switch mode setting 32
FWinMain 167

325

Index

GetlndirectFunctionHandle 204, 194, 202, 208,
213-214

GetProcl6 206, 158, 160, 198, 212, 214

GETPROC_ABORTPROC 206

GETPROC _CALLBACK 206

GETPROC_ENUMCHILDWINDOWS 206

GETPROC _ENUMFONTS 206

GETPROC_ENUMMETAFILE 206

GETPROC_ENUMOBJECTS 206

GETPROC_ENUMPROPS _FIXED_DS 206

GETPROC_ENUMPROPS MOVEABLE_DS
206

GETPROC_ENUMTASKWINDOWS 206

GETPROC_ENUMWINDOWS 206

GETPROC_GLOBALNOTIFY 206

GETPROC_GRAYSTRING 206

GETPROC LINEDDA 207

GETPROC_SETRESOURCEHANDLER 207

GETPROC _SETTIMER 207

GETPROC_SETWINDOWSHOOK 207

GETPROC_USERDEFINED_1 198

GETPROC _USERDEFINED_32 198

GETPROC _USERDEFINED_x 207

GetProcAddr 214

GetProcAddress 164, 194, 213

GlobalAlloc 160

GlobalLock 215

Globa Notify 206

GMEM_DDESHARE 160

GrayString 206

GROWHANDLES 315

GWL_WNDPROC 163

326

HIMEM.SYS 36
Hitachi B32 switch mode setting 32

!

IBM PS/55 switch mode setting 32
IDT 45
import definitions 237, 265
import library 242, 268
INDIR_CDECL 204
INDIR_CHAR 204
INDIR_DWORD 204
INDIR_ENDLIST 204
INDIR_PTR 204, 208
INDIR_WORD 204
initialization
0S/2 2.x dynamic link library 270
Windows NT dynamic link library 244
initializing
variables 312
Instant-D 27
INT 21H 41
INT 31H 47
int 31H function calls 48
inter-language calls 285
interrupt handling 45
interrupt services 56
interrupts
using DOS/4GW 18
InvokelndirectFunction 208, 202, 204, 213-214
Invokel ndirectFunctionHandle 194

Index

kernel error messages 87
keyboard status 37

LDT 49
LE format 27
LibMain 238-241, 266
library 311
library functions

default windowing 130, 144
line number information 302
linear executable 27
LineDDA 207
linker

undefined references 311
LoadLibrary 213, 239-241
LoadLibrary returns NULL 241
local descriptor table 49
LocalAlloc 160
LOCATION 149, 157, 173, 196
LOCATION= 148, 157
Lotus1-2-3 118

M

MakeProclnstance 160, 162
malloc 204
MapAliasToFlat 210

math errors 303

MAXMEM virtual memory option 39, 113

memory management services 68
memory transfer rate 82
memory wait states 82
message
include files 310
no starting address found 311
stack segment not found 311
unableto find files 310
undefined references 311
messages
DOS/AGW 87

MINMEM virtual memory option 39, 113

mixed-language programming 285

argument passing 286
common blocks 293
integer type 288

linking issues 287
memory models 287
parameter passing 286
passing integers 288-289
passing strings 291-292
symbol names 285

variable number of arguments 295

mode switching
basis 84
performance 81

multi-threaded applications 231, 259

0S/22.x 259
Windows NT 231
multi-threading issues
0S/22.x 259
Windows NT 231

NE format 27
near 147
near pointer 147

NEC 98-series switch mode setting 32

NLM

327

Index

debugging 281

header files 281

import libraries 281

libraries 281

sampler 281
NLM support

version 4.0 281

version 4.1 281
no starting address found 311
NOAUTOPROCS 162
NOCOVERSENDS 158-159
Novell

TCPIP.EXE 119
NT development 225
NULLP 32

object file 6, 10, 14, 125, 129, 135, 141, 228, 251,
257
OKI1 if800 switch mode setting 32
Open Watcom F77
converting to 301
Open Watcom F77 debugging
d2 320
debug 320
Open Watcom F77 options
dl 302, 317
d2 302, 317
Open Watcom Strip Utility 302
opening more than 20 files 315
optimization
suggested reading 301
what you should know 301
0s/2
fullscreen application 249, 255
PM-compatible application 249, 255
Presentation Manager application 249, 255
0S/2 PM
API cadls 274

328

non-GUI applications 273
non-GUI example 274
0S/2 Presentation Manager 273

page locking services 70
page tuning services 72
PASCAL 164, 194, 198
PASS WORD_AS POINTER 211
patch level 300
patches 300
PATH environment variable 135-136, 142, 183
performance 82
Phar Lap TNT 225
PMINFO 33,81
pointers

16-bit 148

32-bit 148

far 147

near 147
pragma 302
PRINT 231, 259
private memory pool 83
PRIVATXM 35, 83, 118
PROCPTR 214
protected mode 36
PS/2 switch mode setting 32

guestions 299
QUIET 31

Index

real mode 36
ReleaseProcl6 212, 207
resource compiler 135, 142
RMINFO 84

SAVE 301, 312
segmented executable 27
SendDIgltemMessage 158-159
SendMessage 158-159
sequential 302
SetResourceHandler 207
SetTimer 207
setvbuf 110
SetWindowLong 163
SetWindowsHook 207
sieve 124, 128, 134, 140, 227
sieve program 5, 9, 13, 249, 255
STACK option 313
stack overflow 312
stack segment not found 311
static linking 237, 265
stub program 27, 80
supervisor 135, 141
SWAPINC virtual memory option 39, 111, 113
SWAPMIN virtual memory option 39, 111, 113
SWAPNAME virtual memory option 39, 111
switch mode setting
Fujitsu FMR-70 32
Hitachi B32 32
IBM PS/55 32
NEC 98-series 32
OKI1 if800 32
PS/2 32

switching modes
performance 81

symbolic information 302

system 311

system configuration file 252

SYSTEM.INI 155

TCPIP.EXE 119
TECHINFO 300
technical support

Tenberry Software 99
termination

0S/2 2.x dynamic link library 270

Windows NT dynamic link library 244
thread creation

0S/2 2.x 259-260

Windows NT 231-232
thread example

0S/22.x 261

Windows NT 233
thread identifier

0S/22.x 261

Windows NT 233
thread limits

0S/22.x 263
thread termination

0S/2 2.x 260

Windows NT 232
threadid function 233, 261
threads of execution 231, 259
TNT 225
transfer rate

memory 82
trandation services 59

329

Index

UDP16_CDECL 198
UDP16_CHAR 198
UDP16_ DWORD 198
UDP16 _ENDLIST 198
UDP16_PTR 198
UDP16 WORD 198
unableto find files 310
undefined references 311
cstart 311

UnExpected Interrupt 313

variables
set to zero 312
VCPI 35
VERBOSE 31
video memory 18
virtual memory manager 39, 110
VIRTUALSIZE virtua memory option 40, 111,
113
Visual Basic 183
16-bit DLL 187, 189
32-bitDLL 187
building examples 190
example 185
Version 3.0 183
VMC extension 40
VMM 39, 110

330

w

W386DLL.EXT 136, 142
WATCOM environment variable 135-136, 142,
235, 262, 311

WBIND 135, 141-142, 214
WBIND.EXE 135, 141
WDEBUG.386 155
WEMU387.386 155
WFL 7, 125-126, 129-130, 251-252
WFL386 11, 15, 136-137, 143, 229, 257-258
WIN386 library routines 191
WIN386.EXT 135-136, 141-142
Win386LibEntry 183
WINAPI.FI 154, 158
WINDLG.FI 154
windowed applications

default windowing environment 127, 139
Windows

binding 32-bit applications 135, 141
Windows 3.x extender 147

_16xxx functions 215, 217

32-bit callback routines 214

calling 16-hit code 213

components 151

creating applications 152

floating-point 155

function pointers 214

multiple instances 155

overview 148

pointer conversion 157-158

pointer handling 156

pointers 147

programming notes 153

questions 213

resources 214

special functions 217

structure 150
Windows APl 154
Windows NT 225

Index

character-mode applications 225
GUI applications 225
programming overview 225
Windows NT Character-mode applications 227
Windows supervisor 135, 141
WINDOWS.FI 154
__ WINDOWS 386__ 190
__WINDOWS__ 190
WINDOWS _INCLUDE environment variable
190
WINFONT.FI 154
WSTUB.C 28

XMS 36

331

