Open Watcom C

Language Reference

First Edition

Uien Watcom

Notice of Copyright

Copyright 00 2002-2006 the Open Watcom Contributors. Portions Copyright O 1984-2002
Sybase, Inc. and itssubsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.SA.

Preface

This book describes the C programming language as implemented by the Open Watcom
C16 and C32 compilers for 80x86-based processors. Open Watcom C16 and C32 are
implementations of ANSI/ISO 9899:1990 Programming Language C. The standard was
developed by the ANSI X3J11 Technical Committee on the C Programming Language. In
addition to the full C language standard, the compiler supports numerous extensions for the
80x86 environment.

This book isintended to be a reference manual and hence a precise description of the C
language. It also attempts to remain readable by ordinary humans. When new concepts are
introduced, examples are given to provide clarity.

Since C is a programming language that is supposed to aid programmers trying to write
portable programs, this book points out those areas of the language that may vary from one
system to another. Where possible, the probable behavior of other C compilersis mentioned.

September, 1996.

Trademarks

IBM, IBM PC, PS/2, PC DOS and OS/2 are registered trademarks of International Business
Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft and MS DOS are registered trademarks of Microsoft Corp. Windowsis a
trademark of Microsoft Corp.

QNX isaregistered trademark of QNX Software Systems Ltd.
UNIX isaregistered trademark of The Open Group.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

[g11 070 18 Tox 1 o o IR

T g1ugo T [Toi i o] a1 (o 1 oSO
LL HISIOMY ettt bbb
2 -SRI
I I 0 (Y72 g1 =T L= TSRS
14 HOW to USE ThISBOOK ...oocveiiiiiiieiticee ettt

LangUage REFEIENCEocueeeiece et a e s te e e tesaeentennaens
b2 VLo = 1 o o S

3 Basic Language EIEMENLS ..ottt
3.1 CharaCter SELS ...eceeeeereiresesese e e st e et ae et te e see e see e enaeneeneens

3.1.1 Multibyte CharaClerscoeireerieirieirieerese e

T (= VAT o

B3 IAENLITIENS oo

34 COMMENLS ...cviieiiriie i s

T S Lo Y] o= OSSR
4.1 Declarations Of ODJECLSooeviriiiiirieie e e
4.2 NBME SCOPE ..ottt sttt s sr s se e ie e ere s
A.3 TYPE SPECITIENS .ttt
44 TNIEJEN TYPES oottt
4.5 Foating-POINt TYPES ..ot
4.6 ENUMEELE TYPES .uveeeeeereeeeeetereseste s e e see e st seesseaesae e e ese e e eneesessesnesseses
N 1 - Y1 TSP PRSP
4.8 SHINGS ©uveveieeeeeieieee et s e st s e s e sreste e seeseeseese e e eseetesseereetesteseestesbeseeseneensensens

5 CONSIANES ...ttt et b et st se e s ae e e ae e nbe s e besae e benanenreen
5.1 INteger CONSLANESvoieiiiieiiitieie ettt e s se e s see e

5.2 Floating-Point CONSLANEScccevireeririeiirieiereeeneeeree e

5.3 CharaCter CONSLANESc.evverieriereeieieeeeeeeeese sttt seeseen e see e sneesens

5.3.1 Wide Character CONStaNtSccccvvererereeneneseeseeneeneeseeseeeeeseneens

B4 SING LITErAlS .ot
5.4.1Wide String LiteralS ...ocvoeveieeeeeeeeeeese e e

LSRN LT @017/ 6 o) o
6.1 Integral PromMOLiONcceeiuiiieii et
6.2 Signed and Unsigned Integer CONVErSIONcccocerererieneneeneeneeiesesesieseee
6.3 Floating-Point to INteger CONVEISIONcccceeeirerenieniesieseesiesee e see e

U1 WwWwww

11

13
13
14
14
15
17

19
19
22
22
24
27
28
31

35
35
37
38
41
41
43

45
45
46
47

Table of Contents

6.4 Integer to Floating-Point CONVEISIONcccooeeiriienenie e

6.5 Arithmetic Conversion

6.6 Default Argument PromOtioNcccoeoreneereeneineeseesee s

7 Advanced TYPESc.ccoeveeereeerinenns
7.1 SrUCtUresoeeevveeeeieeens

7.1.1 Bit-fidlds

7.2UNIONS ..o,

7.3 POINLESS ..ocvvereereerecreene

7.3.1 Special Pointer Types for Open Watcom C16 cccccevevevennne
7.3.1.1 The Small and Big Code Modelscooevereieneenenne
7.3.1.2 The Small and Big Data Modelsccoceveieieriencncnnne
7.3.1.3 Mixing Memory MOdelScoeirrinneneiieeee e
7.3.1.4The __far Keyword for Open Watcom C16
7.3.1.5The __near Keyword for Open Watcom C16
7.3.1.6 The __huge Keyword for Open Watcom C16

7.3.2 Special Pointer Typesfor Open Watcom C32 cocoeveveeeenanee
7.3.21The __far Keyword for Open Watcom C32
7.3.2.2The __near Keyword for Open Watcom C32
7.3.2.3The___farl6and _Segl6 Keywords.........cccccecevveceerernen.

7.3.3 Based Pointers for Open Watcom C16and C32 cccccveveeeee.
7.3.3.1 Segment Constant Based Pointers and Objects
7.3.3.2 Segment Object Based POINLENScooveevenenenccneeienens
7.3.3.3V0id Based POINLENScccceveririnene e
7.3.3.4 Self Based POINLErSccvvereereeeeeeee s

TANO ..o

7.5 The const and volatile DeClarationscccoeveveeeeiieeccee e

8 Storage Classescccvvveevveveeeennne.
8.1 Type Definitions

8.1.1 Compatible TYPES ...eeeiiiiierereeteeer e e

8.2 Static Storage Duration ...

8.2.1 The static StOrage Classcccvirrireinieeneese e
8.2.2 The extern Storage Class ...
8.3 Automatic Storage DUIALioNcccccvveirieniniininereeeseee s
8.3.1 The auto StOrage Classcccveererrinnineeeee e
8.3.2 Theregister Storage Classcovvvvrvrniereneseseeeesee e eeseeese e

9 Initialization of Objects

9.1 Initialization Of SCaAlar TYPES ...ccvoveeeeirereeerere e

9.2 Initialization of Arrays

9.3 Initialization of Structures

Vi

48
49
50

51
51

57
58
59
60
61
62
62
63

65
66
67
67
69
70
71
72
73
74
75

79
80
82
83

86
87
87

89
89
89
91

Table of Contents

9.4 Initialization Of UNIONScccoveiiiiiriiisiieeieseeesee s 92
9.5 Uninitialized ODJECESooviieieieeee e e 93
LO EXPIESSIONS ...ouveviieiiieiesteestee ettt se bt seebe e bt se sttt s e b et eeb s e bt ns b e b e bt e se b e e nnenes 95
0 0 IR S 97
10.2 Primary EXPreSSIONScoeieieriererierenieneeie sttt st 97
10.3 POSIiX OPEIELOIS ..ovvvveveseereeieiereeeesesessestesseseessesteseessessesesseesessessessessessenes 98
O RCT AN g = VRS TW oS ox 11 1] oo 99

10.3.2 FUNCLON CallS ..o 99

10.3.3 Structure and Union MeMbErScceovveeneieneeneeseses e 101

10.3.4 Post-Increment and Post-Decrementcocccvevenennennenennenen 101

10.4 UNGrY OPEIBLOISocceiieieeeiieeiesieesiesieesiesseesseseessessesseenessseaesssesssesaesssesseans 102
10.4.1 Pre-Increment and Pre-Decrement Operatorsccccoeeeveeenvenens 102

10.4.2 Address-of and Indirection OPEratorsc.ccoceveverenerereserenenenns 103

10.4.3 Unary Arithmetic OPEratorsccoeovererennenseniee e 104

10.4.4 The SiZEOF OPEIAOrccoveeriieriierereeeree e 105

10.5 CaSt OPEIAIOLeeoeeieeeiereeeriereeeseeeesteeeesee e e seeeee e eseesreeneesreessesseesesseensenns 106
10.6 MUItipliCatiVe OPEFELOLScceeeeeereresresesesiesie e seestesaeseeseeseesesessessessesnens 108
10.7 AdditiVE OPEFELOISoecveieeeieiiesiesieiesee e eseeesesse e te e re e sresee e e e e esaeseeneens 109
10.8 Bitwise Shift OPEralOrSccceoererierireresie e 110
10.9 Relational OPEratOrsScocooeierierieriereereeee ettt 111
10.10 EQUAlitY OPEIELOIScccivirueriereereeieseeseeeseseeiestesie st sbe e e e seesesses e neene 112
10.11 BitwiSe AND OPEIEIONc.coveerveerreenreriereseere st seere e e sesreneas 112
10.12 Bitwise EXClUSIVE OR OPEFaLOrceveruereriirieririeiesieieseeeseeieseeeseeeseeeseas 113
10.13 Bitwise INClusiVe OR OPEraLOrccovueerieerieerieerieesieseseeseese e 114
10.14 LogiCal AND OPEIELONc.coveuerieirieeriereeiesesieseete st seere s sae e sesseneas 114
10.15 LogiCal OR OPEIGLOrccvrereeererieserseesieseessesseseeseeseesesessessessessessessesseseens 115
10.16 Conditional OPEratOrcccceveeereresesieseseseesiesee e esse e e se e sre e seens 115
10.17 ASSIGNMENE OPEFELOLSvcvveveeueereeiesiesteeesiestestesteseesaeeeseeseesessessessessessessens 116
10.17.1 SImple ASSIONMENTocviiiieieiiee e e e 117
10.17.2 Compound ASSIGNMENLcoererreririirierie e seeee e 117

10.18 COMMA OPEIEIONiiuieeiiiereereesieeeesieeee st e s e s e e s saeesee e e saeseesresneens 118
10.19 CoNnStant EXPrESSIONSccervevereeierieiirieesieesreesresesre s seereseese e ssesesneneas 118
S = 1= 011 ST 121
11.1 Labelled StAEMENESocvieeeee e e e 121
11.2 CompouNd SEALEMENESc.ecevereerierese e eeeee e seens 121
11.3 EXPression StAEMENESccovvereceeese e e seeseae e e e e e sre e seeseens 122
114 NUHl SEBEEMENES ...t 123
11.5 SeleCtion SAEMENESccvireeerererereee e 123
1151 Theif SEEMENtccovieirirreeerere e 123

11.5.2 The switch Statement ... 125

vii

Table of Contents

11.6 1Eration SLAEMENEScciieirierierieie et e 126

11.6.1 The while Statementccooeviiiieieeeeeeeeeeeer e 126

11.6.2 The do SEAteMENtcccovieeeeeeeeeeee e 127

11.6.3 Thefor SEAEMENt ..o 127

11,7 JUMP SEAEMENES ..o 129

11.7.1 The gOtO SEALEMENLcoveereiireiirieeeereeiesee e 129

11.7.2 The continue Statementcccveerirninneneseeese s 129

11.7.3 The break Statementccccevrrirrieneerereere s 130

11.7.4 The return SEatemeNtcccocvveireireesecreese s 130

T2 FUNCLIONS ..ttt et e et e e et e s e et e st ebesbesaesbesbeseeseen 131
12.1 The Body Of the FUNCHIONcccoiiiiiiiiiee e 134

12.2 FUNCLION PrOLOLYPESeveiiiieesieestesesie sttt 135

12.2.1 Variable Argument LiStSoocverrinninieinieeneeseeeseeeseeeseens 135

12.3 The Parameters to the FUNCLION MaiNccooveieieieee e 138

13 THE PrEIIrOCESSON ...ocvviviivesieieestestesteseeeeeeseesessessessestesteseessesseseesseseeneeneesessessessessessessens 141
13.1 The NUII DIFECHIVE ..oecveeeeeiieeriee et 141

13.2 Including Headers and SOUrce FIlEeScccovvvneciiveieccesie e 142

13.3 Conditionally Including SOUrCE LiNEScccceveveeveseeieceee e 143

13.3.1 The #ifdef and #ifndef DireCtivescocveieveneneneiceeeeens 145

13.4 MaCro REPIACEMENToiviiiiieieeieie et e 146

13.5 Argument SUDSEEULIONoverieviiieiirieirieeneesees ettt 149

13.5.1 Converting An Argument t0 @ StHNGcocovevererenenenenesenreene 149

13.5.2 Concatenating TOKENScccvveireiriireriereesee s 150

13.5.3 Simple Argument SUDSETULIONcooeirieireerere e 150

13.5.4 Variable Argument MacroSccccceeeeverieeeseseseseseseseesseseeneens 151

13.5.5 Rescanning for Further Replacementcccceveveeeeeinienesienninens 152

13.6 More Examples of Macro Replacementccccccceveveeveveecececcese e 154

13.7 RedefiNiNg @MaCIOccocveeeeieee et 156

13.8 Changing the Line Numbering and File Namecccccoeorininincncncnene 157

13.9 Displaying aDiagnostiC MESSA0Ecoeruerierieiienienie e 157

13.10 Providing Other Information to the Compilerc.cccoeiniennienniennenn 158

13.11 Standard Predefined MaCrOScccovererereeriereseeeeese e 158

13.12 Open Watcom C6 and C32 Predefined Macrosccccoccveeeeevevencecnenee, 160

13.13 The OffSEtOf MACIOcecvvieeevese e e 162

1314 ThENULL MBEIO ..ecveieeiirieesieie ettt 163

14 The Order Of TranSl@tionccceoeeenrenrieneie et 165
Programmer’ S GUITEociiie ettt ettt re b aeeaesbe e e 167

Table of Contents

15 MOGUIBITEY oottt sttt 169
15.1 Reducing Recompilation TIMEccoceieiirinenereeeeee e 170

15.2 Grouping Code With Related FUNCLIONAIILYccocvvvverieinieineceeeseee 170

15.3 D@AHITING ..eoveieeiieeieieeers et 170

15.3.1 Complete Data Hidingccoeereiriiirirereeeee s 171

15.3.2 Partial Data Hidingcccceoeveireiniieneneneesese e 171

15.4 Rewriting and Redesigning MOdUIEScccoveeeeeceeevese e 172

15.5 Isolating System Dependent Code in MOdUIESccccveveeeeececevesesienee 172

16 Writing Portabl @ Programscccoiieeieccee sttt s 173
16.1 Isolating System Dependent COOecooerererenenesieseeneree e 173

16.2 Beware of Long EXternal NaIMESccccoieireienenenee e 175

16.3 Avoiding Implementation-Defined BEhaViorcccoceovvevnennenneneneenn 176

16.4 RANGES OF TYPES .oviirieeetericte ettt 176

16.5 SPECIAl FEALUINES ..ottt b 177

16.6 Using the Preprocessor to Aid Portability ..o 177

17 Avoiding Common PItfallS ..o e 179
17.1 Assignment Instead of COMPAriSONccceeevieresienieseses e 179

17.2 Unexpected Operator PreCedenCec.covvererenenenieneeeee e 180

17.3 Delayed Error From Included File ... 181

17.4 EXtra Semi-ColON iN IMBCIOSc.coveriiieieieeeierere st 182
17.5TheDangling ESecoieiieireeee et e 182

17.6 Missing break in switCh Statementccoceevinrienrinerereee s 183

17.7 SIAe-€ffECtSIN IMBCIOSceeeveeeeieeieeese e 184

18 Programming SLYIEocueveeicese ittt s e e et s e e e neenenneenens 185
18.1 CONSISLENCY .vcvveueeueereriesresiestestestesteseessesseseeeesessessessesresseseesteseeseensenseneensesenses 185

18.2 Case Rules for Object and FUNction Namescccoceeevevenereveeveeeeeene, 186

18.3 Choose APPropriate NAIMESccceeeererierinierere et 187

18.4 Indent to EMphasize SLUCIUIEooeiieieirieieeeeeeeee e 188

18.5 Visually Align Object DeClarationscccierereneieneneseeseee e 190

18.6 Keep FUNCLIONS SMAllooiviiciiieiireeeee et 191

18.7 Use static for MOSt FUNCLIONSoviiieieriereeieie e 191

18.8 Group Static Objects TOGELNErccoveireirere s 191

18.9 Do Not Reuse the Names of Static ObJECEScccvvvvererrinieirecese e 191

18.10 Use Included Filesto Organize StrUCLUrEScccvvevieveveenieneeseereeeeeenens 192

18.11 Use FUNCLION PrOtOLYPES ..c.veveeeeeeeeeeciesere st e e sae s se e e e 192

18.12 Do Not Do Too Much In One StAEMENtcccoceeevererenesenniesiereseesene 192

18.13 Do Not Use goto TOO MUCKc.cceviece e 193

18.14 USE COMMENESeeieeieeeeesieeie e it sie e s s e s sseesse e e seeseesseenesaeenesseans 193

Table of Contents

APPENAICES ...ttt ettt a s h et h e b e bt sb e b e b se e b et e e et Rt e Rt Rt Rt ebe Rt sbenbeneesnens 195
A. COMPILEr KEYWOITScviueieiiieeietisiet st 197
A.L Standard KEYWOIAScoeoeriiiriiiniiieeees s 197

A.2 Open Watcom Extended Keywordsccoeevrenenenennenenenese e 197

2 I T "o P 203
C. ESCAPE SEQUENCESvveiveeiiiiesiee sttt estesste st sitessbeessaessbeessas s be s saaesbeessaesseesaeesnbeesaeesnses 205
D. OpErator PreCEABNCEocoiriririiiiisie ettt e e e e eneas 207
E. FOrMal C GramIMErccoeruirierierierienie et eee s et e st st te et st e ene e e e ssessesaesnens 209
E.L1LexXiCal GrammMarccccooereeeieieeeeeeese sttt st see e e e sse e ssesreseenes 209

R O R 1o R 210

E. L2 KEYWOIAS ...c.ocveiiiiieierieierie ettt st 210
E.L3IAENLIErS .ot e 211

E. L4 CONSLANES ...cveviieieeieee ettt 211

o S {1 o I = 213

E.1.6 OPEIELOISooiveriiiiieieeteeie ettt sre s 213

E.L.7 PUNCIUBLOISoiiiiieieeieieee ettt 214

E.2 Phrase Structure Grammarcccceoceeeeererenesese e s see e essesesaesnens 214

E.2.1 EXPIrESSIONSoiveuirieniiteisteseste st sttt st 214

E.2.2 DECIAratioNScocvvueieisiiniesiesieieneeeeeeese st ste e e te e st sseneeneeneenens 216

E.2.3 STAEMENTS ..o e 219

E.2.4 Externa DefiNitionscccceeeeereeeieeee s 220

E.3 Preprocessing DireCtives Grammalccceeevveveesenieseeseesseneesseseesessessessenses 221

F. Trangation LIMItSccoeoiiiieinecse e 223
G. Macros for NUMErical LimiItSooiieioriieieeeeeeeene et e 225
G.1 Numerical Limitsfor INnteger TYPES ...cocoreveririrere e 225

G.2 Numerical Limitsfor Floating-Point TYPEScceeverreneineeseeseeseee 230

H. Implementation-Defined BENAVIONcooiiiiiirie e 237
[100 I I =TS o) o 237

H.2 ENVITONIMENE ..ottt e 238
H.3TENLTIENS .o 238

H.Z CharaCtersoovoieiieisieereer et 239

L T 1 0110 PRSP TRS 241

H.6 FlOBLING POINT ...t s et 242

H.7 ArrayS and POINEENSccoiiiiirieieieee et e 242

Table of Contents

H.B REJISIEIS ...ttt et be e sbe s 244
H.9 Structures, Unions, Enumerations and Bit-Fieldsccccccovvvvieviiiieiennns 245
H.10 QUAIITIEIS e et 246
H.LL DECIArEIOrScccviiueeieiieecteciec ettt ettt s be s st sae et e eae e beeneenes 246
o S = 0= 0SS 246
H.13 Preprocessing DIFECHVESccciveeirieereee e 246
H.14 Library FUNCLIONScccovviriiieieseceeere st 247
I. EXamples of DECIArationsccccvevieiieeeieeesesie e st e e sae e resnesnens 249
[.1 ObjeCt DECIAralioNSceccviiiieiiciesieeeeste ettt st ere s 249
[.2 FUNCLION DECIAIratioNScccouiiuiiiirieieiieie et e 251
.3_ _far, __nearand __huge Declarationsccocooeieirnnienenienenenene e 252
.4 interrupt DECIArationScccoceeeeeirerenisie e 254
Jo A SAMPIE PrOGIAIM ..cviiieiieeieieete ettt sttt sbe e 255
J 1 TheMEMOSIN FIlE .o s 255
J2ThemMEMOS.C FIlE ..o 256
Q101 Y TP 271

Xi

Xi

Introduction

Introduction

1 Introduction to C

1.1 History

The C programming language was developed by Dennis Ritchie in 1972 for the UNIX
operating system. Over the years, the language has appeared on many other systems,
satisfying a need of programmers who want to be able to develop applications that can run in
many different environments.

Because the C language was never formally defined, each implementation interpreted the
behavior of the language in slightly different ways, and also introduced their own extensions.
As aresult, the goal of true software portability was not achieved.

In 1982, the American National Standards Committee formed the X3J11 Technical
Committee on the C Programming Language, whose purpose was to formally define the C
language and its library functions, and to describe its interaction with the execution
environment. The C Programming Language standard was completed in 1989.

The Open Watcom C6 and C32 compiler has evolved from 8086 code generation technology
developed and refined at WATCOM International and the University of Waterloo since 1980.
The first Open Watcom C16 compiler was released in 1988. The first Open Watcom

C32 compiler was released in 1989.

1.2 Uses

C issometimes called a"low-level" language, referring to the fact that C programmers tend to
think in terms of bits, bytes, addresses and other concepts fundamental to assembly-language
programming.

But Cisalso a"broad spectrum™ language. In addition to accessing the basic components of
the computer, it also provides features common to many "high-level” languages. Structured
program control, data structures and modular program design are recent additions to some
high-level languages, but have been part of the C language since its inception.

C gives the programmer the ability to write applications at alevel just above the assembly
language level, without having to know the assembly language of the machine. Language

Uses 3

Introduction

4

compilers provided this ability in the past, but the application was often quite "fat", because
the code produced by the compiler was never as good as could be written by a good assembly
language programmer. But with modern code generation techniquesit is often difficult, if not
impossible, to distinguish an assembly language program written by a human from the same
program generated by a C compiler (based on code size). In fact, some compilers now
generate better code than all but the best assembly language programmers.

So, what can C be used for? It can be used to write virtually anything, the same way that
assembly language can be used. But other programming languages continue to be used for
specific programming applications at which they excel.

C tends to be used for "systems programming”, aterm that refers to the writing of operating
systems, programming languages and other software tools that don’t fall into the class of
"applications programming”. A classic exampleisthe UNIX operating system, developed by
Bell Laboratories. It iswritten amost entirely in C and is one of the most portable operating
systems available.

C isalso used for writing large programs that require more efficiency than the average
application. Typical examples are interpreters and compilers for programming languages.

Another areawhere C is commonly used is large-scale application programs, such as
databases, spreadsheets, word processors and so on. These require a high degree of efficiency
and compactness, since they are often basic to an individual’ s or company’ s computing needs,
and therefore consume alot of computer resources.

It seemsthat C is used extensively for commercially available products, but C can aso be
used for any application that just requires more efficiency. For example, alarge transaction
processing system may be written in COBOL, but to squeeze the last bit of speed out of the
system, it may be desirable to rewriteitin C. That application could certainly be writtenin
assembly language, but many programmers now prefer to avoid programming at such alow
level, when a C compiler can generate code that is just as efficient.

Finally, of course, amajor reason for writing a program in C isthat it will run with little or no
modification on any system with a C compiler. In the past, with the proliferation of C
compilers and no standard to guide their design, it was much more difficult. Today, with the
appearance of the 1SO standard for the C programming language, a program written entirely

in aconforming C implementation should be transportable to a new compiler with relatively
little work. Of course, issues like file names, memory layout and command line parameter
syntax will vary from one system to another, but a properly designed C application will isolate
these parts of the code in "system-dependent" files, which can be changed for each system.
(Refer to "Writing Portable Programs'.)

Uses

Introduction to C

1.3 Advantages

C has anumber of major advantages over other programming languages.
» Most systems provide a C compiler.

Vendors of computer systems realize that the success of a system is dependent upon the
availability of software for that system. With the large body of C-based programsin
existence, most vendors provide a C compiler in order to encourage the transporting of some
of these programs to their system. For systemsthat don’t provide a C compiler, independent
companies may develop acompiler.

With the development of the ISO/ANSI C standard, the trend towards universal availability of
C compilerswill probably accelerate.

» C programs can be transported easily to other computers and operating systems.

Many programming languages claim transportability. FORTRAN, COBOL and Pascal
programs al have standards describing them, so a program written entirely within the standard
definition of the language will likely be portable. The sameistrue of C. However, few
languages can match portability with the other advantages of C, including efficiency of
generated code and the ability to work close to the machine level.

* Programs written in C are very efficient in both execution speed and code size.

Few languages can match C in efficiency. A good assembly language programmer may be
able to produce code better than a C compiler, but he/she will have to spend much more time
in the development of the application, because assembly language programming lends itsel f
more easily to errors. Compilersfor other languages may produce efficient code for
applications within their scope, but few produce efficient code for all applications.

« C programs can get close to the hardware, controlling devices directly if necessary.
Most programs do not need this ability, but if necessary, the program can access particular
features of the computer. For example, afixed memory location may exist that contains a
certain value of useto the program. It is easy to accessit from C, but not from many other
languages. (Of course, if the program is designed to be portable, this section of code will be
isolated and clearly marked as depending on the operating system.)

* C programs are easy to maintain.

Assembly language code is difficult to maintain owing to the very low level of programming

(registers, addressing modes, branching). C programs provide comparable functionality, but

Advantages 5

Introduction

at ahigher level. The programmer still thinksin terms of machine capabilities, but without
having to know the exact operation of the hardware, leaving the programmer free to
concentrate on program design rather than the intimate details of coding on that particular
machine.

* C programs are easy to understand.
"Easy" is, of course, arelative term. C programs are definitely easier to understand than the
equivalent assembly language program. Another programming language may be easier to

understand for a particular kind of application, but in general C isagood choice.

« All of the above advantages apply regardless of the application or the hardware or
operating system on which it is running.

Thisisthe biggest advantage. Because C programs are portable, and C is not suited only to a
certain class of applications, it is often the best choice for devel oping an application.

1.4 How to Use This Book

6

This book is adescription of the C programming language as implemented by the Open
Watcom C26 and C32 compilers for the 80x86 family of processors. It isintended to be an
easy-to-read description of the C language. The SO C standard isthe last word on details
about the language, but it describes the language in terms that must be interpreted for each
implementation of a C compiler.

This book attempts to describe the C language in terms of general behavior, and the specific
behavior of the C compiler when the standard describes the behavior as
implementati on-defined.

Areas that are shaded describe the interpretation of the behavior that the Open
Watcom C26 and C32 compilers follow.

Programmers who are writing a program that will be ported to other systems should pay
particular attention when using these features, since other compilers may behave in other
ways. Asmuch as possible, an attempt is made to describe other likely behaviors.

This book does not describe any of the library functions that a C program might use to interact
with itsenvironment. In particular, input and output is not described in this manual. TheC
language does not contain any /O capabilities. The Open Watcom C Library Reference
manual describes all of the library functions, including those used for input and outpui.

How to Use This Book

Introduction to C

A glossary isincluded in the appendix, and describes all terms used in the book.

How to Use This Book 7

Introduction

8 How to Use This Book

Language Reference

Language Reference

10

2 Notation

The C programming language contains many useful features, each of which has a number of
optional parts. The SO C standard describes the language in very precise terms, often giving
syntax diagrams to describe the features.

This book attempts to describe the C language in more friendly terms. Where possible,
features are described using ordinary English. Jargon is avoided, although by necessity, new
terminology is introduced throughout the book. A glossary is provided at the end of the book
to describe any termsthat are used.

Where the variety of features would create excessive amounts of text, simple syntax diagrams
areused. It ishoped that these are mostly self-explanatory. However, a brief explanation of
the notation used is offered here:

1. Required keywords are in normal lettering style (for example, enum.

2. Termsthat describe a class of object that replace the term arein italics (for
example, identifier).

3. When two or more optional forms are available, they are shown asfollows:
form1
or
form2
4. Any other symbol that appearsisrequired, unless otherwise noted.
The following example is for an enumerated type:
enumidentifier
or
enum{ enumeration-constant-list }

or
enumidentifier { enumeration-constant-list }

Notation 11

Language Reference

An enumerated type has three forms:

1

12 Notation

The required keyword enumfollowed by an identifier that namesthe type. The
identifier is chosen by the programmer.

The reguired keyword enumfollowed by a brace-enclosed list of enumeration
constants. The braces are required, and enumer ation-constant-list is described
elsewhere.

The required keyword enumfollowed by an identifier and a brace-enclosed list of
enumeration constants. Aswith the previous two forms, the identifier may be
chosen by the programmer, the braces are required and enumer ation-constant-list is
described elsewhere.

3 Basic Language Elements

The following topics are discussed:
* Character Sets
» Keywords
* |dentifiers

e Comments

3.1 Character Sets

The source character set contains the characters used during the trandation of the C source
fileinto object code. The execution character set contains the characters used during the
execution of the C program. In most cases, these two character sets are the same, since the
program is compiled and executed on the same machine. However, C is sometimes used to
cross-compile, whereby the compilation of the program occurs on one machine, but the
compiler generates code for some other machine. If the two machines have different character
sets (say EBCDIC and ASCI|I), then the compiler will, where appropriate, map characters
from the source character set to the execution character set. Thismapping is
implementation-defined, but generally maps the visua representation of the character.

Regardless of which C compiler is used, the source and execution character sets contain (at
least) the following characters:

Kkl mnopgr stuvwxyz
KLMNOPQRSTUVWXYZ

R mWo
ANFHENOO
T
—— o QQ
~—~~NI>

,o-
- {0~

e

I Swoa
VeAm®o
s 4 © GL—

(AN}

[
I
8
*
]

aswell as the space (blank), horizontal tab, vertical tab and formfeed. Also, anew line
character will exist for both the source and execution character sets.

Character Sets 13

Language Reference

Any character other than those previously listed should appear in a source file in a character
constant, a string or a comment, otherwise the behavior is undefined.

If the character set of the computer being used to compile the program does not contain a
certain character, atrigraph sequence may be used to represent it. Refer to the section
"Character Constants'.

The Open Watcom C6 and C%2 compilers use the full IBM PC character set as both
the source and execution character sets. The set of values from hexadecimal 00 to 7F
constitute the ASCII character set.

3.1.1 Multibyte Characters

A multibyte character, asits name implies, is a character whose representation consists of
more than one byte. Multibyte characters allow compilersto provide extended character sets,
often for human languages that contain more characters than those found in the one-byte
character set.

Multibyte characters are generally restricted to:

* comments,

e gtring literals,

« character constants,
* header names.

The method for specifying multibyte characters generally varies depending upon the extended
character set.

3.2 Keywords

The following words are reserved as part of the C language and are called keywords. They
may not be used for any kind of identifier, including object names, function names, labels,
structure or union tags (names).

auto doubl e inline static
_Bool el se i nt struct

br eak enum | ong switch
case extern register t ypedef
char fl oat restrict uni on
_Complex for return unsi gned
const goto short voi d

14 Keywords

Basic Language Elements

conti nue i f si gned vol atile
def aul t _Imaginary si zeof whi | e
do

The Open Watcom compilers also reserve the following extended keywords:

Microsoft compilers compatible

__asm __finally __pascal
__based __fortran __saveregs
__cdecl __huge __segment
__declspec __inline __segname
__except __inté64 __self
__export __interrupt __stdcall
__far __leave __syscall
__farlé6 __loadds __try
__fastcall __near __unaligned

IBM compilers compatible

_Cdecl _Finally _Seglb
_Except _Leave _Syscall
_Export _Packed _System
_Farle _Pascal _Try
_Fastcall

Open Watcom specific
__builtin isfloat __watcall __ow_imaginary unit

Note that, since C is sensitive to the case of letters, changing one or more lettersin a keyword
to upper case will prevent the compiler from recognizing it as a keyword, thereby allowing it
to be used as an identifier. However, thisis not arecommended programming practice.

3.3 Identifiers

Identifiers are used as;

* object or variable names,

« function names,

* |abels,

» structure, union or enumeration tags,

« the name of a member of a structure or union,
* enumeration constants,

* Macro names,

* typedef names.

Identifiers 15

Language Reference

16

An identifier is formed by a sequence of the following characters:

* upper-case letters "A" through "Z",
* lower-case letters "a" through "z",
* the digits"0" through "9",

* the underscore"_"

Thefirst character may not be adigit.
An identifier cannot be a member of the list of keywords.

Identifiers can consist of any number of characters, but the compiler is not required to
consider more than 31 characters as being significant, provided the identifier does not have
external linkage (shared by more than one compiled module of the program). If the identifier
is external, the compiler is not required to consider more than 6 characters as being
significant. External identifiers may be case-sensitive.

Of course, any particular compiler may choose to consider more characters as being
significant, but a portable C program will strictly adhere to the above rules. (Thisrestriction
islikely to be relaxed in future versions of the |SO C standard and corresponding C
compilers.)

The Open Watcom C26 and C32 compilers do not restrict the number of significant
characters for functions or objects with external or internal linkage.

The linker provided with Open Watcom C16 and C32 restricts the number of
significant charactersin external identifiersto 40 characters, and by defaullt,
distinguishes between identifiers that differ only in the case of the letters. An option
may be used to force the linker to ignore case differences.

Any external identifier that starts with the underscore character ("_") may be reserved by the
compiler. Any other identifier that starts with two underscores, or an underscore and an
upper-case letter may be reserved. Generally, a program should avoid creating identifiers that

start with an underscore.

Identifiers

Basic Language Elements

3.4 Comments

A comment isidentified by / * followed by any characters and terminated by */. Comments
are recognized anywhere in a program, except inside a character constant or string. Once the

/ * isfound, characters are examined only until the */ isfound. This excludes nesting of
comments.

A comment istreated as a "white-space” character, meaning that it is like a space character.

For example, the program fragment,

/* Close all the files.
*/
for(i =0; i <fcount; i++) { /* loop through list */
fclose(flist[i]); /* close the file */
}

is equivaent to,

for(i =0; i < fcount; i++) {
fclose(flist[i]);
}

Comments are sometimes used to temporarily remove a section of code during testing or
debugging of aprogram. For example, the second program fragment could be "commented
out" asfollows:

/*
for(i =0; i <fcount; i++) {
fclose(flist[i]);
}

*/

This technique will not work on the first fragment because it contains comments, and
comments may not be nested. For these cases, the #i f directive of the C preprocessor may
be used. Refer to the chapter "The Preprocessor” for more details.

The Open Watcom C16 and C32 compilers support an extension for comments. The
symbol / / can be used at any point in a physical source line (except inside a
character constant or string literal). Any charactersfromthe // to the end of theline
are treated as comment characters. The comment is terminated by the end of the line.
Thereis no explicit symbol for terminating the comment. For example, the program
fragment used at the beginning of this section can be rewritten as,

Comments 17

Language Reference

/1 Close all the files.

for(i =0; i <fcount; i++) { // loop through |ist
fclose(flist[i]); /1 close the file
}

This form of comment can be used to "comment out" code without the difficulties
encountered with / * .

18 Comments

4 Basic Types

The following topics are discussed:
* Declarations of Objects
* Integer Types
* Floating-Point Types
» Enumerated Types
* Arrays

* Strings

4.1 Declarations of Objects

When aname is used in a program, the compiler needs to know what that name represents. A
declaration describes to the compiler what a name is, including:

» How much storage it occupies (objects) or how much storage is required for the value
that is returned (functions), and how the value in that storageisto be interpreted. This
iscaled thetype. Examplesincludei nt,fl oat andstruct |ist.

» Whether the name is visible only within the module being compiled, or throughout the
program. Thisiscalled thelinkage, and is part of the storage class. The keywords
ext ern and st at i ¢ determine the linkage.

* For object names, whether the object is created every time the function is called and
destroyed every time the function returns. Thisis called the storage duration, and is
part of the storage class. The keywords ext ern, stati c,aut o andregi ster
determine the storage duration.

The placement of the declaration within the program determines whether the declaration
appliesto all functions within the module, or just to the function within which the declaration

appears.

Declarations of Objects 19

Language Reference

The definition of an object issimilar to its declaration, except that the storage for the object is
reserved. Whether the declaration of an object is also a definition depends upon the
placement of the declaration and the attributes of the object.

The usual form for defining (creating) an object is as follows:

storage-class-specifier type-specifier declarator;
or
storage-class-specifier type-specifier declarator = initializer;

The storage-class-specifier is optional, and is thoroughly discussed in the chapter " Storage
Classes'. The type-specifier isalso optional, and is thoroughly discussed in the next section
and in the chapter "Advanced Types'. At least one of the storage-class-specifier and
type-specifier must be specified, and they may be specified in either order, although it is
recommended that the storage-class-specifier always be placed first.

The declarator isthe name of the object being defined along with other information about its
type. There may be several declarators, separated by commas.

Theinitializer is discussed in the chapter "Initialization of Objects".

The following are examples of declarations of objects, along with a brief description of what
each one means. A more complete discussion of the terms used may be found in the relevant
section.

int Xx;

Inside afunction
The object x is declared to be an integer, with automatic storage duration. Its
valueis available only within the function (or compound statement) in whichiitis
defined. Thisisalso adefinition.

Outside afunction
The object x is created and declared to be an integer with static storage duration.
Its value is available within the module in which it is defined, and has external
linkage so that any other module may refer to it by using the declaration,

extern int x;

Thisis also adefinition.

20 Declarations of Objects

Basic Types

regi ster void * nmenptr;

Inside afunction
The object menpt r isdeclared to be apointer to voi d (no particular type of
object), and is used frequently in the function. Thisisalso adefinition.

Outside afunction
Not valid because of the r egi st er storage class.

auto long int x, vy;

Inside afunction
The objects x and y are declared to be signed long integers with automatic
storage duration. Thisisalso adefinition.

Outside afunction
Not valid because of the aut o storage class.

static int nuns[10];

Inside afunction
The object nuns is declared to be an array of 10 integers with static storage
duration. Itsvalueis only available within the function, and will be preserved
between callsto the function. Thisisalso adefinition.

Outside afunction
The object nuns is declared to be an array of 10 integers with static storage
duration. Itsvalueisonly available within the module. (The differenceisthe
scope of the object nuns.) Thisisalso a definition.

extern int x;

Inside afunction
The object x is declared to be an integer with static storage duration. No other
functions within the current module may refer to x unlessthey also declareit. The
object is defined in another module, or elsewhere in this function or module.

Declarations of Objects 21

Language Reference

Outside afunction
The object x is declared to be an integer with static storage duration. Itsvalueis
available to all functions within the module. The object is defined in another
module, or elsewherein this module.

The appendix "Examples of Declarations” contains many more examples of declarations of
objects and functions.

4.2 Name Scope

An identifier may be referenced only within its scope.

An identifier declared within afunction or within a compound statement within afunction has
block scope, and may be referenced only in the block in which it is declared. The object’s
scope includes any enclosed blocks and terminates at the } which terminates the enclosing
block.

An identifier declared within afunction prototype (as a parameter to that function) has
function prototype scope, and may not be referenced elsewhere. 1ts scope terminates at the)
which terminates the prototype.

An identifier declared outside of any function or function prototype has file scope, and may be
referenced anywhere within the modulein which it is declared. If afunction containsa
declaration for the same identifier, the identifier with file scope is hidden within the function.
Following the terminating } of the function, the identifier with file scope becomes visible
again.

A label, which must appear within afunction, has function scope.

4.3 Type Specifiers

Every object has atype associated with it. Functions may be defined to return avalue, and
that value also has atype. The type describes the interpretation of avalue of that type, such as
whether it is signed or unsigned, a pointer, etc. The type also describes the amount of storage
required. Together, the amount of storage and the interpretation of stored values describes the
range of values that may be stored in that type.

There are anumber of different types defined by the C language. They provide a great deal of

power in selecting methods for storing and moving data, and also contribute to the readability
of the program.

22 Type Specifiers

Basic Types

There are a number of "basic types*, those which will appear in virtually every program.
M ore sophisticated types provide methods to describe data structures, and are discussed in the
chapter "Advanced Types'.

A type specifier is one or more of:

char
doubl e

fl oat

i nt

| ong
short

si gned
unsi gned
voi d
enumeration
structure
union
typedef name

and may also include the following type qualifiers:

const
vol atil e

The Open Watcom compilers also provide the following extended type qualifiers:

__based __fortran _Seglb
_Cdecl __huge __segment
__cdecl __inline __segname
__declspec __inté64 __self
_Export __interrupt __stdcall
__export __loadds _Syscall
__far __near __syscall
_Farle _Packed _System
__farle _Pascal __unaligned
_Fastcall __pascal __watcall
__fastcall __saveregs

For the extended type qualifiers, see the appendix "Compiler Keywords".

Various combinations of these keywords may be used when declaring an object. Refer to the
section on the type being defined.

Type Specifiers 23

Language Reference

Themaintypesarechar,i nt,fl oat and doubl e. The keywords short, | ong,
si gned, unsi gned, const and vol at i | e modify these types.

4.4 Integer Types

24

The most commonly used type istheinteger. Integers are used for storing most numbers that
do not require adecimal point, such as counters, sizes and indicesinto arrays. The range of
integersis limited by the underlying machine architecture and is usually determined by the
range of values that can be handled by the most convenient storage type of the hardware.
Most 16-bit machines can handle integersin the range - 32768 to 32767. Larger machines
typically handleintegersin therange - 2147483648 to 2147483647.

The general integer type includes a selection of types, specifying whether or not the valueisto
be considered as signed (negative and positive values) or unsigned (non-negative values),
character (holds one character of the character set), short (small range), long (large range) or
long long (very large range).

Just specifying thetype i nt indicates that the amount of storage should correspond to the
most convenient storage type of the hardware. The valueistreated as being a signed quantity.
According to the C language standard, the minimum range for i nt is- 32767 to 32767,
although a compiler may provide a greater range.

With Open Watcom C6, i nt hasarangeof - 32768 to 32767.
With Open Watcom C32, i nt hasarangeof - 2147483648 t0 2147483647.

Specifying the type char indicates that the amount of storage is large enough to store any
member of the execution character set. I1f amember of the required source character set (see
"Character Sets') is stored in an object of type char , then the value is guaranteed to be
positive. Whether or not other characters are positive isimplementation-defined. (In other
words, whether char issigned or unsigned is implementation-defined. If it is necessary for
the object of type char to be signed or unsigned, then the object should be declared
explicitly, as described below.)

Integer Types

Basic Types

The Open Watcom C26 and C32 compilersdefine char to be unsi gned, alowing
objects of that type to store valuesin therange 0 to 255. A command line switch
may be specified to cause char to betreated as si gned. This switch should only
be used when porting a C program from a system where char issigned.

Thei nt keyword may be specified with the keywords short or | ong. These keywords
provide additional information about the range of valuesto be stored in an object of this type.
According to the C language standard, a signed short integer has a minimum range of

- 32767 to 32767. A signed long integer has aminimum range of - 2147483647 to
2147483647. A signed long long integer has a minimum range of
-9223372036854775807 to 9223372036854775807.

With Open Watcom C16 and C32, short int hasarangeof - 32768 to 32767,
whilel ong i nt hasarangeof - 2147483648 t0 2147483647, and | ong
 ong int hasarangeof - 9223372036854775808 to
9223372036854775807.

Thechar andi nt types may be specified with the keywords si ghed or unsi gned.
These keywords explicitly indicate whether the type represents a signed or unsigned
(non-negative) quantity.

The keyword i nt may be omitted from the declaration if one (or more) of the keywords
si gned, unsi gned, short or | ong isspecified. In other words, short isequivalent to
si gned short int andunsi gned | ong isequivalentto unsi gned | ong int.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing

the range and other characteristics of the various numeric types. The macros from the header
<li m ts. h>, which describe the integer types, are discussed.

Integer Types 25

Language Reference

26

The following table describes all of the various integer types and their ranges as
implemented by the Open Watcom C16 and C32 compilers. Notethat thetableisin
order of increasing storage size.

Minimum Maximum
Type Value Value
si gned char -128 127
unsi gned char 0 255
char 0 255
short int - 32768 32767
unsi gned short int |0 65535
i nt (C') -32768 32767
int (C® - 2147483648 2147483647
unsi gned int (C1 [0 65535
unsi gned int (C% |0 4294967295
l ong int - 2147483648 2147483647
unsigned long int (O 18446744073709551615
long | ong int -92233720368547758078 |9223372036854775807
unsi gned long long |0 18446744073709551615

With Open Watcom C16, an object of type i nt hasthe same range as an object of

typeshort int.

With Open Watcom C32, an object of type i nt hasthe same range as an object of

typel ong int.

Integer Types

Basic Types

The following are some examples of declarations of objects with integer type:

short a;
unsi gned short int b
i nt c, d;
si gnhed e;
unsi gned int f;
| ong g;
signed | ong h;
unsigned long int i;
| ong | ong i
unsi gned long long k
I

I ong long int

4.5 Floating-Point Types

A floating-point number is a number which may contain a decimal point and digits following
the decimal point. The range of floating-point numbersis usually considerably larger than
that of integers, but the efficiency of integersis usually much greater. Integers are always
exact quantities, whereas floating-point numbers sometimes suffer from round-off error and
loss of precision.

On some computers, floating-point arithmetic is emulated (simulated) by software, rather than
hardware. Software emulation can greatly reduce the speed of aprogram. While this should
not affect the portability of a program, a prudent programmer limits the use of floating-point
numbers.

There are three floating-point number types, f | oat , doubl e,and | ong doubl e.
The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing

the range and other characteristics of the various numeric types. The macros from the header
<f | oat . h>, which describe the floating-point types, are discussed.

The following table gives the ranges avail able on the 80x86/80x87 using the Open
Watcom C26 and C32 compiler. The floating-point format is the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

Floating-Point Types 27

Language Reference

Smallest Largest Digits 80x87
Absolute Absolute Of Type
Type Value Value Accuracy |Name
fl oat 1.1E-38 |3.4E+38 |6 short real
doubl e 2.2E-308 (1. 7E+308 (15 long real
| ong doubl e|2. 2E-308 |1. 7E+308 |15 long real

By default, the Open Watcom C6 and C32 compilers emulate floating-point
arithmetic. If the 8087 or 80x87 Numeric Processor Extension (numeric coprocessor,
math chip) will be present at execution time, the compiler can be forced to generate
floating-point instructions for the coprocessor by specifying a command line switch,
as described in the User’s Guide. Other than an improvement in execution speed, the
final result should be the same as if the processor is not present.

The following are some examples of declarations of objects with floating-point type:

fl oat a;
doubl e b;
| ong doubl e c;

4.6 Enumerated Types

Sometimesit is desirable to have alist of constant values representing different things, and the
exact values are not relevant. They may need to be unique or may have duplicates. For
example, a set of actions, colors or keys might be represented in such alist. An enumerated
type alows the creation of alist of items.

An enumerated typeis a set of identifiers that correspond to constants of type i nt . These
identifiers are called enumeration constants. Thefirst identifier in the set has the value 0, and
subsequent identifiers are given the previous value plus one. Wherever a constant of type

i nt isallowed, an enumeration constant may be specified.

28 Enumerated Types

Basic Types

The following type specifier defines the set of actions available in a simple memo program:

enum actions { DI SPLAY, ED T, PURGE };

The enumeration constant DI SPLAY is equivalent to the integer constant 0, and EDI T and
PURGE are equivalent to 1 and 2 respectively.

An enumerated type may be given an optional tag (name) with which it may be identified
elsewhere in the program. In the example above, the tag of the enumerated typeis act i ons,
which becomes anew type. If no tagis given, then only those objects listed following the
definition of the type may have the enumerated type.

The name space for enumerated type tags is different from that of object names, labels and
member names of structures and unions, so atag may be the sasme identifier as one of these
other kinds. An enumerated type tag may not be the same as the tag of a structure or union, or
another enumerated type.

Enumeration constants may be given a specific value by specifying '=" followed by the value.
For example,

enumcolors { RED = 1, BLUE = 2, CGREEN = 4 };
creates the constants RED, BLUE and GREEN with values 1, 2 and 4 respectively.
enum fruits { GRAPE, ORANGE = 6, APPLE, PLUM };
creates constants with values 0, 6, 7 and 8.
enum fruits { GRAPE, PLUM RAISIN = GRAPE, PRUNE = PLUM };
makes GRAPE and RAI SI N equal to 0, and PLUMand PRUNE equal to 1.
The formal specification of an enumerated typeis as follows:
enumidentifier
or
enum{ enumeration-constant-list }

or
enumidentifier { enumeration-constant-list }

Enumerated Types 29

Language Reference

enumer ation-constant-list:
enumer ation-constant
or

enumer ation-constant, enumer ation-constant-list

enumer ation-constant:
identifier
or

identifier = constant-expression

The type of an enumeration isimplementation-defined, although it must be compatible with
an integer type. Many compilerswill use i nt .

From the following table, the Open Watcom C16 and Open Watcom C32 compilers
will choose the smallest type that has sufficient range to represent all of the constants

of aparticular enumeration:

Type Smallest Vaue Largest Value

si gned char -128 127

unsi gned char 0 255

si gned short - 32768 32767

unsi gned short 0 65535

signed | ong -2147483648 2147483647

unsi gned | ong 0 4294967295

signed | ong | ong -9223372036854775808 [9223372036854775807
unsi gned long long |0 18446744073709551615

A command-line option may be used to force all enumerationsto i nt .

To create an object with enumerated type, one of two forms may be used. Thefirst formisto
create the type as shown above, and then to declare an object as follows;

30 Enumerated Types

Basic Types

enumtag object-name;
For example, the declaration,
enumfruits fruit;
declaresthe object f r ui t to be the enumerated type frui t s.

The second form isto list the identifiers of the objects following the closing brace of the
enumeration declaration. For example,

enumfruits { GRAPE, ORANCE, APPLE, PLUM} fruit;

Provided no other objects with the same enumeration are going to be declared, the enumerated
typetag f r ui t s isnot required. The declaration could be specified as,

enum { GRAPE, ORANGE, APPLE, PLUM} fruit;
An identifier that is an enumeration constant may only appear in one enumeration type. For

exampl e, the constant ORANGE may not be included in another enumeration, because the
compiler would then have two values for ORANGE.

4.7 Arrays

An array isacollection of objectswhich are all of the same type. All elements (objects) in
the array are stored in contiguous (adjacent) memory.

Referencesto array elements are usually made through indexing into the array. To facilitate
this, the elements of the array are numbered starting at zero. Hence an array declared with n
elementsisindexed using indices between O and n- 1.

An array may either be given an explicit size (using a constant expression) or its size may be
determined by the number of values used to initialize it. Also, it ispossible to declare an array
without any size information, in the following cases:

 aparameter to afunction is declared as "array of type" (in which case the compiler
alters the type to be "pointer to type"),

* an array object has external linkage (extern) and the definition which creates the array
is given elsewhere,

* the array isfully declared later in the same module.

Arrays 31

Language Reference

An array of undetermined size is an incompl ete type.
An array declaration is of the following form:

typeidentifier [constant-expression] ;

or

typeidentifier[] = { initializer-list } ;

or

typeidentifier| constant-expression] = { initializer-list };
or

type identifier[] ;

where type is the type of each element of the array, identifier isthe name of the array,
constant-expression is an expression that evaluates to a positive integer defining the number
of elementsin the array, and initializer-list isalist of values (of type type) to be assigned to
successive el ements of the array.

For example,

i nt val ues[10];

declaresval ues to be an array of 10 integers, with indices from 0to 9. The expression
val ues[5] referstothe sixth integer in the array.

char text[] = { "sonme stuff" };

declarest ext to bean array of 11 characters, each containing successive lettersfrom " sone
stuff". Thevaueof t ext[10] is’\ 0’ (thenull character), representing the
terminating character in the string (see Strings).

ext ern NODES nodelist[];
declaresnodel i st to be an array of NODES (defined elsewhere), and the array is of
unknown size. In another source file or later in the current file, there must be a corresponding
declaration of nodel i st which defines how big the array actually is.

It is possible to declare multi-dimensiona arrays by including more than one set of
dimensions. For example,

int tbl[2][3];

defines a 2-row by 3-column array of integers. In fact, it defines an array of 2 arrays of 3
integers. The values are stored in memory in the following order:

32 Arrays

Basic Types

t bl [0][0]
tbl [0][1]
tbl [0][2]
tbl [1] [0]
tbl[1][1]
tbl[1][2]

The rows of the table are stored together. Thisform of storing an array is called row-major
order. Theexpressiont bl [1] [2] refersto the element in the last row and last column of
the array.

In an expression, if an array is named without specifying any indices, the value of the array
name is the address of itsfirst element. In the example,

i nt array[10];
int * aptr;

aptr = array,
the assignment to apt r isequivalent to,
aptr = &array[O0];

Since multi-dimensional arrays are just arrays of arrays, it follows that omission of some, but
not all, dimensions is equivalent to taking the address of the first element of the sub-array. In
the example,

i nt array[9][5][2];
int * aptr;

aptr = array[7];
the assignment to apt r isequivalent to,
aptr = &array[7][0][0];
Note that no checking of indicesis performed at execution time. An invalid index (less than

zero or greater than the highest index) will refer to memory asif the array was extended to
accommodate the index.

Arrays 33

Language Reference

4.8 Strings

A string is a special form of the type "array of characters', specifically an array of characters
terminated by anull character. The null character is a character with the value zero,
represented as\ O within astring, or as the character constant * \ 0’ . Because string
processing is such a common task in programming, C provides a set of library functions for
handling strings.

A string is represented by the address of the first character in the string. The length of astring
is the number of characters up to, but not including, the null character.

An array can beinitialized to be a string using the following form:
typeidentifier[] = { "stringvalue" };
(The braces are optional.) For example,
char ident[] = "This is nmy prograni;

declaresi dent to be an array of 19 characters, the last of which has the value zero. The
string has 18 characters plus the null character.

In the above example, i dent isan array whose valueisastring. However, the
guote-enclosed value used to initialize the array is called astring literal. String literals are
described in the "Constants' chapter.

A string may be used anywhere in a program where a"pointer to char " may be used. For
example, if the declaration,

char * ident;
was encountered, the statement,
ident = "This is my prograni;

would set thevalue of i dent to bethe address of thestring " This is nmy prograni.

34 Strings

5 constants

A constant isavalue which isfixed at compilation time and is often just a number, character
or string. Every constant has a type which is determined by itsform and value. For example,
thevalue 1 may havethetype si gned i nt, whilethe value 400000 may have the type

si gned | ong. In many cases, the type of the constant does not matter. If, for example, the
value 1 isassigned to an object of type | ong i nt, then thevalue 1 will be converted to a
long integer before the assignment takes place.

5.1 Integer Constants

An integer constant begins with a digit and contains no fractional or exponent part. A prefix
may be included which defines whether the constant isin octal, decimal or hexadecimal
format.

A constant may be suffixed by u or Uindicating an unsi gned i nt,orby | orL indicating
al ong i nt, or by both indicating an unsi gned | ong i nt.

If a constant does not start with a zero and contains a sequence of digits, then it is interpreted
asadecimal (base 10) constant. These are decimal constants:

7
762
98765L

If the constant starts with Ox or OX followed by the digits from 0 through 9 and the letters a
(or A) through f (or F), then the constant is interpreted as a hexadecimal (base 16) constant.
The letters A through F represent the values 10 through 15 respectively. These are
hexadecimal constants:

OXO07FFF

0x12345678L
OxFABE

Integer Constants 35

Language Reference

If aconstant starts with a zero, then it is an octal constant and may contain only the digits O
through 7. These are octal constants:

017
0735643L
0

Note that the constant 0 is actually an octal constant, but is zero in decimal, octal and
hexadecimal.

The following table describes what type the compiler will give to a constant. The left column
indicates what base (decimal, octal or hexadecimal) is used and what suffixes (Uor L) are
present. The right column indicates the types that may be given to such a constant. The type
of an integer constant is the first type from the table in which its value can be accurately

represented.
Constant Type
unsuffixed decimal i nt, | ong, unsi gned | ong
unsuffixed octal i nt, unsigned int, | ong, unsigned | ong

unsuffixed hexadecimal |i nt, unsi gned int, | ong, unsi gned | ong

suffix U only unsi gned int, unsigned | ong
suffix L only | ong, unsi gned | ong

suffixes U and L unsi gned | ong

suffix LL only I ong | ong, unsigned |ong | ong
suffixes U and LL unsi gned | ong | ong

36 Integer Constants

Constants

The following tableillustrates a number of constants and their interpretation and type:

Hexa
Decimal -decimal | Open Watcom C16 | Open Watcom C832

Constant Value Value Type Type

33 33 21 signed int signed int
033 27 1B signed int signed int
0x33 51 33 signed int signed int
33333 33333 8235 signed | ong signed int
033333 14043 36DB signed int signed int
0xA000 40960 A000 unsi gned int |signed int
0x33333 209715 33333 signed | ong signed int
0x80000000 |2147483648 |80000000 |unsigned |ong [unsigned int
2147483648 |2147483648 (80000000 |unsigned | ong [unsigned i nt
4294967295 (4294967295 |[FFFFFFFF [unsi gned | ong [unsi gned int

5.2 Floating-Point Constants

A floating-point constant may be distinguished by the presence of either aperiod, an e or E,
or both. It consists of avalue part (mantissa) optionally followed by an exponent. The
mantissa may include a sequence of digits representing a whole number, followed by a period,
followed by a sequence of digits representing afractional part. The exponent must start with
an e or E followed by an optional sign (+ or -), and a digit sequence representing (with the
sign) the power of 10 by which the mantissa should be multiplied. Optionally, the suffix f or
F may be added indicating the constant hastype f | oat , or the suffix | or L indicating the
constant hastype | ong doubl e. If no suffix is present then the constant has type doubl e.

In the mantissa, either the whole number part or the fractional part must be present. If only
the whole number part is present and no period is included then the exponent part must be
present.

The following table illustrates a number of floating-point constants and their type:

Constant Value Type
3.14159265 |3.14159265E0 |double
11E24 1. 1E25 doubl e

. 5L 5E-1 | ong doubl e
7.234E-22F |7.234E-22 fl oat

Floating-Point Constants 37

Language Reference

0. OEO doubl e

5.3 Character Constants

A character constant is usually one character enclosed in single-quotes, and indicates a
constant whose value is the representation of the character in the execution character set. A
character constant hastype i nt .

The character enclosed in quotes may be any character in the source character set. Certain
characters in the character set may not be directly representable, since they may be assigned
other meanings. These characters can be entered using the following escape sequences:

Character Escape
Character Name Sequence

single quote \’
double quote "or\"

? question mark ? or\?

\ backslash \\
octal value \octal digits (max 3)
hexadecimal value |\xhexadecimal digits

For example,
'a’ /* the letter a */
A /* a single quote */
e /* a question mark */
"\ /* a question mark */
A\ /* a backsl ash */

are al simple character constants.

The following are some character constants containing octal escape sequences, made up of a \
followed by one, two or three octal digits (the digits O through 7):

I\OI
"\377
"\ 100’

38 Character Constants

Constants

If acharacter constant containing an octal value isfound, but a non-octal character isaso
present, or if afourth octal digit isfound, it is not part of the octal character already specified,
and consgtitutes a separate character. For example,

"\ 1000’
"\ 109

the first constant is a two-character constant, consisting of the characters " \ 100" and’ 0’
(because an octal value consists of at most three octal digits). The second constant isalso a
two-character constant, consisting of the characters * \ 10’ and’ 9’ (because 9 isnot an
octal digit).

If more than one octal value isto be specified in a character constant, then each octal value
must be specified starting with \ .

The meaning of character constants with more than one character is implementation-defined.

The following are some character constants containing hexadecimal escape sequences, made
up of a\ x followed by one or more hexadecimal digits (the digits O through 9, and the letters
a through f and Athrough F). (The values of these character constants are the same asthe
first examples of octal values presented above.)

"\ x0’
"\ xFF
"\ x40’

If acharacter constant containing a hexadecimal value is found, but a non-hexadecimal
character is also present, it is not part of the hexadecimal character already specified, and
constitutes a separate character. For example,

"\ xFAX’
"\ xFx’

the first constant is a two-character constant, consisting of the characters * \ xFA' and’ x’
(because x is not a hexadecimal digit). The second constant is also atwo-character constant,
consisting of the characters’ \ xF' and’ x’ .

If more hexadecimal digits are found than are required to specify one character, the behavior
isimplementation-defined. Specifically, any sequence of hexadecimal charactersin a
hexadecimal value in a character constant is used to specify the value of one character. If
more than one hexadecimal valueisto be specified in a character constant, then each
hexadecimal value must be specified starting with \ x.

The meaning of character constants with more than one character isimplementation-defined.

Character Constants 39

Language Reference

In addition to the above escape sequences, the following escape sequences may be used to
represent non-graphic characters:

Escape
Sequence Meaning

\a Causes an audible or visual aert
\b Back up one character

\f Move to the start of the next page
\n Move to the start of the next line

\r Move to the start of the current line
\t Move to the next horizontal tab

\v Move to the next vertical tab

The following trigraph sequences may be used to represent characters not available on all
terminals or systems:

Trigraph
Character Sequence

?2?2(
?7?)
?27?<
27>
??!
?7?7=
??/
?7?
??-

> —

l

The Open Watcom C16 and C32 compilers also allow character constants with more
than one character. These may be used to initialize larger types, such as i nt . For
example, the program fragment:

i nt code;
code = "ab’;

assignsthe constant value * ab’ to theinteger object code. Theletter b isplaced in

the lowest order (least significant) portion of the integer value and the letter a is
placed in the next highest portion.

40 Character Constants

Constants

Up to four characters may be placed in a character constant. Successive characters,
starting from the right-most character in the constant, are placed in successively
higher order (more significant) bytes of the result.

Note that a character constant suchas ’ a’ is different from the corresponding string literal
"a". Theformer isof type i nt and hasthe value of theletter a in the execution character
set. Thelatter is of type "pointer to char " and its value is the address of the first character
(a) of the string literal.

5.3.1 Wide Character Constants

If the value of a character constant is to be a multibyte character from an extended character
set, then awide character constant should be specified. Itsform issimilar to normal character
constants, except that the constant is preceded by the character L.

The type of awide character constant is wchar _t, which isone of the integral types, and is
described in the header <st ddef . h>.

With Open Watcom C% and C32, wchar_t isdefined as unsi gned short.

For example, theconstant L’ a’ isawide character constant containing the letter a from the
source character set, and hastype wchar_t. Incontrast, the constant ' a’ is acharacter

constant containing the letter a, and hastypei nt .

How the multibyte character maps onto the wide character value is defined by the nbt owc
library function.

As shown above, awide character constant may aso contain a single byte character, since an

extended character set contains the single byte characters. The single byte character is
mapped onto the corresponding wide character code.

5.4 String Literals

A sequence of zero or more characters enclosed within double-quotesisastring literal.
Most of the same rules for creating character constants also apply to creating string literals.

However, the single-quote may be entered directly or asthe \ ' escape sequence. The
double-quote must be entered asthe \ " escape sequence.

String Literals 41

Language Reference

The value of astring literal is the sequence of characters within the quotes, plus a null
character at the end.

The type of astring literal is"array of char ".

The following are examples of string literals:

"Hell o there"
"\"Quotes inside string\""
IIGI dayll

If two or more string literals are adjacent, the compiler will join them together into one string
literal. The pair of string literals,

"Hel | 0" "there"

would be joined by the compiler to be,

"Hel | ot here"
and isan array of 11 characters, including the single terminating null character.

Thejoining of adjacent string literals occurs after the replacement of escape sequences. In the
examples,

"\ xFAB\ xFA" "B"
"\012\01" "2"

the first string, after joining, consists of three characters, with thevalues ' \ XFAB' , ' \ XFA'
and’ B' . The second string, after joining, also consists of three characters, with the values
"\012’,'\01" and’ 2'.

A program should not attempt to modify a string literal, asthis behavior is undefined. On
computers where memory can be protected, it is likely that string literals will be placed where
the program cannot modify them. An attempt to modify them will cause the program to fail.
On other computers without such protection, the literal can be modified, but thisis generally
considered to be a poor programming practice. (Constants should be constant!)

A string literal normally isastring. Itisnot astring if one of the characters within
double-quotesisthe null character (\ 0). If such astring literal istreated as a string, then only
those characters before the first null character will be considered part of the string. The
characters following the first null character will be ignored.

If asource file uses the same string literal in several places, the compiler may combine them
so that only one instance of the string exists and each reference refers to that string. In other

42 String Literals

Constants

words, the addresses of each of the string literals would be the same. However, no program
should rely on this since other compilers may make each string a separate instance.

The Open Watcom C26 and C32 compilers combine several instances of the same
string literal in the same module into asingle string literal, provided that they occur
in declarations of constant objects or in statements other than declarations (eg.
assignment).

If the program requires that several string literals be the same instance, then an object should
be declared as an array of char with itsvalueinitialized to the string.

5.4.1 Wide String Literals

If any of the charactersin astring literal are multibyte characters from an extended character
set, then awide string literal should be specified. Itsformis similar to normal string literals,
except that the string is preceded by the character L.

Thetype of awide string literal is"array of wchar_t". wchar_t isone of theintegral
types, and is described in the header <st ddef . h>.

With Open Watcom C% and C32, wchar_t isdefined as unsi gned short.

For example, the string literal L" ab" isawide string literal containing the letters a and b. Its
typeis"array [3] of wchar_t", and thevaluesof itselementsare L’ a’ ,L’ b’ and’\ 0’ .

In contrast, the string literal " ab" hastype"array [3] of char ", and the values of its elements
ae’'a ,’b and’\ 0.

How the multibyte characters map onto wide character values is defined by the bt owc

library function.

As shown above, awide string literal may also contain single byte characters, since the
extended character set contains the single byte characters. The single byte characters are
mapped onto the corresponding wide character codes.

Adjacent wide string literals will be concatenated by the compiler and a null character

appended to theend. If astring literal and awide string literal are adjacent, the behavior
when the compiler attempts to concatentate them is undefined.

String Literals 43

Language Reference

44 String Literals

6 Type Conversion

Whenever two operands are involved in an operation, some kind of conversion of one or both
of the operands may take place. For example, a short int andal ong i nt cannot be
directly added. Instead, the short i nt mustfirst be convertedtoal ong i nt, thenthe
two values can be added.

Fortunately, C provides most conversions asimplicit operations. Simply by indicating that the
two values are to be added, the C compiler will check their types and generate the appropriate
conversions. Sometimesit is necessary, however, to be aware of exactly how C will convert
the operands.

Conversion of operands always attempts to preserve the value of the operand. Where
preservation of the value is not possible, the compiler will sign-extend signed quantities and
discard the high bits of quantities being converted to smaller types.

Therules of type conversions are fully discussed in the following sections.

6.1 Integral Promotion

Rule: A char,short int orint bit-field in either of their signed or unsigned
forms, or an object that has an enumerated type, is always convertedtoan i nt .
If thetypei nt cannot contain the entire range of the object being converted,
then the object will be converted to an unsi gned i nt.

A si gned orunsi gned char will beconvertedtoa si gned i nt without changing the

value.

With Open Watcom C16, a short i nt hasthesamerangeasi nt , thereforea
si gned short int isconvertedtoa si gned i nt,andan unsi gned
short int isconvertedtoan unsi gned i nt, without changing the value.

With Open Watcom C?2, a si gned or unsi gned short i nt isconvertedtoan
i nt without changing the value.

These promations are called the integral promations.

Integral Promotion 45

Language Reference

6.2 Signed and Unsigned Integer Conversion

Rule; If an unsigned integer is converted to an integer type of any size, then, if the
value can be represented in the new type, the value remains unchanged.

If an unsigned integer is converted to alonger type (type with greater range), then the value
will not change. If itis converted to atype with a smaller range, then provided the value can
be represented in the smaller range, the value will remain unchanged. If the value cannot be
represented, then if the result type is signed, the result isimplementation-defined. If the result
typeisunsi gned, the result is the integer modulo (1+the largest unsigned number that can
be stored in the shorter type).

With Open Watcom C16, unsigned integers are promoted to longer types by
extending the high-order bits with zeros. They are demoted to shorter types by
discarding the high-order portion of the larger type.

Consider the following examples of 32-bit quantities (unsi gned | ong i nt) being
converted to 16-bit quantities (si gned short int or unsi gned short int):

32-hit 16-hit si gned [unsi gned
long representation | representation | short short
65538 |0x00010002 |0x0002 2 2
100000 |0x000186A0 |0x86A0 - 31072 | 34464
Rule: When asigned integer is converted to an unsigned integer of equal or greater

length, if the value is non-negative, the value will be unchanged.

A non-negative value stored in a signed integer may be converted to an equal or larger integer
type without affecting the value. A negative valueisfirst converted to the signed type of the
same length as the result, then (1+the largest unsigned number that can be stored in the result
type) is added to the value to convert it to the unsigned type.

46 Signed and Unsigned Integer Conversion

Type Conversion

With Open Watcom C16, signed integers are promoted to longer types by
sign-extending the value (the high bit of the shorter type is propogated throughout the
high bits of the longer type). When the longer type is unsigned, the sign-extended
bit-pattern is then treated as an unsigned value.

Consider the following examples of 16-bit signed quantities (si gned short i nt) being
converted to 32-bit quantities (si gned | ong i nt and unsi gned | ong int):

si gned |16-hit 32-hit si gned |unsigned
short represention | representation | long long

-2 OxFFFE OxFFFFFFFE |- 2 4294967294
32766 Ox7FFE 0x00007FFE |32766 32766

Rule; When asigned integer is converted to alonger signed integer, the value will not
change.
Rule: When a signed integer is converted to a shorter type, the result is

implementati on-defined.

With Open Watcom C16, signed integers are converted to a shorter type by
preserving the low-order (least significant) portion of the larger type.

6.3 Floating-Point to Integer Conversion

Rule: When afloating-point type is converted to integer, the fractional part is
discarded. If the value of the integer part cannot be represented in the integer
type, then the result is undefined.

Hence, it isvalid only to convert a floating-point type to integer within the range of the

integer type being converted to. Refer to the section "Integer Types' for details on the range
of integers.

Floating-Point to Integer Conversion 47

Language Reference

6.4 Integer to Floating-Point Conversion

Rule; When the value of an integer type is converted to afloating-point type, and the
integer value cannot be represented exactly in the floating-point type, the value
will be rounded either up or down.

Rounding of floating-point numbers isimplementation-defined. The technique being used by
the compiler may be determined from the macro FLT_ROUNDS found in the header
<f | oat . h>. Thefollowing table describes the meaning of the various values:

FLT_ROUNDS | Technique

indeterminable

toward zero

to nearest number
toward positive infinity
toward negative infinity

WN PO R

The Open Watcom C6 and C32 compilers will round to the nearest number. (The
valueof FLT _ROUNDS is1.)

Rule: When afloating-point value is converted to a larger floating-point type (f | oat
todoubl e, fl oat tol ong doubl e, or doubl e tol ong doubl e), the
value remains unchanged.

Rule; When any floating-point type is demoted to afloating-point type with asmaller

range, then the result will be undefined if the value lies outside the range of the
smaller type. If thevalue liesinside the range, but cannot be represented
exactly, then rounding will occur in an implementation-defined manner.

The Open Watcom C26 and C32 compilers round to the nearest number. (The value
of FLT _ROUNDS is1)

48 Integer to Floating-Point Conversion

Type Conversion

6.5 Arithmetic Conversion

Whenever two values are used with a binary operator that expects arithmetic types (integer or
floating-point), conversions may take place implicitly. Most binary operators work on two
values of the same type. If the two values have different types, then the type with the smaller
range is always promoted to the type with the greater range. Conceptually, each type isfound
in the table below and the type found lower in the table is converted to the type found higher
in the table.

| ong doubl e
doubl e

f | oat

unsi gned | ong
| ong

unsi gned int

i nt

Note that any types smaller than i nt haveintegral promotions performed on them to promote
themtoi nt.

The following table illustrates the result type of performing an addition on combinations of
various types:

Operation Result Type

si gned char + signed char |signed int
unsi gned char + signed int |signed int
signed int + signed int signed int
signed int + unsigned int unsi gned int
unsigned int + signed long |signed |ong
signed int + unsigned |ong [unsigned | ong

signed char + fl oat fl oat
signed | ong + double doubl e
float + double doubl e
float + |ong double [ong doubl e

Arithmetic Conversion 49

Language Reference

6.6 Default Argument Promotion

When acall is made to afunction, the C compiler checks to see if the function has been
defined already, or if aprototype for that function has been found. If so, then the arguments

to the function are converted to the specified types. If neither istrue, then the argumentsto
the function are promoted as follows:

» al integer types have the integral promotions performed on them, and,
« al arguments of type f | oat are promoted to doubl e.

If the definition of the function does not have parameters with types that match the promoted
types, the behavior is undefined.

50 Default Argument Promotion

/ Advanced Types

The following topics are discussed:
* Structures
* Unions
* Pointers
* Void

» The const and volatile Declarations

7.1 Structures

A structure is atype composed of a sequential group of members of various types. Like other
types, a structure is amodel describing storage requirements and interpretations, and does not
reserve any storage. Storageisreserved when an object is declared to be an instance of the
structure.

Each of the members of a structure must have a name, with the exception of bit-fields.
With Open Watcom C6 and C32, a structure member may be unnamed if the
member is a structure or union.
A structure may not contain amember with an incomplete type. In particular, it may not
contain a member with atype of the structure being defined (otherwise the structure would
have indeterminate size), although it may contain a pointer to it.
The structure may be given an optional tag with which the structure may be referenced

elsewhere in the program. If no tag is given, then only those objects listed following the
definition of the structure may have the structure type.

Structures 51

Language Reference

The name space for structure tags is different from that of object names, labels and member
names, so atag may be the same identifier as one of these other kinds. A structure tag may
not be the same as the tag of a union or enumerated type, or another structure.

Each structure has its own name space, so an identifier may be used as a member namein
more than one structure. Anidentifier that is an object name, structure tag, union tag, union
member name, enumeration tag or label may also be used as a member name without
ambiguity.

Structures help to organize program data by collecting several related objects into one object.
They are also used for linked lists, trees and for describing externally-defined regions of data
that the application must access.

The following structure might describe a token identified by parsing a typed command:

struct tokendef {
i nt | engt h;
i nt type;
char text[80];
1

This defines a structure containing three members, an integer containing the token length,
another integer containing some encoding of the token type, and the third an array of 80
characters containing the text of the token. Thetag of the structureis t okendef .

The above definition does not actually create an object containing the structure. Creation of
an instance of the structure requires alist of identifiers following the structure definition, or to
usestruct tokendef inplaceof atypefor declaring an object. For example,

struct tokendef {

i nt | engt h;

i nt type;

char text[80];
} token;

is equivalent to,

struct tokendef {
i nt | engt h;
i nt type;
char text[80];
b

struct tokendef token;

52 Structures

Advanced Types

Both create the object t oken as an instance of the structure t okendef . Thetype of
t okenisstruct tokendef.

References to amember of a structure are made using the dot operator (.). Thefirst operand
of the. operator isthe object containing the structure. The second operand is the name of the
member. For example, t oken. | engt h refersto the | engt h member of the t okendef
structure contained in t oken.

If t okenpt r isdeclared as,
struct tokendef * tokenptr;
(t okenpt r isapointer toat okendef structure), then,

(*tokenptr).length

refersto the | engt h member of the t okendef structurethat t okenpt r pointsto.
Alternatively, to refer to a member of a structure, the arrow operator (- >) is used:

t okenptr->l ength
isequivalent to,

(*tokenptr).length

If a structure contains an unnamed member which is a structure or union, then the
members of the inner structure or union are referenced as if they were members of
the outer structure. For example,

struct outer {

struct inner {
i nt a, b;

The members of X arereferenced as X. a, X. b and X. c.
Each member of a structureis at a higher address than the previous member. Alignment of

members may cause (unnamed) gaps between members, and an unnamed area at the end of
the structure.

Structures 53

Language Reference

The Open Watcom C26 and C32 compilers provide a command-line switch and a
#pr agma to control the alignment of members of structures. See the User’s Guide
for details.

In addition, the _Packed keyword is provided, and if specified beforethe st r uct
keyword, will force the structure to be packed (no alignment, no gaps) regardless of
the setting of the command-line switch or the #pr agma controlling the alignment of
members.

A pointer to an object with a structure type, suitably cast, is also a pointer to the first member
of the structure.

A structure declaration of the form,
st ruct tag;

can be used to declare a new structure within a block, temporarily hiding the old structure.
When the block ends, the previous structure’ s hidden declaration will be restored. For
example,

struct thing { int a,b; };
[* o0 %
{
struct thing;
struct sl { struct thing * thingptr; } tptr;
struct thing { struct s1 * slptr; } sptr;
}

the original definition of st ruct t hi ng issuppressed in order to create a new definition.
Failure to suppress the original definition would resultin t hi ngpt r being a pointer to the
old definition of t hi ng rather than the new one.

Redefining structures can be confusing and should be avoided.

7.1.1 Bit-fields

A member of a structure can be declared as a bit-field, provided the type of the member is
i nt,unsigned int orsigned int.

54 Structures

Advanced Types

In addition, the Open Watcom C16 and C32 compilers allow thetypes char,
unsi gned char,short int andunsi gned short int tobebit-fields.

A bit-field declares the member to be a number of bits. A value may be assigned to the
bit-field in the same manner as other integral types, provided the value can be stored in the
number of bitsavailable. If the valueistoo big for the bit-field, excess high bits are discarded
when the valueis stored.

The type of the bit-field determines the treatment of the highest hit of the bit-field. Signed
types cause the high hit to be treated as a sign bit, while unsigned types do not treat it asasign
bit. For abit-field defined with type i nt (and no si gned or unsi gned keyword), whether
or not the high bit is considered a sign bit isimplementation-defined.

The Open Watcom C26 and C32 compilers treat the high bit of a bit-field of type
i nt asasign bit.

A bit-field is declared by following the member name by a colon and a constant expression
which evaluates to a non-negative value that does not exceed the number of bitsin the type.

A bit-field may be declared without a name and may be used to align a structure to an
imposed form. Such a bit-field cannot be referenced.

If two bit-fields are declared sequentially within the same structure, and they would both fit
within the storage unit assigned to them by the compiler, then they are both placed within the
same storage unit. If the second bit-field doesn't fit, then whether it is placed in the next
storage unit, or partialy placed in the same unit as the first and spilled over into the next unit,
is implementati on-defined.

The Open Watcom C6 and C32 compilers place abit-field in the next storage unit if
it will not fit in the remaining portion of the previoudly defined bit-field. Bit-fields
are not allowed to straddle storage unit boundaries.

An unnamed member declaredas: O preventsthe next hit-field from being placed in the
same storage unit as the previous hit-field.

The order that bit-fields are placed in the storage unit is implementation-defined.

Structures 55

Language Reference

The Open Watcom C6 and C32 compilers place bit-fields starting at the low-order
end (least significant bit) of the storage unit. If a1-bit bit-field is placed alonein an
unsi gned i nt then avalue of 1in the bit-field correspondsto avalue of 1inthe
integer.

Consider the following structure definition:

struct list_el {

b

struct list_el * link;
unsi gned short el num

unsi gned i nt | engt h S
signed int of f set o4,
i nt flag D1
char * t ext;

The structure 1ist _el contains the following members:

1.

56 Structures

i nkisapointertoa list_el structure, indicating that instances of this
structure will probably be used in alinked list,

el numis an unsigned short integer,

| engt h isan unsigned bit-field containing 3 bits, allowing values in the range 0
through 7,

of f set isasigned bit-field containing 4 bits, which will be placed in the same
integer with | engt h. Sincethetypeis si gned i nt, therange of valuesfor
this bit-field is - 8 through 7,
fl ag isal-bitfield,

Sincethetypeisi nt , the Open Watcom C6 and C32 compilers will treat

the bit asa sign bit, and the set of valuesfor the bit-field is - 1 and O.

t ext isapointer to character, possibly astring.

Advanced Types

7.2 Unions

A union issimilar to astructure, except that each member of a union is placed starting at the
same storage location, rather than in sequentially higher storage locations. (The Pascal term
for aunion is"variant record".)

The name space for union tags is different from that of object names, labels and member
names, so atag may be the same identifier as one of these other kinds. The tag may not be the
same identifier as the tag of a structure, enumeration or another union.

Each union hasits own name space, so an identifier may be used as a member name in severa
different unions. Anidentifier that is an object name, structure tag, structure member name,
union tag, enumeration tag or label may also be used as a member name without ambiguity.

With Open Watcom C16 and C32, unions, like structures, may contain unnamed
members that are structures or unions. References to the members of an unnamed
structure or union are made as if the members of the inner structure or union were at
the outer level.

The size of aunionisthe size of the largest of the membersit contains.

A pointer to an object that is a union points to each of the members of the union. If oneor
more of the members of the union is a bit-field, then a pointer to the object aso points to the
storage unit in which the bit-field resides.

Storing avalue in one member of aunion, and then referring to it via another member is only
meaningful when the different members have the same type. Members of a union may
themselves be structures, and if some or all of the members start with the same membersin
each structure, then references to those structure members may be made viaany of the union
members. For example, consider the following structure and union definitions:

struct recl {

i nt rectype;

i nt vl, v2,v3;

char * text;
b
struct rec2 {

i nt rectype;

short int flags : 8;

enum {red, blue, green} hue;
1

Unions 57

Language Reference

union alt_rec {
struct recl val 1;
struct rec?2 val 2;

b

alt_rec isaunion defining two members val 1 and val 2, which are two different forms
of arecord, namely the structures r ec1 and r ec2 respectively. Each of the different record
forms starts with the member r ect ype. The following program fragment would be valid:

union alt_rec record;

[* .00 %

record.recl.rectype = 33;

DoSoret hi ng(record.rec2.rectype);

However, the following fragment would exhibit implementation-defined behavior:

record.recl.vl = 27;
DoSorret hi ngEl se(record. rec2. hue);

In other words, unless several members of a union are themselves structures where the first
few members are of the same type, a program should not store into a union member and

retrieve a value using another union member. Generally, aflag or other indicator is kept to
describe which member of the union is currently the "active" member.

7.3 Pointers

A pointer to an object is equivalent to the address of the object in the memory of the
computer.

An object may be declared to be a pointer to atype of object, or it may be declared to be a
pointer to no particular type. The form,

type * identifier;

declares the identifier to be a pointer to the given type. If typeis voi d, then theidentifier isa
pointer to no particular type of object (a generic pointer).

58 Pointers

Advanced Types

The following examples illustrate various pointer declarations:

int * intptr;
i ntptr isapointertoani nt.

char * charptr;
char ptr isapointertoachar.

struct tokendef * token;
t oken isapointer to the structure t okendef .

char * argv[];
ar gv isan array of pointersto char or an array of pointersto strings.

char ** strptr;
st r pt r isapointer to apointer to char .

voi d * dunpbeg;
dunpbeg isapointer, but to no particular type of object.

Any place that a pointer may be used, the constant 0 may also be used. Thisvalueis the null
pointer constant. The value that is used internally to represent anull pointer is guaranteed not
to be a pointer to an object. It does not necessarily correspond to the integer value 0. It
merely represents a pointer that does not currently point at anything. The macro NULL,
defined in the header <st ddef . h>, may also be used in place of 0.

7.3.1 Special Pointer Types for Open Watcom C6

Note: the following sections only apply to the Open Watcom C16 (16-hit) compiler.
For the Open Watcom C32 compiler, see the section "Special Pointer Types for Open
Watcom C32",

On the 8086, a normal pointer (16 bits) can only point to a 64K region of the total memory
available on the machine. This effectively limits any program to a maximum of 64K of
executable code and 64K of data. For many applications, this does not pose a limitation.

Some applications need more than 64K of code or data, or both. The Open Watcom

C!16 compiler provides a mechanism whereby pointers can be declared that get beyond the
64K limit. Thiscan be done either by specifying an option when compiling the files (see the
User’s Guide) or by including a special type qualifier keyword in the declaration of the object.
L ater sections describe these keywords and their use.

Pointers 59

Language Reference

The use of the keywords may prevent the program from compiling using other C compilers, in
particular when the program is being transported to another system. However, the
preprocessor can be used to eliminate the keywords on these other systems.

Before discussing the special pointer types, it isimportant to understand the different memory
models that are available and what they mean. The five memory models are referred to as:

small small code (code < 64K), small data (data < 64K)

compact small code (code < 64K), big data (total data> 64K, all objects < 64K)
medium big code (code > 64K), small data (data < 64K)

large big code (code > 64K), big data (total data > 64K, all objects < 64K)
huge big code (code > 64K), huge data (total data> 64K, objects > 64K)

The following sections discuss the memory models in terms of "small" and "big" code and
datasizes. Theterms"small", "compact”, "medium", "large" and "huge" are smply concise
terms used to describe the combinations of code and data sizes available.

7.3.1.1 The Small and Big Code Models

Each program can use either small code (less than 64K) or big code (more than 64K). Small
code meansthat all functions (together) must fit within the 64K limit on code size. Itis
possible to call afunction using only a 16-bit pointer. Thisisthe default.

Big code removes the restriction, but requires that all functions be called with a 32-bit pointer.
A 32-bit pointer consists of two 16-bit quantities, called the segment and offset. (When the
computer uses the segment and offset to refer to an actual memory location, the two values are
combined to produce a 20-bit memory address, which allows for the addressing of 1024K of
memory.) Because of the larger pointers, the code generated by the big code option takes
more space and takes longer to execute.

When the big code option is being used, it is possible to group functions together into several
64K (or smaller) regions. Each module can be its own region, or several modules can be
grouped. It ispossibleto call other functions within the same group using a 16-bit value.
These functions are said to be near. Functions outside the group can still be called, but must
be called using a 32-bit value. These functions are said to be far.

When the big code option is given on the command line for compiling the module, ordinary

pointersto functions will be defined automatically to be of the larger type, and function cals
will be done using the longer (32-bit) form.

60 Pointers

Advanced Types

It isalso possible to use the small code option, and to override certain functions and pointers
to functions as being far. However, this method may lead to problems. The Open Watcom
C16 compiler generates special function calls that the programmer doesn’t see, such as
checking for stack overflow when afunction isinvoked. These calls are either near or far
depending entirely on the memory model chosen when the moduleis compiled. If the small
code model is being used, all callswill be near calls. If, however, severa code groups are
created with far calls between them, they will al need to access the stack overflow checking
routines. The linker can only place these special routinesin one of the code groups, leaving
the other functions without access to them, causing an error.

To resolve this problem, mixing code models requires that all modules be compiled with the
big code model, overriding certain functions as being near. In this manner, the stack checking
routines can be placed in any code group, which the other code groups can still access.
Alternatively, acommand-line switch may be used to turn off stack checking, so no stack
checking routines get called.

7.3.1.2 The Small and Big Data Models

Each program can use either small data (less than 64K) or big data (more than 64K). Small
data requires that all objects exist within one 64K region of memory. Itispossibleto refer to
each object using a 16-hit pointer. Thisisthe default.

Big data removes the restriction, but all pointers to data objects require a 32-bit pointer. As
with the big code option, extrainstructions are required to manipulate the 32-bit pointer, so
the generated code will be larger and not as fast.

With either small or big data, each object isrestricted in size to a maximum of 64K bytes.
However, an object may be declared as huge, allowing the object to be bigger than 64K bytes.
Pointers to huge objects are the least efficient because of extra code required to handle them,
especialy when doing pointer arithmetic. Huge objects are discussed in the section "The _
_huge Keyword".

When the big data option is being used, the program still retains one region up to 64K in size
in which objects can be referred to using 16-bit pointers, regardless of the code group being
executed. These objects are said to be near. Objects outside this region can till be
referenced, but must be referred to using a 32-bit value. These objects are said to be far.

When the big data option is given on the command line for compiling the module, ordinary
pointers to objects other than functions will be defined automatically to be of the larger type.

It isalso possible to use the small data option, and to override certain objects as being far.
The programmer must decide which method is easier to use.

Pointers 61

Language Reference

7.3.1.3 Mixing Memory Models

It is possible to mix small and big code and data pointers within one program. In fact, a
programmer striving for optimum efficiency will probably mix pointer types. But great care
must be taken!

In some applications, the programmer may want the ability to have either big code or big data,
but won't want to pay the extra-code penalty required to compile everything accordingly. In
the case of big data, the programmer may realize that 99% of the data structures can reside
within the 64K limit, and the remaining ones must go beyond that limit. Similarly, it may be
desirable to have only afew functions that don't fit within the 64K limit.

When overriding the current memory model, it is very important to declare each type properly.

The following sections describe how to override the current memory model.

7.3.1.4 The _ _far Keyword for Open Watcom C'6

When the big code memory model isin effect, functions are far and pointers to functions are
declared automatically to be pointersto far functions. Similarly, the big data model causes all
pointers to objects (other than functions) to be pointersto far objects. However, when either
the small code or small data model is being used, the keyword __far may be used to
override to the big model.

The __far keyword isatype qualifier that modifies the token that followsit. If __far
precedes* (asin __far *),then the pointer pointsto something far. Otherwise, if __far
precedes the identifier of the object or function being declared (asin __far x), thenthe
object itself isfar.

Thekeyword __far canonly be applied to function and object names and the indirection
(pointer) symbol *. Parametersto functions may not be declared as ~_far sincethey are
alwaysin the 64K data areathat is near.

Open Watcom C26 provides the predefined macros f ar and _far for convenience
and compatibility with the Microsoft C compiler. They may be used in place of
__far.

The following examplesillustrate the use of the __far keyword. The examples assume that
the small memory model (small code, small data) isbeing used.

int __far * ptr;

62 Pointers

Advanced Types

declares pt r to be apointer to an integer. The abject pt r isnear (addressable using
only 16 bits), but the value of the pointer is the address of an integer which isfar, and
so the pointer contains 32 hits.

int * __far fptr;
also declares f pt r to be apointer to an integer. However, the object f pt r isfar, but
the integer that it pointsto is near.

int __far * __far ffptr;
declaresf f pt r to be apointer (which isfar) to an integer (which isfar).

When declaring a function, placing the keyword __far infront of the function name causes
the compiler to treat the function as being far. It isimportant, if the function is called before
its definition, that a function prototype be included prior to any calls. For example, the
declaration,

void __far BubbleSort ();
declares the function Bubbl eSor t to be far, meaning that any callsto it must be far calls.

Here are afew more examples. These, too, assume that the small memory model (small code,
small data) is being used.

struct symbol * _ far FSymAlloc(void);
declares the function FSymAl | oc to be far, returning a pointer to anear synbol
structure.

struct symbol __far * _ far FFSymAlloc(void);
declares the function FFSymAl | oc to befar, returning a pointer to afar synbol
structure.

void Indirect(float __far fn());
declaresthe function | ndi r ect to be near, taking one parameter f n whichisa
pointer to afar function that returnsa f | oat .

int Adjustleft(struct symbol * _ far symptr);

isaninvalid declaration, sinceit attemptsto declare synpt r to befar. All parameters
must be near, since they reside in the 64K data areathat is aways near.

7.3.1.5 The _ _near Keyword for Open Watcom C'®

When the small code memory model isin effect, functions are near, and pointers to functions
are automatically declared to be pointersto near functions. Similarly, the small data model
causes all pointersto objects (other than functions) to be pointersto near objects. However,

Pointers 63

Language Reference

when either the big code or big data model is being used, the keyword __near may be used
to override to the small model.

The __near keyword isatype quaifier that modifies the token that followsit. If __near
precedes* (asin __near *),thenthe pointer pointsto something near. Otherwise, if
__near precedesthe identifier of the object or function being declared (asin __near x),
then the object itself is near.

The keyword __near can only be applied to function and object names and the indirection
(pointer) symbol *.

Open Watcom C26 provides the predefined macros near and _near for
convenience and compatibility with the Microsoft C compiler. They may be used in
placeof __near.

The following examples illustrate the use of the __near keyword. These examples assume
that the large memory module (big code, big data) is being used.

extern int __near * x;
declares the object x to be apointer to anear integer. (X is not necessarily within the
64K data areathat is near, but the integer that it pointsto is.)

extern int * __near nx;
declares the object nx to be near, and is a pointer to afar integer. (nx iswithin the
64K data areathat is near, but the integer that it points to might not be.)

extern int __near * __near nnx;
declares the object nnx to be near, and is a pointer to anear integer. (nnx and the
integer that it points to are both within the 64K data areathat is near.)

struct symbol * __near NSymAlloc(void);
declares the function NSy mAl | oc to be near, and returns a pointer to afar symnbol
structure.

struct symbol __near * _ _near NNSymAlloc(void);

declares the function NNSy mAl | oc to be near, and returns a pointer to a near
symbol structure.

7.3.1.6 The _ _huge Keyword for Open Watcom C'

Even using the big data model, each object isrestricted in size to 64K. Some applications will
need to get beyond this limitation. The Open Watcom C6 compiler provides the keyword

64 Pointers

Advanced Types

__huge to describe those objects that exceed 64K in size. The code generated for these
objectsisless efficient than for __far objects.

The declaration of such objects follows the same pattern as above, with the keyword __huge
preceding the name of the object if the object itself is bigger than 64K, or preceding the * if
the pointer is to an object that is bigger than 64K.

The keyword __huge can only be applied to arrays. Huge objects may be used in both the
small and big data models.

Open Watcom C26 provides the predefined macros huge and _huge for
convenience and compatibility with the Microsoft C compiler. They may beused in
placeof __huge.

These examplesillustrate the use of the __huge keyword. They assume that big code, small
data (the medium memory model) isin effect.

int __huge iarray[50000];
declaresthe object i ar r ay to be an array of 50000 integers, for atotal size of 100000
bytes.

int __huge * iptr;
declaresi pt r to be near, and a pointer to an integer that is part of a huge array, such
asanelementof i array.

7.3.2 Special Pointer Types for Open Watcom C*2

With an 80386 processor in "protect” mode, anormal pointer (32 bits) can point to a4
gigabyte (4,294,967,296 byte) region of the memory available on the machine. (In practice,
memory limits may mean that these regions will be smaller than 4 gigabytes.) These regions
are called segments, and there may be more than one segment defined for the memory. Each
32-hit pointer is actually an offset within a 4 gigabyte segment, and the offsets within two
different segments are generally not related to each other in aknown manner.

As an example, the screen memory may be set up so that it residesin a different region of the
memory from the program’s data. Normal pointers (those within the program’ s data area) will
not be able to access such regions.

Like the 16-hit version of Open Watcom C (for the 8086 and 80286), Open Watcom C32 uses

the __near and __far keywords to describe objects that are either in the normal data space
or elsewhere.

Pointers 65

Language Reference

Objects or functions that are near require a 32-bit pointer to access them.

Objects or functions that are far require a 48-bit pointer to access them. This 48-bit pointer
consists of two parts: aselector consisting of 16 bits, and an offset consisting of 32 bits. A
selector issimilar to a segment in a 16-bit program’ s far pointer, except that the numeric value
of the selector does not directly determine the memory region. Instead, the processor usesthe
selector value in conjunction with a"descriptor table" to determine what region of memory is
to be accessed. In the discussion of far pointers on the 80386, the terms selector and segment
may be used interchangeably.

Like the 16-bit compiler, the Open Watcom C32 compiler supports the small, compact,
medium and large memory models. Throughout the discussions in the following sections, it is
assumed that the small memory model is being used, since it isthe most likely to be used.

7.3.2.1 The _ _far Keyword for Open Watcom C%2

The __far keyword isatype qualifier that modifies the token that followsit. If __far
precedes* (asin __far *),then the pointer pointsto something that isfar (not in the
normal dataregion). Otherwise, if __far precedesthe identifier of the object or function
being declared (asin __far x), then the object or function isfar.

The keyword __far can only be applied to function and object names and the indirection
(pointer) symbol *. Parameters to functions may not be declared as __far, sincethey are
always in the normal dataregion.

These examplesillustrate the use of the __ far keyword, and assume that the small memory
model is being used.

int __far * ptr;
declares pt r to be apointer to an integer. The abject pt r isnear but the integer that
it pointstoisfar.

int * __far fptr;
also declares f pt r to be apointer to an integer. However, the object f pt r isfar, but
the integer that it pointsto is near.

int __far * __far ffptr;
declaresf f pt r to be apointer (which isfar) to an integer (which isfar).

When declaring a function, placing the keyword __far infront of the function name causes
the compiler to treat the function as being far. It isimportant, if the function is called before
its definition, that a function prototype be included prior to any calls. For example, the
declaration,

66 Pointers

Advanced Types

extern void __far SystemService();

declares the function Syst enSer vi ce to be far, meaning that any callsto it must be far
cals.

Here are afew more examples:

extern struct systbl * __far FSysTblPtr(void);
declares the function FSysTbl Pt r to be far, returning a pointer to anear syst bl
structure.

extern struct systbl __far * _ _far FFSysTblPtr(void);
declares the function FFSysTbl Pt r to befar, returning a pointer to afar syst bl
structure.

extern void Indirect(char __far fn());
declaresthe function | ndi r ect to be near, taking one parameter f n whichisa
pointer to afar function that returnsa char .

extern int StoreSysTbl(struct systbl * _ far sysptr);
isaninvalid declaration, since it attemptsto declare syspt r to befar. All parameters
must be near, since they reside in the normal data areathat is aways near.

7.3.2.2 The _ _near Keyword for Open Watcom C%?

The __near keyword isatype qualifier that modifies the token that followsit. If _ near
precedes* (asin __near *),thenthe pointer pointsto something that is near (in the normal
dataregion). Otherwise, if __near precedestheidentifier of the object or function being
declared (asin __near x), thentheobject or function is near.

The keyword __near can only be applied to function and object names and the indirection
(pointer) symbol *.

For programmers using the small memory model, the ~ near keyword is not required, but
may be useful for making the program more readable.

7.3.2.3 The _ _far16 and _Seg16 Keywords

With the 80386 processor, afar pointer consists of a 16-bit selector and a 32-bit offset. Open
Watcom C32 also supports a specia kind of far pointer which consists of a 16-bit selector and
a16-hit offset. These pointers, referred to as far16 pointers, allow 32-bit code to access code
and data running in 16-bit mode.

Pointers 67

Language Reference

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4 gigabyte
segment referenced by the DS register is divided into 8192 areas of 64K bytes each. A farl6
pointer consists of a 16-bit selector referring to one of the 64K byte areas, and a 16-bit offset
into that area.

For compatibility with Microsoft C, Open Watcom C22 providesthe __far16 keyword. A
pointer declared as,

type __farl6 * name;

defines an object that isafarl6 pointer. If such a pointer is accessed in the 32-bit
environment, the compiler will generate the necessary code to convert between the far16
pointer and a"flat" 32-bit pointer.

For example, the declaration,

char __farle * bufptr;
declares the object buf pt r to be afarl6 pointer to char .
A function declared as,
type __farlé6 func(parmlist);

declares a 16-bit function. Any callsto such afunction from the 32-bit environment will
cause the compiler to convert any 32-bit pointer parameters to far16 pointers, and any i nt
parameters from 32 bitsto 16 bits. (In the 16-bit environment, an object of type i nt isonly
16 bits.) Any return value from the function will have its return value converted in an
appropriate manner.

For example, the declaration,

char * __farlé Scan(char * buffer, int buflen, short err);

declares the 16-bit function Scan. When this function is called from the 32-bit environment,
the buf f er parameter will be converted from a flat 32-bit pointer to afarl6 pointer (which,
in the 16-bit environment, would be declared as char __far *). The buf | en parameter
will be converted from a 32-bit integer to a 16-bit integer. The er r parameter will be passed
unchanged. Upon returning, the far16 pointer (far pointer in the 16-bit environment) will be
converted to a 32-bit pointer which describes the equivalent location in the 32-bit address
space.

For compatibility with IBM C Set/2, Open Watcom C32 providesthe _segl6 keyword.
Notethat _segl16 isnot interchangeablewith __farle6.

68 Pointers

Advanced Types

A pointer declared as,
type * _Segl6 name;

defines an object that isafarl6 pointer. Notethat the _Seg16 appears on the opposite side
of the* thanthe __far16 keyword described above.

For example,

char * _Segl6 bufptr;
declares the object buf pt r to be afarl6 pointer to char (the same as above).

The _segl6 keyword may not be used to describe a 16-hit function. A #pr agma directive
must be used. Seethe User’s Guide for details. A function declared as,

type * _Segle func(parmlist);
declares a 32-bit function that returns afarl6 pointer.

For example, the declaration,

char * _Segl6 Scan(char * buffer, int buflen, short err);

declares the 32-hit function Scan. No conversion of the parameter list will take place. The
return valueis afarl6 pointer.

7.3.3 Based Pointers for Open Watcom C% and C32

Near pointers are generally the most efficient type of pointer because they are small, and the
compiler can assume knowledge about what segment of the computer’ s memory the pointer
(offset) refersto. Far pointers are the most flexible because they allow the programmer to
access any part of the computer’ s memory, without limitation to a particular segment.
However, far pointers are bigger and slower because of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of
far pointers. With based pointers, the programmer takes responsibility to tell the compiler
which segment a near pointer (offset) belongs to, but may still access segments of the
computer’ s memory outside of the normal data segment (DGROUP). The result is a pointer
type which isas small as and almost as efficient as a near pointer, but with most of the
flexibility of afar pointer.

An object declared as a based pointer fallsinto one of the following categories:

Pointers 69

Language Reference

« the based pointer isin the segment described by another object,

» the based pointer, used as a pointer to another object of the same type (asin alinked
list), refers to the same segment,

» the based pointer is an offset to no particular segment, and must be combined explicitly
with a segment value to produce avalid pointer.

To support based pointers, the following keywords are provided:

__based
__segment
__segname
__self

The following operator is also provided:
>
These keywords and operator are described in the following sections.

Two macros, defined in <mal | oc. h> are also provided:

_NULLSEG
_NULLOFF

They are used in asimilar manner to NULL, but are used with objects declared as
__segment and __based respectively.

7.3.3.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named
segment. A segment constant based object is specified as:

type __based(__segname("segment")) object-name;

and a segment constant based pointer is specified as:

70 Pointers

Advanced Types

type __based(__segname("segment”)) * object-name;

where segment is the name of the segment in which the pointer or object is based. Asshown
above, the segment name is always specified asastring. There are three special segment
names recognized by the compiler:

" 7CODE "
"_CONST"
" DATA"

The " _CODE™ segment isthe default code segment. The " _CONST" segment is the segment
containing constant values. The " _DATA™ segment is the default data segment. If the
segment name is not one of the three recognized names, then a segment will be created with
that name. If a segment constant based object is being defined, then it will be placed in the
named segment. |f a segment constant based pointer is being defined, then it can point at
objects in the named segment.

The following examples illustrate segment constant based pointers and objects:

int _ _based(__segname("_CODE")) ival = 3;
int _ _based(__segname("_CODE")) * iptr;

i val isan object that residesin the default code segment. i pt r isan object that residesin
the data segment (the usual place for data objects), but points at an integer which residesin the
default code segment. i pt r issuitable for pointing at i val .

char _ _based(__segname("GOODTHINGS")) thing;
t hi ng isan object which resides in the segment GOODTHI NGS, which will be created if it
does not already exist. (The creation of segmentsis done by the linker, and is a method of

grouping objects and functions. Nothing isimplicitly created during the execution of the
program.)

7.3.3.2 Segment Object Based Pointers

A segment object based pointer derives its segment value from another named object. A
segment object based pointer is specified as follows:

Pointers 71

Language Reference

type __based (segment) * name;
where segment is an object defined astype __segment.

An object of type __segment may contain a segment value. Such an object is particularly
designed for use with segment object based pointers.

The following example illustrates a segment object based pointer:

__segment Seg,
char _ _based(seg) * cptr;

The object seg contains only a segment value. Whenever the object cpt r isused to point to
a character, the actual pointer value will be made up of the segment value found in seg and
the offset value found in cpt r . The object seg might be assigned values such asthe
following:

* aconstant value (eg. the segment containing screen memory),
* the result of the library function _bheapsegq,
» the segment portion of another pointer value, by casting it to thetype __segment.

7.3.3.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference
to amemory location. A void based pointer does not infer its segment value from another
object. The: > (base) operator is used to combine a segment value and a void based pointer.

For example, on an IBM PC or PS/2 computer, running DOS, with a color monitor, the screen
memory begins at segment 0xB800, offset 0. In avideo text mode, to examine the first
character currently displayed on the screen, the following code could be used:

extern void main()

{

__segment Screen,;
char __based(void) * scrptr;
screen = 0xB80O;

scrptr =0

printf("Top left character is "% .\n",
*(screen: >scrptr));

}

The general form of the : > operator is:

72 Pointers

Advanced Types

segment : > offset

where segment is an expression of type __segment, and offset is an expression of type
__based(void) *.

7.3.3.4 Self Based Pointers

A self based pointer infers its segment value from itself. It is particularly useful for structures
such aslinked lists, where al of the list elements are in the same segment. A self based
pointer pointing to one element may be used to access the next element, and the compiler will
use the same segment as the original pointer.

The following example illustrates a function which will print the values stored in the last two
members of alinked list:

struct a {
struct a __based(__self) * next;
i nt nunber ;

extern void PrintLast Two(struct a far * list)

{

__segment seg
struct a __based(seg) * aptr;
seg = FP_SEG(list);
aptr = FP_OFF(list);
for(; aptr != _NULLOFF; aptr = aptr->next) {
if(aptr->next == _NULLOFF) {
printf("Last itemis %\ n", aptr->nunber);
} else if(aptr->next->next == _NULLOFF) {

printf("Second last itemis %\ n", aptr->nunber);
}
}
}

The parameter to the function Pr i nt Last Two isafar pointer, pointing to alinked list
structure anywhere in memory. It isassumed that all members of a particular linked list of
this type reside in the same segment of the computer’s memory. (Another instance of the
linked list might reside entirely in adifferent sesgment.) The object seg is given the segment
portion of the far pointer. The object apt r isgiven the offset portion, and is described as
being based in the segment stored in seg.

The expression apt r - >next referstothe next member of the structure stored in memory

at the offset stored in apt r and the segment implied by apt r , which isthe value stored in
seqg. Sofar, thebehavior isno different than if next had been declared as,

struct a * next;

Pointers 73

Language Reference

The expression apt r - >next - >next illustrates the difference of using a self based pointer.
Thefirst part of the expression (apt r - >next) occurs as described above. However, using
the result to point to the next member occurs by using the offset value found in the next
member and combining it with the segment value of the pointer used to get to that member,
which is still the segment implied by apt r, whichisthevalue stored in seg. If next had
not been declared using __based(__self), thenthe second pointing operation would
refer to the offset value found in the next member, but with the default data segment
(DGROUP), which may or may not be the same segment as stored in seg.

7.4 Void

Thevoi d type has several purposes:

74 Void

To declare an object as being a pointer to no particular type. For example,
void * nmenbegi n;

defines nenbegi n asbeing apointer. It does not point to anything without a cast
operator. The statement,

*(char *) nenbegin = '\0’;
will place a zero in the character at which menbegi n points.

To declare afunction as not returning avalue. For example,

void rewind(FILE * stream);

declares the standard library function r ewi nd which takes one parameter and
returns nothing.

To evaluate an expression for its side-effects, discarding the result of the
expression. For example,

(void) getchar();

callsthelibrary function get char , which normally returns a character. Inthis
case, the character is discarded, effectively advancing one character in the file
without caring what character isread. Thisuse of voi d isprimarily for
readability, because casting the expression to the void type will be done
automatically. The above example could also be written as,

getchar();

Advanced Types

The keyword voi d isalso used in one other instance. If afunction takes no parameters,
voi d may be used in the declaration. For example,

int getchar(void);

declares the standard library function get char , which takes no parameters and returns an
integer.

No object (other than a function) may be declared with type voi d.

7.5 The const and volatile Declarations

An object may be declared with the keyword const . Such an object may not be modified
directly by the program. For objects with static storage duration, this type qualifier describes
to the compiler which objects may be placed in read-only memory, if the computer supports
such aconcept. It also provides the opportunity for the compiler to detect attempts to modify
the object. The compiler may aso generate better code when it knows that an object will not
be modified.

Even though an object is declared to be constant, it is possible to modify its value indirectly
by storing its address (using a cast) in another object declared to be a pointer to the same type
(without the const), and then using the second object to modify the value to which it points.
However, this should be done with caution, and may fail on computers with protected
memory.

If the declaration of an object does not include *, that isto say it is not a pointer of any kind,
then the keyword const appearing anywhere in the type specifier (including any

t ypedef 's) indicates that the object is constant and may not be changed. If the objectisa
pointer and const appearsto the left of the *, the object is a pointer to a constant value,
meaning that the value to which the pointer points may not be modified, although the pointer
value may be changed. If const appearsto theright of the *, the object is a constant pointer
to avalue, meaning that the pointer to the value may not be changed, although what the
pointer points to may be changed. If const appears on both sides of the *, the object isa
constant pointer to a constant value, meaning that the pointer and the object to which it points
may not be changed.

If the declaration of a structure, union or array includes const , then each member of the
type, when referred to, istreated asif const had been specified.

The const and volatile Declarations 75

Language Reference

The declarations,

const int baseyear = 1900;
const int * byptr;

declare the object baseyear to be an integer whose value is constant and set to 1900, and
the object by pt r to be apointer to a constant object of integer type. If bypt r was madeto
point to another integer that was not, in fact, declared to be constant, then bypt r could not be
used to modify that value. bypt r may be used to get avalue from an integer object, and
never to changeit. Another way of stating it isthat what bypt r pointsto is constant, but
bypt r itself is not constant.

The declarations,

i nt baseyear;
int * const byptr = &baseyear;

declare the object by pt r as aconstant pointer to an integer, in this case the object
baseyear. Thevalueof baseyear may be modified via bypt r, but the value of bypt r
itself may not be changed. Inthiscase, bypt r itself isconstant, but what bypt r pointstois
not constant.

An object may be declared with the keyword vol at i | e. Such an object may be freely
modified by the program, and its value also may be modified through actions outside the
program. For example, aflag may be set when a given interrupt occurs. The keyword

vol ati | e indicatesto the compiler that care must be taken when optimizing code referring
to the object, so that the meaning of the program is not altered. An object that the compiler
might otherwise have been able to keep in aregister for an extended period of time will be
forced to reside in normal storage so that an external change to it will be reflected in the
program’s behavior.

If the declaration of an object does not include *, that isto say it isnot a pointer of any kind,
then the keyword vol at i | e appearing anywhere in the type specifier (including any

t ypedef 's) indicates that the object is volatile and may be changed at any time without the
program knowing. If the object isapointer and vol at i | e appearsto theleft of the *, the
object isapointer to avolatile value, meaning that the value to which the pointer points may
be changed at any time. If vol ati | e appearsto theright of the *, the object isavolatile
pointer to a value, meaning that the pointer to the value may be changed at any time. If

vol ati | e appears on both the left and the right of the *, the object is a volatile pointer to a
volatile value, meaning that the pointer or the value to which it points may be changed at any
time.

If the declaration of a structure, union or array includes vol at i | e, then each member of the
type, when referred to, istreated asif vol at i | e had been specified.

76 The const and volatile Declarations

Advanced Types

The declarations,

vol atile int attncount;
volatile int * acptr;

declare the object at t ncount to be an integer whose value may be altered at any time (say
by an asynchronous attention handler), and the object acpt r to be apointer to avolatile
object of integer type.

If both const and vol at i | e areincluded in the declaration of an object, then that object
may not be modified by the program, but it may be modified through some external action.
An example of such an object isthe clock in a computer, which is modified periodically
(every clock "tick™), but programs are not allowed to changeit.

The const and volatile Declarations 77

Language Reference

78 The const and volatile Declarations

8 Storage Classes

The storage class of an object describes:

* the duration of the existence of the object. An object may exist throughout the
execution of the program, or only during the span of time that the function in which it is
defined is executing. In the latter case, each time the function is called, a new instance
of the object is created, and that object is destroyed when the function returns.

« the scope of the object. An object may be declared so that it is only accessible within
the function in which it is defined, within the module or throughout the entire program.

A storage class specifier is one of:

auto
regi ster
extern
static

t ypedef

t ypedef isincluded in the list of storage class specifiers for convenience, because the
syntax of atype definition isthe same asfor an object declaration. A t ypedef declaration
does not create an object, only a synonym for a type, which does not have a storage class
associated with it.

Only one of these keywords (excluding t ypedef) may be specified in a declaration of an
object.

If an object or function is declared with a storage class, but no type specifier, then the type of
the object or function isassumedtobe i nt .

While a storage class specifier may be placed following atype specifier, this tends to be
difficult toread. It isrecommended that the storage class (if present) aways be placed first in
the declaration. The ISO C standard states that the ability to place the storage class specifier
other than at the beginning of the declaration is an obsolescent feature.

Storage Classes 79

Language Reference

8.1 Type Definitions

A typedef declaration introduces a synonym for another type. It does not introduce a new
type.

The general form of atype definition is:
t ypedef type-information typedef-name;

The typedef-name may be a commarseparated list of identifiers, all of which become
synonyms for thetype. The names are in the same name space as ordinary object names, and
can be redefined in inner blocks. However, this can be confusing and should be avoided.

The simple declaration,

t ypedef signed int COUNTER

declares the identifier COUNTER to be equivalent to the type si gned i nt . A subsequent
declaration like,

COUNTER ctr;

declaresthe object ct r to be asigned integer. If, later on, it is hecessary to change all
countersto be long signed integers, then only the t ypedef would have to be changed, as
follows:

typedef |ong signed int COUNTER
All declarations of objects of that type will use the new type.

Thet ypedef can be used to simplify declarations elsewherein aprogram. For example,
consider the following structure:

struct conpl ex {
doubl e real ;
doubl e i magi nary;
b

To declare an object to be an instance of the structure requires the following declaration:

struct conpl ex cnum

80 Type Definitions

Storage Classes

Now consider the following structure definition with a type definition:

typedef struct {
doubl e real ;
doubl e i magi nary;
} COWPLEX;

In this case, the identifier COVPLEX refers to the entire structure definition, including the
keyword st r uct . Therefore, an object can be declared as follows:

COVPLEX chum

While thisis asimple example, it illustrates a method of making object declarations more
readable.

Consider the following example, where the object f npt r isbeing declared as a pointer to a
function which takes two parameters, a pointer to astructure di nB and an integer. The
function returns a pointer to the structure di nB8. The declarations could appear as follows:

struct dinB {

int Xx;
int y;
int z;

b
struct dinB * (*fnptr)(struct din8 *, int);
or as.

t ypedef struct {

int x;

int y;

int z;
} DI MVB;

DIMB * (*fnptr)(DOM3 *, int);
or as.

typedef struct {

int x;

int y;

int z;
} DI MB;

Type Definitions 81

Language Reference

typedef DIM3 * DIMBFN(DIM3 *, int);

DI MBFN * fnptr;

The last example simply declares f npt r to be a pointer to a DI MBFN, while DI MBFNis
declared to be a function with two parameters, a pointer to a DI M3 and an integer. The
function returns apointer toa DI M3. DI MB isdeclared to be a structure of three
co-ordinates.

8.1.1 Compatible Types

Some operations, such as assignment, are restricted to operating on two objects of the same
type. If both operands are aready the same type, then no specia conversion is required.
Otherwise, the compiler may alter automatically one or both operands to make them the same
type. Theintegral promotions and arithmetic conversions are examples. Other types may
require an explicit cast.

The compiler decides whether or not an explicit cast is required based on the concept of
compatible types. The following types are compatible:

* two types that are declared exactly the same way,

* two types that differ only in the ordering of the type specifiers, for example,
unsigned long int andint |ong unsigned,

« two arrays of members of compatible type, where both arrays have the same size, or
where one array is declared without size information,

« two functions that return the same type, one containing no parameter information, and
the other containing a fixed number of parameters (no ", . . . ") that are not affected by
the default argument promotions,

* two structures, defined in separate modules, that have the same humber and names of
members, in the same order, with compatible types,

* two unions, defined in separate modules, that have the same number and names of
members, with compatible types,

* two enumerated types, defined in separate modules, that have the same number of
enumeration constants, with the same names and the same values,

* two pointers to compatible types.

82 Type Definitions

Storage Classes

8.2 Static Storage Duration

An object with static storage duration is created and initialized only once, prior to the
execution of the program. Any value stored in such an object is retained throughout the
program unlessit is explicitly altered by the program (or it is declared with the vol ati | e

keyword).
Any object that is declared outside the scope of afunction has static storage duration.
There are three types of static objects:

1. objectswhose values are only available within the function in which they are
defined (no linkage). For example,

extern void Fn(int x)

{

static int ObjCount;
[* .00 %
}

2. objectswhose values are only available within the module in which they are
defined (internal linkage). For example,

static int ObjCount;

extern void Fn(int x)

{
[* .0 %]
}

3. objectswhose values are available to all components of the program (external
linkage). For example,

extern int ObjCount = { 0 };
extern void Fn(int x)

{

[* ... %

}

Thefirst two types are defined with the keyword st at i ¢, while the third is defined with the
(optional) keyword ext er n.

Static Storage Duration 83

Language Reference

8.2.1 The static Storage Class

Any declaration of an object may be preceded by the keyword st ati c. A declarationinside
afunction indicates to the compiler that the object has no linkage, meaning that it is available
only within the function. A declaration not inside any function indicates to the compiler that
this object hasinternal linkage, meaning that it is available in all functions within the module
inwhich it isdefined. Other modules may not refer to the specific object. They may have
their own object defined with the same name, but this is a questionable programming practice
and should be avoided.

The value of the object will be preserved between function calls. Any value placed in an
object with static storage duration will remain unchanged until changed by afunction within
the same module. It isalso possible for a pointer to the object to be passed to a function
outside the module in which the object is defined. This pointer could be used to modify the
value of the object.

8.2.2 The extern Storage Class

If an object is declared with the keyword ext er n inside afunction, then the object has
external linkage, meaning that its value is available to al modules, and to the function(s)
containing the definition in the current module. No initializer list may be specified in this
case, which implies that the space for the object is allocated in some other module.

If an object is declared outside of the definition of afunction, and the declaration does not
contain either of the keywords st at i ¢ or ext er n, then the space for the object is created at
this point. The object has external linkage, meaning that it is available to other modulesin the
program.

The following examples illustrate the creation of external objects, provided the declarations
occur outside any function:

i nt X;
float F;

If the declaration for an object, outside of the definition of a function, contains the keyword
ext er n and has an initializer list, then space for the object is created at this point, and the
object has external linkage. If, however, the declaration does not include an initializer list,
then the compiler assumes that the object is declared elsewhere. If, during the remainder of
the compilation of the module, no further declarations of the object are found, or more
declarations with ext er n and no initializer list are found, then the object must have space
allocated for it in another module. 1f a subsequent declaration in the same module does have

84 Static Storage Duration

Storage Classes

aninitializer list or omitsthe ext er n keyword, then the space for the object is created at that
point.

The following examples also illustrate the creation of external objects:

extern LI ST * ListHead
i nt St art Val

0;
17;

However, the next examples illustrate the tentative definition of external objects. If no further
definition of the object of aform shown aboveisfound, then the object is found outside of the
module.

extern LIST * ListH;
extern int Z;

Another module may define its own object with the same name (provided it has static storage
class), but it will not be able to access the external one. However, this can be confusing and is
a questionable programming practice.

Any value placed in an object declared with the ext er n keyword will remain unchanged
until changed by a function within the same or another module.

A function that is declared without the keyword st at i ¢ has externa linkage.
Suppose a modul e declares an object (outside of any function definition) as follows:
struct list_el * ListTop;
wherethe structure 1ist el isdefined elsewhere. This declaration allocates space for and
declaresthe object Li st Top to be apointer to astructure 1ist _el, with external linkage.
Another module with the declaration,
extern struct list_el * ListTop;

refersto the same object Li st Top, and statesthat it is found outside of the module.

Within a program, possibly consisting of more than one module, each object or function with
external linkage must be defined (have space allocated for it) exactly once.

Static Storage Duration 85

Language Reference

8.3 Automatic Storage Duration

The most commonly used object in a C program is one that has meaning only within the
function in which it is defined. The object is created when execution of the function is begun
and destroyed when execution of the function is completed. Such an object is said to have
automatic storage duration. The scope of the object is said to be the function in which it is
defined.

If such an object has the same name as another object defined outside the function (using
st ati ¢ or ext er n), then the outside object is hidden from the function.

Within afunction, any object that does not have its declaration preceded by the keyword
st ati ¢ or ext er n has automatic storage duration.

It is possible to declare an object as automatic within any block of afunction. The scope of
such an object isthe block in which it is declared, including any blocksinsideit. Any outside
block is unable to access such an object.

Automatic objects may be initialized as described in the chapter "Initialization of Objects”.
Initialization of the object only occurs when the block in which the object is declared is
entered normally. In particular, ajump into a block nested within the function will not
initialize any objects declared in that block. Thisisa questionable programming practice, and
should be avoided.

The following function checks a string to seeiif it contains nothing but digits:

extern int Islnt(const char * ptr)

/**********************************/

if(*ptr =="\0") return(0);
for(;5) {

char ch;

ch = *(ptr++);

if(ch =="\0) return(1);

if(lisdigit(ch)) return(0);
}

The object ch has a scope consisting only of the f or loop. Any statements before or after the
loop cannot access ch.

86 Automatic Storage Duration

Storage Classes

8.3.1 The auto Storage Class

The declaration of an object in afunction that does not contain the keywords st at i c,
externorregi st er declares an object with automatic storage duration. Such an object
may precede its declaration with the keyword aut o for readability.

An object declared with no storage class specifier or with aut o is"addressable”, which
means that the address-of operator may be applied to it.

The programmer should not assume any relationship between the storage locations of multiple
aut o objectsdeclared in afunction. If relative placement of objectsisimportant, a structure
should be used.

The following function illustrates a use for aut o objects:

extern int FindSize(struct thing * thingptr)

/**/

{
auto char * start;
auto char * finish;
Fi ndEnds(thingptr, &start, & inish);
return(finish - start + 1);
}

The addresses of the automatic objects st art and f i ni sh are passed to Fi ndEnds,
which, presumably, modifies them.

8.3.2 The register Storage Class

An object that is declared within a function, and whose declaration includes the keyword

regi st er, isconsidered to have automatic storage duration. The r egi st er keyword
merely provides a hint to the compiler that this object is going to be heavily used, allowing the
compiler to try to put it into a high-speed access part of the machine, such as a machine
register. The compiler may, however, ignore such a directive for any number of reasons, such
as,

Automatic Storage Duration 87

Language Reference

* the compiler does not support objects in registers,
* there are no available registers, or,
* the compiler makes its own decisions about register usage.

Only certain types of objects may be placed in registers, although the set of such typesis
implementati on-defined.
The Open Watcom C16 and C32 compilers may place any object that is sufficiently

small, including a small structure, in one or more registers.

The compiler will decide which objects will be placed in registers. The r egi st er
keyword isignored, except to prevent taking the address of such an object.

Objects declared with or without r egi st er may generally be treated in the sameway. An

exception to thisrule is that the address-of operator (& may not be appliedtoar egi st er
object, since registers are generally not within the normal storage of the computer.

88 Automatic Storage Duration

9 Initialization of Objects

Any definition of an object may include avalue or list of valuesfor initializing it, in which
case the declaration is followed by an equal sign (=) and the initial value(s).

Theinitia value for an object with static storage duration may be any expression that
evaluates to a constant value, including using the address-of operator to take the address of a
function or object with static storage duration.

Theinitia value for an object with automatic storage duration may be any expression that

would be valid as an assignment to that object, including references to other objects. The

evaluations of the initializations occur in the order in which the definitions of the objects
occur.

9.1 Initialization of Scalar Types

Theinitia value for ascalar type (pointers, integers and floating-point types) may be enclosed
in braces, although braces are not required.

The following declarations might appear inside a function:

static i nt MaxRecLen = 1000;

static i nt MaxMentSi ze = { 1000 * 8 + 10000 };
float Pi = 3. 14159;

aut o i nt X = 3;

regi ster int y X * MaxReclLen;

9.2 Initialization of Arrays

For arrays of characters being initialized with a string literal, and for arraysof wchar t
being initialized with awide string literal, the braces around initial values are optional. For
other arrays, the braces are required.

If an array of unknown sizeisinitialized, then the size of the array is determined by the

number of initializing values provided. In particular, an array of characters of unknown size
may be initialized using a string literal, in which case the size of the array is the number of

Initialization of Arrays 89

Language Reference

90

charactersin the string, plus one for the terminating null character. Each character of the
string is placed in successive elements of the array. Consider the following array declarations:

char StartPbt[]
i nt Tabs[]
float Roots[]

"Starting point...";
{1, 9, 17, 25, 33, 41 };
{ 1., 1.414, 1.732, 2., 2.236 };

The object St art Pt isan array of 18 characters, Tabs isan array of 6 integers, and Root s
isan array of 5 floating-point numbers.

If an array is declared to have a certain number of elements, then the maximum number of
valuesin theinitialization list is the number of elementsin the array. An exception is made
for arrays of characters, where the initializer may be a string with the same length as the
number of charactersinthearray. Each character from the string is assigned to the
corresponding element of the array. The null character at the end of the string literal is
ignored.

If there are fewer initialization values than elements of the array, then any elements not
receiving avalue from the list are assigned the value zero (for arithmetic types), or the null
pointer constant (for pointers). Consider the following examples:

char Vowel s1] 6]
char Vowel s2[6]
i nt Nunber s[10]
float Blort[5]

"aei ouy";

a', 'e’, i, ‘o, "u, 'y };
{ 100, 10, 1 };
{ 5.6, -2.2 };

The objects Vowel s1 and Vowel s2 are both arrays of six characters, and both contain
exactly the same valuesin each of their corresponding elements. The object Nunber s isan
array of 10 integers, the first three of which areinitialized to 100, 10 and 1, and the
remaining seven are set to zero. The object Bl or t isan array of 5 floating-point numbers.
Thefirst two elements areinitialized to 5. 6 and - 2. 2, and the remaining three are set to
zero.

If an array of more than one dimension isinitialized, then each subarray may be initialized
using a brace-enclosed list of values. Thisform will work for an arbitrary number of
dimensions. Consider the following two-dimensional case:

int Box[3][4] = { { 11, 12, 13, 14 },
{ 21, 22, 23, 24},
{ 31, 32, 33, 341} };

The object Box isan array of 3 arrays of 4 integers. There are three valuesin the
initialization list, corresponding to the first dimension (3 rows). Each initidization valueis
itself alist of values corresponding to the second dimension (4 columns). In other words, the
firstlistof values{ 11, 12, 13, 14 } isassigned to thefirst row of Box, the second

Initialization of Arrays

Initialization of Objects

list of values{ 21, 22, 23, 24 } isassigned to the second row of Box, and the third
list of values{ 31, 32, 33, 34 } isassigned to thethird row of Box.

If all values are supplied for initializing an array, or if only elements from the end of the array
are omitted, then the sub-levels need not be within braces. For example, the following
declaration of Box isthe same as above:

int Box[3][4] = { 11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34 };

The same rules about incompleteinitialization lists apply to multi-dimensional arrays. The
following example defines a mathematical 3-by-3 identity matrix:

int Identity[3][3] ={ { 11},

{0 1},
{0 0 1} }

The missing values are replaced with zeroes. The initialization also could have been given as,

int Identity[3][3] ={ { 1, 0, 0},
{0 1, 0},
{0 0 1} };
or as,
int Identity[3][3] ={ 1, 0, O,
0, 1, 0,
0, 0, 1};

9.3 Initialization of Structures

Structures may beinitialized in amanner similar to arrays. The initializer list must be
specified within braces.

Initialization of Structures 91

Language Reference

For example,

struct printformat {
i nt pagewi d;
char carr_ctl;
char * buffer;

b
char PrBuffer[256];

struct printformat PrtFmt = { 80, ' ', PrBuffer };

Each value from the initializer list is assigned to each successive member of the structure.
Any unnamed gaps between members or at the end of the structure (caused by alignment) are
ignored during initialization. If there are more members of the structure than values specified
by theinitializer list, then the remaining members are initialized to zero (for arithmetic types)
or the null pointer constant (for pointers).

If astructure member isitself an array, structure or union, then the sub-members may be
initialized using a brace-enclosed initializer list. If braces are not specified, then for the
purposes of initialization, the sub-members are treated as if they are members of the outer
structure, as each subsequent initializer value initializes a sub-member, until no more
sub-members are found, in which case the next member of the outer structureisinitialized.

9.4 Initialization of Unions

Initializations of unionsisthe same as for structures, except that only the first member of the
union may be initialized, using a brace-enclosed initializer.

Consider the following example:

struct first3 {
char first, second, third;

}s
uni on ustr {
char string[20];
struct first3 firstthree;
b

union ustr Str = { "Hello there" };
The object St r is declared to be aunion of two types, the first of which is an array of 20

characters, and the second of which is a structure that allows direct access to the first three
characters of the string contained in the array. The array isinitialized to the string " Hel | o

92 |Initialization of Unions

Initialization of Objects

t here". Thethreecharactersof struct first3 will havethecharacters’ H , ' e’
and’ |’ . Hadthedeclaration of ustr been,

union ustr {
struct first3 firstthree;
char string[20];
b

then the initialization could only set the first three characters.

9.5 Uninitialized Objects

An object with static storage duration, and no explicit initialization, will be initialized asif
every member that has arithmetic type was assigned zero and every member that has a pointer
type was assigned a null (zero) pointer.

An object with automatic storage duration, and no explicit initialization, is not initialized.
Hence, areference to such an automatic object that has not been assigned a value will yield
undefined behavior. On most systems, the value of the object will be arbitrary and
unpredictable.

Uninitialized Objects 93

Language Reference

94 Uninitialized Objects

10 Expressions

An expression is a sequence of operators and operands that describes how to,

* calculate avalue (eg. addition)
» create side-effects (eg. assignment, increment)

or both.
The order of execution of the expression is usually determined by a mixture of,
1. parentheses (), which indicate to the compiler the desired grouping of operations,

2. the precedence of operators, which describes the relative priority of operatorsin the
absence of parentheses,

3. the common algebraic ordering,
4. theassociativity of operators.

In most other cases, the order of execution is determined by the compiler and may not be
relied upon. Exceptionsto thisrule are described in the relevant section. Most users will find
that the order of execution iswell-defined and intuitive. However, when in doubt, use
parentheses.

The table below summarizes the levels of precedence in expressions.

Operations at a higher level in the table will occur before those below. All operators
involving more than one operand associate from left to right, except for the conditional and
assignment operators, which associate from right to left. Operations at the same level, except
where discussed in the relevant section, may be executed in any order that the compiler
chooses (subject to the usual algebraic rules). In particular, the compiler may regroup
sub-expressions that are both associative and commutative in order to improve the efficiency
of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is
also subject to ateration by the compiler.

Expressions 95

Language Reference

Expression Type Operators

primary identifier constant
string (expression)
postfix ab] f()
ab a>b at+ a-
unary sizeof u sizeof(a)
++a --a &a *a
+a -a ~a la
cast (type) a
multiplicative a*b alb a%b
additive at+b a-b
shift a<<b a>>b
relational a<b a>b a<=b a>=b
equality a== al=b
bitwise AND a&hb

bitwise exclusive OR |a” b

bitwiseinclusveOR [a|b

logical AND a&é&b

logical OR allb

conditional t a?b:c

assignment a= a+=b a-=b a*=

b
al=b a%=b a&=b a”=
b a<<=b a>>=b

comma ab

T associates from right to left

96 Expressions

Expressions

An exception occurs when the operands for an operator are invalid. For example, division by
zero may cause an exception. If an exception occurs, the behavior is undefined. If an
exception is a possibility, the program should be prepared to handle it.

In the following sections, aformal syntax is used to describe each level in the precedence
table. Thissyntax isused in order to completely describe the relationships between the
various levels.

10.1 Lvalues

In order to understand certain components of expressions, it isimportant to understand the
term lvalue.

An lvalueis an expression that designates an object. The simplest form of Ivalueisan
identifier which is an object (for example, an integer).

The type of the expression may not be voi d or afunction. The term Ivalueis derived from
left value, which refers to the fact that an Ivalueistypicaly on the left side of an assignment
expression.

If pt r isapointer to atype other than voi d or afunction, then both ptr and*pt r are
Ivalues.

A modifiable Ivalue is an Ivalue whose type is hot an array or an incomplete type, whose
declaration does not contain the keyword const , and, if it isastructure or union, then none
of its members contains the keyword const .

10.2 Primary Expressions

primary-expression:
identifier
or
constant
or
string-literal
or
(expression)

A primary expression is the ssimplest part of an expression. It consists of one of the following:

Primary Expressions 97

Language Reference

identifier Anidentifier that designates afunction is called a function designator. An
identifier that designates an object is an Ivalue.

constant A constant is a primary expression whose type depends on its form. See
"Constants'.

string-literal A string literal isaprimary expression whose typeis"array of char". A string
literal isalso an lvalue (but is not modifiable).

expression inside parentheses
The type and value of a parenthesized expression are the same as for the
expression without parentheses. 1t may be an |value, function designator or void
expression.

Given these declarations,

i nt count;
int * ctrptr;
i nt f(int);
i nt g(int);

the following are al valid primary expressions:

count

3

3.2

A

"Hell o t here"

(count + 3)
(*(ctrptr+1))

(FC ++i) * g(j++))

10.3 Postfix Operators

postfix-expression:
primary-expression
or
array-subscripting-expression
or
function-call-expression
or
member -designator -expression
or

98 Postfix Operators

Expressions

post-increment-expression
or
post-decrement-expression

10.3.1 Array Subscripting

array-subscripting-expression:
postfix-expression[expression]

The general form for array subscripting is,

array[i ndex]

where ar r ay must have the type "array of type" or "pointer to type", and i ndex must have
an integral type. Theresult has type "type".

array[i ndex] isequivaentto (*(array+i ndex)), or thei ndex-th element of the
array ar r ay, wherethefirst element is numbered zero. Notethat i ndex isscaled
automatically to account for the size of the elementsof arr ay.

An dternate form for array subscripting is,

i ndex[array]

although this form is not commonly used.

10.3.2 Function Calls

function-call-expression:
postfix-expression()
or
postfix-expression (argument-expression-list)

argument-expression-list:
one or more assignment-expr essions separated by commas

A postfix-expression followed by parentheses containing zero or more comma-separated
expressionsis a function-call-expression. The postfix-expression denotes the function to be
called, and must evaluate to a pointer to afunction. The simplest form of this expressionisan
identifier which is the name of afunction. For example, Fn() callsthefunction Fn.

Postfix Operators 99

Language Reference

The expressions within the parentheses denote the arguments to the function. If afunction
prototype has been declared, then the number of arguments must match the parameter list in
the prototype, and the arguments are converted to the types specified in the prototype.

If the postfix-expression is simply an identifier, and no function prototype declaration for that
identifier isin scope, then an implicit,

extern int identifier();

declaration is placed in the innermost block containing the function call. This declaresthe
function as having external linkage, no information about its parametersis available, and the
function returns an integer.

The expressions are evaluated (in an undefined order) and the values assigned to the
parameters for the function. All arguments are passed by value, allowing the function to
modify its parameters without affecting the arguments used to create the parameters.
However, an argument can be a pointer to an object, in which case the function may modify
the object to which the pointer points.

If afunction prototype isin scope at both acall to afunction and its definition (and if the
prototypes are the same), then the compiler will ensure that the required number and type of
parameters are present.

If no function prototype isin scope at acall to afunction, then the default argument
promotions are performed. (Integral typessuch as char and short i nt areconverted to
i nt,whilefl oat valuesare converted to doubl e.) When the function definitionis
encountered, if the parameter types do not match the default argument promotions, then the
behavior is undefined. (Usually, the parameters to the function will receive incorrect values.)

If afunction prototype has been declared at a call to a function, then each argument is
converted, asif by assignment, to the type of the corresponding parameter. When the function
definition is encountered, if the types of the parameters do not match the types of the
parameters in the function prototype, the behavior is undefined.

If theellipsis(, . . .) notation is used in afunction prototype, then those argumentsin a
function call that correspond to the ellipsis have only the default argument promotions
performed on them. (See the chapter "Functions' for a complete description of the ellipsis
notation.)

Function calls may be recursive. Functions may call themselves either directly, or via other
functions.

The following are some examples of function calls:

100 Postfix Operators

Expressions

putchar('x');

chr = getchar();

valid = isdigit(chr);

printf("chr = %, valid = %®x\n", chr, valid);
fnptr = &WFuncti on;

(*fnptr)(parml, parn?);

fnptr(parml, parn?);

10.3.3 Structure and Union Members

member -designator-expression:
postfix-expression . identifier
or
postfix-expression- >identifier

Thefirst operand of the . operator must be an object with a structure or union type. The
second operand must be the name of amember of that type. The result isthe value of the
member, and isan lvalue if the first operand is also an Ivalue.

Thefirst operand of the - > operator must be a pointer to an object with a structure or union
type. The second operand must be the name of a member of that type. Theresult isthe value
of the member of the structure or union to which the first expression points, and is an lvalue.

10.3.4 Post-Increment and Post-Decrement

post-increment-expression:
postfix-expression++

post-decrement-expression:
postfix-expression- -

The operand of post-increment and post-decrement must be a modifiable lvalue, and a scalar
(not a structure, union or array).

The effect of the operation is that the operand is incremented or decremented by 1, adjusted
for the type of the operand. For example, if the operand is declared to be a"pointer to type”,
then the increment or decrement will be by the value si zeof (type).

Theresult of both post-increment and post-decrement (if it isjust a subexpression of alarger

expression) isthe original, unmodified value of the operand. In other words, the original
value of the operand is used in the expression, and then it isincremented or decremented.

Postfix Operators 101

Language Reference

Whether the operand is incremented immediately after use or after completion of execution of
the expression is undefined. Consider the statements,

int i = 2;
int j;

i o= (i++) + (i++4);

Depending on the compiler, j may get thevalue 4 or 5. If the increments are delayed until
after the expression isevaluated, | getsthevalue2 + 2. If theincrement of i happens
immediately after itsvalue isretrieved, then j getsthevalue2 + 3.

To avoid ambiguity, the above expression could be written as:

10.4 Unary Operators

unary-expression:
postfix-expression
or
pre-increment-expression
or
pre-decrement-expression
or
unary-operator cast-expression
or
Sizeof-expression

unary-operator: one of

&* + - ~ |

10.4.1 Pre-Increment and Pre-Decrement Operators

102 Unary Operators

Expressions

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
- - unary-expression

The operand of the pre-increment and pre-decrement operators must be a modifiable Ivalue,
and a scalar (not a structure, union or array).

The operand isincremented or decremented by 1, adjusted for the type of the operand. For
example, if the operand is declared to be a " pointer to type", then the increment or decrement
will be by thevalue si zeof (type).

The expression ++obj isequivalentto (obj += 1), while - - obj isequivaentto (obj
-= 1) X

10.4.2 Address-of and Indirection Operators

unary-expression:

& cast-expression
or

* cast-expression

The unary & symbol denotes the address-of operator. Its operand must designate a function or
an array, or be an Ivalue that designates an object that is not a bit-field and is not declared
withther egi st er storage-class specifier. If the type of the operand is "type", then the type
of the result is "pointer to type" and the result is the address of the operand.

If the type of the operand is "array of type", then the type of the result is "pointer to type" and
the result is the address of the first element of the array.

The* symbol, initsunary form, denotes the indirection or pointer operator. Its operand must
be a pointer type, except that it may not be a pointer to voi d. If the operand isa"pointer to
type", then the type of the result is"type", and the result is the object to which the operand
points.

No checking is performed to ensure that the value of the pointer isvalid. If aninvalid pointer
value is used, the behavior of * is undefined.

Unary Operators 103

Language Reference

Examples:

i nt counter;
int * ctrptr;
void (*fnptr)(int, int *);

ctrptr
*ctrptr

= &counter;

= 3'

fnptr = FnRet Voi d;

fnptr(*ctrptr, &counter);

10.4.3 Unary Arithmetic Operators

unary-expression;

+ cast-expression
or

- cast-expression
or

~ cast-expression
or

I cast-expression

The + symbol, inits unary form, simply returns the value of its operand. Thetype of its
operand must be an arithmetic type (character, integer or floating-point). Integral promotion
is performed on the operand, and the result has the promoted type.

The- symbol, initsunary form, is the negation or negative operator. The type of its operand
must be an arithmetic type (character, integer or floating-point). The result is the negative of
the operand. Integral promotion is performed on the operand, and the result has the promoted
type. The expression - obj isequivaentto (0- obj).

The ~ symbol is the bitwise complement, 1's complement or bitwise not operator. The type of
the operand must be an integral type, and integral promotion is performed on the operand.
The type of the result is the type of the promoted operand. Each hit of the result isthe
complement of the corresponding bit in the operand, effectively turning O bitsto 1, and 1 bits
to 0.

The! symbol isthe logical not operator. Itsoperand must be a scalar type (not a structure,

union or array). Theresult typeisi nt . If the operand has the value zero, then the result
valueis 1. If the operand has some other value, then the result is 0.

104 Unary Operators

Expressions

10.4.4 The sizeof Operator

sizeof-expression:

si zeof unary-expression
or
si zeof (type-name)

Thesi zeof operator givesthe size (in bytes) of its operand. The operand may be an
expression, or atypein parentheses. In either case, the type must not be a function, bit-field
or incomplete type (such as voi d, or an array that has not had its length declared).

Note that an expression operand to si zeof isnot evaluated. The expression is examined to
determine the result type, from which the size is determined.

If the operand has a character type, then the result is 1.

If the type is a structure or union, then the result is the total number of bytesin the structure or
union, including any internal or trailing padding included by the compiler for alignment
purposes. The size of a structure can be greater than the sum of the sizes of its members.

If thetypeisan array, then the result is the total number of bytesin the array, unlessthe
operand is a parameter in the function definition enclosing the current block, in which case the
result isthe size of a pointer.

The type of the result of the si zeof operator isimplementation-defined, but it is an unsigned

integer type, and isrepresented by size t inthe <st ddef . h> header.

For the Open Watcom C16 and C32 compilers, themacro size_t isunsi gned

int.
Example:
struct s {
struct s * next;
i nt obj 1;
i nt obj 2;
1

Unary Operators 105

Language Reference

static struct s * SAllocAndFill(const struct s * def_s)

/***/

{
struct s * sptr;
sptr = malloc(sizeof(struct s));
if(sptr !'= NULL) {
memcpy (sptr, def_s, sizeof(struct s));
}
return(sptr);
}

Thefunction SAI | ocAndFi | | receivesapointertoastruct s. Itallocatessucha
structure, and copies the contents of the structure pointed to by def s into the allocated
memory. A pointer to the allocated structure is returned.

Thelibrary function mal | oc takesthe number of bytes to allocate as a parameter and

si zeof (struct s) providesthat value. Thelibrary function mentpy also takes, as
the third parameter, the number of bytesto copy and again si zeof (struct s)
provides that value.

10.5 Cast Operator

cast-expression:
unary-expression

or
(type-name) cast-expression

When an expression is preceded by atype name in parentheses, the value of the expression is
converted to the named type. Thisiscaled acast. Both the type name and the operand type
must be scalar (not a structure, union or array), unlessthe type nameis voi d. If thetype
nameisvoi d, the operand type must be a complete type (not an array of unknown size, or a
structure or union that has not yet been defined).

A cast does not yield an lvalue.
Pointers may be freely converted from "pointer to voi d" to any other pointer type without
using an explicit cast operator. Pointers also may be converted from any pointer type to

"pointer to voi d".

A pointer may be converted to a pointer to another type. However, the pointer may be invalid
if the resulting pointer is not properly aligned for the type. Converting a pointer to a pointer

106 Cast Operator

Expressions

to atype with less strict alignment, and back again, will yield the same pointer. However,
converting it to a pointer to a type with more strict alignment, and back again, may yield a
different pointer. On many computers, where alignment is not required (but may improve
performance), conversion of pointers may take place freely.

With Open Watcom C6 and C32, alignment of integers, pointers and floating-point
numbersis not required, so the compiler does not do any alignment. However,
aligning these types may make a program run slightly faster.

A command line switch may be used to force the compiler to do alignment on al
structures.

A pointer to afunction may be converted to a pointer to a different type of function, and back
again. The resulting pointer will be the same asthe original pointer.

If apointer is converted to a pointer to a different type of function, and acall is made using
that pointer, the behavior is undefined.

A pointer may be converted to an integral type. The type of integer required to hold the value
of the pointer isimplementation-defined. If the integer is not large enough to fully contain the
value, then the behavior is undefined.

An integer may be converted to a pointer. The result isimplementation-defined.

With Open Watcom C16, for the purposes of conversion between pointers and
integers, __near pointersaretreated as unsi gned int. _ far and __huge
pointers aretreated as unsi gned | ong i nt, with the pointer’s segment valuein
the high-order (most significant) two bytes. All the usual integer conversion rules
then apply. Note that huge pointers are not normalized in any way.

With Open Watcom C32, for the purposes of conversion between pointers and
integers, __near pointersaretreated as unsi gned int. __farlé6 and _Seglé6
pointers are also treated as unsi gned i nt, with the pointer’s segment valuein the
high-order (most significant) two bytes. All the usual integer conversion rules then
apply. Notethat __far pointers may not be converted to an integer without losing
the segment information.

Cast Operator 107

Language Reference

10.6 Multiplicative Operators

multiplicative-expression:
cast-expression

or

multiplicative-expression * cast-expression
or

multiplicative-expression / cast-expression
or

multiplicative-expression %cast-expression

The* symbol, initsbinary form, yields the product of its operands. The operands must have
arithmetic type, and have the usual arithmetic conversions performed on them.

The/ symbol yields the quotient from the division of the first operand by the second operand.
The operands must have arithmetic type, and have the usual arithmetic conversions performed
on them. Note that when adivision by zero occurs, the behavior is undefined.

When both operands of / are of integer type and positive value, and the division isinexact, the
result isthe largest integer less than the algebraic (exact) quotient. (The result isrounded
down.)

When one or both operands of / is negative and the division isinexact, whether the compiler
rounds the value up or down is implementati on-defined.
The Open Watcom C26 and C32 compilers always round the result of integer

division toward zero. Thisaction isaso caled truncation.

The %symbol yields the remainder from the division of the first operand by the second
operand. The operands of %must have integral type.

When both operands of %are positive, the result is a positive value smaller than the second

operand. When one or both operandsis negative, whether the result is positive or negativeis
implementation-defined.

108 Multiplicative Operators

Expressions

With the Open Watcom C16 and C32 compiler, the remainder has the same sign as
the first operand.

For integral types a and b, if b isnot zero, then (a/ b) *b + a%b will equal a.

10.7 Additive Operators

additive-expression:

multiplicative-expression
or

additive-expression + multiplicative-expression
or

additive-expression - multiplicative-expression

The + symbol, in its binary form, denotes the sum of its operands.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on
them.

If one of the operandsis a pointer, then the other operand must have an integral type. The
pointer operand may not be a pointer to voi d. Before being added to the pointer value, the
integral valueis multiplied by the size of the object to which the pointer points. The result
type is the same as the pointer operand type. If the pointer valueis a pointer to a member of
an array, then the resulting pointer will point to a member of the same array, provided the
array islarge enough. If the resulting pointer does not point to a member of the array, then its
use with theunary * (indirection) or - > (arrow) operator will yield undefined behavior.

The- symbol, initsbinary form, denotes the difference resulting from the subtraction of the
second operand from thefirst. If both operands have arithmetic type, then the usual arithmetic
conversions are performed on them.

If the first operand is a pointer, then the second operand must either be a pointer to the same
type or anintegral type.

In the same manner as for adding a pointer and an integral value, the integral valueis
multiplied by the size of the object to which the pointer points. The pointer operand may not
be apointer to voi d. Theresult type is the same type as the pointer operand.

If both operands are pointers to the same type, the differenceis divided by the size of the type,
representing the difference of the subscripts of the two array members (assuming the typeis
"array of type"). The type of the result isimplementation-defined, and is represented by
ptrdiff t (asigned integral type) defined in the <st ddef . h> header.

Additive Operators 109

Language Reference

With Open Watcom C16 and C%2, ptrdiff_t isi nt, unlessthe huge memory
model isbeing used, in which case ptrdiff _tislong int.

10.8 Bitwise Shift Operators

shift-expression:
additive-expression

or
shift-expression << additive-expression
or

shift-expression >> additive-expression

The << symbol denotes the left-shift operator. Both operands must have an integral type, and
the integral promotions are performed on them. The type of the result isthe type of the
promoted left operand.

Theresult of op << ant isop left-shifted ant bit positions. Zero bits arefilled on the
right. Effectively, the high bits shifted out of op are discarded, and the resulting set of bitsis
re-interpreted asthe result. Another interpretation isthat op is multiplied by 2 raised to the
power ant .

The >> symbol denotes the right-shift operator. Both operands must have an integral type,
and the integral promotions are performed on them. The type of the result isthe type of the
promoted left operand.

Theresult of op >> ant isop right-shifted ant bit positions. If op has an unsigned type,
or asigned type and a non-negative value, then op isdivided by 2 raised to the power ant .
Effectively, the low bits shifted out of op are discarded, zero bits arefilled on the left, and the
resulting set of bitsisre-interpreted as the result.

If op has asigned type and negative value, then the behavior of op >> ant is

implementation-defined. Usually, the high bits vacated by the right shift are filled with the
sign bit from before the shift (arithmetic right shift), or with O (logical right shift).

110 Bitwise Shift Operators

Expressions

With Open Watcom C16 and C32, aright shift of a negative value of asigned type
causes the sign bit to be propogated throughout the bits vacated by the shift.
Essentially, the vacated bits are filled with 1 bits.

For both bitwise shift operators, if the number of bits to shift exceeds the number of bitsin the
type, the result is undefined.

10.9 Relational Operators

relational -expression:
shift-expression

or
relational-expression < shift-expression
or

relational-expression > shift-expression
or

relational-expression <= shift-expression
or

relational -expression >= shift-expression

Each of the symbols < (lessthan), > (greater than), <= (lessthan or equal to), >= (greater
than or equal to), yieldsthe value 1 if therelation istrue, and O if the relation isfalse. The
result typeisi nt .

If both operands have arithmetic type, then the usual arithmetic conversions are performed on
them.

If one of the operandsis a pointer, then the other operand must be a pointer to a compatible
type. Theresult depends on where (in the address space of the computer) the pointers actually
point.

If both pointers point to members of the same array object, then the pointer that points to the
member with a higher subscript will be greater than the other pointer.

If both pointers point to different members within the same structure, then the pointer pointing
to the member declared later in the structure will be greater than the other pointer.

If both pointers point to the same union object, then they will be equal.
All other comparisons yield undefined behavior. As discussed above, the relationship

between pointers is determined by the locations in the machine storage that the pointers
reference. Typically, the numeric values of the pointer operands are compared.

Relational Operators 111

Language Reference

10.10 Equality Operators

equality-expression:
relational-expression

or
equality-expression == relational-expression
or

equality-expression ! = relational-expression

The symbols == (equal to) and ! = (not equal to) yield thevalue 1if therelation istrue, and O
if therelationisfalse. Theresult typeisi nt.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on
them.

If both operands are pointers to the same type and they compare equal, then they are pointers
to the same object.

If both operands are pointers and one isapointer to voi d, then the other is converted to a
pointer to voi d.

If one of the operandsis a pointer, the other may be a null pointer constant (zero).

No other combinations are valid.

10.11 Bitwise AND Operator

and-expression:
equality-expression
or
and-expression & equality-expression

The & symbol, in its binary form, denotes the bitwise AND operator. Each of the operands
must have integral type, and the usual arithmetic conversions are performed.

Theresult is the bitwise AND of the two operands. That is, the bit in the resultis set if and
only if each of the corresponding bits in the operands are set.

112 Bitwise AND Operator

Expressions

The following table illustrates some bitwise AND operations:

Operation

Result

0x0000 & Ox7AAC
OxXFFFF & Ox7AAC
0x1001 & 0x0001
0x29F4 & OxE372

0x0000
Ox7AAC
0x0001

0x2170

10.12 Bitwise Exclusive OR Operator

exclusive-or-expression:

and-expression
or

exclusive-or-expression ~ and-expression

The” symbol denotes the bitwise exclusive OR operator. Each of the operands must have
integral type, and the usual arithmetic conversions are performed.

Theresult is the bitwise exclusive OR of the two operands. That is, the bit in the result is set
if and only if exactly one of the corresponding bits in the operands is set.

Another interpretation isthat, if one of the operandsis treated as a mask, then every 1 bitin
the mask causes the corresponding bit in the other operand to be complemented (0 becomes 1,
1 becomes 0) before being placed in the result, while every 0 bit in the mask causes the
corresponding bit in the other operand to be placed unchanged in the result.

The following table illustrates some exclusive OR operations:

Operation Result

0x0000 N Ox7A4C |0x7A4C
OxFFFF ~ 0x7A4C |0x85B3
OxFFFF ~ 0x85B3 |0x7A4C
0x1001 ~ 0x0001 |0x1000
O0x29F4 ~ 0xE372 |0xCA86

Bitwise Exclusive OR Operator 113

Language Reference

10.13 Bitwise Inclusive OR Operator

inclusive-or-expression:;
exclusive-or-expression
or
inclusive-or-expression | exclusive-or-expression

The| symbol denotes the bitwise inclusive OR operator. Each of the operands must have
integral type, and the usual arithmetic conversions are performed.

Theresult is the bitwise inclusive OR of the two operands. That is, the bit in the result is set if
at least one of the corresponding bitsin the operandsis set.

The following table illustrates some inclusive OR operations:

Operation Result

0x0000 | Ox7A4C |0x7A4C
OXFFFF | O0x7A4C |OXFFFF
0x1100 | 0x0022 |0x1122
Ox29F4 | OxE372 |0xEBF6

10.14 Logical AND Operator

logical-and-expression:
inclusive-or-expression
or
logical-and-expression && inclusive-or-expression

The && symbol denotes the logical AND operator. Each of the operands must have scalar
type.

If both of the operands are not equal to zero, then theresult is 1. Otherwise, the result is zero.
Theresult typeisi nt .

If the first operand is zero, then the second operand is not evaluated. Any side effects that

would have happened if the second operand had been executed do not happen. Any function
calls encountered in the second operand do not take place.

114 Logical AND Operator

Expressions

10.15 Logical OR Operator

logical-or-expression:
logical-and-expression
or
logical-or-expression | | logical-and-expression

The| | symbol denotesthelogical OR operator. Each of the operands must have scalar type.

If one or both of the operandsis not equal to zero, then theresult is 1. Otherwise, theresult is
zero (both operands are zero). Theresult typeisi nt .

If the first operand is not zero, then the second operand is not evaluated. Any side effects that
would have happened if the second operand had been executed do not happen. Any function
calls encountered in the second operand do not take place.

10.16 Conditional Operator

conditional -expression:
logical-or-expression
or
logical-or-expression ? expression : conditional-expression

The? symbol separates the first two parts of a conditional operator, and the : symbol
separates the second and third parts. The first operand must have a scalar type (not a
structure, union or array).

Thefirst operand is evaluated. If itsvalueisnot equal to zero, then the second operand is
evaluated and its value isthe result. Otherwise, the third operand is evaluated and itsvalue is
the result.

Whichever operand is evaluated, the other is not evaluated. Any side effects that might have
happened during the evaluation of the other operand do not happen.

If both the second and third operands have arithmetic type, then the usual arithmetic
conversions are performed on them, and the type of the result is the same type as the
converted operands.

If both operands have the same structure, union or pointer type, then the result has that type.

Conditional Operator 115

Language Reference

If both operands are pointers, and one is "pointer to voi d", then the result type is "pointer to
voi d".

If one operand is a pointer, and the other isanull pointer constant (0), the result type is that of
the pointer.

If both operands are void expressions, then the result is avoid expression.
No other combinations of result types are permitted.

Note that, unlike most other operators, the conditional operator associates from right to | eft.
For example, the expression,

a=b?c: d?e: f;
istrandated asif it had been parenthesized as follows:
a=b?c: (d?e: f);

This construct is confusing, and so should probably be avoided.

10.17 Assignment Operators

assignment-expression:
conditional -expression

or
simpl e-assignment-expression
or

compound-assignment-expression

An assignment operator stores avalue in the object designated by the left operand. The left
operand must be a modifiable Ivalue.

The result type and value are those of the left operand after the assignment.
Whether the left or right operand is evaluated first is undefined.

Note that, unlike most other operators, the assignment operators associate from right to | eft.
For example, the expression,

a+=b = c;

istrandated asif it had been bracketed as follows:

116 Assignment Operators

Expressions

a += (b = c);

10.17.1 Simple Assignment

simpl e-assignment-operator:
unary-expression = assignment-expression

The = symbol denotes simple assignment. The value of the right operand is converted to the
type of the left operand and replaces the value designated by the left operand.

The two operands must obey one of the following rules,
* both have arithmetic types,

« both have the same structure or union type, or the right operand differs only in the
presence of the const or vol ati | e keywords,

« both are pointers to the same type,
* both are pointers and oneis a pointer to voi d,

« the left operand is a pointer, and the right is a null pointer constant (0).

10.17.2 Compound Assignment

compound-assignment-expression:
unary-expression assignment-operator assignment-expression

assignment-operator: one of
+= -=

A compound assignment operator of theform a op= b isequivaent to the simple
assignment expression a = a op (b) , except that the |eft operand a is evaluated only once.

The compound assignment operator must have operands consistent with those allowed by the
corresponding binary operator.

Assignment Operators 117

Language Reference

10.18 Comma Operator

expression:
assignment-expression
or

expression, assignment-expression

At the lowest precedence, the comma operator evaluates the left operand as a void expression
(it isevaluated and itsresult, if any, is discarded), and then evaluates the right operand. The
result has the type and value of the second operand.

In contexts where the commais also used as a separator (function argument lists and
initializer lists), acomma expression must be placed in parentheses.

For example,
Fn((pi=3.14159,two_pi=2*pi));
the function Fn has one parameter, which has the value 2 times pi .

for(i =0, j =0, k =0;; i++ j++, Kk+t+)
statement;

Thef or statement allowsthree expressions. In this example, the first expression initializes
three objects and the third expression increments the three objects.

10.19 Constant Expressions

A constant expression may be specified in several places:

» the size of a bit-field member of a structure,

» the value of an enumeration constant,

e aninitiaizer list,

« the number of elementsin an array,

« the value of a case label constant,

e withthe#i f and #el i f preprocessor directives.

In most cases, a constant expression consists of a series of constant values and operations that

evaluate to a constant value. Certain operations may only appear within the operand of the
si zeof operator. Theseinclude:

118 Constant Expressions

Expressions

« afunction call,

* pre- or post-increment or decrement,

* assignment,

* comma operator,

* array subscripting,

« the. and, - > operators (structure member access),

» the unary & (address-of) operator (see exception below),
« the unary * (indirection) operator,

* casts to atype other than an integer type.

In a constant expression that is an initializer, floating-point constants and casts may be
specified. Objectsthat have static storage duration, and function designators (names), may be
used to provide addresses, either explicitly using the unary & (address-of) operator, or
implicitly by specifying the identifier only.

The following examplesillustrate constant expressions that may be used anywhere:

3
256*3 + 27
OPSYS == 0S_DOS /* These are macro names */

The next set of examples are constant expressions that are only valid in an initializer:

&Sonmehj ect
SoneFuncti on
3.5 * 7.2/ 6.5

In aconstant expression that is part of a #i f or #el i f preprocessor directive, only integral
constants and operators are permitted (and macros that, when replaced, follow these same
rules).

Constant Expressions 119

Language Reference

120 Constant Expressions

11 Statements

A statement describes what actions are to be performed. Statements may only be placed
inside functions. Statements are executed in sequence, except where described below.

11.1 Labelled Statements

Any statement may be preceded by alabel. Labelled statements are usually the target of a
got o statement, and hence occur infrequently.

A label is anidentifier followed by acolon. Labels do not affect the flow of execution of a
program. A label that is encountered during execution is ignored.

The following example illustrates a statement with alabel:
xyz: i = 0;
Labels can only precede statements. It follows that labels may only appear inside functions.
A label may be defined only once within any particular function.
The identifier used for alabel may be the same as another identifier for an object, function or

tag, or alabel in another function. The name space for labels is separate from non-label
identifiers, and each function has its own label name space.

11.2 Compound Statements

A compound statement is a set of statements grouped together inside braces. It may haveits
own declarations of objects, with or without initializations, and may or may not have any
executable statements. A compound statement is also called a block.

Compound Statements 121

Language Reference

The general form of a compound statement is:
{ declaration-list statement-list }

where declaration-list isalist of zero or more declarations of objects to be used in the block.
statement-list isalist of zero or more statements to be executed when the block is entered.

Any declarations for objects that have automatic storage duration and initializers for them are
evaluated in the order in which they occur.

An object declared with the keyword ext er n inside ablock may not beinitialized in the
declaration, since the storage for that object is defined el sewhere.

An object declared in a block, without the keyword ext er n, may not be redeclared within
the same block, except in ablock contained within the current block.

11.3 Expression Statements

A statement that is an expression is evaluated as a void expression for its side effects, such as
the assigning of avalue with the assignment operator. The result of the expression is
discarded. Thisdiscarding may be made explicit by casting the expression asa voi d.

For example, the statement,
count = 3;

consists of the expression count = 3, which hasthe side effect of assigning the value 3 to
the object count . Theresult of the expression is 3, with the type the same as the type of
count . Theresultisnot used any further. Asancther example, the statement,

(void) nencpy(dest, src, len);

indicates that, regardless of the fact that nentpy returns aresult, the result should be ignored.
However, itis equaly valid, and quite common, to write,

nmencpy(dest, src, len);

As amatter of programming style, casting an expression as voi d should only be done when
the result of the expression might normally be expected to be used further. Inthis case,
casting to voi d indicates that the result was intentionally discarded and is not an error of
omission.

122 Expression Statements

Statements

11.4 Null Statements

A null statement, which isjust a semi-colon, takes no action. It isuseful for placing alabel
just before a block-closing brace, or for indicating an empty block, such asin an iteration
statement. Consider the following examples of null statements:

{
gets(buffer);
while(*buffer++ 1= "\0")
IEEY
endbl k: ;
}

Thewhi | e iteration statement skips over charactersin buf f er until the null character is
found. The body of theiteration is empty, since the controlling expression does all of the
work. Theendbl k: declaresalabel just before the final }, which might be used by a got o
to exit the block.

11.5 Selection Statements

A selection statement evaluates an expression, called the controlling expression, then based on
the result selects from a set of statements. These statements are then executed.

11.5.1 The if Statement

i f(expression) statement
or
i f(expression) statement el se statement

In both cases, the type of the controlling expression (inside the parentheses) is a scalar type
(not a structure, union or array). If the controlling expression evaluates to a non-zero value,
then the first statement is executed.

In the second form, the el se isexecuted if the controlling expression evaluates to zero.

Selection Statements 123

Language Reference

Each statement may be a compound statement. For example,

if(delay >5) {
printf("Waited too long\n");

ok = FALSE;
} else {
ok = TRUE;

}

In the classic case of thedangling el se, the el se isbound to the nearest i f that does not
yet havean el se. For example,

if(x >0)
if(y >0)
printf("x >0 &y > 0\n");
el se
printf("x <= 0\n");

will printx <= Owhenx > Oistrueandy > 0 isfalse, becausethe el se isbound to
thesecondi f, not thefirst. To correct this example, it would have to be changed to,

if(x>0) {
if(y >0)
printf("x >0 &y > 0\n");
} else
printf("x <= 0\n");

This exampleillustrates why it is a good ideato aways use braces to explicitly state the
subject of the control structures, rather than relying on the fact that a single statement isalso a
compound statement. A better way of writing the above example s,

if(x >0) {

if(y>0){
printf("x >0 &y > 0\n");

} else {
printf("x <= 0\n");

where all subjects of the control structures are contained within braces, leaving no doubt about
the meaning. A dangling el se cannot occur if braces are always used.

If the statements betweenthe i f and the el se are reached viaalabel, the statements

following the el se will not be executed. However, jumping into ablock is poor
programming practice, since it makes the program difficult to follow.

124 Selection Statements

Statements

11.5.2 The switch Statement

swi t ch(expression) statement

Usually, statement is a compound statement or block. Embedded within the statement are
case labelsand possibly a def aul t label, of the following form:

case constant-expression : statement
defaul t : statement

The controlling expression and the constant-expressions on each case label all must have
integral type. No two of the case constant-expressions may be the same value. The
def aul t label may appear at most oncein any sw t ch block.

The controlling statement is evaluated, and the integral promotion is performed on the resullt.
If the promoted value of the expression matches any of the case labels promoted to the same
type, control is given to the statement following that case label. Otherwise, control is given to
the statement following the def aul t label (if present). If no default label is present, then no
statementsin the swi t ch block are executed.

When statements within a swi t ch block are being executed and another case or def aul t
is encountered, it isignored and execution continues with the statement following the label.
The br eak statement may be used to terminate execution of the switch block.

In the following example,

int i;
for(i =1; i <=8; i++) {
printf("% ", i);
switch(i) {
case 2:
case 4:
printf("less than 5 ");
case 6:
case 8:
printf("even\n");
br eak;
defaul t:
printf("odd\n");
}

Selection Statements 125

Language Reference

the following output is produced:

odd
| ess than 5 even
odd
|l ess than 5 even
odd
even
odd
even

O~NOOTRAWNBE

11.6 Iteration Statements

Iteration statements control looping. There are three forms of iteration statements:. whi | e,
do/whi | e and f or.

The controlling expression must have a scalar type. The loop body (often a compound
statement or block) is executed repestedly until the controlling expression is equal to zero.

11.6.1 The while Statement

whi | e (expression) statement
The evaluation of the controlling expression takes place before each execution of the loop
body (statement). If the expression evaluates to zero the first time, the loop body is not
executed at all.

The statement may be a compound statement.

For example,
char * ptr;
[* .00
while(*ptr I'="\0) {
if(*ptr ==".")break;
++ptr;
}

The loop will scan characters pointed at by pt r until either anull character or adot isfound.
If theinitial value of pt r pointsat anull character, then no part of the loop body will be
executed, leaving pt r pointing at the null character.

126 Iteration Statements

Statements

11.6.2 The do Statement

do statement whi | e (expression) ;
The evaluation of the controlling expression takes place after each execution of the loop body
(statement). If the expression evaluates to zero the first time, the loop body is executed
exactly once.

The statement may be a compound statement.

For example,
char * ptr;
char * endptr;
1= .0 =
endptr = ptr + strien(ptr);
do {
--endptr;

In this example, the loop will terminate when endpt r finds a non-blank character starting
from the right, or when endpt r goes past the beginning of the string. 1f a non-blank
character isfound, endpt r will be left pointing at that character.

11.6.3 The for Statement
The statement,
for (exprl; expr2; expr3) statement
isamost equivalent to,
exprl;
while (expr2) {
statement

expr3;

}

The differenceisthat the cont i nue statement will pass control to the statement expr3 rather
than to the end of the loop body.

exprlisaninitialization expression and may be omitted.

Iteration Statements 127

Language Reference

expr2 isthe controlling expression, and specifies an evaluation to be made before each
iteration of the loop body. If the expression evaluates to zero, the loop body is not executed,
and control is passed to the statement following the loop body. If expr2 is omitted, then a
non-zero (true) value is substituted in its place. In this case, the statements in the loop must
cause an explicit break from the loop.

expr3 specifies an operation to be performed after each iteration. A common operation would
be the incrementing of acounter. expr3 may be omitted.

The statement may be a compound statement.

For example,

char charvec| 256];
int count;

for(count = 0; count <= 255; count++) {
charvec[count] = count;
}

This example will initialize the character array char vec to the values from 0 to 255.
The following are examples of f or statements:

for(;;)
statement;

All statementsin the body of the loop will be executed until a br eak or got o statement is
executed which passes control outside of the loop, or a r et ur n statement is executed which
exitsthe function. Thisis sometimes called |oop forever.

for(i = 0; i <= 100; ++)
statement;

Theobjecti isgiventheinitia value zero, and after each iteration of the loop is incremented

by one. Theloop is executed 101 times, with i having the successivevalues 0, 1,2 . ..
99, 100, and having the value 101 after termination of the loop.

128 Iteration Statements

Statements

for(; *bufptr !'="\0"; ++bufptr)
statement;

The object buf pt r isalready initialized, and the loop will continue until buf pt r pointsat a

null character. After each iteration of theloop, buf pt r will be incremented to point at the
next character.

11.7 Jump Statements

A jump statement causes execution to continue at a specific place in a program, without
executing any other intervening statements. There are four jump statements. got o,
conti nue, break andreturn.

11.7.1 The goto Statement

got o identifier;

identifier is alabel somewhere in the current function (including any block within the
function). The next statement executed will be the one following that label.

Note: it can be confusing to use the got o statement excessively. It iseasy to create
spaghetti code, which is very difficult to understand, even by the person who wroteit. Itis

recommended that the got o statement be used, at most, to jump out of blocks, never into
them.

11.7.2 The continue Statement

conti nue;

A cont i nue statement may only appear within aloop body, and causes ajump to the
inner-most loop’ s loop-continuation statement (the end of the loop body).

Inawhi | e statement, the jump is effectively back to the whi | e.
Inado statement, the jump is effectively down to the whi | e.
Inaf or statement, the jump is effectively to the closing brace of the compound-statement

that isthe subject of the f or loop. Thethird expression inthe f or statement, which is often
an increment or decrement, is then executed before control is returned to the top of the loop.

Jump Statements 129

Language Reference

11.7.3 The break Statement

br eak;
A br eak statement may only appear in an iteration (loop) body or a swi t ch statement.
Inaloop, abr eak will cause execution to continue at the statement following the loop body.
Inaswi t ch statement, a br eak will cause execution to continue at the statement following
the switch. If theloop or swi t ch that contains the br eak is enclosed inside another loop or

swi t ch, only the inner-most loop or swi t ch isterminated. The got o statement may be
used to terminate more than oneloop or swi t ch.

11.7.4 The return Statement

return;
or
r et ur n expression;

A popular variation of the second form is,
return(expression);

Ther et ur n statement causes execution of the current function to be terminated, and control
is passed to the caller. A function may contain any number of r et ur n statements.

If the function is declared with areturn type of voi d (no valueisreturned), thenno r et ur n
statement within that function may return avalue.

If the function is declared as having areturn type of other than voi d, thenany r et urn
statement with an expression will evaluate the expression and convert it to the return type.
That value will be the value returned by the function. If a r et ur n is executed without an
expression, and the caller uses the value returned by the function, the behavior is undefined
since no value was returned. An arbitrary value will probably be used.

Reaching the closing brace } that terminates the function is equivalent to executinga r et ur n
statement without an expression.

130 Jump Statements

12 Functions

There are two forms for defining afunction. Thefirst formiis,
storage-class return-type identifier (parameter-type-list)
{

declaration-list

statement-list

}

The storage-class may be one of ext ern or st ati c. If storage-classisomitted, ext ern
is assumed.

The return-type may be any valid type except an array. |If return-typeisomitted, i nt is
assumed.

The identifier is the name of the function.
The parameter-type-list is either voi d or empty, meaning the function takes no parameters,
or acomma-separated list of declarations of the objects, including both type and parameter
name (identifier). If multiple arguments of the same type are specified, the type of each
argument must be given individualy. Theform,

typeidl, id2

is not permitted within the parameter list.

If the parameter-type-list endswith , . . . then the function will accept a variable number of
arguments.

Any parameter declared as "array of type" is changed to "pointer to type". Any parameter
declared as" function" is changed to "pointer to function”.

Functions 131

Language Reference

The following examplesillustrate several function definitions:
int F(void)
The function F has no parameters, and returns an integer.
void G int x)

The function G has one parameter, an integer object named X, and does not return a
value.

void * H long int len, long int wid)

The function H has two parameters, long integer objects named | en and wi d, and
returns a pointer which does not point to any particular type of object.

void I (char * format, ...)

Thefunction | has one known parameter, an object named f or mat that isapointer to
acharacter (string). The function also accepts a variable number of parameters
following f or mat . The function does not return a result.

Thisform of function definition also serves as a prototype declaration for any callsto the
function that occur later in the same module. With the function prototype in scope at the time
of acall to the function, the arguments are converted to the type of the corresponding
parameter prior to the value being assigned. If acall to the function isto be made prior to its
definition, or from another module, a function prototype should be specified for it in order to
ensure proper conversion of argument types. Failureto do thiswill result in the default
argument promotions being performed, with undefined behavior if the function parameter
types do not match the promoted argument types.

The second form of function definition is,

storage-classreturn-type identifier (' identifier-list)
declaration-list

{

declaration-list

statement-list

}

The storage-class, return-type and identifier parts are al the same as for the first form of
definition. In thisform, the identifier-list is a (possibly empty) comma-separated list of
identifiers (object names) without any type information. Following the closing parenthesis,

132 Functions

Functions

and before the opening brace of the body of the function, the declarations for the objects are
given, using the normal rules. Any object of type i nt need not be explicitly declared.

In the declarations of the parameter identifiers, r egi st er isthe only storage-class specifier
that may be used.

A function prototype is created from the definition after the default argument promotions have
been performed on each parameter. All argumentsto afunction declared in this manner will
have the default argument promotions performed on them. The resulting types must match
the types of the declared parameters, after promotion. Otherwise, the behavior is undefined.

Note that it isimpossible to pass an object of type f | oat to afunction declared in this
manner. The argument of type f | oat will automatically be promoted to doubl e, and the
parameter will also be promoted to doubl e (assuming that it was declared as f | oat). For
similar reasons, it is not possible to pass an object of type char or short i nt without
promotion taking place.

According to the I SO standard for the C language, this form of function definition is
obsolete and should not be used. It is provided for historical reasons, in particular, for
compatibility with older C compilers. Using the first form of function definition often allows
the compiler to generate better code.

The following examples are the same as those given with the first form above, with the
appropriate modifications:

int F()
The function F has no parameters, and returns an integer.
void x)

The function G has one parameter, an integer object named X, and does not return a
value. Thisexample could have also been written as,

void § x)
int x;

Functions 133

Language Reference

which explicitly declares x to be an integer.

void * H(len, wid)
long int len;
long int wd;
The function H has two parameters, both integer objects named | en and wi d, and
returns a pointer which does not point to any particular type of object. Any call to this
function must ensure that the arguments are long integers, either by using an object so
declared, or by explicitly casting the object to the type.

Thelast example using the éllipsis (, . . .) notation is not directly representable using the
second form of function definition. With most compilersit is possible to handle variable
argument listsin this form, but knowledge of the mechanism used to pass argumentsto
functionsis required, and this mechanism may vary between different compilers.

12.1 The Body of the Function

Following the declaration of the function and the opening brace is the body of the function. It
consists of two portions, both of which are optional.

Thefirst portion isthe declaration list for any objects needed within the function. These
objects may have any type and any storage class. Objects with storageclass r egi st er or
aut o have automatic storage duration, meaning they are created when the function is called,
and destroyed when the function returnsto the caller. (The value of the object is not

preserved between calls to the function.) Objects with storage class ext er n or st ati ¢ have
static storage duration, meaning they are created once, before the function is ever called, and
destroyed only when the program terminates. Any value placed in such an object will remain
even after the function has returned, so that the next time the function is called the value will
till be present (unless some other action istaken to change it, such as using another object
containing a pointer to the static object to modify the value).

Unless an explicit r et ur n statement is executed, the function will not return to the caller
until the brace at the end of the function definition is encountered. The return will be asif a

r et ur n statement with no expression was executed. If the function is declared asreturning a
value, and the caller attempts to use the value returned in this manner, the behavior is
undefined. The value used will be arbitrary.

A function may call itself (recursion) directly, or it may call another function or functions
whichin turn call it. Any objects declared with automatic storage duration are created as a
new instance of the object upon each recursion, while objects declared with static storage
duration only have one instance shared between the recursive instances of the function.

134 The Body of the Function

Functions

12.2 Function Prototypes

A function prototypeis like a definition of afunction, but without the body. A semi-colonis
specified immediately following the closing right parenthesis of the function’s declaration.
The prototype describes the name of the function, the types of parameters it expects (names
are optional) and the type of the return value. Thisinformation can be used by the C compiler
to do proper argument type checking and conversion for calls to the function, and to properly
handle the return value.

If no function prototype has been found by the time a call to afunction is made, all arguments
have the default argument promotions performed on them, and the return type is assumed to
bei nt . If the actual definition of the function does not have parameters that match the
promoted types, the behavior is undefined. If thereturntypeisnot i nt and areturn valueis
required, the behavior is undefined.

The prototype for a function must match the function definition. Each parameter type and the
type of the return value must be the same, otherwise the behavior is undefined.

All library functions have prototypes in one of several header files. That header file should be
included whenever a function described therein is used. Refer to the Open Watcom C Library
Reference manual for details.

12.2.1 Variable Argument Lists

If the prototype (and definition) for afunction has a parameter list that endswith , . . . then
the function has a variable argument list or variable parameter list meaning that the number
of arguments to the function can vary. (Thelibrary function pri nt f isanexample.) At least
one argument must be provided before the variable portion. This argument usually describes,
in some fashion, how many other arguments to expect. It may be a simple count, or may
involve (aswith pri nt f) an encoding of the number and types of arguments.

All arguments that correspond to a variable argument list have the default argument
promotions performed on them, since it is not possible to determine, at compilation time, what
types will be required by the function.

Since the parameters represented by the , . . . don’'t have names, special handling is
required. The C language provides a special type and three macros for handling variable
argument lists. To be able to use these, the header <st dar g. h> must be included.

Thetype va_1ist isan implementation-specific type used to store information about the

variablelist. Within the function, an object must be declared with type va_list. This
object is used by the macros and functions for processing the list.

Function Prototypes 135

Language Reference

Themacro va_start hastheform,
void va_start(va_list parminfo

iastparm
)

The object parminfo is set up by the macro with information describing the variable list. The
argument lastparmis the name (identifier) of the last parameter beforethe , . .. and must
not have been declared with the storage class r egi st er .

The macro va_start must be executed before any processing of the variable portion of the
parameter list is performed.

va_start may be executed more than once, but only if anintervening va_end isexecuted.
The macro va_arg hasthe form,

type
va_arg(va_list
parminfo

iype
)

parminfo is the same object named inthe call to va_start. typeisthetype of argument
expected. The types expected should only be those that result from the default argument
promotions (i nt, 1 ong int andl ong | ong i nt andtheir unsigned varieties, doubl e
and | ong doubl e), and those that are not subject to promotion (pointers, structures and
unions). Thetype must be determined by the program. The va_arg macro expandsto an
expression that has the type and value of the next parameter in the variable list.

Inthecaseof pri nt f, the parameter type expected is determined by the "conversion
specifications” such as %s, %@ and so on.

Thefirst invocation of the va_arg macro (after executing a va_start) returnsthe value of
the parameter following lastparm (as specified in va_start). Each subsequent invocation
of va_arg returnsthe next parameter in thelist. At each invocation, the value of parminfo is
modified (in some implementation-specific manner) to reflect the processing of the parameter
list.

If the type of the next parameter does not match type, or if no parameter was specified, the
behavior is undefined.

136 Function Prototypes

Functions

The macro va_end hasthe form,

void va_end(va_list parminfo

);

parminfo is the same object named in the corresponding call to va_start. Thefunction
va_end closes off processing of the variable argument list, which must be done prior to
returning from the function. If va_end isnot called before returning, the behavior is
undefined.

If va_end is called without a corresponding call to va_start having been done, the
behavior is undefined.

After calling va_end and prior to returning, it ispossibleto call va_start again and
reprocess the variable list. 1t will be necessary to call va_end again before returning.

The following function takes an arbitrary number of floating-point numbers as parameters
along with a count, and returns the average of the numbers:

#i ncl ude <stdarg. h>

ext ern doubl e Average(int count, ...)
/~k~k~k~k~k~k~k~k~k~k~k~k~k~k***********************/

double sum = O;
i nt i
va_list parminfo;

if(count == 0) {
return(0.0);

}
va_start(parminfo, count);
for(i =0; i <count; i++) {
sum += va_arg(parminfo, double);
}

va_end(parminfo);
return(sum/ count);

Function Prototypes 137

Language Reference

12.3 The Parameters to the Function main

The function mai n has a special meaning in C. It isthe function that receives control when a
program is started. The function mai n has the following definition:

extern int main(int argc, char * argv[])
/**/
statements

The objects ar gc and ar gv have the following properties:

e ar gc isthe "argument count", or the number of parameters (including program name)
supplied to the program, and its value is greater than zero,

e ar gv isan array of pointers to strings containing the parameters,

e ar gv[0] isthe program name, if available, otherwise it isapointer to astring
containing only the null character,

ear gv[argc] isanull pointer, representing the end of the argument list,

eargv[1] through ar gv[ar gc- 1] are pointers to strings representing the arguments
to the program. These strings are modifiable by the program, and exist throughout the
execution of the program. The stringswill generally be in mixed (upper and lower)

case, although a system that cannot provide mixed case argument strings will provide
them in lower case.

The trangdlation of the arguments to the program, as provided by the operating system (often
from the command-line used to invoke the program), into the strings contained in ar gv, is
implementation-defined.

With Open Watcom C16 and C32, each unquoted, blank-separated token on the
command lineis made into a string that is an element of ar gv. Quoted strings are
maintained as one element without the quotes.

For example, the command line,

pgm 2+ 1 tokens "one token"

138 The Parameters to the Function main

Functions

will result in ar gc having the value 5, and the elements of ar gv being the strings
"pgm',"2+"," 1", "t okens" and " one token".

The function mai n may aso be declared without any parameters, as,

extern int main(void)
/*********************/

{
}

statenents

Thereturn value of mai n isan integer, usually representing atermination status. If no return
valueis specified (by using ar et ur n statement with no expression or encountering the
closing brace in the function), then the value returned is undefined.

Theexi t library function may be used to terminate the program at any point. The value of
the argument to exi t isreturned asif mai n had returned the value.

The Parameters to the Function main 139

Language Reference

140 The Parameters to the Function main

13 The Preprocessor

The preprocessor, asits name suggests, is that part of the C compiler which processes certain
directives embedded in the source file(s) in advance of the actual compilation of the program.
Specifically, the preprocessor allows a source file to,

« include other files (perhaps referencing externally-defined objects, or containing the
definitions of structures or other types which are needed by more than one sourcefile),

« compile certain portions of the code depending on some condition (such as the kind of
computer for which the code is being generated), and,

* replace macros with other text which is then compiled.
The preprocessing phase occurs after trigraphs have been converted and physical lines ending
with\ have been concatenated to create longer logical lines, but before escape sequencesin
character constants have been converted, or adjacent string literals are concatenated.
Any line whose first non-blank character is a # marks the beginning of a preprocessing
directive. Spaces may appear between the # and the identifier for the directive. The
#i ncl ude and #def i ne directives are each contained on one line (after concatenation of
lines ending with \), while the conditional compilation directives span multiple lines.

A preprocessor directive is not terminated by a semi-colon.

13.1 The Null Directive

A preprocessing directive of the form,

#

(with no other tokens on the same line) has no effect and is discarded.

The Null Directive 141

Language Reference

13.2 Including Headers and Source Files

A directive of the form,

#i ncl ude <nane>

will search a sequence of places defined by the implementation for the header identified by
nane. A header declaresaset of library functions and any necessary types or macros needed
for their use. Headers are usually provided by the compiler, or by alibrary provided for use
with the compiler.

nanme may not contain a > character. If the header isfound, the entire directive is replaced by
the contents of the header. If the header is not found, an error will occur.

A directive of the form,

#i ncl ude "nane"

will search for the source fileidentified by nane. nane may not containa " (double-quote)
character. If the source fileidentified by nane isfound, then the entire directiveis replaced
by the contents of thefile. Otherwise, the directiveis processed asif the,

#i ncl ude <nane>
form had been used.
A third form of #i ncl ude directiveisalso supported. A directive of the form,

#i ncl ude tokens
causes all macro substitutions (described below) to take placeon t okens. After
substitution, the directive must match either the <name> or " nane" forms described above
(including < and >, or quotes), in which case the #i ncl ude isprocessed in the
corresponding manner.
See the User’s Guide for details about how the compiler searches for included files.
#i ncl ude directives may be nested. Each implementation may allow different depths of

nesting, but all must alow at least 8 levels. (In other words, a source file may include another
file, which includes another file, and so on, up to a depth of eight files.)

142 Including Headers and Source Files

The Preprocessor

The operating system may further limit the number of files that may be open at one
time. See the appropriate operating system manual for details.

13.3 Conditionally Including Source Lines
A directive of the form,

#i f constant-expression
body of #i f
#endi f

evaluates the constant-expression, and if it evaluates to a non-zero value, then the body of the
#i f isprocessed by the preprocessor. Processing of the body ends when a corresponding
#el i f, #el se, or theterminating #endi f is encountered.

The#i f directive allows source and preprocessor lines to be conditionally processed by the
compiler.

If the constant-expression evaluates to zero, then the body of the #i f isnot processed, and
the corresponding #el i f or #el se (if present) is processed. If neither of these directives
are present, then the preprocessor skipsto the #endi f . Any preprocessing directives within
the body of the #i f are not processed, but they are examined in order to determine any nested
directives, in order to find the matching #el i f , #el se or #endi f .

The constant-expression is of the sameform asused inthe i f statement, except that the
values used must be integer values (including character constants). No cast or si zeof
operators or enumeration constants may be used. Each identifier that is a macro nameis
replaced (as described below), and remaining identifiers are replaced with OL. All valuesare
converted to long integers using the usual arithmetic conversions. After each item has been
converted, the evaluation of the expression takes place using the arithmetic of the trandation
environment. Any character constants are evaluated as members of the source character set.

With Open Watcom C16 and C32, character constants have the same valuein both
the source and execution character sets.

The unary expression,

Conditionally Including Source Lines 143

Language Reference

def i ned identifier
or
def i ned(identifier)

may be used to determineif an identifier is currently defined as a macro. Any macro name
that is part of this unary expression is not expanded. The above expressions evaluateto 1 if
the named identifier is currently amacro, otherwise they evaluate to 0.

As discussed above, if the constant-expression of the #i f evaluates to zero, the preprocessor
looks for acorresponding #el i f. Thisdirective means"else if", and has asimilar form as
#if:

#el i f constant-expression
body of #el i f

An#el i f may only be placed inside the body of an #i f. Thebody of the #el i f is
processed only if the constant-expression evaluates to a non-zero value and the
constant-expressions of the corresponding #i f and (preceding) #el i f statements evaluated
to zero. Otherwise the body is not processed, and the preprocessor skips to the next
corresponding #el i f or #el se, or tothe #endi f if neither of these directivesis present.
The #el se directive has the form,

#el se
body of #el se

The body of the #el se is processed only if the constant expressions of the corresponding
#i f and #el i f statements evaluated to zero. The body of the #el se isprocessed until the
corresponding #endi f isencountered.

The form of the #endi f directiveis,

#endi f
and marks the end of the #i f .

The following are examples of conditional inclusion of source lines:

144 Conditionally Including Source Lines

The Preprocessor

#if OPSYS == 0OS_CMS
fn syntax = "filename filetype fm";
#elif OPSYS == 0OS_MVS
fn syntax = "’userid.library.type (membername)’";
#elif OPSYS == O0S_DOS || OPSYS == 0S5_0S2
fn_syntax = "filename.ext";
#el se
fn syntax = "filename";
#endi f

Theobject £n_syntax is set to the appropriate filename syntax string depending on the
value of the macro OPSYS. If OPSYS does not match any of the stated values, then
fn_syntax isset tothedefault string " fi | ename” .

#1if HARDWARE == HW_IBM370
#if OPSYS == 0OS_CMS
escape_cmd = "CMS";
#elif OPSYS == 0OS_MVS
escape_cmd = "TSO";
#el se
escape_cmd = "SYSTEM";
#endi f
#el se
escape_cmd = "SYSTEM";
#endi f

The object escape_cmd is set to an appropriate string depending on the values of the
macros HARDWARE and OPSYS. Theindentation of the directives clearly illustrates the flow
between various conditions and levels of directives.

13.3.1 The #ifdef and #ifndef Directives

The#i f def directiveis used to check if anidentifier is currently defined as amacro. For
example, the directive,

#i fdef xyz

processes the body of the #i f def only if theidentifier xyz iscurrently amacro. This
exampleis equivalent to,

#i f defined xyz

or

Conditionally Including Source Lines 145

Language Reference

#i f defined(xyz)
In asimilar manner, the directive,
#i f ndef xyz
is equivalent to,
#if ldefined xyz
or

#if ldefined(xyz)

13.4 Macro Replacement
A directive of the form,
#def i ne identifier replacement-list

defines amacro with the name identifier. This particular form of macro is called an
object-like macro, because it is used like an object (as opposed to afunction). Any source line
that contains a token matching the macro name has that token replaced by the
replacement-list. The tokens of the replacement-list are then rescanned for more macro
replacements.

For example, the macro,

#define TABLE_LIMIT 256

definesthe macro TABLE _LIMIT to be equivalent to thetoken 256. Thisis sometimes
called a manifest constant, because it provides a descriptive term for avalue that makes
programs easier to read. Itisavery good ideato use descriptive names wherever appropriate
to improve the readability of a program. It may also save time if the same value is used many
different places, and the value must be changed at some point.

Care must be exercised when using more complicated object-like macros. Consider the
following example:

146 Macro Replacement

The Preprocessor

#define COUNT1 10

#defi ne COUNT2 20

#define TOTAL_COUNT COUNT1+COUNT2

[* ... *

memptr = malloc(TOTAL_COUNT * sizeof(int));

Ifi nt is2bytesinsize, thiscall to mal | oc will allocate 50 bytes of memory, instead of the
expected 60. Thisoccurs because TOTAL_COUNT * sizeof (int) becomes 10+20
* 2 after macro replacement, and the precedence rules for expression evaluation cause the
multiply to be donefirst. To solve this problem, the macro for TOTAL_COUNT should be
defined as:

#define TOTAL_COUNT (COUNT1+COUNT2)
A directive of the form,
#def i ne identifier(identifier-list) replacement-list

is called afunction-like macro, because it is used like afunction call. No space may appear
between identifier and the | eft parenthesis in the macro definition. Any source line(s) that
contains what looks like afunction call, where the name of the function matches a
function-like macro name, and the number of parameters matches the number of identifiersin
the identifier-list, has the entire function call replaced by the replacement-list, substituting the
actual arguments of the function call for the occurrences of the identifiersin the
replacement-list. If the left parenthesis following the macro name was created as the result of
amacro substitution, no further substitution will take place. If the macro name appears but is
not followed by aleft parenthesis, no further substitution will take place.

Consider this example:

#def i ne endof (string) \
(string + strlen(string))

The\ causesthetwo linesto be joined together into one logical line, making this equivalent
to,

#def i ne endof (string) (string + strlen(string))

The function-like macro endof can be used to find a pointer to the null character terminating
astring. The statement,

endptr = endof(ptr);

will have the macro replaced, so it will then be parsed as,

Macro Replacement 147

Language Reference

endptr = (ptr + strlen(ptr));

Note that, in this case, the argument is evaluated twice. If StrFn(ptr) was specified
instead of pt r , then the function would get called twice, because the substitution would yield,

endptr = (StrFn(ptr) + strlen(StrFn(ptr)));

In gathering up the tokens used to identify the arguments, each sequence of tokens separated
by a comma constitutes an argument, unless that comma happens to be within a matched pair
of left and right parentheses. When aright parenthesisis found that matches the beginning
left parenthesis, and the number of arguments matches the number of identifiersin the macro
definition, then the gathering of the argumentsis complete and the substitution takes place.

For example,
#def i ne nynmencpy(dest, src, len) \
mencpy(dest, src, len)
[* .0 %
nynmencpy(destptr, srcptr, (t=0, t=strlen(srcptr)));

will, for the parameters dest , sr ¢ and | en, use the arguments dest ptr, srcptr and
(t=0, t=strlen(srcptr)) respectively.

Thisform of macro isalso useful for "commenting out" a function call that is used for
debugging the program. For example,

#define alive(where) printf("Alive at" where "\n")

could later be replaced by,

#define alive(where) /* */

Alternatively, the definition,

#define alive(where)
may be used. When the module or program is recompiled using this new definition for
al i ve, dl of thecallsto pri nt f made asaresult of the macro replacement will disappear,
without the necessity of deleting the appropriate lines in each module.

A directive of the form,

148 Macro Replacement

The Preprocessor

#undef identifier

causes the macro definition for identifier to be thrown away. No error isreported if no macro

definition for identifier exists.

13.5 Argument Substitution

The argument substitution capabilities of the C preprocessor are very powerful, but can be
tricky. Thefollowing sections illustrate the capabilities, and try to shed light on the problems

that might be encountered.

13.5.1 Converting An Argument to a String

In the replacement-string for a function-like macro, each occurrence of # must be followed by
a parameter to the macro. If so, both the # and the parameter are replaced by a string created
from the characters of the argument itself, with no further substitutions performed on the
argument. Each white space within the argument is converted to asingle blank character. |If
the argument contains a character constant or string literal, any occurrences of "
(double-quote) arereplaced by \ ", and any occurrences of \ (backslash) arereplaced by \ \ .

The following table gives a number of examples of the result of the application of the macro,

#define string(parm) # parm

as shown in the first column:

Argument

After Substitution

string(abc)
string("abc")

string(\'/)
string(f(x))

string("abc" "def"

"abc"

"\"abc\""
"\"abc\" \"def\""
"\

llf (X) n

Argument Substitution 149

Language Reference

13.5.2 Concatenating Tokens
In the replacement-list, if a parameter is preceded or followed by ##, then the parameter is
replaced by the argument itself, without examining the argument for any further replacements.
After all such substitutions, each ## is removed and the tokens on either side are concatenated
together. The newly formed token is then examined for further macro replacement.

may not be either thefirst or last token in the replacement-list.

Assuming that the following macros are defined,

#define first "Pi ece"

#defi ne | ast "of Earth"
#define firstlast "Peace on Earth"
#define firstl " Peas"

the following table gives a number of examples of the result of the application of the macro,
#define glue(x, v) x ## vy

as shown in the first column. For the examples that span several lines, each successive line of
the "Result" column indicates successive expansions of the macros.

Argument After Substitution
glue(12, 34) 1234
glue(first, 1) firstl
" Peas"
glue(first, 2) first2
glue(first, last) |firstlast
"Peace on Earth"

13.5.3 Simple Argument Substitution

In the absence of either the # or ## operators, a parameter is replaced by its argument. Before
this happens, however, the argument is scanned again to seeif there are any further macro
substitutions to be made, applying al of the above rules. The rescanning applies only to the
argument, not to any other tokens that might be adjacent to the argument when it replaces the

150 Argument Substitution

The Preprocessor

parameter. In other words, if the last token of the argument and the first token following in
the replacement list together form avalid macro, no substitution of that macro will take place.

Consider the following examples, with these macro definitionsin place:

#define f(a) a
#define g(x)
#define h(s,t) st
#define i(y) 2-y

(1+x)

#defi ne xyz printf
#define rcrs rcrs+2
Invocation After Substitution
f(c) c
f(f(c)) f(c)
c
f(g(c)) f((1+c))
(1+c)
h("hello",f("there")) [h("hello","there")
"hel l 0" "there"
f(xyz)("Hello\n") f(printf)("Hello\n")
printf("Hello\n")

13.5.4 Variable Argument Macros

Macros may be defined to take optional additional parameters. Thisisaccomplished using the
(ellipsis) keyword as the last parameter in the macro declaration. There may be no
further parameters past the variable argument, and errors will be generated if the preprocessor
finds anything other than a closing parenthesis after the ellipsis. The variable arguments may
be referenced as awhole using the __vaA_ARGS__ keyword. Special behavior of pasting this
parameter with a comma can result in the comma being removed (thisis an extension to the
standard). The only token to which this appliesis acomma. Any other token which
__VA_ARGS__ ispasted withisnot removed. The = VA ARGS__ parameter may be
converted to a string using the # operator. Consider the following examples of macros with

variable number of arguments:

Argument Substitution 151

Language Reference

#define shufflel(a, b, ...) b,__VA_ARGS__##,a
#define shuffle2(a, b, ...) b,## __VA_ARGS__,a
#define shuffle3(a, b, ...) Db, ## __VA_ARGS__##,a
#define showlist() #__VA_ARGS__

#define args(f, ...) __VA_ARGS__

It is safe to assume that any time acommaisused near __VA_ARGS__ the ## operator
should be used to paste them together. Both shuf f | el and shuf f | e2 macrosare valid
examples of pasting __VA_ARGS__ together with acomma; either the leading or trailing
comma may be concatenated, and if __VA_ARGS__ isempty, the commaisremoved. The
macro shuf f | e3 works as well; the sequence of concantenations happens from |eft to right,
hence first the commaand empty __vVA_ARGS__ are concantenated and both are removed,
afterwards the trailing commais concatentated with b. Several example usages of the above
macros follow:

Invocation After Substitution
shuffle(x,y, z) Y, Z, X

shuf fl e(x,y) y, X
shuffle(a, b, c,d,e) b,c,d, e, a
show i st(x,y, z) "X, y,2"
args("%+%d=%",a, b,c) |a,b,c
args("none")

13.5.5 Rescanning for Further Replacement

After all parametersin the replacement-list have been replaced, the resulting set of tokensis
re-examined for any further replacement. If, during this scan, an apparent invocation of the
macro currently being replaced isfound, it is not replaced. Further invocations of the macro
currently being replaced are not eligible for replacement until anew set of tokens from the
source file, unrelated to the tokens resulting from the current substitution, are being processed.

152 Argument Substitution

The Preprocessor

Consider these examples, using the above macro definitions:

Invocation After Rescanning

f(g)(r) g(r)
(1+r)

F(F) (r) f(r)
h(f, (b)) f(b)

b
i (h(i, (b))) [i(i (b))
2-i (b)
i(i (b)) i (2-b)
2-2-b
rcrs rcrs+2

In other words, if an apparent invocation of a macro appears, and its name matches the macro
currently being replaced, and the apparent invocation was manufactured by other
replacements, it is not replaced. If, however, the apparent invocation comes directly from an
argument to the macro replacement, then it is replaced.

After al replacements have been done, the resulting set of tokens replaces the invocation of
the macro in the source file, and the file is then rescanned starting at the replacement-list.
Any further macro invocations are then replaced. However, if asaresult of scanning the
replacement-list with following tokens another apparent invocation of the macro just replaced
is found, then that macro name is not replaced. An invocation of the macro will again be
replaced only when a new invocation of the macro isfound, unrelated to the just-replaced
macro.

If the replacement-list of tokens resembles a preprocessor directive, the preprocessor will not
processit.

A macro definition lasts until it is undefined (with #undef) or until the end of the module.

Argument Substitution 153

Language Reference

13.6 More Examples of Macro Replacement

The following examples are given in the SO C standard, and are presented here as a complete
guide to the way in which macros are replaced. The expansions are shown in stagesto better
illustrate the process.

Thefirst set of examplesillustrates the rules for creating string literals (using the # operator)
and concatenating tokens (using the ## operator). The following definitions are used:

#define str(s) #s

#define xstr(s) str(s)

#define debug(s, t) printf("x" #s "= %, x" #1t "= 9", x ## s, x ## t)
#define I NCFILE(n) vers ## n [* comment */

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#defi ne H GHLOW "hel | 0"

#defi ne LOW LONV", world"

The following replacements are made. The final result shows adjacent string literals joined
together to form asingle string. This step isnot actually part of the preprocessor stage, but is
given for clarity.

debug(1, 2);
printf("x" "1" "= 9%, x" "2" "= %", x1, x2);
printf("x1= %, x2= %", x1, x2);

fputs(str(strncnp("abc\0d", "abc", '\4’) /* this goes away */
== 0) str(: @n), s);
fputs("strncnp(\"abc\\0d\", \"abc\", "\\4") == 0" ": @n", s);
fputs("strncmp(\"abc\\0d\", \"abc\", "\\4') == 0: @n", s);

#i ncl ude xstr (I NCFI LE(2).h)
#i ncl ude xstr(vers2.h)
#i ncl ude str(vers2.h)
#i ncl ude "vers2.h"

(and then the directive is replaced by the file contents)

glue(H GH, LOW
H GHLOW
"hel | 0"

xgl ue(H GH, LOW
xglue(H GH, LOW", world")
glue(HHGH, LOW", world")
H GHLOW ", wor | d"
"hello" ", world"
"hello, world"

The following examplesillustrate the rules for redefinition and re-examination of macros.
The following definitions are used:

154 More Examples of Macro Replacement

The Preprocessor

#define x 3

#define f(a) f(x * (a))
#undef x

#define x 2

#define g f

#define z z[0]
#define h g(~
#define n(a) a(w)
#define w 0,1

#define t(a) a

The following substitutions are made:

f(y+1) + f(f(z))

+

f(x * (y+1))
f(2* (y+1))

+
+
+
+
+
+

%t(t(g)(0) + t)(1)

f(f(2)) %t(t(g)(0) + t)(1)

F(F(x * (2))) %...

f(f(2* (2))) %...

f(x * (f(2* (2)))) %...

f(2* (f(2* () %...

(2% (£(2* (2[0])))) %t(t(g)(0) + t)(1)

%t(g(0) + t)(1)
%t(f(0) + t)(1)
%t(f(x > (0)) +t)(1)
%t(f(2* (0)) + t)(1)

(2 * (y+1)) + f(2 * (f(2 * (2[0])))) %f(2 * (0)) + t(1)

Another example:

g(2+(3,4)-w |
f(2+(3,4)-w |
f(2+(3,4)-0,1)
f(x * (2+(3,4)

f(2 * (2+(3,4)-

h 5) & m(f)"m(m

|
-0,1))
f(2 * (2+(3,4)-0,1))

0,1))

hs) &...

g(~ 5 &...

f(~5) &..

f(x * (~5)) &...

f(2* (~5) &n(f)~.
& f(wA.
& f(0,1)". ..
&f(x * (0,1))". ..
& f(2* (0,1)):‘\n(n)

f(2* (~5) &f(2* (0,1))"m0, 1)

More Examples of Macro Replacement

155

Language Reference

13.7 Redefining a Macro

Once a macro has been defined, its definition remains until it is explicitly undefined (using the
#undef directive), or until the compilation of the source fileisfinished. If amacrois
undefined, then it may be redefined in some other (or the same) way. If, during amacro
replacement, the name of a macro that has been defined, undefined and then defined again is
encountered, the current (most recent) definition of the macro is used, not the one that wasin
effect when the macro being replaced was defined.

Consider this example:

#defi ne MAXVAL 1000
#define g(x) CheckLimt(x, MAXVAL)

#undef MAXVAL
#defi ne MAXVAL 200

g(10);
This macro invocation expands to,
CheckLim t(10, 200);

A macro that has been defined may be redefined (without undefining it first) only if the new
definition has a replacement-list that isidentical to the original definition. Each preprocessing
token in both the original and new replacement lists must have the same ordering and spelling,
and there must be the same number of tokens. The number of spaces between tokens does not
matter, unless one definition has no spaces, and the other has spaces. Comments count as one
space.

The following examplesillustrate valid redefinitions of macros:

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [EHRIKIKRK) (1-1) [HREKxK/
#define FN_LIKE (a) (a)
#define FN_LIKE(a) (JxRFFIIK [N
a /******* \
* [)

The next examplesillustrate invalid redefinitions of the same macros:
#define OBJ_LIKE (0)

The token sequenceis different.

156 Redefining a Macro

The Preprocessor

#define OBJ_LIKE (1 - 1)

The spacing is different (none versus one).

#define FN_LIKE (b) (a)

The parameter is adifferent name, and is used differently.

#define FN_LIKE (b) (b))

The parameter is a different name.

13.8 Changing the Line Numbering and File Name
A directive of the form,
#l i ne number

sets the line number that the compiler associates with the current line in the source file to the
specified number.

A directive of the form,
#l i ne number string

sets the line number as above and also sets the name that the compiler associates with the
source file that is being read to the name contained in the string.

If the directive is not recognized as one of the two forms described above, then macro
substitution is performed (if possible) on the tokens on the line, and another attempt is made.
If the directive still does not match one of the two forms, an error is reported.

13.9 Displaying a Diagnostic Message

A directive of the form,

Displaying a Diagnostic Message 157

Language Reference

#error tokens

causes the compiler to display a diagnostic message containing the tokens from the directive.

13.10 Providing Other Information to the Compiler

A directive of the form,
#pr agma tokens
informs the compiler about some aspect of the compilation, in an implementation-defined

manner.

Seethe User's Guide for full details of the #pr agna directive.

13.11 Standard Predefined Macros

The following macro names are reserved by the compiler:

__DATE__
The date of trangdlation of the source file (astring literal). The form of the dateis
"Mmm dd yyyy" where:

Mmm represents the month and is one of::

Jan Feb Mar Apr May Jun
Jul Aug Sep Cct Nov Dec

dd isthe day of the month. Thefirst character isablank if the day isless
than 10.
yyyy isthe year.

If the compiler cannot determine the current date, another date is provided.

158 Standard Predefined Macros

The Preprocessor

With Open Watcom C16 and C32, the current date is always available.

__FILE _
The name of the current source file (a string literal). The name may be changed using
the#l i ne directive.

__LINE__
The line number of the current source line (a decimal constant). The line number may
be changed using the #1 i ne directive.

__STDC__
The integer constant 1, indicating that the compiler is a standard-conforming
implementation.

__STDC_HOSTED__
Theinteger constant 1, indicating that the compiler is a hosted (not freestanding)
implementation.

__STDC_LIB_EXT1l_ _
Thelong integer constant 200509L, indicating conformance to the |SO/IEC Technical
Report 24731, Extensionsto the C Library, Part I: Bounds-checking interfaces.

__STDC_VERSION_ _
A decimal constant indicating the version of 1SO C language standard that the compiler
adheresto. Depending on compile time switches, thiswill be either 199901L (to
indicate conformance with 1SO/IEC 9899:1999) or 199409L (to indicate conformance
with |SO/IEC 9899/AMD1:1995).

__TIME__
The time of trandlation of the source file (astring literal). The form of thetimeis
"hh:mm:ss", with leading zeros provided for values less than 10.

If the compiler cannot determine the current time, another time is provided.

With Open Watcom C16 and C32, the current time is always available.

__func__
The name of the current function (a string literal).

Any other macros predefined by the compiler will begin with an underscore (_) character.

None of the predefined macros, nor the identifier def i ned, may be undefined (with
#undef) or redefined (with #def i ne).

Standard Predefined Macros 159

Language Reference

13.12 Open Watcom C'6 and C* Predefined Macros

The Open Watcom C16 and C32 compilers also provide the following predefined macros for
describing the memory model being used:

__COMPACT__
The compact memory model is being used.

__FLAT _
The "flat" memory model is being used for the 80386 processor. All segment registers
refer to the same segment.

__FUNCTION__
The name of the current function (astring literal).

__HUGE__
The huge memory model is being used.

__LARGE__
The large memory model is being used.

__MEDIUM__
The medium memory model is being used.

__SMALL__
The small memory model is being used.

The Open Watcom C6 and C32 compilers also provide the following macros for describing
the target operating system:

__DOS__
The program is being compiled for use on a DOS operating system.

__NETWARE_386__
The program is being compiled for use on the Novell Netware 386 operating system.

__NT__
The program is being compiled for use on the Windows NT operating system.

__0S2__
The program is being compiled for use on the OS/2 operating system.

__QNX__
The program is being compiled for use on the QNX operating system.

160 Open Watcom C'¢ and C3? Predefined Macros

The Preprocessor

__WINDOWS__
The program is being compiled for use with Microsoft Windows.

__WINDOWS_386__
The program is being compiled for use with Microsoft Windows, using the Open
Watcom 32-bit Windows interface.

The Open Watcom C6 compiler also provides the following miscellaneous macro:

__CHEAP_WINDOWS__
The program is being compiled for use with Microsoft Windows using the "zZW"
compiler option.

The Open Watcom C16 and C32 compilers also provide the following miscellaneous macros:

__CHAR_SIGNED__
The program is being compiled using the "j" compiler option. The default char type
istreated as asigned quantity.

__FPI__
The program is being compiled using in-line floating point instructions.

_ _INLINE FUNCTIONS_ _
The program is being compiled using the "oi" compiler option.

__WATCOMC_ _
The compiler being used is the Open Watcom C16 or Open Watcom C32 compiler.
The value of the macro is the version number of the compiler times 100.

__386__
The program is being compiled for the 80386 processor, using the Open Watcom
C32 compiler.

The Open Watcom C16 and C32 compilers also provide the following predefined macros for
compatibility with the Microsoft C compiler, even though most of these macros do not begin
with an underscore () character:

VSDOS
The program is being compiled for use on a DOS operating system.

_M_IX86
The program is being compiled for a specific target architecture. The macrois
identically equal to 100 times the architecture compiler option value (-0, -1, -2, -3, -4,
-5, etc.). If "-5" (Pentium instruction timings) was specified as a compiler option, then
thevalue of _M_1x86 would be 500.

Open Watcom C'¢ and C*2 Predefined Macros 161

Language Reference

M_I86
The program is being compiled for use on the Intel 80x86 processor.

M _I386
The program is being compiled for use on the Intel 80386 processor.

M_I86CM
The compact memory model is being used.

M_I86HM
The huge memory model is being used.

M_I86LM
The large memory model is being used.

M_I86MM
The medium memory model is being used.

M_I86SM
The small memory model is being used.

NO_EXT_KEYS

The program is being compiled for ISO/ANSI conformance using the "za" (no
extended keywords) compiler option.

13.13 The offsetof Macro

The macro,
of f set of (type, member) ;

expands to a constant expression with type size_t. Thevalue of the expression is the offset
in bytes of member from the start of the structure type. member should not be a bit-field.

To use this macro, include the <st ddef . h> header.

162 The offsetof Macro

The Preprocessor

13.14 The NULL Macro

The NULL macro expandsto anull pointer constant, which is a value that indicates a pointer
does not currently point to anything.

It is recommended that NULL, instead of 0, be used for null pointer constants.

To use this macro, include the <st ddef . h> header.

The NULL Macro 163

Language Reference

164 The NULL Macro

14 The Order of Translation

This chapter describes the sequence of steps that the C compiler takesin order to trandate a
set of source files. Most programmers do not need to thoroughly understand these steps, as
they are intuitive. However, occasionally it will be necessary to examine the sequence to
solve a problem in the translation process.

Even though the steps of tranglation are listed as separate phases, the compiler may combine
them together. However, this should be transparent to the user.

The following are the phases of tranglation:

1.

The characters of the source file(s) are mapped to the source character set. Any
end-of-line markers used in the file system are trandlated, as necessary, to new-line
characters. Any trigraphs are replaced by the appropriate single character.

Physical source lines are joined together wherever alineisterminated by a
backslash (\) character. Effectively, the \ and the new-line character are deleted,
creating alonger line from that record and the one following.

The source is broken down into preprocessing tokens and sequences of
"white-space” (space and tab) characters (including comments). Each token isthe
longest sequence of characters that can be atoken. Each comment is replaced by
one white-space character. The new-line characters are retained at this point.

Preprocessing directives are executed and macro invocations are substituted. A
header named ina#i ncl ude directiveis processed according to rules 1 to 4.

Members of the source character set and escape segquences in character constants
and string literals are converted to single characters in the execution character set.

Adjacent character string literal tokens and adjacent wide string literal tokens are
concatenated.

White-space characters separating tokens are discarded. Each preprocessing token

is converted to atoken. The tokens are translated according to the syntactic and
semantic rules.

The Order of Translation 165

Language Reference

Thefinal phase usually occurs outside of the compilation phase. In this phase, often called the
linking phase, all external object definitions are resolved, and an executable program image is
created. The completed image contains al the information necessary to run the program in
the appropriate execution environment.

166 The Order of Translation

Programmer’s Guide

Programmer’s Guide

168

15 Modularity

For many small programs, it is possible to write a single module which contains all of the C
source for the program. This module can then be compiled, linked and run.

However, for larger applicationsit is not possible to maintain one module with everything in
it. Or, if itistechnically possible, compiling such alarge module every time a change is made
to the source carries too great atime penalty with it. At this point, it becomes necessary to
break the program into pieces, or modules.

Dividing a program can be done quite easily. If the only issueisto reduce the size of the
modules that need to be compiled, then arbitrary divisions of the code into modules will
accomplish the goal.

There are other advantages, however, to planning program modularity. Some of these
advantages are:

* recompilation time is reduced,
« code can be grouped into logically-connected areas, making it easier to find things,

* data structures can be hidden in one module, avoiding the temptation of letting an
outside piece of code "peek" into a structureit really should not access directly,

» whole modules can be rewritten or redesigned without affecting other modules,
» areas of the code that depend on the hardware or operating system can be isolated for
easy replacement when the program is ported. This may extend to replacing the module

with an assembly language equivalent for increased performance.

The following sections discuss each of these points in more detail.

Modularity 169

Programmer’s Guide

15.1 Reducing Recompilation Time

As discussed above, merely breaking a program into pieces will reduce the amount of time
spent recompiling the source. A bug is often a simple coding error, requiring only aone or
two line change. Recompiling only a small percentage of the code and relinking will be faster
than recompiling everything.

Occasionaly, recompiling all of the modules will be required. This usually arises when a data
structure, constant, macro or other item that is used by several modulesis changed. With
good program design, such a change would occur in a header file, and all modules that include
that header would be recompiled.

15.2 Grouping Code With Related Functionality

The best way to break programs into modules is to designate each module as having some
overall purpose. For example, one module may deal exclusively with interacting with the
user. Another module may manage atable of hames, while yet another may process some
small subset of the set of actions that may be performed by the program.

Many of the modules then become resource managers, and every part of the code that needs
to do something significant with that resource must act through that resource manager.

Using the example of the names table manager, it islikely that the manager will need to do
things like create and delete aname entry in the table. These actions would translate directly
to two functions with externa linkage.

By dividing up a program along lines of related functionality, it is usually easy to know where
to look when a problem is being tracked.

Module names that clearly state the purpose of the module also help to locate things.

15.3 Data Hiding

Sometimes amodule is written that has exclusive ownership of a data structure, such asa
linked list. All other modules that wish to access the structure must call afunction in the
module that ownsit. Thistechniqueisknown as data hiding. The actual datais hidden in the
structure, and only the functional interface (also called the procedural interface) may be used
to accessit. The functional interfaceisjust the set of functions provided for accessing the
structure.

170 Data Hiding

Modularity

The main advantage of data hiding is that the data structure may be changed with little or no
impact on other modules. Also, access to the structure is controlled, leading to fewer errors
because of misuse of the structure.

Itis possible to have different levels of data hiding. Complete data hiding occurs when no
outside module has access to the structure at all. Partial data hiding occurs when elements of
the structure can be accessed, but the overall structure may not be manipulated.

Note that these rules work only if the programmer respects them. The rules are not enforced
by the compiler. If amodule includes a header that describes the data structures being used by
another modul e that wants exclusive access to the structures, arule is being broken. Whether
thisis good or bad depends entirely on the judgement of the programmer.

15.3.1 Complete Data Hiding

With complete data hiding, having a pointer to an element of the structure has no intrinsic
value except as a parameter to the functional interface. Getting or setting avaluein the
structure requires a function call.

The advantage of thistechnique is that the complete data structure may be totally redesigned
without affecting other modules. The definitions of the individual structures (struct'’s,
uni on’s, arrays) may be changed and no other module will have to be changed, or even
recompiled.

The main disadvantage of complete data hiding is that even simple accesses reguire afunction
call, which is less efficient than just referencing a storage location.

Function-like macros may also be used to implement complete data hiding, avoiding the
function call but hiding the true structure of the data. Recompilation of all modules may be
required if the data structures change.

15.3.2 Partial Data Hiding

Partial data hiding occurs when the structure itself (for example, alinked list) is not accessible
initsentirety, but elements of the structure (an element of the linked list) are accessible.

Using the names table manager as an example, it may be necessary to call the names table
manager to create a name entry, but once the name is created, a pointer to the nameis returned
asthereturn value of the create function. This pointer points to a structure which is defined in
a header that any module can include. Therefore, the contents of an element of the data
structure can be manipulated directly.

Data Hiding 171

Programmer’s Guide

This method is more efficient than the complete data hiding technique. However, when the
structure used for the names table is changed, all modulesthat refer to that structure must be
recompiled.

15.4 Rewriting and Redesigning Modules

With modular program design and data hiding, it is often possible to completely replace a
module without affecting others. Thisis usually only possible when the functional interface
does not change. With partial data hiding, the actual types used to implement the structure
would have to remain unchanged, otherwise at least a recompilation would be required.
Changing ast r uct , for example, would probably require arecompilation if only the types
changed, or new members were added. If, however, the names of the members changed, or
some other fundamental change occurred, then source code changes in these other modules
would be necessary.

15.5 Isolating System Dependent Code in Modules

System dependencies are only relevant if the program being developed isto be run on
different computers or operating systems. |solating system dependent code is discussed more
thoroughly in the chapter "Writing Portable Programs'.

It is quite difficult, sometimes, to identify what constitutes system dependent code. The first
time a program is ported to a new system, a number of problem areas usually arise. These
areas should be carefully examined, and the code that is dependent on the host environment
should be isolated. Isolation may be accomplished by placing the code in a separate module
marked as system dependent, or by placing macros in the code to compile differently for the
different systems.

172 Isolating System Dependent Code in Modules

16 Writing Portable Programs

Portable software is software that iswritten in such away that it is relatively easy to get the
software running on a new and different computer. By choosing the C language, the first step
has been taken to reduce the effort involved in porting, but there are many other things that
must be done. Some of these things include:

« isolating the portions of the code that depend on the hardware or operating system
being used,

* being aware of what features of the C language are implementation-defined and
avoiding them, or taking them into account,

* being aware of the various ranges of values that may be stored in certain types, and
declaring objects appropriately,

* being aware of specia features available on some systems that might be useful.

No programmer can seriously expect to write a large portable program the first time. Thefirst
port of the program will take a significant period of time, but the final result will be a program
which is much more portable than before. Generally, each subsequent port will be easier and
takelesstime. Of courseg, if the new target system has a new concept that was not considered
in the origina program design (such as atotally different user-interface), then porting will
necessarily take longer.

16.1 Isolating System Dependent Code

The biggest problem when trying to port a program is to uncover all the placesin the code
where an assumption about the underlying hardware or operating system was made, and
which proves to be incorrect on the new system. Many of these differences are hidden in
library routines, but they can still cause problems.

Consider, for example, the issue of distinguishing between al phabetic and non-al phabetic
characters. Thelibrary providesthe function i sal pha which takes a character argument and
returns a non-zero value if the character is aphabetic, and O otherwise. Suppose a
programmer, writing a FORTRAN compiler, wanted to know if a variable name started with

Isolating System Dependent Code 173

Programmer’s Guide

theletters’I’ through 'N’, in order to determineif it should be an integer variable. The
programmer might write,

upl etter = toupper(nane[0]);

if(upletter >='1" && wupletter <='N) {
[* ...

}

If the program was being developed on a machine using the ASCII character set, this code
would work fine, since the upper case letters have 26 consecutive values. However, porting
the program to a machine using the EBCDIC character set, problems may arise because
between the letters’I” and ' J are 7 other characters, including ’}’. Thus, the name"}VAR"
might be considered avalid integer variable name, which it isnot. To solve this problem, the
programmer could write,

i f(isalpha(nane[0])) {
upl etter = toupper(nane[0]);
if(upletter >='I" && wupletter <='N) {
1* ... %
}

}

In this case, it is not necessary to isolate the code because arelatively simple coding change
covers both cases. But there are cases where each system will require a new set of functions
for some aspect of the program.

Consider the user interface of aprogram. If the program just displays lines of output to a
scrolling terminal, and accepts lines of input in the same way, the user interface probably
won't need to change between systems. But suppose the program has a sophisticated user
interface involving full-screen presentation of data, windows, and menus, and uses a mouse
and the keyboard for input. In the absence of standards for such interfaces, it is quite likely
that each system will require a customized set of functions. Here iswhere program portability
can become an art.

An approach to this problem is to completely isolate the user interface code of the program.
The processing of data occurs independently of what appears on the screen. At the
completion of processing, afunction is called which updates the screen. This code may or
may not be portable, depending on how many layers of functions are built between the
physical screen and the generic program. At alevel fairly close to the screen hardware, a set
of functions should be defined which perform the set of actions that the program needs. The
full set of functions will depend extensively on the requirements of the program, but they
should be functions that can reasonably be expected to work on any system to which the
program will eventually be ported.

Other areas that may be system dependent include:

174 Isolating System Dependent Code

Writing Portable Programs

» The behavior and capabilities of devices, including printers. Some printers support
multiple fonts, expanded and compressed characters, underlining, graphics, and so on.
Others support only relatively simple text output.

» Accessing memory regions outside of normally addressable storage. A good example
isthe Intel 80x86 family of processors. With the Open Watcom C6 16-bit compiler,
the addressable storage is 1024 kilobytes, but a 16-bit address can only address 64
kilobytes. Specia steps must be taken when compiling in order to address the full
storage space. Many compilers for the 8086, including Open Watcom C16 and C32,
introduce new keywords that describe pointer types beyond the 16-bit pointer.

* Code that has been written in assembly language for speed. As code generation
technology advances, assembly language code should become less necessary.

* Code that accesses some special feature of the system. As an example, many systems
provide the ability to temporarily exit to the operating system level, and later return to
the program. The method of doing this varies between systems, and the reguirements of
the program often change as well.

« Handling the command line parameters. While C breaks the list of parameters down
into strings, the interpretation of those strings may vary between systems. A program
probably should attempt to conform to any conventions of the system on which it is
being run.

 Handling other startup requirements. Allocation of memory, initializing devices, and
so on, may be done at this point.

16.2 Beware of Long External Names

According the C Language standard, a compiler may limit external names (functions and
global objects) to 6 significant characters. Thislimitation is often imposed by the "linking"
stage of the development process.

In practice, most systems allow many more significant characters. However, the devel oper of
a portable program should be aware of the potentia for porting the program to a system that
has asmall limit, and name external objects accordingly.

If the developer must port a program with many names that are not unique within the
limitations imposed by the target development system, the preprocessor may be used to
provide shorter unique names for all objects. Note that this method may seriously impair any
symbolic debugging facilities provided by the development system.

Beware of Long External Names 175

Programmer’s Guide

16.3 Avoiding Implementation-Defined Behavior

Several aspects of the code generated by the C compiler depend on the behavior of the
particular C compiler being used. A portable program should avoid these where possible, and
take them into consideration where they can’'t be avoided. It may be possible to use macros to
avoid some of these issues.

An important behavior that varies between systemsis the number of characters of external
objects and functions that the system recognizes. The standard states that a system must
recognize a minimum of 6 characters, although future standards may remove or extend this
limit. Most systems allow more than 6 characters, but several recognize only 8 characters.
For true portability, a function or object that has external linkage should be kept uniquein the
first 6 characters. Sometimes this requires ingenuity when thinking of names, but developing
a system for naming objects goes along way towards fitting within this restriction. The goal,
of course, isto till have meaningful object names. If all systems that will eventually be used
have a higher limit, then the programmer may decide to go past the 6 character limit. If aport
is done to a system with the 6 character limit, alot of source changes may be required.

To solve this problem, macros could be used to map the actual function names into more
cryptic names that fit within the 6 character limit. This technique may have the adverse affect
of making debugging very difficult because many of the function and object names will not be
the same as contained in the source code.

Another implementation-defined behavior occurs with the type char . The standard does not
imposeasi gned or unsi gned interpretation on the type. A program that uses an object of
type char that requires the valuesto be interpreted as signed or unsigned should explicitly
declare the object with that type.

16.4 Ranges of Types

Therange of an object of type i nt isnot specified by the standard, except to say that the
minimum range is - 32767 to 32767. If an object isto contain an integer value, then thought
should be given as to whether or not this range of values is acceptable on &l systems. If the
object is acounter that will never go outside the range 0 to 255, then the range will be
adequate. However, if the object isto contain values that may exceed this range, thena | ong
i nt may be required.

The same argument applies to objects with type f | oat . It may make more sense to declare
them with type doubl e.

176 Ranges of Types

Writing Portable Programs

When converting floating-point numbers to integers, the rounding behavior can also vary
between compilers and systems. If it isimportant to know how the rounding behaves, then the
program should refer to the macro FLT_ROUNDS (defined in the header <f | oat . h>),
which is avalue describing the type of rounding performed.

16.5 Special Features

Some systems provide special features that may or may not exist on other systems. For
example, many provide the ability to exit to the operating system, run some other programs,
then return to the program that was running. Other systems may not provide this ability. In
an interactive program, this feature may be very useful. By isolating the code that deals with
this feature, a program may remain easily portable. On the systemsthat don’t support this
feature, it may be necessary to provide a stub function which does nothing, or displays a
message.

16.6 Using the Preprocessor to Aid Portability

The preprocessor is particularly useful for providing alternate code sequences to deal with
portability issues. Conditional compilation provided by the #i f directive allows the insertion
of differing code sequences depending on some criteria. Defining a set of macros which
describe the various systems, and another macro that selects a particular system, makes it easy
to add system-dependent code.

For example, consider the macros,

#define 0S_DOS
#define OS_CMS
#define 0OS_MVS
#define 0S_0S2
#define OS_QNX

S WD O

#define HW_IBMPC
#define HW_IBM370

= o

#define PR_1i8086 0
#define PR_370 1

They describe a set of operating systems (OS) , hardware (HW and processors (PR) , which
together can completely describe a computer and its operating system. If the program was
being ported to alBM 370 running the MV S operating system, then it could include a header
defining the macros above, and declare the macros,

Using the Preprocessor to Aid Portability 177

Programmer’s Guide

#define OPSYS OS_MVS
#define HARDWARE HW_IBM370
#define PROCESSOR PR_370

The following code sequence would include the call only if the program was being compiled
for a370 running MVS;

#if HARDWARE == HW IBM370 && OPSYS == 0OS_MVS
DowvsSStuff(x, vy);
#endi f

In other cases, code may be conditionally compiled based only on the hardware regardless of
the operating system, or based only on the operating system regardless of the hardware or
processor.

This technique may work well if used in moderation. However, amodule that isfilled with

these directives becomes difficult to read, and that module becomes a candidate for being
rewritten entirely for each system.

178 Using the Preprocessor to Aid Portability

17 Avoiding Common Pitfalls

Even though a C program is much easier to write than the corresponding assembly language
program, there are afew areas where most programmers make mistakes, and spend a great
deal of time staring at the code trying to figure out why the program doesn’t work.

The bugs that are the most difficult to find often occur when the compiler doesn’t give an
error or warning, but the code generated is not what the programmer expected. After a great
deal of looking, the programmer spots the error and realizes that the compiler generated the
correct code, but it wasn't the code that was wanted.

Some compilers, including Open Watcom C16 and C32, have optional checking for common
errors built into them, providing warnings when these conditions arise. It is probably better to
eliminate the code that causes the warning than to turn off the checking done by the compiler.

The following sections illustrate several common pitfalls, and discuss how to avoid them.

17.1 Assignment Instead of Comparison

The code fragment,

chr = getc();
if(chr = 7a)
printf("letter is "a'\n");
} else {
printf("letter is not "a’\n");
}

will never printthemessage | etter is not 'a’',regardlessof thevaueof chr.

Assignment Instead of Comparison 179

Programmer’s Guide

The problem occurs in the second line of the example. The statement,
if(chr = 7a) {

assigns the character constant * a’ to the object chr . If thevalue of chr isnot zero, then
the statement that isthe subject of the i f isexecuted.

Thevalue of the constant * a’ is never zero, so thefirst part of the i f will awaysbe
executed. The second part might as well not even be there!

Of course, the correct way to code the second lineis,
if(chr == "a") {

changing the = to ==. This statement saysto compare the value of chr against the constant
"a' andto execute the subject of the i f only if the values are the same.

Using one equal sign (assignment) instead of two (comparison for equality) isacommon
errors made by programmers, often by those who are familiar with languages such as Pascal,
where the single = means "comparison for equality”.

17.2 Unexpected Operator Precedence

The code fragment,

if(chr = getc() !'= EOF) {
printf("The value of chr is %\n", chr);
}

will always print 1, as long as end-of-fileis not detected in get ¢c. Theintention wasto
assign the value from get c to chr , then to test the value against EOF.

The problem occursin the first line, which saysto call the library function get c. Thereturn
value from get ¢ (an integer value representing a character, or EOF if end-of-file is detected),
is compared against EOF, and if they are not equal (it’s not end-of-file), then 1 is assigned to
the object chr . Otherwise, they are equal and O isassignedto chr. Thevalueof chr is,
therefore, always O or 1.

The correct way to write this code fragment is,

if((chr = getc()) !'= EOF)
printf("The value of chr is %\n", chr);
}

180 Unexpected Operator Precedence

Avoiding Common Pitfalls

The extra parentheses force the assignment to occur first, and then the comparison for equality
is done.

Note: doing assignment inside the controlling expression of loop or selection statementsis
not a good programming practice. These expressions tend to be difficult to read, and
problems such as using = instead of == are more difficult to detect when, in some cases, = is
desired.

17.3 Delayed Error From Included File

Suppose the source file nyt ypes. h contained the line,

typedef int COUNTER

and the main source file being compiled started with,
#i ncl ude "nytypes. h"

extern int main(void)

/*********************/

COUNTER X;
Y |
}

Attempting to compile the main source file would report a message such as,
Error! Expecting ';' but found 'extern’ on line 3

Examining the main source file does not show any problem. The problem actually occursin
the included sourcefile, sincethe t ypedef statement does not end with asemi-colon. Itis
this semi-colon that the compiler is expecting to find. The next token found isthe ext ern
keyword, so the error is reported in the main sourcefile.

When an error occurs shortly after an #i ncl ude directive, and the error is not readily
apparent, the error may actually be caused by something in the included file.

Delayed Error From Included File 181

Programmer’s Guide

17.4 Extra Semi-colon in Macros

The next code fragment illustrates a common error when using the preprocessor to define
constants:

#defi ne MAXVAL 10;

[* .00

i f(value >= MAXVAL) break;
The compiler will report an error message like,

Error! Expecting ')’ but found ’;’' on line 372

The problem is easily spotted when the macro substitution is performed on line 372. Using
the definition for MAXVAL, the substituted version of line 372 reads,

i f(value >= 10;) break;

The semi-colon (;) in the definition was not treated as an end-of-statement indicator as
expected, but was included in the definition of the macro (manifest constant) MAXVAL. The
substitution then results in a semi-colon being placed in the middle of the controlling
expression, which yields the syntax error.

17.5 The Dangling else

In the code fragment,
if(valuel > 0)
if(value2 > 0)
printf("Both values greater than zero\n");

el se
printf("valuel is not greater than zero\n");

suppose val uel hasthevaue 3, while val ue2 hasthevalue - 7. This code fragment will
cause the message,

valuel is not greater than zero

to be displayed.

182 The Dangling else

Avoiding Common Pitfalls

The problem occurs because of the el se. The program isindented incorrectly according to
the syntax that the compiler will determine from the statements. The correct indentation
should clearly show where the error lies:

if(valuel > 0)
if(value2 > 0)
printf("Both values greater than zero\n");
el se
printf("valuel is not greater than zero\n");

Theel se belongstothesecond i f, not thefirst. Whenever thereis morethanone i f
statement without braces and without an el se statement, the next el se will be matched to
the most recent i f statement.

This code fragment clearly illustrates the usefulness of using braces to state program structure.
The above example would be (correctly) written as,

if(valuel > 0) {
if(value2 > 0) {
printf("Both values greater than zero\n");

} else {
printf("valuel is not greater than zero\n");
}

17.6 Missing break in switch Statement

In the code fragment,

switch(value) {
case 1:
printf("value is 1\n");
def aul t:
printf("value is not 1\n");

if val ue is 1, the following output will appear:

value is 1
value is not 1

This unexpected behavior occurs because, when val ue is 1, the swi t ch causes control to
bepassedtothecase 1: label, wherethefirst pri ntf occurs. Thenthe def aul t label

Missing break in switch Statement 183

Programmer’s Guide

isencountered. Labelsareignored in execution, so the next statement executed is the second
printf.

To correct this example, it should be changed to,

switch(value) {
case 1:
printf("value is 1\n");
br eak;
def aul t:
printf("value is not 1\n");

}

The br eak statement causes control to be passed to the statement following the closing brace
of theswi t ch statement.

17.7 Side-effects in Macros

In the code fragment,
#defi ne endof (ptr) ptr + strlen(ptr)
[* o0 %

endptr = endof(ptr++);
the statement gets expanded to,
endptr = ptr++ + strlen(ptr++);
The parameter pt r getsincremented twice, rather than once as expected.
The only way to avoid this pitfall isto be aware of what macros are being used, and to be
careful when using them. Several library functions may be implemented as macros on some

systems. These functionsinclude,

getc put c
get char put char

The I SO standard requires that documentation states which library functions evaluate their
arguments more than once.

184 Side-effects in Macros

18 Programming Style

Programming styleis asindividual as a person’s preference in clothing. Unfortunately, just as
some programmers wouldn’t win a fashion contest, some code has poor style. Thiscodeis
usually easy to spot, because it is difficult to understand.

Good programming style can make the difference between programs that are easy to debug
and modify, and those that you just want to avoid.

There are anumber of aspectsto programming style. Thereisno perfect stylethat is
altogether superior to all others. Each programmer must find a style that makes him or her
comfortable. Theintention isto write code that is easy to read and understand, not to try to
stump the next person who has to fix a problem in the code.

Good programming style will also lead to less time spent writing a program, and certainly less
time spent debugging or modifying it.

The following sections discuss various aspects of programming style. They reflect the
author’s own biases, but they are biases based on years of hacking his way through code,
mostly good and some bad, and much of it his own!

18.1 Consistency

Perhaps the most important aspect of styleis consistency. Try, as much as possible, to use the
same rules throughout the entire program. Having a mixed bag of styles within one program
will confuse even the best of programmers trying to decipher the code.

If more than one programmer isinvolved in the project, it may be appropriate, before the first

line of code iswritten, to discuss general rules of style. Some rules are more important than
others. Make sure everyone understands the rules, and are encouraged to follow them.

Consistency 185

Programmer’s Guide

18.2 Case Rules for Object and Function Names

When examining a piece of code, the scope of an object is sometimes difficult to determine.
One needs to examine the declarations of objects within the function, then those declared
outside of any functions, then those declared included from other sourcefiles. If no strict
rules of naming objects are followed, each place will need to be laboriously searched each
time.

Using mixed case object names, with strict rules, can make the job much easier. It does not
matter what rules are established, as long as the rules are consistently applied throughout the
program.

Consider the following sample set of rules, used throughout this book:

1. objectsdeclared within a function with automatic storage duration are entirely in

lower case,
i nt X, counter, limt;
float save_global;

struct s * sptr;

2. objectswith static storage duration (global objects) start with an upper case letter,
and words or word fragments also start with upper case,

static int Tot al Count ;

extern fl oat d obal Aver age;
static struct s SepStruct;

3. function names start with an upper case letter, and words or word fragments also
start with upper case, (distinguishable from global objects by the left parenthesis),

extern int Trimength(char * ptr, int len);
static field * CreateField(char * nane);

4. dl constants are entirely in upper case.

#define FIELD_LIMIT 500
#def i ne BUFSI ZE 32

enum { | NVALI D, HELP, ADD, DELETE, REPLACE };

5. adltypedef tagsarein upper case.

186 Case Rules for Object and Function Names

Programming Style

typedef struct {

float real;
fl oat inmaginary;
} COWPLEX;

Thus, the storage duration and scope of each identifier can be determined without regard to
context. Consider this program fragment:

chr = ReadChar();
if(chr '= EOF) {

A bChr = chr;
}

Using the aboverules,

1. ReadChar isafunction,

2. chr isan object with automatic storage duration defined within the current
function,

3. EOFisaconstant,
4. d bChr isan object with static storage duration.

Note: thelibrary functions do not use mixed case names. Also, the function mai n does not
begin with an upper case M Using the above coding style, library functions would stand out
from other functions because of the |etter-case difference.

18.3 Choose Appropriate Names

The naming of objects can be critical to the ease with which bugs can be found, or changes
can be made. Using object namessuchas | i necount, col utms and r ownunber will
make the program more readable. Of course, short forms will creep into the code (few
programmers like to type more than is really necessary), but they should be used judiciously.

Consistency of naming also helps to make the code more readable. If astructureis used
throughout the program, and many different routines need a pointer to that structure, then the
name of each object that pointsto it could be made the same. Using the example of a symbol
table, the object name synpt r might be used everywhere to mean "pointer to a symbol
structure”. A programmer seeing that object will automatically know what it is declared to be.

Choose Appropriate Names 187

Programmer’s Guide

Appropriate function names are also very important. Names such as Dol t , while saving the
original programmer from trying to think of a good name, make it more difficult for the next
programmer to figure out what is going on.

18.4 Indent to Emphasize Structure

Thefollowing isavalid function:

static void BubbleSort(int list[], int n)
/**********************************/ { Int IndeXl
= 0; int index2; int tenp; if(n < 2)return; do {
index2 = index1 + 1; do { if(list[indexl] >

list[index2]) { temp = 1list[index1]; list]
indexl] = list[index2]; list[index2] = tenp;
} } while(++index2 < n); } while(++indexl < n-1
)}

(The compiler will know that it’s valid, but the programmer would find it difficult to validate.)
Here is the same function, but using indenting to clearly illustrate the function structure:

static void BubbleSort(int list[], int n)

/***/

{
int indexl = 0;
int index2;
int tenp;
if(n <2)return;
do {
i ndex2 = indexl + 1;
do {
if(list[] index1] > 1list][index2]) {
tenp = list[indexl];
list[] indexl1] = list[index2];

list[index2] = tenp;

}
} while(++index2 < n);
} while(++indexl < n-1);

Generally, it is good practice to indent each level of code by a consistent amount, for example
4 spaces. Thus, the subject of an i f statement is aways indented 4 spacesinsidethe i f. In
this manner, all loop and selection statements will stand out, making it easier to determine
when the statements end.

188 Indent to Emphasize Structure

Programming Style

The following are some recommended patterns to use when indenting statements. These
patterns have been used throughout the book.

int Fn(void)

/************/

/* indent 4 */
}

if(condition) {
/* indent 4 *
} else {
/* indent 4 */
}

if(condition) {
/* indent 4 */
} else if(condition) {
/* indent 4 fromfirst if */
if(condition) {
/* indent 4 fromnearest if */

/

} else {
/* indent 4 fromfirst if */
}
switch(condition) {
case VALUE:
/* indent 4 fromswitch */
case VALUE:
def aul t :
}
do {

/[* indent 4 */
while(condition);

whil e(condition) {
/[* indent 4 */
}

for(a; b; ¢) {
[* indent 4 */
}

Indent to Emphasize Structure 189

Programmer’s Guide

Two other popular indenting styles are,

if(condition)
{

statement

}
and,

if(condition)

{
}

statements

It is not important which style isused. However, aconsistent style is an asset.

18.5 Visually Align Object Declarations

A lengthy series of object declarations can be difficult to read if care is not taken to improve

the readability. Consider the declarations,

struct flentry *flptr;
struct fldsym *sptr;
char *bufptr, *wsbuff;

int length;

Now, consider the same declarations, but with some visual alignment done:

struct flentry *
struct fldsym *
char *
char *
i nt

flptr;
sptr;

buf ptr;
wsbuf f;
| engt h;

It iseasier to scan alist of objects when their names all begin in the same column.

190 Visually Align Object Declarations

Programming Style

18.6 Keep Functions Small

A function that is several hundred lines long can be difficult to comprehend, especialy if itis
being looked at on aterminal, which might only have 25 lines. Large functions also tend to
have alot of nesting of program structures, making it difficult to follow the logic.

A function that fits entirely within the terminal display can be studied and understood more
easily. Program constructs don’t get as complicated. Large functions often can be broken up
into smaller functions which are easier to maintain.

18.7 Use static for Most Functions

Most functions do not need to be called from routines outside of the current module. Yet, if
the keyword st at i ¢ isnot used in the function declaration, then the functionis
automatically given external linkage. This can lead to a proliferation of external symbols,
which may cause naming conflicts. Also, some linking programs may impose limitations.

Only those functions that must have external linkage should be made external. All other
definitions of functions should start with the keyword st at i c.

It dlsoisagood ideato start definitions for external functions with the keyword ext er n,
even though it is the default case.

18.8 Group Static Objects Together

Static objects that are declared outside of any function definition, and are used throughout the
module, generally should be declared together, for example before the definition of the first
function. Placing the declarations of these objects near the beginning of the module makes
them easier to find.

18.9 Do Not Reuse the Names of Static Objects

If an object with static storage duration exists in one module, but hasinternal linkage, then
another object with the same name should not be declared in another module. The
programmer may confuse them.

Even more importantly, if an object exists with external linkage, a module should not declare
another object with the same name with internal linkage. This second object will overshadow

Do Not Reuse the Names of Static Objects 191

Programmer’s Guide

the first within the module, but the next programmer to look at the code will likely be
confused.

18.10 Use Included Files to Organize Structures

Included source files can be used to organize data structures and related information. They
should be used when the same structure is needed in different modules. They should even be
considered when the structure is used only in one place.

Generally, each included source file should contain structures and related information for one
aspect of the program. For example, afile that describes a symbol table might contain the
actual structures or other types that are required, along with any manifest constants that are
useful.

18.11 Use Function Prototypes

Function prototypes are very useful for eliminating common errors when calling functions. If
every function in aprogram is prototyped (and the prototypes are used), then it is difficult to
pass the wrong number or types of arguments, or to misinterpret the return value.

Using the symbol table example, the included source file that describes the symbol table
structure and any related global objects or constant values could also contain the function
prototypes for the functions used to access the table. Another approach is to have separate
source files containing the function prototypes, possibly using a different naming convention
for thefile. For example,

#i ncl ude "synbol s. h"
#i ncl ude "synbol s. fn"

would include the structures and related values from synbol s. h, and the function
prototypes from symnbol s. f n.

18.12 Do Not Do Too Much In One Statement

In the same manner that a big function that does too much can be confusing, so too can along
statement. Historically, a programmer might combine many operations into a single statement
in order to get the compiler to produce better code. With current compilers, splitting the
statement into two or more simpler statements will produce equivalent code, and will make
the program easier to understand.

192 Do Not Do Too Much In One Statement

Programming Style

A common example of a statement that can be split is,
if((c = getchar()) !'= EOF) {

Historically, this statement might have allowed the compiler to avoid storing the value of ¢
and then reloading it again to compare with EOF. However, the equivalent,

is more readable, and most compilers will produce the same code.

18.13 Do Not Use goto Too Much

The got o statement is avery powerful tool, but it is very easy to misuse. Here are some
genera rulesfor theuse of got o’s:

* don’t use them!
If that rule is not satisfactory, then these should be followed:

* Never got o0 alabel that isabove. That isthe beginning of spaghetti code. Loop
statements can always be used.

* Never got o the middle of ablock (compound-statement). A block should always be
entered by passing over the opening brace.

» Use got o to jump out of nested blocks, where the br eak statement is not appropriate.

Above al, keep the use of got 0’sto aminimum.

18.14 Use Comments

Comments are crucia to good programming style. Regardless of how well the program is
written, some code will be difficult to understand. Comments make it possible to give afull
explanation for what the code is trying to do.

Each function definition should begin with a short comment describing what the function
does.

Use Comments 193

Programmer’s Guide

Each module should begin with comments describing the purpose of the module. Itisalsoa
good idea to type in who wrote it, when it was written, who modified it and why, and when it
was modified. Thislast collection of information is commonly called an audit trail, asit
leaves atrail allowing a programmer to see the evolution of the module, along with who has
been changing it.

The following audit trail isfrom one module in an actua product:

/* Modified: By: Reason:
* 84/04/23 Dave McCurkin Initial inplenmentation
* 84/11/08 Jim G aham I mpl enent ed TOTAL non- conbi nabl e;
* added MAXI MUM M NI MUM AVERAGE
* 84/12/12 Steve McDowel |l Added call to CheckBreak
* 85/01/12 ... Fi xed overfl ow probl ens
* 85/01/29 Alex Kachura Saves value of TYP_ field
* 86/01/31 Steve McDowell Switched to use of nuneric accunul ator
* 86/12/10 ... Renoved sone conment ed code
* 87/02/24 ... Made all comands conbi nabl e

194 Use Comments

Appendices

Appendices

196

Compiler Keywords

A. Compiler Keywords

The following topics are discussed:
* Standard Keywords

» Open Watcom C6 and C32 Keywords

A.1 Standard Keywords

Thefollowing isthelist of keywords reserved by the C language:

auto doubl e inline static
_Bool el se i nt struct
br eak enum | ong swi tch
case extern regi ster t ypedef
char fl oat restrict uni on
_Complex for return unsi gned
const got o short voi d
conti nue i f si gned vol atile
def aul t _Imaginary si zeof whil e

do

A.2 Open Watcom Extended Keywords

The Open Watcom compilers also reserve the following extended keywords:

Microsoft compilers compatible

__asm __finally __pascal
__based __fortran __saveregs
__cdecl __huge __segment
__declspec __inline __segname
__except __inté64 __self
__export __interrupt __stdcall
__far __leave __syscall

Open Watcom Extended Keywords 197

Appendices

__farlé6 __loadds __try
__fastcall __near __unaligned

IBM compilers compatible

_Cdecl _Finally _Seglb
_Except _Leave _Syscall
_Export _Packed _System
_Farle _Pascal _Try
_Fastcall

Open Watcom specific
__builtin isfloat __watcall __ow_imaginary unit

Thekeywords __based, __segment, __segname and __self aredescribed in the
section "Based Pointers for Open Watcom C16 and C32". Open Watcom C6 and

C%2 provide the predefined macro _based for convenience and compatibility with the
Microsoft C compiler. 1t may beused in placeof = based. Open Watcom C6 and

C%2 provide the predefined macro _segment for convenience and compatibility with the
Microsoft C compiler. 1t may be used in place of __segment. Open Watcom C6 and
C22 provide the predefined macro _segname for convenience and compatibility with the
Microsoft C compiler. It may beused in placeof __segname. Open Watcom C26 and
C32 provide the predefined macro _se1£ for convenience and compatibility with the
Microsoft C compiler. It may beused in place of __self.

Thekeywords __far, __huge and __near are described in the sections " Special Pointer
Types for Open Watcom C16" and " Special Pointer Types for Open Watcom C32", Open
Watcom C16 and C32 provide the predefined macros f ar and _far for convenience and
compatibility with the Microsoft C compiler. They may beused in placeof __far. Open
Watcom C16 and C32 provide the predefined macros huge and _huge for convenience and
compatibility with the Microsoft C compiler. They may beusedin placeof __huge. Open
Watcom C16 and C32 provide the predefined macros near and near for convenience and
compatibility with the Microsoft C compiler. They may beusedin placeof __near.

Thekeywords __farl6, _Farle and _Seglé aredescribed in the section " Specia
Pointer Types for Open Watcom C32", Open Watcom C16 and C32 provide the predefined
macro _far 16 for convenience and compatibility with the Microsoft C compiler. 1t may be
used inplaceof __farle.

The _Packed keyword is described in the section " Structures”.
The __cdecl and _Cdecl keywords may be used with function definitions, and indicates
that the calling convention for the function is the same as that used by Microsoft C. All

parameters are pushed onto the stack, instead of being passed in registers. Thiscalling
convention may be controlled by a #pr agna directive. Seethe User's Guide. Open Watcom

198 Open Watcom Extended Keywords

Compiler Keywords

C16 and C®2 provide the predefined macros cdecl and _cdec1 for convenience and
compatibility with the Microsoft C compiler. They may beusedin placeof __cdecl.

The __fastcall and _Fastcall keywords may be used with function definitions, and
indicates that the calling convention used is compatible with Microsoft C compiler. This
calling convention may be controlled by a #pr agna directive. Open Watcom C6 and

C32 provide the predefined macro _fastcall, for convenience and compatibility with the
Microsoft C compiler. It may beused in placeof __fastcall Seethe User's Guide..

The __fortran keyword may be used with function definitions, and indicates that the
calling convention for the function is suitable for calling a function written in FORTRAN. By
default, this keyword has no effect. This calling convention may be controlled by a

#pr agma directive. Seethe User's Guide. Open Watcom C16 and C32 provide the
predefined macrosf or t r an and _fortran for convenience and compatibility with the
Microsoft C compiler. They may beusedin placeof __fortran.

The __pascal and _Pascal keywords may be used with function definitions, and
indicates that the calling convention for the function is suitable for calling a function written
in Pascal. All parameters are pushed onto the stack, but in reverse order to the order specified
by __cdecl. Thiscalling convention may be controlled by a #pr agna directive. Seethe
User's Guide. Open Watcom C16 and C32 provide the predefined macros pascal and
_pascal for convenience and compatibility with the Microsoft C compiler. They may be
usedin placeof __pascal.

The __syscall, Syscall and _System keywords may be used with function
definitions, and indicates that the calling convention used is compatible with OS/2 (version
2.0 or higher). Thiscalling convention may be controlled by a #pr agma directive. Seethe
User's Guide. Open Watcom C16 and C32 provide the predefined macro _syscall for
convenience and compatibility with the Microsoft C compiler. It may be used in place of
__syscall.

The __stdcall keyword may be used with function definitions, and indicates that the
calling convention used is compatible with Win32. This calling convention may be controlled
by a#pr agna directive. Open Watcom C6 and C32 provide the predefined macro
_stdcall, for convenience and compatibility with the Microsoft C compiler. It may be
used in placeof __stdcall Seethe User's Guide.

The __watcall keyword may be used with function definitions, and indicates that the Open
Watcom default calling convention isused. This calling convention may be controlled by a
#pr agma directive. Seethe User’s Guide.

The __export and _Export keywords may be used with objects with static storage

duration (global objects) and with functions, and describes that object or function as being a
known object or entry point within a Dynamic Link Library in OS/2 or Microsoft Windows.

Open Watcom Extended Keywords 199

Appendices

The object or function must also be declared as having external linkage (using the ext er n
keyword). In addition, any call back function whose address is passed to Windows (and
which Windows will "call back™) must be defined with the __export keyword, otherwise
the call will fail and cause unpredictable results. The __export keyword may be omitted if
the object or function is exported by an option specified using the linker. See the Open
Watcom Linker User's Guide. Open Watcom C6 and C32 provide the predefined macro
_export for convenience and compatibility with the Microsoft C compiler. It may be used
inplaceof __export.

The __interrupt keyword may be used with function definitions for functions that handle
computer interrupts. All registers are saved before the function begins execution and restored
prior to returning from the interrupt. The machine language return instruction for the function
ischangedtoi r et (interrupt return). Functionswrittenusing __interrupt are suitable
for attaching to the interrupt vector using the library function _dos_setvect. Open
Watcom C6 and C32 provide the predefined macros i nt errupt and _interrupt for
convenience and compatibility with the Microsoft C compiler. They may be used in place of
__interrupt.

The __loadds keyword may be used with functions, and causes the compiler to generate
code that will force the DS register to be set to the default data segment (DGROUP) so that
near pointerswill refer to that segment. This keyword is normally used with functions written
for Dynamic Link Librariesin Windows and OS/2. Open Watcom C16 and C32 provide the
predefined macro _1oadds for convenience and compatibility with the Microsoft C
compiler. It may beusedin placeof __loadds.

The __saveregs keyword may be used with functions. It is provided for compatibility
with Microsoft C, and has no effect in Open Watcom C16 and C32. Open Watcom C16 and
C32 provide the predefined macro _saveregs for convenience and compatibility with the
Microsoft C compiler. It may beused in place of __saveregs.

The __try, _Try, __except, _Except, __finally, _Finally, __leave and
_Leave keywords may be used for exception handling, See the " Structured Exception
Handling" in User’s Guide. Open Watcom C16 and C32 provide the predefined macro _try
for convenience and compatibility with the Microsoft C compiler. It may be used in place of
__try. Open Watcom C6 and C32 provide the predefined macro _except for
convenience and compatibility with the Microsoft C compiler. It may be used in place of
__except. Open Watcom C1 and C32 provide the predefined macro _finally for
convenience and compatibility with the Microsoft C compiler. It may be used in place of
__finally. Open Watcom C1¢ and C32 provide the predefined macro _leave for
convenience and compatibility with the Microsoft C compiler. It may be used in place of
__leave.

The __ow_imaginary unit keyword may be used as_Imaginary constant 1.0.

200 Open Watcom Extended Keywords

Compiler Keywords

The __builtin_isfloat keyword may be used asfunction for testing symbol type.

Open Watcom Extended Keywords 201

Appendices

202 Open Watcom Extended Keywords

Trigraphs

B. Trigraphs

Thefollowing isthe list of trigraphs. InaC sourcefile, all occurrences (including inside
guoted strings and character constants) of any of the trigraph sequences below are replaced by

the corresponding single character.

Character

Trigraph
Sequence

> —

l

?22(
??)
?27?<
27>
??1
?7?7=
??/
?7?
??-

No other trigraphs exist. Any question mark (?) that does not belong to one of the trigraphsis

not changed.

To get a sequence of characters that would otherwise be atrigraph, placea \ before the
second question mark. Thiswill cause the trigraph to be broken up so that it is not

recognized, but later in the trandlation process, the \ ?
example, ?\ ?= will betrandated to ??=.

will be convertedto ?. For

Trigraphs 203

Appendices

204 Trigraphs

Escape Sequences

C. Escape Sequences

The following are the escape sequences and their meanings:

Escape

Sequence Meaning
\a Causes an audible or visual aert
\b Back up one character
\f Move to the start of the next page
\n Move to the start of the next line
\r Move to the start of the current line
\t Move to the next horizontal tab
\v Move to the next vertical tab

Each escape sequence maps to asingle character. When such a character is sent to adisplay
device, the action corresponding to that character is performed.

Escape Sequences 205

Appendices

206 Escape Sequences

Operator Precedence
|

D. Operator Precedence

The table below summarizes the levels of precedence in expressions.

Operations at a higher level in the table will occur before those below. All operators
involving more than one operand associate from left to right, except for the conditional and
assignment operators, which associate from right to left. Operations at the same level, except
where discussed in the relevant section, may be executed in any order that the compiler
chooses (subject to the usual algebraic rules). In particular, the compiler may regroup
sub-expressions that are both associative and commutative in order to improve the efficiency
of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is
also subject to ateration by the compiler.

Operator Precedence 207

Appendices

Expression Type Operators

primary identifier constant
string (expression)
postfix ab] f()
ab a>b at+ a-
unary sizeof u sizeof(a)
++a --a &a *a
+a -a ~a la
cast (type) a
multiplicative a*b alb a%b
additive at+b a-b
shift a<<b a>>b
relational a<b a>b a<=b a>=b
equality a== al=b
bitwise AND a&hb

bitwise exclusive OR |a” b

bitwiseinclusveOR [a|b

logical AND a&é&b

logical OR allb

conditional t a?b:c

assignment a= a+=b a-=b a*=

b
al=b a%=b a&=b a”=
b a<<=b a>>=b

comma ab

T associates from right to left

208 Operator Precedence

Formal C Grammar
|

E. Formal C Grammar

This appendix presents the formal grammar of the C programming language. The following
notation is used:

{digit}(0)
Zero or more occurrences of digit are allowed.
{digit} (1)
One or more occurrences of digit are allowed.
(integer-suffix O
integer -suffix is optional, with only one occurrence being allowed if present.
A|B|C
Chooseoneof A, Bor C.

E.1 Lexical Grammar

The following topics are discussed:
* Tokens
» Keywords
o |dentifiers
* Constants
e String Literals
* Operators

 Punctuators

Lexical Grammar 209

Appendices

E.1.1 Tokens

token
or
or
or

or
or

E.1.2 Keywords

keyword

or

keyword
identifier
constant
string-literal
operator
punctuator

standard-keyword
Open Watcom-extended-keyword

standard-keyword

auto
_Bool

br eak
case
char
_Complex
const
conti nue
defaul t
do

doubl e inline
el se i nt
enum | ong
extern register
fl oat restrict
for return
goto short

i f si gned
_Imaginary si zeof

Open Watcom-extended-keyword

Microsoft compilers compatible

__asm __finally
__based __fortran
__cdecl __huge
__declspec __inline
__except __int64
__export __interrupt
__far __leave
__farlé __loadds
__fastcall __near
IBM compilers compatible
_Cdecl _Finally
_Except _Leave

210 Lexical Grammar

static
struct
switch

t ypedef
uni on
unsi gned
voi d

vol atil e
whi | e

__pascal
__saveregs
__segment
__segname
__self
__stdcall
__syscall
__try
__unaligned

_Seglb
_Syscall

Formal C Grammar

_Export _Packed _System
_Farlé _Pascal _Try
_Fastcall

Open Watcom specific
__builtin_isfloat __watcall __ow_imaginary_ unit

E.1.3 Identifiers

identifier
nondigit { nondigit | digit} (0)

nondigit
a | b | | z | A | B | | 2 | _
digit
0] 1] | 9
E.1.4 Constants
constant
floating-constant
or integer-constant
or enumeration-constant
or character-constant

floating-constant
fractional-constant [éxponent-part [Ifl oating-suffix [
or digit-sequence exponent-part [l oating-suffix [

exponent-part
e| E#| - [digit-sequence

floating-suffix

Lexical Grammar 211

Appendices

fractional -constant
[digit-sequence [. digit-sequence
or digit-sequence .

digit-sequence
{digit}(1)

integer -constant
decimal-constant [integer-suffix [

or octal-constant [integer-suffix O
or hexadecimal -constant [integer-suffix O
integer -suffix
ulua|Lo
or I|LImuD

decimal-constant
nonzero-digit{ digit} (0)

nonzero-digit
11 2] ... |19

octal-constant
O{octal-digit}(0)

octal-digit
o| 1| ... | 7

hexadecimal -constant
0x|0X{ hexadecimal-digit} (1)

hexadecimal-digit
| ... | 9]
.. f | A|l B

enumer ation-constant
identifier

212 Lexical Grammar

Formal C Grammar

character-constant

"{c-char} (1)’
or L' {c-char} (1)’
c-char
any character in the source character set except
the single-quote ’ , backslash \ , or new-line character
or escape-sequence

escape-sequence is one of
Vvt N
\o \oo \ooo
\x{ hexadecimal-digit} (1)
\a\b\f\n\r\t\v

E.1.5 String Literals

string-literal
"{s-char}(0)"
or L"{s-char}(0)"
s-char
any character in the source character set except
the double-quote ", backslash \ , or new-line character
or escape-sequence
E.1.6 Operators
operator is one of
[1) ->
++ -- & * + - ~ 1 sizeof
[% << > < > <= >= = = ~ | && ||
?
= *= [= O 4= -= <<= >>= &= A= | =
. HOH#
>

Lexical Grammar 213

Appendices

E.1.7 Punctuators

punctuator

E.2 Phrase Structure Grammar

The following topics are discussed:
* Expressions
* Declarations
* Statements

» External Definitions

E.2.1 Expressions

constant-expression
conditional-expression

expression
assignment-expression{ , assignment-expression} (0)

assignment-expression
conditional-expression
or unary-expression assignment-operator assignment-expression

assignment-operator is one of
= *= [= O 4= -= <<= >>= &= A= | =

conditional -expression
logical-OR-expression [? expression : conditional-expression [

214 Phrase Structure Grammar

Formal C Grammar

logical-OR-expression
logical-AND-expression{| | logical-AND-expression}(0)

logical-AND-expression
inclusive-OR-expression { && inclusive-OR-expression} (0)

inclusive-OR-expression
exclusive-OR-expression {| exclusive-OR-expression} (0)

exclusive-OR-expression
AND-expression {* AND-expression}(0)

AND-expression
equality-expression { & equality-expression} (0)

equality-expression
relational-expression { ==|! = relational-expression} (0)

relational-expression
shift-expression { <|>|<=[>= shift-expression} (0)

shift-expression
additive-expression { <<|>> additive-expression} (0)

additive-expression
multiplicative-expression {+|- multiplicative-expression} (0)

multiplicative-expression
cast-expression {* |/ |%cast-expression} (0)

cast-expression
unary-expression
or (type-name) cast-expression

unary-expression
postfix-expression

or ++|-- |si zeof unary-expression
or si zeof (type-name)
or unary-operator cast-expression

Phrase Structure Grammar 215

Appendices

unary-operator is one of
& * + - ~ |

postfix-expression
primary-expression

or postfix-expression [expression]

or postfix-expression ([@rgument-expression-list [)
or postfix-expression . identifier

or postfix-expression - > identifier

or postfix-expression ++

or postfix-expression - -

argument-expression-list
assignment-expression {, assignment-expression} (0)

primary-expression

identifier
or constant
or string-literal
or (expression)
E.2.2 Declarations

declaration
declaration-specifiers [init-declarator-list [

declaration-specifiers
storage-class-specifier [declaration-specifiers [
or type-specifier [declaration-specifiers [

init-declarator-list
init-declarator {, init-declarator}(0)

init-declarator
declarator = initidlizer O

216 Phrase Structure Grammar

Formal C Grammar

storage-class-specifier

type-specifier

or
or
or
or

type-qualifier

or

typedef | extern | static |
void | char | short | int |
doubl e | signed | unsigned

struct-or-union-specifier
enum-specifier
typedef-name
type-qualifier

const | volatile
Open Watcom-type-qualifier

Open Watcom-type-qualifier

__based __fortran
_Cdecl __huge
__cdecl __inline
__declspec __int64
_Export __interrupt
__export __loadds
__far __near
_Farle _Packed
__farleé _Pascal
_Fastcall __pascal
__fastcall __saveregs

struct-or-union-specifier
struct-or-union Odentifier O struct-declaration-list }

or

struct-or-union

struct-or-union identifier

struct | union

struct-declaration-list

{struct-declaration} (1)

auto | register

long | float |

_Seglb
__segment
__segname
__self
__stdcall
_Syscall
__syscall
_System
__unaligned
__watcall

Phrase Structure Grammar 217

Appendices

struct-declaration
type-specifier-list struct-declarator-list;

type-specifier-list
{type-specifier} (1)

struct-declarator-list
struct-declarator {, struct-declarator}(0)

struct-declarator
declarator
or [declarator [I: constant-expression

enum-specifier
enum(identifier (enumerator-list }
or enumidentifier

enumerator-list
enumerator {, enumerator} (0)

enumer ator
enumeration-constant (& constant-expression

declarator
(pointer [direct-declarator

direct-declarator

identifier
or (declarator)
or direct-declarator [[@onstant-expression]
or direct-declarator (parameter-type-list)
or direct-declarator ([dentifier-list 0)

pointer
{* [Bype-specifier-list (1)

218 Phrase Structure Grammar

Formal C Grammar

parameter-type-list
parameter-list0) ... O

parameter-list
parameter-declaration {, parameter-declaration}(0)

parameter-declaration
declaration-specifiers declarator
or declaration-specifiers [@bstract-declarator [

identifier-list
identifier {, identifier} (o)

type-name
type-specifier-list [@bstract-declarator [

abstract-declarator
pointer
or (pointer [direct-abstract-declarator

direct-abstract-declarator
(abstract-declarator)

or [direct-abstract-declarator ([[@onstant-expression]
or [direct-abstract-declarator [([parameter-type-list [)
typedef-name
identifier
initializer

assignment-expression
or {iinitidlizer-list)

initializer-list
initializer {, initializer} (o)
E.2.3 Statements
statement
|abelled-statement
or compound-statement
or expression-statement
or sel ection-statement
or iteration-statement

Phrase Structure Grammar 219

Appendices

or jump-statement

|abelled-statement
identifier : statement

or case constant-expression : statement
or defaul t : statement

compound-statement
{ [declaration-list (Tstatement-list [}

declaration-list
{declaration} (1)

statement-list
{statement} (1)

expression-statement
[éxpression [

sel ection-statement
i f (expression) statement

or i f (expression) statement el se statement
or swi tch (expression) statement

iteration-statement
whi | e (expression) statement

or do statement whi | e (expression) ;
or for ([éxpression[] [expression [] [&xpression [0) statement

jump-statement
got o identifier;

or conti nue;
or br eak;
or r et ur n [éxpression [

E.2.4 External Definitions

file
{ external-definition} (1)

220 Phrase Structure Grammar

Formal C Grammar

external-definition
function-definition
or declaration

function-definition

[declaration-specifiers [declarator [declaration-list (I
compound-statement

E.3 Preprocessing Directives Grammar

preprocessing-file

group
group
{group-part} (1)
group-part
[pp-token Chew-line
or if-section
or control-line
if-section
if-group { eif-group} (0) [&se-group Cendif-line
if-group
i f const-expression new-line [group O
ifdef identifier new-line [group O
1 fndef identifier new-line [group O
elif-group
el i f constant-expression new-line [group O
else-group

el se new-line [group O

Preprocessing Directives Grammar 221

Appendices

endif-line

control-line

pp-tokens

endi f new-line

i ncl ude pp-tokens new-line

defi ne identifier (pp-tokens Chew-line

defi ne identifier ([dentifier-list O0) [pp-tokens Chew-line
undef identifier new-line

| i ne pp-tokens new-line

error [pp-tokens Chew-line

pragna [pp-tokens Chew-line

new-line

{ preprocessing-token} (1)

preprocessing-token

or
or
or
or
or
or

header-name

h-char

new-line

header-name (only within a #i ncl ude directive)

identifier (no keyword distinction)

constant

string-literal

operator

punctuator

each non-white-space character that cannot be one of the above

<{h-char}(0)>

any character in the source character set except new-lineand >

the new-line character

222 Preprocessing Directives Grammar

Translation Limits
'

F. Translation Limits

All standard-conforming C compilers must be able to translate and execute a program that
contains one instance of every one of the following limits. Each limit is the minimum limit
(the smallest maximum) that the compiler may impose.

The Open Watcom C16 and C32 compilers do not impose any arbitrary restrictions
in any of these areas. Restrictions arise solely because of memory limitations.

« 15 nesting levels of compound statements, iteration control structures (f or ,
do/whi | e, whi | e), and selection control structures (i f, swi t ch),

* 8 nesting levels of conditional inclusion (#i f),

* 12 pointer, array and function declarators (in any order) modifying an arithmetic,
structure, union or incomplete type in a declaration,

« 31 nesting levels of parenthesized declarators within afull declarator,

« 32 nesting levels of parenthesized expressions within afull expression,

* 31 significant initial charactersin an internal identifier or a macro name,

* 6 significant initial charactersin an external identifier,

* 511 externa identifiersin one trandation unit (module),

« 127 identifiers with block scope declared in one block,

* 1024 macro identifiers simultaneously defined in one trandlation unit (module),
* 31 parameters in one function definition,

* 31 arguments in one function call,

* 31 parameters in one macro definition,

Translation Limits 223

Appendices

* 31 parameters in one macro invocation,

* 509 charactersin alogical (continued) source line,

* 509 charactersin a character string literal or wide string literal (after concatenation),
* 32767 bytesin an object,

* 8 nesting levelsfor #i ncl uded files,

« 257 case labelsfor aswi t ch statement (excluding those for any nested swi t ch
statements),

* 127 members in asingle structure or union,
* 127 enumeration constants in a single enumeration,

« 15 levels of nested structure or union definitions in a single struct-declaration-list
(structure or union definition).

224 Translation Limits

Macros for Numerical Limits

G. Macros for Numerical Limits

Although the various numerical types may have different ranges depending on the
implementation of the C compiler, itisstill possible to write programs that can adapt to these
changing ranges. In most circumstances, it is clear whether an integer object is sufficiently
largeto contain all necessary values for it, regardless of whether or not the integer isonly 16
bits.

However, a programmer may want to be able to conditionally compile code based on
information about the range of certain types. The header <I i mi t s. h> defines a set of
macros that describe the range of the various integer types. The header <f | oat . h> defines
another set of macros that describe the range and other characteristics of the various
floating-point types.

G.1 Numerical Limits for Integer Types

The following macros are replaced by constant expressions that may be used in #i f
preprocessing directives. For acompiler to conform to the C language standard, the
magnitude of the value of the expression provided by the compiler must equal or exceed the
I SO value given below, and have the same sign. (Positive values must be greater than or
equal to the ISO value. Negative values must be less than or equal to the ISO value.) The
values for the actual compilers are shown following the ISO value.

« the number of bitsin the smallest object that is not a bit-field (byte)

Macro: CHAR_BIT Vaue

1SO >= 8
Open Watcom C6and C32 |8

Numerical Limits for Integer Types 225

Appendices

* the minimum value for an object of type si gned char

Macro: SCHAR_MIN Vaue
ISO <= -127
Open Watcom C¥6and C32 |- 128

« the maximum value for an object of type si gned char

Macro: SCHAR_MAX Vaue
ISO >= 127
Open Watcom C16 and C32 | 127

» the maximum value for an object of type unsi gned char

Macro: UCHAR_MAX Vaue
1SO >= 255
Open Watcom C16 and C32 | 255

* the minimum value for an object of type char

If char isunsi gned (the default case)

Macro: CHAR_MIN Vaue
1SO 0
Open Watcom C16and C32 |0

If char issi gned (by using the command-line switch to force it to be signed), then

CHAR_MIN isequivalent to SCHAR_MIN

226 Numerical Limits for Integer Types

Macro: CHAR_MIN Vaue
ISO <= -127
Open Watcom C6and C32 |- 128

» the maximum value for an object of type char

If char isunsi gned (the default case), then CHAR_MAX is equivalent to

UCHAR_MAX
Macro: CHAR_MAX Vaue
ISO >= 255
Open Watcom C16 and C32 | 255

Macros for Numerical Limits

If char issi gned (by using the command-line switch to force it to be signed), then
CHAR_MAX isequivalent to SCHAR_MAX

Macro: CHAR_MAX Vaue
1SO >= 127
Open Watcom C16 and C32 | 127

* the maximum number of bytes in amultibyte character, for any supported locale

Macro: MB_LEN_MAX

Vaue

ISO

>=

1

Open Watcom C16 and C32 |2

* the minimum value for an object of type short i nt

Numerical Limits for Integer Types 227

Appendices

Macro: SHRT_MIN Value

SO <= -32767

Open Watcom C16 and C32 |- 32768
« the maximum value for an object of type short i nt
Macro: SHRT_MAX Value

SO >= 32767

Open Watcom C16 and C32 | 32767

» the maximum value for an object of type unsi gned short int
Macro: USHRT_MAX Value
SO >= 65535
Open Watcom C16 and C32 | 65535

* the minimum value for an object of type i nt

Macro: INT_MIN Vaue

1SO <= -32767
Open Watcom C16 -32768

Open Watcom C32 - 2147483648

* the maximum value for an object of type i nt

Macro: INT_MAX Value

1SO >= 32767
Open Watcom C16 32767

Open Watcom C32 2147483647

228 Numerical Limits for Integer Types

Macros for Numerical Limits

* the maximum value for an object of type unsi gned i nt

Macro: UINT_MAX Vaue

1SO >= 65535
Open Watcom C16 65535

Open Watcom C32 4294967295

« the minimum value for an object of type | ong i nt

Macro: LONG_MIN

Vaue

ISO
Open Watcom C16 and C32

<= -2147483647
- 2147483648

« the maximum value for an object of type | ong i nt

Macro: LONG_MAX

Vaue

1SO
Open Watcom C16 and C32

>= 2147483647
2147483647

* the maximum value for an object of type unsi gned | ong i nt

Macro: ULONG_MAX

Vaue

1SO
Open Watcom C16 and C32

>= 4294967295
4294967295

* the minimum value for an object of type | ong | ong i nt

Macro: LLONG_MIN

Vaue

ISO
Open Watcom C16 and C32

<= -9223372036854775807
-9223372036854775808

Numerical Limits for Integer Types 229

Appendices

* the maximum value for an object of type | ong | ong i nt

Macro: LLONG_MAX

Value

1SO
Open Watcom C16 and C32

>= 0223372036854775807
9223372036854775807

« the maximum value for an object of type unsi gned | ong | ong int

Macro: ULLONG_MAX

Vaue

1SO
Open Watcom C16 and C32

>= 18446744073709551615
18446744073709551615

G.2 Numerical Limits for Floating-Point Types

The following macros are replaced by expressions which are not necessarily constant. For a
compiler to conform to the C language standard, the magnitude of the value of the expression
provided by the compiler must equal or exceed the SO value given below, and have the same
sign. (Positive values must be greater than or equal to the ISO value. Negative values must
be less than or equal to the SO value.) The values for the actual compilers are shown

following the 1SO value. Most compilers will exceed some of these values.

For those characteristics that have three different macros, the macros that start with FLT_
refer totypef | oat, DBL_ refer totype doubl e and LDBL _ refer totypel ong

doubl e.

* the radix (base) of representation for the exponent

Macro: FLT RADIX Vaue
1SO >= 2
Open Watcom C16 and C32 2

230 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

* the precision, or number of digits in the floating-point mantissa, expressed in terms of

the FLT_RADIX

Macro: FLT_MANT_DIG

Vaue

ISO no value specified
Open Watcom C16 and C32 23
Macro: DBL_MANT_DIG Value

ISO no value specified
Open Watcom C16 and C32 52
Macro: LDBL_MANT_DIG Vaue

ISO
Open Watcom C16 and C32

no value specified
52

* the number of decimal digits of precision

Macro: FLT_DIG Vaue
ISO >= 6
Open Watcom C16 and C32 6
Macro: DBL_DIG Value
1SO >= 10
Open Watcom C16 and C32 15
Macro: LDBL_DIG Vaue
1SO >= 10
Open Watcom C6 and C32 15

Numerical Limits for Floating-Point Types 231

Appendices

* the minimum negative integer n such that F1.T_RADIX raised to the power n, minus 1,
is anormalized floating-point number, or,

* the minimum exponent valueintermsof FLT_RADIX, o,
* the base FL.T_RADIX exponent for the floating-point value that is closest, but
not equal, to zero

Macro: FLT_MIN_EXP Value

ISO no value specified
Open Watcom C16 and C32 -127

Macro: DBL_MIN_EXP Value

ISO no value specified
Open Watcom C16 and C32 -1023

Macro: LDBL_MIN_EXP Value

ISO no value specified
Open Watcom C16 and C32 -1023

* the minimum negative integer n such that 10 raised to the power n isin the range of
normalized floating-point numbers, or,

« the base 10 exponent for the floating-point value that is closest, but not equal, to
zero

Macro: FLT_MIN_10_EXP Vaue

1SO <= -37
Open Watcom C16 and C32 -38

232 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: DBL_MIN_10_EXP Vaue

1SO <= -37
Open Watcom C16 and C32 -307

Macro: LDBL_MIN_10_EXP |Vaue

1SO <= -37
Open Watcom C16 and C32 - 307

* the maximum integer n such that FLT _RADIX raised to the power n, minus1, isa
representabl e finite floating-point number, or,

* the maximum exponent valuein termsof FLT_RADIX, Of,
« the base FLT_RADIX exponent for the largest valid floating-point value

Macro: FLT_MAX_EXP Value

ISO no value specified
Open Watcom C16 and C32 127

Macro: DBL_MAX_EXP Vaue

ISO no value specified
Open Watcom C6 and C32 1023

Macro: LDBL_MAX_EXP Value

ISO no value specified
Open Watcom C16 and C32 1023

Numerical Limits for Floating-Point Types 233

Appendices

* the maximum integer n such that 10 raised to the power n is a representable finite
floating-point number, or,

« the base 10 exponent for the largest valid floating-point value

Macro: FLT_MAX_10_EXP Vaue

ISO >= 37
Open Watcom C6 and C32 38

Macro: DBL_MAX_ 10_EXP Vaue

1SO >= 37
Open Watcom C16 and C32 308

Macro: LDBL_MAX_10_EXP |Vaue

1SO >= 37
Open Watcom C16 and C32 308

* the maximum representabl e finite floating-point number

Macro: FLT_MAX Vaue

ISO >= 1E+37

Open Watcom C6 and C32 3.402823466E+38

Macro: DBL_MAX Vaue

ISO >= 1E+37

Open Watcom C16 and C32 1.79769313486231560E+308

234 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: LDBL_MAX Vaue
1SO >= 1E+37
Open Watcom C16 and C32 1.79769313486231560E+308

« the difference between 1. 0 and the least value greater than 1. O that is representable
in the given floating-point type, or,

* the smallest number eps suchthat (1.0 + eps) != 1.0
Macro: FLT_EPSILON Value
ISO <= 1E-5
Open Watcom C16 and C32 1. 192092896E- 15
Macro: DBL_EPSILON Value
ISO <= 1E-9
Open Watcom C16 and C32 2.2204460492503131E- 16
Macro: LDBL_EPSILON Vaue
1SO <= 1E-9
Open Watcom C16 and C32 2.2204460492503131E- 16

* the minimum positive normalized floating-point number

Macro: FLT_MIN Vaue
1SO <= 1E- 37
Open Watcom C16 and C32 1.175494351E- 38

Numerical Limits for Floating-Point Types 235

Appendices

Macro: DBL_MIN Vaue

1SO <= 1E- 37

Open Watcom C16 and C32 2.22507385850720160E- 308
Macro: LDBL_MIN Vaue

ISO <= 1E- 37

Open Watcom C16 and C32 2.22507385850720160E- 308

As discussed in the section "Integer to Floating-Point Conversion”, the macro FLT_ROUNDS
is replaced by a constant expression whose value indicates what kind of rounding occurs
following afloating-point operation. The following table givesthe value of FLT_ROUNDS

and its meaning:

FLT_ROUNDS | Technique
-1 indeterminable
0 toward zero
1 to nearest number
2 toward positive infinity
3 toward negative infinity

If FLT_ROUNDS has any other value, the rounding mechanism is implementati on-defined.

For the Open Watcom C16 and C32 compiler, the value of
meaning that floating-point values are rounded to the nearest representable number.

236 Numerical Limits for Floating-Point Types

FLT_ROUNDS is1,

Implementation-Defined Behavior

H. Implementation-Defined Behavior

This appendix describes the behavior of Open Watcom C16 and C32 when the standard
describes the behavior as implementation-defined. The term describing each behavior istaken
directly from the ISO/ANSI C Language standard. The numbersin parentheses at the end of
each term refers to the section of the standard that discusses the behavior.

H.1 Translation

How a diagnostic isidentified (5.1.1.3).

A diagnostic message appears as.

filename(line-number): error-type! msg-number: msg_text

where:

filename

line-number

error-type

msg-number

is the name of the source file where the error was detected. If the error
was found in afileincluded from the source file specified on the
compiler command line, then the name of the included file will appear.

is the source line number in the named file where the error was
detected.

iseither theword Er r or for errors that prevent the compile from
completing successfully (no code will be generated), or War ni ng for
conditions detected by the compiler that may not do what the
programmer expected, but are otherwise valid. Warnings will not
prevent the compiler from generating code. The issuance of warnings
may be controlled by a command-line switch. Seethe User’s Guide
for details.

isthe letter E (for errors) followed by afour digit error number, or the

letter W(for warnings) followed by athree digit warning number. Each
message has its own unique message number.

Translation 237

Appendices

msg-text is a descriptive message indicating the problem.

Example:

test.c(35): Warning! WB01: No prototype found for 'Getltem
test.c(57): Error! E1009: Expecting '}’ but found ’',’

H.2 Environment

The semantics of the argumentsto main (5.1.2.2.1).

Each blank-separated token, except within quoted strings, on the command lineis made
into a string that isan element of ar gv. Quoted strings are maintained as one element.

For example, for the command line,

pgm 2+ 1 tokens "one token"
ar gc would have the value 5, and the five elements of ar gv would be,

pgm

2+

1

t okens
one token

What constitutes an interactive device (5.1.2.3).

For Open Watcom C16 and C32, the keyboard and the video display are considered
interactive devices.

H.3 Identifiers

Thenumber of significant initial characters (beyond 31) in an identifier without external
linkage (6.1.2).

Unlimited.

238 Identifiers

Implementation-Defined Behavior

The number of significant initial characters (beyond 6) in an identifier with external
linkage (6.1.2).

The Open Watcom C6 and C32 compilers do not impose alimit. The Open Watcom
Linker limits significant characters to 40.

Whether case distinctions are significant in an identifier with external linkage (6.1.2).
The Open Watcom C16 and C32 compilers produce object names in mixed case. The
Open Watcom Linker provides an option to respect or ignore case when resolving

linkages. By default, the linker respects case. See the Open Watcom Linker User’s
Guide for details.

H.4 Characters

The members of the source and execution character sets, except as explicitly specified in
thestandard (5.2.1).

Thefull IBM PC character set is available in both the source and execution character
sets. The set of values between 0x20 and 0x7F are the ASCII character set.

The shift states used for the encoding of multibyte characters (5.2.1.2).
There are no shift statesin the support for multibyte characters.

Thenumber of bitsin a character in the execution character set (5.2.4.2.1).
8

The mapping of member s of the sour ce character set (in character constants and string
literals) to member s of the execution character set (6.1.3.4).

Both the source and execution character sets are the full IBM PC character set for
whichever code pageisin effect. In addition, the following table shows escape
sequences available in the source character set, and what they trandate to in the
execution character set.

Characters 239

Appendices

Escape Hex

Sequence |Value | Meaning

\a 07 Bell or alert

\b 08 Backspace

\ f 0oC Form feed

\n 0A New-line

\r oD Carriage return

\'t 09 Horizontal tab

\'v 0B Vertical tab

\’ 27 Apostrophe or single quote
\ " 22 Double quote

\? 3F Question mark

\\ 5C Backslash

\ ddd Octal value

\ xddd Hexadecimal value

Thevalue of an integer character constant that contains a character or escape sequence
that is not represented in the execution character set or the extended character set for a
wide character constant (6.1.3.4).

Not possible. Both the source and execution character sets are the IBM PC character set.
Thus, all charactersin the source character set map directly to the execution character
Set.

Thevalue of an integer character constant that contains morethan one character or a
wide character constant that contains morethan one multibyte character (6.1.3.4).

A multi-character constant is stored with the right-most character in the lowest-order
(least significant) byte, and subsequent characters (moving to the left) being placed in
higher-order (more significant) bytes. Up to four characters may be placed in a character
constant.

Thecurrent locale used to convert multibyte charactersinto cor responding wide
characters (codes) for awide character constant (6.1.3.4).

The Open Watcom C16 and C32 compilers currently support only the " C' locale, using
North American English, and translates code page 437 to UNICODE.

To support multibyte characters, acommand line switch can be used to indicate which
multibyte character set to use. Seethe User’s Guide for details.

240 Characters

Implementation-Defined Behavior

Whether aplain char hasthe samerange of valuesas si gned char or unsi gned
char (6.2.1.1).

Open Watcom C16 and C32treat char asunsi gned, athough acompiler command
line switch can be used to makeit si gned.

H.5 Integers

Therepresentations and sets of values of the various types of integers (6.1.2.5).

Integers are stored using 2's complement form. The high bit of each signed integer isa
sign bit. If thesign bitis 1, the valueis negative.

The ranges of the various integer types are described in the section "Integer Types'.
Theresult of converting an integer to a shorter signed integer, or the result of converting
an unsigned integer to a signed integer of equal length, if the value cannot be
represented (6.2.1.2).

When converting to a shorter type, the high-order bits of the longer value are discarded,
and the remaining bits are interpreted according to the new type.

For example, converting the signed long integer - 15584170 (hexadecimal
0xFF123456) to asigned short integer yields the result 13398 (hexadecimal
0x3456).

When converting an unsigned integer to asigned integer of equal length, the bits are
simply re-interpreted according to the new type.

For example, converting the unsigned short integer 65535 (hexadecimal OxFFFF) to a
signed short integer yields the result - 1 (hexadecimal Ox FFFF).

Theresults of bitwise operations on signed integers (6.3).

The sign bit is treated as any other bit during bitwise operations. At the completion of
the operation, the new bit pattern is interpreted according to the result type.

Thesign of the remainder on integer division (6.3.5).

The remainder has the same sign as the numerator (left operand).

Integers 241

Appendices

Theresult of aright shift of a negative-valued signed integral type (6.3.7).

A right shift of asigned integer will leave the higher, vacated bits with the original value
of the high bit. In other words, the sign bit is propogated to fill bits vacated by the shift.

For example, theresult of ((short) 0x0123) >> 4 would be 0x0012. The
result of ((short) OxFEFE) >> 4 will be OxFFEF.

H.6 Floating Point

Therepresentations and sets of values of the various types of floating-point numbers
(6.1.2.5).

These are discussed in the section "Floating-Point Types'. The floating-point format
used isthe |EEE Standard for Binary Floating-Point Arithmetic as defined in the
ANSI/IEEE Standard 754-1985.

Thedirection of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value (6.2.1.3).

Truncation is only possible when convertinga | ong i nt (signed or unsigned) to
f | oat . The 24 most-significant bits (including sign bit) are used. The 25this

examined, and if itis 1, the value is rounded up by adding one to the 24-bit value. The
remaining bits are ignored.

Thedirection of truncation or rounding when a floating-point number isconverted to a
narrower floating-point number (6.2.1.4).

The value is rounded to the nearest value in the smaller type.

H.7 Arrays and Pointers

Thetype of integer required to hold the maximum size of an array — that is, the type of
thesi zeof operator, size t (6.3.34,7.1.1).

unsi gned int

242 Arrays and Pointers

Implementation-Defined Behavior

Theresult of casting an integer to a pointer or vice versa (6.3.4).

Open Watcom C16 conversion of pointer to integer:

Pointer short int

Type i nt [ong int

near result is pointer value result isDSregister in
high-order 2 bytes, pointer
value in low-order 2 bytes

far segment is discarded, result | result is segment in high-

huge is pointer offset (low-order | order 2 bytes, offset in

2 bytes of pointer) low-order 2 bytes

Open Watcom C16 conversion of integer to pointer:

Integer far pointer

Type near pointer huge pointer

short int [resultisinteger value result segment isDS

int register, offset is
integer value

[ong int result is low-order 2 bytes | result segment is high-

of integer value order 2 bytes, offsetis

low-order 2 bytes

Open Watcom C32 conversion of pointer to integer:

Pointer i nt
Type short [ong int
near result islow-order 2 bytes | result is pointer value
of pointer value
far segment is discarded, result | segment is discarded, result
huge islow-order 2 bytes of is pointer offset
pointer value

Arrays and Pointers 243

Appendices

Open Watcom C32 conversion of integer to pointer:

Integer
Type

near pointer

far pointer
huge pointer

short

i nt

result isinteger value,
with zeroes for high-order
2 bytes

result segment isDS
register, offset isinteger
value, with zeroes for
high-order 2 bytes

i nt
long int

result isinteger value

result segment isDS
register, offsetis
integer value

Thetype of integer required to hold the difference between two pointersto e ements of

thesamearray, ptrdiff_t (6.3.6, 7.1.1).

If the huge memory model isbeing used, ptrdiff_t hastypel ong int.

For all other memory models, ptrdiff t hastypei nt.

If two huge pointers are subtracted and the huge memory model is not being used, then

theresult typewill bel ong i nt eventhough ptrdiff tisint.

H.8 Registers

The extent to which objects can actually be placed in registers by use of the r egi st er

stor age-class specifier (6.5.1).

The Open Watcom C6 and C32 compilers may place any object that is sufficiently

small, including a small structure, in one or more registers.

The number of objects that can be placed in registers varies, and is decided by the
compiler. Thekeyword r egi st er does not control the placement of objectsin

registers.

244 Registers

Implementation-Defined Behavior

H.9 Structures, Unions, Enumerations and Bit-Fields

A member of a union object isaccessed using a member of a different type (6.3.2.3).

The behavior is undefined. Whatever bit values are present as were stored via one
member will be extracted via another.

The padding and alignment of member s of structures (6.5.2.1).
The Open Watcom C16 and C32 compilers align structure members by default. A
command line switch, or the pack pragma, may be used to override the default. See the

User’s Guide for default values and other details.

Whether a" plain” i nt bit-field istreated asa si gned i nt bit-field or asan
unsi gned i nt bit-field (6.5.2.1).

signed int

Theorder of allocation of bit-fields within a unit (6.5.2.1).
Low-order (least significant) bit to high-order bit.

Whether abit-field can straddle a storage-unit boundary (6.5.2.1).

Bit-fields may not straddle storage-unit boundaries. If there isinsufficient room to store
a subsequent bit-field in a storage-unit, then it will be placed in the next storage-unit.

Theinteger type chosen to represent the values of an enumeration type (6.5.2.2).

By default, Open Watcom C6 and C32 will use the smallest integer type that can
accommodate all valuesin the enumeration.

Open Watcom C6 and Open Watcom C32 will choose the first appropriate type from
the following table:

Type Smallest Value Largest Value
si gned char -128 127

unsi gned char 0 255

si gned short - 32768 32767

unsi gned short 0 65535

si gned | ong -2147483648 2147483647

Structures, Unions, Enumerations and Bit-Fields 245

Appendices

unsi gned | ong 0 4294967295
signed | ong | ong -9223372036854775808 |9223372036854775807
unsi gned long long |0 18446744073709551615

Both compilers have a command-line switch that force all enumerationsto type i nt .
See the User’s Guide for details.

H.10 Qualifiers

What constitutes an accessto an object that has volatile-qualified type (6.5.5.3).

Any reference to avolatile object is aso an access to that object.

H.11 Declarators

Themaximum number of declaratorsthat may modify an arithmetic, structure or union
type (6.5.4).

Limited only by available memory.

H.12 Statements

Themaximum number of case valuesin a swi t ch statement (6.6.4.2).

Limited only by available memory.

H.13 Preprocessing Directives

Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in the
execution character set. Whether such a character constant may have a negative value
(6.8.1).

The character sets are the same so characters will match. Character constants are
unsigned quantities, so no character will be negative.

246 Preprocessing Directives

Implementation-Defined Behavior

The method for locating includable sour ce files (6.8.2).
See the User’s Guide for full details of how included files are located.
Thesupport of quoted namesfor includable sour cefiles (6.8.2).
Seethe User’s Guide for full details of how included files are located.
The mapping of sour cefile character sequences (6.8.2).

The source and execution character sets are the same. Escape sequences are not
supported in preprocessor directives.

The behavior of each recognized #pr agma directive (6.8.6).
See the User's Guide.

Thedefinitionsfor __DATE__ and __TIME__ when respectively, the date and time of
trandation are not available (6.8.8).

The date and time are always available.

H.14 Library Functions

Thenull pointer constant to which the macro NULL expands (7.1.6).
For Open Watcom C16, the NULL macro expandsto O for the small and medium (small
data) memory models, and to OL for the compact, large and huge (big data) memory
models.

For Open Watcom C32, the NULL macro expandsto O.

The implementation-defined behavior of the library functionsis described in the Open
Watcom C Library Reference manual.

Library Functions 247

Appendices

248 Library Functions

Examples of Declarations
e

I. Examples of Declarations

This chapter presents a series of examples of declarations of objects and functions. Along
with each example is a description that indicates how to read the declaration.

This chapter may be used as a " cookbook" for declarations. Some complicated but commonly
required declarations are given here.

Thefirst examples are very simple, and build in complexity. Some of the examples given
near the end of each section are unlikely to ever be required in areal program, but hopefully
they will provide an understanding of how to read and write C declarations.

To reduce the complexity and to better illustrate how a small differencein the declaration can
mean a big difference in the meaning, the following rules are followed:

1. if anobjectisbeing declared, itiscaled x or X,
2. if afunctionisbeing declared, itiscalled F,

3. if anobject isbeing declared, it usually hastype i nt , although any other type may
be substituted,

4. if afunction isbeing declared, it usualy returnstype i nt , although any other type
may be substituted.

Storage class specifiers (ext ern, st ati ¢, aut o or r egi st er) have purposely been
omitted.

I.1 Object Declarations

Here are some examples of object (variable) declarations:

Object Declarations 249

Appendices

int Xx;
2 1
(1) X isan (2) integer.

int * x;
3 21
(1) X isa(2) pointer to an (3) integer.

int ** x;
4 321
(1) x isa(2) pointer to a (3) pointer to an (4) integer.

const int x;
2 3 1
(1) x isa(2) constant (3) integer.

i nt const Xx;
3 2 1
(1) X isa(2) constant (3) integer (same as above).

const int * x;
3 4 21
(1) X isa(2) pointer to a (3) constant (4) integer. The value of x may change, but the
integer that it points to may not be changed. In other words, * x cannot be modified.

int * const x;
4 3 2 1
(1) X isa(2) constant (3) pointer to an (4) integer. The vaue of x may not change, but
the integer that it points to may change. In other words, x will aways point at the
same location, but the contents of that location may vary.

const int * const Xx;
4 5 3 2 1
(1) X isa(2) constant (3) pointer to a (4) constant (5) integer. The value of x may not
change, and the integer that it points to may not change. In other words, x will aways
point at the same location, which cannot be modified via x.

250 Object Declarations

Examples of Declarations

int x[1;
3 12
(1) x isan (2) array of (3) integers.

int x[53];
4 123
(1) x isan (2) array of (3) 53 (4) integers.

int * x[];
4 3 12
(1) x isan (2) array of (3) pointersto (4) integer.

int (*x)[1;

4 21 3

(1) x isa(2) pointer to an (3) array of (4) integers.

int * (*x)[];

5 4 213

(1) X isa(2) pointer to an (3) array of (4) pointersto (5) integer.

int (*x)();

4 21 3

(1) X isa(2) pointer to a (3) function returning an (4) integer.
int (*x[25])();

6 4123 5

(1) x isan (2) array of (3) 25 (4) pointersto (5) functions returning an (6) integer.

1.2 Function Declarations

Here are some examples of function declarations:
int F();

3 12
(1) Fisa(2)function returning an (3) integer.

Function Declarations 251

Appendices

int * F();
4 3 12
(1) Fisa(2)function returning a (3) pointer to an (4) integer.

int (*F())();
5 312 4
(1) Fisa(2)function returning a (3) pointer to a (4) function returning an (5) integer.

int > (*F())();

6 5 312 4

(1) Fisa(2)function returning a (3) pointer to a (4) function returning a (5) pointer to
an (6) integer.

int (*F())[];
5 312 4
(1) Fisa(2) function returning a (3) pointer to an (4) array of (5) integers.

int (*(*FO))L[1) ()
7 5312 4 6

(1) Fisa(2)function returning a (3) pointer to an (4) array of (5) pointersto
(6) functions returning an (7) integer.

int * (*(*F())[1)(O);

8 7 5312 4 6

(1) Fisa(2)function returning a (3) pointer to an (4) array of (5) pointersto
(6) functions returning a (7) pointer to an (8) integer.

1.3_ _far, __near and _ _huge Declarations

The following examplesillustrate the use of the __far and __huge keywords.

Theuse of the = _near keyword is symmetrical with the use of the __far keyword, so no
examplesof __near are shown.

252 _ _far, _

int __far X;

3 2 1
(1) Xisa(2)far (3)integer.

_near and _ _huge Declarations

Examples of Declarations

int * __far x;
4 3 2 1
(1) x is(2)far, and isa(3) pointer to an (4) integer.

int __far * x;
4 2 31
(1) x isa(2)far (3) pointer to an (4) integer.

int __far * __far x;
5 3 4 2 1
(1) x is(2)far,andisa(3) far (4) pointer to an (5) integer.

int __far X[];
4 2 13

(1) Xisa(2)far (3)array of (4)integers.

int __huge XI[];
4 2 13

(1) x isa(2) huge (3) array of (4) integers (X isan array that can exceed 64K in size.)

int * __far X[];
5 4 2 13

(1) Xisa(2)far (3)array of (4) pointersto (5) integers.

int __far * X[];
5 3 4 12

(1) Xisan (2) array of (3) far (4) pointersto (5) integers.

int __far * __far XI[];
6 4 5 2 13

(1) Xisa(2)far (3)array of (4)far (5) pointersto (6) integers.

int __far F();
4 2 13
(1) Fisa(2)far (3)function returning an (4) integer.

int * __far F();

5 4 2 13
(1) Fisa(2)far (3)function returning a (4) pointer to an (5) integer.

_far, _ _near and _ _huge Declarations 253

Appendices

int __far * F();

5 3 4 12
(1) Fisa(2)function returning a (3) far (4) pointer to an (5) integer.

int __far * __far F();

6 4 5 2 13
(1) Fisa(2)far (3)function returning a (4) far (5) pointer to an (6) integer.

int (__far * x)();
5 2 314
(1) x isa(2)far (3) pointer to a (4) function returning an (5) integer.

int __far * (* x)();
6 4 5 213
(1) x isa(2) pointer to a (3) function returning a (4) far (5) pointer to an (6) integer.

int __far * (__far * x)();
7 5 6 2 314

(1) X isa(2)far (3) pointer to a (4) function returning a (5) far (6) pointer to
an (7) integer.

1.4 _ _interrupt Declarations

The following example illustrates the use of the __interrupt keyword.
void __interrupt __far F();

5 3 2 14
(1) Fisa(2)far (3)interrupt (4) function returning (5) nothing.

254 _ _interrupt Declarations

A Sample Program
e

J. A Sample Program

This chapter presents an entire C program, to illustrate many of the features of the language,
and to illustrate elements of programming style.

This program implements a memo system suitable for maintaining a set of memos, and
displaying them on the screen. The program allows the user to display memos relevant to
today’ s date, move through the memos adding new ones and replacing or deleting existing
ones. The program displays help information whenever an invalid action is entered, or when
the sole parameter to the program is a question mark.

The program isin complete conformance to the 1ISO C standard. It should be ableto run,
without modification, on any system that provides an | SO-conforming C compiler.

J.1 The memos.h File

The source file menos. h contains the structures used for storing the memos:

/* This structure is for an individual line in a nmeno
*/
typedef struct text_line {
struct text_line * next;
char text[1];
} TEXT_LINE;

/* This structure is the head of an individual neno
*/
typedef struct memo_el {

struct memo_el * prev;

struct memo_el * next;

TEXT_LINE * text;
char dat e[9] ;
} MEMO_EL;

The memos.h File 255

Appendices

J.2 The memos.c File

The source for the program follows:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <tine. h>
#i ncl ude "nenos. h"
/* This programinplenents a sinple neno facility.
* Menmps nay be added to a meno file, displayed
* on the screen, and del eted.
*
* Mbdified by reason
* ———=—===== == ===
* 87/10/ 02 Steve McDowel | Initial inplenmentation.
* 88/09/ 20 Steve McDowel | Fixed up sone style issues,
* introduced use of TRUE and
* FALSE.
*/
/* Define some constants to nake the code nore readabl e.
*/

#defi ne TRUE
#def i ne FALSE

#defi ne NULLCHAR

static const char
static const char

static MEMO_EL *
static int
static int

typedef enum {
| NVALI D,
HELP,
ADD,
DELETE,
REPLACE,
SHOW
UP,
DOWN,
TOP,
TODAY,
SAVE,
QT

} ACTI ON;

256 The memos.c File

1

0

o
Fil eNane[] = { "nenos.db" };
TenpNanme[] = { "tenpneno.db" };
MemoHead = NULL;
MenosModi fi ed = FALSE;
Qi tFl ag = TRUE;

A Sample Program

/* This table naps action keywords onto the "actions" defined
* above. The table also defines short forms for the keywords.

*/

typedef struct {
ACTI ON act;
char * keyword;

} ACTION_MAP;

static ACTION_MAP KeywordMap[] = {

HELP, "hel p",
HELP, "h",

ADD, "add",
ADD, "at
DELETE, "delete",
DELETE, "del",

REPLACE, "repl ace",
REPLACE, "rep",
SHOW "show',

SHOW "sh",
UP, "up",
UP, "u",
DOV, "down",
DOV, "d",
TOP, "top",
TCODAY, "t oday",
TCODAY, "tod",
SAVE, "save",
SAVE, "sa",
QIT, "quit",
QUIT, "q",

I NVALI D, "" };

/* Maxi mum buffer | ength (maxi mum|ength of

*/
#defi ne MAXLEN 80

/* Function prototypes.

*/
static TEXT_LINE * AddLine();
static MEMO_EL * AddMemo () ;

static MEMO_EL
static MEMO_EL
static MEMO_EL
static MEMO_EL DoUpAction();
static MEMO_EL EnterAMemo () ;
static ACTI ON Get Action();
static void * MenmoMAI | oc() ;
static ACTI ON Pronpt Acti on();
static ACTI ON ReadAction();
static MEMO_EL * ReadAMemo () ;
static MEMO_EL * ShowTodaysMemos () ;

DeleteMemo () ;
DoActions () ;
DoDownAction();

* % ok kX

of meno).

The memos.c File 257

Appendices

extern int main(int argc, char * argv[]

IR EEA SRR EEEEEEEEEEEEEEEEEEEREEEEEEEEEE

{
i nt i ndex;
MEMO_EL * el;

printf("Meno facility\n");

)
/

/* Check for a single argunent that is a question mark,
* |f found, then display the usage notes.

*/

if(argc == 2 && strcnp(argv[1],
Usage() ;
exit(0);

}

ReadMenos();

MenosModi fi ed = FALSE;

Qi tFl ag = FALSE;

/* Use the command |ine paraneters, if any,

* actions to be perforned on the nenos.
*/
el = NULL;

wou

) ==0) {

as the first

for(index = 1; index < argc; ++index) {
el = DoActions(el, GetAction(argv[index]));

if(QuitFlag) {
return(FALSE);
}

}
Handl eMenpActions(el);
return(FALSE);

}

static void ReadMenos(void)

/***************************/

/* Read the nenos file, building the structure to contain it.

*/
{
FILE * fid;
MEMO_EL * new_el;
MEMO_EL * prev_el;
i nt ncount;

fid = fopen(FileNarme, "r");
if(fid == NULL) {
printf(“"Menos file not found."

Starting with no menos.\n");

return;

258 The memos.c File

A Sample Program

/* Loop reading entire menos.
*/
prev_el = NULL;
for(nmcount = 0;; ntount++) {
new_el = ReadAMemo (fid);
if(new_el == NULL) {
printf("% meno(s) found.\n", nctount);
fclose(fid);

return;
}
if(prev_el == NULL) {
MemoHead = new_el;
new_el->prev = NULL;
} else {
prev_el->next = new_el;
new_el->prev = prev_el;
}
new_el->next = NULL;
prev_el = new_el;

}

static int ReadLine(char buffer[], int len, FILE * fid)

AR R R R R RS EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEY]

/* Read a line fromthe nenos file. Handle any I1/O errors and
* EOF. Return the length read, not counting the newine on

* the end

*/

if(fgets(buffer, len, fid) == NULL) {
if(feof(fid)) {
return(ECF);
}

perror("Error reading nmenos file");
abort();

return(strlen(buffer) - 1);

}

static MEMO_EL * ReadAMemo(FILE * fid)

AR AR EE AR EEEEEEEEEEEEEEEEEEEEEY]

/* Read one neno, creating the nmeno structure and filling it
* in. Return a pointer to the meno (NULL if none read)
*/

{
MEMO_EL * el;
i nt I en
TEXT_LINE * line;
char buf f er [MAXLEN ;

| en = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {

return(NULL);
}

The memos.c File

259

Appendices

/* First line nust be of the form"Date:" or "Date:YY/ MM DD":
*/
if((len!=5 && len != 13)
|| strncnp(buffer, "Date:", 5) !=0) {
BadFor mat () ;

}
buffer[len] = NULLCHAR
el = MemoMAlloc(sizeof(MEMO_EL));
el ->text = NULL;
strcpy(el->date, buffer + 5);
line = NULL;
for(;;) {
| en = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {
BadFor mat () ;

}

buffer[len] = NULLCHAR

if(strenp(buffer, "====") == 0) {
return(el);

}
l'ine = AddLi ne(buffer, el, line);

}

static TEXT_LINE * AddLine(char buffer|],
MEMO_EL * el,
TEXT_LINE * prevline)

IR EEA R ER R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* Add a line of text to the neno, taking care of all the
* details of nodifying the structure.

*/
{
TEXT_LINE * line;
line = MemoMAlloc(sizeof(TEXT_LINE) + strlen(buffer));
strcpy(line->text, buffer);
|'i ne->next = NULL;
if(prevliine == NULL) {
el ->text = line;
} else {
prevline->next = |ine;
return(line);
}

static ACTION Pronpt Action(void)

AR R E R EEEEEEEEEEEE RS

/* The user didn't specify an action on the conmand Ii ne,
* so pronpt for it.
*/

ACTI ON act ;
for(;;

) A
printf("\nEnter an action:\n");
act = ReadAction();

260 The memos.c File

A Sample Program

if(act 1= INVALID) {
return(act);

printf("\nThat selection was not valid.\n");
Hel p();

}

static ACTI ON ReadAction(void)

1A R R R R EEEEEEEEEEEE LY

/* Read an action fromthe term nal.
* Return the action code.

*/
{
char buffer[80];
if(gets(buffer) == NULL) {
perror("Error reading action");
abort();
}
return(GetAction(buffer));
}

static ACTI ON Get Action(char buffer[])
/

IR AR EE AR EEEEEEEEEEEEEEEEEEEEEE]

/* Gven the string in the buffer, return the action that
* corresponds to it.
* The string in the buffer is first zapped into | ower case
* so that m xed-case entries are recogni zed.
*/
{
ACTION_MAP * actmap;
char * buf ptr;

for(bufptr
*buf ptr
}

for(actmap = KeywordMap; actmap->act != I NVALID;, ++actmap) {
if(strcnp(buffer, actmap->keyword) == 0) break;
}

return(actnmap->act);

buffer; *bufptr !'= NULLCHAR, ++bufptr) {
tol ower(*bufptr);

}

static void HandleMemoActions(MEMO_EL * el)
/***/

/* Handle all the actions entered fromthe keyboard.
*/

for(;;) {

el = DoActions(el, PronptAction());
if(QuitFlag) break;

The memos.c File 261

Appendices

static MEMO_EL * DoActions(MEMO_EL * el, ACTION act)

IR AR EE AR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEERY)

/* Perform one action on the nenos.
*/
{
MEMO_EL * new_el;
MEMO_EL * prev_el;

switch(act) {
case HELP:
Hel p();
br eak;
case ADD:
new_el = AddMemo(el);
if(new_el != NULL) {
el = new_el;
MenosModi fied = TRUE;
}
br eak;
case DELETE:
el = Del eteMeno(el);
MenosModi fi ed = TRUE;
br eak;
case REPLACE:
prev_el = el;
new_el = AddMemo(el);
if(new_el != NULL) {
DeleteMemo (prev_el);
MenosModi fied = TRUE;
}
br eak;
case SHOW
Di spl ayMeno(el);
br eak;
case UP:
el = DoUpAction(el);
br eak;
case DOMN:
el = DoDownAction(el);
br eak;
case TOP:
el = NULL;
br eak;
case TODAY:
el = ShowTodaysMenos();
br eak;
case SAVE:
if(SaveMenos()) {
MenosModi fi ed = FALSE;
}

br eak;
case QUIT:
if(wantToQuit()) {
QuitFlag = TRUE;
el = NULL;

262 The memos.c File

A Sample Program

}

return(el);

static MEMO_EL * AddMemo(MEMO_EL * el)
/**************************************/

/* Add a neno following the current one.

{

}

MEMO_EL * new_el;
MEMO_EL * next;

new_el = EnterAMemo () ;
if(new_el == NULL) {
return(NULL);

}

if(el == NULL) {
next = MenpHead;
MemoHead = new_el;

} else {
next = el ->next;
el->next = new_el;

}

new_el->prev = el;

new_el->next = next;

if(next !'= NULL) {
next->prev = new_el;

}

return(new_el);

static MEMO_EL * EnterAMemo(void)
/*********************************/

/* Read a menp fromthe keyboard, creating the nmeno structure

{

* and filling it in. Return a pointer to the meno (NULL if
* none read).

MEMO_EL * el;

i nt | en;
TEXT_LINE * line;
char buf f er [MAXLEN ;

printf("What date do you want the nmeno displ ayed”
" (YY/MMDD)\n");
if(gets(buffer) == NULL) {
printf("Error reading fromternminal.\n");
return(NULL);

len = strlen(buffer);

if(len!=0
& (len I=8
|| buffer[2] !="/"
|| buffer[5] !'="/")) {
printf("Date is not valid.\n");

return(NULL);

The memos.c File

263

Appendices

el = MemoMAlloc(sizeof(MEMO_EL));
el ->text = NULL;
strcpy(el->date, buffer);
line = NULL;
printf("\nEnter the text of the meno.\n");
printf("To term nate the neno,"
" enter a line starting with =\n");
for(;;) {
if(gets(buffer) == NULL) {
printf("Error reading fromtermnal.\n");
return(NULL);

}
if(buffer[0] =="=) {
return(el);

}
l'ine = AddLine(buffer, el, line);

}

static MEMO_EL * DeleteMemo(MEMO_EL * el)

/***/

/* Delete the current meno.
* Return a pointer to another meno, usually the foll ow ng one.
*/
{
MEMO_EL * prev;
MEMO_EL * next;
MEMO_EL * ret_el;

if(el == NULL) {
return(MenoHead);
}

prev = el ->prev;

next = el ->next;

ret_el = next;

if(ret_el == NULL) {
ret_el = prev;

}

/* If it’s the first nenpo, set a new MenpHead val ue.
*/
if(prev == NULL) {
MenoHead = next;
if(next !'= NULL) {
next->prev = NULL;

} else {
prev->next = next;
if(next !'= NULL) {
next->prev = prev;
}
}

Di sposeMenp(el);
return(ret_el);

264 The memos.c File

A Sample Program

static MEMO_EL * DoUpAction(MEMO_EL * el)

IR AR R EEEEEEEEEEEEEEEEEEEEEEEELY

/* Performthe UP action, including displaying the neno.
*/

if(el == NULL) {
Di spl ayTop();
} else {
el = el->prev;
Di spl ayMermo(el);

return(el);

}

static MEMO_EL * DoDownAction(MEMO_EL * el)
/***/

/* Performthe DOM action, including displaying the neno.
*/

{
MEMO_EL * next_el;
next_el = (el == NULL) ? MemoHead : el->next;
if(next_el == NULL) {
printf("No nore nmenos.\n");
} else {
el = next_el;
Di spl ayMermo(el);
return(el);
}

static MEMO_EL * ShowTodaysMemos (void)
/**************************************/

/* Show all nenos that either:
* (1) match today’s date
* (2) don’t have a date stored.
* Return a pointer to the |ast displayed meno.
*/
{
MEMO_EL * el;
MEMO_EL * last_el;

time_t timer;
struct tmltineg;
char dat e[9];

/* Get today's time in YY/ MM DD fornat.
*/
tinme(&iner);
Itine = *localtine(&iner);
strftime(date, 9, "%/ % %", &time);
last_el = NULL;

The memos.c File

265

Appendices

for(el = MenoHead; el != NULL; el = el->next) {
if(el->date[0] == NULLCHAR
|| strcnp(date, el->date) == 0) {
Di spl ayMeno(el);
last_el = el;
}
}
return(last_el);

}

static void DisplayMemo(MEMO_EL * el)

JEEEEAAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* Display a nenp on the screen.

*/
{
TEXT_LINE * tline;
if(el == NULL) {
Di spl ayTop();
return;
}
if(el->date[0] == NULLCHAR) {
printf("\nUndated nmenmo\n");
} else {
printf("\nDated: %\n", el->date);
for(tline = el->text; tline !'= NULL; tline = tline->next) {
printf(" %\n", tline->text);
}

static int SaveMenos(void)

AR AR EE AR EEEEEEEELY

/* Save the nenbs to the nenos file
*/
{
FILE * fid;
MEMO_EL * el;
TEXT_LINE * tline;
char buf fer[20];

i f(MempHead == NULL) {
printf("No nenps to save.\n");
return(FALSE);

}

/* Open a tenporary filenane in case sonething goes wong
* during the save.
*/
fid = fopen(TenpNanme, "w');
if(fid == NuLL) {
printf("Unable to open \"%\" for witing.\n", TenpNane);
printf("Save not performed.\n");
return(FALSE);

266 The memos.c File

A Sample Program

for(el = MenoHead; el != NULL; el = el->next) {
sprintf(buffer, "Date: %", el->date);
if('WiteLine(buffer, fid)) {
return(FALSE);

tline = el ->text;
for(; tline !'= NULL; tline = tline->next) {
if('WiteLine(tline->text, fid)) {
return(FALSE);
}

}

if('WiteLine("====", fid)) {
return(FALSE);

}

}

/* Now get rid of the old file, if it's there, then renane
* the new one.
*/
fclose(fid);
fid = fopen(FileNarme, "r");
if(fid!= NULL) {
fclose(fid);
if(renove(FileNane) !'= 0) {
perror("Can't renove old nmenos file");
return(FALSE);
}

if(rename(TenmpNane, FileName) !'= 0) {
perror("Can't renane new nenos file");
return(FALSE);

}
return(TRUE);
}

static int WiteLine(char * text, FILE * fid)

/***/

if(fprintf(fid, "%\n", text) <0) {
perror("Error witing nmenos file");
return(FALSE);

}
return(TRUE);
}

/* Routines for displaying HELP and ot her sinple text.
*/

static void Usage(void)

IR R AR E R EEEEEE LY

{
printf("Usage:\n");
printf(" nmenos ?\n");
printf(" di splays this text\n");
printf(" or\n");
printf(" nenos\ n");
printf(" pronpts for all actions.\n");

printf(" or\n");

The memos.c File

267

Appendices

printf(" menos action\n");

printf(" performs the action.\n");

printf(" More than one action may be specified.\n");
printf(" action is one of:\n");

ShowActions();
}

static void ShowActions(void)

/*****************************/

{
printf(" Hel p (display this text)\n");
printf(" Add (add new nenp here)\n");
printf(" DELete (delete current nem)\n");
printf(" REPI ace (replace current nenp)\n");
printf(" SHow (show the current nenp again)\n");
printf(" Up (nove up one nend)\n");
printf(" Down (move down one nmeno)\n");
printf(" TOP (nove to the top of the list\n");
printf(" TODay (display today's nenps)\n");
printf(" SAve (wite the nenps to disk)\n");

}

static void Help(void)

[R KKk ok kR Kk ok ok ok ok K K Xk ok ok ok

printf("Choose one of:\n");

ShowActions();

printf(" Quit\n");
}

static void D splayTop(void)

AR R R EEEEEEEEEEELY]

printf("Top of nenpbs.\n");

static int Want ToQuit(void)

AR R E R EEEEEEEEEEEY]

/* Check to see if the nenps have been nodified, but not saved.
* |f so, query the user to nake sure that he/she wants to quit
* w thout saving the menos.

*/
char buffer[MAXLEN] ;
if(!'MenosModified || MenpHead == NULL) {
return(TRUE);
printf("\nThe nenps have been nodified but not saved.\n");
printf("Do you want to | eave w thout saving then?\n");
gets(buffer);
return(tolower(buffer[0]) =="y");
}

268 The memos.c File

A Sample Program

static void BadFormat(void)

[RERKK KKK KKK K KKK KKK K KKK KKKk k k[

printf(“Invalid format for nenos file\n");
abort ();
}

static void * MenoMAl | oc(int size)
/**********************************/

/* Allocate the specified size of nenory, dealing with the
* case of a failure by displaying a message and quitting.
*/

{
regi ster char * mem
mem = nal |l oc(size);
if(mem== NULL) {
printf("Unable to allocate % characters of nenory\n"
size);
abort ();
return(mem);
}

static void DisposeMemo(MEMO_EL * el)

AR EAA R EREEEEEEEEEEEEEEEEEEEEEEEERY]

/* Dispose of a neno, including its lines
*/
{
TEXT_LINE * tline;
TEXT_LINE * next;

tline = el ->text;

while(tline I'= NULL) {
next = tline->next;
free(tline);
tline = next;

free(el);

The memos.c File 269

Appendices

270 The memos.c File

Glossary

K. Glossary

address

aggregate

alignment

argument

array

An addressis alocation in a computer’s memory. Each storage location (byte)
has an address by which it isreferenced. A pointer isan address.

An aggregate type is either an array or astructure. The term aggregate refersto
the fact that arrays and structures are made up of other types.

On some computers, objects such as integers, pointers and floating-point
numbers may be stored only at certain addresses (for example, only at even
addresses). An attempt to reference an object that is not properly aligned may
cause the program to fail. Other computers may not require alignment, but may
suggest it in order to increase the speed of execution of programs.

C compilersalign al objectsthat requireit, including putting padding characters
within structures and arrays, if necessary. However, it isstill possible for a
program to attempt to reference an improperly-aligned object.

The Open Watcom C16 and C32 compilers align structure members by
default. A command line switch, or the pack pragma, may be used to
control this behavior. Other objects may aso be aligned by default.

See the User’ s Guide for default values and other details.

An argument to afunction call is an expression whose value is assigned to the
parameter for the function. The function may modify the parameter, but the
original argument is unaffected. This method of passing valuesto afunctionis
often called call by value.

The argument may be a pointer to an object, in which case the function may
modify the object to which the pointer points, while the argument value (the
pointer) is unaffected.

An array is aset of objects of the same type, grouped into adjacent memory
locations. References to elements of the array are made by subscripts or indices.

Glossary 271

Appendices

assignment Assignment is the storing of avalue into an object, which is usually done with

the = operator.

automatic storage duration

bit

bit-field

block

byte

cast

An object with automatic storage duration is created when the function in which
it isdefined isinvoked, and is destroyed when the function returnsto the caller.

A bit isthe smallest possible unit of information, representing one of two values,
Oor 1. If thebitisO,itissaidtobeoff. If thebitis1,itissaidtobeon.

A bit is not representable by an address, but is part of abyte, which does have an
address.
Most processors, including the Intel 80x86 family of processors, have 8
bitsin a byte.
A bit-field is atype that contains a specified number of bits.
A block isapart of afunction that beginswith { and endswith } and contains
declarations of objects and statements that perform some action. A block isalso
called a compound statement.
A byteisthe smallest unit of storage representable by a unique address, usually
capable of holding one character of information.
Most processors, including the Intel 80x86 family of processors, have 8

bitsin abyte.

To cast an object isto explicitly convert it to another type.

character constant

272 Glossary

A character constant is usually one character (possibly atrigraph or escape
seguence) contained within single-quotes (for example, *a’, * ??(’ and
"\n).

Glossary

comment

compiler

The Open Watcom C26 and C32 compilers allow character constants
with one, two, three or four characters.

A comment is a sequence of characters, outside of a string literal or character
constant, starting with / * and ending with */ . The comment is only examined
tofind the*/ that terminatesit. Hence, acomment may not contain another
comment.

A compiler is a program which reads a file containing programming language
statements and trandlates it into instructions that the computer can understand.

For example, a C compiler translates statements described in this book.

compound statement

declaration

decrement

definition

exception

A compound statement is a part of afunction that beginswith { and ends with }
and contains declarations of objects and statements that perform some action. A
compound statement is also called a block.

A declaration describes the attributes of an object or function, such asthe
storage duration, linkage, and type. The space for an object is reserved when its
definition isfound. The declaration of afunction describes the function
arguments and type and is also called afunction prototype. The declaration of a
function does not include the statements to be executed when the function is
called.

To decrement a number is to subtract (one) from it. To decrement a pointer isto
decrease its value by the size of the object to which the pointer points.

A definition of an object is the same as a declaration, except that the storage for
the object is reserved when its definition isfound. A function definition
includes the statements to be executed when the function is called.

An exception occurs when an operand to an operator has an invalid value.
Division by zero is a common exception.

floating-point

function

A floating-point number is a member of a subset of the mathematical set of real
numbers, containing (possibly) afraction and an exponent. The floating-point
type is represented by one of the keywords f | oat , doubl e or | ong

doubl e.

A function is a collection of declarations and statements, preceded by a
declaration of the name of the function and the parametersto it, aswell asa

Glossary 273

Appendices

possible return value. The statements describe a series of steps to be taken after
the function is called, and before it finishes.

header A header contains C source, usualy function prototypes, structure and union
definitions, linkages to externally-defined objects and macro definitions. A
header isincluded using the #i ncl ude preprocessor directive.

identifier Anidentifier is a sequence of characters, starting with aletter or underscore, and
consisting of letters, digits and underscores. Anidentifier is used as the name of
an object, atag, function, typedef, label, macro or member of a structure or
union.

implementation-defined behavior
Behavior that isimplementation-defined depends on how a particular C compiler
handles a certain case. All C compilers must document their behavior in these
Cases.

incompl ete type
An incomplete type is one which has been declared, but its size or structure has
not yet been stated. An exampleisan array of items that was declared without
specifying how many items. The voi d typeisaso anincomplete type, but it
can never be completed.

increment Toincrement anumber isto add (one) to it. To increment a pointer isto
increase its value by the size of the object to which the pointer points.

index Anindex (or subscript) is anumber used to reference an element of an array. It
isanintegral value. Thefirst element of an array has the index zero.

indirection Indirection occurs when an object that is a pointer to an object is actually used to
point toit. The unary form of the * operator, or the - > operator are used for
indirection.

initialization
Theinitiaization of an object isthe act of giving it itsfirst (initial) value. This
may be done by giving an initialization value when the object is declared, or by
explicitly assigning it avalue.

integer Aninteger isatype that is a subset of the mathematical set of integers. Itis
represented by the keyword i nt , and has a number of variations including
si gned char, unsi gned char, short signed int,short
unsi gned int,signed int,unsigned int,long signed int,
[ong unsigned int,long | ong signed int andl ong | ong
unsi gned int.

274 Glossary

Glossary

integral promation

keyword

label

An object or constant that isa char , short i nt, i nt bit-field, or of enum
type, that is used in an expression, ispromoted to an i nt (if i nt islarge
enough to contain all possible values of the smaller type) or unsi gned i nt.

A keyword is an identifier that is reserved for use by the compiler. No object
name or other use of an identifier may use a keyword.

A label isan identifier that corresponds to a particular statement in afunction. It
may be used by the got o statement. def aul t isaspecial label whichis used
with the swi t ch statement.

library function

line

linkage

lint

Ivalue

A library function is afunction provided with the C compiler that performs some
commonly needed action. The C language standard describes a set of functions
that all C compilers must provide. Whether or not the function actually
generates afunction call is implementation-defined.

A lineis conceptually similar to aline as seenin atext editor. Thelinein atext
editor may be called aphysical line. Several physical lines may be joined
together into one logical line (or just "line") by ending all but the last line with a
\ symbol. C does not normally require statements to fit onto one line, so using
the\ symbol isusualy only necessary when defining macros.

An object with external linkage may be referenced by any modulein the
program. An object with internal linkage may be referenced only within the
modulein which it is defined. An object with no linkage may only be
referenced within the block in which it is defined.

lint isautility program, often provided with the compiler, which detects
problems that the compiler will accept as syntactically valid, but likely are not
what the programmer intended.

An lvalueis an expression that designates an object. The term originally comes
from the assignment expression,

L =R

in which the left operand L to the assignment operator must be a modifiable
value. The most common form of Ivalueisthe identifier of an object.

If an expression E evaluates to a pointer to an object, then * E is an lvalue that
designates the object to which E points. In particular, if Eisdeclared asa

Glossary 275

Appendices

macro

module

name space

nesting

"pointer to i nt ", then both E and * E are Ivalues having the respective types
"pointertoi nt " andi nt .

There are two kinds of macros. An object-like macro is an identifier that is
replaced by a sequence of tokens. A function-like macro is an apparent function
call which isreplaced by a sequence of tokens.

Referred to in the C language standard as atrangation unit, amodule is usually
afile containing C source code. A module may include headers or other source
files, and have conditional compilation (preprocessing directives), object
declarations, and/or functions. A module isthus considered to be a C sourcefile
after the included files and conditional compilation have been processed.

A name spaceis a category of identifiers. The same identifier may appear in
different name spaces. For example, the identifier t hi ng may be alabel, object
name, tag and member of a structure or union, al at the same time, since each of
these has its own name space. The syntax of the use of the identifier resolves
which category the identifier fallsinto.

Nesting is placing something inside something else. For example, a f or
statement may, as part of its body, contain another f or statement. The second
f or issaid to be nested inside the first. Another form of nesting occurs when
source files include other files.

null pointer constant

The value zero, when used in a place where a pointer type is expected, is
considered to be anull pointer constant, which is avalue that indicates that the
pointer does not currently point to anything. The compiler interprets the zero as
aspecia value, and does not guarantee that the actual value of the pointer will
be zero.

The macro NULL is often used to represent the null pointer constant.

null character

object

parameter

276 Glossary

The character with all bits set to zero is used to terminate strings, and is called
the null character. It is represented by the escape sequence \ 0 in astring, or as
the character constant * \ O’ .

An object isacollection of bytesin the storage of the computer, used to
represent values. The size and meaning of the object is determined by its type.
A scalar object is often referred to asavariable.

A parameter to afunctionisa"local copy" of the argument values determined in
the call to the function. Any modification of a parameter value does not affect

Glossary

pointer

portable

precedence

preprocessor

recursion

register

the argument to the function call. However, an argument (and hence a
parameter) may be a pointer to an object, in which case the function may modify
the object to which its parameter points.

An object that contains the address of another object is said to be a pointer to
that object.

Portable software is written in such away that it isrelatively easy to make the
software run on different hardware or operating systems.

Precedence isthe set of implicit rules for determining the order of execution of
an expression in the absence of parentheses.

The preprocessor:

* examines tokens for macros and does appropriate substitutions if
necessary,

* includes headers or other source files, and,

e includes or excludesinput lines based on #i f directives

before the compiler translates the source.

Recursion occurs when a function calls itself either directly, or by calling
another function which callsit. Seerecursion. (!)

A register isaspecia part of the computer, usually not part of the addressable
storage. Registers may contain values and are generally faster to use than
storage.

The keyword r egi st er may be used when declaring an object with automatic
storage duration, indicating to the compiler that this object will be heavily used,
and the compiler should attempt to optimize the use of this object, possibly by
placing it in amachine register.

return value A return value isthe value returned by afunction viathe r et ur n statement.

rounding

scalar

A vaueisrounded when the representation used to store avalue is not exact.
The value may be increased or decreased to the nearest value that may be
accurately represented.

A scalar isan abject that is not a structure, union or array. Basically, itisa

singleitem, with type such as character, any of the various integer types, or
floating-point.

Glossary 277

Appendices

scope

The scope of anidentifier identifies the part of the module that may refererence
it. An object with block scope may only be referenced within the block in which
itisdefined. An object with file scope may be referred to anywhere within the
fileinwhichitis defined.

seguence point

side-effect

signed

Statement

A sequence point is a point at which all side-effects from previously executed
statements will have been resolved, and no side-effects from statements not yet
executed will have occurred. Normally, the programmer will not need to worry
about sequence points, asit is the compiler’sjob to ensure that side-effects are
resolved at the proper time.

A side-effect modifies a value of an object, causing a change in the state of the
program. The most common side-effect is assignment, whereby the value of the
left operand is changed.

A signed value can represent both negative and positive values.

The keyword si gned may be used with thetypes char , short int,int,
long int andlong long int.

A statement describes the actions that are to be taken by the program.
(Statements are distinct from the declarations of objects.)

static storage duration

string

string literal

structure

subscript

278 Glossary

An object with static storage duration is created when the program is invoked,
and destroyed when the program exits. Any value stored in the object will
remain until explicitly modified.

A string is a sequence of charactersterminated by anull character. A reference
to astring is made with the address of the first character.

A string literal is a sequence of zero or more characters enclosed within
double-quotes and is a constant. Adjacent string literals are concatenated into
one string literal. The value of a string literal isthe sequence of characters
within the quotes, plus anull character (\ 0) placed at the end.

A structure is atype which is a set of named members of (possibly different)
types, which reside in memory starting at adjacent and sequentially increasing
storage locations.

A subscript (or index) is anumber used to reference an element of an array. Itis
anon-negative integral value. The first element of an array has the subscript
zero.

Glossary

tag

token

type

A tag is an identifier which names a structure, union or enumeration. In the
declaration,

enum nuns { ZERO ONE, TWO } val ue;

nuns isthetag of the enumeration, while val ue isan object declared with the
enumeration type.

A token is the unit used by the preprocessor for scanning for macros, and by the
compiler for scanning the input source lines. Each identifier, constant and
comment is one token, while other characters are each, individually, one token.

The type of an object describes the size of the object, and what interpretation is
to be used when using the value of the object. It may include information such
as whether thevalueis si gned or unsi gned, and what range of valuesit may
contain.

undefined behavior

union

unsigned

variable

void

Undefined behavior occurs when an erroneous program construct or bad datais
used, and the standard does not impose a behavior. Possible actions of
undefined behavior include ignoring the problem, behaving in a documented
manner, terminating the compilation with an error, and terminating the execution
with an error.

A union isatype which isaset of named members of (possibly different) types,
which reside in memory starting at the same memory location.

An unsigned value is one that can represent only non-negative values.

The keyword unsi gned may be used with the types char , short i nt,
int,long int andlong long int.

A variable is generally the same thing as an object. It ismost often used to refer
to scalar objects.

Thevoi d typeisaspecia typethat realy indicates "no particular type'. An
object that isa"pointer to voi d" may not be used to point at anything without it
first being cast to the appropriate type.

The keyword voi d isalso used as the type of afunction that has no return
value, and as the parameter list of afunction that requires no parameters.

Glossary 279

Index

addition 109
address 271
address-of operator 87-89, 103
aggregate 271
aignment 53, 106, 271
argc 138, 238
argument 271, 276
argv 138, 238
arithmetic conversion 49, 82
array 31,271
index 24, 31
initialization 89
specifying size 118
subscripting 99
arrow operator 53, 101, 274
ASCII character set 174
assignment 272
assignment operator 116-117, 272
associativity of operators 95
audit trail 194
auto 87
initialization 86, 89
automatic storage duration 86, 122, 134, 186, 272

base operator 72

_based predefined macro 198
basic type 23

big code 60

big data 61, 247

bit 272

bit-field 54, 57, 118, 245, 272
bitwise AND 112

bitwise complement 104

bitwise exclusive OR 113
bitwiseinclusive OR 114
bitwise NOT 104

block 121, 125-126, 272-273
block scope 22

break statement 125, 130, 193
byte 272

call back function 200
call by value 271
caling afunction 99
caselabel 118, 125, 224, 246
case sensitive 15-16
cast 82,272
cast operator 74, 106
_cdecl predefined macro 199
character constant 14, 38, 272-273
wide 41
character set 13
ASCIIl 174,239
EBCDIC 174
execution 13, 239
source 13, 239
character type 241
commaoperator 118
comment 14, 17, 193, 273
commenting out 148
common error
; in#define 182
common error
=instead of == 179
dangling else 182
delayed error from included file 181
missing break in switch 183
mixing operator precedence 180
side-effectsin macros 184
compact memory model 60, 66, 160, 162, 247
compatible types 82

281

Index

compiler 273
complement operator 104
complete data hiding 171
compound assignment 117
compound statement 20, 22, 121, 125-126,
272-273
conditional compilation 143
conditional operator 115
const 75
constant 35
#define 146, 182, 186, 192
character 38, 272-273
enumeration 146, 182, 186, 192
floating-point 37
integer 35
manifest 146, 182, 186, 192
string-literal 41
constant expression 118
in#f or #elif 119
continuation lines 141, 165, 224
continue statement 127, 129
inado 129
inafor 129
inawhile 129
controlling expression 123, 181
conversion
float to integer 47
integer to float 48
signed integer 46
type 45
unsigned integer 46
converting types explicitly 106
creating an external object 84
cross-compile 13

datahiding 170
complete 171
partial 171

282

declaration 273

of function 19

of object 19
decrement 101-102, 273
default argument promotion 50, 132-133
default label 125
defining atype 29
definition 20, 273
diagnostic 237
difference 109
division

rounding 108

truncation 108
do statement 127
dot operator 53, 101

EBCDIC character set 174
ellipsis 100
€lse statement 123
empty statement 123
emulation

floating-point 28
entry point 138
enumerated type 28-29
enumeration constant 15, 28, 118
enumeration name 15
equal to 112

escape sequences 40, 141, 165, 205, 239, 272

_except predefined macro 200
exception 273
execution character set 13
_export predefined macro 200
expression 95
constant 118
precedence 95, 207
primary 97
priority 95, 207
extern 31

Index

extern storage class 84

external linkage 16, 83-84, 100, 175, 191, 199

external object
creating 84

far 60-61
far pointer 62
_far predefined macro 62, 198
_far16 predefined macro 198
_fastcall, predefined macro 199
file scope 22
_finally predefined macro 200
float

conversion to integer 47

rounding 48
floating-point 273

constant 37

emulation 27-28

limits 230

number 27
FLT_ROUNDS predefined macro 48
for statement 118, 127
formfeed 13
_fortran predefined macro 199
function

recursion 100
function 273

call 99

call back 200

declaration 19

definition 131

designator 98

far 60

main 138, 187

name 15

near 60

prototype 63, 66, 135

recursion 134

scope 22

type 22
function prototype scope 22
functional interface 170

glossary 7
goto statement 123, 129, 193, 275
grammar
C language 209
greater than 111
greater than or equal to 111

header 14, 135, 142, 170, 247, 274
<float.h> 27, 48, 177, 225
<limits.h> 25, 225
<malloc.h> 70
<stdarg.h> 135
<stddef.h> 41, 43, 59, 105, 109, 162-163
including 142
hiding data 170
history 3
horizontal tab 13
hosted 159
huge memory model 60, 110, 160, 162, 244, 247
huge pointer 64
_huge predefined macro 65, 198

283

Index

!

identifier 14-15, 274
external 16
significant characters 16
reserved 16
if statement 123
implementation-defined behavior 6, 176, 237, 274
implementation-specific behavior 6, 14, 16-17,
23-27, 30, 40-41, 43, 45-48, 51, 53-57, 59,
62, 64-65, 88, 105, 107-110, 138, 142-143,
158-159, 223, 236, 271-272
include 142
nested 142
included file 192
incompletetype 32, 274
increment 101-102, 274
index 24, 31, 271, 274
indirection 274
indirection operator 103, 274
initialization 89, 118, 274
array 89
auto 86, 89
static 89
struct 91
union 92
input/output 6
integer 274
constant 35
conversion 46
conversion to float 48
division 108
rounding 108
truncation 108
limits 225
integral promotion 45, 50, 82, 275
internal linkage 83-84, 191
interrupt 200
_interrupt predefined macro 200
iteration 126

284

keyword 14-15, 23, 70, 197, 210, 217, 275

_ _based 70, 198

_ _builtin_isfloat 201

_ _cdecl 198-199

__except 200

__export 199-200

__far 62-63, 65-66, 107, 198, 252

_ _farl6 68-69, 107, 198

_ _fastcall 199

__finaly 200

__fortran 199

__huge 64-65, 107, 198, 252

___interrupt 200, 254

__leave 200

__loadds 200

_ _hear 64-65, 67, 107, 198, 252

__ow_imaginary_unit 200

__pascal 199

__saveregs 200

__segment 70, 72-73, 198

___Ssegname 70, 198

__sdf 70, 198

_ _Stdcall 199

__syscall 199

__try 200

__watcal 199

auto 19, 21, 79, 87, 134, 249

break 125, 128-130, 184, 193

case 118, 125, 224, 246

_Cdecl 198

char 23-25, 34, 41-43, 45, 55, 59, 67-69, 98,
100, 133, 176, 226-227, 241, 275,
278-279

const 23-24, 75, 77,97, 117

continue 127, 129

default 125, 275

do 126, 129, 223

Index

double 23-24, 27, 37, 48, 50, 100, 133, 136,
176, 230, 273

else 123-124, 183

enum 12, 275

_Except 200

_Export 199

extern 19, 79, 83-87, 122, 131, 134, 191, 200,
249

_Far16 198

_Fastcall 199

_Finaly 200

float 23-24, 27, 37, 48, 50, 63, 100, 133, 176,
230, 242, 273

for 86, 118, 126, 128-129, 223, 276

goto 121, 123, 128-130, 193, 275

if 124, 143, 180, 183, 188, 223

int 23-26, 28, 30, 38, 40-41, 45, 49, 54-56, 59,
68, 79, 100, 104, 110-112, 114-115,
131, 133, 135-136, 147, 176, 228,
244-246, 249, 274-276, 278-279

int long unsigned 82

_Leave 200

list of 14

long 23-25

long double 27, 37, 48, 136, 230, 273

longint 25-26, 35, 45, 110, 136, 176, 229, 242,
244, 278-279

longlong int 25, 136, 229-230, 278-279

long long signed int 274

long long unsigned int 274

long signed int 274

long unsigned int 274

_Packed 54, 198

_Pascal 199

ptrdiff_t 109-110, 244

register 19, 21, 79, 87-88, 103, 133-134, 136,
244, 249, 277

return 128-130, 134, 139, 277

_Segl6 68-69, 107, 198

short 23-25

shortint 25-26, 45, 55, 100, 133, 227-228, 275,
278-279

short signed int 274

short unsigned int 274

signed 23-25, 45, 55, 176, 226-227, 241,
278-279

signed char 226, 241, 274

signedint 35, 45, 54, 56, 80, 245, 274

signed long 35

signed long int 47

signed short int 25, 45-47

size t 105, 162, 242

sizeof 105, 118, 143, 242

static 19, 79, 83-87, 131, 134, 191, 249

struct 54, 81, 171-172

switch 125, 130, 183-184, 223-224, 246, 275

_Syscall 199

_System 199

_Try 200

typedef 75-76, 79-80, 181, 186

union 171

unsigned 23-25, 45-46, 55, 176, 226-227, 241,
279

unsigned char 45, 55, 226, 241, 274

unsigned int 35, 45, 54, 56, 105, 107, 229, 242,
245, 274-275

unsigned long 25

unsigned long int 25, 35, 46-47, 82, 107, 229

unsigned long long int 230

unsigned short 41, 43

unsigned short int 45-46, 55, 228

va list 135

void 21, 23, 58, 74-75, 97, 103, 105-106, 109,
112, 116-117, 122, 130-131, 274, 279

volatile 23-24, 76-77, 83, 117

wchar_t 41, 43, 89

while 123, 126, 129, 223

label 121, 275

name 15

large memory model 60, 66, 160, 162, 247
leading underscore 16

285

Index

_leave predefined macro 200
left shift 110
length of astring 34
lessthan 111
lessthan or equal to 111
library function 6, 142, 184, 187, 275
_bheapseg 72
_dos setvect 200
exit 139
getc 180
getchar 74-75
isalpha 173
malloc 106, 147
mbtowc 41, 43
memcpy 106, 122
printf 135-136, 148, 183-184
rewind 74
line 275
continuation 141, 165, 224
logical 141, 224
physical 141
linkage 275
external 16, 83-84, 100, 191, 199
internal 83-84, 191
no 83-84
linker
case sensitive 16
external identifer 16
significant characters 16
linking 166
lint 275
_loadds predefined macro 200
logical AND 114
logical NOT 104
logical OR 115
long names 175
loop forever 128
looping 126
Ivalue 97-98, 275
modifiable 97

286

M

macro 275-276
defining 146
function-like 147
numerical limits 225
object-like 146
offsetof 162
predefined 48, 59, 62, 64-65, 70, 136-137,
158-163, 198-200, 247, 276
386 161
__CHAR SIGNED__ 161
__CHEAP_WINDOWS__ 161
__COMPACT__ 160
_ _DATE__ 158, 247

__DOs__ 160

__FILE__ 159

__FLAT__ 160

__FPA__ 161

__func__ 159

_ _FUNCTION_ _ 160
__HUGE__ 160

_ _INLINE_FUNCTIONS__ 161
__LARGE__ 160

__LINE__ 159

__MEDIUM__ 160
__NETWARE_386__ 160
_ NT__ 160

_ 0S2__ 160

_ _ONX__ 160

~ SMALL__ 160
__STDC__ 159
__STDC_HOSTED__ 159
__STDC_LIB_EXT1__ 159
__STDC_VERSION__ 159
__TIME__ 159, 247
__WATCOMC__ 161
__WINDOWS__ 161
__WINDOWS 386__ 161
_based 198

Index

_cdecl 199 va start 136-137

_except 200 undefining 148

_export 200 variable argument 136-137

_far 62,198 va arg 136

_farl6 198 va end 137

_fastcall, 199 va start 136

_finally 200 macro name 15

_fortran 199 main 138

_huge 65, 198 parametersto 138

_interrupt 200 return value 139

_leave 200 manifest constant 146, 182, 186, 192
_loadds 200 math chip 28

~M_1X86 161 math coprocessor 28

_near 64,198 medium memory model 60, 65-66, 160, 162, 247
_NULLOFF 70 member 51

_NULLSEG 70 of structure 53, 101

_pascal 199 of union 101

_saveregs 200 memory model 60

_segment 198 big code 60

_segname 198 big data 61, 247

_self 198 compact 60, 66, 160, 162, 247
_stdcall, 199 huge 60, 110, 160, 162, 244, 247
_syscall 199 large 60, 66, 160, 162, 247

_try 200 medium 60, 65-66, 160, 162, 247
cdecl 199 mixing 62

far 62,198 small 60, 66, 160, 162, 247
FLT_ROUNDS 48 small code 60

fortran 199 small data 61, 247

huge 65, 198 minus

interrupt 200 binary 109

M_1386 162 unary 104

M_186 162 modifiable Ivalue 97

M_186CM 162 modifier

M_I86HM 162 type 23

M_186LM 162 modularity 169

M_I86MM 162 module 276

M_186SM 162 module name 170

MSDOS 161 modulus 108

near 64, 198 multibyte character 14, 41, 43

NO_EXT_KEYS 162
NULL 59, 70, 163, 247, 276
pascal 199

va arg 136

va end 136-137

287

Index

name
enumeration 15
function 15
label 15
macro 15
mixed case 186
object 15
scope 22
structure 15
structure member 15
union 15
union member 15
variable 15
name space 80, 276
enumeration 29
labels 121
structure members 52
structures 52
union members 57
unions 57
naming modules 170
near 60-61
near pointer 63
_near predefined macro 64, 198
negative
unary 104
nesting 276
include 142
new line 13
new type 29
no linkage 83-84
non-graphic characters
escape sequences 40, 205, 239
not equal to 112
not greater than 111
not lessthan 111
NOT operator
bitwise 104

288

logica 104

notation 11

null
character 32, 34, 42, 90, 276
macro 59
pointer 59, 117, 163, 247, 276
statement 123

NULL macro 163, 247

NULL predefined macro 59, 70, 163, 247, 276

numeric coprocessor 28

numerical limits 225
floating-point 230
integer 225

object 15, 276, 279
declaration 19
initialization 89
type 22

offset of member 162

offsetof 162

ones complement 104

operand 95

operator 95
1 104
1= 112
% 108
%= 117
& 87,89, 103, 112
&& 114
&= 117
* 103, 274
*= 117
++ 101-102
+= 117
, 118
-- 101-102
-= 117
-> 53,101, 274

Index

. 53,101

/ 108

/= 117

1'scomplement 104

> 72

< 111

<<= 117

<= 111

= 117,272

== 112

> 111

>= 111

>>= 117

? 115

N 113

A= 117

addition 109

address-of 87-89, 103
arrow 53, 101, 274
assignment 116-117
associativity 95
binary & 112

binary * 108

binary + 109

binary - 109

bitwise AND 112
bitwise complement 104
bitwise exclusive OR 113
bitwiseinclusve OR 114
bitwise NOT 104

cast 74, 106

comma 118
complement 104
compound assignment 117
conditional 115
difference 109

division 108

dot 53, 101

equal to 112

greater than 111

greater than or equal to 111
indirection 103, 274
left shift 110

lessthan 111

lessthan or equal to 111
logical AND 114
logical NOT 104
logical OR 115
modulus 108
negative 104
not 104
not equal to 112
not greater than 111
not lessthan 111
plus 104
pointer 103
post-decrement 101
post-increment 101
postfix 98
pre-decrement 102
pre-increment 102
precedence 95, 207
priority 95, 207
product 108
quotient 108
remainder 108
right shift 110
1
simple assignment 117
sizeof 105, 242
subtraction 109
sum 109
times 108
unary 102
unary & 103
unary * 103, 274
unary minus 104
| 114
= 117
[| 115
~ 104
order of operation 95, 207
order of trandlation 165
0S/2 convention 199
output 6

289

Index

parameter 271, 276

tomain 138, 238

argc 138, 238
argv 138, 238

parentheses 95
partial datahiding 171
_pascal predefined macro 199
pitfall

; in#define 182
pitfall

=instead of == 179

dangling else 182

delayed error fromincluded file 181

missing break in switch 183

mixing operator precedence 180

side-effectsin macros 184
plus

binary 109

unary 104
plus operator 104
pointer 58, 277

far 62

farl6 67

huge 64

near 63

null 59, 117, 247, 276

offset 60, 66-67

on the 8086 175

segment 60, 66

selector 66-67

tovoid 58, 106
pointer operator 103
portable 173, 277
post-decrement 101
post-increment 101
postfix operator 98
pre-decrement 102
pre-increment 102

290

precedence 95, 207, 277
predefined macro 158, 160
preprocessor 141, 277
preprocessor directive
141
#define 141, 146-147, 149-150, 159
operator 149
operator 150
#elif 118-119, 143-144
#Helse 143-144
#endif 143-144
#error 157-158

#if 17, 118-119, 143-144, 177, 223, 225, 277

#ifdef 145
#ifndef 146
#include 141-142, 165, 181, 224, 274
#line 157, 159
#pragma 54, 69, 158, 198-199, 247
#undef 148-149, 153, 156, 159
null 141
__VA_ARGS __ 151-152
primary expression 97
priority of operators 95
procedura interface 170
product 108
production 97
programming style 185
promotion
integer 45
prototype
function 135
ptrdiff_t 109-110, 244

qualifiers 23
guotient 108

Index

recursion 100

recursion 134, 277

reducing recompiletime 170
reference to structure member 53
register 87, 136, 277
remainder 108

reserved identifier 14, 16
resource manager 170
return statement 130

return value 277

right shift 110

rounding 48, 108, 277

_saveregs predefined macro 200
scalar 277
scope 21-22, 79, 86, 278

block 22

file 22

function 22

function prototype 22
_segment predefined macro 198
_segname predefined macro 198
selection statement 123
_self predefined macro 198
seguence point 278
shift

left 110

right 110
side-effect 278
sign extension 47
signed 278
simple assignment 117
size t 105, 162, 242

sizeof operator 105
small code 60
small data 61, 247

small memory model 60, 66, 160, 162, 247

source character set 13
spaghetti code 129, 193
specifier
storage class 20
type 23
standard conforming 159
statement 121, 278
break 125, 130, 193

compound 20, 22, 121, 125-126

continue 127, 129
do 127
empty 123
for 118, 127
goto 123, 129, 193, 275
if 123
iteration 126
label 121
looping 126
null 123
return 130
selection 123
switch 125, 224, 246
while 126
static 83
initialization 89
static storage class 84

static storage duration 134, 186, 191, 199, 278

_stdcall, predefined macro 199
storage class 79
auto 87
extern 31, 84
following atype specifier 79
register 87, 136
static 83-84
storage duration
automatic 122, 134, 186
static 134, 186, 191, 199
string 34, 98, 273, 278
length 34

string literal 14, 34, 41, 98, 224, 273, 278

291

Index

wide 43, 224
struct
initialization 91
structure 51, 278
bit-field 54
member 15, 51, 53, 101
name 15
member reference 53
name 15
style 185
aligning declarations 190
caserules 186
comments 193
complicated statements 192
consistency 185
function prototypes 192
goto 193
included files 192
indenting 188
object names 187
reusing names 191
small functions 191
static objects 191
subscript 99, 271, 278
subtraction 109
sum 109
switch statement 125, 224, 246
syntax
C language 209
_syscall predefined macro 199
system dependencies 172

tag 29, 51, 279
termination status 139
tilde 104

token 279

trandation limits 223
trandation order 165

292

trigraphs 14, 40, 141, 165, 203, 272

truncation 108
_try predefined macro 200
type 22, 279
array 31
basic 23
char 24, 176, 241
compatible 82
const 75
conversion 45
defining 29
double 27
enumerated 28-29
float 27,176
floating-point 27
int 176
integer 24
long 25
long double 27
longlong 25
modifier 23
new 29
pointer 58-59
qualifiers 23
short 25
specifier 20, 23
string 34
structure 278
union 279
va list 135
void 74, 279
volatile 76
type definition 15, 80, 186
typedef 15, 80

unary operator 102
& 103
* 103, 274

Index

+ 104

- 104

minus 104

negative 104

plus 104
undefined behavior 279
undefining amacro 148
underscore

leading 16
uninitialized objects 93
union 57, 279

initialization 92

member 15, 101

name 15

name 15
unsigned 279
unsigned integer conversion 46
usual arithmetic conversion 49

va arg 136
va_arg predefined macro 136
va end 137
va_end predefined macro 136-137
va list type 135
va start 136
va_start predefined macro 136-137
variable 279

type 22
variable argument list 135
variable argument macros 151
variable name 15
vertical tab 13
visually aligning object declarations 190
void 58, 74, 279

pointer to 106
volatile 76

w

wchar_t 41, 43, 89

while statement 126
wide character constant 41
wide string literal 43, 224
Win32 convention 199

293

