
Open Watcom C/C++

Getting Started

First Edition

Notice of Copyright

Copyright  2002-2006 the Open Watcom Contributors. Portions Copyright  1984-2002
Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.S.A.

BA0614

ii

Table of Contents

1 Introduction to Open Watcom C/C++ ... 1
1.1 What is in version 1.5 of Open Watcom C/C++? ... 1
1.2 Technical Support and Services ... 4

Resources at Your Fingertips .. 4
Contacting Technical Support ... 5
Information Technical Support Will Need to Help You 5
Suggested Reading .. 6

C Programmers .. 6
C++ Programmers .. 6
DOS Developers .. 6
Extended DOS Developers .. 6
Windows 3.x Developers ... 7
Windows NT Developers ... 7
OS/2 Developers .. 7
Virtual Device Driver Developers ... 8

2 Installation ... 9
2.1 Hardware and Software Requirements ... 9
2.2 The README File ... 10
2.3 Installing Open Watcom C/C++ ... 10
2.4 Incremental Installation .. 12
2.5 System Configuration File Modifications .. 12
2.6 Installation Notes for Windows 3.x .. 13
2.7 Installation Notes for OS/2 ... 14

3 Hands-on Introduction to Open Watcom C/C++ .. 15
3.1 Outline .. 15
3.2 The Open Watcom C/C++ Tutorial .. 16

Defining a Project ... 17
Adding Multiple Targets ... 19
Making a Target .. 20
Making All Targets ... 20
Executing the Program .. 21
Smart Editing .. 22
Debugging the Program .. 24
Using the Source Browser ... 27
Correcting an Error ... 29
Editing a Bitmap .. 30
Editing Menus ... 32
Sampling and Profiling an Executable .. 35
Saving the Project and Terminating the Session 36

3.3 Tutorial Review .. 36

iii

Table of Contents

4 Documentation .. 39
4.1 Accessing On-line Documentation ... 40

On-line Documentation under DOS .. 40
On-line Documentation under Windows ... 41
On-line Documentation under OS/2 .. 44

5 Benchmarking Hints ... 45

6 Release Notes for Open Watcom C/C++ 1.5 .. 49
6.1 Differences from Open Watcom Version 1.4 ... 49
6.2 Differences from Open Watcom Version 1.3 ... 53
6.3 Changes in 1.4 that may Require Recompilation ... 58
6.4 Differences from Open Watcom Version 1.2 ... 58
6.5 Differences from Open Watcom Version 1.1 ... 62
6.6 Differences from Open Watcom Version 1.0 ... 65
6.7 Differences from Version 11.0 ... 66
6.8 Changes in 11.0 that may Require Recompilation 66
6.9 Major Differences from Version 10.6 .. 67

Changes to the C++ Compiler for 11.0 ... 67
Changes to the C Compiler for 11.0 .. 70
Changes to the Code Generator for 11.0 ... 70
Changes to the Compiler Tools for 11.0 ... 70
Changes to the C/C++ Libraries for 11.0 .. 71
Changes to the DOS Graphics Library for 11.0 72
Changes in Microsoft Foundation Classes Support for 11.0 72
Changes in Microsoft Win32 SDK Support for 11.0 73
Changes in Blue Sky’s Visual Programmer for 11.0 73

6.10 Changes in 10.6 that may Require Recompilation 73
6.11 Major Differences from Version 10.5 .. 73

Windows 95 Help File Format .. 73
Changes to the C++ Compiler in 10.6 ... 74
Changes to the C Compiler in 10.6 ... 74
Changes to the C Library in 10.6 .. 75
Changes in Microsoft Foundation Classes Support for 10.6 75
Changes to the Image Editor in 10.6 ... 75
Changes to the Dialog Editor in 10.6 .. 75
Changes to the Resource Editor in 10.6 .. 76
Changes to the Resource Compiler in 10.6 ... 76

6.12 Major Differences from Version 10.0 .. 76
Changes in 10.5 that may Require Recompilation 90

6.13 Major Differences from Version 10.0 LA .. 90
6.14 Major Differences from Watcom C9.5 /386 ... 90

iv

Table of Contents

Items No Longer Supported .. 92
Changes in 10.0 that may Require Recompilation 92

6.15 Major Differences from Watcom C9.01 /386 ... 92
Changes that may Require Recompilation .. 93

6.16 Major Differences from Watcom C9.0 /386 ... 94
Command Line Options added to Watcom C9.0 /386 94

6.17 Major Differences from Watcom C8.5 /386 ... 94
Command Line Options added to Watcom C8.5 /386 95

6.18 Major Differences from Watcom C8.0 /386 ... 95
Command Line Options added to Watcom C8.0 /386 96

6.19 Major Differences from Watcom C7.0 /386 ... 96
Protected-mode Compiler and Linker ... 97

7 Sybase Open Watcom Public License ... 99

8 Trouble-Shooting .. 107
8.1 Win-OS/2 and OS/2 Specific .. 109

v

vi

1 Introduction to Open Watcom C/C++

Welcome to the Open Watcom C/C++ 1.5 development system. Open Watcom C/C++ is an
Open Source successor to commercial compilers previously marketed by Sybase, Powersoft
and originally WATCOM International Corp.

Version 1.5 of Open Watcom C/C++ is a professional, optimizing, multi-platform C and C++
compiler with a comprehensive suite of development tools for developing and debugging both
16-bit and 32-bit applications for DOS, extended DOS, Novell NLMs, 16-bit OS/2, 32-bit
OS/2, Windows 3.x, Windows 95/98/Me, Win32s, and Windows NT/2000/XP (Win32).

You should read the entire contents of this booklet, as it contains information on new
programs and modifications that have been made since the previous release.

Special NOTE to users of previous versions! See the section entitled "Release Notes for
Open Watcom C/C++ 1.5" on page 49 to determine if you need to recompile your
application.

1.1 What is in version 1.5 of Open Watcom C/C++?

Version 1.5 incorporates the features professional developers have been demanding:

Open, Multi-target Integrated Development Environment
The IDE allows you to easily edit, compile, link, debug and build applications for
16-bit systems like DOS, OS/2 1.x, and Windows 3.x and 32-bit systems like
extended DOS, Novell NLMs, OS/2, Windows 3.x (Win32s), Windows 95/98/Me,
and Windows NT/2000/XP. Projects can be made up of multiple targets which
permit a project to include EXEs and DLLs. The IDE produces makefiles for the
project which can be viewed and edited with a text editor. The IDE is hosted under
Windows 3.x, Windows 95/98/Me, Windows NT/2000/XP, and 32-bit OS/2.

What is in version 1.5 of Open Watcom C/C++? 1

Chapter 1

The Widest Range of Intel x86 Platforms

Host Platforms

• DOS (command line)
• 32-bit OS/2 (IDE and command line)
• Windows 3.x (IDE)
• Windows 95/98/Me (IDE and command line)
• Windows NT/2000/XP (IDE and command line)

16-bit Target Platforms

• DOS
• Windows 3.x
• OS/2 1.x

32-bit Target Platforms

• Extended DOS
• Win32s
• Windows 95/98/Me
• Windows NT/2000/XP
• 32-bit OS/2
• Novell NLMs

Cross-Platform Development Tools
The core tools in the package permit cross-platform development that allows
developers to exploit the advanced features of today’s popular 32-bit operating
systems, including Windows 95/98/Me, Windows NT/2000/XP, and OS/2.
Cross-platform support allows you to develop on a host development environment
for execution on a different target system.

Multi-Platform Debugger
The new debugger advances developer productivity. New features include
redesigned interface, ability to set breakpoints on nested function calls, improved
C++ and DLL debugging, reverse execution, and configurable interface. Graphical
versions of the debugger are available under Windows 3.x, Windows 95/98/Me,
Windows NT/2000/XP, and 32-bit OS/2. Character versions of the debugger are
available under DOS, Windows 3.x, Windows NT/2000/XP, and 32-bit OS/2. For
VIDEO fans, we have kept the command line compatibility from the original
debugger.

2 What is in version 1.5 of Open Watcom C/C++?

Introduction to Open Watcom C/C++

Class Browser
The Browser lets you visually navigate the object hierarchies, functions, variable
types, and constants of your C/C++ application.

Performance Analysis
The Open Watcom Execution Sampler and Open Watcom Execution Profiler are
performance analysis tools that locate heavily used sections of code so that you may
focus your efforts on these areas and improve your application’s performance.

Editor The Open Watcom Editor is a context sensitive source editor, integrated into the
Windows 3.x, Windows 95/98/Me and Windows NT/2000/XP version of the IDE.

Graphical Development Tools
Open Watcom C/C++ includes a suite of graphical development tools to aid
development of Windows 3.x, Windows 95/98/Me and Windows NT/2000/XP
applications. The development tools include:

Resource Editors Enable you to create resources for your 16-bit and 32-bit
Windows applications. For 32-bit OS/2 PM development,
Open Watcom C/C++ interoperates with IBM’s OS/2
Developer’s Toolkit (available from IBM). These tools have
been seamlessly integrated into the IDE. The resource compiler
allows you to incorporate these resources into your application.

Resource Compiler Produces a compiled resource file from a source file.

Zoom Magnifies selected sections of your screen.

Heap Walker Displays memory usage for testing and debugging purposes.

Spy Monitors messages passed between your application and
Windows.

DDESpy Monitors all DDE activity occurring in the system.

Dr. Watcom Enables you to debug your program by examining both the
program and the system after an exception occurs; monitors
native applications running under Windows 3.x, Windows
95/98/Me or Windows NT/2000/XP.

Assembler
An assembler is included in the package. It is compatible with a subset of the
Microsoft macro assembler (MASM).

What is in version 1.5 of Open Watcom C/C++? 3

Chapter 1

C++ Class Libraries
Open Watcom C/C++ includes container and stream class libraries.

Royalty-free 32-bit DOS Extender
Open Watcom C/C++ includes the DOS/4GW 32-bit DOS extender by Tenberry
Software with royalty-free run-time and virtual memory support up to 32MB.

Support for wide range of DOS Extenders
Open Watcom C/C++ allows you to develop and debug applications based on the
following DOS extender technology: CauseWay DOS Extender, Tenberry
Software’s DOS/4G and Phar Lap’s TNT DOS Extender. You can also develop
applications using DOS/32A and FlashTek’s DOS Extender but, currently, there is no
support for debugging these applications.

Sample programs and applications
Open Watcom C/C++ includes a large set of sample applications to demonstrate the
integrated development environment.

1.2 Technical Support and Services

We are committed to ensuring that our products perform as they were designed. Although a
significant amount of testing has gone into this product, you may encounter errors in the
software or documentation. Technical support is provided on an informal basis through the
Open Watcom C/C++ newsgroups. Please visit http://www.openwatcom.org/ for more
information.

Resources at Your Fingertips

Open Watcom C/C++ contains many resources to help you find answers to your questions.
The documentation is the first place to start. With each release of the product, we update the
manuals to answer the most frequently asked questions. Most of this information is also
accessible through on-line help.

The "README" file in the main product directory contains up-to-date information that
recently became available.

Answers to frequently asked questions are available on the Open Watcom World Wide Web
server (http://www.openwatcom.org/).

4 Technical Support and Services

Introduction to Open Watcom C/C++

Contacting Technical Support

Our technical support is available to help resolve technical defects in the software. Note that
all support is currently informal and free. The following are ways to contact technical
support.

Newsgroups The easiest way to get support is through the Open Watcom newsgroups at
news://news.openwatcom.org/.

World Wide Web You can also submit bug reports or enhancement requests through the Open
Watcom bug tracking system at http://bugzilla.openwatcom.org/.

Information Technical Support Will Need to Help You

The more information you can provide to technical support, the faster they can help you solve
your problem. A detailed description of the problem, short sample program, and a summary
of steps to duplicate the problem (including compiler and linker options) are essential.
Concise problem reports allow technical support to quickly pinpoint the problem and offer a
resolution. Here is a list of information that will help technical support solve the problem:

Contact information
We would like your name, as well as telephone and fax numbers where you can
be reached during the day.

Product information
Please tell us the product name and exact version number.

Hardware configuration
Please tell us what type of processor you are using (e.g., 2.2GHz Intel Pentium
4), how much memory is present, what kind of graphics adapter you are using,
and how much memory it has.

Software configuration
Please tell us what operating system and version you are using.

Concise problem report with short sample program
Please provide a complete description of the problem and the steps to reproduce
it. A small, self-contained program example with compile and link options is
ideal.

Technical Support and Services 5

Chapter 1

Suggested Reading

There are a number of good books and references that can help you answer your questions.
Following is a list of some of the books and documents we feel might be helpful. This is by
no means an exhaustive list. Contact your local bookstore for additional information.

C Programmers

The C Programming Language, 2nd Edition
Brian W. Kernighan and Dennis M.Ritchie; Prentice Hall, 1988.

C DiskTutor
L. John Ribar; Osborne McGraw-Hill, 1992.

C++ Programmers

C++ Primer, 2nd Edition
Stanley B. Lippman; Addison-Wesley Publishing Company, 1991.

Teach Yourself C++ in 21 Days
Jesse Liberty; Sams Publishing, 1994.

DOS Developers

PC Interrupts, Second Edition
Ralf Brown and Jim Kyle; Addison-Wesley Publishing Company, 1994.

Relocatable Object Module Format Specification, V1.1
The Intel OMF specification can be obtained from the Intel ftp site. Here is the
URL.

ftp://ftp.intel.com/pub/tis/omf11g.zip

This ZIP file contains a Postscript version of the Intel OMF V1.1 specification.

Extended DOS Developers

6 Technical Support and Services

Introduction to Open Watcom C/C++

Extending DOS—A Programmer’s Guide to Protected-Mode DOS, 2nd Edition
Ray Duncan, et al; Addison-Wesley Publishing Company, 1992.

DOS Protected-Mode Interface (DPMI) Specification
The DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the
URL.

 ftp://ftp.intel.com/pub/IAL/softwarespecs/dpmiv1.zip
This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Windows 3.x Developers

Microsoft Windows Programmer’s Reference
Microsoft Corporation; Microsoft Press, 1990.

Programming Windows 3.1, Third Edition
Charles Petzold; Microsoft Press, 1992.

Windows Programming Primer Plus
Jim Conger; Waite Group Press, 1992.

Windows NT Developers

Advanced Windows NT
Jeffrey Richter; Microsoft Press. 1994.

Inside Windows NT
Helen Custer; Microsoft Press. 1993.

Microsoft Win32 Programmer’s Reference, Volume One
Microsoft Corporation; Microsoft Press, 1993.

OS/2 Developers

The Design of OS/2
H.M. Deitel and M.S. Kogan; Addison-Wesley Publishing Company, 1992.

OS/2 Warp Unleashed, Deluxe Edition
David Moskowitz and David Kerr, et al; Sams Publishing, 1995.

Technical Support and Services 7

Chapter 1

Virtual Device Driver Developers

Writing Windows Virtual Device Drivers
David Thielen and Bryan Woodruff; Addison-Wesley Publishing Company,
1994.

8 Technical Support and Services

2 Installation

The package contains the following components:

• Open Watcom C/C++ CD-ROM
• This manual

2.1 Hardware and Software Requirements

Open Watcom C/C++ requires the following minimum configuration:

• IBM PC compatible

• An 80386 or higher processor

• 8 MB of memory

• Hard disk with enough space available to install the components you require.

• A CD-ROM disk drive

In addition to the above requirements, you need one of the following operating systems:

• DOS version 5.0 or higher
• Microsoft Windows version 3.1 running in enhanced mode
• Microsoft Windows 95 or higher
• Microsoft Windows NT version 3.1 or higher
• IBM OS/2 2.1 or higher

Hardware and Software Requirements 9

Chapter 2

2.2 The README File

Before you install Open Watcom C/C++, you should read the contents of the "README" file
which is stored in the root directory of the CD-ROM. It contains valuable, up-to-date
information concerning this product.

2.3 Installing Open Watcom C/C++

The installation program in this version has been completely redesigned with several new
"smart" features. If you have installed a previous version of Open Watcom C/C++ then you
should install Open Watcom C/C++ 1.5 into the same path (except for the reason described in
the following paragraph). It will examine a previous installation to determine what features
were previously installed. It will use this information to establish default settings for the
installation that you are about to attempt. Of course, you can add or remove features as you
progress through the installation steps.

If you are installing only one of the Open Watcom C/C++ or Open Watcom FORTRAN 77
products and you have an older version of the other product, we do NOT recommend that you
install the new product into the same directory as the old product. The Open Watcom C/C++
and Open Watcom FORTRAN 77 products are compatible at the same version number.
However, the Open Watcom C/C++ and Open Watcom FORTRAN 77 products are usually
NOT compatible across different version numbers. If this is the case, care must be exercised
when switching between use of the two products. Environment variables such as PATH and
WATCOM must be modified and/or corrected. System files such as CONFIG.SYS and
SYSTEM.INI must be modified and/or corrected.

If you are installing both Open Watcom C/C++ 1.5 and Open Watcom FORTRAN 77 1.5, we
recommend that you install both products under the same directory. This will eliminate
duplication of files and, as a result, reduce the total required disk space. The two products
share the use of certain environment variables which point to the installation directory. If
separate installation directories are used, problems will arise.

When you install Open Watcom C/C++ and Open Watcom FORTRAN 77 in the same
directory, you should not deselect any options when running the second installation; otherwise
the second product’s install may remove files that were installed (and are required) by the first
product’s install. This isn’t an issue if you only have one of Open Watcom C/C++ or Open
Watcom FORTRAN 77. The problem is that Open Watcom C/C++ and Open Watcom
FORTRAN 77 don’t know about the installation options you have selected for each other’s
product.

10 Installing Open Watcom C/C++

Installation

If you wish to create a backup of your previous version, please do so before installing Open
Watcom C/C++ 1.5.

If you decide to install Open Watcom C/C++ 1.5 into a different directory than the previously
installed version, you will have to manually edit system files (e.g., CONFIG.SYS,
AUTOEXEC.BAT, SYSTEM.INI) after the installation process is complete to remove the old
version from various environment variables (e.g., PATH, DEVICE=). This is necessary since
the path to the new version will appear after the path to the old version. To avoid this extra
work, we recommend installing the new version into the same path as the old version.

As an example, here are a few of the environment variables and "RUN" directives that are
modified/added to the OS/2 CONFIG.SYS file. You should make sure that all references to
the older version of the software are removed.

Example:
LIBPATH=...;D:\WATCOM\BINP\DLL;...
SET PATH=...;D:\WATCOM\BINP;D:\WATCOM\BINW;...
SET HELP=...;D:\WATCOM\BINP\HELP;...
SET BOOKSHELF=...;D:\WATCOM\BINP\HELP;...
SET INCLUDE=...;D:\WATCOM\H\OS2;D:\WATCOM\H;
SET WATCOM=D:\WATCOM
SET EDPATH=D:\WATCOM\EDDAT
RUN=D:\WATCOM\BINP\NMPBIND.EXE

You may wish to run Open Watcom C/C++ under more than one operating system on the
same personal computer. For every operating system that you use, simply start up the
operating system and run the corresponding install procedure.

If you run the Windows 3.x installation procedure, you do not need to run the DOS
installation procedure also.

If you plan to use Win-OS/2 as a development platform under OS/2, you must run the
Windows 3.1 install program (selecting Windows 3.1 host support).

Place the CD-ROM disk in your CD-ROM drive. Select one of the following procedures
depending on the host operating system that you are currently running. Below, substitute the
CD-ROM drive specification for "x:".

DOS Enter the following command:

x:\setup

Windows 3.x Start Windows 3.x and choose Run from the File menu of the Program
Manager. Enter the following command:

Installing Open Watcom C/C++ 11

Chapter 2

x:\setup

Windows 95/98/Me Choose Run from the Start menu and enter the following command:

x:\setup

Windows NT/2000/XP Log on to an account that is a member of the "Administrator" group so
that you have sufficient rights to modify the system environment.
Choose Run from the File menu of the Program Manager. Enter the
following command:

x:\setup

OS/2 Start an OS/2 session and enter the following command:

x:\install

2.4 Incremental Installation

You may wish to install Open Watcom C/C++, and subsequently install features that you
omitted in the first install. You can also remove features that you no longer wish to have
installed. You can achieve this as follows:

1. Start the installation program.
2. Select any new features that you wish to install.
3. Deselect any features that you wish to remove.
4. Re-run the installation program for each host operating system that you use.

2.5 System Configuration File Modifications

The install program makes changes to your operating system startup files to allow Open
Watcom C/C++ to run. We strongly recommend that you allow the install program to modify
your system configuration files for you, but you may do it by hand. The changes required
may be found in any of the following files which have been placed in the root of the
installation directory:

12 System Configuration File Modifications

Installation

CONFIG.NEW Changes required for CONFIG.SYS (DOS, Windows, Windows
95/98/Me, OS/2)

AUTOEXEC.NEW Changes required for AUTOEXEC.BAT (DOS, Windows, Windows
95/98/Me, OS/2)

CHANGES.ENV Changes required for the Windows NT/2000/XP environment

2.6 Installation Notes for Windows 3.x

1. When you use the Integrated Development Environment under Windows 3.x, it is
important that the IDE’s batch server program be able to run in the background.
Therefore, make sure that the "Exclusive in Foreground" checkbox is NOT checked
in the "Scheduling" options of "386 Enhanced" in the "Control Panel".

2. When you use the Integrated Development Environment under Windows 3.x, the
line

OverlappedIO=ON

in your "SYSTEM.INI" file can cause problems. This controls (disables) the
queuing of DiskIO and makes some changes between DOS box timings to allow
some processes to finish.

3. When you use the Integrated Development Environment under Windows 3.x, it is
important that the line

NoEMMDriver=ON

not appear in your "SYSTEM.INI" file. It will prevent a link from succeeding in
the IDE..

4. When you use the Integrated Development Environment under Windows 3.x on the
NEC PC-9800 series, it is important that the line

InDOSPolling=TRUE

not appear in your "SYSTEM.INI" file. It will prevent a make from succeeding in
the IDE.

5. Central Point Software’s anti-virus programs (VDEFEND, VSAFE, VWATCH)
conflict with the Integrated Development Environment under Windows 3.x.

Installation Notes for Windows 3.x 13

Chapter 2

6. The Program Information File "BATCHBOX.PIF" is used by the Integrated
Development Environment (IDE) to start up a background batch server for
compiling, linking, etc. The PIF references "COMMAND.COM". If you are using
a substitute for "COMMAND.COM" such as "4DOS.COM" then you must modify
the PIF accordingly using a PIF editor.

2.7 Installation Notes for OS/2

1. The Integrated Development Environment (IDE) uses the IBM OS/2 Enhanced
System Editor (EPM) for editing text files. You must ensure that EPM is installed
in your OS/2 system if you are planning to use the IDE. You can selectively install
the Enhanced Editor by running the OS/2 Setup and Installation program (Selective
Install) and choosing "Enhanced Editor" from the "Tools and Games" detail page.

2. On some systems with limited memory that use the UNDELETE feature of OS/2,
compile times may be slow because OS/2 is saving copies of compiler temporary
files. You may start the BATSERV process using the OS/2 STARTUP.CMD file
with DELDIR turned off as illustrated below.

 SETOLDDELDIR=%DELDIR%
SET DELDIR=
DETACH C:\WATCOM\BINP\BATSERV.EXESETDELDIR=%OLDDELDIR%SETOLDDELDIR=

3. If you plan to use the Named Pipe Remote Debugging support of the Open Watcom
Debugger then the NMPSERV.EXE. program must be running. It may be started
during OS/2 initialization via a "RUN=" statement in your CONFIG.SYS file or
manually as needed through the DETACH command.

14 Installation Notes for OS/2

3 Hands-on Introduction to Open Watcom
C/C++

Let’s get started and introduce some of the tools that are in Open Watcom C/C++. The
purpose of this chapter is to briefly test out the new graphical tools in Open Watcom C/C++
using an existing application.

In this tutorial, we will take an existing set of C++ source files, create a project in our
integrated development environment, and perform the following tasks:

• Add multiple targets
• Make a target
• Make all targets
• Execute the program
• Debug the program
• Use the Browser
• Correct errors
• Sample and profile the executable
• Save the project
• Terminate the session

3.1 Outline

Open Watcom’s Integrated Development Environment (IDE) manages the files and tools that
a programmer uses when developing a project. This includes all the source files, include files,
libraries, compiler(s), linkers, preprocessors, etc. that one uses.

The IDE has a graphical interface that makes it easy to visualize the make-up of a project. A
single IDE session shows a project. If the project consists of a number of components, such
as two executables and one library, these are each shown as target windows in the project
window. Each target window shows the files that are needed to construct the target and is
associated via its filename extension with a rule that describes the construction mechanism.
For example, a filename with the extension ".EXE" may be associated with the rule for
constructing 32-bit Windows executables, or a filename with the extension ".LIB" may be
associated with the rule for constructing static libraries. Different projects can refer to the

Outline 15

Chapter 3

same target. If they do, the target is shared and can be manipulated via either project, with
changes made through one affecting the other.

The IDE itself is a collection of programs that manages the various files and tools used to
create the target libraries and executables. It creates makefile(s) from the information in the
target descriptions and invokes Open Watcom Make to construct the targets themselves. A
configuration file contains built-in knowledge of the Open Watcom compilers, editors,
Profiler, and Browser, as well as all their switches.

3.2 The Open Watcom C/C++ Tutorial

This tutorial walks you through the creation and execution of a C/C++ program under
Windows. This will give you an understanding of the basic concepts of the IDE and its
components, and it will detail the steps involved in project development. The result of this
tutorial is a three dimensional drawing of a kitchen which you can manipulate using either the
menus or the icons on the toolbar. You can rotate and resize the drawing, as well as adjust the
lighting and contrast.

To begin, start the IDE. This is done by double-clicking on the "IDE" icon in the Open
Watcom C/C++ window.

A status field at the bottom of the IDE window indicates the function of the icon on the
toolbar over which your mouse cursor is currently positioned. If the status area does not show
you the function of the icons as you move the mouse cursor over them, check that no item in
the menu bar is highlighted (if one is highlighted, press the Alt key).

Figure 1. The initial IDE screen

16 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Defining a Project

In this tutorial, you will be creating a new project called KITCHEN. Here are the steps
required to accomplish this task.

1. Define a new project by pulling down the File menu and selecting the New
Project... item. You can also define a new project by clicking on the "Create a
new project" icon on the toolbar.

2. A choice of different sample project directories is available. Assuming that you
installed the Open Watcom C/C++ software in the \WATCOM directory, you will
find the sample project directories in the following directory:

\WATCOM\SAMPLES\IDE

For purposes of this tutorial, we recommend that you select one of the following
project directories:

WIN for an example of 16-bit Windows 3.x application development when
using Windows 3.x under DOS as a host development system,

WIN386 for an example of 32-bit Windows 3.x application development when
using Windows 3.x under DOS as a host development system,

WIN32 for an example of 32-bit Win32 application development when using
Windows NT/2000/XP or Windows 95/98/Me as a host development
system, and

OS2 for an example of 32-bit OS/2 application development when using
32-bit OS/2 as a host development system.

Thus the target that we refer to below should be one of WIN, WIN386,
WIN32, or OS2 depending on your selection. The tutorial uses the WIN32
example for illustrative purposes. You will find some minor variations from your
selected target environment.

When asked for a project name, you can do one of two things:

1. enter the following pathname:

d:[path]\SAMPLES\IDE\target\KITCHEN

where d:[path] is the drive and path where you installed the Open
Watcom software, or

The Open Watcom C/C++ Tutorial 17

Chapter 3

2. use the file browser to select the following directory:

d:[path]\SAMPLES\IDE\target

and specify the filename kitchen.

Figure 2. Creating a new project

Press the Enter key or click on OK (OPEN).

The project description will be stored in this file and the IDE will set the current
working directory to the specified path during your session.

3. You will be prompted for a target name. Since we will be attaching pre-defined
targets, just click the Browse button when prompted for the target name. Select the
"draw" target file (it will be one of draw16.tgt, draw.tgt, draw32.tgt,
drawos2.tgt depending on your selection of target).

Figure 3. Attaching existing targets

18 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Press the Enter key or click on OK (OPEN).

4. You can ignore the settings displayed for Target Environment and Image Type
since the target definition already exists (we created it for you). The settings are
important when you a defining a new target (i.e., one that was not predefined).

Figure 4. Selecting a target type

Press the Enter key or click on OK.

A target window is created in the project window for the "draw" target. This window contains
all of the files associated with the target. You can click on any of the "Folder" icons to hide or
un-hide all files with a particular extension. For example, you may wish to un-hide all the
files with a .bmp extension by clicking on the folder icon associated with bitmap files.

Adding Multiple Targets

Open Watcom’s IDE allows you to have multiple targets in any particular project. Note that
targets can be used by multiple projects. To add a new target to the project, do the following.

1. Pull down the Targets menu and select the New Target... item.

2. Enter button.tgt as the target name for the new target to be added to the
project. Do not forget to include the .tgt extension. It is required when selecting
a pre-existing target.

The Open Watcom C/C++ Tutorial 19

Chapter 3

3. You can ignore the settings displayed for Target Environment and Image Type
since the target definition already exists (we created it for you). The settings are
important when you a defining a new target (i.e., one that was not predefined).

4. Press the Enter key or click on OK.

A target window is created in the project window for the button target.

Making a Target

Open Watcom’s IDE will automatically generate the sequence of steps required to build or
"make" each of the targets in a project. Note that the targets in a project can be made
individually or collectively. To make the button.lib target, do the following.

1. Click on the window of the target you wish to make. In this case, click on the
button.lib target window.

2. Pull down the Targets menu and select the Make item (you can also do this by
clicking on the "Make the current target" icon on the toolbar, or by right-clicking
on the target and selecting the Make item from the pop-up menu).

The IDE will now construct a makefile based on its knowledge of the target and construction
rules, and then invoke the make utility to create the target, in this case button.lib. The
output of this procedure is displayed in the Log window.

Making All Targets

Click the "Make all targets in the project" icon on the toolbar to make all of the targets in the
current project. If one target depends on another target, the latter target will be made first. In
this tutorial button.lib will be made first (there will be nothing to do since it was made
previously) and then draw???.exe, since button.lib is in the list of files associated
with draw???.exe. In each case, the IDE constructs makefiles based on its knowledge of
the target and construction rules. The output of this procedure is displayed in the Log
window.

20 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Figure 5. Making one or more targets

Executing the Program

The project should have built without errors, so now you are ready to execute the program you
have developed.

Click on the draw???.exe target window and simply click on the "Run the current target"
icon on the toolbar. You can also do this by selecting Run from the Targets menu, or
right-clicking anywhere on the target window outside of the inner frame and selecting Run
from the pop-up menu (right-clicking is context sensitive and the pop-up menu that results
will vary depending on the area of the window in which you right-click).

The Open Watcom C/C++ Tutorial 21

Chapter 3

Figure 6. The kitchen demo

The demo you have created is a simple three dimensional drawing of a kitchen. By using
either the icons on the toolbar or the menus you can rotate the picture left, right, up, and
down, make the picture brighter or dimmer, move the picture closer or farther away, and
increase or decrease the amount of contrast (this latter feature is found in the "Lighting"
menu). Choose Exit from the File menu to exit the demo program when you are finished.

Smart Editing

The IDE recognizes the type of file you wish to edit, and invokes the appropriate editor for the
task. To edit a file, you either double-click on it or select it and click the "Edit" icon on the
toolbar. Files with a .c, .cpp, .h, .hpp, .for, .asm or .rc extension are edited
with a text editor; files with a .bmp, .ico, or .cur extension are edited with the Image
Editor; files with a .dlg or .res extension are edited with the Resource Editor.

22 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Figure 7. The Open Watcom Editor for Windows

Now we will edit one of the source files and introduce an error into the application.

1. Double-click on the "draw" source file (i.e., draw???.c) to load the source file
into the editor.

2. Scroll down to line 227 using the keyboard or mouse. You can also pull down the
Edit menu, select Goto Line..., and enter 227. The Open Watcom Editor makes full
use of colors and fonts to achieve syntax highlighting. File templates for C, C++,
and FORTRAN files are defined to assist you in distinguishing the components of
your code.

3. Pull down the Options menu and select the Colors item.

4. Click on a color from the palette, drag it to the word if on line 218, and release it.
All keywords are now displayed in the chosen color. Drag a different color to a
comment line (line 225) and all comments will display in that color. Similarly, you
can select the Fonts item from the Options menu, select a font style and size, and
drag it to your source file. Close the Fonts and Colors dialog by double-clicking in
the upper left hand corner.

5. You can now save this color and font configuration for all .cpp files by pulling
down the Options menu, selecting the General..., item and clicking next to Save
configuration on exit in the "Features" box. Press Enter or click on OK.

The Open Watcom C/C++ Tutorial 23

Chapter 3

6. Now, to introduce an error into the application, replace the line #if 0 with #if
1.

7. Save your changes by clicking on the "Write the current file to disk" icon or select
Save from the File menu.

8. Return to the IDE (by clicking on it if it is visible on your screen, or by using
Alt-Tab), re-make your project, and run it. A fault occurs in your application, so
the next step is to track down the problem using the Open Watcom Debugger.

Debugging the Program

To debug a program it must first be compiled to include debugging information. The IDE
maintains two sets of switches for each target in a project. These are known as the
Development Switches and the Release Switches.

1. Right click on draw???.c and select Source options from the pop-up menu.
Select C Compiler Switches from the sub-menu.

By default, your target is placed in development mode with the debugging switches
for the compiler and linker set to include debugging information. You can either
set the switches in each category manually or you can copy the default Release
switches using the CopyRel button. This method of setting switches is especially
convenient since you can specify everything from diagnostic, optimization, and
code generation switches to special linker switches all without having to memorize
a cryptic switch name — you simply click next to the switches you wish to use for
a particular item.

2. Scroll through the categories using the >> button until you get to:

6. Debugging Switches

We can see that full debugging information was used in the compile, so just click
on Cancel to exit this screen.

24 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Figure 8. Setting compiler switches

3. To invoke the debugger, pull down the Targets menu and choose the Debug item or
select the "Debug the current target" icon from the toolbar.

The Open Watcom Debugger is designed to be as convenient and intuitive as possible, while
at the same time providing a comprehensive and flexible environment for serious debugging.
You can configure your environment to display exactly the information you require to be most
productive. Among the windows available are source and assembly, modules, functions,
calls, threads, images, watches, locals, globals, file variables, registers, 80x87 FPU, stack, I/O
ports, memory display, and a log window. You can step through your source using the keys
or icons on the toolbar. Execute one line at a time by stepping over calls or stepping into
calls, or execute until the current function returns. Right-mouse button functionality gives
context-sensitive pop-up menus.

The Open Watcom C/C++ Tutorial 25

Chapter 3

Figure 9. The Open Watcom Debugger

We know that a fault has occurred in draw???.exe, so we will run the application and
examine the state of the program when the fault occurs.

1. Click on the "go!" icon on the toolbar to begin execution of the program. The
exception occurs and the source window shows the line

*pwidth = bitmap.bmWidth + 5;

in the functionbuttonsize as the last line executed before the exception.
Examining the Locals window you will see that pwidth is a NULL pointer, hence
the exception.

2. We can now move up the call stack by clicking on the "Move up the call stack"
icon on the toolbar (red up arrow) to follow the program’s execution. On the
previous line, we seebuttonsize is called fromaddbutton. Moving up

26 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

the call stack again, we seeaddbutton is called with NULL as its fifth
parameter. An artificial error has been introduced for the purposes of this tutorial.
It is located several lines back in the source file.

3. By replacing the line #if 1 with #if 0 we can bypass this error. Right-click on
the line #if 1 and select Show, then Line... from the pop-up menus to see the
line number which must be corrected, then exit the debugger.

4. Double-click on draw???.c to load the source file into the editor.

5. Scroll down to line 227 using the keyboard or mouse, or pull down the Edit menu,
select Goto Line..., and enter 227.

6. Replace the line #if 1 with #if 0 and save your changes by clicking on the
"Write the current file to disk" icon or selecting Save from the File menu.

7. Return to the IDE (by clicking on it if it is visible on your screen, or by using
Alt-Tab) and re-make your project.

8. Run your project to see the kitchen demo.

Using the Source Browser

Suppose you wanted to change the color of the tabletop in your application. You can use the
Open Watcom Browser to determine the code you will need to change. The Open Watcom
Browser provides an easy way to examine the class definitions, member functions, and
inheritance trees associated with your C++ code. First, you need to instruct the compiler to
emit Open Watcom Browser information.

The Open Watcom C/C++ Tutorial 27

Chapter 3

Figure 10. The Open Watcom Browser

1. Right click on furnitu.cpp, then select Source options from the pop-up
menus. Select C++ Compiler Switches from the sub-menu.

2. Go to the

6. Debugging Switches

category by selecting it from the drop-down list box or by scrolling through the
categories using the >> button.

3. Select Emit Browser information [-db] and click on OK.

4. Click the "Make all targets in the project" icon to re-make the project. The
compiler will emit Browser information for furnitu.cpp in a file called
draw???.dbr. Now you are ready to browse the target’s source.

5. Pull down the Targets menu and select Browse, or click the "Browse the current
target" icon on the toolbar. The inheritance tree for the target is displayed.

28 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

6. To view details on any particular class, double-click on the item for information
such as the location of the class definition, the private, public, and protected
functions of the class, and the class inheritance. Branches of the inheritance tree
can be collapsed and expanded. A variety of tools are available to help you
navigate your C++ source. Double-click on the table class.

7. Double-click on the function
topandfourlegs() to see the details on this

function.

8. Select the variable tabletop, pull down the Detail menu, and select the Goto
Definition... item. The Editor is invoked, loading the file furnitu.cpp which
contains the definition of
topandfourlegs.

9. Next we will make some changes to furnitu.cpp in order to change the color
of the tabletop. Scroll down to line 143 using the keyboard or mouse, or pull down
the Edit menu, select Goto Line..., and enter 143

10. Replace the line

tabletop->rgb(0,255,255);

with

tabletop->black();

11. Save your changes by clicking on the "Write the current file to disk" icon or
selecting Save from the File menu.

12. Shut down the Browser before re-making the project.

13. Return to the IDE (by clicking on it if it is visible on your screen, or by using
Alt-Tab).

14. Click the "Make all targets in the project" icon to re-make the project.

Correcting an Error

An error is encountered during the make and error message(s) appear in the log window.
Additional information on the error is available by selecting the error, pulling down the Log
menu and selecting the Help on Message item.

1. Double-click on the error message

The Open Watcom C/C++ Tutorial 29

Chapter 3

furnitu.cpp (132): Error! E029: (col 15) symbol ’black’ has not
been declared.

The offending source file (furnitu.cpp) is loaded into the Editor and the
cursor is positioned at the line which caused the error. Apparently, black has not
been defined as a color.

2. Restart the Browser.

3. Double-click on color in the Inheritance window to see the member functions of
the class color. Among our choices are blue(), green(), and red().

4. Press the Alt-Tab key combination to return to the Editor and replace the line

tabletop->black();

with

tabletop->red();

5. Save your changes.

6. Return to the IDE and re-make the project.

7. Run the program to see the changes you have made to the tabletop.

Editing a Bitmap

You can edit bitmaps, icons, or cursors associated with your project using Open Watcom’s
Image Editor. Double-click on a file with a .bmp, .ico, or .cur extension and the file is
loaded into the Image Editor. The editor has many features to design your images, including
resizing, rotation, shifting, and a utility to take a "snapshot" of another image and import it.

30 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Figure 11. The Open Watcom Image Editor

Suppose you wanted to change the color of the right-arrow icon in your application.

1. If the "Folder" icon next to .bmp is closed, click on it to restore all the files with a
.bmp extension to the file list.

2. Scroll the window until the file right.bmp is visible.

3. Double-click on right.bmp in the draw???.exe target window.

4. Select the "Paint Can" icon from the Tool Palette.

5. Select a color from the Color Palette.

6. Click on the arrow.

7. Save your changes using the "Save" icon on the toolbar and exit the Image Editor.

The Open Watcom C/C++ Tutorial 31

Chapter 3

8. Click the "Make all targets in the project" icon to rebuild the project with the
change incorporated.

Editing Menus

Next, you will add source files to the list of items that make up draw???.exe.

1. Pull down the Sources menu and select the New Source... item.

Note: You can do this either by choosing from the menu bar or by
positioning the mouse over the file list area and clicking the right
mouse button. The IDE displays a pop-up menu from which you can
choose the desired action.

2. Enter the filename draw.res (or drawos2.res for OS/2). For OS/2, click OK
when you have entered the source file name. For all other systems, click on Add
when you have entered the source file name and then click on Close. Now we will
remove the .rc file from the project so that our changes to the .res file will not
be overwritten. When an .rc file is present, the .res file is generated from the
.rc file.

3. Right click on draw.rc (or drawos2.rc for OS/2), then select Remove Source
from the pop-up menu.

4. Double-click on draw.res (or drawos2.res). The Resource Editor is
invoked, displaying all the available resources (in this case, icons, bitmaps, and
menus).

32 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

Figure 12. The Open Watcom Resource Editor

5. Click on "Menu Resources".

6. Double-click on "DrawMenu" in the right-hand box. This will bring up the Menu
Editor. The Menu Editor displays the menus defined for the resource DrawMenu.
You can specify pop-up menus, menu items and sub-items, text, separators,
attributes, break styles, and memory flags.

The Open Watcom C/C++ Tutorial 33

Chapter 3

Figure 13. The Open Watcom Menu Editor

7. Click on MENUITEM "&Dimmer" in the item list window.

8. In the "Item Text" window change the item to &Darker and then click on the
"Change" button.

9. Select Update from the File menu or click on the "Update the file with this menu"
icon.

10. Exit the Menu Editor.

34 The Open Watcom C/C++ Tutorial

Hands-on Introduction to Open Watcom C/C++

11. Now, select Save from the File menu or click on the "Save this file" icon and exit
the Resource Editor.

12. Click the "Make all targets in the project" icon to re-make the project.

Sampling and Profiling an Executable

Together, the Open Watcom Execution Sampler and the Open Watcom Execution Profiler
allow you to pinpoint the areas of your code that are the most heavily used, indicating possible
candidates for performance improvements.

1. Click on the draw???.exe target.

2. Select the Sample item from the Targets menu item, or click on the "Run and
sample the current target" icon from the toolbar. The Open Watcom Execution
Sampler is invoked and your application begins to execute.

3. Try rotating and resizing the image a few times. The sampler takes a "snapshot" of
the code that is being executed at regular intervals. Exit the application. A samples
file with extension .smp is created in the current directory. This file is input for
the profiler.

4. You are now ready to profile the executable. Do this by selecting Profile from the
Targets menu, or by clicking on the "Profile the current target" icon on the toolbar.
The profiler scans the .smp file and reports the activity in the various modules of
the application. The percentage of time spent in the modules is indicated as an
absolute percentage (percent of total samples) and as a relative percentage (percent
of samples in the .exe image).

5. Double-click on the module or routine names to step down to the exact source
being executed when a sample was taken. For more details, you can adjust the
sampling rate of the Sampler to get a better picture of your code. To do this, exit
the Profiler, pull down the Targets menu, and select Target options, then Sample
Switches... from the pop-up menus. Specify a sampling rate such as 2 (for 2
milliseconds), click on OK, then run the Sampler and Profiler again.

The Open Watcom C/C++ Tutorial 35

Chapter 3

Figure 14. The Open Watcom Execution Profiler

Saving the Project and Terminating the Session

You can now exit the IDE session by selecting Exit from the File menu. If you have not
already saved your project, you will be prompted to do so. Choose "Yes" and the session
ends.

3.3 Tutorial Review

In this tutorial, you created a project called kitchen.wpj, which was composed of two
targets: draw???.exe and button.lib. You compiled and linked it into an executable
program using the WMAKE utility, the Open Watcom C and C++ compilers, and the Open
Watcom Linker. You executed it both directly and under the control of the Open Watcom
Debugger.. You browsed the source, and made changes using the text and resource editors.
Finally, you sampled and profiled the application.

When you saved the project, you created the following permanent files:

36 Tutorial Review

Hands-on Introduction to Open Watcom C/C++

• kitchen.wpj — describes the screen layout and refers to the target files called
draw???.tgt and button.tgt.

• draw???.tgt — describes the target executable draw???.exe and all switches
required to link it. It also describes the .c and .cpp files and switches required to
compile them.

• button.tgt — describes the target library and all switches required to create it. It
also describes the .c file and the switches used to build the library.

Tutorial Review 37

Chapter 3

38 Tutorial Review

4 Documentation

The following manuals comprise the Open Watcom C/C++ documentation set. When you
install the software, portions of the documentation set are provided as on-line help files.
Subsequent sections describe how to access this on-line help.

The following describes the titles in the Open Watcom C/C++ documentation set.

Open Watcom C/C++ User’s Guide
This manual describes how to use Open Watcom C/C++. It contains an
introduction to the compiler and a tutorial section. It also describes compiler
options, precompiled header files, libraries, memory models, calling
conventions, pragmas, in-line assembly, ROM based applications, and
environment variables.

Open Watcom C/C++ Tools User’s Guide
This manual describes the command line oriented tools including the compile
and link utility, library manager, object file disassembler, far call optimization
tool, assembler, patch utility, strip utility, make utility, and touch utility.

Open Watcom Graphical Tools User’s Guide
This manual describes Open Watcom’s Windows and OS/2 graphical tools
including the Integrated Development Environment, Browser, Dr. Watcom,
Spy, DDE Spy, Image Editor, Resource Editor, Sampler/Profiler, Resource
Compiler, Heap Walker, Zoom, and Editor.

Open Watcom C/C++ Programmer’s Guide
This manual includes 5 major sections each of which describes operating system
specific development issues. The operating systems covered include extended
DOS, OS/2, Windows 3.x, Windows NT/2000/XP, Windows 95/98/Me, 32-bit
Windows 3.x (using Open Watcom’s Supervisor technology) and Novell NLMs.
Topics include creating a sample program, operating system specific error
messages, and debugging techniques.

Open Watcom C Language Reference
This manual describes the ISO C programming language and extensions which
are supported by Open Watcom C.

Documentation 39

Chapter 4

Open Watcom C Library Reference, Volumes 1 and 2
These manuals describe the C and graphics libraries supported by Open Watcom
C/C++.

Open Watcom C++ Class Library Reference
This manual provides a comprehensive reference to the C++ class libraries
provided with Open Watcom C/C++.

Open Watcom Debugger User’s Guide
This manual describes the Open Watcom Debugger and discusses advanced
debugging techniques.

Open Watcom Linker User’s Guide
This manual describes how to use the Open Watcom Linker to generate
executables for target systems such as extended DOS, Windows 3.x, Windows
95/98/Me, Windows NT/2000/XP, OS/2, and Novell NLMs.

4.1 Accessing On-line Documentation

The following sections describe how to access the on-line help that is available for DOS,
Windows and OS/2.

On-line Documentation under DOS

The Open Watcom Help program, WHELP, may be used under DOS to access on-line
documentation. The Open Watcom Help command line syntax is:

 WHELPhelpfile[topicname]
Notes:

1. If help_file is specified without an extension then ".IHP" is assumed.

2. The topic_name parameter is optional.

3. If topic_name is not specified, the default topic is "Table of Contents".

4. If topic_name contains spaces then it must be enclosed in quotes.

The following help files are available:

40 Accessing On-line Documentation

Documentation

CGUIDE Open Watcom C/C++ User’s Guide (excludes C and C++ Diagnostic Messages
appendices which are available as separate help files)

CLIB Open Watcom C Library Reference

CLR Open Watcom C Language Reference

CMIX Open Watcom C/C++ Master Index

CPPLIB Open Watcom C++ Class Library Reference

LGUIDE Open Watcom Linker User’s Guide

PGUIDE Open Watcom C/C++ Programmer’s Guide

C_README Open Watcom C/C++ Getting Started manual

RESCOMP Documentation for the Open Watcom Resource Compiler (excerpt from the
Open Watcom Graphical Tools User’s Guide)

TOOLS Open Watcom C/C++ Tools User’s Guide

WD Open Watcom Debugger User’s Guide

WPROF Documentation for the Open Watcom Execution Sampler and Open Watcom
Execution Profiler (excerpt from the Open Watcom Graphical Tools User’s
Guide)

WCCERRS Documentation for the Open Watcom C Diagnostic Messages (excerpt from the
Open Watcom C/C++ User’s Guide).

WPPERRS Documentation for the Open Watcom C++ Diagnostic Messages (excerpt from
the Open Watcom C/C++ User’s Guide).

On-line Documentation under Windows

On-line documentation is presented in the form of Windows Help files (".HLP" files). When
the software is installed under Windows 3.x, Windows 95/98/Me or Windows NT/2000/XP, a
number of program groups are created. You can access the on-line document by opening a
program group and double-clicking on a help icon.

Accessing On-line Documentation 41

Chapter 4

Open Watcom C/C++ Group

Getting Started Open Watcom C/C++ Getting Started

Open Watcom C/C++ Tools Help Group

Accelerator Editor Help Documentation for the Accelerator Editor (excerpt from the Open
Watcom Graphical Tools User’s Guide)

C Error Messages Documentation for the Open Watcom C Diagnostic Messages
(excerpt from the Open Watcom C/C++ User’s Guide)

C++ Error Messages Documentation for the Open Watcom C++ Diagnostic Messages
(excerpt from the Open Watcom C/C++ User’s Guide)

C Language Reference Open Watcom C Language Reference

C Library Reference Open Watcom C Library Reference

C++ Library Reference Open Watcom C++ Class Library Reference

C/C++ Master Index The master index for all of the Open Watcom C/C++ on-line help

DDE Spy Help Documentation for the DDE Spy utility (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Debugger Help Open Watcom Debugger User’s Guide

Dialog Editor Help Documentation for the Dialogue Editor (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Dr. Watcom Help Documentation for Dr. Watcom (excerpt from the Open Watcom
Graphical Tools User’s Guide)

Editor Help Documentation for the Open Watcom Editor (excerpt from the
Open Watcom Graphical Tools User’s Guide)

Heap Walker Help Documentation for the Heap Walker utility (excerpt from the Open
Watcom Graphical Tools User’s Guide)

IDE Help Documentation for the Interactive Development Environment
(excerpt from the Open Watcom Graphical Tools User’s Guide)

42 Accessing On-line Documentation

Documentation

Image Editor Help Documentation for the Image Editor (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Linker Guide Open Watcom Linker User’s Guide

Menu Editor Help Documentation for the Menu Editor (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Profiler Help Documentation for the Open Watcom Execution Sampler and Open
Watcom Execution Profiler (excerpt from the Open Watcom
Graphical Tools User’s Guide)

Programmer’s Guide Open Watcom C/C++ Programmer’s Guide

Resource Compiler Help Documentation for the Resource Compiler (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Resource Editor Help Documentation for the Resource Editor (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Source Browser Help Documentation for the Browser (excerpt from the Open Watcom
Graphical Tools User’s Guide)

Spy Help Documentation for the Spy utility (excerpt from the Open Watcom
Graphical Tools User’s Guide)

String Editor Help Documentation for the String Editor (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Tools Guide Open Watcom C/C++ Tools User’s Guide

User’s Guide Open Watcom C/C++ User’s Guide (excludes C and C++
Diagnostic Messages appendices which are available as separate
help files)

Zoom Help Documentation for the Zoom utility (excerpt from the Open
Watcom Graphical Tools User’s Guide)

Accessing On-line Documentation 43

Chapter 4

On-line Documentation under OS/2

On-line documentation is presented in the form of OS/2 Information files (".INF" files).
When the software is installed under OS/2, the Open Watcom C/C++ folder is created. You
can access the on-line document by opening the Open Watcom C/C++ folder and
double-clicking on a help icon.

C Error Messages Documentation for the C Diagnostic Messages (excerpt from the
Open Watcom C/C++ User’s Guide)

C++ Error Messages Documentation for the C++ Diagnostic Messages (excerpt from the
Open Watcom C/C++ User’s Guide)

C Language Reference Open Watcom C Language Reference

C Library Reference Open Watcom C Library Reference

C++ Library Reference Open Watcom C++ Class Library Reference

C/C++ Master Index The master index for all of the Open Watcom C/C++ on-line help

Debugger Help Open Watcom Debugger User’s Guide

Getting Started Open Watcom C/C++ Getting Started

IDE Help Documentation for the Interactive Development Environment
(excerpt from the Open Watcom Graphical Tools User’s Guide)

Profiler Help Documentation for the Open Watcom Execution Sampler and Open
Watcom Execution Profiler (excerpt from the Open Watcom
Graphical Tools User’s Guide)

Programmer’s Guide Open Watcom C/C++ Programmer’s Guide

Source Browser Help Documentation for the Open Watcom Browser (excerpt from the
Open Watcom Graphical Tools User’s Guide)

Tools Guide Open Watcom C/C++ Tools User’s Guide

User’s Guide Open Watcom C/C++ User’s Guide (excludes C and C++
Diagnostic Messages appendices which are available as separate
help files)

44 Accessing On-line Documentation

5 Benchmarking Hints

The Open Watcom C/C++ compiler contains many options for controlling the code to be
produced. It is impossible to have a certain set of compiler options that will produce the
absolute fastest execution times for all possible applications. With that said, we will list the
compiler options that we think will give the best execution times for most applications. You
may have to experiment with different options to see which combination of options generates
the fastest code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 /fpi87 /fp5

486 /onatx /oh /oi+ /ei /zp8 /4 /fpi87 /fp3

386 /onatx /oh /oi+ /ei /zp8 /3 /fpi87 /fp3

286 /onatx /oh /oi+ /ei /zp8 /2 /fpi87 /fp2

186 /onatx /oh /oi+ /ei /zp8 /1 /fpi87

8086 /onatx /oh /oi+ /ei /zp8 /0 /fpi87

The recommended options for generating the fastest 32-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 /fp5

486 /onatx /oh /oi+ /ei /zp8 /4 /fp3

386 /onatx /oh /oi+ /ei /zp8 /3 /fp3

The "oi+" option is for C++ only. Under some circumstances, the "ob" and "ol+"
optimizations may also give better performance with 32-bit Intel code.

Benchmarking Hints 45

Chapter 5

Option "on" causes the compiler to replace floating-point divisions with multiplications by the
reciprocal. This generates faster code (multiplication is faster than division), but the result
may not be the same because the reciprocal may not be exactly representable.

Option "oe" causes small user written functions to be expanded in-line rather than generating
a call to the function. Expanding functions in-line can further expose other optimizations that
couldn’t otherwise be detected if a call was generated to the function.

Option "oa" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are
faster without any regard to the size of the code. The default is to select code sequences
which strike a balance between size and speed.

Option "ox" is equivalent to "obmiler" and "s" which causes the compiler/code generator to do
branch prediction ("ob"), generate 387 instructions in-line for math functions such as sin, cos,
sqrt ("om"), expand intrinsic functions in-line ("oi"), perform loop optimizations ("ol"),
expand small user functions in-line ("oe"), reorder instructions to avoid pipeline stalls ("or"),
and to not generate any stack overflow checking ("s"). Option "or" is very important for
generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer
compiles but more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functions in-line (just like "oi") but
also sets the inline_depth to its maximum (255). By default, inline_depth is 3. The
inline_depth can also be changed by using the C++

inlinedepth pragma.

Option "ei" causes the compiler to allocate at least an "int" for all enumerated types.

Option "zp8" causes all data to be aligned on 8 byte boundaries. The default is "zp2" for the
16-bit compiler and "zp8" for 32-bit compiler. If, for example, "zp1" packing was specified
then this would pack all data which would reduce the amount of data memory required but
would require extra clock cycles to access data that is not on an appropriate boundary.

Options "0", "1", "2", "3", "4", "5" and "6" emit Intel code sequences optimized for
processor-specific instruction set features and timings. For 16-bit Intel applications, the use of
these options may limit the range of systems on which the application will run but there are
execution performance improvements.

Options "fp2", "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific
features of the math coprocessor in the Intel series. For 16-bit Intel applications, the use of
these options may limit the range of systems on which the application will run but there are
execution performance improvements.

46 Benchmarking Hints

Benchmarking Hints

Option "fpi87" causes in-line Intel 80x87 numeric data processor instructions to be generated
into the object code for floating-point operations. Floating-point instruction emulation is not
included so as to obtain the best floating-point performance in 16-bit Intel applications.

For 32-bit Intel applications, the use of the "fp5" option will give good performance on the
Intel Pentium but less than optimal performance on the 386 and 486. The use of the "5"
option will give good performance on the Pentium and minimal, if any, impact on the 386 and
486. Thus, the following set of options gives good overall performance for the 386, 486 and
Pentium processors.

/onatx /oh /oi+ /ei /zp8 /5 /fp3

Benchmarking Hints 47

Chapter 5

48 Benchmarking Hints

6 Release Notes for Open Watcom C/C++ 1.5

There are a number of enhancements and changes in this new version of Open Watcom
C/C++. The following sections outline most of the major changes. You should consult the
User’s Guide for full details on these and other changes made to the compiler and related
tools. You should check the next section to determine if you need to recompile your
application.

6.1 Differences from Open Watcom Version 1.4

Following is a list of changes made in Open Watcom C/C++ 1.5:

• Support for ISO/IEC TR 24731, "Extensions to the C Library, Part I: Bounds-checking
interfaces" has been added to the C runtime library. The C compiler now predefines the
macro __STDC_LIB_EXT1__ (which evaluates to 200509L) to indicate this support.
This set of functions is also known as the Safer C Library. Please see the C Library
Reference for detailed documentation of these functions.

• In C99 mode, the C compiler now supports C99 style declarations intermixed with
statements within a block, as well as declarations in the opening clause of a for loop.

• The C compiler now predefines additional macros required by the C standards. These
include __STDC_HOSTED__ (evaluates to 1) to indicate a hosted implementation and
__STDC_VERSION__ (either 199409L or 199901L) to indicate C94 or C99 support
depending on compilation switches.

• A __restrict keyword has been added to the C compiler. It is functionally equivalent to
the C99 ’restrict’ keyword but is always visible, even in non-C99 mode.

• In C99 mode, the C compiler no longer requires explicit return statement in a main
function returning an integer. In accordance with C99 standard, ’return 0;’ is implied if
end of function is reached and no return statement was encountered.

• The C compiler has been fixed so that it no longer loses track of pointer base when
using __based(__self) pointers. The C compiler has also been fixed to properly handle
dereferencing of based arrays.

Differences from Open Watcom Version 1.4 49

Chapter 6

• The 16-bit C++ compiler now correctly casts pointers to __segment type without
crashing. Proper semantics of the cast were implemented.

• The 16-bit C compiler has also been modified to handle casts to __segment type
correctly, ie. return segment portion of a pointer.

• The C compiler has been fixed to properly support named based segments (ie.
__based(__segname(<name>)) pointers) that reference the default _DATA and
_CONST segments.

• The compilers and library headers have been modified to properly support use of
standard libraries when one of the -ec switches is used to change default calling
convention.

• The C compiler has been modified such that segments created through #pragma
data_seg are no longer part of DGROUP. Typically, the pragma is used only when data
segments need to be located in a physically separate segment in the output module.

• New warning W137, "Extern function ’fn’ redeclared as static", has been added to the
C compiler. Existing error E1072, "Storage class disagrees with previous definition of
’symbol’" has been extended to cover redefinitions from ’extern’ to ’static’ and not only
from ’static’ to ’extern’. Changing the linkage of a symbol invokes undefined
behaviour according to ISO C.

• New warning W138, "No newline at end of file", has been added to the C compiler. It
is emitted if no line terminator character was found before the end of a source file.
Such files do not conform to ISO C. The missing newline character will be
automatically inserted; this matches the C++ compiler behaviour. Note that missing
newlines could previously lead to spurious "#endif matches #if in different source file"
warnings.

• The C compiler has been modified to allow the __export or __declspec(dllexport)
modifier on a declaration when earlier declaration exists with no modifier. The updated
behaviour is compatible with the C++ compiler as well as some compilers from other
vendors.

• In ISO/ANSI mode (-za), the compiler now always warns if it encounters a call to
unprototyped function. In extensions mode (default, -ze), this warning (W131) is
suppressed if a matching prototype is found later in the source file. Note that the
behaviour in extensions mode is unchanged from earlier versions.

• The C compiler now eliminates static functions that are always inlined from the object
file (the functions are of course still emitted if their address is taken).

50 Differences from Open Watcom Version 1.4

Release Notes for Open Watcom C/C++ 1.5

• The C compiler has been fixed to properly evaluate boolean expressions (especially the
ternary operator) where the condition is a 64-bit integer constant. Previously, the high
32 bits were in some cases ignored, which could lead to erroneous results.

• The C compiler has been modified to properly cast floating-point constants to the
specified type. Notably FLT_MIN stored or passed as double is now handled correctly
(without spurious precision).

• Handling of empty macro arguments has been corrected in the C compiler’s
preprocessor. Previously, empty macro arguments could result in invalid tokens in
certain cases.

• The peephole optimizer is now run again after register allocation. This allows the code
generator to take advantage of some optimization opportunities that were previously
missed.

• The code generator has been modified to copy DS into ES in __interrupt routine prolog
(right after DS was loaded) if the ES register is considered unalterable, ie. in flat
model. This may avoid crashes if ES is dereferenced explicitly or implicitly in interrupt
handlers, for instance when calling memcpy().

• The linker and other tools have been fixed to correctly classify code segments.
Previously, code segments could be misclassified as data, which led to incorrect
disassembly and generation of debugging information.

• A performance problem related to emitting debugging information for structures or
unions with many members has been corrected in the code generator.

• The POSIX-defined header libgen.h has been implemented. This includes two
functions, basename() and dirname().

• The functions btowc(), fwide(), mbsinit(), wctrans(), and towctrans() have been added
to the C runtime library. These functions are all related to wide-character and
multi-byte support, and were first defined by the ISO C Normative Amendment 1.

• C99 functions llabs(), lldiv(), and _Exit() have been added to the C runtime library.
Note that the latter is equivalent to _exit(), defined by POSIX.

• Support for C99 floating-point classification macros has been implemented. This
includes fpclassify, isfinite, isinf, isnan, isnormal, and signbit.

• Modifiers ’hh’, ’j’, ’z’, and ’t’ defined by C99 for the printf and scanf family of
functions have been implemented in the C runtime library. Please see the C Library
Reference for details.

Differences from Open Watcom Version 1.4 51

Chapter 6

• The ’F’ modifier for printf and scanf families of functions conflicts with ’F’ format
specifier defined by ISO C for floating-point conversions. It has been replaced by a
’W’ modifier which is now used to denote a far pointer. The ’F’ modifier is still
recognized in DOS builds of the runtime library (which therefore cannot handle the ’F’
format specifier as defined by ISO C), but is no longer documented and will be
removed in a future release.

• Several very obscure bugs have been fixed in the printf and scanf family of functions.
These problems were discovered thanks to a more stringent testing procedure and had
never been reported by users.

• The strtod function has been enhanced to follow C99 specification. It will now parse
infinity and NaN, as well as exadecimal floating-point numbers. See the C Library
Reference for details.

• The math library has been fixed to perform binary to decimal floating-point
conversions with greater precision. This fixes a problem where in some cases a
conversion from binary to decimal and back was losing precision or producing
erroneous results.

• The graphics library has been fixed to correctly work with VESA modes where the
number of bytes per line does not directly correspond to width of the mode in pixels.

• The owcc utility has been much improved and documented; this tool is a POSIX style
compiler driver, designed to provide certain level of command line compatibility with
gcc and ease porting.

• The NOEXTension linker option has been documented; this option instructs the linker
not to add any extension (.exe, .dll, etc.) to the executable name. Any argument to the
NAME directive will be used verbatim. This option had been supported by earlier
versions of the linker but not documented.

• The ’include’ preprocessor directive not prefixed by an exclamation mark is now
recognized in wmake -ms mode for compatibility with Microsoft and IBM NMAKE.

• The wmake utility has been enhanced to evaluate NMAKE style ’[cmd]’ expressions
(ie. shell commands) in preprocessor !if directives. This functionality is supported in
both wmake and -ms mode.

• Several problems related to the Watcom debugging information format have been fixed
in the linker and debugger. Note that the Watcom format is considered obsolete and its
use is not recommended.

52 Differences from Open Watcom Version 1.4

Release Notes for Open Watcom C/C++ 1.5

• A random but very rare startup failure of Windows based GUI tools (notably wdw) has
been fixed.

6.2 Differences from Open Watcom Version 1.3

Following is a list of changes made in Open Watcom C/C++ 1.4:

• Support for C99 designated initializers has been added to the C compiler, for example
"struct {int a, b;} c = {.a=0, .b=1};". This is also supported for arrays, for example "int
a[4] = {[0]=5, [3]=2};".

• Handling of enumerations has been fixed in the C compiler. In certain cases, the
compiler chose the wrong type for operations on objects of enumerated types.
Enumerated constants up to 64 bits wide are now also allowed (including in 16-bit
compilers).

• The C compiler will now warn if the right hand operand of a bitwise shift expression is
a constant that is either negative or greater than or equal to the bit with of the promoted
left operand. The result of such operation is not defined by ISO C. The warnings are
’W134: Shift amount negative’ and ’W135: Shift amount too large’.

• The C compiler now warns in cases where an unsigned type is compared for <= 0.
This is equivalent to ’unsigned == 0’ and often indicates that a signed comparison was
intended.

• New __watcall keyword has been added to the C and C++ compilers to designate the
default Watcom calling convention.

• New -ec? switches have been added to set the default calling convention.

• The 16-bit C compiler now defines _M_I86 macro for consistency with the C++
compiler. The new macro should be used in preference to the existing M_I86.

• A number of new keywords have been added to the C compiler; these were previously
defined as macros: _Cdecl, _Export, _Far16, _Fastcall, _Pascal, __sycall, _System,
__try, __except, __finally, __leave.

• Analogous change has been made to the C++ compiler. The new keywords (and
removed predefined macros) are: _Cdecl, _Export, _Far16, _Fastcall, __inline, _Pascal,
__syscall, _System.

Differences from Open Watcom Version 1.3 53

Chapter 6

• The C++ compiler now handles the "new" template specialization syntax, and partial
specialization is partially supported (no pun intended).

• The C++ compiler now correctly handles the situation where control reaches the end of
main() function without encountering a return statement. In that case, the effect is that
of executing "return 0;".

• The C++ compiler now properly allows return statements with a void expression in
functions that return void.

• 386 C and C++ compilers now support the Microsoft fastcall calling convention, and
recognize the __fastcall keyword.

• The C compiler now recognizes #pragma data_seg and code_seg forms that specify
segment and class names without enclosing them in parentheses. The new behaviour is
consistent with other compilers.

• New -fti switch has been added to the C compiler to track #include file opens. This
helps diagnose include file problems in complex projects.

• The code generator no longer emits debug information for unreferenced typedefs when
-d1+ or -d2 switch is used. This produces slightly to significantly smaller debug
information. Note that behaviour of -d3 is unchanged.

• The 386 code generator will no longer select the ’and’ instruction to perform zero
extension when optimizing for time on the 686 architecture (-6r or -6s switch). The
’movzx’ instruction will always be used instead, because it avoids partial register stalls
and in certain cases significantly improves performance on P6 and newer class CPUs.

• Support for long long based bitfields has been improved in the code generator.

• The code generator now properly diagnoses attempts to emit symbol names that
overflow the OMF limit (255 bytes).

• Several problems related to loss of segment information in 386 non-flat models have
been fixed in the code generator.

• Command line processing has been changed in the Compile and Link utility (wcl).
Forward slashes now may be used as path separators in file arguments, such that
"foo/bar" is now interpreted as "foo\bar.c". Note that this does not affect options
delimited with forward slashes.

• Support for raw binary and Intel Hex output has been added to the linker, along with
support for 24-bit segmented addressing architectures (HSHIFT option) and arbitrary

54 Differences from Open Watcom Version 1.3

Release Notes for Open Watcom C/C++ 1.5

class/segment reordering (OUTPUT and ORDER directives). See Linker Guide for
details.

• Support for overlays (16-bit DOS) has been reinstated in the linker. A related
FARCALLS/NOFARCALLS option has been added to the linker. See Linker Guide
for details.

• The linker now correctly processes relocations to symbols in absolute segments.

• The linker now checks for bitness conflicts (16 vs. 32-bit) when adding segments to a
group.

• The minimum accepted value for linker OBJALIGN option has been changed to 16
bytes (previously 512).

• The linker no longer creates a separate .bss section when linking PE modules. Instead,
uninitialized data is added at the end of the data section. This creates slightly smaller
executables and reduces memory usage.

• The st_name member was removed from struct stat and related structures. This was
done for consistency across platforms (UNIX has no such field), because the st_name
field was almost entirely useless (being limited to 13 characters), and for compatibility
with Microsoft compilers; the latter because struct _wstat and struct _wstati64 are now
obsolete and struct _stat/_stati64 can be used for wide character stat functions. NB:
This change requires recompilation. New object files will not work with old libraries
and vice versa.

• The signal() function no longer modifies floating-point control word on Win32 and
32-bit OS/2. Also, default value for SIGFPE has been changed to SIG_DFL from
SIG_IGN on all platforms.

• The e/E format of printf() family of functions has been changed to format the exponent
with minimum of two digits (instead of three). This behaviour is dictated by C99 and
consistent with most other compilers.

• The floating-point to string conversion routines now format values with greater
precision. This means that floating-point values printed by C and C++ programs may
be slightly different from earlier versions of the runtime libraries (but more accurate).

• The sleep() function is now declared in unistd.h and its return type has been changed to
unsigned int, for compatibility with POSIX.

• The clock() function now uses millisecond counters (where available) on DOS and
Windows, and is no longer susceptible to problems related to TZ changes.

Differences from Open Watcom Version 1.3 55

Chapter 6

• The DOS runtime has been tuned to produce smaller executables.

• C99 functions wmemchr(), wmemcmp(), wmemcpy(), wmemmove(), and wmemset()
have been added to the C runtime library.

• A POSIX compatible getopt() function has been added to the C runtime library.

• A POSIX compatible mkstemp() function has been added to the C runtime library.

• BSD compatible safe string copy and concatenation functions, strlcpy() and strlcat(),
have been added. Use of these functions is highly recommended over strncpy() and
strncat(), because they are safer and much easier to use.

• New strings.h header has been added for POSIX compatibility, although legacy
functions index() and rindex() are not supported. Functions strcasecmp() and
strncasecmp() are also declared in string.h for compatibility with other compilers.

• The C runtime library no longer returns ESPIPE when calling write() on a pipe or
device that was opened with O_APPEND flag. The old behaviour was not POSIX
conforming.

• Handling of pathnames that include spaces has been improved in the make utility
(wmake).

• The disassembler (wdis) now handles big endian object files on little endian host
platforms, and vice versa.

• Support for MIPS R4000 and SPARC V8 instruction sets has been added to the
disassembler.

• New -zz and -zzo option have been added to the assembler (wasm) for backwards
compatibility. See Tools User’s Guide for details.

• Default behaviour of inline assembler has changed. The CPU optimization level (-4,
-5, -6) now implies the available instruction set: -5 implies MMX and 3DNow!, -6 also
implies SSE/SSE2/SSE3. Also note that any CPU setting override now reverts to
default at the end of each inline assembly block.

• 16-bit DOS version of the assembler (wasmr) has been added. This version runs on
8086 and above and requires less memory than the protected mode version.

• The debugger has been changed to look for support files in directories relative to the
debugger executable’s location. This allows the debugger to be used when no debugger
specific environment variables have been set.

56 Differences from Open Watcom Version 1.3

Release Notes for Open Watcom C/C++ 1.5

• A problem with stepping into code (F8) right after debuggee was loaded has been fixed
in the debugger.

• The debugger now looks for debug information in a .sym file when the /DOwnload
option was specified. Previously it erroneously only looked at the executable if the
download option was used.

• Support for Microsoft/IBM .sym files generated by the MAPSYM utility has been
added to the debugger and profiler. This is helpful especially with symbol files
provided by IBM for OS/2 system DLLs; disassembly now shows for instance "call
DOS32EXIT" instead of "call 01C74634".

• The CauseWay trap file no longer incorrectly maps symbol addresses in ’large’
executables (code segment > 64K).

• Interoperability with GNU tools has been improved. The debugger (wd/wdw) should
now be able to debug GNU-produced executables (with DWARF 2 debug information)
and vice versa.

• New -zld option has been added to the library manager (wlib) to strip autodependency
information from OMF objects.

• New exe2bin utility has been added. See Tools User’s Guide for details.

• Basic support for compiling OS/2 resource scripts and binding resources into OS/2
executables (both NE and LX formats) has been added to the resource compiler (wrc).

• The include search order in the resource compiler has been changed to be more
consistent with the C/C++ compilers, as well as with IBM’s and Microsoft’s resource
compilers. System include files (enclosed in angle brackets) are no longer searched in
current directory or in the dicrectory of the file containing the #include directive.

• The Windows resource compiler has been made more compatible with scripts designed
for Microsoft’s RC in the way it treats string literals.

• The MS LINK compatibility wrapper now supports a /RELEASE switch.

• Syntax highlighting support for makefiles has been added to the editor. The default
syntax highlighting scheme has also been made more colourful.

• The editor and Windows GUI tools now store configuration files in more appropriate
locations (notably on multi-user machines).

Differences from Open Watcom Version 1.3 57

Chapter 6

• Several new DOS extender related targets have been added to the IDE. Better support
for remote debugging has also been added to the IDE.

• The CauseWay DOS extender now supports SSE instructions on plain DOS.

• Several simple OS/2 SOM programming examples have been added.

6.3 Changes in 1.4 that may Require Recompilation

stat() The stat function now uses a slightly different struct stat argument. Source code
that uses the stat function or references struct stat must be recompiled before
linking the application with new libraries.

6.4 Differences from Open Watcom Version 1.2

Following is a list of changes made in Open Watcom C/C++ 1.3:

• The C++ compiler now restricts the scope of variables declared in a for loop to the
scope of that loop in accordance with ISO C++, not extending the scope beyond the
loop (ARM compliant behaviour). Code relying on the pre-standard behaviour must
either be changed or compiled with new -zf switch which reverts to old scoping rules.

• Support for default template arguments has been added to the C++ compiler.

• Support for alternative tokens (and, xor etc.) has been added to the C++ compiler. It is
enabled by default, can be turned off with the new -zat switch.

• The C runtime library has been made significantly more C99 compliant. A number of
new headers have been added (inttypes.h, stdbool.h, stdint.h, wctype.h) and
corresponding new functions implemented. Wide character classification functions
were moved out of ctype.h into wctype.h. C99 va_copy macro was added to stdarg.h.

• Added ’cname’ style C++ headers.

• Support for SSE, SSE2, SSE3 and 3DNow! instruction sets has been added. Affected
tools are the assembler (wasm), as well as all x86 compilers, disassembler and
debugger. The debugger now also supports MMX registers formatted as floats (for
3DNow!) as well as a new XMM register window for SSE.

58 Differences from Open Watcom Version 1.2

Release Notes for Open Watcom C/C++ 1.5

• Inline assembler directives .MMX, .K3D, .XMM, .XMM2 and .XMM3 are now
supported in the _asm as well as #pragma aux style inline assembler interface. Note:
.MMX directive is now required (in addition to .586) to use MMX instructions.

• C compiler performance has been significantly improved (up to 5-10 times speedup)
when compiling large and complex source files.

• All x86 compilers now have the ability to perform no truncation when converting
floating point values to integers. Additionally, 32-bit x86 compilers have the option to
inline the rounding code instead of calling __CHP.

• The C lexical scanner no longer evaluates constants with (U)LL suffix that fit into 32
bits as zero (1ULL was wrong, LONGLONG_MAX was correct).

• C and C++ x86 inline assembler has been fixed to properly process hexadecimal
constants postfixed with ’h’.

• The C compiler now supports the C99 ’inline’ keyword, in addition to previously
supported ’_inline’ and ’__inline’ keywords.

• The C compiler now treats a sequence of adjacent character strings as wide if any of
the components are wide (required by C99), instead of depending on the type of the last
component. For example, L"foo " "bar" is now interpreted as L"foo bar", instead of
"foo bar".

• The internal C compiler limit on complex expressions has been increased and if it is
still insufficient, the compiler now reports an error instead of crashing.

• The C compiler now issues a warning on the default warning level if a function with no
prototype is referenced. This was previously warning W301 (level 3), now it is warning
W131 (level 1).

• Warning "W132: No storage class or type specified" has been added to the C compiler.
This warning is issued if a variable is declared without specifying either storage class or
type. This is not allowed in C89.

• Warning "W304: Return type ’int’ assumed for function ’foo’" has been added. This
warning is issued if a function is declared without specifying return type. This is
allowed in C89 but not in C99.

• Warning "W305: Type ’int’ assumed in declaration of ’foo’" has been added to the C
compiler. This warning is issued if a variable is declared without specifying its type.
This is allowed in C89 but not in C99. Note that if warning W132 is issued, W305
applies as well.

Differences from Open Watcom Version 1.2 59

Chapter 6

• The C compiler now properly warns if a function with implied ’int’ return type fails to
return a value. This potential error was previously undetected.

• C++ compiler diagnostic messages have been made more consistent and slightly more
detailed.

• Linker for Win32 targets can now create file checksums. These are primarily used for
DLLs and device drivers, but can be applied to all Win32 PE images if required.

• Linker for Win32 targets can now set operating system version requirements into the
PECOFF optional header (Microsoft extended header).

• Linker for Win32 targets can now set the linker version number into the PE optional
header (Microsoft extended header).

• The linker will now eliminate zero-sized segments from NE format (16-bit OS/2 and
Windows) executables. This fixes a problem where Windows 3.x would refuse to load
an executable with zero sized segment. This could happen especially with C++
programs where some segments may have ended up empty after eliminating unused
functions.

• The linker now (again) produces correct Watcom style debugging information. This
was a regression introduced in previous version.

• Command line parsing for wccxxx, wppxxx and cl has been changed such that a double
backslash inside a quoted string is collapsed to a single backslash, and hence "foo\\"
now translates to ’foo\’ and not ’foo\"’.

• The IDE and other graphical tools no longer leak system resources (a bug introduced in
version 1.2).

• The Image Editor limit on bitmap size has been changed from 512x512 pixels to
2048x2048 pixels.

• The source browser now correctly decodes array information; Version 11.0c of
Watcom C/C++ started emitting array browse information in a new format and the
browser hadn’t been updated accordingly.

• The NT debugger trap file has been changed so an exception generated during a step
operation is handled correctly. Previously, the single step flag was not being cleared
and when the exception was being offered to the debuggee’s own exception handlers, a
single step exception occurred in NT’s exception handler rather than the exception
being passed back to our handler.

60 Differences from Open Watcom Version 1.2

Release Notes for Open Watcom C/C++ 1.5

• The OS/2 debuggers now dynamically allocate buffer for the command line, preventing
crashes when the command line was over approx. 260 bytes long.

• The NetWare 5 debugger NLM has been changed to use kernel primitives. Previous
version were using legacy semaphores.

• The make program (wmake) has been sped up very slightly. Also the ’echo’ command
is now internal and no longer spawns the system command interpreter.

• The precision of DBL_MAX, DBL_MIN and DBL_EPSILON has been increased; the
non-standard variants prefixed with an underscore have been removed.

• The C99 functions atoll(), lltoa(), ulltoa(), strtoll(), strtoull() and corresponding wide
character functions have been added to the C runtime library.

• The _beginthread() function now consistently returns -1 in case of error on all
platforms.

• The stdaux and stdprn streams are now only defined on DOS based platforms, ie.
DOS, Win16 and Win386. No other platforms support stdaux or stdprn.

• The assert() macro now prints function name in addition to source file and line number,
in accordance with C99.

• The _heapchk() function will now always perform a consistency check on the heap,
where it would previously only check consistency if there had been allocations/frees
since last call to _heapchk(). As a consequence, _heapchk() previously did not detect
certain instances of heap corruption.

• [OS/2 32-bit] The default __disallow_single_dgroup() implementation no longer
statically links agaist PMWIN.DLL. This allows DLLs to load on systems where
PMWIN.DLL isn’t present.

• [OS/2 32-bit] Re-implemented clock(). The new implementation uses the OS
millisecond counter and is hence not susceptible to TZ changes. It is also smaller, faster
and more accurate, although it may wrap around earlier than the original
implementation.

• The disassembler (wdis) now correctly processes x86 ’push 8-bit immediate’
instructions.

• The disassembler now correctly processes absolute memory references. All memory
references without fixup are now disassembled as ds:[...] or sreg:[...].

Differences from Open Watcom Version 1.2 61

Chapter 6

• Several DirectX Win32 programming samples have been added. Note that a separate
DirectX SDK (available from Microsoft) is required to build these sample programs.

6.5 Differences from Open Watcom Version 1.1

Following is a list of changes made in Open Watcom C/C++ 1.2:

• Handling of default libraries for Win32 targets has been changed. Previously default
library records were included in the C runtime library, now they are specified part of the
wlink Win32 target definitions in wlsystem.lnk. The list of libraries has changed from
previous version as well and now reflects the Microsoft compiler defaults; existing IDE
projects and makefiles may need to have additional libraries specified if those are no
longer part of the default list.

• The C compiler now performs stricter checking on function prototypes and pointer
operations. This may lead to previously undiagnosed warnings/errors appearing when
compiling incorrect or ambiguous code.

• The C compiler diagnostic messages have been improved to print more information,
making it easier to isolate the problem.

• A new warning (W130) has been added to the C compiler to diagnose possible
precision loss on assignment operations. This warning is never on by default and must
be enabled through ’#pragma enable_message(130)’ or ’-wce=130’ switch.

• Support for C99 style variable argument macros (and __VA_ARGS__) has been added
to the C and C++ compilers.

• Added support for the __func__ symbol (name of the current function) which is
equivalent to the already existing __FUNCTION__ symbol.

• Better C99 style support for "long long" type is now available in the C and C++
compilers. LL, ULL and LLU suffixes are recognized for constants. "long long int" is
now also recognized.

• Added C99 style *LLONG_MIN/MAX defines to limits.h.

• The C++ compiler has been fixed to properly accept source files where a template was
the last item in a namespace or an external linkage.

• Several new -adxx options have been added to the C and C++ compilers to support
automatic generation of ’make’ style dependency files.

62 Differences from Open Watcom Version 1.1

Release Notes for Open Watcom C/C++ 1.5

• The C compiler has been fixed to correctly diagnose illegal union assignments.

• The C compiler now issues warnings on operations involving pointers to different but
compatible unions.

• The C and C++ compilers now ensure word alignment of wide character string literals
to satisfy Win32 API restrictions.

• The __UNIX__ macro is now supported in C and C++ compilers, wmake and wasm. It
is currently defined for QNX and Linux targets.

• Default windowing support has been re-enabled for Win16 and Win386 runtime
libraries.

• Since default windowing is no longer supported on most platforms, the Programmer’s
Guide and IDE tutorial have been updated to reflect that fact.

• The Win32 GUI tools now support the Windows XP look and feel.

• AutoCAD and MFC targets have been removed from the IDE, the -bw switch (default
windowing) is no longer available in the IDE for OS/2 and Win32 targets.

• Manual for the CauseWay DOS extender has been added.

• The dmpobj tool has been added. This utility dumps the contents of OMF object files
and can be useful to developers.

• Several system definitions have been added to wlink: os2_pm (16-bit OS/2
Presentation Manager executable), os2_dll (16-bit OS/2 DLL) and os2v2_dll (32-bit
OS/2 DLL).

• The linker has been fixed to read "AR" style archives produced by third party tools.

• The linker has been fixed to prevent crashes when linking with COFF files providing
uninitialised COMDAT entries

• Several linker crashes related to ELF object files and executables have been resolved.

• Updated wlink to call wlib with the -c (case sensitive) option when creating import
libraries. This fixes problems with DLLs that export symbols differring only in case.

• The C runtime library has been optimized to produce smaller executables.

• The printf() function now supports the "ll" format specifier for "long long" integers.

Differences from Open Watcom Version 1.1 63

Chapter 6

• The printf() function has been enhanced to support %b format specifier for bitfields.

• Execution order of C library termination routines is now better defined to prevent
instances where temporary files created through mktemp() could be left behind.

• [OS/2 32-bit] To prevent crashes, termination code is not run if second instance of a
DLL failed to load due to single DGROUP.

• [OS/2 32-bit] The __grow_handles() function was incorrectly adding n requested
handles to existing limit instead of setting the limit to n.

• [OS/2 32-bit] Fixed a problem with _STACKLOW in multithreaded programs and
DLLs. This prevents crashes where Fortran DLLs would run out of stack.

• [OS/2 16-bit] Fixed default math exception handler which wasn’t popping the FP status
word off the stack and would therefore crash on exit.

• The Win32 Image Editor has been enhanced with drag-and-drop support.

• The IDE has been fixed to properly handle mixed case filenames.

• The Microsoft compatibility tools (NMAKE, CL) have been fixed to better handle
command line arguments.

• The Dialog Editor (wde) has been fixed to prevent occasional DDE related crashes
when run from inside the Resource Editor (wre).

• The ’Change font’ option no longer crashes the GUI debugger (wdw).

• On OS/2, wdw now intercepts the F10 key instead of passing it on to the system.

• The code generator now deletes object files if it was interrupted. Previously
zero-length invalid object files could be left behind, interfering with make operation.

• The wasm assembler has been enhanced to generate file dependency information
usable by wmake.

• Numerous minor fixes have been made to wasm.

• Compatibility with MASM 6 has been improved with wasm.

• Support for sysenter and sysexit instructions has been added to wasm and wdis.

64 Differences from Open Watcom Version 1.1

Release Notes for Open Watcom C/C++ 1.5

• Disassembly of xchg and bound instructions has been fixed in wdis (corrected order of
operands).

• Several previously undocumented wmake directives have been documented.

• A -sn (’noisy’) option has been added to wmake to print all commands that wmake
executes, including silent ones.

• The w32api project has been updated to the latest version.

• The os2api project has been enhanced - added multimedia headers and libraries and
numerous fixes have been made to the header files.

• The debugger now supports the F7 key as a shortcut for "run to cursor". This is
consistent with CodeView.

• New internal variable dbg$ntid (next thread id) has been added to the debugger. This
permits automated iteration of all threads.

• The wsample tool has been updated to dynamically allocate storage for command line,
where previously the command line length was limited to 128 characters.

• The FORTRAN compiler has been changed to preserve case of symbols with linkage
other than FORTRAN. This is especially helpful when calling OS API functions and
using case sensitive link step (now default).

6.6 Differences from Open Watcom Version 1.0

A number of problems has been corrected in Open Watcom C/C++ 1.1.

• Using the -ol option (loop optimization) sometimes resulted in generation of incorrect
code.

• The printf() function could access too much data when formatting strings, causing page
faults.

• NANs, INFs and denormals were not handled correctly by the math emulation library.

• The assembler did not generate implicit segment override prefixes when accessing data
in code segment.

Differences from Open Watcom Version 1.0 65

Chapter 6

• The clock() function sometimes produced incorrect results on OS/2 if the TZ
environment variable was set.

• The Open Watcom editor (vi/viw) has been changed to store temporary files in
directory designated by the TMP environment variable, instead of using the TMPDIR
environment variable.

• Many packaging problems (missing files) have been resolved.

6.7 Differences from Version 11.0

Open Watcom C/C++ 1.0 is not substantially different from Watcom C/C++ version 11.0.
There are however several changes that may require you to change your source and/or
makefiles or project files.

• The C compiler now implements stricter function prototype processing. This may
result in new warning or error messages on code that was previously compiling cleanly
but contained mismatches between function prototypes and actual definitions. The C++
compiler did not have this problem.

• The linker now defaults to case sensitive symbol resolution. In most cases this is not a
problem and may in fact avoid certain problems. If your project relies on case
insensitive linking, please add OPTION NOCASEEX to your linker directives.

• Default windowing support has been removed from the runtime libraries.

• Components of the Win32 SDK and OS/2 Toolkits are no longer supplied.

• MFC libraries, source code and documentation are no longer supplied.

6.8 Changes in 11.0 that may Require Recompilation

Do not attempt to mix object code generated by earlier versions of the compilers with object
code generated by this release or with the libraries provided in this release.

A new C++ object model has been implemented. If you have undefined references towcpp3* names, you have old object code. If you have undefined references towcpp4*, you have old libraries and new object code.

66 Changes in 11.0 that may Require Recompilation

Release Notes for Open Watcom C/C++ 1.5

clock() The clock function accuracy has changed from 100 ticks per second to 1000
ticks per second (i.e., CLOCKS_PER_SEC has changed). Source code that uses
the clock function and CLOCKS_PER_SEC in its calculations must be
recompiled before linking the application with new libraries.

6.9 Major Differences from Version 10.6

The following sections summarize the major differences from the previous release.

• In general, we have improved Microsoft compatibility in our compilers (more warnings
instead of errors, support for MS extensions, etc.) and tools.

• Some of the Win32 and 32-bit OS/2 versions of our tools are now available in DLL
form.

EXE DLL Description
------ ------- -----------------------
wcc wccd 16-bit x86 C compiler
wcc386 wccd386 32-bit x86 C compiler
wpp wppdi86 16-bit x86 C++ compiler
wpp386 wppd386 32-bit x86 C++ compiler
wlink wlink Open Watcom Linker
wlib wlibd Open Watcom Library Manager

This provides better performance when using the Integrated Development Environment
or Open Watcom Make. See the description of the !loaddll preprocessing directive
in Open Watcom Make for more information.

Changes to the C++ Compiler for 11.0

• The C++ compiler now optimizes empty base-classes to occupy zero storage in the
derived class memory layout. The C++ Working Paper recently allowed this
optimization to be performed by conforming implementations. Furthermore, the
optimization has speed and size benefits. There are certain classes of (broken) C++
programs that may not function properly with the new optimization. If you explicitly
memset() an empty base class, you will be clearing memory that you may not expect to
be cleared since the "zero sized" base class in actual fact shares storage with the first
member of the derived class. A memset() of the entire derived class is fine though.

• We have added support for the mutable keyword which is used to indicate data
members that can be modified even if you have a const pointer to the class.

Major Differences from Version 10.6 67

Chapter 6

Example:
class S {

mutable int x;
void foo() const;

};

void S::foo() const {
x = 1; // OK since it is mutable

}

• We have added support for the bool type along with true and false.

• We have added support for the explicit attribute. It marks a constructor so that it
will not be considered for overloading during implicit conversions.

Example:
struct S {

explicit S(int);
};

S v = 1; // error; cannot convert ’int’ to ’S’

Suppose the class was changed as follows:

Example:
struct S {

explicit S(int);
S(char);

};

S v = 1; // OK; S(char) is called

The fact that S(int) is not considered leaves S(char) as the only way to satisfy the
implicit conversion.

• We have added support for namespaces.

namespace x {

// anything that can go in file-scope
}
namespace {

// anything in here is local to your module!
}

In the above example, you can access names in the namespace "x" by "x::" scoping.
Alternatively, you can use the "using namespace x" statement (thereby eliminating the

68 Major Differences from Version 10.6

Release Notes for Open Watcom C/C++ 1.5

need for "x::" scoping). You can include a part of the namespace into the current scope
with the "using x::member" statement. (also eliminating the need for "x::" scoping).

1. Namespaces eliminate the hand mangling of names. For example, instead of
prefixing names with a distinguishing string like "XPQ_" (e.g.,
XPQ_Lookup), you can put the names in a namespace called "XPQ".

2. Namespaces allow for private names in a module. This is most useful for
types which are used in a single module.

3. Namespaces encourage the meaningful classification of implementation
components. For example, code-generation components might reside in a
namespace called "CodeGen".

• We have added support for RTTI (Run-Time Type Information).

• We have added support for the new C++ cast notation. It allows you to use less
powerful casts that the all powerful C-style cast and to write more meaningful code.
The idea is to eliminate explicit casts by using a more meaningful new-style cast. The
new C++ casts are:

reinterpret_cast < type-id >(expr)
const_cast < type-id >(expr)
static_cast < type-id >(expr)
dynamic_cast < type-id >(expr) (part of RTTI)

• We have improved (faster) pre-compiled header support.

• We have added "long long" (64-bit integer) support in the form of a new __int64 type.

• The default structure packing was changed from "zp1" to "zp2" in the 16-bit compiler
and from "zp1" to "zp8" in the 32-bit compiler.

• The default type of debugging information that is included in object files is "Dwarf". It
used to be "Watcom".

• A new double-byte string processing option has been added (zkl). When this option is
specified, the local or current code page character set is used to decide if the compiler
should process strings as if they might contain double-byte characters.

Major Differences from Version 10.6 69

Chapter 6

Changes to the C Compiler for 11.0

• We have improved (faster) pre-compiled header support.

• We have added "long long" (64-bit integer) support in the form of a new __int64 type.

• The default structure packing was changed from "zp1" to "zp2" in the 16-bit compiler
and from "zp1" to "zp8" in the 32-bit compiler.

• The default type of debugging information that is included in object files is "Dwarf". It
used to be "Watcom".

• A new double-byte string processing option has been added (zkl). When this option is
specified, the local or current code page character set is used to decide if the compiler
should process strings as if they might contain double-byte characters.

Changes to the Code Generator for 11.0

• We support Microsoft-compatible in-line assembly formats using the "_asm" keyword.

• A new optimization, "branch prediction", has been added. This optimization is enabled
by the "ob" or "ox" compiler options. The code generator tries to increase the density of
cache use by predicting branches based upon heuristics (this optimization is especially
important for Intel’s Pentium Pro).

• We have added Multi-media Extensions (MMX) support to the in-line assemblers.

• We have added "long long" (64-bit integer) support in the form of a new __int64 type.

Changes to the Compiler Tools for 11.0

• The Open Watcom Linker supports incremental linking.

• The Open Watcom Linker can now process COFF and ELF format object files, as well
as OMF et al. The Open Watcom Linker can now read both AR-format (Microsoft
compatible) libraries and old-style OMF libraries.

• Support for creating 16-bit DOS overlaid executables has been removed from the
linker.

70 Major Differences from Version 10.6

Release Notes for Open Watcom C/C++ 1.5

• The Open Watcom Library Manager (WLIB) can now process COFF and ELF format
object files, as well as OMF et al. The Open Watcom Library Manager can now
read/write both AR-format (Microsoft compatible) libraries and old-style OMF
libraries. The default output format is AR-format and this can be changed by switches.
The Open Watcom Library Manager can output various format import libraries.

• We have added Multi-media Extensions (MMX) support to the Open Watcom
Assembler (WASM).

• A new version of the Open Watcom Disassembler (WDIS) can disassemble Intel or
Alpha AXP object code files. It can process ELF, COFF or OMF object files and ELF,
COFF or PE format (Win32) executables. The Open Watcom Disassembler looks at
image file being input to determine the processor-type (defaults to Intel).

The old disassembler (WDISASM) has been retired and is not included in the package.

• We have added new tool front-ends that emulate Microsoft tools. These are:

• nmake
• cl
• link
• lib
• rc
• cvtres

These programs take the usual Microsoft arguments and translate them, where possible,
into equivalent Open Watcom arguments and spawn the equivalent Open Watcom tools.

• Open Watcom Make now processes Microsoft format makefiles when the "ms" option
is used.

Changes to the C/C++ Libraries for 11.0

• We have added multi-byte and wide character (including UNICODE) support to the
libraries.

• We include run-time DLLs for the C, Math and C++ Libraries.

• We have added Multi-media Extensions (MMX) support to the libraries.

• The following new functions were added to the library...

Major Differences from Version 10.6 71

Chapter 6

multi-byte functions

• The clock function accuracy has changed from 100 ticks per second to 1000 ticks per
second (i.e., CLOCKS_PER_SEC has changed).

• A "commit" flag ("c") was added to the fopen() mode argument.

• The global translation mode flag default is "text" unless you explicitly link your
program with BINMODE.OBJ.

• Processing of the "0" flag in the format string for the printf() family of functions has
been corrected such that when a precision is specified, the "0" flag is ignored.

Example:
printf("%09.3lf\n", 1.34242); // "0" flag is ignored
printf("%09lf\n", 1.34242); // "0" flag is not
ignored

• Support for printing __int64 values was added to printf and related functions.

• Support for scanning __int64 values was added to scanf and related functions.

• The Win32 _osver variable was added to the library.

• The Win32 _winmajor, _winminor and _winver variables were added to the library.

Changes to the DOS Graphics Library for 11.0

• The graphics library now performs the VESA test before testing for vendor specific
graphics cards. This fix is intended to broaden the number of graphics cards that are
supported.

Changes in Microsoft Foundation Classes Support for 11.0

• Version 4.1 of the 32-bit MFC is included in the package.

• Version 2.52b of the 16-bit MFC is included in the package.

72 Major Differences from Version 10.6

Release Notes for Open Watcom C/C++ 1.5

Changes in Microsoft Win32 SDK Support for 11.0

• The Win32 SDK is supported for Windows 95 and Windows NT platforms.

Changes in Blue Sky’s Visual Programmer for 11.0

• A new 32-bit version of Visual Programmer is included in the package. This version
runs on 32-bit Windows 95 and NT. The 16-bit version of Visual Programmer is no
longer included in the package.

• You can generate 16-bit applications with it, but you must be careful to avoid using
Win95 controls.

• This new version fixes all known bugs in the previous version.

6.10 Changes in 10.6 that may Require Recompilation

_diskfree_t The struct members of the _diskfree_t structure has been changed from
UNSIGNED SHORTs to UNSIGNED INTs. This is to deal with possible HPFS
partitions whose size will overflow a short, as well as Microsoft compatibility.

clock() The clock function accuracy has changed from 100 ticks per second to 1000
ticks per second (i.e., CLOCKS_PER_SEC has changed). Source code that uses
the clock function and CLOCKS_PER_SEC in its calculations must be
recompiled before linking the application with new libraries.

6.11 Major Differences from Version 10.5

The following sections summarize the major differences from the previous release of Watcom
C/C++.

Windows 95 Help File Format

We have included Windows 95 format help files.

Major Differences from Version 10.5 73

Chapter 6

Changes to the C++ Compiler in 10.6

We have improved Microsoft compatibility so that Win32 SDK and MFC header files can be
compiled without change. The following changes were required to support Win32 SDK
header files.

• We recognize the single underscore versions ofstdcall,inline, andfastcall keywords.

• The
fastcall and
fastcall keywords are scanned but ignored since they

refer to a particular Microsoft code generation technique. Open Watcom’s generated
code is always "fast".

The following changes were required to support MFC source code.

• When /bt=DOS is specified, define
DOS.

• When /bt=WINDOWS is specified, define
WINDOWS.

• When /m[s|m|c|l|h] is specified, define
SWM[S|M|C|L|H]

 andMI86[S|M|C|L|H]M.
The compiler now supports the C++ Standard Template Library (STL). This library is
available at the ftp site "butler.hpl.hp.com". When compiling applications that use the STL,
you must use the "hd" compiler option for debugging info (the "hw" option causes too much
debug information to be generated).

Changes to the C Compiler in 10.6

We have improved Microsoft compatibility so that Win32 SDK and MFC header files can be
compiled without change. The following changes were required to support Win32 SDK
header files.

• Support for the single underscore version of thestdcall keyword.

• When /bt=DOS is specified, define
DOS.

• When /bt=WINDOWS is specified, define
WINDOWS.

The following changes were required to support SDK sample code.

74 Major Differences from Version 10.5

Release Notes for Open Watcom C/C++ 1.5

• You can specify calling convention information in a function prototype and you do not
have to specify the same information in the definition. (Note: This is required by the
OS/2 Warp SDK samples.)

• Structured exception handling is supported (
try,except and
finally

keywords).

• Allow initialization of automatic array/struct data using variables and function calls.

Changes to the C Library in 10.6

The following new functions were added to the library.

_getw read int from stream file

_putw write int to stream file

The clock function accuracy has changed from 100 ticks per second to 1000 ticks per second
(i.e., CLOCKS_PER_SEC has changed).

Changes in Microsoft Foundation Classes Support for 10.6

• Version 3.2 of the 32-bit MFC is included in the package.

• Version 2.52b of the 16-bit MFC is included in the package.

Changes to the Image Editor in 10.6

• Support has been added for 256 colour bitmaps.

• Support has been added for 16 X 16 icons.

• Support has been added for 48 X 48 icons.

Changes to the Dialog Editor in 10.6

• Support has been added for Windows 95 controls.

• Support has been added for adding new control styles to existing controls.

Major Differences from Version 10.5 75

Chapter 6

• Support has been added for new dialog styles.

• Support has been added for allowing help IDs to be specified in dialog and control
statements.

• Support has been added for generating new resource statements in .RC files.

Changes to the Resource Editor in 10.6

• Support has been added for new Windows 95 DIALOGEX resource type.

• Support has been added for generating new DIALOGEX resource statements in .RC
files.

Changes to the Resource Compiler in 10.6

• Support has been added for extended styles for dialogs.

• Support has been added for the RCINCLUDE keyword.

6.12 Major Differences from Version 10.0

• New installation program

• Visual Programmer for Windows (MFC) applications

• MFC 3.0 support

• Native C++ exception handling support

• Improved language compatibility with Microsoft

• Browser can now be used to browse C code

• OS/2 3.0 Warp support

• Toolkit for OS/2 1.3

• Windows NT 3.5 support

76 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

• Toolkit for Windows NT 3.5

• Windows 95 (Chicago) support

• Source Revision Control System hooks in editor

• TCP/IP remote debug servers for OS/2 and Windows NT/95

In addition to these new features, we have also made a number of improvements to the
software.

1. The editor is more tightly integrated with the IDE.

2. It is now easier to select your own favourite editor from the IDE.

3. The keyboard interface in the Integrated Development Environment (IDE) has been
improved.

4. The "fr" option, which is supported by the compilers & assembler, can be used to
name the error file drive, path, file name and/or extension.

5. We have added the "t<number>" option to the C++ compiler to set the number of
spaces in a tab stop (for column numbers in error messages).

6. The C compiler now supports @filename on the command line like the C++
compiler currently does.

7. The "__stdcall" linkage convention has changed. All C symbols (extern "C"
symbols in C++) are now suffixed by "@nnn" where "nnn" is the sum of the
argument sizes (each size is rounded up to a multiple of 4 bytes so that char and
short are size 4). When the argument list contains "...", the "@nnn" suffix is
omitted. This was done for compatibility with Microsoft. Use the "zz" option for
backwards compatibility.

8. The 32-bit "__cdecl" linkage convention has changed. Watcom C/C++ 10.0
__cdecl did not match the Microsoft Visual C++ __cdecl in terms of the binary
calling convention; Visual C++ saves EBX in a __cdecl function but Watcom
C/C++ 10.0 modified EBX. Watcom C/C++ has been changed to match Visual
C/C++.

If you wrote a "__cdecl" function in an earlier version of Watcom C/C++, the EBX
register was not saved/restored. Starting with release 10.5, the EBX register will be
saved/restored in the prologue/epilogue of a "__cdecl" function.

Major Differences from Version 10.0 77

Chapter 6

Another implication of this change is that "__cdecl" functions compiled with an
earlier version of Watcom C/C++ don’t match the calling conventions of the
current version. The solution is either to recompile the functions or to define a
"__cdecl_old" pragma that matches the old calling conventions.

 #pragmaauxcdeclold"*"\
parm caller [] \
value struct float struct routine [eax]

\
modify [eax ebx ecx edx];#pragmaaux(cdeclold)foo;

extern int foo(int a, int b);

void main()
{

printf("%d\n", foo(1, 2));
}

9. We now allow:
 extern"C"intcdeclx;

It must be extern "C" forcdecl to take effect since variables have their
type mangled into the name for "C++" linkage.

10. In C++, we have removed the warning for "always true/false" expressions if the
sub-expressions are constant values.

11. We have added support for:

#pragma pack(push,4);
#pragma pack(push);
#pragma pack(pop)

12. We have added support for:

#pragma comment(lib,"mylib.lib")

which has the same semantics as:

#pragma library("mylib.lib")

13. We have added support for expanding macros in the code_seg/data_seg pragmas:

78 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

 #defineDATASEGNAME"MYDATA"#defineCODESEGNAME"MYCODE"#pragmadataseg(DATASEGNAME)
int x = 3;#pragmacodeseg(CODESEGNAME)
int fn() {

return x;
}

14. We have fixed the 16-bit compiler so that it matches the Microsoft 16-bit C
compiler for the following cases:

• If a pascal function is defined when compiling for Windows 3.x, use the fat
Windows 3.x prologue in the function.

• If a cdecl function is defined when compiling for Windows 3.x, use the fat
Windows 3.x prologue in the function.

15. We have fixed the compiler so that

#include </dir/file.h>

works as expected (it was searching along the INCLUDE path only).

16. In C++, we have fixed a problem where an import was generated in the object file
for a virtual function call. This will reduce the size of executables under certain
circumstances.

17. In C++, we have removed the prohibition of pointer to array of unknown size
declarations.

Example:
int (*p)[];

18. In C++, we have fixed the diagnosis of lexical problems during macro expansion to
remove spurious warnings.

Major Differences from Version 10.0 79

Chapter 6

Example:
#define stringize(x) #x

stringize(2131231236172637126371273612763612731)

19. We have corrected the check for too many bytes in #pragma for assembler style aux
#pragmas.

20. Undeclared class names in elaborated class specifiers are now declared in the
nearest enclosing non-class scope. Undeclared classes are also allowed in
arguments now.

Example:
struct S {

// used to declared ::S::N but now declares ::N
struct N *p;

};

void foo(struct Z *p); // declares ::Z

21. We have fixed unduly harsh restriction on virtual ...-style functions. They are now
allowed in single inheritance hierarchies as long as the return type is not changed
when the virtual function is overridden. In multiple inheritance hierarchies, an
implementation restriction is still present for generating a ’this’ adjustment thunk
for virtual functions.

22. We have fixed line number information for multi-line statement expressions in
some weird cases.

23. We have fixed function template parsing of user-defined conversions that use an
uninstantiated class in their operator name.

Example:
void ack(int);

template <class T>
struct S {

S(T x)
{

ack(x);
}

};

80 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

template <class T>

struct W {
operator S<T>();

};

template <class T>

W<T>::operator S<T>() {
return 0;

}

24. We have fixed a compiler problem that caused a linker warning "lazy reference for
<virtual-fn> has different default resolutions" in cases where the compiler or
programmer optimized virtual function calls to direct calls in modules that also
contained virtual calls.

Example:
T.H

struct S {virtualintfoo(){returnLINE;}
};
struct T : S {virtualintfoo(){returnLINE;}
};

T1.CPP

#include "t.h"
struct Q : T {

virtual int foo() { return S::foo() +LINE;}
};

void foo(T *p)
{

Q y;
y.foo();
p->foo();

}

Major Differences from Version 10.0 81

Chapter 6

T2.CPP

#include "t.h"

void foo(T *p);

void ack(T *p) {
p->foo();
foo(p);

}

main() {
T q;
ack(&q);

}

25. When a class value is returned and is immediately (in the same expression) used to
call a member function, the value may not be stored in memory.

Work around: introduce a temporary

Example:
struct S {

int v;
int member();

};

S foo();

void example(void)
{

// foo().member(); // replace this line with:
S temp = foo();
temp.member();

}

26. Throwing pointers to functions did not work when the size of a function pointer is
greater than the size of a data pointer.

Work around: place the function pointer in a class and throw the class object.

27. We have fixed default argument processing for const references to an abstract class.
The following example would not compile properly:

82 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

Example:
struct A {

virtual int foo() = 0;
};

A &foo();

void ack(A const &r = foo());

void bar() {
ack();

}

28. We have made "DllMain" default to extern "C" linkage for Microsoft Visual C++
compatibility.

29. We have duplicated a Microsoft Visual C++ extension that was required to parse
the Windows 95 SDK header files.

Example:
typedef struct S {
} S, const *CSP;

^^^^^- not allowed in ISO C or ISO C++

30. We now do not warn about starting a nested comment if the comment is just about
to end.

We also fixed the code that figures out where a comment was started so that a
nested comment warning is more helpful.

Example:
/*/////////*/

^-

31. We have fixed a problem where extra informational notes were not being printed
for the error message that exceeded the error message limit.

Major Differences from Version 10.0 83

Chapter 6

Example:
// compile -e2
struct S {

void foo();
};

void foo(S const *p)
{

p->foo();
p->foo();
p->foo();
p->foo();

}

32. We have fixed a problem where the line number for an error message was
incorrect.

Example:
struct S {

void foo() const;
void bar();

};

void S::foo() const
{

bar();

this->bar();

}

33. We have fixed output of browser information for instantiated function template
typedefs.

34. We have upgraded the C++ parser so that casts and member pointer dereferences
can appear on the left hand side of the assignment expression without parentheses.

Example:
p->*mp = 1;
(int&)x = 1;

35. In several cases, when a function return or a construction was immediately dotted
in an expression, the generated code was incorrect:

84 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

Example:
struct S {

int x;
int foo();

};

extern S gorf();

void bar()
{

gorf().foo();
}

The work around was to break the statement in two:

Example:
S temp = gorf();
temp.foo();

36. In several cases, when a function return or a construction was immediately
addressed in an expression, the generated code was incorrect:

Example:
struct S {

int x;
};

extern void fun(S*);

extern S gorf();

void bar()
{

fun(&gorf());
}

The work around was to break the statement in two:

Major Differences from Version 10.0 85

Chapter 6

Example:
S temp = gorf();
fun(&temp);

37. We have added support for:

#pragma error "error message"

Use the ISO/ANSI method because it is more portable and acceptable (Microsoft
header files use the less portable #pragma when there is a perfectly fine, portable
way to issue a message).

The portable, acceptable method is:

#error "error message"

38. We have added support for
declspec(dllexport),declspec(dllimport),declspec(thread), anddeclspec(naked) for Win32 (i.e., WinNT 3.5 and Win95) programs. Here

are some examples:

Example:declspec(dllexport)inta;//export’a’
variabledeclspec(dllexport)intb()//export’b’
function
{
}
 structdeclspec(dllexport)S{

static int a; // export ’a’
static member

void b(); // export ’b’
member fn
};

86 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

 externdeclspec(dllimport)inta;//import’a’
from a .DLLexterndeclspec(dllimport)intb();//import’b’
from a .DLLstructdeclspec(dllimport)I{

static int a; // import ’a’
static member

void b(); // import ’b’
member fn
};

39. The C++ compiler generates better error messages for in-class initializations and
pure virtual functions.

Example:
struct S {

static int const a = 0;
static int const b = 1;
void foo() = 0;
void bar() = 1;
virtual void ack() = 0;
virtual void sam() = 1;

};

40. We have fixed macro processing code so that the following program compiles
correctly. The compiler was not treating "catch" as a keyword after the expansion
of "catch_all".

Example:
#define catch(n) catch(n &exception)
#define xall (...)#definecatchallcatchxall

main()
{

try{
}catchall{
}

}

41. We have fixed a problem where
#pragmacodeseg caused a page fault in the

compiler when the code_seg was empty.

Major Differences from Version 10.0 87

Chapter 6

42. We have fixed a rare problem where a #include of a file that was previously
included caused the primary source file to finish up if the CR/LF pair for the line
that the #include was on, straddled the C++ compiler’s internal buffering boundary.

43. We have added support for #pragma message("message text"). It
outputs a message to stdout when encountered. It is used in Microsoft SDK header
files to warn about directly including header files and obsolete files.

44. We have fixed #pragma code_seg/data_seg to properly set the class name of the
new segment in the object file.

45. We have a fixed a problem with the -zm -d2 options that caused a compiler fault in
some circumstances.

46. We have fixed default library records in .OBJ file so that user libraries are ahead of
default compiler libraries in the linker search order.

47. We have fixed handling of intrinsic math functions so that the code generator will
treat functions like sqrt as an operator.

48. We have added support for using OS-specific exception handling mechanisms for
C++ exception handling during code generation. Enable it with the new -zo option.

49. stdcall functions now have Microsoft Visual C/C++ compatible name
mangling.

50. We have added a number of new functions to the C Library. These have been
added to improve Microsoft compatibility.

88 Major Differences from Version 10.0

Release Notes for Open Watcom C/C++ 1.5

dllmain (nt only)
libmain (nt only)accessdoscommitdupecvtfcvtfstatfstrdupgcvtitoaitoalockinglseekltoaltoamemicmpsetnewhandlerstatstrdatestrdupstricmpstrlwrstrnicmpstrrevstrtimestruprtolowertoupperisasciiiscsymiscsymf

51. In version 9.5, the linker used to include LIBFILE object files in reverse order (i.e.,
the last one listed was the first to be included). We have corrected this behaviour
so that they are included in the order listed.

Directive Old Order New Order
------------- --------- ---------FILEobja3 3LIBFILEobjb2 1LIBFILEobjc1 2FILEobjd4 4

In the above example, the object files will be included in the order indicated
(LIBFILE object files are always included first).

Major Differences from Version 10.0 89

Chapter 6

Changes in 10.5 that may Require Recompilation

__stdcall If you use the __stdcall attribute within a program then you must re-compile the
function definition and all callers of the __stdcall function.

__cdecl The __cdecl attribute is not heavily used in Win32 programming so the impact
should be minimal but if you do use __cdecl within your own programs, a
re-compilation will be necessary.

6.13 Major Differences from Version 10.0 LA

If you have .tgt files created with the Limited Availability or Beta Integrated Development
Environment, when you load them, the target window may say "Obsolete Form: rename
target type". If it does:

1. Select the target window by clicking in it,
2. Choose "rename target" from the target menu (a rename target dialog will appear),
3. Reselect the target type for this target (e.g., Win32 EXE), and
4. Select OK.

You should not continue to use .cfg files from the Limited Availability version of the
compiler. Several new features have been added. Using the old files will cause problems.

The C++ compiler calling conventions have changed. Any program that passes a "data only"
class or struct as a parameter, or returns a C++ object will need to be recompiled. We
recommend that you recompile your application.

The C++ compiler now supports the use of the __export, __cdecl, __pascal, __stdcall and
__syscall keyword on class definitions. These keywords will affect all members of the
defined class.

6.14 Major Differences from Watcom C9.5 /386

• The functionality of Watcom C/C++(16) and Watcom C/C++(32) is included in a
single package.

• An Integrated Development Environment for Windows 3.x, Windows NT, Windows 95
and OS/2 PM is included.

90 Major Differences from Watcom C9.5 /386

Release Notes for Open Watcom C/C++ 1.5

• New, redesigned debugger with GUI interfaces for Windows 3.x, Windows NT,
Windows 95 and OS/2 PM is included.

• The optimizer has been enhanced.

• C++ Class Browser

• New, redesigned user interface for the Profiler.

• New support for C and C++ precompiled header files.

• Windows resource editing tools are included:

Dialog Editor
Bitmap Editor
Resource Editor
Menu Editor
String Editor
Accelerator Editor

• Windows development tools are included:

Dr. Watcom (a post mortem debug utility)
Spy (Windows message spy program)
DDESpy
Heap Walker
Zoom

• On-line documentation is included.

• Microsoft Foundation Classes for 32-bit Windows applications (MFC 4.1) and 16-bit
Windows 3.1 applications (MFC 2.52b) is included.

• Creation of FlashTek DOS extender applications is supported.

• Compiler executables have been created that run under all supported operating systems.
They are located in the BINW directory.

Major Differences from Watcom C9.5 /386 91

Chapter 6

Items No Longer Supported

• PenPoint development

• Debugging of Ergo OS/386 DOS extender applications

• DESQView remote debugging

Changes in 10.0 that may Require Recompilation

All C++ applications will require recompilation due to changes in the underlying object
model. C applications should not require recompilation, but you should recompile your
application if you want to take full advantage new features in the debugger. The changes to
the C++ object model are:

• Virtual table layout changed (NULL entry at offset 0 removed)

• derived class packing adjusted to minimize padding bytes

• exception handling code is improved (incompatible with 9.5)

• name mangling for ’char’ reduced from two chars to one char

6.15 Major Differences from Watcom C9.01 /386

• C++ support added

• Pentium optimizations added ("5r", "5s", "fp5" options)

• Windows NT support added

• Microsoft resource compiler (RC.EXE) replaced with Watcom resource compiler
(WRC.EXE)

• OS/2 libraries modified so that single library supports single and multiple threads and
DLL’s

• "fpi287" switch renamed to "fp2"

• #pragma intrinsic and #pragma function added

92 Major Differences from Watcom C9.01 /386

Release Notes for Open Watcom C/C++ 1.5

• 80x87 usage modified so that compiler assumes all eight registers are available upon
entry to function instead of only four registers. "fpr" option added for reverse
compatibility with object files compiled with previous versions of compiler

Changes that may Require Recompilation

The stat structure in "stat.h" changed in version 9.5. Any object files compiled with an earlier
version of the compiler will have to be recompiled if they use the stat structure.

A new function _grow_handles was added to version 9.5 for growing the number of available
file handles. Details on how to use this function can be found in the Watcom
C/C++32 Commonly Asked Questions & Answers booklet.

If you compile with structure packing (/zp2, /zp4, /zp8) or use the "pack" pragma to specify a
packing value other than 1, and you have structures that contain other structures, field offsets
and structure sizes may be different depending on the contents of the structures.

In version 9.01, the new Windows Supervisor now has 32 user-defined callbacks. If you have
any user-defined callbacks in your Windows program, you must recompile because the
constant definitions have changed.

In version 9.0, the compiler will not use FS by default to avoid conflicts with new operating
systems (OS/2 2.0, PenPoint, Windows NT). This will cause compile errors if you have
defined a pragma that uses the FS register.

In version 8.5, the compiler was changed so that it by default does not save and restore
segment registers across function calls. This is to solve problems that occur where a segment
register is saved and restored in a function that tries to free the segment. When the segment
register is popped from the stack in the epilogue, a general protection exception occurs
because the selector is no longer valid. In order to provide backward compatibility with
existing code, we have added a "-r" option that will cause the compiler to save and restore
segment registers across calls. The C run-time library has been compiled with the "-r" option
so that it will work should you choose to compile your application with the same option.

The packing algorithm was also changed in version 8.5. If you are using one of the "-zp2,
-zp4, or -zp8" options to pack structures, you must recompile your application. The packing
algorithm has been changed so that the minimum number of slack bytes are inserted into
structures to align fields onto their required alignment.

Major Differences from Watcom C9.01 /386 93

Chapter 6

6.16 Major Differences from Watcom C9.0 /386

• Windows 3.1 SDK components

• Support for Windows 3.1 DLLs

• On-line Watcom C Library Reference help file for OS/2 2.0. Help can be accessed by
issuing the command "VIEW WATCOMC". The command can be followed by a topic.
e.g. VIEW WATCOMC PRINTF.

Command Line Options added to Watcom C9.0 /386

4r Use register calling conventions and optimize for 486.

4s Use stack calling conventions and optimize for 486.

ee Generate a call to __EPI at the end of a function

ep{=number}
Generate a call to __PRO at the start of a function

oe In-line user defined functions.

or Reorder instructions to take advantage of 486 pipelining.

zff Allows the FS register to be used by the code generator for far pointers.

zfp Disallows use of the FS register. This is the default in flat memory model,
because operating systems are now using FS to point to important information.
(e.g. OS/2 2.0, PenPoint, Windows NT).

zm Places each function into a separate segment. This will allow for smart linking.

6.17 Major Differences from Watcom C8.5 /386

Several major items have been added to Watcom C9.0 /386. They are:

94 Major Differences from Watcom C8.5 /386

Release Notes for Open Watcom C/C++ 1.5

• 486 instruction selection
• 486 instruction scheduling
• Tail recursion elimination
• Function inlining
• strcmp function optimized for 486
• Support for OS/2 2.0
• New keywords added (_far16, _Seg16, _Packed, _Cdecl, _Pascal, _System)
• Linkage pragma for compatibility with IBM C Set/2
• Based pointers
• Machine language code sequences can now be entered into pragmas using assembly
language instead of numeric codes.

• Remote debugging over the parallel port using either a "LapLink" cable or a "Flying
Dutchman" cable.

• Remote debugging of PenPoint applications

Command Line Options added to Watcom C8.5 /386

d1+ to generate line number information plus typing information for global symbols
and local structs and arrays

ei force all enumerated types to be of type ’int’
en emit routine name before prologue
ez generate PharLap EZ-OMF object file
fpi287 for programs that run on a system with a 287
of to generate traceable stack frames
of+ to generate traceable stack frames for all functions
om to generate in-line math functions
p to generate preprocessor output
pl to generate preprocessor output with #line directives
pc to generate preprocessor output preserving comments
plc to generate preprocessor output with #line directives and preserving comments
r save/restore segment registers across calls
we treat warnings as errors

6.18 Major Differences from Watcom C8.0 /386

Several major items were added to Watcom C8.5 /386. They are:

• Royalty-free 32-bit DOS extender
• Windows 3.0 support
• Windows SDK components included
• Improved optimizations

Major Differences from Watcom C8.0 /386 95

Chapter 6

• OS/2 hosted version of the compiler
• The compiler now generates Microsoft format object files by default. Use the ’/ez’
option to generate Phar Lap EZ-OMF object files.

• More library functions to create higher compatibility with Microsoft C 5.1 and
Microsoft C 6.0.

• Preprocessor output from the compiler
• Standalone help utility
• Object module convert utility can convert debugging information into CodeView
format

• Protected-mode version of the linker
• Debugger support for ADS applications
• Support for Pharlap 3.0 and Pharlap 4.0
• Support for Tenberry Software DOS/4G
• Support for Intel 386/486 Code Builder Kit
• Support for UNICODE. Literal strings and character constants that are preceded by
"L" map code page 437 onto UNICODE unless one of the options "-zk0, -zk1, or -zk2"
is specified.

Command Line Options added to Watcom C8.0 /386

d2 symbolic debugging information
oc disable "call" followed by "ret" being changed into a "jmp" optimization
u<name> undefine a pre-defined name
zc places literal strings in the CODE segment
zk{0,1,2} double-byte character support

6.19 Major Differences from Watcom C7.0 /386
Several major items have been added to Watcom C8.0 /386. They are:

• Linker

• Librarian

• Graphics library

• More library functions to create higher compatibility with Microsoft C 5.1 and
Microsoft C 6.0.

The professional edition also gives you the following most asked for features:

96 Major Differences from Watcom C7.0 /386

Release Notes for Open Watcom C/C++ 1.5

• Protected-mode version of the compiler

• Full-screen source-level debugger

• Execution profiler

Protected-mode Compiler and Linker

The protected-mode version of the compiler "WCC386P.EXE" and linker "WLINKP.EXE"
use a DPMI compliant DOS extender. This allows you to run the compiler and linker on a
normal DOS system or in a Windows 3.x DOS box operating in enhanced mode.

Major Differences from Watcom C7.0 /386 97

Chapter 6

98 Major Differences from Watcom C7.0 /386

7 Sybase Open Watcom Public License

USE OF THE SYBASE OPEN WATCOM SOFTWARE DESCRIBED BELOW
("SOFTWARE") IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN
THE SYBASE OPEN WATCOM PUBLIC LICENSE SET FORTH BELOW
("LICENSE"). YOU MAY NOT USE THE SOFTWARE IN ANY MANNER UNLESS
YOU ACCEPT THE TERMS AND CONDITIONS OF THE LICENSE. YOU
INDICATE YOUR ACCEPTANCE BY IN ANY MANNER USING (INCLUDING
WITHOUT LIMITATION BY REPRODUCING, MODIFYING OR DISTRIBUTING)
THE SOFTWARE. IF YOU DO NOT ACCEPT ALL OF THE TERMS AND
CONDITIONS OF THE LICENSE, DO NOT USE THE SOFTWARE IN ANY
MANNER.

Sybase Open Watcom Public License version 1.0

1. General; Definitions. This License applies only to the following software programs: the
open source versions of Sybase’s Watcom C/C++ and Fortran compiler products
("Software"), which are modified versions of, with significant changes from, the last versions
made commercially available by Sybase. As used in this License:

1.1 "Applicable Patent Rights" mean: (a) in the case where Sybase is the grantor of rights, (i)
claims of patents that are now or hereafter acquired, owned by or assigned to Sybase and (ii)
that cover subject matter contained in the Original Code, but only to the extent necessary to
use, reproduce and/or distribute the Original Code without infringement; and (b) in the case
where You are the grantor of rights, (i) claims of patents that are now or hereafter acquired,
owned by or assigned to You and (ii) that cover subject matter in Your Modifications, taken
alone or in combination with Original Code.

1.2 "Contributor" means any person or entity that creates or contributes to the creation of
Modifications.

1.3 "Covered Code" means the Original Code, Modifications, the combination of Original
Code and any Modifications, and/or any respective portions thereof.

1.4 "Deploy" means to use, sublicense or distribute Covered Code other than for Your internal
research and development (R&D) and/or Personal Use, and includes without limitation, any
and all internal use or distribution of Covered Code within Your business or organization
except for R&D use and/or Personal Use, as well as direct or indirect sublicensing or
distribution of Covered Code by You to any third party in any form or manner.

Sybase Open Watcom Public License 99

Chapter 7

1.5 "Larger Work" means a work which combines Covered Code or portions thereof with
code not governed by the terms of this License.

1.6 "Modifications" mean any addition to, deletion from, and/or change to, the substance
and/or structure of the Original Code, any previous Modifications, the combination of
Original Code and any previous Modifications, and/or any respective portions thereof. When
code is released as a series of files, a Modification is: (a) any addition to or deletion from the
contents of a file containing Covered Code; and/or (b) any new file or other representation of
computer program statements that contains any part of Covered Code.

1.7 "Original Code" means (a) the Source Code of a program or other work as originally made
available by Sybase under this License, including the Source Code of any updates or upgrades
to such programs or works made available by Sybase under this License, and that has been
expressly identified by Sybase as such in the header file(s) of such work; and (b) the object
code compiled from such Source Code and originally made available by Sybase under this
License.

1.8 "Personal Use" means use of Covered Code by an individual solely for his or her personal,
private and non-commercial purposes. An individual’s use of Covered Code in his or her
capacity as an officer, employee, member, independent contractor or agent of a corporation,
business or organization (commercial or non-commercial) does not qualify as Personal Use.

1.9 "Source Code" means the human readable form of a program or other work that is suitable
for making modifications to it, including all modules it contains, plus any associated interface
definition files, scripts used to control compilation and installation of an executable (object
code).

1.10 "You" or "Your" means an individual or a legal entity exercising rights under this
License. For legal entities, "You" or "Your" includes any entity which controls, is controlled
by, or is under common control with, You, where "control" means (a) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of fifty percent (50%) or more of the outstanding shares or
beneficial ownership of such entity.

2. Permitted Uses; Conditions & Restrictions.Subject to the terms and conditions of this
License, Sybase hereby grants You, effective on the date You accept this License and
download the Original Code, a world-wide, royalty-free, non-exclusive license, to the extent
of Sybase’s Applicable Patent Rights and copyrights covering the Original Code, to do the
following:

2.1 You may use, reproduce, display, perform, modify and distribute Original Code, with or
without Modifications, solely for Your internal research and development and/or Personal
Use, provided that in each instance:

100 Sybase Open Watcom Public License

Sybase Open Watcom Public License

(a) You must retain and reproduce in all copies of Original Code the copyright and other
proprietary notices and disclaimers of Sybase as they appear in the Original Code, and keep
intact all notices in the Original Code that refer to this License; and

(b) You must retain and reproduce a copy of this License with every copy of Source Code of
Covered Code and documentation You distribute, and You may not offer or impose any terms
on such Source Code that alter or restrict this License or the recipients’ rights hereunder,
except as permitted under Section 6.

(c) Whenever reasonably feasible you should include the copy of this License in a click-wrap
format, which requires affirmative acceptance by clicking on an "I accept" button or similar
mechanism. If a click-wrap format is not included, you must include a statement that any use
(including without limitation reproduction, modification or distribution) of the Software, and
any other affirmative act that you define, constitutes acceptance of the License, and
instructing the user not to use the Covered Code in any manner if the user does not accept all
of the terms and conditions of the License.

2.2 You may use, reproduce, display, perform, modify and Deploy Covered Code, provided
that in each instance:

(a) You must satisfy all the conditions of Section 2.1 with respect to the Source Code of the
Covered Code;

(b) You must duplicate, to the extent it does not already exist, the notice in Exhibit A in each
file of the Source Code of all Your Modifications, and cause the modified files to carry
prominent notices stating that You changed the files and the date of any change;

(c) You must make Source Code of all Your Deployed Modifications publicly available under
the terms of this License, including the license grants set forth in Section 3 below, for as long
as you Deploy the Covered Code or twelve (12) months from the date of initial Deployment,
whichever is longer. You should preferably distribute the Source Code of Your Deployed
Modifications electronically (e.g. download from a web site);

(d) if You Deploy Covered Code in object code, executable form only, You must include a
prominent notice, in the code itself as well as in related documentation, stating that Source
Code of the Covered Code is available under the terms of this License with information on
how and where to obtain such Source Code; and

(e) the object code form of the Covered Code may be distributed under Your own license
agreement, provided that such license agreement contains terms no less protective of Sybase
and each Contributor than the terms of this License, and stating that any provisions which
differ from this License are offered by You alone and not by any other party.

Sybase Open Watcom Public License 101

Chapter 7

2.3 You expressly acknowledge and agree that although Sybase and each Contributor grants
the licenses to their respective portions of the Covered Code set forth herein, no assurances
are provided by Sybase or any Contributor that the Covered Code does not infringe the patent
or other intellectual property rights of any other entity. Sybase and each Contributor disclaim
any liability to You for claims brought by any other entity based on infringement of
intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, You hereby assume sole responsibility to secure any other intellectual
property rights needed, if any. For example, if a third party patent license is required to allow
You to distribute the Covered Code, it is Your responsibility to acquire that license before
distributing the Covered Code.

3. Your Grants. In consideration of, and as a condition to, the licenses granted to You under
this License, You hereby grant to Sybase and all third parties a non-exclusive, royalty-free
license, under Your Applicable Patent Rights and other intellectual property rights (other than
patent) owned or controlled by You, to use, reproduce, display, perform, modify, distribute
and Deploy Your Modifications of the same scope and extent as Sybase’s licenses under
Sections 2.1 and 2.2.

4. Larger Works. You may create a Larger Work by combining Covered Code with other
code not governed by the terms of this License and distribute the Larger Work as a single
product. In each such instance, You must make sure the requirements of this License are
fulfilled for the Covered Code or any portion thereof.

5. Limitations on Patent License. Except as expressly stated in Section 2, no other patent
rights, express or implied, are granted by Sybase herein. Modifications and/or Larger Works
may require additional patent licenses from Sybase which Sybase may grant in its sole
discretion.

6. Additional Terms. You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations and/or other rights consistent with this License ("Additional
Terms") to one or more recipients of Covered Code. However, You may do so only on Your
own behalf and as Your sole responsibility, and not on behalf of Sybase or any Contributor.
You must obtain the recipient’s agreement that any such Additional Terms are offered by You
alone, and You hereby agree to indemnify, defend and hold Sybase and every Contributor
harmless for any liability incurred by or claims asserted against Sybase or such Contributor by
reason of any such Additional Terms.

7. Versions of the License. Sybase may publish revised and/or new versions of this License
from time to time. Each version will be given a distinguishing version number. Once
Original Code has been published under a particular version of this License, You may
continue to use it under the terms of that version. You may also choose to use such Original
Code under the terms of any subsequent version of this License published by Sybase. No one
other than Sybase has the right to modify the terms applicable to Covered Code created under
this License.

102 Sybase Open Watcom Public License

Sybase Open Watcom Public License

8. NO WARRANTY OR SUPPORT. The Covered Code may contain in whole or in part
pre-release, untested, or not fully tested works. The Covered Code may contain errors that
could cause failures or loss of data, and may be incomplete or contain inaccuracies. You
expressly acknowledge and agree that use of the Covered Code, or any portion thereof, is at
Your sole and entire risk. THE COVERED CODE IS PROVIDED "AS IS" AND WITHOUT
WARRANTY, UPGRADES OR SUPPORT OF ANY KIND AND SYBASE AND
SYBASE’S LICENSOR(S) (COLLECTIVELY REFERRED TO AS "SYBASE" FOR THE
PURPOSES OF SECTIONS 8 AND 9) AND ALL CONTRIBUTORS EXPRESSLY
DISCLAIM ALL WARRANTIES AND/OR CONDITIONS, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES AND/OR
CONDITIONS OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OF FITNESS
FOR A PARTICULAR PURPOSE, OF ACCURACY, OF QUIET ENJOYMENT, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. SYBASE AND EACH
CONTRIBUTOR DOES NOT WARRANT AGAINST INTERFERENCE WITH YOUR
ENJOYMENT OF THE COVERED CODE, THAT THE FUNCTIONS CONTAINED IN
THE COVERED CODE WILL MEET YOUR REQUIREMENTS, THAT THE OPERATION
OF THE COVERED CODE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT
DEFECTS IN THE COVERED CODE WILL BE CORRECTED. NO ORAL OR WRITTEN
INFORMATION OR ADVICE GIVEN BY SYBASE, A SYBASE AUTHORIZED
REPRESENTATIVE OR ANY CONTRIBUTOR SHALL CREATE A WARRANTY. You
acknowledge that the Covered Code is not intended for use in the operation of nuclear
facilities, aircraft navigation, communication systems, or air traffic control machines in which
case the failure of the Covered Code could lead to death, personal injury, or severe physical or
environmental damage.

9. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW, IN
NO EVENT SHALL SYBASE OR ANY CONTRIBUTOR BE LIABLE FOR ANY
DIRECT, INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL OR OTHER
DAMAGES OF ANY KIND ARISING OUT OF OR RELATING TO THIS LICENSE OR
YOUR USE OR INABILITY TO USE THE COVERED CODE, OR ANY PORTION
THEREOF, WHETHER UNDER A THEORY OF CONTRACT, WARRANTY, TORT
(INCLUDING NEGLIGENCE), PRODUCTS LIABILITY OR OTHERWISE, EVEN IF
SYBASE OR SUCH CONTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES, AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL
PURPOSE OF ANY REMEDY. SOME JURISDICTIONS DO NOT ALLOW THE
LIMITATION OF LIABILITY OF INCIDENTAL OR CONSEQUENTIAL OR OTHER
DAMAGES OF ANY KIND, SO THIS LIMITATION MAY NOT APPLY TO YOU. In no
event shall Sybase’s or any Contributor’s total liability to You for all damages (other than as
may be required by applicable law) under this License exceed the amount of five hundred
dollars ($500.00).

10. Trademarks. This License does not grant any rights to use the trademarks or trade names
"Sybase" or any other trademarks or trade names belonging to Sybase (collectively "Sybase
Marks") or to any trademark or trade name belonging to any Contributor("Contributor

Sybase Open Watcom Public License 103

Chapter 7

Marks"). No Sybase Marks or Contributor Marks may be used to endorse or promote
products derived from the Original Code or Covered Code other than with the prior written
consent of Sybase or the Contributor, as applicable.

11. Ownership. Subject to the licenses granted under this License, each Contributor retains
all rights, title and interest in and to any Modifications made by such Contributor. Sybase
retains all rights, title and interest in and to the Original Code and any Modifications made by
or on behalf of Sybase ("Sybase Modifications"), and such Sybase Modifications will not be
automatically subject to this License. Sybase may, at its sole discretion, choose to license
such Sybase Modifications under this License, or on different terms from those contained in
this License or may choose not to license them at all.

12. Termination.

12.1 Termination. This License and the rights granted hereunder will terminate:

(a) automatically without notice if You fail to comply with any term(s) of this License and fail
to cure such breach within 30 days of becoming aware of such breach;

(b) immediately in the event of the circumstances described in Section 13.5(b); or

(c) automatically without notice if You, at any time during the term of this License,
commence an action for patent infringement (including as a cross claim or counterclaim)
against Sybase or any Contributor.

12.2 Effect of Termination. Upon termination, You agree to immediately stop any further use,
reproduction, modification, sublicensing and distribution of the Covered Code and to destroy
all copies of the Covered Code that are in your possession or control. All sublicenses to the
Covered Code that have been properly granted prior to termination shall survive any
termination of this License. Provisions which, by their nature, should remain in effect beyond
the termination of this License shall survive, including but not limited to Sections 3, 5, 8, 9,
10, 11, 12.2 and 13. No party will be liable to any other for compensation, indemnity or
damages of any sort solely as a result of terminating this License in accordance with its terms,
and termination of this License will be without prejudice to any other right or remedy of any
party.

13. Miscellaneous.

13.1 Government End Users. The Covered Code is a "commercial item" as defined in FAR
2.101. Government software and technical data rights in the Covered Code include only those
rights customarily provided to the public as defined in this License. This customary
commercial license in technical data and software is provided in accordance with FAR 12.211
(Technical Data) and 12.212 (Computer Software) and, for Department of Defense purchases,
DFAR 252.227-7015 (Technical Data -- Commercial Items) and 227.7202-3 (Rights in

104 Sybase Open Watcom Public License

Sybase Open Watcom Public License

Commercial Computer Software or Computer Software Documentation). Accordingly, all
U.S. Government End Users acquire Covered Code with only those rights set forth herein.

13.2 Relationship of Parties. This License will not be construed as creating an agency,
partnership, joint venture or any other form of legal association between or among you,
Sybase or any Contributor, and You will not represent to the contrary, whether expressly, by
implication, appearance or otherwise.

13.3 Independent Development. Nothing in this License will impair Sybase’s or any
Contributor’s right to acquire, license, develop, have others develop for it, market and/or
distribute technology or products that perform the same or similar functions as, or otherwise
compete with, Modifications, Larger Works, technology or products that You may develop,
produce, market or distribute.

13.4 Waiver; Construction. Failure by Sybase or any Contributor to enforce any provision of
this License will not be deemed a waiver of future enforcement of that or any other provision.
Any law or regulation which provides that the language of a contract shall be construed
against the drafter will not apply to this License.

13.5 Severability. (a) If for any reason a court of competent jurisdiction finds any provision
of this License, or portion thereof, to be unenforceable, that provision of the License will be
enforced to the maximum extent permissible so as to effect the economic benefits and intent
of the parties, and the remainder of this License will continue in full force and effect. (b)
Notwithstanding the foregoing, if applicable law prohibits or restricts You from fully and/or
specifically complying with Sections 2 and/or 3 or prevents the enforceability of either of
those Sections, this License will immediately terminate and You must immediately
discontinue any use of the Covered Code and destroy all copies of it that are in your
possession or control.

13.6 Dispute Resolution. Any litigation or other dispute resolution between You and Sybase
relating to this License shall take place in the Northern District of California, and You and
Sybase hereby consent to the personal jurisdiction of, and venue in, the state and federal
courts within that District with respect to this License. The application of the United Nations
Convention on Contracts for the International Sale of Goods is expressly excluded.

13.7 Entire Agreement; Governing Law. This License constitutes the entire agreement
between the parties with respect to the subject matter hereof. This License shall be governed
by the laws of the United States and the State of California, except that body of California law
concerning conflicts of law.

Where You are located in the province of Quebec, Canada, the following clause applies: The
parties hereby confirm that they have requested that this License and all related documents be
drafted in English. Les parties ont exige que le present contrat et tous les documents connexes
soient rediges en anglais.

Sybase Open Watcom Public License 105

Chapter 7

EXHIBIT A.

Portions Copyright (c) 1983-2002 Sybase, Inc. All Rights
Reserved.

This file contains Original Code and/or Modifications of
Original Code as defined in and that are subject to the
Sybase Open Watcom Public License version 1.0 (the
’License’). You may not use this file except in compliance
with the License. BY USING THIS FILE YOU AGREE TO ALL
TERMS AND CONDITIONS OF THE LICENSE. A copy of the License
is provided with the Original Code and Modifications, and
is also available at www.sybase.com/developer/opensource.

The Original Code and all software distributed under the
License are distributed on an ’AS IS’ basis, WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, AND SYBASE
AND ALL CONTRIBUTORS HEREBY DISCLAIM ALL SUCH WARRANTIES,
INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
ENJOYMENT OR NON-INFRINGEMENT. Please see the License for
the specific language governing rights and limitations
under the License.

106 Sybase Open Watcom Public License

8 Trouble-Shooting

This section is intended to provide you with help on some of the common (and not so
common) problems that users have encountered when trying to run the software.

Symptom: The message "Cannot connect to batch spawn server" is displayed.

Resolution: This message occurs when the Open Watcom IDE is trying to connect to the
batch server. The batch server is a program that is employed by the Open
Watcom IDE to run "makes" in the background. There are several reasons why
you may receive this message.

• Installing Under the Host System and Selecting "Modify System Files"
During Install

For the IDE to run properly under a particular host operating system, the
install program must be run on that system.

It is very important to check the "Modify System Files" when running the
install on the host platform. Otherwise, changes required in the host
system’s environment will not be made. If this is the problem, you should
re-install under the host environment and select this option.

• System stability

If for some reason the operating system has become unstable, the IDE may
have trouble connecting to the batch server. This can happen if you have
run a badly behaved application that caused an exception, for example a
page fault. If this is the problem, you should shutdown the operating
system and reboot.

• Running Windows 3.1 in Enhanced Mode

The IDE requires at least version 3.1 of Windows to be running, in
enhanced mode. Windows 3.0 is not supported.

Running Third-Party Shell Programs

Trouble-Shooting 107

Chapter 8

If you run 4DOS.COM or some other shell besides COMMAND.COM, you must change the
"BATCHBOX.PIF" file accordingly. You can do this using the standard Windows PIF editor.

Running Virus Checkers

If you are running Central Point’s PCTOOLS, VWATCH, or some other virus checker, it may
be conflicting with our batch server. To isolate the problem, uninstall the virus checker and
see if the IDE works again.

386 Enhanced "Exclusive in Foreground" Option

If you go to the Windows Control Panel, "Scheduling Options" of "386 Enhanced", and the
"Exclusive in Foreground" checkbox is checked, uncheck it. This causes our batch server to
starve under Windows.

Changes to the SYSTEM.INI File

The WDEBUG.386 driver is required to be installed in the [386Enh] section of SYSTEM.INI.
This should have been done automatically by the WATCOM install program when the
software was installed under the host environment and the "modify system files" option was
selected.

It has been reported that the line

OverlappedIO=on

not appear in the SYSTEM.INI file.

It appears the user’s problem was related to conflicts with other devices installed in the
SYSTEM.INI file. On its own, the above line does not appear to affect the execution of the
IDE.

It has been reported that the line

NoEMMDriver=ON

not appear in the SYSTEM.INI file. It will prevent a link from succeeding in the IDE.

108 Trouble-Shooting

Trouble-Shooting

8.1 Win-OS/2 and OS/2 Specific

Installing for a Win-OS/2 Host

For Win-OS/2, the install must be run under OS/2 and "Modify System Files" must be
selected. This installs the batch server under OS/2, which we require under Win-OS/2. Then
the Windows install program should be run under Win-OS/2 so that the program groups will
be created. "Modify System Files" should also be checked for the Win-OS/2 install.

Named Pipe Conflicts

Under OS/2, the batch server is a named pipe. Win-OS/2 uses the OS/2 named pipe for the
batch server, hence the OS/2 IDE will conflict with the Win-OS/2 IDE if they are both
running. If this is the problem, you should run only one of the OS/2 and Win-OS/2 IDE, not
both at the same time.

Win-OS/2 and OS/2 Specific 109

Index

CLOCKS_PER_SEC 67, 72-73, 75
COMMAND.COM 14

3 CONFIG.SYS 14
Control Panel 13
cross-platform 2

386 Enhanced 13

D
4

DDE spy 3
debugger 144DOS 14
DELDIR environment variable 14
DOS extender 4
DPMI specification 7
Dr. Watcom 3A

Eanti-virus 13

editor 3B
Enhanced System Editor 14
environment variables

DELDIR 14
PATH 10batch server 13, 108
WATCOM 10BATCHBOX.PIF 14

EPM 14benchmarking 45
__export 90BINMODE 72

FC

fastest 16-bit code 45__cdecl 90
fastest 32-bit code 45class browser 3

class libraries 4
clock 67, 72-73, 75
clock() 66

111

Index

G N

GUI tools 3 NMPBIND 14
NoEMMDriver 13, 108

H
O

hardware requirements 9
heap walker 3 OMF specification 6
host platforms supported 2 OPTION NOCASEEX 66

_osver 72
OverlappedIO 13
overview 1

I

P
IDE 14
Image Type 19-20
InDOSPolling 13
INSTALL 12 __pascal 90
installation PATH environment variable 10

incremental 12 performance analysis 3
modifications to files 12 PIF 14
multiple operating systems 11 platforms supported 2
previous version 10 printf 72

installing Open Watcom C/C++ 10 printf() 65
DOS 11 product overview 1
OS/2 12 Program Information File 14
Windows 3.x 11
Windows 95/98/Me 12
Windows NT/2000/XP 12

__int64 69-70, 72 R

read-me file 4
resource compiler 3

112

Index

resource editors 3 Windows
386 Enhanced 13
Control Panel 13
InDOSPolling 13
NoEMMDriver 13, 108S
OverlappedIO 13
SYSTEM.INI 13, 108

_winmajor 72
scanf 72 _winminor 72
self-help 4 _winver 72
SETUP 11-12
software requirements 9
spy 3
stat 58 Z
__stdcall 90
struct stat 58
__syscall 90
SYSTEM.INI 13, 108 zoom 3

T

Target Environment 19-20
target platforms supported 2
technical support 4-5

U

UNDELETE 14

W

WATCOM environment variable 10
WHELP 40

113

