Open Watcom Linux Port
Compiler / Linker Software Requirements
Specification

Copyright © 2004 SciTech Software, Inc.

Created on 1/14/2004 11:08 AM

Open Watcom Linux Port

Page 2 of 55

Compiler / Linker Software Requirements Specification

Table of Contents

Executive summary

Introduction

1.1 Definitions, acronyms and abbreviations
1.2 References

Key Components of the Open Watcom C Compiler and Linker

2.1 ORL
2.1.1 Definition
2.1.2 Description
2.2 WLCore
2.2.1 Definition
2.2.2 Description
2.3 Load ELF
2.3.1 Definition
2.3.2 Description
24 GC386
2.4.1 Definition
2.4.2 Description
2.5 OWL
2.5.1 Definition
2.5.2 Description

Porting Open Watcom C Compiler and Linker to Linux

3.1 Position-Independent Code
3.1.1 Command Line Switches
3.1.2 ELF Object Files
3.1.3 PIC Generation
3.1.4 Notes

3.2 Building Shared Objects
3.2.1 Linker Command Line
3.2.2 ELF Header
3.2.3 Segments and Sections
3.2.4 Program Headers
3.2.5 Dynamic Section
3.2.6 Dynamic Symbols
3.2.7 Dynamic Relocations
3.2.8 Global Offset Table
3.2.9 Procedure Linkage Table
3.2.10 Notes

3.3 Using Shared Objects
3.3.1 Reading Shared Objects
3.3.2 Program Interpreter
3.3.3 Required Libraries
3.3.4 Global Offset Table
3.3.5 Procedure Linkage Table
3.3.6 Notes

Existing Problems

| SciTech Software, Inc.

32

32
33
33
35
38
39
39
39
39
40
41
42
43
44
45
48
48
48
48
48
49
49
50

50

Open Watcom Linux Port

Page 3 of 55

Compiler / Linker Software Requirements Specification

4.1.1 Support of R 386 PC32 relocations
4.1.2 Support of STT NOTYPE symbols
4.1.3 Accurate segment mapping

Estimation

5.1 Position-Independent Code
5.2 Building Shared Objects
5.3 Using Shared Objects

5.4 Final Integration

SciTech Software, Inc.

50
51
52

54

54
54
55
55

Open Watcom Linux Port Page 4 of 55

Compiler / Linker Software Requirements Specification

Compiler / Linker Software Requirements
Specification

Executive summary

This document describes a detailed approach to porting Open Watcom Compiler and Linker to Linux
platform.

1. Introduction

This document outlines a set of steps that should be taken to provide shared libraries and position
independent code support to the Open Watcom compiler as a part of the Open Watcom Linux porting
effort.

All information is presented relative to open_watcom_devel 1.1.7. Since Open Watcom is open-source
project, we assume some of the topics covered might become obsolete or inaccurate at the moment of
reading this document. A considerable amount of experimental work was performed prior writing this
Specification. Some results of that work are included in this document.

This document consists of four large sections. Section one is an introductory section. Section two describes
the key components of Open Watcom C Compiler and Linker. Section three defines steps, needed for
adding PIC and shared object support. Section four describes some problems found during our
investigation.

1.1 Definitions, acronyms and abbreviations

ABI Application Binary Interface
ELF Executable and Linking Format
There are three main types of ELF files:
= A relocatable file holds code and data suitable for linking with other object files to create an
executable or a shared object file.
= An executable file holds a program suitable for execution; the file specifies how the function exec()
creates a program’s process image.
= A shared object file holds code and data suitable for linking in two contexts. First, the link editor may
process it with other relocatable and shared object files to create another object file. Second, the
dynamic linker combines it with an executable file and other shared objects to create a process image.
wlink have limited support of building and using of ELF files.
OMF Relocatable Object Module Format
This format (developed by Microsoft) is produced by wee386 (and has “native” support in wlink).
ORL Object Reading Library
API for reading object files.
PDC Position Dependent Code (opposite to PIC)
PIC Position Independent Code
This lets a segment’s virtual address change from one process to another, without invalidating execution
behavior. Because PIC uses relative addressing between segments, the difference between virtual
addresses in memory must match the difference between virtual addresses in the file. The difference
between the virtual address of any segment in memory and the corresponding virtual address in the file is
thus a single constant value for any one executable or shared object in a given process.
wee386 | Open Watcom C Compiler
wlink | Open Watcom Linker

SciTech Software, Inc.

Open Watcom Linux Port

Page 5 of 55

Compiler / Linker Software Requirements Specification

1.2 References

1. SYSTEM V APPLICATION BINARY INTERFACE, Edition 4.1

2. SYSTEM V APPLICATION BINARY INTERFACE, Intel386™ Architecture Processor
Supplement, Fourth Edition

3. Linux Standard Base Specification for the IA32 Architecture 1.9.0-20031030
4. OMF 1.1 Specification

2. Key Components of the Open Watcom C Compiler and Linker

Certain parts of the Open Watcom source code are especially important for our project. Such parts will be
referred as “components” throughout this document, although some of them are logically interrelated
source files, and others are subprojects (subdirectories under the Open Watcom source tree). The informal
names defined here will be used in the further parts of this document.

Each component is described in two sections. First section describes the purpose of the component, and
provides the list of core source files. Second section describes the principles of function of the
corresponding component. Important functions, data structures, and constants are described as well.

2.1 ORL
2.1.1 Definition

Abbreviation of “Object Reading Library”. Located in SOWROOT/bld/orl.

ORL is designed for reading various formats of object files: ELF, OMF, and COFF. We are interested
mainly in the ELF stuff (SOWROOT/bld/orV/elf).

ELF linking information (e.g. relocation entries) is mapped to abstract ORL linking information. For
example, ELF relocation type R_386_32 is mapped to ORL_RELOC_TYPE_WORD_32.

2.1.2 Description

There are several handle types defined in ORL. Most important are orl_sec_handle and
orl_symbol_handle. There are many functions operating with sections and symbols:

char *

orl sec offset
orl sec_size
orl sec type
orl sec flags
orl sec_alignment
orl sec handle
orl sec handle
orl sec handle
orl linnum *
orl table index
orl sec offset

orl return

ORLSecGetName (orl sec handle);
ORLSecGetBase(orl sec handle);
ORLSecGetSize(orl sec handle);
ORLSecGetType (orl sec handle);
ORLSecGetFlags(orl sec handle);
ORLSecGetAlignment (orl sec handle);
ORLSecGetStringTable (orl sec handle);
ORLSecGetSymbolTable (orl sec handle);
ORLSecGetRelocTable(orl sec handle);
ORLSecGetLines (orl sec handle);
ORLSecGetNumLines (orl sec handle);
ORLSecGetOffset (orl sec handle);

ORLSecGetContents(orl sec handle, char **);

SciTech Software, Inc.

Open Watcom Linux Port Page 6 of 55

Compiler / Linker Software Requirements Specification

orl return ORLSecQueryReloc (orl sec handle, orl sec offset,
orl reloc return func);

orl return ORLSecScanReloc(orl sec handle, orl reloc return func);
orl table index ORLCvtSecHdlToIdx(orl sec handle);

orl sec_handle ORLCvtIdxToSecHdl (orl file handle, orl table index);
char * ORLSecGetClassName (orl sec handle);

orl sec_combine ORLSecGetCombine (orl sec_handle);

orl sec frame ORLSecGetAbsFrame (orl sec handle);

orl sec handle ORLSecGetAssociated(orl sec handle);

orl group handle ORLSecGetGroup(orl sec handle);

orl return ORLRelocSecScan(orl sec handle, orl reloc return func);
orl return ORLSymbolSecScan(orl sec handle, orl symbol return func);
orl return ORLNoteSecScan(orl sec handle, orl note callbacks *, void *
)

char * ORLSymbolGetName (orl symbol handle);

orl symbol value ORLSymbolGetValue(orl symbol handle);

orl symbol binding ORLSymbolGetBinding(orl symbol handle);

orl symbol type ORLSymbolGetType (orl symbol handle);
unsigned char ORLSymbolGetRawInfo(orl symbol handle);
orl sec handle ORLSymbolGetSecHandle (orl symbol handle);

orl symbol handle ORLSymbolGetAssociated(orl symbol handle);

These and other functions allow access to the object file in the uniform way. Actual mapping from ELF to
ORL is performed by SOWROOT/bld/orl/elf/c/elfentr.c (sections, symbols), elfload.c (sections),
elflwlv.c (symbols, relocations).

ORL is used by Open Watcom Linker, mostly in SOWROOT/bld/wl/c/objorl.c.

ELF relocations (i.e. 386 ABI) are mapped to abstract ORL relocations in the following way:

SOWROOT/bld/orl/elf/c/elflwlv.c
static orl reloc type convert386Reloc(elf reloc type elf type) {
switch(elf type) {
case R 386 NONE:
return(ORL RELOC TYPE ABSOLUTE) ;
case R 386 32:
case R 386 GOT32:
case R 386 GOTOFF:

return(ORL RELOC TYPE WORD 32);

SciTech Software, Inc.

Open Watcom Linux Port Page 7 of 55

Compiler / Linker Software Requirements Specification

case R 386 PC32:
case R 386 PLT32:
case R 386 GOTPC:
return(ORL RELOC_TYPE REL 32);
default:
assert(0);
}

return(ORL RELOC TYPE NONE) ;

2.2 WLCore

2.2.1 Definition

Synthetically selected part of the Open Watcom Linker (SOWROOT/bld/wl), performing the basic linking
tasks (e.g. relocations), and interacting to ORL. Main files: obj2supp.c, objcalc.c, objorl.c, objpassl.c,
objpass2.c.

2.2.2 Description

We are interested mainly in ELF linking. Since ORL is used to read ELF object files, there is an interface
to ORL implemented in objorl.c. The linker uses other data structures than ORL, so there is another
mapping implemented in the mentioned file. Relocations are mapped in the following way:

switch(reloc->type) {

//

case ORL RELOC TYPE ABSOLUTE:
type = FIX OFFSET 32 | FIX ABS;
break;

//

case ORL RELOC TYPE REL 32:
type = FIX OFFSET 32 | FIX REL;
break;

//

case ORL RELOC TYPE WORD 32:
type = FIX OFFSET 32;

break;

Constants FIX_ are defined in the spirit of OMF specification (i.e. FIXUPP records). However, some of
these constants implement specific features, e.g. PowerPC relocations.

SciTech Software, Inc.

Open Watcom Linux Port Page 8 of 55
Compiler / Linker Software Requirements Specification
SOWROOT/bld/wl/h/obj2supp.h
typedef enum {

FIX CHANGE SEG = 0x00000001, // has to be 1. wused in pointers!
FIX ADDEND ZERO = 0x00000002,
FIX UNSAFE = 0x00000004,
FIX ABS = 0x00000008,
FIX BASE = 0x00000010,
FIX HIGH = 0x00000020,
FIX REL = 0x00000040,
FIX SHIFT = 0x00000080,
FIX TARGET SHIFT = 8, // contains frame type
FIX TARGET MASK = 0x00000700,
FIX NO BASE = 0x00001000,
FIX SIGNED = 0x00002000,
FIX_ LOADER RES = 0x00004000,
FIX SEC REL = 0x00008000,
FIX NO OFFSET =0,
FIX OFFSET 8 = 0x00010000,
FIX_OFFSET 16 = 0x00020000,
FIX_OFFSET 21 = 0x00030000,
FIX_OFFSET 32 = 0x00040000,
FIX_OFFSET 24 = 0x00050000,
FIX OFFSET_ SHIFT = 16,
FIX OFFSET MASK = 0x00070000,
FIX TOC = 0x00100000, // PPC PE
FIX TOCV = 0x00200000, // PPC PE
FIX IFGLUE = 0x00300000, // PPC PE
FIX SPECIAL MASK = 0x00300000,
FIX FRAME SHIFT = 24, // contains frame type
FIX_FRAME MASK = 0x07000000,

SciTech Software, Inc.

Open Watcom Linux Port Page 9 of 55

Compiler / Linker Software Requirements Specification

// now for some handy constants which use these

FIX BASE OFFSET 16

(FIX_BASE | FIX OFFSET 16),
FIX BASE OFFSET 32 = (FIX BASE | FIX OFFSET 32),

FIX HIGH OFFSET 8 = (FIX HIGH | FIX OFFSET 8),

FIX HIGH OFFSET 16 (FIX_HIGH | FIX OFFSET 16),

} fix type;

During the first pass, relocations are converted to internal representation:

SOWROOT/bld/wl/c/objorl.c
static orl return PlRelocs(orl sec handle sec)

/**********************k************************/

{

return ORLRelocSecScan(sec, DoReloc);

Here ORLRelocSecScan is ORL-function that iterates through the relocation list, and DoReloc() is called
to convert each relocation (see above).

Relocation processing is actually implemented in obj2supp.c. This file is a key part of the linker.

Other important participants of linking process are symbols. Like relocations, ELF symbols (accessible
through ORL functions) are converted to the internal symbol structures:

$OWROOT /bld/wl/h/syms.h

typedef struct symbol {

struct symbol * hash;

struct symbol * publink;

struct symbol * link;

targ addr addr;

unsigned 16 namelen;

sym info info; // flags & floating point fixup type.

struct mod entry * mod;

union {
void * edges; // for dead code elim. when sym undefd
struct segdata *seg; // seg symbol is in.
char * alias; // for aliased syms.
void * import; // NOVELL & 0OS/2 only: imported symbol
data.

SciTech Software, Inc.

Open Watcom Linux Port Page 10 of 55

Compiler / Linker Software Requirements Specification

offset cdefsize; // altdef comdefs: size of comdef
}opi
union {
dos sym data d;
struct symbol * altdefs; // for keeping track of comdat & comdef
defs
struct symbol * datasym; // altdef comdats: sym which has data def
int aliaslen; // for aliases - length of name.
bous
union {
struct symbol * mainsym; // altdefs: main symbol definition
struct symbol * def; // for lazy externs
struct symbol **vfdata; // for virtual function lazy externs.
void * export; // 0S/2 & PE only: exported sym info.
}oe;
char * name;
char * prefix; // primarily for netware, though could be
// subverted for other use. gives symbol
// namespace qualification
} symbol;

There are many SYM_ and ST _ constants describing various symbol properties.

Finally, calculation of segment addresses (during the second pass) is performed in objcalc.c. Information
produced during this process will be used later for creating an executable file. One can iterate through the
groups (i.e. grouped segments) this way:

group_entry *currgrp;
for(currgrp = Groups; currgrp != NULL; currgrp = currgrp->next group) {

// Do something...

There are some important global variables. In the example above, we see Groups is the list of all groups.
Variable DataGroup specifies the data group, variable NumGroups contains the total number of groups.
Group entry is defined as:

SOWROOT/bld/wl/h/objstruc.h
typedef struct group entry {
GROUP_ENTRY * next group;

SEG_LEADER * leaders;

SciTech Software, Inc.

Open Watcom Linux Port Page 11 of 55

Compiler / Linker Software Requirements Specification

symbol * sym;
section * section;
targ addr grp_addr;
unsigned 16 segflags;
offset size;
offset totalsize;
offset linear; // preferred base address
union {
void * grp_relocs; // 0S2/ELF only.
class_entry * class; // CV (during addr calc)
}ogi
union {
unsigned gnxflags; // QNX
unsigned miscflags; // 0S/2
bous
unsigned num;
unsigned isfree : 1;
unsigned isautogrp : 1;

} group_entry;

Here size is group size in the file; totalsize is group size in the memory (e.g. uninitialized data do not
require space in the file).

Another important global variable is FmtData. This structure contains fields describing the format and
various properties of the output file. For our purposes, the most important fields are type and dll. For ELF
shared objects, the following test evaluates as TRUE: (FmtData.type & MK _ELF) && FmtData.dll.

SciTech Software, Inc.

Open Watcom Linux Port

Page 12 of 55

Compiler / Linker Software Requirements Specification

2.3 Load ELF
2.3.1 Definition

Part of Open Watcom Linker (SOWROOT/bld/wl), designed for writing executable files in ELF format.
Consists of two files: loadelf.c and loadelf2.c.

2.3.2 Description

Currently, LoadELF is able to create only ELF executable files (shared objects are not supported). Most of
the work is performed in loadelf.c. The second file, loadelf2.c, contains only the routines for creating ELF

symbol tables.

The main function is FiniELFLoadFile(). The following tasks are performed there:

1. [Initialize the ELF header, program headers, and section headers.

2. Write groups (i.e. code and data) to the ELF file (program and section headers are changed during
this process; i.e. sections: .text, .data, and .bss).

A A R

Write relocation section (.rela.text).
Write DWARF debug information (if needed).

Write symbol table (.symtab), hash (.hash), and strings (.strtab).
Write section strings (.shstrtab).
Write section headers.

Write DWAREF trailer (if needed).

Rewind and write the ELF header and program headers.

Task 1 is performed in void SetHeaders(EIfHdr *hdr). Sections are initialized in void InitSections(

EIfHdr *hdr).

ElfHdr is defined as:

SOWROOT/bld/wl/h/loadelf2.h

typedef struct
E1£f32 Ehdr
E1£f32 Shdr
E1£f32 Phdr
unsigned
E1£f32 Shdr

unsigned

{

eh;
*strhdr;
*ph;

ph size;
*sh;

sh size;

stringtable secstrtab;

struct {
int
int
int

int

secstr; // Index

of strings section for section names

grpbase; // Index base for Groups in section

grpnum; // Number of groups

relbase; // Index base for relocation sections

SciTech Software, Inc.

Open Watcom Linux Port Page 13 of 55
Compiler / Linker Software Requirements Specification

int relnum; // number of relocations

int symstr; // Index of symbol's string table
int symtab; // Index of symbol table

int symhash; // Index of symbol hash table

int dbgbegin;// Index of first debug section
int dbgnum; // Number of debug sections

} 17 // Indexes into sh
unsigned 32 curr off;

} ElfHdr;

The most interesting structure is i, where section indexes are specified. This structure is filled in
InitSections(). So the order of sections is predefined.

Program header is created in SetHeaders() as well.

Task 2 is performed in void WriteELFGroups(EIfHdr *hdr). In this function, group list is iterated (as
described in WLCore). For each group, code or data are written to the ELF file, using WriteGroupLoadJ().
The corresponding program headers and sections are filled as well, using SetGroupHeaders(). Note that
uninitialized data (.bss) are processed in the special way.

Relocations are written using void WriteRelocsSections(EIfHdr *hdr). In this implementation, all
relocations are presented with explicit addends (i.e. SHT_RELA).

Task 5 is performed by WriteElfSymTable(EIfSymTable *tab, EIfHdr *hdr, int hashidx, int
symtabidx, int strtabidx). Both symbol table and hash are written in this function. Then string table is
written using WriteSHStrings().

Function WriteSHStrings() is reused for the next task (i.e. writing section names).

Note that field curr_off (from EIfHdr) is widely used. This field specifies the current offset in the ELF
file. However, it is not updated automatically, e.g. after WriteLoad() therefore precise calculations are
needed to keep this value up to date.

Functions to write ELF (and other) executable files are located in SOWROOT/bld/wl/c/loadfile.c.

2.4 GC386

2.4.1 Definition
Code Generator for 32-bit family of x86 CPUs, used by Open Watcom C Compiler consists of three
“layers”:
e General Code Generator, located in SOWROOT/bld/cg.
e Common x86 Code Generator (16/32-bit), located in SOWROOT/bld/cg/intel.

e Specific 32-bit x86 Code Generator, located in SOWROOT/bld/cg/intel/386.

2.4.2 Description

Documentation for the Code Generator (SOWROOT/bld/cg/doc) covers only the interface to the code
generator (i.e. "General Code Generator"). The code generator (back end) interface is a set of procedure
calls. These are divided into Code Generation (CG), Data Generation (DG), miscellaneous Back End (BE),
Front end supplied (FE), and debugger information (DB) routines.

SciTech Software, Inc.

Open Watcom Linux Port

Page 14 of 55

Compiler / Linker Software Requirements Specification

There is internal machine-independent format (allowing scalability, multiple platforms, and machine-
independent optimizations). The main parts of these intermediate data (passed to the code generator for
particular machine) are "blocks" and "instructions":

$OWROOT/bld/cg/h/block.h

typedef struct block {

*/

*/

struct block ins
struct block
struct block

union {

struct interval def

struct block
struct block
bous
struct block
struct data flow def
struct block edge
pointer

dominator info

type length
union {
struct block

struct block

bovs

label handle
local bit set
interval depth
block num
block num
block num
block num
block class
signed 32
unsigned 32

struct block edge

ins;
*next block;

*prev_block;

*interval;
*partition;

*loop;

*loop head;

*dataflow;

*input edges;

cc;

dom;

stack depth;

*alter ego;

*next;

label;

available bit;

depth;
id;
gen_id;
inputs;
targets;
class;

iterations;

unroll count;

edge[1 1;

/*

/*
/*

/*
/*

/*

/*
/*

/*
/*

used for DFS */

AKA cc_control */

least node in dominator set

set by FlowSave stuff */

used in loop unrolling */

used for CALL LABEL kludge

front end identification */

loop nesting depth */

internal identification */

number of input edges */

number of target blocks */

SciTech Software, Inc.

Open Watcom Linux Port

Page 15 of 55

Compiler / Linker Software Requirements Specification

} block;
SOWROOT/bld/cg/h/inslist.h

typedef struct ins header ({

struct instruction *prev;
struct instruction *next;
struct name_ set live;

source_line number line num;

opcode defs opcode;
instruction state state;
} ins_ header;
typedef struct instruction {
struct ins header head;
struct opcode entry *table;

union {

struct opcode entry *gen table;
struct instruction “*parm list;
struct instruction *cse link;

}ous

struct register name *zap;
union name *result; /*
instruction_ id id;

type class def
type class def

unsigned 16

#include "cgnoalgn.h"

union {
byte
bool
call flags
nop flags
byte

}

union {

byte

byte

type class;
base type class;

sequence;

byte;
bool;

call flags;

nop_ flags;
zap_value; /*
flags;

index needs; /*
stk max;

result location */

for conversions on AXP */

a

k.

a.

reg set_index */

SciTech Software, Inc.

Open Watcom Linux Port Page 16 of 55

Compiler / Linker Software Requirements Specification

bt
byte stk entry;
byte num operands;
instruction flags ins flags;
byte stk exit;
union {
byte stk extra;
byte stk depth;

} S;
#include "cgrealgn.h"
union name *operands[1]; /* operands */

} instruction;
Sample: Walking through the blocks and instructions

block *blk;

instruction *ins;

blk = HeadBlock;
while(blk != NULL) {
ins = blk->ins.hd.next;
while (ins->head.opcode != OP_BLOCK) {
// Do something...
ins = ins->head.next;

}

blk = blk->next block;

Instructions are machine-independent. For example, opcode == OP_ADD specifies addition. Operands and
result have the name type that can represent CPU register, memory location, immediate constant, etc.:

$OWROOT/bld/cg/h/name.h

typedef union name {

struct name def n;
struct var name v;
struct const name c;
struct memory name m;

SciTech Software, Inc.

Open Watcom Linux Port Page 17 of 55

Compiler / Linker Software Requirements Specification

struct temp name t;
struct register_name r;
struct indexed name i;
union name * n;

} name;

This data looks like machine-dependent, since different architectures have different registers. However, this
is top-level abstraction. The code generator for particular architecture supplies the corresponding set of
registers. Actually there are many register sets (e.g. stack pointer, registers for temporary storage, fixed
registers, etc.) The hw_reg_set type is able to hold one or more registers (or be empty).

For 32-bit family of x86 processors, the register sets are defined in SOWROOT/cg/intel/386/c/386rgtbl.c.

There are many inline functions operating with register sets (SOWROOT/cg/h/cghwreg.h). Most of them
implement "set arithmetic": HW_Asgn, HW_CAsgn, HW_CEqual, HW_COnlyOn, HW_COvlap,
HW_CSubset, HW_CTurnOff, HW_CTurnOn, HW_Equal, HW_OnlyOn, HW_Ovlap, HW_Subset,
HW_TurnOff, HW_TurnOn.

Sample: Excluding the EBX register (required for PIC)

hw reg set all;
//

HW _CTurnOff (all, HW EBX);

There are two levels of code generation for x86: middle level and low level (assuming high level is
machine-independent).

High level uses instruction and related functions (only some are shown):

// Creating new instruction

instruction *MakeUnary(opcode defs, name *, name *, type class def);
instruction *MakeBinary(opcode defs, name *, name *, name *, type class def);
instruction *MakeMove (name *, name *, type class def);

// Miscellaneous allocations

name *AllocRegName(hw reg set);

name *AllocTemp(type class def);

name *AllocIntConst(int);

name *AllocUIntConst (uint);

// Placing the instruction

void AddIns(instruction *);

void PrefixIns(instruction *, instruction *);

void SuffixIns(instruction *, instruction *);

void ReplIns(instruction *, instruction *);

SciTech Software, Inc.

Open Watcom Linux Port Page 18 of 55
Compiler / Linker Software Requirements Specification

Sample: Generating add ebx, 0BABEh in the current block

name *ebx;

instruction *ins;

ebx = AllocRegName (HW EBX);
ins = MakeBinary(OP ADD, ebx, AllocIntConst(OxBABE), ebx, WD);

AddIns (ins) ;

At the low level, we generate the actual x86 opcodes (once and for all). Transformation from middle level
to low level is performed mainly by i86enc.c, i86enc2.c (SOWROOT/bld/cg/intel), i86enc32.c
($OWROOT/bld/cg/intel/386).

There are several macros for emitting binary opcodes:

_Code;

_Next;

_Emit;

Opcodes are inserted using the special functions, e.g.:

void LayOpbyte (opcode op);
void LayOpword(opcode op);
void LayReg(hw reg set r);
void LayRegOp (name *r);

void LayRMRegOp (name *r);

Sample: Generating PUSHF

_Code;
LayOpbyte (0x9C) ;

_Emit;

However, there are more digestible functions for common cases, e.g. GenRegMove().

The information above should give the basic knowledge to the developer unfamiliar with CG386. The last
uncovered topic is how object files are produced.

Unfortunately the only object format supported is OMF. Therefore many things in CG386 are rigidly bound
to OMF structure. OMF output is implemented mostly in SOWROOT/bld/cg/intel/c/i860bj.c, i86esc.c,
and SOWROOT/bld/cg/c/posixio.c.

| SciTech Software, Inc.

Open Watcom Linux Port Page 19 of 55
Compiler / Linker Software Requirements Specification

But there is last but one stage, before data became written to the object file. This stage is optimizing
(although some optimizations were performed during previous stages). The optimizer
($OWROOT/bld/cg/c/opt*.c) has the operations queue. The “trace” below shows intercommunications
between the optimizer and OMF output routines (for well-known “Hello, world!” program):

#include <stdio.h>

int main(void) {
printf ("Hello, world!\n");

return 0O;

Trace:

i86obj.c: InitSegDefs ()

i86obj.c: DefSegment (id=00000001(1),attr=00000007(7),str="_ TEXT",align=00000001(1),use 16=FALSE)
i86obj.c: DefSegment (1id=00000002(2),attr=0000001C(28),str="CONST",align=00000004 (4),use 16=FALSE)
i86obj.c:

DefSegment (1d=00000003(3) ,attr=0000000C(12),str="CONST2",align=00000004 (4) ,use 16=FALSE)
i86obj.c: DefSegment (1id=00000004 (4),attr=00000006(6),str="_ DATA",align=00000004 (4),use 16=FALSE)

i86obj.c: DefSegment (1id=0000000B(11),attr=00000002(2),str="_BSS",align=00000004 (4),use 16=FALSE)
i86obj.c: ObjInit ()

i86obj.c: InitFPPatches()

i86obj.c: FillArray(res,size=00000001(1l),starting=00000032 (50),increment=00000032 (50))
i860obj.c: OutName (name="hello.c",dst)

i860obj.c: NeedMore (arr,more=00000021(33))

i860obj.c: NeedMore (arr,more=00000002(2))

i86obj.c: OutString(name="0S220",dest)

i860obj.c: NeedMore (arr,more=00000005(5))

i860obj.c: NeedMore (arr,more=00000002(2))

i86obj.c: OutModel (dest)

i860obj.c: GetMemModel ()

i86obj.c: OutString (name="3fO0pd",dest)

i860obj.c: NeedMore (arr,more=00000005(5))

i860obj.c: NeedMore (arr,more=00000002(2))

i86obj.c: NeedMore (arr,more=00000001 (1)

i860obj.c: NeedMore (arr,more=00000002(2))

i860obj.c: NeedMore (arr,more=00000004 (4))

i86obj.c: OutName (name="hello.c",dst)

i860obj.c: NeedMore (arr,more=00000021(33))

i860obj.c: NeedMore (arr,more=00000002(2))

i860obj.c: NeedMore (arr,more=00000004 (4))

i860bj.c: OutName (name="/usr/lib/dietlibc/include/stdio.h",dst)
i860obj.c: NeedMore (arr,more=00000022 (34))

i860obj.c: NeedMore (arr,more=00000002(2))

i860obj.c: NeedMore (arr,more=00000004 (4))

i860bj.c: OutName (name="/usr/lib/dietlibc/include/sys/cdefs.h",dst)
i860obj.c: NeedMore (arr,more=00000026(38)

i860obj.c: NeedMore (arr,more=00000002(2))

i860obj.c: NeedMore (arr,more=00000004 (4))

i860bj.c: OutName (name="/usr/lib/dietlibc/include/sys/types.h",dst)

SciTech Software, Inc.

Open Watcom Linux Port

Page 20 of 55

Compiler / Linker Software Requirements Specification

i86obj.
i86obj.
i86obj.
i86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
ig86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
ig86obj.
i86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
ig86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86obj.
ig86obj.
i86obj.
ig86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
i86obj.
i86obj.
i860obj.
i86obj.
i86obj.
i86obj.

Q o0 o o o o oo o0 0000000000000

NeedMore (arr,more=00000026 (38)

NeedMore (arr,more=00000002(2))

NeedMore (arr,more=00000004 (4))

OutName (name="/usr/lib/dietlibc/include/inttypes.h",dst)
NeedMore (arr,more=00000025(37))

NeedMore (arr,more=00000002(2))

NeedMore (arr,more=00000004 (4))

OutName (name="/usr/lib/dietlibc/include/endian.h",dst)
NeedMore (arr,more=00000023(35))

NeedMore (arr,more=00000002(2))

NeedMore (arr,more=00000004 (4))

OutName (name="/usr/lib/dietlibc/include/stddef.h",dst)
NeedMore (arr,more=00000023(35))

NeedMore (arr,more=00000002(2))

NeedMore (arr,more=00000004 (4))

OutName (name="/usr/lib/dietlibc/include/sys/stat.h",dst)
NeedMore (arr,more=00000025(37))

NeedMore (arr,more=00000002(2))

NeedMore (arr,more=00000004 (4))

OutName (name="/usr/lib/dietlibc/include/stdarg.h",dst)
NeedMore (arr,more=00000023(35))

NeedMore (arr,more=00000002(2))

NeedMore (arr,more=00000004 (4))

OutName (name="/usr/lib/dietlibc/include/stdarg-cruft.h",dst)
NeedMore (arr,more=00000029 (41

NeedMore (arr,more=00000002 (2)
FillArray(res,size=00000001 (
FillArray(res,size=00000001 (
DoSegGrpNames (dgroup_def, tgroup def)

)
)
1)
1)

GetNameIdx (name="",suff,alloc=)
GetNameIdx (name="CODE", suff,alloc=)
GetNameIdx (name="DATA", suff,alloc=)
GetNameIdx (name="BSS",suff,alloc=)
GetNamelIdx (name="TLS",suff,alloc=)
GetNameIdx (name="FLAT", suff,alloc=)
GetNameIdx (name="DGROUP",suff,alloc=)
OutIdx (value=00000007(7),dest)
NeedMore (arr,more=00000002 (2))

,starting=00000005(5),increment=00000005(5))
,starting=00000005(5),increment=00000005(5))

FillArray(res,size=00000040(64),starting=00000005(5),increment=00000005(5))

DoSegment (seg,dgroup def, tgroup def,use 16=FALSE)
AskSegIndex (seg=00000001 (1)

NeedMore (arr,more=00000001 (1)

SegmentAttr (align=00000001 (1), tipe=00000007(7) ,use_ 16=FALSE)
GetNameIdx (name="_TEXT",suff,alloc=)

SegmentClass (rec)

DoASegDef (rec,use 16=FALSE)

FillArray

res, size=00000001(1),starting=00000100 (256), increment=00000100 (256)

FillArray(res,size=00000001(1),starting=00000014(20),increment=00000032 (50))
FillArray(res,size=00000001(1),starting=00000100(256),increment=00000032(50))

(
(
(
(

OutByte (value=00000029 (41)
NeedMore (arr,more=00000001 (1)
OutOffset (value=00000000(0)
NeedMore (arr,more=00000004 (4))

SciTech Software, Inc.

Open Watcom Linux Port

Page 21 of 55

Compiler / Linker Software Requirements Specification

i860obj.
i86obj.
i86obj.

DoASegDef (rec,use 16=FALSE)

FillArray(res,size=00000001(1),starting=00000100(256),increment=00000100 (256)
FillArray(res,size=00000001(1),starting=00000014(20),increment=00000032 (50))

i860obj.c: OutIdx(value=00000008(8),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: OutIdx(value=00000002(2),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000001(1),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: FlushNames ()
i86obj.c: PickOMF (cmd=00000098(152))
i86obj.c: OutInt (value=0000FE80 (65152))
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutByte (value=0000004F (79)
i86obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: OutIdx(value=00000001(1),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: DoSegment (seg,dgroup def, tgroup def,use 16=FALSE)
i860obj.c: AskSegIndex (seg=00000002(2))
i860obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: SegmentAttr (align=00000004(4),tipe=0000001C(28),use 16=FALSE)
i86obj.c: OutGroup (sidx=00000002(2),group def,index p)
i860obj.c: NeedMore (arr,more=00000001 (1)
i860obj.c: OutIdx(value=00000002(2),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: GetNameldx (name="",suff,alloc=CONST)
i86obj.c: SegmentClass (rec)
i86obj.c: DoASegDef (rec,use 16=FALSE)
i86obj.c: FillArray(res,size=00000001(1),starting=00000100(256),increment=00000100 (256)
i86obj.c: FillArray(res,size=00000001(1l),starting=00000014(20),increment=00000032 (50))
ig86obj.c: OutByte (value=000000A9 (169)
i860obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: OutOffset (value=00000000(0)
i860obj.c: NeedMore (arr,more=00000004 (4))
i860obj.c: OutIdx(value=00000009(9),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000003(3),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000001(1),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: FlushNames ()
ig86obj.c: PickOMF (cmd=00000098(152))
i86obj.c: DoSegment (seg,dgroup def, tgroup def,use 16=FALSE)
i860obj.c: AskSegIndex (seg=00000003(3))
i860obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: SegmentAttr (align=00000004(4),tipe=0000000C(12),use 16=FALSE)
i86obj.c: OutGroup (sidx=00000003(3),group def,index p)
i86obj.c: NeedMore (arr,more=00000001 (1)
i860obj.c: OutIdx(value=00000003(3),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: GetNameldx (name="",suff,alloc=CONST2)
i860obj.c: SegmentClass (rec)
c:
c:
c:
c:

ig86obj. OutByte (value=000000A9 (169)

SciTech Software, Inc.

Open Watcom Linux Port

Page 22 of 55

Compiler / Linker Software Requirements Specification

i860obj.
i86obj.
i86obj.

OutByte (value=000000A9 (169)
NeedMore (arr,more=00000001 (1)
OutOffset (value=00000000 (0)

i86obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: OutOffset (value=00000000(0)
i860obj.c: NeedMore (arr,more=00000004 (4))
i86obj.c: OutIdx(value=0000000A(10),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000003(3),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: OutIdx(value=00000001(1),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: FlushNames ()
ig86obj.c: PickOMF (cmd=00000098(152))
i86obj.c: DoSegment (seg,dgroup def, tgroup def,use 16=FALSE)
i860obj.c: AskSegIndex (seg=00000004(4))
i86obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: SegmentAttr (align=00000004(4),tipe=00000006(6),use 16=FALSE)
i86obj.c: OutGroup (sidx=00000004 (4),group def,index p)
i860obj.c: NeedMore (arr,more=00000001 (1)
i860obj.c: OutIdx(value=00000004(4),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: GetNameIdx (name="",suff,alloc=_ DATA)
i860obj.c: SegmentClass (rec)
i86obj.c: DoASegDef (rec,use 16=FALSE)
i86obj.c: FillArray(res,size=00000001(1l),starting=00000100(256),increment=00000100 (256)
i86obj.c: FillArray(res,size=00000001(1l),starting=00000014(20),increment=00000032(50))
ig86obj.c: OutByte (value=000000A9 (169)
i860obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: OutOffset (value=00000000(0)
i860obj.c: NeedMore (arr,more=00000004 (4))
i860obj.c: OutIdx(value=0000000B(11),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000003(3),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000001(1),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: FlushNames ()
ig86obj.c: PickOMF (cmd=00000098(152))
i86obj.c: DoSegment (seg,dgroup def, tgroup def,use 16=FALSE)
i86obj.c: AskSegIndex (seg=0000000B(11)
i86obj.c: NeedMore (arr,more=00000001 (1)
i86obj.c: SegmentAttr (align=00000004(4),tipe=00000002(2),use 16=FALSE)
i86obj.c: OutGroup (sidx=00000005(5),group def,index p)
i860obj.c: NeedMore (arr,more=00000001 (1)
i860obj.c: OutIdx(value=00000005(5),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: GetNameIdx (name="",suff,alloc= BSS)
i86obj.c: SegmentClass (rec)
i86obj.c: DoASegDef (rec,use 16=FALSE)
i86obj.c: FillArray(res,size=00000001(1l),starting=00000100(256),increment=00000100 (256)
i86obj.c: FillArray(res,size=00000001(1l),starting=00000014(20),increment=00000032(50))
c:
c:
c:
c:

i860bj. NeedMore (arr,more=00000004 (4))

SciTech Software, Inc.

Open Watcom Linux Port

Page 23 of 55

Compiler / Linker Software Requirements Specification

i860obj.
i86obj.
i86obj.

SetBigLocation (1oc=0000000F (15))
SetMaxWritten ()
SetOP (seg=00000001 (1)

i860obj.c: OutIdx(value=0000000C(12),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: OutIdx(value=00000004(4),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: OutIdx(value=00000001(1),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: FlushNames ()
i86obj.c: PickOMF (cmd=00000098(152))
i860obj.c: FlushNames ()
i86obj.c: KillArray(arr)
i86obj.c: KillStatic(arr)
i860obj.c: OutIdx(value=00000006(6),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i860obj.c: FlushNames ()
i86obj.c: KillArray(arr)
i86obj.c: KillStatic(arr)
i860obj.c: AskSegIndex (seg=00000001(1)
i86obj.c: KillArray(arr)
i86obj.c: KillStatic(arr)
i860obj.c: TellObjNewProc (proc=00000085(133))
i86obj.c: SetOP(seg=00000001(1)
i860obj.c: AskSegIndex (seg=00000001(1)
i860obj.c: SetOP(seg=00000001(1)
i860obj.c: AskSegIndex (seg=00000001(1)
i860obj.c: AskNameCode (hd1=00000049(73),class=00000000(0))
i860obj.c: AskBackSeg()
i86obj.c: SetOP(seg=00000002(2))
i86obj.c: AskSegIndex (seg=00000002(2))
i860obj.c: TellObjNewLabel (1b1=00000000 (0)
i86obj.c: SetUpObj (is data=TRUE)
i86obj.c: CheckLEDataSize (max size=00000010(16),need init=FALSE)
i86obj.c: OutLabel (1b1=0811B9C8 (135379400)
i860obj.c: InitPatch()
i86obj.c: FillArray(res,size=0000000C(12),starting=0000000A(10),increment=0000000A(10))
i86obj.c: KillArray(arr)
i86obj.c: KillStatic(arr)
i86obj.c: AskOP()
i86obj.c: SetUpObj (is data=TRUE)
i86obj.c: CheckLEDataSize (max size=00000010(16),need init=FALSE)
i860obj.c: OutDBytes (1len=0000000F (15),sxrc)
i860obj.c: SetPendingLine ()
i86obj.c: CheckLEDataSize (max size=00000001(1),need init=TRUE)
i86obj.c: OutLEDataStart (iterated=FALSE)
i860obj.c: OutIdx(value=00000002(2),dest)
i860obj.c: NeedMore (arr,more=00000002(2))
i86obj.c: OutOffset (value=00000000(0)
i860obj.c: NeedMore (arr,more=00000004 (4))
i860obj.c: NeedMore (arr,more=0000000F (15))
i86obj.c: IncLocation (by=0000000F (15))

c:

c:

c:

c:

i860bj. AskSegIndex (seg=00000001 (1)

SciTech Software, Inc.

Open Watcom Linux Port Page 24 of 55
Compiler / Linker Software Requirements Specification

i860obj.c: AskNameCode (hdl=0811BE38(135380536),class=00000002(2))
i86obj.c: AskSegID (hdl=0811BE38(135380536),class=00000002(2))
i86obj.c: AskSegPrivate (id=00000002(2))

i860obj.c: AskSegIndex (seg=00000002(2))

ig86obj.c: AskSegID(hdl=0811BE38(135380536),class=00000002(2))
i860obj.c: AskSegNear (1d=00000002(2))

i860obj.c: AskSegIndex (seg=00000002(2))

i860obj.c: AskBackSeg()

i860obj.c: AskCodeSeqg/()

i86obj.c: SetOP(seg=00000001(1)

i860obj.c: AskSegIndex (seg=00000001(1)

optmain.c: InputOC (oc)
optmain.c: LDone (oc)

i860obj.c: SetOP(seg=00000001(1)
i860obj.c: AskSegIndex (seg=00000001(1)
i860obj.c: AskCodeSeqg/()

i860obj.c: SetOP(seg=00000001(1)
i860obj.c: AskSegIndex (seg=00000001(1)

optmain.c: InputOC (oc)

optmain.c: LDone (oc)

i86esc.c: DoSymRef (opnd,val=00000000 (0),base=FALSE)

i86esc.c: DoFESymRef (sym=0811BE38(135380536),class=00000002(2),val=00000000(0), fixup=00000001(1))
i86obj.c: AskSegID (hdl=0811BE38(135380536),class=00000002(2))

i86esc.c:

DoRelocRef (sym=0811BE38 (135380536),class=00000002(2),seg=00000002(2),val=00000000(0),kind=0000000
0(0))

optmain.c: InputOC (oc)

optmain.c: LDone (oc)

optmain.c: InputOC (oc)

optmain.c: LDone (oc)

optmain.c: InputOC (oc)

optmain.c: LDone (oc)

optmain.c: InputOC (oc)

optmain.c: LDone (oc)

optmain.c: InputOC (oc)

optmain.c: LDone (oc)

i86obj.c: SetOP(seg=00000001(1)

i86obj.c: AskSegIndex (seg=00000001(1)
i860obj.c: AskCodeSeg/()

i86obj.c: SetOP(seg=00000001(1)

i860obj.c: AskSegIndex (seg=00000001(1)
i86esc.c: CodeHasAbsPatch (code)

i86esc.c: CodeHasAbsPatch (code)

i86esc.c: CodeHasAbsPatch (code)

i86esc.c: OutputOC (oc,next 1bl)

i86obj.c: SetUpObj (is data=FALSE)
i86obj.c: CheckLEDataSize (max size=00000010(16),need init=FALSE)
i860obj.c: AskLocation ()

i86esc.c: DoAlignment (1en=00000000 (0)
i860obj.c: SavePendingLine (new=00000000 (0)
i86esc.c: SendBytes (ptr,1len=00000000 (0)
i860obj.c: SavePendingLine (new=00000000 (0)
ig86obj.c: OutLabel (1b1=0811BE00 (135380480)

SciTech Software, Inc.

Open Watcom Linux Port Page 25 of 55

Compiler / Linker Software Requirements Specification

ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
i86esc.
ig86obj.
ig86obj.
ig86obj.
i86esc.
ig86obj.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
i86esc.
i86esc.
ig86obj.
ig86obj.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.

Q o0 o o o o oo o0 0000000000000

UseImportForm (attr=00000007 (7))
OutExport (sym=00000085(133))

OutIdx (value=00000002 (2),dest)
NeedMore (arr,more=00000002(2))

OutIdx (value=00000001(1),dest)
NeedMore (arr,more=00000002(2))
OutObjectName (sym=00000085 (133) ,dest)
OutName (name="main", dst)
NeedMore (arr,more=00000005 (5)
NeedMore (arr,more=00000004 (4)
OutIdx (value=00000000 (0),dest
NeedMore (arr,more=00000002 (2)
InitPatch ()
FillArray(res,size=0000000C(12),starting=0000000A(10),increment=0000000A (10))
KillArray(arr)

KillStatic(arr)

)
)
)
)

DumpSavedDebug ()

OutputOC (oc, next 1bl)

SetUpObj (is_data=FALSE)

CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
AskLocation ()

DoAlignment (1en=00000000 (0)

SavePendingLine (new=00000000 (0)
SendBytes (ptr, 1en=00000000 (0)

SavePendingLine (new=00000000 (0)

OutLabel (1b1=0811BCOC (135379980)

InitPatch ()
FillArray(res,size=0000000C(12),starting=0000000A(10),increment=0000000A (10))
KillArray(arr)

KillStatic(arr)

DumpSavedDebug ()

OutputOC (oc, next 1bl)

DumpSavedDebug ()

SetUpObj (is_data=FALSE)

CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
ExpandObj (cur, explen=00000009 (9)

OutDBytes (1en=00000001 (1), sxc)

SetPendingLine ()

CheckLEDataSize (max_size=00000001(1),need_ init=TRUE)
OutLEDataStart (iterated=FALSE)

OutIdx (value=00000001 (1), dest)

NeedMore (arr,more=00000002(2))

OutOffset (value=00000000(0)

NeedMore (arr,more=00000004 (4))

NeedMore (arr,more=00000001 (1)

IncLocation (by=00000001 (1)

SetBigLocation (1oc=00000001 (1)

SetMaxWritten ()

OutReloc (seg=00000002(2),class=00000001 (1), rel=FALSE)
AskSegIndex (seg=00000002 (2))

CheckLEDataSize (max_size=0000000C(12),need_init=TRUE)
OutLEDataStart (iterated=FALSE)

DoFix (1dx=00000001 (1), rel=FALSE, base=00000001(1),class=00000001(1),sidx=00000002(2))

SciTech Software, Inc.

Open Watcom Linux Port Page 26 of 55

Compiler / Linker Software Requirements Specification

ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
i86esc.
ig86obj.
ig86obj.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.

Q o0 o o o o oo o0 0000000000000

NeedMore (arr,more=00000003(3))
AskIndexRec (sidx=00000002(2))
OutIdx (value=00000002 (2),dest)
NeedMore (arr,more=00000002 (2)
OutIdx (value=00000002 (2),dest
NeedMore (arr,more=00000002 (2)
OutDataLong (value=00000000 (0)
OutDatalInt (value=00000000 (0)
SetPendingLine ()
CheckLEDataSize (max_size=00000002(2),need_init=TRUE)
OutLEDataStart (iterated=FALSE)

IncLocation (by=00000002(2))

SetBigLocation (1oc=00000003(3))

NeedMore (arr,more=00000002(2))

SetMaxWritten ()

OutDatalInt (value=00000000 (0)

SetPendingLine ()

CheckLEDataSize (max_size=00000002(2),need_init=TRUE)
OutLEDataStart (iterated=FALSE)

IncLocation (by=00000002(2))

SetBigLocation (1oc=00000005(5))

NeedMore (arr,more=00000002(2))

SetMaxWritten ()

OutputOC (oc, next 1bl)

)
)
)
)

DumpSavedDebug ()

SetUpObj (is_data=FALSE)

CheckLEDataSize (max_size=00000010(16),need_init=FALSE)

ExpandCJ (oc)

OutDataByte (value=000000E8 (232))

SetPendingLine ()

CheckLEDataSize (max_size=00000001(1),need_ init=TRUE)

OutLEDataStart (iterated=FALSE)

IncLocation (by=00000001 (1)

SetBigLocation (1oc=00000006 (6)

NeedMore (arr,more=00000001 (1)

SetMaxWritten ()

OutCodeDisp (1b1=0811AF38(135376696),f=00000001 (1), rel=TRUE, class=00000008(8))
UseImportForm (attr=0000000F (15))

OutImport (sym=00000049(73),class=00000001 (1), rel=TRUE)
FillArray(res,size=00000001(1),starting=00000100(256), increment=00000032(50))
CheckImportSwitch (next is_ static=FALSE)

OutName (name="printf",dst)

NeedMore (arr,more=00000007 (7))

OutIdx (value=00000000 (0),dest)

NeedMore (arr,more=00000002(2))
DumpImportResolve (sym=00000049 (73),1dx=00000001 (1)

OutSpecialCommon (imp idx=00000001(1),class=00000001(1),rel=TRUE)
CheckLEDataSize (max_size=0000000C(12),need_init=TRUE)

OutLEDataStart (iterated=FALSE)

DoFix (1dx=00000001 (1), rel=TRUE,base=00000002(2),class=00000001(1),sidx=00000000(0))
NeedMore (arr,more=00000003(3))

OutIdx (value=00000002 (2),dest)

NeedMore (arr,more=00000002(2))

SciTech Software, Inc.

Open Watcom Linux Port

Page 27 of 55

Compiler / Linker Software Requirements Specification

ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
i86esc.
ig86obj.
ig86obj.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
i86esc.
ig86obj.
ig86obj.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86esc.
i86esc.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.

Q o0 o o o o oo o0 0000000000000

OutIdx (value=00000001 (1), dest)

NeedMore (arr,more=00000002(2))

OutDataLong (value=00000000 (0)

OutDatalInt (value=00000000 (0)

SetPendingLine ()

CheckLEDataSize (max_size=00000002(2),need_init=TRUE)
OutLEDataStart (iterated=FALSE)

IncLocation (by=00000002(2))

SetBigLocation (1oc=00000008 (8)

NeedMore (arr,more=00000002(2))

SetMaxWritten ()

OutDatalInt (value=00000000 (0)

SetPendingLine ()

CheckLEDataSize (max_size=00000002(2),need_init=TRUE)
OutLEDataStart (iterated=FALSE)

IncLocation (by=00000002(2))

SetBigLocation (1oc=0000000A(10))

NeedMore (arr,more=00000002(2))

SetMaxWritten ()

OutputOC (oc, next 1bl)

DumpSavedDebug ()

SetUpObj (is_data=FALSE)

CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
ExpandObj (cur, explen=00000003 (3))

OutDBytes (1en=00000003(3), sxc)

SetPendingLine ()

CheckLEDataSize (max_size=00000001(1),need_ init=TRUE)
OutLEDataStart (iterated=FALSE)

NeedMore (arr,more=00000003(3))

IncLocation (by=00000003(3))

SetBigLocation (1oc=0000000D(13))

SetMaxWritten ()

OutputOC (oc, next 1bl)

DumpSavedDebug ()

SetUpObj (is_data=FALSE)

CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
ExpandObj (cur, explen=00000002 (2))

OutDBytes (1en=00000002(2), sxc)

SetPendingLine ()

CheckLEDataSize (max_size=00000001(1),need_ init=TRUE)
OutLEDataStart (iterated=FALSE)

NeedMore (arr,more=00000002(2))

IncLocation (by=00000002(2))

SetBigLocation (1oc=0000000F (15))

SetMaxWritten ()

OutputOC (oc, next 1bl)

DumpSavedDebug ()

SetUpObj (is_data=FALSE)

CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
OutDataByte (value=000000C3(195))

SetPendingLine ()

CheckLEDataSize (max_size=00000001(1),need_ init=TRUE)
OutLEDataStart (iterated=FALSE)

SciTech Software, Inc.

Open Watcom Linux Port

Page 28 of 55

Compiler / Linker Software Requirements Specification

i86obj.
i86obj.
i86obj.
i86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
ig86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
ig86obj.
i86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
i86obj.
ig86obj.
i86obj.
i86obj.
ig86obj.
ig86obj.
ig86obj.
ig86obj.
i86obj.
ig86obj.
i86obj.
ig86obj.
ig86obj.
ig86obj.
i86obj.
i86obj.
i86obj.
i86obj.
i860obj.
i86obj.
i86obj.
i86obj.

Q o0 o o o o oo o0 0000000000000

IncLocation (by=00000001 (1)
SetBigLocation (1oc=00000010(16)
NeedMore (arr,more=00000001 (1)
SetMaxWritten ()

SetOP (seg=00000001 (1)
AskSegIndex (seg=00000001 (1)
AskCodeSeqg ()

SetOP (seg=00000001 (1)
AskSegIndex (seg=00000001 (1)
ObjFini ()

FiniTarg ()

FlushObject ()

SetUpObj (is_data=FALSE)
CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
GenComdef ()

EjectLEData ()

EjectImports ()

SetPatches ()

SetAbsPatches ()

PickOMF (cmd=000000A0 (160))
PickOMF (cmd=0000009C (156)
EjectExports ()

PickOMF (cmd=00000090 (144))
FreeObjCache ()

FlushNames ()

KillArray(arr)
KillStatic(arr)

AskIndexRec (sidx=00000001 (1)
KillStatic(arr)
KillStatic(arr)

FiniTarg ()

FlushObject ()

SetUpObj (is_data=FALSE)
CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
GenComdef ()

EjectLEData ()

EjectImports ()

SetPatches ()

SetAbsPatches ()

PickOMF (cmd=000000A0 (160))
EjectExports ()

FreeObjCache ()

AskIndexRec (sidx=00000002(2))
KillStatic(arr)
KillStatic(arr)

FiniTarg ()

FlushObject ()

SetUpObj (is_data=FALSE)
CheckLEDataSize (max_size=00000010(16),need_init=FALSE)
GenComdef ()

EjectLEData ()

EjectImports ()

EjectExports ()

SciTech Software, Inc.

Open Watcom Linux Port Page 29 of 55

Compiler / Linker Software Requirements Specification

i86obj.c: FreeObjCache ()

i860obj.c: AskIndexRec (sidx=00000003(3))
i86obj.c: KillStatic(arr)

i86obj.c: KillStatic(arr)

i86obj.c: FiniTarg()

i860obj.c: FlushObject ()

i86obj.c: SetUpObj (is data=FALSE)
i86obj.c: CheckLEDataSize (max size=00000010(16),need init=FALSE)
i860obj.c: GenComdef ()

i86obj.c: EjectLEData ()

i86obj.c: EjectImports()

i86obj.c: EjectExports()

i86obj.c: FreeObjCache ()

i860obj.c: AskIndexRec (sidx=00000004(4))
i86obj.c: KillStatic(arr)

i86obj.c: KillStatic(arr)

i86obj.c: FiniTarg()

i860obj.c: FlushObject ()

i86obj.c: SetUpObj (is data=FALSE)
i86obj.c: CheckLEDataSize (max size=00000010(16),need init=FALSE)
i860obj.c: GenComdef ()

i86obj.c: EjectLEData ()

i86obj.c: EjectImports()

i86obj.c: EjectExports()

i86obj.c: FreeObjCache ()

i860obj.c: AskIndexRec (sidx=00000005(5))
i86obj.c: KillStatic(arr)

i86obj.c: KillStatic(arr)

i86obj.c: KillArray(arr)

i86obj.c: KillStatic(arr)

i86obj.c: KillArray(arr)

i86obj.c: KillStatic(arr)

i860obj.c: FiniAbsPatches ()

i860obj.c: EndModule ()

This trace shows how OMF object file is written in i860bj.c. We will refer to this trace in the latter

sections.

OMF file is composed of object records. These records contain miscellaneous linking information, e.g.:

EXTDEF
PUBDEF
SEGDEF
GRPDEF
FIXUPP

BAKPAT
LEDATA

External Names Definition Record (imported symbols)
Public Names Definition Record (exported symbols)
Segment Definition Record (describes a logical segment)
Group Definition Record (segments to be collected together)
Fixup Record (relocations)

Backpatch Record (relocations)

Logical Enumerated Data Record (binary code or data)

Actual writing is performed by veid PutObjRec(byte class, byte *buff, uint len) located in posixio.c.
For example, class of LEDATA is either 0xA0 or 0xAl.

SciTech Software, Inc.

Open Watcom Linux Port Page 30 of 55
Compiler / Linker Software Requirements Specification

2.5 OWL

2.5.1 Definition
Abbreviation of “Object Writing Library”. Located in SOWROOT/bld/owl.
OWL is designed for writing object files in ELF and COFF formats. We are interested mainly in the ELF

(owelf.c). However, OWL is not an abstract wrapper (like ORL). But rather a set of data structures and
functions, useful for creating object files.

2.5.2 Description

OWL is currently used by RISC code generators (Alpha AXP and PowerPC). As mentioned above, OWL is
not currently used by CG386.

OWL provides set of useful functions for creating ELF object files. These functions cover sections,
symbols, and relocations. For understanding OWL, one can examine §OWROOT/bld/cg/risc/c/rscobj.c.

For example, void OWLEmitReloc(owl_section_handle section, owl_offset offset, owl_symbol handle
sym, owl_reloc_type type) is intended to add new relocation to the specified section. Relocation type is
defined in OWL terms:

SOWROOT/bld/owl/h/owl.h

typedef enum {

OWL_RELOC ABSOLUTE, // ref to a 32-bit absolute address

OWL_RELOC WORD, // a direct ref to a 32-bit address

OWL_RELOC HALF HI, // ref to high half of 32-bit address

OWL RELOC PAIR, // pair - used to indicate prev hi and next lo
linked

OWL RELOC HALF LO, // ref to low half of 32-bit address

OWL_RELOC BRANCH REL, // relative branch (Alpha: 21-bit; PPC: 14-bit)

OWL RELOC BRANCH ABS, // absolute branch (Alpha: not used; PPC: 14-bit)

OWL_RELOC JUMP REL, // relative jump (Alpha: 14-bit hint; PPC: 24-
bit)

OWL_RELOC JUMP ABS, // absolute jump (Alpha: not used; PPC:24-bit)

OWL_RELOC SECTION OFFSET, // offset of item within it's section
// meta reloc

OWL_RELOC SECTION INDEX, // index of section within COFF file

OWL_RELOC_TOC_OFFSET, // 16-bit offset within TOC (PPC)
OWL_RELOC GLUE, // location of NOP for GLUE code
OWL RELOC FP OFFSET, // cheesy hack for inline assembler

} owl reloc type;

SciTech Software, Inc.

Open Watcom Linux Port Page 31 of 55

Compiler / Linker Software Requirements Specification

These abstract types are mapped to ELF relocation types:

SOWROOT/bld/owl/c/owreloc.c
static E1£32 Word elfRelocTypes386[] = {

R_386 NONE,

R 386 32,

R_386 NONE,

R_386 NONE,

R_386 NONE,

R 386 PC32,

R_386 NONE,

R_386 NONE,

R_386 NONE,

R 386 32,

R 386 32,

R 386 _GOT32,

R_386 NONE,

b

As shown above, OWL is intended primarily to RISC support, so many 386 ABI features are missing or
incomplete.

SciTech Software, Inc.

Open Watcom Linux Port Page 32 of 55
Compiler / Linker Software Requirements Specification

3. Porting Open Watcom C Compiler and Linker to Linux
The porting task was originally defined as:

e Add PIC support to the compiler.
e Implement building of shared objects (both PIC and PDC).
e Implement using of existing shared objects.

This task was defined with the assumption Open Watcom is already able to build ELF files (i.e. suitable for
Linux). This is almost true, but there are two problems:

e Some bugs (in open_watcom_devel 1.1.7) causing problems in building ELF executables (even
“Hello, world!”).

e The only object file format produced by CG386 is OMF.

The first problem is, of course, temporary. After fixing the mentioned bugs, it is possible to build ELF
executable from OMF and ELF object files and e.g. dietlibe library.

However, the second problem is more serious. It affects the perspective of PIC implementation (and

therefore, building of “real” shared objects). The corresponding issues are described in the latter sections.

3.1 Position-Independent Code

PIC stands for Position-Independent Code. The functions in a shared library may be loaded at different
addresses in different programs, so the code in the shared object must not depend on the address (or
position) at which it is loaded. Fortunately, on x86 platform all jumps are PC-relative (except for the
indirect ones). There are, however, some problems with:

o functions exported by a shared object;
e indirect function calls, i.e. (*f)();
e global variables (including static ones).

These problems are solved (in 386 ABI) mostly by introducing special relocation types. These relocation
types are specific to ELF object files, there are no their equivalents in OMF.

There are three possible workarounds:
e introducing OMF extensions for PIC support;
e adding ELF output to CG386 (using OWL);
e writing new code generator with ELF output (based on CG386), like RISC ones.

The first approach is the simplest from implementation perspective. But we will get a non-standard object
file format, alien to both Linux and Windows worlds. Therefore such approach should be ommited.

The third approach seems too hard to implement, since CG386 is the most complex code generator. And it
seems impractical to have two branches of CG386 that differ only in the output format.

So the second approach is the best option. There are three subtasks needed for PIC support:
¢ introducing new command line switches in wee386 (for ELF and PIC);
e implementing output of ELF object files in CG386;
e implementing PIC (according to 386 ABI) in CG386.

Of course, changes to Open Watcom Linker are needed as well. But wlink is described in other sections.
Moreover, we can use ld to build shared object from ELFs produced by wee386.

SciTech Software, Inc.

Open Watcom Linux Port Page 33 of 55
Compiler / Linker Software Requirements Specification

3.1.1 Command Line Switches

There are no ELF and PIC switches in Open Watcom C Compiler. In gee, ELF is default format of object
files, and PIC generation is turned on by either -fPIC or -fpic.

Since command line of wee386 differs from gee very much, we may follow the “Watcom style”. For ELF,
perhaps the best option is -elf. The “el” prefix is free, since the “nearest” options are -ei and -em. And this
choice is logical, because the option -ez stands for “generate PharLap EZ-OMF object files”.

For PIC, the GNU style seems unacceptable, since “fp” prefix is intended for floating-point options.
Especially, -fpi means “inline 80x87 instructions with emulation”. Like in the ELF case, simply -pic may

€99

be acceptable (however, “p” prefixes preprocessor options). As alternative, -zpic seems a good choice,

[T 1)

since “z” groups very specific options. There is also -re switch (already implemented). This switch is
mapped to POSITION_INDEPENDANT option in CG386, but nothing reasonable is performed when it
is turned on.

Finally, our switch should be passed from wee386 to CG386. The interesting files are:
$OWROOT/bld/cc/c/coptions.c, cgen2.c, SOWROOT/bld/cg/h/cgswitch.h, and
SOWROOQT/bld/cg/intel/h/cgi86swi.h. In the compiler, switches are stored in CompFlags variable. Other
important variables are GenSwitches and (especially) TargetSwitches.

Switches are passed to CG386 in cgen2.c:
void DoCompile ()
{

/.

cgi info = BEInit (GenSwitches, TargetSwitches, OptSize,
ProcRevision);

/..
}

3.1.2 ELF Object Files

Since Open Watcom already contains OWL with ELF support, it is planned to use this library in CG386.
Both CG386 and OWL were described briefly in the previous sections.

Many things in CG386 are rigidly bound to OMF structure. OMF output is implemented mostly in
$OWROOT/bld/cg/intel/c/i860bj.c, i86esc.c, and SOWROOT/bld/cg/c/posixio.c. However, any object
file format defines virtually the same objects: groups, segments, symbols, relocations, etc. The biggest
conceptual difference between OMF and ELF is relocation handling. But the opposite problem was
successfully solved in ORL and WLCore. So we can implement the same “mapping” approach in CG386,
avoiding harmful changes to the complicated code generator.

The sample trace (see section CG386) shows how OMF object file is created.

Code and data (i.e. binary payload) are written by EjectLEData(). Although there are many calls of this
function in the trace, data are written when the following condition is true: obj->data.used > CurrSeg-
>data_prefix_size. Instead of calling PutObjRec(), we will call OWLEmitData(). Note that fix-ups are
written in EjectLEData() as well. So OWLEmitReloc() should be used to write relocations.

Sample mapping between i860bj.c and OWL is shown below. Each entry means that we can use specified
OWL function for OMF task, so there is no direct correspondence between columns.

SciTech Software, Inc.

Open Watcom Linux Port Page 34 of 55

Compiler / Linker Software Requirements Specification

OMF OWL
DefSegment() | OWLSectionlnit()
Ejectlmports() | OWLEmitImport()
EjectExports() | OWLEmitExport()
OutLabel() OWLSymbollnit()

RISC object code, located in SOWROOT/bld/SOWROOT/bld/rscobj.c. can be used as a reference.

Unfortunately OWL is RISC-oriented, so missing features should be added. There are some relocation
types missing in the current OWL. These relocations are described in the next section. Abstract relocation
types are defined in owl.h. The mapping between OWL relocations and 386 ABI is defined in owreloc.c:

static E1£32 Word elfRelocTypes386[] = {

R_386 NONE,
R 386 32,

R_386 NONE,
R_386 NONE,
R_386 NONE,
R 386 PC32,
R_386 NONE,
R_386 NONE,
R_386 NONE,
R 386 32,

R 386 32,

R 386 _GOT32,
R_386 NONE,

b

Since some relocations are 386-specific, the corresponding constants to both files should be added. In
addition, new fixup flags are needed for the mapping between OMF-style fixups and OWL relocations.
Extending fixups seems to be the hardest part of this subtask.

The only remark is that OWL in open_watcom_devel 1.1.7 seemed to be under development, i.e. some
features are incomplete.

SciTech Software, Inc.

Open Watcom Linux Port Page 35 of 55

Compiler / Linker Software Requirements Specification

3.1.3 PIC Generation

GOT base register

The EBX register serves as the global offset table base register for position-independent code. So this
register should be excluded from normal code generation.

Register macros were described in CG386 section. The following template illustrates turning off EBX.

SOWROOT/bld/cg/intel/386/c/386rgtbl.c

extern hw reg set FixedRegs () |

/************************************

return the set of register which may not be modified within this routine

*/
hw reg set fixed;
//
HW CTurnOn(fixed, HW EBX); // PIC
return(fixed);
}
extern hw reg set AllCacheRegs () {

/***************************************

return the set of all registers that could be used to cache values

*/

hw reg set all;
//
HW CTurnOff(all, HW EBX); // PIC

return(all);

SciTech Software, Inc.

Open Watcom Linux Port Page 36 of 55
Compiler / Linker Software Requirements Specification

Position-Independent Function Prologue

prologue:
pushl %ebp
movl %esp, %ebp
subl $80, %esp
pushl %edi
pushl %esi

pushl %ebx

call L1
LLl: popl %ebx
addl $ GLOBAL OFFSET TABLE +[.-.L1], $ebx

The call instruction pushes the absolute address of the next instruction onto the stack.
Consequently, the popl instruction pops the absolute address of .L1 into register %ebx.

The last instruction computes the desired absolute value into %ebx. This works because
_GLOBAL_OFFSET _TABLE _ in the expression gives the distance from the addl instruction to the
global offset table; [.-.L1] gives the distance from .L1 to the addl instruction. Adding their sum to the
absolute address of .L1, already in %ebx, gives the absolute address of the global offset table.

The last line seems a bit complicated, since there is address calculation. But actually this line should be add
$0x3,%ebx, where immediate is the explicit addend for R_386_GOTPC relocation. Note that code
generator should create the undefined symbol GLOBAL_OFFSET_TABLE , if R_386_GOTPC
encountered.

Prologues are handled in SOWROOT/bld/cg/intel/c/i86proc.c, so needed code should be added to void
GenProlog(void).

Template:

pointer 1bl;

//
AllocStack() ;
AdjustPushLocals () ;
// PIC
1bl = AskForNewLabel () ;
GenCallLabel (1bl);
CodeLabel (1bl, 0);
QuickSave (HW_EBX, OP POP);
GenRegAdd (HW EBX, 3);
// Add relocation R 386 GOTPC
GenKillLabel(1bl);

///PIC

SciTech Software, Inc.

Open Watcom Linux Port Page 37 of 55
Compiler / Linker Software Requirements Specification

In addition, register EBX should be saved in the stack. There is variable to_push in GenProlog(), so the
needed code is: HW_CTurnOn(to_push, HW_EBX).

Moreover, 386 ABI notes that EBX, ESI, and EDI should be saved in the stack, for both PIC and PDC.

Of course, PIC actions depend on CG386 switch for PIC. So conditional processing as well should be also
added.

Position-Independent Function Epilogue
All registers previously saved in stack (see above) should be resotred.

Although epilogue is created in void GenEpilog(void), the interesting function is void DoEpilog(void).
Both are defined in SOWROOT/bld/cg/intel/c/i86proc.c.

There is variable to_pop, defining the register set to be popped.

PIC Function Calls
Function calls are handled in SOWROOT/bld/cg/intel/c/i86call.c. There is also important function void
AddCalllns(instruction *ins, cn call) located in SOWROOT/bld/cg/c/bldcall.c.

Since ELF-specific relocations are not implemented yet, there is no code template. However, the task is
simple. For PDC, the target address has R_386_PC32 relocation. For PIC, this relocation should be
R 386 PLT32. The corresponding GNU assembler line is call function@PLT.

The information above covers direct function calls. Indirect function calls are kind of PIC data access
described below.

PIC Data Access
This task covers accessing the global data (including extern and static). Position-independent instructions
cannot contain absolute addresses. Instead, instructions that reference symbols hold the symbols’ offsets
into the global offset table. Combining the offset with the global offset table address in EBX gives the
absolute address of the table entry holding the desired address.

Sample PDC PIC
extern int src; .globl src, dst, ptr | .globl src, dst, ptr
extern int dst;
extern int *ptr;
ptr = &dst; mov1l Sdst, ptr mov1l pPtr@GOT (%ebx), %eax
movl dst@GOT (%ebx), %edx
movl $edx, (%eax)
*ptr = src; movl ptr, %eax movl ptr@GOT (%ebx), %eax
movl src, %edx movl (seax), %eax
movl $edx, (%eax) movl sSrc@GOT (%ebx), %edx
movl (%edx), %edx
movl $edx, (%eax)

Although references like name@GOT seem complicated, their meaning is simple, e.g. mov 0x0(%ebx),
%eax, where 0x0 is addend for relocation R_386_GOT32, associated with symbol ptr. For PDC,
relocation type is R_386_32, and generated code is much simpler.

Finally, position-independent references to static data may be optimized. Because EBX holds a known
address, the global offset table, a program may use it as a base register. External references should use the
global offset table entry, because dynamic linking may bind the entry to a definition outside the current
object file’s scope. For static variables, the PIC code will be the following:

| SciTech Software, Inc.

Open Watcom Linux Port Page 38 of 55

Compiler / Linker Software Requirements Specification

leal

leal

movl

movl

movl

movl

ptr@GOTOFF (%ebx), %eax
dst@GOTOFF (%ebx), %$edx
$edx, (%eax)

ptr@GOTOFF (%ebx), %eax
Src@GOTOFF (%ebx), %edx

$edx, (%eax)

Again, references name@GOTOFF actually correspond to relocations R_386_GOTOFF, where
relocation symbol is the segment (e.g. .bss), and implicit addend is offset of name in this segment.

There is no code template for data access. This task is most complicated, so additional investigation is
needed. PIC data access might affect the common code generator (not only CG386). In general, PIC global
variable should be treated as pointer to the actual address instead of address itself.

One potentially useful function is AddGloballndex() located in
$OWROOT/bld/cg/intel/386/c/3860pseg.c. This function adds EBX to every memory reference.

Summary

For PIC support, code generator should be able to produce some specific relocations (in addition to
R 386 32 and R_386_PC32). These relocations are summarized below (now from the perspective of link

editor).

R _386_GOT32

This relocation type computes the distance from the base of the global offset table to the
symbol’s global offset table entry. It additionally instructs the link editor to build a global
offset table.

R_386_GOTOFF

This relocation type computes the difference between a symbol’s value and the address of the
global offset table. It additionally instructs the link editor to build the global offset table.

R 386 _GOTPC This relocation type resembles R_386_PC32, except it uses the address of the global offset
table in its calculation. The symbol referenced in this relocation normally is
_GLOBAL_OFFSET_TABLE _, which additionally instructs the link editor to build the
global offset table.

R 386 PLT32 This relocation type computes the address of the symbol’s procedure linkage table entry and
additionally instructs the link editor to build a procedure linkage table.

3.1.4 Notes

The information presented in the sections above should not be treated as retelling of 386 ABI. It should be
used together with ABI documentation. Some details are omitted. During the porting work, developer
should refer to ABI and other documentation; perform analysis using objdump and readelf; etc.

SciTech Software, Inc.

Open Watcom Linux Port

Page 39 of 55
Compiler / Linker Software Requirements Specification

3.2 Building Shared Objects

This section describes the changes to Open Watcom Linker, needed for building shared libraries (PIC and
PDC).

3.2.1 Linker Command Line

Fortunately, the command line option for building a shared object is already implemented in Open Watcom
Linker. In such case, one should execute the linker this way: wlink form ELF DLL ...

DLL stands for Dynamic Linking Library that is shared object in the Linux world. One can check that ELF
shared object was requested by examining FmtData:

if((FmtData.type & MK ELF) && FmtData.dll) {

// Do something...

3.2.2 ELF Header

Currently, LoadELF is able to produce only executable files (ET_EXEC). Shared objects have type
ET_DYN. The following change is needed:

SOWROOT/bld/wl/c/loadelf.c

static void SetHeaders(El1fHdr *hdr)

/***********************************/
{
!/

hdr->eh.e type = FmtData.dll ? ET DYN : ET EXEC;
//

3.2.3 Segments and Sections

This is only a sample. Coding tasks are described in latter sections.

ELF executables created by wlink are organized in the following way (output from readelf -a):

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x00000000 0x????? 0x??2??2? R E O

LOAD 0x?2?2?272?2? 0x080?2?7?27?? 0x00000000 Ox72?2??? 0x???2?? R E 0x1000
LOAD 0x?2?2?272?2? 0x080?2?7?27?? 0x00000000 Ox72?2??? 0x???2?2?2 RW 0x1000

Section to Segment mapping:

Segment Sections...

00
01 .text
02 .data .Dbss

SciTech Software, Inc.

Open Watcom Linux Port Page 40 of 55
Compiler / Linker Software Requirements Specification

Shared objects created by 1ld are organized in the following way (complete
example) :

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x00000000 0x00000000 0x??2?? 0x????? R E 0x1000
LOAD 0x?2?2?22?27?2 0x??2?22?2272?2 0x??2?2?2?2?2?27 O0x??2??? 0x??2?2?2?2 RW 0x1000
DYNAMIC 0?22?2222 0x??2?2?2?2272?2 0x??2?2?2?2?2?2?2 0x?7?27272? 0x???2?? RW Ox4

Section to Segment mapping:

Segment Sections...

00 .hash .dynsym .dynstr .rel.dyn .rel.plt .plt .text .rodata
01 .data .dynamic .got .bss
02 .dynamic

We will refer to these samples from other sections of this document.

3.2.4 Program Headers

Unnecessary PT_PHDR

Since shared object is not a program, the program header entry PT_PHDR is not needed. Program headers
are allocated in SetHeaders(), and the first element is always PT_PHDR.

Template:
static void SetHeaders(El1fHdr *hdr)
/***********************************/
{
hdr->eh.e phnum = NumGroups + (FmtData.dll 2 0 : 1);
//
if(!FmtData.dll) {
hdr->ph->p type = PT PHDR;

hdr—>ph—>p_offset = sizeof(Elf32_Ehdr);

hdr->ph->p vaddr = sizeof (E1£f32 Ehdr) + FmtData.base;

hdr->ph->p paddr = 0;

hdr->ph->p filesz = hdr->ph size;

hdr->ph->p memsz = hdr->ph size;

hdr->ph->p flags = PF R | PF X;

hdr->ph->p align = 0;

!/

SciTech Software, Inc.

Open Watcom Linux Port Page 41 of 55
Compiler / Linker Software Requirements Specification

}

But PT_PHDR is assumed in WriteELFGroups(), so that function should be changed as well: ph = hdr-
>ph + (FmtData.dll ? 0 : 1).

Necessary PT DYNAMIC

Although PT_PHDR is never used in shared objects, PT_DYNAMIC is always used there. This program
header specifies dynamic linking information.

Therefore we can leave hdr->eh.e_phnum = NumGroups + 1, for executable and shared object.

Following the GNU convention, we will place dynamic segment after other segments.

3.2.5 Dynamic Section

The PT_DYNAMIC segment contains the .dynamic section. This section (with type SHT _DYNAMIC)
contains an array of the following structures.

SOWROOT/bld/watcom/h/exeelf.h

typedef struct {

E1f32 Sword d_tag;
union {
E1f32 Word d val;
E1f32 Addr d ptr;
} d un;

} Elf32_Dyn;

// dynamic array tags

#define DT_NULL 0

#define DT NEEDED 1 // name of a needed library
#define DT PLTRELSZ 2 // size of reloc entries for PLT
#define DT PLTGOT 3 // address with PLT or GOT
#define DT HASH 4 // symbol hash table address
#define DT STRTAB 5 // string table address

#define DT SYMTAB 6 // symbol table address

#define DT RELA 7 // address of reloc table with addends
#define DT RELASZ 8 // size of the DT RELA table
#define DT RELAENT 9 // size of a DT RELA entry
#define DT STRSZ 10 // size of the string table
#define DT SYMENT 11 // size of a symbol table entry
#define DT SONAME 14 // shared object name

SciTech Software, Inc.

Open Watcom Linux Port Page 42 of 55
Compiler / Linker Software Requirements Specification

#define DT REL 17 // address of reloc table without
addends

#define DT RELSZ 18 // size of the DT _REL table
#define DT RELENT 19 // size of a DT _REL entry

#define DT PLTREL 20 // type of reloc entry for PLT
#define DT DEBUG 21 // for debugging information
#define DT JMPREL 23 // reloc entries only with PLT

This section should reside in the data segment. We can create this section at the end of first linker pass (as
segment in DGROUP). This section will be written later using LoadELF. Additionally, the program header
PT_DYNAMIC should be updated.

3.2.6 Dynamic Symbols

Shared objects contain two symbol tables (i.e. sections): normal symbol table (SHT _SYMTAB), and
dynamic symbol table (SHT_DYNSYM). The name of dynamic symbol table is .dynsym instead of
.symtab.

Both are generally the same, but dynamic table does not contain local symbols (except sections). Of course,
the corresponding string table should be created (.dynstr instead of .strtab). For shared objects, section
.hash is related to dynamic symbol table.

Some changes are needed to WriteElfSymTable(), located in loadelf2.c. Function WriteSHStrings() from
loadelf.c should be changed as well. These changes include providing virtual addresses of the
corresponding sections (there is no memory allocation for normal symbol table), and supporting different
section names and types. Like normal symbol table, two variables are needed for dynamic table:

SOWROOT/bld/wl/h/loadelf.c

static stringtable SymStrTab;
static ElfSymTable * ElfSymTab;
static stringtable DynStrTab; // new
static ElfSymTable * DynSymTab; // new

The corresponding changes are needed to void InitSections(EIfHdr *hdr) (i.c. allocating .dynsym and
.dynstr), and to void ChkEIfData(void) (i.e. initializing dynamic symbol table). ELF handle should be
modified as well:

SOWROOT /bld/wl/h/loadelf2.h
typedef struct {
Elf32_Ehdr eh;
//
stringtable secstrtab;
struct {

int secstr; // Index of strings section for section names

SciTech Software, Inc.

Open Watcom Linux Port Page 43 of 55
Compiler / Linker Software Requirements Specification

int grpbase; // Index base for Groups in section
int grpnum; // Number of groups

int relbase; // Index base for relocation sections
int relnum; // number of relocations

int symstr; // Index of symbol's string table

int symtab; // Index of symbol table

int symhash; // Index of symbol hash table

int dynsym; // Index of dynamic symbol's string table
int dynstr; // Index of dynamic symbol table

int dbgbegin;// Index of first debug section

int dbgnum; // Number of debug sections

} 17 // Indexes into sh
unsigned 32 curr off;

} ElfHdr;

Finally, the dynamic array should be updated (i.e. DT_HASH, DT _STRTAB, DT_SYMTAB,
DT_STRSZ, and DT_SYMENT).

3.2.7 Dynamic Relocations

Relocations are written using WriteRelocsSections(). However, a shared object should contain single
relocation table .rel.dyn. So the new function, say WriteDynRelocsSection(), is needed. This function
should merge all relocations into single table. It should update .dynamic section as well (i.e. either

DT RELA, DT RELASZ, DT RELAENT or DT _REL, DT RELSZ, DT_RELENT). Note that the
current implementation of WriteRelocsSections() generates only “rela” relocations (i.e. explicit addend).

Template

// Initialize sh and its fields
//

AddSecName (hdr, sh, ".rela.dyn");

for(group = Groups; group != NULL; group = group->next group) {
relocs = group->g.grp relocs;
if(relocs != NULL) {

size = RelocSize(relocs);
sh->sh size += size;
DumpRelocList (relocs);
hdr->curr off += size;

}

currgrpt++;

SciTech Software, Inc.

Open Watcom Linux Port Page 44 of 55
Compiler / Linker Software Requirements Specification

}
// Update the dynamic array

/.

3.2.8 Global Offset Table
When link editor encounters one of the following relocation types:

e R _386_GOT32
e R _386_GOTOFF
e R _386_GOTPC

it should build the Global Offset Table. Additionally wlink should process this relocation types according
to 386 ABL

GOT is defined as EIf32_Addr _GLOBAL_OFFSET_TABLE _|].

The table’s entry zero is reserved to hold the address of the dynamic structure, referenced with the symbol
_DYNAMIC. Entries one and two in the global offset table also are reserved.

One should add support of these relocation types to both ORL and WLCore. For ORL, introduce new
constants in orlglobLh, e.g.: ORL_RELOC_TYPE_GOT_32, ORL_RELOC_TYPE_GOT_OFF,
ORL_RELOC_TYPE_GOT_REL. Then extend the mapping between ELF and ORL (elflwlv.c).

Then the mapping between ORL_ and FIX _should be added to DoReloc(), objorl.c. Of course, new FIX
constants are needed as well (obj2supp.h).

Relocation processing is performed in obj2supp.c. Some preprocessing is performed in objorl.c as well.

Relocation types mentioned above are processed in the following way.

A This means the addend used to compute the value of the relocatable field.

G This means the offset into the global offset table at which the address of the relocation entry’s
symbol will reside during execution.

GOT This means the address of the global offset table.

S This means the value of the symbol whose index resides in the relocation entry.

R 386 GOT32 |G+A-P
R 386 GOTOFF | S + A - GOT
R 386 GOTPC | GOT + A -P

As shown in the table, R_386_GOT32 and R_386_GOTPC are processed very close to R_386_PC32 (S +
A - P). This mean both are FIX_OFFSET _32 | FIX_REL. Similarly, R_386 _GOTOFF should be
FIX_OFFSET 32. Of course, additional FIX flags are needed to distinguish them for further processing
in obj2supp.c.

We can build the GOT during ORL conversion, i.e. in DoReloc(). During this phase, symbol offsets into
the GOT are calculated.

SciTech Software, Inc.

Open Watcom Linux Port Page 45 of 55
Compiler / Linker Software Requirements Specification

At the end of first linker pass, we can create the .got section (i.e. segment in DGROUP). At this time,
_GLOBAL_OFFSET _TABLE _ symbol should be defined as well. This allows creating the GOT with
minimal changes to the source code.

For unresolved external symbols, GOT entries are needed as well. Linker should create
R 386_GLOB_DAT relocations for such GOT entries. These relocations are associated with unresolved
symbols.

Another relocation type that can appear in shared object is R_386_RELATIVE. Its offset member gives a
location within a shared object that contains a value representing a relative address. The dynamic linker
computes the corresponding virtual address by adding the virtual address at which the shared object was
loaded to the relative address. Such relocations are created from R_386_GOT32, if the corresponding
symbol is not external.

In this section, only GOT aspects related with data were described. Code aspects are described in the next
section.

Finally, the dynamic array should be updated (PLTGOT).

Note that there is PowerPC TOC implementation in Open Watcom Linker. TOC is close to GOT in some
sense, but in general it is different thing. However, developer should take a look at existing TOC
implementation, since it contains some useful ideas.

3.2.9 Procedure Linkage Table

PLT is like GOT in some sense, but it is associated with PIC code instead of PIC data. Although 386 ABI
defines PLT for PDC and PIC, only PIC PLT is needed for our current task:

.PLTO: pushl 4 ($ebx)
Jmp *8 (%ebx)
nop; nop

nop; nop

.PLT1: Jjmp *namel@GOT (%ebx)
pushl Soffset

jmp .PLTOQPC

.PLT2: Jjmp *name2@GOT (%ebx)
pushl Soffset

jmp .PLTOQPC

PLTO@PC in each entry means the distance between the corresponding jmp and .PLTO, since x86 jumps
are PC-relative.

The GOT entry should be created for each PLT entry. Such GOT entry should contain the address of the
following pushl instruction, not the real address of e.g. namel. Thus namel@GOT means the offset of
the corresponding GOT entry.

| SciTech Software, Inc.

Open Watcom Linux Port Page 46 of 55

Compiler / Linker Software Requirements Specification

A new R_386_JUMP_SLOT relocation should be created. Its offset will specify the global offset table
entry used in the previous jmp instruction. The relocation entry also contains a symbol table index, thus
telling the dynamic linker what symbol is being referenced, e.g. namel. Instructions pushl S$offset pushes
the offset of such relocation in the PLT relocation table (rel.plt).

When first creating the memory image of the program, the dynamic linker sets the second and the third
entries in the global offset table to special values. Therefore these entries are reserved.

Since PLT contains instruction opcodes, an implementation template is presented for advice:

typedef struct pltentl {
unsigned 16 push ins;
unsigned 32 push ofs;
unsigned 16 jmp_ins;
unsigned 32 jmp_ ofs;
unsigned 32 nops;

} PLTENTI1;

typedef struct pltentn {
unsigned 16 jmpl ins;
unsigned 32 jmpl ofs;
unsigned 8 push ins;
unsigned 32 push ofs;
unsigned 8 Jmp2 ins;
unsigned 32 jmp2 ofs;

} PLTENTN;

typedef union pltent ({

PLTENT1 first;
PLTENTN entry;
} PLTENT;

typedef struct plt {

unsigned nentries;
PLTENT *entries;
} PLT;

void InitPLT (PLT *plt) {

plt->entries = AllocMem(sizeof (PLTENT));

SciTech Software, Inc.

Open Watcom Linux Port Page 47 of 55

Compiler / Linker Software Requirements Specification

plt->entries([0] .first.push ins = 0xB3FF;

plt->entries[0].first.push ofs = 0x00000004;

plt->entries([0] .first.jmp ins = OxA3FF;
plt->entries[0].first.jmp ofs = 0x00000008;
plt->entries[0].first.nops = 0x90909090;

plt->nentries = 1;

void Add2PLT (PLT *plt, unsigned 32 gotoff) ({
static unsigned 32 reloff = 0;

plt->entries = ReallocMem(plt->entries, (plt->nentries + 1) * sizeof(
PLTENT));

plt->entries([plt->nentries].entry.jmpl ins = 0xA3FF;
plt->entries([plt->nentries].entry.jmpl ofs = gotoff;

plt->entries([plt->nentries].entry.push ins = 0x68;

plt->entries([plt->nentries].entry.push ofs
E1£f32 Rel);

reloff; reloff += sizeof(

// Add R _386 JUMP SLOT relocation for push ofs (somehow)...
plt->entries([plt->nentries].entry.jmp2 ins = 0xE9;

plt->entries[plt->nentries].entry.jmp2 ofs = -0x10 - plt->nentries *
sizeof (PLTENT);

plt->nentries++;

When relocation R_386_PLT32 is encountered, the linker should create new PLT entry for the
corresponding symbol (but only if its type is STT_FUNC). For further references to the same symbol, we
will refer to the previously created PLT entry. R_386_PLT32 relocations are processed as L + A - P,
where L means the place (section offset or address) of the procedure linkage table entry for a symbol, A
and P were defined in the previous section. The corresponding ORL type,

ORL_RELOC _TYPE_PLT 32, is already defined (but not implemented yet). This is relative type, so the
mapping should include FIX_OFFSET 32 | FIX REL. Source files and functions participating in
relocation process were described in the previous section.

At the end of first linker pass, we can create the .plt section (i.e. segment in AUTO group). This allows
creating the PLT with minimal changes to the source code. Note that the separated relocation section
(.rel.plt) is needed for PLT relocations. This relocation table should also reside in the code segment.

Finally, the dynamic array should be updated (PLTRELSZ, PLTREL, and JMPREL).

SciTech Software, Inc.

Open Watcom Linux Port

Page 48 of 55

Compiler / Linker Software Requirements Specification

3.2.10 Notes

The information presented in the sections above should not be treated as retelling of 386 ABI. It should be
used together with ABI documentation. Some details are omitted, e.g. section flags for the dynamic section.
During the porting work, developer should refer to ABI and other documentation; perform analysis using
objdump and readelf; etc.

Note that symbol types (STT_) are very important for dynamic linking tasks. For example, STT_FUNC is
closely related with PLT. The current implementation (i.e. open_watcom_devel 1.1.7) sometimes loses
symbol types, so such issues need to be fixed.

3.3 Using Shared Objects

This section describes the changes to Open Watcom Linker, needed for using existing shared libraries (PIC
and PDC). Note that a shared library may use other shared libraries as well.

Since many things are related to building shared libraries (which is covered in the provious sections of this
document), this section is sufficiently short.

3.3.1 Reading Shared Objects

Shared object is another kind of ELF object file. ORL is able to read ELF object files. Some features
related to shared objects are implemented as well. Thus wlink fails (i.e. Segmentation fault) when one
tries to link a shared object. ORL should be reviewed and fixed in respective to these issues.

Additionally, the linker should collect the names of shared objects for further processing (see "Needed
Libraries" below). If this list is non-empty, the linker should perform some tasks described in the further
sections.

3.3.2 Program Interpreter

The additional program header PT_INTERP is needed for an executable that uses shared object(s). It
specifies the location and size of a null-terminated path name to invoke as an interpreter. This segment type
is meaningful only for executable files (though it may occur for shared objects); it may not occur more than
once in a file. If it is present, it must precede any loadable segment entry. For Linux, the program
interpreter is /lib/ld-linux.so.2

The needed changes in LoadELF are simple and obvious.

3.3.3 Required Libraries

The additional element of the dynamic array (i.e. .dynamic section) is needed. When the dynamic linker
creates the memory segments for an object file, the dependencies (recorded in DT_NEEDED entries of the
dynamic structure) tell what shared objects are needed to supply the program’s services.

DT_NEEDED holds the string table offset of a null-terminated string, giving the name of a needed library.
The offset is an index into the table recorded in the DT_STRTAB entry. The dynamic array may contain
multiple entries with this type. These entries’ relative order is significant, though their relation to entries of
other types is not.

Dynamic array is described in the previous sections.

SciTech Software, Inc.

Open Watcom Linux Port Page 49 of 55
Compiler / Linker Software Requirements Specification

3.3.4 Global Offset Table

The GOT processing is described in previous section. If any specific relocation is encountered, the linker
should resolve them and create the Global Offset Table. See also the next section.

3.3.5 Procedure Linkage Table

The PLT processing is described in previous section. If any specific relocation is encountered, the linker
should resolve them and create the Procedure Linkage Table.

There is, however, one important case not covered in the previous sections. If PDC shared object is needed
for the program, the linker creates PDC PLT. Its format differs from PIC PLT:

.PLTO: pushl got plus 4
Jjmp *got plus_ 8
nop; nop

nop; nop

.PLT1: Jjmp *namel in GOT
pushl Soffset

Jjmp .PLTOQ@PC

.PLT2: Jjmp *name2 in GOT
pushl Soffset

Jjmp .PLTOQ@PC

Here got_plus_4 and got_plus_8 specify explicit addresses of the second and third GOT entries,
respectively. Similarly, namel_in_GOT specifies address of the GOT entry for namel.

Instead of implementation template (very similar to PIC one), a sample disassembly is presented:

08048224 <.plt>:

8048224: £f 35 b4 93 04 08 pushl 0x80493b4 ; &GOT [1]
804822a: £f 25 b8 93 04 08 Jmp *0x80493b8 ; GOT[2]
8048230: 00 00

8048232: 00 00

8048234: £f 25 bc 93 04 08 Jmp *0x80493bc ; GOT[3]
804823a: 68 00 00 00 00 push $0x0

804823f: e9 e0 ff ff ff Jmp 8048224

8048244 : £f 25 cO 93 04 08 Jmp *0x80493c0 ; GOT[4]
804824a: 68 08 00 00 00 push $0x8

804824f: e9 do ff ff ff Jmp 8048224

SciTech Software, Inc.

Open Watcom Linux Port

Page 50 of 55

Compiler / Linker Software Requirements Specification

3.3.6 Notes

During the porting work, developer should refer to ABI and other documentation; perform analysis using
objdump and readelf; etc.

Note that symbol types (STT_) are very important for dynamic linking tasks. For example, STT_FUNC is
closely related with PLT. The current implementation (i.e. open_watcom_devel 1.1.7) sometimes loses
symbol types, so such issues need to be fixed.

4. Existing Problems

Several problems exist in open_watcom_devel 1.1.7, more precely, in the linker. So one is unable to make
even the “Hello, world!” program.

NOTE: By the time of the final revision of this document all the problems mentioned in this section were
fixed in the Open Watcom Perforce depot therefore altering an estimated time requirements. (See
estimation section).

4.1.1 Support of R_386_PC32 relocations

After linking, the relocated values are 4 less than they should be.

Gcce, nasm, and other Linux compilers typically generate the following:

e8 fc ff ff ff call somefunc

(Oxfffffffc is the implicit addend for R386_PC32 relocation).

Watcom C typically generates the following (of course, in OMF format):

e8 00 00 00 00 call somefunc

SOWROOT /bld/wl/c/obj2supp.c

static bool CheckSpecials(fix data *fix, frame spec *targ)

/****************************k******************************/

{

if(! (fix->type & FIX REL)) return FALSE;

fixsize = CalcFixupSize(fix->type);

off -= fixsize;

This algorithm introduces our 4-byte error. Such correction isn't needed for ELF R386_PC32, since
implicit addend is specified (0xfffffffc == -4).

QUICK FIX: Offset correction should be disabled in case implicit addend was specified.

SciTech Software, Inc.

Open Watcom Linux Port Page 51 of 55
Compiler / Linker Software Requirements Specification

SOWROOT /bld/wl/c/obj2supp.c
static bool CheckSpecials(fix data *fix, frame spec *targ)

/****************************k******************************/

{

if(! (fix->type & FIX REL)) return FALSE;

fixsize = CalcFixupSize(fix->type);

if(fix->type & FIX ADDEND ZERO) off -= fixsize; // quickfix #01

NOTE. This is temporary solution. New ORL relocation type (or option) is needed for a more accurate fix.
This bug was already fixed in the development source tree at the moment of writing this SRS.

4.1.2 Support of STT_NOTYPE symbols
Two of symbol types defined in ABI:

STT_NOTYPE The symbol's type is not specified.
STT_FUNC The symbol is associated with a function or other executable code.

Many of “real-life” ELF object files has symbols of STT_NOTYPE, e.g. _start in dietlibc's start.o. When
linking that sort of object files, Open Watcom Linker complains such symbols are not found. This error is
fatal.

ORL treats STT_NOTYPE and unknown symbol types as ORL_SYM_TYPE_NONE. This (somehow)
confuses the linker.

SOWROOT/bld/orl/elf/c/elflwlv.c
default:

current->type = ORL _SYM TYPE NONE; // ?

QUICK FIX: If symbol's associated section (i.e. st_shndx) looks like executable, treat that symbol as
ORL_SYM_TYPE_FUNCTION.

SOWROOT/bld/orl/elf/c/elflwlv.c
orl return ElfCreateSymbolHandles(elf sec handle elf sec hnd)

{

elf sec handle sym sec; // Nick's quickfix #02

default:

// hotfix #02

SciTech Software, Inc.

Open Watcom Linux Port Page 52 of 55
Compiler / Linker Software Requirements Specification

if((sym sec = ElfSymbolGetSecHandle(current)) != NULL
&& sym sec->type == ORL_SEC TYPE PROG BITS
&& sym sec->flags & ORL _SEC FLAG EXEC
) A
current->type = ORL SYM TYPE FUNCTION;
} else {

current->type = ORL SYM TYPE NONE;

NOTE. This workaround works pretty well for current version, but has some drawbacks in “shared
libraries” perspective. When another object file references a function from a shared object, the link editor
automatically creates a procedure linkage table entry for the referenced symbol. Shared object symbols
with types other than STT_FUNC will not be referenced automatically through the procedure linkage
table.

The accurate fix should treat STT_NOTYPE as “normal” symbol.

4.1.3 Accurate segment mapping

Sections .data and .bss share the same segment in ELF executables produced by wlink. If .bss section is
created, the memory size (p_memsz) of that segment became invalid. The produced ELF causes
segmentation fault.

readelf -a

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf
Al

[2] .text PROGBITS 08048100 000100 00103d 00 AX O 0
4

[3] .data PROGBITS 0804a000 002000 000288 00 wWA O 0
4

[4] .bss NOBITS 0804b000 003000 0000b4 00 WA O 0
4

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x00000000 0x00060 0x00060 R E O

LOAD 0x000100 0x08048100 0x00000000 0x0103d 0x0103d R E 0x1000
LOAD 0x002000 0x0804a000 0x00000000 0x00288 0x000c4 RW 0x1000

Section to Segment mapping:

Segment Sections...

SciTech Software, Inc.

Open Watcom Linux Port Page 53 of 55

Compiler / Linker Software Requirements Specification

00
01 .text

02

It seems page alignment is not taken into account when .bss section is created.

QUICK FIX: p_memsz should be adjusted after creating the .bss.

SOWROOT/bld/wl/c/loadelf.c
InitBSSSect (sh, off, CalcSplitSize(), linear);

ph->p memsz += ROUND UP(ph->p filesz, FmtData.objalign); //
quickfix #03

readelf -a

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf
Al

[2] .text PROGBITS 08048100 000100 00103d 00 AX O 0
4

[3] .data PROGBITS 0804a000 002000 000288 00 WA O 0
4

[4] .bss NOBITS 0804b000 003000 0000b4 00 WA O 0
4

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x00000000 0x00060 0x00060 R E O

LOAD 0x000100 0x08048100 0x00000000 0x0103d 0x0103d R E 0x1000
LOAD 0x002000 0x0804a000 0x00000000 0x00288 0x010c4 RW 0x1000

Section to Segment mapping:

Segment Sections...

00
01 .text
02 .data .Dbss

NOTE. This workaround works well enough, but the problem should be revised. More accurate fix is
required.

| SciTech Software, Inc. |

Open Watcom Linux Port

Page 54 of 55

Compiler / Linker Software Requirements Specification

5. Estimation

There are two independent tasks: Code Generator (PIC support) and Linker (building and using shared

objects). So it is possible to perform these tasks simultaneously. GNU C Compiler can be used for Linker

testing, as well as 1d for Code Generator. Then the final integration (i.e. testing) should be performed,

using only Open Watcom tools.

5.1 Position-Independent Code
Command line processing

Estimation: 1 day
Description: see section 3.1.1
Extending OWL

Estimation: 8 days
Description: see section 3.1.2

Implementing ELF output in CG386

Estimation: 20 days

Description: see section 3.1.2. This is pretty complicated task. No PIC support yet (see below).

Adding PIC support to CG386

Estimation: 20 days

Description: see section 3.1.3. This is one of most complicated tasks.

Extending ELF output in CG386

Estimation: 5 days

Description: see sections 3.1.2, 3.1.3. This task means adding PIC features to ELF.

Integration

Estimation: 5 days

Description: Mostly testing. Complicated test kit (i.e. C source code) is needed to ensure all things are

implemented correctly.

Total 59 days

5.2 Building Shared Objects
Extending ORL

Estimation: 3 days

Description: see section 3.2.7

Extending WLCore

Estimation: 15 days

Description: see sections 3.2.7,3.2.8,3.2.9

Improving [LoadELF

Estimation: 5 days

Description: see sections 3.2.1 —3.2.9

Integration

SciTech Software, Inc.

Open Watcom Linux Port Page 55 of 55
Compiler / Linker Software Requirements Specification

Estimation: 4 days

Description: Mostly testing. Complicated test kit (i.e. object files) is needed to ensure all things are
implemented correctly.

Total 27 days

5.3 Using Shared Objects
Command line processing

Estimation: 1 day
Description: see section 3.3.3

Improving [LoadELF

Estimation: 1 day. Minimal changes are needed (assuming we are already able to build a shared
object).

Description: see sections 3.3.2,3.3.3
Extending ORL

Estimation: 10 days

Description: see section 3.3.1
Extending WL Core

Estimation: 8 days

Description: see sections 3.3.4,3.3.5

Integration
Estimation: 10 days

Description: Mostly testing. Complicated test kit (i.e. object files) is needed to ensure all things are
implemented correctly. There are many variants, e.g. executable uses three shared objects, where the 1st
shared object uses the 2nd, and the 3rd uses some another shared object.

Total 30 days

5.4 Final Integration
Estimation: 10 days

Description: Mostly testing. Trying to link ELF object files (i.e. those generated by Open Watcom C)
using Open Watcom Linker.

SciTech Software, Inc.

	Executive summary
	Introduction
	Definitions, acronyms and abbreviations
	References

	Key Components of the Open Watcom C Compiler and Linker
	ORL
	Definition
	Description

	WLCore
	Definition
	Description

	Load ELF
	Definition
	Description

	GC386
	Definition
	Description

	OWL
	Definition
	Description

	Porting Open Watcom C Compiler and Linker to Linux
	Position-Independent Code
	Command Line Switches
	ELF Object Files
	PIC Generation
	Notes

	Building Shared Objects
	Linker Command Line
	ELF Header
	Segments and Sections
	Program Headers
	Dynamic Section
	Dynamic Symbols
	Dynamic Relocations
	Global Offset Table
	Procedure Linkage Table
	Notes

	Using Shared Objects
	Reading Shared Objects
	Program Interpreter
	Required Libraries
	Global Offset Table
	Procedure Linkage Table
	Notes

	Existing Problems
	
	Support of R_386_PC32 relocations
	Support of STT_NOTYPE symbols
	Accurate segment mapping

	Estimation
	Position-Independent Code
	Building Shared Objects
	Using Shared Objects
	Final Integration

