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Chapter 1

Introduction

The x86-64 architecture1 is an extension of the x86 architecture. Any processor
implementing the x86-64 architecture specification will also provide compatiblity
modes for previous descendants of the Intel 8086 architecture, including 32-bit
processors such as the Intel 386, Intel Pentium, and AMD K6-2 processor. Oper-
ating systems conforming to the x86-64 ABI may provide support for executing
programs that are designed to execute in these compatiblity modes. The x86-64
ABI does not apply to such prorams; this document applies only programs running
in the “long” mode provided by the x86-64 architecture.

Except where otherwise noted, the x86-64 architecture ABI follows the con-
ventions described in the Intel386 ABI. Rather than replicate the entire contents
of the Intel386 ABI, the x86-64 ABI indicates only those places where changes
have been made to the Intel386 ABI.

No attempt has been made to specify an ABI for languages other than C. How-
ever, it is assumed that many programming languages will wish to link with code
written in C, so that the ABI specifications documented here are relevant.2

1.1 Differences from the Intel386 ABI

The most fundamental differences from the Intel386 ABI document are as follows:

• Sizes of fundamental data types.

1The architecture specification is available on the web athttp://www.x86-64.org/
documentation .

2See section 9.3 for details on C++ ABI.
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• Parameter-passing conventions.

• Floating-point computations.

• Removal of the GOT register.

• Use of RELA relocations.
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Chapter 2

Software Installation

No changes required.
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Chapter 3

Low Level System Information

3.1 Machine Interface

3.1.1 Processor Architecture

3.1.2 Data Representation

Within this specification, the termbyte refers to a 8-bit object, the termtwobyte
refers to a 16-bit object, the termfourbyte refers to a 32-bit object, the term
eightbyte refers to a 64-bit object, and the termsixteenbyterefers to a 128-bit
object.1

Fundamental Types

Figure 3.1 shows the correspondence between ISO C’s scalar types and the proces-
sor’s. The__int128 , __float128 , __m64 and__m128 types are optional.

The__float128 type uses a 15-bit exponent, a 113-bit mantissa (the high
order significant bit is implicit) and an exponent bias of 16383.2

Thelong double type uses a 15 bit exponent, a 64-bit mantissa with an ex-
plicit high order significant bit and an exponent bias of 16383.3 Although along

1The Intel386 ABI uses the termhalfword for a 16-bit object, the termword for a 32-bit
object, the termdoubleword for a 64-bit object. But most ia32 processor specific documentation
define aword as a 16-bit object, adoublewordas a 32-bit object, aquardword as a 64-bit object
and adouble quadwordas a 128-bit object.

2Initial implementations of the x86-64 architecture are expected to support operations on the
__float128 type only via software emulation.

3This type is the x87 double extended precision data type.
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Figure 3.1: Scalar Types
Alignment x86-64

Type C sizeof (bytes) Architecture
_Bool † 1 1 boolean
char 1 1 signed byte
signed char
unsigned char 1 1 unsigned byte
short 2 2 signed twobyte
signed short
unsigned short 2 2 unsigned twobyte
int 4 4 signed fourbyte

Integral signed int
enum
unsigned int 4 4 unsigned fourbyte
long 8 8 signed eightbyte
signed long
long long
signed long long
unsigned long 8 8 unsigned eightbyte
unsigned long long 8 8 unsigned eightbyte
__int128 †† 16 16 signed sixteenbyte
signed __int128 †† 16 16 signed sixteenbyte
unsigned __int128 †† 16 16 unsigned sixteenbyte

Pointer any-type * 8 8 unsigned eightbyte
any-type (*)()

Floating- float 4 4 single (IEEE)
point double 8 8 double (IEEE)

long double 16 16 80-bit extended (IEEE)
__float128 †† 16 16 128-bit extended (IEEE)

Packed __m64†† 8 8 MMX and 3DNow!
__m128†† 16 16 SSE and SSE-2

† This type is calledbool in C++.
†† These types are optional.
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double requires 16 bytes of storage, only the first 10 bytes are significant. The
remaining six bytes are tail padding, and the contents of these bytes are undefined.

The __int128 type is stored in little-endian order in memory, i.e., the 64
low-order bits are stored at a a lower address than the 64 high-order bits.

A null pointer (for all types) has the value zero.
The typesize_t is defined asunsigned long .
Booleans, when stored in a memory object, are stored as single byte objects the

value of which is always 0 (false ) or 1 (true ). When stored in integer registers
or passed as arguments on the stack, all 8 bytes of the register are significant; any
nonzero value is consideredtrue .

Like the Intel386 architecture, the x86-64 architecture does not require all
data access to be properly aligned. Accessing misaligned data will be slower than
accessing properly aligned data, but otherwise there is no difference.

Aggregates and Unions

An array uses the same alignment as its elements, except that a local or global
array variable that requires at least 16 bytes, or a C99 local or global variable-
length array variable, always has alignment of at least 16 bytes.4

No other changes required.

Bit-Fields

Amend the description of bit-field ranges as follows:

Figure 3.2: Bit-Field Ranges

Bit-field Type Widthw Range
signed long −2w−1 to 2w−1 − 1
long 1 to 64 0 to 2w − 1
unsigned long 0 to 2w − 1

4The alignment requirement allows the use of SSE instructions when operating on the array.
The compiler cannot in general calculate the size of a variable-length array (VLA), but it is ex-
pected that most VLAs will require at least 16 bytes, so it is logical to mandate that VLAs have at
least a 16-byte alignment.
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The ABI does not permit bitfields having the type__m64 or __m128. Pro-
grams using bitfields of these types are not portable.

No other changes required.

3.2 Function Calling Sequence

This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing and so on.

The standard calling sequence requirements apply only to global functions.
Local functions that are not reachable from other compilation units may use dif-
ferent conventions. Nevertheless, it is recommended that all functions use the
standard calling sequence when possible.

3.2.1 Registers and the Stack Frame

The x86-64 architecture provides 16 general purpose 64-bit registers. In addition
the architecture provides 16 SSE registers, each 128 bits wide and 8 x87 floating
point registers, each 80 bits wide. Each of the x87 floating point registers may be
referred to inMMX/3DNow! mode as a 64-bit register. All of these registers are
global to all procedures in a running program.

This subsection discusses usage of each register. Registers%rbp, %rbx and
%r12 through%r15 “belong” to the calling function and the called function is
required to preserve their values. In other words, a called function must preserve
these registers’ values for its caller. Remaining registers “belong” to the called
function.5 If a calling function wants to preserve such a register value across a
function call, it must save the value in its local stack frame.

The CPU shall be in x87 mode upon entry to a function. Therefore, every
function that uses theMMX registers is required to issue anemmsor femms in-
struction before accessing theMMX registers.6 The direction flag in the%eflags
register must be clear on function entry, and on function return.

5Note that in contrast to the Intel386 ABI,%rdi , and%rsi belong to the called function, not
the caller.

6All x87 registers are caller-saved, so callees that make use of theMMX registers may use the
fasterfemms instruction.
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Figure 3.3: Stack Frame with Base Pointer

Position Contents Frame

8n+16(%rbp) argument eightbyten
. . . Previous

16(%rbp) argument eightbyte0
8(%rbp) return address
0(%rbp) previous%rbp value

-8(%rbp) unspecified Current
. . .

0(%rsp) variable size
128(%rsp) red zone

3.2.2 The Stack Frame

In addition to registers, each function has a frame on the run-time stack. This stack
grows downwards from high addresses. Figure 3.3 shows the stack organization.

The end of the input argument area shall be aligned on a 16 byte boundary.
In other words, the value(%rsp − 8) is always a multiple of16 when control is
transferred to the function entry point. The stack pointer,%rsp , always points to
the end of the latest allocated stack frame.7

The 128-byte area beyond the location pointed to by%rsp is considered to
be reserved and shall not be modified by signal or interrupt handlers.8 Therefore,
functions may use this area for temporary data that is not needed across function
calls. In particular, leaf functions may use this area for their entire stack frame,
rather than adjusting the stack pointer in the prologue and epilogue.

3.2.3 Parameter Passing

After the argument values have been computed, they are placed in registers, or
pushed on the stack. The way how values are passed is described in the following

7The conventional use of%rbp as a frame pointer for the stack frame may be avoided by using
%rsp (the stack pointer) to index into the stack frame. This technique saves two instructions in
the prologue and epilogue and makes one additional general-purpose register (%rbp) available.

8Locations within 128 bytes can be addressed using one-byte displacements.
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sections.

Definitions We first define a number of classes to classify arguments. The
classes are corresponding to x86-64 register classes and defined as:

INTEGER This class consists of integral types that fit into one of the general
purpose registers (%rax–%r15).

SSE The class consists of types that fits into a SSE register.

SSEUP The class consists of types that fit into a SSE register and can be passed
in the most significant half of it.

X87, X87UP These classes consists of types that will be passed via the x87 FPU.

NO_CLASS This class is used as initializer in the algorithms. It will be used for
padding and empty structures and unions.

MEMORY This class consists of types that will be passed in memory via the
stack.

Classification The size of each argument gets rounded up to eightbytes.9

The basic types are assigned their natural classes:

• Arguments of types (signed and unsigned)_Bool , char , short , int ,
long , long long , and pointers are in the INTEGER class.

• Arguments of typesfloat , double and__m64 are in class SSE.

• Arguments of types__float128 and__m128 are split into two halves.
The least significant ones belong to class SSE, the most significant one to
class SSEUP.

• The 64-bit mantissa of arguments of typelong double belongs to class
X87, the 16-bit exponent plus 6 bytes of padding belongs to class X87UP.

• Arguments of type__int128 offer the same operations as INTEGERs,
yet they do not fit into one general purpose register but require two registers.
For classification purposes__int128 is treated as if it were implemented

9Therefore the stack will always be eightbyte aligned.
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as: t ypedef struct long low, high; __int128; with the exception that
arguments of type__int128 that are stored in memory must be aligned
on a 16-byte boundary.

The classification of aggregate (structures and arrays) and union types works
as follows:

1. If the size of an object is larger than two eightbytes, or in C++, is a non-
POD 10 structure or union type, or contains unaligned fields, it has class
MEMORY.11

2. Both eightbytes get initialized to class NO_CLASS.

3. Each field of an object is classified recursively so that always two fields are
considered. The resulting class is calculated according to the classes of the
fields in the eightbyte:

(a) If both classes are equal, this is the resulting class.

(b) If one of the classes is NO_CLASS, the resulting class is the other
class.

(c) If one of the classes is MEMORY, the result is the MEMORY class.

(d) If one of the classes is INTEGER, the result is the INTEGER.

(e) If one of the classes is X87 or X87UP class, MEMORY is used as
class.

(f) Otherwise class SSE is used.

4. Then a post merger cleanup is done:

(a) If one of the classes is MEMORY, the whole argument is passed in
memory.

(b) If SSEUP is not preceeded by SSE, it is converted to SSE.

10The term POD is from the ANSI/ISO C++ Standard, and stands for Plain Old Data. Although
the exact definition is technical, a POD is essentially a structure or union that could have been
written in C; there cannot be any member functions, or base classes, or similar C++ extensions.

11A non-POD object cannot be passed in registers because such objects must have well defined
addresses; the address at which an object is constructed (by the caller) and the address at which
the object is destroyed (by the callee) must be the same. Similar issues apply when returning a
non-POD object from a function.
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Passing Once arguments are classified, the registers get assigned (in left-to-right
order) for passing as follows:

1. If the class is MEMORY, pass the argument on the stack.

2. If the class is INTEGER, the next available register of the sequence%rdi ,
%rsi , %rdx , %rcx , %r8 and%r9 is used12.

3. If the class is SSE, the next available SSE register is used, the registers are
taken in the order from%xmm0to %xmm7.

4. If the class is SSEUP, the eightbyte is passed in the upper half of the least
used SSE register.

5. If the class is X87 or X87UP, it is passed in memory.

If there is no register available anymore for any eightbyte of an argument, the
whole argument is passed on the stack. If registers have already been assigned for
some eightbytes of this argument, those assignments get reverted.

Once registers are assigned, the arguments passed in memory are pushed on
the stack in reversed (right-to-left13) order.

For calls that may call functions that use varargs or stdargs (prototype-less
calls or calls to functions containing ellipsis (. . . ) in the declaration)%al 14 is used
as hidden argument to specify the number of SSE registers used. The contents of
%al do not need to match exactly the number of registers, but must be an upper
bound on the number of SSE registers used and is in the range 0–8 inclusive.

Returning of Values The returning of values is done according to the following
algorithm:

1. Classify the return type with the classification algorithm.

12Note that%r11 is neither required to be preserved, nor is it used to pass arguments. Making
this register available as scratch register means that code in the PLT need not spill any registers
when computing the address to which control needs to be transferred.%rax is used to indicate the
number of SSE arguments passed to a function requiring a variable number of arguments.%r10
is used for passing a function’s static chain pointer.

13Right-to-left order on the stack makes the handling of functions that take a variable number
of arguments simpler. The location of the first argument can always be computed statically, based
on the type of that argument. It would be difficult to compute the address of the first argument if
the arguments were pushed in left-to-right order.

14Note that the rest of%rax is undefined, only the contents of%al is defined.
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Figure 3.4: Register Usage

Preserved across
Register Usage function calls

%rax temporary register; with variable ar-
guments passes information about
the number of SSE registers used; 1st

return register

No

%rbx callee-saved register; optionally used
as base pointer

Yes

%rcx used to pass 4th integer argument to
functions

No

%rdx used to pass 3rd argument to func-
tions ; 2nd return register

No

%rsp stack pointer Yes
%rbp callee-saved register; optionally used

as frame pointer
Yes

%rsi used to pass 2nd argument to func-
tions

No

%rdi used to pass 1st argument to func-
tions

No

%r8 used to pass 5th argument to func-
tions

No

%r9 used to pass 6th argument to func-
tions

No

%r10 temporary register, used for passing
a function’s static chain pointer

No

%r11 temporary register No
%r12-r15 callee-saved registers Yes
%xmm0–%xmm1 used to pass and return floating point

arguments
No

%xmm2–%xmm7 used to pass floating point argumentsNo
%xmm8–%xmm15 temporary registers No
%mmx0–%mmx7 temporary registers No
%st0 temporary register; used to return

long double arguments
No

%st1 –%st7 temporary registers No
%fs Reserved for system use (as thread

specific data register)
No
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2. If the type has class MEMORY, then the caller provides space for the return
value and passes the address of this storage in%rdi as if it were the first
argument to the function. In effect, this address becomes a “hidden” first
argument.

On return%rax will contain the address that has been passed in by the
caller in%rdi .15

3. If the class is INTEGER, the next available register of the sequence%rax ,
%rdx is used.

4. If the class is SSE, the next available SSE register of the sequence%xmm0,
%xmm1is used.

5. If the class is SSEUP, the eightbyte is passed in the upper half of the last
used SSE register.

6. If the class is X87, the value is returned on the X87 stack in%st0 as 80-bit
x87 number.

7. If the class is X87UP, the value is returned together with the previous X87
value in%st0 .

As an example of the register passing conventions, consider the declarations
and the function call shown in Figure 3.5. The corresponding register allocation
is given in Figure 3.6, the stack frame offset given shows the frame before calling
the function.

15We currently discuss changing this to%rdi as return register to avoid one move.
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Figure 3.5: Parameter Passing Example

typedef struct {
int a, b;
double d;

} structparm;
structparm s;
int e, f, g, h, i, j, k;
long double ld;
double m, n;

extern void func (int e, int f,
structparm s, int g, int h,
long double ld, double m,
double n, int i, int j, int k);

);

func (e, f, s, g, h, ld, l, m, n, i, j, k);

Figure 3.6: Register Allocation Example

General Purpose Registers Floating Point Registers Stack Frame Offset
%rdi : e %xmm0: s.d 0: ld
%rsi : f %xmm1: m 16: j
%rdx : s.a,s.b %xmm2: n 24: k
%rcx : g
%r8: h
%r9: i
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3.3 Operating System Interface

3.3.1 Exception Interface

As the x86-64 manuals describe, the processor changes mode to handleexcep-
tions, which may be synchronous, floating-point/coprocessor or asynchronous.
Synchronous and floating-point/coprocessor exceptions, being caused by instruc-
tion execution, can be explicitly generated by a process. This section, therefore,
specifies those exception types with defined behavior. The x86-64 architecture
classifies exceptions asfaults, traps, andaborts. See the Intel386 ABI for more
information about their differences.

Hardware Exception Types

The operating system defines the correspondence between hardware exceptions
and the signals specified bysignal (BA_OS) as shown in table 3.1. Contrary
to the i386 architecture, the x86-64 does not define any instructions that generate
a bounds check fault in long mode.

3.3.2 Special Registers

The x86-64 architecture defines floating point instructions. At process startup
the two floating point units, SSE2 and x87, both have all floating-point exception
status flags cleared. The status of the control words is as defined in tables 3.3 and
3.4.

3.3.3 Virtual Address Space

Although the x86-64 architecture uses 64-bit pointers, implementations are only
required to handle 48-bit addresses. Therefore, conforming processes may only
use addresses from0x00000000 00000000 to 0x00007fff ffffffff 16.

No other changes required.

3.3.4 Page Size

Systems are permitted to use any power-of-two page size between 4KB and 64KB,
inclusive.

160x0000ffff ffffffff is not a canonical address and cannot be used.
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Table 3.1: Hardware Exceptions and Signals

Number Exception name Signal
0 divide error fault SIGFPE
1 single step trap/fault SIGTRAP
2 nonmaskable interrupt none
3 breakpoint trap SIGTRAP
4 overflow trap SIGSEGV
5 (reserved)
6 invalid opcode fault SIGILL
7 no coprocessor fault SIGFPE
8 double fault abort none
9 coprocessor overrun abort SIGSEGV

10 invalid TSS fault none
11 segment no present fault none
12 stack exception fault SIGSEGV
13 general protection fault/abort SIGSEGV
14 page fault SIGSEGV
15 (reserved)
16 coprocessor error fault SIGFPE

other (unspecified) SIGILL

Table 3.2: Floating-Point Exceptions

Code Reason
FPE_FLTDIV floating-point divide by zero
FPE_FLTOVF floating-point overflow
FPE_FLTUND floating-point underflow
FPE_FLTRES floating-point inexact result
FPE_FLTINV invalid floating-point operation
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Table 3.3: x87 Floating-Point Control Word

Field Value Note
RC 0 Round to nearest
PC 11 Double extended precision
PM 1 Precision masked
UM 1 Underflow masked
OM 1 Overflow masked
ZM 1 Zero divide masked
DM 1 Denormal operand masked
IM 1 Invalid operation masked

Table 3.4: MXCSR Status Bits

Field Value Note
FZ 0 Do not flush to zero
RC 0 Round to nearest
PM 1 Precision masked
UM 1 Underflow masked
OM 1 Overflow masked
ZM 1 Zero divide masked
DM 1 Denormal operand masked
IM 1 Invalid operation masked
DAZ 0 Denormals are not zero
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No other changes required.

3.3.5 Virtual Address Assignments

Conceptually processes have the full address space available. In practice, how-
ever, several factors limit the size of a process.

• The system reserves a configuration dependent amount of virtual space.

• The system reserves a configuration dependent amount of space per process.

• A process whose size exceeds the system’s available combined physical
memory and secondary storage cannot run. Although some physical mem-
ory must be present to run any process, the system can execute processes
that are bigger than physical memory, paging them to and from secondary
storage. Nonetheless, both physical memory and secondary storage are
shared resources. System load, which can vary from one program execu-
tion to the next, affects the available amount.

Figure 3.7: Virtual Address Configuration

0xffffffffffffffff Reserved system areaEnd of memory
. . .
. . .

0x80000000000 Dynamic segments
. . .

0 Process segments Beginning of memory

Although applications may control their memory assignments, the typical ar-
rangement appears in figure 3.8.
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Figure 3.8: Conventional Segment Arrangements

. . .
0x80000000000 Dynamic segments

Stack segment
. . .
. . .

Data segments
. . .

0x400000 Text segments
0 Unmapped

3.4 Process Initialization

3.4.1 Auxiliary Vector

The x86-64 ABI uses the following auxiliary vector types.
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Figure 3.9: Auxiliary Vector Types

Name Value a_un
AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_NOTELF 10 a_val
AT_UID 11 a_val
AT_EUID 12 a_val
AT_GID 13 a_val
AT_EGID 14 a_val

The entries that are different than in the Intel386 ABI are specified as follows:

AT_NOTELF Thea_val member of this entry is non-zero if the program is in
another format than ELF.

AT_UID Thea_val member of this entry holds the real user id of the process.

AT_EUID The a_val member of this entry holds the effective user id of the
process.

AT_GID Thea_val member of this entry holds the real group id of the process.

AT_EGID Thea_val member of this entry holds the effective group id of the
process.

3.5 Coding Examples

The following sections show only the difference to the i386 ABI.
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3.5.1 Architectural Constraints

The x86-64 architecture usually does not allow to encode arbitrary 64-bit con-
stants as immediate operand of the instruction. Most instructions accept 32-bit
immediates that are sign extended to the 64-bit ones. Additionally the 32-bit op-
erations with register destinations implicitly perform zero extension making loads
of 64-bit immediates with upper half set to 0 even cheaper.

Additionally the branch instructions accept 32-bit immediate operands that
are sign extended and used to adjust instruction pointer. Similarly an instruction
pointer relative addressing mode exists for data accesses with equivalent limita-
tions.

In order to improve performance and reduce code size, it is desirable to use
different code models depending on the requirements.

Code models define constraints for symbolic values that allow the compiler to
generate better code. Basically code models differ in addressing (absolute versus
position independent), code size, data size and address range. We define only a
small number of code models that are of general interest:

Small code model The virtual address of code executed is known at link time.
Additionally all symbols are known to be located in the virtual addresses in
the range from0 to 231 − 210 − 1.

This allows the compiler to encode symbolic references with offsets in the
range from−231 to 210 directly in the sign extended immediate operands,
with offsets in the range from0 to 231 + 210 in the zero extended immediate
operands and use instruction pointer relative addressing for the symbols
with offsets in the range−210 to 210.

This is the fastest code model and we expect it to be suitable for the vast
majority of programs.

Kernel code model The kernel of an operating system is usually rather small but
runs in the negative half of the address space. So we define all symbols to
be in the range from264 − 231 to 264 − 210.

This code model has advantages similar to those of the small model, but
allows encoding of zero extended symbolic references only for offsets from
231 to 231 + 210. The range offsets for sign extended reference changes to
0–231 + 210.
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Medium code model The medium code model does not make any assumptions
about the range of symbolic references to data sections. Size and address of
the text section have the same limits as the small code model.

This model requires the compiler to usemovabs instructions to access
static data and to load addresses into register, but keeps the advantages of
the small code model for manipulation of addresses to the text section (spe-
cially needed for branches).

Large code model The large code model makes no assumptions about addresses
and sizes of sections.

The compiler is required to use themovabs instruction, as in the medium
code model, even for dealing with addresses inside the text section. Addi-
tionally, indirect branches are needed when branching to addresses whose
offset from the current instruction pointer is unknown.

It is possible to avoid the limitation for the text section by breaking up the
program into multiple shared libraries, so we do not expect this model to be
needed in the foreseeable future.

Small position independent code model (PIC)Unlike the previous models, the
virtual addresses of instructions and data are not known until dynamic link
time. So all addresses have to be relative to the instruction pointer.

Additionally the maximum distance between a symbol and the end of an
instruction is limited to231−210−1, allowing the compiler to use instruction
pointer relative branches and addressing modes supported by the hardware
for every symbol with an offset in the range−210 to 210.

Medium position independent code model (PIC)This model is like the previ-
ous model, but makes no assumptions about the distance of symbols to the
data section.

In the medium PIC model, the instruction pointer relative addressing can
not be used directly for accessing static data, since the offset can exceed the
limitations on the size of the displacement field in the instruction. Instead
an unwind sequence consisting ofmovabs , lea andadd needs to be used.

Large position independent code model (PIC)This model is like the previous
model, but makes no assumptions about the distance of symbols.
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The large PIC model implies the same limitation as the medium PIC model
regarding addressing of static data. Additionally, references to the global
offset table and to the procedure linkage table and branch destinations need
to be calculated in a similar way.

3.5.2 Position-Independent Function Prologue

x86-64 does not need any function prologue for calculating the global offset table
address since it does not have an explicit GOT pointer.

3.5.3 Data Objects

This section describes only objects with static storage. Stack-resident objects are
excluded since programs always compute their virtual address relative to the stack
or frame pointers.

Because only themovabs instruction uses 64-bit addresses directly, depend-
ing on the code model either%rip -relative addressing or building addresses in
registers and accessing the memory through the register has to be used.

For absolute addresses%rip -relative encoding can be used in the small model.
In the medium model themovabs instruction has to be used for accessing ad-
dresses.

Position-independend code cannot contain absolute address. To access a global
symbol the address of the symbol has to be loaded from the Global Offset Table.
The address of the entry in the GOT can be obtained with a%rip -relative instruc-
tion in the small model.
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Figure 3.10: Absolute Load and Store (Small Model)

extern int src; .extern src
extern int dst; .extern dst
extern int *ptr; .extern ptr

.text
dst = src; movl src(%rip), %eax

movl %eax, dst(%rip)

ptr = &dst; lea dst(%rip),%rdx
movq %rdx, ptr(%rip)

*ptr = src; movq ptr(%rip),%rax
movl src(%rip),%edx
movl %edx, (%rax)

Figure 3.11: Absolute Load and Store (Medium Model)

extern int src; .extern src
extern int dst; .extern dst
extern int *ptr; .extern ptr

.text
dst = src; movabsl src, %eax

movabsl %eax, dst

ptr = &dst; movabsq $dst,%rdx
movabsq %rdx, ptr

*ptr = src; movabsq ptr,%rdx
movabsl src,%eax
movl %eax, (%rdx)
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Figure 3.12: Position-Independend Load and Store (Small PIC Model)

extern int src; .extern src
extern int dst; .extern dst
extern int *ptr; .extern ptr

.text
dst = src; movq src@GOTPCREL(%rip), %rax

movl (%rax), %edx
movq dst@GOTPCREL(%rip), %rax
movl %edx, (%rax)

ptr = &dst; movq ptr@GOTPCREL(%rip), %rax
movq dst@GOTPCREL(%rip), %rdx
movq %rdx, (%rax)

*ptr = src; movq ptr@GOTPCREL(%rip),%rax
movq (%rax), %rdx
movq src@GOTPCREL(%rip), %rax
movl (%rax), %eax
movl %eax, (%rdx)

3.5.4 Function Calls

Figure 3.13: Position-Independent Direct Function Call

extern void function (); .globl function
function (); call function@PLT
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Figure 3.14: Position-Independent Indirect Function Call

extern void (*ptr) (); .globl ptr, name
extern void name ();
ptr = name; movq ptr@GOTPCREL(%rip), %rax

movq name@GOTPCREL(%rip), %rdx
movq %rdx, (%rax)

(*ptr)(); movq ptr@GOTPCREL(%rip), %rax
call *(%rax)

3.5.5 Branching

Not done yet.

3.5.6 Variable Argument Lists

Some otherwise portable C programs depend on the argument passing scheme, im-
plicitly assuming that 1) all arguments are passed on the stack, and 2) arguments
appear in increasing order on the stack. Programs that make these assumptions
never have been portable, but they have worked on many implementations. How-
ever, they do not work on the x86-64 architecture because some arguments are
passed in registers. Portable C programs must use the header files<stdarg.h>
or <varargs.h> in order to handle variable argument lists.

When a function taking variable-arguments is called,%rax must be set to
eight times the number of floating point parameters passed to the function in SSE
registers.

The Register Save Area

The prologue of a function taking a variable argument list and known to call the
macrova_start is expected to save the argument registers to theregister save
area. Each argument register has a fixed offset in the register save area as defined
in the figure 3.15.
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Only registers that might be used to pass arguments need to be saved. Other
registers are not accessed and can be used for other purposes. If a function is
known to never accept arguments passed in registers17, the register save area may
be omitted entirely.

The prologue should use%rax to avoid unnecessarily saving XMM registers.
This is especially important for integer only programs to prevent the initialization
of the XMM unit.

Figure 3.15: Register Save Area

Register Offset
%rdi 0
%rsi 8
%rdx 16
%rcx 24
%r8 32
%r9 40
%xmm0 48
%xmm1 64
. . .
%xmm15 288

The va_list Type

Theva_list type is an array containing a single element of one structure con-
taining the necessary information to implement theva_arg macro. The C defi-
nition of va_list type is given in figure 3.16.

17This fact may be determined either by exploring types used by theva_arg macro, or by the
fact that the named arguments already are exhausted the argument registers entirely.
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Figure 3.16:va_list Type Declaration

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list[1];

The va_start Macro

Theva_start macro initializes the structure as follows:

reg_save_areaThe element points to the start of the register save area.

overflow_arg_area This pointer is used to fetch arguments passed on the stack.
It is initialized with the address of the first argument passed on the stack, if
any, and then always updated to point to the start of the next argument on
the stack.

gp_offset The element holds the offset in bytes fromreg_save_area to the
place where the next available general purpose argument register is saved.
In case all argument registers have been exhausted, it is set to the value 48
(6 ∗ 8).

fp_offset The element holds the offset in bytes fromreg_save_area to the
place where the next available floating point argument register is saved. In
case all argument registers have been exhausted, it is set to the value 304
(6 ∗ 8 + 16 ∗ 16).

The va_arg Macro

The algorithm for the genericva_arg(l, type) implementation is defined as
follows:

1. Determine whethertype may be passed in the registers. If not go to step
7.
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2. Computenum_gp to hold the number of general purpose registers needed
to passtype andnum_fp to hold the number of floating point registers
needed.

3. Verify whether arguments fit into registers. In the case:

l->gp_offset > 48− num_gp ∗ 8

or
l->fp_offset > 304− num_fp ∗ 16

go to step 7.

4. Fetchtype from l->reg_save_area with an offset ofl->gp_offset
and/orl->fp_offset . This may require copying to a temporary loca-
tion in case the parameter is passed in different register classes or requires
an alignment greater than 8 for general purpose registers and 16 for XMM
registers.

5. Set:
l->gp_offset = l->gp_offset + num_gp ∗ 8

l->fp_offset = l->fp_offset + num_fp ∗ 16.

6. Return the fetchedtype .

7. Align l->overflow_arg_area upwards to a 16 byte boundary if align-
ment needed bytype exceeds 8 byte boundary.

8. Fetchtype from l->overflow_arg_area .

9. Setl->overflow_arg_area to:

l->overflow_arg_area + sizeof (type )

10. Align l->overflow_arg_area upwards to an 8 byte boundary.

11. Return the fetchedtype .
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The va_arg macro is usually implemented as a compiler builtin and ex-
panded in simplified forms for each particular type. Figure 3.17 is a sample im-
plementation of theva_arg macro.

Figure 3.17: Sample Implementation ofva_arg(l, int)

movl l->gp_offset , %eax
cmpl $48,%eax Is register available?
jae stack If not, use stack
leal $8(%rax ), %edx Next available register
addq l->reg_save_area , %rax Address of saved register
movl %edx, l->gp_offset Updategp_offset
jmp fetch

stack: movq l->overflow_arg_area , %rax Address of stack slot
leaq 8(%rax ), %rdx Next available stack slot
movq %rdx ,l->overflow_arg_area Update

fetch: movl (%rax ), %eax Load argument

3.6 DWARF Definition

This section18 defines the Debug With Arbitrary Record Format (DWARF) de-
bugging format for the x86-64 processor family. The x86-64 ABI does not define
a debug format. However, all systems that do implement DWARF shall use the
following definitions.

DWARF is a specification developed for symbolic, source-level debugging.
The debugging information format does not favor the design of any compiler or
debugger. For more information on DWARF, seeDWARF Debugging Informa-
tion Format, revision: Version 2.0.0, July 27, 1993, UNIX International, Program
Languages SIG.

18This section is structured in a way similar to the psABI for PowerPC
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Figure 3.18: DWARF Register Number Mapping

Register Name Number Abbreviation
General Purpose Register RAX 0 %rax
General Purpose Register RBX 1 %rbx
General Purpose Register RCX 2 %rcx
General Purpose Register RDX 3 %rdx
General Purpose Register RSI 4 %rsi
General Purpose Register RDI 5 %rdi
Frame Pointer Register RBP 6 %rbp
Stack Pointer Register RSP 7 %rsp
Extended Integer Registers 8-15 8-15 %r8–%r15
Return Address RA 16
SSE Registers 0–7 17-24 %xmm0–%xmm7
Extended SSE Registers 8–15 25-32 %xmm8–%xmm15
Floating Point Registers 0–7 33-40 %st0 –%st7
MMX Registers 0–7 41-48 %mm0–%mm7

3.6.1 DWARF Release Number

The DWARF definition requires some machine-specific definitions. The register
number mapping needs to be specified for the x86-64 registers. In addition, the
DWARF Version 2 specification requires processor-specific address class codes to
be defined.

3.6.2 DWARF Register Number Mapping

Table 3.1819 outlines the register number mapping for the x86-64 processor fam-
ily.20

19The table defines Return Address to have a register number, even though the address is stored
in 0(%rsp ) and not in a physical register.

20This document does not define mappings for privileged registers.
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Chapter 4

Object Files

4.1 ELF Header

4.1.1 Machine Information

For file identification ine_ident , the x86-64 architecture requires the following
values.

Table 4.1: x86-64 Identification

Position Value
e_ident[EI_CLASS] ELFCLASS64
e_ident[EI_DATA] ELFDATA2LSB

Processor identification resides in the ELF header’se_machine member and
must have the valueEM_X86_64.1

4.2 Sections

No changes required.

1The value of this identifier is 62.
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4.3 Symbol Table

No changes required.

4.4 Relocation

4.4.1 Relocation Types

The x86-64 ABI adds one additional field:

Figure 4.1: Relocatable Fields

7 word8 0

15 word16 0

31 word32 0

63 word64 0
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word8 This specifies a 8-bit field occupying 1 byte.
word16 This specifies a 16-bit field occupying 2 bytes with arbitrary

byte alignment. These values use the same byte order as
other word values in the x86-64 architecture.

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary
byte alignment. These values use the same byte order as
other word values in the x86-64 architecture.

word64 This specifies a 64-bit field occupying 8 bytes with arbitrary
byte alignment. These values use the same byte order as
other word values in the x86-64 architecture.

The following notations are used for specifying relocations in table 4.2:

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object has been loaded into mem-
ory during execution. Generally, a shared object is built with a 0 base virtual
address, but the execution address will be different.

G Represents the offset into the global offset table at which the relocation entry’s
symbol will reside during execution.

GOT Represents the address of the global offset table.

L Represents the place (section offset or address) of the Procedure Linkage Table
entry for a symbol.

P Represents the place (section offset or address) of the storage unit being relo-
cated (computed usingr_offset ).

S Represents the value of the symbol whose index resides in the relocation entry.

The x86-64 ABI architectures uses onlyElf64_Rela relocation entries with
explicit addends. Ther_addend member serves as the relocation addend.
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Table 4.2: Relocation Types

Name Value Field Calculation
R_X86_64_NONE 0 none none
R_X86_64_64 1 word64 S + A
R_X86_64_PC32 2 word32 S + A - P
R_X86_64_GOT32 3 word32 G + A
R_X86_64_PLT32 4 word32 L + A - P
R_X86_64_COPY 5 none none
R_X86_64_GLOB_DAT 6 word64 S
R_X86_64_JUMP_SLOT 7 word64 S
R_X86_64_RELATIVE 8 word64 B + A
R_X86_64_GOTPCREL 9 word32 G + GOT + A - P
R_X86_64_32 10 word32 S + A
R_X86_64_32S 11 word32 S + A
R_X86_64_16 12 word16 S + A
R_X86_64_PC16 13 word16 S + A - P
R_X86_64_8 14 word8 S + A
R_X86_64_PC8 15 word8 S + A - P

The special semantics for most of these relocation types are identical to those
used for the Intel386 architecture.2 3

TheR_X86_64_GOTPCRELrelocation has different semantics from the i386
R_I386_GOTPC relocation. In particular, because the x86-64 architecture has
an addressing mode relative to the instruction pointer, it is possible to load an
address from the GOT using a single instruction. The calculation done by the
R_X86_64_GOTPCRELrelocation gives the difference between the location in

2Even though the x86-64 architecture supports IP-relative addressing modes, a GOT is still
required since the offset from a particular instruction to a particular data item cannot be known by
the static linker.

3Note that the x86-64 architecture assumes that offsets into GOT are 32-bit values, not 64-bit
values. This choice means that a maximum of232/8 = 229 entries can be placed in the GOT.
However, that should be more than enough for most programs. In the event that it is not enough,
the linker could create multiple GOTs. Because 32-bit offsets are used, loads of global data do
not require loading the offset into a displacement register; the base plus immediate displacement
addressing form can be used.
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the GOT where the symbol’s address is given and the location where the relocation
is applied.

The R_X86_64_32 and R_X86_64_32S relocations truncate the com-
puted value to 32-bits. The linker must verify that the generated value for the
R_X86_64_32 (R_X86_64_32S ) relocation zero-extends (sign-extends) to the
original 64-bit value.

A program or object file using R_X86_64_8 , R_X86_64_16 ,
R_X86_64_PC16 or R_X86_64_PC8 relocations is not conformant to
this ABI, these relocations are only added for documentation purposes. The
R_X86_64_16 , andR_X86_64_8 relocations truncate the computed value to
16-bits resp. 8-bits.
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Chapter 5

Program Loading and Dynamic
Linking

5.1 Program Loading

No changes required.

5.2 Dynamic Linking

Dynamic Section

No changes required.

Global Offset Table

The global offset table contains 64-bit addresses.
No other changes required.

Figure 5.1: Global Offset Table

extern Elf64_Addr _GLOBAL_OFFSET_TABLE_ [];
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Function Addresses

No changes required.

Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations
to absolute locations, the procedure linkage table redirects position-independent
function calls to absolute locations. The link editor cannot resolve execution trans-
fers (such as function calls) from one executable or shared object to another. Con-
sequently, the link editor arranges to have the program transfer control to entries
in the procedure linkage table. On the x86-64 architecture, procedure linkage ta-
bles reside in shared text, but they use addresses in the private global offset table.
The dynamic linker determines the destinations’ absolute addresses and modifies
the global offset table’s memory image accordingly. The dynamic linker thus can
redirect the entries without compromising the position-independence and share-
ability of the program’s text. Executable files and shared object files have separate
procedure linkage tables. Unlike Intel386 ABI, this ABI uses the same procedure
linkage table for both programs and shared objects.

Figure 5.2: Procedure Linkage Table

.PLT0: pushq GOT+8(%rip) # GOT[1]
jmp *GOT+16(%rip) # GOT[2]
nop
nop
nop
nop

.PLT1: jmp *name1@GOTPCREL(%rip)
pushq $ index
jmp .PLT0

.PLT2: jmp *name2@GOTPCREL(%rip)
pushq $ index
jmp .PLT0
...

Following the steps below, the dynamic linker and the program “cooperate”
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to resolve symbolic references through the procedure linkage table and the global
offset table.

1. When first creating the memory image of the program, the dynamic linker
sets the second and the third entries in the global offset table to special
values. Steps below explain more about these values.

2. Each shared object file in the process image has its own procedure linkage
table, and control transfers to a procedure linkage table entry only from
within the same object file.

3. For illustration, assume the program callsname1, which transfers control
to the label.PLT1 .

4. The first instruction jumps to the address in the global offset table entry for
name1. Initially the global offset table holds the address of the following
pushl instruction, not the real address ofname1.

5. Now the program pushes a relocation index (index) on the stack. The reloca-
tion index is a 32-bit, non-negative index into the relocation table addressed
by theDT_JMPRELdynamic section entry. The designated relocation en-
try will have typeR_X86_64_JUMP_SLOT, and its offset will specify the
global offset table entry used in the previousjmp instruction. The reloca-
tion entry contains a symbol table index that will reference the appropriate
symbol,name1 in the example.

6. After pushing the relocation index, the program then jumps to.PLT0 , the
first entry in the procedure linkage table. Thepushl instruction places the
value of the second global offset table entry (GOT+8) on the stack, thus giv-
ing the dynamic linker one word of identifying information. The program
then jumps to the address in the third global offset table entry (GOT+16),
which transfers control to the dynamic linker.

7. When the dynamic linker receives control, it unwinds the stack, looks at
the designated relocation entry, finds the symbol’s value, stores the “real”
address forname1 in its global offset table entry, and transfers control to
the desired destination.

8. Subsequent executions of the procedure linkage table entry will transfer
directly toname1, without calling the dynamic linker a second time. That
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is, thejmp instruction at.PLT1 will transfer toname1, instead of “falling
through” to thepushl instruction.

The LD_BIND_NOWenvironment variable can change the dynamic linking
behavior. If its value is non-null, the dynamic linker evaluates procedure linkage
table entries before transferring control to the program. That is, the dynamic linker
processes relocation entries of typeR_X86_64_JUMP_SLOT during process
initialization. Otherwise, the dynamic linker evaluates procedure linkage table
entries lazily, delaying symbol resolution and relocation until the first execution
of a table entry.

5.2.1 Program Interpreter

There is one valid program interpreter for programs conforming to the x86-64
ABI:

/lib/ld64.so.1
However, Linux puts this in

/lib64/ld-linux-x86-64.so.2

5.2.2 Initialization and Termination Functions

The implementation is responsible for executing the initialization functions spec-
ified by DT_INIT , DT_INIT_ARRAY, andDT_PREINIT_ARRAY entries in
the executable file and shared object files for a process, and the termination (or
finalization) functions specified byDT_FINI andDT_FINI_ARRAY, as speci-
fied by theSystem V ABI. The user program plays no further part in executing the
initialization and termination functions specified by these dynamic tags.
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Chapter 6

Libraries

A further review of the Intel386 ABI is needed.

6.1 C Library

6.1.1 Global Data Symbols

The symbols_fp_hw , __flt_rounds and__huge_val are not provided by
the x86-64 ABI.

6.1.2 Floating Point Environment Functions

ISO C 99 defines the floating point environment functions from<fenv.h> .
Since x86-64 has two floating point units with separate control words, the pro-
gramming environment has to keep the control values in sync. On the other hand
this means that routines accessing the control words only need to access one unit,
and the SSE unit is the unit that should be accessed in these casese. The function
fegetround therefore only needs to report the rounding value of the SSE unit
and can ignore the x87 unit.
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6.2 Unwind Library Interface

This section defines the Unwind Library interface1, expected to be provided by
any x86-64 psABI-compliant system. This is the interface on which the C++ ABI
exception-handling facilities are built. We assume as a basis the Call Frame Infor-
mation tables described in the DWARF Debugging Information Format document.

This section is meant to specify a language-independent interface that can be
used to provide higher level exception-handling facilities such as those defined by
C++.

The unwind library interface consists of at least the following routines:
_Unwind_RaiseException ,
_Unwind_Resume ,
_Unwind_DeleteException ,
_Unwind_GetGR ,
_Unwind_SetGR ,
_Unwind_GetIP ,
_Unwind_SetIP ,
_Unwind_GetRegionStart ,
_Unwind_GetLanguageSpecificData ,
_Unwind_ForcedUnwind

In addition, two datatypes are defined (_Unwind_Context and_Unwind_Exception
) to interface a calling runtime (such as the C++ runtime) and the above routine.
All routines and interfaces behave as if definedextern "C" . In particular, the
names are not mangled. All names defined as part of this interface have a"_Un-
wind_" prefix.

Lastly, a language and vendor specific personality routine will be stored by
the compiler in the unwind descriptor for the stack frames requiring exception
processing. The personality routine is called by the unwinder to handle language-
specific tasks such as identifying the frame handling a particular exception.

6.2.1 Exception Handler Framework

Reasons for Unwinding

There are two major reasons for unwinding the stack:

• exceptions, as defined by languages that support them (such as C++)

1The overall structure and the external interface is derived from the IA-64 UNIX System V
ABI
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• “forced” unwinding (such as caused bylongjmp or thread termination).

The interface described here tries to keep both similar. There is a major dif-
ference, however.

• In the case where an exception is thrown, the stack is unwound while the
exception propagates, but it is expected that the personality routine for each
stack frame knows whether it wants to catch the exception or pass it through.
This choice is thus delegated to the personality routine, which is expected to
act properly for any type of exception, whether “native” or “foreign”. Some
guidelines for “acting properly” are given below.

• During “forced unwinding”, on the other hand, an external agent is driving
the unwinding. For instance, this can be thelongjmp routine. This exter-
nal agent, not each personality routine, knows when to stop unwinding. The
fact that a personality routine is not given a choice about whether unwinding
will proceed is indicated by the_UA_FORCE_UNWINDflag.

To accommodate these differences, two different routines are proposed._Un-
wind_RaiseException performs exception-style unwinding, under control
of the personality routines._Unwind_ForcedUnwind , on the other hand,
performs unwinding, but gives an external agent the opportunity to intercept calls
to the personality routine. This is done using a proxy personality routine, that
intercepts calls to the personality routine, letting the external agent override the
defaults of the stack frame’s personality routine.

As a consequence, it is not necessary for each personality routine to know
about any of the possible external agents that may cause an unwind. For instance,
the C++ personality routine need deal only with C++ exceptions (and possibly
disguising foreign exceptions), but it does not need to know anything specific
about unwinding done on behalf oflongjmp or pthreads cancellation.

The Unwind Process

The standard ABI exception handling/unwind process begins with the raising of an
exception, in one of the forms mentioned above. This call specifies an exception
object and an exception class.

The runtime framework then starts a two-phase process:

• In thesearchphase, the framework repeatedly calls the personality routine,
with the_UA_SEARCH_PHASEflag as described below, first for the cur-
rent %rip and register state, and then unwinding a frame to a new%rip
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at each step, until the personality routine reports either success (a handler
found in the queried frame) or failure (no handler) in all frames. It does not
actually restore the unwound state, and the personality routine must access
the state through the API.

• If the search phase reports a failure, e.g. because no handler was found, it
will call terminate() rather than commence phase 2.

If the search phase reports success, the framework restarts in thecleanup
phase. Again, it repeatedly calls the personality routine, with the_UA_CLEANUP_PHASE
flag as described below, first for the current%rip and register state, and

then unwinding a frame to a new%rip at each step, until it gets to the
frame with an identified handler. At that point, it restores the register state,
and control is transferred to the user landing pad code.

Each of these two phases uses both the unwind library and the personality
routines, since the validity of a given handler and the mechanism for transferring
control to it are language-dependent, but the method of locating and restoring
previous stack frames is language-independent.

A two-phase exception-handling model is not strictly necessary to implement
C++ language semantics, but it does provide some benefits. For example, the first
phase allows an exception-handling mechanism todismissan exception before
stack unwinding begins, which allowsresumptiveexception handling (correcting
the exceptional condition and resuming execution at the point where it was raised).
While C++ does not support resumptive exception handling, other languages do,
and the two-phase model allows C++ to coexist with those languages on the stack.

Note that even with a two-phase model, we may execute each of the two phases
more than once for a single exception, as if the exception was being thrown more
than once. For instance, since it is not possible to determine if a given catch clause
will rethrow or not without executing it, the exception propagation effectively
stops at each catch clause, and if it needs to restart, restarts at phase 1. This
process is not needed for destructors (cleanup code), so the phase 1 can safely
process all destructor-only frames at once and stop at the next enclosing catch
clause.

For example, if the first two frames unwound contain only cleanup code, and
the third frame contains a C++ catch clause, the personality routine in phase 1,
does not indicate that it found a handler for the first two frames. It must do so for
the third frame, because it is unknown how the exception will propagate out of
this third frame, e.g. by rethrowing the exception or throwing a new one in C++.
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The API specified by the x86-64 psABI for implementing this framework is
described in the following sections.

6.2.2 Data Structures

Reason Codes

The unwind interface uses reason codes in several contexts to identify the reasons
for failures or other actions, defined as follows:

typedef enum {
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8

} _Unwind_Reason_Code;
The interpretations of these codes are described below.

Exception Header

The unwind interface uses a pointer to an exception header object as its repre-
sentation of an exception being thrown. In general, the full representation of an
exception object is language- and implementation-specific, but it will be prefixed
by a header understood by the unwind interface, defined as follows:

typedef void (*_Unwind_Exception_Cleanup_Fn)
(_Unwind_Reason_Code reason,

struct _Unwind_Exception *exc);
struct _Unwind_Exception {

uint64 exception_class;
_Unwind_Exception_Cleanup_Fn exception_cleanup;
uint64 private_1;
uint64 private_2;

};
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An _Unwind_Exception object must be eightbyte aligned. The first two
fields are set by user code prior to raising the exception, and the latter two should
never be touched except by the runtime.

The exception_class field is a language- and implementation-specific
identifier of the kind of exception. It allows a personality routine to distinguish
between native and foreign exceptions, for example. By convention, the high 4
bytes indicate the vendor (for instance AMD\0), and the low 4 bytes indicate the
language. For the C++ ABI described in this document, the low four bytes are
C++\0.

Theexception_cleanup routine is called whenever an exception object
needs to be destroyed by a different runtime than the runtime which created the
exception object, for instance if a Java exception is caught by a C++ catch handler.
In such a case, a reason code (see above) indicates why the exception object needs
to be deleted:

_URC_FOREIGN_EXCEPTION_CAUGHT = 1This indicates that a different
runtime caught this exception. Nested foreign exceptions, or rethrowing a
foreign exception, result in undefined behavior.

_URC_FATAL_PHASE1_ERROR = 3The personality routine encountered an
error during phase 1, other than the specific error codes defined.

_URC_FATAL_PHASE2_ERROR = 2The personality routine encountered an
error during phase 2, for instance a stack corruption.

Normally, all errors should be reported during phase 1 by returning from_Un-
wind_RaiseException . However, landing pad code could cause stack cor-
ruption between phase 1 and phase 2. For a C++ exception, the runtime should
call terminate() in that case.

The private unwinder state (private_1 andprivate_2 ) in an exception
object should be neither read by nor written to by personality routines or other
parts of the language-specific runtime. It is used by the specific implementation
of the unwinder on the host to store internal information, for instance to remember
the final handler frame between unwinding phases.

In addition to the above information, a typical runtime such as the C++ run-
time will add language-specific information used to process the exception. This
is expected to be a contiguous area of memory after the_Unwind_Exception
object, but this is not required as long as the matching personality routines know
how to deal with it, and theexception_cleanup routine de-allocates it prop-
erly.
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Unwind Context

The _Unwind_Context type is an opaque type used to refer to a system-
specific data structure used by the system unwinder. This context is created and
destroyed by the system, and passed to the personality routine during unwinding.

struct _Unwind_Context

6.2.3 Throwing an Exception

_Unwind_RaiseException

_Unwind_Reason_Code _Unwind_RaiseException
( struct _Unwind_Exception *exception_object );

Raise an exception, passing along the given exception object, which should
have itsexception_class andexception_cleanup fields set. The ex-
ception object has been allocated by the language-specific runtime, and has a
language-specific format, except that it must contain an_Unwind_Exception
struct (see Exception Header above)._Unwind_RaiseException does not
return, unless an error condition is found (such as no handler for the exception,
bad stack format, etc.). In such a case, an_Unwind_Reason_Code value is
returned.

Possibilities are:

_URC_END_OF_STACKThe unwinder encountered the end of the stack during
phase 1, without finding a handler. The unwind runtime will not have modi-
fied the stack. The C++ runtime will normally calluncaught_exception()
in this case.

_URC_FATAL_PHASE1_ERRORThe unwinder encountered an unexpected er-
ror during phase 1, e.g. stack corruption. The unwind runtime will not have
modified the stack. The C++ runtime will normally callterminate() in
this case.

If the unwinder encounters an unexpected error during phase 2, it should re-
turn _URC_FATAL_PHASE2_ERRORto its caller. In C++, this will usually be
__cxa_throw , which will call terminate() .

The unwind runtime will likely have modified the stack (e.g. popped frames
from it) or register context, or landing pad code may have corrupted them. As a
result, the the caller of_Unwind_RaiseException can make no assumptions
about the state of its stack or registers.
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_Unwind_ForcedUnwind

typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)
(int version,

_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context,
void *stop_parameter );

_Unwind_Reason_Code_Unwind_ForcedUnwind
( struct _Unwind_Exception *exception_object,

_Unwind_Stop_Fn stop,
void *stop_parameter );

Raise an exception for forced unwinding, passing along the given exception
object, which should have itsexception_class andexception_cleanup
fields set. The exception object has been allocated by the language-specific run-
time, and has a language-specific format, except that it must contain an_Un-
wind_Exception struct (see Exception Header above).

Forced unwinding is a single-phase process (phase 2 of the normal exception-
handling process). Thestop andstop_parameter parameters control the
termination of the unwind process, instead of the usual personality routine query.
The stop function parameter is called for each unwind frame, with the pa-
rameters described for the usual personality routine below, plus an additional
stop_parameter .

When thestop function identifies the destination frame, it transfers control
(according to its own, unspecified, conventions) to the user code as appropriate
without returning, normally after calling_Unwind_DeleteException . If
not, it should return an_Unwind_Reason_Code value as follows:

_URC_NO_REASONThis is not the destination frame. The unwind runtime will
call the frame’s personality routine with the_UA_FORCE_UNWINDand
_UA_CLEANUP_PHASEflags set in actions, and then unwind to the next
frame and call the stop function again.

_URC_END_OF_STACKIn order to allow_Unwind_ForcedUnwind to per-
form special processing when it reaches the end of the stack, the unwind
runtime will call it after the last frame is rejected, with aNULLstack pointer
in the context, and the stop function must catch this condition (i.e. by notic-
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ing the NULL stack pointer). It may return this reason code if it cannot
handle end-of-stack.

_URC_FATAL_PHASE2_ERRORThe stop function may return this code for
other fatal conditions, e.g. stack corruption.

If the stop function returns any reason code other than_URC_NO_REASON,
the stack state is indeterminate from the point of view of the caller of_Un-
wind_ForcedUnwind . Rather than attempt to return, therefore, the unwind
library should return_URC_FATAL_PHASE2_ERRORto its caller.

Example: longjmp_unwind()
The expected implementation oflongjmp_unwind() is as follows. The

setjmp() routine will have saved the state to be restored in its customary place,
including the frame pointer. Thelongjmp_unwind() routine will call _Un-
wind_ForcedUnwind with a stop function that compares the frame pointer
in the context record with the saved frame pointer. If equal, it will restore the
setjmp() state as customary, and otherwise it will return_URC_NO_REASON
or _URC_END_OF_STACK.

If a future requirement for two-phase forced unwinding were identified, an al-
ternate routine could be defined to request it, and an actions parameter flag defined
to support it.

_Unwind_Resume

void _Unwind_Resume
(struct _Unwind_Exception *exception_object);

Resume propagation of an existing exception e.g. after executing cleanup code
in a partially unwound stack. A call to this routine is inserted at the end of a
landing pad that performed cleanup, but did not resume normal execution. It
causes unwinding to proceed further.

_Unwind_Resume should not be used to implement rethrowing. To the un-
winding runtime, the catch code that rethrows was a handler, and the previous
unwinding session was terminated before entering it. Rethrowing is implemented
by calling_Unwind_RaiseException again with the same exception object.

This is the only routine in the unwind library which is expected to be called
directly by generated code: it will be called at the end of a landing pad in a
"landing-pad" model.
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6.2.4 Exception Object Management

_Unwind_DeleteException

void _Unwind_DeleteException
(struct _Unwind_Exception *exception_object);

Deletes the given exception object. If a given runtime resumes normal execu-
tion after catching a foreign exception, it will not know how to delete that excep-
tion. Such an exception will be deleted by calling_Unwind_DeleteException .
This is a convenience function that calls the function pointed to by theexcep-
tion_cleanup field of the exception header.

6.2.5 Context Management

These functions are used for communicating information about the unwind con-
text (i.e. the unwind descriptors and the user register state) between the unwind
library and the personality routine and landing pad. They include routines to read
or set the context record images of registers in the stack frame corresponding to a
given unwind context, and to identify the location of the current unwind descrip-
tors and unwind frame.

_Unwind_GetGR

uint64 _Unwind_GetGR
(struct _Unwind_Context *context, int index);

This function returns the 64-bit value of the given general register. The register
is identified by its index as given in 3.18.

During the two phases of unwinding, no registers have a guaranteed value.

_Unwind_SetGR

void _Unwind_SetGR
(struct _Unwind_Context *context,

int index,
uint64 new_value);

This function sets the 64-bit value of the given register, identified by its index
as for_Unwind_GetGR .

The behavior is guaranteed only if the function is called during phase 2 of
unwinding, and applied to an unwind context representing a handler frame, for
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which the personality routine will return_URC_INSTALL_CONTEXT. In that
case, only registers%rdi , %rsi , %rdx , %rcx should be used. These scratch
registers are reserved for passing arguments between the personality routine and
the landing pads.

_Unwind_GetIP

uint64 _Unwind_GetIP
(struct _Unwind_Context *context);

This function returns the 64-bit value of the instruction pointer (IP).
During unwinding, the value is guaranteed to be the address of the instruction

immediately following the call site in the function identified by the unwind con-
text. This value may be outside of the procedure fragment for a function call that
is known to not return (such as_Unwind_Resume ).

_Unwind_SetIP

void _Unwind_SetIP
(struct _Unwind_Context *context,

uint64 new_value);
This function sets the value of the instruction pointer (IP) for the routine iden-

tified by the unwind context.
The behavior is guaranteed only when this function is called for an unwind

context representing a handler frame, for which the personality routine will return
_URC_INSTALL_CONTEXT. In this case, control will be transferred to the given
address, which should be the address of a landing pad.

_Unwind_GetLanguageSpecificData

uint64 _Unwind_GetLanguageSpecificData
(struct _Unwind_Context *context);
This routine returns the address of the language-specific data area for the cur-

rent stack frame.
This routine is not strictly required: it could be accessed through_Unwind_GetIP

using the documented format of the DWARF Call Frame Information Tables, but
since this work has been done for finding the personality routine in the first place,
it makes sense to cache the result in the context. We could also pass it as an
argument to the personality routine.
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_Unwind_GetRegionStart

uint64 _Unwind_GetRegionStart
(struct _Unwind_Context *context);

This routine returns the address of the beginning of the procedure or code
fragment described by the current unwind descriptor block.

This information is required to access any data stored relative to the beginning
of the procedure fragment. For instance, a call site table might be stored relative
to the beginning of the procedure fragment that contains the calls. During un-
winding, the function returns the start of the procedure fragment containing the
call site in the current stack frame.

6.2.6 Personality Routine

_Unwind_Reason_Code (*__personality_routine)
(int version,

_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context);

The personality routine is the function in the C++ (or other language) run-
time library which serves as an interface between the system unwind library and
language-specific exception handling semantics. It is specific to the code fragment
described by an unwind info block, and it is always referenced via the pointer in
the unwind info block, and hence it has no psABI-specified name.

Parameters

The personality routine parameters are as follows:

version Version number of the unwinding runtime, used to detect a mis-match
between the unwinder conventions and the personality routine, or to provide
backward compatibility. For the conventions described in this document,
version will be 1.

actions Indicates what processing the personality routine is expected to per-
form, as a bit mask. The possible actions are described below.

exceptionClass An 8-byte identifier specifying the type of the thrown ex-
ception. By convention, the high 4 bytes indicate the vendor (for instance
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AMD\0), and the low 4 bytes indicate the language. For the C++ ABI
described in this document, the low four bytes are C++\0. This is not a
null-terminated string. Some implementations may use no null bytes.

exceptionObject The pointer to a memory location recording the necessary
information for processing the exception according to the semantics of a
given language (see the Exception Header section above).

context Unwinder state information for use by the personality routine. This is
an opaque handle used by the personality routine in particular to access the
frame’s registers (see the Unwind Context section above).

return value The return value from the personality routine indicates how further
unwind should happen, as well as possible error conditions. See the follow-
ing section.

Personality Routine Actions

The actions argument to the personality routine is a bitwise OR of one or more of
the following constants:
typedef int _Unwind_Action;
const _Unwind_Action _UA_SEARCH_PHASE = 1;
const _Unwind_Action _UA_CLEANUP_PHASE = 2;
const _Unwind_Action _UA_HANDLER_FRAME = 4;
const _Unwind_Action _UA_FORCE_UNWIND = 8;

_UA_SEARCH_PHASEIndicates that the personality routine should check if the
current frame contains a handler, and if so return_URC_HANDLER_FOUND,
or otherwise return_URC_CONTINUE_UNWIND. _UA_SEARCH_PHASE
cannot be set at the same time as_UA_CLEANUP_PHASE.

_UA_CLEANUP_PHASEIndicates that the personality routine should perform
cleanup for the current frame. The personality routine can perform this
cleanup itself, by calling nested procedures, and return_URC_CONTINUE_UNWIND.
Alternatively, it can setup the registers (including the IP) for transferring
control to a "landing pad", and return_URC_INSTALL_CONTEXT.

_UA_HANDLER_FRAMEDuring phase 2, indicates to the personality routine
that the current frame is the one which was flagged as the handler frame
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during phase 1. The personality routine is not allowed to change its mind
between phase 1 and phase 2, i.e. it must handle the exception in this frame
in phase 2.

_UA_FORCE_UNWINDDuring phase 2, indicates that no language is allowed
to "catch" the exception. This flag is set while unwinding the stack for
longjmp or during thread cancellation. User-defined code in a catch clause
may still be executed, but the catch clause must resume unwinding with a
call to_Unwind_Resume when finished.

Transferring Control to a Landing Pad

If the personality routine determines that it should transfer control to a landing
pad (in phase 2), it may set up registers (including IP) with suitable values for
entering the landing pad (e.g. with landing pad parameters), by calling the context
management routines above. It then returns_URC_INSTALL_CONTEXT.

Prior to executing code in the landing pad, the unwind library restores registers
not altered by the personality routine, using the context record, to their state in that
frame before the call that threw the exception, as follows. All registers specified
as callee-saved by the base ABI are restored, as well as scratch registers%rdi ,
%rsi , %rdx , %rcx (see below). Except for those exceptions, scratch (or caller-
saved) registers are not preserved, and their contents are undefined on transfer.

The landing pad can either resume normal execution (as, for instance, at the
end of a C++ catch), or resume unwinding by calling_Unwind_Resume and
passing it theexceptionObject argument received by the personality routine.
_Unwind_Resume will never return.

_Unwind_Resume should be called if and only if the personality routine
did not return_Unwind_HANDLER_FOUNDduring phase 1. As a result, the
unwinder can allocate resources (for instance memory) and keep track of them in
the exception object reserved words. It should then free these resources before
transferring control to the last (handler) landing pad. It does not need to free the
resources before entering non-handler landing-pads, since_Unwind_Resume
will ultimately be called.

The landing pad may receive arguments from the runtime, typically passed
in registers set using_Unwind_SetGR by the personality routine. For a land-
ing pad that can call to_Unwind_Resume , one argument must be theexcep-
tionObject pointer, which must be preserved to be passed to_Unwind_Resume .

The landing pad may receive other arguments, for instance a switch value
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indicating the type of the exception. Four scratch registers are reserved for this
use (%rdi , %rsi , %rdx , %rcx ).

Rules for Correct Inter-Language Operation

The following rules must be observed for correct operation between languages
and/or runtimes from different vendors:

An exception which has an unknown class must not be altered by the personal-
ity routine. The semantics of foreign exception processing depend on the language
of the stack frame being unwound. This covers in particular how exceptions from
a foreign language are mapped to the native language in that frame.

If a runtime resumes normal execution, and the caught exception was created
by another runtime, it should call_Unwind_DeleteException . This is true
even if it understands the exception object format (such as would be the case
between different C++ runtimes).

A runtime is not allowed to catch an exception if the_UA_FORCE_UNWIND
flag was passed to the personality routine.

Example: Foreign Exceptions in C++. In C++, foreign exceptions can be
caught by acatch(...) statement. They can also be caught as if they were
of a__foreign_exception class, defined in<exception> . The__for-
eign_exception may have subclasses, such as__java_exception and
__ada_exception , if the runtime is capable of identifying some of the for-
eign languages.

The behavior is undefined in the following cases:

• A __foreign_exception catch argument is accessed in any way (in-
cluding taking its address).

• A __foreign_exception is active at the same time as another excep-
tion (either there is a nested exception while catching the foreign exception,
or the foreign exception was itself nested).

• uncaught_exception() , set_terminate() , set_unexpected() ,
terminate() , or unexpected() is called at a time a foreign excep-
tion exists (for example, callingset_terminate() during unwinding
of a foreign exception).
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All these cases might involve accessing C++ specific content of the thrown
exception, for instance to chain active exceptions.

Otherwise, a catch block catching a foreign exception is allowed:

• to resume normal execution, thereby stopping propagation of the foreign
exception and deleting it, or

• to rethrow the foreign exception. In that case, the original exception object
must be unaltered by the C++ runtime.

A catch-all block may be executed during forced unwinding. For instance, a
longjmp may execute code in acatch(...) during stack unwinding. However,
if this happens, unwinding will proceed at the end of the catch-all block, whether
or not there is an explicit rethrow.

Setting the low 4 bytes of exception class to C++\0 is reserved for use by C++
runtimes compatible with the common C++ ABI.

62

x86-64 ABI Draft 0.21 – September 13, 2002 – 4:57



Chapter 7

Development Environment

No changes required.
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Chapter 8

Execution Environment

Not done yet.
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Chapter 9

Conventions

1

9.1 GOT pointer and IP relative addressing

A basic difference between the i386 ABI and the x86-64 ABI is the way the GOT
table is found. The i386 ABI, like (most) other processor specific ABIs, uses a
dedicated register (%ebx) to address the base of the GOT table. The function
prologue of every function needs to set up this register to the correct value. The
x86-64 processor family introduces a new IP-relative addressing mode which is
used in this ABI instead of using a dedicated register.

On x86-64 the GOT table contains 64 bit entries.

9.2 Execution of 32bit programs

The x86-64 is able to execute 64 bit x86-64 and also 32 bit ia32 programs. Li-
braries conforming to the Intel386 ABI will live in the normal places like/lib ,
/usr/lib and /usr/bin . Libraries following the x86-64, will uselib64
subdirectories for the libraries, e.g/lib64 and/usr/lib64 . Programs con-
forming to Intel386 ABI and to the x86-64 ABI will share directories like/usr/bin .
In particular, there will be nobin64 directory.

1This chapter is used to document some features special to the x86-64 ABI. The different
sections might be moved to another place or removed completely.
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9.3 C++

For the C++ ABI we will use the ia64 C++ ABI and instantiate it appropriately.
The current draft of that ABI is available at:
http://www.codesourcery.com/cxx-abi/
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Appendix A

x86-64 Linux Kernel Conventions

This chapter is informative only.

A.1 Calling Conventions

The Linux x86-64 kernel uses internally the same calling conventions as user-level
applications (see section 3.2.3 for details). User-level applications that like to call
system calls should use the functions from the C library. The interface between
the C library and the Linux kernel is the same as for the user-level applications
with the following differences:

1. User-level applications use as integer registers for passing the sequence
%rdi , %rsi , %rdx , %rcx , %r8 and%r9. The kernel interface uses%rdi ,
%rsi , %rdx , %r10, %r8 and%r9.

2. A system-call is done via thesyscall instruction. The kernel destroys
registers%rcx and%r11.

3. The number of the syscall has to be passed in register%rax .

4. System-calls are limited to six arguments, no argument is passed directly on
the stack.

5. Returning from thesyscall , register%rax contains the result of the
system-call. A value in the range between -4095 and -1 indicates an error,
it is -errno .

6. Only values of class INTEGER or class MEMORY are passed to the kernel.
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