SYSTEMV APPLICATION BINARY INTERFACE
PowerPC Processor Supplement

by
Steve Zucker, SunSoft
KariKarhi, IBM

September 1995

\ A

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

N BRI s ”/2:@ SundSo

A Sun Microsystems, Inc. Business

Please
Recycle

0 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

00 1993 IBM Corporation. All rights reserved.

This specification includes material copyrighted by UNIX System Laboratories, Inc., which is reproduced with permission.

TRADEMARKS

Sun,Sun Microsystems, the Sun logo, SunSoft, and the SunSoft logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. UNIXis a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd. The PowerPC and PowerPC Architecture names are
trademarks of International Business Machines Corporation.

THISDOCUMENT IS PROVIDED “AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

CONTENTS

1. INTRODUCTION

The PowerPC Processor and the System V ABI
How to Use the PowerPC Processor ABI Supplement
Evolution of the ABI Specification

2. SOFTWARE INSTALLATION

Software Distribution Formats
Physical Distribution Media

3. LOW-LEVEL SYSTEM INFORMATION

Machine Interface
Processor Architecture
Data Representation

Function Calling Sequence
Registers
The Stack Frame
Parameter Passing
Variable Argument Lists
Return Values
Operating System Interface
Virtual Address Space
Page Size
Virtual Address Assignments
Managing the Process Stack
Coding Guidelines
Processor Execution Modes
Exception Interface
Process Initialization
Registers
Process Stack

1-1
1-1
1-1
1-1

2-1

2-1
2-1

3-1
3-1

3-1

3-14
3-14
3-17
3-18
3-21
3-22
3-23
3-23
3-23
3-23
3-25
3-25
3-25
3-26
3-28
3-28
3-29

Coding Examples 3-33

Code Model Overview 3-33
Function Prologue and Epilogue 3-34
Register Saving and Restoring Functions 3-35
Profiling 3-37
Data Objects 3-38
Function Calls 3-40
Branching 3-42
Dynamic Stack Space Allocation 3-43
DWARF Definition 3-46
DWARF Release Number 3-46
DWARF Register Number Mapping 3-46
Address Class Codes 3-48
4. OBJECT FILES 4-1
ELF Header 4-1
Machine Information 4-1
Sections 4-2
Special Sections 4-2
Tags 4-4
Tag Overview 4-4
Tag Formats 4-5
Stack Traceback Using Tags 4-8
Locating Tags 4-9
Symbol Table 4-12
Symbol Values 4-12
Small Data Area 4-12
Relocation 4-14
Relocation Types 4-14
5. PROGRAM LOADING AND DYNAMIC LINKING 5-1
Program Loading 5-1
Program Interpreter 5-4
Dynamic Linking 5-4
Dynamic Section 5-4
Global Offset Table 5-4
Function Addresses 5-5
Procedure Linkage Table 5-6

iv PowerPC Processor ABI Supplement—September 1995

6. LIBRARIES 6-1

System Library 6-1
Support Routines 6-1
Optional Support Routines 6-4

C Library 6-6
Required Routines 6-6
Optional Routines 6-8
Global Data Symbols 6-9
Application Constraints 6-9

System Data Interfaces 6-10

Data Definitions 6-10

Contents

Vi

PowerPC Processor ABI Supplement—September 1995

FIGURES

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 3-8

Figure 3-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34
Figure 3-35

Bit and Byte Numbering in Halfwords
Bit and Byte Numbering in Words

Bit and Byte Numbering in Doublewords

Bit and Byte Numbering in Quadwords
Structure Smaller Than a Word

No Padding—Little-Endian

No Padding—Big-Endian

Internal Padding—Little-Endian
Internal Padding—Big-Endian

Internal and Tail Padding—Little-Endian

Internal and Tail Padding—Big-Endian
uni on Allocation—Little-Endian

uni on Allocation—Big-Endian

Bit Numbering

Right-to-Left (Little-Endian) Allocation
Left-to-Right (Big-Endian) Allocation
Boundary Alignment—Little-Endian
Boundary Alignment—Big-Endian
Storage Unit Sharing—Little-Endian
Storage Unit Sharing—Big-Endian
uni on Allocation—Little-Endian

uni on Allocation—Big-Endian
Unnamed Bit-Fields—Little-Endian
Unnamed Bit-Fields—Big-Endian
Standard Stack Frame

Parameter List Area

Parameter Passing Example

Virtual Address Configuration
Declaration for mai n

Auxiliary Vector Structure

Initial Process Stack
_restfpr_n_x Implementation
Prologue and Epilogue Sample Code
Code for Profiling

Absolute Load and Store

3-10
3-10
3-10
3-11
3-11
3-11
3-12
3-12
3-12
3-17
3-19
3-20
3-24
3-28
3-29
3-32
3-36
3-37
3-37
3-38

vii

Figure 3-36
Figure 3-37

Figure 3-38
Figure 3-39
Figure 3-40

Figure 3-41

Figure 3-42
Figure 3-43
Figure 3-44
Figure 3-45
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 6-16
Figure 6-17
Figure 6-18
Figure 6-19
Figure 6-20
Figure 6-21
Figure 6-22
Figure 6-23

Small Model Position-Independent
Load and Store

Large Model Position-Independent
Load and Store

Direct Function Call
Absolute Indirect Function Call

Small Model Position-Independent Indirect
Function Call

Large Model Position-Independent Indirect
Function Call

Branch Instruction, All Models
Absolute swi t ch Code
Position-Independent swi t ch Code, All Models
Dynamic Stack Space Allocation
nmodul e_t ags Structure

crti .o Pseudo-code

crtn. o Pseudo-code

Relocation Fields

Executable File Example

Process Image Segments
Procedure Linkage Table Example
I i bsys Support Routines

| i bsys Optional Support Routines
I i bc Required Routines

| i bc Optional Routines

| i bsys Global External Data Symbols
<ctype. h>

<di rent. h>

<errno. h>

<fcntl. h>

<fl oat. h>

<f mt nsg. h>

<ftw h>

<grp. h>

<sys/ipc. h>

<l angi nf 0. h>

<limts. h>

<l ocal e. h>

<mat h. h>

<sys/ nman. h>

<sys/ mount. h>

<sys/ nsg. h>

<net confi g. h>

<netdir. h>

PowerPC Processor ABI Supplement—September 1995

3-39

3-40
3-40
3-41

3-41

3-42
3-42
3-43
3-43
3-44
4-9

4-10
4-11
4-14

6-10
6-10
6-12
6-13
6-13
6-14
6-14
6-15
6-15
6-17
6-17
6-17
6-18
6-18
6-18
6-19
6-20
6-21

Figure 6-24
Figure 6-25
Figure 6-26
Figure 6-27
Figure 6-28
Figure 6-29
Figure 6-30
Figure 6-31
Figure 6-32
Figure 6-33
Figure 6-34
Figure 6-35
Figure 6-36
Figure 6-37
Figure 6-38
Figure 6-39
Figure 6-40
Figure 6-41
Figure 6-42
Figure 6-43
Figure 6-44
Figure 6-45
Figure 6-46
Figure 6-47
Figure 6-48
Figure 6-49
Figure 6-50
Figure 6-51
Figure 6-52
Figure 6-53
Figure 6-54

<nl _types. h>
<sys/ param h>

<pol | . h>
<sys/ procset. h>
<pwd. h>
<sys/resource. h>
<rpc. h>

<sear ch. h>
<sys/sem h>
<setj np. h>
<sys/shm h>

<si gnal . h>
<sys/ si gi nfo. h>
<sys/stat. h>
<sys/statvfs. h>
<st ddef. h>
<stdi 0. h>
<stdlib. h>
<stropts. h>
<term os. h>
<sys/tinme. h>
<sys/tinmes. h>
<sys/tiuser. h>
<sys/types. h>
<ucont ext. h>
<sys/ ui 0. h>
<ulimt.h>

<uni std. h>
<utinme. h>
<sys/ ut snane. h>
<wai t. h>

Figures

6-21
6-22
6-22
6-23
6-24
6-24
6-30
6-30
6-31
6-31
6-32
6-34
6-36
6-37
6-38
6-38
6-39
6-39
6-42
6-45
6-46
6-47
6-50
6-51
6-53
6-53
6-53
6-55
6-56
6-56
6-56

PowerPC Processor ABI Supplement—September 1995

TABLES

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 5-1
Table 5-2

Scalar Types
Bit-Field Ranges
Processor Registers
Parameter Passing Example Register Allocation
Exceptions and Signals
Auxiliary Vector Types, a_t ype
PowerPC Register Number Mapping
PowerPC Privileged Register Number Mapping
Address Class Code
PowerPC ldentification, e_i dent []
Special Sections
Tag Formats
Frame Tag Format
Frame Valid Tag Format
Registers Valid Tag Format
Special Tag Format
Relocation Types
Program Header Segments
Shared Object Segment Example

3-3
3-8
3-14
3-21
3-26
3-29
3-46
3-47
3-48
4-1
4-2
4-5
4-5
4-6
4-7
4-8
4-17
5-2

Xi

xii

PowerPC Processor ABI Supplement—September 1995

1 INTRODUCTION

The PowerPC Processor and the System V ABI

The System V Application Binary Interface, or System V ABI, defines a system interface for
compiled application programs. Its purpose is to establish a standard binary interface for
application programs on systems that implement the interfaces defined in the System V Interface
Definition, Issue 3. Thisincludes systems that have implemented UNIX Y System V Release 4.

The System V Application Binary Interface PowerPC™ Processor Supplement (PowerPC
Processor ABI Supplement), described in this document, is a supplement to the generic System V
ABI, and it contains information specific to System V implementations built on the PowerPC
Architecture™ operating in 32-bit mode. The generic System V ABI and this supplement together
constitute a complete System V Application Binary Interface specification for systems that
implement the 32-bit architecture of the PowerPC processor family.

In the PowerPC Architecture, a processor can run in either of two modes: Big-Endian mode or
Little-Endian mode. (See Byte Ordering at the beginning of Chapter 3.) Accordingly, this ABI
specification really defines two binary interfaces, a Big-Endian ABI and a Little-Endian ABI.
Programs and (in general) data produced by programs that run on an implementation of the

Big-Endian interface are not portabl e to an implementation of the Little-Endian interface, and vice
versa.

How to Use the PowerPC Processor ABI Supplement

While the generic System V ABI is the prime reference document, this document contains

PowerPC processor-specific implementation details, some of which supersede information in the
generic one.

Aswith the System V ABI, this document refers to other publicly available documents, especially
the book titled IBM Power PC User Instruction Set Architecture, all of which should be
considered part of this PowerPC Processor ABI Supplement and just as binding as the
regquirements and data it explicitly includes.

Evolution of the ABI Specification

The System V ABI will evolve over timeto address new technology and market requirements, and
it will be reissued every three years or so. Each new edition of the specification islikely to contain
extensions and additions that will increase the potential capabilities of applicationsthat are written
to conform to the ABI.

Aswith the System V Interface Definition, the System V ABI will implement Level 1 and Level 2
support for its constituent parts. Level 1 support indicates that a portion of the specification will
continue to be supported indefinitely. Level 2 support means that a portion of the specification
may be withdrawn or altered after the next edition of the System V ABI ismade available—that is,

Introduction 1-1

1-2

aportion of the specification moved to Level 2 support in an edition of the System VV ABI
specification will remain in effect at least until the following edition of the specification is
published.

These Level 1 and Level 2 classifications and qualifications apply to both the generic specification
and this supplement. All components of the System V ABI and of this supplement have Level 1
support unless they are explicitly labeled as Level 2.

The following documents may be of interest to the reader of this specification:
» SystemV Interface Definition, Issue 3.

» The PowerPC Architecture: A Specification for A New Family of RISC Processors.
International Business Machines (IBM). San Francisco: Morgan Kaufmann, 1994,

» DWARF Debugging Information Format, Revision: Version 2.0.0, July 27, 1993. UNIX
International, Program Languages SIG.

PowerPC Processor ABI Supplement—September 1995

2 SOFTWARE INSTALLATION

Software Distribution Formats

Physical Distribution Media

Approved mediafor physical distribution of ABI-conforming software are listed below. Inclusion
of a particular medium on thislist does not require an ABI-conforming system to accept that
medium. For example, a conforming system may install all software through its network
connection and accept none of the medialisted below.

» 3.5-inch diskette; 135 TPI (80 tracks/side) double-sided, 18 sectors/track,
512 bytes/sector, total capacity of 1.44 Mbytes per disk

» 3.5-inch diskette; 135 TPI (80 tracks/side) double-sided, 36 sectorg/track,
512 bytes/sector, total capacity of 2.88 Mbytes per disk

e 8-mm tape format
* CD-ROM with the SO 9661 file system format with Rockridge Extensions

Software Installation 2-1

2-2

PowerPC Processor ABI Supplement—September 1995

3 LOW-LEVEL SYSTEM INFORMATION

Machine Interface

Processor Architecture

The Power PC Architecture: A Specification for A New Family of RISC Processors defines the
PowerPC Architecture. Programs intended to execute directly on the processor use the PowerPC
instruction set, and the instruction encodings and semantics of the architecture.

An application program can assume that al instructions defined by the architecture that are neither
privileged nor optional exist and work as documented. However, the "Fixed-Point Load and Store
Multiple" instructions and the "Fixed-Point Move Assist” instructions are not availablein
Little-Endian implementations. In Little-Endian mode, the latter groups of instructions aways
cause alignment exceptions in the PowerPC Architecture; in Big-Endian mode they are usualy
dlower than a sequence of other instructions that have the same effect.

To be ABI-conforming, the processor must implement the instructions of the architecture, perform
the specified operations, and produce the expected results. The ABI neither places performance
constraints on systems nor specifies what instructions must be implemented in hardware. A
software emulation of the architecture could conform to the ABI.

Some processors might support the optional instructions in the PowerPC Architecture, or
additional non-PowerPC instructions or capabilities. Programs that use those instructions or
capabilities do not conform to the PowerPC ABI; executing them on machines without the
additional capabilities gives undefined behavior.

Data Representation

Byte Ordering

The architecture defines an 8-bit byte, a 16-bit halfword, a 32-bit word, a 64-bit doubleword, and a
128-bit quadword. Byte ordering defines how the bytes that make up halfwords, words,
doublewords, and quadwords are ordered in memory. Most significant byte (MSB) byte ordering,
or "Big-Endian" asit is sometimes called, means that the most significant byteis located in the
lowest addressed byte position in a storage unit (byte 0). Least significant byte (L SB) byte
ordering, or "Little-Endian” asit is sometimes called, means that the least significant byteis
located in the lowest addressed byte position in a storage unit (byte 0).

The PowerPC processor family supports either Big-Endian or Little-Endian byte ordering. This
specification defines two ABIs, one for each type of byte ordering. Animplementation must state
which type of byte ordering it supports.

Low-Level System Information 31

3-2

Figures 3-1 through 3-4 illustrate the conventions for bit and byte numbering within various width
storage units. These conventions apply to both integer data and floating-point data, where the most
significant byte of afloating-point value holds the sign and at least the start of the exponent. The
figures show Little-Endian byte numbers in the upper right corners, Big-Endian byte numbersin
the upper left corners, and bit numbersin the lower corners.

Note — In the PowerPC Architecture documentation, the bits in a word are numbered from left
to right (MSB to LSB), and figures usually show only the Big-Endian byte order.

nsb I sb

Figure 3-1 Bit and Byte Numbering in Halfwords

nsb | sb

Figure 3-2 Bit and Byte Numbering in Words

0 711 6 |2 5|3 4
nsb
0 78 15 | 16 23 | 24 31
4 3|5 216 117 0
| sb
32 39 | 40 47 | 48 55 | 56 63

Figure 3-3 Bit and Byte Numbering in Doublewords

PowerPC Processor ABI Supplement—September 1995

Figure 3-4

0 15/1 14 |2 13| 3 12
nmsb
0 78 15 |16 23|24 31
4 11|5 10 |6 9|7 8
32 3940 47 |48 55|56 63
8 719 6 (10 511 4
64 7172 79 |80 87|88 95
12 3|13 2114 1|15 0
I sb
96 103|104 111|112 119|120 127

Bit and Byte Numbering in Quadwords

Fundamental Types

Table 3-1 shows how ANSI C scalar types correspond to those of the PowerPC processor. For all

types, aNULL pointer has the value zero.

Table 3-1 Scalar Types

Alignment
Type ANSI C si zeof (bytes) PowerPC
Character char 1 1 unsigned byte
unsi gned char
si gned char signed byte
short 2 2 signed halfword
si gned short
unsi gned short |2 2 unsigned halfword
Integral i nt
signed int
long int 4 4 signed word
si gned | ong
enum
unsi gned i nt 4 4 unsigned word
unsi gned | ong
Pointer any-type * 4 4 unsigned word

any-type (*) ()

Low-Level System Information

3-4

Table 3-1 Scalar Types (Continued)

Alignment
Type ANSI C si zeof (bytes) PowerPC
f | oat 4 4 single precision (IEEE)
Floating Point | doubl e 8 8 double precision (IEEE)
| ong doubl e 16 16 extended precision (IEEE)

Note — "extended precision (IEEE)" in Table 3-1 means |IEEE 754 double extended precision
with a sign bit, a 15-bit exponent with a bias of -16383, 112 fraction bits (with a leading
"implicit" bit).

Note—I ong | ong and unsi gned | ong | ong data types are implemented by some
compilers, although they are not (currently) specified by ANSI C. Programs that use them are
not ABI conformant (that is, need not be supported on all platforms that implement this ABI),
but if a platform does support the | ong | ong data types, they shall be implemented as
8-byte quantities aligned on 8-byte boundaries, and treated as specified in the other notes.

Note — Compilers and systems may implement thel ong doubl e datatype in some other way
for performance reasons, using a compiler option. Examples of such formats could be two
successive doubles or even a single double. Such usage does not conform to this ABI,
however, and runs the danger of passing a wrongly formatted floating-point number to another,
conforming function as an argument. Programs using other formats should transform long
double floating-point numbers to a conforming format before putting them in permanent
storage.

Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component, that is, the component with the largest alignment. The size of any object, including
aggregates and unions, is always a multiple of the alignment of the object. An array uses the same
aignment as its elements. Structure and union objects may require padding to meet size and
alignment constraints:

* Anentirestructure or union object is aligned on the same boundary asits most strictly aligned
member.

» Each member is assigned to the lowest available offset with the appropriate alignment. This
may require internal padding, depending on the previous member.

» If necessary, astructure’s size isincreased to make it amultiple of the structure’s alignment.
This may requiretail padding, depending on the last member.

In the following examples (Figures 3-5 through 3-13), members' byte offsets for Little-Endian
implementations appear in the upper right corners; offsets for Big-Endian implementations in the
upper left corners.

PowerPC Processor ABI Supplement—September 1995

struct { Byte aligned, si zeof is1

char C; 0 0

Figure 3-5 Structure Smaller Than a Word

struct { Word aligned, sizeof is8
char C; 2 1
char d; s d
short s;
| ong n;

}s n

Figure 3-6 No Padding—L.ittle-Endian

Word aligned, si zeof is 8

struct {
char (o 0 1 2
char d; c d
short s; 4
| ong n; n
b

Figure 3-7 No Padding—Big-Endian

struct { Halfword aligned, si zeof is 4

char C; 2
short s; S pad

Figure 3-8 Internal Padding—L ittle-Endian

Low-Level System Information

3-6

struct {

char
short

Figure 3-9 Internal Padding—Big-Endian

struct {
char
doubl e
short
}

c,
S,

d;
s;

Halfword aligned, si zeof is 4

0

1

c pad

2

Doubleword aligned, si zeof is 24

1 0
pad
4
pad
8
d
12
d
18 16
pad
20
pad

Figure 3-10 Internal and Tail Padding—Little-Endian

PowerPC Processor ABI Supplement—September 1995

struct {
char
doubl e
short
}s

C;
d;
S;

Doubleword aligned, si zeof is 24

Figure 3-11 Internal and Tail Padding—Big-Endian

uni on {
char
short
i nt
}s

0 c 1 pad
4 pad
8 d
12 d
16 s 18 pad
20 pad
Word aligned, si zeof is4
pad 1
pad 2 s

Figure 3-12 uni on Allocation—Little-Endian

Low-Level System Information

Word aligned, si zeof is 4

1

pad

pad

union { 0
char (o c
short S;
i nt i 0
b
0

Figure 3-13 uni on Allocation—Big-Endian

Bit-Fields

Cstruct anduni on definitions may have "bit-fields," defining integral objects with a specified

number of bits (see Table 3-2).

Table 3-2 Bit-Field Ranges

Bit-Field Type Width w Range

si gned char 2Wloowlog
char 1to8 Oto2"-1

unsi gned char Oto2"-1

si gned short 2Wltoowlog
short 1to 16 Oto2%-1

unsi gned short Oto2%-1
signed i nt 2Wloowlog
i nt 1to 32 Oto2"-1
enum Oto2"-1

unsi gned int Oto2"-1
signed | ong 2 ltoowl g
| ong 1to 32 Oto2"-1
unsi gned | ong Oto2%-1

PowerPC Processor ABI Supplement—September 1995

"Plain" bit-fields (that is, those neither si gned nor unsi gned) always have non-negative
values. Although they may havetypeshort ,i nt, orl ong (which can have negative values),
bit-fields of these types have the same range as hit-fields of the same size with the corresponding
unsigned type. Bit-fields obey the same size and alignment rules as other structure and union
members, with the following additions:

Bit-fields are allocated from right to left (least to most significant) on Little-Endian
implementations and from | eft to right (most to least significant) on Big-Endian
implementations.

A bit-field must entirely reside in a storage unit appropriate for its declared type. Thus, a
bit-field never crossesits unit boundary.

Bit-fields must share a storage unit with other structure and union members (either bit-field or
non-bit-field) if and only if there is sufficient space within the storage unit.

Unnamed bit-fields' types do not affect the alignment of a structure or union, athough an
individual bit-field's member offsets obey the alignment constraints. An unnamed, zero-width
bit-field shall prevent any further member, bit-field or other, from residing in the storage unit
corresponding to the type of the zero-width bit-field.

The following examples (Figures 3-14 through 3-24) show st r uct and uni on members byte
offsetsin the upper right corners for Little-Endian implementations, and in the upper left corners
for Big-Endian implementations. Bit numbers appear in the lower corners.

01 02 03 04

31

0x01020304

15|16 2324

Figure 3-14 Bit Numbering

Word aligned, si zeof is 4

struct { : - 5
in j:5;
i nt k: 6; pad m
i nt m7 13| 14 20| 21 26| 27 31
s

Figure 3-15 Right-to-Left (Little-Endian) Allocation

Low-Level System Information

3-9

3-10

Word aligned, si zeof is 4

struct { 0
i nt j:5; m ad
i nt k: 6; P
int m7 0 415 10|11 17 |18 31
b
Figure 3-16 Left-to-Right (Big-Endian) Allocation
Word aligned, si zeof is 12
3 0
struct { c pad j S
short s:9; 0 78 13]14 22|23 31
i nt j19;
char C;
short t:9; pad u pad t
short u:9; 0 7 15/16 22|23 31
char d; 9 8
b pad d
0 23124 31
Figure 3-17 Boundary Alignment—Little-Endian
Word aligned, si zeof is 12
struct { 0 3
short s:9; s j pad c
i nt i 9; 0 819 17|18 23|24 31
char C; 4 6
short t:9; t pad u pad
short u:9; 0 8/9 15/16 24|25 31
char d; 8 9
b d pad
0 718 31
Figure 3-18 Boundary Alignment—Big-Endian

PowerPC Processor ABI Supplement—September 1995

Halfword aligned, si zeof is 2

struct { ' 1 0
char C;
short s: 8; S ¢
}: 0 7|8 15
Figure 3-19 Storage Unit Sharing—L.ittle-Endian

struct

Figure 3-20

uni on

Figure 3-21

{ Halfword aligned, si zeof is 2
char C; 0 1
short S: 8; c s

0 718 15
Storage Unit Sharing—Big-Endian

{ Halfword aligned, si zeof is 2
char c; 1 0
short s: 8; pad c
0 7 |8 15
1 0
pad s
0 7 |8 15
uni on Allocation—L.ittle-Endian

Low-Level System Information

311

3-12

uni on {
char
short
}s

Halfword aligned, si zeof is 2

0 1
c pad
0 7 15
0 1
s pad
0 7 |8 15

Figure 3-22 uni on Allocation—Big-Endian

struct {
char
i nt
char
short
char
}s

C;
. 0;
d;
1 9;
e;

Byte aligned, si zeof is 9

Figure 3-23 Unnamed Bit-Fields—Little-Endian

struct {
char
i nt
char
short
char
}s

C,
1 0;
d,
1 9;
e,

1 0
10 c
0 23|24 31
6 5 4
pad ;9 pad d
0 6|7 15/16 23|24 31
8
e
0 7
Byte aligned, si zeof is 9
0
c 10
0 78 31
4 6
d pad 9 pad
0 718 15/0 8|9 15
8
e
0 7

Figure 3-24 Unnamed Bit-Fields—Big-Endian

PowerPC Processor ABI Supplement—September 1995

Note — In Figures 3-23 and 3-24, the presence of the unnamed i nt and shor t fields do not
affect the alignment of the structure. They align the named members relative to the beginning
of the structure, but the named members may not be aligned in memory on suitable boundaries.
For example, the d membersin an array of these structures will not all be on ani nt (4-byte)
boundary.

As the examples show, i nt bit-fields (including signed and unsigned) pack more densely than
smaller base types. You can use char and short bit-fields to force particular alignments, but
i nt isgenerally more efficient.

Low-Level System Information 3-13

Function Calling Sequence

This section discusses the standard function calling sequence, including stack frame layout,
register usage, and parameter passing. The system libraries described in Chapter 6 require this
calling sequence.

Note — The standard calling sequence requirements apply only to global functions. Local
functions that are not reachable from other compilation units may use different conventions as
long as they conform to the tag requirements for stack traceback; see Stack Traceback Using
Tags in Chapter 4. Nonetheless, it is recommended that all functions use the standard calling
sequences when possible.

Note — C programs follow the conventions given here. For specific information on the
implementation of C, see Coding Examples in this chapter.

Registers

3-14

The PowerPC Architecture provides 32 general purpose registers, each 32 bitswide. In addition,
the architecture provides 32 floating-point registers, each 64 bitswide, and several specia purpose
registers. All of the integer, special purpose, and floating-point registers are global to all functions
in arunning program. Brief register descriptions appear in Table 3-3, followed by more detailed
information about the registers.

Table 3-3 Processor Registers

Register Name Usage

ro Volatile register which may be modified during function linkage
ri Stack frame pointer, always valid

r2 System-reserved register

r3-r4 Volatile registers used for parameter passing and return values
rs5-r10 Volatile registers used for parameter passing

ril-r12 Volatile registers which may be modified during function linkage
ri3 Small data area pointer register

ri4-r30 Registers used for local variables

r3l Used for local variables or "environment pointers’

fo Volatile register

fl Volatile register used for parameter passing and return values
f2-f8 Volatile registers used for parameter passing

PowerPC Processor ABI Supplement—September 1995

Table 3-3 Processor Registers (Continued)

Register Name Usage

f9-f13 Volatile registers

f14-f31 Registers used for local variables

CRO- CRY Condition Register Fields, each 4 bits wide
LR Link Register

CTR Count Register

XER Fixed-Point Exception Register

FPSCR Floating-Point Status and Control Register

Registers r 1,r 14 throughr 31, and f 14 through f 31 are nonvolatile; that is, they "belong” to
the calling function. A called function shall save these registers values before it changes them,
restoring their values before it returns. Registersr O, r 3 throughr 12, f O through f 13, and the
special purpose registers CTR and XER are volatile; that is, they are not preserved across function
calls. Furthermore, the valuesinregistersr O,r 11, and r 12 may be altered by cross-module
calls, so afunction cannot depend on the values in these registers having the same values that were
placed in them by the caller.

Register r 2 isreserved for system use and should not be changed by application code.

Register r 13 isthe small data area pointer. Process startup code for executables that reference
datain the small data area with 16-bit offset addressing relative to r 13 must load the base of the
small data area (the value of the loader-defined symbol _SDA BASE) into r 13. Shared objects
shall not alter thevalueinr 13. See Small Data Areain Chapter 4 for more details.

Languages that require "environment pointers’ shall user 31 for that purpose.

Fields CR2, CR3, and CR4 of the condition register are nonvolatile (value on entry must be
preserved on exit); therest are volatile (value in the field need not be preserved). TheVE, CE, UE,
ZE, XE, NI , and RN (rounding mode) bits of the FPSCR may be changed only by acalled function
(for example, f pset r ound()) that has the documented effect of changing them. The rest of the
FPSCRisvolatile.

Low-Level System Information 3-15

3-16

The following registers have assigned rolesin the standard calling sequence:

rl

r3 through r10 and
f1 through f8

CRbit 6 (CR1, "floating-
point invalid exception")

LR (Link Register)

The stack pointer (stored inr 1) shall maintain 16-byte
alignment. It shall always point to the lowest allocated, valid
stack frame, and grow toward low addresses. The contents of the
word at that address always point to the previously allocated
stack frame. If required, it can be decremented by the called
function; see Dynamic Stack Space Allocation later in this
chapter.

These sets of volatile registers may be modified across function
invocations and shall therefore be presumed by the calling
function to be destroyed. They are used for passing parameters
to the called function; see Parameter Passing in this chapter.
In addition, registersr 3, r4, and f 1 are used to return values
from the called function, as described in Return Values.

This bit shall be set by the caller of a "variable argument list"
function, as described in Variable Argument Lists later in this
chapter.

This register shall contain the address to which a called function
normally returns. LR is volatile across function calls.

Signals can interrupt processes (seesi gnal (BA_OS) in the System V Interface Definition).
Functions called during signal handling have no unusual restrictions on their use of registers.
Moreover, if asignal handling function returns, the process resumes its original execution path
with all registersrestored to their original values. Thus, programs and compilers may freely use all
registers above except those reserved for system use without the danger of signal handlers
inadvertently changing their values.

PowerPC Processor ABI Supplement—September 1995

The Stack Frame

In addition to the registers, each function may have a stack frame on the runtime stack. This stack
grows downward from high addresses. Figure 3-25 shows the stack frame organization. SP in the
figure denotes the stack pointer (general purpose register r 1) of the called function after it has
executed code establishing its stack frame.

SP —» |« Back chain

Hi gh Address

—» Back chain

Fl oat i ng- poi nt
regi ster save area

General register
save area

CR save area

Local variabl e space

Paraneter |list area

LR save word

Low Addr ess

Figure 3-25 Standard Stack Frame

The following requirements apply to the stack frame:

The stack pointer shall maintain 16-byte alignment.

The stack pointer shall point to the first word of the lowest allocated stack frame, the "back
chain" word. The stack shall grow downward, that is, toward lower addresses. Thefirst word
of the stack frame shall always point to the previously allocated stack frame (toward higher
addresses), except for the first stack frame, which shall have a back chain of O (NULL).

The stack pointer shall be decremented by the called function in its prologue, if required, and
restored prior to return.

The stack pointer shall be decremented and the back chain updated atomically using one of the
"Store Word with Update" instructions, so that the stack pointer always points to the beginning
of alinked list of stack frames.

The parameter list area shall be allocated by the caller and shall be large enough to contain the
arguments that the caller storesin it. Its contents are not preserved across calls.

The sizes of the floating-point and general register save areas may vary within afunction and
are as determined by the "tags" described in Special Sectionsin Chapter 4.

Before afunction changes the value in any nonvolatile floating-point register, f r n, it shall
savethevaueinf r ninthe doubleword in the floating-point register save area 8*(32-n) bytes
before the back chain word of the previous frame.

Low-Level System Information 317

» Beforeafunction changes the value in any nonvolatile genera register, r n, it shall save the
valueinr nintheword in the general register save area 4* (32-n) bytes before the low-
addressed end of the floating-point register save area.

» Before afunction changes the value in any nonvolatile field in the condition register, it shall
save the valuesin al the nonvolatile fields of the condition register at the time of entry to the
function in the CR save area.

» Other areas depend on the compiler and the code being compiled. The standard calling
seguence does not define a maximum stack frame size. The minimum stack frame consists of
the first two words, described below, with padding to the required 16-byte alignment. The
calling sequence also does not restrict how alanguage system uses the "local variable space”
of the standard stack frame or how large it should be.

The stack frame header consists of the back chain word and the LR save word. The back chain
word always contains a pointer to the previously allocated stack frame. Before afunction calls
another function, it shall save the contents of the link register at the time the function was entered
inthe LR save word of its caller’s stack frame and shall establish its own stack frame.

Except for the stack frame header and any padding necessary to make the entire frame a multiple
of 16 bytesin length, a function need not allocate space for the areas that it does not use. If a
function does not call any other functions and does not require any of the other parts of the stack
frame, it need not establish a stack frame. Any padding of the frame as awhole shall be within the
local variable area; the parameter list area shall immediately follow the stack frame header, and the
register save areas shall contain no padding.

Parameter Passing

3-18

For a RISC machine such as PowerPC, it is generally more efficient to pass arguments to called
functionsin registers (both general and floating-point registers) than to construct an argument list
in storage or to push them onto a stack. Since all computations must be performed in registers
anyway, memory traffic can be eliminated if the caller can compute arguments into registers and
pass them in the same registers to the called function, where the called function can then use them
for further computation in the same registers. The number of registers implemented in a processor
architecture naturally limits the number of arguments that can be passed in this manner.

For PowerPC, up to eight words are passed in general purpose registers, loaded sequentialy into
general purposeregistersr 3 throughr 10. Inaddition, up to eight floating-point arguments can be
passed in floating-point registersf 1 through f 8. If fewer (or no) arguments are passed, the
unneeded registers are not loaded and will contain undefined values on entry to the called function.

Only when the "worst-case" arguments passed from a function will not fit in the eight general
purpose registers and the eight floating-point registers provided must afunction allocate space for
argumentsin its stack frame; in that case, it needs to allocate only enough space to hold the
arguments that do not fit into registers.

PowerPC Processor ABI Supplement—September 1995

Hi gh Address

Par amreter word 3

Par aneter word 2

Paranmeter word 1

LR save word

Back chain Low Address

Figure 3-26 Parameter List Area

The following algorithm specifies where argument data is passed for the C language. For this
purpose, consider the arguments as ordered from left (first argument) to right, although the order of
evaluation of the argumentsis unspecified. In this algorithm, f r contains the number of the next
available floating-point register, gr contains the number of the next available general purpose
register, and st ar g isthe address of the next available stack argument word.

INITIALIZE:
Setfr=1, gr=3, and st ar g to the address of parameter word 1.
SCAN:

If there are no more arguments, terminate. Otherwise, select one of the following
depending on the type of the next argument:

DOUBLE_OR_FLOAT:

If f r >8 (that is, there are no more availabl e floating-point registers), go to
OTHER. Otherwise, load the argument value into floating-point register f r ,
setfr to fr+1, and goto SCAN.

S| MPLE_ARG
A S| MPLE_ARGis one of the following:

* One of the simple integer types no more than 32 bitswide (char,
short,int,l ong,enum, or

e A pointer to an object of any type, or

e Astruct,union,orl ong doubl e, any of which shall betreated as
a pointer to the object, or to a copy of the object where necessary to
enforce call-by-value semantics. Only if the caller can ascertain that the
object is"constant" can it pass a pointer to the object itself.

Low-Level System Information 3-19

If gr >10, go to OTHER. Otherwise, load the argument value into general
register gr, set gr togr +1, and go to SCAN. Vaues shorter than 32 bits are
sign-extended or zero-extended, depending on whether they are signed or
unsigned.

LONG LONG

Note that implementations are not required to support al ong | ong data
type, but if they do, the following treatment is required.

If gr >9, goto OTHER. If gr iseven, set gr togr +1. Load the lower-
addressed word of thel ong | ong into gr and the higher-addressed word
intogr +1, set gr togr +2, and go to SCAN.

OTHER:

Arguments not otherwise handled above are passed in the parameter words of
the caller’s stack frame. SI MPLE_ARGs, as defined above, are considered to
have 4-byte si ze and alignment, with smple integer types shorter than 32
bits sign- or zero-extended (conceptualy) to 32 bits. f 1 oat, | ong | ong
(where implemented), and doubl e arguments are considered to have 8-byte
si ze and adignment, withf | oat arguments converted to doubl e represen-
tation. Round st ar g up to amultiple of the alignment requirement of the
argument and copy the argument byte-for-byte, beginning with its lowest
addressed byte, intostarg, ..., starg+si ze-1.Setstargto

st ar g+si ze, then go to SCAN.

The contents of registers and words skipped by the above algorithm for alignment (padding) are
undefined.

As an example, assume the declarations and the function call shown in Figure 3-27. The
corresponding register allocation and storage would be as shown in Table 3-4.

typedef struct {
int a, b;
doubl e dd; /* doubl eword aligned */
} sparm
sparm s, t;
i nt c, d, e, f, g, h;
| ong doubl e |d;
double ff, gg, hh, ii, jj, kk, I'l, mm nn;

x = func(c, ff, d, gg, e, hh, f, ii, g, jj, h, Id, kk, I'l, s, mm t, nn);

Figure 3-27 Parameter Passing Example

3-20 PowerPC Processor ABI Supplement—September 1995

Table 3-4 Parameter Passing Example Register Allocation

General Purpose Registers Floating-Point Registers Stack Frame Offset
r3: c f1: ff 08: ptr to t
ra. d f2: ag Oc: (paddi ng)
r5: e f3: hh 10: nn(| o)
re: f f4: i 14: nn(hi)
rv7. g f5]

r8: h f 6: kk

ro: ptr to |d f7: Il

ri0: ptr to s f 8: nm

Note —In Table 3-4, (I o) and (hi) denote the low- and high-addressed word of the doubl e
value as stored in memory, regardless of the Endian mode of the implementation. Theptr to
arguments are pointers to copies if hecessary to preserve call-by-value semantics.

Variable Argument Lists

Some otherwise portable C programs depend on the argument passing scheme, implicitly
assuming that 1) all arguments are passed on the stack, and 2) arguments appear in increasing
order on the stack. Programs that make these assumptions never have been portable, but they have
worked on many implementations. However, they do not work on the PowerPC Architecture
because some arguments are passed in registers. Portable C programs use the header files

<st darg. h>or <var ar gs. h>to deal with variable argument lists on PowerPC and other
machines as well.

A caller of afunction that takes a variable argument list shall set condition register bit 6 to 1 if it
passes one or more arguments in the floating-point registers. It is strongly recommended that the
caller set the bit to O otherwise, usingthecr eqv 6, 6, 6 (setto1) or cr xor 6, 6, 6 (setto0)
instruction.

The motivation for using the condition register bit istwofold. First, afunction that takes avariable
argument list may test condition register bit 6 to determine whether or not to store the floating-
point argument registers in memory, thereby making execution of such functions more efficient
when there are no floating-point arguments. Second, programs that do not otherwise use floating
point need not acquire a floating-point state, with the attendant saving and restoring of the state on
context switches, merely because they call functions with variable argument lists. The cost for
these savings is one additional, non-memory-reference instruction in the callers of functions that
accept variable argument lists. ANSI C requires that such functions be declared with a prototype

Low-Level System Information 321

containing atrailing ellipsismark (. . .), but compiler vendors are expected to provide options for
non-ANSI programsto allow them to declare variable argument functions in the command line or
to treat all non-prototyped functions as (potentially) having variable argument lists.

Return Values

3-22

Functions shall returnf | oat or doubl e valuesinf 1, withf | oat valuesrounded to single
precision. Functions shall return values of typei nt ,1 ong, enum short,andchar, ora
pointer to any type as unsigned or signed integers as appropriate, zero- or sign-extended to 32 bits
if necessary, inr 3. A structure or union whose size is less than or equal to 8 bytes shall be
returnedinr 3 and r 4, asif it werefirst stored in an 8-byte aligned memory area and then the low-
addressed word were loaded into r 3 and the high-addressed word intor 4. Bits beyond the last
member of the structure or union are not defined.

Valuesof typel ong | ong andunsi gned | ong | ong, where supported, shall be returned with
the lower addressed word inr 3 and the higher inr 4.

Values of typel ong doubl e and structures or unions that do not meet the requirements for
being returned in registers are returned in a storage buffer allocated by the caller. The address of
this buffer is passed as a hidden argument in r 3 asif it were the first argument, causing gr inthe
argument passing algorithm above to be initialized to 4 instead of 3.

PowerPC Processor ABI Supplement—September 1995

Operating System Interface

Virtual Address Space

Processes execute in a 32-bit virtual address space. Memory management translates virtual
addresses to physical addresses, hiding physical addressing and |etting a process run anywhere in
the system’s real memory. Processestypically begin with three logical segments, commonly
called "text," "data," and "stack." An object file may contain more segments (for example, for
debugger use), and a process can aso create additional segments for itself with system services.

Note — The term "virtual address" as used in this document refers to a 32-bit address generated
by a program, as contrasted with the physical address to which it is mapped. The PowerPC
Architecture documentation refers to this type of address as an "effective address.”

Page Size

Memory is organized into pages, which are the system’s smallest units of memory allocation.
Page size can vary from one system to another. Processes may call sysconf (BA _OS) to
determine the system’s current page size. Currently, the only valid hardware page size for the
PowerPC Architecture is 4096 bytes (4 Kbytes), but this ABI allows the underlying operating
system to cluster pagesinto logical power-of-two page sizes up to 65536 bytes (64 Kbytes).

Virtual Address Assignments

Conceptually, processes have the full 32-bit address space available to them. In practice, however,
several factors limit the size of a process:

» The system reserves a configuration-dependent amount of virtual space.
» A tunable configuration parameter limits process size.

» A process whose size exceeds the system’s available combined physical memory and
secondary storage cannot run. Although some physical memory must be present to run any
process, the system can execute processes that are bigger than physical memory, paging them
to and from secondary storage. Nonethel ess, both physical memory and secondary storage are
shared resources. System load, which can vary from one program execution to the next, affects
the available amounts.

Figure 3-28 shows the virtual address configuration on the PowerPC Architecture. The segments
with different properties are typically grouped in different areas of the address space. A reserved
arearesides at the top of the virtual space and is used by the system. The |oadable segments may
begin at zero (0); the exact addresses depend on the executabl e file format (see Chapters 4 and 5).
The process' stack and dynamic segments reside below the system-reserved area. Processes can
control the amount of virtual memory allotted for stack space, as described bel ow.

Low-Level System Information 3-23

3-24

Oxffffffff End of nmenory

Reserved system area
0xe0000000

Stack and dynam c
segnent s

0x80000000

Al'l ocat ed by program

Executable file

Pr ogr am base

Dynam ¢ segnents

0x00010000

Unmapped
0 Begi nni ng of nenory

Figure 3-28 Virtual Address Configuration

Note — Although application programs may begin at virtual address 0, they conventionally
begin above 0x10000 (64 Kbytes), leaving the initial 64 Kbytes with an invalid address
mapping. Processes that reference this invalid memory (for example, by dereferencing a null
pointer) generate an access exception trap, as described in the section Exception Interfacein
this chapter.

Note — A program base of 0x02000000 (32 Mbytes) is recommended, for reasons given in
Chapter 5.

As Figure 3-28 shows, the system reserves the high end of virtual space, with aprocess stack and
dynamic segments below that. Although the exact boundary between the reserved area and a
process depends on the system’s configuration, the reserved area shall not consume more than 512
Mbytes from the virtual address space. Thus, the user virtual address range has a minimum upper
bound of Oxdf f f f f f f . Individual systemsmay reserveless space, increasing the processvirtual
memory range. Moreinformation follows in the next section, Managing the Process Stack.

Although applications may control their memory assignments, the typical arrangement followsthe
diagram above. When applications let the system choose addresses for dynamic segments
(including shared object segments), it will prefer addresses below the beginning of the executable
and above 64 Kbytes, or addresses above 2 Gbytes. Thisleavesthe "middle" of the address
spectrum, those addresses above the executable and below 2 Gbytes, available for dynamic
memory allocation with facilities such asmal | oc(BA_OS).

PowerPC Processor ABI Supplement—September 1995

Managing the Process Stack

The section Process | nitialization in this chapter describes theinitial stack contents. Stack
addresses can change from one system to the next—even from one process execution to the next
on asingle system. A program, therefore, should not depend on finding its stack at a particular
virtual address.

A tunable configuration parameter controls the system maximum stack size. A process can also
usesetrlimt(BA_OS) tosetitsown maximum stack size, up to the system limit. The stack
segment is both readabl e and writable.

Coding Guidelines

Operating system facilities, such asmrap(KE_OS), allow aprocess to establish address mappings
intwo ways. First, the program can let the system choose an address. Second, the program can
reguest the system to use an address the program supplies. The second alternative can cause
application portability problems because the requested address might not always be available.
Differencesin virtual address space can be particularly troublesome between different
architectures, but the same problems can arise within a single architecture.

Processes’ address spaces typically have three segments that can change size from one execution
to the next: the stack [through set r | i ni t (BA_OS) |; the data segment [through

mal | oc(BA_0S)]; and the dynamic segment area [through mmap(KE_CS)]. Changesin one
areamay affect the virtual addresses available for another. Consequently, an addressthat is
available in one process execution might not be available in the next. Thus, a program that used
mrap(KE_OS) to request a mapping at a specific address could appear to work in some
environments and fail in others. For thisreason, programs that want to establish amapping in their
address space should let the system choose the address.

Despite these warnings about requesting specific addresses, the facility can be used properly. For
example, amultiprocess application might map several filesinto the address space of each process
and build relative pointers among the files' data. This could be done by having each process ask
for a certain amount of memory at an address chosen by the system. After each process receives
its own private address from the system, it would map the desired files into memory, at specific
addresses within the original area. This collection of mappings could be at different addressesin
each process but their relative positions would be fixed. Without the ability to ask for specific
addresses, the application could not build shared data structures because the relative positions for
filesin each process would be unpredictable.

Processor Execution Modes

Two execution modes exist in the PowerPC Architecture: user and supervisor. Processes run in
user mode (the less privileged). The operating system kernel runsin supervisor mode. A program
executes an s ¢ instruction to change execution modes.

Note that the ABI does not define the implementation of individual system calls. Instead, programs
shall use the system libraries described in Chapter 6. Programs with embedded system call or trap
instructions do not conform to the ABI.

Low-Level System Information 3-25

Exception Interface

3-26

The PowerPC exception mechanism allows the processor to change to supervisor state as a result
of external signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions occur, 1) information (such as the address of the instruction that should be executed
after control is returned to the original program and the contents of the machine state register) is
saved, 2) program control passes from user to supervisor level, and 3) software continues
execution at an address (exception vector) predetermined for each exception.

Exceptions may be synchronous or asynchronous. Synchronous exceptions, being caused by
instruction execution, can be explicitly generated by a process. The operating system handles an
exception either by completing the faulting operation in a manner transparent to the application or
by delivering asignal to the application. The correspondence between exceptions and signalsis
shown in Table 3-5.

Table 3-5 Exceptions and Signals

Exception Name Signal Examples

Illegal instruction SIA LL Illegal or privileged instruction, invalid
instruction form
Optional, unimplemented instruction

Storage access SI GSEGV Unmapped instruction or data location access
Storage protection violation

Alignment SI GBUS Invalid data item alignment
Execution of a string or load/store multiple
instruction in Little-Endian mode

Trap instruction S| GTRAP Execution of t winstruction (see Note below)
Floating unavailable S| GFPE Floating instruction is not implemented
Floating exception SI GFPE Floating-point overflow or underflow

Floating-point divide by zero
Floating-point conversion overflow
Other enabled floating-point exceptions

Note — The t winstructions with al five condition bits set are reserved for system use (for
example, breakpoint implementation), so applications should not rely on the behavior of such

traps.

The signals that an exception may giveriseto are SI G LL, SI GSEGV, SI GBUS, SI GTRAP, and
SI GFPE. If one of these signalsis generated due to an exception when the signal is blocked, the
behavior is undefined.

PowerPC Processor ABI Supplement—September 1995

Due to the pipelined nature of the PowerPC, more than one instruction may be executing
concurrently. When an exception occurs, all unexecuted instructions that appear earlier in the
instruction stream are allowed to complete. Asaresult of completing these instructions, additional
exceptions may be generated. All such exceptions are handled in order.

The operating system partitions the set of concurrent exceptions into subsets, all of whose
exceptions share the same signal number. Each subset of exceptionsisdelivered asasingle signal.
The multiple signals resulting from multiple concurrent exceptions are delivered in unspecified

order.

Low-Level System Information 327

Process Initialization

This section describes the machine state that exec(BA_OS) creates for "infant” processes,
including argument passing, register usage, and stack frame layout. Programming language
systems use thisinitial program state to establish a standard environment for their application
programs. For example, a C program begins executing at a function named nai n, conventionally
declared in the way described in Figure 3-29.

‘extern int main (int argc, char *argv[], char *envp[]);

Figure 3-29 Declaration for mai n

Briefly, ar gc isanon-negative argument count; ar gv isan array of argument strings, with
argv[argc] == 0;andenvp isanarray of environment strings, also terminated by a NULL
pointer.

Although this section does not describe C program initialization, it gives the information necessary
to implement the call to mai n or to the entry point for a program in any other language.

Registers

3-28

When a processisfirst entered (from an exec(BA_QOS) system call), the contents of registers
other than those listed below are unspecified. Consequently, a program that requires registers to
have specific values must set them explicitly during processinitialization. It should not rely onthe
operating system to set all registersto 0. Following are the registers whose contents are specified:

ri The initial stack pointer, aligned to a 16-byte boundary and pointing to a word
containing a NULL pointer.

r3 Contains ar gc, the number of arguments.

ra Contains ar gv, a pointer to the array of argument pointersin the stack. The array is

immediately followed by a NULL pointer. If there are no arguments, r 4 points to a
NULL pointer.

rs Contains envp, a pointer to the array of environment pointers in the stack. The
array is immediately followed by a NULL pointer. If no environment exists, r 5
points to a NULL pointer.

ré Contains a pointer to the auxiliary vector. The auxiliary vector shall have at |east one
member, a terminating entry with an a_t ype of AT_NULL (see Figure 3-30 and
Table 3-6).

rv7 Contains a termination function pointer. If r 7 contains a nonzero value, the value

represents a function pointer that the application should register with
at exi t (BA_OS). If r 7 contains zero, no action is required.

fpscr Contains 0, specifying "round to nearest" mode, IEEE Mode, and the disabling of
floating-point exceptions.

PowerPC Processor ABI Supplement—September 1995

Process Stack

Every process has a stack, but the system defines no fixed stack address. Furthermore, a program’s
stack address can change from one system to another—even from one process invocation to
another. Thusthe processinitialization code must use the stack addressin general purpose register
r 1. Datain the stack segment at addresses below the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one application
program to another, the auxiliary vector conveys information from the operating system to the
program. Thisvector isan array of structures, which are defined in Figure 3-30.

typedef struct {
i nt a_type;
uni on {
long a_val;
void *a_ptr;
void (*a_fcn)();
} a_un;
} auxv_t;

Figure 3-30 Auxiliary Vector Structure

The structures are interpreted according to thea_t ype member, as shown in Table 3-6.

Table 3-6 Auxiliary Vector Types, a_t ype

Name Value a_un
AT_NULL 0 i gnored
AT _| GNORE 1 i gnor ed
AT _EXECFD 2 a_val
AT _PHDR 3 a ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT _ENTRY 9 a_ptr
AT_DCACHEBSI ZE 10 a_val
AT_I| CACHEBSI ZE 11 a_val
AT _UCACHEBSI ZE 12 a_val

Low-Level System Information 3-29

a_t ype auxiliary vector types are described below.

Name

Description

AT_NULL

AT_| GNORE

AT_EXECFD

AT_PHDR

AT _PHENT

AT_PHNUM

AT_PAGESZ

AT _BASE

AT_FLAGS

AT_ENTRY

The auxiliary vector has no fixed length; instead an entry of thistype
denotes the end of the vector. The corresponding value of a_un is
undefined.

This type indicates the entry has no meaning. The corresponding
value of a_un is undefined.

As Chapter 5 in the System V ABI describes, exec(BA_0S) may
pass control to an interpreter program. When this happens, the
system places either an entry of type AT_EXECFD or one of type
AT_PHDR in the auxiliary vector. The entry for type AT_EXECFD
uses the a_val member to contain a file descriptor open to read the
application program’s object file.

Under some conditions, the system creates the memory image of the
application program before passing control to an interpreter program.
When this happens, the a_pt r member of the AT_PHDR entry tells
the interpreter where to find the program header table in the memory
image. If the AT_PHDR entry is present, entries of types AT _PHENT,
AT_PHNUM and AT_ENTRY must also be present. See the section
Program Header in Chapter 5 of the System V ABI and the section
Program Loading in Chapter 5 of this processor supplement for
more information about the program header table.

The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT _PHDR entry
points.

The a_val member of this entry holds the number of entriesin the
program header table to which the AT_PHDR entry points.

If present, thisentry’sa_val member gives the system page size in
bytes. The same information is also available through
sysconf (BA_OS).

Thea_pt r member of this entry holds the base address at which the
interpreter program was loaded into memory. See the section
Program Header in Chapter 5 of the System V ABI for more
information about the base address.

If present, the a_val member of this entry holds 1-bit flags. Bits
with undefined semantics are set to zero.

The a_ptr member of this entry holds the entry point of the
application program to which the interpreter program should transfer
control.

PowerPC Processor ABI Supplement—September 1995

AT_DCACHEBSI ZE Thea_val member of this entry gives the data cache block size for
processors on the system on which this program is running. If the
processors have unified caches, AT_DCACHEBSI ZE is the same as
AT_UCACHEBSI ZE.

AT_| CACHEBSI ZE Thea_val member of this entry gives the instruction cache block
size for processors on the system on which this program is running.
If the processors have unified caches, AT _DCACHEBSI ZE is the
same as AT_UCACHEBSI ZE.

AT _UCACHEBSI ZE Thea_val member of this entry is zero if the processors on the
system on which this program is running do not have a unified
instruction and data cache. Otherwise, it gives the cache block size.

Other auxiliary vector types are reserved. No flags are currently defined for AT_FLAGS on the
PowerPC Architecture.

When a process receives control, its stack holds the arguments, environment, and auxiliary vector
from exec(BA_OS) . Argument strings, environment strings, and the auxiliary information
appear in no specific order within the information block; the system makes no guarantees about
their relative arrangement. The system may also leave an unspecified amount of memory between
the null auxiliary vector entry and the beginning of the information block. The back chain word of
thefirst stack frame contains anull pointer (0). A sampleinitial stack is shown in Figure 3-31.

Low-Level System Information 331

3-32

I nformati on bl ock, including
argunent and envi ronnent
strings and auxiliary

i nformation

(size varies)

Unspeci fi ed

AT_NULL auxiliary vector entry

Auxi liary vector

(2-word entries)

0 word

Envi ronment pointers

(1 word each)

0 word

Argument pointers

(Argunment count words)

LR save word

R1L —» Nul I poi nter

Figure 3-31 Initia Process Stack

PowerPC Processor ABI Supplement—September 1995

Top of Stack

Low Addr ess

Coding Examples

This section describes example code sequences for fundamental operations such as calling
functions, accessing static objects, and transferring control from one part of a program to another.
Previous sections discussed how a program may use the machine or the operating system, and they
specified what a program may and may not assume about the execution environment. Unlike
previous material, the information in this section illustrates how operations may be done, not how
they must be done.

As before, examples use the ANSI C language. Other programming languages may use the same
conventions displayed below, but failure to do so does not prevent a program from conforming to
the ABI. Two main object code models are available:

» Absolute code. Instructions can hold absol ute addresses under thismodel. To execute properly,
the program must be loaded at a specific virtual address, making the program’s absolute
addresses coincide with the process’ virtual addresses.

» Position-independent code. Instructions under this model hold relative addresses, not absol ute
addresses. Conseguently, the code is not tied to a specific load address, allowing it to execute
properly at various positionsin virtual memory.

The following sections describe the differences between these models. When different, code
seguences for the models appear together for easier comparison.

Note — The examples below show code fragments with various simplifications. They are
intended to explain addressing modes, not to show optimal code sequences or to reproduce
compiler output. None of them reference data in the small data area.

Code Model Overview

When the system creates a process image, the executable file portion of the process has fixed
addresses and the system chooses shared object library virtual addresses to avoid conflicts with
other segments in the process. To maximize text sharing, shared objects conventionally use
position-independent code, in which instructions contain no absolute addresses. Shared object text
segments can be loaded at various virtual addresses without having to change the segment images.
Thus multiple processes can share a single shared object text segment, even if the segment resides
at adifferent virtual address in each process.

Position-independent code relies on two techniques:

» Control transfer instructions hold addresses relative to the Effective Address (EA) or use
registersthat hold the transfer address. An EA-relative branch computesits destination address
in terms of the current EA, not relative to any absolute address.

* When the program requires an absolute address, it computes the desired value. Instead of
embedding absolute addresses in instructions (in the text segment), the compiler generates
code to calculate an absolute address (in aregister or in the stack or data segment) during
execution.

Low-Level System Information 3-33

Because the PowerPC Architecture provides EA-relative branch instructions and also branch
instructions using registers that hold the transfer address, compilers can satisfy the first condition
easily.

A "Global Offset Table," or GOT, providesinformation for address calculation. Position-
independent object files (executable and shared object files) have atable in their data segment that
holds addresses. When the system creates the memory image for an object file, the table entries are
relocated to reflect the absolute virtual address as assigned for an individual process. Because data
segments are private for each process, the table entries can change—unlike text segments, which
multiple processes share.

Two position-independent models give programs a choi ce between more efficient code with some
sizerestrictions and less efficient code without those restrictions. Because of the processor’'s
architecture, aglobal offset table with no more than 16384 entries (65536 bytes) is more efficient
than alarger one. Programs that need more entries must use the larger, more general code. In the
following sections, the term "small model" position-independent code is used to refer to code that
assumes the smaller global offset table, and "large model” position-independent code is used to
refer to the general code.

Function Prologue and Epilogue

3-34

This section describes functions’ prologue and epilogue code. A function’s prologue establishes a
stack frame, if necessary, and may save any nonvolatile registersit uses. A function’s epilogue
generally restores registers that were saved in the prologue code, restores the previous stack frame,
and returnsto the caller.

Except for the rules below, this ABI does not mandate predetermined code sequences for function
prologues and epilogues. However, the following rules, which permit reliable call chain
backtracing, shall be followed:

1. Beforeafunction calls any other function, it shall establish its own stack frame, whose size
shall be amultiple of 16 bytes, and shall save the link register at the time of entry intheLR
save word of its caler’'s frame.

2. If afunction establishes a stack frame, it shall update the back chain word of the stack frame
atomically with the stack pointer (r 1) using one of the " Store Word with Update" instructions.

* For small (no larger than 32 Kbytes) stack frames, this may be accomplished with a" Store
Word with Update" instruction with an appropriate negative displacement.

» For larger stack frames, the prologue shall load a volatile register with the two’s comple-
ment of the size of the frame (computed with addi s and addi or ori instructions) and
issue a " Store Word with Update Indexed" instruction.

3. Theonly permitted references with negative offsets from the stack pointer are those described
here for establishing a stack frame.

4. When afunction deallocates its stack frame, it must do so atomically, either by loading the
stack pointer (r 1) with the value in the back chain field or by incrementing the stack pointer
by the same amount by which it has been decremented.

PowerPC Processor ABI Supplement—September 1995

In-line code may be used to save or restore nonvolatile general or floating-point registers that the
function uses. However, if there are many registers to be saved or restored, it may be more
efficient to call one of the system subroutines described below.

Note that "Load and Store Multiple" PowerPC instructions should not be used on Little-Endian
implementations because they cause alignment exceptions, or on Big-Endian implementations
because they are dower than the register-at-a-time saves.

If any of the nonvolatile fields of the Condition Register (CR) are used, they must also be
preserved and restored.

A function that is position independent will probably want to load a pointer to the global offset
table into a nonvolatile register. This may be omitted if the function makes no external data
references. If external data references are only made within conditional code, loading the global
offset table pointer may be deferred until it is known to be needed.

Register Saving and Restoring Functions

The register saving and restoring functions described in this section use nonstandard calling
conventions which require them to be statically linked into any executable or shared object
modules in which they are used. Thus their interfaces are private, within module interfaces, and
therefore are not part of the ABI. They are defined here only to encourage uniformity among
compilersin the code used to save and restore registers.

On entry, all the functions described in this section expect r 11 to contain the address of the word
just beyond the end of the floating-point or general register save area, as appropriate, and they
leaver 11 undisturbed. For example (assuming a stack frame as described in Figure 3-25), on
entry to the floating-point register saving and restoring functions, r 11 contains the address of the
back chain word of the previous frame (the word just beyond the floating-point register save area).
Similarly, on entry to the general register saving and restoring functions, r 11 contains either the
address of the first word of the floating-point register save area or, if there is no floating-point
register save area, the address of the back chain word. Higher-numbered registers are saved at
higher addresses within a save area.

The saving and restoring functions save and restore consecutive general or floating-point registers
from register 31 through register n, with n being between 14 and 31. That is, each "function”
described in this section is afamily of 36 functions with identical behavior except for the number
and kind of registers affected. The function names below use the notation "[f g] " to designate the
use of an"f" for the floating register functions and a"g" for the general register functions.

There are two families of register saving functions:

» The"smpl€e" register saving functions, _save|[f g] pr _n, savethe indicated registers and
return.

* The"GOT" register saving functions, _save[f g] pr _n_g, do not return directly. Instead
they branchto _ GLOBAL_OFFSET_TABLE - 4, relyingonabl r1 instruction at that
address (see the section Global Offset Table in Chapter 5) to return to the caller of the save
function with the address of the global offset table in the link register.

Low-Level System Information 3-35

3-36

There are three families of register restoring functions:

» The"smple" register restoring functions, _r est [f g] pr _n, restore the indicated registers
and return.

» The"exit" functions, _rest[fg] pr_n_x, restoretheindicated registers and, relying on the
registers being restored to be adjacent to the back chain word, restore the link register from the
LR save word, remove the stack frame, and return through the link register.

e The"tal" functions, _rest[fg] pr_n_t, restorethe registers, place the LR save word into
r 0, remove the stack frame, and return to their caller. The caller can then implement a "tail
call" by moving r 0 into the link register and branching to the tail function. The tail function
then sees an apparent call from the function above the one that made the tail call and, when
done, returns directly toit.

Figure 3-32 shows an implementation of the _r est f pr _n_x family of functions.

_restfpr_14 x: |Ifd rl4, -144(r11)
_restfpr_15 x: Ifd r15, -136(r11)
_restfpr_16 x: |Ifd rl6, -128(r11)
_restfpr_17_x: Ifd rl7, -120(r11)
_restfpr_18_x: Ifd ril8, -112(r11)
_restfpr_19 x: Ifd r19, -104(r11)
_restfpr_20 x: |Ifd r20, -96(r1l)
_restfpr_21 x: |Ifd r21, -88(r11)
_restfpr_22 x: |Ifd r22, -80(r11)
_restfpr_23_x: |Ifd r23, -72(r11)
_restfpr_24_x: |Ifd r24, -64(r1ll)
_restfpr_25 x: Ifd r25, -56(r11)
_restfpr_26_x: |Ifd r26, -48(r1ll)
_restfpr_27 x: |Ifd r27, -40(r11)
_restfpr_28 x: Ifd r28, -32(rll)
_restfpr_29 x: |Ifd r29, -24(r11)
_restfpr_30_x: Ifd r30, -16(r11)
_restfpr_31_x: Iwz ro, 4(r11)

Ifd r31, -8(rll)

nir ro

ori rl, rl11, O

bl r

Figure3-32 _restfpr_n x Implementation

Figure 3-33 below shows sample prologue and epilogue code with full saves of all the nonvolatile
floating-point and general registers and a stack frame size of less than 32 Kbytes. The example
assumes that the function does not alter the nonvolatile fields of the CR and does no dynamic stack
allocation.

Note — This code assumes that the size of the module (executable or shared object) in which
the code appears is such that a relative branch is able to reach from any part of the text section
to any part of the global offset table (or the procedure linkage table, discussed in Chapter 5).
Since relative branches can reach +/- 32 Mbytes, this is not considered a serious restriction.

PowerPC Processor ABI Supplement—September 1995

function: nflr ro
stw ro,4(rl)
ori ri1,r1,0
stwu rl,-len(rl)
bl _savefpr_14
addi ril, r11,-144
bl _savegpr_14 g
nflr r3i1
addi rll, r1,1en-144
bl _restgpr_14
addi rill, r11, 144
bl _restfpr_14_x

Save return address in caller’'s frane

Save end of fpr save area
Establ i sh new frame

Save float registers

Conpute end of gpr save area
Save gprs and fetch GOT ptr
Place GOT ptr in r31

Save CR here if necessary
Body of function

Addr of gpr save area to rlil
Restore gprs

Restore CR here if necessary
Conpute end of frame/fprs
Restore fprs and return

Figure 3-33 Prologue and Epilogue Sample Code

Profiling

This section shows away of providing profiling (entry counting) on PowerPC systems. An
ABI-conforming system is not required to provide profiling; however if it does, thisis one possible

(not required) implementation.

If afunction isto be profiled, it saves the link register in the LR save word of its caller’s stack
frame, loadsinto r O a pointer to aword-aligned, one-word, static data area initialized to zero in
whichthe _ntount routineisto maintain acount of the number of entries, and calls_ntount .
For example, the code in Figure 3-34 can be inserted at the beginning of afunction, before any
other prologue code. The ntount routineisrequired to restore the link register from the stack
so that the profiling code can be inserted transparently, whether or not the profiled function saves

the link register itself.

.function_nt:

function:

.data
.align
.1ong
.text

nflr
addi s
st w
add

b

ro

rill, r0,.funtion_nc@a
ro,4(rl)
ro,r11,.function_nt@l
_nctount

Figure 3-34 Code for Profiling

Low-Level System Information

3-37

Note — The value of the assembler expression synbol @ isthe low-order 16 bits of the value
of the symbol. The value of the expression synbol @a is the high-order 16 bits of the value
of the symbol, adjusted so that when it is shifted left by 16 bits and synbol @ is added to it,
the resulting value is the value of the symbol. That is, synbol @a compensates as necessary
for the carry that may take place because of synbol @ being a signed quantity.

Data Objects

This section describes only objects with static storage duration. It excludes stack-resident objects
because programs always compute their virtual addresses relative to the stack or frame pointers.

In the PowerPC Architecture, only load and store instructions access memory. Because PowerPC
instructions cannot hold 32-bit addresses directly, a program normally computes an addressinto a
register and accesses memory through the register. Symbolic references in absolute code put the
symbols values—or absolute virtual addresses—into instructions.

Position-independent instructions cannot contain absolute addresses. Instead, instructions that
reference symbols hold the symbols' (signed) offsetsinto the global offset table. Combining the
offset with the global offset table address in a general register (for example, r 31 loaded in the
sample prologue in Figure 3-33) gives the absolute address of the table entry holding the desired
address.

Figures 3-35 through 3-37 show sample assembly language equivalents to C language code for
absolute and position-independent compilations. It isassumed that all shared objects are compiled
position independent and only executable modules may be absolute. The code in the figures
contains many redundant operations; it isintended to show how each C statement would have been
compiled independently of its context.

C Assembly

extern int src; .extern src

extern int dst; .extern dst

extern int *ptr; .extern ptr

dst = src; addis r6, r0, src@a

| wz r0, src@(r6)
addis r7, r0, dst@a
stw r0, dst@(r7)

ptr = &dst; addis r6, r0, dst@a
addi r0, r0, dst@y(r6)
addis r7, r0Q, ptr@a
stw r0, ptr@(r7)

*ptr = src; addis r6, r0, src&ha
| wz r0, src@(r6)
addis r7, r0, ptr@a
| wz r7, ptr@f(r7)
stw r0, 0(r7)

Figure 3-35 AbsolutelL oadand Store

3-38 PowerPC Processor ABI Supplement—September 1995

Note — In the examples that follow, the assembly syntax symbol @ot refersto the offset in the

global offset table at which the value of symbol (that is, the address of the variable whose
name is symbol) is stored, assuming that the offset is no larger than 16 bits. The syntax

symbol@ot @a, symbol@ot @, and symbol@ot @ refer to the high-adjusted, high, and
low parts of that offset, when the offset may be greater than 16 bits.

C

Assembly

extern int
extern int
extern int

dst = src;

ptr

&dst ;

*ptr = src;

src;
dst;
*ptr;

.extern src
.extern dst
.extern ptr

.text
Assunmes GOT pointer in r31

lwz r6, src@ot(r31)
lwz r7, dst@ot(r31)
lwz r0, 0(r6)
stwrQ, 0(r7)

lwz r0, dst@ot(r31)
lwz r7, ptr@ot(r31)
stwr0, 0(r7)

lwz r6, src@ot(r31)
lwz r7, ptr@ot(r31)
lwz r0, 0(r6)
lwz r7, 0(r7)
stwr0, 0(r7)

Figure 3-36 Small Model Position-Independent Load and Store

Low-Level System Information

3-39

C Assembly

extern int src; .extern src

extern int dst; .extern dst

extern int *ptr; .extern ptr
. text

Assunmes GOT pointer in r31

dst = src; addis r6, r3l, src@ot @a
| wz ré, src@ot@(r6)
addis r7, r31, dst@ot @a
| wz r7, dst@ot@(r7)
| wz ro, 0(ro6)
stw r0, 0(r7)

&dst ; addis r6, r3l, dst@ot @a
| wz r0, dst @ot @(r6)
addis r7, r3l, ptr@ot @a
| wz r7, ptr@ot@(r7)
stw r0, 0(r7)

ptr

*ptr = src; addis r6, r3l, src@ot @a
| wz ré, src@ot@(r6)
addis r7, r3l, ptr@ot @a
| wz r7, ptr@ot@(r7)
| wz ro, 0(r6)
| wz r7, 0(r7)
stw r0, 0(r7)

Figure 3-37 Large Model Position-Independent Load and Store

Function Calls

3-40

Programs use the PowerPC bl instruction to make direct function calls. A bl instruction has a
self-relative branch displacement that can reach 32 Mbytesin either direction. Hence, the use of a
bl instruction to effect a call within an executable or shared object file limits the size of the
executable or shared object file text segment.

A compiler normally generatesthe bl instruction to call afunction as shown in Figure 3-38. The
called function may be in the same modul e (executable or shared object) asthe caller, or it may be
in adifferent module. In the former case, the link editor resolves the symbol and the bl branches
directly to the called function. In thelatter case, the link editor cannot directly resolve the symbol.
Instead, it treatsthe bl asabranch to "glue” code that it generates, and the dynamic linker
maodifies the glue code to branch to the function itself. See Procedure Linkage Table in Chapter
5 for more details.

C Assembly
extern void func(); .extern func
func(); bl func

Figure 3-38 Direct Function Call

PowerPC Processor ABI Supplement—September 1995

For indirect function calls, abl r | instruction is used as shown in Figures 3-39 through 3-41.

C

Assembly

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr)();

.extern func
.extern ptr

. text

addis r6, r0, func@a
addi r0, r6, func@(r6)
addis r7, r0, ptr@a
stw 10, ptr@(r7)

addis r6, r0, ptr@a
| wz ro, ptr@(r6)
mlr r0

bl rl

Figure 3-39 Absolute Indirect Function Call

C

Assembly

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr) ()

.extern func
.extern ptr

. text

Assunmes GOT pointer in r31

lwz r0, func@ot(r31)
lwz r12, ptr@ot(r31)
stw r0, 0(rl2)

lwz r12, ptr@ot(r31)
lwz r0, 0(rl2)
nilr ro0

blrl

Figure 3-40 Small Model Position-Independent Indirect Function Call

Low-Level System Information

341

C Assembly

extern void func(); .extern func
extern void (*ptr) (); .extern ptr
. text

Assunes GOT pointer in r31

ptr=func; addi s r11, r31, func@ot @a
| wz ro, func@ot@(r1l1)
addis r12, r31, ptr@ot @a
| wz ri2, ptr@ot@(r12)
stw r0, 0(rl2)

(*ptr) (); addis r12, r31, ptr@ot @a
| wz rl2, ptr@ot@(r12)
| wz ro, 0(rl2)
nmlr rO0
blrl

Figure 3-41 Large Model Position-Independent Indirect Function Call

Branching

Programs use branch instructions to control their execution flow. As defined by the architecture,
branch instructions hold a self-relative value with a 64-Mbyte range, allowing ajump to locations
up to 32 Mbytes away in either direction.

C Assembly

| abel : . LO1:

got o | abel; b '. Lo1

Figure 3-42 Branch Instruction, All Models

Cswi t ch statements provide multiway selection. When thecase labelsof aswi t ch statement
satisfy grouping constraints, the compiler implements the selection with an address table. The
following examples use several simplifying conventions to hide irrelevant details:

» Theselection expression residesinr 12.

» Thecase label constants begin at zero.

» Thecase labels, thedef aul t , and the address table use assembly names. Lcasei,
. Ldef ,and. Lt ab, respectively.

3-42 PowerPC Processor ABI Supplement—September 1995

C Assembly

switch(j) cnplwi rl2, 4
{ bge . Ldef
case O: sl wi ri2, 2
addi s rl2, rl12, .Ltab@a
case 1: | wz ro, .Ltab@(r12)
mctr ro
case 3: bctr
.rodata
. Lt ab: .1 ong . LcaseO
defaul t: .1 ong . Lcasel
.1 ong . Ldef
} .1 ong . Lcase2
.text
Figure 3-43 Absoluteswi t ch Code
C Assembly
switch(j) cnpl wi riz, 4
bge . Ldef
case O: bl . L1
L1 sl wi ri2, 2
case 1: nflr rii
addi ri2, r12, .Ltab-.L1
case 3. add ro, rl1l2, rl1
mctr ro
defaul t: bctr
. Lt ab: b . LcaseO
} b . Lcasel
b . Ldef
b . Lcase3

Figure 3-44 Position-Independent swi t ch Code, All Models

Dynamic Stack Space Allocation

Unlike some other languages, C does not need dynamic stack allocation within a stack frame.
Frames are allocated dynamically on the program stack, depending on program execution, but
individual stack frames can have static sizes. Nonetheless, the architecture supports dynamic
allocation for those languages that requireit. The mechanism for allocating dynamic spaceis
embedded completely within afunction and does not affect the standard calling sequence. Thus
languages that need dynamic stack frame sizes can call C functions, and vice versa.

Figure 3-45 shows the stack frame before and after dynamic stack allocation. The local variables
areais used for storage of function data, such aslocal variables, whose sizes are known to the
compiler. Thisareaisallocated at function entry and does not change in size or position during the

function’s activation.

Low-Level System Information

3-43

The parameter list area holds "overflow" arguments passed in calls to other functions. (Seethe
OTHER label in the algorithm in Parameter Passing earlier in this chapter.) Itssizeisalso
known to the compiler and can be allocated along with the fixed frame area at function entry.
However, the standard calling sequence requires that the parameter list area begin at a fixed offset
(8) from the stack pointer, so this area must move when dynamic stack allocation occurs.

Datain the parameter list area are naturally addressed at constant offsets from the stack pointer.
However, in the presence of dynamic stack allocation, the offsets from the stack pointer to the data
inthelocal variables area are not constant. To provide addressability, aframe pointer is established
to locate the local variables area consistently throughout the function’s activation.

Dynamic stack allocation is accomplished by "opening” the stack just above the parameter list
area. Thefollowing steps show the process in detail:

1. Sometime after a new stack frame is acquired and before the first dynamic space allocation, a
new register, the frame pointer, is set to the value of the stack pointer. The frame pointer is
used for references to the function’s local, non-static variables.

2. The amount of dynamic space to be allocated is rounded up to a multiple of 16 bytes, so that
16-byte stack alignment is maintained.

3. Thestack pointer is decreased by the rounded byte count, and the address of the previous stack
frame (the back chain) is stored at the word addressed by the new stack pointer. This shall be
accomplished atomically by usingstwu r S, -1 engt h(r 1) if thelength isless than 32768
bytes, or by usingst wux r S, r 1, r space, wherer S isthe contents of the back chain word
and r space contains the (negative) rounded number of bytesto be allocated.

Before Dynamic Stack Allocation After Dynamic Stack Allocation
Back chain Back chain
Regi ster save areas Regi ster save areas
Area containing |ocal, Area containing |ocal,
non-static variabl es non-static variabl es

Area for constructing
paraneter lists for

cal | ees Dynami c Al |l ocation Area

LR save word X
Area for constructing

parameter lists for
SP _, Back chain cal | ees

LR save word

SP_ Back chain

Figure 3-45 Dynamic Stack Space Allocation

3-44 PowerPC Processor ABI Supplement—September 1995

The above process can be repeated as many times as desired within a single function activation.
When it istime to return, the stack pointer is set to the value of the back chain, thereby removing
all dynamically allocated stack space along with the rest of the stack frame. Naturally, a program
must not reference the dynamically allocated stack area after it has been freed.

Even in the presence of signals, the above dynamic alocation schemeis"safe.” If asigna
interrupts allocation, one of three things can happen:

e Thesignal handler can return. The process then resumes the dynamic all ocation from the point
of interruption.

» Thesignal handler can execute anon-local goto or ajump. This resets the process to a new
context in a previous stack frame, automatically discarding the dynamic allocation.
* The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a consistent (though
possibly dead) process.

Low-Level System Information 3-45

DWARF Definition

DWARF Release Number

This section defines the Debug With Arbitrary Record Format (DWARF) debugging format for the
PowerPC processor family. The PowerPC ABI does not define a debug format. However, all
systems that do implement DWARF shall use the following definitions.

DWARF is a specification developed for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. For more information
on DWARF, see the documents cited in the section Evolution of the ABI Specification in
Chapter 1.

The DWARF definition requires some machine-specific definitions. The register number mapping
needs to be specified for the PowerPC registers. In addition, the DWARF Version 2 specification
requires processor-specific address class codes to be defined.

DWARF Register Number Mapping

3-46

Table 3-7 outlines the register number mapping for the PowerPC processor family. For kernel
debuggers, the mapping for all privileged registersis also defined in Table 3-8. Note that for al
special purpose registers, the number issimply 100 plus the SPR register number, as defined in the
PowerPC Architecture. Registerswith an asterisk before their name are MPC601 chip-specific
and are not part of the generic PowerPC chip architecture.

Table 3-7 PowerPC Register Number Mapping

Register Name Number Abbreviation
General Register 0-31 0-31 RO- R31
Floating Register 0-31 32-63 FO- F31
Condition Register 64 CR
Floating-Point Status and Control Register 65 FPSCR

* MQ Register 100 MQ or SPRO
Fixed-Point Exception Register 101 XER or SPR1
* Real Time Clock Upper Register 104 RTCU or SPR4
* Real Time Clock Lower Register 105 RTCL or SPR5
Link Register 108 LR or SPR8
Count Register 109 CTR or SPR9

PowerPC Processor ABI Supplement—September 1995

Table 3-8 PowerPC Privileged Register Number Mapping

Register Name Number Abbreviation
Machine State Register 66 VBR

Segment Register 0-15 70-85 SRO- SR15

Data Storage Interrupt Status Register 118 DSI SR or SPR18
Data Address Register 119 DAR or SPR19
Decrementer 122 DEC or SPR22
Storage Description Register 1 125 SDR1 or SPR25
Machine Status Save/Restore Register 0 126 SRRO or SPR26
Machine Status Save/Restore Register 1 127 SRR1 or SPR27
Software-use Special Purpose Register 0 372 SPRA or SPR272
Software-use Special Purpose Register 1 373 SPRGL or SPR273
Software-use Special Purpose Register 2 374 SPR& or SPR274
Software-use Special Purpose Register 3 375 SPRG3 or SPR275
Address Space Register 380 ASR or SPR280
External Access Register 382 EAR or SPR282
Time Base 384 TB or SPR284
Time Base Upper 385 TBU or SPR285
Processor Version Register 387 PVR or SPR287
Instruction BAT Register 0 Upper 628 | BATOU or SPR528
Instruction BAT Register O Lower 629 | BATOL or SPR529
Instruction BAT Register 1 Upper 630 | BAT1U or SPR530
Instruction BAT Register 1 Lower 631 | BATIL or SPR531
Instruction BAT Register 2 Upper 632 | BAT2U or SPR532
Instruction BAT Register 2 Lower 633 | BAT2L or SPR533
Instruction BAT Register 3 Upper 634 | BAT3U or SPR534
Instruction BAT Register 3 Lower 635 | BAT3L or SPR535
Data BAT Register 0 Upper 636 DBATOU or SPR536
Data BAT Register O Lower 637 DBATOL or SPR537
Data BAT Register 1 Upper 638 DBAT1U or SPR538
Data BAT Register 1 Lower 639 DBAT1L or SPR539
Data BAT Register 2 Upper 640 DBAT2U or SPR540
Data BAT Register 2 Lower 641 DBAT2L or SPR541

Low-Level System Information

3-47

Table 3-8 PowerPC Privileged Register Number Mapping (Continued)

Register Name Number Abbreviation

Data BAT Register 3 Upper 642 DBAT3U or SPR542

Data BAT Register 3 Lower 643 DBAT3L or SPR543

* Hardware Implementation Register 0 1108 HI DO or SPR1008

* Hardware Implementation Register 1 1109 HI D1 or SPR1009

* Hardware Implementation Register 2 1110 HI D2 or | ABR or
SPR1010

* Hardware Implementation Register 5 1113 HI D5 or DABR or
SPR1013

* Hardware Implementation Register 15 1123 HI D15 or Pl Ror
SPR1023

Address Class Codes

3-48

The PowerPC processor family defines the address class codes described in Table 3-9.

Table 3-9 Address Class Code

Code Value

Meaning

ADDR _none 0

No class specified

PowerPC Processor ABI Supplement—September 1995

4 OBJECTFILES

ELF Header

Machine Information

For fileidentificationin e_i dent , the PowerPC processor family requires the values shown in
Table 4-1.

Table4-1 PowerPC ldentification, e_i dent []

Position Value Comments

e _ident[El _CLASS] ELFCLASS32 For all 32-bit implementations

e_i dent [El _DATA] ELFDATA2M SB For all Big-Endian implementations
e_ident[El _DATA] ELFDATA2LSB For all Little-Endian implementations

The ELF header’'se_f | ags member holds bit flags associated with the file. Since the PowerPC
processor family defines no flags, this member contains zero.

The name EF_PPC_EMB and the value 0x80000000 are reserved for use in embedded systems.

Processor identification residesin the ELF header’'se_nmachi ne member and must have the
value 20, defined as the name EM _PPC.

Object Files 41

Sections

Special Sections

Various sections hold program and control information. The sections listed in Table 4-2 are used
by the system and have the types and attributes shown.

Note—The. pl t section on the PowerPC is of type SHT _NOBI TS, not SHT _PROGBI TS as
on most other processors.

Note — The SHT _ORDERED section type specifies that the link editor is to sort the entries in
this section based on the sum of the symbol and addend values specified by the associated
relocation entries. Entries without associated relocation entries shall be appended to the end of
the section in an unspecified order. SHT_ORDERED is defined as SHT_HI PROC, the first value
reserved in the System V ABI for processor-specific semantics.

Note —The SHF_EXCLUDE flag specifies that the link editor is to exclude this section from
executable and shared objects that it builds when those objects are not to be further relocated.
SHF_EXCLUDE has the value 0x80000000.

Table 4-2 Special Sections

Name Type Attributes

. got SHT_PROGBI TS SHF _ALLOC + SHF WRI TE

.plt SHT_NOBI TS SHF_ALLCC + SHF_WRI TE + SHF_EXECI NSTR
. sdat a SHT_PROGBI TS SHF _ALLOC + SHF WRI TE

. Sbss SHT_NOBI TS SHF _ALLOCC + SHF WRI TE

.tags SHT_ORDERED SHF_ALLCC

.tagli st SHT_PROGBI TS SHF_ALLOC + SHF_WRI TE

.tagsym SHT_SYMI'AB SHF_EXCLUDE

4-2

PowerPC Processor ABI Supplement—September 1995

Special sections are described below.

Name Description

. got This section holds the Global Offset Table, or GOT. See Coding Examplesin
Chapter 3 and Global Offset Table in Chapter 5 for more information.

.plt This section holds the procedure linkage table. See Procedure Linkage Table
in Chapter 5 for more information.

.sdata This section holds initialized small data that contribute to the program
memory image. See Small Data Area later in this chapter for details.

. sbss This section holds uninitialized small data that contribute to the program
memory image. The system sets the data to zeros when the program begins to
run. See Small Data Area for details.

.tags This section contains tags as described in Tags below. The size (sh_ent si ze)
of each entry in this section is 8 and the alignment (sh_addr al i gn) is4. The
relocation section . r el a. t ags, associated with the . t ags section, should
have the SHF EXCLUDE attribute.

.tagli st This section contains data that enable a program to locate its tags. Locating tags
is described in Tags below.

.tagsym This section, which appears in object files only (not executable or shared
objects), contains one entry for each entry inthe . t ags section. Each entry has
STB_LOCAL hinding and is of type STT_NOTYPE. The st _shndx and
st _val ue fields of the entries specify the index of the section and the section
offset to which the tag applies, respectively.

Note — The PowerPC Embedded ABI shares most of the linkage conventions and ELF file
structuring conventions of this ABI. However, section names beginning with the string

". PPC. EMB. ", the section names . sdat a2 and . sbhss2, and the symbol _SDA2_BASE are
reserved for the Embedded ABI.

Object Files 43

Tags

Tag Overview

4-4

Tags facilitate determining the contents of nonvolatile registers as they were when afunction was
entered. Given the address of the next instruction to be executed, and the tag, if any, applicableto
that address, a debugger or exception handler can determine the register contents upon function
entry.

The stack frame layout, and in particular the register save areas within aframe, are specified in
Chapter 3. Tags make it possible to determine which stack frame is associated with a section of
code and which nonvolatile registers at the time of entry to the function are within the register save
areas rather than in the registers themselves.

In the simplest case, aleaf function needs no tag if it 1) does not establish its own frame and

2) does not disturb the contents of any of the nonvolatile registers or the link register. Similarly,
within afunction, code that isleaf-like (in that it has not yet established aframe or has restored the
stack, nonvolatile registers, and the link register to their state on entry to the function) needs no

tag.
There are four tag formats as defined in Table 4-3 and described in subsequent tables.

A function that establishes aframe requires at least one "Frame" or "Frame Valid" tag. Both of
these formats specify the point in the code at which aframe is established and the sizes of the
general and floating-point register save areas. They may also specify a point at which a contiguous
set of general and floating-point registers have been saved in the save area and arange of addresses
from that point within which the frame and the saved registers remain valid. A function requires
only aFrame or Frame Valid tag if it 1) establishes aframe, 2) saves all the nonvolatile registers
that it uses before changing any of them, and then 3) restores the registers and deall ocates the
frame. The differences between the Frame and Frame Valid tags are:

e A Frametag can support much larger modules. A Frame tag can be up to 2 Gbytes away from
the text to which it refers, while a Frame Valid tag must be within 32 Mbytes of the text.

* A Frametag can cover arange of up to 16,384 instructions, while a Frame Valid tag can cover
only 1024 instructions. Functions with frames that span more instructions may require
multiple Frame or Frame Valid tags.

» A Frametag requiresthat al the registers for which space has been allocated in the save areas
be saved. A Frame Valid tag can specify not only the save area sizes but a subset of the
registersthat are stored in the save area within the region covered by the tag.

Functions that intersperse saving some nonvolatile registers with using other nonvolatile registers,
or which save and use higher-numbered nonvolatile general or floating-point registers before
saving lower-numbered registers, need to use "Registers Valid" tags in addition to one or more
Frameor Frame Valid tags. A Registers Valid tag specifies arange of addresses for which the tag
isvalid and 1 bit for each nonvolatile general and floating-point register indicating whether it has
been saved in the register save area and may not contain its value on entry.

Finaly, thereisa"Specia" tag for functions that establish no frame but use the link register.

PowerPC Processor ABI Supplement—September 1995

Tag Formats

Every tag consists of two words (8 bytes). The low-order 2 bits of the first word of each tag specify
the tag type, encoded as shown in Table 4-3.

Table 4-3 Tag Formats

Tag Code Tag Type
0 Frame
1 Frame Valid
2 Registers Valid
3 Special

Tables 4-5, 4-5, 4-6, and 4-7 specify the formats of each tag type. For the Frame, Frame Valid, and
Special tags, BASE refers to the address within the code relative to which offset fields within the
tag are computed and on which the tags are sorted. BASE usually refersto thefirst instruction
following the instruction that establishes the frame. For Frame tags, a RANGE of 0 impliesonly the
establishing of aframe and the sizes of the save areas; subsequent Registers Valid tags supply the
register save data.

Table 4-4 Frame Tag Format

Word Bits Name Description

1 0-29 BASE _OFFSET The(signed) number of words between the tag and the BASE
towhichit refers, positiveif thetag isat alower addressthan

the BASE.
1 30-31 TYPE 0
2 0-5 FRAME_START The (unsigned, possibly zero) number of words between

BASE and the first address at which registersimplied by the
values FR and GR have been saved. In the interval between
that address and BASE, aframe has been established, and the
LR save word of the previous frame contains the address
from which the function was called, but the nonvolatile
registers still contain their values when the function was

entered.
2 6-10 FR Size in double words of the floating-point register save area.
2 11-15 &R Size in words of the general register save area.

Object Files 45

Table 4-4 Frame Tag Format (Continued)

Word Bits Name Description

2 16-29 RANGE The (unsigned) number of words between
BASE+4* FRAME _START andthelast word towhichthetag
applies. A tag ceases to apply at the instruction after the one
that deall ocatesthe frame, and earlier if theregister save state
changes such that it requires another tag. A RANGE of 0
implies only the establishing of aframe and the sizes of the
save areas; subsequent Registers Valid tags supply the
register save data.

2 30 C REG 1if and only if the condition register is saved in its assigned
place in the register save area.

2 31 LR | NREG 1if thelink register holdsits contentson entry to thefunction
and is not saved in the LR save word of the previous frame.

Table4-5 Frame Valid Tag Format

Word Bits Name Description

1 05 FRAME_START Same as Frame tag, except that FV and GV specify the
number of registers saved.

1 6-29 BASE OFFSET SameasFrametag.
1 30-31 TYPE 1
2 0-4 FV The number of nonvolatile floating-point registers saved in

thefloating-point registers save areawithin the RANGE of the
tag. If agiven floating-point register is saved, so must all
others with higher numbers.

2 5-9 FR Same as Frame tag.

2 10-14 &V The number of nonvolatile general registers saved in the
general registers save areawithin the RANGE of thetag. If a
given register is saved, so must all others with higher

numbers.
2 1519 R Same as Frame tag.
2 20-29 RANGE Same as Frame tag.
2 30 C REG Same as Frame tag.
2 31 LR I NREG Same as Frame tag.

PowerPC Processor ABI Supplement—September 1995

Table 4-6 Registers Valid Tag Format

Word Bits Name

Description

1 0-17 FLOAT_REGS

1 18-29 START_OFFSET

1 30-31 TYPE

2 0-17 GEN_REGS

2 18-29 RANCGE

2 30 C REG

2 31 RESERVED

One bit for each nonvolatile floating-point register, bit O for
f31, ..., bit17forf 14, with al signifying that the register
issaved in the register save area.

The number of words between the BASE of the nearest
preceding Frame or Frame Valid tag and the first instruction
to which thistag applies.

2

One bit for each nonvolatile general register, bit O for r 31,
.., bit 17 for r 14, with a 1 signifying that the register is
saved in the register save area.

The number of words between the first and the last
instruction to which this tag applies.

1if and only if the condition register issaved in its assigned
place in the register save area.

0

The only Special tag defined in this version of tags appliesto leaf functions which, though they do
not need to establish aframe, must modify the value in the link register. For example, aleaf
function in ashared object that needs no frame but requires a pointer to the global offset table may
use the following sequence of instructions to access static data viathe global offset table.

func: nflr
bl

t base: nflr
milr

t end: bl r

ril

_GLOBAL_OFFSET_TABLE -4 #GOT pointer to link register

ri2

ril

#Save LR in ril

#GOT pointer to rl2
#Use r12

#Restore LR

#Ret urn

The above code would have a Special tag specifying an LR_SAVEREG of 11 with a BASE
referencing theword at t base (the first instruction for which the LR does not contain its value on
entry) andaRANGE of ((tend - tbase)/4) - 1.

Object Files 47

Table 4-7

Special Tag Format

Word Bits Name Description

1 0-29 BASE _OFFSET The(signed) number of words between the tag and the BASE
towhichitrefers, positiveif thetag isat alower addressthan
BASE.

1 30-31 TYPE 3

2 0-3 LR_SAVEREG The (volatile) register that contains the value of the link
register at function entry.

2 4-19 RESERVED 0

2 20-29 RANGE The (unsigned) number of words between the first and last
word to which the tag applies (zero if the tag appliesto only
one word).

2 30-31 RESERVED 0

Stack Traceback Using Tags

4-8

The following algorithm reconstructs the values in the nonvolatile registers at the entry to all
functionsin the call chain. It assumes an image of the stack, the values in the registers, and
the address of the next instruction to be executed (PC). The algorithm creates a snapshot of
the register values at each function entry, beginning with the latest and working backward
through successive call sites.

1

[INITIALIZE] Record the values in the nonvolatile general and floating-point registers, CR,

LR, and SP.

[NO TAG] If thereis no tag associated with PC, then the recorded values are those at entry to
the function. Set PCto the value recorded for the LR. Go to step 8 [SNAPSHOT].

[SPECIAL TAG] If the tag associated with PCis a Specia tag, then the recorded values are
those at entry to the function, but the address of the caller, the LR on entry, isin the
LR_SAVEREG specified in the tag. Set PC to this value and go to step 8 [SNAPSHOT} .

[LOOP] If the tag associated with PCis a:
Frame Valid tag, continue with step 5.
Frame Tag, continue with step 6.
Registers Valid tag, continue with step 7.

[FRAME VALID TAG] If PClies beyond the BASE for the tag, then replace the recorded val-
ues of the FV (resp., GV) highest numbered floating-point (resp., general) registers with the
valuesin the register save areasin the frame addressed by SP, and if C_REGis 1, replaceits
recorded value. If LR _| NREGis 0, replace the recorded value of LR with the saved LR value
in the frame pointed to by SP. Go to step 8 [SNAPSHOT].

[FRAME TAG] Same asfor step 5, but with FV replaced with FR and GV replaced with GR.

PowerPC Processor ABI Supplement—September 1995

7. [REGISTERS VALID TAG] Obtain FRand GR, which define the register save areas, from the
closest Frame or Frame Valid tag with a BASE less than or equal to that of the Registers Valid
tag. Replace the recorded values of the floating-point (resp., general) registers corresponding
to 1'sin FLOAT _REGS (resp., GEN_REGS) with the values in the register save areasin the
frame addressed by SP. Replace the recorded values of LR and CR according to C_REGand
LR _I NREGasin step 5, then continue with step 8 [SNAPSHOT].

8. [SNAPSHOT] The recorded values are those at entry to the current function, which was called
from the addressin PC. The caller’s frame is pointed to by the value recorded in SP. Replace
SP with this value and continue with step 9.

9. [POPFRAME] If the recorded SP is nonzero, continue with step 4 [LOOP]. Otherwise, thisis
the end of the call chain. Terminate.

Locating Tags

Each abject (executable file or shared object) in a process image contains the tags that apply to its
executable instructions. The preceding section assumed that it was possible for a program to find
thetag, if any, associated with a particular address. This section describes the mechanism that a
program uses to locate its tags.

Thetagsfor aprocess are described by adoubly linked list of mrodul e_t ags structures as shown
in Figure 4-1 below. Thereis usually one such structure for each module in the process.

struct nodul e_tags {

struct nodul e_tags *next; /* Next entry in list*/

struct nodul e_tags *prev; /* Previous entry in list */

caddr _t firstpc; /* First PCto which applicable */
caddr _t firsttag; /* Begi nning of tags */

caddr _t | astpc; /* Last PC to which applicable */
caddr _t lasttag; /* First address beyond end of tags */

b

Figure4-1 nodul e_t ags Structure

Thefirstpcandl ast pc valuesmay be zerowhen _ _add_nodul e_t ags iscaled. Inthis
case, __tag_| ookup_pc can compute the values by finding the PC range implied by tags
addressed by firsttagandl astt ag.

Object Files 4-9

The mechanism for locating tagsinvolvesthree functionsin the C library (See Required Routines
in Chapter 6):

_ _add_nodul e_tags(struct nodul e_tags *nt)
Adds the nodul e_t ags for an object to the list of module tags for the process.

_ _del ete_nodul e_tags(struct nodule tags *mt)
Removes the nodul e_t ags for an object from the list.

_ _tag_l ookup_pc(caddr_t pc)
Returns a pointer to the modul e_t ags structure that describes the tags section applicable
to the given PC value, or NULL if there is no applicable tags section.

The __add_nodul e_t ags function is generally called from the initialization function
specified in the dynamic structure; the _ _del et e_nodul e_t ags function is generally called
from the termination function. (See I nitialization and Ter mination Functionsin the System V
Application Binary Interface.)

The remainder of this section describes one way to arrange for amodule to construct its
nmodul e_t ags structure and add it to the list of active tag sections.

In constructing an executable or shared object, a module (conventionally, crt i . 0), whose
contents reflect the pseudo-code in Figure 4-2 below, is inserted before any object modules
containing executable instructions or tags.

.section .tags

_tag_start:
.section . modul e_t ags

_modul e_tags_start:
.long 0 # next pointer
.long 0 # prev pointer
.long 0 # firstpc

.long _tag_start # firsttag
.section.init

Call _ _add_nodul e_tags(_nodul e_tags_start)

Figure4-2 crti . o Pseudo-code

4-10 PowerPC Processor ABI Supplement—September 1995

Similarly, amodule (conventionally, cr t n. o), whose contents reflect the pseudo-code in Figure
4-3, is appended after any object modul es containing executable instructions or tags.

.section .tags
_tag_end:

.section . nmodul e_t ags

.long O # | astpc

.long _tag_end # lasttag

_modul e_t ags_end:
.section Lfini

Call _ _del ete_nodul e_tags(_nodul e_tags_end- 4*6)

Figure4-3 crtn. o Pseudo-code

When the link editor builds the executable or shared object, it concatenates the contributions to
each section from the various objects, in order. Therefore, assuming that only crti . o and
crtn. o contributeto the. modul e_t ags section, the link editor places the two wordsin the

. nodul e_t ags section of thecr t n. 0 module immediately after the four wordsin that section
inthecrti . o module forming acomplete, six-word nodul e_t ags structure. The code in the
. 1 ni t section, which makes up part of the initialization function specified in the dynamic section,
adds the tag section described by thenodul e_t ags to thelist of active tag sections. The code in
the. fi ni section deletesthenodul e_t ags from the active list using addressing relative to the
end of the structure to avoid the need for a globally visible, but not unique, symbol.

Object Files 411

Symbol Table

Symbol Values

If an executable file contains a reference to a function defined in one of its associated shared
objects, the symbol table section for thefile will contain an entry for that symbol. Thest _shndx
member of that symbol table entry contains SHN_UNDEF. Thisinforms the dynamic linker that
the symbol definition for that function is not contained in the executable file itself. If that symbol
has been allocated a procedure linkage table entry in the executable file, and thest _val ue
member for that symbol table entry is nonzero, the value is the virtual address of the first
instruction of that procedure linkage table entry. Otherwise, thest _val ue member contains
zero. This procedure linkage table entry address is used by the dynamic linker in resolving
references to the address of the function. See Function Addressesin Chapter 5 for details.

Small Data Area

4-12

The small data areais part of the data segment of an executable program. It contains data items
withinthe. sdat a and . sbss sections, which can be addressed with 16-bit signed offsets from
the base of the small data area.

In both shared object and executable files, the small data area straddles the boundary between
initialized and uninitialized data in the data segment of the file. The usual order of sectionsin the
data segment, some of which may be empty, is:

.data
. got

. sdat a
. Sbss

.plt

. bss

Only dataitemswith local (non-global) scope may appear in the small data areaof a shared object.

In a shared object the small data area follows the global offset table, so datain the small data area
can be addressed relative to the GOT pointer. However, in this case, the small dataareaislimited
in size to no more than 32 Kbytes, and lessiif the global offset table islarge.

For executablefiles, up to 64 Kbytes of dataitemswith local or global scope can be placed into the
small dataarea. In an executablefile, the symbol _ SDA BASE_ (small data area base) is defined
by the link editor to be an address relative to which all datainthe. sdat a and . sbss sections
can be addressed with 16-hit signed offsets or, if thereis neither a. sdat a nor a. sbss section,
thevalue 0. Inashared object, SDA BASE isdefined to have the same value as
_GLOBAL_OFFSET_TABLE . Thevaueof _SDA BASE _inan executableisnormally loaded
intor 13 at processinitialization time, and r 13 thereafter remains unchanged. In particular,
shared objects shall not changethevalueinr 13.

Compilers may generate "short-form," one-instruction references for al dataitemsthat arein the
. sdat a or. sbss sections. In executable files, such references arerelative tor 13; in shared
objects, they are relative to aregister that contains the address of the global offset table. Placing
more data items in small data areas usually resultsin smaller and faster program execution.

PowerPC Processor ABI Supplement—September 1995

Note, however, that the size of the small data areaiis limited, as indicated above. Compilers that
support small data area rel ative addressing determine whether or not an eligible dataitemis placed
in the small data area based on its size. All dataitems less than or equal to a specified size (the
default is usually 8 bytes) are placed in the small data area. Initialized dataitems are placed in a

. sdat a section, uninitialized dataitemsin a. sbhss section. If the default size resultsin a small
data areathat is too large to be addressed with 16-hit relative offsets, the link editor fails to build
the executable or shared object, and some of the code that makes up the file must be recompiled
with a smaller value for the size criterion.

Object Files 413

Relocation

Relocation Types

Relocation entries describe how to alter the instruction and data rel ocation fields shown in Figure
4-1 (bit numbers appear in the lower box corners; Little-Endian byte numbers appear in the upper
right box corners; Big-Endian numbers appear in the upper left box corners).

0 31 22 1/3 0
wor d32
31
0 31 22 1/3 0
wor d30
0 29 30 31
0 31 22 1/3 0
| ow24
0 56 29/ 31
0 31 212 1/3 0
| owl4
0 10 15|16 29| 31
0 1)1 0
hal f 16
0 15

Figure4-1 Relocation Fields

4-14 PowerPC Processor ABI Supplement—September 1995

wor d32

wor d30

| ow24

| owl4

hal f 16

Calculations in Table 4-8 assume the actions are transforming a relocatable file into either an

This specifies a 32-bit field occupying 4 bytes, the alignment of which is 4
bytes unless otherwise specified.

This specifies a 30-bit field contained within bits 0-29 of a word with
4-byte alignment. The two least significant bits of the word are
unchanged.

This specifies a 24-bit field contained within a word with 4-byte
alignment. The six most significant and the two least significant bits of the
word are ignored and unchanged (for example, "Branch” instruction).

This specifies a 14-bit field contained within a word with 4-byte
alignment, comprising a conditional branch instruction. The 14-bit
relative displacement in bits 16-29, and possibly the "branch prediction
bit" (bit 10), are altered; all other bits remain unchanged.

This specifies a 16-hit field occupying 2 bytes with 2-byte alignment (for
example, the immediate field of an "Add Immediate” instruction).

executable or a shared object file. Conceptually, the link editor merges one or more relocatable

filesto form the output. It first determines how to combine and locate the input files, next it

updates the symbol values, and then it performs relocations.

Rel ocations applied to executable or shared object files are similar and accomplish the same resullt.
The following notations are used in Table 4-8:

Represents the addend used to compute the value of the relocatable field.

Represents the base address at which a shared object has been loaded into
memory during execution. Generally, a shared object file is built with a0
base virtual address, but the execution address will be different. See
Program Header in the System V ABI for more information about the
base address.

Represents the offset into the global offset table at which the address of
the relocation entry’s symbol will reside during execution. See Coding
Examples in Chapter 3 and Global Offset Table in Chapter 5 for more
information.

Represents the section offset or address of the procedure linkage table
entry for asymbol. A procedure linkage table entry redirects a function
call to the proper destination. The link editor builds the initial procedure
linkage table, and the dynamic linker modifies the entries during
execution. See Procedure Linkage Table in Chapter 5 for more
information.

Object Files

4-15

Represents the place (section offset or address) of the storage unit being
relocated (computed using r _of f set).

Represents the offset of the symbol within the section in which the
symbol is defined (its section-relative address).

Represents the value of the symbol whose index resides in the relocation
entry.

Relocation entries apply to halfwords or words. In either case, ther _of f set value designates
the offset or virtual address of the first byte of the affected storage unit. The relocation type
specifies which bits to change and how to calculate their values. The PowerPC family uses only
the El f 32_Rel a relocation entries with explicit addends. For the relocation entries, the

r _addend member serves as the relocation addend. In all cases, the offset, addend, and the
computed result use the byte order specified in the ELF header.

The following general rules apply to the interpretation of the relocation typesin
Table 4-8:

4-16

"+" and "- " denote 32-bit modulus addition and subtraction, respectively. ">>" denotes
arithmetic right-shifting (shifting with sign copying) of the value of the left operand by the
number of bits given by the right operand.

For relocation types in which the names contain "14" or "16," the upper 17 bits of the value
computed before shifting must all be the same. For rel ocation types whose names contain
"24." the upper 7 bits of the value computed before shifting must all be the same. For
relocation types whose names contain "14" or "24," the low 2 bits of the value computed
before shifting must all be zero.

#hi (value) and #l o(value) denote the most and least significant 16 bits, respectively, of
theindicated value. Thatis, #l o(x) = (x & OxFFFF) and

#hi (X) =((x>>16) & OxFFFF).The"highadjusted" value, #ha (value), compensates
for #| o() being treated as a signed number:

#ha(x) =(((x >> 16) + ((x&0x8000) ? 1: 0)) & OxFFFF).

Reference in a calculation to the value Gimplicitly creates a GOT entry for the indicated
symbol.

_SDA BASE isasymbol defined by the link editor whose value in shared objectsisthe same
as_ GLOBAL_OFFSET _TABLE , and in executable programsis an address within the small
dataarea. See Small Data Area above.

PowerPC Processor ABI Supplement—September 1995

Table 4-8 Relocation Types

Name Value Field Calculation
R_PPC_NONE 0 none none

R _PPC_ADDR32 1 wor d32 S + A
R_PPC_ADDR24 2 | ow24* (S + A >>

R _PPC_ADDR16 3 hal f 16* S+ A
R_PPC_ADDR16_LO 4 hal f 16 #l o(S + A)

R _PPC_ADDR16 Hi 5 hal f 16 #hi (S + A
R_PPC_ADDR16_HA 6 hal f 16 #ha(S + A)

R _PPC_ADDR14 7 | owl4* (S + A >>
R_PPC_ADDR14_BRTAKEN 8 | owl4* (S + A >>

R _PPC_ADDR14_BRNTAKEN 9 | owl4* (S + A >>

R _PPC _REL24 10 | ow24* (S+A-P) > 2
R PPC REL14 11 | owl4* (S+A-P) > 2
R _PPC_REL14 BRTAKEN 12 | owl4* (S+A- P > 2
R PPC REL14 BRNTAKEN 13 | owl4* (S+A-P) > 2
R_PPC_GOT16 14 hal f 16* G+ A

R PPC GOT16_LO 15 hal f 16 #l o(G + A

R _PPC_GOT16_H 16 hal f 16 #hi (G + A)

R PPC GOT16_HA 17 hal f 16 #ha(G + A)

R _PPC_PLTREL24 18 | ow24* (L+A-P) > 2
R _PPC_COPY 19 none none

R PPC _GLOB DAT 20 wor d32 S+ A

R PPC JMP_SLOT 21 none see bel ow
R_PPC_RELATI VE 22 wor d32 B+ A

R _PPC LCCAL24PC 23 | ow24* see bel ow
R_PPC_UADDR32 24 wor d32 S+ A
R_PPC_UADDR16 25 hal f 16* S+ A
R_PPC_REL32 26 wor d32 S+A-P

R _PPC_PLT32 27 wor d32 L+ A

Object Files

4-17

Table 4-8 Relocation Types (Continued)

Name Value Field Calculation

R PPC_PLTREL32 28 wor d32 L+A-P

R PPC PLT16_LO 29 hal f 16 #lo(L + A

R PPL_PLT16_HI 30 hal f 16 #hi (L + A)

R PPC PLT16_HA 31 hal f 16 #ha(L + A

R _PPC_SDAREL16 32 hal f 16* S+ A- _SDA BASE_
R_PPC_SECTOFF 33 hal f 16* R+ A

R _PPC_SECTOFF_LO 34 hal f 16 #l o(R + A)

R PPC SECTOFF _Hi 35 hal f 16 #hi (R + A)

R _PPC_SECTOFF_HA 36 hal f 16 #ha(R + A)

R _PPC_ADDR30 37 wor d30 (S+A-P) > 2

Relocation values not in Table 4-8 and less than 101 or greater than 200 are reserved. Valuesinthe
range 101-200 and names beginning with"R_PPC_EMB " have been assigned for embedded
system use.

The relocation types whose Field column entry contains an asterisk * are subject to failureif the
value computed does not fit in the all ocated bits.

Therelocation typesin which the namesinclude _ BRTAKEN or _ BRNTAKEN specify whether the
branch prediction bit (bit 10) should indicate that the branch will be taken or not taken,
respectively. For an unconditional branch, the branch prediction bit must be O.

Relocation types with special semantics are described below.

Name Description

R_PPC_GOT16* These relocation types resemble the corresponding
R _PPC_ADDR16* types, except that they refer to the address of the
symbol’s global offset table entry and additionally instruct the link
editor to build a global offset table.

R _PPC PLTREL24 This relocation type refers to the address of the symbol’s procedure
linkage table entry and additionally instructs the link editor to build a
procedure linkage table. There is an implicit assumption that the
procedure linkage table for a module will be within +/- 32 Mbytes of
an instruction that branches to it, so that the R_PPC_PLTREL24
relocation type is the only one needed for relocating branches to
procedure linkage table entries.

4-18 PowerPC Processor ABI Supplement—September 1995

Name

Description

R_PPC_COPY

R _PPC_GLOB_DAT

R _PPC_JMP_SLOT

R_PPC_RELATI VE

R_PPC_LOCAL24PC

R_PPC_UADDR*

The link editor creates this relocation type for dynamic linking. Its
offset member refers to alocation in a writable segment. The symbol
table index specifies a symbol that should exist both in the current
object file and in a shared object. During execution, the dynamic
linker copies data associated with the shared object’s symbol to the
location specified by the offset.

This relocation type resembles R_PPC_ADDR32, except that it sets a
global offset table entry to the address of the specified symbol. This
special relocation type allows one to determine the correspondence
between symbols and global offset table entries.

The link editor creates this relocation type for dynamic linking. Its
offset member gives the location of a procedure linkage table entry.
The dynamic linker modifies the procedure linkage table entry to
transfer control to the designated symbol’s address (see Figure 5-3 in
Chapter 5).

The link editor creates this relocation type for dynamic linking. Its
offset member gives alocation within a shared object that contains a
value representing a relative address. The dynamic linker computes
the corresponding virtual address by adding the virtual address at
which the shared object was loaded to the relative address.
Relocation entries for this type must specify O for the symbol table
index.

This relocation type resembles R_ PPC_REL24, except that it uses
the value of the symbol within the object, not an interposed value, for
Sinits calculation. The symbol referenced in this relocation normal-
ly is _GLOBAL_OFFSET_TABLE_, which additionally instructs the
link editor to build the global offset table.

These relocation types are the same as the corresponding
R _PPC_ADDR* types, except that the datum to be relocated is
alowed to be unaligned.

Object Files 4-19

4-20 PowerPC Processor ABI Supplement—September 1995

5 PROGRAM LOADING AND DYNAMIC LINKING

Program Loading

Asthe system creates or augments a process image, it logically copies afile's segment to avirtual
memory segment. When—and if—the system physically reads the file depends on the program’s
execution behavior, system load, and so on. A process does not require a physical page unless it
references the logical page during execution, and processes commonly leave many pages
unreferenced. Therefore, delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object files must have
segment images whose offsets and virtual addresses are congruent, modulo the page size.

Virtual addresses and file offsets for the PowerPC processor family segments are congruent
modulo 64 Kbytes (0x10000) or larger powers of 2. Although 4096 bytesis currently the
PowerPC page size, this allows files to be suitable for paging even if implementations appear with
larger page sizes. Thevalue of thep_al i gn member of each program header in a shared object
file must be 0x10000. Figure 5-1isan example of an executable file assuming an executable
program linked with a base address of 0x02000000 (32 Mbytes).

File Ofset Vi rtual Address

0
ELF header

Program header table

G her information

0x100 0x02000100
Text segnent

0x2be00 bytes

0x0202bef f
0x2bf 00
Dat a segment 0x0203bf 00
0x4e00 bytes
0x02040cf f

0x30d00
G her information

Figure5-1 Executable File Example

Program Loading and Dynamic Linking 51

Table 5-1 Program Header Segments

Member Text Data

p_type PT_LOAD PT_LOAD
p_of f set 0x100 0x2bf 00
p_vaddr 0x02000100 0x0203bf 00
p_paddr unspeci fi ed unspeci fi ed
p filesz 0x2be00 0x4e00
p_nensz 0x2be00 0Ox5e24
p_flags PF_R+PF_X PF_R+PF W
p_align 0x10000 0x10000

Although the file offsets and virtual addresses are congruent modulo 64 Kbytes for both text and
data, up to four file pages can hold impure text or data (depending on page size and file system
block size).

» Thefirst text page contains the ELF header, the program header table, and other
information.

» Thelast text page may hold a copy of the beginning of data.
» Thefirst data page may have a copy of the end of text.
» Thelast data page may contain file information not relevant to the running process.

Logically, the system enforces memory permissions asif each segment were complete and sepa-
rate; segment addresses are adjusted to ensure that each logical page in the address space has asin-
gle set of permissions. In the examplein Figure 5-1, the file region holding the end of text and the
beginning of datais mapped twice; at one virtual address for text and at a different virtual address
for data.

The end of the data segment requires special handling for uninitialized data, which the system
definesto begin with zero values. Thusif thelast data page of afileincludesinformation not inthe
logical memory page, the extraneous data must be set to zero, rather than to the unknown contents
of the executablefile. "Impurities’ in the other three pages are not logically part of the process
image; whether the system expunges them is unspecified. The memory image for the program in
Figure 5-1 is presented in Figure 5-2, assuming 4096 (0x 1000) byte pages.

PowerPC Processor ABI Supplement—September 1995

Vi rtual Address Segnent

0x02000000 ,
Header paddi ng
0x100 bytes
0x02000100
Text segnent
. Text
0x2be00 bytes
0x0202bf 00 Dat a paddi ng
0x100 bytes
0x0203b000 Text paddi ng
0xf 00 bytes
0x0203bf 00
Dat a segnent
- Dat a
0x4e00 bytes
0x02040d00 Uninitialized data
0x1024 bytes
0x02041d24 Page paddi ng
0x2dc zero bytes

Figure 5-2 Process Image Segments

One aspect of segment |oading differs between executable files and shared objects. Executablefile
segments may contain absolute code. For the process to execute correctly, the segments must
reside at the virtual addresses assigned when building the executabl e file, with the system using the
p_vaddr vauesunchanged as virtual addresses.

On the other hand, shared object segmentstypically contain position-independent code. This
allows a segment’s virtual address to change from one process to another, without invalidating
execution behavior. Though the system chooses virtual addresses for individual processes, it
maintains the "relative positions" of the segments. Because position-independent code uses rela-
tive addressing between segments, the difference between virtual addressesin memory must match
the difference between virtual addressesin the file. Table 5-2 shows possible shared object virtual
address assignments for several processes, illustrating constant relative positioning. Thetable also
illustrates the base address computations.

Program Loading and Dynamic Linking 5-3

Table 5-2 Shared Object Segment Example

Source Text Data Base Address
File 0x000200 0x02a400

Process 1 0x100200 0x12a400 0x100000
Process 2 0x200200 0x22a400 0x200000
Process 3 0x300200 0x32a400 0x300000
Process 4 0x400200 0x42a400 0x400000

Program Interpreter

A program shall not specify a program interpreter other than/ usr/1i b/ | d. so. 1.

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of thisinformation is
processor-specific, including the interpretation of some entries in the dynamic structure.

DT_PLTGOT Thisentry’sd_pt r member gives the address of the first byte in the
procedure linkage table (. PLT in Figure 5-3).
DT_JMPREL As explained in the System V ABI, this entry is associated with a

table of relocation entries for the procedure linkage table. For the
PowerPC, this entry is mandatory both for executable and shared
object files. Moreover, the relocation table’s entries must have a one-
to-one correspondence with the procedure linkage table. The table of
DT_JMPREL relocation entries is wholly contained within the
DT_RELA referenced table. See Procedure Linkage Table later in
this chapter for more information.

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses. Global offset
tables hold absolute addresses in private data, thus making the addresses available without
compromising the position-independence and sharability of aprogram’stext. A program
references its global offset table using position-independent addressing and extracts absol ute
values, thus redirecting position-independent references to absolute locations.

5-4 PowerPC Processor ABI Supplement—September 1995

When the dynamic linker creates memory segments for aloadable object file, it processes the
relocation entries, some of which will be of type R_PPC_GLOB_DAT, referring to the global
offset table. The dynamic linker determinesthe associated symbol values, cal culates their absolute
addresses, and sets the global offset table entries to the proper values. Although the absolute
addresses are unknown when the link editor builds an object file, the dynamic linker knows the
addresses of al memory segments and can thus cal cul ate the absol ute addresses of the symbols
contained therein.

A global offset table entry provides direct access to the absolute address of a symbol without
compromising position-independence and sharability. Because the executable file and shared
objects have separate global offset tables, a symbol may appear in several tables. The dynamic
linker processes all the global offset table relocations before giving contral to any code in the
process image, thus ensuring the absol ute addresses are available during execution.

The dynamic linker may choose different memory segment addresses for the same shared object in
different programs; it may even choose different library addresses for different executions of the
same program. Nonethel ess, memory segments do not change addresses once the processimageis
established. Aslong as aprocess exists, its memory segments reside at fixed virtual addresses.

A global offset table’'s format and interpretation are processor specific. For PowerPC, the symbol
_GLOBAL_OFFSET_TABLE__ may be used to access the table. The symbol may reside in the
middle of the. got section, allowing both positive and negative "subscripts' into the array of
addresses. Four words in the global offset table are reserved:

e Thewordat GLOBAL_OFFSET_TABLE [- 1] shall containabl r | instruction (seethe
text relating to Figure 3-33, "Prologue and Epilogue Sample Code").

e Thewordat _GLOBAL_OFFSET_TABLE_ [0] isset by thelink editor to hold the address of
the dynamic structure, referenced with the symbol _ DYNAM C.

This alows a program, such as the dynamic linker, to find its own dynamic structure
without having yet processed its relocation entries. Thisis especially important for
the dynamic linker, because it must initialize itself without relying on other programs
to relocate its memory image.

e Thewordat G.OBAL_OFFSET_TABLE [1] isreserved for future use.
e Thewordat _G_OBAL_OFFSET_TABLE [2] isreserved for future use.

The global offset table residesinthe ELF . got section.

Function Addresses

References to the address of afunction from an executable file and the shared objects associated
with it need to resolve to the same value. References from within shared objects will normally be
resolved by the dynamic linker to the virtual address of the function itself. Referencesfrom within
the executable file to afunction defined in a shared object will normally be resolved by the link
editor to the address of the procedure linkage table entry for that function within the executable
file.

To alow comparisons of function addresses to work as expected, if an executable file references a
function defined in a shared object, the link editor will place the address of the procedure linkage
table entry for that function in its associated symbol table entry. See Symbol Valuesin Chapter 4

Program Loading and Dynamic Linking 5-5

for details. The dynamic linker treats such symbol table entries specially. If the dynamic linker is
searching for asymbol and encounters a symbol table entry for that symbol in the executable file,
it normally follows these rules:

» Ifthest _shndx member of the symbol table entry is not SHN UNDEF, the dynamic linker
has found a definition for the symbol and usesitsst _val ue member as the symbol’s
address.

* Ifthest _shndx member is SHN_ UNDEF and the symbol isof type STT_FUNC and the
st _val ue member is not zero, the dynamic linker recognizes this entry as specia and uses
thest val ue member asthe symbol’s address.

« Otherwise, the dynamic linker considers the symbol to be undefined within the executable file
and continues processing.

Some relocations are associated with procedure linkage table entries. These entries are used for
direct function calls rather than for references to function addresses. These relocations are not
treated in the special way described above because the dynamic linker must not redirect procedure
linkage table entries to point to themselves.

Procedure Linkage Table

5-6

Much as the global offset table redirects position-independent address cal culations to absolute
locations, the procedure linkage table redirects position-independent function calls to absolute
locations. The link editor cannot resolve execution transfers (such as function calls) from one
executable or shared object to another. Consequently, the link editor arranges to have the program
transfer control to entriesin the procedure linkage table. The dynamic linker determines the
destinations’ absolute addresses and modifies the procedure linkage table’'s memory image
accordingly. The dynamic linker can thus redirect the entries without compromising the position-
independence and sharability of the program’s text. Executable files and shared object files have
separate procedure linkage tabl es.

For the PowerPC, the procedure linkage table (the. pl t section) isnot initialized in the
executable or shared object file. Instead, the link editor simply reserves space for it, and the
dynamic linker initializes it and manages it according to its own, possibly implementation-
dependent needs, subject to the following constraints:

» Thefirst 18 words (72 bytes) of the procedure linkage table are reserved for use by the
dynamic linker. There shall be no branches from the executable or shared object into these
first 18 words.

» |If the executable or shared object requires N procedure linkage table entries, the link editor
snall reserve 3* Nwords (12* N bytes) following the 18 reserved words. Thefirst 2* N of
these words are the procedure linkage table entries themselves. The static linker directs calls
to bytes (72 + (i - 1) *8), fori between 1 and Ninclusive. The remaining Nwords (4* N
bytes) are reserved for use by the dynamic linker.

As mentioned before, arelocation table is associated with the procedure linkage table. The
DT_JMPREL entry inthe _DYNAM C array gives the location of the first relocation entry. The
relocation table's entries parallel the procedure linkage table entries in a one-to-one
correspondence. That is, relocation table entry 1 appliesto procedure linkage table entry 1, and so

PowerPC Processor ABI Supplement—September 1995

on. Therelocation type for each entry shall beR_PPC_JMP_SLOT, the relocation offset shall

specify the address of the first byte of the associated procedure linkage table entry, and the symbol
table index shall reference the appropriate symbol.

To illustrate procedure linkage tables, Figure 5-3 shows how the dynamic linker might initialize

the procedure linkage table when loading the executable or shared object.

. PLT:

. PLTresol ve:
addi s
addi
ntctr
addi s
addi
bctr

.PLTcal I :
addi s
| wz
ntctr
bctr
nop
nop
nop
nop
nop
nop
nop
nop

. PLT1:
addi
b

. PLTi :
addi
b

. PLTN:
addi
b

. PLTt abl e:

r12,r0, dynamnic_I|inker @a
ri2,r12,dynamc_linker@
ri2
ri2,r0, synt ab_addr @a
ri2,r12, syntab_addr @

r1l,r11, . PLTt abl e@a
rll,.PLTtable@ (r11)
ril

r1l1,r0, 4*0
.PLTresol ve

ri1,r0,4*(i-1)
.PLTresol ve

ri1,ro0, 4*(N-1)
.PLTresol ve

<N word tabl e begins here>

Figure 5-3 Procedure Linkage Table Example

Program Loading and Dynamic Linking

5-7

5-8

Following the steps below, the dynamic linker and the program cooperate to resolve symbolic
references through the procedure linkage table. Again, the steps described below are for
explanation only. The precise execution-time behavior of the dynamic linker is not specified.

1. Asshown above, al procedure linkage table entriesinitially transfer to. PLTr esol ve,
allowing the dynamic linker to gain control at the first execution of each table entry. For
example, assume the program calls name, which transfers control to the label . PLTi . The
procedure linkage table entry loadsintor 11 four times the index of the relocation entry for
. PLTi andbranchesto. PLTr esol ve, which then callsinto the dynamic linker with a
pointer to the symbol table for the object inr 12.

2. Thedynamic linker finds relocation entry i corresponding to theindex inr 11. It will have
type R_PPC_JMP_SLOIT, its offset will specify the address of . PLTi , and its symbol table
index will reference name.

3. Knowing this, the dynamic linker finds the symbol’s "rea” value. It then modifies the code at
. PLTi inoneof twoways. If thetarget symbol isreachablefrom. PLTi by abranch
instruction, it overwritesthe" addi r11,r0, 4*(i-1)" instructionat. PLTi witha
branch to the target. On the other hand, if the target symbol is not reachable from. PLTi , the
dynamic linker loads the target addressintoword . PLTt abl e+4* (i - 1) and overwritesthe
"b .PLTresol ve" witha"b .PLTcall".

4. Subsequent executions of the procedure linkage table entry will transfer control directly to the
function, either directly or by using . PLTcal | , without invoking the dynamic linker.

For PLT indexes greater than or equal to 2”13, only the even indexes shall be used and four words
shall be alocated for each entry. If the above schemeis used, this alows four instructions for
loading the index and branchingto. PLTr esol ve or. PLTcal | , instead of only two.

The LD_BI ND_NOWenvironment variable can change dynamic linking behavior. If itsvaueis
non-null, the dynamic linker resolves the function call binding at load time, before transferring
control to the program. That is, the dynamic linker processes rel ocation entries of type

R _PPC_JMP_SLOT during processinitialization. Otherwise, the dynamic linker evaluates
procedure linkage table entries |azily, delaying symbol resolution and relocation until the first
execution of atable entry.

Note — Lazy binding generally improves overall application performance because unused
symbols do not incur the dynamic linking overhead. Nevertheless, two situations make lazy
binding undesirable for some applications: 1) The initial reference to a shared object function
takes longer than subsequent calls because the dynamic linker intercepts the call to resolve the
symbol, and some applications cannot tolerate this unpredictability. 2) If an error occurs and
the dynamic linker cannot resolve the symbol, the dynamic linker will terminate the program.
Under lazy binding, this might occur at arbitrary times. Once again, some applications cannot
tolerate this unpredictability. By turning off lazy binding, the dynamic linker forces the failure
to occur during process initialization, before the application receives control.

PowerPC Processor ABI Supplement—September 1995

6 LIBRARIES

System Library

Support Routines

In addition to operating system services, | i bsys contains the following processor-specific
support routines.

_Qg_add _g_cnp _g_cnpe _qg_div
_g_dtoqg _g_feq _g_fge _qg_fagt
_g_fle _q_fIt _g_fne _Qg_itoqg
_q_mul _qg_neg _qg_qtod _qg_qtoi
_g_gtos _g_qtou _qg_sqrt _g_stoq
_Qg_sub _g_utoq _ _dtou

Figure 6-1 | i bsys Support Routines

Routines listed below employ the standard calling sequence described in Function Calling
Sequence in Chapter 3. Descriptions are written from the caller’s point of view with respect to
register usage and stack frame layout.

Note that the functions prefixed by _q_ below implement extended precision arithmetic
operations. The following restrictions apply to each of these functions:

* When afunction returns an extended precision result, that result is rounded in accordance with
the setting of the rounding control (RN) field of the FPSCR register.
» |If any floating-point exceptions occur, the appropriate exception bits in the FPSCR are

updated; if the corresponding exception is enabled, the floating-point exception trap handler is
invoked.

Note — The references in the following descriptions to a and b, where the corresponding
arguments are pointersto | ong doubl e quantities, refer to the values pointed to, not the
pointers themselves.

| ong double _qg_add(const |ong double *a, const |ong double *b)
This function returns a + b computed to extended precision.

int _q_cnmp(const long double *a, const long double *b)
This function performs an unordered comparison of the extended precision values of a and
b and returns an integer value that indicates their relative ordering, as shown below.

Libraries 6-1

6-2

Relation Value

aegua tob 0
a lessthan b 1
a greater than b 2
a unordered with respect to b 3

nt _q cnpe(const |ong double *a, const long double *b)
This function performs an ordered comparison of the extended precision values of a and b
and returns an integer value that indicates their relative ordering according to the same
convention as _qg_cnp.

ong double _g_div(const |long double *a, const |ong double *b)
This function returnsa / b computed to extended precision.

ong double _q dtog(double a)
This function converts the double precision value of a to quadruple precision and returns
the extended precision value.

nt g feq(const |long double *a, const |ong double *b)
This function performs an unordered comparison of the extended precision values of a and
b and returns a nonzero value if they are equal, zero otherwise.

nt _g_fge(const |ong double *a, const |ong double *b)
This function performs an ordered comparison of the extended precision values of a and b
and returns a nonzero value if a is greater than or equal to b, zero otherwise.

nt g fgt(const |ong double *a, const |ong double *b)
This function performs an ordered comparison of the extended precision values of a and b
and returns a nonzero value if a is greater than b, zero otherwise.

nt g fle(const |ong double *a, const |ong double *b)
This function performs an ordered comparison of the extended precision values of a and b
and returns a nonzero value if a is less than or equal to b, zero otherwise.

nt _q_flt(const long double *a, const |ong double *b)
This function performs an ordered comparison of the extended precision values of a and b
and returns a nonzero value if a is less than b, zero otherwise.

nt g fne(const |long double *a, const |ong double *b)
This function performs an unordered comparison of the extended precision values of a and
b and returns a nonzero value if they are unordered or not equal, zero otherwise.

ong double _qg_itog(int a)
This function converts the integer value of a to extended precision and returns the
extended precision value.

ong double g mul(const |ong double *a, const |ong double *b)
This function returns a * b computed to extended precision.

PowerPC Processor ABI Supplement—September 1995

| ong double _q _neg(const long double *a)
This function returns - a without raising any exceptions.

double _qg_qgtod(const long double *a)
This function converts the extended precision value of a to double precision and returns
the double precision value.

int _q_qtoi(const |long double *a)
This function converts the extended precision value of a to a signed integer by truncating
any fractional part and returns the signed integer value.

float g gtos(const long double *a)
This function converts the extended precision value of a to single precision and returns the
single precision value.

unsigned int _g _gtou(const long double *a)
This function converts the extended precision value of a to an unsigned integer by
truncating any fractional part and returns the unsigned integer value.

Il ong double _q sqgrt(const long double *a)
This function returns the square root of a computed to quadruple precision.

long double q stoq(float a)
This function converts the single precision value of a to extended precision and returns the
extended precision value.

| ong double _q_sub(const |ong double *a, const |ong double *b)
This function returns a - b computed to extended precision.

Il ong double _q utog(unsigned int a)
This function converts the unsigned integer value of a to extended precision and returns
the extended precision value.

unsigned int _ _dtou(double a)
This function converts the double precision value of a to an unsigned integer by truncating
any fractional part and returns the unsigned integer value. _ _dt ou raises exceptions as
follows:

e If0 <= a < 2732, theoperation is successful.
* If a isawhole number, no exceptions are raised.
» If aisnot awhole humber, the inexact exception is raised.

Otherwise, the valuereturned by dt ou isunspecified, and the invalid operation
exception israised. If any exceptions occur, the appropriate exception bitsin the
FPSCR are updated and, if the corresponding exception enable bits are set and the FEO
and FE1 bits of the M SR register are not both zero, the system floating-point
exception trap handler isinvoked.

Libraries 6-3

Optional Support Routines

6-4

Note that the facilities and interfaces described in this section are optional components of the
PowerPC Processor ABI Supplement.

In addition to the processor-specific routines specified above, | i bsys may also contain the
following processor-specific support routines.

_qg_lltoq _qg_qtoll _qg_qtoull _q_ulltoq
_ _dive4d _ _dtoll __dtoull __renb4
__udivé4 __urenb4

Figure 6-2 | i bsys Optional Support Routines

The following routines support software emulation of arithmetic operations for implementations
that provide 64-bit signed and unsigned integer datatypes. In the descriptions below, the
non-standard C names| ong | ong (or si gned | ong | ong) andunsi gned | ong | ong
are used to refer to these types. The routines employ the standard calling sequence described in
Function Calling Sequencein Chapter 3. Descriptions are written from the caller’s point of view
with respect to register usage and stack frame layout.

Note that the functions prefixed by _q_ below implement extended precision arithmetic
operations. The following restriction appliesto each of these functions:

If any floating-point exceptions occur, the appropriate exception bitsin the
FPSCR are updated; if the corresponding exception is enabled, the floating-point
exception trap handler isinvoked.

Note — The references in the following descriptions to a and b, where the corresponding
arguments are pointers to | ong doubl e guantities, refer to the values pointed to, not the
pointers themselves.

long double g lltog(long long a)
This function converts the | ong | ong value of a to extended precision and returns the
extended precision value.

long long g qtoll(const long double *a)
This function converts the extended precision value of a to asi gned | ong | ong by
truncating any fractional part and returns the si gned | ong | ong value.

unsigned long long _g qtoull(const long double *a)
This function converts the extended precision value of a to an unsi gned | ong | ong by
truncating any fractional part and returns the unsigned | ong | ong value.

long double _q ulltog(unsigned long long a)
This function converts the unsi gned | ong | ong value of a to extended precision and
returns the extended precision value.

PowerPC Processor ABI Supplement—September 1995

long long _ _div6e4(long long a, long long b)
This function computes the quotient a / b, truncating any fractional part, and returns the
si gned | ong | ong result.

long long _ _dtoll(double a)
This function converts the double precision value of a to asi gned | ong | ong by
truncating any fractional part and returns the si gned | ong | ong value.

unsigned long long _ dtoull(double a)
This function converts the double precision value of a to an unsi gned | ong | ong by
truncating any fractional part and returns the unsi gned | ong | ong value.

long long _ _renb64(long long a, long long b)
This function computes the remainder upon dividing a by b and returnsthe si gned | ong
| ong result.

unsigned long long _ udiv64(unsigned long | ong a, unsigned |ong
long b)
This function computes the quotient a / b, truncating any fractional part, and returns the
unsi gned | ong | ong result.

unsi gned long long _ _uren64(unsigned long |ong a, unsigned |ong
long b)
This function computes the remainder upon dividing a by b and returns the unsi gned
| ong | ong result.

Libraries 6-5

C Library

Required Routines

An implementation must provide the following processor-specific support routinesin| i bc.

| _va_arg _ _tag_register _ _tag_deregister _ _tag_I ookup

Figure 6-3 | i bc Required Routines

void * _ va_arg(va_list argp, _va_arg_type type)
This function is used by the va_ar g macros of <st dar g. h> and <var ar gs. h>, and
it returns a pointer to the next argument specified in the variable argument list ar gp.
A variable argument list is an array of one structure, as shown below.

void * _ va arg(va_list argp, _va_arg type type)
/* overflow arg area is initially the address at which the
first arg passed on the stack, if any, was stored.

reg_save_area is the start of where r3:r10 were stored.
reg_save_area nust be a doubl eword aligned

If f1:f8 have been stored (because CR bit 6 was 1),
reg_save_area+4*8 nust be the start of where f1:f8
were stored

L T T T .

~

typedef struct {
char gpr; /* index into the array of 8 GPRs
* stored in the register save area
* gpr=0 corresponds to r3,
* gpr=1to r4, etc.
*/
char fpr; /* index into the array of 8 FPRs
* stored in the register save area
* fpr=0 corresponds to f1,
* fpr=1to f2, etc.
*/
char *overflow arg_area
/* location on stack that holds
* the next overfl ow argunent
*/
char *reg_save_area
/* where r3:r10 and f1:f8 (if saved)
* are stored
*/
} va_list[1];

The argument is assumed to be of typet ype. The types are:

6-6 PowerPC Processor ABI Supplement—September 1995

0-ar g_ARGPA NTER

A struct,union,orl ong doubl e argument represented in the
PowerPC calling conventions as a pointer to (a copy of) the object.

1-arg_WORD

A 32-bit aligned word argument, any of the simple integer types, or a pointer
to an object of any type.

2 - ar g_DOUBLEWORD
A | ong | ong argument.
3-arg_ARGREAL

A doubl e argument. Notethat f | oat arguments are converted to and
passed asdoubl e arguments.

The mechanism for locating tags, described in L ocating Tagsin Chapter 4, involvesthe following
three functions:

__add_nodul e_tags(struct nmodul e_tags *nt)

This function adds the tag section described by thent argument to the list of
active tag sections.

__delete_nodul e_tags(struct nodul e tags *nt)

This function removes the tag section described by the nt argument from the list
of active tag sections.

__tag_l ookup_pc(caddr_t pc)

This function returns a pointer to the modul e_t ags structure that describes the
tags section applicable to the given PC value, or NULL if thereis no applicable
tags section.

Libraries 6-7

Optional Routines

6-8

Note that the facilities and interfaces described in this section are optional components of the
PowerPC Processor ABI Supplement.

In addition to the routines specified in the System V ABI, | i bc may also contain the following
routines:

at ol [Tabs [Tdiv [Ttostr
strtoll strtoul | ulltostr wst ol |

Figure 6-4 | i bc Optional Routines

Thefollowing routines are 64-bit counterparts to 32-bit routines specified in the System V ABI. It
isbeneficial if implementations that provide 64-bit signed and unsigned integer data types include
theseroutinesinl i bc. In the descriptions below, the non-standard C names| ong | ong (or

si gned | ongl ong) andunsi gned | ong | ong are used to refer to these types. The routines
employ the standard calling sequence described in Function Calling Sequencein Chapter 3; each
| ong | ong argument and return value is treated in the same manner as a structure consisting
solely of two | ongs. Descriptions are written from the caller’s point of view with respect to
register usage and stack frame layout.

long long atoll(const char *a)
This function converts the decimal string pointed to by a to asi gned | ong | ong value
and returns this value.

long long Ilabs(long long a)
This function returns the absolute value of a.

I1div_t Ildiv(long long a, long long b)
This function divides a by b and returns a structure (I | di v_t) containing the | ong
| ong quotient and remainder. This structure isthe same asthedi v_t structure described
in the System V Interface Definition, except that the quot and r emmembers are of type
| ong | ong instead of i nt .

char *Iltostr(long long a, char *b)
This function returns a pointer to the string represented by thel ong | ong value a.

long long strtoll(const char *a, char **b, int ¢)
This function converts the base-c string pointed to by a to asi gned | ong | ong value
and returns thisvalue. If b isnon-NULL, *b is set to point to the first character of a that
is not interpreted as part of the converted value.

unsigned long long strtoull (const char *a, char **b, int c)
This function converts the base-c string pointed to by a to an unsi gned | ong | ong
value and returns this value. If b isnon-NULL, * b is set to point to the first character of a
that is not interpreted as part of the converted value.

char *ulltostr(unsigned long long a, char *b)
This function returns a pointer to the string represented by the unsi gned | ong | ong
value a.

PowerPC Processor ABI Supplement—September 1995

long long wstoll(const wchar_t *a, wchar_t **b, int ¢)
This function converts the base-c string pointed to by a to asi gned | ong | ong value
and returns this value. If b isnon-NULL, *b is set to point to the first wide-character of a
that is not interpreted as part of the converted value.

Global Data Symbols

Thel i bsys library requires that some global external data objects be defined for the routinesto
work properly. In addition to the corresponding data symbols listed in the System V ABI, the
following symbol must be provided in the system library on al ABI-conforming systems
implemented with the PowerPC Architecture. Declarations for the data objects listed below can be
found in the Data Definitions section of this chapter.

_ _huge_val

Figure 6-5 | i bsys Global External Data Symbols

Application Constraints

Asdescribed above, | | bsys provides symbols for applications. In afew cases, however, an
application is obliged to provide symbols for the library. In addition to the application-provided
symbolslisted in this section of the System V ABI, conforming applications on the PowerPC
Architecture are also required to provide the following symbols:

extern _end;

This symbol refers neither to aroutine nor to alocation with interesting contents.
Instead, its address must correspond to the beginning of a program’s dynamic
allocation area, called the "heap." Typically, the heap beginsimmediately after the
data segment of the program’s executablefile.

extern const int _lib_version;

This variable's value specifies the compilation and execution mode for the
program. If the value is zero, the program wants to preserve the semantics of older
(pre-ANSI) C, where conflicts exist with ANSI. Otherwise, the value is nonzero,
and the program wants ANSI C semantics.

Libraries 6-9

System Data Interfaces

Data Definitions

6-10

This section contains standard header files that describe system data. These files are referred to by
the names in angle backets: <name. h> and <sys/ name. h>. Included in these headers are
macro definitions and data definitions.

The data objects described in this section are part of the interface between an ABI-conforming
application and the underlying ABI-conforming system on which it will run. While an
ABI-conforming system must provide these interfaces, the system does not have to include the
actual header files referenced here.

Programmers should observe that the source of the structures defined in these headersis defined in
the System V Interface Definition.

ANSI C serves asthe ABI reference programming language, and data definitions are specified in
ANSI Cformat. The C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other programming languages.

#define _U 01 [* Upper case */
#define _L 02 /* Lower case */
#define _N 04 [* Nurmeral (digit) */
#define _S 010 /* Spacing character */
#define P 020 /* Punctuation */
#define _C 040 /* Control character */
#define _B 0100 /* Blank */

#define _X 0200 /* heXadecimal digit */
extern unsi gned char __ctype[521];

Figure 6-6 <ctype. h>

struct dirent {
ino_t d_i no; /* "inode number" of entry */
of f _t d_off; /* offset of disk directory entry */
unsi gned short d_reclen; /* length of this record */
char d_nane[1]; /* nane of file */

i

Figure 6-7 <dirent. h>

PowerPC Processor ABI Supplement—September 1995

extern i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

nt errno;

EPERM
ENCENT
ESRCH
El NTR
El O
ENXI O
E2BI G
ENOEXEC
EBADF
ECH LD 10
EAGAIN 11
ENOVEM 12
EACCES 13
EFAULT 14
ENOTBLK 15
EBUSY 16
EEXI ST 17
EXDEV 18
ENCDEV 19
ENOTDI R 20
EISDR 21
El NVAL 22
ENFI LE 23
EMFILE 24
ENOITY 25
ETXTBSY 26
EFBIG 27
ENCSPC 28
ESPI PE 29
EROFS 30
EMLINK 31
EPIPE 32
EDOM 33
ERANGE 34
ENOVBG 35
EIDRM 36
ECHRNG 37
EL2NSYNC 38
EL3HLT 39
EL3RST 40
ELNRNG 41
EUNATCH 42
ENOCSI 43
EL2HLT 44
EDEADLK 45
ENOLCK 46

O©CoOoO~NOOOaO~rWNE

ECANCELED 47 /*

ENOTSUP 48
EBADE 50
EBADR 51
EXFULL 52
ENOANO 53

EBADRQC 54

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

Not super-user */

No such file or directory */
No such process */

interrupted systemcall */
I/O error */

No such device or address */

Arg list too long */

Exec format error */

Bad file nunber */

No children */

Resource tenporarily unavail able */
Not enough core */

Per m ssion denied */

Bad address */

Bl ock device required */

Mount devi ce busy */

File exists */

Cross-device link */

No such device */

Not a directory */

Is a directory */

Invalid argunment */

File table overflow */

Too many open files */

I nappropriate ioctl for device */

Text file busy */

File too large */

No space left on device */
Illegal seek */

Read only file system */

Too many |inks */

Br oken pi pe */

Math arg out of domain of func */
Math result not representable */
No nessage of desired type */
Identifier renmoved */

Channel nunber out of range */
Level 2 not synchronized */
Level 3 halted */

Level 3 reset */

Li nk nunber out of range */
Protocol driver not attached */
No CSI structure avail able */
Level 2 halted */

Deadl ock condition.*/

No record | ocks avail able.*/
Operation cancel ed */
Qperation not supported */
invalid exchange */

invalid request descriptor */

exchange full */

no anode */

invalid request code */

Libraries

6-11

6-12

#defi
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

EBADSLT 55 /%
EDEADLOCK 56 /*
EBFONT 57 /*

ENOSTR 60 /*

ENODATA 61 /*

ETINME 62 /*

ENOSR 63 /*

ENONET 64 /*

ENOPKG 65 /*

EREMOTE 66 /*
ENOLINK 67 /*
EADV 68 /*
ESRMNT 69 /*
ECOWM 70 /*
EPROTO 71 /*
EMULTI HOP 74 /*
EBADMVBG 77 /*
ENAVETOOLONG 78
EOVERFLOW 79 /*
ENOTUNIQ 80 /*
EBADFD 81 /*
EREMCHG 82 /*
ELI BACC 83 /*
ELIBBAD 84 /*
ELIBSCN 85 /*
ELI BMAX 86 /*
ELI BEXEC 87 /*
EILSEQ 88 /*
ENOSYS 89 /*
ELOOP 90 /*
ERESTART 91 /*
ESTRPI PE 92 /*
ENOTEMPTY 93 /*
EUSERS 94 /*
ESTALE 151 /*

invalid slot */

file | ocking deadl ock error */

bad font file fnt */

Devi ce not a stream */

no data (for no delay io) */

timer expired */

out of streans resources */

Machine is not on the network */
Package not installed */

The object is renpte */

the link has been severed */
advertise error */

srnount error */

Conmmuni cation error on send */
Protocol error */
mul ti hop attenpted */

trying to read unreadabl e message */
/* path name is too long */

value too large for data type */
given | og. nane not uni que */

f.d. invalid for this operation */
Renot e address changed */

Can't access a needed shared lib.*/
Accessing a corrupted shared lib.*/
.l'ib section in a.out corrupted.*/
Attenpting to link in too many libs */
Attenpting to exec a shared library */
Il egal byte sequence */
Unsupported file system operation */
Synbolic link | oop */
Restartabl e systemcall */
pi pe/ FIFO no sleep in stream head */
directory not enpty */

Too many users (for UFS) */

Stale NFS file handle */

Figure 6-8 <errno. h>

Power PC Processo

r ABI Supplement—September 1995

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne

* File segment

#defi ne FD_CLCEXEC

ORDONLY O
O WRONLY 1

O _RDVWR 2
O APPEND 0x08

O _SYNC 0x10

O NONBLOCK 0x80

O_CREAT 0x100
O _TRUNC 0x200
0 EXCL 0x400
O NOCTTY 0x800
F_DUPFD 0
F_GETFD 1
F_SETFD 2
F_GETFL 3
F_SETFL 4
F_SETLK 6
F_SETLKW 7
F_GETLK 1

[EnY

N

/* read only */

/* wite only */

/* read and wite */

/* append (wites guaranteed at end)*/
/* synchronized file update option */
/* non-bl ocking I/0O (PCSIX) */

/* open with file create */

/* open with truncation */

/* exclusive open */

/* don't allocate controlling tty */

/* Duplicate fildes */

/* Get
/* Set
[* Get
/* Set
/* Set
/* Set
/* Get

| ocki ng set data type
* Informati on passed to system by user.

fildes flags */
fildes flags */

file flags */

file flags */

file lock */

file lock and wait */
file lock */

*/
typedef struct flock {
short | _type;
short | _whence;
of f _t | _start;
of f _t | _Ien; /[* len == 0 neans until end of file */
| ong | _sysid;
pid_t | _pid;
| ong | _pad[4]; /* reserve area */
} flock_t;
/*
* File segnent | ocking types.
*/
#define F_RDLCK 01 /* Read | ock */
#def i ne F_WRLCK 02 /* Wite lock */
#def i ne F_UNLCK 03 /* Renmove | ock(s) */
/*
* PCSI X constants
*/
#defi ne O ACCMODE 3 /* Mask for file access nodes */

/* close on exec flag */

Figure 6-9 <fcntl. h>

\ extern int _ _flt_rounds;

Figure 6-10 <fl oat. h>

Libraries

6-13

6-14

#defi ne MM_NULL oL
#defi ne MM _HARD 0x00000001L
#def i ne MM_SOFT 0x00000002L
#def i ne MM_FI RM 0x00000004L
#defi ne MM_RECOVER 0x00000100L
#defi ne MM _NRECOV 0x00000200L
#defi ne MM _APPL 0x00000008L
#define MM _UTIL 0x00000010L
#define MM_OPSYS 0x00000020L
#defi ne MM_PRI NT 0x00000040L
#defi ne MM_CONSOLE 0x00000080L
#def i ne MM _NCSEV 0
#define MM HALT 1
#def i ne MM_ERROR 2
#defi ne MM_WARNI NG 3
#define MM I NFO 4
#defi ne MM NULLLBL ((char *) 0)
#define MM _NULLSEV MM_NGCSEV
#def i ne MM_NULLMC oL
#defi ne MM_NULLTXT ((char *) 0)
#def i ne MM_NULLACT ((char *) 0)
#define MM _NULLTAG ((char *) 0)
#def i ne MM_NOTOK -1
#defi ne MML.OK 0x00
#def i ne MM_NOVBG 0x01
#defi ne MV_NOCON 0x04
Figure 6-11 <f nt nsg. h>
#define FTWF 0 [* file *]
#define FTWD 1 /* directory */
#define FTWDNR 2 /* directory without read permnission */
#define FTWNS 3 /* unknown type, stat failed */
#define FTWSL 4 /* symbolic link */
#define FTWDP 6 /* directory */
#define FTW PHYS 01 /* use Istat instead of stat */
#def i ne FTW MOUNT 02 /* do not cross a nount point */
#define FTW CHDI R 04 /* chdir to each directory before /*
/*reading */
#def i ne FTW DEPTH 010 /* call descendents before calling */
/* the parent */
struct FTW{
i nt quit;
i nt base;
i nt | evel ;
H

Figure 6-12 <ftw. h>

PowerPC Processor ABI Supplement—September 1995

}s

struct

group {

char *gr_nanme;
char *gr_passwd;
gid_t gr_gid;
char **gr_mem

Figure 6-13 <grp. h>

b

#def i
#def i
#def i

#def i
#def i

#def i
#def i

struct

ne
ne
ne

ne

ne

ne
ne

pc_perm {

uid t ui d; | *
gid_t gid; /*
uid_t cui d; /*
gid_t cgi d; /*
node_t node; /*
unsi gned | ong seq; /*
key_t key; /*
| ong pad[4]; /*

owner's user id */

owner's group id */

creator's user id */
creator's group id */

access nodes */

sl ot usage sequence number */
key */

reserve area */

| PC_CREAT 0001000 /* create if key doesn't exist */
| PC_EXCL 0002000 /* fail if key exists */
| PC_NOMAIT 0004000 /* error if request nust wait */

| PC_PRI VATE (key _t)0

| PC_RM D 10 | *
| PC_SET 11 | *
| PC_STAT 12 /*

/* private key */

renove identifier */
set options */
get options */

Figure 6-14 <sys/i pc. h>

Libraries

6-15

6-16

#defi
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne

ne
ne
ne
ne
ne

ne
ne
ne

DAY 1 1
DAY_2 2
DAY_3 3
DAY_4 4
DAY_5 5
DAY_6 6
DAY_7 7
ABDAY 1 8
ABDAY 2 9
ABDAY 3 10
ABDAY 4 11
ABDAY 5 12
ABDAY 6 13
ABDAY 7 14
MON_1 15
MON_2 16
MON_3 17
NON_4 18
MON_5 19
MON_6 20
MON_7 21
MON_8 22
MON_9 23
MON 10 24
MN 11 25
MN 12 26
ABMON 1 27
ABMON 2 28
ABMON 3 29
ABMON 4 30
ABMON 5 31
ABMON 6 32
ABMON 7 33
ABMON 8 34
ABMON 9 35
ABMON 10 36
ABMON 11 37
ABMON 12 38
RADI XCHAR 39
THOUSEP 40
YESSTR 41
NOSTR 42
CRNCYSTR 43
DT FMI 44
D_FMT 45
T_FMr 46
AM STR 47
PM STR 48
CODESET
T_FMI_AVPM
ERA

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

sunday */
nonday */
tuesday */
wednesday */
t hur sday */
friday */
saturday */

sun */
nmon */
tue */
wed */
thu */
fri */
sat */

january */
february */
march */
april */
may */

june */
july */
august */
sept enber */
oct ober */
novenber */
decenber */

jan */
feb */
mar */
apr */
may */
jun */
jul */
aug */
sep */
oct */
nov */
dec */

radi x character */

separator for thousand */
affirmati ve response for queries */
negative response for queries */
currency synbol */

string for formatting date and time */
date format */

time format */

amstring */

pmstring */

49 /* codeset nanme */
50 /* amor pmtinme format string */
51 /* era description segnents */

PowerPC Processor ABI Supplement—September 1995

#define ERA D FMIr 52 /* era date format string */

#define ERA D T FMIr 53 /* era date and tine format */

#define ERA_T_FMI 54 /* era tinme format string */

#define ALT_DIA TS 55 /* alternate synbols for digits */

#def i ne YESEXPR 56 /* affirmative response expr. */

#def i ne NOEXPR 57 |* negative response expression */
Figure 6-15 <l angi nf 0. h>

#define MB_LEN_MAX 5

#defi ne TMP_MAX 17576 /* 26 * 26 * 26 */

#def i ne NL_ARGVAX 9 /* max value of "digit" */

#defi ne NL_LANGVAX 14 /* max bytes in a LANG nane */

#def i ne NL_ISGVAX 32767 /* max nessage nunber */

#def i ne NL_NVAX /* max bytes in N-to-1 mapping chars */

#defi ne NL_SETMAX 255 /* max set number */

#define NL_TEXTMAX 2048 /* max set nunber */

#def i ne NZERO 20 /* default process priority */

#def i ne FCHR_MAX 1048576 /* max size of a file in bytes */

Figure6-16 <limits. h>

b

#def i
#def i
#def i
#def i
#def i
#def i
#def i

struct

ne
ne
ne
ne
ne
ne
ne

[conv {
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

LC_CTYPE
LC_NUMERI C
LC TIME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC_ALL

*deci mal _poi nt;

*t housands_sep;
*Qgroupi ng
*int_curr_synbol
*currency_synbol ;
*nmon_deci mal _poi nt;
*nmon_t housands_sep
*mon_gr oupi ng;
*posi tive_sign;
*negative_sign
int_frac_digits
frac_digits;
p_cs_precedes
p_sep_by_space
n_cs_precedes
n_sep_by_space
p_si gn_posn;

n_si gn_posn;

O WNEO

Figure 6-17 <l ocal e. h>

Libraries

6-17

6-18

typedef union _h_val

{

unsigned long _i[2];

doubl e _d;
} _h_val;
extern const _h_val _ _huge_val;
Figure 6-18 <mat h. h>
#def i ne PROT_NONE 0x0 /* pages can’t be accessed */
#def i ne PROT_READ 0x1 /* pages can be read */
#def i ne PROT_WRI TE 0x2 /* pages can be witten */
#def i ne PROT_EXEC 0x4 /* pages can be executed */
#def i ne MAP_SHARED 1 /* share changes */
#def i ne MAP_PRI VATE 2 /* changes are private */
#define MAP_FI XED 0x10 /* user assigns address */
#defi ne M5_SYNC 0x0 /* wait for msync */
#defi ne MS_ASYNC Ox1 /* return immediately */
#defi ne MS_I NVALI DATE 0x2 /* invalidate caches */
Figure 6-19 <sys/ mman. h>
#def i ne MS_RDONLY 0x01 /* Read-only */
#def i ne MS_DATA 0x04 /* 6-argument nount */
#defi ne M5_NGOSUI D 0x10 /* Setuid prograns disallowed */
#def i ne MS_REMOUNT 0x20 /* Renmount */

Figure 6-20 <sys/ nmount . h>

PowerPC Processor ABI Supplement—September 1995

struct msqid_ds {
struct
struct msg
struct msg
unsi gned | ong
unsi gned | ong
unsi gned | ong

i pc_perm nsg_perm /*

meg_first; /
meg_last; [/
nsg_chytes; /*
nsg_gnum /*
nsg_gbytes; /*

operation permstruct */

ptr to first nessage on q */
ptr to | ast nmessage on q */
current # bytes on q */

of messages on q */

max # of bytes on q */

pid_t nsg_|lspid; /* pid of |ast msgsnd */
pid_t nsg_lrpid; /* pid of |ast msgrcv */
time_t nmsg_stinme; /* last nsgsnd time */
| ong nsg_padl; /* resv’'d for time_t expansion */
time_t meg_rtime; /* last nsgrcv time */
| ong nsg_pad2; /* time_t expansion */
time_t nsg_ctime; /* last change tine */
| ong nsg_pad3; /[* time expansion */
| ong nsg_pad4[4];/* reserve area */
3
#def i ne MSG_NOERROR 010000 /* no error if big nessage */
Figure 6-21 <sys/ nsg. h>
Libraries

6-19

struct netconfig {

char *nc_neti d; /* network identifier */
unsi gned | ong nc_senanti cs; /* defined bel ow */
unsi gned | ong nc_fl ag; /* defined bel ow */
char *nc_protofmy; /* protocol famly name*/
char *nc_pr ot o; /* protocol nane */
char *nc_devi ce; /* device nane for net id */
unsi gned | ong nc_nl ookups;/* # of ents in nc_l ookups */
char **nc_l ookups; /* list of |ookup directories */
unsi gned | ong nc_unused[8] ;

3

#define NC_TPI _CLTS 1

#define NC_TPI _COTS 2

#define NC_TPI _COTS_ORD 3

#def i ne NC_TPI _RAW 4

#defi ne NC_NOFLAG 00

#define NC_VI SI BLE 01

#def i ne NC_BROADCAST 02
#def i ne NC_NOPROTOFMLY "-"

#def i ne NC_LOOPBACK "l oopback"
#defi ne NC_I NET "inet"
#defi ne NC_I MPLI NK "inplink"
#defi ne NC_PUP " pup"”
#def i ne NC_CHACS "chaos"
#defi ne NC_NS "ns"
#def i ne NC_NBS "nbs"
#def i ne NC_ECMVA "ecm"
#define NC_DATAKI T "datakit"
#define NC CCTT "ceitt"”
#defi ne NC_SNA "sna"
#define NC_DECNET "decnet"
#def i ne NC_DLI "dli”
#define NC LAT "lat"
#defi ne NC_HYLI NK "hyl i nk"
#defi ne NC_APPLETALK "appl et al k"
#define NC_NIT "nit"
#def i ne NC_I EEE802 "i eeeB802"
#define NC_CsI "osi"
#define NC _X25 "x25"
#define NC _OSI NET "osinet"
#defi ne NC_GOSI P "gosi p"
#defi ne NC_NOPROTO
#define NC_TCP "tcp"
#def i ne NC_UDP "udp"
#defi ne NC_|I CWP "icmp”

Figure 6-22 <net confi g. h>

6-20 PowerPC Processor ABI Supplement—September 1995

struct nd_addrlist {
i nt n_cnt; /* nunber of nethbufs */
struct net buf *n_addrs; /* the netbufs */
3
struct nd_hostservlist {
i nt h_cnt; /* nunber of nd_hostservs */
struct nd_hostserv *h_host servs; /* the entries */
3
struct nd_hostserv {
char *h_host; /* the host nane */
char *h_serv; /* the service nane */
3
#def i ne ND_BADARG -2 /* Bad argunments passed */
#def i ne ND_NOVEM -1 /* No virtual menory left */
#define ND K 0 /* Transl ati on successful */
#def i ne ND_NOHOST 1 /* Hostname was not resolvable */
#defi ne ND_NOSERV 2 /* Service was unknown */
#defi ne ND_NOSYM 3 /* Couldn't resolve synbol */
#def i ne ND_OPEN 4 /* File couldn't be opened */
#define ND_ACCESS 5 /* File is not accessible */
#defi ne ND_UKNWN 6 /* Unknown object to be freed */
#def i ne ND_NOCTRL 7 /* Unknown netdir_options option*/
#define ND_FAI LCTRL 8 /* Opt failed in netdir_options */
#define ND_SYSTEM 9 /* Qther System error */
#defi ne ND_HOSTSERV 0
#define ND_HOSTSERVLI ST 1
#def i ne ND_ADDR 2
#def i ne ND_ADDRLI ST 3
#define ND_SET BROADCAST 1/* Do t_optmgnt for broadcast */
#define ND_SET RESERVEDPORT 2 /* bind it to reserve address */
#defi ne ND_CHECK RESERVEDPORT 3 /* check if address is resv'd */
#def i ne ND_MERGEADDR 4 |* Merge universal address */
#def i ne HOST_SELF "\\ 1"
#defi ne HOST_ANY "\\2"
#defi ne HOST_BROADCAST "\\3"

Figure 6-23 <netdir. h>

#define NL_SETD

typedef int nl_item

1

[* XPG3 Confornmant Default set nunmber.*/

#define NL_CAT_LOCALE (-1) /* XPG4 requirement */

/* XPG Conformant for nl_langinfo(). */

Figure 6-24 <nl _types. h>

Libraries

6-21

6-22

#def i ne CANBSI Z 256 [* max size of typewiter line */
#def i ne NGROUPS_UM N 0
#def i ne MAXPATHLEN 1024
#def i ne MAXSYMLI NKS 20
#defi ne MAXNAMELEN 256
#def i ne NADDR 13
#defi ne Pl PE_NMAX 5120
Figure 6-25 <sys/ param h>
typedef struct pollfd {
int fd; /* file desc to poll */
short events; /* events of interest on fd */
short revents; /* events that occurred on fd */
} pollfd_t;
#define POLLIN 0x0001 /* fd is readable */
#def i ne POLLPRI 0x0002 [* high priority info at fd */
#defi ne POLLOUT 0x0004 /* fdis witable (won't block) */
#defi ne POLLRDNORM 0x0040 /* normal data is readable */
#defi ne POLLVWRNORM POLLOUT
#defi ne POLLRDBAND 0x0080 /* out-of-band data is readable */
#defi ne POLLWRBAND 0x0100 /* out-of-band data is witable */
#defi ne POLLNORM POLLRDNORM
#defi ne POLLERR 0x0008 /* fd has error condition */
#def i ne POLLHUP 0x0010 /* fd has been hung up on */
#def i ne POLLNVAL 0x0020 /[* invalid pollfd entry */

Figure 6-26 <pol | . h>

PowerPC Processor ABI Supplement—September 1995

#define P_INITPID 1
#define P_IN TU D 0
#define P_IN TPG D 0
typedef long id_t;

typedef enumidtype {

[* whi

} procset _t;

#define P.MWID (-1)

P_PI D, /* A process identifier.
P_PPI D, /* A parent process identifier.
P_PG D, /* A process group (job control group)
[* identifier.
P_SI D, /* A session identifier.
P_C D, /* A scheduling class identifier.
P_U D, /* A user identifier.
P_A4 D, /* A group identifier.
P_ALL, /* Al processes.
P_LWPI D /* An LWP identifier.
} idtype_t;
typedef enumidop {
POP_DI FF, /* Set difference. The processes which
/* are in the left operand set and not
/* in the right operand set.
POP_AND, /* Set disjunction. The processes

ch are in both the left and right

/* operand sets.
POP_OR, /* Set conjunction. The processes
/* which are in either the left or the
/* right operand sets (or both).
POP_XOR /* Set exclusive or. The processes
/* which are in either the left or
/* right operand sets but not in both.
} idop_t;
typedef struct procset {
i dop_t p_op; /* The operator connection
/* between the followi ng two
/* operands each of which is a
/* sinple set of processes.
i dtype_t p_lidtype;
/* The type of the left operand
/* sinple set.
id_t p_lid; [/* The id of the left operand.
i dtype_t p_ridtype;
/* The type of the right
/* operand sinple set.
id_t p_rid; /* The id of the right operand.

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

Figure 6-27 <sys/ procset. h>

Libraries

6-23

6-24

struct passwd {

char *pw_nane;

char *pw_passwd;

uid t pw_ui d;

gid_t pw_gi d;

char *pw_age;

char *pw_conment ;

char *pw_gecos;

char *pw_dir;

char *pw_shel | ;
i

Figure 6-28 <pwd. h>
#define RLIM T_CPU 0 [* cpu tine in mlIliseconds */
#define RLIM T_FSI ZE 1 [* maximumfile size */
#define RLIM T_DATA 2 /* data size */
#define RLIM T_STACK 3 /* stack size */
#define RLIM T_CORE 4 /* core file size */
#define RLIMT_NOFILE 5 /* file descriptors */
#define RLIM T_VMEM 6 [* maxi mum mapped nenory */
#define RLIM T_AS RLI M T_VMEM
typedef unsigned long rlimt;
struct rlimt {
rlimt rlimcur; /[* current limt */
rlimt rlimmax; /* maxi mumval ue for rlimcur */

b

Figure 6-29 <sys/resource. h>

PowerPC Processor ABI Supplement—September 1995

#defi ne MAX AUTH BYTES 400
#defi ne MAXNETNAMELEN 255 /* max | ength of net user's nane */
#defi ne HEXKEYBYTES 48

enum aut h_stat {

AUTH K = 0,

AUTH BADCRED = 1, /* bogus credentials (seal broken) */
AUTH_REJECTEDCRED = 2, /* client should begin new session */
AUTH_BADVERF = 3, /* bogus verifier (seal broken) */
AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
AUTH_TOOWEAK = 5, /* rejected due to security reasons */
AUTH_I NVALI DRESP = 6, /* bogus response verifier */
AUTH_FAI LED = 7, /* sonme unknown reason */

b

uni on des_bl ock {
struct {
unsi gned | ong hi gh;
unsi gned | ong | ow,

} key;
char c[8];
3
struct opaque_auth {
i nt oa_flavor; /* flavor of auth */
char * oa_base; /* address of nore auth stuff */
unsi gned int oa_l ength; /* not to exceed MAX_AUTH_BYTES */
b
typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
uni on des_bl ock ah_key;
struct auth_ops {
voi d (*ah_nextverf)(struct __auth *);
i nt (*ah_marshal) (struct _ _auth *, XDR *);
i nt (*ah_validate)(struct _ _auth *,
struct opaque_auth *);
i nt (*ah_refresh)(struct __auth *);
voi d (*ah_destroy)(struct __auth *);
} *ah_ops;
char *ah_private;
} AUTH;

struct authsys_parns {
u_l ong aup_ti me;
char *aup_machnane;
uid_t aup_ui d;
gid_t aup_gi d;
u_int aup_| en;
gid_t *aup_gi ds;

b

extern struct opaque_auth _null _auth;

#define AUTH NONE O /* no authentication */

Libraries

6-25

6-26

#def i ne AUTH_NULL 0 /* backward conpatibility */

#define AUTH SYS 1 /* unix style (uid, gids) */

#define AUTH UNI X AUTH SYS

#define AUTH SHORT 2 /* short hand unix style */

#def i ne AUTH_DES 3 /* des style (encrypted timestanps)

enum cl nt _stat {
RPC_SUCCESS = 0, /* call succeeded */
RPC_CANTENCODEARGS = 1, /* can't encode argunents */
RPC_CANTDECCDERES = 2, /* can't decode results */
RPC_CANTSEND = 3, /* failure in sending call */
RPC_CANTRECV = 4, /* failure in receiving result
RPC_TI MEDQUT = 5, /* call timed out */
RPC | NTR = 18, /* call interrupted */
RPC_UDERRCR = 23, /* recv got uderr indication *
RPC_VERSM SMATCH = 6, /* rp versions not conpatible
RPC_AUTHERROR = 7, /* authentication error */
RPC_PROGUNAVAI L = 8, /* program not avail able */
RPC_PROGVERSM SMATCH = 9, /* program version m smat ched
RPC_PROCUNAVAI L = 10, /* procedure unavail able */
RPC_CANTDECCDEARGS = 11, /* decode arguments error */
RPC_SYSTEMERROR = 12, /* generic "other problent */
RPC_UNKNOWNHOST = 13, /* unknown host nane */
RPC_UNKNOWNPROTO = 17, /* unknown protocol */
RPC_UNKNOWNADDR = 19, /* Renopte address unknown */
RPC_NOBROADCAST = 21, /* Broadcasting not supported
RPC_RPCBFAI LURE = 14, /* the pnmapper failed in its call

RPC_PROGNOTREAQ STERED = 15,/* renpte prog not registered
RPC_N2AXLATEFAI LURE = 22, /* nane to address translation

/* fail ed*/

RPC TLI ERROR = 20, /* misc error in TLI library *
RPC_FAI LED = 16, /* unspecified error */

b
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

struct
enum cl nt_stat re_status;
uni on {

RPC_PNVAPFAI LURE RPC_RPCBFAI LURE

_RPC_NONE
_RPC_NETPATH
_RPC_VI SI BLE
_RPC CIRCUI T_V
_RPC_DATAGRAM V
_RPC_Cl RCUI T_N
_RPC_DATAGRAM N
_RPC_TCP
_RPC_UDP

o~NOO O WNEO

RPC_ANYSCOCK -1
RPC_ANYFD RPC_ANYSOCK

rpc_err {

struct {
int RE errno; /* related systemerror */
int REt errno; /* related tli error nunber */
} RE err;
enum aut h_stat RE_why; /* why auth error occurred */
struct {
u_l ong | ow, /* | owest version supported */

*/

*/

/
*/

*/

*/
*/
*/

/

PowerPC Processor ABI Supplement—September 1995

u_l ong hi gh; /* highest version supported */

} RE_vers;
struct { /* maybe neani ngful if RPC_FAILED */
| ong s1;
| ong s2;
} RE_IDb; /* life boot & debugging only */
Pory;

b

struct rpc_createerr {
enum cl nt _stat cf_stat;
struct rpc_err cf_error; /* useful when RPC_PMAPFAI LURE */

3
typedef struct _ _client {
AUTH *cl _aut h; /* authenticator */
struct clnt_ops {
enumclnt_stat (*cl_call)(struct _ _client *, u_l ong,
xdrproc_t, caddr_t, xdrproc_t,
caddr _t, struct tineval);
voi d (*cl _abort)(); /* abort a call */
voi d (*cl _geterr)(struct _ _client *,
struct rpc_err *);
bool _t (*cl _freeres)(struct _ _client *,
xdrproc_t, caddr_t);
voi d (*cl _destroy)(struct _ _client *);
bool _t (*cl _control)(struct _ _client *, int,
char *);
i nt (*cl _settiners)(struct _ _client *,
struct rpc_tiners *,
struct rpc_tiners *, int,
void (*)(), caddr_t, u_long);
} *cl _ops;
char * cl _private; /* private stuff */
char *cl _netid; /* network token */
char *cl _tp; /* device nane */
} CLI ENT;

#def i ne FEEDBACK_REXM T1 1 /* first retransnmt */
#def i ne FEEDBACK _OK 2 /* no retransmts */
#define CLSET_TI MEQUT 1/* set timeout (tineval) */
#defi ne CLGET_TI MEQUT 2 [/* get tinmeout (tineval) */
#define CLGET_SERVER ADDR 3 /* get server's (sockaddr) */
#define CLGET_FD 6 /* get connections file descr */
#def i ne CLGET_SVC_ADDR 7 |* get server's addr (netbuf) */
#define CLSET _FD CLOSE 8 /* close fd while clnt_destroy */
#defi ne CLSET_FD NCLOSE 9 /* Do not close fd while */

/* clnt_destroy */
#define CLSET_RETRY_TIMEQUT 4 /* set retry timeout (tinmeval) */
#define CLGET_RETRY_TIMEQUT 5 /* get retry tineout (timeval) */

extern struct rpc_createerr rpc_createerr;

enum xprt_stat {
XPRT_DI ED,
XPRT_MOREREQS,
XPRT | DLE

Libraries

6-27

6-28

}

typedef struct _ _svexprt {
i nt xp_fd;
u_short Xp_port;
struct xp_ops *xp_ops
i nt xp_addrlen; /* length of renote addr. Cbsoleted */
char *Xp_tp /* transport provider device nane */
char *Xp_neti d; /* network token */
struct net buf xp_| taddr; /* local transport address */
struct net buf Xp_rtaddr; /* remote transport address */
char xp_raddr[16]; /* renmote address. Now obsol eted */
struct opaque_auth xp_verf; /* raw response verifier */
char * Xp_p1l; /* private: for use by svc ops */
char * Xp_p2; /* private: for use by svc ops */
char * Xp_p3; /* private: for use by svc lib */

} SVCXPRT;

struct svc_req {
u_l ong rq_prog; /* service program nunber */
u_l ong rg_vers; /* service protocol version */
u_l ong rq_proc; /* the desired procedure */
struct opaque_auth rqg_cred; /* raw creds fromthe wire */
caddr _t rg_clntcred; /* read only cooked cred */
struct _ _svcxprt *rg_xprt; /* associated transport */

b

enum nsg_type {
CALL = 0,
REPLY = 1

b

enumreply_stat {
MSG_ACCEPTED = 0
MSG DENIED = 1
3

enum accept _stat {
SUCCESS = 0,
PROG UNAVAIL = 1
PROG M SVATCH = 2,

PROC_UNAVAI L = 3,
GARBAGE_ARGS = 4,
SYSTEM ERR = 5

H

enumreject_stat {
RPC_M SVATCH = 0

AUTH ERROR = 1
b

struct accepted_reply {

struct opaque_auth ar_verf;
enum accept _st at ar_stat;
uni on {

struct {

unsi gned | ong
unsi gned | ong

| ow,
hi gh;

PowerPC Processor ABI Supplement—September 1995

} AR versi ons;
struct {
char * where;
xdrproc_t proc;
} AR results;
/* and many other null cases */
}oru

b

struct rejected_reply {
enumreject_stat rj_stat;
uni on {
struct {
unsi gned | ong | ow,
unsi gned | ong hi gh;
} RJ_versi ons;
enum aut h_stat RJ_why; /* why auth. did not work */
}oru;

b

struct reply_body {
enumreply_stat rp_stat;
uni on {
struct accepted_reply RP_ar;
struct rejected_reply RP_dr;
}oru

b

struct call_body {
unsi gned | ong cb_rpcvers; /* must be equal to two */
unsi gned | ong cb_prog;
unsi gned | ong cb_vers;
unsi gned | ong cb_proc;
struct opaque_auth cb_cred;
struct opaque_auth cb_verf; [* provided by client */

b

struct rpc_nsg {
unsi gned | ong rmxid;
enum nsg_t ype rmdirection;
uni on {
struct call _body RM cnb;
struct reply_body RMrnb;
}oru;

b

struct rpcb {
unsi gned | ong r_prog;
unsi gned | ong r_vers;

char * r_netid;
char * r_addr;
char * r_owner;

b

struct rpcblist {
struct rpcb rpcb_map;
struct rpchblist *rpcb_next;

b

Libraries

6-29

enum xdr _op {

XDR_ENCCDE = 0,
XDR_DECODE = 1,
XDR_FREE = 2

b

struct xdr_discrim{
i nt val ue;
xdr proc_t proc;

b

enum aut hdes_naneki nd {
ADN_FULLNANE,
ADN_NI CKNAVE

s

struct authdes_full name {
char * nane; /* client name, MAXNETNAMELEN max */
uni on des_bl ock key; /* conversation key */

unsi gned long w ndow, /* associated wi ndow */

b

struct authdes_cred {
enum aut hdes_naneki nd adc_naneki nd;
struct authdes_full name adc_ful | nane;
unsi gned | ong adc_ni cknane;

b
typedef struct XDR {
enum xdr _op X_op; /* operation; fast additional param*/
struct xdr_ops {
bool _t (*x_getlong)(struct XDR *, long *);
bool _t (*x_putlong)(struct XDR *, long *);
bool _t (*x_getbytes)(struct XDR *, caddr_t, int);
bool _t (*x_putbytes)(struct XDR *, caddr_t, int);
u_int (*x_getpostn)(struct XDR *);
bool t (*x_setpostn)(struct XDR *, u_int);
long * (*x_inline)(struct XDR *, int);
voi d (*x_destroy) (struct XDR *);
bool _t (*x_control)(struct XDR *, int, void *);
} *x_ops;
char * x_public; /* users' data */
char * x_private; [* pointer to private data */
char * x_base; /* private used for position info */
i nt X_handy; /* extra private word */
} XDR

typedef bool _t (*xdrproc_t)();

Figure 6-30 <rpc. h>

typedef struct entry { char *key, *data; } ENTRY,
typedef enum { FIND, ENTER } ACTI ON,
typedef enum { preorder, postorder, endorder, leaf } VISIT,

Figure 6-31 <search. h>

6-30 PowerPC Processor ABI Supplement—September 1995

#defi ne GETNCNT 3 /* get semmcnt */
#define GETPID 4 /[* get senmpid */
#define GETVAL 5 /* get semval */
#define GETALL 6 /* get all semval's */
#define GETZCNT 7 /* get senkcnt */
#define SETVAL 8 /* set senval */
#define SETALL 9 /* set all senval's */

struct sem d_ds {

#def i ne SEM_UNDO 010000 /* set up adjust on exit entry */

struct ipc_permsempern /* operation perm ssion struct */

struct sem *sem base; /* ptr to first semaphore in set */
unsi gned short semnsens; /* # of semaphores in set */
time_t semotine; /* last senop tine */
| ong sem padl; /* reserved for time_t expansion */
time_t semctime; /* last change time */
| ong sem pad2; /* time_t expansion */
| ong sem pad3[4]; [/* reserve area */
s
struct sem{
unsi gned short senval; /* semaphore val ue */
pi d_t senpi d; /* pid of |ast operation */
unsi gned short semmcnt; /* # awaiting semval > cval */
unsi gned short senecnt; /* # awaiting semval = 0 */
3
struct senbuf {
unsi gned short sem num /* semaphore # */
short sem op; /* semaphore operation */
short sem fl g; /* operation flags */
1

Figure 6-32 <sys/sem h>

#define _NT_JBLEN 24
#define _DBL_JBLEN 19
#define _SI GIBLEN 132

typedef struct {
int int_vals[_INT_JBLEN|
doubl e dbl _val s[_DBL_JBLEN];
int pad[2];

} jmp_buf[1];

typedef int sigjnp_buf[_SI GIBLEN;

Figure 6-33 <setj nmp. h>

Libraries

6-31

#defi ne SHM RDONLY 010000
#def i ne SHM RND 020000

struct shmd_ds {
struct ipc_permshmperm /* operation perm ssion struct */

i nt shm segsz; [/* size of segment in bytes */
struct anon_map *shm anp; /* segnment anon_nmap pointer */
unsi gned short shmlkecnt; /* nunber of times |ocked */
pid_t shm | pi d; [* pid of last shnmop */

pid_t shm cpi d; [* pid of creator */

unsi gned | ong shmnnattch; /* used only for shninfo */
unsi gned | ong shm cnattch;/* used only for shnminfo */

time_t shmatime; /* last shmat tinme */

| ong shm padil; /* resv'd for tinme_t expansion */
tinme_t shmdtime; /* last shmdt time */

| ong shm pad2; /* resv’'d for tinme_t expansion */
time_t shmctime; /* last change time */

| ong shm pad3; /* resv’d for time_t expansion */
| ong shm pad4[4];/* reserve area */

}s

Figure 6-34 <sys/shm h>

6-32 PowerPC Processor ABI Supplement—September 1995

#def i ne SI GHUP
#define SIG NT
#define SIGQUI T
#define SIALL
#def i ne S| GTRAP
#define SId OT
#defi ne Sl GABRT
#define SI GEMIr

/* hangup */

/* interrupt (rubout) */

/[* quit (ASCll FS) */

/* illegal instr. (not reset when caught) */
/* trace trap (not reset when caught) */
/* 1Ol instruction */

/* used by abort */

/* EMI instruction */

#defi ne SI GFPE /* floating point exception */

#define SI &KILL [* kill (cannot be caught or ignored) */
#define SIGBUS 10 /* bus error */

#define SIGSEGY 11 /* segmentation violation */

#define SIGSYS 12 /* bad argunment to systemcall */

#define SIGPIPE 13 /* wite on a pipe with no one to read it */
#define SIGALRM 14 /* alarmclock */

#define SIGTERM 15 /* software term nation signal fromkill */
#define SIGUSRL 16 /* user defined signal 1 */

#define SIGUSR2 17 [* user defined signal 2 */

#define SIGCLD 18 /* child status change */

#define SIGCHLD 18 /* child status change alias (PCSIX) */
#define SIGPWVR 19 /* power-fail restart */

#define SIGNNCH 20 /* wi ndow size change */

#define SIGURG 21 /* urgent socket condition */

#define SIGPOLL 22 /* pollable event occured */

#define SIA@ O SIGPOLL /* socket |/O possible (SIGPOLL alias) */
#define SIGSTOP 23 /* stop (cannot be caught or ignored) */
#define SI GTSTP 24 /* user stop requested fromtty */

#define SI GCONT 25 /* stopped process has been continued */
#define SIGITIN 26 /* background tty read attenpted */
#define SIGITQU 27 [/* background tty wite attenpted */
#define SI GVTALRM 28 /* virtual tinmer expired */

#defi ne S| GPROF 29 /* profiling timer expired */

#define SIGKCPU 30 /* exceeded cpu limt */

#define SI GXFSZ 31 /* exceeded file size limt */

#define SI GMI TI NG 32 /* process's |lwps are bl ocked */

©Co~NoOOOoOUA WNE

#define SIGDFL (void (*)())O0
#define SIG ERR (void (*)())-1
#define SIGIGN (void (*)())1
#define SIG HOLD (void (*)())2
typedef struct {

unsi gned | ong _ _sigbits[4];
} sigset_t;
struct sigaction {

int sa_flags;

void (*_handler)();

sigset _t sa_nask;

int sa_resv[2];
3
#defi ne SA NOCLDSTOP 0x00020000
#define SA ONSTACK 0x00000001
#def i ne SA_RESETHAND 0x00000002
#def i ne SA_RESTART 0x00000004

Libraries

6-33

#define SA SIA NFO 0x00000008
#defi ne SA NOCLDWAI T 0x00010000 /* don't save zonbie children */
#def i ne SS_ONSTACK 0x00000001
#def i ne SS_DI SABLE 0x00000002

struct sigaltstack {

char *ss_sp;
i nt ss_si ze;
i nt ss_fl ags;

b

typedef struct sigaltstack stack_t;

Figure 6-35 <si gnal . h>

6-34 PowerPC Processor ABI Supplement—September 1995

#defi
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne

t ypedef

nt
nt
nt

ILL_TLLOPC
ILL_I LLOPN

I LL_I LLADR
ILL_I LLTRP

| LL_PRVOPC

| LL_PRVREG

| LL_COPROC

| LL_BADSTK
FPE_I NTDI V
FPE_I NTOVF
FPE_FLTDI V
FPE_FLTOVF
FPE_FLTUND
FPE_FLTRES
FPE_FLTI NV
FPE_FLTSUB
SEGV_MAPERR
SEGV_ACCERR
BUS_ADRALN
BUS_ADRERR
BUS_OBJERR
TRAP_BRKPT
TRAP_TRACE
CLD_EXI TED
CLD _KI LLED
CLD_DUMPED
CLD_TRAPPED
CLD_STOPPED
CLD_CONTI NUED
POLL_I N
POLL_OUT
POLL_MBG
POLL_ERR
POLL_PRI
POLL_HUP

PROF_SI G

S| _MAXSZ

S| _PAD

struct siginfo {
si _signo;
si _code;
si _errno;

uni on {

i nt
struct {
pid_t
uni on {
struct {

uid_
uni on si gval

}o_kill;
struct {

_pad[SI _

/* i1llegal opcode */

/* illegal operand */

/* illegal addressing node */
/* illegal trap */

/* privileged opcode */

/* privileged register */

/* co-processor */

/* bad stack */

/* integer divide by zero */

/* integer overflow */

/* floating point divide by zero */
/* floating point overflow */

/* floating point underflow */

/* floating point inexact result */
/* invalid floating point op */

/* subscript out of range */

/* address not mapped to object */
/* invalid permssions */

/* invalid address alignnment */

/* non-exi stent physical address */
/* object specific hardware error */
/* breakpoint trap */

/* trace trap */

/* child has exited */

/* child was killed */

/* child has coredunped */

/* traced child has stopped */

/* child has stopped on signal */
/* stopped child has continued */
/* input available */

/* output possible */

/* message avail able */

/* 1/Oerror */

/[* high priority input available */
/* device disconnected */

OUPRNWNRPOUONWNENRPWNENPONOORNWNERONOOODNWNR

[N

/* have to set code nonzero */

128

((SI_MAXSZ | si zeof

(int)) - 3)

PAD] ;

_pid;

t _uid;
_val ue;

clock_t _utine;

i nt

_status;

Libraries

6-35

clock t _stineg;

} _cld;

} _pdata;
} _proc;
struct {

caddr _t _addr;

i nt _trapno;
} _fault;
struct {

i nt _fd;

| ong _band;
} _file;
struct {

caddr _t _faddr;
timestruc_t _tstanp;

short _syscal | ;
char _nsysarg;
char _fault;
| ong _sysarg[8];
| ong _metate[17];
} _prof;
} _data;

} siginfo_t;

Figure 6-36 <sys/ si gi nfo. h>

6-36 PowerPC Processor ABI Supplement—September 1995

b

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

struct

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

stat {
dev_t

| ong
ino_t
node_t
nlink_t
uid_t
gid_t
dev_t

| ong
of f_t

| ong

#define _ST_FSTYPSZ 16

st _dev;

st _padl[3];
st _ino;

st _node;

st _nlink;
st _uid;
st_gid;
st _rdev;

st _pad2[2];
st _si ze;

st _pads3;

tinmestruc_t st_atim
tinestruc_t st_ntim
timestruc_t st _ctim

st _fstype[_ST_FSTYPSZ];

| ong st bl ksi ze;
| ong st _bl ocks;
char

| ong st _pad4[8];
S | FMT 0xF000
S I FIFO 0x1000
S | FCHR 0x2000
S IFDIR 0x4000
S | FBLK 0x6000
S | FREG 0x8000
S | FLNK 0xA000
S | FSOCK 0xC000
S ISUD 0x800
S ISA@D 0x400
S | SVTX 0x200

S | READ 00400
S IWRITE 00200
S | EXEC 00100
S _ENFMT S I1SA@D
S | RWKU 00700
S | RUSR 00400
S | WUSR 00200
S | XUSR 00100
S | RWKG 00070
S | RGRP 00040
S | WGRP 00020
S | XGRP 00010
S | RWKO 00007
S | ROTH 00004
S | WOTH 00002
S | XOTH 00001

/* type of file */

/* fifo */

/* character special */

/* directory */

/* bl ock special */

/* regular */

/* symbolic link */

/* socket */

/* set user id on execution */
/* set group id on execution */

/* save swapped text even after use */

/* read perm ssion, owner */

/* wite perm ssion, owner */

/* execute/search perm, owner */
/* record | ocking enforcenent */
/* read, wite, execute: owner */
/* read perm ssion: owner */

/* wite pernission: owner */

/* execute perm ssion: owner */
/* read, wite, execute: group */
/* read perm ssion: group */

/* wite permission: group */

/* execute perm ssion: group */
/* read, wite, execute: other */
/* read perm ssion: other */

/* wite permission: other */

/* execute perm ssion: other */

Figure 6-37 <sys/stat. h>

Libraries

6-37

#define FSTYPSZ 16

typedef struct statvfs {
unsi gned | ong f_bsize;
unsi gned | ong f_frsize;
unsi gned | ong f _bl ocks;
unsi gned long f_bfree;
unsi gned | ong f _bavail;
unsi gned | ong f_files;
unsi gned | ong f_ffree;
unsi gned | ong f_favail;
unsi gned | ong f_fsid;
char f _baset ype[FSTYPSZ] ;
unsi gned | ong f_flag;
unsi gned long f_nanmenax;
char f_fstr[32];
unsi gned | ong f_filler[16];
} statvfs_t;

#define ST_RDONLY 0x01 /* read-only file system*/
#define ST_NOSU D 0x02 /* does not support setuid/setgid */

Figure 6-38 <sys/statvfs. h>

#define NULL 0

t ypedef int ptrdiff_t;
t ypedef unsigned int size_t;
typedef | ong wchar _t;

Figure 6-39 <st ddef. h>

6-38 PowerPC Processor ABI Supplement—September 1995

#define BUFSIZ 1024
#define _NFILE 20
#def i ne _| OFBF 0000
#define _I OLBF 0100
#defi ne _| ONBF 0004
#define _|I OECF 0020
#define _| CERR 0040
#define EOF (-1)
#def i ne FOPEN_MAX _NFILE
#def i ne FI LENAME_MAX 1024
#define L_ctermd 9
#define L_cuserid 9
#define P_tnpdir “/var/tmp/"
#define L_t npnam 25
#define stdin (&_ _iob[0])
#define stdout (& _iob[1])
#define stderr (& _ _iob[2])
t ypedef struct
{
i nt _cnt; /* nunmber of avail chars in buf */
unsi gned char *_ptr; [/* next char fromto here in buf */
unsi gned char * base; /* the buffer */
unsi gned char _flag; [/* the state of the stream*/
unsi gned char _file; [/* UNIX Systemfile descriptor */
} FILE
extern FILE _ _i Ob[_NFI LE] ;
Figure 6-40 <stdi 0. h>
typedef struct {
i nt quot ;
i nt rem
} div_t;
typedef struct {
| ong quot ;
| ong rem
} Idiv_t;
#def i ne EXI T_FAI LURE 1
#def i ne EXI T_SUCCESS 0
#def i ne RAND_MAX 32767
extern unsigned char _ _ctype[512];
#def i ne MB_CUR_MAX _ _ctype[520]

Figure 6-41 <stdlib. h>

Libraries 6-39

6-40

#defi
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

SNDZERO
SNDPI PE
RNORM
RVMBGD
RVBGN
RMODEMASK
RPROTDAT
RPROTDI S
RPROTNORM
RPROTVASK

FLUSHR
FLUSHW
FLUSHRW
FLUSHBAND

S_I NPUT
S HI PRI
S_OUTPUT
S _MBG
S_ERRCR
S_HANGUP
S_RDNORM
S_VIRNORM
S_RDBAND
S_WRBAND
S_BANDURG

RS_H PRI
MSG_Hl PRI
MBG_ANY

MSG_BAND

MORECTL
MOREDATA

MUXI D_ALL

STR

0x001
0x002
0x000
0x001
0x002
0x003
0x004
0x008
0x010
0x01c

0x01
0x02
0x03
0x04

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
S_OUTPUT
0x0080
0x0100
0x0200

0x01
0x01
0x02
0x04

1
2

(-1

('S <<8)
(STR| 01)
(STR| 02)
(STR| 03)
(STR| 04)
(STR| 05)
(STR| 06)
(STR| 07)
(STR| 010)
(STR| 011)
(STR| 012)
(STR| 013)
(STR| 014)
(STR| 015)
(STR| 016)
(STR| 017)
(STR| 020)
(STR| 021)

PowerPC Processor ABI Supplement—September 1995

#define | _SWROPT (STR] 023)
#define | _GAROPT (STR| 024)
#define | _LIST (STR| 025)
#define | _PLI NK (STR| 026)
#define | _PUNLI NK (STR| 027)
#define | _SETEV (STR| 030)
#define | _GETEV (STR| 031)
#define | _STREV (STR| 032)
#define | _UNSTREV (STR| 033)
#define | FLUSHBAND (STR| 034)
#define | _CKBAND (STR] 035)
#define | _GETBAND (STR| 036)
#define | _ATMARK (STR| 037)
#define | _SETCLTI ME (STR| 040)
#define | _GETCLTI ME (STR| 041)
#defi ne | _CANPUT (STR| 042)
struct strioctl {

i nt ic_cnd; | *

i nt ic_tinout; /*

i nt ic_len; /*

char *ic_dp; | *
}
#define INFTIM -1
struct strbuf {

i nt max| en; /*

i nt | en; /*

char *puf ; /*
b
struct strpeek {

struct strbuf ctl buf;

struct strbuf dat abuf ;

| ong fl ags;
}
struct strfdinsert {

struct strbuf ctl buf;

struct strbuf dat abuf ;

| ong fl ags;

i nt fil des;

i nt of f set;
s
struct strrecvfd {

int fd;

uid_t uid;

gid_t gid;

char fill[8];

b

struct str_mist {

char | _nane[FWNAMESZ+1] ;

b

struct str_list {

comand */

ti meout val ue */

| ength of data */
pointer to data */

no. of bytes in buffer */
no. of bytes returned */
pointer to data */

Libraries

6-41

int sl_nnods;
struct str_mist *sl _nodlist;

b
#def i ne ANYMARK 0x01
#defi ne LASTMARK 0x02

struct bandinfo {
unsi gned char bi _pri;
i nt bi _fl ag;

}s

Figure 6-42 <stropts. h>

6-42 PowerPC Processor ABI Supplement—September 1995

#def i ne NCC 8

#defi ne NCCS 19

#define CTRL(c) ((c)&037)

#define | BSH FT 16

#define POSI X VDI SABLE 0

t ypedef unsigned long tcflag_t;

t ypedef unsigned char cc_t;

typedef unsigned | ong speed_t;

/*

* loctl control packet
*/

struct termos {
tcflag_t c_iflag; /* input nodes */
tcflag_t c_ofl ag; /* out put nodes */
tcflag_t c_cfl ag; /* control nodes */
tcflag_t c_Iflag; /* line discipline nodes */
cc_t c_cc[NCCs]; /* control chars */

}s

#defi ne VI NTR 0

#define VQUI T 1

#defi ne VERASE 2

#def i ne VKILL 3

#def i ne VEOF 4

#def i ne VEQOL 5

#def i ne VEQL2 6

#define VM N 4

#define VTIME 5

#def i ne VSWICH 7

#def i ne VSTART 8

#def i ne VSTOP 9

#defi ne VSUSP 10

#defi ne VDSUSP 11

#defi ne VREPRI NT 12

#def i ne VDI SCARD 13

#def i ne VWERASE 14

#def i ne VLNEXT 15

#define | GNBRK 0000001

#defi ne BRKINT 0000002

#defi ne | GNPAR 0000004

#defi ne PARVRK 0000010

#define | NPCK 0000020

#define | STRIP 0000040

#define INLCR 0000100

#define | GNCR 0000200

#define | CRNL 0000400

#define 1UCLC 0001000

#define | XON 0002000

#define | XANY 0004000

#define | XOFF 0010000

#defi ne | MAXBEL 0020000

#def i ne OPOST 0000001

Libraries

6-43

#defi ne OLCUC 0000002
#define ONLCR 0000004
#defi ne OCRNL 0000010
#defi ne ONOCR 0000020
#defi ne ONLRET 0000040
#defi ne OFI LL 0000100
#def i ne OFDEL 0000200
#define NLDLY 0000400

#define NLO 0

#define NL1 0000400
#define CRDLY 0003000
#def i ne CRO 0

#define CR1 0001000
#define CR2 0002000
#define CR3 0003000

#define TABDLY 0014000
#def i ne TABO 0

#define TAB1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define XTABS 0014000
#define BSDLY 0020000

#def i ne BSO 0
#defi ne BS1 0020000
#define VIDLY 0040000
#define VTO 0
#define VT1 0040000
#define FFDLY 0100000
#def i ne FFO 0
#define FF1 0100000

#define CBAUD 0000017
#define CSIZE 0000060

#def i ne CS5 0

#def i ne CS6 0000020
#defi ne CS7 0000040
#defi ne CS8 0000060

#def i ne CSTOPB 0000100
#define CREAD 0000200
#defi ne PARENB 0000400
#defi ne PAROCDD 0001000
#define HUPCL 0002000
#def i ne CLOCAL 0004000
#def i ne RCVIEN 0010000
#def i ne XMI'1lEN 0020000
#define LOBLK 0040000
#define XCLUDE 0100000
#def i ne CRTSCTS 020000000000
#def i ne Cl BAUD 03600000
#def i ne PAREXT 04000000

#define 1SI G 0000001
#define | CANON 0000002
#defi ne XCASE 0000004
#def i ne ECHO 0000010
#define ECHCE 0000020
#defi ne ECHOK 0000040
#define ECHONL 0000100

6-44 PowerPC Processor ABI Supplement—September 1995

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

NOFLSH 0000200
TOSTOP 0000400
ECHOCTL 0001000
ECHOPRT 0002000
ECHOKE 0004000
DEFECHO 0010000
FLUSHO 0020000
PENDI N 0040000
| EXTEN 0100000
_TICC (' T <<8)

TCGETA (_TI O 1)
TCSETA (_TIOC 2)
TCSETAW (_TI OC] 3)
TCSETAF (_TI OC] 4)
TCSBRK (_TI OC| 5)
TCXONC (_TI1 OC] 6)
TCFLSH (_TIod 7)

TCGETS (_TIOq 13)
TCSETS (_TIoq 14)
TCSETSW (_TIOq 15)
TCSETSF (_TIOq 16)

TCl FLUSH 0
TCOFLUSH
TCl OFLUSH 2

[EnY

TCOCOFF
TCOON
TCl OFF
TCI ON

wWNEFE O

BO
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800 10
B2400 11
B4800 12
B9600 13
B19200 14
B38400 15

©Co~NOoOOOM~WNEO

Figure 6-43 <term os. h>

Libraries

6-45

6-46

struct timeval ({

} tinespec_t;

typedef struct

} itinerspec_t;

struct tm{
i nt tm sec;
i nt tmmn;
i nt tm hour;
i nt t m_nday;
i nt t m_non;
i nt tmyear;
i nt t m wday;
i nt t m yday;
i nt tm.i sdst
s

extern long timezone;
extern int daylight;
extern char *tznane[2];

itinmerspec {
struct tinespec it_interval;/* timer period */
struct tinespec it_val ue;

| ong tv_sec; /* seconds */
| ong tv_usec; /* and mi croseconds */
b
#define | TI MER_REAL 0
#define I TIMER VIRTUAL 1
#define | TI MER_PROF 2
#define | TI MER_REALPROF 3
struct itimerval {
struct tineval it _interval; /* tinmer interval */
struct tineval it_val ue; /* current val ue */
3
#define SEC 1
#define MLLISEC 1000
#defi ne M CROSEC 1000000
#defi ne NANOSEC 1000000000
#define CLOCK_ REALTIME O /* real (clock on the wall) tine */
#define CLOCK_VI RTUAL 1 /* user CPU usage clock */
#def i ne CLOCK_PROF 2 /* user and system CPU usage cl ock */
#define TIMER_RELTIME 0x0 /* set timer relative */
#define TI MER_ABSTI ME 0Ox1 /* set tiner absolute */
typedef struct timespec { /* definition per PCSIX 4 */
time_t tv_sec; /* seconds */
| ong tv_nsec; /* and nanoseconds */

[* definition per PCSI X 4 */

/* timer expiration */

Figure 6-44 <sys/time. h>

PowerPC Processor ABI Supplement—September 1995

typdef lTong clock_t;

struct tns {

I

clock t tnms_utine;
clock_t tns_stine;
cl ock_t tns_cuti ne;
cl ock_t tns_cstine;

/*
/*
/*
/*

user tinme */
systemtine */

user time, children */
systemtine, children */

Figure 6-45 <sys/ti nmes. h>

Libraries

6-47

6-48

#def i ne TBADADDR
#defi ne TBADOPT
#def i ne TACCES
#def i ne TBADF
#def i ne TNOADDR
#defi ne TOUTSTATE
#def i ne TBADSEQ
#defi ne TSYSERR
#def i ne TLOOK
#defi ne TBADDATA

#def i ne TBUFOVFLW

#def i ne TFLOW
#defi ne TNCDATA
#define TNODI S
#def i ne TNOUDERR
#defi ne TBADFLAG
#def i ne TNOREL

#def i ne TNOTSUPPORT
#defi ne TSTATECHNG

#define T_LI STEN
#def i ne T_CONNECT
#define T_DATA
#defi ne T_EXDATA
#define T_DI SCONNECT 0x0010 /* disconnect received */
#define T_ERROR
#define T_UDERR
#def i ne T_ORDREL
#define T_EVENTS

#define T_MORE

#def i ne T_EXPEDI TED
#def i ne T_NEGOTI ATE

#define T_CHECK

#define T_DEFAULT
#defi ne T_SUCCESS
#define T_FAI LURE

struct t_info {

b

| ong addr;

| ong opti ons;
| ong tsdu;

| ong et sdu;

| ong connect;
| ong di scon;

| ong servtype;

#def i ne T_COTS
#define T_COTS_ORD 02 /* conn oriented w orderly rel ease */
#define T_CLTS
struct netbuf {
unsi gned i nt maxl en;
unsigned int |en;

char *buf;

1 /* incorrect addr format */
2 /* incorrect option fornat */
3 /* incorrect perm ssions */
4 /* illegal transport fd */
5 /* couldn't allocate addr */
6 /* out of state */
7 /* bad call sequence nunber */
8 /* systemerror */
9 /* event requires attention */
10 /* illegal ambunt of data */
11 /* buffer not |arge enough */
12 /* flow control */
13 /* no data */
14 /* discon_ind not found on g */
15 /* unitdata error not found */
16 /* bad fl ags */
17 /* no ord rel found on q */
18 /* primtive not supported */
19 /* state is changing */

0x0001 /* connection indication rcvd */
0x0002 /* connect confirmation rcvd */
0x0004 /* nornal data received */
0x0008 /* expedited data received */

0x0020 /* fatal error occurred */
0x0040 /* data gramerror indication */
0x0080 /* orderly release indication */

0x00ff /* event mask */
0x001 /* nore data */
0x002 /* expedited data */
0x004 /* set opts */
0x008 /* check opts */
0x010 /* get default opts */
0x020 /* successful */
0x040 /* failure */

/* size of protocol address */

/* size of protocol options */

/* size of max transport service data unit */
/* size of max expedited tsdu */

/* max data for connection primtives */

/* max data for disconnect primtives */

/* provider service type */

01 /* connection oriented service */

03 /* connectionless transport service */

PowerPC Processor ABI Supplement—September 1995

struct

b

struct

b

struct

b

struct

b

struct

b

struct

#defi ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne
#defi ne

#def i ne
#def i ne
#def i ne
#defi ne

#def i ne
#def i ne
#def i ne
#defi ne
#defi ne
#def i ne
#def i ne
#def i ne

t_bind {
struct net buf
unsi gned

t_optmgnt {
struct net buf
| ong

t _discon {
struct net buf
int reason;

i nt sequence

t_call {
struct net buf
struct net buf
struct net buf
i nt sequence

t_unitdata {
struct net buf
struct net buf
struct net buf

t _uderr {
struct net buf
struct net buf
| ong error;

T _BIND
T_OPTMGMT
T CALL
TDS

T_UNI TDATA
T_UDERROR
T_I NFO

T_ADDR 0x01
T OPT 0x02
T_UDATA 0x04
T ALL 0x07

TUINT
T_UNBND

T IDLE
T_OUTCON
T_I NCON
T_DATAXFER
T_OUTREL

T I NREL

ud

ad

op
ud

ad

op
ud

ad
op

~NOoO O~ WNREO

addr;
gl en;
opt;
fl ags;
at a; /* user data
/* reason code
/* sequence nunber
dr; /* address
t; /* options
at a; /* user data
/* sequence nunber
dr; /* address
t; /* options
at a; /* user data
dr; /* address
t; /* options
/* error code
1 /* struct t_bind
2 /* struct t_optngm
3 [* struct t_call
4 /* struct t_discon
5 /* struct t_unitdata
6 /* struct t_uderr
7 /* struct t_info
/* address
/* options
/* user data
/* all the above
/* uninitialized
/* unbound
/* idle
/* outgoing connection pendi ng
/* incom ng connection pending
/* data transfer
/* outgoing rel ease pending
/* incom ng rel ease pendi ng

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

Libraries

6-49

#def i

#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i

ne

ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne

T _FAKE

T_HACK

T_NOSTATES

T_OPEN

T _BIND
T_OPTMGMT
T_UNBI ND

T _CLOSE
T_SNDUDATA
T_RCVUDATA
T_RCVUDERR
T_CONNECT1
T_CONNECT2

T_RCVCONNECT

T _LISTN
T_ACCEPT1
T_ACCEPT2
T_ACCEPT3
T_SND

T ROV
T_SNDDI S1
T_SNDDI S2
T_RCVDI S1
T_RCVDI S2
T_RCVDI S3
T_SNDREL
T_RCVREL
T_PASSCON

T_NOEVENTS

nvs

#define Tl _NORVAL
#def i ne TI _EXPEDI TED

12

(o]

©CoOoO~NOoOUO~WNEO

25

127

0

1

0
1

extern char *t_errlist[];
extern int t_nerr;

/* fake state used when state */

/* cannot be determ ned */
/* T_HACK is usel ess but */
/* exposed interface */

/* not a valid state change */

extern char tiusr_statetbl[T_NOEVENTS][T_NOSTATES];
#def i ne LOCALNAME
#def i ne REMOTENAMVE

Figure 6-46 <sys/tiuser. h>

6-50

PowerPC Processor ABI Supplement—September 1995

typedef Iong time_t;
t ypedef | ong daddr _t;
t ypedef unsigned | ong dev_t;
typedef | ong gid_t;
typedef unsigned | ong ino_t;
typedef int key t;
t ypedef | ong pid_t;
t ypedef unsigned | ong node_t;
t ypedef unsigned | ong nlink_t;
typedef | ong of f _t;
typedef | ong uid_t;
Figure 6-47 <sys/types. h>
Libraries

6-51

6-52

typedef struct ucontext {
unsi gned | ong
struct ucont ext

si gset _t

stack_t

mcont ext _t

| ong
} ucontext_t;

#def i ne GETCONTEXT
#defi ne SETCONTEXT

#def i ne UC_SI GVASK
#def i ne UC_STACK

#define UC _CPU
#define UC_MAU
#defi ne UC_FPU
#define UC_I NTR

#def i ne UC_MCONTEXT

#define UC ALL
#defi ne NGREG

typedef int
typedef greg_t

struct regs {
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t
greg_t

39

greg_t;

gregset _

uc_f 1l ags;
*uc_link;
uc_si gmask;
uc_st ack;
uc_ntont ext ;
uc_filler[6];

0
1

001
002
004
010
UC_MAU
020

(UC_CPY| UC_FPU)

(UC_SI GVASK| UC_STACK| UC_NMCONTEXT)

t [NGREQ ;

/* GPRs O -

31 */

PowerPC Processor ABI Supplement—September 1995

b

doubl e
unsi gned
unsi gned

} fpregset_t;

typedef struct {
gregset _t
f pregset _t
| ong

} ntontext_t;

#define FP_.NO O
#define FP_HW 1

typedef struct fpu {

greg_t r_r28

greg_t r_r29;

greg_t r_r30;

greg_t r_r31;

greg_t r_cr; /* Condition Register */
greg_t r_lIr; /* Link Register */

greg_t r_pc; /* User PC (Copy of SRRO) */
greg_t r_msr; /* saved MSR (Copy of SRR1) */
greg_t r_ctr; /* Count Register */

greg_t r_xer; /* Integer Exception Register */
greg_t r_ny; /* MQ Register (601 only) */

fpu_regs[32]; /* FPU regs - 32 doubles */
fpu_f pscr; /* FPU status/control reg */
fpu_valid; /* nonzero | FF the rest */
/* of this structure contains valid data */

gr egs; /* general register set */
f pregs; /* floating point register set */
filler[8];

/* no fp chip or emulator (no fp support) */
/* fp processor present bit */

extern int fp_version; /* kind of fp support */
extern int fpu_exists; /* FPU hw exists */

Figure 6-48 <ucont ext. h>

} iovec_t;

typedef struct iovec {
caddr _t iov_base
i nt iov_|en;

Figure 6-49 <sys/ ui 0. h>

#define UL_GETFSI ZE
#defi ne UL_SETFSI ZE

1 [* get filelimt */
2 /* set file limt */

Figure6-50 <ulimt. h>

Libraries

6-53

6-54

#def |
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

Test
Test
Test
Test

Unl ock a

ROK 4 I
WK 2 I *
XK 1 | *
FOK 0 | *
F_ULOCK 0 /*

F LOCK 1 | *
F_TLOCK 2

F_ TEST 3

SEEK_SET 0

SEEK_CUR 1 I* ..
SEEK_END 2 I* ..
_POSI X_FSYNC

_POSI X_JOB_CONTROL

_POSI X_MAPPED FI LES

_POSI X_MEMLOCK

_POSI X_MEMLOCK_RANGE

_POSI X_MEMORY_PROTECTI ON
_POSI X_REALTI ME_SI GNALS

_POSI X_SAVED | DS

_POSI X_SYNCHRONI ZED | O

_POSI X_TI MERS
_POSI X_VDI SABLE

STDI N_FI LENO
STDOUT_FI LENO
STDERR_FI LENO

_SC_ARG_MAX
_SC_CHI LD_MAX
_SC_CLK_TCK
_SC_NGROUPS_MAX
_SC_OPEN_MAX
~SC_JOB_CONTROL
_SC_SAVED | DS
_SC_VERSI ON
_SC_PASS_MAX
_SC_LOGNAME_MAX
_SC_PAGESI ZE
_SC_XOPEN_VERSI ON

_SC_NPROCESSORS_CONF
_SC_NPROCESSORS_ONLN

_SC_STREAM MAX
_SC_TZNAME_MAX
_SC_AI O LI STI O MAX
_SC_Al O MAX

_SC_AIO PRI O DELTA

MAX

_SC_ASYNCHRONOUS | O

_SC_DELAYTI MER_MAX
_SC_FSYNC
_SC_MAPPED_FI LES
_SC_MEMLOCK
_SC_MEMLOCK_RANGE

_SC_MEMORY_PROTECTI ON
_SC_MESSAGE_PASSI NG

for
for
for
for

to current

ORRPRRRRPRPRERRERR

N = O

O©CoOoO~NOOUPA~WNPRE

24

27
28

Read perm ssion */
Wite permssion */
eXecute perm ssion */
existence of File */

previously | ocked region */
Lock a region for exclusive use */

/* Test and lock a region for excl
/* Test a region for other procs |ocks */
/* Set file pointer to "offset" */
plus "offset" */
to EOF plus "offset" */

use */

PowerPC Processor ABI Supplement—September 1995

#defi
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

_SC_MQ_OPEN_MAX 29
_SC_MQ PRI O MAX 30
SC PRICRITI ZED| O 31

_SC_PRI ORI TY_SCHEDULI NG 32
_SC_REALTIME_SIGNALS 33

_SC_RTSI G_MAX 34
_SC_SEMAPHORES 35
_SC_SEM NSEMS_MAX 36
_SC_SEM VALUE_MAX 37
_SC_SHARED_MEMORY_OBJECTS 38
_SC_SI GQUEUE_MAX 39
_SC_SIGRT_M N 40
_SC_SI GRT_MAX 41
_SC_SYNCHRONI ZED | O 42
_SC_TI MERS 43
_SC_TI MER_MAX 44
~SC 2. C BIND 45
_SC 2_C DEV 46
_SC 2_C_VERSI ON 47
_SC 2_FORT_DEV 48
_SC 2_FORT_RUN 49
_SC_2_LOCALEDEF 50
_SC 2 _SWDEV 51
_SC 2 _UPE 52
_SC_2_VERSI ON 53
_SC_BC_BASE_MAX 54
_SC_BC_DI M_MAX 55
_SC_BC_SCALE_MAX 56
_SC_BC_STRI NG_MAX 57
_SC_COLL_VEI GHTS MAX 58
_SC_EXPR_NEST_MAX 59
_SC_LI NE_MAX 60
_SC_RE_DUP_MAX 61
_SC_XOPEN_CRYPT 62
_SC_XOPEN_ENH_| 18N 63
_SC_XOPEN_SHM 64
_SC_PHYS_PAGES 500
_SC_AVPHYS_PAGES 501
_CS_PATH 65
_PC_LI NK_MAX 1
_PC_MAX_CANON 2
_PC_MAX_I NPUT 3
_PC_NAME_MAX 4
_PC_PATH_MAX 5
_PC_PI PE_BUF 6
_PC_NO_TRUNC 7
_PC_VDI SABLE 8
_PC_CHOM _RESTRICTED 9
_PC_ASYNC | O 10
PCPRIOIO 11
_PC_SYNC | O 12
_PC_LAST 12

Figure 6-51 <uni std. h>

Libraries

6-55

6-56

I

struct utinmbuf {

time_t actine; /* access tine */
time_t nodtine; /* nodification tinme */

Figure 6-52 <uti nme. h>

#def i

I

ne

“SYS N\MLN 257

struct utsnane {

char sysnane[_SYS_NMLN ;
char nodenane[_SYS NMLN] ;
char rel ease[_SYS_NMLN];
char versi on[_SYS_NWMLN];
char machi ne[_SYS _NWMLN] ;

Figure 6-53 <sys/ ut snane. h>

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

WUNTRACED 0004
VWNOHANG 0100

VEEXI TED 0001
WI'RAPPED 0002
WSTOPPED WUNTRACED
WCONTI NUED 0010
VNOWAI T 0200
WOPTMASK \

(VEEXI TED| WIRAPPED| WSTOPPED| WCONTI NUED| WNOHANG WNOWAI T)
WSTOPFLG 0177
WCONTFLG 0177777
WCOREFLG 0200
WEI GVASK 0177

Figure 6-54 <wait. h>

PowerPC Processor ABI Supplement—September 1995

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA. Tous droits réservés.
Copyright 1993 IBM Corporation.Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie
et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent étre reproduits sous aucune
forme, par quelque moyen que ce soit sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il en a.

Des parties de ce produit pourront étre derivees du systéme UNIX®, licencié par UNIX Systems Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le systeme 4.3. de Berkeley, licencié par I’'Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS : I'utilisation, la duplication ou la divulgation par I’administation
americaine sont soumises aux restrictions visées a I’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut étre protégé par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des
demandes en cours d’en- registrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS sont des marques deposées
ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une marque enregistrée aux Etats-
Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée
de Novell, Inc., PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, LAPTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES, CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/0U DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/0U LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

K‘m

Adobe PostScript

