

Intel® Itanium® Architecture
Assembly Language Reference Guide

© 2000 - 2002

Order Number: 248801-004

World Wide Web: http://developer.intel.com

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 2

Disclaimer
Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or
use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel
products are not intended for use in medical, life saving, or life sustaining applications.

This Intel® Itanium® Architecture Assembly Language Reference Guide as well as the software
described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document or any software that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without the express written consent
of Intel Corporation.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon,
Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon, and VTune
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2002.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 3

Overview
This document describes the programming conventions used to write an assembly program for
the Itanium® architecture.

As prerequisites, you should be familiar with the Itanium architecture, and have assembly
language programming experience.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 4

About This Document
This document contains the following sections:

� This section lists related documentation and notation conventions.

� Program Elements Overview describes the basic elements and language specifications of
an assembly-language program for the Itanium® architecture.

� Program Structure describes the directives used to structure the program.

� Declarations describes the directives used to declare symbols in the program.

� Data Allocation describes the statements used to allocate initialized and unitialized space
for data objects, and align data objects in the program.

� Miscellaneous Directives describes directives not used to structure a program or to declare
symbols.

� Annotations describes the assembler annotations.

� Register Names by Type lists the Itanium architecture registers.

� Pseudo-ops lists the Itanium architecture pseudo operations and their equivalent machine
instructions, and pseudo-ops with missing operands.

� Link-relocation Operators lists the link-relocation operators and describes their functionality.

� List of Assembly Language Directives lists the assembly language directives according to
category.

� Glossary

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 5

Related Documentation
The following documents, available at http://developer.intel.com, provide additional information:

� Intel® Itanium® Architecture Software Developer’s Manual

Volume 1: Application Architecture, order number 245317-001

Volume 2: System Architecture, order number 245318-001

Volume 3: Instruction Set Reference, order number 245319-001

Volume 4: Itanium Processor Programmer’s Guide, order number 245320-001

� Software Conventions and Runtime Architecture Guide, order number 245256-002

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 6

Notation Conventions
This notation is used in syntax descriptions:

This type style Indicates an element of syntax, a reserved word, keyword, a filename,
computer output, or part of a program example. The text appears in
lowercase, unless uppercase is significant.

This type style Indicates the text you enter as input.
This type style Indicates a placeholder for an identifier, an expression, a string, a

symbol or a value. Substitute one of these items for the placeholder.
[items] Indicates optional items.
[items | item] Indicates the possible choices. A vertical bar (|) separates the items.

Choose one of the items enclosed in brackets.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 7

Program Elements Overview
This section describes the basic elements and language specifications of an assembly-language
program for the Itanium® architecture. The basic program elements are:

� identifiers
� symbols
� name spaces
� constants
� expressions
� statements.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 8

Identifiers
In Itanium® architecture assembly language, objects such as machine instructions, registers,
memory locations, sections in the object file, and constants, have symbolic names. In the source
code these names are represented syntactically by identifiers.

An identifier may contain letters, digits, and a few special characters. Identifiers may not begin
with a digit.

The following table summarizes the rules for character usage in identifiers.

Character Usage in Identifiers

 The assembler may place a limit on the length of an identifier, but this limit must be no less than
256 characters.

Character Types First Characters Remaining Characters
Letters a-z or A-Z a-z or A-Z
Special Characters @ _ $? . @ _ $? .
Digits not allowed 0-9

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 9

Name Spaces
There are three classes of names in the Itanium® architecture assembly language:

� Symbols, which refer to memory locations, sections, and symbolic constants. These names
are case sensitive.

� Registers, which refer to registers defined in the Itanium architecture. These names are not
case sensitive. Some register names consist of multiple syntactic elements rather than a
single identifier.

� Mnemonics, which refer to machine instructions, pseudo-ops, directives, and completers.
These names are not case sensitive.

The assembler places names in three separate name spaces, according to their class. A name
may not be defined twice in the same namespace, but it may be defined once in each
namespace. When a name is defined in both the register and symbol namespaces, the register
name takes precedence over the symbol unless the identifier is “protected” by terminating it with
the # operator; this forces the assembler to look up the identifier in the symbol namespace.

The # operator in conjunction with a symbol is legal only when the symbol is an operand.

The following examples illustrate the correct use of the # operator:

r5: //label named r5, where label is the symbol name

movl r4=r5# //;moves the r5 label address to register r4

.global r5# //declares label r5 as global

The # operator is unnecessary and illegal when included in the symbol definition, as shown:

r5#: //illegal

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 10

Symbols
A symbol refers to a location in memory, an object file section, a numeric constant, or a register.
A symbol has the following attributes:

� name

� type

� value

The special symbols dollar sign ($) and period (.) when used in expressions, always refer to the
current location counter. The current location counter points to the address of a bundle
containing the current instruction, or to the address of the first data object defined by the current
assembly statement. There is no difference between these symbols, either can be used.

In the following example, the movl instruction moves the address of the bundle containing the
current instruction ($) into register r1:

movl r1=$

In the following data allocation statement, the period (.) is the address of the first data object
defined by the assembly statement:

data4 2, 3, .

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 11

Symbol Names
Symbol names are case-sensitive identifiers. Symbols whose names begin with a period (.) are
temporary. Temporary symbols are not placed in the object file symbol table. Symbols whose
names begin with two periods (..) are temporary, and local. Local symbols are scope restricted
symbols. Local symbols are recognized only within the scope in which they are defined. See the
Symbol Scope Declaration section for more information about local symbol scopes.

The following table summarizes the rules for using temporary and scope-restricted indicators in
different types of symbol names.

Symbols whose names begin with an "at" sign (@) are reserved as predefined constants. The
assembler provides predefined symbolic constants for special operand values for several
instructions, for example, fclass and mux instructions. The following tables list the predefined
symbolic constant names for the operands of these instructions. These symbolic constants can
be used in expressions as any user-defined symbolic constant.

Temporary and Scope-restricted Indicators in Symbol Names
Symbol Type Temporary (.) Temporary and Scope-

Restricted (..)
Labels Allowed Allowed
Instruction tags Allowed Allowed
Function names Not allowed Not allowed
Symbolic constants Not allowed Not allowed
Section names Allowed Not allowed

fclass Condition Predefined Operand Names
Category fclass Conditions Predefined Name
 NaT test NaT @nat

Sign test Positive
Negative

@pos
@neg

Class test Normalized @norm

Unnormalized @unorm

Signaling NaN @snan

Quiet NaN @qnan

Zero @zero

Infinity @inf

mux Bytes Operation Predefined Type Operand Names
mux Bytes Operation Type (mbtype) Predefined Name
Reverse @rev

Mix @mix

Shuffle @shuf

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 12

Alternate @alt

Broadcast @brcst

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 13

Symbol Types
A symbol’s type indicates the class of object to which it refers. A symbol type can be any of the
following:

label Refers to a location of code or data in memory. A label cannot refer
to a procedure entry point. A code label refers to the address of a
bundle. An instruction that follows a code label always starts a new
bundle. The Bundles section provides more information about
instruction bundling.

instruction tag A symbol that refers to an instruction. An instruction tag is used in
branch prediction instructions, and in unwind information directives.
Unlike a label, an instruction tag does not cause the instruction to
start a new bundle

function name A symbol that refers to a procedure entry point.
section name Represents an existing section that is active in the output object file.
symbolic constant A constant assigned or equated to a number, symbol, or expression

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 14

Symbol Values
A symbol is defined when it is assigned a value. A symbol value can also be a number or
expression assigned to a symbolic constant. The value of a symbol identifies the object to which
it refers. If the symbol refers to a location in memory, the assigned value is the address of that
memory location. In most cases, this address is resolved only in link time.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 15

Register Names
All registers have predefined names, which are listed in Appendix A. Predefined register names
are not case-sensitive. You can assign new register names to some of the predefined registers
with a register assignment statement, or a rotating register directive. See the Assignment
Statements, Equate Statements, and Rotating Register Directives sections, for more details.
Registers that use the value of a specified general-purpose register as an index into the register
file consist of the register file name followed by the name of a general register enclosed in
brackets, such as pmc[r].

The assembler determines the register type according to the form of its name, as shown in the
following table. Some registers appear in name and number form. For example, ar.bsp is the
name form of an application register, which also has a number form, ar17.

Register Number and Name Forms
Register Form Register Name Register Type
Number form r0 - r127

in0 - in95

loc0 - loc95

out0 - out95

f0 - f127

p0 - p63

b0 - b7

ar0 - ar127

cr0 - cr127

General-purpose 64-bit registers

Floating-point registers

Predicate registers (1-bit)

Branch registers

Application registers

Control registers
Name form e.g. ar.bsp

e.g. cr.dcr

pr

pr.rot

ip

psr.l

psr.um

Named application registers

Named control registers

All-predicate register (64-bits)

All rotating registers

Instruction pointer

Processor-status registers

Indirect file registers e.g. pmc[r2] Register file with general-purpose
register as index.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 16

User-defined registers

user-name Registers assigned new names with
assignment statements or rotating
register directives.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 17

Mnemonics
Mnemonics are predefined assembly-language names for machine instructions, pseudo-ops,
directives, and data allocation statements. Mnemonics are not case-sensitive.

Machine Instruction Mnemonics
Machine instruction mnemonics specify the operation to be performed. For example, br is the
mnemonic for the branch predict instruction. Some instruction mnemonics include suffixes and
optional completers that indicate variations on the basic operation. The suffixes and completers
are separated from the basic mnemonic by a period (.). For example, the instructions br.call
(branch call), and br.ret (branch return) include suffixes, and are variations of the basic branch
(br) instruction.

In this manual, completers are italicized to distinguish them from the instruction mnemonic
suffixes. For example, in the instruction brp.ret.sptk.imp b0,L, the optional completers
appear in italics to set them apart from the .ret suffix. For a full description of the instructions,
see the Intel® Itanium® Architecture Software Developer’s Manual.

Pseudo-op Mnemonics
Pseudo-op mnemonics represent assembler instructions that alias machine instructions. They
are equivalent to instruction mnemonics and are provided for the convenience of the
programmer. See Pseudo-ops section for a list of the assembler pseudo-ops.

The following is an example of a pseudo-op:

mov r5=2

The assembler translates this pseudo-op into the equivalent machine instruction:

add1 r5=2,r0

For more details about the pseudo-ops, see the Intel® Itanium® Architecture Software
Developer’s Manual.

Directive Mnemonics
Directives are assembler instructions to the assembler during the assembly process; they do not
produce executable code. To distinguish them from other instructions, directive mnemonics begin
with a period (.).

The following sections, Program Structure through Annotations, describe the assembler
directives and explain how to use them.

Data Allocation Mnemonics

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 18

Data allocation mnenonics specify the types of data objects assembled in data allocation
statements. See Data Allocation for a list of these mnemonics. Data allocation statements are
used to allocate initialized memory areas.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 19

Constants
Constants can be numeric or string.

� Numeric constants contain integers and floating-point numbers.

� String constants contain one or more characters.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 20

Numeric Constants
A numeric constant contains integer and floating-point numbers. The assembler supports C and
Microsoft Macro Assembly language (MASM) numeric constants. C numeric constants are the
default.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 21

C Numeric Constants
C numeric constants can be any of the following:

� Decimal integer constants (base 10) consist of one or more digits, 0 through 9, where 0
cannot be used as the first digit.

� Binary constants (base 2) begin with a 0b or 0B prefix, followed by one or more binary
digits (0, 1).

� Octal constants (base 8) consist of one or more digits 0 through 7, where the first digit is
0.

� Hexadecimal constants (base 16) begin with a 0x or 0X prefix, followed by a hexadecimal
number represented by a combination of digits 0 through 9, and characters A through F.

� Floating-point constants consist of:

 — an optional sign - or +

 — an integer part a combination of digits 0 through 9

 — a period .

 — a fractional part a sequence of digits 0 through 9

 — an optional exponent e or E, followed by an optionally signed sequence of one or more
digits

For example, the following floating-point constant contains both the optional and required parts:
+1.15e-12.

The following floating-point constant contains only the required parts: 1.0

The following formal grammar summarizes the rules for the C numeric constants:

C-constant:

 C-integer-constant
floating-point-constant
character-constant

C-integer-constant:

 [1-9][0-9]*
0[bB][01]*
0[0-7]*
0[xX][0-9a-fA-F]*

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 22

floating-point-constant:
integer-part.[fractional-part] [exponent-part]

integer-part:
[0-9]*

fractional-part:
[0-9]*

exponent-part:
[eE][+-][0-9]*
[eE][0-9]*

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 23

MASM Numeric Constants
MASM numeric constants can be any of following:

� Radix constants are numeric constants that also specify the radix of the value. They
consist of one or more digits, 0 through 9, followed by a radix indicator. The radix indicators
of MASM numeric constants define them as decimal (D), hexadecimal (H), octal (O), or
binary (B). If the current radix is hexadecimal, the letters B and D are interpreted as digits.
In this case, T specifies a decimal radix, and Y specifies a binary radix. See MASM Radix
Indicators table below.

 Radix indicators are not case-sensitive.

 See the Radix Indicator Directive section for more information about how to specify a radix.

� Integer constants in the current radix consist of one or more digits, 0 through 9, A through
F. If the current radix is not hexadecimal, the characters A through F are not applicable.

� Floating-point constants have the same syntax as in C. See the C Numeric Constants
section.

The following formal grammar summarizes the rules for the MASM numeric constants:

MASM Radix Indicators
Radix Radix Indicator Suffix
Decimal D (d), or T (t) when the current radix is

hex
Hexadecimal H (h)

Octal O (o) or Q (q)

Binary B (b), or Y (y) when the current radix is hex

MASM-constant:

MASM-integer-constant
MASM-radix-constant
floating-point-constant
character-constant

MASM-integer-constant:

[0-9][0-9a-fA-F]*

MASM-radix-constant

[0-9][0-9a-fA-F]*[tTdDhHOoqQbByY]

floating-point-constant: (as in C)

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 24

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 25

Characters in Numeric Constants
An underscore (_) can be inserted in a numeric constant to improve readability, as follows
1_000_000. An underscore can be inserted anywhere except before the first character. The
assembler ignores underscores.

Characters can represent numeric constants. For instance, a single ASCII character can
represent a numeric constant by enclosing it in single quotes (��). The numeric constant is the
ASCII value of the specified characterise use other special characters to represent numeric
constants, use the character escapes defined in the ANSI C language, and enclose them in
single quotes. Table below lists the common character escapes. To use the single quote (�) to
represent a numeric constant, insert a backslash (\) before it, and enclose both in single quotes
(��), as such,�\�.

Common Character Escapes
Escape Character Definition ASCII Value
\� Single quote 39
\" Double quote 34
\b Backspace 8
\t Tab 9
\n New line 10
\f Form feed 12
\r Carriage return 13
\\ Backslash 92
\num Character with octal value num

(maximum three digits)
–

\Xhh

Character with the hexadecimal
value hh (maximum two digits)

–

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 26

String Constants
String constants consist of a sequence of characters enclosed in double quotes ("").

To specify double-quotes (") in a string constant, insert a backslash (\) before it, as such, "\".

To include other special characters in a string constant, use the character escapes defined in the
ANSI C language. See table Common Character Escapes for a list of common character
escapes.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 27

Expressions
An expression is a combination of symbols, numeric constants, and operators that uses standard
arithmetic notation to yield a result. Expressions can be absolute or relocatable.

Absolute Expressions
An expression is absolute when it is not subject to link-time relocation. An absolute expression
may contain relocatable symbols, but they must reduce to pairs of the form (R1 - R2), where R1
and R2 are relocatable symbols defined in the same section in the current source file.

Relocatable Expressions
An expression is relocatable when it is subject to link-time relocation. A relocatable expression
contains a relocatable symbol, and may contain an absolute expression. If a relocatable
expression contains an absolute expression, it must be reducible to the form (R+K), where R is
either a relocatable symbol defined in the current source file, or an undefined symbol, and K is an
absolute expression. The address of the relocatable symbol is defined in link time.

Operators

The assembly operators indicate arithmetic or bitwise-logic calculations. Parentheses (())
determine the order in which calculations occur. The assembler evaluates all operators of the
same precedence from left to right.

The assembler evaluates all operators according to their level of precedence. Table below lists
the operator precedence rules from lowest to highest.

Precedence of Arithmetic and Bitwise Logic Operations
Precedence Operator Symbol Operation
0 (Low) +

-

|

^

Addition

Subtraction

Bitwise inclusive OR

Bitwise exclusive OR
1 (Medium) *

/

%

<<

>>

Multiplication

Division

Remainder

Shift Left

Arithmetic shift right

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 28

Link-relocation Operators

Link-relocation operators generate link-relocation entries in expressions. See Link-relocation
Operators for a list of the link-relocation operators.

& Bitwise A ND
2 (High) -

~

Unary negation

Unary one’s complement

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 29

Statements
An assembly-language program consists of a series of statements separated by a semicolon (;).
Multiple statements may be on the same line.

To separate lines, use the standard line termination convention on the local host system, typically
CR (carriage return) and LF (line feed). To separate elements within a statement, use the CR,
LF, FF (form feed), VT (vertical tab), Space, or Tab that represent white space.

To separate a comment from the code at the end of a statement, insert the comment before the
semi colon (;) and precede it with a double-backslash (//). The assembler ignores comments.

The assembler may place a limit on the length of an input line, but this limit must be no less than
256 characters.

The types of assembly-language statements are as follows:

� label statements

� instruction statements

� directive statements

� assignment statements

� equate statements

� data allocation statements

� cross-section data allocation statements

The topics that follow detail each of the statement types, their components and syntax, and
provide an example of each.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 30

Label Statements
A label statement has the following syntax:

[label]: // comments

Where:

The following is an example of a global label statement:

foo::

label Defines a symbol whose value is the address of the
current location counter. If the assembler inserts
padding to align the location counter to an implied
alignment boundary, the value of the label is not
affected.

The assembler interprets a label followed by a double
colon (::) as a global symbol. See the Symbol Scope
Declaration section for more information about global
symbols.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 31

Instruction Statements
An instruction statement has the following syntax:

[label:] [[tag:]] [(qp)] mnemonic[.completers]
dests=sources //comments

Where:

The following is an example of an instruction statement with a label and

(qp):

L5: (p7) addl r14 = @gprel(L0), r1

The following is an example of an instruction statement with a tag:

label Defines a symbol whose value is the address of a bundle. When a
label is present, the assembler always starts a new bundle.

If the assembler inserts padding to align the location counter to a
bundle boundary, the label is assigned the address of the newly-
aligned bundle.

The assembler interprets a label followed by a double colon (::) as
a global symbol. See Symbol Scope Declaration for more
information about global symbols.

[tag] Defines a symbol whose value is the bundle address and slot
number of the current instruction.

(qp) Represents a predicate register symbol, which must be enclosed in
parentheses. If this field is not defined, predicate register 0 (p0) is
the default.

mnemonic.completers Represents the instruction mnemonic or pseudo-op. Instructions
may optionally include one or more completers. Completers must
appear in the specified order in the instruction syntax.

Mnemonics and completer mnemonics are not case-sensitive.

Refer to the Intel® Itanium® Architecture Software Developer’s
Manual for a description of the machine instructions, pseudo-ops,
and completers.

dests =sources Represents the destination and source operands. The operands
are register names, expressions, or keywords, depending on the
instruction. Some instructions can have two destination operands,
and one or more source operands. When there are multiple
operands they are separated by a comma (,). In cases where all
operands are destination operands or all operands are source
operands, the equal (=) sign is omitted.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 32

[t1:] fclass.m.unc p4, p5 = f6, @pos

@pos is a predefined constant representing the fclass operation. p4 is true if f6 is positive.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 33

Directive Statements
A directive statement has the following syntax:

.directive [operands] // comments

Where:

 The following is an example of a directive statement:

.proc foo

.directive Represents the directive mnemonic. Directives always begin with a period
(.). Directive mnemonics are not case-sensitive.

operands The operands are optional and determined by the directive. Where multiple
operands are present in directives, separate them with commas.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 34

Assignment Statements
Assignment statements enable the programmer to define or redefine a symbol by assigning it a
value. This value may be a reference to another symbol, register name, or expression. The new
value takes effect immediately and remains in effect until the symbol is redefined. Symbols
defined in assignment statements do not have forward references.

In addition, symbols defined in assignment statements cannot:

� appear in the symbol table of an output object file.

� be declared global.

� be defined in an equate statement.

There are two types of assignment statements:

� Symbol assignment statements, which define or redefine a symbol in the symbol name
space.

� Register assignment statements, which define or redefine a register name in the symbol
name space.

Symbol Assignment Statements
A symbol assignment statement has the following syntax:

identifier=expression // comments

Where:

 The following is an example of an assignment statement that defines a symbol:

C = L0+2

Register Assignment Statements
A register assignment statement has the following syntax:

identifier=register name // comments

Where:

identifier Represents a symbol in the symbol name space.
expression Specifies the type and value of the identifier. The expression cannot contain

forward references.

identifier Represents a register name in the symbol name space.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 35

The following is an example of an assignment statement that defines a register name:

A = r1

register name Specifies an alternate register name. If the register name is a stack or
rotating register name, the new register name continues to reference the
previously-defined register name, even if the name is no longer in effect.
See the Register Stack Directive and Rotating Register Directives
sections.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 36

Equate Statements
Equate statements enable the programmer to define a symbol by assigning it a value. This value
may be a reference to another symbol, register name, or expression. In equate statements, a
symbol can be defined only once throughout the source file. These symbols may have forward
references, except when referencing a register name. A symbol name defined in an equate
statement cannot be defined in an assignment statement.

Equate statements have the same syntax as assignment statements, except for the operator.

There are two types of equate statements:

� symbol equate statements

� register equate statements

Symbol Equate Statements
A symbol equate statement has the following syntax:

identifier==expression // comments

Where:

The following is an example of an equate statement that defines a symbol:

A == 5

Register Equate Statements
A register equate statement has the following syntax:

identifier==register name // comments

Where:

 The following is an example of an equate statement that defines a register name:

identifier Represents a symbol in the symbol name space.
expression Specifies the type and value of the identifier. The expression can contain forward

references.

identifier Represents a register name in the symbol name space.
register name Specifies an alternate register name. The register name cannot contain

forward references. If the register name is a stack or rotating register name,
the new register name continues to refer to the previously-defined register,
even if the name is no longer in effect. See the Register Stack Directive and
Rotating Register Directives sections.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 37

A == r1

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 38

Data Allocation Statements
A data allocation statement has the following syntax:

[label:] dataop operands // comments

Where:

The following is an example of a data-allocation statement with a label:

L2: data4.ua L1, L1+7, .t1+0x34, $-15

label Defines a symbol whose value is the address of the first data object defined by
the statement. If the assembler inserts padding to align the location counter to
an implied alignment boundary, the label is assigned the value of the newly-
aligned address.

The assembler interprets a label followed by a double-colon (::) as a global
symbol. See the Symbol Scope Declaration section for more information about
global symbols.

dataop Defines the type and size of data objects that are assembled. Data object
mnemonics are not case-sensitive. The Data Allocation Statements section
lists the data object mnemonics.

operands Contain multiple expressions separated by commas. Each expression defines
a separate data object of the same type and size. The assembler puts the data
objects into consecutive locations in memory, and automatically aligns each to
its natural boundary.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 39

Cross-section Data Allocation Statements
A cross-section data allocation statement has the following syntax:

xdataop section-name, operands //comments

Where:

The following is an example of a cross-section data allocation statement:

.xdata8 .data, 0x123, L1

xdataop Defines the type and size of data objects that are assembled. Cross-
section data object mnemonics are not case-sensitive.

section-name Refers to a predefined name of an existing section in the object file.
operands Contain multiple expressions that are separated by commas. Each

expression defines a separate data object of the same type and size.
The assembler puts the data objects into consecutive locations in
memory, and automatically aligns each to its natural boundary.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 40

Program Structure
This section describes the Itanium® architecture assembly language directives associated with
symbol declarations. These directives can be used to perform the following functions:

� Declare symbol scopes

� Specify symbol types

� Specify symbol sizes

� Override default file names

� Declare common symbols

� Declare aliases for labels, function names, symbolic constants, or sections

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 41

Sections
The output object file of an assembly program is made up of named sections that contain code
and data. The assembler allows any number of sections to be created in parallel within the output
object file, one of which can be accessed at a time. The section currently accessed is referred to
as the current section.

The assembler maintains a separate location counter for each existing section. The assembler
always adds new code or data to the end of the current section, moving the location counter in
that section ahead to incorporate the new code or data. The Cross-section Data Allocation
Statements section explains how to add data to a section that is not the current section.

Section directives and predefined section directives are used to define and switch between
sections. Some section directives have flag and type operands that specify the flag and type
attributes of a section.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 42

Section Flags and Section Type Operands
The flags operand specifies one or more flag attributes of a section. The flags operand is a
string constant composed of one or more characters. Table Section Flag Characters lists the
valid flag characters. The flags operand is case-sensitive. The assembler does not detect
invalid specifications made by the programmer, such as stores to a section that is a non-writable
section. A non-writable section is not flagged by the w flag character.

The type operand specifies a section’s type attribute. The type operand is a string constant
containing one of the valid section types listed in Table Section Types. The section types listed in
the table correspond directly to ELF (UNIX*) section types, except for the "comdat" section type,
which corresponds to COFF32 (Windows NT). The type operand is case-sensitive.

Section Flag Characters
Flag Characters Description
w Write access allowed.
a Section is allocated in memory.
x Section contains executable instructions.
s Section contains "short" data.
o Section adds ordering requirement.

The 'o' flag is only for ELF (Unix*) files.

Section Types
Section Type Description
"progbits" Sections with initialized data or code.
"nobits" Sections with uninitialized data (bss).
"comdat" COMDAT sections, Windows NT

specific. See Windows NT (COFF32)
Specific Section Flag Operands.

"note" Note sections.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 43

Windows NT (COFF32) Specific Section Flag
Operands
In addition to the section flags described in Section Flags and Section Type Operands, the
assembler recognizes the flags listed in table COMDAT Section Flag Characters (below) when
the section type is "comdat" and the object file format is COFF32 (Windows NT).

These flags represent link-time selection criteria, and are case-sensitive.

Associated Section Name Flag
When the A flag is present, the assembler identifies an associated section name. Use the A flag
in conjunction with an associated section operand.

The associated section operand is a section name. A section name can only be loaded in link
time if the associated section is already loaded.

To select the A flag, use the .section or .pushsection directive with an additional assoc-
section operand in one of the following formats:

.section section-name [,"flags","type" [,assoc-section]]

.section section-name = "flags","type" [,assoc-section]

.pushsection section-name [,"flags","type"

 [,assoc-section]]

.pushsection section-name = "flags","type" [,assoc-section]

Where:

COMDAT Section Flag Characters
Flag Description
D Allow only one instance of this section.
Y Select any one instance of this section.
E Select any one instance of this section; all instances must

have identical contents.
L Select the largest instance of this section.
A Select an instance of this section only if the associated

section name is selected. See Associated Section Name
Flag section that follows.

section-name Represents a user-defined name using any
valid identifier. Section names are case-
sensitive.

flags Represents a string constant composed of

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 44

one or more characters that specify the
attributes of a section. See table Section Flag
Characters for a list of the valid flag
characters.

type Represents a string constant specifying a type
attribute of a section. See table Section Types
for a list of the section types

assoc-
section

Represents a user-defined section name.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 45

Section Definition Directive
The .section directive defines new sections, switches from one section to another, and sets
the current section. The .section directive has the following formats, with a different
functionality for each format:

.section section-name

.section section-name,"flags","type"

.section section-name = "flags","type"

Where:

In the first format, the .section directive sets the section-name as the current section. In the
second format, the .section directive defines a new section, assigns flags and type attributes,
and makes the newly-defined section the current section. If the newly-defined section has the
same name, flag attributes, and type attribute as a previously-defined existing section, the
assembler switches to the previously-defined section without defining a new one. For example,
the following .section directive defines a new section (my_section), assigns flags ("aw")
and type ("progbits") attributes, and makes it the current section.

.section my_section, "aw","progbits"

In the third format, the .section directive creates a new section with a previously-defined section
name, and assigns it new flags and type attributes. The newly-created section becomes the
current section; any reference to this section name refers to the newly-created section. The
Using Section Directives section illustrates how to use the .section directive.

section-name Represents a user-defined name using any valid
identifier. Section names are case-sensitive.

flags Represents a string constant composed of one or more
characters that specify the attributes of a section. See
Table Section Flag Characters for a list of the valid flag
characters.

type Represents a string constant specifying a type attribute
of a section. See Table Section Types for a list of the
section types.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 46

Section Return Directive
The .previous directive returns to the previously-defined section of the current section and
makes it the current section. This directive does not affect the section stack. The Using Section
Directives section illustrates how to use this directive.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 47

Absolute Sections
Absolute sections are only supported by ELF object file formats. To define an absolute section
with a fixed starting address, use the .section and .pushssection directives with an
optional origin operand. The origin operand must be an absolute expression. Absolute
section addresses cannot overlap. The linker does not merge absolute sections with other
section types, or with other absolute sections.

The following example defines a new section name and assigns it new flags and type
attributes, with a starting address specified by the origin parameter.

.section new_name, "aw","progbits",0x1000

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 48

Section Stack Directives
The assembler maintains a section stack, which is defined by the .pushsection
and .popsection directives. These directives push and pop previously-defined sections to and
from the section stack. The assembler may limit the depth of a section stack, but it must allow at
least ten levels. The .pushsection directive pushes the current section onto the stack and
switches to the section specified in the directive. The .pushsection directive, like
the .section directive, has one of the following formats:

.pushsection section-name

.pushsection section-name,"flags","type"

.pushsection section-name = "flags","type"

Where:

The Using Section Directives section illustrates how to use the .pushsection
and .popsection directives.

section-name Represents a user-defined name using any valid identifier. Section
names are case-sensitive.

flags Represents a string constant composed of one or more characters that
specify the attributes of a section. See table Section Flag Characters
for a list of the valid flag characters.

type Represents a string constant specifying a type attribute of a section.
See table SectionTypes for a list of the section types
The .popsection directive pops the previously-pushed section from
the top of the stack, and makes it the current one.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 49

Predefined Section Directives
The predefined section directives define and switch between commonly-used sections. A
predefined section directive creates a new section with the default flags and type attributes,
and makes that section the current section.

The predefined section directive mnemonics are the same as the section names. The assembler
generates section names in lower case, even though directive mnemonics are not case-sensitive.

On some platforms the assembler automatically creates a local symbol with a "section" type
attribute for each defined section in the object file. See the Symbol Type Directive section for
more information about symbol types.

The linker combines sections with the same name, flags and type attributes. The linker
creates two separate output sections for sections with the same name, but different flags and
type attributes.

To define a section without the default flags and type attributes, use the .section directive.

The predefined section directives cannot define a new section using the same name as a
previously-defined section.

Table Predefined Section Directives below lists the predefined section directives, and their
default flags and type attributes. A predefined section directive can have the same name as a
section name.

Predefined Section Directives

Directive/Section
Name

Flags Type Usage

.text "ax" "progbits" Read-only object code.

.data "wa" "progbits" Read-write initialized long data.

.sdata "was" "progbits" Read-write initialized short data.

.bss "wa" "nobits" Read-write uninitialized long data.

.sbss "was" "nobits" Read-write uninitialized short data.

.rodata "a" "progbits" Read-only long data (literals). ELF
(Unix) format only.

.comment " " "progbits" Comments in the object file. ELF
format, and COFF format only when
used with the -Qy command-line
option.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 50

Sections Linking Directive
The .seclink directive declares a link between one section to another section. This directive
can be used to link an unwind information section with the user-defined executable section.

The .seclink directive has the following syntax:

.seclink section-name, linked-to-section-name

Where

section-name Represents the name of a section that links to
another section.

link-to-section-name Represents the name of a section the section-
name links to.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 51

Using Section Directives
The following code illustrates the use and behavior of the section directives .text, .section,
.pushsection, .popsection, and .previous:

Example: Code Sequence Using Section Directives

.text //Default

.section A //Makes A the current section.
 //.text is A�s previous section.

.pushsection B //Pushes A onto the stack and makes B the
 //current section. A is B�s previous section.

.pushsection C //Pushes B onto stack and makes C the current
 //section, B is C�s previous section.

.popsection //Pops B from stack and makes it current.

.popsection //Pops A from stack and makes it current.
 //.text is A�s previous section.

.previous //Makes A�s previously current section .text the
 //current section. A becomes .text�s previous
 //section.

.previous //Makes A the current section, .text becomes A�s
 //previous section.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 52

Include File Directive
To include the content of another file in the current file, use the .include directive (see
Preprocessor Support) or use the #include directive of the standard C preprocessor.

To include the contents of another file in the current source file, use the .include directive in
the following format:

.include "filename"

Where:

"filename" Specifies a string constant. If the specified
filename is an absolute pathname, the file is
included. If the specified filename is a relative
pathname, the assembler performs a platform-
dependent search to locate the include file.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 53

Bundles
Itanium® architecture instructions are grouped together in 128-bit aligned containers called
bundles. Each bundle contains three 41-bit instruction

slots, and a 5-bit template field. The template field specifies which type of execution unit
processes each instruction in the bundle. Bit 0 is set to 1 if

there is a stop at the end of a bundle. There is no fixed relation between the boundaries of an
instruction group and the boundaries of a bundle.

Figure below illustrates the format of a bundle.

Multiway branch bundles contain more than one branch instruction. When the first branch
instruction of a multiway bundle is taken, the subsequent branch instruction does not execute.

Bundles are always aligned at 16-byte boundaries. The assembler automatically aligns sections
containing bundles to at least 16-bytes.

Bundling can be:

� implicit (automatically performed by the assembler)

� explicit (specified by the programmer)

 — with automatic selection of the template

 — with explicit selection of the template

Refer to the Intel® Itanium® Architecture Software Developer’s Manual for more details about
bundles.

Bundle Format

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 54

Implicit Bundling
The assembler bundles instructions automatically by default.

In the implicit-bundling mode, section directives do not terminate a partially-filled bundle of a
previously-defined section. This means that the assembler can return to the previous section and
continue to fill the bundle.

In implicit-bundling mode, a label forces the assembler to start a new bundle.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 55

Explicit Bundling
The programmer can explicitly assemble bundles by grouping together up to three instructions,
and enclosing them in braces ({}). The assembler places these instructions in one bundle,
separate from all preceding and subsequent instructions. Stops at the end of an explicit bundle
can be placed before or after the closing brace.

Section directives and data allocation statements cannot be used within an explicit bundle.
Cross-section data allocation statements can be used within an explicit bundle. See the Cross-
section Data Allocation Statements section for more information.

In explicit-bundling mode, labels can be inserted only as the first statement of an explicit bundle.
Instruction tags can be applied to any instruction.

When using explicit-bundling, the appropriate template can be selected in one of the following
ways:

� automatically by the assembler.

� explicitly by the programmer, using the explicit-template directives.

Auto-template Selection
By default, the assembler searches and selects a matching template for a bundle. The template
fields specify intra-bundle instruction stops. When two templates consist of the same sequence of
instruction types, they are distinguished by stops. The assembler selects the appropriate
template field based on the stops within the bundle. If no template is found, the assembler
produces a diagnostic message. Instruction group stops may occur in a bundle.

Explicit Template Selection
To explicitly select a specific template, use one of the directives listed in table Explicit Template
Selection Directive (below) as the first statement of your code within the braces. For example,
the .mii directive selects the memory-integer-integer (mii) template.

Explicit Template Selection Directives
Directive Template Selection

 Slot 0 Slot 1 Slot 2
.mmi memory integer integer
.mfi memory floating point integer
.bbb branch branch branch
.mlx memory long immediate
.mib memory integer branch
.mmb memory memory branch
.mmi memory memory integer
.mbb memory branch branch
.mfb memory floating point branch

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 56

Refer to the Intel® Itanium® Architecture Software Developer’s Manual for more information
about template field encoding and instruction slot mapping.

Note:

Select the .mlx directive for the move long immediate instruction and for the long branch
instruction. These instructions operate on 64-bit data types and are too large to fit into one
of the 41-bit bundle slots. This directive selects the mlx template and inserts the instruction
in slot 1 and slot 2 of the bundle.

Example below is the code that shows an explicit bundle using explicit template selection, and a
stop.

.mmf memory memory floating point

Example: Bundle with Explicit Template Selection and a
Stop

{.mmi //use the mmi template for this bundle
m inst //memory instruction
;; //stop
m inst //memory instruction
i inst //integer instruction
}

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 57

Instruction Groups
Itanium® architecture instructions are organized in instruction groups. Each instruction group
contains one or more statically contiguous instruction(s) that can execute in parallel. An
instruction group must contain at least one instruction; there is no upper limit on the number of
instructions in an instruction group.

An instruction group is terminated statically by a stop, and dynamically by taken branches. Stops
are represented by a double semi-colon (;;). The programmer can explicitly define stops. Stops
immediately follow an instruction, or appear on a separate line. They can be inserted between
two instructions on the same line.

Refer to the Intel® Itanium® Architecture Software Developer’s Manual for more detailed
information about instruction groups.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 58

Dependency Violations and Assembly Modes
Dependency violations occur when instructions within an instruction group access the same
resource register, including registers that appear as implicit operands. Dependency violations
result in architecturally undefined behavior. The assembler can detect and eliminate dependency
violations that occur within instruction groups, depending on its mode.

The assembler reads and processes assembly code in one of two modes: explicit and automatic.

Use explicit mode if you are an expert user with profound knowledge of Itanium® architecture or
performance is important. In explicit mode, you are responsible for bundling and stops (;;), and
the assembler generates errors where it finds dependency violations.

Use automatic mode if you are a novice user or performance is not the highest consideration. In
automatic mode, the assembler bundles the code and adds stops to avoid dependency
violations. It ignores existing stops and annotations.

You can mix code from both modes in the one file. Set the mode using the command-line option
or the directives .auto and .explicit. The directive .default causes the assembler to
revert to the mode of operation defined in the command line.

For a complete description of the rules of data dependencies, see the Intel® Itanium®
Architecture Software Developer’s Manual.

This feature may not be currently supported by all assemblers.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 59

Procedures
Software conventions require that instructions belong to a declared procedure, and that
procedure prologues be separated from the main body within the procedure. These conventions
ensure that the proper stack unwind information is placed in the object file. Refer to the Software
Conventions and Runtime Architecture Guide for details about the software conventions.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 60

Procedure Directives
The .proc and .endp directives combine code belonging to the same procedure. The .proc
directive marks the beginning of a procedure, and the .endp directive marks the end of a
procedure. A single procedure may consist of several disjointed blocks of code. Each block
should be individually bracketed with these directives. Name operands within a procedure can be
used only for that specific procedure.

The .proc directive declares a symbol as a function. The .proc directive does not define the
symbol by assigning it a value. Symbols must be defined as a label within the procedure. When
name is defined, it is automatically assigned a "function" type.

The following code sequence shows the basic format of a procedure:

Where:

.proc name,...

name: //label

... //instructions in procedure

.endp name, ...

name Represents one or more entry points of the
procedure. Each entry point has a different name.
The assembler ignores the name operands of
the .endp directive.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 61

Procedure Label (PLabel)
When the object file format is COFF32 (Windows NT), the assembler creates two symbols for a
defined procedure. One symbol represents the procedure entry point and appears in the object
file symbol table with the original symbol name preceded by a dot. For example, the label named
foo becomes .foo in the object file symbol table. The other symbol represents the procedure
label, also referred to as the function descriptor or PLabel, and is implicitly generated by the
assembler using the original symbol name. Refer to the Software Conventions and Runtime
Architecture Guide for more information about the procedure label.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 62

Stack Unwind Directives
Stack unwind directives are used to generate unwind information for a procedure.

The Software Conventions and Runtime Architecture Guide describes stack unwind elements
and their semantics. Refer to this document for information about the semantics of the stack
unwind directives described in this section.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 63

Procedures Used for Stack Unwind
Directives
Procedures are bound by the .proc and .endp directives. See the Procedure Directives section
for more information about these directives. Procedures are section-sensitive. The assembler
interprets stack unwind directives according to the procedure in which they appear.

Procedures contain prologue and body regions that are divided by headers. These headers are
specified using the .prologue and .body directives.

The .prologue directive introduces a prologue region within a procedure. Each prologue region
must be introduced by the .prologue directive.

The .body directive separates the procedure prologue from the main body of the procedure. You
can use the .body directive more than once within procedures with multiple body regions.

For language specific data, use the .handlerdata directive followed by handler data
allocations with the .endp directive after the handler data allocations. The assembler places the
handler data in the .xdata section.

See the Stack Unwind Directives Usage Guidelines section for more information about using this
directive.

These directives may not be currently supported by all assemblers.

Example below, Procedure Format in a Code Sequence, illustrates the format of a procedure
with two prologues, two body regions, and language specific data.

Example: Procedure Format in a Code Sequence
.proc name,... //start of procedure

.prologue //instructions in first prologue

.body //instructions in first body region

.prologue //instructions in second prologue

.body //instructions in second body region

.handlerdata //data allocations go to .xdata section

.endp name,... //end of procedure

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 64

List of Stack Unwind Directives
Stack unwind directives, except for the.endp directive, do not break bundles. When a tag
operand is present in a stack unwind directive, the tag refers to a location of an instruction slot. If
the tag is omitted, the location default is the location counter of the next instruction. More than
one directive can refer to the same location of an instruction slot.

Generally, functions have unwind table entries. A stack unwind directive must be present
between the .proc and .endp directives to write function entries and unwind information to the
unwind table.

To create a function entry for unwind information when there is no stack unwind information, use
the .unwentry directive.

The table that follows, Stack Unwind Directives, lists the stack unwind directives and their
operands. The right-most column of the table summarizes the records and fields that are affected
by these directives. For more information about the affected records and fields, refer to the
Software Conventions and Runtime Architecture Guide.

Stack Unwind Directives
Directive Name First

Operand
Second
Operand

Third Operand Affected Record
and Fields

.proc symbol entry-start

.endp entry-end

.handlerdata handler data
allocation

.unwentry entry
generation

.prologue prologue head
previous head

.prologue imm-mask grsave prologue head
previous head

.body

 body header

previous header

.personality symbol [phases] personality

.fframe size [tag] mem_stack_f

.vframe gr-
location

[tag] mem_stack_v

psp_gr

.vframesp spoff [tag] mem_stack_v

psp_sprel

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 65

.vframepsp pspoff [tag] mem_stak_v

pso_psprel

.restore sp [ecount] [tag] epilogue

.copy_state state_no copy_state

.label_state state_no label_state

.save rp gr-location [tag] rp_when

rp_gr

.altrp br-
location

rp_br

.savesp rp rp imm-location [tag] rp_when

rp_sprel

.savepsp rp rp imm-location [tag] rp_when

rp_psprel

.save ar.fpsr gr_location [tag] fpsr_when

fpsr_gr

.savesp ar.fpsr imm_location [tag] fpsr_when

fpsr_sprel

.savepsp ar.fpsr imm_location [tag] fpsr_when

fpsr_psprel

.save ar.bsp gr_location [tag] bsp_when

bsp_gr

.savesp ar.bsp imm_location [tag] bsp_when

bsp_sprel

.savepsp ar.bsp imm_location [tag] bsp_when

bsp_psprel

.save ar.bsp

store

gr_location [tag] bspstore_when

bspstore_gr

.savesp ar.bsp

store

imm_location [tag] bspstore_when

bspstore_spre

.savepsp ar.bsp

store

imm_location [tag] bspstore_when

bspstore_pspr

.save ar.rnat gr_location [tag] rnat_when

rnat_gr

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 66

.savesp ar.rnat imm_location [tag] rnat_when

rnat_sprel

.savepsp ar.rnat imm_location [tag] rnat_when

rnat_psprel

.save ar.pfs gr-location [tag] pfs_when

pfs_gr

.savesp ar.pfs imm-location [tag] pfs_when

pfs_sprel

.savepsp ar.pfs imm-location [tag] pfs_when

pfs_psprel

.save ar.unat gr-location [tag] natcr_when

natcr_gr

.savesp ar.unat imm-location [tag] natcr_when

natcr_sprel

.savepsp ar.unat imm-location [tag] natcr_when

natcr_psprel

.save ar.lc gr-location [tag] lc_when

lc_gr

.savesp ar.lc imm-location [tag] lc_when

lc_sprel

.savepsp ar.lc imm-location [tag] lc_when

lc_psprel

.save pr gr-location [tag] preds_when

preds_gr

.savesp pr imm-location [tag] preds_when

preds_sprel

.savepsp pr imm-location [tag] preds_when

preds_psprel

.save @priunat gr_location [tag] priunat_when

priunat_gr

.savesp @priunat imm_location [tag] priunat_when

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 67

1 .spillreg.p, .spillsp.p, and .spillpsp.p have an optional fourth operand: [tag].

priunat_sprel

.savepsp @priunat imm_location [tag] priunat_when

priunat_pspre

.save.g imm-grmask gr_mem
spill_imask

.save.g imm_grmask gr_location [tag] gr_gr imask

.save.f imm-frmask fr_mem

spill_imask

.save.b imm-brmask br_mem

spill_imask

.save.gf imm-grmask imm-frmask frgr_mem

spill_imask

.save.b imm-brmask gr-location br_gr

spill_imask

.spill imm-
location

spill_base

.spillreg reg treg [tag] spill_reg

.restorereg reg [tag] spill_reg

.spillsp reg imm_location [tag] spill_sprel

.spillpsp reg imm_location [tag] spill_psprel

.spillreg.p
1 qp reg treg spill_reg_p

.restorereg.p qp reg [tag] spill_reg_p

.spillsp.p qp reg imm_location spill_sprel_p

.spillpsp.p qp reg imm_location spill_psprel_

.unwabi os-type imm_context abi

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 68

Stack Unwind Directives Operands
The following alphabetical list defines the stack unwind directive operands listed in the table
Stack Unwind Directives:

� ar.pfs, ar.unat, and ar.lc are explicit register names.

� br-location is the alternative branch register used to get the return link. By default, b0 is
the return link.

� ecount is the number of prologues -1 specified by the assembler if this field is not
specified by the user.

� gr-location is a general-purpose register that specifies the destination of the save
operation. For example, registers r1 and loc1.

� grsave saves the rp, ar.pfs, psp, and pr register contents to the first general-purpose
register.

� imm-location (immediate location) is the offset between the sp or psp, and the
save_address, specified in bytes. This offset is always positive and specified as follows:

� imm-mask (immediate mask) is an integer constant specifying a bit pattern for the
preserved registers, as follows:

— The immediate mask (imm-mask) of the .prologue directive is specified as follows:
rp (return link) (bit 3), ar.pfs register (bit 2), psp (previous stack pointer) (bit 1), pr
register (bit 0)

— The immediate mask (mm-frmask) of the .save.f and .save.gf directives refer to
the preserved floating-point registers.

— The immediate mask (imm-grmask) of the .save.g and .save.gf directives refer to
the preserved general registers.

— The immediate mask (imm-brmask) of the .save.b directive refers to the preserved
branch registers.

� os-type is one of @svr4, @hpux, or @nt. It specifies the operating system type.

� phases is the number of phases, ranging from 0 to 3.

� pr is an explicit register name.

� @priunat is a predefined symbol and indicates a primary unat.

� psp is the location of the previous stack frame.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 69

� psp_offset: imm-location = psp_address - save_address. See also imm-
mask.

� qp is one of the following predicate registers: p1-p63.

� reg is one of the following registers: r4-r7, f2-f5, f16-f31, b1-b5, pr, @psp,
@priunat, rp, ar.bsp, ar.bspstore, ar.rnat, ar.unat, ar.fpsr, ar.pfs, or
ar.lc.

� rp is an explicit register name.

� size is the fixed frame size in bytes.

� sp is an explicit register name.

� sp_offset: imm-location = save_address - sp_address. See also imm-mask.

� state_no is the state copied or restored.

� symbol is an assembly label.

� tag is an optional operand, which specifies a "when" attribute of the operation described
by the directive.

� treg is one of the following registers: r1-r127, f2-f127, or b0-b7.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 70

Syntax for the .save.x Directives
The directives, .save.f, .save.g, .save.gf, and .save.b, define 2-bit fields for each save
operation in the imask descriptor. The assembler interprets the instruction that immediately
follows a save directive as a save instruction.

Example Code Sequence Using the .save.g Directive illustrates the use of the .save.g
directive. Each .save.g directive describes the subsequent store instruction. The operand is a
mask where only one bit is set. This bit specifies the preserved saved register. The assembler
produces a gr_mem descriptor with a 0x5 mask. In addition, the assembler marks the 2-bit fields
of the imask descriptor, corresponding to the slots of the two store instructions.

Example Code Sequence Using the .save.gf Directive illustrates the use of the .save.gf
directive. The .save.gf directive describes the subsequent store instruction. The operands is a
mask where only one bit is set. This bit specifies the preserved saved register. The assembler
produces a frgr_mem descriptor with a 0x42 mask for the floating-point registers and a 0x2 mask
for the general-purpose registers. In addition, the assembler marks the 2-bit fields of the imask
descriptor, corresponding to the slots of the three store instructions.

Example: Code Sequence Using
the .save.g Directive

.save.g 0x1
st8... = r4
...
.save.g 0x4
st8... = r6

Example: Code Sequence Using
the .save.gf Directive

.save.gf 0, 0x2
fst... = f3
...
.save.gf 0, 0x40
fst... = f18
...
.save.gf 0x2, 0
st8... = r5

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 71

Stack Unwind Directives Usage Guidelines
Follow these guidelines when using the stack unwind directives:

� Place stack unwind directives between the unwind entry point of the function declared
in .proc and .endp.

� The first directive in each region in a procedure must be one of the following region header
directives, .prologue or .body.

� The first directive in the procedure must point to the same address as the first unwind entry
point of the function.

� No two consecutive prologue regions are allowed.

� When none of the stack unwind directives listed in the Stack Unwind Directives table are
specified, optionally use the .unwentry directive to create an unwind entry for the
function. Do not use this directive if the unwind records are filled by the compiler.

� Use tags only within the current region. A tag operand cannot be specified out of the scope
region. If a tag is omitted, the directive refers to the next instruction, which resides in the
same region.

� Use only one .personality directive at any point within each procedure.

� Always precede the .handlerdata directive with the .personality directive.

� Follow these guidelines for prologue regions:

— Use one of the following frame directives if the procedure creates a new stack frame:
.fframe, .vframe, or .vframesp.

— Use each of the .save directives only once. For example: .save rp, ar.pfs,
ar.unat, ar.lc, and pr.

— Multiple usage of the directives, .save.g, .save.f, .save.b, and .save.gf is
allowed. The number of bits set in the bit-mask operand specifies the number of the
consecutive save instructions that immediately follow the directive.

— A single unwind record is built for one or more occurrences of the following directives:
.save.g, .save.f, .save.b, and .save.gf. The bit-mask field of the record is a bitwise
OR of all the masks that appear in the directives.

— Use only one .save.b with the gr-location operand.

— Use only one .spill directive.

— The .prologue <imm_mask> directive with the psp bit set and the .vframe directive
both define the psp location. Use only one of them.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 72

� Use only one .restore directive for body regions.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 73

Using Stack Unwind Directives Example
The example below is a simple “Hello World” function that shows the usage of local and output
registers. For comparison, the first part (A) does not include unwind directives, and the second
part (B) includes stak unwind directives and DV detection clues.

Using Unwind Directives
A. "Hello World" Function Without Unwind Directives

// The string is defined in the read only data section
.section .rdata, "a", "progbits"
.align 8
.STRING1:
stringz "Hello World!!!\n"

// The definition of the function hello is in the text section
// The following registers are saved in local registers:
// gp = r1 - loc0 = r32
// rp = b0 - loc1 = r33
// ar.pfs - loc2 = r34
// sp = r12 - loc3 = r35
.text
.global hello
.proc hello
hello:
alloc loc2 = ar.pfs, 0, 4, 1, 0
mov loc3 = sp
mov loc1 = b0
addl out0 = @ltoff(.STRING1), gp
;;
ld8 out0 = [out0]
mov loc0 = gp
br.call.sptk.many b0 = printf
;;
mov gp = loc0
mov ar.pfs = loc2
mov b0 = loc1
mov sp = loc3
br.ret.sptk.many b0
.endp hello

.global printf
.type printf, @function

B. "Hello World" Function With Unwind Directives

 .file "hello.c"
.pred.safe_across_calls p1-p5,p16-p63

.section .rdata, "a", "progbits"
.align 8
.STRING1:
stringz "Hello World!!!\n"
.text
.align 16
.global hello#

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 74

.proc hello#
hello:
.prologue
.save ar.pfs, r34
alloc r34 = ar.pfs, 0, 4, 1, 0
.vframe r35
mov r35 = r12
.save rp, r33
mov r33 = b0
.body
addl r36 = @ltoff(.STRING1), gp
;;
ld8 r36 = [r36]
mov r32 = r1
br.call.sptk.many b0 = printf#
;;
mov r1 = r32
mov ar.pfs = r34
mov b0 = r33
.restore sp
mov r12 = r35
br.ret.sptk.many b0
.endp hello#

.global printf#
.type printf#, @function

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 75

Windows NT (COFF32) Symbolic Debug
Directives
When the object file format is COFF32 (Windows NT), the symbolic debug directive .ln stores
the line number table entry of a function in the symbolic debug information. The symbolic debug
directive .ln must be enclosed within a function defined by the .bf and .ef directives. The .bf
and .ef directives define the beginning and the end of a function.

The .ln directive has the following format:

.ln line-number[,function]

Where:

The .bf and .ef directives have the following format:

.bf function,line

.ef function,line,code-size

Where:

line-number Specifies the source line number
associated with the next assembled
instruction.

function Is the name of the current function.

function Represents the function name.
line Is an integer number corresponding to the first

source line of the function.
code-size Is an integer number representing line group

code size, which is written as debug
information.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 76

Declarations
This section describes the Itanium® architecture assembly language directives associated with
symbol declarations. These directives can be used to perform the following functions:

� Declare symbol scopes

� Specify symbol types

� Specify symbol sizes

� Override default file names

� Declare common symbols

� Declare aliases for labels, function names, symbolic constants, or sections

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 77

Symbol Scope Declaration
Symbols are declared as global, weak, or local scopes. Symbol scopes are used to resolve
symbol references within one object file or between multiple object files. The symbol scope
attribute is placed in the object file symbol table and any reference to a symbol is resolved in link
time. By default, symbols have a local scope, where they are available only to the current
assembly-language source file in which they are defined.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 78

Local Scope Declaration Directive
References to symbols with a local scope are resolved from within the object file in which the
symbols are declared. Local symbols with the same name in different object files do not refer to
the same entity. Symbols have a local scope by default, so it is not necessary to declare symbols
with local scopes. However, the .local directive is available for completeness. The .local
directive has the following format:

.local name,name, ...

Where:

name Represents a symbol name.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 79

Global Scope Declaration Directive
References to symbols with a global scope are resolved within the object file in which the
symbols are declared, and within other object files. Global symbols with the same name in
different object files refer to the same entity.

To declare one or more symbols with a global scope, use the .global directive. These symbols
are flagged as global symbols for the linkage editor. The .global directive has the following
format:

.global name,name, ...

Where:

name Represents a symbol name.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 80

Weak Scope Declaration Directive
References to symbols with a weak scope are resolved within the object file in which the symbols
are declared, and within other object files. Weak symbols with the same name in different object
files may not refer to the same entity. When a symbol name is declared with a weak scope as
well as a global or local scope, the global or local scope will take precedence over the weak
scope in link time.

To declare one or more symbols with a weak scope, use the .weak directive. These symbols are
flagged as weak symbols for the linkage editor. The weak scope declaration format for UNIX*
(ELF) and Windows NT (COFF32) differ and are described in the sections that follow.

Weak Scope Declaration for UNIX (ELF)
For UNIX (ELF), use the .weak directive in the following format:

.weak name1,name2, ...

Where:

The following example illustrates how to declare an undefined symbol with a weak scope. The
defined symbol x: has a local scope. y has the attributes of x and has a local scope. The symbol
y can then be declared with a weak scope using the .weak directive while keeping the other
attributes of x.

Weak Scope Declaration for Windows NT (COFF32)
For Windows NT (COFF32), use the .weak directive in the following format to declare a symbol
with a weak scope and search for defined symbols within other object files and libraries:

.weak identifier1 = identifier2

Where:

name Represents a symbol name.

x:
 y == x
 .weak y

identifier1 Represents a symbol name that is
assigned a weak symbol scope,
which is resolved in link time.

identifier2 Represents a symbol name that
holds the symbol definition.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 81

Use the following syntax to declare a symbol with a weak scope and search for defined symbols
within other object files and not within libraries:

.weak identifier1 == identifier2

Where:

The following example illustrates a weak scope declaration where x: is a local defined symbol. x
is the associated symbol for y. The .weak directive assigns y a weak scope.

identifier1 Represents a symbol name that is
assigned a weak symbol scope, which
is resolved in link time.

identifier2 Represents a symbol name that holds
the symbol definition.

x:
.weak y = x

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 82

Symbol Visibility Directives
A symbol's visibility, although it may be specified in an object file, defines how that symbol may
be accessed once it has become part of an executable or shared object.

The default visibility of symbols is specified by the symbol's binding type. That is, global and
weak symbols are visible outside of their defining component (executable file or shared object).
Local symbols are hidden, as described below.

A symbol defined in the current executable file or shared object is protected if it is visible in other
components but not preemptable. Preemptable means that any reference to such a symbol from
within the defining component must be resolved to the definition in that component, even if there
is a definition in another component.

A symbol defined in the current component is hidden if its name is not visible to other
components. Such a symbol is necessarily protected. This directive may be used to control the
external interface of a component.

To declare one or more symbols as protected, use the .protected directive. These symbols
are flagged as protected symbols for the linkage editor. The .protected directive has the
following format:

.protected name,name, ...

Where:

To declare one or more symbols as hidden, use the .hidden directive. These symbols are
flagged as hidden symbols for the linkage editor. The .hidden directive has the following
format:

.hidden name,name, ...

Where:

To declare one or more symbols as exported, use the .export directive. These symbols are
flagged as exported symbols for the linkage editor. The .export directive has the following
format:

.export name,name, ...

Where:

name represents a symbol name.

name represents a symbol name.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 83

name represents a symbol name.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 84

Symbol Type Directive
The default type of a symbol in an object file is based on the assembly-time type of the symbol.
See table Symbol Types below for a list of the symbol types and their predefined names. To
explicitly specify a symbol’s type, use the .type directive in the following format:

.type name,type

Where:

Note:

The assembler automatically creates a symbol of type name for section names. When the
object file format is COFF32 (Windows NT) the assembler creates a function symbol name
for @function. For more information see the Procedure Label (PLabel) section.

name Represents a symbol name.
type Specifies the symbol type using one of the predefined

symbols listed in table Symbol Types that follows.

Symbol Types

Symbol Types Predefined Symbol Name of
Type

Symbolic constants and undefined
symbols

@notype

Labels and common symbols @object

Function names @function

Section names Created by the assembler.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 85

Symbol Size Directive
To explicitly specify the size attribute of a symbol, use the .size directive. The .size directive
has the following format:

.size name,size

Where:

To implicitly specify the default size attribute of a symbol, use a data allocation statement. The
default symbol size is written to the symbol table. See the Data Allocation Statements section for
more information.

 Note:

When the object file format is COFF32 (Windows NT), the .size directive is only effective
for common symbols.

name Represents a symbol name.
size Represents an absolute integer expression

with no forward references.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 86

File Name Override Directive
By default, the file name is the name of the source file. To override the default file name use
the .file directive. If you use the .file directive more than once in a source file, the
assembler places multiple file names in the output object file. The .file directive has the
following format:

.file "name"

Where:

name Represents a string constant specifying a
source file name.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 87

Common Symbol Declarations
Common and local common symbol declarations enable you to define a symbol with the same
name in different object files. The difference between a common symbol and local common
symbol is as follows:

� The linker merges two or more common symbol declarations for the same symbol.

� The assembler merges two or more local common symbol declarations for the same
symbol.

If a symbol is declared as both common and local common, the common declaration overrides
the local common declaration. Any definition of a symbol supersedes either type of common
declaration.

Common Symbol Directive
To declare a symbol as a common symbol, use the .common directive. Common symbols have a
global scope, and do not necessarily have the same size and alignment attributes. The .common
directive has the following format:

.common name,size,alignment

Where:

 Note:

When the object file format is COFF32 (Windows NT), the alignment operand is not
supported.

Local Common Symbol Directive
To declare a symbol as a local common symbol use the .lcomm directive. The .lcomm directive
has the following format:

.lcomm name,size,alignment

Where:

name Represents a symbol name.
size Represents an absolute integer expression.
alignment Represents an absolute integer expression to the

power of two. Not supported in COFF32 format.

name Represents a symbol name.
size Represents an absolute integer expression.
alignment Represents an absolute integer expression to the

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 88

The assembler allocates storage in the .bss or .sbss sections for undefined symbols declared
as local common. The .bss or .sbss sections are chosen according to the size of the local
common symbol. The assembler defines the symbol with the relocatable address of the allocated
storage. The symbol is declared with a local scope, and assigned the largest size and alignment
attributes of the local common declarations for that symbol.

power of two.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 89

Alias Declaration Directives
The .alias directive declares an alias for a label, a function name, or a symbolic constant. This
directive can be used to reference an external symbol whose name is not legal in the assembly
language. The .alias directive has the following format:

.alias symbol,"alias"

Where:

The .secalias directive declares an alias for a section name. This directive can be used to
reference an external section whose name is not valid in the assembly language.
The .secalias directive has the following format:

.secalias section-name,"alias"

Where:

symbol Represents a symbol name that the assembler can
recognize. This name must be a valid name for the
type of symbol.

"alias" Represents a string constant, which is the name the
assembler exports to the object file symbol table.

section-name Represents a section name that the assembler can
recognize. This name must be a valid name for the
type of section.

"alias" Represents a string constant, which is the name the
assembler exports to the object file symbol table.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 90

Data Allocation
This section describes the Itanium® architecture assembly language statements used to allocate
initialized and unitialized space for data objects in current sections and in cross sections, and to
align data objects in sections of the code.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 91

Data Allocation Statements
Data allocation statements allocate space for data objects in the current section, and initialize the
space by assigning it a value. Data objects can be integer numbers, floating-point numbers, or
strings. Integer numbers and floating point numbers are aligned according to their size. A data
allocation statement with a label, defines a symbol of @object type, and sets the size attribute
for that symbol.

Data allocation statements have any of the following formats:

[label:] data1 expression, ...

[label:] data2 expression, ...

[label:] data4 expression, ...

[label:] data8 expression, ...

[label:] data16 expression, ...

[label:] real4 expression, ...

[label:] real8 expression, ...

[label:] real10 expression, ...

[label:] real16 expression, ...

[label:] string "string", ...

[label:] stringz "string", ...

Where:

The table below summarizes the data allocation mnemonics, and their expression type, memory
format, data-object size, and alignment boundary for each.

label Specifies the data allocation address of the first
data object.

expression Represents any of the valid expression types
listed in the Data Allocation Statements table,
see below. Data alocation statements can have
more than one epression operand.

string Represents any of the valid string expression
type

values listed in the Data Allocation Statements
table, see below.

Data Allocation Statements

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 92

To disable the automatic alignment of data objects in data allocation statements, add the .ua
completer after the mnemonic, for example, data4.ua. These statements allocate unaligned
data objects at the current location within the current section.

The default byte order for data allocation statements is platform dependent. To specify the byte
order for data allocation statements, use the .msb, or .lsb directives described in the Byte
Order Specification Directives section.

Mnemonic Expression
Type

Memory Format Size (in
bytes)

Alignment

data1 Integer Integer 1 1
data2 Integer Integer 2 2
data4 Integer Integer 4 4
data8 Integer Integer 8 8
data16 Integer Integer 16 16
real4 Floating point or

Integer
IEEE single-precision
floating point

4 4

real8 Floating point or
Integer

IEEE double-precision
floating point

8 8

real10 Floating point or
Integer

IEEE extended-
precision floating point
(80-bit)

10 10

real16 Floating point or
Integer

IEEE extended-
precision floating point
(80-bit)

16 16

string String constant Array of ASCII
characters

Length
of string

1

stringz String constant Array of ASCII
characters with null
terminator

Length
of string
+ 1

1

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 93

Uninitialized Space Allocation
The .skip and .org statements reserve uninitialized space in a section without assigning it a
value. The .skip and .org statements enable the assembler to reserve space in any section
type, including a "nobits" section. During program execution, the contents of a "nobits"
section are initialized as zero by the operating system program loader. When using the .skip
and .org statements in any other section type, the assembler initializes the reserved space with
zeros.

The .skip statement reserves a block of space in the current section. The size of the block is
specified in bytes, and is determined by an expression operand. The expression operand
specifies the size of space reserved in the current section. The .skip statement with a label,
defines a symbol of @object type, and sets the size attribute for that symbol.

The .skip statement has the following format:

[label:] .skip expression

Where:

The .org statement reserves a block of space in the current section. The .org statement
advances the location counter to the location specified by the expression operand. The .org
statement with a label defines a symbol of @object type, and sets the size attribute for that
symbol. The .org statement has the following format:

[label:] .org expression

Where:

label Specifies the data allocation address of the beginning of
the reserved block.

expression Represents an absolute integer expression with no
forward references. The location counter advances to a
location relative to the current location within the section.
This operand cannot have a negative value since the
location counter cannot be reversed.

label Specifies the data allocation address of the beginning of
the reserved block.

expression Represents an integer, or a relocatable expression, with
no forward references. If the expression is relocatable, it
must be reducible to the form R+K, where R is a symbol
previously defined in the current section, and K is an
absolute constant. The location counter is set to the
indicated offset relative to the beginning of the section.

Since the location counter cannot be reversed, this
operand must be greater than, or equal to, the current

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 94

location counter.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 95

Alignment
Instructions and data objects are aligned on natural alignment boundaries within a section. To
disable automatic alignment of data objects in data allocation statements, add the .ua completer
after the data allocation mnemonic, for example, data4.ua. Bundles are aligned at 16-byte
boundaries, and data objects are aligned according to their size. The assembler does not align
string data, since they are byte arrays.

Each section has an alignment attribute, which is determined by the largest aligned object within
the section.

Section location counters are not aligned automatically. To align the location counter in the
current section to a specified alignment boundary use the .align statement. The .align
statement has the following format:

.align expression

Where:

The .align statement enables the assembler to reserve space in any section type, including a
"nobits" section. During program execution time the contents of a "nobits" section are
initialized as zero by the operating system program loader. When using the .align statement in
any other section type, the assembler initializes the reserved space with zeros for non-
executable sections, and with a NOP pattern for executable sections.

 Note:

When the object file format is COFF32 (Windows NT) the section alignment boundary is
limited to 8KB. The assembler does not guarantee alignment for requests above 8KB.

expression Is an integer number that specifies the alignment
boundary of the location counter in the current
section. The integer must be a power of two.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 96

Cross-section Data Allocation Statements
Cross-section data allocation statements add data to a section that is not the current section.
These statements save the overhead of switching between sections using the .section
directive. See the Sections section for more information about switching between sections.
Cross-section data allocation statements may be used within an explicit bundle. All data objects
are aligned to their natural boundaries in the cross section. Cross-section data allocation
statements have any of the following formats:

.xdata1 section,expression, ...

.xdata2 section,expression, ...

.xdata4 section,expression, ...

.xdata8 section,expression, ...

.xstring section,"string", ...

.xstringz section,"string", ...

Where:

To disable automatic alignment of data objects in a cross-section data allocation statement, add
the .ua completer to the statement, for example, .xdata4.ua. These statements allocate
unaligned data objects at the current location counter of the cross section, not the current
section.

The default byte order for cross-section data allocation statements is platform dependent. The
byte order is determined by the cross section, not by the current section.

section Represents the name of a previously-defined section
that is not the current section.

expression Represents an absolute or relocatable integer
expression. When these expressions reference a
location counter, they refer to the location counter
within the cross section, not within the current section.

string Represents any of the valid string expression type
values listed in the Data Allocation Statements table .

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 97

Miscellaneous Directives
This section describes the following Itanium® architecture assembly language directives:

� Register stack directive

� Rotating register directives

� Byte-order specification directive

� Ident string specification directive

� Radix indicator directive

� Preprocessor support

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 98

Register Stack Directive
The Itanium® architecture provides a mechanism for register renaming. Register renaming is
implemented by allocating a register stack frame consisting of input, local, and output registers.
These registers can be renamed. These renamable registers map to the general registers r32
through r127. The assembler provides predefined alternate register names for the input, local,
and output register areas of the register stack frame. The mapping of these registers to the
general registers is determined by the nearest preceding alloc instruction.

Refer to the Intel® Itanium® Architecture Software Developer’s Manual for detailed information
about register renaming and for a full description of the alloc instruction.

The .regstk directive replaces the default register mappings defined by a preceding alloc
instruction with new mappings. The .regstk directive does not allocate a new register stack
frame.

The .regstk directive has the following format:

.regstk ins, locals, outs, rotators

Where:

The in, loc, and out register names defined by a previous .regstk directive or alloc
instruction are visible by all subsequent instructions until the next .regstk directive or alloc
instruction is specified.

The alternate register names specified by the operands of the .regstk directive refer to
registers in the current register stack frame. If you reference input, local, or output registers using

ins Represents the number of input registers in the
general register stack frame.

in0 through inins-1 represent r32 through r31+ins
for ins > 0.

locals Represents the number of local registers in the
general register stack frame state.

loc0 through loclocals-1 represent r32+ins
through r31+ins+locals for locals > 0.

outs Represents the number of output registers in the
general register stack frame.

out0 through outouts-1 represent r32+ins+locs
through r31+ins+locals+outs for outs > 0.

rotators Represents the number of rotating registers in the
general register frame.
rotators must be <= ins+locals+outs.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 99

the alternate register names that are not within the current stack frame, the assembler produces
an error message.

To prevent referencing the alternate register names, use the .regstk directive without the
operands. The operands of a subsequent .regstk directive or alloc instruction redefine the
mappings of the alternate register names.

The alloc instruction and .regstk directive do not affect the names of the general registers,
r32 through r127.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 100

 Stacked Registers in Assignment and
Equate Statements
To define an alternate register name for a stacked register, use an assignment statement. The
alternate register name is not affected by any subsequent changes to the rotating register. See
the Assignment Statements and Equate Statements sections for more details about assignment
and equate statements.

Example Defining a Stacked Register in an Assignment Statement illustrates how to define an
alternate register name using an assignment statement, so that the alternate register name is not
affected by a subsequent .regstk directive. The local register name loc0 maps to the general
register r36. loc0 is assigned to tmp. The subsequent add instruction refers to loc0, which is
currently mapped to r40. The next add instruction refers to tmp which is mapped to r36, not
r40.

Example: Defining a Stacked Register in an Assignment
Statement

 .regstk 4,4,2,0
tmp = loc0 //loc0 is currently r36
 ...
 .regstk 8,1,3,0
 add loc0 = r1,r7 //loc0 is currently r40
 add r1 = r2,tmp //tmp = r36!

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 101

Rotating Register Directives
General registers, floating-point registers, and predicate registers contain a subset of rotating
registers. This subset of rotating registers can be renamed.

The following directives enable the programmer to provide names for one or more registers
within each rotating register region:

� .rotr for general registers

� .rotf for floating-point registers

� .rotp for predicate registers

The .rotx directives assign alternate names and generation numbers for the rotating registers.
One generation corresponds to one iteration of a software-pipelined loop. Each copied register is
numbered with an index, where the most recent copy of a register has a zero index, such as b
[0]. For every loop iteration, the registers within the group are renamed, and become one
generation older by incrementing the index by one.

The .rotx directives define the number of instances of each pipeline variable and allocate them
in the appropriate rotating register region. You can use an arbitrary name with a subscript-like
notation for referencing the current and previous generations of each variable.

The rotating register directives have the following format:

.rotr name [expression], ...

.rotf name [expression], ...

.rotp name [expression], ...

Where:

When the alias rotating register names are used as instruction operands, they have the following
format:

name[expression]

Where:

name Represents a register name specified by the user, and
represents a pipelined variable.

expression Specifies the number of generations needed for the
variable. The expression must be an absolute integer
expression with no forward references.

name Represents an alias rotating register name defined by
one of the rotating register directives.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 102

The .rotr, .rotf, and .rotp directives cancel all previous alias names associated with the
appropriate register file, before defining new register names. The register files include the
general, floating-point, and predicate registers.

If the number of rotating general registers implied by a .rotr directive exceeds the number of
rotating registers declared by the nearest preceding alloc instruction, or .regstk directive, the
assembler issues a warning.

expression Represents an absolute integer expression with no
forward references. The index must be between 0 and
(n-1), where n is the number of generations defined for
that name. If the index is negative, or greater than (n-
1), the assembler produces an error message.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 103

Using Rotating Register directives
Examples Using the .rotp Directive and Using the .rotf Directive illustrate the behaviour of
the .rotp and .rotf directives, respectively.

Example Using the .rotp Directive illustrates how the .rotp directive declares alternate rotating
predicate register names for two predicate registers, p[2], and three predicate registers q[3].
Instructions subsequent to the .rotp directive refer to p[0] for the current generation of p, and
p[1] for the previous generation of p. For the current generation of q, the subsequent
instructions refer to q[0], q[1] for the previous generation, and q[2] for the one before the
previous generation.

Example Using the .rotf Directive illustrates how the .rotf directive declares alternate floating-
point register names for three floating-point registers x[3], two floating-point registers y[2], and
three floating-point registers z[3].

Example: Using the .rotp Directive

.rotp p[2],q[3]
//The alternate predicate register names map to the
// predicate registers as follows:

p[0] = p16; p[1] = p17
q[0] = p18; q[1] = p19; q[2] = p20

Example: Using the .rotf Directive

.rotf x[3],y[2],z[3]

//The alternate floating-point register names map to the
//floating-point registers as follows:

x[0]=f32;x[1]=f33;x[2]=f34
y[0]=f35;y[1]=f36
z[0]=f37;z[1]=f38;z[2]=f39

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 104

Rotating Registers in Assignment and
Equate Statements
To define an alias name for a rotating register, use an assignment statement. The alias register
name is not affected by any subsequent changes to the rotating register. See the Assignment
Statements and Equate Statements sections for more details about assignment and equate
statements.

Example Defining an Alias Name in an Assignment Statement illustrates how to define an alias
name using an assignment statement so that the alias name is not affected by a
subsequent .rotr directive. The .rotr directive maps b[1] to general register r36. b[1] is
assigned to tmp. The second .rotr directive defines the new mapping of b[1] to r33. The
subsequent add instruction that refers to b[1] is currently mapped to r33. The second add
instruction refers to tmp, which is mapped to r36, not r33.

Example: Defining an Alias Name in an Assignment Statement

 .rotr a[3],b[2],c[4]
tmp = b[1] //b[1] is currently r36
 ...
 .rotr b[4],c[3],d[2]
 add b[1] = r1,r7 //b[1] is currently r33
 add r1 = r2,tmp //tmp = r36!

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 105

Byte Order Specification Directives
The .msb and .lsb directives determine the byte order of data assembled by the datan,
realn, and .xdatan data allocation statements. The values of n for data and .xdata are 1, 2,
4, and 8. The values of n for real are 4, 8, 10, and 16. See Data Allocation section for more
information about data allocation statements.

The .msb and .lsb directives change the byte order for current sections only. They do not affect
the instructions that are assembled. They only affect the data created. The default byte order is
little-endian.

The .msb directive switches to MSB, where the most-significant byte is stored at the lowest
address (big-endian). The .lsb directive switches to LSB, where the least-significant byte is
stored at the lowest address (little-endian).

The byte order is a property of each section. If the byte order is changed in one section, it
remains in effect for that section until the byte order is redefined. This change does not affect the
byte order of other sections in the assembly program.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 106

String Specification Directive
The .ident directive places a null-terminated string in the .comment section of an output object
file. See the use of .comment in Program Structure. The .ident directive has the following
format:

.ident "string"

Where:

"string" Represents a string.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 107

Radix Indicator Directive
The .radix directive selects the numeric constant style.

To select a MASM numeric constant and specify a radix indicator, use the .radix directive in
the following format:

.radix [radix-indicator]

Where:

The MASM numeric constant and radix remain in effect until redefined.

To select a C numeric constant, use the .radix directive in the following format:

.radix [C]

Where:

The .radix directive used with an operand, pushes the previous numeric constant style and
radix onto a radix stack. The .radix directive without the radix-indicator operand, pops and
restores the previous style and radix from the stack. The assembler may limit the depth of a radix
stack, but this limit must be no less than 10 levels.

radix-
indicator

Indicates a MASM (Microsoft * macro assembler)
numeric constant and specifies the radix. See table
MASM Radix Indicators, for a list of the radix
indicators.

C Indicates a C numeric constant.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 108

Preprocessor Support
The assembler recognizes a special filename and the line number directive (#line) inserted by
the standard C preprocessor, and sets its record as the current filename and line number
accordingly. The #line directive has the following format:

#line line_number, filename

Where:

Additionally, the assembler supports the following built-in symbols:

@line Current line number

@filename Current filename

@filepath Current file path

line_number Specifies the source line number
filename Identifies the name of the current filename.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 109

Annotations
Annotations are a subset of the assembler directives. They explicitly provide additional
information for the assembler during the assembly process. These annotations have the same
format and syntax as all other directives. This section describes these annotations and their
functionality.The annotations covered in this section include:

� .pred.rel

� .pred.vector

� .mem.offset

� .entry

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 110

Predicate Relationship Annotation
The predicate relationship annotation .pred.rel provides information for the assembler about a
logical relationship between the values of predicate registers. It is relevant only for explicit code.

The annotation .pred.rel takes the following forms:

"mutex" mutual exclusion

"imply" implication

"clear" clear existing relations

When conflicting instructions follow an entry point, IAS ignores all existing predicate relationships
defined before the entry point.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 111

Predicate Vector Annotation
The predicate vector annotation .pred.vector explicitly specifies the predicate register contents
using a user-defined value. The user-defined value is represented by a 64-bit binary number and
each bit corresponds to a predicate register, respectively. A second optional operand can be
used as a mask to selectively set only some of the predicate registers. Currently this annotation
is ignored by the Intel® Itanium® Assembler.

This annotation takes effect at the point of insertion and the assembler may use this information
for further analysis. The .pred.vector annotation has the following syntax:

.pred.vector val [,mask]

Where:

Example Using a Predicate Vector Annotation with a Mask illustrates a predicate vector
annotation that sets the predicate registers according to the specified value 0x9, and uses a
mask of 0xffff to define a subset of the predicate register file.

val Specifies a number represented as a 64-bit binary
number. Each bit represents a 1-bit value in each of the
corresponding 64 predicate registers. If val is not within
the 64-bit range, this annotation is ignored.

mask Represents an optional mask value used to define a
subset of the predicate register file.

Example: Using a Predicate Vector Annotation with a Mask

.pred.vector 0x9, 0xffff //only refers to lowest 16-bits that
 //are set in the mask.
 //Values of p0-p15 are defined.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 112

Memory Offset Annotation
The memory offset annotation .mem.offset provides hints about the address that memory
operations address, when the exact address is unknown. The annotation is useful for avoiding
false reports of dependency violations. The annotation affects the instruction that follows.

The .mem.offset annotation has the following syntax:

.mem.offset off_val, base_ind

Where:

Example Using the Memory Offset Annotation illustrates a .mem.offset annotation.

off_val The relative offset for the memory region where the
data is stored or retrieved.

base_ind A number that identifies the memory region where the
information is stored or retrieved. The number is an
arbitrary method of distinguishing between different
memory regions.

Example: Using the Memory Offset Annotation

.proc foo
foo::
FOO_STACK_INDEX=0
... //code...
.mem.offset 0,FOO_STACK_INDEX //Suppose r3 contains the stack pointer
st8.spill [r3]=r32,8 //We want to save r32-r34
.mem.offset 8,FOO_STACK_INDEX
st8.spill [r3]=r33,8
.mem.offset 16,FOO_STACK_INDEX
st8.spill [r3]=r34,8
.endp

.proc bar
bar::
.BAR_STACK_INDEX=1
... //code...
.mem.offset 0,BAR_STACK_INDEX //Suppose r3 contains the stack pointer
st8.spill [r3]=r40 //We want to save r40

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 113

Entry Annotation
The entry annotation .entry notifies the assembler that a label can be entered from another
function. By default, only global labels, designated by <label>::, are considered entry points.
The annotation and the label need not be consecutive.

The .entry annotation has the following syntax:

.entry label [, labels...]

Where:

label Represents the associated label.

Example: Using the Entry Annotation

.entry A //entry annotation
 A: mov r1=r2

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 114

Register Names by Type
This section contains eight tables that list the following the Itanium® architecture registers and
their names:

� General Registers

� Floating-point Registers

� Predicate Registers

� Branch Registers

� Application Registers

� Control Registers

� Other Registers

� Indirect-register Files

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 115

General Registers

Register Register Name
Fixed general registers r0 - r31

Stacked general registers r32 - r127

Alternate names for input registers in0 - in95

Alternate names for local registers loc0 - loc95

Alternate names for output registers out0 - out95

Global pointer (r1) gp

Return value registers (r8-r11) ret0 - ret3

Stack pointer (r12) sp

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 116

Floating-point Registers

Register Register Name
Floating-point registers f0 - f127

Argument registers (f8-f15) fret0 - fret7

Return value registers (f8-f15) fret0 - fret7

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 117

Predicate Registers

Register Register
Predicates p0 - p63

All predicates pr

Rotating predicates pr.rot

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 118

Branch Registers

Register Register Name
Branch registers b0 - b7

Return pointer (b0) rp

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 119

Application Registers

Register Register
Number

Register Name

Application registers by number 0 - 127 ar0 - ar127

Kernel registers 0 - 7 ar.k0 -
ar.k7

RSE control register 16 ar.rsc

Backing store pointer 17 ar.bsp

Backing store “store” pointer 18 ar.bspstore

RSE NaT collection register 19 ar.rnat

Compare & Exchange comparison
value

32 ar.ccv

User NaT collection register 36 ar.unat

Floating-point status register 40 ar.fpsr

Interval time counter 44 ar.itc

Previous frame state 64 ar.pfs

Loop counter 65 ar.lc

Epilog counter 66 66 ar.ec

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 120

Control Registers

Register Register
Number

Register Name

Control registers by number 0 - 127 cr0 - cr127

Default control register 0 cr.dcr

Interval time match 1 1 cr.itm

Interruption vector address 2 2 cr.iva

Page table address 8 8 cr.pta

Guest page table address 9 cr.gpta

Interruption processor status register 16 cr.ipsr

Interruption status register 17 cr.isr

Interruption instruction pointe 19 cr.iip

Interrupt faulting address 20 cr.ifa

Interrupt TLB insertion register 21 cr.itir

Interruption instruction previous address 22 cr.iipa

Interruption frame state 23 cr.ifs

Interruption immediat 24 cr.iim

Interruption hash address 25 cr.iha

External interrupt registers 64
65
66
67
68-71
72
73
74
80-81

cr.lid
cr.ivr
cr.tpr
cr.eoi
cr.irr0-cr.irr3
cr.itv
cr.pmv
cr.cmcv
cr.lrr0-cr.lrr1

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 121

Other Registers

Register Register Name
Processor status register psr

Processor status register, lower 32
bits

psr.l

User mask psr.um psr.um

Instruction pointer ip

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 122

Indirect-register Files

Register Register Name
Performance monitor control registers pmc[r]

Performance monitor data registers pmd[r]

Protection key registers pkr[r]

Region registers rr[r]

Instruction breakpoint registers ibr[r]

Data breakpoint registers dbr[r]

Instruction translation registers itr[r]

Data translation registers dtr[r]

Processor identification register CPUID[r]

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 123

Pseudo-ops
This section contains two tables of pseeudo-ops:

� Pseudo-ops Listed by Opcode

� Pseudo-ops with Missing Operands

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 124

Pseudo-ops Listed by Opcode
The table that follows lists the assembly language pseudo-ops for the Itanium® architecture
according to their opcodes. The table lists pseudo-ops with missing operands. The opcodes are
listed alphabetically, with their operands, and the equivalent machine instructions. The table lists
mnemonics converted to other mnemonics.

Opcode Instruction
Description

Operands Equivalent Machine Instruction

add

Add immediate r1 =imm,r3 adds r1 =imm14,r3

addl r1 =imm22,r3

break Break imm21 break.b imm21 (B)

break.i imm21 (I)

break.m imm21 (M)

break.f imm21 (F)

chk.s Speculation
check

r2,target25 chk.s.i r2,target25(I)

chk.s.m r2,target25(M)

fabs

Floating-point

absolute value

f1 =f3 fmerge.s f1 =f0,f3

fadd.pc.sf Floating-point
add

f1 =f3,f2 fma.pc.sf f1 =f3,f1,f2

fcvt.xuf Convert integer
to float unsigned

f1 =f3 fma.pc.sf f1 =f3,f1,f0

fmpy.pc.sf Floating-point

multiply

f1 =f3,f4 fma.pc.sf f1 =f3,f4,f0

fneg Floating-point

negate

f1 =f3 fmerge.ns f1 =f3,f3

fnegabs Floating-point

negate absolute

value

f1 =f3 fmerge.ns f1 =f0,f3

fnorm.pc.sf Floating-point

normalize

f1 =f3 fma.pc.sf f1 =f3,f1,f0

fsub.pc.sf Floating-point f1 =f3,f2 fms.pc.sf f1 =f3,f1,f2

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 125

subtract
ld8.mov ld8 that can be

translated to
mov. It is used to
support link time
rewriting of
indirect
addressing code
sequences. In
ELF format only.

r2=[r3],

Symbol+Addend

ld8 r2=[r3]

mov r2=r3

mov Move to
application
register

immediate

ar3 =imm8 mov.i ar3 =imm8 (I)

mov.m ar3 =imm8 (M)

mov Move to
application
register

ar3 =r2 mov.i ar3 =r2 (I)

mov.m ar3 =r2 (M)
mov Move

floating-point

register

f1 =f3 fmerge.s f1 =f3,f3

mov Move from
application
register

r1 =ar3 mov.i r1 =ar3 (I)

mov.m r1 =ar3 (M)
mov Move immediate r1 =imm22 addl r1 =imm22,r0
mov Move general

register

r1 =r2 adds r1 =0,r2

mov Move to branch

register

b1 =r2 mov b1 =r2

nop No operation imm21 nop.b imm21 (B)

nop.i imm21 (I)

nop.m imm21 (M)

nop.f imm21 (F)
shl Shift left r1=r2,count6 dep.z r1=r2,count6,

64-count6
shr Shift right signed r1=r3,count6 extr r1=r3,count6,

64-count6
shr.u Shift right

unsigned
r1=r3,count6 extr.u r1=r3,count6,

64-count6

xma.lu Fixed-point f1=f2,f3,f4, xma.l f1 =f2,f3,f4

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 126

multiply low

unsigned

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 127

Pseudo-ops with Missing Operands
The table below lists pseudo-ops that omit one or more operands of the machine instruction. The
assembler substitutes the missing operand with a predefined value. The missing operand(s)
appear as bold text. In addition to omitting many operands, many completers may also be
omitted.

Pseudo-op Missing Operand(s) Substitute
Value

alloc alloc r1=ar.pfs,i,l,o,r ar.pfs

cmp cmp.crel.ctype p1,p2=imm8,r3 p0

cmp cmp.crel.ctype p1,p2=r2,r3 p0

cmp4 cmp4.crel.ctype p1,p2=imm8,r p0

cmp4 cmp4.crel.ctype p1,p2=r2,r3 p0

cmpxchg cmpxchgsz.sem.ldhint r1=[r3],r2,ar.ccv ar.ccv

fclass fclass.m.fctype p1,p2=f2,f3

fclass.nm.fctype p1,p2=f2,f3

p0

fcmp fcmp.fcrel.fctype.sf p1,p2=f2,f3 p0

mov mov pr=r2,mask17 all ones

tbit tbit.trel.ctype p1,p2=r3,pos6 p0

tnat tbit.trel.ctype p1,p2=r3 p0

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 128

Link-relocation Operators
The table below lists and describes the link-relocation operators and their usage. Unless
otherwise specified, the usage is for both COFF and ELF formats.

Operator Generates a Relocation For: Usage
@dtpmod(expr) The current instruction requests the linker

to put the load module index for expr. It is
used in dynamically-bound programs.

data8 statement in ELF
format.

@dtprel(expr) The current instruction or data object that
calculates the static dtv-relative offset to the
address given by expr. It is used in
dynamically-bound programs.

The adds, addl, and
movl instructions and
data8 statement in ELF
format.

@gprel(expr) The current instruction or data object that
calculates the gp-relative offset to the
address given by expr.

The addl instruction,
and data8 (and data4
in ELF format)
statements.

@ltoff(expr) The current instruction that instructs the
linker to create a linkage table entry for
expr, and calculates the gp-relative offset
to the new linkage table entry.

add long immediate
instructions.

@ltoff
(@dtpmod
(expr))

The current instruction requests the linker
to allocate a linkage table entry to hold the
load module index for expr. The linker
processes this relocation by substituting the
gp-relative offset for the new linkage table
entry. It is used in dynamically- bound
programs.

The add long immediate
instruction in ELF format.

@ltoff
(@dtprel
(expr))

The current instruction that instructs the
linker to create a linkage table entry to hold
the dtv-relative offset for expr and
calculates the gp-relative offset to the new
linkage table entry. It is used in
dynamically-bound programs.

The add long immediate
instruction in ELF format.

@ltoff(@tprel
(expr))

The current instruction that instructs the
linker to create a linkage table entry to hold
the tp-relative offset for expr, and
calculates the gp-relative offset to the new
linkage table entry. It is used in statically-
bound programs.

The add long immediate
instruction in ELF format.

@ltoffx(expr) The current instruction that instructs the
linker to create a linkage table entry for
expr, and calculates the gp-relative offset
to the new linkage table entry. It is used to
support link-time rewriting of the indirect
addressing code sequences.

The add long immediate
instruction in ELF format.

@secrel(expr) The current data object that calculates the data4 and data8

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 129

offset, relative to the beginning of the
section, to the address given by expr.

statements, and the
addl instruction.

@segrel(expr) The current data object that calculates the
 offset, relative to the beginning of the
segment, to the address given by expr.

data4 and data8
statements, in ELF
format.

@imagerel
(expr)

The current data object that calculates the
offset, relative to the beginning of the
image, to the address given by expr.

data4 statements, in
COFF format.

@fptr(sym) The current instruction or data object that
calculates the address of the official
plabel descriptor for the symbol sym,
which must be a procedure label (function
descriptor) name.

data4 and data8
statements, and move
long immediate
instructions. Requires
function symbol in COFF
format. It can be used in
add long immediate
instructions when
combined with the
@ltoff operator in the
@ltoff(@fptr(sym)
form.

@pltoff(sym) The current instruction or data object that
calculates the gp-relative offset to the
procedure linkage table entry for the symbol
sym, which must be a function name.

data8 statements and
add long immediate
instructions. The PLT
entry referenced by this
operator should be used
only for a direct
procedure call. It does
not serve as a function
descriptor name.

@iplt(sym) The current data object that calculates the
plabel descriptor for the symbol sym,
which must be a procedure label (function
descriptor) name.

data16 statements in
ELF format.

@ltv(expr) The current data object that calculates the
address of the relocatable expression
expr, with one exception; while it is
expected that the addresses created will
need further relocation at run-time, the
linker should not create a corresponding
relocation in the output executable or
shared object file. The run-time consumer
of the information provided is expected to
relocate these values.

data4 statements in ELF
format.

@section(sec) The current data object that provides the
section header number of section sec.
Used for debug information.

data2 statements in
COFF format.

@tprel(expr) The current instruction or data object that
calculates the tp-relative offset to the
address given by expr. It is used in

The adds, addl, and
movl instructions and
data8 statement in ELF

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 130

statically-bound programs. format.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 131

List of Assembly Language Directives
The table below summarizes the Itanium® architecture assembly language directives by
category.

Category Directive
Alias declaration directives .alias

.secalias

Assembler annotations .pred.rel

.pred.vector

.mem.offset

.entry

Assembler modes .auto

.explicit

.default

Byte order specification directive .msb

.lsb

Common symbol declaration
directives

.common

.lcomm

Cross-section data allocation
statements

.xdata1

.xdata2

.xdata4

.xdata8

.xstring

.xstringz

Data-allocation statements data1

data1

data2

data4

data8

real4

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 132

real8

real10

real16

string

stringz

Explicit template selection directives .mii

.mfi

.bbb

.mlx

.mib

.mmb

.mmi

.mbb

.mfb

.mmf

File symbol declaration directive .file

Ident string directive .ident

Include file directive .include

Language specific data directive
(Windows NT * specific)

.handlerdata

Procedure declaration directives .proc

.endp

Radix indicator directive .radix

Register stack directive .regstk

Reserving uniniatialized space
statements

.skip

.org

Rotating register directives .rotr

.rotp

.rotf

Section directives .section

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 133

.pushsection

.popsection

.previous

.text

.data

.sdata

.bss

.sbss

.rodata

.comment

Section and data alignment directive .align

Stack unwind information directives See Stack Unwind Directives
table

Symbol scope declaration directives .global

.weak

.local

Symbol visibility directives .protected

.hidden

Symbol type and size directives

.type

.size

Symbolic debug directive .ln

Symbolic debug directive Windows
NT

specific

.bf

.ef

Virtual register allocation directives .vreg.allocatable

.vreg.safe_across_calls

.vreg.family

.vreg.var

.vreg.undef

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 134

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 135

Glossary
absolute address

A virtual (not physical) address within the

process’ address space that is computed as
an

absolute number.
absolute expression An expression that is not subject to link-time

relocation.
alias Two identifiers referring to the same

element.
assembler A program that translates assembly

language

into machine language.
assembly language A low level symbolic language closely

resembling machine-code language.
binding The process of resolving a symbolic

reference

in one module by finding the definition of the

symbol in another module, and substituting
the address of the definition in place of the

symbolic reference. The linker binds
relocatable object modules together, and the

DLL loader binds executable load modules.

When searching for a definition, the linker
and

DLL loader search each module in a certain

order, so that a definition of a symbol in one

module has precedence over a definition of
the same symbol in a later module. This
order is called the binding order.

bundle 128 bits that include three instructions and a

template field.
COFF Common Object File Format, an object-

module

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 136

format.
directive An assembler instruction that does not

produce executable code.
execution time The time during which a program is actually

executing, not including the time during
which

the program and its DLLs are being loaded.
expression A sequence of symbols that represents a

value.
function name A label that refers to a procedure entry point.
global symbol Symbol visible outside the source file in

which

it is defined.
IA-32

Intel Architecture-32: the name for Intel’s

current 32-bit Instruction Set Architecture

(ISA).
identifier Syntactic representation of symbol names

using alphabetic or special characters, and
digits.

instruction An operation code that performs a specific
machine operation.

instruction group Itanium® architecture instructions are
organized in instruction groups. Each
instruction group contains one or more
statically contiguous instructions that
execute in parallel. An instruction group
must contain at least one instruction; there is
no upper limit on the number of instructions
in an instruction group.

An instruction group is terminated statically
by

a stop, and dynamically by taken branches.

Stops are represented by a double semi-
colon

(;;). You can explicitly define stops. Stops
immediately follow an instruction, or appear
on a separate line. They can be inserted
between two instructions on the same line,
as a semi-colon (;) is used to separate two
instructions.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 137

Instruction Set

Architecture

The architecture that defines application
level

resources which include: user-level
instructions, addressing modes,
segmentation,

and user visible register files. instruction tag
A label that refers to an instruction.

ISA See Instruction Set Architecture
Itanium processor Name of Intel’s first 64-bit processor.
label A location in memory of code or data.
link time The time when a program, dynamic-link

library (DLL), or starred object is processed
by the linker. Any activity taking place at link
time is static.

linkage table

 A table containing text, unwind information,
constants, literals, and pointers to imported
data symbols and functions.

local symbol Symbol visible only within the source file in

which it is defined.
location counter Keeps track of the current address when

assembling a program. It starts at zero at the
beginning of each segment and increments
appropriately as each instruction is
assembled. To adjust the location counter of
a section, use the .align directive, or
the .org directive.

memory stack

A contiguous array of memory locations,
commonly referred to as “the stack”, used in
many processors to save the state of the
calling procedure, pass parameters to the
called procedure and store local variables for
the currently executing procedure.

mnemonic A predefined assembly-language name for

machine instructions, pseudo-ops,
directives,

and data-allocation statements.
multiway branch bundle A bundle that contains more than one

branch

instruction.
name space A virtual (not physical) file. The assembler

assigns names to a symbol, register, or

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 138

mnemonic name space. Usually a name is
defined only once in each separate name
space. A name can be defined twice, in the
symbol and register name space. In this
case the register name takes precedence
over the symbol name.

operator The assembly-language operators indicate

arithmetic or bitwise-logic calculations.
plabel See procedure label.
predicate registers 64 1-bit predicate registers that control the

execution of instructions. The first register,
p0, is always treated as 1.

predication The conditional execution of an instruction

used to remove branches from code.
procedure label A reference or pointer to a procedure. A

procedure label (PLabel) is a special
descriptor that uniquely identifies the
procedure. The PLabel descriptor contains
the address of the function’s actual entry
point, and the linkage table pointer.

pseudo-op

An instruction aliasing a machine instruction,

provided for the convenience of the

programmer.
qualifying predicate The execution of most instructions is gated

by a qualifying predicate. If the predicate is
true, the instruction executes normally; if the
instruction is false the instruction does not
modify architectural state or affect program
behaviour.

register rotation Software renaming of registers to provide
every loop iteration with its own set of
registers.

register stack configuration A 64-bit register used to control the register

stack engine (RSE).
relocatable expression An expression that is subject to link-time

relocation
rotating registers Registers which are rotated by one register

position at each loop execution so that the

content of register X is in register X+1 after
one rotation. The predicate, floating-point,
and general registers can be rotated. The

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 139

registers are rotated in a wrap-around
fashion.

section

Portions of an object file, such as code or
data, bound to one unit.

software pipelining Pipelining of a loop by way of allowing the

processor to execute, in any given time,
several instructions in various instructions of
the loop.

stacked registers Stacked general registers, starting at r32,
used

to pass parameters to the called procedure
and store local variables for the currently
executing procedure.

statement An assembly-language program consists of
a

series of statements. The following are
primary

types of assembly-language statements:

• label statements

• instruction statements

• directive statements

• assignment statements

• equate statements

• data allocation statements

• cross-data allocation statements
stop Indicates the boundary of an instruction

group. It is placed in the code by the
assembly writer or compiler.

symbol declaration The symbol address is resolved, not
necessarily based on the current module.
Declare symbols using a .global or .weak
directive.

symbol definition The symbol address is resolved based on
the

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 140

current module. A symbol is defined by
assigning it a type and value. You can define
a

symbol either in an assignment statement,
by

using it as a label, or with a .common
directive.

temporary symbol A symbol name that is not placed in the

object-file symbol table. To define a
temporary symbol name, precede the name
with a period (.).

weak symbol Undefined symbol in object file, resolved

during link time.

Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide

Page 141

