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FOREWORD 

(This Foreword is not a part of ANSI/IEEE Std 754–1985, IEEE Standard
for Binary Floating-Point Arithmetic.) 

This standard is a product of the Floating-Point Working Group of the
Microprocessor Standards Subcommittee of the Standards Committee of the
IEEE Computer Society. This work was sponsored by the Technical
Committee on Microprocessors and Minicomputers. Draft 8.0 of this
standard was published to solicit public comments. [FOOTNOTE 1: Computer
Magazine vol 14, no 3, March 1981.] Implementation techniques can be found in
An Implementation Guide to a Proposed Standard for Floating-Point
Arithmetic by Jerome T. Coonen, [FOOTNOTE 2: Computer Magazine vol 13, no 1,
January 1980.] which was based on a still earlier draft of the proposal. 

This standard defines a family of commercially feasible ways for new
systems to perform binary floating-point arithmetic. The issues of
retrofitting were not considered. Among the desiderata that guided the
formulation of this standard were 

1. Facilitate movement of existing programs from diverse computers to
those that adhere to this standard. 
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2. Enhance the capabilities and safety available to programmers who,
though not expert in numerical methods, may well be attempting to
produce numerically sophisticated programs. However, we recognize
that utility and safety are sometimes antagonists. 

3. Encourage experts to develop and distribute robust and efficient
numerical programs that are portable, by way of minor editing and
recompilation, onto any computer that conforms to this standard and
possesses adequate capacity. When restricted to a declared subset of
the standard, these programs should produce identical results on all
conforming systems. 

4. Provide direct support for 

a. Execution-time diagnosis of anomalies 

b. Smoother handling of exceptions 

c. Interval arithmetic at a reasonable cost 

5. Provide for development of 

a. Standard elementary functions such as exp and cos 

b. Very high precision (multiword) arithmetic 

c. Coupling of numerical and symbolic algebraic computation 

6. Enable rather than preclude further refinements and extensions. 
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5.1. Arithmetic
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A. Recommended Functions and Predicates

1. Scope

1.1. Implementation Objectives

It is intended that an implementation of a floating-point system conforming
to this standard can be realized entirely in software, entirely in hardware, or
in any combination of software and hardware. It is the environment the
programmer or user of the system sees that conforms or fails to conform to
this standard. Hardware components that require software support to
conform shall not be said to conform apart from such software. 

1.2. Inclusions

This standard specifies
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1. Basic and extended floating-point number formats

2. Add, subtract, multiply, divide, square root, remainder, and compare
operations

3. Conversions between integer and floating-point formats

4. Conversions between different floating-point formats

5. Conversions between basic format floating-point numbers and
decimal strings

6. Floating-point exceptions and their handling, including nonnumbers
(NaNs)

1.3. Exclusions

This standard does not specify

1. Formats of decimal strings and integers

2. Interpretation of the sign and significand fields of NaNs

3. Binary <-> decimal conversions to and from extended formats

2. Definitions
biased exponent. The sum of the exponent and a constant (bias) chosen to
make the biased exponent's range nonnegative.

binary floating-point number. A bit-string characterized by three
components: a sign, a signed exponent, and a significand. Its numerical value,
if any, is the signed product of its significand and two raised to the power of its
exponent. In this standard a bit-string is not always distinguished from a
number it may represent.

denormalized number. A nonzero floating-point number whose exponent has
a reserved value, usually the format's minimum, and whose explicit or implicit
leading significand bit is zero.

destination. The location for the result of a binary or unary operation. A
destination may be either explicitly designated by the user or implicitly
supplied by the system (for example, intermediate results in subexpressions or
arguments for procedures). Some languages place the results of intermediate
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calculations in destinations beyond the user's control. Nonetheless, this
standard defines the result of an operation in terms of that destination's format
and the operands' values.

exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the value of
the represented number. Occasionally the exponent is called the signed or
unbiased exponent.

fraction. The field of the significand that lies to the right of its implied binary
point.

mode. A variable that a user may set, sense, save, and restore to control the
execution of subsequent arithmetic operations. The default mode is the mode
that a program can assume to be in effect unless an explicitly contrary
statement is included in either the program or its specification. The following
mode shall be implemented: rounding, to control the direction of rounding
errors. In certain implementations, rounding precision may be required, to
shorten the precision of results.

The implementor may, at his option, implement the following modes: traps
disabled/enabled, to handle exceptions.

NaN. Not a number, a symbolic entity encoded in floating-point format. There
are two types of NaNs (6.2). Signaling NaNs signal the invalid operation
exception (7.1) whenever they appear as operands. Quiet NaNs propagate
through almost every arithmetic ration without signaling exceptions.

result. The bit string (usually representing a number) that is delivered to the
destination.

significand. The component of a binary floating-point number that consists of
an explicit or implicit leading bit to the left of its implied binary point and a
fraction field to the right.

shall. The use of the word shall signifies that which is obligatory in any
conforming implementation.

should. The use of the word should signifies that which is strongly
recommended as being in keeping with the intent of the standard, although
architectural or other constraints beyond the scope of this standard may on
occasion render the recommendations impractical.
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status flag. A variable that may take two states, set and clear. A user may clear
a flag, copy it, or restore it to a previous state. When set, a status flag may
contain additional system-dependent information, possibly inaccessible to
some users. The operations of this standard may as a side effect set some of the
following flags: inexact result, underflow, overflow, divide by zero, and invalid
operation.

user. Any person, hardware, or program not itself specified by this standard,
having access to and controlling those operations of the programming
environment specified in this standard.

3. Formats
This standard defines four floating-point formats in two groups, basic and
extended, each having two widths, single and double. The standard levels of
implementation are distinguished by the combinations of formats supported.

3.1. Sets of Values

This section concerns only the numerical values representable within a
format, not the encodings. The only values representable in a chosen format
are those specified by way of the following three integer parameters:

• p = the number of significant bits (precision)

• Emax = the maximum exponent

• Emin = the minimum exponent .

Each format's parameters are given in Table 1. Within each format only the
following entities shall be provided:

� Numbers of the form (–1) s 2 E ( b0 . b1 b2 ... bp–1), where

� s = 0 or 1

� E = any integer between Emin and Emax, inclusive

� bi = 0 or 1

� Two infinities, +INFINITY and –INFINITY

� At least one signaling NaN
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� At least one quiet NaN

The foregoing description enumerates some values redundantly, for
example, 20 (1.0) = 21 (0.1) = 22 (0.0 1) = ... . However, the encodings of
such nonzero values may be redundant only in extended formats (3.3). The
nonzero values of the form ± 2E

min (0 . b1 b2 ... bp–1 ) are called denormalized.
Reserved exponents may be used to encode NaNs, ±INFINITY, ±0, and
denormalized numbers. For any variable that has the value zero, the sign bit
s provides an extra bit of information. Although all formats have distinct
representations for +0 and –0, the signs are significant in some
circumstances, such as division by zero, and not in others. In this standard, 0
and INFINITY are written without a sign when the sign is not important.

Table 1 
Summary of Format Parameters

Parameter
Format

Single
Single

Extended
Double

Double
Extended

p 24 >= 32 53 >= 64
Emax +127 >= +1023 +1023 >= +16383
Emin –126 <= –1022 –1022 <= –16382

Exponent bias +127 unspecified +1023 unspecified
Exponent width in

bits
8 >= 11 11 >= 15

Format width in bits 32 >= 43 64 >= 79

3.2. Basic Formats

Numbers in the single and double formats are composed of the following
three fields:

1. 1-bit sign s

2. Biased exponent e = E + bias

3. Fraction f = . b1 b1 ... bp–1

The range of the unbiased exponent E shall include every integer between
two values Emin and Emax, inclusive, and also two other reserved values Emin –
1 to encode ± 0 and denormalized numbers, and Emax + 1 to encode
±INFINITY and NaNs. The foregoing parameters are given in Table 1. Each
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nonzero numerical value has just one encoding. The fields are interpreted as
follows:

3.2.1. Single

A 32-bit single format number X is divided as shown in Fig 1. The value v of
X is inferred from its constituent fields thus

1. If e = 255 and f != 0 , then v is NaN regardless of s

2. If e = 255 and f = 0 , then v = (–1) s INFINITY

3. If 0 < e < 255 , then v = (–1) s 2 e–127 ( 1 . f )

4. If e = 0 and f != 0 , then v = (–1) s 2 –126 ( 0 . f ) (denormalized
numbers)

5. If e = 0 and f = 0 , then v = (–1) s 0 (zero)

3.2.2. Double

A 64-bit double format number X is divided as shown in Fig 2. The value v
of X is inferred from its constituent fields thus

1. If e = 2047 and f != 0 , then v is NaN regardless of s

2. If e = 2047 and f = 0 , then v = (–1) s INFINITY

3. If 0 < e < 2047 , then v = (–1) s 2 e–1023 ( 1 . f )

4. If e = 0 and f != 0 , then v = (–1) s 2 –1022 ( 0 . f ) (denormalized
numbers)

5. If e = 0 and f = 0 , then v = (–1) s 0 (zero)

Figure 1. 

Single Format

msb means most significant bit
lsb means least significant bit

 1    8              23             ... widths
+-+-------+-----------------------+
|s|   e   |           f           |
+-+-------+-----------------------+
   msb lsb msb                 lsb  ... order
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Figure 2. 

Double Format
 1   11              52             ... widths
+-+-------+-----------------------+
|s|   e   |           f           |
+-+-------+-----------------------+
   msb lsb msb                 lsb  ... order

      

3.3. Extended Formats

The single extended and double extended formats encode in an
implementation-dependent way the sets of values in 3.1 subject to the
constraints of Table 1. This standard allows an implementation to encode
some values redundantly, provided that redundancy be transparent to the
user in the following sense: an implementation either shall encode every
nonzero value uniquely or it shall not distinguish redundant encodings of
nonzero values. An implementation may also reserve some bit strings for
purposes beyond the scope of this standard. When such a reserved bit string
occurs as an operand the result is not specified by this standard.

An implementation of this standard is not required to provide (and the user
should not assume) that single extended have greater range than double.

3.4. Combinations of Formats

All implementations conforming to this standard shall support the single
format. Implementations should support the extended format corresponding
to the widest basic format supported, and need not support any other
extended format.  [FOOTNOTE 3: Only if upward compatibility and speed are
important issues should a system supporting the double extended format also support single
extended.]

4. Rounding
Rounding takes a number regarded as infinitely precise and, if necessary,
modifies it to fit in the destination's format while signaling the inexact
exception (7.5). Except for binary <-> decimal conversion (whose weaker
conditions are specified in 5.6), every operation specified in Section 5 shall
be performed as if it first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded that result according
to one of the modes in this section.
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The rounding modes affect all arithmetic operations except comparison and
remainder. The rounding modes may affect the signs of zero sums (6.3), and
do affect the thresholds beyond which overflow (7.3) and underflow (7.4)
may be signaled.

4.1. Round to Nearest

An implementation of this standard shall provide round to nearest as the
default rounding mode. In this mode the representable value nearest to the
infinitely precise result shall be delivered; if the two nearest representable
values are equally near, the one with its least significant bit zero shall be
delivered. However, an infinitely precise result with magnitude at least 2E

max

(2 – 2–p ) shall round to INFINITY with no change in sign; here Emax and p
are determined by the destination format (see Section 3) unless overridden
by a rounding precision mode (4.3).

4.2. Directed Roundings

An implementation shall also provide three user-selectable directed rounding
modes: round toward +INFINITY, round toward –INFINITY, and round
toward 0.

When rounding toward +INFINITY the result shall be the format's value
(possibly +INFINITY) closest to and no less than the infinitely precise
result. When rounding toward –INFINITY the result shall be the format's
value (possibly –INFINITY) closest to and no greater than the infinitely
precise result. When rounding toward 0 the result shall be the format's value
closest to and no greater in magnitude than the infinitely precise result.

4.3. Rounding Precision

Normally, a result is rounded to the precision of its destination. However,
some systems deliver results only to double or extended destinations. On
such a system the user, which may be a high-level language compiler, shall
be able to specify that a result be rounded instead to single precision, though
it may be stored in the double or extended format with its wider exponent
range.  [FOOTNOTE 4: Control of rounding precision is intended to allow systems whose
destinations are always double or extended to mimic, in the absence of over/underflow, the
precisions of systems with single and double destinations. An implementation should not
provide operations that combine double or extended operands to produce a single result,
nor operations that combine double extended operands to produce a double result, with
only one rounding.]  Similarly, a system that delivers results only to double
extended destinations shall permit the user to specify rounding to single or
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double precision. Note that to meet the specifications in 4.1, the result
cannot suffer more than one rounding error.

5. Operations
All conforming implementations of this standard shall provide operations to
add, subtract, multiply, divide, extract the square root, find the remainder,
round to integer in floating-point format, convert between different floating-
point formats, convert between floating-point and integer formats, convert
binary <-> decimal, and compare. Whether copying without change of
format is considered an operation is an implementation option. Except for
binary <-> decimal conversion, each of the operations shall be performed as
if it first produced an intermediate result correct to infinite precision and
with unbounded range, and then coerced this intermediate result to fit in the
destination's format (see Sections 4 and 7). Section 6 augments the following
specifications to cover ±0, ±INFINITY, and NaN; Section 7 enumerates
exceptions caused by exceptional operands and exceptional results.

5.1. Arithmetic

An implementation shall provide the add, subtract, multiply, divide, and
remainder operations for any two operands of the same format, for each
supported format; it should also provide the operations for operands of
differing formats. The destination format (regardless of the rounding
precision control of 4.3) shall be at least as wide as the wider operand's
format. All results shall be rounded as specified in Section 4.

When y != 0 , the remainder r = x REM y is defined regardless of the
rounding mode by the mathematical relation r = x – y × n , where n is the
integer nearest the exact value x/y ; whenever |n – x/y| = ½ , then n is even.
Thus, the remainder is always exact. If r = 0 , its sign shall be that of x.
Precision control (4.3) shall not apply to the remainder operation.

5.2. Square Root

The square root operation shall be provided in all supported formats. The
result is defined and has a positive sign for all operands >= 0, except that
sqrt(–0) shall be –0. The destination format shall be at least as wide as the
operand's. The result shall be rounded as specified in Section 4.

5.3. Floating-Point Format Conversions
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It shall be possible to convert floating-point numbers between all supported
formats. If the conversion is to a narrower precision, the result shall be
rounded as specified in Section 4. Conversion to a wider precision is exact.

5.4. Conversion Between Floating-Point and Integer
Formats

It shall be possible to convert between all supported floating-point formats
and all supported integer formats. Conversion to integer shall be effected by
rounding as specified in Section 4. Conversions between floating-point
integers and integer formats shall be exact unless an exception arises as
specified in 7.1.

5.5. Round Floating-Point Number to Integer Value

It shall be possible to round a floating-point number to an integral valued
floating-point number in the same format. The rounding shall be as specified
in Section 4, with the understanding that when rounding to nearest, if the
difference between the unrounded operand and the rounded result is exactly
one half, the rounded result is even.

5.6. Binary <-> Decimal Conversion

Conversion between decimal strings in at least one format and binary
floating-point numbers in all supported basic formats shall be provided for
numbers throughout the ranges specified in Table 2. The integers M and N in
Tables 2 and 3 are such that the decimal strings have values ±M × 10±N . On
input, trailing zeros shall be appended to or stripped from M (up to the limits
specified in Table 2) so as to minimize N. When the destination is a decimal
string, its least significant digit should be located by format specifications
for purposes of rounding.

When the integer M lies outside the range specified in Tables 2 and 3, that is,
when M >= 109 for single or 1017 for double , the implementor may, at his
option, alter all significant digits after the ninth for single and seventeenth
for double to other decimal digits, typically 0.

Table 2
Decimal Conversion Ranges

Format
Decimal to Binary Binary to Decimal

Max M Max N Max
M

Max N
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Table 2
Decimal Conversion Ranges

Single 109 – 1 99 109 – 1 53
Double 1017 – 1 999 1017 – 1 340

Conversions shall be correctly rounded as specified in Section 4 for
operands lying within the ranges specified in Table 3. Otherwise, for
rounding to nearest, the error in the converted result shall not exceed by
more than 0.47 units in the destination's least significant digit the error that
is incurred by the rounding specifications of Section 4, provided that
exponent over/underflow does not occur. In the directed rounding modes the
error shall have the correct sign and shall not exceed 1.47 units in the last
place.

Conversions shall be monotonic, that is, increasing the value of a binary
floating-point number shall not decrease its value when converted to a
decimal string; and increasing the value of a decimal string shall not
decrease its value when converted to a binary floating-point number.

When rounding to nearest, conversion from binary to decimal and back to
binary shall be the identity as long as the decimal string is carried to the
maximum precision specified in Table 2, namely, 9 digits for single and 17
digits for double.  [FOOTNOTE 5: The properties specified for conversions are implied
by error bounds that depend on the format (single or double) and the number of decimal
digits involved; the 0.47 mentioned is a worst-case bound only. For a detailed discussion of
these error bounds and economical conversion algorithms that exploit the extended format,
see COONEN, JEROME T. Contributions to a Proposed Standard for Binary Floating-
Point Arithmetic. Ph.D. Thesis, University of California, Berkeley, CA, 1984.]

If decimal to binary conversion over/underflows, the response is as specified
in Section 7. Over/underflow, NaNs, and infinities encountered during
binary to decimal conversion should be indicated to the user by appropriate
strings. NaNs encoded in decimal strings are not specified in this standard.

To avoid inconsistencies, the procedures used for binary <-> decimal
conversion should give the same results regardless of whether the
conversion is performed during language translation (interpretation,
compilation, or assembly) or during program execution (run-time and
interactive input/output).
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Table 3
Correctly Rounded Decimal Conversion Range

Format
Decimal to Binary Binary to Decimal
Max M Max N Max M Max N

Single 109 – 1 13 109 – 1 13
Double 1017 – 1 27 1017 – 1 27

5.7. Comparison

It shall be possible to compare floating-point numbers in all supported
formats, even if the operands' formats differ. Comparisons are exact and
never overflow nor underflow. Four mutually exclusive relations are
possible: less than, equal, greater than, and unordered. The last case arises
when at least one operand is NaN. Every NaN shall compare unordered with
everything, including itself. Comparisons shall ignore the sign of zero (so +0
= –0).

The result of a comparison shall be delivered in one of two ways at the
implementor's option: either as a condition code identifying one of the four
relations listed above, or as a true-false response to a predicate that names
the specific comparison desired. In addition to the true-false response, an
invalid operation exception (7.1) shall be signaled when, as indicated in
Table 4, last column, unordered operands are compared using one of the
predicates involving < or > but not ? (Here the symbol ? signifies
unordered).

Table 4 exhibits the twenty-six functionally distinct useful predicates named,
in the first column, using three notations: ad hoc, FORTRAN-like, and
mathematical. It shows how they are obtained from the four condition codes
and tells which predicates cause an invalid operation exception when the
relation is unordered. The entries T and F indicate whether the predicate is
true or false when the respective relation holds.

Note that predicates come in pairs, each a logical negation of the other;
applying a prefix such as NOT to negate a predicate in Table 4 reverses the
true/false sense of its associated entries, but leaves the last column's entry
unchanged. [FOOTNOTE 6: There may appear to be two ways to write the logical
negation of a predicate, one using NOT explicitly and the other reversing the relational
operator. For example, the logical negation of (X = Y) may be written either NOT(X = Y)
or (X ?<> Y); in this case both expressions are functionally equivalent to (X != Y).
However, this coincidence does not occur for the other predicates. For example, the logical
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negation of (X < Y) is just NOT(X < Y); the reversed predicate (X ?>= Y) is different in
that it does not signal an invalid operation exception when X and Y are unordered.]

Implementations that provide predicates shall provide the first six predicates
in Table 4 and should provide the seventh, and a means of logically negating
predicates.

Table 4
Predicates and Relations

Predicates Relations Exception

Ad hoc FORTRAN Mat
h GreaterThan LessThan Equal Unordered InvalidIfUnordered

= .EQ. = F F T F No

?<> .NE. != T T F T No

> .GT. > T F F F Yes

>= .GE. >= T F T F Yes

< .LT. < F T F F Yes

<= .LE. <= F T T F Yes

? unordered  F F F T No

<> .LG.  T T F F Yes

<=> .LEG.  T T T F Yes

?> .UG.  T F F T No

?>= .UGE.  T F T T No

?< .UL.  F T F T No

?<= .ULE.  F T T T No

?= .UE.  F F T T No

NOT(>)   F T T T Yes

NOT(>=)   F T F T Yes

NOT(<)   T F T T Yes

NOT(<=)   T F F T Yes

NOT(?)   T T T F No

NOT(<>)   F F T T Yes
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Table 4
Predicates and Relations

NOT(<=>)   F F F T Yes

NOT(?>)   F T T F No

NOT(?>=)   F T F F No

NOT(?<)   T F T F No

NOT(?<=)   T F F F No

NOT(?=)   T T F F No

6. Infinity, NaNs, and Signed Zero

6.1. Infinity Arithmetic

Infinity arithmetic shall be construed as the limiting case of real arithmetic
with operands of arbitrarily large magnitude, when such a limit exists.
Infinities shall be interpreted in the affine sense, that is, –INFINITY < (every
finite number) < +INFINITY.

Arithmetic on INFINITY is always exact and therefore shall signal no
exceptions, except for the invalid operations specified for INFINITY in 7.1.
The exceptions that do pertain to INFINITY are signaled only when

1. INFINITY is created from finite operands by overflow (7.3) or
division by zero (7.2), with corresponding trap disabled

2. INFINITY is an invalid operand (7.1).

6.2. Operations with NaNs

Two different kinds of NaN, signaling and quiet, shall be supported in all
operations. Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infinities or extremely
wide range) that are not the subject of the standard. Quiet NaNs should, by
means left to the implementor's discretion, afford retrospective diagnostic
information inherited from invalid or unavailable data and results.
Propagation of the diagnostic information requires that information
contained in the NaNs be preserved through arithmetic operations and
floating-point format conversions.
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Signaling NaNs shall be reserved operands that signal the invalid operation
exception (7.1) for every operation listed in Section 5. Whether copying a
signaling NaN without a change of format signals the invalid operation
exception is the implementor's option.

Every operation involving a signaling NaN or invalid operation (7.1) shall, if
no trap occurs and if a floating-point result is to be delivered, deliver a quiet
NaN as its result.

Every operation involving one or two input NaNs, none of them signaling,
shall signal no exception but, if a floating-point result is to be delivered,
shall deliver as its result a quiet NaN, which should be one of the input
NaNs. Note that format conversions might be unable to deliver the same
NaN. Quiet NaNs do have effects similar to signaling NaNs on operations
that do not deliver a floating-point result; these operations, namely
comparison and conversion to a format that has no NaNs, are discussed in
5.4, 5.6, 5.7, and 7.1.

6.3. The Sign Bit

This standard does not interpret the sign of an NaN. Otherwise, the sign of a
product or quotient is the exclusive or of the operands' signs; the sign of a
sum, or of a difference x–y regarded as a sum x+ (–y), differs from at most
one of the addends' signs, and the sign of the result of the round floating-
point number to integral value operation is the sign of the operand. These
rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two
operands with like signs) is exactly zero, the sign of that sum (or difference)
shall be + in all rounding modes except round toward –INFINITY, in which
mode that sign shall be –. However, x+x = x–(–x) retains the same sign as x
even when x is zero.

Except that sqrt(–0) shall be –0, every valid square root shall have a positive
sign.

7. Exceptions
There are five types of exceptions that shall be signaled when detected. The
signal entails setting a status flag, taking a trap, or possibly doing both. With
each exception should be associated a trap under user control, as specified in
Section 8. The default response to an exception shall be to proceed without a
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trap. This standard specifies results to be delivered in both trapping and
nontrapping situations. In some cases, the result is different if a trap is
enabled.

For each type of exception the implementation shall provide a status flag
that shall be set on any occurrence of the corresponding exception when no
corresponding trap occurs. It shall be reset only at the user's request. The
user shall be able to test and to alter the status flags individually, and should
further be able to save and restore all five at one time.

The only exceptions that can coincide are inexact with overflow and inexact
with underflow.

7.1. Invalid Operation

The invalid operation exception is signaled if an operand is invalid for the
operation to be performed. The result, when the exception occurs without a
trap, shall be a quiet NaN (6.2) provided the destination has a floating-point
format. The invalid operations are

1. Any operation on a signaling NaN (6.2)

2. Addition or subtraction – magnitude subtraction of infinities such as,
(+INFINITY) + (–INFINITY)

3. Multiplication – 0 × INFINITY

4. Division – 0/0 or INFINITY/INFINITY

5. Remainder – x REM y, where y is zero or x is infinite

6. Square root if the operand is less than zero

7. Conversion of a binary floating-point number to an integer or
decimal format when overflow, infinity, or NaN precludes a faithful
representation in that format and this cannot otherwise be signaled

8. Comparison by way of predicates involving < or >, without ?, when
the operands are unordered (5.7, Table 4)

7.2. Division by Zero
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If the divisor is zero and the dividend is a finite nonzero number, then the
division by zero exception shall be signaled. The result, when no trap
occurs, shall be a correctly signed INFINITY (6.3).

7.3. Overflow

The overflow exception shall be signaled whenever the destination format's
largest finite number is exceeded in magnitude by what would have been the
rounded floating-point result (Section 4) were the exponent range
unbounded. The result, when no trap occurs, shall be determined by the
rounding mode and the sign of the intermediate result as follows:

1. Round to nearest carries all overflows to INFINITY with the sign of
the intermediate result

2. Round toward 0 carries all overflows to the format's largest finite
number with the sign of the intermediate result

3. Round toward –INFINITY carries positive overflows to the format's
largest finite number, and carries negative overflows to –INFINITY

4. Round toward +INFINITY carries negative overflows to the format's
most negative finite number, and carries positive overflows to
+INFINITY

Trapped overflows on all operations except conversions shall deliver to the
trap handler the result obtained by dividing the infinitely precise result by 2æ

and then rounding. The bias adjust æ is 192 in the single, 1536 in the double,
and 3 × 2n–2 in the extended format, when n is the number of bits in the
exponent field. [FOOTNOTE 7: The bias adjust is chosen to translate over/underflowed
values as nearly as possible to the middle of the exponent range so that, if desired, they can
be used in subsequent scaled operations with less risk of causing further exceptions.]
Trapped overflow on conversion from a binary floating-point format shall
deliver to the trap handler a result in that or a wider format, possibly with the
exponent bias adjusted, but rounded to the destination's precision. Trapped
overflow on decimal to binary conversion shall deliver to the trap handler a
result in the widest supported format, possibly with the exponent bias
adjusted, but rounded to the destination's precision; when the result lies too
far outside the range for the bias to be adjusted, a quiet NaN shall be
delivered instead.

7.4. Underflow
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Two correlated events contribute to underflow. One is the creation of a tiny
nonzero result between ±2Emin which, because it is so tiny, may cause some
other exception later such as overflow upon division. The other is
extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers. The implementor may choose how these
events are detected, but shall detect these events in the same way for all
operations. Tininess may be detected either

1. After rounding - when a nonzero result computed as though the
exponent range were unbounded would lie strictly between ± 2Emin

2. Before rounding - when a nonzero result computed as though both
the exponent range and the precision were unbounded would lie
strictly between ± 2Emin.

Loss of accuracy may be detected as either

1. A denormalization loss - when the delivered result differs from what
would have been computed were exponent range unbounded

2. An inexact result - when the delivered result differs from what would
have been computed were both exponent range and precision
unbounded. (This is the condition called inexact in 7.5).

When an underflow trap is not implemented, or is not enabled (the default
case), underflow shall be signaled (by way of the underflow flag) only when
both tininess and loss of accuracy have been detected. The method for
detecting tininess and loss of accuracy does not affect the delivered result
which might be zero, denormalized, or ± 2Emin. When an underflow trap has
been implemented and is enabled, underflow shall be signaled when tininess
is detected regardless of loss of accuracy. Trapped underflows on all
operations except conversion shall deliver to the trap handler the result
obtained by multiplying the infinitely precise result by 2æ  and then
rounding. The bias adjust æ  is 192 in the single, 1536 in the double, and 3 ×
2n–2 in the extended format, where n is the number of bits in the exponent
field. [FOOTNOTE 8: Note that a system whose underlying hardware always traps on
underflow, producing a rounded, bias-adjusted result, shall indicate whether such a result is
rounded up in magnitude in order that the correctly denormalized result may be produced
in system software when the user underflow trap is disabled.]  Trapped underflows on
conversion shall be handled analogously to the handling of overflows on
conversion.

7.5. Inexact
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If the rounded result of an operation is not exact or if it overflows without an
overflow trap, then the inexact exception shall be signaled. The rounded or
overflowed result shall be delivered to the destination or, if an inexact trap
occurs, to the trap handler.

8. Traps
A user should be able to request a trap on any of the five exceptions by
specifying a handler for it. He should be able to request that an existing
handler be disabled, saved, or restored. He should also be able to determine
whether a specific trap handler for a designated exception has been enabled.
When an exception whose trap is disabled is signaled, it shall be handled in
the manner specified in Section 7. When an exception whose trap is enabled
is signaled the execution of the program in which the exception occurred
shall be suspended, the trap handler previously specified by the user shall be
activated, and a result, if specified in Section 7, shall be delivered to it.

8.1. Trap Handler

A trap handler should have the capabilities of a subroutine that can return a
value to be used in lieu of the exceptional operation's result; this result is
undefined unless delivered by the trap handler. Similarly, the flag(s)
corresponding to the exceptions being signaled with their associated traps
enabled may be undefined unless set or reset by the trap handler.

When a system traps, the trap handler should be able to determine

1. Which exception(s) occurred on this operation

2. The kind of operation that was being performed

3. The destination's format

4. In overflow, underflow, and inexact exceptions, the correctly
rounded result, including information that might not fit in the
destination's format

5. In invalid operation and divide by zero exceptions, the operand
values.

8.2. Precedence
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If enabled, the overflow and underflow traps take precedence over a separate
inexact trap. 

Appendix

Recommended Functions and Predicates
(This Appendix is not a part of ANSI/IEEE Std 754–1985, IEEE Standard for Binary
Floating-Point Arithmetic.) 

The following functions and predicates are recommended as aids to program
portability across different systems, perhaps performing arithmetic very
differently. They are described generically, that is, the types of the operands
and results are inherent in the operands. Languages that require explicit
typing will have corresponding families of functions and predicates. 

Some functions, such as the copy operation y := x without change of format,
may at the implementor's option be treated as nonarithmetic operations
which do not signal the invalid operation exception for signaling NaNs; the
functions in question are (1), (2), (6), and (7). 

1. Copysign(x, y) returns x with the sign of y. Hence, abs(x) = copysign(
x, 1.0), even if x is NaN. 

2. –x is x copied with its sign reversed, not 0 – x; the distinction is
germane when x is ±0 or NaN. Consequently, it is a mistake to use
the sign bit to distinguish signaling NaNs from quiet NaNs. 

3. Scalb(y, N) returns y × 2N for integral values N without computing 2N.

4. Logb(x) returns the unbiased exponent of x, a signed integer in the
format of x, except that logb (NaN) is a NaN, logb (INFINITY) is
+INFINITY, and logb(0) is –INFINITY and signals the division by
zero exception. When x is positive and finite the expression scalb(x,
–logb(x)) lies strictly between 0 and 2; it is less than 1 only when x is
denormalized. 

5. Nextafter(x, y) returns the next representable neighbor of x in the
direction toward y. The following special cases arise: if x = y, then
the result is x without any exception being signaled; otherwise, if
either x or y is a quiet NaN, then the result is one or the other of the
input NaNs. Overflow is signaled when x is finite but nextafter(x, y)
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is infinite; underflow is signaled when nextafter(x, y) lies strictly
between ± 2Emin, in both cases, inexact is signaled. 

6. Finite(x) returns the value TRUE if –INFINITY < x < +INFINITY,
and returns FALSE otherwise. 

7. Isnan(x), or equivalently x != x, returns the value TRUE if x is a
NaN, and returns FALSE otherwise. 

8. x <> y is TRUE only when x < y or x > y, and is distinct from x != y,
which means NOT(x = y) (Table 4). 

9. Unordered(x, y), or x ? y, returns the value TRUE if x is unordered
with y, and returns FALSE otherwise (Table 4). 

10.Class(x) tells which of the following ten classes x falls into: signaling
NaN, quiet NaN, –INFINITY, negative normalized nonzero, negative
denormalized, –0, +0, positive denormalized, positive normalized
nonzero, +INFINITY. This function is never exceptional, not even
for signaling NaNs. 
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