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Introduction 1

1.1

1.2

The Intel® Itanium™ Architecture and the System V
ABI

The System V Application Binary Interface defines a system interface for compiled application
programs. Its purpose is to establish a standard binary interface for application programs on
systems that implement the interfaces defined in the X/Open Common Application Environment
Soecification, Issue 4.2 (also known asthe “ Single UNIX Specification”) and the System V
Interface Definition, Issue 4. Thisincludes, but is not limited to, systems that have implemented
UNIX System V, Release 4.

This document is the result of consensus among operating system vendors intending to provide
UNIX and UNIX workalike operating systems on the Itanium™ architecture. The vendors
participating in this effort include Intel, Sun Microsystems, SCO, IBM, SGI, Cygnus Solutions, VA
Linux Systems, HP, and Compag. This specification builds upon the definitions of the System V
ABI and supplies those aspects of the System V ABI which are indicated as being processor-
specific. In combination with the System V ABI and the documents included by reference by this
specification, constitutes a specification for compiler, linker and object model compatibility for
implementations of UNIX and UNIX workalike operating systems on systems that utilize the
processor architecture of Intel® Itanium™ architecture microprocessors.

How to Use the System V ABI for Intel® Itanium™
Processors

The Itanium architecture supports a 64 bit instruction set and also provides compatibility with the
IA-32 instruction set. Binaries using the Itanium architecture instruction set may program to either
a 32-bit model, in which the C datatypesi nt and | ong and all pointer types are 32-bit objects
(ILP32); or to a64-bit model, in whichthe Ci nt typeis 32-bits but the C| ong type and all
pointer types are 64-bit objects (LP64). This specification describes information needed to
construct, link and execute binaries using the L P64 programming model. In addition, the Itanium
architecture allows both big-endian (most-significant byte first) and little-endian (least-significant
byte first) encoding. This specification may be used to instantiate a big-endian and/or alittle-
endian ABI.

This specification does not fully describe the ILP32 programming model. Since some vendors will
support this model, some non-binding considerations will be covered in Chapter 7. The
specification also does not describe the compatibility mode for 1A-32 instruction set binaries. That
mode is described by a separate ABI document.

This document is a supplement to the generic SystemV ABI and contains information referenced in
the generic specification that may differ when System V isimplemented on different processors.
Therefore, the generic ABI isthe prime reference document, and this supplement is provided to fill
gaps in that specification.

Aswith the System V ABI, this specification references other avail able documents, especially the
Intel® 1A-64 Architecture Software Developer’s Manual, Itanium™ Software Conventions and
Runtime Architecture Guide, and 32-Bit Little-Endian | A-64 Software Conventions Addendum for

Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 1-1
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IA-64 UNIX. All the information referenced by this supplement should be considered part of this
specification unless otherwise noted, and just as binding as the requirements and data explicitly
included here.

Evolution of the ABI Specification

This specification will evolve over time to address new technology and market requirements, and
will be reissued periodically. Each new edition of the specification islikely to contain extensions
and additionsthat will increase the potential capabilities of applications that are written to conform
to the ABI.

Additional Documents

The following documents available at devel oper.intel.com web site (http://devel oper.intel .com/
design/ia-64/devinfo.htm) are included by reference into this specification:

* Intel® |A-64 Architecture Software Developer's Manual, Vol. 1 Rev. 1.1: |A-64 Application
Architecture

* Intel ®A-64 Architecture Software Developer's Manual, Vol. 2 Rev. 1.1: |A-64 System
Architecture

* Intel® |A-64 Architecture Software Developer's Manual, Vol. 3 Rev. 1.1: Instruction Set
Reference

* Intel® 1A-64 Architecture Software Developer's Manual, Vol. 4 Rev. 1.1: Itanium™ Processor
Programmer's Guide

* Intel® |A-64 Architecture Software Developer's Manual Specification Update

¢ |tanium™ Software Conventions and Runtime Architecture Guide (Document Number
245358)

* |A-64 Assembly Language Reference Guide (Document Number 248801)

Intel® Itanium™ Processor-specific Application Binary Interface (ABI)
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Software Installation

For future use.
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Low-level System Information

3.1 Introduction

The System V ABI leaves processor-specific low-level system information to the Processor

Supplement (this document). The majority of this required information is documented in the
Itanium™ Software Conventions and Runtime Architecture Guide (* Conventions’ ), which is
operating system-independent. Only information that is specific to implementing the ABI on the

Itanium architecture will be described here.

Object files (relocatable files, executable files and shared object files) that are supplied as part of an
ABI-conforming application must use position-independent code as described in Chapter 12 of

Conventions.

3.2 Machine Interface

3.2.1 Fundamental Types

The following additional C language scalar datatypes are required. | ong | ong isan integral
type, whilel ong doubl e isafloating-point type.

Table 3-1. Additional Fundamental Data Types

Data Model C Type Size | Align Hardware Representation
ILP32 I ong | ong 8 4 Signed doubleword
unsi gned | ong | ong Unsigned doubleword
LP64 I ong | ong 8 8 Signed doubleword
unsi gned | ong | ong Unsigned doubleword
ILP32 | ong doubl e 12 4 IEEE Double-Extended floating point
LP64 | ong doubl e 16 16 IEEE Double-Extended floating point

NOTE: | ong doubl e inthe LP64 model is allocated 16 bytes (128 bits) of storage but uses the 80-hit extended

double format internally.

Intel® Itanium™ Processor-specific Application Binary Interface (ABI)
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Figure 3-1. Double-extended (80-bit) Floating-point Formats
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3.3 Operating System Interface

3.3.1 Exception Interface

As the Itanium architecture manual s describe, the processor changes mode to handle exceptions.
Some exceptions can be explicitly generated by a process. This section specifies those exception
types with defined behavior. Table 3-2 shows the signal number (si _si gno) and the code

(si _code) valuesthat will be delivered for each type of hardware exception that has an effect on
program execution.

Table 3-2. Hardware Exceptions and Signals

Type of Exception si_signo si_code Notes
TLB faults SI GSEGV SEGV_MAPERR a
Access faults S| GSEGV SEGV_ACCERR
Privilege violations SIG LL | LL_PRVOPC
Register NaT consumption SIG LL | LL_PRVREG
NaT page consumption S| GSEGV __I LL_REGNAT
Speculative operation None SEGV_MAPERR b
Unaligned data SI GBUS BUS_ADRALN ¢
Floating-point exceptions S| GFPE see Table 3-3
lllegal instructions SI G LL ILL_ILLOPC

3-2 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)
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Table 3-2. Hardware Exceptions and Signals (Continued)

Table 3-3.

3.3.2

Low-level System Information

Type of Exception si_signo si_code Notes
Break O (unknown error) SIGLL ILL_I LLOPC
Break 1 (integer divide by zero) S| GFPE FPE_I NTDI V
Break 2 (integer overflow) SI GFPE FPE_I NTOVF
Break 3 (range check/bounds check) S| GFPE FPE_FLTSUB
Break 4 (null pointer dereference) SI GSEGV SEGV_MAPERR
Break 5 (misaligned data) Sl GBUS BUS_ADRALN
Break 6 (decimal overflow) SI GFPE __FPE_DECOVF
Break 7 (decimal divide by zero) S| GFPE __FPE_DECDI V
Break 8 (packed decimal error) SI GFPE __FPE_DECERR
Break 9 (invalid ASCII digit) S| GFPE __FPE_I NVASC
Break 10 (invalid decimal digit) SI GFPE __FPE_I NVDEC
Break 11 (paragraph stack overflow) S| GSEGV __SEGV_PSTKOVF
Break 12-0x03ffff (reserved) undefined
Break 0x040000-0x07ffff (application) SI G LL __ILL_BREAK
Break 0x080000-0xOfffff (debugger) S| GTRAP TRAP_BRKPT d
Break 0x100000-0x1fffff (reserved) undefined

o

TLB faults are first serviced by the system to determine if the attempted access was to a page to which the process has access.

A signal is delivered to the application only if the attempted access is determined to be invalid.

o

. Speculative operation faults are the result of a speculative check or floating-point check flags operation. The system services

this fault, and emulates the instruction as a pc-relative branch when the fault is taken.

o

. The system may emulate unaligned data references, possibly depending on flags set in the executable object file or on the ex-

ecutable’s setting of the PSR.ac bit. If it does, no signal is delivered. Applications that rely on such behavior are not ABI con-

forming.

o

. If the process is being controlled by a debugger, these faults generate debugger events, and do not cause a signal to be deliv-
ered to the process.

Table 3-3 details the possible reasons for a SIGFPE signal caused by a floating-point exception:

Floating-point Exceptions

Code Reason
FPE_FLTDI V floating-point divide by zero
FPE_FLTOVF floating-point overflow
FPE_FLTUND floating-point underflow
FPE_FLTRES floating-point inexact result
FPE_FLTI NV invalid floating-point operation
FPE_FLTSUB subscript out of range

Signal Delivery

The Single UNIX Specification defines information that is made availablein the si gi nf o_t
structure for specific signals. That information is reproduced, for informational purposes, in
Table 3-4. Table 3-5 lists additional information delivered for specific signals on Itanium

architecture.

Intel® Itanium™ Processor-specific Application Binary Interface (ABI)
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Table 3-4. Standard Signal Delivery

Signal Member Value
SIG LL o Address of faulting instruction
S| GEPE voi d si _addr
S| GSEGV e o Address of faulting memory reference
Sl GBUS voi d si _addr
pid_t si_pid Child process ID
S| GCHLD int si_status Exit value or signal
uid_t si_uid Real user ID of the process that sent the signal
SI GPOLL | ong si _band Band event for POLL_IN, POLL_OUT or POLL_MSG

Table 3-5. Signal Delivery — Additional Details for Itanium™ Architecture

Signal Member Value
id* si Address of faulting instruction
S| GTRAP void * si_addr ) Hng )
int si_inmm br eak instruction immediate operand
SIG LL int si_imm br eak instruction immediate operand (for __| LL_BREAK)

When asignal handler isinstalled, the application passes a function pointer to the system. As
defined by Conventions, a function pointer points to a function descriptor, which contains the

handler's entry point address and its global pointer register (gp) value. The implementation must

be aware of the structure of the function descriptor in order to deliver asignal correctly.

When delivering a signal, the implementation must do the following:

1. Buildthe signal info and signal context records at the top of the user stack. If SA_SIGINFO

was not set when installing the signal handler, these records are not required.

2. Create anew 16-byte scratch area at the top of the user stack, for the handler’s use.

3. Create anew register stack frame with three output argument registers, and place the signal
handler's arguments in these registers.

4. Set the global pointer register (gp) to the handler'sgp value.

5. Initialize the floating-point status register (ar . f psr) to the standard value, as defined by the

common runtime conventions.

6. Transfer control to the signal handler, providing the appearance that the handler has been
called, so that areturn from the handler will reinstall the saved (and possibly modified)

context.

3-4 Intel® Itanium™ Processor-specific Application Binary Interface (ABI)
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Signal Handler Interface

According to the Sngle UNIX Specification, if the SA_SIGINFO flag isused when asignal handler
isinstalled, the handler will be called with three arguments, according to the following prototype:
voi d handl er (i nt signo,

siginfo_t *info, void *context);

In addition to the severa members required by Sngle UNIX Specification, the si gi nf o_t
structure contains the following fields for Itanium architecture:

int si_imm Immediate operand for break instruction

The Sngle UNIX Specification definesthesi _addr field asthe address of the faulting instruction
or the faulting memory reference. When it is an instruction address, the value is represented as a
bundle address with the low-order two bits set to indicate the particular instruction within abundle.

The Single UNIX Specification allows the application to cast the context argument to the type
ucont ext _t, which containsthe following fields (at |east):

stack_t uc_stack The stack used by this context.

A machine-specific representation of the saved

ncont ext _t uc_ntont ext
- - context.

Thest ack_t structure containsthe following fields (at |east):

void *ss_sp Stack base or pointer

size_t ss_size Size of the stack

int ss_flags Flags

The stack described by this structure includes both the memory stack and the backing store.

Thentont ext _t structureisan opaque structure. Its size must be specified by the ABI, but its
layout isimplementation specific. Each implementation may provide an API for accessing and
modifying the context.

REVIEW NOTE: Specification of the sizeis |eft to an external standards bodly.

Signal Delivery — Implementation Notes

This section isinformational and does not form part of the specification.

Thesi _i mm field may be placed inthe _f aul t member of thesi gi nf o_t structure, sinceit
isdelivered only for SIGTRAP signals, when si _addr isalso delivered.

A signal handler’s return pointer must be some value that causes the saved signal context to be
reinstalled when the signal handler returns; thus, it can not be an address within the range of any of
the application’s loaded segments. Typically, it will be the address of akernel entry point, mapped
into a shared portion of the application’s address space.

The signal context record placed on the stack marks a discontinuity in the stack. While the signal
handler's frame itself is an ordinary stack frame, its caller appearsto be a routine whose stack
frame is the context record. The system’s unwind routines will need away of recognizing the
discontinuity. The common runtime conventions provide a special implementation-dependent
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3.3.4

3.3.5

3-6

unwind descriptor format (P10) for this purpose. A recommended, but not required, mechanism is
for the system to provide a special unwind table for the signal handler return point, using this
special unwind descriptor to indicate to the unwind library that it has reached asignal context
record on the stack. This unwind table is made available to the unwind library through an
implementati on-specific mechanism.

Implementations will likely choose not to copy the stacked general registersinto the signal context
record, relying instead on accessing the backing store as needed. Thus, the API routines for reading
and writing the context record will need to understand the layout of the backing storein order to
access and modify the stacked general registers.

If the backing store overflows as aresult of flushing the register stack in preparation for signal
delivery, the system may need to provide spaceinthe ncont ext _t record for saving the
remainder of the register stack. Thus, there may be a discontinuity in the backing store, and API
routines for accessing the general registers must take thisinto account.

The API set should include read and write routines for each element of user-visible state, plus read
and write routines for the stacked general registers. The APIs should provide an abstraction layer to
help the programmer deal with the complexities of NaT bits, the layout of the backing store, the
frame marker, and the location of the instruction pointer within the current bundle.

Debugging Support

A program may use the break instruction subject to the restrictions documented in Chapter 2 of
Conventions. A break instruction with an immediate operand with the high-order two bitssetto 01
isreserved for debugger breakpoints. For purposes of implementing the System V ABI, avalue of
zero in the remaining bits (i.e. an operand of 0x80000) is defined as the debugger breakpoint; all
other valuesin this range are undefined.

Process Startup

This section describes the initial program state that the exec functions create when constructing a
new process image. Programming language systems use thisinitial program state to establish a
standard environment for their application programs. As an example, a C program begins
executing at afunction named nai n, conventionally declared in the following way.

extern int main(int argc, char *argv[]);

Briefly, ar gc isanon-negative argument count and ar gv is an array of argument strings, with
argv[argc] =0;.

Although this section does not describe C program initialization, it gives the information necessary
to implement the call to mai n or to the entry point for a program in any other language.

Theimplementation will call (or appear to call) the program entry point recordedinthee_entry
field of the ELF header, hereafter referred to as"nai n”, according to standard calling conventions.
The system is responsible for initializing the process state to satisfy the common runtime

conventions (see Conventions). These initializations include, but are not limited to, the following:

1. The current frame marker must be configured for zero input and local registers, and at least
four output registers.

2. The stack pointer register (sp) must be aligned to a 16-byte boundary. An initial stack frame
must exist for the routine in the implementation responsible for calling main, with spacefor a
16-byte scratch area for use by main.

Intel® Itanium™ Processor-specific Application Binary Interface (ABI)
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3. The RSE backing store pointer registers must be valid.

4. The return pointer register (r p) isavalid return address, such that if the program returns from
the main routine, the implementation will cause the program to exit normally, using the main's
return value as the exit status.

5. Theunwind information for this"bottom-of-stack" routine in the implementation must provide
amechanism for recognizing the bottom of the stack during a stack unwind.

6. Theglobal pointer register (gp) contains main’'s global pointer.
7. Thefloating-point statusregister (ar . f psr) isinitialized as described in Conventions.
Thefirst two argument registers (r 32-r 33, named outO-outl at entry to mai n) must contain

ar gc and ar gv, respectively. The third and fourth argument registers (r 34-r 35, out 2-out 3)
must be allocated as required by the common runtime conventions, but are not defined by this ABI.
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4.1

411

41.1.1

41.1.2

Note:

41.1.3

41.1.4

ELF Header

Machine Information

Programming Model

Asdescribed in Section 1.1, “The Intel® Itanium™ Architecture and the System VV ABI” on

page 1-1, binaries using the Itanium architecture instruction set may program to either a 32-bit
model, in which the C datatypesi nt and| ong and all pointer types are 32-bit objects (ILP32); or
to a64-bit model, inwhichthe Ci nt typeis32-bitsbut the C| ong type and all pointer types are
64-bit objects (LP64). This specification describes both binaries that use the ILP32 and the L P64
model. For LP64 binaries, thee f | ags member of the ELF header will include the value

EF | A 64_ABI 64 (see Table 4-2 below). For ILP32 binariese_f | ags will not include

EF_1 A 64_ABI 64. Itanium architecture files using the 32-bit programming model may not be
combined with Itanium architecture files using the 64-bit programming model.

File Class

For Itanium architecture ILP32 relocatable (i.e. of type ET_REL) objects, the file classvaluein
e_ident[ El _CLASS] must be ELFCLASS32. For LP64 relocatable objects, thefile classvalue
may be either ELFCLASS32 or ELFCLASS64, and a conforming linker must be able to process
either or both classes. ET_EXEC or ET_DY N object file types must use ELFCLASS32 for ILP32
and ELFCLASS64 for LP64 programs.

Addresses appearing in ELFCLASS32 relocatable objects for LP64 programs are implicitly
extended to 64 bits by zero-extending.

Some constructs legal in LP64 programs, e.g. absolute 64-bit addresses outside the 32-hbit range,
may require use of an ELFCL ASS64 relocatable object file.

Data Encoding

For thedataencodingine_i dent [ El _DATA] , Itanium architecture 64-bit objects can use either
ELFDATA2MSB or ELFDATA2LSB. That is, Itanium architecture 64-bit ELF files may use either
the big endian or little endian data encoding. Itanium architecture files using ELFDATA2M SB
encoding may not be combined with Itanium architecture files using ELFDATA2L SB encoding.

Operating System ldentification

Thee_ident[ El _OSABI ] vaueidentifiesthe operating system and ABI to which the object is
targeted, aslisted in Table 4-1.
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Table 4-1. Operating System Identification, e_i dent [ El _OSABI ]

Name Value Meaning
ELFCOSABI _NONE 0 Reserved
ELFCSABI _HPUX 1 HP-UX
ELFOSABI _NETBSD 2 NetBSD
ELFOSABI _LI NUX 3 Linux
“Unspecified” 4 [IA-32 GNU Mach/Hurd]
“Unspecified” 5 [86 Open common IA-32 ABI]
ELFOSABI _SOLARI S 6 Solaris
ELFOSABI _MONTEREY 7 AIX
ELFOSABI _I RI X 8 IRIX
ELFOSABI _FREEBSD 9 FreeBSD
ELFOSABI _TRU64 10 Compag TRU64 UNIX
ELFOSABI _MODESTO 11 Novell Modesto
ELFOSABI _OPENBSD 12 Open BSD

41.1.5 Processor Identification
Processor identification residesin the ELF header'se _nmachi ne member and must have the value
EM | A 64.

4.1.1.6 Processor-specific Flags

The ELF header e_f | ags member holds bit flags associated with thefile, aslisted in Table 4-2.

Table 4-2. Itanium™ Processor-specific Flags, e_f | ags

Name

Value

EF_I A_64_MASKOS

0x00f f 000f

EF_| A 64_ABI 64 0x00000010
EF_I A_64_REDUCEDFP 0x00000020
EF_| A 64_CONS_GP 0x00000040
EF_I A_64_NOFUNCDESC_CONS_GP 0x00000080
EF_| A_64_ABSOLUTE 0x00000100

EF_I A_64_ARCH

0xf f 000000

EF_IA_64 MASKOS
EF_IA_64 ABI64

All bitsin this mask are reserved for operating system specific values.

If this bit is set, the object uses the L P64 programming model, as

described above. If the bit is clear, the object uses the ILP32
programming model.
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EF_IA_64 CONS GP

Object Files

If this bit is set, the object has been compiled with areduced floating-
point model. The compiler usesonly floating point registersf 6- f 11 for
integer arithmetic. If the program does not perform explicit floating-
point calculations, registersf 6- f 11 arethe only floating-point registers
that need to be saved by interrupt handlers. When combining rel ocatable
objects, alinker should set the EF_| A_64_REDUCEDFP flag in the
resulting object only if all of the objectsto be combined have theflag set.

If this bit is set, the global pointer (gp) istreated as a program-wide
constant. The gp is saved and restored only for indirect function calls.
Objects with this bit set may not be combined with objects that do not
have this bit set. This model isintended for use primarily in standalone
programs, such as operating system kernels. Objects with thisbit set are
not ABI-conforming.

EF_IA_64 NOFUNCDESC_CONS_GP

EF_IA_64 ABSOLUTE

EF_IA_64 ARCH

4.2 Sections

4.2.1 Section Types

If this bit is set, the global pointer (gp) istreated as a program-wide
constant. Thegp is never saved or restored across function cals. In this
model, a function’s address is not treated as the address of a two-word
function descriptor. Rather, it is the actual address of the function
definition itself. Thismodel isintended for use primarily in standalone
programs, such as operating system kernels. Objects with this bit set are
not ABI-conforming.

If thishit is set, the program loader isinstructed to load the executabl e at
the addresses specified in the program headers. Objects with this bit set
are not ABI-conforming.

Theinteger value formed by these eight bitsidentifies the architecture
version. Thisfield isreserved for use when the Itanium architecture is
extended with backward-compatibl e features. It records the minimum
level of the architecture required by the object code. The only currently
defined value is one.

The Itanium architecture defines two processor-specific section types and a reserved range to be
used in the sh_t ype member of the ELF section header in addition to the standard section types.

Table 4-3. Section Types, sh_t ype

Name Value
SHT_I A_64_EXT 0x70000000
SHT_I A_64_UNW ND 0x70000001
SHT_| A_64_LOPSREG 0x78000000
SHT_| A_64_H PSREG OXT7FFFffff
SHT IA 64 PRORITY_INT 0x79000000
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4.2.2

Table 4-4.

4.2.3

Table 4-5.

4-4
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SHT |IA_64 EXT The section contains product specific extension bits. These consist of at
least one 64-bit word of attribute flags that identify specific non-
architectural extensionsthat are required by the object code. See
Section 4.2.4, “ Architecture Extensions’ on page 4-6.

SHT IA_64 UNWIND The section contains unwind function table entries for stack unwinding.
See Conventions for details.

SHT_IA_64 LOPSREG to SHT_IA_64 HIPSREG
Sections in this range are reserved for implementation-specific section
types. A portion of thisrange is allocated for use by implementations
which have assigned Operating System Identification values (see
Section 4.1.1.4, “Operating System Identification” on page 4-1). If the
high-order 8 bits of sh_type contain 0x 78 then the next 8 bits contain
the EI_OSABI value. For example, if the EI_OSABI value for an
implementation is 0x03, the reserved range for that implementation is
0x78030000 to 0x7803f f f f .

SHT_IA_64 PRIORITY_INIT The section contains priority initialization records, each of which
isapair consisting of an Elfxx_Word priority and an Elfxx_Addr
function address.

An implementation is not required to support this section type, beyond
the gABI requirements for the handling of unrecognized section types
(i.e. linking them into a contiguous section in the object file created by
the static linker).

Section Attribute Flags

A section header sh_f | ags member holds 1-bit flags that describe the attributes of the section.
The Itanium architecture defines two processor-specific values in addition to the standard values.

Section Attribute Flags, sh_f | ags

Name Value
SHF_| A 64_SHORT 0x10000000
SHF_| A_64_NORECOV 0x20000000

SHF _|A_64 SHORT The section contains objects that will be referenced using an offset from
the global pointer (gp), so the section must be placed near gp.

SHF_IA_64 NORECOV The section contains code that uses speculative instructions without
recovery code. ABI-conforming implementations are not required to
execute binaries that do not have recovery code associated with them.

Special Sections
The following special sections are defined for use on the Itanium architecture.

Special Sections

Name Type Attributes
.1 A_64. ar chext SHT_| A 64_EXT None
.1 A 64.pltoff SHT_PROGBI TS SHF_ALLOC+SHF_WRI TE+SHF_| A 64_SHORT
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Table 4-5. Special Sections (Continued)
Name Type Attributes
.1 A_64. unwi nd SHT_I A 64_UNWND | SHF_ALLOC+SHF_LI NK_ORDER
.1 A_64. unwi nd_i nfo SHT_PROGBI TS SHF_ALLOC
. got SHT_PROGBI TS SHF_ALLOC+SHF_WRI TE+SHF_| A_64_SHORT
.plt SHT_PROGBI TS SHF_ALLOC+SHF_EXECI NSTR
. sbss SHT_NOBI TS SHF_ALLOC+SHF_WRI TE+SHF_| A_64_SHORT
.sdata SHT_PROGBI TS SHF_ALLOC+SHF_WRI TE+SHF_| A_64_SHORT
. sdat al SHT_PROGBI TS SHF_ALLOC+SHF_WRI TE+SHF_| A_64_SHORT
JA_64.archext This section holds product-specific extension bits (see
SHT | A 64 _EXT in Section4.2.1,“Section Types’ on page 4-3 for
details). Thelink editor will perform alogical “or” of the extension bits
of each object it combines when creating an executable so that it creates
only asingle. | A_64. ar chext section in the executable.
JA_64.pltoff This section holdslocal function descriptor entries. See “ Coding
Examples’ in Conventions and Section 5.3.6, “Procedure Linkage
Table” on page 5-7 for more information.
JA_64.unwind This section holds the unwind function table. The contents are described

JA_64.unwind _info

.got

plt

.sbss

.Sdata and .sdatal

in Conventions.

This section holds stack unwind and exception handling information.
The contents specific to unwind information are described in
Conventions. The exception handling information is programming
language specific and is unspecified.

This section holds the global offset table. See “Coding Examples’ in
Conventions and Section 5.3.4, “Global Offset Table” on page 5-6 for
more information.

This section holds the procedure linkage table. See Section 5.3.6,
“Procedure Linkage Table” on page 5-7 for more information.

This section holds uninitialized data that contribute to the program's
memory image. Data objects contained in this section are recommended
to be eight bytes or lessin size. The system initializes the datawith
zeroes when the program begins to run. The section occupies no file
space, asindicated by the section type SHT _NOBI TS. The. sbss
section is placed so it may be accessed using short direct addressing (22-
bit offset from gp). See “Protection Areas’ in Conventions.

These sections hold initialized data that contribute to the program's
memory image. Data objects contained in these sections are
recommended to be eight bytesor lessin size. The. sdat a and

. sdat al sectionsare placed so they may be accessed using short direct
addressing (22-bit offset from gp). See“Protection Areas’ in
Conventions.
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Architecture Extensions

The. | A 64. ar chext section allows acompiler to record dependencies on certain features and
capabilities of a specific processor, that are extensions to the Itanium architecture. Currently, there
are no such extensions defined, and this section is not expected to be used by the compilers.
Nevertheless, linkers and loaders should provide the proper implementation of this section in
preparation for future architectural extensions.

The contentsof the. | A_64. ar chext section, if present, isinterpreted as a series of individual
bits grouped into 64-bit doublewords. The first doubleword of the group is defined to correspond
bitwise to the bitsin CPUID Register 4 (General Features/Capability Bits). Additional
doublewords in the section have no defined meaning, unless and until the Itanium architectureis
extended with additional CPUID Registers defining additional capability bits.

All .1 A 64. ar chext sections must be of section type SHT _|A_64_EXT, and should have no
flagssetinthesh_f | ags field. Each section must be a multiple of 8 bytesin length, with 8 byte
alignment. The linker must combine such sections by a bitwise OR operation on each
corresponding doubleword of each section (i.e., the first doubleword of one section OR’ed with the
first doubleword of the other section, and so on). If some sections are shorter than others, the
shorter ones are padded with zeroes at the end, so that the combined output section isequal in
length to the largest input section.

Ifa.l A 64. ar chext section existsin the output file, the linker must create a program header
table entry of type PT_IA_64 ARCHEXT to communicate this information to the loader. This
program header table entry must precede all entries of type PT_LOAD. If the. | A_64. ar chext
section exists, but its contents are all zeroes, the linker may omit the section and program header
table entry, but it is not required to.

When an executable or shared library isloaded, and aPT_IA_64 ARCHEXT entry is presentin
the program header table, the loader should compare the contents of the first doubleword of the
section with CPUID Register 4. If any bits are set in the section that are not also set in CPUID
Register 4, the implementation must refuse to load the file. If, in the future, additional CPUID
registers are defined to identify further capability bits, the loader should check additional double-
words of this section with those registers as well. If the section contains excess doublewords that
do not correspond to defined CPUID registers, the loader should check that all excess bits are zero.

Thelinker should be prepared to deal with. | A_64. ar chext sections of arbitrary length, but it
is permissible to truncate the sections to a reasonable length. It is recommended that all tools
should be prepared to deal with at least four doublewords in this section.

Relocations

Relocation Types

A relocation entry’'sr _of f set value designates the offset or virtual address of the affected
storage unit. For data rel ocations, thisisthe first byte of the word or doubleword being relocated.
For instructions, it is the address of the bundle containing the instruction being relocated. The least
significant two bits of the offset identify the instruction slot to which the relocation applies, as
described below. Each instruction bundleis 16 byteslong and 16 byte aligned; each instruction slot
is41 bitslong. Whether a given relocation type appliesto an instruction or datafield is noted in the
Field column of the table of relocations, bel ow.
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Figure 4-1. Instruction Bundle Layout
127 87 86 46 45 54 0
slot 2 slot 1 slot 0 template
41 41 41 5
000947

Table 4-6. Relocation Offset Instruction Slot Encoding

Encoding (last two bits) Instruction slot
00 Slot 0
01 Slot 1
10 Slot 2
11 Invalid

Relocation entries describe how to alter the following instruction and data fields (bit numbers
appear to the upper left of the field they label; all fields are numbered from bit 0).

word32

word64

function descriptor

A 32-bit field occupying four bytes with arbitrary alignment. The byte
order for these valuesiis specified by the relocation type.

A 64-hit field occupying eight bytes with arbitrary alignment. The byte
order for these valuesiis specified by the relocation type.

Two contiguous 64-bit words occupying 16 byteswith 8-byte alignment.
The byte order for the function descriptor is specified by the relocation
type. Function descriptor entries are created by the linker and/or the
dynamic linker and are used in resolving function addresses. The first
64-bit word contains the function address. The second 64-bit word
containsthe value of the global pointer (gp) for the object containing the
definition of the function. Function descriptor entries are referenced by
relocations contained in shared objects and executable objects only and
are intended to be processed at run-time.

instruction - immediatel4 A signed 14-bit immediate value. immy, contains bits O through 6 (low-

order bits). immgy contains bits 7 through 12. s contains the high-order
bit (sign bit).

instruction - immediate22 A signed 22-bit immediate value. immy, contains bits O through 6 (low-

order bits). immgy contains bits 7 through 15. immsg,. contains bits 16
through 20. s contains the high-order bit (sign bit).

instruction - immediate21 - form 1

A signed 21-hit immediate value. Thisvalueisformed by taking a 25-bit
displacement and shifting it right by four bits. For the resulting value,
immyqy, contains bits 0 through 19 (low-order bits). s contains the high-
order bit (sign bit).

instruction - immediate21 - form 2

A signed 21-bit immediate value. Thisvalueisformed by taking a 25-bit
displacement and shifting it right by four bits. For the resulting value,
imm-4 contains bits 0 through 6 (Iow-order bits). imm, 3 contains bits 7
through 19. s contains the high-order bit (sign bit).
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Figure 4-2. Relocatable Fields

word32
31 0
word32
word64
63 0
word64
function descriptor
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word64
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instruction - immediate21: form 1
40 36 35 32 12 0
L sl | | |
instruction - immediate21: form 2
40 36 35 32 19 12 5 0
L[] ] e | | [
instruction - immediate21: form 3
40 36 35 25 5 0
L1 | ]
instruction - immediate64
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‘ | i | ‘ immy, | immg, | i, ‘ imm,, ‘
40 0
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instruction - immediate60
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40 210
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instruction - immediate?1 - form 3
A signed 21-bit immediate value. Thisvalueisformed by taking a 25-bit
displacement and shifting it right by four bits. For the resulting value,
immyg4 contains bits O through 19 (low order bits). i contains the high-
order hit (sign hit).

instruction - immediate64 A 64-bit immediate value. The vaue is contained within two 41-bit
instruction slots (slots 1 and 2 of abundle). i mmy, contains bits 0
through 6 (low order hits). i nmyq contains bits 7 through 15. i
contains bits 16 through 20. i  contains bit 21. i mmy4 contains bits 22
through 62 and takes the entire width of slot 1 (the second instruction
slot). i contains bit 63.

instruction - immediate60 A 60-bit immediate value whichisleft shifted 4 bitsto form 64-bit value
for long branch or call. The value is contained within two 41-bit
instruction slots (slots 1 and 2 of abundl€). i MMy, contains bits 0
through 19 (low order bits). immsg contains bits 20 through 58. i
contains bit 59.

The calculations below assume one of two contexts:

1. Therelocations may be contained within arelocatable file; the actions are transforming the
relocatable file into an executable or a shared object file. Conceptually, the link editor merges
one or more relocatable files to form the output. It first decides how to locate and combine the
input files, then updates the symbol values, and finally performs the rel ocation. Because many
Itanium architecture instructions have small immediate fields, the longer form of relocation
entry containing an explicit addend (El f 32_Rel a or El f 64_Rel a) isaways used for
relocatabl e objects on Itanium architecture.

2. Therelocations may be contained within an executable file or shared object; the actions
complete the job of relocation by fixing addresses for position-independent code. Relocations
contained within executable files or shared objects may use either the shorter form
(El f32_Rel orEl f64_Rel ) orthelonger form (El f 32_Rel a or El f 64_Rel a). These
relocations always apply to word or doubleword data objects. The relocation dealt with at run-
time would be aligned.

Descriptions below use the foll owing notation:
A The Addend used to compute the value of the relocatable field.

BD The Base address Difference, aconstant that must be applied to avirtual
address. This constant represents the difference between the run-time
virtual address and the link-time virtual address of a particular segment.
The segment isimplied by the value of thelink-time virtual address. See
Section 5.2, “Program Loading” on page 5-1 for details.

P The"Place” (section offset or address) of the storage unit being rel ocated
(computedusingr _of f set ). If therelocation appliesto aninstruction,
thisisthe address of the bundle containing the instruction.

S The value of the Symbol whose index residesin the relocation entry.

@gprel (expr) Computes agp-relative displacement - the difference between expr and
the value of the global pointer (gp) for the current module.

@Itoff(expr) Requests the creation of a global offset table (GOT) entry that will hold

the full value of expr and computes the gp-relative displacement to that
GOT entry. See Section 5.3.4, “Global Offset Table” on page 5-6 for
more information.

Intel® Itanium™ Processor-specific Application Binary Interface (ABI) 4-9



Object Files

@pltoff(symbol)

@segrel (expr)

@secrel (expr)

@fptr(symbol)

@tprel (expr)

@dtpmod(expr)

@dtprel (expr)

intel.

Requests the creation of alocal function descriptor entry for the given
symbol and computes the gp-relative displacement to that function
descriptor entry. See Section 5.3.6, “Procedure Linkage Table” on
page 5-7 for more information.

Computes asegment-rel ative displacement - the difference between expr
and the address of the beginning of the segment containing the
relocatable object. This relocation type is designed for data structures
that reside in read-only segments, but need to contain pointers. The
relocatable object and effective address must be contained within the
same segment. Applications using these pointers must be aware that they
are segment-relative and must adjust their values at run-time, using the
load address of the containing segment. No output relocations will be
generated for @segrel relocations.

Computes a section-relative displacement - the difference between expr
and the address of the beginning of the (output) section that contains
expr. Thisrelocation typeis designed for references from one non-
allocatable section to another. Applications using these values must be
aware that they are section-relative and must adjust their values at run-
time, using the adjusted address of the target section. No output
relocations will be generated for @secrel relocations.

Evaluatesto theaddress of the“official” function descriptor for the given
symbol. See Conventions for more information.

Computes a tp-relative displacement -- the difference between the
effective address and the value of the thread pointer. The expression
must evaluate to an effective address within a thread-specific data
segment.

Computes the load module index corresponding to the load modul e that
containsthe definition of the symbol referenced by the relocation. When
used in conjunction with the @Itoff() operator, it evaluates to the gp-
relative offset of alinkage table entry that holds the computed |oad
module index.

Computes a dtv-relative displacement -- the difference between the
effective address and the base address of the thread-local storage block
that contains the definition of the symbol referenced by the relocation.
When used in conjunction with the @Itoff() operator, it evaluates to the
gp-relative offset of alinkage table entry that holds the computed
displacement.

The MSB and L SB suffixes on the following rel ocation types indicate whether the target field is
stored most significant byte first (big-endian) or least significant byte first (little-endian),

respectively.

Table 4-7. ltanium™ Architecture Relocation Types

Name Value Field Calculation
R I A_64_NONE 0 None None
R 1A 64_| M4 0x21 instruction - immediate14 S+A
R 1A 64_| M2 0x22 instruction - immediate22 S+A
R 1A 64_| M4 0x23 instruction - immediate64 S+A
R I A_64_DI R32VSB 0x24 word32 MSB S+A
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Table 4-7. Itanium™ Architecture Relocation Types (Continued)
Name Value Field Calculation
R | A 64_DlI R32LSB 0x25 word32 LSB S+A
R I A_64_DI R64NMSB 0x26 word64 MSB S+A
R 1A 64 DI R64LSB 0x27 word64 LSB S+A
R | A_64_GPREL22 0x2a instruction - immediate22 @gprel(S + A)
R | A 64_GPREL64I| 0x2b instruction - immediate64 @gprel(S + A)
R | A 64_GPREL32MSB 0x2c word32 MSB @gprel(S + A)
R | A 64 GPREL32LSB ox2d word32 LSB @gprel(S + A)
R | A 64_GPREL64NSB 0x2e word64 MSB @gprel(S + A)
R 1A 64 GPREL64LSB ox2f word64 LSB @gprel(S + A)
R I A _64_LTOFF22 0x32 instruction - immediate22 @ltoff(S + A)
R I A 64_LTOFF64I1 0x33 instruction - immediate64 @ltoff(S + A)
R | A_64_PLTOFF22 0x3a instruction - immediate22 @pltoff(S + A)
R I A 64_PLTOFF64I 0x3b instruction - immediate64 @pltoff(S + A)
R | A 64 _PLTOFF64NSB 0x3e word64 MSB @pltoff(S + A)
R 1A 64 PLTOFF64LSB 0x3f word64 LSB @pltoff(S + A)
R | A_64_FPTR64I1 0x43 instruction - immediate64 @fptr(S + A)
R | A_64_FPTR32MsB 0x44 word32 MSB @fptr(S + A)
R | A 64 _FPTR32LSB 0x45 word32 LSB @fptr(S + A)
R | A_64_FPTR64MsB 0x46 word64 MSB @fptr(S + A)
R | A 64 _FPTR64LSB 0x47 word64 LSB @fptr(S + A)
R | A 64_PCREL60B 0x48 instruction - immediate60 S+A-P
R | A_64_PCREL21B 0x49 instruction - immediate21 form 1 S+A-P
R I A 64_PCREL21M Ox4a instruction - immediate21 form 2 S+A-P
R | A_64_PCREL21F 0x4b instruction - immediate21 form 3 S+A-P
R | A 64_PCREL32MSB Ox4c word32 MSB S+A-P
R I A_64_PCREL32LSB 0x4d word32 LSB S+A-P
R | A 64_PCREL64NSB Ox4e word64 MSB S+A-P
R I A_64_PCREL64LSB ox4f word64 LSB S+A-P
R I A 64 _LTOFF_FPTR22 0x52 instruction - immediate22 @ltoff(@fptr(S + A))
R I A_64_LTOFF_FPTR64I 0x53 instruction - immediate64 @ltoff(@fptr(S + A))
R IA 64 LTOFF_FPTR32MSB 0x54 word32 MSB @ltoff(@ftpr(S + A))
R IA 64 LTOFF_FPTR32LSB 0x55 word32 LSB @ltoff(@fptr(S + A))
R | A 64_LTOFF_FPTR64NBB 0x56 word64 MSB @ltoff(@fptr(S + A))
R I A 64 LTOFF_FPTR64LSB 0x57 word64 LSB @ltoff(@fptr(S + A))
R | A_64_SEGREL32MSB 0x5c word32 MSB @segrel(S + A)
R I A 64 _SEGREL32LSB 0x5d word32 LSB @segrel(S + A)
R | A_64_SEGREL64MSB 0x5e word64 MSB @segrel(S + A)
R | A_64_SECGREL64LSB 0x5f word64 LSB @segrel(S + A)
R | A 64 SECREL32NMSB 0x64 word32 MSB @secrel(S + A)
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Name Value Field Calculation
R | A 64_SECREL32LSB 0x65 word32 LSB @secrel(S + A)
R | A 64 SECREL64NMSB 0x66 word64 MSB @secrel(S + A)
R | A 64 _SECREL64LSB 0x67 word64 LSB @secrel(S + A)
R I A _64_REL32NMSB 0x6¢ word32 MSB BD + A
R 1A 64 _REL32LSB 0x6d word32 LSB BD + A
R I A _64_REL64NMSB Ox6e word64 MSB BD + A
R | A 64 REL64LSB 0x6f word64 LSB BD + A
R 1A 64_LTV32MsB 0x74 word32 MSB S + A (see below)
R 1A 64_LTV32LSB 0x75 word32 LSB S + A (see below)
R 1A 64_LTV64MSB 0x76 word64 MSB S + A (see below)
R 1A 64_LTV64LSB ox77 word64 LSB S + A (see below)
R_I A 64_PCREL21BI 2 0x79 instruction - immediate21 form 1 S+A-P
R I A 64_PCREL22 Ox7A instruction - immediate22 S+A-P
R | A _64_PCREL64I 0x7B instruction - imm64 S+A-P
R I A 64_| PLTMSB 0x80 function descriptor MSB see below
R 1A 64_| PLTLSB 0x81 function descriptor LSB see below
R IA 64_SUB 0x85 Instruction - imm64 A-S
R I A 64_LTOFF22X 0x86 instruction - immediate22 see below
R I A 64_LDXMOV 0x87 instruction - immediate22 see below
R I A 64_TPREL14 0x91 instruction - immediate14 @tprel(S+A)
R I A 64_TPREL22 0x92 instruction - immediate22 @tprel(S+A)
R | A 64_TPREL64I 0x93 instruction - immediate64 @tprel(S+A)
R | A 64 _TPREL64NSB 0x96 word64 MSB @tprel(S+A)
R | A 64 _TPREL64LSB 0x97 word64 LSB @tprel(S+A)
R I A 64_LTOFF_TPREL22 0x9A instruction - immediate22 @ltoff(@tprel(S+A))
R | A 64 _DTPMOD64NSB 0xA6 word64 MSB @dtpmod(S+A)
R | A_64_DTPMOD64LSB OXA7 word64 LSB @dtpmod(S+A)
R I A 64_LTOFF_DTPMOD22 OxAA instruction - immediate22 @ltoff(@dtpmod(S+A))
R | A _64_DTPREL14 0xB1 instruction - immediate14 @dtprel(S+A)
R | A _64_DTPREL22 0xB2 instruction - immediate22 @dtprel(S+A)
R | A 64_DTPREL64I 0xB3 instruction - immediate64 @dtprel(S+A)
R | A_64_DTPREL32MsB 0xB4 word632 MSB @dtprel(S+A)
R | A 64 DTPREL32LSB 0xB5 word32 LSB @dtprel(S+A)
R | A_64_DTPREL64MSB 0xB6 word64 MSB @dtprel(S+A)
R | A 64 DTPREL64LSB 0xB7 word64 LSB @dtprel(S+A)
R IA 64_LTOFF_DTPREL22 OxBA instruction - immediate22 @ltoff(@dtprel(S+A))

a ThePCREL21BI relocation worksjust like PCREL21B, but it marks a call for which gp has not been saved, thus
requiring that the target reside within the same load module as the call. It is needed it for the cases where we choose to
bind a symbol locally, optimizing the call sequence, but where we don't want to, or can't, mark the symbol “ protected”

or “hidden.”
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Relocation information not used at run-time may be unaligned. It is expected that linkers will have
to deal with them. Relocations dealt at run-time will always be aligned.

Values above Oxe0 are available for use in implementation-defined ways. All other values are
reserved for future use.

The relocation type val ues have been chosen so that the expression type can be easily extracted by
masking off the lower three or four bits, and the data/instruction format can be determined in most
cases by looking only at the low-order four bits.

R IA_64 LTV32MSB, R IA_64 LTV32LSB, R IA_64 LTV32MSB and R_IA_64 LTV32LSB

These relocations appear only in rel ocatable objects. They behave
identically totheR_| A 64 DI R* family of relocations, with one
exception: whileit is expected that the addresses created will need
further relocation at run-time, the linker should not create a
corresponding relocation in the output executable or shared object file.
The run-time consumer of the information provided is expected to
relocate these values.

R IA_64 IPLTMSB and R_IA_64 IPLTLSB

These relocations are used only by the dynamic linker. Object files may
contain these relocations. Static linkers should pass these along for the
dynamic linker. When used with the shorter form of relocation entry
(El f 32_Rel orEl f 64_Rel ), they instruct the dynamic linker to
initialize the corresponding function descriptor entry with the address of
the referenced function and the value of the global pointer (gp) for the
object containing the function’s definition. When used with the longer
form of relocation entry containing an explicit addend (El f 32_Rel a
or El f 64_Rel a), theaddend isadditionally added to the address of the
referenced function. See Section 5.3.6, “Procedure Linkage Table” on
page 5-7 for more information.

R IA_64 LTOFF22X and R_IA_64 LDXMOV

These relocations are used to support link-time rewriting of the indirect
addressing code sequences. TheR | A 64 LTOFF22X relocationis
used ontheadd| instructionthat computesthe addressof alinkagetable
entry in place of thenorma R | A 64 LTOFF22 relocation. It has
exactly the same semanticsasR | A_ 64 _LTOFF22 unlessthe linker
determined that the symbol could be addressed directly, in which case
the linker transformsthisintoan R | A 64 GPREL22 relocation. An
ABI-conforming implementation must recognize this relocation, but
may chooseto treat it asasynonymforR | A 64 LTOFF22. The
R I A 64 LDXMOVrelocationisusedonanl d8 instruction, where no
relocation would ordinarily be seen. The |l d8 instruction normally
extracts the address of the referenced object from the linkage table by
dereferencing the address computed by theadd! . Itssymbol and addend
fields must match exactly those of acorresponding R | A LTOFF22X
relocation. If the linker determines that the symbol can be addressed
directly, it rewritesthe| d8 asanov. This can be done by masking out
al butthegp, r 1, andr 3 fields of the instruction, then or'ing in the bit
pattern 0x8000000000. If an ABI-conforming implementation is
choosingtotreat R | A 64_LTOFF22X asasynonym for

R I A 64 LTOFF22,thisrelocation isignored.
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Table 5-1.

Table 5-2.

5.2

Program Header

The Itanium architecture defines two processor-specific valuesto be used inthe p_t ype member
of the program header.

Program Header Types, p_t ype

Name Value
PT_I A_64_ARCHEXT 0x70000000
PT_I A_64_UNW ND 0x70000001

PT_IA_ 64 ARCHEXT Thesegment containsasection of type SHT | A 64 EXT asdescribed
in Section 4.2, “Sections” on page 4-3. If this entry is present, it must
precede al entries of type PT_LQAD.

PT_IA_64 UNWIND The segment contains the stack unwind tables. See Conventions and
Section 4.2, “ Sections” on page 4-3 for details.

The Itanium architecture defines one processor-specific value to beused inthep_f | ags member
of the program header.

Program Header Flags, p_f | ags
Name Value
PF_I A_64_NORECOV 0x80000000

PF_IA_64 NORECOV If thishit is set, the segment contains code that uses speculative
instructions without recovery code. Executbles with this flag bit set are
not ABI conforming.

Program Loading

Asthe system creates or augments a process image, it logically copies a file's segment to a virtual
memory segment. When—and if—the system physically reads the file depends on the program's
execution behavior, system load, and so on. A process does not require a physical page unlessit
references the logical page during execution, and processes commonly leave many pages un-
referenced. Therefore delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object files must have
segment images whose file offsets and virtual addresses are congruent, modulo the page size.

The preferred page size for virtual memory management purposes for an Itanium architecture 64-
bit segment is contained inthe p_al i gn field of the program header entry describing that
segment. The p_al i gn field must contain 4 KB (0x1000) or a page size as defined in Section 7
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of the Intel® | A-64 Architecture Programmer’s Reference Manual. Virtual addresses and file
offsetsfor Itanium architecture 64-bit segments are congruent modulo either the value contained in
thep_al i gn field or 4KB (0x1000), whichever is larger.

The following examples show a 64k alignment; virtual addresses and file offsets for segments are
congruent modulo 64k (0x10000).

Figure 5-1. Example Executable File

File Offset File Virtual Address
0 ELF header
Program header table
Other information
0x110 Text segment 0x4000000000000110
Ox4af 630 bytes 0x40000000004af 73f
Ox4af 740 Data segment 0x600000000000f 740
0x16768 bytes 0x6000000000025ea7
Ox4c5ea0 Other information
Figure 5-2. Example Program Header Segments
Member Text Data
p_type PT_LOAD PT_LOAD
p_of f set 0x110 Ox4af 740
p_vaddr 0x4000000000000110 0x600000000000f 740
p_paddr unspecified unspecified
p_filesz Ox4af 630 0x16768
p_nmensz Ox4af 630 0x46b90
p_flags PF_R+PF_X PF_R+PF_W-PF_X
p_align 0x10000 0x10000

Although the example's file offsets and virtual addresses are congruent modulo 64K B for both text
and data, up to four file pages hold impure text or data (depending on page size and file system

block size).

* Thefirst text page contains the ELF header, the program header table, and other information.

* Thelast text page holds a copy of the beginning of data.

* Thefirst data page has a copy of the end of text.

* Thelast data page may contain file information not relevant to the running process.
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Logically, the system enforces the memory permissions as if each segment were complete and
separate; segment addresses are adjusted to ensure each logical page in the address space has a
single set of permissions. In the example above, the region of the file holding the end of text and
the beginning of datawill be mapped twice: at onevirtual address for text and at a different virtual
address for data.

The end of the data segment requires special handling for uninitialized data, which the system
defines to begin with zero values. Thusif afile'slast data page includes information not in the
logical memory page, the extraneous data must be set to zero, not the unknown contents of the
executable file. “Impurities’ in the other three pages are not logically part of the processimage;
whether the system expunges them is unspecified. The memory image for this program follows,
assuming 64K B (0x10000) pages.

Figure 5-3. Example Process Image Segments

Address Contents Segment

Header padding

0x4000000000000000 0x110 byt es

0x4000000000000110 Text segment
Text

Ox4af 6'3'0. byt es

Data padding

0x40000000004af 740 0x8c0 byt es

Text padding
Oxf 740 bytes

Data segment
0x600000000000f 740 ce Data
0x16768 bytes

Uninitialized data
0x30428 zero bytes

Page padding
0x9d30 zero bytes

0x6000000000000000

0x6000000000025€ea8

0x60000000000562d0

On the Itanium architecture, both executable and shared object segments contain position-
independent code. Thislets a segment's virtual address change from one process to another,
without invalidating execution behavior. Furthermore, there is no assumption that the individual
segments for a given executable or shared object are fixed relatively in relation to one another. For
example, the system might load all read-only segments for a process in one range of memory
addresses and all read-write segmentsin a different range of addresses. Therefore, while the
addresses shown in the example in Figures 5-3, 5-4 and 5-5 show the data segment for an
executable immediately following the text segment, there is no requirement that it does so. The
addresses assigned for each segment by the link editor, however, must not overlap.

Because dynamically linked Itanium architecture 64-bit executable files are position-independent,
the exec routines may choose to load such files at different addresses than those specified in the
file's program header. The dynamic linker must be prepared to deal with this possibility.
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Table 5-3.

5.2.2

5.3

5.3.1

5-4

Linktime and Runtime Addresses

Virtual addresses assigned by the linker when creating an executable or shared object file are
known as link-time virtual addresses. Since position-independent executables and shared objects
may be loaded at different addresses than those assigned by the linker, runtime virtual addresses
differ from linktime virtual address by a constant value. Since there is no fixed address relationship
at runtime among segments created at linktime, the constant value must be cal culated based on the
segment containing the address in question. The constant is the difference between the address at
which the containing segment was |oaded and the address assigned for that segment by the linker.
The following table illustrates the calculation for an example text object.

Example Runtime Address Calculation
Value or Calculation Result

Address as determined by link editor 0x40000000000532f 0
Segment address contained in program header 0x4000000000000110
Base address of segment in file 0x4000000000000000
Base address of segment in process 0x4¢c80000000000000
Runtime minus link-time base address 0x0c80000000000000
Address of object in process 0x4¢800000000532f 0

Initializations

As the implementation constructs the new process, it is responsible for a number of initialization
actions. Some of these have been described in Section 3.3.5, “ Process Startup” on page 3-6. In
addition to those steps, the implementation must:

1. Ensure the process environment has been properly initialized .

2. Theglobal variable _envi r on must beinitialized to point to the environment, before the
initialization routines are executed. The execution of the initialization routines may result in
the modification of _envi ron.

3. Pre-initializations routines in the executable, described in “Dynamic Linking” in Chapter 5 of
the System V ABI, must be called, according to standard calling conventions.

4. Initialization routines, described in”* Dynamic Linking” in Chapter 5 of the System VV ABI and
in the following section, in the executable and in all loaded shared objects must be called,
according to standard calling conventions. The only order specified isthat, for every library
dependency “A dependson B”, theinitiaization routines for B must be called before those for
A.

Dynamic Linking

Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a program header
element of type PT_INTERP to an executable file, telling the system to invoke the dynamic linker
as the program interpreter. The location of the dynamic linker, to be recorded on the PT_INTERP
string, varies depending on the code model, architecture and byte order.
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Architecture Code Model Byte Order Dynamic Linker Name
ILP32 Little-Endian lusr/lib/ia64l32/1d.so.1

Jtanium™ ILP32 Big-Endian fusr/libl/ia64b32/1d.so.1
Architecture LP64 Little-Endian /usr/1iblia6al 64/1d.s0.1
LP64 Big-Endian lusr/lib/ia64b64/1d.so.1

5.3.2 Dynamic Section

All dynamic section entries containing addresses (entries that usethe d_pt r member) contain

link-time virtual addresses, as described above. The dynamic linker must relocate these addresses
based on the difference between the link-time and runtime addresses of the segments referenced by
thed_pt r member.

Dynamic section entries give information to the dynamic linker. Some of thisinformation is
processor-specific, including the interpretation of some entriesin the dynamic structure.

DT_PLTGOT

On the Itanium architecture, thisentry’sd_pt r member givesthe
address contained in the global pointer (gp) for the object.

The Itanium architecture defines one processor-specific dynamic section tag value.

Table 5-5. Dynamic Section Tag, d_t ag

Name

Value

DT_I A 64_PLT_RESERVE

0x70000000

DT_IA_64 PLT_RESERVE
Thiselement'sd_pt r member contains the address of the first of three
8-byte wordsin the short data segment reserved for use by the dynamic
linker. The three words are contiguous, with the second and third words
growing toward higher addresses.

5.3.3 Shared Object Dependencies

The System V ABI describes, in “ Shared Object Dependencies’ in Chapter 5, the mechanism by
which the dynamic linker locates shared object files and attaches them to a process image. When
implemented on Itanium architecture, the ABI supports a variety of code models, and since mixing
modelsis not allowed, the dynamic linker must be able to locate shared object files that match the
model of an executable program which has shared object dependencies. When applying the
algorithm in the System V ABI, the dynamic linker will treat the following locations as the “ default
directory” location:
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Table 5-6. Default Shared Object Location

5.3.4

5.3.5

5-6

Architecture Code Model Byte Order Shared Object Location
ILP32 Little-Endian /usr/1iblia64l 32
[tanium™ ILP32 Big-Endian lusr/liblia64b32
Architecture LP64 Little-Endian usr/1iblia64l 64
LP64 Big-Endian /usr/1iblia64b64

NOTE: Thestandardlocation/ usr/ | i b isreserved tothe |A-32 ABI.

Global Offset Table

In general, position-independent code cannot contain absolute virtual addresses. Global Offset
Tables hold absolute addresses in private data, thus making the addresses available without
compromising the position-independence and sharability of aprogram’'stext. A program references
its global offset table using the global pointer (gp) with position-independent addressing and
extracts absol ute val ues, thus redirecting position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation entries (see

Section 4.3, “Relocations’ on page 4-6). After the system creates memory segments for aloadable
object file, the dynamic linker processes the relocation entries, some of which will refer to the
global offset table. The dynamic linker determines the associated symbol values, calculates their
absolute addresses, and sets the appropriate memory table entries to the proper values. Although
the absol ute addresses are unknown when the link editor builds an object file, the dynamic linker
knows the addresses of all memory segments and can thus cal cul ate the absol ute addresses of the
symbols contained therein.

If aprogram requires direct access to the absolute address of a symbol, that symbol will have a
global offset table entry. Because the executable file and each shared object have separate global
offset tables, a symbol's address may appear in several tables. The dynamic linker processes all the
global offset table relocations before giving control to any code in the process image, thus ensuring
the absolute addresses are avail able during execution.

The system may choose different memory segment addresses for the same shared object in
different programs; it may even choose different library addresses for different executions of the
same program. Nonetheless, memory segments do not change addresses once the processimageis
established. Aslong as a process exists, its memory segments reside at fixed virtual addresses.

Function Addresses

On the Itanium architecture, when one function calls another it is the caller's responsibility to reset
the global pointer (gp) to the correct value for the object containing the called function. Thus, to
call afunction acaller needs two pieces of information: the address of the function and the value
its global pointer should have. These two pieces of information are contained in a structure known
as afunction descriptor (see Conventions). So that a function pointer may be passed from function
to function and still retain enough information to enable the function to be called, afunction pointer
is defined to be a pointer to the function descriptor for that function.

Each executable or shared object can have its own copy of the function descriptor entry for any
function it calls to make access to function descriptors more efficient. But, when any shared object
or the executable needs to reference the address of a function, each such reference must always
retrieve the same address or comparisons of function pointers will not be predictable. Thus, there
must be a unique function descriptor entry that can be referenced whenever the address of a
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function is taken. This entry is known asthe “officia” function descriptor for afunction. The
“official” function descriptor for any function is created and initialized by the dynamic linker as
needed inresponsetoR | A 64 FPTR32VSB, R | A 64 _FPTR32LSB,

R IA 64 FPTR6AMSBandR | A 64 FPTR64LSB relocations (see Section 4.3,
“Relocations” on page 4-6).

Procedure Linkage Table

Thelink editor cannot resolve execution transfers (such as function calls) from one executable or
shared object to another. So that function addresses can be assigned dynamically at runtime without
compromising the position-independence and sharability of a program's text, function addresses
must be kept in private data and retrieved at the time afunction is called. On the Itanium
architecture, the function addresses are kept in local function descriptor entries. Each entry isapair
containing the address of the referenced function and the value of the global pointer (gp) for the
object containing the function's definition. The dynamic linker determines the destinations
absolute addresses and global pointer value and modifies the function descriptor's memory
accordingly.

The function address and global pointer values are retrieved from the local function descriptor by a
portion of code known as an import stub. The import stub may be compiled inline at the point of
call by the compiler, or it may be placed in the procedure linkage table. The procedure linkage
table is contained in an object's read-only text. Each function called directly by the object, but
externa to the object, will have alocal function desciptor.

The dynamic linker is allowed to implement lazy binding, where each local function descriptor is
not bound until the first call using that function descriptor. Instead, the initial value of the function
address field of each function descriptor isinitialized by the link editor to the address of a
secondary PLT entry that is unique to the function being called. The secondary PLT entry must
transfer control to the dynamic linker's lazy binding entry point, which will then resolve the
reference, update the local function descriptor, and complete the call.

In order for the implementation to perform lazy binding correctly, the application must conform to
the following conventions for transfer of control to the dynamic linker's lazy binding entry point:

1. Thelink editor must allocate a PLT Reserve area, consisting of three contiguous doublewords
in the object's data segment. The DT_IA_64 PLT_RESERVE dynamic section entry must
identify thefirst of these three doublewords. These words are initialized by the dynamic linker
at program startup.

2. Therelocation index for the function being called must be placed into GR 15, so that the
dynamic linker can identify the target of the call. Thisvalueis an index into the portion of the
dynamic relocation table addressed by the DT_JMPREL dynamic section entry. The
designated relocation entry will havetypeR_IA_64 IPLTMSB or R_IA_64 IPLTLSB, andits
offset will specify the local function descriptor entry referenced by the call.

3. An 8-byteidentifier unique to the calling module must be placed into GR 16, so that the
dynamic linker can identify the object from which the call originated, and thereby locate that
object'srelocation table. Thisidentifier isfound in the first double-word of the PLT Reserve
area.

4. The gp register must be set to the dynamic linker's own gp value. Thisvalue isfound in the
second double-word of the PLT Reserve area.

5. Thedynamic linker's lazy binding entry point isfound in the third double-word of the PLT
Reserve area.
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Note:

Note that, by the time control is transferred to the secondary PLT entry, the gp value cannot be
trusted, since the gp field of the local function descriptor is not initialized until the functionis
bound. Therefore, theimport stub must copy the gp value to a scratch register before loading the gp
value from the function descriptor, so that the secondary PLT entry may recover the original value
in order to locate the PLT Reserve area.

The link editor must create import stubs, secondary PLT entries, and allocate local function
descriptors for any direct call that cannot be statically bound within the same object (including
callswhere a definition is present, but is not protected against pre-emption). If animport stub is
inlined by the compiler, the linker must still allocate the local function descriptor in response to the
R_IA_64 PLTOFF relocation, and a secondary PLT entry to which the local function descriptor
should point initially.

TheLD_BI ND_NOWenvironment variable can change dynamic linking behavior. If itsvalueis
non-null, the dynamic linker eval uates procedure linkage tabl e entries before transferring control to
the program. That is, the dynamic linker processes relocation entries of typeR | A 64 | PLTVSB
and R_|I A_64_| PLTLSB during process initialization. Otherwise, the dynamic linker evaluates
procedure linkage table entries lazily, delaying symbol resolution and relocation until the first
execution of atable entry.

Lazy binding generally improves overall application performance, because unused symbols do not
incur the dynamic linking overhead. Nevertheless, two situations make lazy binding undesirable
for some applications. First, the initial reference to a shared object function takes longer than
subsequent calls, because the dynamic linker intercepts the call to resolve the symbol. Some
applications cannot tolerate this unpredictability. Second, if an error occurs and the dynamic linker
cannot resolve the symbol, the dynamic linker will terminate the program. Under lazy binding, this
might occur at arbitrary times. Once again, some applications cannot tolerate this unpredictability.
By turning off lazy binding, the dynamic linker forces the failure to occur during process
initialization, before the application receives control.

The following example shows a recommended implementation of these conventions:

Figure 5-4. Procedure Linkage Table Sample Entries

.PLTO: (initial special reserved entry)

nov r2 =rl4
addl ri4 = @prel (plt_reserve), r2
| d8 ri6 = [r14], 8
| d8 ri7 = [r14], 8
| d8 gp = [r14]
nov b6 = rl7
br b6
.PLT1: (entry for synmbol nanel)
addl ris5 = @l toff(nanmel), gp
| d8 ri6 = [r15], 8
nov ri4 =gp ;;
| d8 gp = [r15]
nov b6 = r16
br b6
. PLTla: nmov r15 = rel oc_i ndex
br . PLTO
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Following the steps below, the dynamic linker and the program “cooperate” to resolve symbolic
references through the procedure linkage table and the global offset table.

1. When first creating the memory image of the program, the dynamic linker sets three reserved
8-byte words in each object's short data segment to special values. Steps below explain more
about those values (see also the description for DT_| A 64 PLT RESERVE, above).

2. For illustration, assume the program calls nanel, transferring control to thelabel . PLT1.

3. Thefirst instruction cal cul ates the address of the local function descriptor entry for namel by
adding its offset from gp to the value of gp. The address is saved in scratch register r15.

4. Thethird instruction saves the value of gp in scratch register r14.

5. The second and fourth instructions extract the information from the local function descriptor.
The second instruction extracts the function address, storing its value in scratch register r16
while incrementing r15 by eight. The fourth instruction loads gp with the value stored in the
local function descriptor. The link editor initializes the local function descriptor entry so that
the function address contains the address of the mov instruction labeled .PLT1a. The procedure
linkage table sets scratch branch register b6 to the address saved in r16 and branches to that
address.

6. Consequently, the program saves arelocation index r el oc_i ndex in scratch register r15.
Therelocation index is asigned 22-bit immediate index into the portion of the relocation table
addressed by the DT_JMPREL dynamic section entry. The designated relocation entry will
havetypeR | A 64_| PLTMSBorR | A 64 1 PLTLSB, and its offset will specify the local
function descriptor entry referenced in the previous add! instruction. The relocation entry also
contains a symbol table index, thus telling the dynamic linker what symbol is being
referenced, namel in this case.

7. After assigning the relocation index, the program then branches to .PLTO, the first entry in the
procedure linkage table. The first five instructionsin this entry de-reference the three special
values reserved for the dynamic linker in the short data segment using the scratch register r14,
which was set to the value of gp for the object calling namel. Thefirst instruction savesrl14in
scratch register r2. This allows the use of a 22-bit immediate value in the second instruction
(the addl instruction can only be used with general registersr0, rl, r2 and r3). The second
instruction addsto r2 the offset from the global pointer of the invoking object to the first of the
three values set by the dynamic linker for that object. Thisvalueis stored back in r14. The
third instruction stores the contents of the first reserved entry in scratch register ri6,
incrementing r14 by eight. This entry gives the dynamic linker an 8-byte word of identifying
information. The fourth instruction extracts the second reserved entry, saving it in scratch
register r17, while, again, incrementing r14 by eight. The second reserved entry isinitialized
by the dynamic linker to contain the address of a function binding routine within the dynamic
linker itself. The fifth instruction sets the value of gp to the value contained in the third
reserved entry. The dynamic linker sets this entry to contain the gp value for the object
containing the dynamic linker, itself. The program then sets scratch branch register b6 to the
address saved in r17 and branches to that address.

8. When the dynamic linker receives control, two scratch registers contain information it will use
in relocating the function call: r15 contains the index of the relocation entry and r16 contains
an 8-byte identifying word. The dynamic linker looks at the designated relocation entry, finds
the symbol's value and the value of gp for the object containing the symbol, stores these values
in the local function descriptor entry for namel, and transfers control to the desired
destination.

9. Subsequent executions of the procedure linkage table entry will transfer directly to nanel
instead of to . PLTO, bypassing the call to the dynamic linker.
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53.7 Initialization and Termination Functions

Theimplementation is responsible for executing the initialization functions specified by DT_INIT,
DT_INIT_ARRAY, and DT_PREINIT_ARRAY entriesin the executable file and shared object
files for aprocess, and the termination (or finalization) functions specified by DT_FINI and
DT_FINI_ARRAY, as specified by the System V ABI. The user program plays no further part in
executing the initialization and termination functions specified by these dynamic tags.

Thevalues contained in DT_INIT, DT_INIT_ARRAY, and DT_PREINIT_ARRAY are virtua

address of functions within the shared object. It does not contain the address of the function
descriptors.
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Unwind Library Interface

This section defines the Unwind Library interface, expected to be provided by any Itanium
architecture psABI-compliant system. Thisis the interface on which the C++ ABI exception-
handling facilities are built. We assume as a basis the unwind descriptor tables described in the
base Itanium™ Software Conventions and Runtime Architecture Guide. The focus here will be on
the APIsfor accessing those structures.

Itisintended that nothing in this section be specific to C++, though some parts are clearly intended
to support C++ features.

The unwind library interface consists of at least the following routines:
_Unwi nd_Rai seExcepti on,
_Unwi nd_Resune,
_Unwi nd_Del et eExcepti on,
_Unwi nd_Get GR,
_Unwi nd_Set GR,
_Unwi nd_Get | P,
_Unwi nd_Set | P,
_Unwi nd_Get Regi onStart,
_Unwi nd_Get LanguageSpeci fi cDat a,
_Unwi nd_For cedUnw nd

In addition, two data types are defined (_Unwi nd_Cont ext and _Unwi nd_Excepti on) to
interface a calling runtime (such as the C++ runtime) and the above routines. All routines and
interfaces behave asif defined ext er n “ C’ . In particular, the names are not mangled. All names
defined as part of thisinterface have a“_Unwi nd_" prefix.

Lastly, alanguage and vendor specific personality routine will be stored by the compiler in the
unwind descriptor for the stack frames requiring exception processing. The personality routineis
called by the unwinder to handle language-specific tasks such as identifying the frame handling a
particular exception.

Exception Handler Framework

Reasons for Unwinding

There are two major reasons for unwinding the stack:
* exceptions, as defined by languages that support them (such as C++)
¢ “forced” unwinding (such as caused by | ongj np or thread termination).

Theinterface described here triesto keep both similar. There is amajor difference, however.

* Inthe case where an exception is thrown, the stack is unwound while the exception
propagates, but it is expected that the personality routine for each stack frame knows whether
it wants to catch the exception or passit through. This choice is thus delegated to the
personality routine, which is expected to act properly for any type of exception, whether
“native” or “foreign”. Some guidelines for “acting properly” are given below.
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¢ During “forced unwinding”, on the other hand, an external agent is driving the unwinding. For
instance, this can bethel ongj np routine. This external agent, not each personality routine,
knows when to stop unwinding. The fact that a personality routine is not given a choice about
whether unwinding will proceed isindicated by the  UA_FORCE_UNWIND flag.

To accommodate these differences, two different routines are proposed.

_Unwi nd_Rai seExcept i on performs exception-style unwinding, under control of the
personality routines. _Unwi nd_For cedUnwi nd, on the other hand, performs unwinding,
but gives an external agent the opportunity to intercept calls to the personality routine. Thisis
done using a proxy personality routine, that intercepts calls to the personality routine, letting
the external agent override the defaults of the stack frame's personality routine.

Asaconsequence, it is not necessary for each personality routine to know about any of the possible
external agentsthat may cause an unwind. For instance, the C++ personality routine need deal only
with C++ exceptions (and possibly disguising foreign exceptions), but it does not need to know
anything specific about unwinding done on behalf of | ongj np or pthreads cancellation.

The Unwind Process

The standard ABI exception handling / unwind process begins with the raising of an exception, in
one of the forms mentioned above. This call specifies an exception object and an exception class.

The runtime framework then starts a two-phase process:

* Inthe search phase, the framework repeatedly calls the personality routine, with the
_UA SEARCH_PHASE flag as described below, first for the current i p and register state, and
then unwinding aframetoanew i p at each step, until the personality routine reports either
success (a handler found in the queried frame) or failure (no handler) in all frames. It does not
actually restore the unwound state, and the personality routine must access the state through
the API.

* |f the search phase reports failure, e.g. because no handler was found, it will call
t erm nat e() rather than commence phase 2.

If the search phase reports success, the framework restartsin the cleanup phase. Again, it
repeatedly calls the personality routine, with the _UA CLEANUP_PHASE flag as described
below, first for the current i p and register state, and then unwinding aframetoanew i p at
each step, until it gets to the frame with an identified handler. At that point, it restores the
register state, and control is transferred to the user landing pad code.

Each of these two phases uses both the unwind library and the personality routines, since the
validity of agiven handler and the mechanism for transferring control to it are language-dependent,
but the method of locating and restoring previous stack frames is language independent.

A two-phase exception-handling model is not strictly necessary to implement C++ language
semantics, but it does provide some benefits. For example, the first phase alows an exception-
handling mechanism to dismiss an exception before stack unwinding begins, which alows
resumptive exception handling (correcting the exceptional condition and resuming execution at the
point where it was raised). While C++ does not support resumptive exception handling, other
languages do, and the two-phase model allows C++ to coexist with those languages on the stack.

Note that even with atwo-phase model, we may execute each of the two phases more than once for
asingle exception, asif the exception was being thrown more than once. For instance, sinceit is
not possible to determineif a given catch clause will rethrow or not without executing it, the
exception propagation effectively stops at each catch clause, and if it needs to restart, restarts at
phase 1. This processis not needed for destructors (cleanup code), so the phase 1 can safely
process all destructor-only frames at once and stop at the next enclosing catch clause.
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For example, if the first two frames unwound contain only cleanup code, and the third frame
contains a C++ catch clause, the personality routine in phase 1 does not indicate that it found a
handler for the first two frames. It must do so for the third frame, because it is unknown how the
exception will propagate out of thisthird frame, e.g. by rethrowing the exception or throwing anew
onein C++.

The API specified by the Itanium architecture psABI for implementing this framework is described
in the following sections.

Data Structures

Reason Codes

The unwind interface uses reason codes in several contexts to identify the reasons for failures or
other actions, defined as follows:
typedef enum {

_URC_NO_REASON = 0,

_URC_FOREI GN_EXCEPTI ON_CAUGHT = 1,

_URC_FATAL_PHASE2_ERRCR = 2,

_URC_FATAL_PHASE1_ERRCR = 3,

_URC_NCRVAL_STCP = 4,

_URC_END_CF_STACK = 5,

_URC_HANDLER_FOUND = 6,

_URC_I NSTALL_CONTEXT = 7,

_URC_CONTI NUE_UNW ND
} _Unw nd_Reason_Code;

1
(o]

Theinterpretation of these codes is described below.

Exception Header

The unwind interface uses a pointer to an exception header object asits representation of an
exception being thrown. In general, the full representation of an exception object is language- and
implementation-specific, but it will be prefixed by a header understood by the unwind interface,
defined asfollows:
typedef void (*_Unw nd_Exception_C eanup_Fn)
(_Unwi nd_Reason_Code reason,
struct _Unw nd_Exception *exc);

struct _Unwi nd_Exception {

ui nt 64 exception_cl ass;

_Unwi nd_Exception_C eanup_Fn exception_cl eanup;
ui nt 64 private_1;

ui nt 64 private_2;

}s

An_Unwi nd_Except i on object must be double-word aligned. The first two fields are set by
user code prior to raising the exception, and the latter two should never be touched except by the
runtime.

Theexcepti on_cl ass fieldisalanguage- and implementation-specific identifier of the kind
of exception. It allows a personality routine to distinguish between native and foreign exceptions,
for example.
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Theexcepti on_cl eanup routineis called whenever an exception object needs to be destroyed
by a different runtime than the runtime which created the exception object, for instance if a Java
exception is caught by aC++ catch handler. In such acase, areason code (see above) indicates why
the exception object needs to be deleted:

¢ URC _FORElI GN_EXCEPTI ON_CAUGHT = 1: Thisindicates that a different runtime caught
this exception. Nested foreign exceptions, or rethrowing a foreign exception, result in
undefined behavior.

e URC _FATAL_PHASE1_ ERROR = 3: The personality routine encountered an error during
phase 1, other than the specific error codes defined.

e URC FATAL PHASE2 ERROR=2: The personality routine encountered an error during
phase 2, for instance a stack corruption.

Normally, all errors should be reported during phase 1 by returning from

_Unwi nd_Rai seExcept i on. However, landing pad code could cause stack corruption
between phase 1 and phase 2. For a C++ exception, theruntime should call t er mi nat e() inthat
case.

The private unwinder state (pri vat e_1 and pri vat e_2) in an exception object should be
neither read by nor written to by personality routines or other parts of the language-specific
runtime. It is used by the specific implementation of the unwinder on the host to store internal
information, for instance to remember the final handler frame between unwinding phases.

In addition to the above information, atypical runtime such as the C++ runtime will add language-
specific information used to process the exception. Thisis expected to be a contiguous area of
memory after the _Unwi nd_Except i on object, but thisis not required as long as the matching
personality routines know how to deal with it, and theexcept i on_cl eanup routine de-
alocates it properly.

Unwind Context

The _Unwi nd_Cont ext typeisan opaque type used to refer to a system-specific data structure
used by the system unwinder. This context is created and destroyed by the system, and passed to
the personality routine during unwinding.

struct _Unwi nd_Cont ext

Personality Routine

Asdocumented in Chapter 11 of the Itanium™ Software Conventions and Runtime Architecture
Guide, the unwind tables consists of three fields asillustrated in Figure 6-1; each field is a 64-bit
doubleword. Thefirst two fields define the starting and ending addresses of the procedure,
respectively, and the third field points to a variable-size information block containing the unwind
descriptor list and language-specific data area. The ending addressis the address of the first bundle
beyond the end of the procedure. These values are al segment-relative offsets, not absolute
addresses, so they do not require run-time relocations. The unwind table is sorted by the procedure
start address. The shaded area in the figure represents the language-specific data area.
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Figure 6-1. Unwind Table

6.1.3

6.1.3.1

Unwind Table Info. Block
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info ptr. descriptors
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language-

specific

dataarea

The personality routine identifier is accessed by adding the size of the unwind descriptor area
(ulen), which is a count of doublewords, not bytes), plus the size of the header doubleword, to the
information block pointer. Thisidentifier contains the 64-bit gp-relative offset of a doubleword in
the linkage table that contains a function pointer, which in turn points to the function descriptor of
the personality routine. The function pointer itself must be in the data segment because it may need
relocation. The dispatcher should call this routine during the first unwind only if the EHANDLER bit
is set, and during the second unwind only if the UHANDLER hit is set. The language-specific data
immediately follows the personality routine identifier, so the address of this area must be made
available to the personality routine.

Throwing an Exception

_Unwind_RaiseException

_Unwi nd_Reason_Code _Unw nd_Rai seException
( struct _Unwi nd_Exception *exception_object );

Raise an exception, passing along the given exception object, which should haveits
exception_cl ass andexcepti on_cl eanup fields set. The exception object has been
allocated by the language-specific runtime, and has a language-specific format, except that it must
containan _Unwi nd_Except i on struct (see Exception Header above).

_Unwi nd_Rai seExcept i on does not return, unless an error condition is found (such as no
handler for the exception, bad stack format, etc.). In such acase, an_Unwi nd_Reason_Code
valueisreturned. Possibilities are:

¢ URC _END OF STACK: The unwinder encountered the end of the stack during phase 1,
without finding a handler. The unwind runtime will not have modified the stack. The C++
runtime will normally call uncaught _excepti on() inthiscase.

e URC _FATAL_PHASE1 ERROR: The unwinder encountered an unexpected error during
phase 1, e.g. stack corruption. The unwind runtime will not have modified the stack. The C++
runtime will normally call t er m nat e() inthiscase.
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If the unwinder encounters an unexpected error during phase 2, it should return
_URC_FATAL_PHASE2 ERROR toitscaller. In C++, thiswill usually be _cxa_t hr ow, which
will call term niate().

The unwind runtime will likely have modified the stack (e.g. popped frames from it) or register
context, or landing pad code may have corrupted them. As aresult, the caller of

_Unwi nd_Rai seExcept i on could make no assumptions about the state of its stack or
registers.

_Unwind_ForcedUnwind

typedef _Unwi nd_Reason_Code (*_Unwi nd_Stop_Fn)
(int version,
_Unwi nd_Action actions,
ui nt 64 exceptiond ass,
struct _Unw nd_Exception *excepti onObj ect,
struct _Unw nd_Cont ext *context,
voi d *stop_paraneter );

_Unwi nd_Reason_Code _Unw nd_For cedUnw nd
( struct _Unwi nd_Exception *exception_obj ect,
_Unwi nd_St op_Fn st op,
voi d *stop_paraneter );

Raise an exception for forced unwinding, passing along the given exception object, which should
haveitsexcepti on_cl ass andexcepti on_cl eanup fields set. The exception object has
been alocated by the language-specific runtime, and has a language-specific format, except that it
must contain an _Unwi nd_Except i on struct (see Exception Header above).

Forced unwinding is a single-phase process (phase 2 of the normal exception-handling process).
Thest op and st op_par anet er parameters control the termination of the unwind process,
instead of the usual personality routine query. The st op function parameter is called for each
unwind frame, with the parameters described for the usual personality routine below, plus an
additional st op_par anet er.

When the st op function identifies the destination frame, it transfers control (according to its own,
unspecified, conventions) to the user code as appropriate without returning, normally after calling

_Unwi nd_Del et eExcepti on. If not, it should returnan _Unwi nd_Reason_Code vaueas
follows:

¢ URC _NO_REASON: Thisis not the destination frame. The unwind runtime will call the
frame's personality routine with the_ UA_ FORCE_UNW NDand _UA CLEANUP_PHASE
flagssetinact i ons, and then unwind to the next frame and call the st op function again.

¢ URC END OF STACK: Inordertoalow Unwi nd_For cedUnwi nd to perform special
processing when it reaches the end of the stack, the unwind runtime will call it after the last
frameisrgected, withaNULL stack pointer in the context, and thest op function must catch
this condition (i.e. by noticing the NULL stack pointer). It may return this reason codeif it
cannot handle end-of -stack.

e URC FATAL PHASE2 ERROR: Thest op function may return this code for other fatal
conditions, e.g. stack corruption.

If the st op function returns any reason code other than _URC_NO_REASON, the stack stateis
indeterminate from the point of view of the caller of _Unwi nd_For cedUnwi nd. Rather than
attempt to return, therefore, the unwind library should usetheexcepti on_cl eanup entry in
the exception, and then call abort () .

Intel® Itanium™ Processor-specific Application Binary Interface (ABI)



Note:

Note:

6.1.3.3

Note:

Note:

6.1.4

6.1.4.1

6.1.5

6.1.5.1

Libraries

Example: | ongj nmp_unwi nd()
The expected implementation of | ongj np_unwi nd() isasfollows. Theset j np() routine
will have saved the state to be restored in its customary place, including the frame pointer. The
I ongj np_unwi nd() routinewill call _Unwi nd_For cedUnwi nd withast op function
that compares the frame pointer in the context record with the saved frame pointer. If equal, it
will restoretheset j np() state as customary, and otherwise it will return
_URC_NO_REASONor _URC_END_OF_STACK.

If afuture requirement for two-phase forced unwinding were identified, an alternate routine could
be defined to request it, and an act i ons parameter flag defined to support it.

_Unwind_Resume
voi d _Unwi nd_Resunme (struct _Unw nd_Exception *exception_object);

Resume propagation of an existing exception e.g. after executing cleanup code in a partially
unwound stack. A call to thisroutineisinserted at the end of alanding pad that performed cleanup,
but did not resume normal execution. It causes unwinding to proceed further.

_Unwi nd_Resune should not be used to implement rethrowing. To the unwinding runtime, the
catch code that rethrows was a handler, and the previous unwinding session was terminated before
entering it. Rethrowing isimplemented by calling_Unwi nd_Rai seExcept i on again with the
same exception object.

Thisisthe only routine in the unwind library which is expected to be called directly by generated
code: it will be called at the end of alanding pad in a*“landing-pad” model.

Exception Object Management

_Unwind_DeleteException

voi d _Unwi nd_Del et eExcepti on
(struct _Unwi nd_Exception *exception_object);

Deletes the given exception object. If a given runtime resumes normal execution after catching a
foreign exception, it will not know how to delete that exception. Such an exception will be deleted
by calling_Unwi nd_Del et eExcept i on. Thisisaconvenience function that callsthe function
pointed to by the except i on_cl eanup field of the exception header.

Context Management

These functions are used for communicating information about the unwind context (i.e. the unwind
descriptors and the user register state) between the unwind library and the personality routine and
landing pad. They include routinesto read or set the context record images of registersin the stack
frame corresponding to a given unwind context, and to identify the location of the current unwind
descriptors and unwind frame.

_Unwind_GetGR

ui nt 64 _Unwi nd_Get GR
(struct _Unwi nd_Context *context, int index);
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This function returns the 64-bit value of the given general register. The register isidentified by its
index: 0 to 31 are for the fixed registers, and 32 to 127 are for the stacked registers.

During the two phases of unwinding, only GR1 has a guaranteed value, which isthe Global Pointer
(gp) of the frame referenced by the unwind context. If the register hasits NAT bit set, the behavior
is unspecified.

_Unwind_SetGR

void _Unwi nd_Set GR
(struct _Unwi nd_Cont ext *context,
i nt index,
ui nt 64 new_val ue);

This function sets the 64-bit value of the given register, identified by itsindex as for
_Unwi nd_Get GR The NAT hit of the given register is reset.

The behavior is guaranteed only if the function is called during phase 2 of unwinding, and applied
to an unwind context representing a handler frame, for which the personality routine will return
_URC_| NSTALL_CONTEXT. In that case, only registers GR15, GR16, GR17, GR18 should be
used. These scratch registers are reserved for passing arguments between the personality routine
and the landing pads.

_Unwind_GetIP

ui nt 64 _Unwi nd_GCet | P
(struct _Unwi nd_Context *context);

This function returns the 64-bit value of the instruction pointer (i p).

During unwinding, the value is guaranteed to be the address of the bundle immediately following
the call sitein the function identified by the unwind context. This value may be outside of the
procedure fragment for a function call that is known to not return (such as_Unwi nd_Resune).

_Unwind_SetIP

void _Unwi nd_SetlI P
(struct _Unwi nd_Cont ext *context,
ui nt 64 new_val ue);

This function sets the value of the instruction pointer (i p) for the routine identified by the unwind
context.

The behavior is guaranteed only when this function is called for an unwind context representing a

handler frame, for which the personality routine will return _URC | NSTALL_CONTEXT. In this
case, control will be transferred to the given address, which should be the address of alanding pad.
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_Unwind_GetLanguageSpecificData

ui nt 64 _Unwi nd_GCet LanguageSpeci fi cDat a
(struct _Unwi nd_Cont ext *context);

This routine returns the address of the language-specific data area for the current stack frame.

Thisroutine is not strictly required: it could be accessed through _Unwi nd_CGet | P using the
documented format of the Unwi ndl nf oBI ock, but since thiswork has been done for finding the
personality routinein the first place, it makes sense to cache the result in the context. We could also
passit as an argument to the personality routine.

_Unwind_GetRegionStart

ui nt 64 _Unwi nd_GCet Regi onSt art
(struct _Unwi nd_Context *context);

This routine returns the address of the beginning of the procedure or code fragment described by
the current unwind descriptor block.

Thisinformation is required to access any data stored relative to the beginning of the procedure
fragment. For instance, acall site table might be stored relative to the beginning of the procedure
fragment that contains the calls. During unwinding, the function returns the start of the procedure
fragment containing the call site in the current stack frame.

Personality Routine

_Unwi nd_Reason_Code (*__personality_routine)
(int version,
_Unwi nd_Action actions,
ui nt 64 exceptiond ass,
struct _Unwi nd_Excepti on *excepti onbj ect,
struct _Unw nd_Context *context);

The personality routine is the function in the C++ (or other language) runtime library which serves
as an interface between the system unwind library and language-specific exception handling
semantics. It is specific to the code fragment described by an unwind info block, and it is always
referenced via the pointer in the unwind info block, and hence it has no psABI-specified name.

Parameters

The personality routine parameters are as follows:

version Version number of the unwinding runtime, used to detect a mis-match
between the unwinder conventions and the personality routine, or to
provide backward compatibility. For the conventions described in this
document, ver si on will be 1.

actions Indicates what processing the personality routine is expected to perform,
as a bit mask. The possible actions are described below.

exceptionClass An 8-byte identifier specifying the type of the thrown exception. By
convention, the high 4 bytes indicate the vendor (for instance HP\O\O),
and thelow 4 bytesindicate the language. For the C++ ABI described in
this document, the low four bytes are C++\0.
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Thisis not a null-terminated string. Some implementations may use no null bytes.

exceptionObject The pointer to a memory location recording the necessary information
for processing the exception according to the semantics of agiven
language (see the Exception Header section above).

context Unwinder stateinformation for use by the personality routine. Thisisan
opaque handle used by the personality routinein particular to access the
frame's registers (see the Unwind Context section above).

return value The return value from the personality routine indicates how further
unwind should happen, as well as possible error conditions. See the
following section.

Personality Routine Actions

Theact i ons argument to the personality routine is a bitwise OR of one or more of the following
constants:

typedef int _Unwi nd_Action;

const _Unwi nd_Action _UA SEARCH PHASE = 1;

const _Unwi nd_Action _UA CLEANUP_PHASE = 2;

const _Unwi nd_Action _UA HANDLER FRAME = 4;

const _Unwi nd_Action _UA FORCE_UNW ND = 8;

_UA_SEARCH_PHASE Indicates that the personality routine should check if the current frame
contains a handler, and if so return _URC_HANDLER FOUND, or
otherwisereturn_URC_CONTI NUE_UNW ND. _UA SEARCH PHASE
cannot be set at the sametimeas UA CLEANUP_PHASE.

_UA_CLEANUP_PHASE Indicates that the personality routine should perform cleanup for the
current frame. The personality routine can performthiscleanup itself, by
calling nested procedures, and return _ URC_CONTI NUE_UNW ND.
Alternatively, it can setup theregisters(including thei p) for transferring
control to a*“landing pad”, and return _URC | NSTALL_ CONTEXT.

_UA_HANDLER_FRAMEDuring phase 2, indicates to the personality routine that the current
frameisthe one which was flagged as the handler frame during phase 1.
The personality routineis not allowed to change its mind between phase
1 and phase 2, i.e. it must handle the exception in this frame in phase 2.

_UA_FORCE_UNWIND During phase 2, indicates that no language is allowed to “catch” the
exception. Thisflag is set while unwinding the stack for | ongj nmp or
during thread cancellation. User-defined codein a catch clause may still
be executed, but the catch clause must resume unwinding with acall to
_Unwi nd_Resune when finished.

Transferring Control to a Landing Pad

If the personality routine determines that it should transfer control to alanding pad (in phase 2), it
may set up registers (including i p) with suitable values for entering the landing pad (e.g. with
landing pad parameters), by calling the context management routines above. It then returns
_URC_| NSTALL_CONTEXT.

Prior to executing code in the landing pad, the unwind library restores registers not atered by the
personality routine, using the context record, to their state in that frame before the call that threw
the exception, asfollows. All registers specified as callee-saved by the base ABI are restored, as
well asscratch registersr 15,1 16,r 17 andr 18 (see below). Except for those exceptions, scratch
(or caler-saved) registers are not preserved, and their contents are undefined on transfer. The
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accessibility of registersin theframewill berestored to that at the point of call, i.e. the samelogical
registerswill be accessible, but their mappings to physical registers may change. Further, the state
of stacked registers beyond the current frame is unspecified, i.e. they may be either in physical
registers or on the register stack.

Thelanding pad can either resume normal execution (as, for instance, at the end of a C++ catch), or
resume unwinding by calling _Unwi nd_Resune and passing it theexcept i onQbj ect
argument received by the personality routine. _Unwi nd__Resurme will never return.

_Unwi nd_Resune should be called if and only if the personality routine did not return
_Unwi nd_HANDLER_FOUND during phase 1. As aresult, the unwinder can allocate resources
(for instance memory) and keep track of them in the exception object reserved words. It should
then free these resources before transferring control to the last (handler) landing pad. It does not
need to free the resources before entering non-handler landing-pads, since_Unwi nd_Resune
will ultimately be called.

The landing pad may receive arguments from the runtime, typically passed in registers set using
_Unwi nd_Set GR by the personality routine. For alanding pad that can call to

_Unwi nd_Resune, one argument must be theexcept i onChj ect pointer, which must be
preserved to be passedto _Unwi nd_Resune.

Thelanding pad may receive other arguments, for instance a switch val ue indicating the type of the
exception. Four scratch registers are reserved for thisuse (r 15,r 16,r 17 andr 18.)

Rules for Correct Inter-language Operation

The following rules must be observed for correct operation between languages and/or runtimes
from different vendors:

An exception which has an unknown class must not be altered by the personality routine. The
semantics of foreign exception processing depend on the language of the stack frame being
unwound. This coversin particular how exceptions from aforeign language are mapped to the
native language in that frame.

If aruntime resumes normal execution, and the caught exception was created by another runtime, it
should call _Unwi nd_Del et eExcept i on. Thisistrue even if it understands the exception
object format (such as would be the case between different C++ runtimes).

A runtimeis not allowed to catch an exception if the_ UA FORCE_UNW ND flag was passed to the
personality routine.

Example: Foreign exceptionsin C++. In C++, foreign exceptions can be caught by a

cat ch(...) statement. They can also be caught asif they wereof a__f or ei gn_excepti on
class, definedin<excepti on>. The__ f or ei gn_except i on may have subclasses, such as
__java_exceptionand__ada_excepti on, if the runtimeis capable of identifying some
of the foreign languages.

The behavior is undefined in the following cases:

e A__foreign_exception catch argument isaccessed in any way (including taking its
address).

e A _foreign_exceptionisactiveat thesametime asanother exception (either thereisa
nested exception while catching the foreign exception, or the foreign exception was itself
nested).
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e uncaught _exception(),set _terni nate(),set_unexpected(),term nat e(),
or unexpect ed() iscaled at atime aforeign exception exists (for example, calling
set _t erm nat e() during unwinding of aforeign exception).

All these cases might involve accessing C++ specific content of the thrown exception, for instance
to chain active exceptions.

Otherwise, a catch block catching aforeign exception is allowed:

¢ toresume normal execution, thereby stopping propagation of the foreign exception and
deleting it, or

¢ torethrow the foreign exception. In that case, the original exception object must be unaltered
by the C++ runtime.

A catch-all block may be executed during forced unwinding. For instance, al ongj np may
execute codeinacat ch(. .. ) during stack unwinding. However, if this happens, unwinding
will proceed at the end of the catch-all block, whether or not there is an explicit rethrow.

Setting the low 4 bytes of exception classto C++\0 is reserved for use by C++ runtimes compatible
with the common C++ ABI.
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7.1

7.2

7.2.1

71.2.2

Introduction

This chapter contains miscellaneous subjects which are agreed to need representation somewhere,
but are not strictly issuesfor abinary standard. Theintent hereisto provide this chapter asa*“ place
holder” rather than as the intended final destination for these issues.

Development Environment

To facilitate portability of source code, a compilation environment that is capable of producing
ABI conforming objects will provide the following information available at compilation time.

Pre-defined Preprocessor Symbols

__iab4 Describesthetarget architecture. Theinitial valueis 1. Thisvalueshould
track future backward-compatible architectural extensionsin the
EF_| A 64_ARCH ELF header flagsfield.

_ILP32 32-bit ABI datamodel: int, long, and pointer are 32 bits, long long is 64
bits. Valueif defined is 1.
_LP64 64-bit ABI datamodel: long, long long, and pointer are 64 bits, int is 32

bits. Valueif defined is 1.

Pre-defined Preprocessor Assertions

A compilation environment that is capable of producing ABI conforming objects will implement
the C preprocessor assertion feature. This allows a preprocessor assertion of the form:

#assert predicate[(token-sequence)]

This assertion associatest oken- sequence with pr edi cat e in the assertion name space. All
tokens involved are preprocessor tokens:. the predicate must be an identifier token, and the

t oken- sequence isan arbitrary sequence of tokens. The (t oken- sequence) may be omitted
fromthe#assert, in which case it associates no token sequence with pr edi cat e, but may be
useful to place pr edi cat e in the assertion name space in order to avert possible warning
messages for testing unrecognized predicates.

Predicate assertion associations may then be tested with:

#i f #predi cat e(t oken-sequence)

This assertion evaluatestrue if t oken- sequence isassociated with pr edi cat e and false
otherwise. The token-sequence must be non-empty in a predicate test.

Multiple token sequences may be associated with a single predicate identifier by using multiple
assertions. Each association may be tested independently.
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In additionto #assert definition of assertion associations, compilers generally support the
equivalent command-line option:

- Apr edi cat e(t oken- sequence)

A compilation environment capable of producing ABI-conforming objects will provide the
following pre-defined preprocessor assertions:

machine(iab4) Target architecture.

model (1p64) 64-bit ABI datamodel: long, long long, and pointer are 64 bits, int is 32
bits.

model (i1p32) 32-bit ABI datamodel: int, long, and pointer are 32 hits, long long is 64
bits.

endian(little) Little-endian data model.

endian(big) Big-endian data model.

Compiler Pragmas

Controlling Section Attributes

A compilation environment that is capable of producing ABI conforming objects will support a
pragmato control section attribute specification for variables:

/1 define a symbol in a section with “short” or “long” attributes.
#pragma al | oc_section(synbol _nanme, “attribute-list”)

“attribute-list” is a comma-separated list of attributes, the defined values are:

“short”
" | Ongﬂ

Examples:

#pragma al |l oc_section(varl, “short”)
int varl = 20;

#pragma al l oc_section(var2, “short”)
extern int var?2;

It is left to the compiler to decide whether the symbol should go to a“data’ or “bss’ or “rdata’
section.

Pragma for Control Flow Properties of Procedure Calls

/usr/include/setjnp. h: #pragma unknown_control _fl ow(set]j np)
/usr/include/setjnp. h: #pragm unknown_control _fl ow_setj m)
/usr/include/setjnp. h: #pragma unknown_control _fl ow(si gsetjm)
/usr/include/ucontext. h: #pragma unknown_control _fl ow get cont ext)
/usr/include/unistd. h: #pragma unknown_control _f | ow vf ork)
/usr/include/sys/systm h: #pragma unknown_control _fl owm setj np)
/usr/include/sys/systm h: #pragma unknown_control _fl owm on_fault)
/usr/include/sys/systm h: #pragma unknown_control _fl owm on_data_trap)
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Pragmaunkown_cont r ol _f | owspecifiesalist of routines that violate the usual control flow
properties of procedure calls. For example, the statement following acall toset j np() can be
reached from an arbitrary call to any other routine. The statement is reached by a call to

I ongj np() . Since such routines render standard flow graph analysisinvalid, routines that call
them cannot be safely optimized; hence, they are compiled with the optimizer disabled.

ILP32 ABI

Thefollowing section isincluded for comment. There is not agreement that either an ILP32 ABI is
mandatory nor that the mechanisms described in this section are the only way to implement an
ILP32 ABI. Some vendors are known not to intend to implement an ILP32 ABI at all and at least
one plans a different implementation. Thus this section presents guidelines for a possible
implementation which would have some commonality but ILP32 binaries are not ABI conforming.

This description along with the Conventions document describes the software conventions needed
to support Itanium architecture programs which will run in 32 bit address space. The Itanium
architecture is composed of today’s 32-bit Intel Architecture (1A-32) along with the 64-bit
Instruction Set Architecture (ISA). For UNIX, the base | A-32 software conventions are contained
inthei386™ Processor Application Binary Interface. These 32 bit conventions here describe a
data model which is completely compatible with the appropriate | A-32 conventions on UNIX.

The 64-bit runtime architecture along with the 32-bit Conventions defines most of the conventions
necessary to compile, link, and execute a program on an operating system that supports these
conventions. Its purposeis to ensure that object modules produced by different compilers can be
linked together into asingle application, and to specify the interfaces between compilers and linker,
and between linker and operating system.

Objectives of the 32-bit Little-endian Runtime Architecture

This document defines the software interfaces needed to ensure that software for Itanium
architecture will operate correctly together. The intent is to define as small a set of interface
specifications as possible, while still meeting the following goals:

* High performance
* Ease of porting, |A-32 data compatibility
¢ Commonality with Itanium architecture 64-bit software conventions

¢ Ease of implementation and use

We would like to provide complete enough interfaces between the different software products that
they can be provided by different ISVs and still work together. These include compilers, linkers,
applications, and dynamic link libraries. The goal is to have one convention, so software will be
portable on Itanium architecture UNIX systems.

Changes from the 64-bit Software Conventions

In 32-bit Conventions the data representations are identical to the existing 1A-32 conventions.

In other words all sizes and alignments of data items match existing 1A-32 conventions. Integer,
pointer and long types are each 4 bytesin sizein ILP32 conventions. ILP32 function descriptors
are 2 4-byte words. Global offset table entries are 4 bytes each as follows:

si zeof (long) = sizeof (int) = sizeof((void *))= 4.
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Right shift would sign extend integer data types.
Long long, doubles and double-extended are aligned on 0 mod 4 boundaries.

Alignment for the members of an aggregate match existing 1A-32 conventions.

Addressing and Protection

The features of the processor architecture that are described in the Addressing and Protection
section of the Intel® | A-64 Architecture Software Devel oper’s Manual are intended for the
exclusive use of the operating system software, with the following exceptions:

¢ An application may use the zxt 4 instructions to convert a 32-bit virtual address to a 64-bit
virtual address.

* Refer to Chapter 2, Section 2.4 Addressing and protection of Conventions, for other
exceptions.

Data Allocation

Global Variables

Common blocks, dynamically allocated regions (such asmal | oc, etc.), and external dataitems
greater than 4 bytes must all be aligned at least on a 4-byte boundary. Smaller data items must be
aligned on the next larger power-of-two boundary.

Local Memory Stack Variables

Stack frames must always be aligned on a 16-byte boundary. That is, the stack pointer register must
always be aligned on a 16-byte boundary.

Parameter Passing

Parameter passing and allocation of parameter slots are done as described in Chapter 8, Section 8.5
of Conventions. Each slot size remains 64 bitsin ILP32 conventions to match the 64 bit calling
conventions for Itanium architecture.

Synchronization Primitives

Theintrinsics described here provide avariety of primitive synchronization operations. Besides
performing the particular synchronization operation, each of these intrinsics has two key
properties:

¢ The function performed is guaranteed to be atomic (typically achieved by implementing the
operation using a sequence of load-linked/store-conditional instructionsin aloop on MIPS).

¢ Associated with each instrinsic are certain memory barrier properties that restrict the
movement of memory references to visible data across the intrinsic operation (by either the
compiler or the processor).
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A visible memory reference is areference to a data object potentially accessible by another thread
executing in the same shared address space. A visible data object may be one of the following:

C/C++ global data

Fortran COMMON data

Data declared extern

Volatile data

Static data (either file-scope or function-scope)
Data accessible via function parameters

Automatic data (local-scope) that has had its address taken and assigned to some object which
isvisible (recursively)

The memory barrier semantics of an intrinsic may be one of the following three types:

acquirebarrier Disallowsthe movement of memory referencesto visible datafrom after

theintrinsic (in program order) to before the intrinsic (this behavior is
desirable at lock-acquire operations, hence the name).

release barrier Disallows the movement of memory references to visible data from

beforetheintrinsic (in program order) to after theintrinsic (thisbehavior
is desirable at lock-release operations, hence the name).

full barrier disallows the movement of memory references to visible data past the

intrinsic (in either direction), and is thus both an acquire and a rel ease
barrier. A barrier only restricts the movement of memory references to
visible data across the intrinsic operation: between synchronization
operations (or in their absence), memory references to visible data may
be freely reordered subject to the usual data-dependence constraints.

Caution: Conditional execution of a synchronization intrinsic (such as within an if or awhile statement)
does not prevent the movement of memory references to visible data past the overall if or while
construct.

7.4.1 Atomic Fetch-and-op Operations

"type __sync_fetch_and_add (type* ptr, type value
"type __sync_fetch_and_sub (type* ptr, type value
"type __sync_fetch_and_or (type* ptr, type val ue
"type __sync_fetch_and_and (type* ptr, type val ue
"type __sync_fetch_and_xor (type* ptr, type value
"type __sync_fetch_and_nand(type* ptr, type val ue

— — — —

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
Theellipsis(...) refersto an optional list of variables protected by the memory barrier.

Behavior:

Atomically performs the specified operation with the given value on *ptr, and returns the old
value of *ptr, asin the following example:

{ tnp = *ptr; *ptr <op>= value; return tnp; }

Full barrier.
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Atomic Op-and-fetch Operations

"type __sync_add_and_fetch (type* ptr, type val ue,
"type __sync_sub_and_fetch (type* ptr, type val ue,
"type __sync_or_and_fetch (type* ptr, type val ue,
"type __sync_and_and_fetch (type* ptr, type val ue,
"type __sync_xor_and_fetch (type* ptr, type val ue,
"type __sync_nand_and_fetch(type* ptr, type val ue,

— — — —

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
Thedlipsis(...) refersto an optional list of variables protected by the memory barrier.
Behavior:
¢ Atomically performs the specified operation with the given value on * ptr, and returns the new
value of *ptr. (i.e.)
{ *ptr <op>= value; return *ptr; }

¢ Full barrier.

Atomic Compare-and-swap Operation

"int __sync_bool _conpare_and_swap (type* ptr, type ol dval ue, type newal ue,

)

pe __sync_val conpare_and_swap (type* ptr, type ol dval ue, type newal ue,

)

Where type may be one of int, long, long long, unsigned int, unsigned long, unsigned long long.
Theéellipsis(...) refersto an optional list of variables protected by the memory barrier.

"ty

Behavior:

¢ Atomically do the following: compare *ptr to oldvalue. If equal, store the new value. The
_sync_bool_compare_and_swap version returns 1 if successful, or 0 if *ptr does not match
oldvalue. |.e., the __sync bool_compare _and_swap version does the following:

if (*ptr !'= oldvalue) return 0;
el se {
*ptr = newal ue;
return 1;
}
The __sync va_compare and_swap version returns * ptr. (Note that doing this atomically
reguires looping on an architecture with an LL/SC implementation like MIPS.)

e Full barrier.

Atomic Synchronize Operation

__sync_synchronize (...)"
Thedlipsis(...) refersto an optional list of variables protected by the memory barrier.

Behavior:
e Full barrier
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Atomic Lock-test-and-set Operation

"type __sync_lock_test_and_set (type* ptr, type value, ...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
Theellipsis(...) refersto an optional list of variables protected by the memory barrier.

Behavior:

* Atomically storethe supplied valuein * ptr and return the old value of *pitr. (i.e.)
{ tnp = *ptr; *ptr = value; return tnp; }

* Acquire barrier.

Atomic Lock_release Operation

"void __sync_l ock_rel ease (type* ptr, ...)"

Where type may be one of int, long, long long, unsigned int, unsigned long, or unsigned long long.
Theellipsis(...) refersto an optional list of variables protected by the memory barrier.

Behavior:
* Set*ptrto0. (i.e){ *ptr=0}

* Release barrier.

Thread-Local Storage

This section describes the use and implementation of thread-local storage in the Itanium™
Conventions and Runtime Architecture Guide.

The compiler tool chain provides direct support for the declaration of thread-local data (also
referred to as thread-specific or thread-private data). The programmer may declare variablesto be
thread local, and the compiler will automatically arrange for those variables to be allocated on a
per-thread basis.

The built-in support for this feature serves three purposes:

* |t provides afoundation upon which the POSI X interfaces for allocating thread-specific data
are built.

¢ |t offers amore convenient and more efficient mechanism for direct use by applications and
libraries.

¢ |t allows compilersto allocate thread-local storage as necessary when performing loop-
parallelizing optimizations.

C/C++ Programming Interface

A programmer declares avariable to be thread local using the _thread keyword, asin the
following examples:

__thread int i;
__thread char *p;
__thread struct state s;
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During loop optimizations, the compiler may choose to create thread-local temporaries as needed.

Applicability. The _thread keyword may be applied to any global, file-scoped static, or
function-scoped static variable (it has no effect on automatic variables, which are always thread-
local).

Initialization. In C++, athread-local variable may not be initialized if theinitialization would
require a static constructor. Otherwise, athread-local variable may be initialized to any value that
would belegal for an ordinary static variable.

No variable, thread-local or otherwise, may be initialized to the address of athread-local variable.

Binding. Thread-Local variables may be declared and referenced externally, and they are subject
to the same pre-emption rules as normal symbols.

Tentative definitions. In ANSI C and C++, athread-local variable declared without an initializer
and without the extern keyword is treated as a definition. In K&R C, the treatment is unspecified
(i.e., it may betreated by the implementation as a definition or a tentative definition).

Dynamic loading restrictions. A shared library, x, that contains thread-local storage may be
loaded dynamically, via dlopen(), provided that every trandation unit containing areference to a
thread-local variable defined in x has been compiled with the dynamic thread-local storage model.

While the static thread-local storage model generates faster code, code compiled with this model
cannot reference thread-local variables in dynamically-loaded libraries. The dynamic thread-local
storage model is able to reference all thread-local storage. Both thread-local storage models are
described in this document.

Address-of operator. The address-of operator (&), when applied to athread-local variable, is
evaluated at run-time, and returns the address of the current thread’s instance of that variable. The
address obtained by this operator may be used freely by any thread in the process as long as the
thread that evaluated the address remains in existence. When a thread terminates, any pointers to
thread-local variables in that thread become invalid.

When the disym() is used to obtain the address of athread-local variable, the address returned will
be the address of the instance of that variable in the thread that called disym().

Compile-time Allocation of Thread-Local Storage

The compiler allocates thread-local storage based on how it is declared:

¢ |f athread-local variableis not initialized (or isinitialized to zero), it is allocated in the .thss
section.

¢ If athread-local variableisinitialized to a non-zero value, it is alocated in the .tdata section,
and the initialization value is placed into the section’s initialization image. The initialization
may require relocation.

¢ |f athread-local variable is atentative definition, it isdeclared asa“TLS Common” symbal,
using the SHN_TLS COMMON section index in the symbol table entry.

The section attributes for .tbss and .tdata are listed in Table 7-1.
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Table 7-1. Section Table Entries for .tbss and .tdata

7.5.3

sh_name tbss tdata
sh_type SHT_NOBITS SHT_PROGBITS
sh_flags SHF_ALLOC + SHF_WRITE + SHF_TLS SHF_ALLOC + SHF_WRITE + SHF_TLS
sh_addr virtual address of section virtual address of section
sh_offset 0 file offset of initialization image
sh_size size of section size of section
sh_link SHN_UNDEF SHN_UNDEF
sh_info 0 0
sh_addralign alignment of section alignment of section
sh_entsize 0 0

Thread-L ocal storage symbols must have the symbol type STT_TLS(6). In rel ocatable object files,
thest_valuefield of an STT_TL S symbol contains a section-relative offset for defined symbols, or
zero for undefined symboals.

Linker Treatment of Thread-Local Storage Sections

Thelinker processes “ TLS Common” symbols as it processes ordinary common symbols, except
that the resulting allocations are made in the .thss section.

Thelinker collects the .tdata sections (i.e., all sections of type SHT_PROGBITS with the
SHF_TL Sflag set) into a combined .tdata section that may be allocated in any program segment,
except that it must be in awritable segment if it contains any dynamic relocations.

Thelinker collects the .thss sections (i.e., all sections of type SHT_NOBITS with the SHF_TLS
flag set) into a combined .tbss section that is allocated immediately following the .tdata section,
subject to padding for proper alignment.

The combined .tdata and .tbss sections together form a TLStemplate that is used to all ocate thread-
local storage whenever anew thread is created. Theinitialized portion of thistemplateis called the
TLSinitialization image. All relocations generated as a result of initialized thread-local variables
are applied to thistemplate, so that the relocated values can be used when a new thread requires the
initial values.

All symbols defined in a thread-local storage section are assigned offsets relative to the beginning
of the TLS template. The actua virtual address associated with these symbolsisirrelevant, since
the address refers only to the template, and not to the per-thread copy of each dataitem.

In executable and shared object files, the st_value field of an STT_TLS symbol contains the
assigned offset for defined symbols, or zero for undefined symbols.

Several relocations are defined to support access to thread-local storage, and the linker must
process these as described in “ Code Sequences for Accessing Thread-Local Variables,” below.
Symbols of type STT_TLS may be referenced by only these TLSrelocations, and TLS relocations
may reference only symbols of type STT_TLS.
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Although the .tbss section must be allocated following the .tdata section, so that symbolsin .tbss
receive proper template-relative offsets, it does not need to be physically allocated in the output
file—that is, the address space that would be occupied by the uninitialized portion of the thread-
local storage template may be overlayed by other data.

In the output file, the linker creates a new program header table entry to describe the TL S template;

the fields of this entry are described in Table 7-2. The memory described by this program header
table entry must be part of aloadable segment described by aPT_LOAD entry.

Program Header Table Entry for Thread-Local Storage

Field Value
p_type PT_TLS (7)
p_offset File offset of the TLS initialization image
p_vaddr Virtual memory address of the TLS initialization image
p_paddr Reserved
p_filesz Size of the TLS initialization image
p_memsz Total size of the TLS template
p_flags PF_R
p_align Alignment of the TLS template

Theflag DF_STATIC_TLS (0x10) inthe DT_FLAGS dynamic table entry is used to indicate that
an executable or shared object file contains code using the static TLS model. The linker must set
this flag when the static TLS model is used so that the dynamic loader can easily reject attemptsto
load such afile dynamically.

Runtime Allocation of Thread-Local Storage

Thread-Local storage must be created at three occasions during the lifetime of a program:
¢ At program startup.
* When anew thread is created.
* When athread referencesa TL S block for the first time after anew library isloaded.

Figure 7-1 contains an illustration of the layout of the data structures described in this section.
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Figure 7-1. Thread-Local Storage Data Structure Layout

t
P tisoffset, tisoffset, tIsoffsety TLSBlocks for

Dynamically-loaded modules
c8 | I
Y

S - T

gen; dtvg dtv, dtvyz  dtv,  dtvs

Program startup. At program startup, the runtime system creates thread-local storage for the
main thread.

First, the dynamic loader logically combines the TL S templates for all load modulesin the startup
set (including the a.out itself) into a single static template. Each load module’'s TLS templateis
assigned an offset within the combined template, tlsoffset,,, as follows:

* tlsoffset; = round(16, align,)
* tlsoffset,,. 1 = round(tlsoffset,,, + tIssize,,, alignpy. 1)

wheretlssize,, and align,,, are the size of and the required alignment boundary, respectively, for the
allocation template for load module m (1 < m< M, where M is the total number of load modules).
The round(offset, align) function returns offset rounded up to the next multiple of align.

Thefirst 16 bytes of the static allocation template are used by the thread library asa Thread Control
Block (TCB). The doubleword at offset O is used as a pointer to the dynamic thread vector, dtv;,
described below under “Thread creation.” The remaining 8 bytes are reserved for internal use by
the thread library.

The dynamic loader also computes the total startup thread-local storage allocation size, tlssizeg
(equal to tlsoffsety, + tlssizey,).

The dynamic loader then constructs alinked list of initialization records. Each record in thislist
describes the TL S initialization image for one load module, and contains the following four fields:

* Pointer to the TLS initialization image.
* Sizeof the TLSinitialization image.
* Thetlsoffset,, for the load module.
* A flag indicating whether the load module uses the static TLS model.
Thethread library allocates storage for the initial thread, initializes the storage, and creates a

dynamic thread-local storage vector for the initial thread, as described under “Thread creation,”
below.
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Thread creation. For theinitial thread, and when a new thread is created, the thread library
allocates anew thread-local storage block for each load modulein the startup set. Depending on the
implementation, it may allocate blocks separately or as asingle contiguous block of length tlssizer,
which is the current total of the sizes of the TL S templates of all load modules (i.g, tIssizeg plus
tlssize,, for each dynamically-loaded module), plus any padding required for alignment between
TLStemplates.

Each thread t has an associated thread pointer tp;, which points to the thread’s TCB. The thread
pointer register, tp (GR 13), always contains the value of tp; for the currently running thread.

Thethread library then creates a vector of pointers, dtv;, for the current thread t. The first element
of each vector contains a generation number gen,, which is used to determine when the vector
needs to be extended. The use of thisfield is described under “ Deferred allocation of TLS blocks,”
below.

Each remaining element in the vector, dtv; ,,, is apointer to the block reserved for the thread-local
storage belonging to load module m.

For dynamically-loaded modules, the thread library defers the allocation of thread-local storage
blocks until an actual reference is made from the new thread. All referencesto TLS defined ina
dynamically-loaded module must use the dynamic TLS model. For blocks whose allocation has
been deferred, the pointer dtv; ., is set to an implementation-defined special value.

Implementation Note: The dynamic loader may, if it so chooses, group the TLS templates for the
startup set of load modules such that they share asingle element in the vector, dtv; . This must not
affect the offset cal culations described above or the creation of the list of initialization records. For
the following sections, however, the value of M, the total number of load modules, would start with
the value 1.

The thread library then copies the initialization images to the corresponding locations within the
new block of storage.

Dynamic loading. When anew library that contains thread-local storage isloaded, the dynamic
loader extends the list of initialization records to include the new library’sinitialization template.
The new load moduleis given anindex m= M + 1, and the counter M is incremented by one. The
alocation of new TLS blocks, however, is deferred until they are actually referenced.

Dynamic unloading. When alibrary that contains thread-local storage is unloaded, the
implementation may choose to free the TL S blocks used for that library, or it may keep them
allocated for reuse. The implementation must ensure that memory leaks do not occur as the result
of repeated loading and unloading of the same library.

Deferred allocation of TLSblocks. Inthe dynamic TLS model, when athread t needs to access
aTLSblock for load module m, the code must update the vector dtv; and perform theinitial
allocation of the TLS block, if necessary. The thread library provides the following interface,
which is part of the base ABI:

extern void *__tls get addr(size t m, size t offset);

This routine first checks the per-thread generation counter, geny, to determine whether the vector
needs to be updated. If the vector dtv; is out of date, the routine updates the vector, possibly
reallocating it to make room for more entries. The routine then checks to seeif the TLS block
corresponding to dtv; ,, has been allocated. If it has not been allocated, the routine allocates and
initializes the block, using the information in the list of initialization records provided by the
dynamic loader, and sets the pointer dtv; ,, to point to the newly-allocated block. The routine then
returns a pointer to the given offset within the block.
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The methods used to determine whether the vector is out of date, and whether a particular TLS
block has been allocated are implementation dependent.

Code Sequences for Accessing Thread-Local Variables

The compiler generates code using either the static thread-local storage model, or the dynamic
thread-local storage model, depending on a compile-time switch.

Satic thread-local storage model. Inthe static thread-local storage mode!, the tp-rel ative offset
for agiven variable x (i.e., its offset relative to the beginning of the TCB), is stored in alinkage
table entry for x. The generated code to access x obtains the offset from the linkage table entry, adds
this offset to the value of tp, and uses the resulting virtual address to load or store the variable. An
example code sequence that forms the address of athread-local variable x is shown in Example 1.

Example 1. Static Thread-Local Storage Model

addl t1 = @toff(@prel(x)), gp// find linkage tbl entry
1d8 t2 = [t1] /1l load tp-relative offset
add locO = t2, tp /1l form address of x

The @Itoff(@tprel (x)) operator trandatestothe R_IA_64 LTOFF_TPREL 22 relocation, which
reguests the linker to allocate a linkage table entry to hold the tp-relative offset for the variable x.
The linker processes this relocation by substituting the gp-relative offset for the new linkage table
entry.

Thetp-relative offset for x is given by tlsoffset,,,, where mis the load module containing the
definition of x, plus the symbol value of x, which isits offset relative to the beginning of the load
module’s allocation template. Since tlsoffset,,, is not calculated until load time, the linker attaches
anR_|A_64 TPREL64MSB/LSB dynamic relocation to the linkage table entry.

Satic model with linker-assigned offsets. For referencesto TLS known to be in the main
program (e.g., when building a statically-bound program, or when building a main program and the
referenced symbol is protected), the linker can calculate the tp-relative offsets statically, without
the need for dynamic rel ocations, and the extra reference to the linkage table. Example 2 showsthe
code that can be generated for this case.

Example 2. Static Model with Linker-assigned Offsets

mv r2 = tp /1l put tp where addl
s 11 use it

addl locO = @prel(x), r2 [/ form address of x

Thefirst instruction of this sequence can be scheduled early in the code, and the copy of tpin
register r2 can be used by several thread-local storage references.

The @tprel(x) operator translatesto the R_1A_64 TPREL 22 rel ocation, which requests the linker
to rel ocate the instruction with the static tp-relative offset for the variable x.

A compiler may support compilation models where an assertion has been made that the tp-relative
offset is smaller than 213, or larger than 221 alowi ng the use of the short add instruction, or
requiring the use of the move long immediate instruction. The R_IA_64 TPREL 14 and

R_IA_64 TPREL®64I relocations are also provided to support these instructions.
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Dynamic thread-local storage model. In the dynamic thread-local storage model, a variable x,
defined in load module m, is referenced by obtaining the pointer dtv; ., for the current thread t, and
adding to this pointer the dtv-relative offset for x. Because the referenced TL S block may not have
been allocated yet, the code must perform runtime checks described in “ Deferred allocation of TLS
blocks,” above. An example code sequence that forms the address of athread-local variable x,
using the _tls get addr interface, is shown in Example 3.

Example 3. Dynamic Thread-Local Storage Model

mov loc0 = gp /1l save gp (if necessary)
addl t1 = @toff(@tpnod(x)), gp// find LT entry 1
addl t2 = @toff(@ltprel(x)), gp// find LT entry 2

d8 out0 = [t1] /1 load value of m

1d8 outl = [t2] /1 load dtv-rel. offset
br.callrp = __tls_get_addr // conpute addr. of x

- /1 address of x in retO
mv gp = locO /'l restore gp

The @Itoff(@dtpmod(x)) operator trandatestothe R_IA_64 LTOFF DTPMOD22 relocation,
which requests the linker to allocate alinkage table entry to hold the load module index m for the
variable x. The linker processes this relocation by substituting the gp-relative offset for the new
linkage table entry. Since the load module index mis not calculated until load time, the linker
attachesan R_|A_64 DTPMOD64M SB/L SB dynamic relocation to the linkage table entry.

The @Itoff(@dtprel (X)) operator trandatestothe R_IA_64 LTOFF _DTPREL 22 relocation, which
reguests the linker to allocate a linkage table entry to hold the dtv-relative offset for the variable x.
The linker processes this relocation by substituting the gp-relative offset for the new linkage table
entry. Thelinker attachesan R_IA_64 DTPREL64MSB/LSB dynamic relocation to the linkage
table entry.

Referencing protected symbolsin the dynamic model. If areferenceis made to a hidden or
protected thread-local symbol using the dynamic model, the linker can calculate a static dtv-
relative offset, saving a reference to the linkage table. An example code sequence that forms the
address of a protected symbol x is shown in Example 4.

Example 4. Referencing a Protected Symbol in the Dynamic Mmodel

mov loc0 = gp /1l save gp (if necessary)
addl t1 = @toff(@tpnod(x)), gp// find LT entry 1
addl outl = @tprel(x), r0// load dtv-rel. offset

d8 out0 = [t1] /1 load value of m
br.callrp = __tls_get_addr // conpute addr. of x

- // address of x in retO
mv gp = locO /'l restore gp

The @dtprel(x) operator trandatesto the R_|A_64 DTPREL 22 relocation, which requests the
linker to relocate the instruction with the static dtv-relative offset for the variable x.

When a procedure references more than one protected symbol, the compiler should obtain the base
address of the TLS block once, then use that base address to cal cul ate the addresses of each symbol
without a separate library call. An example code sequence that forms the addresses of two
protected symbols x and y is shown in Example 5.
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Example 5. Referencing Several Protected Symbols in the Dynamic Model

mov | ocO
addl t1 =
mov  outl
1d8 outO
br.callrp
mv gp =
mv r2 =
addl locl
addl | oc2

= gp 11
@tof f (@t pnod(x)),
= r0 /1l
= [t1] Il
= _ _tls_get_addr //

11
| ocO /1
ret0 11
= @tprel(x), r21//
= @tprel(y), r21//

save gp (if necessary)
gp// find LT entry 1
use dtv-rel. offset = 0

load value of m
conpute base addr.

of TLS block in retO

restore gp

prepare for addl

form address of x
form address of vy

A compiler may support compilation model swhere an assertion has been made that the dtp-relative
offset is smaller than 213, or larger than 221 alowi ng the use of the short add instruction, or
requiring the use of the move long immediate instruction. The R_IA_64 DTPREL14 and
R_1A_64 DTPRELG64I relocations are also provided to support these instructions.

7.5.6

ELF Relocations for Thread-Local Storage

The new rel ocations required to support thread-local storage are listed in Table 4-7. All mnemonics
have the prefix “R_IA_64 ".

7.5.7

TLS Variable References

TL S variable can be referenced using the following function:

__tls_get_addr()
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