DWARF Debugging Information Format

Draft Draft Draft

DWARF Working Group
Michael Eager, Chairperson
Ron Brender, Editor

Revision: V3 Draft 7 (October 29, 2001)

http://www.eagercon.com/dwarf/dwarf2std.htm
mailto:eager@eagercon.com
mailto:ron.brender@compaq.com

Based on the

UNIX International
Programming Languages SIG
Revision: 2.0.0 (July 27, 1993)

document that was
Copyright © 1992, 1993 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
feeis hereby granted, provided that the above copyright notice appearsin al copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the
name UNIX International not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. UNIX International makes no representations
about the suitability of this documentation for any purpose. It is provided "asis" without express
or implied warranty.

Unix International no longer exists. It is believed that the basis for this document is freely
available. The DWARF 2 Working Group plans to formalize this document within the framework
of the |EEE Industry Standards and Technology Organization, which will then hold the
copyright.

Trademarks;

Intel 386 is atrademark of Intel Corporation.
Javais atrademark of Sun Microsystems, Inc.
All other trademarks found herein are property of their respective owners.

Table of Contents

DWARF DEBUGGING INFORMATION FORMAT .ottt ettt ettt et s s s eae e s s s ba e s s sata e s saana s s snbaneean v
(DR AN S I B 2 YA ol I D] = ¥ AN i LR v
1 INTRODUGCTION ... ettt e et e s e e e e st e e s s abaeessbeeassasbaessasseesssbeeessssbasssassesessabeeessssbesssansensssanenas 1
1.1 PURPOSE AND SCOPE......uutttiiiiiiiiiiitriieseteiisibasetesesssasbaseessesssasbabseasesssasbabssssesssasasbesssesssassasbasseesssasssbbaseeesssesas 1
I © 1] = =AY AT Y 1
1.3 VENDOR EXTENSIBILITY oiiicueeeeiiteieiestteeeioseesssseresasseessssssssssssesssasssssssasssssssssesesasssesssasssssssssssesssssesssassesessssenes 2
1.4 CHANGESFROM VERSION L TOVERSION 2...eeiiiuteieieitteieeeeeeesiteeesesstesessssesesssssesasssesssssssssssssssesssssesssasssssssnsenes 2
1.5 CHANGESFROM VERSION 2 TOVERSION 3...ceiiiteieieiteeieiseeeesiteeesesstesesessesesssesssasssesssasssssssssssesssssesssasssssssnsenes 3
151 Upward ComPatibDility.......cccieeeereereiresesese s eee e et e st st ese e e e aeseesrenreenesreene e enaenrenees 4

2 GENERAL DESCRIPTIONttt ettt e sttt e s e et e e s eaaae e s sbaeessssbesesasseessssseessssbesesaseesesassnessssrenesan 5
2.1 THE DEBUGGING INFORMATION ENTRY .oiiiiiiiiiiiiiiie ittt s st e e e e s s s e sab e st s e s s s e sabbabe e e s s s s saabbaseeasssssnsbananesas 5
A N 1 =10 = N = 5T 6
2.3 RELATIONSHIP OF DEBUGGING INFORMATION ENTRIES.....uiiiiiiiiiiiiririiee e siirereie e s s s sssbasseee e s s sssssssssssessssssannns 13
2.4 DWWARF EXPRESSIONSccutttiiieiiiiitteriiessieiiissssteesssssissssssssessiasisssssssssssasissssssssssessssssseesssssssssssssssessssssssses 13
241 GENEIAl OPEIALIONS.ciueiteiueeieeeete ettt ettt e te st e be bt et ese e e eeeseesbesaesbeeseeaeeneeseebesaesbesaeeseeneaneanbesaeas 14
242 EXample SACK OPEratioNS........coioeiiiiireiieiereee sttt e e st et seesbe b se e e e e e beseesbesbesseeneeneenbeseens 21

2.5 LOCATION DESCRIPTIONS.tttiiiiteteieteeesisterseesstesssaseessassesesasssssssssssessassesssassesessssesesssssesssasssssssssesessssesssnes 21
251 ReQIStEr NAME OPEIALOIS.eeiieieertereeetereeseeeessestessestesseesesseessessessessessessessesssessessessessessessesseeseessensessens 22

25.2 LOCALION EXPrESSIONSuecteiteeeieeeeieieseestesaeeseeeeseessestessessessesseessessessesasasesseessessessessessessensessenseensensessens 23
253 EXample LOCation EXPrESSIONSccciiiiereeeeriesieseesteseeseeeessesseseessesseeseesesssessessessessssssenssnseseensensessnns 23
AT S o o | 1 o [I 24

2.6 TYPES OF DECLARATIONS .. uuttttiietiiisitttttieseseisisbssteesssssassbasseesesssassbsrasesesssasssbssesasssesasbessessssssasssssssssesssassssres 25
2.7 ACCESSIBILITY OF DECLARATIONS. ... uutttiiitiiiiiitttiietessissisatsestesssessssrssstesssesssssssssssssssssssssssssssssassssssssesssssssssns 26
2.8 VISIBILITY OF DECLARATIONS ..ciiiiiiiitttttieeeeeiisbttteesesssesbabsessesssessssbasstesssesssbbsseeesssssasbasbssasasssassssbaseeesssssasns 26
2.9 VIRTUALITY OF DECLARATIONS.....ciitctttttieeiiiiiiitttteetessiisisataestesssasssbasstesssesssbssssessssssssssssssssssssasssssssssssssssssses 27
2.10 A RTIFICIAL ENTRIES. .. tttiiiiii ittt e ettt e s s s e st r e e e s s s e s b bbb e e e s e s e sa b bbb e e e s esssassbbbaeeeesssesaabbbseeasssesnsbannnesas 27
211 TARGET-SPECIFIC ADDRESSING INFORMATION ..uuutiieiiiiiiitririieeeseiisssseeesesssssssssssssesssesssssssssesssssssssssseeesssas 27
2.12 NON-DEFINING DECLARATIONS AND COMPLETIONSc.cicttieeeiteieeeiseeeessseeesesseresesssesssssseesssssssssssssessssnees 28
2121 NON-DEfiNiNG DECIAratioNS.ccccieiiiierieiiceereesese st se st e aeseesee e saesresseeseeaessestesaesresseeseeneensensesenns 29
2.12.2 Declarations Completing Non-Defining DeClarations............cuoeeeerererieseseneseeseeseese e seseeeeneenes 29

2.13 DECLARATION COORDINATES ...c.eiuteieieitteteiesseesesteresesssesssassssssassesesasssesssassssssassessssasssssssssssssssssesssassessssssens 29
2.14 IDENTIFIER INAMES ... i ottee e iteie e e ettt e eetee e e st ee s e st e e e sessaeessabaeeeeasbesesasseesssnbeeesasbesesansaeessnseeesasbesesansenessnneees 30
2.15 [N 0 107y T] £ T 30
2.16 CODE ADDRESSES AND RANGES. ... uuttiiiiiiiiiiiitieiies e iesiibastiesssesssbaseeesssssssbasbesasssssassabassssssssssssrbsssessssessses 30
BN T RS T 0o | £ Ve (o =SOSR 31
2.16.2 CoNtigUOUS AQArESS RANGE ... ccviitiitirieeieie ettt ettt ettt et et e ae s ee b e st e e e se e besaesbesaeeneeneeneabeseen 31
2.16.3 NON-Contiguous AdAreSS RANQJES.couiririieieriieiereeee ettt et ae e e se e besaesbe s e e seeseeneebeseens 31

2.17 ENTRY ADDRESS ... uutttiiiiiiiiiiietiieseessisbsreresesssasbaseeesesssassbabssesesssassbabesssasssassabbaeteesssesbbbaaeeesssesabbaseeassseian 33
2.18 STATIC AND DYNAMIC PROPERTIES OF TYPES....ciiicttieiiiteieeeiteeeesiteeesssteeeeesstesssessesssasesessassesssssssssssssseees 33
2.19 ENTITY DESCRIPTIONS. .. uvtiiicttieeeettereiesstesssoseeesesstesesassesssssseessassesssasssssssssesesasssesssassessssssssesssssesssassensssssenes 34

3 PROGRAM SCOPE ENTRIES ...ttt ettt e st e s et s s s eaae e s s sabeeesenbaesssnseesssnbeeesessrenesanes 35

Pageiii Draft 7 October 29, 2001

3.1 COMPILATION AND IMPORTING ENTRIES.....ccitiitistiriietieientes st st st ese et sre st st se e s b sre b s e snesnennesnesnens 35

3.1.1 Normal and Partial Compilation UnNit ENLHES.......cccceeeererericieeeseeiesese e e seee s sre e sseeseesee e e 35
300 A [4000 (= o IO LT 1 =SS 39
3.2 MODULE, NAMESPACE AND IMPORTING ENTRIEScccuiiieiieiteeiteeireereeseeeteesteestesssesnsessessaeesseensessessessssssenss 39
321 MOQUIE ENLIIES.....ecticie ettt ettt ettt e ettt e e st e s aeesbeesbeebesabeeaeesbeeebeebeenbeeabesnseansesaneeseanbeebenns 39
T =107 o 7= (0= =SS 40
3.23 Imported (or Renamed) Declaration ENFIEScooiieieriiiiie e 41
324 IMPOrted MOOUIE ENFIES ...c.ee ettt sttt b bt e e e et e b e saesne e e e e e beseen 42
3.3 SUBROUTINE AND ENTRY POINT ENTRIES.....coiiiiiiieiiiiie e citiee e ettt e e eetee e e e tt e e e eeateeeesaneeeesntseesennseeessnsaeasensseansnns 43
3.3.1 General Subroutine and Entry Point INfOrmMation...........c.coiiiiieiniceienee e 43
3.3.2 Subroutine and Entry POINt REIUNN TYPES.oouiiuirireeeeiesie ettt sbe e sae e seen 45
3.3.3 Subroutine and ENtry POINt LOCALTIONS........cciiiiirierieieriesie ettt s sbe e e e sea 45
3.34 Declarations Owned by Subroutines and ENtry POINES..........cccoverererenienenieeeeseesesee e sseseeseenesnens 46
3.35 LOW-LEVE INFOrMALION......ccuiiiiiiiicteecte ettt ettt et eebe et e e be st e saeesbeesbeesbeebesnnesanesbeessennsenns 46
3.3.6 TypeS Thrown DY EXCEPLIONS........cciviiriereeeceereese st stese et e e eaesee e sre e seeaeseestesnesresneeseeseenennsesenns 47
3.3.7 Function Template INStaNtiationS..........ccoveeererereieseseeeereesesesee s seeae e re e sneese e e e seseeneenseseens 47
3.3.8 INIINE SUDIOULINEScveeieeiecee sttt ettt et ettestee st st e ebeete st e sbeeebe e beenbesabesasesaeesheesbeesseensesanesseenseenrenns 48

G TC K T I =11 43T SRS 54
3.4 LEXICAL BLOCK ENTRIES.......octiiiiiiieiiiiee e it ee e ettt e e eetteeesebeeesaaseeesasseeaeasbeeeeasseeessseeaaastesesansseassssneasnsseeasanns 55
3.5 LABEL ENTRIES ttiicitiee e ctete e ettt ettt e e e te e e e e tt e e e sttt e e e sabeeeaaaseeeessseaaeasbeeeeansseeessaeeaastesesansseessnsseeasantenananns 55
3.6 WITH STATEMENT ENTRIES.ceiiiiitiieiittieeiiteeeeeetteeesetseeeesbeeesasseeesasseeaeasteeesasseesssseeaaastesesasssessassneasassesasanns 56
3.7 TRY AND CATCH BLOCK ENTRIES.....cccttiieiitiieeeiieeeeeiteeesitteeeeeateeeseseeaesatteesaasseeassssseaaaastesesassssessssnassnssesasns 56
4 DATA OBJECT AND OBJECT LIST ENTRIES ...ttt ettt s s 57
A1 DATA OBIECT ENTRIES ...oicotiieietieetieiteetesitesteesteesteestesssessesasessbeabeesbesssesssesseesteesseessssssssssssessbesnsenssesssesseesses 57
4.2 COMMON BLOCK ENTRIES......cictietieiteeiteiteieesteesteesteessesssssessssassesssesssesssessssssessssessesssssssssesssesssessessessesssees 59
4.3 NAMELIST ENTRIES ..ccutiitiitieteeeteeeteesteeitestesteesteesteessessesaeeasessbeabessbesssesssesaeesbeesseensesssssssesseesbesnbenssesssessnesanns 60
5 TYPE ENTRIES.o oottt sttt et e et e st st e e be e b e et e s abesatesbaesbeesbeenbesnsesasesaseabeasbeenbeenbesstesasesanas 61
Bl BASE TYPE ENTRIES....ccitiitiitieitee ittt et et e ete et e e besbesatesteesaeesbeebesasesaesebeeebeanbesabesasesbeesheesbeenseansesssesseenseenrenns 61
5.2 UNSPECIFIED TYPE ENTRIES......ueciteittiteeteeeteeeteesteeitestesseesaeesteessesnsessssssessseenbesssesssessesssessseessessessssssesssesnsenns 62
5.3 TYPEMODIFIER ENTRIESutiiiiiiieieeeieeeeiteeeeeetteeesetseeesssbeeesasseeesasseeaaasteeesasssesssseeaaastesesassssessnsseeasnssesasanns 63
B4 TYPEDEF ENTRIESoiiiiitiieeittieeecteeeeeteteeesbeeeeeasteeesasseeesasbaeeaasseeesasseeaeasteeesansseeessseeaastesesansssassnsseeasassesananns 64
5.5 ARRAY TYPE ENTRIES.ooii ittt ettt ettt e e ettt e ettt e e e e be e e s eatee e e saaeeaeasbeeeeassseeessseeaaastesesansseesssseeasasreeasanns 64
5.6 STRUCTURE, UNION, CLASS AND INTERFACE TYPE ENTRIES......cociiiiiieitiie ettt e ettt eree e e eane e 66
56.1 General Structure, Union and Class DESCIIPLIONcoeiuiriireeieieiese s 66
5.6.2 General INterface DESCIIPLIONcc.oiuiiiriiieie ettt ee bbb se e e b e 67
5.6.3 Derived or Extended Classes and INTErfACES........cocveieeieeiee ettt ere e e s nbeens 68
B.6.4 ACCESS DECIArAtIONS.civieitiiticeictee et ettt et see e ste e e tesbeeaeeebeeebe e beeabesasesaeesbeesbeessesnsesanesssessenssenns 69
LN ST T = 1= 210 OO SRRTRRUURPRORRP 69
B.6.6 Data MEMDEr ENIIIES....ccuiiieiciecie ettt ettt sttt et et e et ebeeebe et e enbesabesaaesaeesbeesseensesaneeseesbenssenns 69
B5.6.7 MemDer FUNCLION ENLIIES.......c.iiiiieectecite ettt sttt sttt ete et e eabesatesbaesbaesbeesbeensesasesanesbeesbeensenns 72
5.6.8 Class Template INStANti@tioNS.ccoiereririeriee ettt et se et e b s se e e e e be e 72
B.6.9 VaAlIANt ENEIIES....ciiiviiecei ettt ettt ettt s e ettt tte e et e e s tb e e eaee e s abeesaseesabeeeaseestbeaeaseesabeesaseesabesenseesnbesansessares 73
5.7 ENUMERATION TYPE ENTRIES.......utiiiiiiiieeiteee e ettt e eetteeeesteeeseateeesaseeeaasteeeeasseeessseeaaastesesansseesssseaaaassesasanes 74
5.8 SUBROUTINE TYPE ENTRIES.....ceciiitiieiiieeeeiiteieeestteeeeetteeeeetteeesasseeesasseeasasteeesaasseesssseesaastesesasssessnssnessassesasanns 75
5.9 STRING TYPE ENTRIES......coiiittiieeiiee ettt e e ettt e e e ette e e setteeeesabeeeeasseeesasseeaeasbeeesansseesssseeaaastesesansseessssneasassenasanns 76
5.10 SET EINTRIES. .. ttieeeeteie e ettt e ettt e e ete e e e e etteeeeeaseeeesbeeeaaasseeeaaaseeeesaseeeaaasbeeeaansseaeannseeeaasteseeansseeesnsneesssaeaann 76

Page iv Draft 7 October 29, 2001

511 SUBRANGE TYPE ENTRIES ...c.ttittitieteeitete st sie st e e ss e e sae b sse s e e e e b e see e bt sbeeseesee s e beseearesbesneene e e ennenes 77

5.12 POINTER TO MEMBER TYPE ENTRIES.....ccietiiiiteeiteieeeeistesesseeessessssessssessssessssessssessssesssssssssssssssssssssssssnsssees 78
5.13 T I = = V1 1= 79
5.14 DYNAMIC TYPE PROPERTIEScteeiteieitee ittt esseeessesessessssessssessssessssessssessssessssesssssssssessssssssssssssssnsesssssssssens 79
L R B T - N o o 1 o 79
5.14.2 Allocation and ASSOCIAtiON SLALUS........c.eeceeriirerieeeiieecseeeseeeseeesseesseesssaesssaessabessssesssbesssessabesssessares 80
5.15 DVWVA R PROCEDURES........occttttiiiiiiiiiiiitiie s e s s sesbabe e s s e s s sestbabeeesesssas bbb e e esesssessabbaeseesssesbbbaseeesssesabbaneeasssaas 81
OTHER DEBUGGING INFORMATION ...ttt ettt sttt s s ae s s tas s saaessaesssnaessaassssnessnsassanessaeas 83
6.1 ACCELERATED ACCESS.....ccctttttietiiiiiittetiieseseiiibssteasssssissssssssesssasastasssesssasssssssssasssesssbsssessssssssssssssssesssssssnes 83
B.1.1 LOOKUP DY INGITIE.......cee ettt st b e bt b et e e e s e e be s b ebesaeese e e e neebe e 84
B.1.2 LOOKUD DY AQUIESS..... .ottt st b e ae b e e e b e s b e b e s et ebesaeebe e e e neanbesneas 85
6.2 LINE NUMBER INFORMATION .1ttiiiiiiiiittttiieseeeiiisssseeesesssassssssessesssassssssssssssasssssssssssssessssssssessssssasssssssssesssasssses 86
LS T2 R 1< 11 14 o 1 87
6.2.2 ate MaAChINE REGISIEN S .. e eieie it se ettt ettt e e e sr e tesaesre e e eseeeeseebesnestesneeseeneensesesrnas 87
6.2.3 Line Number Program INSITUCLIONScciveueieeierieriise e steseeseeseeseesaesresse e sseeeessessessessessessesssensesenns 89
6.24 TheLine NUMber Program HEAUENccceeueeeeierieri e stes e eee e e e st e e e e snestesneeneeneeneeneesnens 89
6.25 The Ling NUMDEr PrOQIaMccveiieriesieseiesteseeieseestestesaessesseeseessessesaessessessesssesssssesssssessessesseensensessens 92
5.3 MACRO INFORMATION ...veiiiteeiresisteeitesessesssesessessssessssessasessssessssessssessssessssessssessssessasessssessssesssssssasesssessasenssns 98
LS 0t R |V = Tor T g (o T 1Y oSSR 99
D.3.2 BaSE SOUIMCE ENIIIES ... eeeii ettt ettt sttt e ettt e e et e s s st e e s s et a e e s sba e e s s ssbeeesebbessssaneesssbenesasenessananes 100
6.3.3 Macinfo Entries for Command Ling OPtiONS.........ccoverueiirererieeeriese et ee e 101
6.3.4 General RUIES QN RESITICLIONS.coccuieiiiieie et cetee e e s et e e s s e e e s s s st e e s s esbae e s sbaeeessabeeessseesssenanes 101
6.4 CALL FRAME INFORMATION .1tttiiiiiiieettrteitessiesisssssstesssesssssssssesssesasssssssssssssassssssssssssssssssssssssesssssssssssseesssssssnns 102
6.4.1 Structure of Call Frame INfOrMatioNc.ooieeiiiiiiie et stes et s s e s sb s sreessbesssreeeans 103
6.4.2 Call Frame INSLIUCHIONS......ccccveiiiteeiieeeeteecee et eecetee e st eeestesssbessbesssbessbesssbessbesssbessbesssbessasenssssessssnesns 107
6.4.3 Call Frame INStrUCtiON USAQE.......ceieiviriereieeereee e st st e e e et saesre e eae e saestesnesresneeneeneessensenes 111
DATA REPRESENTATION ...ttt ittt see et e s st s s st essbesssbesssbessbessaaessabessssessabessssesssbesssenssssensarens 113
7.1 VENDOR EXTENSIBILITY 1oiieteeietieieteeetesissesstessssesssessssesssessssessssessssesssessssessssessasessssessssessssessssessssessssessssesn 113
7.2 RESERVED VALUESccitiiiitieiteseeteestessstessabessssessabessasessabessasesssbesssessasesssessabesssessnsessnsessnsessnsessnsessssessnsens 114
A O = 4 0T gAY 110 1= 114
7.2.2 INitial LENGIN VAIUBS.......couiiiie ettt ettt sttt se bbb s e e e e e e b e 114
7.3 EXECUTABLE OBJECTS AND SHARED OBUJIECTS...uuiiiiiiiiiittieiieseieiiisrsstiesessisssssssesessssssssssssesssssssssssssesssssssnes 115
7.4 32-BITAND B4-BIT DWARF FORMATS ...oci it iiititiiee ettt e e s e sttt e s s s st esabbb b e e s s s s s ssbabaeeseessessssbbsseeassessnses 115
7.5 FORMAT OF DEBUGGING INFORMATION ...iciiiiitttteiiesiiesitbsstiesssesssssssssesssssasssssssssssssssssssssssssssssssssssssesssssssnns 117
751 Compilation UNit HEAAEcoiiiii ettt bbb e 118
7.5.2 Debugging INfOrmation ENEIYcceeeeieieiise et ene e e e 119
7.5.3 ADDIreViatioNS TADIES.......cceeiciei ettt s e st st e s st e s sabe s sabessabessabessbesssatessneeesns 119
83 S 1] o101 (= o o [o P 120
7.6 VARIABLE LENGTH DATA ettt ittt ettt e stee st s e teessbe s s e bee s be s s sbesssbesssseessbesssaeessbesesseessstessaeessbbessnnessnrens 134
7.7 DWARF EXPRESSIONS AND LOCATION DESCRIPTIONSciiitiiiteiesseeeresessesesesessessssesessessssessssessssessssessssenes 136
771 DVWWARF EXPDIESSIONS. ...ceiiteiteeteeueeeeteseesteseeatesseaseaeessessesseasesaeaneasansasseseessesseassensasessessessesnsansessesseses 136
T7.7.2 LOCALION EXPrESSIONSeitiitiitieieeieie st ste sttt e e etesee st e sbesaeeae s e e abeseesbesaeebeeae e e anbesbeabesaeabeeseeneenseseenbesae 140
R T o o= o g T = £ RTR 140
7.8 BASE TYPE ENCODINGS.......utttiiiieiiiiiitteeiieeiiesisbsettesssasisbssssesssessssbssssesssssssssssssesssssasssssessesssesssssssesesssesssnes 140
7.9 ACCESSIBILITY CODEScccituttitieiiiiiitttiitessiesiabseetesssasssbasttasssasssbssssasssssassbasaresssssassbaseeesesssassbasesesesssasssres 141
7.10 A LS 1= Tl 10 0] =S TR 142

Pagev Draft 7 October 29, 2001

7.11 VIRTUALITY CODES....eutiterueeueeutestestesteasessesseeseenseseseessessessesseeseessessessesaeabessesseesee s enseseearenbeabeaseennennesrennes 142

7.12 SOURCE LANGUAGES. ... ceeittieitee ittt eiteesiteeasseestesasseestesaaseesssesasseesntesansessnsessnsessnsessssessnsessssessnsessnsessnsenn 142
7.13 ADDRESS CLASS ENCODINGSuvteittieiteeiiteesteesteesseestesssesssesassesssessssessssessnsessssessssessssesessessssssenseessses 144
7.14 L N N 144
7.15 CALLING CONVENTION ENCODINGS.....cccttiiitieiititeiieecites e sieeesteeesaeeestaeesseesssaeesnseesnseesaseessseesnsessnsessnsessnnes 144
7.16 INLINE CODES......eiiitteiteteiteeeitesesteeetesasseesstesasseesstesaaseesstesansessstessaseesntesaaseesatesanseesatessseesasessnsessnsessnsessnses 145
7.17 ARRAY ORDERING ... ceeeiitiieieitteeeiittteaaatteeesatsseeesasataaaasteeesaasseessassesaaassesesassssassassssssastesesassssessnsesssssesesanns 145
7.18 DISCRIMINANT LISTS .. iiiieiiiiee e et eeeeette e e eete e e e e st et e e e ette e e seaseeeesabeeeaasseeesasseeassaseeaaansseeesassesassnsseasansseeesnnns 146
7.19 NAME LOOKUP TABLES......ccicuttteeittieeeiteeeeeteeeestaeeeassteeassssseaesasseeaaasesasaassesasassesasaassesssassssasassssasansseeasans 146
7.20 ADDRESS RANGE TABLE.....ccuttitiiitiiee ettt e e ettt e setteeeeeteeeeeasteeesasseeaaaateeeesassesasassesasassesesasssssssssesassassesasnns 147
7.21 LINE NUMBER INFORMATION ..ccciiuttteieitteieeeteeeeiteeeeaasteeesasseassasseseaasesesasssesssassssesasssssssnssssessnsssesansseeesans 147
7.22 MACRO INFORMATIONeeiiiiuiieeeitteeeesteeeseseeeestaeesaasseeesasseaeaassesaaassssasaassesasasseeasasseasaassesassnsssasansseeasans 150
7.23 CALL FRAME INFORMATION ...uveeiteteiteeeteeesseessteeessesessesesssssssssesssssssssesssssssssessssssssessnsessssessnsessssessnsessnsens 150
7.24 NON-CONTIGUOUS ADDRESS RANGESuciiiieitiieiteesteeesieessteeesseeesteeesaeeestaeesseesstaeesseesssaeessaesssesesseesssns 152
7.25 DEPENDENCIES AND CONSTRAINTS ...tetteeteteiteeeteeesseeetesessesessesesseesssesesssssssesesssssssesesssssssssessessssssessessssns 153
7.26 INTEGER REPRESENTATION NAMESutiiitiiiiieeteeesteeeteeesteessteeesseeesteeessaeessasesssesssesesseesssssessessssesenseesssns 154
APPENDIX A -- ATTRIBUTESBY TAG VALUE (INFORMATIVE) ..oiiiiieie st 155
APPENDIX B -- DEBUG SECTION RELATIONSHIPS (INFORMATIVE) .ooveeeeeeresese et 173
APPENDIX C -- VARIABLE LENGTH DATA: ENCODING/DECODING (INFORMATIVE)cccoueuee. 177
APPENDIX D -- EXAMPLES (INFORMATIVE)...c ettt st s s e 179
D.1 COMPILATION UNITSAND ABBREVIATIONS TABLE EXAMPLE........coiiiitiiiieiiee e cttee et eeteee et e et 179
D.2 AGGREGATE EXAMPLES......coii ittt e iiieee e ettt e eette e e s et e e e e tte e e sesee e e sbeeeaeaateeesaaseeessabaeesasteeesasseeesasteeesansreessnnens 181
D.2.1 FORTRAN 90 EXAMPLE ... it ictiee ettt e ettt e e etee e e ettt e e et e e e s eab e e e e eabaeeeeaseeesaabeeesasteeeeanseeasasbeeesansseeeannnns 181
B AN 7N g N = I 187
D.3 NAMESPACE EXAMPLEScccte ittt i stee sttt esteesteessteestesssseestessaseesatesaaseesatesaseesntessseesntesasessnsessseesnsessnsessnses 190
D.4 LINE NUMBER PROGRAM EXAMPLEuciiiiiiitiieieesiteeesteessteeesseeesteeesaeesssesesssesssesenseesssasensessssssensensssssensenssnns 193
D.5 CALL FRAME INFORMATION EXAMPLE.......cciiiiiieeiiteeeseessteeesteessteeesaeeestesesseeestesesseesssasenseessseeesseesssesessenssnns 195
D.6 INLINING EXAMPLES.....ceittttiitteeiteeeiteesiteeesseestesssseesstesaaseesstessasessntesansessasessnsessnsessnsessnsessnsessnsessnsessnsessnsessnses 199
D.6.1 ALTERNATIVE#L: INLINEBOTH OUTER AND INNER.......c.coiiiiiiieit et 200
D.6.2 ALTERNATIVE#2: INLINE OUTER, MULTIPLE INNERS........cctiiiiee ettt et 203
D.6.3 ALTERNATIVE #3: INLINE OUTER, ONENORMAL INNERooiiiiiiee et 206
APPENDI X E -- DWARF COMPRESSION AND DUPLICATE ELIMINATION (INFORMATIVE) 209
I A O AV = =V =Y OSSPSR 209
E.2 NAMING AND USAGE CONSIDERATIONSccciittiieiiutieeeiteeeeaisteeesatseeesateeesassseeesasseessassssesssssesesasssessassssessnsees 211
E.21 SECTION GROUP NAMES.... ...ttt iiieeeeitteeeeitteeeseateeesiteeesaassesesasseeasabseaeaassesasassasesasseasaasseeasasseeesasseessnsens 212
E.2.2 DEBUGGING INFORMATION ENTRY NAMEScoiiitiiiieiitereieeeiteeeseeestesesseesssesesseesssasessessssessssessssesessesssnns 212
E.23 UseoFDW_TAG_COMPILE_UNIT VERSUSDW_TAG_PARTIAL_UNIT coveieeiererieeseeseeeneeeneneeesnensneens 213
E.24 USEOFDW_TAG IMPORTED _UNIT..uciiiisierteesteserseesseesseesssesseesssssesssesssesssesssesssssssssessssessesssesssesssssenss 214
E.25 USEOFDW_FORM _REF ADDR ...ciictistiesteesteetesseeseesseesseesssesseessessssssesssesssesssesssesnsssssssseessesssesssesssesanss 214
TG T e 1 = = 7S 215
G 0t R Ol TN Y = I =S ST PRRRO 215
E.3.2 FORTRAN EXAMPLE.......ttiiieiiei e i ceeee e ettt e e et e e ettt e e e st e e e e e see e e sbeeeaeaabeeesaaseeessabaeesansteeessseeesasteeesansreessnnens 218
G T T O T\ 1Y 1= I =SOSR PROTPRRO 221

Page vi Draft 7 October 29, 2001

E4 SUMMARY OF COMPRESSION TECHNIQUES.cveveveereeeeseeosseseseseseseeseseeeessesesessesesesesssesesessesesesessessesesesssnees 222

E.4.1 HINCLUDE COMPRESSIONuceiteesriereesriaseesseessesressessesseesseesseesssssssssesssessesssesssesssssnnssnssseessesssesnsesnseseess 222
E.4.2 ELIMINATING FUNCTION DUPLICATION ..cttitteterueeueesessessessessesseessessessessessessesseessessessessessessessssssensessensessens 222
E.43 SINGLE-FUNCTION-PER-DWARF-COMPILATION=UNIT .eoitiitirieeuienessenreseessesseeseessessessesnessesseeseessessensesnens 222
E.4.4 INLINING AND OUT-OF-LINE-INSTANCES.....cccttrrtrrereerseesneesseesseeresseesseessesssesssesnssnssnessneessesssessesnseseens 223

Page vii Draft 7 October 29, 2001

List of Figures

FIGURE L. TAG NAMES .. etiiiiiiiitttteiiesiiesiitbasttesssesisbasesesssasaabbasesaassesab b e seeesssesasbba b seesess s b babeeesesssansbabeeeseessasbabanesesssassssres 6
FIGURE 2. ATTRIBUTE NAMES. .. utttitiiiiiiiittteiesesiiisisssseesesssasissbasssssssasssssssssssssssssssssssssesssssssssssssesssassssesssesssossssresseessesis 11
FIGURE 3. CLASSES OF ATTRIBUTE VALUE...ciiiiiiiiittiiiies i ieiiibatties s s e ssibaseeessssssssbasssssessssassstssssssssssssbssssesssssssssssssessesss 12
FIGURE 4. ACCESSIBILITY CODES ...iiiiiiiiittttieeieeiiisisstsettesssasissbsstsssssesssssssssssssssssssssessesssesssssssssesssosssssssssesssossssrssseesseanns 26
FIGURE 5. VISIBILITY CODESeeeiiuteieieitteeeieseeesiseeesasssesssessesesssesesasssesssasssssssssssesssssesssasssssssssssesssssesssassesssssssssessssenesen 26
FIGURE 6. VIRTUALITY CODES.......uteieieitteteiiteeesiseeesassseessassesssssesesasstesesassssssssssesasstesssasssssssnsssesssssesssassssssssssssssssseresn 27
FIGURE 7. EXAMPLE ADDRESS CLASS CODES.......uttieiiitereieiteeesiisseeseatesesasssessssssssssassesessssssssssssssssssssssssassessssssssesssssesees 28
FIGURE 10. CALLING CONVENTION CODESeeiiiveieeiistereiesseeessssseessatesesasssessssssssssassssesassssssssssssssssssssssassessssssssesssssesees 44
FIGURE 11, INLINE CODES.......uuteeiiteteeeitteeeiaseessiseeesasssesesasssesssesesasstesssassessssnsesesasstesssasssssssasesesssssesssassessssssnsesssseneeen 49
FIGURE 12. ENCODING ATTRIBUTE VALUEScciiittieeiitteeeieiteeeesiteeesssstesesassessssssssssasesssasssessssssssssssssssssassessssssssesssssenes 62
FIGURE 13. TYPE MODIFIER TAGS ...iiiiiiiiittttieieeiiasittesttesssasissbastsesssesssssssssessssssssssssessssssesssssssssesssossssssssesssessssrasseesseasns 63
FIGURE 14. ARRAY ORDERING ... uuttiiiiiiiiittttietesiiisisstssetesssasissbsstsesssessssssssessssssssssssessesssessssssssesssossssesssesssossssresseessesis 65
FIGURE 15. DISCRIMINANT DESCRIPTOR VALUES.....utttiiiiiiiiittiriieseiiiiibsssiesssssssissssessessssssssssssesssssssssssssesssssssssssssssssss 74
FIGURE 16. TAG ENCODINGS. ... uututitiiiiiiittertieseseiiissstessssssssssssesessssiasissssssssssiasisssssssesssamisssssesesssemssrssseesssomsssssseesssni 127
FIGURE 17. CHILD DETERMINATION ENCODINGSuutiiiiiiiiiiitriieiesiiisisstseetesssssssssssssssssesssssssssssssssssssssssesssssssssssseesssss 128
FIGURE 18. ATTRIBUTE ENCODINGSuuutttiiiiiiiiiiitriieseseiasissssresesssssisssssssesssssisssssssssssssissssssssssesissssseeessssisssssessesss 132
FIGURE 19. ATTRIBUTE FORM ENCODINGS......ccceiueieiitteeeeiitereeesssesesssseesssssesssassssssssssssssassessssssssssssssssssassessssssssssssssesees 134
FIGURE 20. EXAMPLES OF UNSIGNED LEB 128 ENCODINGS.......uutiiictieeeiieieeesseeeeissseesesterssesssesssssseesssssesessssssssssseeees 135
FIGURE 21. EXAMPLES OF SIGNED LEB128 ENCODINGS.......ccceittieiiteeeeeitereeessseeesesseesssserssssssesssssssssssssesessssssssssseeees 135
FIGURE 22. DWARF OPERATION ENCODINGSvveiiiotteeeiiteieeesstesesssseesssseresasssssssasssessassessssssssssssssssssassessssssssssssssesees 139
FIGURE 23. BASE TYPE ENCODING VALUES.cciiitteieietteeeeeteeeeesstesssesseesssbesssesssesssasssessasessssssssssssssssssassesssssssssssssesees 141
FIGURE 24. ACCESSIBILITY ENCODINGS....uuttiiiiiiiiiitariieseseiisissseresesssssisssssstesssssissssssssssssiisssssssssesissssseeessssimsssseeseen 141
FIGURE 25. VISIBILITY ENCODINGSccttttiietiiiiiiitttiieseseissiasssessissssssesssssssssssssessesas 142
FIGURE 26. VIRTUALITY ENCODINGS......uuttttieiiiiiiiiturteeseseiisisssesesesssssisssssstesssssisssssssssssssissssssssssesimssssseeessssimsssssessesn 142
FIGURE 27. LANGUAGE ENCODINGSuuttttiieieiiiiiitesiieseseississssesesssssissseesssssssssssssessesas 143
FIGURE 28. IDENTIFIER CASE ENCODINGS....cceiiiiiiittttieteeeiisibareeesssssssisssssssessssssssssssssssssssssssssssssssssssssseessssssssssssessesns 144
FIGURE 29. CALLING CONVENTION ENCODINGS. ... ututiiiieiiiiituriietessiisisssseeiesssasissssstssssessssssssssssessssssseesssssinssssseesesnn 144
FIGURE 30. INLINE ENCODINGS......uueiiiiteeeeiteeeeeseesesesseessasesssassessssasssesssssesssasssssssssesesasssessssssssessssesssasssssssssssssssssesesan 145
FIGURE 31. ORDERING ENCODINGS.......uueeeeiitereeeitereiaseessisseresassesssasssessasseresassssssssssessassessssssssssssssssssassesssssssssesssserees 145
FIGURE 32. DISCRIMINANT DESCRIPTOR ENCODINGS.....c.ccvtieieiuteeeiereeeeesteresesssesssasssessssesssassssssssssssssassersssssssssssssseees 146
FIGURE 33. LINE NUMBER STANDARD OPCODE ENCODINGS.......cccictieeiiteieceirtee e seteeeeesteeesessseesssseeesssssesesssesssssseeeees 148
FIGURE 34. LINE NUMBER EXTENDED OPCODE ENCODINGS.cciiiieieeeiteeeeeiteeeeseteeesesteeesesssesssssseesssssesessssessssssseeses 149
FIGURE 36. MACINFO TYPE ENCODINGS.......oeeiiiiteieiiieeeeiiteeeeesteeesesseesssbeeesesssesssasssessasesssssssessssssesssassesessnsssssssserees 150
FIGURE 37. CALL FRAME INSTRUCTION ENCODINGScciiiittriieteiiiisisireeitesssesisssssstesssessssssssssssesssssssseessssssssssssseesesas 152
FIGURE 38. INTEGER REPRESENTATION NAMESuuutiiiiiiiiiiittiiie e s s sesibabiees e s s s ssasbaeesssssessssbsssessssessssbssssesssssssssssseesesans 154
FIGURE 39. ATTRIBUTES BY TAG VALUE ..utiiiiiiiiiiittiiee e e e sttt e es e s st ssbabte et s s s s sssasbasasaassessasbasssesssessssbbsseeesssssasbasseasesans 172
FIGURE 40. DEBUG SECTION RELATIONSHIPS.uuutttiiiieiiiiiitirtietessississssestesssssssssssssssssesssssssssssssssssssssssessssssssssssessesas 174
FIGURE 41. ALGORITHM TO ENCODE AN UNSIGNED INTEGER....cc.cciittitttieiieeiiiiistseeiesssesisssssseesssesssssssssesssssssssssssessssans 177
FIGURE 42. ALGORITHM TO ENCODE A SIGNED INTEGERcceeetueeeiitereeeitereeesssesssssseessssesesessssssssssssssassesesssssssssssseeees 177
FIGURE 43. ALGORITHM TO DECODE AN UNSIGNED LEB128 NUMBERccccevtieeiteeeeeeirereeeieeeeesveeesessresessseesssnseeees 178
FIGURE 44. ALGORITHM TO DECODE A SIGNED LEB 128 NUMBERceciitiiiieitteeeiteeeeeesteeeeesssessssseeesesssessssssesssnsseees 178
FIGURE 45. COMPILATION UNITS AND ABBREVIATIONS TABLE ...eeiiittieeeitteeeceteeeeseteeeeessteeeeesssessssseessassesessssesssssseeees 180
FIGURE 46. FORTRAN 90 EXAMPLE: SOURCE FRAGMENTveiiieiuteeeiiteeeeesteresesssesssssseesssssesssassssssssssssssassesesssssssssseeees 181
FIGURE 47. FORTRAN 90 EXAMPLE: DESCRIPTOR REPRESENTATION ...ceciittereieireeeeieseeeeessrereeasssessssssrsssssesessssssssssssseees 182
FIGURE 48. FORTRAN 90 EXAMPLE: DWARF DESCRIPTIONcciiiiiiiiititiiiieeeiisiitrieeeesssessisbssesesssessssbssssssssssssssssssessssans 185
FIGURE 49. ADA EXAMPLE: SOURCE FRAGMENT .. .uuttiiiiiiiiiiittiiesessiisissssestesssasssssssssssssesssssssssssssesssssssssessssssssssssessesas 187

Page viii Draft 7 October 29, 2001

FIGURE 50. ADA EXAMPLE: DWARF DESCRIPTIONuciueeueetersistestessesseeseesessessessessessessssssessessessessessessesnsessessessessenns
FIGURE 51. NAMESPACE EXAMPLE: SOURCE FRAGMENTouviiueesreesreereeresneseeseesseesneesneesnesnnessessneesseessesssesssesnsssnnes
FIGURE 52. NAMESPACE EXAMPLE: DWARF DESCRIPTION

FIGURE 53. LINE NUMBER PROGRAM EXAMPLE: MACHINE CODE
FIGURE 54. LINE NUMBER PROGRAM EXAMPLE: ONE ENCODING

FIGURE 55. LINE NUMBER PROGRAM EXAMPLE: ALTERNATE ENCODINGcceeuveeeiteeeeeetrereeesseeesssseeesessresssssssssssseness 194
FIGURE 56. CALL FRAME INFORMATION EXAMPLE: MACHINE CODE FRAGMENTSciiiittiriieeeiesiirrrriee s s e ssssssseesesans 196
FIGURE 57. CALL FRAME INFORMATION EXAMPLE: CONCEPTUAL MATRIX ..ciiviutriiiieeiiesiirsreiesssesssssssseessssssssssssesssssns 196
FIGURE 58. CALL FRAME INFORMATION EXAMPLE: COMMON INFORMATION ENTRY ENCODING.....ccvvieeieeiiirrrrieeeeenn 197
FIGURE 59. CALL FRAME INFORMATION EXAMPLE: FRAME DESCRIPTION ENTRY ENCODINGcccovvtiieeeeeiiirrreeeeeeenn 198
FIGURE 60. INLINING EXAMPLES: PSEUDO-SOURCE FRAGMENTcciiiitttiiiieeiiisittieesesssessssbssssesssessssssssessssessssssssessssans 199
FIGURE 61. INLINING EXAMPLE #1: ABSTRACT INSTANCE ...utttiiiiiiiiiiititiiiieesississbeeeeesssesssssssssssssesssssssssesssssssssssssessssas
FIGURE 62. INLINING EXAMPLE #1: CONCRETE INSTANCEccceiutiieiiteeeeeiteeeeesstesssesseessssteresesssesssssssessassesessssssssssseeees
FIGURE 63. INLINING EXAMPLE #2: ABSTRACT INSTANCE ...

FIGURE 64. INLINING EXAMPLE #2: CONCRETE INSTANCEceeiutiieietteeeeiteeeeesseesssesseesssstesssesssesssssssessassesesssssssssseeees
FIGURE 65. INLINING EXAMPLE #3: ABSTRACT INSTANCEoeieittiieiteieeeitteeeeesseeesseseeesesstesssesssesssssseessasesesssssssssssseeees
FIGURE 66. INLINING EXAMPLE #3: CONCRETE INSTANCEceeiutiieiitteeeesteresesseeessssseesssssesesessssssssssssssassesessssssssssseeees
FIGURE 67. DUPLICATE ELIMINATION EXAMPLE #1: CH+ SOURCE ...eeeiiiuteiiieteee e cteeeeeeiteeeeesaeeesssveeesessseeessnnseessnseeees 215
FIGURE 67. DUPLICATE ELIMINATION EXAMPLE #1: DWARF SECTION GROUP.......ccciiiiitiriiee e siiirrreee s sissseees e 216
FIGURE 68. DUPLICATE ELIMINATION EXAMPLE #1: PRIMARY COMPILATION UNIT....ciiiiiuririieeiieiiirnreieeseessssssseeseesans 217
FIGURE 69. DUPLICATE ELIMINATION EXAMPLE #2: FORTRAN SOURCEcooiitttiiiieeeiesiitireie s s sessibsseeessssssssssssesssssns 218
FIGURE 70. DUPLICATE ELIMINATION EXAMPLE #2: DWARF SECTION GROUP.......ccciiiiitiriiee e siitrrieee s e e sissseeese e 219
FIGURE 71. DUPLICATE ELIMINATION EXAMPLE #2: PRIMARY UNIT ..utttiiiieiiiiiiiiieiieeeiesissrsseiesssessssssseesssssssssssssesssssns
FIGURE 72. DUPLICATE ELIMINATION EXAMPLE #2: COMPANION SOURCEvvviiiiteieeeirereeeiseeesssseeesesssessssssessssnsenees

FIGURE 74. DUPLICATE ELIMINATION EXAMPLE #2: COMPANION DWARF

Page ix Draft 7 October 29, 2001

FOREWORD

This document specifies athird generation of symbolic debugging information based on the
DWAREF format that was developed by the UNIX International Programming Languages Specia
Interest Group (SIG). The specifications presented are informally named "DWARF Version 3";
they are upward compatible with the UNIX International DWARF Debugging Information
Format Revision: 2.0.0 (July 27, 1993) with very minor exceptions that are believed to be of no
practical consequence.

This document isintended to be usable in online as well as traditional paper forms. In the online
form, blue text is used to indicate what are commonly called "hyperlinks® or "hot links"; these
facilitate moving around in the document in a manner like that typically found in web browsers.
The Table of Contents also provides hyperlinks to the respective sections.

In the traditional paper form, the appearance of the hyperlinks on a page of paper does not
distract the eye because the blue hyperlinks are typically imaged by black and white printersin a
manner indistinguishable from other text. (Hyperlinks are not underlined for this same reason.)
Page numbers, a Table of Contents and an Index appropriate to a paper document are availablein
both forms.

Page x Draft 7 October 29, 2001

1 INTRODUCTION

This document defines the format for the information generated by compilers, assemblers and
linkage editors, that is necessary for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. Instead, the goal isto
create a method of communicating an accurate picture of the source program to any debugger in
aform that is extensible to different languages while retaining backward compatibility.

The design of the debugging information format is open-ended, allowing for the addition of new
debugging information to accommodate new languages or debugger capabilities while remaining
compatible with other languages or different debuggers.

1.1 Purpose and Scope

The debugging information format described in this document is designed to meet the symbolic,
source-level debugging needs of different languages in a unified fashion by requiring language
independent debugging information whenever possible. Individual needs, such as C++ virtual
functions or Fortran common blocks are accommodated by creating attributes that are used only
for those languages. This document is believed to cover most debugging information needs of C,
C++, Fortran, Modula2 and Pascal; it also covers the basic needs of various other languages.

This document describes DWARF Version 3, the third generation of debugging information
based on the DWARF format. DWARF Version 3 extends DWARF Version 2 in an upwardly
compatible manner to add improved language support for several languages. DWARF Version 3
retains the DWARF Version 2 style of representation. It adds an additional format that is able to
accommodate DWARF descriptions that exceed 4 GBytes in size. This new format may be
attractive for use with large applications on computer systems that support 64-bit addresses.
(DWARF Version 3 is not needed to support 64-bit addresses as such; DWARF Version 2 is
aready sufficient for that.)

The intended audience for this document is the developers of both producers and consumers of
debugging information, typically language compilers, debuggers and other tools that need to
interpret a binary program in terms of its original source.

1.2 Overview

There are two major pieces to the description of the DWARF format in this document. The first
pieceistheinformational content of the debugging entries. The second piece is the way the
debugging information is encoded and represented in an object file.

The informational content is described in sections two through six. Section two describes the
overall structure of the information and attributes that is common to many or all of the different

Page 1 Draft 7 October 29, 2001

debugging information entries. Sections three, four and five describe the specific debugging
information entries and how they communicate the necessary information about the source
program to a debugger. Section six describes debugging information contained outside of the
debugging information entries. The encoding of the DWARF information is presented in Section
seven.

This organization closely follows that used in the DWARF Version 2 document. Except where
needed to incorporate new material or to correct errors, text from the DWARF Version 2 text is
generally reused in this document with little or no modification.

In the following sections, text in normal font describes required aspects of the DWARF format.
Text initalicsis explanatory or supplementary material, and not part of the format definition
itself. The several Appendices all consist only of explanatory or supplementary material, and are
not part of the formal definition.

1.3 Vendor Extensibility

This document does not attempt to cover al interesting languages or even to cover al of the
interesting debugging information needs for its primary target languages (C, C++, Fortran,
Modula2, and Pascal). Therefore, the document provides vendors a way to define their own
debugging information tags, attributes, base type encodings, |ocation operations, language
names, calling conventions and call frame instructions by reserving a portion of the name space
and valid values for these constructs for vendor specific additions. Vendors may also use
debugging information entries and attributes defined here in new situations. Future versions of
this document will not use names or values reserved for vendor specific additions. All names and
values not reserved for vendor additions, however, are reserved for future versions of this
document.

1.4 Changes from Version 1 to Version 2

DWARF Version 2 describes the second generation of debugging information based on the
DWARF format. While DWARF Version 2 provides new debugging information not available in
Version 1, the primary focus of the changes for Version 2 is the representation of the
information, rather than the information content itself. The basic structure of the Version 2
format remains asin Version 1: the debugging information is represented as a series of
debugging information entries, each containing one or more attributes (name/value pairs). The
Version 2 representation, however, is much more compact than the Version 1 representation. In
some cases, this greater density has been achieved at the expense of additional complexity or
greater difficulty in producing and processing the DWARF information. The definers believe
that the reduction in 1/0O and in memory paging should more than make up for any increase in
processing time.

Page 2 Draft 7 October 29, 2001

The representation of information changed from Version 1 to Version 2, so that Version 2
DWAREF information is not binary compatible with Version 1 information. To make it easier for
consumers to support both Version 1 and Version 2 DWARF information, the Version 2
information has been moved to a different object file section, . debug_i nf o.

A summary of the major changes made in DWARF Version 2 (published July 27, 1993)
compared to the DWARF Version 1 (published January 20, 1992) may be found in the DWARF
Version 2 document.

1.5 Changes from Version 2 to Version 3

Thefollowing isalist of the major changes made to the DWARF Debugging Information
Format since Version 2 of the format was published (July 27, 1993). The list is not meant to be
exhaustive.

* Provision ismade for DWARF information that requires more than 4 GBytes to represent.
» Attributes can refer to debugging information entries in other shared libraries.

* More complete support is added for Fortran 90 modules as well as allocatable array and
pointer types.

» Additional base types are added for C (as revised for 1999).
* Some support is added for Java.
» Namespace support is added for C++.

* Anoptiona section is added for global type names (similar to the global section for objects
and functions)

» UTF-8isadopted asthe preferred representation of program name strings.

* Improved support is added for optimized code (discontiguous scopes, end of prologue
determination, multiple section code generation).

* Ability to eliminate duplicate DWARF information during linking.

Page 3 Draft 7 October 29, 2001

1.5.1 Upward Compatibility
DWARF Version 3is structurally upward compatible with DWARF Version 2 except as follows:

» Certain very large values of the initial length fields that begin DWARF sections as well as
certain structures are reserved to act as escape codes for future extension; one such extension
is defined to increase the possible size of DWARF descriptions (see Section 7.4).

* Referencesthat use the attribute form DW_FORM _ref _addr are specified to be four bytesin
the DWARF 32-bit format and eight bytes in the DWARF 64-bit format, while DWARF
Version 2 specifies that such references have the same size as an address on the target system
(see Sections 7.4 and 7.5.4).

Page 4 Draft 7 October 29, 2001

2 GENERAL DESCRIPTION

2.1 The Debugging Information Entry

DWARF uses a series of debugging information entries to define alow-level representation of a
source program. Each debugging information entry is described by an identifying tag and
contains a series of attributes. The tag specifies the class to which an entry belongs, and the
attributes define the specific characteristics of the entry.

The set of required tag namesislisted in Figure 1. The debugging information entries they
identify are described in sections three, four and five.

The debugging information entry descriptionsin Sections three, four and five generally include
mention of most, but not necessarily all, of the attributes that are normally or possibly used with
the entry. Some attributes, whose applicability tends to be pervasive and invariant across kinds
of debugging information entries, are described in this Section and not necessarily mentioned in
all contexts where they may be appropriate. Examplesinclude DW_AT _artificial, the declaration
coordinates, and DW_AT_description, among others.

The debugging information entriesin DWARF Version 3 are intended to exist in the
. debug_i nf o section of an object file.

Page 5

DW _TAG access declaration
DW_TAG array type
DW_TAG base type
DW_TAG catch block
DW_TAG class type
DW_TAG_common_block
DW_TAG_common_inclusion
DW_TAG compile unit
DW_TAG const_type
DW_TAG_constant

DW _TAG dwarf procedure
DW_TAG entry point
DW_TAG_ enumeration type

Draft 7

DW_TAG_enumerator
DW_TAG file type
DW_TAG formal parameter
DW _TAG friend

DW_TAG imported declaration
DW_TAG imported module
DW_TAG imported_unit
DW_TAG inheritance
DW_TAG .inlined subroutine
DW_TAG interface type
DW_TAG label

DW_TAG lexica block
DW_TAG_member

October 29, 2001

DW_TAG module
DW_TAG mutable type
DW _TAG namelist
DW_TAG namédlist_item
DW _TAG namespace
DW_TAG packed type
DW_TAG partial_unit
DW_TAG pointer type
DW _TAG ptr to member_type
DW _TAG reference type
DW_TAG restrict_type
DW TAG set type

DW _TAG string type
DW _ TAG structure type
DW_TAG subprogram

2.2 Attribute Types

DW_TAG subrange type
DW_TAG subroutine type
DW_TAG template type parameter
DW_TAG template value parameter
DW_TAG thrown type
DW_TAG try block
DW_TAG typedef
DW_TAG union_type
DW_TAG unspecified parameters
DW _TAG unspecified type
DW _TAG variable
DW _ TAG variant
DW _TAG variant_part
DW_TAG voldtle type
DW_TAG with stmt

Figure 1. Tag names

Each attribute value is characterized by an attribute name. No more than one attribute with a
given name may appear in any debugging information entry. There are no limitations on the
ordering of attributes within a debugging information entry.

The defined attribute names and their related uses are listed in Figure 2.

Attribute

Identifies or Specifies

DW_AT abstract _origin

Inline instances of inline subprograms
Out-of-line instances of inline subprograms

Page 6

Draft 7 October 29, 2001

Attribute

Identifies or Specifies

DW_AT accessihility

C++ and Adadeclarations
C++ base classes
C++ inherited members

DW_AT _address class

Pointer or reference types
Subroutine or subroutine type

DW_AT alocated

Allocation status of types

DW_AT artificia

Objects or types that are not
actually declared in the source

DW_AT _associated

Association status of types

DW_AT base types

Primitive data types of compilation unit

DW_AT_bit_offset

Base type bit location
Data member bit location

DW_AT bhit_size

Base type bit size
Data member bit size

DW_AT byte size

Data object or datatype size

DW_AT_call_column

Column position of inlined subroutine call

DW_AT cal_file

File containing inlined subroutine call

DW_AT cdl line

Line number of inlined subroutine call

DW_AT _calling_convention

Subprogram calling convention

DW_AT_common_reference

Common block usage

DW_AT_comp_dir

Compilation directory

Page 7

Draft 7 October 29, 2001

Attribute

Identifies or Specifies

DW_AT const_vaue

Constant object
Enumeration literal value
Template value parameter

DW_AT_containing_type

Containing type of pointer to member type

DW_AT count

Elements of subrange type

DW_AT_data location

Indirection to actual data

DW_AT data member_location

Data member location
Inherited member location

DW_AT_decl_column

Column position of source declaration

DW_AT decl file

File containing source declaration

DW_AT decl line

Line number of source declaration

DW_AT declaration

Incomplete, non-defining, or separate entity
declaration

DW_AT_default_value

Default value of parameter

DW_AT_description

Artificial name or description

DW_AT discr

Discriminant of variant part

DW_AT discr_list

List of discriminant values

DW_AT _discr_value

Discriminant value

DW_AT_encoding

Encoding of base type

DW_AT entry pc

Entry address of module initialization
Entry address of subprogram
Entry address of inlined subprogram

Page 8

Draft 7 October 29, 2001

Attribute

Identifies or Specifies

DW_AT_extension

Previous namespace extension or original namespace

DW_AT_externa

External subroutine
External variable

DW_AT_frame _base

Subroutine frame base address

DW_AT friend

Friend relationship

DW_AT_high_pc

Contiguous range of code addresses

DW_AT identifier_case

Identifier caserule

Imported declaration
Imported unit

DW_AT_import Namespace alias
Namespace using declaration
Namespace using directive
DW AT inline Abstract instance

Inlined subroutine

DW_AT _is optional

Optional parameter

DW_AT_language

Programming language

DW_AT _location

Data object location

DW_AT low_pc

Code address or range of addresses

DW_AT lower bound

Lower bound of subrange

DW_AT_macro_info

Macro information (#define, #undef)

DW_AT name

Name of declaration
Path name of compilation source

Page 9

Draft 7 October 29, 2001

Attribute

Identifies or Specifies

DW_AT_namélist_item

Namelist item

DW_AT ordering

Array row/column ordering

DW_AT priority

Module priority

DW_AT_producer

Compiler identification

DW_AT_prototyped

Subroutine prototype

DW_AT ranges

Non-contiguous range of code addresses

DW_AT _return_addr

Subroutine return address save location

DW_AT_segment

Addressing information

DW_AT sibling

Debugging information entry relationship

DW_AT _specification

Incomplete, non-defining, or separate declaration
corresponding to a declaration

DW_AT start_scope

Inlined subprogram
Object declaration
Type declaration

DW_AT_gtatic _link

Location of uplevel frame

DW_AT stmt_list

Line number information for unit

DW_AT _stride

Array dimension stride (from enumeration)
Array dimension stride (from subrange)

DW_AT stride size

Array element stride (from array type)

DW_AT _string_length

String length of string type

DW_AT_trampoline

Target subroutine

Page 10

Draft 7 October 29, 2001

Attribute

Identifies or Specifies

DW_AT type

Type of declaration
Type of subroutine return

DW_AT upper_bound

Upper bound of subrange

DW_AT _use location

Member location for pointer to member type

DW_AT use UTF8

Compilation unit uses UTF-8 strings

DW_AT variable parameter

Non-constant parameter flag

DW_AT virtuality

Virtuality indication
Virtuality of base class
Virtuality of function

DW_AT visibility

Visibility of declaration

DW_AT vtable elem location

Virtua function vtable slot

The permissible values for an attribute belong to one or more classes of attribute value forms.
Each form class may be represented in one or more ways. For instance, some attribute values
consist of asingle piece of constant data. “ Constant data” is the class of attribute value that those
attributes may have. There are severa representations of constant data, however (one, two, four,
eight bytes and variable length data). The particular representation for any given instance of an
attribute is encoded along with the attribute name as part of the information that guides the

Figure 2. Attribute names

interpretation of a debugging information entry.

Attribute value forms may belong to one of the classes shown in Figure 3.

Page 11

Draft 7 October 29, 2001

Attribute

General Use and Encoding

Class

address Refers to some location in the address space of the described program.

block An arbitrary number of uninterpreted bytes of data.
One, two, four or eight bytes of uninterpreted data, or data encoded in the variable
length format known as LEB128 (see Section 7.6.).

constant
Most constant values are integers of one kind or another (codes, offsets, counts,
and so on); these are sometimes called * integer constants’ for emphasis.

flag A small constant that indicates the presence or absence of an attribute.

lineptr Refersto alocation in the DWARF section that holds line number information.

loclistotr Refersto alocation in the DWARF section that holds location lists, which

P describe objects whose location can change during their lifetime.

Refersto alocation in the DWARF section that holds macro definition

macptr . :
information.

. Refersto alocation in the DWARF section that holds non-contiguous address

rangelistptr
ranges.
Refers to one of the debugging information entries that describe the program.
There are two types of reference. The first is an offset relative to the beginning of

reference the compilation unit in which the reference occurs and must refer to an entry
within that same compilation unit. The second type of reference isthe offset of a
debugging information entry in any compilation unit, including one different from
the unit containing the reference.
A null-terminated sequence of zero or more (non-null) bytes. Datain thisform

string are generally printable strings. Strings may be represented directly in the

debugging information entry or as an offset in a separate string table.

Page 12

Figure 3. Classes of Attribute Value

Draft 7 October 29, 2001

2.3 Relationship of Debugging Information Entries

A variety of needs can be met by permitting a single debugging information entry to “ own” an
arbitrary number of other debugging entries and by permitting the same debugging information
entry to be one of many owned by another debugging information entry. This makes it possible to
describe, for example, the static block structure within a source file, show the members of a
structure, union, or class, and associate declarations with source files or source files with shared
objects.

The ownership relation of debugging information entriesis achieved naturally because the
debugging information is represented as atree. The nodes of the tree are the debugging
information entries themselves. The child entries of any node are exactly those debugging
information entries owned by that node.

While the ownership relation of the debugging information entriesis represented as a tree, other
relations among the entries exist, for example, a pointer from an entry representing a variable to
another entry representing the type of that variable. If all such relations are taken into account,
the debugging entries form a graph, not a tree.

Thetreeitself isrepresented by flattening it in prefix order. Each debugging information entry is
defined either to have child entries or not to have child entries (see Section 7.5.3). If anentry is
defined not to have children, the next physically succeeding entry isasibling. If an entry is
defined to have children, the next physically succeeding entry isitsfirst child. Additional
children are represented as siblings of the first child. A chain of sibling entriesis terminated by a
null entry.

In cases where a producer of debugging information feelsthat it will be important for consumers
of that information to quickly scan chains of sibling entries, while ignoring the children of
individual siblings, that producer may attach aDW_AT _sibling attribute to any debugging
information entry. The value of this attribute is areference to the sibling entry of the entry to
which the attribute is attached.

2.4 DWARF Expressions

DWARF expressions describe how to compute a value or name alocation during debugging of a
program. They are expressed in terms of DWARF operations that operate on a stack of values.

All DWARF operations are encoded as a stream of opcodes that are each followed by zero or
more literal operands. The number of operandsis determined by the opcode.

In addition to the general operations that are defined here, additional register name operations
(which are specific to location expressions) are defined in Section 2.5.1.

Page 13 Draft 7 October 29, 2001

In DWARF Version 2, all DWARF expressions were called "location expressions', whether they
computed a location (address, register) or not. Thisrevision defines DWARF expressions as the
primary concept, and then defines location expressions as DWARF expressions that are used to

compute or name a location.

2.4.1 General Operations

Each general operation represents a postfix operation on a simple stack machine. Each element
of the stack isthe size of an address on the target machine. The value on the top of the stack after
“executing” the DWAREF expression is taken to be the result (the address of the object, the value
of the array bound, the length of a dynamic string, and so on).

2.4.1.1 Literal Encodings
The following operations al push a value onto the DWARF stack.

1. DW_OP._lit0, DW_OP._lit1, ..., DW_OP_lit31
The DW_ORP_litn operations encode the unsigned literal values from O through 31, inclusive.

2. DW_OP_addr
The DW_OP_addr operation has a single operand that encodes a machine address and whose
sizeisthe size of an address on the target machine.

3. DW_OP _constlu
The single operand of the DW_OP_const1u operation provides a 1-byte unsigned integer
constant.

4. DW_OP_constls
The single operand of the DW_OP_const1s operation provides a 1-byte signed integer
constant.

5. DW_OP_const2u
The single operand of the DW_OP_const2u operation provides a 2-byte unsigned integer
constant.

6. DW_OP_const2s
The single operand of the DW_OP_const2s operation provides a 2-byte signed integer
constant.

7. DW_OP_const4u
The single operand of the DW_OP_const4u operation provides a 4-byte unsigned integer
constant.

Page 14 Draft 7 October 29, 2001

8. DW_OP_const4s
The single operand of the DW_OP_const4s operation provides a 4-byte signed integer
constant.

9. DW_OP_const8u
The single operand of the DW_OP_const8u operation provides an 8-byte unsigned integer
constant.

10. DW_OP_const8s
The single operand of the DW_OP_const8s operation provides an 8-byte signed integer
constant.

11. DW_OP_constu
The single operand of the DW_OP_constu operation provides an unsigned LEB128 integer
constant.

12. DW_OP_consts
The single operand of the DW_OP_consts operation provides asigned LEB128 integer
constant.

2.4.1.2 Register Based Addressing

The following operations push a value onto the stack that is the result of adding the contents of a
register with a given signed offset.

1. DW_OP_fbreg
The DW_OP_fbreg operation provides a signed LEB128 offset from the address specified by
the location description in the DW_AT _frame_base attribute of the current function. (Thisis
typically a*“stack pointer” register plus or minus some offset. On more sophisticated systems
it might be alocation list that adjusts the offset according to changes in the stack pointer as
the PC changes.)

2. DW_OP breg0, DW_OP bregl, ..., DW_OP_breg3l
The single operand of the DW_OP_bregn operations provides asigned LEB128 offset from
the specified register.

3. DW_OP_bregx
The DW_OP_bregx operation has two operands: aregister which is defined with an unsigned
LEB128 number, followed by asigned LEB128 offset.

Page 15 Draft 7 October 29, 2001

2.4.1.3 Stack Operations

The following operations manipulate the DWARF stack. Operations that index the stack assume
that the top of the stack (most recently added entry) has index O.

1.

DW_OP _dup
The DW_OP_dup operation duplicates the value at the top of the stack.

DW_OP _drop
The DW_OP_drop operation pops the value at the top of the stack.

DW_OP _pick
The single operand of the DW_OP_pick operation provides a 1-byte index. The stack entry
with the specified index (O through 255, inclusive) is pushed on the stack.

DW_OP_over
The DW_OP_over operation duplicates the entry currently second in the stack at the top of
the stack. Thisis equivalent to aDW_OP_pick operation, with index 1.

DW_OP_swap
The DW_OP_swap operation swaps the top two stack entries. The entry at the top of the
stack becomes the second stack entry, and the second entry becomes the top of the stack.

DW_OP _rot

The DW_OP_rot operation rotates the first three stack entries. The entry at the top of the
stack becomes the third stack entry, the second entry becomes the top of the stack, and the
third entry becomes the second entry.

DW_OP_deref

The DW_OP_deref operation pops the top stack entry and treatsit as an address. The value
retrieved from that addressis pushed. The size of the data retrieved from the dereferenced
address is the size of an address on the target machine.

DW_OP deref size

The DW_OP _deref _size operation behaves like the DW_OP_deref operation: it pops the top
stack entry and treats it as an address. The value retrieved from that addressis pushed. In the
DW_OP _deref size operation, however, the size in bytes of the data retrieved from the
dereferenced address is specified by the single operand. This operand is a 1-byte unsigned
integral constant whose value may not be larger than the size of an address on the target
machine. The data retrieved is zero extended to the size of an address on the target machine
before being pushed on the expression stack.

Page 16 Draft 7 October 29, 2001

9.

10.

11.

DW_OP_xder ef

The DW_OP_xderef operation provides an extended dereference mechanism. The entry at
the top of the stack istreated as an address. The second stack entry is treated as an “address
space identifier” for those architectures that support multiple address spaces. The top two
stack elements are popped, a dataitem isretrieved through an implementation-defined
address cal culation and pushed as the new stack top. The size of the data retrieved from the
dereferenced address is the size of an address on the target machine.

DW_OP xderef size

The DW_OP_xderef_size operation behaves like the DW_OP_xderef operation: the entry at
the top of the stack istreated as an address. The second stack entry is treated as an “address
space identifier” for those architectures that support multiple address spaces. The top two
stack elements are popped, adata item is retrieved through an implementation- defined
address calculation and pushed as the new stack top. In the DW_OP_xderef _size operation,
however, the size in bytes of the data retrieved from the dereferenced address is specified by
the single operand. This operand is a 1-byte unsigned integral constant whose value may not
be larger than the size of an address on the target machine. The dataretrieved is zero
extended to the size of an address on the target machine before being pushed on the
expression stack.

DW_OP _push_object_address

The DW_OP_push_object_address operation pushes the address of the object currently being
evaluated as part of evaluation of a user presented expression. This object may correspond to
an independent variable described by its own DIE or it may be a component of an array,
structure, or class whose address has been dynamically determined by an earlier step during
user expression evaluation.

This operator provides functionality explicitly and generally (especially for arrays involving
descriptors) that is analogous to the implicit push of the base address of a structure prior to
evaluation of a DW_AT data_member_location to access a data member of a structure. For
an example, see Appendix D.2.

2.4.1.4 Arithmetic and Logical Operations

The following provide arithmetic and logical operations. The arithmetic operations perform
“addressing arithmetic,” that is, unsigned arithmetic that wraps on an address-sized boundary.
The operations do not cause an exception on overflow.

1.

DW_OP_abs
The DW_OP_abs operation pops the top stack entry, interpretsit as a signed value and
pushes its absolute value. If the absolute value can not be represented, the result is undefined.

Page 17 Draft 7 October 29, 2001

10.

11.

DW_OP_and
The DW_OP_and operation pops the top two stack values, performs a bitwise and operation
on the two, and pushes the result.

DW_OP_div
The DW_OP_div operation pops the top two stack values, divides the former second entry by
the former top of the stack using signed division, and pushes the resuilt.

DW_OP_minus
The DW_OP_minus operation pops the top two stack values, subtracts the former top of the
stack from the former second entry, and pushes the resullt.

DW_OP_mod
The DW_OP_mod operation pops the top two stack values and pushes the result of the
calculation: former second stack entry modulo the former top of the stack.

DW_OP_mul
The DW_OP_mul operation pops the top two stack entries, multiplies them together, and
pushes the resullt.

DW_OP_neg
The DW_OP_neg operation pops the top stack entry, and pushes its negation.

DW_OP_not
The DW_OP_not operation pops the top stack entry, and pushes its bitwise complement.

DW_OP or
The DW_OP_or operation pops the top two stack entries, performs a bitwise or operation on
the two, and pushes the result.

DW_OP _plus
The DW_OP_plus operation pops the top two stack entries, adds them together, and pushes
the result.

DW_OP_plus_uconst
The DW_OP_plus_uconst operation pops the top stack entry, addsit to the unsigned LEB128
constant operand and pushes the result.

This operation is supplied specifically to be able to encode more field offsets in two bytes
than can be done with “DW_OP_lithn DW_OP_plus’ .

Page 18 Draft 7 October 29, 2001

12.

13.

14.

15.

DW_OP_shl
The DW_OP_shl operation pops the top two stack entries, shifts the former second entry |eft
by the number of bits specified by the former top of the stack, and pushes the resuilt.

DW_OP_shr

The DW_OP_shr operation pops the top two stack entries, shifts the former second entry
right logicaly (filling with zero bits) by the number of bits specified by the former top of the
stack, and pushes the result.

DW_OP _shra

The DW_OP_shra operation pops the top two stack entries, shifts the former second entry
right arithmetically (divide the magnitude by 2, keep the same sign for the result) by the
number of bits specified by the former top of the stack, and pushes the resuilt.

DW_OP_xor
The DW_OP_xor operation pops the top two stack entries, performs the bitwise exclusive-or
operation on the two, and pushes the resullt.

2.4.1.5 Control Flow Operations

The following operations provide simple control of the flow of a DWARF expression.

1.

DW_OP_le, DW_OP_ge, DW_OP_eq, DW_OP_It, DW_OP_gt, DW_OP_ne
The six relational operators each:

* pop the top two stack values,
» compare the former top of the stack with the former second entry, and

* push the constant value 1 onto the stack if the result of the operation istrue or the
constant value O if the result of the operation is false.

The comparisons are done as signed operations. The six operators are DW_OP _|e (less than
or equal to), DW_OP_ge (greater than or equal to), DW_OP_eq (equal to), DW_OP It (less
than), DW_OP_gt (greater than) and DW_OP_ne (not equal to).

DW_OP_skip

DW_OP_skipisan unconditional branch. Its single operand is a 2-byte signed integer
constant. The 2-byte constant is the number of bytes of the DWARF expression to skip from
the current operation, beginning after the 2-byte constant.

Page 19 Draft 7 October 29, 2001

3. DW_OP bra
DW_OP _braisaconditional branch. Its single operand is a 2-byte signed integer constant.
This operation pops the top of stack. If the value popped is not the constant 0, the 2-byte
constant operand is the number of bytes of the DWARF expression to skip from the current
operation, beginning after the 2-byte constant.

4. DW_OP_call2, DW_OP_call4, DW_OP_call_ref
DW_OP cdl2, DW_OP cal4, and DW_OP_call_ref perform subroutine calls during
evaluation of a DWARF expression. For DW_OP _call2 and DW_OP_call4, the operand is
the 2- or 4-byte unsigned offset, respectively, of a debugging information entry in the current
compilation unit. The DW_OP _call_ref operator has a single operand. In the 32-bit DWARF
format, the operand is a4-byte unsigned value; in the 64-bit DWARF format, it is an 8-byte
unsigned value (see Section 7.4). The operand is used as the offset of a debugging
information entry in a. debug_i nf o section which may be contained in a shared object for
executable other than that containing the operator. For references from one shared object or
executable to another, the relocation must be performed by the consumer.

Operand interpretation of DW_OP_call2, DW_OP_call4 and DW_OP_call_ref isexactly
like that for DW_FORM _ref2, DW_FORM _ref4 and DW_FORM _ref_addr, respectively.

These operations transfer control of DWARF expression evaluation to the DW_AT _location
attribute of the referenced DIE. If there is no such attribute, then there is no effect. Execution
of the DWARF expression of aDW_AT _location attribute may add to and/or remove from
values on the stack. Execution returns to the point following the call when the end of the
attribute is reached. Values on the stack at the time of the call may be used as parameters by
the called expression and values |eft on the stack by the called expression may be used as
return values by prior agreement between the calling and called expressions.

2.4.1.6 Special Operations

There are two special operations currently defined:

1. DW_OP_piece
DW_OP_piece takes a single operand, which is an unsigned LEB128 number. The number
describes the size in bytes of the piece of the object referenced by the DWARF expression
whose result is at the top of the stack.

Many compilers store a single variable in sets of registers, or store a variable partially in
memory and partially in registers. DW_OP_piece provides a way of describing how large a
part of a variable a particular DWARF expression refersto.

Page 20 Draft 7 October 29, 2001

2. DW_OP_nop
The DW_OP_nop operation is a place holder. It has no effect on the location stack or any of
its values.

2.4.2 Example Stack Operations

The stack operations defined in Section 2.4.1.3 are fairly conventional, but the following
examplesillustrate their behavior graphically.

Bef ore Oper ati on After
0 17 DW _OP_dup 0 17
1 29 1 17
2 1000 2 29
3 1000
0 17 DW OP_dr op 0 29
1 29 1 1000
2 1000
0 17 DW OP_pick 2 0 1000
1 29 1 17
2 1000 2 29
3 1000
0 17 DW OP_over 0 29
1 29 1 17
2 1000 2 29
3 1000
0 17 DW OP_swap 0 29
1 29 1 17
2 1000 2 1000
0 17 DW OP_r ot 0 29
1 29 1 1000
2 1000 2 17

2.5 Location Descriptions

Debugging information must provide consumers a way to find the location of program variables,
determine the bounds of dynamic arrays and strings, and possibly to find the base address of a
subroutine’s stack frame or the return address of a subroutine. Furthermore, to meet the needs
of recent computer architectures and optimization techniques, debugging information must be
able to describe the location of an object whose location changes over the object’s lifetime.

Page 21 Draft 7 October 29, 2001

Information about the location of program objectsis provided by location descriptions. Location
descriptions can be either of two forms:

1. Location expressions, which are alanguage independent representation of addressing rules of
arbitrary complexity built from DWARF expressions. They are sufficient for describing the
location of any object aslong asitslifetimeis either static or the same as the lexical block
that ownsit, and it does not move throughout its lifetime.

2. Location lists, which are used to describe objects that have alimited lifetime or change their
location throughout their lifetime. Location lists are more completely described below.

The two forms are distinguished in a context sensitive manner. Asthe value of an attribute, a
location expression is encoded using class block and alocation list is encoded using class
loclistptr (which serves as an offset into a separate location list table).

Note: The DWARF Version 1 concept of “ location descriptions” was replaced in Version 2 with
this new abstraction because it is denser and more descriptive.

2.5.1 Register Name Operators

The following DWARF operations can be used to name a register. They can be used only in
location expressions. Each register name operator must be used alone (as a DWARF expression
consisting of just that one operation).

Note that the register number represents a DWARF specific mapping of numbers onto the actual
registers of a given architecture. The mapping should be chosen to gain optimal density and
should be shared by all users of a given architecture. It is recommended that this mapping be
defined by the ABI authoring committee for each architecture.

1. DW_OP_reg0, DW_OP_regl, ..., DW_OP_reg31
The DW_OP_regn operations encode the names of up to 32 registers, numbered from O
through 31, inclusive. The object addressed isin register n.

2. DW_OP_regx
The DW_OP_regx operation has asingle unsigned LEB128 literal operand that encodes the
name of aregister.

Page 22 Draft 7 October 29, 2001

2.5.2 Location Expressions

A location expression consists of zero or more DWAREF operations. An expression with zero
operations is used to denote an object that is present in the source code but not present in the
object code (perhaps because of optimization). The location operations fall into two categories,
register names and addressing operations. Register names always appear alone and indicate that
the referred object is contained inside a particular register. Addressing operations are memory
address computation rules.

In the case of locations used for structure members, the computation implicitly pushes the base
address of the immediately containing structure on the stack before evaluation of the addressing
operation.

2.5.3 Example Location Expressions

The addressing expression represented by a location expression, if evaluated, generates the
runtime address of the value of a symbol except where the DW_OP_regn, or DW_OP_regx
operations are used.

Here are some examples of how DWARF operations are used to form location expressions:
DW OP_reg3
The value is in register 3.

DW OP_regx 54
The value is in register 54.

DW OP_addr 0x80d0045c
The value of a static variable is at nmachi ne address 0x80d0045c.

DW OP_bregll 44

Add 44 to the value in register 11 to get the address of an automatic
vari abl e i nstance.

DW OP_fbreg -50

G ven an DWAT frane_base val ue of “OPBREG31 64,” this exanple conputes
the address of a local variable that is -50 bytes froma |ogical frane
pointer that is conputed by adding 64 to the current stack pointer
(register 31).

Page 23 Draft 7 October 29, 2001

DW OP_bregx 54 32 DW OP_der ef

A call -by-reference paraneter whose address is in the word 32 bytes
fromwhere register 54 points.

DW OP_pl us_uconst 4

A structure menber is four bytes fromthe start of the structure
i nstance. The base address is assuned to be already on the stack

DW OP_reg3 DW OP_piece 4 DWOP_regl0 DWOP_piece 2

A variabl e whose first four bytes reside in register 3 and whose next
two bytes reside in register 10.

2.5.4 Location Lists

Location lists are used in place of location expressions whenever the object whose location is
being described can change location during its lifetime. Location lists are contained in a separate
object file section called . debug_| oc. A location list isindicated by alocation attribute whose
valueis represented as an offset from the beginning of the . debug_|I oc section to the first byte of
the list for the object in question.

Each entry in alocation list is either alocation list entry, a base address selection entry, or an end
of list entry.

A location list entry consists of:

1. A beginning address. This addressisrelative to the applicable base address of the
compilation unit referencing this location list. It marks the beginning of the address range
over which the location is valid.

2. Anending address, again relative to the applicable base address of the compilation unit
referencing this location list. It marks the first address past the end of the address range over
which the location is valid. The ending address must be greater than the beginning address.

3. A location expression describing the location of the object over the range specified by the
beginning and end addresses.

The applicable base address of alocation list entry is determined by the closest preceding base
address selection entry (see below) in the same location list. If there is no such selection entry,
then the applicable base address defaults to the base address of the compilation unit (see
Section 3.1).

Page 24 Draft 7 October 29, 2001

In the case of a compilation unit where all of the machine code is contained in a single
contiguous section, no base address selection entry is needed.

Address ranges may overlap. When they do, they describe a situation in which an object exists
simultaneously in more than one place. If al of the address rangesin a given location list do not
collectively cover the entire range over which the object in question is defined, it is assumed that
the object is not available for the portion of the range that is not covered.

A base address selection entry consists of:
1. Thevalue of the largest representable address.

Thisvalueisoxffffffff inthe 32-bit DWARF format and oxffffffffffffffff inthe
64-bit DWARF format (see Section 7.4).

2. An address, which defines the appropriate base address for use in interpreting the beginning
and ending relative addresses of subsequent entries of the location list.

A base address selection entry affects only the list in which it is contained.

The end of any given location list is marked by an end of list entry, which consists of a0 for the
beginning address and a 0 for the ending address. A location list containing only an end of list
entry describes an object that exists in the source code but not in the executable program.

Neither a base address selection entry nor an end of list entry includes alocation expression.

A base address selection entry and an end of list entry for a location list are identical to a base
address selection entry and end of list entry, respectively, for a range list (see Section 2.16.3) in
inter pretation and representation.

2.6 Types of Declarations

Any debugging information entry describing a declaration that has atype hasaDW_AT type
attribute, whose value is a reference to another debugging information entry. The entry
referenced may describe a base type, that is, atype that is not defined in terms of other data
types, or it may describe a user-defined type, such as an array, structure or enumeration.
Alternatively, the entry referenced may describe a type modifier: constant, packed, pointer,
reference or volatile, which in turn will reference another entry describing a type or type
modifier (usingaDW_AT _type attribute of its own). See Section 5 for descriptions of the entries
describing base types, user-defined types and type modifiers.

Page 25 Draft 7 October 29, 2001

2.7 Accessibility of Declarations

Some languages, notably C++ and Ada, have the concept of the accessibility of an object or of
some other program entity. The accessibility specifies which classes of other program objects
are permitted access to the object in question.

The accessibility of adeclaration is represented by aDW_AT _accessibility attribute, whose
valueis aconstant drawn from the set of codes listed in Figure 4.

DW_ACCESS public

DW_ACCESS private

DW_ACCESS protected

Figure 4. Accessibility codes

2.8 Visibility of Declarations

Several languages have the concept of the visibility of a declaration. The visibility specifies
which declarations are to be visible outside of the entity in which they are declared.

The visibility of adeclaration isrepresented by aDW_AT _visibility attribute, whose valueisa
constant drawn from the set of codes listed in Figure 5.

DW_VIS loca

DW_VIS exported

DW_VIS qualified

Figure5. Visbility codes

Page 26 Draft 7 October 29, 2001

2.9 Virtuality of Declarations

C++ providesfor virtual and pure virtual structure or class member functions and for virtual
base classes.

The virtuality of adeclaration is represented by aDW_AT _virtuality attribute, whose valueis a
constant drawn from the set of codes listed in Figure 6.

DW_VIRTUALITY_none

DW_VIRTUALITY virtual

DW_VIRTUALITY pure virtual

Figure6. Virtuality codes

2.10 Artificial Entries

A compiler may wish to generate debugging information entries for objects or types that were
not actually declared in the source of the application. An example is a formal parameter entry to
represent the hidden t hi s parameter that most C++ implementations pass as the first argument
to non-static member functions.

Any debugging information entry representing the declaration of an object or type artificially
generated by a compiler and not explicitly declared by the source program may have a
DW_AT artificial attribute. The value of this attribute is aflag.

2.11 Target-Specific Addressing Information

In some systems, addresses are specified as offsets within a given segment rather than as
locations within a single flat address space.

Any debugging information entry that contains a description of the location of an object or
subroutine may have aDW_AT _segment attribute, whose value is a location description. The
description evaluates to the segment value of the item being described. If the entry containing the
DW_AT_segment attribute hasaDW_AT _low_pc, DW_AT_high _pc, DW_AT_ranges or
DW_AT entry pc attribute, or alocation description that evaluates to an address, then those
address values represent the offset portion of the address within the segment specified by
DW_AT_segment.

Page 27 Draft 7 October 29, 2001

If an entry hasno DW_AT_segment attribute, it inherits the segment value from its parent entry.
If none of the entriesin the chain of parents for this entry back to its containing compilation unit
entry have DW_AT_segment attributes, then the entry is assumed to exist within aflat address
space. Similarly, if the entry hasaDW_AT_segment attribute containing an empty location
description, that entry is assumed to exist within aflat address space.

Some systems support different classes of addresses. The address class may affect the way a
pointer is dereferenced or the way a subroutineis called.

Any debugging information entry representing a pointer or reference type or a subroutine or
subroutine type may have aDW_AT _address class attribute, whose value is an integer constant.
The set of permissible values is specific to each target architecture. The value DW_ADDR _none,
however, is common to al encodings, and means that no address class has been specified.

For example, the Intel 386 ™ processor might use the following values:

Name Value Meaning

DW _ADDR none
DW_ADDR nearl16
DW _ADDR far16
DW_ADDR hugel6
DW_ADDR near32
DW _ADDR far32

no class specified

16-bit offset, no segment
16-bit offset, 16-hit segment
16-bit offset, 16-bit segment
32-hit offset, no segment
32-bit offset, 16-bit segment

abhwNEFE O

Figure 7. Example address class codes

2.12 Non-Defining Declarations and Completions

A debugging information entry representing a program entity typically represents the defining
declaration of that entity. In certain contexts, however, a debugger might need information about
adeclaration of an entity that is not also a definition, or is otherwise incomplete, to evaluate an
expression correctly.

Page 28 Draft 7 October 29, 2001

As an example, consider the following fragment of C code:
voi d nmyfunc()
{

int Xx;
{

extern float x;
a(x);

}

ANS C scoping rules require that the value of the variable x passed to the function g is the value
of the global variable x rather than of the local version.

2.12.1 Non-Defining Declarations

Debugging information entries that represent non-defining or otherwise incompl ete declarations
of aprogram entity haveaDW_AT _declaration attribute, whose value is aflag.

2.12.2 Declarations Completing Non-Defining Declarations

Debugging information entries that represent a declaration that completes another (earlier) non-
defining declaration, may have aDW_AT _specification attribute whose value is areference to
the debugging information entry representing the non-defining declaration. Debugging
information entries withaDW_AT _specification attribute do not need to duplicate information
provided by the debugging information entry referenced by that specification attribute.

2.13 Declaration Coordinates

It is sometimes useful in a debugger to be able to associate a declaration with its occurrencein
the program source.

Any debugging information entry representing the declaration of an object, module, subprogram
or type may have DW_AT decl file, DW_AT decl _lineand DW_AT _decl_column attributes,
each of whose valueis an integer constant.

The value of the DW_AT _decl_file attribute corresponds to a file number from the line number
information table for the compilation unit containing the debugging information entry and
represents the source file in which the declaration appeared (see Section 6.2). The value O
indicates that no source file has been specified.

The value of the DW_AT decl_line attribute represents the source line number at which the first
character of the identifier of the declared object appears. The value 0 indicates that no source line
has been specified.

Page 29 Draft 7 October 29, 2001

The value of the DW_AT _decl_column attribute represents the source column number at which
the first character of the identifier of the declared object appears. The value 0 indicates that no
column has been specified.

2.14 Identifier Names

Any debugging information entry representing a program entity that has been given a name may
haveaDW_AT_name attribute, whose value is a string representing the name as it appearsin the
source program. A debugging information entry containing no name attribute, or containing a
name attribute whose value consists of a name containing asingle null byte, represents a
program entity for which no name was given in the source.

Because the names of program objects described by DWARF are the names as they appear in the
sour ce program, implementations of language translators that use some form of mangled name
(as do many implementations of C++) should use the unmangled form of the name in the
DWARF DW_AT name attribute, including the keyword oper at or (in names such as
“operator +"), if present. Sequences of multiple whitespace characters may be compressed.

2.15 Data Locations

Any debugging information entry describing a data object, which includes variables, parameters,
common blocks and the like, may have aDW_AT _location attribute, whose value is alocation
description (see Section 2.5).

2.16 Code Addresses and Ranges

Any debugging information entry describing an entity that has a machine code address or range
of machine code addresses, which includes compilation units, module initialization, subroutines,
ordinary blocks, try/catch blocks, labels and the like, may have

« A DW_AT low_pc attribute for a single address,

« ADW_AT low pcand DW_AT high _pc pair of attributes for a single contiguous range of
addresses, or

» A DW_AT ranges attribute for a non-contiguous range of addresses.

If an entity has no associated machine code, none of these attributes are specified.

Page 30 Draft 7 October 29, 2001

2.16.1 Single Address

When thereis asingle address associated with an entity, such as alabel or alternate entry point
of a subprogram, the entry hasaDW_AT _low_pc attribute whose value is the rel ocated address
for the entity.

While the DW_AT _entry_pc attribute might also seem appropriate for this purpose, historically
the DW_AT _low_pc attribute was used before the DW_AT_entry_pc was introduced (in DWARF
V3). Thereisinsufficient reason to change this.

2.16.2 Contiguous Address Range

When the set of addresses of a debugging information entry can be described asasingle
continguous range, the entry may haveaDW_AT low_pc and DW_AT _high pc pair of
attributes. The value of the DW_AT _low_pc attribute is the relocated address of the first
instruction associated with the entity, and the value of the DW_AT _high_pc isthe relocated
address of the first location past the last instruction associated with the entity.

The high PC value may be beyond the last valid instruction in the executable.

The presence of low and high PC attributes for an entity implies that the code generated for the
entity is contiguous and exists totally within the boundaries specified by those two attributes. If
that is not the case, no low and high PC attributes should be produced.

2.16.3 Non-Contiguous Address Ranges

When the set of addresses of a debugging information entry cannot be described asasingle
contiguous range, the entry hasaDW_AT _ranges attribute whose value is of class rangelistptr
and indicates the beginning of arange list.

Range lists are contained in a separate object file section called . debug_r anges. A rangelistis
indicated by aDW_AT _ranges attribute whose value is represented as an offset from the
beginning of the . debug_r anges section to the beginning of the range list.

Each entry in arangelist is either arange list entry, a base address selection entry, or an end of
list entry.

Page 31 Draft 7 October 29, 2001

A range list entry consists of:

1. A beginning address. This addressisrelative to the applicable base address of the
compilation unit referencing this range list.

2. Anending address, again relative to the applicable base address of the compilation unit
referencing this range list. The ending address must be greater than the beginning address.

The applicable base address of arange list entry is determined by the closest preceding base
address selection entry (see below) in the same range list. If there is no such selection entry, then
the applicable base address defaults to the base address of the compilation unit (see Section 3.1).

In the case of a compilation unit where all of the machine code is contained in a single
contiguous section, no base address selection entry is needed.

Addressrange entriesin arange list may not overlap. There is no requirement that the entries be
ordered in any particular way.

A base address selection entry consists of:
1. Thevalue of the largest representable address.

Thisvalueisoxffffffff inthe32-bit DWARF formatandoxffffffffffffffff inthe
64-bit DWARF format (see Section 7.4).

2. An address, which defines the appropriate base address for use in interpreting the beginning
and ending relative addresses of subsequent entries of the location list.

A base address selection entry affects only the list in which it is contained.

The end of any given range list is marked by an end of list entry, which consists of a0 for the
beginning address and a 0 for the ending address. A range list containing only an end of list entry
describes an empty scope (which contains no instructions).

A base address selection entry and an end of list entry for a range list are identical to a base
address selection entry and end of list entry, respectively, for a location list (see Section 2.5.4) in
inter pretation and representation.

Page 32 Draft 7 October 29, 2001

2.17 Entry Address

The entry or first executable instruction generated for an entity, if applicable, is often the lowest
addressed instruction of a contiguous range of instructions. In other cases, the entry address
needs to be specified explicitly.

Any debugging information entry describing an entity that has a range of code addresses, which
includes compilation units, module initialization, subroutines, ordinary blocks, try/catch blocks,
and the like, may have aDW _entry pc attribute to indicate the first executable instruction within
that range of addresses. The value of the DW_AT _entry _pc attribute is arelocated address. If no
DW_AT entry_pc attribute is present, then the entry address is assumed to be the same as the
value of the DW_AT _low_pc attribute, if present; otherwise, the entry address is unknown.

2.18 Static and Dynamic Properties of Types

Some attributes that apply to types specify a property (such as the lower bound of an array) that
isan integer value, where the value may be known during compilation or may be computed
dynamically during execution. The value of these attributes is determined based on the class as
follows:

* For aconstant, the value of the constant is the value of the attribute.

» For areference, the value is areference to another entity whose value is the value of the
attribute.

» For ablock, the valueisinterpreted as a DWARF expression; evaluation of the expression
yields the value of the attribute.

Whether an attribute value can be dynamic depends on the rules of the applicable programming
language.

The applicable attributes include: DW_AT _allocated, DW_AT_associated, DW_AT bit_offset,
DW_AT _hit_size, DW_AT _byte size, DW_AT_count, DW_AT_lower_bound, DW_AT _stride,
DW AT stride size, DW_AT _upper_bound (and possibly others).

Page 33 Draft 7 October 29, 2001

2.19 Entity Descriptions

Some debug information entries may describe entities in the program that are artificial, or which
otherwise are “ named” in ways which are not valid identifiers in the programming language.
For example, several languages may capture or freeze the value of a variable at a particular
point in the program. Ada 95 has package elaboration routines, type descriptions of the form

t ypename’ Class, and “ access typename” parameters.

Generally, any debug information entry that has, or may have, aDW_AT_name attribute, may
also haveaDW_AT _description attribute whose value is a null-terminated string representing
the description of the entity.

It is expected that a debugger will only display these descriptions as part of the description of
other entities. It should not accept them in expressions, nor allow themto be assigned, or the
like.

Page 34 Draft 7 October 29, 2001

3 PROGRAM SCOPE ENTRIES

This section describes debugging information entries that relate to different levels of program
scope: compilation, module, subprogram, and so on. These entries may be thought of as bounded
by ranges of text addresses within the program.

3.1 Compilation and Importing Entries

An object file may contain one or more compilation units, of which there are two kinds: normal
compilation units and partial compilation units. A partial compilation unit is related to one or
more other compilation units that import it.

3.1.1 Normal and Partial Compilation Unit Entries

A normal compilation unit is represented by a debugging information entry with the tag
DW_TAG_compile_unit. A partial compilation unit is represented by a debugging information
entry with thetag DW_TAG_partial_unit.

In asimple normal compilation, a single compilation unit with thetag DW_TAG_compile_unit
represents a compl ete object file and the tag DW_TAG_partia_unit is not used. In a compilation
employing DWARF space compression and duplicate elimination techniques (see Appendix E),
multiple compilation units using the tags DW_TAG_compile_unit and/or DW_TAG_partial_unit
are used to represent portions of an object file.

A normal compilation unit typically represents the text and data contributed to an executable by
a single relocatable object file. It may be derived from several sourcefiles, including pre-
processed “ includefiles.” A partial compilation unit typically represents a part of the text and
data of a relocatable object file, in a manner that can potentially be shared with the results of
other compilations to save space. It may be derived from an “ include file” , template
instantiation, or other implementation-dependent portion of a compilation. A normal compilation
unit can also function in a manner similar to a partial compilation unit in some cases.

A compilation unit entry owns debugging information entries that represent all or part of the
declarations made in the corresponding compilation. In the case of a partial compilation unit, the
containing scope of its owned declarationsis indicated by imported unit entriesin one or more
other compilation unit entries that refer to that partial compilation unit (see Section 3.1.2).

Page 35 Draft 7 October 29, 2001

Compilation unit entries may have the following attributes:

1. EitheraDW_AT low _pcand DW_AT _high_pc pair of attributesor aDW_AT _ranges
attribute whose values encode the contiguous or non-contiguous address ranges, respectively,
of the machine instructions generated for the compilation unit (see Section 2.16).

A DW_AT _low_pc attribute may also be specified in combination with DW_AT _rangesto
specify the default base address for use in location lists (see Section 2.5.4) and range lists
(see Section 2.16.3).

2. A DW_AT_name attribute whose value is a null-terminated string containing the full or
relative path name of the primary source file from which the compilation unit was derived.

3. A DW_AT_language attribute whose constant value is an integer code indicating the source
language of the compilation unit. The set of language names and their meanings are given in
Figure 8.

DW_LANG_Ada83t ISO/ANSI Ada:1983
DW_LANG_Ada95t ISO/ANSI Ada:1995
DW_LANG_C Non-ANSI C, such as K&R
DW_LANG_C89 ISO/ANSI C:1989
DW_LANG_C99 ISO/ANSI C:1999

DW_LANG_C plus plus [ISO/ANSI C++:1998

DW_LANG_Cobol 741 ANSI Cobol:1974

DW_LANG_Cobol 85 ANSI Cobol:1985

DW_LANG_Fortran77 ISO/ANSI FORTRAN 77

DW_LANG_Fortran90 ISO/ANSI Fortran 90

DW_LANG_Fortran95 ISO/ANSI Fortran 95

DW_LANG Javat Java

Page 36 Draft 7 October 29, 2001

DW_LANG_Modula2 ISO Modula-2:1996

DW_LANG_Pascal83 ISO/ANSI Pascal

DW_LANG_PLIT ANSI PL/1:1976

tSupport for these languages is limited.

Figure 8. Language names

4, ADW_AT stmt_list attribute whose value is a section offset to the line number information
for this compilation unit.

Thisinformation is placed in a separate object file section from the debugging information
entries themselves. The value of the statement list attribute is the offset in the . debug_1 i ne
section of thefirst byte of the line number information for this compilation unit (see
Section 6.2).

5. ADW_AT macro_info attribute whose value is a section offset to the macro information for
this compilation unit.

Thisinformation is placed in a separate object file section from the debugging information
entries themselves. The value of the macro information attribute is the offset in the

. debug_maci nf o section of thefirst byte of the macro information for this compilation unit
(see Section 6.3).

6. A DW_AT_comp_dir attribute whose value is a null-terminated string containing the current
working directory of the compilation command that produced this compilation unit in
whatever form makes sense for the host system.

The suggested form for the value of the DW_AT_comp_dir attribute on UNIX systemsis
“hostname:pathname”. If no hostname is available, the suggested form is “:pathname”.

7. A DW_AT_producer attribute whose value is a null-terminated string containing information
about the compiler that produced the compilation unit. The actual contents of the string will
be specific to each producer, but should begin with the name of the compiler vendor or some
other identifying character sequence that should avoid confusion with other producer values.

Page 37 Draft 7 October 29, 2001

8. A DW_AT identifier_case attribute whose integer constant value is a code describing the
treatment of identifiers within this compilation unit. The set of identifier case codesis given
in Figure 9.

DW _ID case sensitive

DW_ID_up_case

DW_ID_down case

DW_ID case insensitive

Figure 9. Identifier case codes

DW_ID_case sensitiveisthe default for all compilation units that do not have this attribute.
It indicates that names given asthe values of DW_AT_name attributes in debugging
information entries for the compilation unit reflect the names as they appear in the source
program. The debugger should be sensitive to the case of identifier names when doing
identifier lookups.

DW _ID_up_case means that the producer of the debugging information for this compilation
unit converted all source names to upper case. The values of the name attributes may not
reflect the names as they appear in the source program. The debugger should convert all
names to upper case when doing lookups.

DW_ID_down_case means that the producer of the debugging information for this
compilation unit converted all source names to lower case. The values of the name attributes
may not reflect the names as they appear in the source program. The debugger should convert
al namesto lower case when doing lookups.

DW _ID case insensitive means that the values of the name attributes reflect the names as
they appear in the source program but that a case insensitive lookup should be used to access
those names.

9. ADW _AT base types attribute whose value is areference.

This attribute points to a debugging information entry representing another compilation unit.
It may be used to specify the compilation unit containing the base type entries used by entries
in the current compilation unit (see Section 5.1).

Page 38 Draft 7 October 29, 2001

This attribute provides a consumer away to find the definition of base typesfor a
compilation unit that does not itself contain such definitions. This allows a consumer, for
example, to interpret atype conversion to a base type correctly.

10. A DW_AT use UTFS8 attribute, which is a flag whose presence indicates that al strings
(such as the names of declared entities in the source program) are represented using the
UTF-8 representation (see Section 7.5.4).

The base address of a compilation unit is defined as the value of the DW_AT _low_pc attribute,
if present; otherwise, it isundefined. If the base address is undefined, then any DWARF entry or
structure defined in terms of the base address of that compilation unit is not valid.

3.1.2 Imported Unit Entries

Animported unit entry is represented by a debugging information entry with the tag
DW_TAG_imported_unit. An imported unit entry containsaDW_AT _import attribute whose
valueis areference to the normal or partial compilation unit unit whose declarations logically
belong at the place of the imported unit entry.

An imported unit entry does not necessarily correspond to any entity or construct in the source
program. It ismerely “ glue” used to relate a partial unit, or a compilation unit used as a partial
unit, to a place in some other compilation unit.

3.2 Module, Namespace and Importing Entries

Modules and namespaces provide a means to collect related entities into a single entity and to
manage the names of those entities.

3.2.1 Module Entries

Several languages have the concept of a “ module.”

A moduleis represented by a debugging information entry with the tag DW_TAG_module.
Module entries may own other debugging information entries describing program entities whose
declaration scopes end at the end of the module itself.

If the module has a name, the module entry hasa DW_AT _name attribute whose value is a null-
terminated string containing the module name as it appears in the source program.

The module entry may have either aDW_AT_low_pc and DW_AT_high_pc pair of attributes or
aDW_AT _ranges attribute whose values encode the contiguous or non-contiguous address
ranges, respectively, of the machine instructions generated for the modul e initialization code (see

Page 39 Draft 7 October 29, 2001

Section 2.16). It may also haveaDW_AT _entry_pc attribute whose value is the address of the
first executable instruction of that initialization code (see Section 2.17).

If the module has been assigned a priority, it may have aDW_AT _priority attribute. The value of
this attribute is a reference to another debugging information entry describing avariable with a
constant value. The value of this variable is the actua constant value of the module's priority,
represented as it would be on the target architecture.

A Modula2 definition module may be represented by a module entry containing a declaration
attribute (DW_AT _declaration). A Fortran 90 module may also be represented by a module
entry (but no declaration attribute is warranted because Fortran has no concept of a
corresponding module body).

3.2.2 Namespace Entries

C++ hasthe notion of a namespace, which provides a way to implement name hiding, so that
names of unrelated things do not accidentally clash in the global namespace when an
application is linked together.

A namespace is represented by a debugging information entry with the tag
DW_TAG_namespace. A namespace extension is represented by aDW_TAG_namespace entry
withaDW_AT_extension attribute referring to the previous extension, or if there is no previous
extension, to the original DW_TAG_namespace entry. A hamespace extension entry does not
need to duplicate information in a previous extension entry of the namespace nor need it
duplicate information in the original namespace entry. (Thus, for a namespace with aname, a
DW_AT name attribute need only be attached directly to the original DW_TAG_namespace
entry.)

Namespace and namespace extension entries may own other debugging information entries
describing program entities whose declaration scopes end at the end of the namespace itself.

For C++, such owned program entities may be declarations, including certain declarations that
are also object or function definitions.

If atype, variable, or function declared in a namespace is defined outside of the body of the
namespace declaration, that type, variable, or function definition entry has a

DW_AT _specification attribute whose value is a reference to the debugging information entry
representing the declaration of the type, variable or function. Type, variable, or function entries
withaDW_AT _specification attribute do not need to duplicate information provided by the
declaration entry referenced by the specification attribute.

Page 40 Draft 7 October 29, 2001

The C++ global nhamespace (the namespace referred to by "::f", for example) is not explicitly
represented in DWARF with a namespace entry (thus mirroring the situation in C++ source).
Global items may be simply declared with no reference to a namespace.

The C++ compilation unit specific "unnamed namespace’ may be represented by a namespace
entry with no name attribute in the original namespace declaration entry (and therefore no name
attribute in any namespace extension entry of this namespace).

A compiler emitting namespace information may choose to explicitly represent namespace
extensions, or to represent the final namespace declaration of a compilation unit; thisisa
quality-of-implementation issue and no specific requirements are given here. If only the final
namespace is represented, it isimpossible for a debugger to interpret using declaration
references in exactly the manner defined by the C++ language.

A simple emission of all namespace declaration information in all compilation units could result
in a significant increase in the size of the debug information and significant duplication of
information across compilation units. The C++ namespace st d, for example, is large and will
probably be referenced in every C++ compilation unit.

For a C++ namespace example, see Appendix D.3.

3.2.3 Imported (or Renamed) Declaration Entries

Some languages support the concept of importing into or making accessible in a given unit
declarations made in a different module. An imported declaration may sometimes be given
another name.

Animported declaration is represented by one or more debugging information entries with the
tag DW_TAG_imported_declaration. When an overloaded entity isimported, there is one
imported declaration entry for each overloading. Each imported declaration entry has a
DW_AT import attribute, whose value is a reference to the debugging information entry
representing the declaration that is being imported.

Animported declaration may also haveaDW_AT_name attribute whose value is a null-
terminated string containing the name, as it appears in the source program, by which the
imported entity is to be known in the context of the imported declaration entry (which may be
different than the name of the entity being imported). If no name is present, then the name by
which the entity isto be known is the same as the name of the entity being imported.

An imported declaration entry with a name attribute may be used as a general means to rename
or provide an alias for an entity, regardless of the context in which the importing declaration or
the imported entity occur.

Page 41 Draft 7 October 29, 2001

A C++ namespace alias may be represented by an imported declaration entry with a name
attribute whose value is a null-terminated string containing the alias name as it appearsin the
source program and an import attribute whose value is a reference to the applicable original
namespace or namespace extension entry.

A C++ using declaration may be represented by one or more imported declaration entries.

When the using declaration refers to an overloaded function, there is one imported declaration
entry corresponding to each overloading. Each imported declaration entry has no name attribute
but it does have an import attribute that refersto the entry for the entity being imported. (C++
provides no meansto “ rename” an imported entity, other than a namespace).

A Fortran use statement with an “ only list” may be represented by a series of imported
declaration entries, one (or more) for each entity that isimported. An entity that is renamed in
the importing context may be represented by an imported declaration entry with a name attribute
that specifies the new local name.

3.2.4 Imported Module Entries

Some languages support the concept of importing into or making accessible in a given unit all of
the declarations contained within a separate module or namespace.

An imported module declaration is represented by a debugging information entry with the tag
DW_TAG_imported module. An imported module entry containsaDW_AT _import attribute
whose value is areference to the module or namespace entry containing the definition and/or
declaration entries for the entities that are to be imported into the context of the imported
declaration entry.

An imported modul e declaration may own a set of imported declaration entries, each of which
refers to an entry in the module whose corresponding entity is to be known in the context of the
imported module declaration by a name other than its name in that module. Any entity in the
module that is not referenced in thisway is known in the context of the imported module entry
by the same name asit is declared in the module.

A C++ using directive may be represented by an imported module entry, with an import
attribute referring to the namespace entry of the appropriate extension of the namespace (which
might be the original namespace entry), no name attribute and no owned entries.

A Fortran use statement with a “ rename list” may be represented by an imported module entry
with an import attribute referring to the module, no name attribute and owned entries
corresponding to those entities that are renamed as part of being imported.

Page 42 Draft 7 October 29, 2001

A Fortran use statement with neither a“ renamelist” nor an “ only list” may be represented by
an imported module entry with an import attribute referring to the module, no name attribute
and no owned child entries.

A Fortran use statement that for an entity in a module that isitself imported by a use statement
without an explicit mention may be represented by an imported declaration entry that refersto
the original debugging information entry. For example, given

nodul e A
integer X, VY, Z
end nodul e
nodul e B

use A

end nodul e
nodul e C

use B, only Q => X
end nodul e

the imported declaration entry for Q within module C refers directly to the variable declaration
entry for A in module A because thereis no explicit representation for X in module B.

A similar situation arises for a C++ using declaration that imports an entity in terms of a
namespace alias. See Appendix D.3 for an example.

3.3 Subroutine and Entry Point Entries

The following tags exist to describe debugging information entries for subroutines and entry
points:

DW_TAG_subprogram A global or file static subroutine or function.
DW_TAG inlined_subroutine A particular inlined instance of a subroutine or function.

DW_TAG_entry_point A Fortran aternate entry point.

3.3.1 General Subroutine and Entry Point Information

The subroutine or entry point entry hasaDW_AT_name attribute whose value is a null-
terminated string containing the subroutine or entry point name as it appears in the source
program.

Page 43 Draft 7 October 29, 2001

If the name of the subroutine described by an entry with thetag DW_TAG_subprogram isvisible
outside of its containing compilation unit, that entry hasaDW_AT _external attribute, whose
valueisaflag.

Additional attributes for functions that are members of a class or structure are described in
Section 5.6.7.

A common debugger feature isto allow the debugger user to call a subroutine within the subject
program. In certain cases, however, the generated code for a subroutine will not obey the
standard calling conventions for the target architecture and will therefore not be safe to call
fromwithin a debugger.

A subroutine entry may containaDW_AT _calling_convention attribute, whose valueis an
integer constant. The set of calling convention codesis given in Figure 10.

DW_CC_normal

DW_CC _program

DW_CC nocall

Figure 10. Calling convention codes

If this attribute is not present, or its value is the constant DW_CC _normal, then the subroutine
may be safely called by obeying the “standard” calling conventions of the target architecture. If
the value of the calling convention attribute is the constant DW_CC_nocall, the subroutine does
not obey standard calling conventions, and it may not be safe for the debugger to call this
subroutine.

If the semantics of the language of the compilation unit containing the subroutine entry
distinguishes between ordinary subroutines and subroutines that can serve asthe “main
program,” that is, subroutines that cannot be called directly according to the ordinary calling
conventions, then the debugging information entry for such a subroutine may have a calling
convention attribute whose value is the constant DW_CC_program.

The DW_CC_program value is intended to support Fortran main programs. It is not intended as
a way of finding the entry address for the program.

Page 44 Draft 7 October 29, 2001

3.3.2 Subroutine and Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then its debugging information
entry hasaDW_AT _type attribute to denote the type returned by that function.

Debugging information entries for C void functions should not have an attribute for the return
type.

In ANS C thereis a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with afunction prototype style declaration may have a
DW_AT_prototyped attribute whose value is aflag.

3.3.3 Subroutine and Entry Point Locations

A subroutine entry may have either aDW_AT low_pcand DW_AT _high_pc pair of attributes
or aDW_AT _ranges attribute whose values encode the contiguous or non-contiguous address
ranges, respectively, of the machine instructions generated for the subroutine (see Section 2.16).

A subroutine entry may also haveaDW_AT_entry_pc attribute whose value is the address of the
first executable instruction of the subroutine (see Section 2.17).

An entry point hasaDW_AT _low_pc attribute whose value is the rel ocated address of the first
machine instruction generated for the entry point.

While the DW_AT _entry_pc attribute might also seem appropriate for this purpose, historically
the DW_AT _low_pc attribute was used before the DW_AT_entry_pc was introduced (in DWARF
V3). Thereisinsufficient reason to change this.

Subroutines and entry points may also have DW_AT_segment and DW_AT _address class
attributes, as appropriate, to specify which segments the code for the subroutine resides in and
the addressing mode to be used in calling that subroutine.

A subroutine entry representing a subroutine declaration that is not also a definition does not
have code address or range attributes.

Page 45 Draft 7 October 29, 2001

3.3.4 Declarations Owned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point are represented by debugging
information entries that are owned by the subroutine or entry point entry. Entries representing the
formal parameters of the subroutine or entry point appear in the same order as the corresponding
declarations in the source program.

Thereis no ordering requirement on entries for declarations that are children of subroutine or
entry point entries but that do not represent formal parameters. The formal parameter entries
may be inter spersed with other entries used by formal parameter entries, such as type entries.

The unspecified parameters of a variable parameter list are represented by a debugging
information entry with the tag DW_TAG_unspecified_parameters.

The entry for a subroutine that includes a Fortran common block has a child entry with the tag
DW_TAG_common_inclusion. The common inclusion entry hasaDW_AT_common_reference
attribute whose value is a reference to the debugging entry for the common block being included
(see Section 4.2).

3.3.5 Low-Level Information

A subroutine or entry point entry may have aDW_AT _return_addr attribute, whose value is a
location description. The location calculated is the place where the return address for the
subroutine or entry point is stored.

A subroutine or entry point entry may also have aDW_AT_frame_base attribute, whose value is
alocation description that computes the “frame base” for the subroutine or entry point.

The frame base for a procedure is typically an address fixed relative to the first unit of storage
allocated for the procedure’ s stack frame. The DW_AT _frame_base attribute can be used in
several ways:

1. Inproceduresthat need location lists to locate local variables, the DW_AT_frame _base can
hold the needed location list, while all variables' location descriptions can be simpler
location expressions involving the frame base.

2. It canbeused asakey inresolving “ up-level” addressing with nested routines. (See
DW_AT_static_link, below)

Some languages support nested subroutines. In such languages, it is possible to reference the
local variables of an outer subroutine from within an inner subroutine. The DW_AT _static_link
and DW_AT _frame_base attributes allow debuggers to support this same kind of referencing.

Page 46 Draft 7 October 29, 2001

If asubroutine or entry point is nested, it may haveaDW_AT _static_link attribute, whose value
is alocation description that computes the frame base of the relevant instance of the subroutine
that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the DW_AT _frame_base attribute value should
obey the following constraints:

1. It should compute a value that does not change during the life of the procedure, and

2. The computed value should be unique among instances of the same subroutine. (For typical
DW_AT _frame_base use, this means that a recursive subroutine’s stack frame must have
non-zero size.)

If a debugger is attempting to resolve an up-level reference to a variable, it uses the nesting
structure of DWARF to determine which subroutine is the lexical parent and the

DW_AT static_link value to identify the appropriate active frame of the parent. It can then
attempt to find the reference within the context of the parent.

3.3.6 Types Thrown by Exceptions

In C++ a subroutine may declare a set of types for which that subroutine may generate or
“throw” an exception.

If a subroutine explicitly declares that it may throw an exception for one or more types, each
such type is represented by a debugging information entry with thetag DW_TAG_thrown_type.
Each such entry isachild of the entry representing the subroutine that may throw thistype. All
thrown type entries should follow all entries representing the formal parameters of the subroutine
and precede all entries representing the local variables or lexical blocks contained in the
subroutine. Each thrown type entry containsa DW_AT _type attribute, whose value is areference
to an entry describing the type of the exception that may be thrown.

3.3.7 Function Template Instantiations

In C++ afunction template is a generic definition of a function that is instantiated differently
when called with values of different types. DWARF does not represent the generic template
definition, but does represent each instantiation.

Page 47 Draft 7 October 29, 2001

A template instantiation is represented by a debugging information entry with the tag
DW_TAG_subprogram. With three exceptions, such an entry will contain the same attributes
and will have the same types of child entries as would an entry for a subroutine defined explicitly
using the instantiation types. The exceptions are:

1.

Each formal parameterized type declaration appearing in the template definition is
represented by a debugging information entry with the tag

DW_TAG_template _type parameter. Each such entry hasaDW_AT_name attribute, whose
valueis anull-terminated string containing the name of the formal type parameter as it
appears in the source program. The template type parameter entry also hasaDW_AT type
attribute describing the actual type by which the formal is replaced for this instantiation. All
template type parameter entries should appear before the entries describing the instantiated
formal parameters to the function.

If the compiler has generated a special compilation unit to hold the template instantiation and
that compilation unit has a different name from the compilation unit containing the template
definition, the name attribute for the debugging entry representing that compilation unit
should be empty or omitted.

If the subprogram entry representing the template instantiation or any of its child entries
contain declaration coordinate attributes, those attributes should refer to the source for the
template definition, not to any source generated artificially by the compiler for this
instantiation.

3.3.8 Inline Subroutines

A declaration or adefinition of an inlinable subroutine is represented by a debugging information
entry with thetag DW_TAG_subprogram. The entry for a subroutine that is explicitly declared
to be available for inline expansion or that was expanded inline implicitly by the compiler has a
DW_AT inline attribute whose value is an integer constant. The set of values for the

DW_AT _inline attribute is given in Figure 11.

Page 48 Draft 7 October 29, 2001

Name Meaning

DW _INL_not_inlined Not declared inline nor inlined by the compiler

DW_INL_inlined Not declared inline but inlined by the compiler

DW_INL_declared_not_inlined |Declared inline but not inlined by the compiler

DW_INL_declared_inlined Declared inline and inlined by the compiler

Figure 11. Inline codes

3.3.8.1 Abstract Instances

Any debugging information entry that is owned (either directly or indirectly) by a debugging
information entry that containsthe DW_AT _inline attribute is referred to as an “abstract instance
entry.” Any subroutine entry that containsa DW_AT _inline attribute is known as an “abstract
instance root.” Any set of abstract instance entries that are all children (either directly or
indirectly) of some abstract instance root, together with the root itself, is known as an “abstract
instance tree.” However, in the case where an abstract instance tree is nested within another
abstract instance tree, the entries in the nested abstract instance tree are not considered to be
entries in the outer abstract instance tree.

Abstract instance trees are defined so that no entry is part of more than one abstract instance
tree. This simplifies the following descriptions.

A debugging information entry that is a member of an abstract instance tree should not contain
any attributes which describe aspects of the subroutine which vary between distinct inline
expansions or distinct out-of-line expansions. For example, the DW_AT low_pc,

DW_AT high_pc, DW_AT ranges, DW_AT entry pc, DW_AT location,

DW_AT return_addr, DW_AT _start _scope, and DW_AT_segment attributes typically should
be omitted; however, thislist is not exhaustive.

It would not make sense normally to put these attributes into abstract instance entries since such
entries do not represent actual (concrete) instances and thus do not actually exist at run-time.
However, see Appendix D.6.3 for a contrary example.

Page 49 Draft 7 October 29, 2001

Therulesfor the relative location of entries belonging to abstract instance trees are exactly the
same as for other similar types of entries that are not abstract. Specifically, the rule that requires
that an entry representing a declaration be a direct child of the entry representing the scope of the
declaration applies equally to both abstract and non-abstract entries. Also, the ordering rules for
formal parameter entries, member entries, and so on, al apply regardless of whether or not a
given entry is abstract.

3.3.8.2 Concrete Inlined Instances

Each inline expansion of an inlinable subroutine is represented by a debugging information entry
with thetag DW_TAG _inlined_subroutine. Each such entry should be adirect child of the entry
that represents the scope within which the inlining occurs.

Each inlined subroutine entry may have either aDW_AT low_pcand DW_AT _high pc pair of
attributes or aDW_AT _ranges attribute whose values encode the contiguous or non-contiguous
address ranges, respectively, of the machine instructions generated for the inlined subroutine (see
Section 2.16). An inlined subroutine entry may also containaDW_AT _entry pc attribute,
representing the first executable instruction of the inline expansion (see Section 2.17).

Aninlined subroutine entry may also have DW_AT _call_file, DW_AT_call_lineand

DW_AT call_column attributes, each of whose value is an integer constant. These attributes
represent the source file, source line number, and source column number, respectively, of the
first character of the statement or expression that caused the inline expansion. The call file, call
line, and call column attributes are interpreted in the same way as the declaration file, declaration
line, and declaration column attributes, respectively (see Section 2.13).

The call file, call line and call column coordinates do not describe the coordinates of the
subroutine declaration that was inlined, rather they describe the coordinates of the call.

Any debugging information entry that is owned (either directly or indirectly) by a debugging
information entry with the tag DW_TAG _inlined_subroutine is referred to as a“concrete inlined
instance entry.” Any entry that hasthetag DW_TAG inlined_subroutine isknown as a
“concrete inlined instance root.” Any set of concrete inlined instance entries that are all children
(either directly or indirectly) of some concrete inlined instance root, together with the root itself,
isknown as a*“ concrete inlined instance tree.” However, in the case where a concrete instance
tree is nested within another concrete instance tree, the entries in the nested concrete instance
tree are not considered to be entriesin the outer concrete instance tree.

Concrete inline instance trees are defined so that no entry is part of more than one concrete
inline instance tree. This simplifies later descriptions.

Page 50 Draft 7 October 29, 2001

Each concrete inlined instance tree is uniquely associated with one (and only one) abstract
instance tree.

Note, however, that the reverse is not true. Any given abstract instance tree may be associated
with several different concrete inlined instance trees, or may even be associated with zero
concrete inlined instance trees.

Concrete inlined instance entries may omit attributes that are not specific to the concrete instance
(but present in the abstract instance) and need include only attributes that are specific to the
concrete instance (but omitted in the abstract instance). In place of these omitted attributes, each
concrete inlined instance entry hasaDW_AT _abstract_origin attribute that may be used to
obtain the missing information (indirectly) from the associated abstract instance entry. The value
of the abstract origin attribute is a reference to the associated abstract instance entry.

If an entry within a concrete inlined instance tree contains attributes describing the declaration
coordinates of that entry, then those attributes should refer to the file, line and column of the
original declaration of the subroutine, not to the point at which it wasinlined. As a consequence,
they may usually be omitted from any entry that has an abstract origin attribute.

For each pair of entriesthat are associated viaa DW_AT _abstract_origin attribute, both
members of the pair will have the same tag. So, for example, an entry with the tag

DW_TAG_ variable can only be associated with another entry that also has the tag

DW_TAG variable. The only exception to thisrule is that the root of a concrete instance tree
(which must always have the tag DW_TAG _inlined_subroutine) can only be associated with the
root of its associated abstract instance tree (which must have the tag DW_TAG_subprogram).

In general, the structure and content of any given concrete inline instance tree will be closely
analogous to the structure and content of its associated abstract instance tree. There are afew
exceptions:

1. Anentry in the concrete instance tree may be omitted if it containsonly a
DW_AT abstract_origin attribute and either has no children, or its children are omitted.
Such entries would provide no useful information. In C-like languages, such entries
frequently include types, including structure, union, class, and interface types; and members
of types. If any entry within a concrete inlined instance tree needs to refer to an entity
declared within the scope of the relevant inline subroutine and for which no concrete instance
entry exists, the reference should refer to the abstract instance entry.

Page 51 Draft 7 October 29, 2001

2. Entriesin the concrete instance tree which are associated with entriesin the abstract instance
tree such that neither hasa DW_AT_name attribute, and neither is referenced by any other
debugging information entry may be omitted. This may happen for debugging information
entries in the abstract instance trees that became unnecessary in the concrete instance tree
because of additional information available there. For example, an anonymous variable
might have been created and described in the abstract instance tree, but because of the actual
parameters for a particular inline expansion, it could be described as a constant value without
the need for that separate debugging information entry.

3. A concrete instance tree may contain entries which do not correspond to entriesin the
abstract instance tree to describe new entities that are specific to aparticular inline
expansion. In that case, they will not have associated entries in the abstract instance tree,
should not contain DW_AT _abstract_origin attributes, and must contain al their own
attributes directly. This allows an abstract instance tree to omit debugging information
entries for anonymous entities that are unlikely to be needed in most inline expansions. In
any expansion which deviates from that expectation, the entries can be described in its
concrete instance tree.

3.3.8.3 Out-of-Line Instances of Inline Subroutines

Under some conditions, compilers may need to generate concrete executable instances of inline
subroutines other than at points where those subroutines are actually called. Such concrete
instances of inline subroutines are referred to as * concrete out-of-line instances.”

In C++, for example, taking the address of a function declared to be inline can necessitate the
generation of a concrete out-of-line instance of the given function.

The DWARF representation of a concrete out-of-line instance of an inline subroutineis
essentially the same as for a concrete inlined instance of that subroutine (as described in the
preceding section). The representation of such a concrete out-of-line instance makes use of
DW_AT abstract_origin attributes in exactly the same way as they are used for a concrete
inlined instance (that is, as references to corresponding entries within the associated abstract
instance tree).

Page 52 Draft 7 October 29, 2001

The differences between the DWARF representation of a concrete out-of-line instance of agiven
subroutine and the representation of a concrete inlined instance of that same subroutine are as
follows:

1. Theroot entry for a concrete out-of-line instance of a given inline subroutine has the same
tag as does its associated (abstract) inline subroutine entry (that is, it does not have the tag
DW_TAG inlined_subroutine).

2. Theroot entry for a concrete out-of-line instance tree is normally owned by the same parent
entry that also owns the root entry of the associated abstract instance. However, it is not
required that the abstract and out-of-line instance trees are owned by the same parent entry.

3.3.8.4 Nested Inline Subroutines

Some languages and compilers may permit the logical nesting of a subroutine within another
subroutine, and may permit either the outer or the nested subroutine, or both, to be inlined.

For a non-inline subroutine nested within an inline subroutine, the nested subroutine is described
normally in both the abstract and concrete inlined instance trees for the outer subroutine. All
rules pertaining to the abstract and concrete instance trees for the outer subroutine apply also to
the abstract and concrete instance entries for the nested subroutine.

For an inline subroutine nested within another inlined subroutine, the following rules apply to
their abstract and concrete instance trees:

1. The abstract instance tree for the nested subroutine is described within the abstract instance
tree for the outer subroutine according to the rulesin Section 3.3.8.1, and without regard to
the fact that it iswithin an outer abstract instance tree.

2. Any abstract instance tree for a nested subroutine is always omitted within the concrete
instance tree for an outer subroutine.

3. A concrete instance tree for a nested subroutine is always omitted within the abstract instance
tree for an outer subroutine.

4. The concrete instance tree for any inline or out-of-line expansion of the nested subroutineis
described within a concrete instance tree for the outer subroutine according to the rulesin
Sections 3.3.8.2 or 3.3.8.3, respectively, and without regard to the fact that it iswithin an
outer concrete instance tree.

Page 53 Draft 7 October 29, 2001

3.3.9 Trampolines

Atrampolineis a compiler generated subroutine that acts as a surrogate for another subroutine
and serves as an intermediary in making a call to that other subroutine. In the course of doing
S0, it may adjust parameters and/or the result (if any) as appropriate to the combined calling
and called execution contexts.

A trampolineis represented by a debugging information entry with the tag
DW_TAG_subprogram or DW_TAG inlined_subroutine that hasaDW_AT _trampoline
attribute. The value of that attribute indicates the target subroutine of the trampoline, that is, the
subroutine to which the trampoline passes control. (A trampoline entry may but need not also
haveaDW_AT _artificia attribute.)

The value of the trampoline attribute may be represented using any of the following forms,
which are listed in order of preference:

» If thevalueisof classreference, then the value specifies the debugging information entry of
the target subprogram.

» If thevalueisof class address, then the value is the rel ocated address of the target
subprogram.

» If thevalueisof class string, then the value is the (possibly mangled) name of the target
subprogram.

» If thevalueisof classflag, then the value true indicates that the containing subroutineis a
trampoline but that the target subroutine is not known.

The target subprogram may itself be atrampoline. (A sequence of trampolines necessarily ends
with a non-trampoline subprogram.)

In C++, trampolines may be used to implement derived virtual member functions; such
trampolines typically adjust the implicit this pointer parameter in the course of passing control.
Other languages and environments may use trampolinesin a manner sometimes known as
transfer functions or transfer vectors.

Trampolines may sometimes pass control to the target subprogram using a branch or jump
instruction instead of a call instruction, thereby leaving no trace of their existance in the
subsequent execution context.

This attribute helps make it feasible for a debugger to arrange that stepping into a trampoline or
setting a breakpoint in a trampoline will result in stepping into or setting the breakpoint in the
target subroutine instead. This helps to hide the compiler generated subprogram from the user.

Page 54 Draft 7 October 29, 2001

If the target subroutine is not known, a debugger may choose to repeatedly step until control
arrivesin a new subroutine which can be assumed to be the target subroutine.

3.4 Lexical Block Entries

Alexical block is a bracketed sequence of source statements that may contain any number of
declarations. In some languages (including C and C++), blocks can be nested within other
blocks to any depth.

A lexical block is represented by a debugging information entry with the tag
DW_TAG_lexical_block.

Thelexical block entry may have either aDW_AT _low_pcand DW_AT_high_pc pair of
attributesor aDW_AT _ranges attribute whose val ues encode the contiguous or non-contiguous
address ranges, respectively, of the machine instructions generated for the lexical block (see
Section 2.16).

If aname has been given to the lexical block in the source program, then the corresponding
lexical block entry hasaDW_AT _name attribute whose value is a null-terminated string
containing the name of the lexical block as it appears in the source program.

Thisisnot thesameasa C or C++ label (see below).

Thelexical block entry owns debugging information entries that describe the declarations within
that lexical block. There is one such debugging information entry for each local declaration of an
identifier or inner lexical block.

3.5 Label Entries

A label isaway of identifying a source statement. A labeled statement is usually the target of one
or more“goto” statements.

A labdl isrepresented by a debugging information entry with the tag DW_TAG_label. The entry
for alabel should be owned by the debugging information entry representing the scope within
which the name of the label could be legally referenced within the source program.

The label entry hasaDW_AT low_pc attribute whose value is the rel ocated address of the first
machine instruction generated for the statement identified by the label in the source program.
The label entry also hasaDW_AT_name attribute whose value is a null-terminated string
containing the name of the label asit appearsin the source program.

Page 55 Draft 7 October 29, 2001

3.6 With Statement Entries

Both Pascal and Modula2 support the concept of a “ with” statement. The with statement
specifies a sequence of executable statements within which the fields of a record variable may be
referenced, unqualified by the name of the record variable.

A with statement is represented by a debugging information entry with the tag
DW_TAG_with_stmt.

A with statement entry may have either aDW_AT low_pcand DW_AT _high_pc pair of
attributesor aDW_AT _ranges attribute whose values encode the contiguous or non-contiguous
address ranges, respectively, of the machine instructions generated for the with statement (see
Section 2.16).

The with statement entry hasa DW_AT _type attribute, denoting the type of record whose fields
may be referenced without full qualification within the body of the statement. It also has a
DW_AT _location attribute, describing how to find the base address of the record object
referenced within the body of the with statement.

3.7 Try and Catch Block Entries

In C++ alexical block may be designated asa “ catch block.” A catch block is an exception
handler that handles exceptions thrown by an immediately preceding “ try block.” A catch block
designates the type of the exception that it can handle.

A try block is represented by a debugging information entry with the tag DW_TAG_try_block.
A catch block is represented by a debugging information entry with the tag
DW_TAG_catch_block.

Both try and catch block entries may have either aDW_AT low_pc and DW_AT _high pc pair
of attributesor aDW_AT _ranges attribute whose values encode the contiguous or non-
contiguous address ranges, respectively, of the machine instructions generated for the block (see
Section 2.16).

Catch block entries have at |east one child entry, an entry representing the type of exception
accepted by that catch block. This child entry will have one of the tags

DW_TAG forma_parameter or DW_TAG_unspecified parameters, and will have the same
form as other parameter entries.

Thefirst sibling of each try block entry will be a catch block entry.

Page 56 Draft 7 October 29, 2001

4 DATA OBJECT AND OBJECT LIST ENTRIES

This section presents the debugging information entries that describe individual data objects:
variables, parameters and constants, and lists of those objects that may be grouped in asingle
declaration, such as a common block.

4.1 Data Object Entries

Program variables, formal parameters and constants are represented by debugging information
entries with thetags DW_TAG _variable, DW_TAG_formal_parameter and DW_TAG_constant,
respectively.

Thetag DW_TAG_constant is used for languages that distinguish between variables that may
have constant value and true named constants.

The debugging information entry for a program variable, formal parameter or constant may have
the following attributes:

1. A DW_AT name attribute whose value is a null-terminated string containing the data object
name as it appears in the source program.

If avariable entry describes a C++ anonymous union, the name attribute is omitted or
consists of asingle zero byte.

2. If the name of avariableisvisible outside of its enclosing compilation unit, the variable entry
hasaDW_AT _externa attribute, whose valueis aflag.

The definitions of C++ static data members of structures or classes are represented by
variable entries flagged as external. Both file static and local variablesin C and C++ are
represented by non-external variable entries.

3. A DW_AT_declaration attribute, whose value is a flag, which indicates that this entry
represents a non-defining declaration of an object.

4. A DW_AT location attribute, whose value describes the location of a variable or parameter
at run-time.

In avariable entry representing the definition of avariable (that is, with no

DW_AT _declaration attribute) if no location attribute is present, or if the location attribute is
present but describes a null entry (as described in Section 2.5), the variable is assumed to
exist in the source code but not in the executable program (but see number 10, below)

Page 57 Draft 7 October 29, 2001

10.

In avariable entry representing a non-defining declaration of avariable, the location
specified modifies the location specified by the defining declaration and only applies for the
scope of the variable entry; if no location is specified, then the location specified in the
defining declaration applies.

The location of avariable may be further specified withaDW_AT_segment attribute, if
appropriate.

A DW_AT type attribute describing the type of the variable, constant or formal parameter.

If the variable entry represents the defining declaration for a C++ static data member of a
structure, class or union, the entry hasa DW_AT _specification attribute, whose valueis a
reference to the debugging information entry representing the declaration of this data
member. The referenced entry has the tag DW_TAG_member and will be a child of some
class, structure or union type entry.

If the variable entry represents a non-defining declaration, DW_AT _specification may be
used to reference the defining declaration of the variable. If no DW_AT _specification
attribute is present, the defining declaration may be found as a global definition either in the
current compilation unit or in another compilation unit with the DW_AT_external attribute.

Variable entries containing the DW_AT _specification attribute do not need to duplicate
information provided by the declaration entry referenced by the specification attribute. In
particular, such variable entries do not need to contain attributes for the name or type of the
data member whose definition they represent.

If aformal parameter entry represents a parameter whose value in the calling function may
be modified by the callee, that entry may have aDW_AT variable parameter attribute,
whose value is a flag. The absence of this attribute implies that the parameter’ s value in the
calling function cannot be modified by the callee.

If aparameter entry represents an optional parameter, it hasaDW_AT _is optional attribute,
whose value is aflag.

A formal parameter entry describing aformal parameter that has a default value may have a
DW_AT default value attribute. The value of this attribute is a reference to the debugging
information entry for avariable or subroutine. The default value of the parameter is the value
of the variable (which may be constant) or the value returned by the subroutine. If the value
of the DW_AT _default_value attribute is 0, it means that no default value has been specified.

An entry describing avariable or formal parameter whose value is constant and not
represented by an object in the address space of the program, or an entry describing a named

Page 58 Draft 7 October 29, 2001

constant, does not have alocation attribute. Such entrieshave aDW_AT _const_value

attribute, whose value may be a string or any of the constant data or data block forms, as
appropriate for the representation of the variable' s value. The value of this attribute is the
actual constant value of the variable, represented as it would be on the target architecture.

One way in which a formal parameter with a constant value and no location can ariseis for
aformal parameter of an inlined subprogram that corresponds to a constant actual
parameter of a call that isinlined.

11. If the scope of an object begins sometime after the low pc value for the scope most closely
enclosing the object, the object entry may haveaDW_AT _start_scope attribute. The value of
this attribute is the offset in bytes of the beginning of the scope for the object from the low pc
value of the debugging information entry that defines its scope.

The scope of avariable may begin somewhere in the middle of alexical block in alanguage
that allows executable code in ablock before a variable declaration, or where one declaration
containing initialization code may change the scope of a subsequent declaration. For
example, in the following C code:

float x = 99.99;
i nt myfunc()
float f

float x
return O;

X5
88. 99;

}

ANSI C scoping rules require that the value of the variable x assigned to the variablef inthe
initialization sequence is the value of the global variable x, rather than the local x, because
the scope of thelocal variable x only starts after the full declarator for the local x.

4.2 Common Block Entries

A Fortran common block may be described by a debugging information entry with the tag
DW_TAG_common_block. The common block entry hasaDW_AT_name attribute whose
valueis anull-terminated string containing the common block name as it appears in the source
program. It also hasaDW_AT _location attribute whose val ue describes the location of the
beginning of the common block. The common block entry owns debugging information entries
describing the variables contained within the common block.

Page 59 Draft 7 October 29, 2001

4.3 Namelist Entries

At least one language, Fortran 90, has the concept of a namelist. A namelist isan ordered list of
the names of some set of declared objects. The namelist object itself may be used asa
replacement for the list of names in various contexts.

A namelist is represented by a debugging information entry with the tag DW_TAG_namelist. If
the namelist itself has a name, the namelist entry hasaDW_AT _name attribute, whose valueis a
null-terminated string containing the namelist’s name as it appears in the source program.

Each name that is part of the namelist is represented by a debugging information entry with the
tag DW_TAG_namelist_item. Each such entry isachild of the namelist entry, and al of the
namelist item entries for a given namelist are ordered as were the list of names they correspond
to in the source program.

Each namelist item entry containsaDW_AT_namelist_item attribute whose value is areference

to the debugging information entry representing the declaration of the item whose name appears
in the namelist.

Page 60 Draft 7 October 29, 2001

5 TYPE ENTRIES

This section presents the debugging information entries that describe program types: base types,
modified types and user-defined types.

If the scope of the declaration of a named type begins sometime after the low pc value for the
scope most closely enclosing the declaration, the declaration may have aDW_AT _start_scope
attribute. The value of this attribute is the offset in bytes of the beginning of the scope for the
declaration from the low pc value of the debugging information entry that defines its scope.

5.1 Base Type Entries

A base type is a data type that is not defined in terms of other data types. Each programming
language has a set of base types that are considered to be built into that language.

A base type is represented by a debugging information entry with the tag DW_TAG_base type.
A basetype entry hasaDW_AT_name attribute whose value is a null-terminated string
describing the name of the base type as recognized by the programming language of the
compilation unit containing the base type entry.

A base type entry also hasaDW_AT _encoding attribute describing how the base typeis
encoded and isto be interpreted. The value of this attribute is an integer constant. The set of
values and their meanings for the DW_AT _encoding attribute is given in Figure 12.

All encodings assume the representation that is “normal” for the target architecture.

A basetype entry hasaDW_AT byte size attribute, whose value (see Section 2.18) isthe size
in bytes of the storage unit used to represent an object of the given type.

If the value of an object of the given type does not fully occupy the storage unit described by the
byte size attribute, the base type entry may have aDW_AT _bit_size attribute and a

DW_AT hit_offset attribute, both of whose values (see Section 2.18) are integers. The bit size
attribute describes the actual size in bits used to represent a value of the given type. The bit offset
attribute describes the offset in bits of the high order bit of avalue of the given type from the
high order bit of the storage unit used to contain that value.

For example, the C typei nt on a machine that uses 32-bit integers would be represented by a
base type entry with a name attribute whose value was “ int” , an encoding attribute whose value
was DW_ATE_signed and a byte size attribute whose value was 4.

Page 61 Draft 7 October 29, 2001

Name Meaning

DW_ATE address linear machine address

DW_ATE_ boolean true or false

DW_ATE complex_float |complex floating-point number

DW_ATE float floating-point number

DW_ATE imaginary float |imaginary floating-point number

DW_ATE signed signed binary integer

DW_ATE signed char signed character

DW_ATE unsigned unsigned binary integer

DW_ATE unsigned char |unsigned character

Figure 12. Encoding attribute values

5.2 Unspecified Type Entries

Some languages have constructs in which a type may be left unspecified or the absence of a type
may be explicitly indicated.

An unspecified (implicit, unknown, ambiguous or nonexistent) type is represented by a
debugging information entry with the tag DW_TAG_unspecified_type. If a name has been given
to the type, then the corresponding unspecified type entry hasaDW_AT_name attribute whose
valueis anull-terminated string containing the name as it appears in the source program.

The interpretation of this debugging information entry isintentionally left flexible to allow it to
be interpreted appropriately in different languages. For example, in C and C++ the language
implementation can provide an unspecified type entry with the name "void" which can be
referenced by the type attribute of pointer types and typedef declarations for 'void' (see Sections
5.3 and 5.4, respectively). As another example, in Ada such an unspecified type entry can be
referred to by the type attribute of an access type where the denoted type is incompl ete (the name
isdeclared as a type but the definition is deferred to a separate compilation unit).

Page 62 Draft 7 October 29, 2001

5.3 Type Modifier Entries

A base or user-defined type may be modified in different ways in different languages. A type
modifier is represented in DWARF by a debugging information entry with one of the tags given
in Figure 13.

If aname has been given to the modified type in the source program, then the corresponding
modified type entry hasaDW_AT _name attribute whose value is a null-terminated string
containing the modified type name as it appears in the source program.

Each of the type modifier entrieshasa DW_AT _type attribute, whose valueis areferenceto a
debugging information entry describing a base type, a user-defined type or another type
modifier.

A modified type entry describing a pointer or reference type may have aDW_AT_address class
attribute to describe how objects having the given pointer or reference type ought to be
dereferenced.

When multiple type modifiers are chained together to modify a base or user-defined type, they
are ordered asif part of aright-associative expression involving the base or user-defined type.

Tag Meaning

DW_TAG_const_type C or C++ const qualified type

DW_TAG_mutable type |C++ mutable qualified type

DW_TAG_packed type Pascal or Ada packed type

DW_TAG_pointer_type Pointer to an object of the type being modified.

DW_TAG reference type |C++ reference to an object of the type being modified

DW_TAG restrict_type C restrict qualified type

DW_TAG volatile type C or C++ volatile qualified type

Figure 13. Type modifier tags

Page 63 Draft 7 October 29, 2001

As exampl es of how type modifiers are ordered, take the following C declarations:

const unsigned char * volatile p;
whi ch represents a volatile pointer to a constant
character. This is encoded i n DAARF as:

DW TAG vari abl e(p) -
DW TAG vol atile_type -
DW TAG poi nter_type -
DW TAG const _type -
DW TAG base_t ype(unsi gned char)

vol atil e unsigned char * const restrict p;
on the other hand, represents a restricted constant
pointer to a volatile character. This is encoded as:

DW TAG vari abl e(p) -
DWTAG restrict_type -
DW TAG const _type -
DW TAG poi nter _type -
DW TAG vol atile_type -
DW TAG base_t ype(unsi gned char)

5.4 Typedef Entries

Any arbitrary type named via a typedef is represented by a debugging information entry with the
tag DW_TAG _typedef. The typedef entry hasaDW_AT _name attribute whose value is a null-
terminated string containing the name of the typedef asit appears in the source program. The
typedef entry also containsaDW_AT _type attribute.

If the debugging information entry for atypedef represents a declaration of the type that is not
also adefinition, it does not contain atype attribute.

5.5 Array Type Entries

Many languages share the concept of an “ array,” which is a table of components of identical
type.

An array typeis represented by a debugging information entry with the tag
DW_TAG_array_type. If aname has been given to the array type in the source program, then the
corresponding array type entry hasaDW_AT_name attribute whose value is a null-terminated
string containing the array type name as it appears in the source program.

Page 64 Draft 7 October 29, 2001

The array type entry describing a multidimensional array may haveaDW_AT _ordering attribute
whose integer constant value is interpreted to mean either row-major or column-major ordering
of array elements. The set of values and their meanings for the ordering attribute are listed in
Figure 14. If no ordering attribute is present, the default ordering for the source language (which
isindicated by the DW_AT _language attribute of the enclosing compilation unit entry) is
assumed.

DW_ORD_col_major

DW_ORD_row_magjor

Figure 14. Array ordering
The ordering attribute may optionally appear on one-dimensional arrays; it will be ignored.

An array type entry hasaDW_AT _type attribute describing the type of each element of the
array.

If the amount of storage allocated to hold each element of an object of the given array typeis
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the array type entry hasaDW_AT _stride size attribute, whose
value (see Section 2.18) isthe size in bits of each element of the array.

The array type entry may haveaDW_AT _byte size attribute, whose value (see Section 2.18) is
the total size in bytes of an instance of the array type.

If the size of the array can be determined statically at compile time, this value can usually be
computed by multiplying the number of array elements by the size of each element.

Each array dimension is described by a debugging information entry with either the tag
DW_TAG_subrange type or thetag DW_TAG_enumeration_type. These entries are children of
the array type entry and are ordered to reflect the appearance of the dimensionsin the source
program (i.e., leftmost dimension first, next to leftmost second, and so on).

In languages, such as ANS C, in which there is no concept of a “ multidimensional array”, an
array of arrays may be represented by a debugging information entry for a multidimensional
array.

Other attributes especially applicable to arraysare DW_AT _alocated, DW_AT _associated and
DW_AT_data location, which are described in Section 5.14. For relevant examples, see aso
Appendix D.2.1.

Page 65 Draft 7 October 29, 2001

5.6 Structure, Union, Class and Interface Type Entries

The languages C, C++, and Pascal, among others, allow the programmer to define types that
are collections of related components. In C and C++, these collections are called “ structures.”
In Pascal, they are called “ records.” The components may be of different types. The components
are called “ members’ in C and C++, and “ fields” in Pascal.

The components of these collections each exist in their own space in computer memory. The
components of a C or C++ “union” all coexist in the same memory.

Pascal and other languages have a “ discriminated union,” also called a “ variant record.” Here,
selection of a number of alternative substructures (“ variants”) is based on the value of a
component that is not part of any of those substructures (the “ discriminant”).

C++ and Java have the notion of "class’ , which isin some ways similar to a structure. A class
may have “ member functions” which are subroutines that are within the scope of a class or
structure.

The C++ notion of structure ismore general than in C, being equivalent to a class with minor
differences. Accordingly, in the following discussion statements about C++ classes may be
under stood to apply to C++ structures as well.

5.6.1 General Structure, Union and Class Description

Structure, union, and class types are represented by debugging information entries with the tags
DW_TAG_structure_type, DW_TAG_union_type, and DW_TAG_class type, respectively. If a
name has been given to the structure, union, or class in the source program, then the
corresponding structure type, union type, or classtype entry hasaDW_AT_name attribute
whose value is a null-terminated string containing the type name as it appears in the source
program.

The members of a structure, union, or class are represented by debugging information entries that
are owned by the corresponding structure type, union type, or class type entry and appear in the
same order as the corresponding declarations in the source program.

If the size of an instance of the structure type, union type, or class type entry can be determined
statically at compiletime, theentry hasaDW_AT _byte size attribute whose integer constant
valueis the number of bytes required to hold an instance of the structure, union, or class,
including any padding bytes. Otherwise, the entry may have aDW_AT _byte size attribute
whose value (see Section 2.18) is the dynamic number of bytes required.

Page 66 Draft 7 October 29, 2001

An incomplete structure, union or classtype is represented by a structure, union or class entry
that does not have a byte size attribute and that hasa DW_AT _declaration attribute.

If astructure, union or class entry represents the defining declaration of a structure, class or
union member of another structure class or union, the entry hasa DW_AT _specification attribute
whose value is areference to the debugging information entry representing the incomplete
declaration, as described above.

Structure, union and class entries containing the DW_AT _specification attribute do not need to
duplicate information provided by the declaration entry referenced by the specification attribute.
In particular, such entries do not need to contain an attribute for the name of structure, class or
union they represent.

For C and C++, data member declarations occurring within the declaration of a structure,
union or classtype are considered to be “ definitions” of those members, with the exception of
“dtatic” data members, whose definitions appear outside of the declaration of the enclosing
structure, union or class type. Function member declarations appearing within a structure,
union or class type declaration are definitions only if the body of the function also appears
within the type declaration.

If the definition for a given member of the structure, union or class does not appear within the
body of the declaration, that member also has a debugging information entry describing its
definition. That latter entry will have aDW_AT _specification attribute referencing the
debugging entry owned by the body of the structure, union or class debugging entry and
representing a non-defining declaration of the data, function or type member. The referenced
entry will not have information about the location of that member (low and high pc attributes for
function members, location descriptions for data members) and will have aDW_AT _declaration
attribute.

Consider a nested class whose definition occurs outside of the containing class definition, asin:

struct A {
struct B;
}s

struct A::B { ...};

The two different structs can be described in different conpilation units to
facilitate DWARF space conpression (see Appendi x E).

5.6.2 General Interface Description

The Java language defines "interface" types. An interfacein Javaissimilar to a C++ or Java
class with only abstract methods and constant data members.

Page 67 Draft 7 October 29, 2001

Interface types are represented by debugging information entries with the tag
DW_TAG interface type.

Aninterface type entry hasaDW_AT_name attribute, whose value is a null-terminated string
containing the type name as it appears in the source program.

The members of an interface are represented by debugging information entries that are owned by
the interface type entry and that appear in the same order as the corresponding declarations in the
source program.

5.6.3 Derived or Extended Classes and Interfaces

In C++, aclass may be "derived from" or be a "subclass of" another class. In Java, an interface
may "extend" one or more other interfaces, and a class may "extend" another class and/or
"implement” one or more interfaces. All of these relationships may be described using the
following. Note that in Java, the distinction between extends and implementsisimplied by the
entities at the two ends of the relationship.

A classtype or interface type entry that describes a derived, extended or implementing class or
interface owns debugging information entries describing each of the classes or interfacesitis
derived from, extending or implementing, respectively, ordered as they were in the source
program. Each such entry hasthetag DW_TAG _inheritance.

Aninheritance entry hasa DW_AT _type attribute whose value is a reference to the debugging
information entry describing the class or interface from which the parent class or structure of the
inheritance entry is derived, extended or implementing.

Aninheritance entry for a class that derives from or extends another class also has a
DW_AT _data member_location attribute, whose value describes the location of the beginning
of the inherited type relative to the beginning address of the derived class. If that valueisa
constant, it is the offset in bytes from the beginning of the class to the beginning of the inherited
type. Otherwise, the value must be a location description. In this latter case, the beginning
address of the derived class is pushed on the expression stack before the location expression is
evaluated and the result of the evaluation is the location of the inherited type.

The interpretation of the value of this attribute for inherited typesis the same as the
interpretation for data members (see Section 5.6.6).

An inheritance entry may haveaDW_AT _accessibility attribute. If no accessibility attributeis
present, private access is assumed for an entry of a class and public accessis assumed for an
entry of an interface.

Page 68 Draft 7 October 29, 2001

If the class referenced by the inheritance entry serves as a C++ virtual base class, the inheritance
entry hasaDW_AT virtuality attribute.

For a C++ virtual base, the data member location attribute will usually consist of a non-trivial
location expression.

5.6.4 Access Declarations

In C++, aderived class may contain access declarations that change the accessibility of
individual class members from the overall accessibility specified by the inheritance declaration.
A single access declaration may refer to a set of overloaded names.

If aderived class or structure contains access declarations, each such declaration may be
represented by a debugging information entry with the tag DW_TAG_access _declaration. Each
such entry isachild of the class or structure type entry.

An access declaration entry hasaDW_AT_name attribute, whose value is a null-terminated
string representing the name used in the declaration in the source program, including any class or
structure qualifiers.

An access declaration entry also hasaDW_AT_accessibility attribute describing the declared
accessibility of the named entities.

5.6.5 Friends

Each “friend” declared by a structure, union or class type may be represented by a debugging
information entry that is a child of the structure, union or class type entry; the friend entry has
thetag DW_TAG _friend.

A friend entry hasaDW_AT _friend attribute, whose value is areference to the debugging
information entry describing the declaration of the friend.

5.6.6 Data Member Entries

A data member (as opposed to a member function) is represented by a debugging information
entry with the tag DW_TAG_member. The member entry for anamed member has a
DW_AT_name attribute whose value is a null-terminated string containing the member name as
it appears in the source program. If the member entry describes a C++ anonymous union, the
name attribute is omitted or consists of a single zero byte.

The data member entry hasaDW_AT _type attribute to denote the type of that member.

Page 69 Draft 7 October 29, 2001

A data member entry may haveaDW_AT _accessibility attribute. If no accessibility attributeis
present, private access is assumed for an entry of a class and public accessis assumed for an
entry of astructure, union, or interface.

For a data member of a structure, union or class, the corresponding member entry has a
DW_AT_data member_location attribute whose value describes the location of that member
relative to the base address of the structure, union, or class that most closely encloses the

member declaration. If that value is a constant, it is the offset in bytes from the beginning of the
innermost enclosing structure, union or class to the beginning of the data member. Otherwise, the
value must be alocation description. In this latter case, the base address of the innermost
enclosing structure, union, or classis pushed on the expression stack before the location
expression is evaluated and the result of the evaluation is the location of the member.

The interpretation of a constant operand as a byte offset from the base of the containing
structure, union or class optimizes the size of the DWARF representation for the predominant
case of a data member at a fixed offset. Note that no DWARF |ocation expression evaluation is
involved.

For alocation description, the implicit push on the DWARF expression stack of the base address
of the containing construct is equivalent to execution of the DW_OP_push_object_address
operation (see Section 2.4.1.3); DW_OP_push_object_address therefore is not needed at the
beginning of a location expression for a data member. The result of the evaluation is a location--
either an address or the name of a register, not an offset to the member.

The location description for a data member of a union may be omitted, since all data members of
a union begin at the same address.

If the data member entry describes a bit field, then that entry has the following attributes:

« A DW_AT byte sizeattribute whose value (see Section 2.18) is the number of bytes that
contain an instance of the bit field and any padding bits.

The byte size attribute may be omitted if the size of the object containing the bit field can be
inferred from the type attribute of the data member containing the bit field.

« A DW_AT bit offset attribute whose value (see Section 2.18) is the number of bitsto the
left of the leftmost (most significant) bit of the bit field value.

« A DW_AT bit size attribute whose value (see Section 2.18) is the number of bits occupied
by the bit field value.

Page 70 Draft 7 October 29, 2001

The location description for a bit field calcul ates the address of an anonymous object containing
the bit field. The address is relative to the structure, union, or class that most closely encloses the
bit field declaration. The number of bytes in this anonymous object is the value of the byte size
attribute of the bit field. The offset (in bits) from the most significant bit of the anonymous object
to the most significant bit of the bit field is the value of the bit offset attribute.

For example, take one possible representation of the following structure definition in both big
and little endian byte orders:

struct S {
int j:5;
int k:6;
int mb5;
int n:8;
1
In both cases, the location descriptions for the debugging information entriesfor j, k, m andn
describe the address of the same 32-bit word that contains all three members. (In the big-endian
case, the location description addresses the most significant byte, in the little-endian case, the
least significant).

The following diagram shows the structure layout and lists the bit offsets for each case. The
offsets are from the most significant bit of the object addressed by the location description.

Bit Ofsets:

j:0

k:5

m1ll

n: 16
Bi g- Endi an
0

i k m n pad

31 26 20 15 7 0
Bit Ofsets:

j:27

k: 21

m 16

n:8
Littl e-Endi an

0
pad n m k i

31 23 15 10 4 0

Page 71 Draft 7 October 29, 2001

5.6.7 Member Function Entries

A member function is represented by a debugging information entry with the tag
DW_TAG_subprogram. The member function entry may contain the same attributes and follows
the same rules as non-member global subroutine entries (see Section 3.3).

A member function entry may have aDW_AT _accessibility attribute. If no accessibility attribute
IS present, private accessis assumed for an entry of a class and public accessis assumed for an
entry of a structure, union or interface.

If the member function entry describes avirtual function, then that entry has a
DW_AT virtuality attribute.

An entry for avirtual function adso hasaDW_AT vtable elem_location attribute whose value
contains alocation description yielding the address of the dot for the function within the virtua
function table for the enclosing class. The address of an object of the enclosing type is pushed
onto the expression stack before the location description is evaluated.

If a subroutine entry represents the defining declaration of a member function and that definition
appears outside of the body of the enclosing class declaration, the subroutine entry has a
DW_AT _specification attribute, whose value is a reference to the debugging information entry
representing the declaration of this function member. The referenced entry will be a child of
some class (or structure) type entry.

Subroutine entries containing the DW_AT _specification attribute do not need to duplicate
information provided by the declaration entry referenced by the specification attribute. In
particular, such entries do not need to contain attributes for the name or return type of the
function member whose definition they represent.

5.6.8 Class Template Instantiations

In C++ aclasstemplate is a generic definition of a class type that is instantiated differently
when an instance of the classis declared or defined. The generic description of the class may
include both parameterized types and parameterized constant values. DWARF does not
represent the generic template definition, but does represent each instantiation.

A class template instantiation is represented by a debugging information entry with the tag
DW_TAG_ class type, DW_TAG_structure_type or DW_TAG_union_type. With four
exceptions, such an entry will contain the same attributes and have the same types of child
entries aswould an entry for a class type defined explicitly using the instantiation types and
values. The exceptions are:

Page 72 Draft 7 October 29, 2001

1. Eachformal parameterized type declaration appearing in the template definition is
represented by a debugging information entry with the tag
DW_TAG_ template type parameter. Each such entry may haveaDW_AT _name attribute,
whose value is a null-terminated string containing the name of the formal type parameter asit
appears in the source program. The template type parameter entry also hasaDW_AT _type
attribute describing the actua type by which the formal is replaced for this instantiation.

2. Eachformal parameterized value declaration appearing in the template definition is
represented by a debugging information entry with the tag
DW_TAG_template value parameter. Each such entry may have aDW_AT_name attribute,
whose value is a null-terminated string containing the name of the formal value parameter as
it appearsin the source program. The template value parameter entry also has a
DW_AT _type attribute describing the type of the parameterized value. Finaly, the template
value parameter entry hasaDW_AT _const_value attribute, whose value is the actual
constant value of the value parameter for this instantiation as represented on the target
architecture.

3. If the compiler has generated a special compilation unit to hold the template instantiation and
that compilation unit has a different name from the compilation unit containing the template
definition, the name attribute for the debugging entry representing that compilation unit
should be empty or omitted.

4. If the class type entry representing the template instantiation or any of its child entries
contain declaration coordinate attributes, those attributes should refer to the source for the
template definition, not to any source generated artificially by the compiler.

5.6.9 Variant Entries

A variant part of astructure is represented by a debugging information entry with the tag
DW_TAG variant_part and is owned by the corresponding structure type entry.

If the variant part has a discriminant, the discriminant is represented by a separate debugging
information entry which is a child of the variant part entry. This entry has the form of a structure
data member entry. The variant part entry will haveaDW_AT _discr attribute whose valueisa
reference to the member entry for the discriminant.

If the variant part does not have a discriminant (tag field), the variant part entry has a
DW_AT _type attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging information entry with the
tag DW_TAG variant and isachild of the variant part entry. The value that selects a given
variant may be represented in one of three ways. The variant entry may have a

Page 73 Draft 7 October 29, 2001

DW_AT discr_value attribute whose value represents a single case label. The value of this
attribute is encoded as an LEB128 number. The number is signed if the tag type for the variant
part containing this variant is asigned type. The number is unsigned if the tag typeis an
unsigned type.

Alternatively, the variant entry may contain aDW_AT_discr_list attribute, whose value
represents alist of discriminant values. Thislist is represented by any of the block forms and
may contain a mixture of case labels and label ranges. Each item on the list is prefixed with a
discriminant value descriptor that determines whether the list item represents asingle label or a
label range. A single case label is represented as an LEB128 number as defined above for the
DW_AT discr_value attribute. A label rangeis represented by two LEB128 numbers, the low
value of the range followed by the high value. Both values follow the rules for signedness just
described. The discriminant value descriptor is an integer constant that may have one of the
values given in Figure 15.

DW_DSC _label

DW_DSC range

Figure 15. Discriminant descriptor values

If avariant entry has neither aDW_AT discr_value attribute nor aDW_AT _discr_list attribute,
orifithasaDW_AT discr_list attribute with O size, the variant is adefault variant.

The components selected by a particular variant are represented by debugging information
entries owned by the corresponding variant entry and appear in the same order asthe
corresponding declarations in the source program.

5.7 Enumeration Type Entries

An “ enumeration type” isa scalar that can assume one of a fixed number of symbolic values.

An enumeration type is represented by a debugging information entry with the tag
DW_TAG_enumeration_type.

If aname has been given to the enumeration type in the source program, then the corresponding
enumeration type entry hasaDW_AT _name attribute whose value is a null-terminated string
containing the enumeration type name as it appears in the source program. This entry also has a

Page 74 Draft 7 October 29, 2001

DW_AT byte size attribute whose integer constant value is the number of bytes required to hold
an instance of the enumeration.

Each enumeration literal is represented by a debugging information entry with the tag
DW_TAG_enumerator. Each such entry isa child of the enumeration type entry, and the
enumerator entries appear in the same order as the declarations of the enumeration literalsin the
source program.

Each enumerator entry hasaDW_AT_name attribute, whose value is a null-terminated string
containing the name of the enumeration literal asit appears in the source program. Each
enumerator entry also hasaDW_AT_const_value attribute, whose value is the actual numeric
value of the enumerator as represented on the target system.

If the enumeration type occurs as the description of adimension of an array type, and the stride
for that dimension is different than what would otherwise be determined, then the enumeration
type entry hasa DW_AT _stride attribute, which specifies the number of bytes between
successive elements along the dimension as described in Section 2.18.

5.8 Subroutine Type Entries

It ispossible in C to declare pointers to subroutines that return a value of a specific type. In both
ANS C and C++, it is possible to declare pointers to subroutines that not only return a value of
a specific type, but accept only arguments of specific types. The type of such pointers would be
described with a “ pointer to” modifier applied to a user-defined type.

A subroutine type is represented by a debugging information entry with the tag
DW_TAG_subroutine _type. If a name has been given to the subroutine type in the source
program, then the corresponding subroutine type entry hasa DW_AT_name attribute whose
value is anull-terminated string containing the subroutine type name as it appears in the source
program.

If the subroutine type describes a function that returns a value, then the subroutine type entry has
aDW_AT _type attribute to denote the type returned by the subroutine. If the types of the
arguments are necessary to describe the subroutine type, then the corresponding subroutine type
entry owns debugging information entries that describe the arguments. These debugging
information entries appear in the order that the corresponding argument types appear in the
source program.

In ANSI C thereis a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

Page 75 Draft 7 October 29, 2001

A subroutine entry declared with afunction prototype style declaration may have a
DW_AT_prototyped attribute, whose value is aflag.

Each debugging information entry owned by a subroutine type entry has a tag whose value has
one of two possible interpretations:

1. Theformal parameters of a parameter list (that have a specific type) are represented by a
debugging information entry with thetag DW_TAG_formal_parameter. Each formal
parameter entry hasaDW_AT _type attribute that refers to the type of the formal parameter.

2. The unspecified parameters of a variable parameter list are represented by a debugging
information entry with thetag DW_TAG_unspecified _parameters.

5.9 String Type Entries

A“string” isa sequence of characters that have specific semantics and operations that separate
themfrom arrays of characters. Fortran is one of the languages that has a string type. Note that
"string" in this context refers to a target machine concept, not the class string as used in this
document (except for the name attribute).

A string type is represented by a debugging information entry with the tag
DW_TAG_string_type. If aname has been given to the string type in the source program, then
the corresponding string type entry hasaDW_AT_name attribute whose value is anull-
terminated string containing the string type name as it appears in the source program.

The string type entry may haveaDW_AT _string_length attribute whose value is alocation
description yielding the location where the length of the string is stored in the program. The
string type entry may also have aDW_AT byte size attribute, whose value (see Section 2.18) is
the size in bytes of the data to be retrieved from the location referenced by the string length
attribute. If no byte size attribute is present, the size of the datato be retrieved is the same as the
size of an address on the target machine.

If no string length attribute is present, the string type entry may haveaDW_AT byte size
attribute, whose value (see Section 2.18) isthe length in bytes of the string.

5.10 Set Entries

Pascal provides the concept of a* set,” which represents a group of values of ordinal type.

A set isrepresented by a debugging information entry with thetag DW_TAG_set_type. If a
name has been given to the set type, then the set type entry hasaDW_AT_name attribute whose
valueis anull-terminated string containing the set type name as it appears in the source program.

Page 76 Draft 7 October 29, 2001

The set type entry hasaDW_AT _type attribute to denote the type of an element of the set.

If the amount of storage allocated to hold each element of an object of the given set typeis
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the set type entry hasaDW_AT _byte size attribute, whose value
(see Section 2.18) isthe size in bytes of an instance of the set type.

5.11 Subrange Type Entries

Several languages support the concept of a “ subrange” type object. These objects can represent
a subset of the values that an object of the basis type for the subrange can represent. Subrange
type entries may also be used to represent the bounds of array dimensions.

A subrange type is represented by a debugging information entry with the tag
DW_TAG_subrange type. If a name has been given to the subrange type, then the subrange type
entry hasaDW_AT _name attribute whose value is a null-terminated string containing the
subrange type name as it appears in the source program.

The subrange entry may haveaDW_AT _type attribute to describe the type of object, called the
basis type, of whose values this subrange is a subset.

If the amount of storage allocated to hold each element of an object of the given subrange typeis
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the subrange type entry hasaDW_AT _byte size attribute, whose
value (see Section 2.18) isthe size in bytes of each element of the subrange type.

The subrange entry may have the attributes DW_AT _lower_bound and DW_AT_upper_bound
to describe, respectively, the lower and upper bound values of the subrange. The
DW_AT_upper_bound attribute may be replaced by aDW_AT _count attribute, whose value
describes the number of elementsin the subrange rather than the value of the last element. The
value of each of these attributes is determined as described in Section 2.18.

If the lower bound value is missing, the value is assumed to be a language-dependent default
constant. The default lower bound value for C or C++ is0. For Fortran, itis 1.

No other default lower bound values are currently defined.
If the upper bound and count are missing, then the upper bound value is unknown.

If the subrange entry has no type attribute describing the basis type, the basis type is assumed to
be the same as the object described by the lower bound attribute (if it references an object). If
there is no lower bound attribute, or that attribute does not reference an object, the basistypeis

Page 77 Draft 7 October 29, 2001

the type of the upper bound or count attribute (if either of them references an object). If thereis
no upper bound or count attribute, or neither references an object, the type is assumed to be the
same type, in the source language of the compilation unit containing the subrange entry, asa
signed integer with the same size as an address on the target machine.

If the subrange type occurs as the description of adimension of an array type, and the stride for
that dimension is different than what would otherwise be determined, then the subrange type
entry hasaDW_AT _stride attribute which specifies the signed number of bytes between
successive elements along the dimension as described in Section 2.18.

Note that the stride can be negative.

5.12 Pointer to Member Type Entries

In C++, a pointer to a data or function member of a class or structureisa unique type.

A debugging information entry representing the type of an object that is a pointer to a structure
or class member hasthetag DW_TAG_ptr_to_member_type.

If the pointer to member type has a name, the pointer to member entry hasaDW_AT _name
attribute, whose value is a null-terminated string containing the type name as it appearsin the
source program.

The pointer to member entry hasaDW_AT _type attribute to describe the type of the class or
structure member to which objects of thistype may point.

The pointer to member entry also hasaDW_AT _containing_type attribute, whose valueisa
reference to a debugging information entry for the class or structure to whose members objects
of this type may point.

Finally, the pointer to member entry hasaDW_AT _use location attribute whose valueis a
location description that computes the address of the member of the class to which the pointer to
member entry points (the value is meaningless if the pointer to member does not currently point
to anything).

The method used to find the address of a given member of a class or structure is common to any
instance of that class or structure and to any instance of the pointer or member type. The method
is thus associated with the type entry, rather than with each instance of the type.

Page 78 Draft 7 October 29, 2001

The DW_AT use |ocation expression must be used in conjunction with the location expressions
for a particular object of the given pointer to member type and for a particular structure or class
instance. The DW_AT _use location attribute expects two values to be pushed onto the location
expression stack beforethe DW_AT _use |ocation expression is evaluated. The first value
pushed is the value of the pointer to member object itself. The second value pushed is the base
address of the entire structure or union instance containing the member whose address is being
calculated.

For an expression such as
obj ect. *nmbr_ptr
where nbr _pt r has some pointer to member type, a debugger should:
1. Pushthevalue of mbr _pt r onto the location expression stack.
2. Push the base address of obj ect onto the location expression stack.

3. Evaluatethe DW_AT use |ocation expression given in the type of mor _ptr.

5.13 File Type Entries

Some languages, such as Pascal, provide a first class data type to represent files.

A filetypeis represented by a debugging information entry with the tag DW_TAG _file _type. If
the file type has a name, the file type entry hasaDW_AT_name attribute, whose value is a null-
terminated string containing the type name as it appears in the source program.

Thefiletypeentry hasaDW_AT _type attribute describing the type of the objects contained in
thefile.

Thefiletype entry also hasaDW_AT _byte size attribute, whose value (see Section 2.18) isthe
sizein bytes of an instance of thisfile type.

5.14 Dynamic Type Properties

5.14.1 Data Location

Some languages may represent objects using descriptors to hold information, including a
location and/or run-time parameters, about the data that represents the value for that object.

Page 79 Draft 7 October 29, 2001

The DW_AT data location attribute may be used with any type that provides one or more levels
of hidden indirection and/or run-time parametersin its representation. Its value is alocation
expression. The result of evaluating this expression yields the address of the data for an object.
When this attribute is omitted, the address of the data is the same as the address of the object.

This location expression will typically begin with DW_OP_push_object_address which loads the
address of the object which can then serve as a descriptor in subsequent calculation. For an
exampleusing DW_AT data_location for a Fortran 90 array, see Appendix D.2.1.

5.14.2 Allocation and Association Status

Some languages, such as Fortran 90, provide types whose values may be dynamically allocated
or associated with a variable under explicit program control.

The DW_AT _allocated attribute may optionally be used with any type for which objects of the
type can be explicitly alocated and deallocated. The presence of the attribute indicates that
objects of the type are allocatable and deallocatable. The value of the attribute (see below)
specifies whether an object of the typeis currently allocated or not.

The DW_AT _associated attribute may optionally be used with any type for which objects of the
type can be dynamically associated with other objects. The presence of the attribute indicates
that objects of the type can be associated. The value of the attribute (see below) indicates
whether an object of the type is currently associated or not.

While these attributes are defined specifically with Fortran 90 ALLOCATABLE and POINTER
typesin mind, usage is not limited to just that language.

The value of these attributes is determined as described in Section 2.18.

A non-zero value isinterpreted as allocated or associated, and zero is interpreted as not allocated
or not associated.

For Fortran 90, if both attributes are present, then the type should be assumed to have the
POINTER property (and not ALLOCATABLE); the DW_AT _allocated attribute may then be
used to indicate that the allocation status of the object resulted from execution of an ALLOCATE
statement rather than pointer assignment.

For examples using DW_AT _allocated for Ada and Fortran 90 arrays, see Appendix D.2.

Page 80 Draft 7 October 29, 2001

5.15 DWAREF Procedures

A DWAREF procedure is represented by any kind of debugging information entry that has a
DW_AT location attribute. If a suitable entry is not otherwise available, a DWARF procedure
can be represented using a debugging information entry with the tag
DW_TAG_dwarf_procedure.

A DWAREF procedureis called by aDW_OP_call2, DW_OP_call4 or DW_OP _call_ref
DWARF expression operator (see Section 2.4.1.5).

Page 81 Draft 7 October 29, 2001

Page 82 Draft 7 October 29, 2001

6 OTHER DEBUGGING INFORMATION

This section describes debugging information that is not represented in the form of debugging
information entries and is not contained within the . debug_i nf o section.

In the descriptions of that follow, the following terms are used to specify the representation of
DWAREF sections:

» Initial length, section offset and section length, which are defined in Sections 7.2.2 and 7.4.

» Shyte, ubyte, uhalf, and uword, which are defined in Section 7.26.

6.1 Accelerated Access

A debugger frequently needs to find the debugging information for a program entity defined
outside of the compilation unit where the debugged programis currently stopped. Sometimes it
will know only the name of the entity; sometimes only the address. To find the debugging
information associated with a global entity by name, using the DWARF debugging information
entries alone, a debugger would need to run through all entries at the highest scope within each
compilation unit.

Smilarly, in languages in which the name of a type is guarenteed to always refer to the same
concrete type (such as C++), a compiler may choose to elide type definitionsin all compilation
units except one. In this case a debugger needs a rapid way of locating the concrete type
definition by name. As with the definition of global data objects, thiswould require a search of
all the top level type definitions of all compilation unitsin a program.

For lookup by address, for a subroutine, a debugger can use the low and high pc attributes of the
compilation unit entries to quickly narrow down the search, but these attributes only cover the
range of addresses for the text associated with a compilation unit entry. To find the debugging
information associated with a data object, an exhaustive search would be needed. Furthermore,
any search through debugging information entries for different compilation units within a large
program would potentially require the access of many memory pages, probably hurting

debugger performance.

To make lookups of program entities (data objects, functions and types) by name or by address
faster, a producer of DWAREF information may provide three different types of tables containing
information about the debugging information entries owned by a particular compilation unit
entry in amore condensed format.

Page 83 Draft 7 October 29, 2001

6.1.1 Lookup by Name

For lookup by name, two tables are maintained in separate object file sections called

. debug_pubnanes for objects and functions, and . debug_pubt ypes for types. Each table
consists of sets of variable length entries, each set describing the names of global objects and
functions, or global types, respectively, whose definitions are represented by debugging
information entries owned by a single compilation unit.

C++ member functions with a definition in the class declaration are definitionsin every
compilation unit containing the class declaration, but if there is no concrete instance thereis no
need to have a . debug_pubnanes entry for the member function.

Each set begins with a header containing four values:
1. unit_length (initid length)

The length of the entries for that set, not including the length field itself.
2. version (uhalf)

A version number. This number is specific to the name lookup table and is independent of
the DWARF version number.

3. debug_i nf o_of f set (section offset)

The offset from the beginning of the . debug_i nf o section of the compilation unit header
referenced by the set.

4. debug_i nfo_l engt h (section length)

The sizein bytes of the contents of the . debug_i nf o section generated to represent that
compilation unit.

This header isfollowed by a variable number of offset/name pairs. Each pair consists of the
section offset from the beginning of the compilation unit corresponding to the current set to the
debugging information entry for the given object, followed by a null-terminated character string
representing the name of the object as given by the DW_AT_name attribute of the referenced
debugging entry. Each set of namesis terminated by an offset field containing zero (and no
following string).

In the case of the name of afunction member or static data member of a C++ structure, class or
union, the name presented in the . debug_pubnanes section is not the simple name given by the

Page 84 Draft 7 October 29, 2001

DW_AT_name attribute of the referenced debugging entry, but rather the fully qualified name of
the data or function member.

6.1.2 Lookup by Address

For lookup by address, atable is maintained in a separate object file section called
. debug_ar anges. The table consists of sets of variable length entries, each set describing the
portion of the program’s address space that is covered by a single compilation unit.

Each set begins with a header containing five values:
1. unit_I ength (initia length)

The length of the entries for that set, not including the length field itself.
2. version (uhalf)

A version number. This number is specific to the address lookup table and is independent of
the DWARF version number.

3. debug_i nf o_of f set (section offset)

The offset from the beginning of the . debug_i nf o section of the compilation unit header
referenced by the set.

4. address_si ze (ubyte)

The sizein bytes of an address on the target architecture. For segmented addressing, thisis
the size of the offset portion of the address.

5. segnent _si ze (ubyte)

The sizein bytes of a segment descriptor on the target architecture. If the target system uses a
flat address space, thisvalueisO.

This header isfollowed by a variable number of address range descriptors. Each descriptor isa
pair consisting of the beginning address of arange of text or data covered by some entry owned
by the corresponding compilation unit, followed by the non-zero length of that range. A
particular set is terminated by an entry consisting of two zeroes. By scanning the table, a
debugger can quickly decide which compilation unit to look in to find the debugging information
for an object that has a given address.

Page 85 Draft 7 October 29, 2001

If the range of addresses covered by the text and/or data of a compilation unit is not contiguous,
then there may be multiple address range descriptors for that compilation unit.

6.2 Line Number Information

A source-level debugger will need to know how to associate locations in the source files with the
corresponding machine instruction addresses in the executable object or the shared objects used
by that executable object. Such an association would make it possible for the debugger user to
specify machine instruction addresses in terms of source locations. Thiswould be done by
specifying the line number and the sour ce file containing the statement. The debugger can also
use thisinformation to display locations in terms of the source files and to single step fromline
to line, or statement to statement.

As mentioned in Section 3.1.1, the line number information generated for a compilation unit is
represented in the . debug_| i ne section of an object file and is referenced by a corresponding
compilation unit debugging information entry in the . debug_i nf o section.

Some computer ar chitectures employ more than one instruction set (for example, the ARM and
MIPS ar chitectures support a 32-bit aswell as a 16-bit instruction set). Because the instruction
set is a function of the program counter, it is convenient to encode the applicable instruction set
inthe. debug_l i ne section aswell.

If space were not a consideration, the information provided in the . debug_1I i ne section could be
represented as a large matrix, with one row for each instruction in the emitted object code. The
matrix would have columns for:

» thesource file name

» the source line number

* the source column number

» whether thisinstruction is the beginning of a source statement
» whether thisinstruction is the beginning of a basic block

* andsoon

Such a matrix, however, would be impractically large. We shrink it with two techniques. First,
we delete from the matrix each row whose file, line and source column information is identical
with that of its predecessors. Any deleted row would never be the beginning of a source

statement. Second, we design a byte-coded language for a state machine and store a stream of

Page 86 Draft 7 October 29, 2001

bytes in the object file instead of the matrix. This language can be much more compact than the
matrix. When a consumer of the line number information executes, it must “ run” the state
machine to generate the matrix for each compilation unit it isinterested in. The concept of an
encoded matrix also leaves room for expansion. In the future, columns can be added to the
matrix to encode other things that are related to individual instruction addresses.

When the set of addresses of a compilation unit cannot be described as a single contiguous
range, there will be a separate matix for each contiguous subrange.

6.2.1 Definitions

The following terms are used in the description of the line number information format:

state machine The hypothetical machine used by a consumer of the line number
information to expand the byte-coded instruction stream into a matrix of
line number information.

line number program A series of byte-coded line number information instructions representing
one compilation unit.

basic block A sequence of instructions that is entered only at the first instruction and
exited only at the last instruction. We define a procedure invocation to be
an exit from a basic block.

sequence A series of contiguous target machine instructions. One compilation unit
may emit multiple sequences (that is, not all instructions within a
compilation unit are assumed to be contiguous).

6.2.2 State Machine Registers

The line number information state machine has the following registers:

addr ess The program-counter value corresponding to a machine instruction
generated by the compiler.

file An unsigned integer indicating the identity of the sourcefile
corresponding to a machine instruction.

line An unsigned integer indicating a source line number. Lines are numbered
beginning at 1. The compiler may emit the value O in cases where an
instruction cannot be attributed to any source line.

Page 87 Draft 7 October 29, 2001

col um

is_stnt

basi c_bl ock

end_sequence

pr ol ogue_end

epi | ogue_begi n

i sa

An unsigned integer indicating a column number within a source line.
Columns are numbered beginning at 1. The value O is reserved to indicate
that a statement begins at the “left edge” of the line.

A boolean indicating that the current instruction is a recommended
breakpoint location. A recommended breakpoint location is intended to
"represent” aline, a statement and/or a semantically distinct subpart of a
statement.

A boolean indicating that the current instruction is the beginning of abasic
block.

A boolean indicating that the current addressisthat of the first byte after
the end of a sequence of target machine instructions.

A boolean indicating that the current address is one (of possibly many)
where execution should be suspended for an entry breakpoint of afunction.

A boolean indicating that the current addressis one (of possibly many)
where execution should be suspended for an exit breakpoint of afunction.

An unsigned integer whose value encodes the applicable instruction set
architecture for the current instruction.

The encoding of instruction sets should be shared by all users of a given
architecture. It is recommended that this encoding be defined by the ABI
authoring committee for each architecture.

At the beginning of each sequence within aline number program, the state of the registersis:

addr ess 0

file 1

line 1

col um 0

is_stmt determined by defaul t _i s_stnt intheline number program header
basi c_bl ock “fal se”

end_sequence “fal se”

pr ol ogue_end “fal se”

epi | ogue_begi n “fal se”

i sa architecturally determined default

In the case of an architecture that supports one instruction set, the isa register will be set to
some default initial value and thereafter will never change.

Page 88 Draft 7 October 29, 2001

6.2.3 Line Number Program Instructions

The state machine instructions in a line number program belong to one of three categories:

special opcodes

standard opcodes

extended opcodes

These have a ubyte opcode field and no operands. Most of the instructions
in aline number program are specia opcodes.

These have a ubyte opcode field which may be followed by zero or more
LEB128 operands (except for DW_LNS fixed_advance pc, see below).
The opcode implies the number of operands and their meanings, but the
line number program header also specifies the number of operands for
each standard opcode.

These have a multiple byte format. The first byte is zero; the next bytes
are an unsigned LEB128 integer giving the number of bytesin the
instruction itself (does not include the first zero byte or the size). The
remaining bytes are the instruction itself (which begins with a ubyte
extended opcode).

6.2.4 The Line Number Program Header

The optimal encoding of line number information depends to a certain degree upon the
architecture of the target machine. The line number program header provides information used
by consumers in decoding the line number program instructions for a particular compilation unit
and also provides information used throughout the rest of the line number program.

The line number program for each compilation unit begins with a header containing the
following fields in order:

1. unit_length (initia length)

The sizein bytes of the line number information for this compilation unit, not including the
uni t _I engt h field itself.

2. version (uhalf)

A version number. This number is specific to the line number information and is independent
of the DWARF version number.

Page 89

Draft 7 October 29, 2001

3. header | ength

The number of bytes following the header _I engt h field to the beginning of the first byte of
the line number program itself. In the 32-bit DWARF format, this is a 4-byte unsigned
length; in the 64-bit DWARF format, thisfield is an 8-byte unsigned length (see Section 7.4).

4. mini num.instruction_| engt h (Ubyte)

The size in bytes of the smallest target machine instruction. Line number program opcodes
that alter the address register first multiply their operands by this value.

5. default_is_stnt (ubyte)
Theinitial value of thei s_st mt register.

A simple approach to building line number information when machine instructions are
emitted in an order corresponding to the source program isto set def aul t _i s_st nt to “true’
and to not change the value of thei s_st nt register within the line number program. One
matrix entry is produced for each line that has code generated for it. The effect isthat every
entry in the matrix recommends the beginning of each represented line as a breakpoint
location. Thisisthe traditional practice for unoptimized code.

A more sophisticated approach might involve multiple entries in the matrix for aline
number; in this case, at least one entry (often but not necessarily only one) specifiesa
recommended breakpoint location for the line number. DW_LNS negate stmt opcodesin
the line number program control which matrix entries constitute such a recommendation and
defaul t _i s_stnt might be either “true” or “false”. This approach might be used as part of
support for debugging optimized code.

6. |ine_base (sbyte)
This parameter affects the meaning of the special opcodes. See below.
7. line_range (ubyte)

This parameter affects the meaning of the special opcodes. See below.

Page 90 Draft 7 October 29, 2001

8.

10.

11.

opcode_base (ubyte)
The number assigned to the first special opcode.

This number may be larger or smaller than the number of standard opcodes defined for the
specified version of the line number information (12 in DWARF V3, 9 in DWARF V2). If
smaller, then the higher numbered opcodes are not used in the line number table of this unit
(and the codes are treated as special opcodes). If greater, then the number s between that of
the highest standard opcode and the first special opcode (not inclusive) are necessarily code
for vendor specific extensions.

st andar d_opcode_| engt hs (array of ubyte)

This array specifies the number of LEB128 operands for each of the standard opcodes. The
first element of the array corresponds to the opcode whose valueis 1, and the last element
corresponds to the opcode whose value isopcode_base - 1. By increasing opcode_base,
and adding elements to this array, new standard opcodes can be added, while alowing
consumers who do not know about these new opcodes to be able to skip them.

Codes for vendor specific extensions, if any, are described just like standard opcodes.
i ncl ude_di rectori es (Sequence of path names)

The sequence contains an entry for each path that was searched for included source filesin
this compilation. (The paths include those directories specified explicitly by the user for the
compiler to search and those the compiler searches without explicit direction). Each path
entry is either afull path name or isrelative to the current directory of the compilation. The
current directory of the compilation is understood to be the first entry and is not explicitly
represented. Each entry is a null-terminated string containing afull path name. The last entry
isfollowed by asingle null byte.

fil e_nanes (sequence of file entries)

The sequence contains an entry for each source file that contributed to the line number
information for this compilation unit or is used in other contexts, such asin a declaration
coordinate or amacro file inclusion. Each entry consists of the following values:

* A null-terminated string containing the file name.

* Anunsigned LEB128 number representing the directory index of the directory in which
the file was found.

Page 91 Draft 7 October 29, 2001

* Anunsigned LEB128 number representing the (implemntation-defined) time of |ast
modification for the file.

* Anunsigned LEB128 number representing the length in bytes of thefile.

A compiler may choose to emit LEB128(0) for the time and length fields to indicate that this
information is not available. The last entry is followed by asingle null byte.

The directory index represents an entry inthei ncl ude_di rect ori es section. Theindex is
LEB128(0) if the file was found in the current directory of the compilation, LEB128(1) if it
was found in the first directory in thei ncl ude_di r ect ori es section, and so on. The
directory index isignored for file names that represent full path names.

The line number program assigns numbers to each of the file entries in order, beginning with
1, and uses those numbersinstead of file namesinthefi | e register.

A compiler may generate asingle null byte for the file names field and define file names
using the extended opcode DW_LNE_define file.

6.2.5 The Line Number Program

As stated before, the goal of aline number program is to build a matrix representing one
compilation unit, which may have produced multiple sequences of target-machine instructions.
Within a sequence, addresses may only increase. (Line numbers may decrease in cases of
pipeline scheduling or other optimization.)

6.2.5.1 Special Opcodes

Each ubyte special opcode has the following effect on the state machine:
1. Addasigned integer to thel i ne register.

2. Multiply an unsigned integer by the mi ni num_i nstructi on_I engt h field of the line number
program header and add the result to the addr ess register.

Append arow to the matrix using the current values of the state machine registers.
Set the basi c_bl ock register to “false.”

Set the pr ol ogue_end register to “false.”

o . ~ w

Set the epi | ogue_begi n register to “false.”

Page 92 Draft 7 October 29, 2001

All of the special opcodes do those same six things; they differ from one another only in what
valuesthey add to the | i ne and addr ess registers.

Instead of assigning a fixed meaning to each special opcode, the line number program uses
several parametersin the header to configure the instruction set. There are two reasons for this.
First, although the opcode space available for special opcodes now ranges from 13 through 255,
the lower bound may increase if one adds new standard opcodes. Thus, the opcode_base field of
the line number program header gives the value of the first special opcode. Second, the best
choice of special-opcode meanings depends on the target architecture. For example, for a RISC
machine wher e the compiler-generated code interleaves instructions from different lines to
schedule the pipeling, it isimportant to be able to add a negative value to the | i ne register to
express the fact that a later instruction may have been emitted for an earlier sourceline. For a
machine wher e pipeline scheduling never occurs, it is advantageous to trade away the ability to
decrease the line register (a standard opcode provides an alternate way to decrease the line
number) in return for the ability to add larger positive values to the addr ess register. To permit
this variety of strategies, the line number program header definesal i ne_base field that
specifies the minimum value which a special opcode can add to thel i ne register and a

I i ne_r ange field that defines the range of valuesit can add to the | i ne register.

A specia opcode value is chosen based on the amount that needs to be added to the I i ne and
addr ess registers. The maximum line increment for a special opcode is the value of the

I i ne_base field in the header, plusthe value of thel i ne_r ange field, minus1 (I i ne base +
line range - 1). If the desired line increment is greater than the maximum line increment, a
standard opcode must be used instead of a special opcode. The “address advance” is calculated
by dividing the desired address increment by the ni ni mum_i nst ructi on_I engt h field from the
header. The special opcode is then calculated using the following formula:

opcode = (desired line increnent - |ine_base) +
(line_range * address advance) + opcode_base

If the resulting opcode is greater than 255, a standard opcode must be used instead.

To decode a special opcode, subtract the opcode_base from the opcode itself to give the
adjusted opcode. The amount to increment the addr ess register isthe result of the adjusted
opcode divided by the | i ne_range multiplied by the ni ni mum_i nstruction_l ength field
from the header. That is,

address increnment =
(adjusted opcode / line_range) * mnim minstruction_|length

Page 93 Draft 7 October 29, 2001

The amount to increment the | i ne register isthel i ne_base plusthe result of the adjusted
opcode modulo thel i ne_range. That is,

line increnent = |line_base + (adjusted opcode %l ine_range)
As an example, suppose that the opcode_base iS16, 1i ne_base is-1and ! i ne_r ange is4. This
means that we can use a special opcode whenever two successive rows in the matrix have source

line number s differing by any value within the range [-1, 2] (and, because of the limited number
of opcodes available, when the difference between addresses is within the range [0, 59]).

The opcode mapping would be:

Opcode | Lineadvance | Addressadvance
16 -1 0
17 0 0
18 1 0
19 2 0
20 -1 1
21 0 1
22 1 1
23 2 1
253 0 59
254 1 59
255 2 59
Thereis no requirement that the expression 255 - |ine_base + 1 bean integral multiple of

i ne_range.

Page 94 Draft 7 October 29, 2001

6.2.5.2 Standard Opcodes

There are currently 12 standard ubyte opcodes. In the future, additional opcodes may be defined
by setting the opcode_base field in the line number program header to a value greater than 13.
The applicable operands and the actions performed by these opcodes are as follows:

1. DW_LNS copy

The DW_LNS copy opcode takes no operands. It appends arow to the matrix using the
current values of the state-machine registers. Then it setsthe basi c_bl ock, prol ogue_end
and epi | ogue_begi n registersto “false.”

2. DW_LNS advance pc

The DW_LNS advance pc opcode takes asingle unsigned LEB128 operand, multipliesit by
them ni mum_ i nstruction_I engt h field of the header, and adds the result to the addr ess
register of the state machine.

3. DW_LNS advance line

The DW_LNS advance line opcode takes a single signed LEB128 operand and adds that
valueto thel i ne register of the state machine.

4. DW_LNS set file

The DW_LNS set file opcode takes a single unsigned LEB128 operand and stores it in the
fil e register of the state machine.

5. DW_LNS set_column

The DW_LNS set_column opcode takes a single unsigned LEB128 operand and storesit in
the col urm register of the state machine.

6. DW_LNS negate stmt

The DW_LNS negate stmt opcode takes no operands. It setsthei s_st nt register of the
state machine to the logical negation of its current value.

7. DW_LNS set basic block

The DW_LNS set basic_block opcode takes no operands. It setsthe basi c_bl ock register
of the state machine to “true.”

Page 95 Draft 7 October 29, 2001

8.

10.

DW_LNS const_add_pc

The DW_LNS const_add_pc opcode takes no operands. It multiplies the address increment
value corresponding to specia opcode 255 by the mi ni mum i nst ructi on_I engt h field of
the header, and adds the result to the addr ess register of the state machine.

When the line number program needs to advance the address by a small amount, it can use a
single special opcode, which occupies a single byte. When it needs to advance the address by
up to twice the range of the last special opcode, it can use DW_LNS const_add pc followed
by a special opcode, for a total of two bytes. Only if it needs to advance the address by more
than twice that range will it need to use both DW_LNS advance pc and a special opcode,
requiring three or more bytes.

DW_LNS fixed_advance pc

The DW_LNS fixed_advance pc opcode takes a single uhalf (unencoded) operand and adds
it to the addr ess register of the state machine. Thisis the only standard opcode whose
operand is not a variable length number. It also does not multiply the operand by the

m ni mum_ i nstruction_| engt h field of the header.

Existing assemblers cannot emit DW_LNS advance pc or special opcodes because they
cannot encode LEB128 numbers or judge when the computation of a special opcode
overflows and requires the use of DW_LNS advance pc. Such assemblers, however, can use
DW_LNS fixed advance pc instead, sacrificing compression.

DW_LNS set_prologue end

The DW_LNS set_prologue_end opcode takes no operands. It sets the pr ol ogue_end
register to “true”.

When a breakpoint is set on entry to a function, it is generally desirable for execution to be
suspended, not on the very first instruction of the function, but rather at a point after the
function's frame has been set up, after any language defined local declaration processing has
been completed, and before execution of the first statement of the function begins. Debuggers
generally cannot properly determine where this point is. This command allows a compiler to
communicate the location(s) to use.

In the case of optimized code, there may be more than one such location; for example, the
code might test for a special case and make a fast exit prior to setting up the frame.

Page 96 Draft 7 October 29, 2001

11.

12.

Note that the function to which the prologue end applies cannot be directly determined from
the line number information alone; it must be determined in combination with the subroutine
information entries of the compilation (including inlined subroutines).

DW_LNS set_epilogue begin

The DW_LNS set_epilogue begin opcode takes no operands. It sets the epi | ogue_begi n
register to “true”.

When a breakpoint is set on the exit of a function or execution steps over the last executable
statement of a function, it is generally desirable to suspend execution after completion of the
last statement but prior to tearing down the frame (so that local variables can still be
examined). Debuggers generally cannot properly determine where this point is. This
command allows a compiler to communicate the location(s) to use.

Note that the function to which the epilogue end applies cannot be directly determined from
the line number information alone; it must be determined in combination with the subroutine
information entries of the compilation (including inlined subroutines).

In the case of atrivial function, both prologue end and epilogue begin may occur at the same
address.

DW_LNS set_isa

The DW_LNS set_isaopcode takes a single unsigned LEB128 operand and stores that value
inthei sa register of the state machine.

6.2.5.3 Extended Opcodes

There are three extended opcodes currently defined. The first byte following the length field of
the encoding for each contains a sub-opcode.

1.

DW_LNE_end_sequence

The DW_LINE_end_sequence opcode takes no operands. It setsthe end_sequence register
of the state machine to “true” and appends arow to the matrix using the current values of the
state-machine registers. Then it resets the registersto the initial values specified above (see
Section 6.2.2). Every line number program sequence must end with a
DW_LNE_end_sequence instruction which creates a row whose address is that of the byte
after the last target machine instruction of the sequence.

Page 97 Draft 7 October 29, 2001

2. DW_LNE_set _address

The DW_LNE_set address opcode takes a single rel ocatable address as an operand. The size
of the operand is the size appropriate to hold an address on the target machine. It setsthe
addr ess register to the value given by the relocatable address.

All of the other line number program opcodes that affect the address register add a delta to
it. Thisinstruction stores a relocatable value into it instead.

3. DW_LNE_define file
The DW_LNE_define file opcode takes four operands:
1. A null-terminated string containing a source file name.

2. Anunsigned LEB128 number representing the directory index of the directory in which
the file was found.

3. Anunsigned LEB128 number representing the time of last modification of thefile.
4. Anunsigned LEB128 number representing the length in bytes of thefile.
The time and length fields may contain LEB128(0) if the information is not available.

The directory index represents an entry in thei ncl ude_di r ect ori es section of theline
number program header. Theindex is LEB128(0) if the file was found in the current
directory of the compilation, LEB128(1) if it was found in the first directory in the

i ncl ude_di rectori es section, and so on. The directory index isignored for file names that
represent full path names.

The files are numbered, starting at 1, in the order in which they appear; the namesin the
header come before names defined by the DW_LNE_define_file instruction. These numbers
areused inthefi | e register of the state machine.

Appendix D.4 gives some sample line number programs.

6.3 Macro Information

Some languages, such as C and C++, provide a way to replace text in the source program with
macr os defined either in the sourcefile itself, or in another file included by the sourcefile.
Because these macros are not themsel ves defined in the target language, it is difficult to
represent their definitions using the standard language constructs of DWARF. The debugging
information therefore reflects the state of the source after the macro definition has been

Page 98 Draft 7 October 29, 2001

expanded, rather than as the programmer wrote it. The macro information table provides a way
of preserving the original source in the debugging information.

As described in Section 3.1, the macro information for a given compilation unit is represented in
the . debug_naci nf o section of an object file. The macro information for each compilation unit
is represented as a series of “macinfo” entries. Each macinfo entry consists of a“type code” and
up to two additional operands. The series of entries for a given compilation unit ends with an
entry containing a type code of 0.

6.3.1 Macinfo Types

The valid macinfo types are as follows:

DW_MACINFO_define A macro definition.
DW_MACINFO_undef A macro undefinition.
DW_MACINFO_start_file The start of a new source file inclusion.
DW_MACINFO end file The end of the current source file inclusion.

DW_MACINFO vendor_ext Vendor specific macro information directives.

6.3.1.1 Define and Undefine Entries

All DW_MACINFO_define and DW_MACINFO_undef entries have two operands. The first
operand encodes the line number of the source line on which the relevant defining or undefining
pre-processor directives appeared.

The second operand consists of a null-terminated character string. In the case of a
DW_MACINFO_undef entry, the value of this string will be simply the name of the pre-
processor symbol that was undefined at the indicated source line.

In the case of aDW_MACINFO_define entry, the value of this string will be the name of the
pre-processor symbol that was defined at the indicated source line, followed immediately by the
macro formal parameter list including the surrounding parentheses (in the case of a function-like
macro) followed by the definition string for the macro. If thereisno formal parameter list, then
the name of the defined macro is followed directly by its definition string.

Page 99 Draft 7 October 29, 2001

In the case of afunction-like macro definition, no whitespace characters should appear between
the name of the defined macro and the following left parenthesis. Also, no whitespace characters
should appear between successive formal parametersin the formal parameter list. (Successive
formal parameters are, however, separated by commas.) Also, exactly one space character should
separate the right parenthesis that terminates the formal parameter list and the following
definition string.

In the case of a“normal” (i.e. non-function-like) macro definition, exactly one space character
should separate the name of the defined macro from the following definition text.

6.3.1.2 Start File Entries

Each DW_MACINFO_start_file entry also has two operands. The first operand encodes the line
number of the source line on which the inclusion pre-processor directive occurred.

The second operand encodes a source file name index. Thisindex corresponds to afile number
in the line number information table for the relevant compilation unit. Thisindex indicates
(indirectly) the name of the file that is being included by the inclusion directive on the indicated
source line.

6.3.1.3 End File Entries

A DW_MACINFO_end fileentry has no operands. The presence of the entry marks the end of
the current source file inclusion.

6.3.1.4 Vendor Extension Entries

A DW_MACINFO_vendor_ext entry has two operands. The first is a constant. The second isa
null-terminated character string. The meaning and/or significance of these operandsis
intentionally left undefined by this specification.

A consumer must be ableto totally ignore all DW_MACINFO_vendor_ext entriesthat it does
not understand.

6.3.2 Base Source Entries

In addition to producing a matched pair of DW_MACINFO_start_file and
DW_MACINFO_end_file entriesfor each inclusion directive actually processed during
compilation, a producer should generate such a matched pair also for the “base” source file
submitted to the compiler for compilation. If the base source file for a compilation is submitted
to the compiler via some means other than via a named disk file (e.g. via the standard input

Page 100 Draft 7 October 29, 2001

stream on a UNIX system) then the compiler should still produce this matched pair of
DW_MACINFO_start_fileand DW_MACINFO_end file entries for the base sourcefile,
however, the file name indicated (indirectly) by the DW_MACINFO_start_file entry of the pair
should designate a line number information file name entry consisting of a null string.

A DW_MACINFO_start_file entry representing the base source file should encode the value O in
its line number operand.

6.3.3 Macinfo Entries for Command Line Options

In addition to producing DW_MACINFO_define and DW_MACINFO_undef entries for each of
the define and undefine directives processed during compilation, the DWARF producer should
generate aDW_MACINFO_define or DW_MACINFO_undef entry for each pre-processor
symbol which is defined or undefined by some means other than via a define or undefine
directive within the compiled source text. In particular, pre-processor symbol definitions and un-
definitions which occur as aresult of command line options (when invoking the compiler) should
be represented by their own DW_MACINFO_define and DW_MACINFO_undef entries.

All such DW_MACINFO_defineand DW_MACINFO_undef entries representing compilation
options should appear before the first DW_MACINFO_start_file entry for that compilation unit
and should encode the value O in their line number operands.

6.3.4 General Rules and Restrictions

All macinfo entrieswithin a. debug_maci nf o section for a given compilation unit should appear
in the same order in which the directives were processed by the compiler.

All macinfo entries representing command line options should appear in the same order asthe
relevant command line options were given to the compiler. In the case where the compiler itself
implicitly supplies one or more macro definitions or un-definitions in addition to those which
may be specified on the command line, macinfo entries should also be produced for these
implicit definitions and un-definitions, and these entries should also appear in the proper order
relative to each other and to any definitions or undefinitions given explicitly by the user on the
command line.

Page 101 Draft 7 October 29, 2001

6.4 Call Frame Information

Debugger s often need to be able to view and modify the state of any subroutine activation that is
on the call stack. An activation consists of:

» Acodelocation that is within the subroutine. Thislocation is either the place where the
program stopped when the debugger got control (e.g. a breakpoint), or isa place where a
subroutine made a call or was interrupted by an asynchronous event (e.g. a signal).

* Anareaof memory that is allocated on a stack called a“ call frame.” The call frameis
identified by an address on the stack. We refer to this address as the Canonical Frame
Address or CFA. Typically, the CFA is defined to be the value of the stack pointer at the
call sitein the previous frame (which may be different fromits value on entry to the
current frame).

* Asetof registersthat arein use by the subroutine at the code location.

Typically, a set of registers are designated to be preserved across a call. If a callee wishes to use
such aregister, it saves the value that the register had at entry time in its call frame and restores
it on exit. The code that allocates space on the call frame stack and performs the save operation
is called the subroutine’ s prologue, and the code that performs the restore operation and
deallocates the frameis called its epilogue. Typically, the prologue code is physically at the
beginning of a subroutine and the epilogue code is at the end.

To be able to view or modify an activation that is not on the top of the call frame stack, the
debugger must “ virtually unwind” the stack of activations until it finds the activation of interest.
A debugger unwinds a stack in steps. Starting with the current activation it restores any registers
that were preserved by the current activation and computes the predecessor’s CFA and code
location. This has the logical effect of returning from the current subroutine to its predecessor.
We say that the debugger virtually unwinds the stack because it preserves enough information to
be ableto” rewind” the stack back to the state it was in before it attempted to unwind it.

The unwinding oper ation needs to know where registers are saved and how to compute the
predecessor’s CFA and code location. When considering an architectur e-independent way of
encoding this information one hasto consider a number of special things.

» Prologue and epilogue code is not always in distinct blocks at the beginning and end of a
subroutine. It is common to duplicate the epilogue code at the site of each return fromthe
code. Sometimes a compiler breaks up the register save/unsave operations and moves them
into the body of the subroutine to just where they are needed.

Page 102 Draft 7 October 29, 2001

» Compilers use different ways to manage the call frame. Sometimes they use a frame pointer
register, sometimes not.

» Thealgorithmto compute CFA changes as you progress through the prologue and epilogue
code. (By definition, the CFA value does not change.)

* Some subroutines have no call frame.

* Sometimes a register issaved in another register that by convention does not need to be
saved.

» Some architectures have special instructions that perform some or all of the register
management in one instruction, leaving special information on the stack that indicates how
registers are saved.

» Some architecturestreat return address values specially. For example, in one architecture,
the call instruction guarantees that the low order two bits will be zero and the return
instruction ignores those bits. This leaves two bits of storage that are available to other uses
that must be treated specially.

6.4.1 Structure of Call Frame Information

DWARF supports virtual unwinding by defining an architecture independent basis for recording
how procedures save and restore registers throughout their lifetimes. This basis must be
augmented on some machines with specific information that is defined by either an architecture
specific ABI authoring committee, a hardware vendor, or a compiler producer. The body
defining a specific augmentation is referred to below as the “augmenter.”

Abstractly, this mechanism describes avery large table that has the following structure:

LOCCFA RO RL ... RN
LO
L1

LN
The first column indicates an address for every location that contains code in a program. (In
shared objects, thisis an object-relative offset.) The remaining columns contain virtual
unwinding rules that are associated with the indicated location. The first column of the rules

defines the rule which computes the CFA value; it may be either aregister and a signed offset
that are added together or a DWARF expression that is eval uated.

Page 103 Draft 7 October 29, 2001

The remaining columns are labeled by register number. This includes some registers that have
special designation on some architectures such as the PC and the stack pointer register. (The
actual mapping of registersfor a particular architecture is performed by the augmenter.) The
register columns contain rules that describe whether a given register has been saved and the rule
to find the value for the register in the previous frame.

Theregister rules are:

undefined A register that has this rule has no value in the previous frame. (By
convention, it is not preserved by acalee)

same value This register has not been modified from the previous frame. (By convention,
it is preserved by the callee, but the callee has not modified it.)

offset(N) The previous value of thisregister is saved at the address CFA+N where CFA
isthe current CFA value and N isasigned offset

register(R) The previous value of thisregister is stored in another register numbered R.

expression(E) The previous value of thisregister islocated at the address produced by
executing the DWARF expression E.

architectural Theruleis defined externally to this specification by the augmenter.

Thistable would be extremely large if actually constructed as described. Most of the entries at
any point in the table are identical to the ones above them. The whole table can be represented
quite compactly by recording just the differences starting at the beginning address of each
subroutine in the program.

The virtual unwind information is encoded in a self-contained section called . debug_f r ane.
Entriesin a. debug_f r ane section are aligned on an addressing unit boundary and come in two
forms: A Common Information Entry (CIE) and a Frame Description Entry (FDE).

If the range of code addresses for a function is not contiguous, there may be multiple CIEs and
FDEs corresponding to the parts of that function.

Page 104 Draft 7 October 29, 2001

A Common Information Entry holds information that is shared among many Frame Description
Entries. Thereis at least one CIE in every non-empty . debug_f r ame section. A CIE contains the
following fields, in order:

1.

| engt h (initia length)

A constant that gives the number of bytes of the CIE structure, not including the | engt h field
itself (wherel engt h nod addressing_unit_size == 0).

Cl E_i d (see Section 7.4)

A constant that is used to distinguish CIEs from FDEs. In the 32-bit DWARF format, thisisa
4-byte unsigned integer; in the 64-bit DWARF format, thisis an 8-byte unsigned integer.

ver si on (ubyte)

A version number. This number is specific to the call frame information and is independent
of the DWARF version number.

augnent at i on (string)

A null-terminated string that identifies the augmentation to this CIE or to the FDESs that use
it. If areader encounters an augmentation string that is unexpected, then only the following
fields can be read:

e CIE: Iength, CIE_id, version, augnentation

e FDE: Iength, CIE pointer, initial _|ocation, address_range

If there is no augmentation, thisvalue is azero byte.

code_al i gnnent _f act or (unsigned LEB128)

A constant that is factored out of all advance location instructions (see below).

dat a_al i gnnent _f act or (Signed LEB128)

A constant that is factored out of all offset instructions (see below.)

Page 105 Draft 7 October 29, 2001

7.

return_address_register

An unsigned LEB128 constant that indicates which column in the rule table represents the
return address of the function. Note that this column might not correspond to an actual
machine register.

In DWARF V2, thisfield is a ubyte.
initial _instructions (array of ubyte)

A sequence of rulesthat are interpreted to create the initial setting of each column in the
table.

paddi ng (array of ubyte)

Enough DW_CFA_nop instructions to make the size of this entry match the | engt h value
above.

An FDE contains the following fields, in order:

1.

| engt h (initial length)

A constant that gives the number of bytes of the header and instruction stream for this
function, not including thel engt h field itself (wherel engt h nod addr essi ng_uni t _si ze

Cl E_poi nter (section offset)

A constant offset into the . debug_f r ane section that denotes the CIE that is associated with
this FDE.

initial_location (target address)

An addressing-unit sized constant indicating the address of the first location associated with
thistable entry.

addr ess_r ange (target address)

An addressing unit sized constant indicating the number of bytes of program instructions
described by this entry.

i nstructions (array of ubyte)

A sequence of table defining instructions that are described below.

Page 106 Draft 7 October 29, 2001

6.

paddi ng (array of ubyte)

Enough DW_CFA_nop instructions to make the size of this entry match the | engt h value
above.

6.4.2 Call Frame Instructions

Each call frameinstruction is defined to take O or more operands. Some of the operands may be
encoded as part of the opcode (see Section 7.23). Theinstructions are as follows:

1.

DW_CFA_advance loc

The DW_CFA _advance instruction takes a single operand (encoded with the opcode) that
represents a constant delta. The required action is to create a new table row with alocation
value that is computed by taking the current entry’ s location value and adding the value of
delta * code_alignment _factor. All other valuesin the new row areinitially identical
to the current row.

DW_CFA_offset

The DW_CFA_offset instruction takes two operands:. aregister number (encoded with the
opcode) and an unsigned LEB128 constant representing a factored offset. The required action
isto change the rule for the register indicated by the register number to be an offset(N) rule
withavaueof (N = factored of fset * data_alignnent_factor).

DW_CFA restore

The DW_CFA _restore instruction takes a single operand (encoded with the opcode) that
represents aregister number. The required action isto change the rule for the indicated
register to the rule assigned it by thei niti al _i nstructi ons inthe CIE.

DW_CFA_set _loc

The DW_CFA_set_loc instruction takes a single operand that represents an address. The
required action is to create a new table row using the specified address as the location. All
other values in the new row areinitialy identical to the current row. The new location value
should always be greater than the current one.

DW_CFA_advance locl

The DW_CFA_advance locl instruction takes a single ubyte operand that represents a
constant delta. Thisinstruction isidentical to DW_CFA_advance_|loc except for the encoding
and size of the delta operand.

Page 107 Draft 7 October 29, 2001

10.

11.

12.

DW_CFA_advance loc2

The DW_CFA_advance |oc2 instruction takes a single uhalf operand that represents a
constant delta. Thisinstruction isidentical to DW_CFA_advance_|loc except for the encoding
and size of the delta operand.

DW_CFA_advance loc4

The DW_CFA_advance_|oc4 instruction takes a single uword operand that represents a
constant delta. Thisinstruction isidentical to DW_CFA_advance |oc except for the encoding
and size of the delta operand.

DW_CFA offset_extended

The DW_CFA_offset_extended instruction takes two unsigned LEB128 operands
representing a register number and a factored offset. Thisinstruction isidentical to
DW_CFA_offset except for the encoding and size of the register operand.

DW_CFA _restore extended

The DW_CFA _restore_extended instruction takes a single unsigned LEB128 operand that
represents aregister number. Thisinstruction isidentical to DW_CFA _restore except for the
encoding and size of the register operand.

DW_CFA_undefined

The DW_CFA_undefined instruction takes a single unsigned LEB128 operand that
represents aregister number. The required action isto set the rule for the specified register to
“undefined.”

DW_CFA_same value

The DW_CFA_same_value instruction takes a single unsigned LEB128 operand that
represents a register number. The required action isto set the rule for the specified register to
“same value.”

DW_CFA _register

The DW_CFA _register instruction takes two unsigned LEB128 operands representing
register numbers. The required action is to set the rule for the first register to be the second
register.

Page 108 Draft 7 October 29, 2001

The next two instructions provide the ability to stack and retrieve complete register states. They
may be useful, for example, for a compiler that moves epilogue code into the body of a function.

13.

14.

15.

16.

17.

18.

19.

DW_CFA _remember_state

The DW_CFA_remember_state instruction takes no operands. The required action isto push
the set of rules for every register onto an implicit stack.

DW_CFA restore state

The DW_CFA _restore_state instruction takes no operands. The required action isto pop the
set of rules off the implicit stack and place them in the current row.

DW_CFA_def cfa

The DW_CFA_def_cfainstruction takes two unsigned LEB128 operands representing a
register number and a (non-factored) offset. The required action is to define the current CFA
rule to use the provided register and offset.

DW_CFA_def cfa register

The DW_CFA_def cfa register instruction takes a single unsigned LEB128 operand
representing a register number. The required action is to define the current CFA rule to use
the provided register (but to keep the old offset).

DW_CFA_def _cfa offset

The DW_CFA_def cfa offset instruction takes a single unsigned LEB128 operand
representing a (non-factored) offset. The required action is to define the current CFA ruleto
use the provided offset (but to keep the old register).

DW_CFA_nop

The DW_CFA_nop instruction has no operands and no required actions. It is used as padding
to make a CIE or FDE an appropriate size.

DW_CFA_def cfa expression

The DW_CFA_def _cfa expression instruction takes a single operand encoded as a
DW_FORM _block value representing a DWARF expression. The required action isto
establish that expression as the means by which the current CFA is computed.

The DW_OP _call2, DW_OP cal4, and DW_OP call_ref DWARF operators cannot be used
in such aDWARF expression.

Page 109 Draft 7 October 29, 2001

20. DW_CFA_expression

The DW_CFA_expression instruction takes two operands. an unsigned LEB128 value
representing aregister number, and aDW_FORM _block value representing a DWARF
expression. The required action is to establish the DWARF expression as the means by which
the address in which the given register contents are found may be computed. The value of the
CFA is pushed on the DWAREF evaluation stack prior to execution of the DWARF
expression.

The DW_OP _call2, DW_OP call4, DW_OP_call_ref and DW_OP_push _object_address
DWARF operators (see Section 2.4.1) cannot be used in such a DWARF expression.

DW _OP _call2, DW_OP_call4 and DW_OP_call_ref operators are not meaningful ina
DW_CFA def cfa expression or DW_CFA _expression operand because there is no mapping
from call frame information to any corresponding debugging compilation unit information, thus
thereis no way to interpret the call offset.

DW_OP_push_object_addressis also not meaningful ina DW_CFA _def cfa expression or
DW_CFA_expression operand because there is no object context to provide a value to push.

21. DW_CFA offset_extended _sf

The DW_CFA_offset_extended_sf instruction takes two operands: an unsigned LEB128
value representing a register number and a signed LEB128 factored offset. Thisinstruction is
identical to DW_CFA_offset_extended except that the second operand is signed.

22. DW_CFA_def cfa &

The DW_CFA_def cfa sf instruction takes two operands. an unsigned LEB128 value
representing a register number and a signed LEB128 factored offset. Thisinstruction is
identical to DW_CFA_def cfaexcept that the second operand is signed and factored.

23. DW_CFA_def cfa_offset_sf

The DW_CFA_def cfa offset_sf instruction takes a signed LEB128 operand representing a
factored offset. Thisinstruction isidentical to DW_CFA_def cfa offset except that the
operand is signed and factored.

Page 110 Draft 7 October 29, 2001

6.4.3 Call Frame Instruction Usage

To determine the virtual unwind rule set for a given location (L1), one searches through the FDE
headerslooking at thei niti al _| ocati on and addr ess_r ange valuesto seeif L1 is contained
in the FDE. If so, then:

1. Initialize aregister set by reading thei ni ti al _i nstructi ons field of the associated CIE.

2. Read and process the FDE’ sinstruction sequence until a DW_CFA _advance loc,
DW _CFA set_loc, or the end of the instruction stream is encountered.

3. IfaDW_CFA advance loc or DW_CFA set loc instruction was encountered, then compute
a new location value (L2). If L1 >= L2 then process the instruction and go back to step 2.

4. Theend of the instruction stream can be thought of asa DW_CFA set_loc (initial_location
+ address _range) instruction. Unless the FDE isill-formed, L1 should be less than L2 at
this point.

Therulesin the register set now apply to location L1.

For an example, see Appendix D.5.

Page 111 Draft 7 October 29, 2001

Page 112 Draft 7 October 29, 2001

7 DATA REPRESENTATION

This section describes the binary representation of the debugging information entry itself, of the
attribute types and of other fundamental elements described above.

7.1 Vendor Extensibility

To reserve aportion of the DWARF name space and ranges of enumeration values for use for
vendor specific extensions, special labels are reserved for tag names, attribute names, base type
encodings, location operations, language names, calling conventions and call frame instructions.

The labels denoting the beginning and end of the reserved value range for vendor specific
extensions consist of the appropriate prefix (DW_TAG, DW_AT, DW_ATE, DW_OP,
DW_LANG, DW_LNE, DW_CC or DW_CFA respectively) followed by _| o_user or

_hi _user. For example, for entry tags, the special labelsare DW_TAG lo_user and
DW_TAG_hi_user. Valuesin the range between prefix_| o_user and prefix_hi _user inclusive,
are reserved for vendor specific extensions. Vendors may use valuesin this range without
conflicting with current or future system-defined values. All other values are reserved for use by
the system.

There may also be codes for vendor specific extensions between the number of standard line
number opcodes and the first special line number opcode. However, since the number of
standard opcodes varies with the DWARF version, the range for extensionsis also version
dependent. Thus, DW_LNS |o_user and DW_LNS hi_user symbols are not defined.

Vendor defined tags, attributes, base type encodings, location atoms, language names, line
number actions, calling conventions and call frame instructions, conventionally use the form
prefix_vendor_id _name, where vendor _id is some identifying character sequence chosen so asto
avoid conflicts with other vendors.

Page 113 Draft 7 October 29, 2001

To ensure that extensions added by one vendor may be safely ignored by consumers that do not
understand those extensions, the following rules should be followed:

1. New attributes should be added in such away that a debugger may recognize the format of a
new attribute value without knowing the content of that attribute value.

2. The semantics of any new attributes should not alter the semantics of previously existing
attributes.

3. The semantics of any new tags should not conflict with the semantics of previously existing
tags.

7.2 Reserved Values

7.2.1 Error Values

As aconvenience for consumers of DWARF information, the value O is reserved in the
encodings for attribute names, attribute forms, base type encodings, location operations,
languages, line number program opcodes, macro information entries and tag names to represent
an error condition or unknown value. DWARF does not specify names for these reserved values,
since they do not represent valid encodings for the given type and should not appear in DWARF
debugging information.

7.2.2 Initial Length Values

Aninitia length field is one of the length fields that occur at the beginning of those DWARF
sections that have aheader (. debug_ar anges, . debug_i nf o, . debug_l i ne, . debug_pubnanes,
and . debug_pubt ypes) or the length field that occurs at the beginning of the CIE and FDE
structuresin the. debug_f r ane section.

In aninitial length field, the valuesoxf fff f f f 0 through oxffff f f f f are reserved by DWARF
to indicate some form of extension relative to DWARF V2; such values must not be interpreted
asalength field. The use of one such value, oxffffffff,isdefined below (see Section 7.4); the
use of the other valuesis reserved for possible future extensions.

Page 114 Draft 7 October 29, 2001

7.3 Executable Objects and Shared Objects

The relocated addresses in the debugging information for an executable object are virtual
addresses and the rel ocated addresses in the debugging information for a shared object are offsets
relative to the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects position independent.
Virtual addressesin a shared object may be calculated by adding the offset to the base address
at which the object was attached. This offset is available in the run-time linker’ s data structures.

7.4 32-Bit and 64-Bit DWARF Formats

DWARF Version 2 provides the ability to describe programs that operate in a 64-bit address
space environment. However, it does not make provision for a DWARF description that itself
requires more than 32-bits to represent; thisis because the lengths that describe DWARF
sections and values that are offsets into DWARF sections are all specified to be 32-bitsin size.
Thisrevision adds the ability to support a DWARF description that is greater than 4 GBytesin
size.

DWARF Version 3 defines two closely related file formats. In the 32-bit DWARF format, all
values that represent lengths of DWARF sections and offsets relative to the beginning of
DWAREF sections are represented using 32-bits (this is the same as defined in DWARF Version
2). In the 64-bit DWARF format, all values that represent lengths of DWARF sections and
offsets relative to the beginning of DWARF sections are represented using 64-bits. A special
convention appliesto theinitia length field of certain DWARF sections, as well as the CIE and
FDE structures, so that the 32-bit and 64-bit DWARF formats can coexist and be distinguished
within asingle linked object.

The differences between the 32- and 64-bit DWARF formats are detailed in the following:

1. Inthe 32-bit DWARF format, an initial length field (see Section 7.2.2) is an unsigned 32-bit
integer (which must be less than oxf f f f f f 00) ; in the 64-bit DWARF format, an initial
length field is 96 bits in size, and has two parts:

* Thefirst 32-bits havethevalue oxffffffff.
» Thefollowing 64-bits contain the actual length represented as an unsigned 64-hit integer.

This representation allows a DWARF consumer to dynamically detect that a DWARF section
contribution is using the 64-bit format and to adapt its processing accordingly.

Page 115 Draft 7 October 29, 2001

2. Section offset and section length fields that occur in the headers of DWARF sections (other
than initial length fields) are listed following. In the 32-bit DWARF format these are 32-bit
unsigned integer values; in the 64-bit DWARF format, they are 64-bit unsigned integer
values.

Section Name Role

. debug_ar anges debug_i nf o_of f set offsetin. debug_i nfo

. debug_frane/CIE CE.id CIE distinguished value
. debug_frane/FDE Cl E_poi nter offsetin. debug_frame

.debug_info debug_abbrev_of fset offsetin. debug_abbrev
.debug_line header _| ength length of header itself

. debug_pubnanes debug_i nf o_of f set offsetin. debug_i nfo

debug_info_l ength length of . debug_i nf o

contribution
. debug_pubt ypes debug_i nf o_of f set offsetin. debug_i nfo
debug_i nfo_l ength length of . debug_i nfo

contribution

The CIE_id field in a CIE structure must be 64 bits because it overlays the CIE_pointer
ina FDE structure; thisimplicit union must be accessed to distinguish whether a CIE or
FDE is present, consequently, these two fields must exactly overlay each other (both
offset and size).

3. Within the body of the. debug_i nf o section, certain forms of attribute value depend on the
choice of DWARF format as follows. For the 32-bit DWARF format, the value is a 32-bit
unsigned integer; for the 64-bit DWARF format, the value is a 64-bit unsigned integer.

Form Role

DW_FORM ref_addr offsetin. debug_i nfo
DW_FORM _strp offsetin. debug_str

4. Within the body of the . debug_i nf o section, certain classes of attribute value use an
attribute value form that depends on the DWARF format at follows: in the 32-bit DWARF
format, the lineptr, loclistptr, macptr and rangelistptr classes use form DW_FORM _datad; in
the 64-bit DWARF format, they use form DW_FORM _data8.

Page 116 Draft 7 October 29, 2001

5. Within the body of the. debug_pubnanes and . debug_pubt ypes sections, the representation
of the first field of each tuple (which represents an offset in the . debug_i nf o section)
depends on the DWARF format as follows: in the 32-bit DWARF format, thisfield is a 32-
bit unsigned integer; in the 64-bit DWARF format, it is a 64-bit unsigned integer.

The 32-bit and 64-bit DWARF format conventions must not be intermixed within asingle
compilation unit.

Attribute values and section header fields that represent addresses in the target program are not
affected by these rules.

A DWARF consumer that supports the 64-bit DWARF format must support executablesin
which some compilation units use the 32-bit format and others use the 64-bit format provided
that the combination links correctly (that is, provided that there are no link-time errors due to
truncation or overflow). (An implementation is not required to guarantee detection and reporting
of all such errors.)

It is expected that DWARF producing compilers will not use the 64-bit format by default. In most
cases, the division of even very large applications into a number of executable and shared
objects will suffice to assure that the DWARF sections within each individual linked object are
less than 4 GBytes in size. However, for those cases where needed, the 64-format allows the
unusual case to be handled aswell. Even in this case, it is expected that only application
supplied objects will need be compiled using the 64-bit format; separate 32-bit format versions
of system supplied shared executable libraries can still be used.

7.5 Format of Debugging Information

For each compilation unit compiled with a DWARF Version 3 producer, a contribution is made
tothe. debug_i nf o section of the object file. Each such contribution consists of a compilation
unit header followed by a series of debugging information entries. Unlike the information
encoding for DWARF Version 1, Version 2 and Version 3 debugging information entries do not
themselves contain the debugging information entry tag or the attribute name and form
encodings for each attribute. Instead, each debugging information entry begins with a code that
represents an entry in a separate abbreviations table. This codeis followed directly by a series of
attribute values. The appropriate entry in the abbreviations table guides the interpretation of the
information contained directly in the . debug_i nf o section. Each compilation unit is associated
with a particular abbreviation table, but multiple compilation units may share the same table.

Page 117 Draft 7 October 29, 2001

This encoding was based on the observation that typical DWARF producers produce a very
limited number of different types of debugging information entries. By extracting the common
information from those entries into a separate table, it is possible to compress the generated
information.

7.5.1 Compilation Unit Header

The header for the series of debugging information entries contributed by a single compilation
unit consists of the following information:

1. unit_length (initial length)

A 4-byte or 12-byte unsigned integer representing the length of the . debug_i nf o
contribution for that compilation unit, not including the length field itself. In the 32-bit
DWARF format, thisis a4-byte unsigned integer (which must be less than oxf f f f f f 00) ; in
the 64-bit DWARF format, this consists of the 4-byte valueoxffffffff followed by an 8-
byte unsigned integer that gives the actual length (see Section 7.4).

2. version (uhalf)

A 2-byte unsigned integer representing the version of the DWARF information for the
compilation unit. For DWARF Version 3, thevaluein thisfield is 3.

3. debug_abbrev_of f set (section offset)

A 4-byte or 8-byte unsigned offset into the . debug_abbr ev section. This offset associates the
compilation unit with a particular set of debugging information entry abbreviations. In the
32-bit DWARF format, thisis a 4-byte unsigned length; in the 64-bit DWARF format, thisis
an 8-byte unsigned length (see Section 7.4).

4. address_si ze (ubyte)

A 1-byte unsigned integer representing the size in bytes of an address on the target
architecture. If the system uses segmented addressing, this value represents the size of the
offset portion of an address.

The compilation unit header does not replace the DW_TAG_compile_unit debugging
information entry. It is additional information that is represented outside the standard DWARF
tag/attributes format.

Page 118 Draft 7 October 29, 2001

7.5.2 Debugging Information Entry

Each debugging information entry begins with an unsigned LEB128 number containing the
abbreviation code for the entry. This code represents an entry within the abbreviations table
associated with the compilation unit containing this entry. The abbreviation code is followed by
aseries of attribute values.

On some architectures, there are alignment constraints on section boundaries. To make it easier
to pad debugging information sections to satisfy such constraints, the abbreviation code O is
reserved. Debugging information entries consisting of only the abbreviation code O are
considered null entries.

7.5.3 Abbreviations Tables

The abbreviations tables for al compilation units are contained in a separate object file section
called . debug_abbr ev. As mentioned before, multiple compilation units may share the same
abbreviations table.

The abbreviations table for a single compilation unit consists of a series of abbreviation
declarations. Each declaration specifies the tag and attributes for a particular form of debugging
information entry. Each declaration begins with an unsigned LEB128 number representing the
abbreviation code itself. It is this code that appears at the beginning of a debugging information
entry in the . debug_i nf o section. As described above, the abbreviation code O is reserved for
null debugging information entries. The abbreviation code is followed by another unsigned
LEB128 number that encodes the entry’ s tag. The encodings for the tag names are givenin
Figure 16.

Following the tag encoding is a 1-byte value that determines whether a debugging information
entry using this abbreviation has child entries or not. If the valueis DW_CHILDREN _yes, the
next physically succeeding entry of any debugging information entry using this abbreviation is
the first child of that entry. If the 1-byte value following the abbreviation’s tag encoding is
DW_CHILDREN _no, the next physically succeeding entry of any debugging information entry
using this abbreviation isasibling of that entry. (Either the first child or sibling entries may be
null entries). The encodings for the child determination byte are given in Figure 17. (As
mentioned in Section 2.3, each chain of sibling entriesisterminated by anull entry.)

Finally, the child encoding is followed by a series of attribute specifications. Each attribute
specification consists of two parts. The first part is an unsigned LEB128 number representing the
attribute’ s name. The second part is an unsigned LEB128 number representing the attribute's
form. The series of attribute specifications ends with an entry containing O for the name and O for
the form.

Page 119 Draft 7 October 29, 2001

The attribute form DW_FORM _indirect is a special case. For attributes with this form, the
attribute value itself in the . debug_i nf o section begins with an unsigned LEB128 number that
represents its form. This allows producers to choose forms for particular attributes dynamically,
without having to add a new entry to the abbreviations table.

The abbreviations for a given compilation unit end with an entry consisting of a0 byte for the
abbreviation code.

See Appendix D.1 for a depiction of the organization of the debugging information.

7.5.4 Attribute Encodings

The encodings for the attribute names are given in Figure 18.

The attribute form governs how the value of the attribute is encoded. There are nine classes of
form, listed below. Each class is a set of forms which have related representations and which are
given acommon interpretation according to the attribute in which the form is used.

Some encodings are members of more than one class; in that case, thelist of classes alowed by
the applicable attribute in Figure 18 determines the class of the form. DW_FORM _data4 and
DW_FORM _data8 may be members of classes constant, lineptr, loclistptr, macptr and
rangelistptr. They are members of the class constant if used for the value of an attribute that
allows class constant but not class lineptr, loclistptr, macptr or rangelistptr. They are members of
the class lineptr, loclistptr, macptr or rangelistptr if used for the value of an attribute that allows
one of those classes.

In DWARF V2, each form belonged to exactly one class so that the classes formed a partition of
the set of forms. Moreover, the class constant was used for some “ pointers’ (described as

offsets) into other sections. In practice such offsets had to use DW_FORM _data4 since they had
to be a formthat could be relocated during linking (making such “ constants’ not very constant).

Thisrevision introduces new classes to more clearly identify when a value is to be interpreted as
a pointer or offset into another section. The form DW_FORM_data8 isincluded in these classes
to accommodate the 64-bit DWARF format. (It would have been cleaner to introduce new forms
to be used for such pointers by analogy with the DW_FORM _strp form, but this would not be
upward compatible.) Snce classes as such are not represented in the DWARF format (only the
individual forms are encoded), the introduction of new or revised class descriptions does not
affect upward compatibility.

Page 120 Draft 7 October 29, 2001

The forms DW_FORM _data4 and DW_FORM data8 continue to be usable as constants when
this does not conflict with their possible role as pointers. Even without them, there are no
limitations in the value of constants that can be represented using the other formsin class
constant (consider especially DW_FORM _sdata and DW_FORM _udata); the block forms may
also be appropriate.

Each possible form belongs to one or more of the following classes:
address

Represented as an object of appropriate size to hold an address on the target machine
(DW_FORM _addr). The size is encoded in the compilation unit header (see Section 7.5.1).
This addressis relocatable in arelocatable object file and is relocated in an executable file or
shared object.

block
Blocks comein four forms:

A 1-byte length followed by 0 to 255 contiguous information bytes
(DW_FORM_block).

A 2-byte length followed by 0 to 65,535 contiguous information bytes
(DW_FORM _block?2).

A 4-byte length followed by 0 to 4,294,967,295 contiguous information bytes
(DW_FORM _blocka4).

An unsigned LEB128 length followed by the number of bytes specified by the length
(DW_FORM _block).

In al forms, the length is the number of information bytes that follow. The information bytes
may contain any mixture of relocated (or relocatable) addresses, references to other
debugging information entries or data bytes.

Page 121 Draft 7 October 29, 2001

constant

There are six forms of constants. There are fixed length constant data forms for one, two,
four and eight byte values (respectively, DW_FORM _datal, DW_FORM _data2,

DW_FORM _data4, and DW_FORM _data8). There are also variable length constant data
forms encoded using LEB128 numbers (see below). Both signed (DW_FORM _sdata) and
unsigned (DW_FORM _udata) variable length constants are available. Note that
DW_FORM_data4 and DW_FORM _data8 are members of class constant only if the attribute

in question does not allow one of the classes lineptr, loclistptr, macptr or rangelistptr (see
below).

flag

A flag isrepresented as a single byte of data (DW_FORM flag). If the flag has value zero, it
indicates the absence of the attribute. If the flag has a non-zero value, it indicates the
presence of the attribute.

lineptr

Thisisan offset into the .debug_| i ne section. It consists of a4- or 8-byte value which isthe
offset from the beginning of the . debug_I i ne section to thefirst byte of the data making up
the line number list for the compilation unit. It isrelocatable in arelocatable object file, and

relocated in an executable or shared object. It is either form DW_FORM _data4 or form
DW_FORM_data8.

loclistptr

Thisisan offset into the .debug_| oc section. It consists of a4- or 8-byte value which isthe
offset from the beginning of the . debug_| oc section to the first byte of the data making up
the location list for the compilation unit. It is relocatable in a rel ocatable object file, and
relocated in an executable or shared object. It is either form DW_FORM _data4 or form
DW_FORM_data8.

macptr

Thisis an offset into the .debug_maci nf o section. It consists of a4- or 8-byte value whichis
the offset from the beginning of the . debug_maci nf o section to the first byte of the data
making up the macro information list for the compilation unit. It isrelocatablein a
relocatable object file, and relocated in an executable or shared object. It is either form
DW_FORM_data4 or form DW_FORM _data8.

Page 122 Draft 7 October 29, 2001

rangelistptr

Thisisan offset into the . debug_r anges section. It consists of a4- or 8-byte value whichis
the offset from the beginning of the . debug_r anges section to the beginning of the non-
contiguous address ranges information for the referencing entity. It isrelocatablein a
relocatabl e object file and relocated in an executable or shared object. It is either form
DW_FORM_data4 or form DW_FORM _data8.

Because classes lineptr, loclistptr, macptr and rangelistptr share a common representation, it is
not possible for an attribute to allow more than one of these classes. If an attribute allows both

class constant and one of lineptr, loclistptr, macptr or rangelistptr, then DW_FORM _data4 and
DW_FORM_data8 are interpreted as members of the latter as appropriate (not class constant).

reference
There are two types of reference.

The first type of reference can identify any debugging information entry within the
containing unit. Thistype of reference is an offset from the first byte of the compilation
header for the compilation unit containing the reference. There are five forms for this type of
reference. There are fixed length forms for one, two, four and eight byte offsets (respectively,
DW_FORM _refl, DW_FORM_ref2, DW_FORM _ref4, and DW_FORM _ref8). Thereis
also an unsigned variable length offset encoded form that uses LEB128 numbers
(DW_FORM _ref _udata). Because this type of reference is within the containing compilation
unit no relocation of the value is required.

The second type of reference can identify any debugging information entry within a program;,
in particular, it may refer to an entry in adifferent compilation unit from the unit containing
the reference, and may refer to an entry in a different shared object. Thistype of reference
(DW_FORM _ref_addr) is an offset from the beginning of the . debug_i nf o section of the
target executable or shared object; it is relocatable in arelocatable object file and frequently
relocated in an executable file or shared object. For references from one shared object or
static executable file to another, the relocation and identification of the target object must be
performed by the consumer. In the 32-bit DWARF format, this offset is a 4-byte unsigned
value; in the 64-bit DWARF format, it is an 8-byte unsigned value (see Section 7.4).

A debugging information entry that may be referenced by another compilation must have a
global symbolic name.

Page 123 Draft 7 October 29, 2001

For areference from one executable or shared object to another, the reference is resolved by
the debugger to identify the shared object or executable and the offset into that object’s

. debug_i nf o section in the same fashion as the run time loader, either when the debug
information isfirst read, or when the reference is used.

The use of compilation unit relative references will reduce the number of link-time
relocations and so speed up linking. The use of the second type of references allows for the
commonization of information, such as types, across compilation units.

string

A string is a sequence of contiguous non-null bytes followed by one null byte. A string may
be represented immediately in the debugging information entry itself (DW_FORM _string),
or may be represented as an offset into a string table contained in the . debug_st r section of
the object file (DW_FORM _strp). In the 32-bit DWARF format, the representation of a
DW_FORM _strp value is an 4-byte unsigned offset; in the 64-bit DWARF format, itisan
8-byte unsigned offset (see Section 7.4).

If the DW_AT use UTFS8 attribute is specified for the compilation unit entry, string values
are encoded using the UTF-8 (Unicode Transformation Format-8) from the Universal
Character Set standard (1SO/IEC 10646-1:1993). Otherwise, the string representation is
unspecified.

The Unicode Standard V3 is fully compatible with 1ISO/IEC 10646-1:1993. It contains all the
same characters and encoding points as ISO/IEC 10646, as well as additional information
about the characters and their use.

DWARF Version 2 did not specify the representation of strings; for upward compatibility,
this version also does not. However, the UTF-8 representation is strongly recommended.

The form encodings are listed in Figure 19.

Page 124 Draft 7 October 29, 2001

Page 125

Tag name Value
DW_TAG array_type 0x01
DW_TAG class type 0x02
DW_TAG_entry_point 0x03
DW_TAG_enumeration_type 0x04
DW_TAG formal_parameter 0x05
DW_TAG_imported declaration 0x08
DW_TAG_label Ox0a
DW_TAG lexica block 0x0b
DW_TAG_member Ox0d
DW_TAG_ pointer_type OxOf
DW_TAG reference type 0x10
DW_TAG_compile_unit 0x11
DW_TAG string_type 0x12
DW_TAG_structure_type 0x13
DW_TAG_subroutine type 0x15
DW_TAG_typedef 0x16
DW_TAG_union_type 0x17
DW_TAG_unspecified parameters 0x18
DW_TAG_ variant 0x19
DW_TAG_common_block Oxla

Draft 7

October 29, 2001

Page 126

Tag name Value
DW_TAG_common_inclusion Ox1b
DW_TAG _inheritance Ox1c
DW_TAG .inlined_subroutine Ox1d
DW_TAG_module Ox1e
DW_TAG ptr_to_member_type Ox1f
DW_TAG_ set type 0x20
DW_TAG_ subrange type 0x21
DW_TAG with_stmt 0x22
DW_TAG_access declaration 0x23
DW_TAG base type 0x24
DW_TAG_ catch block 0x25
DW_TAG_const_type 0x26
DW_TAG_constant 0x27
DW_TAG_enumerator 0x28
DW_TAG file type 0x29
DW_TAG friend Ox2a
DW_TAG_namelist 0x2b
DW_TAG namélist_item Ox2c
DW_TAG packed type 0x2d
DW_TAG_subprogram Ox2e

Draft 7

October 29, 2001

Page 127

Tag name

Value

DW_TAG_ template type parameter

Ox2f

DW_TAG_ template value parameter

0x30

DW_TAG_thrown_type

0x31

DW_TAG try_block

0x32

DW_TAG variant_part

0x33

DW_TAG variable

0x34

DW_TAG volatile type

0x35

DW_TAG_dwarf_procedure £

0x36

DW_TAG redtrict_type f

0x37

DW_TAG .interface type

0x38

DW_TAG_namespace

0x39

DW_TAG_imported_module £

Ox3a

DW_TAG_unspecified type

0x3b

DW_TAG partia_unit F

Ox3c

DW_TAG_imported_unit

0x3d

DW_TAG mutable type

Ox3e

DW_TAG lo user

0x4080

DW_TAG hi_user

Oxffff

T New in DWARF V3

Figure 16. Tag encodings

Draft 7

October 29, 2001

Page 128

Child deter mination name | Value
DW_CHILDREN_no 0
DW_CHILDREN _yes 1

Figure 17. Child deter mination encodings

Draft 7

October 29, 2001

Page 129

Attribute name Value Classes
DW_AT sibling 0x01 |[reference
DW_AT _location 0x02 [block, loclistptr
DW_AT name 0x03 |string
DW_AT_ordering 0x09 |constant
DW_AT byte size O0x0b |block, constant, reference
DW_AT_hit_offset OxOc |block, constant, reference
DW_AT hit_size 0x0d |block, constant, reference
DW_AT stmt_list 0x10 |lineptr
DW_AT low_pc Ox11 |address
DW_AT high_pc 0x12 |address
DW_AT language 0x13 |constant
DW_AT discr 0x15 |[reference
DW_AT _discr_value 0x16 |constant
DW_AT visihility 0x17 |constant
DW_AT_import 0x18 |reference
DW_AT _string_length 0x19 |block, loclistptr
DW_AT_common_reference Oxla |reference
DW_AT_comp_dir Ox1b |string
DW_AT const_vaue Ox1c |block, constant, string
DW_AT_containing_type Ox1d |reference

Draft 7 October 29, 2001

Attribute name Value Classes
DW_AT default_value Oxle |reference
DW_AT _inline 0x20 |constant
DW_AT _is optional 0x21 |[flag
DW_AT_lower_bound 0x22 |block, constant, reference
DW_AT_producer 0x25 |string
DW_AT_prototyped 0x27 |flag
DW_AT return_addr Ox2a |block, loclistptr
DW_AT _start_scope Ox2c |constant
DW_AT _stride size Ox2e |constant
DW_AT_upper_bound Ox2f |block, constant, reference
DW_AT abstract_origin 0x31 |reference
DW_AT _accessihility 0x32 |constant
DW_AT_address class 0x33 |constant
DW_AT artificia 0x34 |[flag
DW_AT_base types 0x35 |reference
DW_AT _calling_convention 0x36 |constant
DW_AT_count 0x37 |block, constant, reference
DW_AT data member_location 0x38 |block, constant, loclistptr
DW_AT_decl_column 0x39 |constant
DW_AT decl file Ox3a |constant

Page 130 Draft 7 October 29, 2001

Page 131

Attribute name Value Classes
DW_AT decl line 0x3b |constant
DW_AT declaration 0x3c |flag
DW_AT discr_list 0x3d |block
DW_AT_encoding Ox3e |constant
DW_AT externd Ox3f |flag
DW_AT frame base 0x40 |block, loclistptr
DW_AT friend 0x41 |reference
DW_AT identifier_case 0x42 |constant
DW_AT_macro_info 0x43 | macptr
DW_AT namelist_item 0x44 |block
DW_AT _priority 0x45 |reference
DW_AT_segment 0x46 |block, constant
DW_AT _specification 0x47 |reference
DW_AT tatic link 0x48 |block, loclistptr
DW_AT type 0x49 |reference
DW_AT use location Ox4a |block, loclistptr
DW_AT variable parameter Ox4b |[flag
DW_AT virtuality Ox4c | constant
DW_AT vtable elem location Ox4d |block, loclistptr
DW_AT alocated Ox4e |block, constant, reference

Draft 7 October 29, 2001

Attribute name Value Classes
DW_AT associated £ Ox4f | block, constant, reference
DW_AT_data location % 0x50 |block
DW_AT stridet 0x51 |block, constant, reference
DW_AT entry pct 0x52 |address
DW_AT use UTF8 % 0x53 |flag
DW_AT extension ¥ 0x54 |reference
DW_AT ranges f Ox55 |rangelistptr
DW_AT trampoline ¥ Ox56 |address, flag, reference, string
DW_AT cal _column i 0x57 |constant
DW_AT cal filet 0x58 | constant
DW_AT cdl linet 0x59 |constant
DW_AT description £ Ox5a |string
DW_AT lo user 0x2000 |---
DW_AT hi_user Ox3fff |---

T New in DWARF V3

Figure 18. Attribute encodings

Page 132 Draft 7 October 29, 2001

Form name Value Class

DW_FORM addr Ox01 |address

DW_FORM_block?2 0x03 |block

DW_FORM block4 0x04 |block

DW_FORM _data2 0x05 |constant

DW_FORM _data4 0x06 |constant, lineptr, loclistptr, macptr, rangelistptr
DW_FORM _data8 0x07 |constant, lineptr, loclistptr, macptr, rangelistptr
DW_FORM _string 0x08 |string

DW_FORM block 0x09 |block

DW_FORM_block1 Ox0a |block

DW _FORM _datal OxOb | constant
DW_FORM _flag Ox0c |[flag
DW_FORM sdata 0x0d |constant
DW_FORM _strp Ox0e |string
DW_FORM udata OxOf | constant

DW_FORM ref_addr O0x10 |reference

DW_FORM refl Ox11 |reference
DW_FORM _ref2 O0x12 |reference
DW_FORM ref4 0x13 |reference
DW_FORM _ref8 Ox14 |reference

Page 133 Draft 7 October 29, 2001

Form name Value Class

DW_FORM ref udata | Ox15 |reference

DW_FORM _indirect O0x16 |(see Section 7.5.3)

Figure 19. Attribute form encodings

7.6 Variable Length Data

The special constant dataforms DW_FORM _sdataand DW_FORM _udata are encoded using
“Little Endian Base 128" (LEB128) numbers. LEB128 is a scheme for encoding integers densely
that exploits the assumption that most integers are small in magnitude. (This encoding is equally
suitable whether the target machine architecture represents data in big-endian or little- endian
order. It is“little endian” only in the sense that it avoids using space to represent the “big” end of
an unsigned integer, when the big end is all zeroes or sign extension bits).

DW_FORM udata (unsigned LEB128) numbers are encoded as follows: start at the low order
end of an unsigned integer and chop it into 7-bit chunks. Place each chunk into the low order 7
bits of abyte. Typically, severa of the high order bytes will be zero; discard them. Emit the
remaining bytesin a stream, starting with the low order byte; set the high order bit on each byte
except the last emitted byte. The high bit of zero on the last byte indicates to the decoder that it
has encountered the | ast byte.

The integer zero isa specia case, consisting of asingle zero byte.

Figure 20 gives some examples of DW_FORM_udata numbers. The 0x80 in each case is the high
order bit of the byte, indicating that an additional byte follows.

The encoding for DW_FORM _sdata (signed, 2s complement LEB128) numbersis similar,
except that the criterion for discarding high order bytes is not whether they are zero, but whether
they consist entirely of sign extension bits. Consider the 32-bit integer - 2. The three high level
bytes of the number are sign extension, thus LEB128 would represent it as a single byte
containing the low order 7 bits, with the high order bit cleared to indicate the end of the byte
stream. Note that there is nothing within the LEB128 representation that indicates whether an
encoded number is signed or unsigned. The decoder must know what type of number to expect.

Page 134 Draft 7 October 29, 2001

Number | First byte | Second byte
2 2 -
127 127 ---
128 0+0x80 1
129 1+0x80 1
130 2+0x80 1
12857 57+0x80 100

Figure 20. Examples of unsigned L EB128 encodings

Number | First byte | Second byte

2 2

-2 Ox7e

127 127+0x80 |O

-127 1+0x80 Ox7f

128 0+0x80 1

-128 0+0x80 Ox7f

129 1+0x80 1

-129 Ox7f+0x80 |Ox7e

Figure 21. Examples of signed L EB128 encodings

Figure 21 gives some examples of DW_FORM_sdata numbers.

Appendix C gives algorithms for encoding and decoding these forms.

Page 135

Draft 7

October 29, 2001

7.7 DWARF Expressions and Location Descriptions

7.7.1 DWARF Expressions

A DWAREF expression is stored in a block of contiguous bytes. The bytes form a set of

operations. Each location operation has a 1-byte code that identifies that operation. Operations
can be followed by one or more bytes of additional data. All operationsin a DWARF expression
are concatenated from left to right. The encodings for the operationsin a DWARF expression are

described in Figure 22.

Operation Code OpNe?.a?: ds Notes

DW_OP _addr 0x03 1 fggjf‘;‘rtgf‘;ﬁ o
DW_OP_deref 0x06 0
DW_OP_constlu 0x08 1 1-byte constant
DW_OP_constls 0x09 1 1-byte constant
DW_OP_const2u Ox0a 1 2-byte constant
DW_OP_const2s Ox0b 1 2-byte constant
DW_OP_const4u 0x0c 1 4-byte constant
DW_OP_const4s 0x0d 1 4-byte constant
DW_OP_const8u 0x0e 1 8-byte constant
DW_OP_const8s OxOf 1 8-byte constant
DW_OP_constu 0x10 1 ULEB128 constant
DW_OP_consts 0x11 1 SLEB128 constant
DW_OP_dup 0x12 0

Page 136 Draft 7 October 29, 2001

Operation Code OpNe?.a?:ds Notes
DW_OP _drop 0x13 0
DW_OP over 0x14 0
DW_OP pick 0x15 1 1-byte stack index
DW_OP_swap 0x16 0
DW_OP _rot 0x17 0
DW_OP xderef 0x18 0
DW_OP _abs 0x19 0
DW_OP_and Oxla 0
DW_OP div Ox1b 0
DW_OP_minus Ox1c 0
DW_OP_mod Ox1d 0
DW_OP_mul Ox1e 0
DW_OP neg Ox1f 0
DW_OP_not 0x20 0
DW_OP or 0x21 0
DW_OP plus 0x22 0
DW_OP plus uconst 0x23 1 ULEB128 addend
DW_OP_shl 0x24 0
DW_OP shr 0x25 0

Page 137 Draft 7 October 29, 2001

Operation Code OpNe?.a?:ds Notes
DW_OP _shra 0x26 0
DW_OP_xor 0x27 0
DW_OP _skip Ox2f 1 signed 2-byte constant
DW_OP bra 0x28 1 signed 2-byte constant
DW_OP_eq 0x29 0
DW_OP_ge Ox2a 0
DW_OP_gt 0x2b 0
DW_OP le Ox2c 0
DW_OP |t ox2d 0
DW_OP_ne Ox2e 0
DW_OP lit0 0x30 0
DW_OP litl 0x31 0 literals 0..31 =
(DW_OP _lit0 + literal)
DW_OP lit31 Ox4f 0
DW_OP _reg0 0x50 0
DW_OP _regl 0x51 0 reg0..31 =
(DW_OP _reg0 + regnum)
DW_OP reg3l Ox6f 0

Page 138 Draft 7 October 29, 2001

No. of

Operation Code Operands Notes
DW_OP_breg0 0x70 1
DW_OP bregl Ox71 1 |S-EB128offset

base register 0..31 =
(DW_OP_breg0 + regnum)

DW_OP_breg3l Ox8f 1
DW_OP_regx 0x90 1 ULEB128 register
DW_OP_fbreg 0x91 1 SLEB128 offset
DW_OP bregx 0x92 2 gtgggggfﬁga followed by
DW_OP piece 0x93 1 ULEB128 size of piece addressed
DW_OP _deref_size 0x94 1 1-byte size of dataretrieved
DW_OP xderef_size 0x95 1 1-byte size of dataretrieved
DW_OP_nop 0x96 0
DW_OP push object addresst | 0x97 0
DW_OP cdl2t 0x98 1 2-byte offset of DIE
DW _OP cdl4t 0x99 1 4-byte offset of DIE
DW_OP cal _ref O0x9a 1 4- or 8-byte offset of DIE
DW_OP lo user O0xe0
DW_OP_hi_user Oxff

¥ New in DWARF V3

Figure 22. DWARF operation encodings

Page 139

Draft 7

October 29, 2001

7.7.2 Location Expressions

A location expression isa DWARF expression that is used to compute the location (possibly a
register) of avariable or other entity.

7.7.3 Location Lists

Each entry in alocation list is either alocation list entry, a base address selection entry, or an end
of list entry.

A location list entry consists of two relative addresses followed by a 2-byte length, followed by a
block of contiguous bytes. The length specifies the number of bytesin the block that follows.
The two addresses are the same size as used by DW_FORM _addr on the target machine.

A base address selection entry and an end of list entry each consist of two (constant or relocated)
addresses. The two addresses are the same size as used by DW_FORM _addr on the target
machine.

For alocation list to be specified, the base address of the corresponding compilation unit must be
defined (see Section 3.1).

7.8 Base Type Encodings
The values of the constants used in the DW_AT _encoding attribute are given in Figure 23.

Base type encoding name | Value
DW_ATE address Ox1
DW_ATE_boolean 0x2
DW_ATE complex_float 0x3
DW_ATE float Ox4
DW_ATE signed 0x5
DW_ATE signed_char 0x6
DW_ATE unsigned ox7

Page 140 Draft 7 October 29, 2001

Base type encoding name | Value
DW_ATE unsigned char 0x8
DW_ATE_imaginary float ¥ | 0Ox9
DW_ATE lo user 0x80
DW_ATE hi_user Oxff

¥ New in DWARF V3

Figure 23. Base type encoding values

7.9 Accessibility Codes

The encodings of the constants used inthe DW_AT _accessibility attribute are given in

Figure 24.

Accessibility code name | Value
DW_ACCESS public 1
DW_ACCESS protected 2
DW_ACCESS private 3

Figure 24. Accessibility encodings

Page 141 Draft 7

October 29, 2001

7.10 Visibility Codes
The encodings of the constants used in the DW_AT _visibility attribute are given in Figure 25.

Visibility code name | Value
DW_VIS loca 1
DW_VIS exported 2
DW_VIS qualified 3

Figure 25. Visibility encodings

7.11 Virtuality Codes
The encodings of the constants used in the DW_AT _virtuality attribute are given in Figure 26.

Virtuality code name Value
DW_VIRTUALITY_none 0
DW_VIRTUALITY _virtual 1
DW_VIRTUALITY _pure virtual 2

Figure 26. Virtuality encodings

7.12 Source Languages

The encodings for source languages are given in Figure 27. Names marked with T and their
associated values are reserved, but the languages they represent are not well supported in

DWAREF Version 3.

Page 142 Draft 7 October 29, 2001

Page 143

L anguage name Value
DW_LANG_C89 0x0001
DW_LANG_C 0x0002
DW_LANG_Ada83t 0x0003
DW_LANG_C plus plus | 0x0004
DW_LANG _Cobol74t | 0x0005
DW_LANG_Cobol85 t 0x0006
DW_LANG_Fortran77 0x0007
DW_LANG_Fortran90 0x0008
DW_LANG_Pascal83 0x0009
DW_LANG_ Modula2 0x000a
DW_LANG Javatt 0x000b
DW_LANG C99 0x000c
DW_LANG_Adad5 1t 0x000d
DW_LANG Fortran95f | 0x000e
DW_LANG PLI t 0x000f
DW_LANG lo user 0x8000

DW_LANG_hi_user

Oxffff

T Seetext ¥ New in DWARF V3

Figure 27. Language encodings

Draft 7

October 29, 2001

7.13 Address Class Encodings

The value of the common address class encoding DW_ADDR_noneisO.

7.14 ldentifier Case

The encodings of the constants used inthe DW_AT identifier_case attribute are givenin
Figure 28.

Identifier Case Name | Value
DW_ID_case _sensitive 0
DW_ID_up_case 1
DW_ID_down case 2
DW_ID_case insensitive 3

Figure 28. Identifier case encodings

7.15 Calling Convention Encodings

The encodings for the values of the DW_AT _calling_convention attribute are given in Figure 29.

Calling Convention Name | Value
DW_CC normal Ox1
DW_CC _program 0x2
DW_CC_nocall 0x3
DW_CC lo user 0x40
DW_CC _hi_user Oxff

Figure 29. Calling convention encodings

Page 144 Draft 7 October 29, 2001

7.16 Inline Codes

The encodings of the constants used in the DW_AT _inline attribute are given in Figure 30.

Inline Code Name Value
DW _INL_not_inlined 0
DW_INL_inlined 1

DW _INL_declared not_inlined 2

DW_INL_declared_inlined

Figure 30. Inline encodings

7.17 Array Ordering

The encodings for the values of the ordering attribute of arrays used inthe DW_AT _ordering

attribute are given in Figure 31.

Ordering name Value
DW_ORD_row_magjor 0
DW_ORD_col_major 1

Figure 31. Ordering encodings

Page 145 Draft 7

October 29, 2001

7.18 Discriminant Lists

The descriptors used in the DW_AT _discr_list attribute are encoded as 1-byte constants. The
defined values are given in Figure 32.

Descriptor Name | Value

DW_DSC label 0

DW_DSC range 1

Figure 32. Discriminant descriptor encodings

7.19 Name Lookup Tables

Each set of entriesin the table of global names contained in the. debug_pubnames and
. debug_pubt ypes sections begins with a header consisting of:

1. A 4-byte or 12-byte length of the set of entries for this compilation unit, not including the
length field itself. In the 32-bit DWARF format, thisis a 4-byte unsigned integer (which
must be less than oxf f f f f f 00) ; in the 64-bit DWARF format, this consists of the 4-byte
valueoxffffffff followed by an 8-byte unsigned integer that gives the actual length (see
Section 7.4).

2. A 2-byteversion identifier containing the value 2 for DWARF Version 3.

3. A 4-byte or 8-byte offset into the . debug_i nf o section of the compilation unit header. In the
32-bit DWARF format, thisis a 4-byte unsigned offset; in the 64-bit DWARF format, this
field is an 8-byte unsigned offset (see Section 7.4).

4. A 4-byte or 8-byte length containing the size in bytes of the contents of the . debug_i nf o
section generated to represent this compilation unit. In the 32-bit DWARF format, thisis a 4-
byte unsigned length; in the 64-bit DWARF format, thisis an 8-byte unsigned length (see
Section 7.4).

This header isfollowed by a series of tuples. Each tuple consists of a 4-byte or 8-byte offset
followed by a string of non-null bytes terminated by one null byte. In the 32-bit DWARF format,
thisisa4-byte offset; in the 64-bit DWARF format, it is an 8-byte offset. Each set is terminated
by an offset containing the value 0.

Page 146 Draft 7 October 29, 2001

7.20 Address Range Table

Each set of entriesin the table of address ranges contained in the. debug_ar anges section
begins with a header containing:

1. A 4-byte or 12-byte length containing the length of the set of entries for this compilation unit,
not including the length field itself. In the 32-bit DWARF format, thisis a 4-byte unsigned
integer (which must be less than oxf f f f f f 00) ; in the 64-bit DWARF format, this consists of
the 4-bytevalueoxffffffff followed by an 8-byte unsigned integer that gives the actual
length (see Section 7.4).

2. A 2-byteversion identifier containing the value 2 for DWARF Version 3.

3. A 4-byte or 8-byte offset into the . debug_i nf o section of the compilation unit header. In the
32-bit DWARF format, thisis a4-byte unsigned offset; in the 64-bit DWARF format, thisis
an 8-byte unsigned offset (see Section 7.4).

4. A 1-byte unsigned integer containing the size in bytes of an address (or the offset portion of
an address for segmented addressing) on the target system.

5. A 1-byte unsigned integer containing the size in bytes of a segment descriptor on the target
system.

This header isfollowed by a series of tuples. Each tuple consists of an address and alength, each
in the size appropriate for an address on the target architecture. The first tuple following the
header in each set begins at an offset that is a multiple of the size of asingle tuple (that is, twice
the size of an address). The header is padded, if necessary, to the appropriate boundary. Each set
of tuplesisterminated by a O for the address and O for the length.

7.21 Line Number Information

The version number in the line number program header is 3 for DWARF Version 3.

The boolean values “true” and “false” used by the line number information program are encoded
as asingle byte containing the value O for “false,” and a non-zero value for “true.”

Page 147 Draft 7 October 29, 2001

The encodings for the pre-defined standard opcodes are given in Figure 33.

Page 148

Opcode Name Value
DW_LNS copy 1
DW_LNS advance pc 2
DW_LNS advance line 3
DW_LNS set file 4
DW_LNS set column 5
DW_LNS negate stmt 6
DW _LNS set basic_block 7
DW_LNS const_add pc 8
DW_LNS fixed_advance pc 9
DW_LNS set prologue end f 10
DW_LNS set_epilogue begin f 11
DW_LNS set isat 12

T New in DWARF V3

Draft 7

Figure 33. Line Number Standard Opcode Encodings

October 29, 2001

The encodings for the predefined extended opcodes are given in Figure 34.

Page 149

Opcode Name Value
DW_LNE _end_sequence 1
DW_LNE_set_address 2
DW_LNE_define file 3
DW_LNE _lo_user f 128
DW_LNE_hi_user f 255

T New in DWARF V3

Figure 34. Line Number Extended Opcode Encodings

Draft 7

October 29, 2001

7.22 Macro Information

The source line numbers and source file indices encoded in the macro information section are
represented as unsigned LEB128 numbers as are the constantsin an
DW_MACINFO_vendor_ext entry.

The macinfo type is encoded as a single byte. The encodings are given in Figure 35.

Macinfo Type Name Value

DW_MACINFO_define 1
DW_MACINFO_undef 2
DW_MACINFO _start_file 3
DW_MACINFO_end file 4

DW_MACINFO_vendor_ext 255

Figure 35. Macinfo Type Encodings

7.23 Call Frame Information

In the 32-bit DWAREF format, the value of the CIE id in the CIE header isoxffffffff; inthe
64-bit DWARF format, thevalueisoxffffffffffffffff.

The value of the CIE version number is 3.

Cadll frame instructions are encoded in one or more bytes. The primary opcode is encoded in the
high order two bits of the first byte (that is, opcode = byte >> 6). An operand or extended opcode
may be encoded in the low order 6 bits. Additional operands are encoded in subsequent bytes.
The instructions and their encodings are presented in Figure 36.

Page 150 Draft 7 October 29, 2001

Instruction Hé?{]sz Lé’;’;’f Operand 1 Operand 2
DW_CFA_advance_|loc Ox1 delta
DW_CFA_offset 0x2 register |ULEB128 offset
DW_CFA_restore 0x3 register
DW_CFA_nop 0 0
DW_CFA_set loc 0 0x01 |address
DW_CFA_advance locl 0 0x02 1-byte delta
DW_CFA_advance_|loc2 0 0x03 |2-bytedelta
DW_CFA_advance loc4 0 0x04 |4-bytedelta
DW_CFA_offset_extended 0 0x05 ULEB128 register |ULEB128 offset
DW_CFA _restore _extended 0 0x06 ULEB128 register
DW_CFA_undefined 0 0x07 ULEB128 register
DW_CFA_same value 0 0x08 ULEB128 register
DW_CFA _register 0 0x09 ULEB128 register | ULEB128 register
DW_CFA_remember_state 0 Ox0a
DW_CFA restore state 0 0x0b
DW_CFA_def_cfa 0 0x0c ULEB128 register | ULEB128 offset
DW_CFA_def_cfa register 0 0x0d ULEB128 register
DW_CFA_def cfa offset 0 Ox0e |ULEB128 offset
DW_CFA_def_cfa expression 0 OxOf BLOCK
Page 151 Draft 7 October 29, 2001

Instruction Hé?{]sz L;}',E/SG Operand 1 Operand 2
DW_CFA_expression 0 0x10 |ULEB128register |BLOCK
DW_CFA_offset_extended_sf t 0 Ox11 |ULEB128 register | SLEB128 offset
DW_CFA_def cfa sf t 0 0x12 |ULEB128register | SLEB128 offset
DW_CFA_def cfa offset sf f 0 0x13 |SLEB128 offset
DW_CFA _lo user 0 Ox1c
DW_CFA_hi_user 0 Ox3f

¥ New in DWARF V3

Figure 36. Call frame instruction encodings

7.24 Non-contiguous Address Ranges

Each entry in arange list (see Section 2.16.3) is either arange list entry, a base address selection
entry, or an end of list entry.

A range list entry consists of two relative addresses. The addresses are the same size as used by
DW_FORM _addr on the target machine.

A base address selection entry and an end of list entry each consist of two (constant or relocated)
addresses. The two addresses are the same size as used by DW_FORM _addr on the target
machine.

For arange list to be specified, the base address of the corresponding compilation unit must be
defined (see Section 3.1).

Page 152 Draft 7 October 29, 2001

7.25 Dependencies and Constraints

The debugging information in this format is intended to exist in the . debug_abbr ev,

. debug_ar anges, . debug_frane, . debug_i nfo, . debug |ine,.debug_ | oc,.debug maci nfo,
. debug_pubnarres, . debug_pubt ypes, .debug_ranges and. debug_str sections of an object
file. The information is not word-aligned. Consequently:

For the 32-bit DWARF format and atarget architecture with 32-bit addresses, an assembler
or compiler must provide away to produce 2-byte and 4-byte quantities without alignment
restrictions, and the linker must be able to relocate a 4-byte address or section offset that
occurs at an arbitrary alignment.

For the 32-bit DWARF format and a target architecture with 64-bit addresses, an assembler
or compiler must provide away to produce 2-byte, 4-byte and 8-byte quantities without
alignment restrictions, and the linker must be able to relocate an 8-byte address or section
offset that occurs at an arbitrary alignment.

For the 64-bit DWARF format (and atarget architecture with 64-bit addresses), an assembler
or compiler must provide away to produce 2-byte, 4-byte and 8-byte quantities without
alignment restrictions, and the linker must be able to relocate an 8-byte address or section
offset that occurs at an arbitrary alignment.

Whileit is possiblein principle to use 4-byte addresses in combination with the 64-bit DWARF
file format, it is not expected that thiswill ever be of interest.

All debugging information entries in a relocatabl e object file, executable object or shared object
are required to be physically contiguous.

Page 153 Draft 7 October 29, 2001

7.26 Integer Representation Names

The sizes of the integers used in the lookup by name, lookup by address, line number and call
frame information sections are given in Figure 37.

Representation Representation
name
shyte signed, 1-byte integer
ubyte unsigned, 1-byte integer
uhalf unsigned, 2-byte integer
uword unsigned, 4-byte integer

Figure 37. Integer Representation Names

Page 154 Draft 7 October 29, 2001

Appendix A -- Attributes by Tag Value (informative)

Thelist below enumerates the attributes that are most applicable to each type of debugging
information entry. DWARF does not in general require that a given debugging information entry
contain a particular attribute or set of attributes. Instead, a DWARF producer is free to generate
any, al, or none of the attributes described in the text as being applicable to a given entry. Other
attributes (both those defined within this document but not explicitly associated with the entry in
guestion, and new, vendor-defined ones) may aso appear in a given debugging entry. Therefore,
the list may be taken as instructive, but cannot be considered definitive.

In the following table, DECL means DW_AT_decl_column, DW_AT _decl_file, and
DW_AT decl_line.

TAG Name Applicable Attributes

DW_TAG_access declaration DECL

DW_AT accessibility
DW_AT_description
DW_AT _name
DW_AT sibling

Page 155 Draft 7 October 29, 2001

Page 156

DW_TAG array_type

DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT_ordering
DW_AT sibling
DW_AT_gspecification
DW_AT start scope
DW_AT _stride size
DW_AT type

DW_AT vishility

DW_TAG base type

DW_AT allocated
DW_AT_associated
DW_AT hit_offset
DW_AT hit _size
DW_AT byte size
DW_AT data location
DW_AT_description
DW_AT_encoding
DW_AT name
DW_AT sibling

DW_TAG catch block

DW_AT abstract_origin
DW_AT_high_pc
DW_AT low_pc
DW_AT ranges
DW_AT_segment
DW_AT sibling

Draft 7

October 29, 2001

DW_TAG_ class type DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT_gspecification
DW_AT _start_scope
DW_AT vishility

DW_TAG_common_block DECL

DW_AT declaration
DW_AT_description
DW_AT location
DW_AT_name
DW_AT_segment
DW_AT sibling
DW_AT vishbility

DW_TAG_common_inclusion DECL

DW_AT _common_reference
DW_AT_declaration
DW_AT sibling

DW_AT visibility

Page 157 Draft 7 October 29, 2001

DW_TAG_compile_unit DW_AT _base types
DW_AT_comp_dir
DW_AT identifier_case
DW_AT high_pc
DW_AT_language
DW_AT low_pc
DW_AT_macro_info
DW_AT name
DW_AT_producer
DW_AT ranges
DW_AT_segment
DW_AT sibling
DW_AT_stmt_list
DW_AT use UTF8

DW_TAG_const_type DW_AT_allocated
DW_AT associated
DW_AT data location
DW_AT sibling
DW_AT type

DW_TAG_constant DECL
DW_AT_accessibility
DW_AT const_vaue
DW_AT_declaration
DW_AT_description
DW_AT_externa
DW_AT name
DW_AT sibling
DW_AT start_scope
DW_AT type
DW_AT vishility

DW_TAG_dwarf_procedure DW_AT _location

Page 158 Draft 7 October 29, 2001

Page 159

DW_TAG_entry_point

DW_AT_address class
DW_AT_description
DW_AT frame base
DW_AT low_pc
DW_AT name
DW_AT return_addr
DW_AT_segment
DW_AT sibling
DW_AT_static_link
DW_AT type

DW_TAG_enumeration_type

DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT _gspecification
DW_AT _start_scope
DW_AT stride
DW_AT vishility

DW_TAG_enumerator

DECL

DW_AT const_vaue
DW_AT_description
DW_AT name
DW_AT sibling

Draft 7

October 29, 2001

DW_TAG file_type DECL

DW_AT abstract_origin
DW_AT_allocated
DW_AT associated
DW_AT byte size
DW_AT data location
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT start_scope
DW_AT type
DW_AT vishility

DW_TAG_formal_parameter DECL

DW_AT abstract_origin
DW_AT _artificial
DW_AT const_vaue
DW_AT_default_value
DW_AT _description
DW_AT _is optional
DW_AT location
DW_AT name
DW_AT_segment
DW_AT sibling
DW_AT type

DW_AT variable parameter

DW_TAG_friend DECL

DW_AT _abstract_origin
DW_AT friend
DW_AT sibling

DW_TAG_ imported declaration DECL
DW_AT_accessibility
DW_AT_description
DW_AT_import
DW_AT name
DW_AT sibling
DW_AT start scope

Page 160 Draft 7 October 29, 2001

DW_TAG_imported_module DECL

DW_AT_import

DW_AT sibling

DW_AT start scope
DW_TAG_imported_unit DW_AT_import
DW_TAG inheritance DECL

DW_AT_accessibility
DW_AT data member_location
DW_AT sibling

DW_AT type

DW_AT virtuadlity

DW_TAG .inlined_subroutine DECL

DW_AT _abstract_origin
DW_AT call_column
DW_AT call _file
DW_AT cdl line
DW_AT entry_pc
DW_AT high_pc
DW_AT low_pc
DW_AT ranges
DW_AT _return_addr
DW_AT_segment
DW_AT sibling
DW_AT start scope
DW_AT_trampoline

DW_TAG interface type DECL
DW_AT_accessibility
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT _start_scope

Page 161 Draft 7 October 29, 2001

DW_TAG_label DW_AT _abstract_origin
DW_AT_description
DW_AT low_pc
DW_AT name
DW_AT_segment
DW_AT start scope
DW_AT sibling

DW_TAG lexica block DW_AT abstract_origin
DW_AT_description
DW_AT high _pc
DW_AT low_pc
DW_AT name
DW_AT ranges
DW_AT_segment
DW_AT sibling

DW_TAG_member DECL
DW_AT_accessibility
DW_AT hit_offset
DW_AT_hit_size
DW_AT byte size
DW_AT data member_location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT type
DW_AT vishility

Page 162 Draft 7 October 29, 2001

DW_TAG_module DECL

DW_AT accessihility
DW_AT_declaration
DW_AT_description
DW_AT entry_pc
DW_AT high _pc
DW_AT low_pc
DW_AT name
DW_AT _priority
DW_AT ranges
DW_AT_segment
DW_AT sibling
DW_AT_gspecification
DW_AT vishility

DW_TAG_mutable type DW_AT_allocated
DW_AT associated
DW_AT data location
DW_AT sibling
DW_AT type

DW_TAG_namelist DECL
DW_AT_accessibility
DW_AT abstract_origin
DW_AT_declaration
DW_AT sibling
DW_AT visibility

DW_TAG namelist_item DECL

DW_AT namelist_item
DW_AT sibling

DW_TAG_namespace DECL
DW_AT_description
DW_AT extension
DW_AT name
DW_AT sibling
DW_AT_start_scope

Page 163 Draft 7 October 29, 2001

Page 164

DW_TAG_packed type

DW_AT_allocated
DW_AT associated
DW_AT data location
DW_AT sibling
DW_AT type

DW_TAG_ partia_unit

DW_AT base types
DW_AT_comp_dir
DW_AT_description
DW_AT _identifier_case
DW_AT high _pc
DW_AT_language
DW_AT low_pc
DW_AT_macro_info
DW_AT name
DW_AT_producer
DW_AT ranges
DW_AT_segment
DW_AT sibling
DW_AT stmt_list
DW_AT use UTF8

DW_TAG pointer_type

DW_AT_address class
DW_AT allocated
DW_AT_associated
DW_AT data location
DW_AT sibling
DW_AT _gspecification
DW_AT type

Draft 7

October 29, 2001

DW_TAG_ ptr_to_member_type DECL

DW_AT abstract_origin
DW_AT_address class
DW_AT allocated
DW_AT_associated
DW_AT_containing_type
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT type

DW_AT _use location
DW_AT vishility

DW_TAG reference _type DW_AT_address class
DW_AT allocated
DW_AT_associated
DW_AT data location
DW_AT sibling
DW_AT type

DW_TAG restrict_type DW_AT_allocated
DW_AT associated
DW_AT data location
DW_AT sibling
DW_AT type

Page 165 Draft 7 October 29, 2001

DW_TAG_set_type DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name

DW_AT _start_scope
DW_AT sibling
DW_AT type
DW_AT vishility

DW_TAG_string_type DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT start_scope
DW_AT_string_length
DW_AT vishility

Page 166 Draft 7 October 29, 2001

DW_TAG_structure_type DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT data location
DW_AT declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT_gspecification
DW_AT_start_scope
DW_AT vishility

Page 167 Draft 7 October 29, 2001

DW_TAG_subprogram DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT address class
DW_AT _artificial
DW_AT _calling_convention
DW_AT_declaration
DW_AT _description
DW_AT entry_pc
DW_AT external
DW_AT frame base
DW_AT high_pc
DW_AT _inline
DW_AT low_pc
DW_AT name
DW_AT_prototyped
DW_AT ranges
DW_AT return_addr
DW_AT_segment
DW_AT sibling
DW_AT_specification
DW_AT start_scope
DW_AT_static_link
DW_AT _trampoline
DW_AT type
DW_AT vishility
DW_AT virtuadlity
DW_AT vtable elem location

Page 168 Draft 7 October 29, 2001

DW_TAG_subrange type DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT byte size
DW_AT_count
DW_AT data location
DW_AT_declaration
DW_AT_description
DW_AT_lower_bound
DW_AT name
DW_AT sibling
DW_AT stride
DW_AT type
DW_AT_upper_bound
DW_AT vishility

DW_TAG_subroutine type DECL

DW_AT _abstract_origin
DW_AT accessihility
DW_AT_address class
DW_AT allocated
DW_AT_associated
DW_AT data location
DW_AT_declaration
DW_AT_description
DW_AT name
DW_AT _prototyped
DW_AT sibling
DW_AT start_scope
DW_AT type
DW_AT vishility

DW_TAG_ template type parameter |DECL
DW_AT_description
DW_AT_name
DW_AT sibling
DW_AT type

Page 169 Draft 7 October 29, 2001

DW_TAG_ template value parameter |DECL

DW_AT const_vaue
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT type

DW_TAG_thrown_type DECL

DW_AT allocated
DW_AT_associated
DW_AT data location
DW_AT sibling
DW_AT type

DW_TAG_try_block DW_AT _abstract_origin
DW_AT high_pc
DW_AT low_pc
DW_AT ranges
DW_AT_segment
DW_AT sibling

DW_TAG_typedef DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT data location
DW_AT_declaration
DW_AT_description
DW_AT name
DW_AT sibling
DW_AT _start_scope
DW_AT type

DW_AT vishility

Page 170 Draft 7 October 29, 2001

DW_TAG_union_type DECL

DW_AT abstract_origin
DW_AT_accessibility
DW_AT allocated
DW_AT_associated
DW_AT data location
DW_AT_declaration
DW_AT _description
DW_AT friend
DW_AT name
DW_AT sibling
DW_AT_gspecification
DW_AT _start_scope
DW_AT vishility

DW_TAG_unspecified_parameters DECL
DW_AT abstract_origin
DW_AT _artificial

DW_AT sibling
DW_TAG_unspecified_type DECL

DW_AT_description

DW_AT name
DW_TAG variable DECL

DW_AT _abstract_origin
DW_AT accessihility
DW_AT const_vaue
DW_AT declaration
DW_AT_description
DW_AT external
DW_AT _location
DW_AT name
DW_AT_segment
DW_AT sibling
DW_AT_gspecification
DW_AT start scope
DW_AT _type
DW_AT vishility

Page 171 Draft 7 October 29, 2001

Page 172

DW_TAG variant

DECL

DW_AT accessihility
DW_AT _abstract_origin
DW_AT declaration
DW_AT discr_list
DW_AT discr vaue
DW_AT sibling

DW_TAG variant_part

DECL

DW_AT _abstract_origin
DW_AT accessihility
DW_AT_declaration
DW_AT discr
DW_AT sibling
DW_AT type

DW_TAG volatile type

DW_AT_allocated
DW_AT associated
DW_AT data location
DW_AT sibling
DW_AT type

DW_TAG with_stmt

DW_AT accessihility
DW_AT_address class
DW_AT declaration
DW_AT_high_pc
DW_AT location
DW_AT low_pc
DW_AT ranges
DW_AT_segment
DW_AT sibling
DW_AT type
DW_AT vishility

Figure 38. Attributesby TAG value

Draft 7

October 29, 2001

Appendix B -- Debug Section R elationships (informative)

DWARF information is organized into multiple program sections, each of which holds a
particular kind of information. In some cases, information in one section refersto information in
one or more of the others. These relationships areillustrated by the diagram and associated notes
on the following pages.

Page 173 Draft 7 October 29, 2001

.debug_aranges .debug_frame .debug_abbrev

To compilation unit (a) To abbreviations (c) .debug_str

DW_FORM strp (d)

DW_OP call_ref (€) | debug loc

.debug_info

DW_AT location (f)

DW_AT ranges (Q)

\

DW_AT_macinfo (h)

To compilation unit (b) .debug_ranges

DW_AT stmt_ligt (i)

.debug_line

.debug_pubnames .debug_macinfo

.debug_pubtypes

Figure 39. Debug section relationships

Page 174 Draft 7 October 29, 2001

Notes

(@) . debug_aranges Thedebug_i nfo_of f set valuein the header isthe offset in the

. debug_i nf o section of the corresponding compilation unit header (not
the compilation unit entry).

(b) . debug_pubnanes and . debug_pubt ypes

(c) . debug_i nfo

(d) . debug_info

(e) . debug_l oc

(f) . debug_i nfo

(9) . debug_i nfo

(h) . debug_i nfo

(i) . debug_i nfo

Page 175

Thedebug_i nf o_of f set valuein the header isthe offset in the

. debug_i nf o section of the corresponding compilation unit header (not
the compilation unit entry). Each pubname has the offset (within the
corresponding compilation unit) of the applicable debugging information
entry.

Thedebug_abbrev_of f set valuein the header isthe offset in the
. debug_abbr ev section of the abbreviations for that compilation unit.

Attribute values of class string may have form DW_FORM _strp, whose
valueisthe offset in the . debug_st r section of the corresponding string.

The operand of the DW_OP _call_ref DWARF expression operator isthe
offset of a debugging information entry inthe . debug_i nf o section.

An attribute value of class loclistptr (specifically form
DW_FORM _data4/8) is an offset within the . debug_| oc section of a
location list.

An attribute value of class rangelistptr (specificaly form
DW_FORM _data4/8) is an offset within the . debug_r anges section of a
range list.

An attribute value of class macptr (specifically form DW_FORM _datad/8)
isan offset within the . debug_maci nf o section of the beginning of the
macro information for the referencing unit.

An attribute value of class lineptr (specifically form DW_FORM _data4/8)
isan offset inthe . debug_1 i ne section of the beginning of the line
number information for the referencing unit.

Draft 7 October 29, 2001

Page 176 Draft 7 October 29, 2001

Appendix C -- Variable Length D ata: Encoding/Decoding (informative)

Here are algorithms expressed in a C-like pseudo-code to encode and decode signed and
unsigned numbers in LEB128 representation.

do
{
byte = low order 7 bits of val ue;
val ue >>= 7;
if (value '=0) /* nore bytes to conme */
set high order bit of byte;
emt byte;

} while (value !'= 0);

Figure 40. Algorithm to encode an unsigned integer

more = 1,
negative = (value < 0);
size = no. of bits in signed integer
whi | e(nor e)
{
byte = low order 7 bits of val ue;
val ue >>= 7;
/* the following is unnecessary if the
* inplenmentation of >>= uses an arithnetic rather
* than | ogical shift for a signed | eft operand
*/
if (negative)
/* sign extend */

value |= - (1 <<(size - 7));
/* sign bit of byte is 2nd high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) |
(value == -1 && sign bit of byte is set))
nore = O;
el se
set high order bit of byte;
emt byte;

Figure 41. Algorithm to encode a signed integer

Page 177 Draft 7 October 29, 2001

result = 0;

shift = 0;
whi | e(true)
{
byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)
br eak;
shift += 7;

Figure 42. Algorithm to decode an unsigned L EB128 number

result = 0;

shift = 0;

size = nunber of bits in signed integer;

whi | e(true)

{
byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;

/* sign bit of byte is 2" high order bit (0x40) */
if (high order bit of byte == 0)
br eak;

}

if ((shift <size) && (sign bit of byte is set))
/* sign extend */
result |=- (1 << shift);

Figure 43. Algorithm to decode a signed L EB128 number

Page 178 Draft 7 October 29, 2001

Appendix D -- Examples (inform ative)

The following sections provide examples that illustrate various aspects of the DWARF
debugging information format.

D.1 Compilation Units and Abbreviations Table Example

Figure 44 depicts the relationship of the abbreviations tables contained in the . debug_abbr ev
section to the information contained in the . debug_i nf o section. Values are given in symbolic
form, where possible.

The figure corresponds to the following two trivia source files:
- File nyfile.c
char* PO NTER;

..... File nyfile2.c

typedef char* strp;

Page 179 Draft 7 October 29, 2001

Compilation Unit 1: . debug_i nfo

el.

Page 180

length

2

al (abbreviations tabl e offset)
4

1

“myfile.c”

“Best Compiler Corp: Version 1.3"
“mymachine:/home/mydir/src”
DW_LANG_C89

0x0

0x55

DW_FORM_datad

0x0

2

“ Charn
DW_ATE_unsigned_char
1

3
el

4
“POINTER"
e2

0

Compilation Unit 2: . debug_i nfo

length

2

al (abbreviations tabl e offset)
4

“rp”

al:

Abbreviation Table- . debug_abbr ev

1

DW_TAG_compile_unit
DW_CHILDREN_yes

DW_AT_name
DW_AT_producer
DW_AT_comp_dir
DW_AT _language
DW_AT low_pc
DW_AT high pc
DW_AT_stmt_list
0

DW_FORM_string
DW_FORM_string
DW_FORM_string
DW_FORM_datal
DW_FORM _addr
DW_FORM _addr
DW_FORM _indirect
0

2
DW_TAG_base_type
DW_CHILDREN_no
DW_AT_name
DW_AT_encoding
DW_AT byte size

0

DW_FORM_string
DW_FORM_datal
DW_FORM_datal
0

3

DW_TAG_pointer_type

DW_CHILDREN_no
DW_AT type
0

DW_FORM_ref4
0

4
DW_TAG_typedef
DW_CHILDREN_no

DW_AT _name DW_FORM_string
DW_AT type DW_FORM _ref _addr
0 0

0

Figure 44. Compilation units and abbreviationstable

Draft 7

October 29, 2001

D.2 Aggregate Examples

The following examplesillustrate how to represent some of the more complicated forms of array
and record aggregates using DWARF.

D.2.1 Fortran 90 Example

Consider the Fortran 90 source fragment in Figure 45.

type array_ptr

real :: myvar

real, dimension (:), pointer :: ap
end type array_ptr

type(array_ptr), allocatable, dinension(:) :: arrays
al | ocate(arrays(20))

doi =1, 20
al l ocate(arrays(i)%p(i +10))
end do

Figure 45. Fortran 90 example: source fragment

For allocatable and pointer arrays, it is essentially required by the Fortran 90 semantics that each
array consist of two parts, which we here call 1) the descriptor and 2) the raw data. (A descriptor
has often been called a dope vector in other contexts, although it is often a structure of some kind
rather than a simple vector.) Because there are two parts, and because the lifetime of the
descriptor is necessarily longer than and includes that of the raw data, there must be an address
somewhere in the descriptor that points to the raw data when, in fact, there is some, that is, when
the "variable" is allocated or associated.

For concreteness, suppose that a descriptor looks something like the C structure in Figure 46.
Note, however, that it is a property of the design that 1) a debugger needs no builtin knowledge
of this structure and 2) there does not need to be an explicit representation of this structure in the
DWAREF input to the debugger.

Page 181 Draft 7 October 29, 2001

struct desc {

| ong el _len; /1 Element |ength

void * base; /1l Address of raw data

i nt ptr_assoc : 1; [// Pointer is associated flag
i nt ptr_alloc : 1; // Pointer is allocated flag
i nt num di s 6; // Nunber of dinensions

struct dims_str { /'l For each dinension...
| ong | ow bound;
| ong upper _bound;
| ong stride;

} dinms[63];

Figure 46. Fortran 90 example: descriptor representation

In practice, of course, a"rea" descriptor will have dimension substructures only for as many

dimensions as are specified in the num_dims component. Let us use the notation desc<n> to

indicate a specialization of the desc struct in which nisthe bound for the di ms component as
well as the contents of the num di nrs component.

Because the arrays considered here come in two parts, it is necessary to distinguish the parts
carefully. In particular, the "address of the variable" or equivalently, the "base address of the
object" always refers to the descriptor. For arrays that do not come in two parts, an
implementation can provide a descriptor anyway, thereby giving it two parts. (This may be
convenient for general runtime support unrelated to debugging.) In this case the above
vocabulary applies as stated. Alternatively, an implementation can do without a descriptor, in
which case the "address of the variable", or equivalently the "base address of the object”, refers
to the "raw data’ (therea data, the only thing around that can be the object).

If an object has a descriptor, then the DWARF type for that object will have a
DW_AT_data location attribute. If an object does not have a descriptor, then usually the
DWARF type for the object will not haveaDW_AT _data location. (See the following Ada
example for a case where the type for an object without a descriptor does have an
DW_AT_data location attribute. In that case the object doubles as its own descriptor.)

The Fortran 90 derived typearray_pt r can now be redescribed in C-like terms that exposes
some of the representation asin

struct array_ptr {
fl oat myvar ;
desc<l1> ap;

Page 182 Draft 7 October 29, 2001

Similarly for variable ar r ays:
desc<1> arrays;

(Recall that desc<1> indicates the 1-dimensional version of desc.)
Finally, the following notation is useful:
1. sizeof (type): Sizeinbytesof entities of the given type

2. offset(type, comp): offsetin bytesof the comp component within an entity of the given
type

The DWAREF description is shown in Figure 47.

1$: DW TAG array_type
I No name, default (Fortran) ordering, default stride_size
DW AT type(reference to base type REAL)
DW AT _associ at ed(machi ne= I Test 'assoc' flag
DW OP_push_obj ect _address
DWOP_lit<n> I where n == offset(assoc)
DW OP_pl us
DW OP_der ef
DWOP |itl I mask for 'assoc' flag
DW OP_and)
DW AT _dat a_Il ocati on(machi ne= I Get raw data address
DW OP_push_obj ect _address
DWOP_|it<n> I where n == offset(base)
DW OP_pl us
DW OP_der ef)
2%: DW TAG subr ange_t ype
I No name, default stride
DW AT type(reference to base type | NTEGER)
DW AT _| ower _bound(machi ne=
DW OP_push_obj ect _address
DWOP |it<n> I where n ==
! of fset (desc, dins) +
! of fset(dins_str, |ower_bound)
DW OP_pl us
DW OP_der ef)
DW AT _upper _bound(machi ne=
DW OP_push_obj ect _addr ess
DWOP_|it<n> I where n ==
! of fset (desc, dins) +
! of fset(dins_str, upper_bound)
DW OP_pl us
DW OP_der ef)

Page 183 Draft 7 October 29, 2001

3%:

43:

5%:

6%:

7%:

Page 184

I Note: for the mith dimension, the second operator becones
I DWOP_Iit<x> where

! x == of fset(desc, dins) +

! (m1)*sizeof (dins_str) +

! of fset(dins_str, [|ower|upper]_bound)

I That is, the stack nachi ne does not get |onger for each

I successive dinmension (other than to express the |arger

I offsets involved).

DW TAG structure_type
DW AT _nane("array_ptr")
DW AT _byte_size(constant sizeof (REAL) + sizeof (desc<l>))
DW TAG renber
DW AT _nane("myvar")
DW AT type(reference to base type REAL)
DW AT_dat a_nenber _| ocati on(constant 0)
DW TAG nenber
DW AT _nane("ap");
DW AT type(reference to 19%)
DW AT_dat a_nenber _| ocati on(constant si zeof (REAL))

DW TAG array_type
! No name, default (Fortran) ordering, default stride_size
DW AT type(reference to 3%)
DW AT _al | ocat ed(nmachi ne= I Test 'ptr_alloc' flag
DW OP_push_obj ect _addr ess
DWOP_lit<n> I where n == offset(ptr_alloc)
DW OP_pl us
DW OP_der ef
DWOP [it2 I mask for 'ptr_alloc' flag
DW OP_and)
DW AT _dat a_Il ocati on(machi ne= | Get raw data address
DW OP_push_obj ect _address
DWOP_|it<n> I where n = of fset(base)
DW OP_pl us
DW OP_der ef)
DW TAG subrange_t ype
I No nanme, default stride
DW AT type(reference to base type | NTEGER)
DW AT_I| ower _bound(machi ne=
DW OP_push_obj ect _addr ess
DWOP_|it<n> I where n == ...
DW OP_pl us
DW OP_der ef)
DW AT _upper _bound(machi ne=
DW OP_push_obj ect _addr ess
DWOP_|it<n> I where n == ...
DW OP_pl us
DW OP_der ef)

Draft 7 October 29, 2001

8%: DW TAG vari abl e
DW AT nane("arrays")
DW AT type(reference to 63%)
DW AT _I| ocati on(machi ne=
...as appropriate...) I Assunme static allocation

Figure 47. Fortran 90 example: DWARF description

Suppose the program is stopped immediately following completion of the do loop. Suppose
further that the user enters the following debug command:

debug> print arrays(5)%ap(2)
Interpretation of this expression proceeds as follows:

1) Lookup namearrays. Wefind that it isavariable, whose type is given by the unnamed type
at 6%. Notice that the type is an array type.

2) Find the 5™ element of that array object. To do array indexing requires several pieces of
information:

a) theaddressof the array data
b) thelower bounds of the array

[To check that 5 is within bounds would require the upper bound too, but we'll skip that
for this example.]

c) thestridesize

For @), check for aDW_AT _data location attribute. Since there is one, go execute the stack
machine, whose result is the address needed. The object address used in this case is the object
we are working on, namely the variable named ar r ays, whose address was found in step 1.
(Had there been no DW_AT _data location attribute, the desired address would be the same
asthe address from step 1.)

For b), for each dimension of the array (only onein this case), go interpret the usual lower
bound attribute. Again thisis a stack machine, which again begins with

DW_OP push object address. Thisobject is till arr ays, from step 1, because we haven't
begun to actually perform any indexing yet.

Page 185 Draft 7 October 29, 2001

For c), the default stride size applies. Since thereisno DW_AT _stride attribute, use the size
of the array element type, which isthe size of typearray_ptr (at 3%).

Having acquired all the necessary data, perform the indexing operation in the usual manner—
which has nothing to do with any of the attributes involved up to now. Those just provide the
actual values used in the indexing step.

The result is an object within the memory that was dynamically alocated for ar r ays.
3) Find the ap component of the object just identified, whosetypeisarray_ptr.

Thisisaconventional record component lookup and interpretation. It happens that the ap
component in this case begins at offset 4 from the beginning of the containing object.
Component ap has the unnamed array type defined at 1$ in the symbol table.

4) Find the 2nd element of the array object found in step 3. To do array indexing requires
severa pieces of information:

a) theaddress of the array storage
b) thelower bounds of the array

[To check that 2 is within bounds we would require the upper bound too, but we'll skip
that for this example]

c) thestridesize

Thisisjust like step 2), so the details are omitted. Recall that because the DWARF type 1$ has a
DW_AT_data location, the address that results from step 4) is that of a descriptor, and that
address is the address pushed by the DW_OP_push_object_address operationsin 1$ and 23.

Note: we happen to be accessing a pointer array here instead of an allocatable array; but because
there is a common underlying representation, the mechanics are the same. There could be
completely different descriptor arrangements and the mechanics would still be the same—only
the stack machines would be different.

Page 186 Draft 7 October 29, 2001

D.2.2 Ada Example

Figure 48 illustrates two kinds of Ada parameterized array, one embedded in arecord.

M : | NTEGER : = <exp>;
VEC1 : array (1..M of |NTEGER,

subtype TEENY is | NTEGER range 1..100;
type ARR is array (I NTEGER range <>) of | NTEGER
type REC2(N : TEENY := 100) is record
VEC2 : ARR(1..N);
end record;

OBJ2B : RECZ;

Figure 48. Ada example: sour ce fragment

VEC! illustrates an (unnamed) array type where the upper bound of the first and only dimension
is determined at runtime. Ada semantics require that the value of an array bound is fixed at the
time the array type is elaborated (where elaboration refers to the runtime executabl e aspects of
type processing). For the purposes of this example, we assume that there are no other
assignments to Mso that it safe for the REC1 type description to refer directly to that variable
(rather than a compiler generated copy).

REC2 illustrates another array type (the unnamed type of component VEC2) where the upper
bound of the first and only bound is aso determined at runtime. In this case, the upper bound is
contained in adiscriminant of the containing record type. (A discriminant is a component of a
record whose value cannot be changed independently of the rest of the record because that value
is potentially used in the specification of other components of the record.)

The DWAREF description is shown in Figure 49.
Interesting aspects about this example are:

1) Thearray VEC2 is“immediately” contained within structure REC2 (thereisno
intermediate descriptor or indirection), which isreflected in the absence of a
DW_AT data location attribute on the array type at 28%.

2) One of the bounds of VEC2 is nonetheless dynamic and part of the same containing
record. It islocated using an address calculation relative to the VEC2 component itself.

Page 187 Draft 7 October 29, 2001

3) Thelack of a subtype concept in DWARF means that DWARF types serve the role of
subtypes and must replicate information from what should be the parent type. For this
reason, DWARF for the unconstrained array ARR is not needed for the purposes of this
example and therefore not shown.

11%:

12%:

13%:

14%:

21$:

Page 188

DW TAG vari abl e
DW AT_nanme(" M)
DW AT type(reference to base type | NTEGER)

DW TAG array_type
! No nanme, default (Ada) order, default stride
DW AT type(reference to base type | NTEGER)
DW TAG subrange_t ype
DW AT type(reference to base type | NTEGER)
DW AT | ower bound(constant 1)
DW AT upper _bound(reference to variable Mat 11%)

DW TAG vari abl e
DW AT nane(" VECL")
DWAT type(reference to array type at 12%)

DW TAG subrange_t ype
DW AT_nane(" TEENY")
DW AT type(reference to base type | NTEGER)
DW AT | ower bound(constant 1)
DW AT _upper _bound(const ant 100)

Draft 7 October 29, 2001

26%: DW TAG structure_type
DW AT _nane(" REC2")
27%: DW TAG_nenber
DW AT _nane("N")
DW AT type(reference to subtype TEENY at 219%)
DW AT_dat a_nenber _| ocati on(constant 0)
28$%: DW TAG array_type
! No name, default (Ada) order, default stride
| Default data | ocation
DW AT _TYPE(reference to base type | NTEGER)
29$%: DW TAG subr ange_t ype
DW AT type(reference to subrange TEENY at 213%)
DW AT | ower bound(constant 1)
DW AT _upper _bound(machi ne=
DW OP_push_obj ect _addr ess,
DWOP |it<n> I where n ==
! of f set (REC2, VEC2) -
! of fset (REC2, N

DW OP_neg

DW OP_pl us I conmpute val ue of N

DW OP_der ef) ! gi ven address of VEC
30%: DW TAG nenber

DW AT _nane(" VEC2")
DW AT type(reference to array “subtype” at 28$%)
DW AT _dat a_nenber _| ocati on(machi ne=

DWOP_lit<n> I where n == offset(REC2, VEC2)
DW OP_pl us)
41%: DW TAG vari abl e

DW AT nane(" OBJ2B")
DW AT type(reference to type REC2 at 269%)
DW AT | ocation(...as appropriate...)

Figure 49. Ada example: DWARF description

Page 189 Draft 7 October 29, 2001

D.3 Namespace Examples

The C++ examplein Figure 50 is used to illustrate the representation of namespaces.

nanespace {
int i;
}

nanespace A {
nanespace B {
int j;
i nt nmyfunc (int a);
float nyfunc (float f) { return f — 2.0; }
i nt nmyfunc2(int a) { return a + 2; }

}
}
nanespace Y {
using A B :j; /1 (1) using declaration
int foo;
}
using A :B::j; /1 (2) using declaration
nanespace Foo = A :B; /1 (3) namespace alias
usi ng Foo: : myfunc; /1 (4) using declaration
usi ng namespace Foo; /1 (5) using directive

nanespace A {
nanespace B {

usi ng nanespace Y, /1 (6) using directive
int k;
}
}
i nt Foo::myfunc(int a)
{
i = 3
=4
return nyfunc2(3) +j +i + a + 2;
}

Figure 50. Namespace example: sour ce fragment

Page 190 Draft 7 October 29, 2001

The DWARF representation in Figure 51 is appropriate.

1$: DW TAG baset ype
DW AT nane("int")
2%: DW TAG baset ype
DW AT _nane("fl oat")
6%: DW TAG _nanespace
! no DWAT nane attribute
7$: DW TAG vari abl e

DW AT nane("i")
DW AT type(reference to 1%)
DW AT | ocation ...

10$: DW TAG nanespace
DW AT name("A")
20%: DW TAG _nanespace
DW AT name("B")
30%: DW TAG vari abl e

DW AT _nane("j")
DW AT type(reference to 1%)
DW AT | ocation ...

34$%: DV\/_TA.G._subpr ogram
DW AT _nane(" nmyfunc")
DW AT type(reference to 1%)

36%: DV\LTA.G._subprogram
DW AT _nane(" nyfunc")
DW AT type(reference to 2%)

38%: DW TAG_subprogram
DW AT nane(" nmyfunc2")
DW AT | ow pc ...
DW AT_hi gh_pc ...
DW AT type(reference to 19)

Page 191 Draft 7 October 29, 2001

40%: DW TAG nanespace

DW AT _name("Y")

DW TAG i nported_decl arati on ! (1) using-declaration
DW AT i nport(reference to 30%)

DW TAG vari abl e
DW AT _nane("foo0")
DW AT type(reference to 13%)
DW AT | ocation ...

DW TAG i nport ed_decl arati on ! (2) using declaration
DW AT inport(reference to 309)

DW TAG i nported_decl arati on ! (3) nanespace alias
DW AT_nane(" Foo")
DW AT inport (reference to 209)

DW TAG i nported_decl arati on (4) using declaration

!
DW AT i nport(reference to 34%) ! - part 1
DW TAG i nport ed_decl arati on ! (4) using declaration
DW AT i nport(reference to 36%) ! - part 2
DW TAG i nport ed_nodul e ! (5) using directive

DW AT i nport(reference to 20%)

DW TAG nanespace
DW AT extension(reference to 10%)
DW TAG nanespace
DW AT extension(reference to 20%)
DW TAG i nport ed_nodul e ! (6) using directive
DW AT inport(reference to 40%)
DW TAG vari abl e
DW AT _nane("k")
DW AT type(reference to 19)
DW AT | ocation ...

60%: DW _TAG _subpr ogram
DW AT nane(" nmyfunc")
DW AT specification(reference to 34%)
DW AT | ow pc ...
DW AT _high_pc ...

Figure 51. Namespace example: DWARF description

Page 192 Draft 7 October 29, 2001

D.4 Line Number Program Example

Consider the simple source file and the resulting machine code for the Intel 8086 processor in
Figure 52.

1. int
2: main()
0x239: push pb
0x23a: mov bp, sp
3:
4: printf(“Orit needl ess words\n”);

0x23c: nov ax, Oxaa
0x23f: push ax
0x240: call _printf
0x243: pop cx
5: exit(0);

0x244: xor ax, ax
0x246: push ax
0x247: call _exit
Ox24a: pop cx

6: 1}
0x24b: pop bp
0x24c: ret

7
0x24d:

Figure 52. Line number program example: machine code

Suppose the line number program header specifies the following:

version 3
m ni mum_i nstruction_| ength 1
opcode_base 10 I Opcodes 10-12 not needed
i ne_base 1
i ne_range 15

Page 193 Draft 7 October 29, 2001

Figure 53 shows one encoding of the line number program, which occupies 12 bytes (the opcode
SPECIAL (m,n) indicates the special opcode generated for aline increment of m and an address
increment of n).

Opcode Operand Byte Stream

DW LNS advance_pc LEB128(0x239) 0x2, 0xb9, 0x04
SPECI AL(2, 0) Oxb

SPECI AL(2, 3) 0x38

SPECI AL(1, 8) 0x82

SPECI AL(1, 7) 0x73

DW LNS advance_pc LEB128(2) 0x2, 0x2

DW LNE_end_sequence 0x0, Ox1, Ox1

Figure 53. Line number program example: one encoding

Figure 54 shows an alternate encoding of the same program using standard opcodes to advance
the program counter; this encoding occupies 22 bytes.

Opcode Operand Byte Stream
DW LNS fixed_advance_pc 0x239 0x9, 0x39, 0x2
SPECI AL(2, 0) Oxb

DW LNS fixed_advance_pc 0x3 0x9, 0x3, 0x0
SPECI AL(2, 0) Oxb

DWLNS fixed_advance_pc 0x8 0x9, 0x8, 0x0
SPECI AL(1, 0) Oxa

DW LNS fixed_advance_pc 0x7 0x9, O0x7, 0xO0
SPECI AL(1, 0) Oxa

DWLNS fixed_advance_pc 0x2 0x9, 0x2, 0x0
DW LNE_end_sequence 0x0, Ox1, Ox1

Figure 54. Line number program example: alternate encoding

Page 194 Draft 7 October 29, 2001

D.5 Call Frame Information Example

The following example uses a hypothetical RISC machine in the style of the Motorola 88000.

Memory is byte addressed.

Instructions are all 4 bytes each and word aligned.

» Instruction operands are typically of the form:

<destination.reg>, <source.reg>, <constant>

» Theaddressfor the load and store instructions is computed by adding the contents of the
source register with the constant.

* There are 8 4-byte registers:

RO always O

R1 holds return address on call

R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call

R7 stack pointer.

The stack grows in the negative direction.

The following are two code fragments from a subroutine called foo that uses aframe pointer (in
addition to the stack pointer). The first column values are byte addresses. <fs> denotes the stack
frame size in bytes, namely 12.

Page 195 Draft 7 October 29, 2001

;; start prol ogue

foo sub R7, R7, <fs> ; Allocate frame

foo+4 store Rl, R7, (<fs>-4) ; Save the return address
f oo+8 store R6, R7, (<fs>-8) ; Save R6

foo+12 add R6, R7, O ; R6 is now the Frame ptr

foo+1l6 store R4, R6, (<fs>-12) ; Save a preserved reg
;; This subroutine does not change R5

;; Start epilogue (R7 is returned to entry val ue)

foo+64 load R4, R6, (<fs>-12) ; Restore R4

foo+68 |oad R6, R7, (<fs>-8) ; Restore R6

foo+72 load RlL, R7, (<fs>-4) ; Restore return address
foo+76 add R7, R7, <fs> ; Deallocate frame
foo+80 jump R1 ; Return

f oo+84

Figure 55. Call frame infor mation example: machine code fragments

The conceptual matrix for the foo subroutine is shown in Figure 56. Corresponding fragments
from the . debug_f r ame section are shown in Figure 57.

f 00+68 [RB] +f s
foo+72 [R7] +f s
f oo+76 [R7] +f s
f 00+80 [R7] +0

Location CFA RO RL R2 R3 R4 R5 R6 R7 R8
foo [R7] +0 s u u u s s s s ri
foo+4 [R7] +f s s u u u s s s s ri
foo+8 [R7] +f s S u u u S S S S c-4
foo+12 [R7] +f s S u u u S S c-8 s c-4
foo+16 [RB] +f s S u u u S S c-8 s c-4
f 00+20 [RB] +f s s u u u c-12 s c-8 s c-4
foo+64 [RB] +f s s u u u c-12 s c-8 s c-4
S u u u S S c-8 s c-4
S u u u S S S S c-4
S u u u S S S S r
s u u u s s s s r

e

Figure 56. Call frame infor mation example: conceptual matrix

Page 196 Draft 7 October 29, 2001

The following notes apply to Figure 56:

1. R8isthereturn address
2. s=same vauerule

3. u=undefined rule

4. rN =register(N) rule

5. cN = offset(N) rule

Address Value Comment

cie 32 l ength

cietd Oxffffffff CE.d

ci e+8 1 version

ci e+9 0 augrent ati on

ci e+10 4 code_al i gnnment _f act or
cie+ll -4 dat a_al i gnnment _f act or
cietl2 8 R8 is the return addr
ci e+13 DW CFA def _cfa (7, 0) CFA = [R7] +0

ci e+16 DW CFA sane_val ue (0) RO not nodified (=0)
ci e+18 DW CFA undefined (1) Rl scratch

ci e+20 DW CFA undefined (2) R2 scratch

ci e+22 DW CFA undefined (3) R3 scratch

ci e+t24 DW CFA sane_val ue (4) R4 preserve

ci e+26 DW CFA sane_val ue (5) R5 preserve

ci e+28 DW CFA sane_val ue (6) R6 preserve

ci e+30 DW CFA sane_val ue (7) R7 preserve

ci e+32 DW CFA register (8, 1) R8 is inRL

ci e+35 DW CFA nop paddi ng

ci e+36

<caf >
<daf >

Figure 57. Call frame infor mation example: common information entry encoding

Page 197

Draft 7

October 29, 2001

Address Value Comment

fde 40 | ength

fde+4 cie CIE ptr

fde+8 foo initial location

fde+12 84 addr ess_range

fde+16 DW CFA advance_l oc(1) i nstructions

fde+17 DW CFA def cfa_offset(12) <fs>

fde+19 DW CFA advance_ | oc(1) 4/ <caf >

f de+20 DW CFA of f set (8, 1) - 4/ <daf > (2" par amet er)
fde+22 DW CFA advance_l oc(1)

f de+23 DW CFA of f set (6, 2) -8/ <daf > (2" par amet er)
f de+25 DW CFA advance_ | oc(1)

f de+26 DW CFA def cfa_register(6)

fde+28 DW CFA advance_l oc(1)

f de+29 DW CFA of f set (4, 3) -12/ <daf > (2" par anet er)
fde+31 DW CFA advance_| oc(11) 44/ <caf >

fde+32 DW CFA restore(4)

fde+33 DW CFA advance_ | oc(1)

fde+34 DW CFA restore(6)

f de+35 DW CFA def _cfa_register(7)

f de+37 DW CFA advance_l oc(1)

fde+38 DW CFA restore(8)

fde+39 DW CFA advance_ | oc(1)

f de+40 DW CFA def _cfa_offset(0)

fde+42 DW CFA nop paddi ng

fde+43 DW CFA nop paddi ng

fde+44

Figure 58. Call frame infor mation example: frame description entry encoding

Page 198

Draft 7

October 29, 2001

D.6 Inlining Examples

The pseudo-source in Figure 59 is used to illustrate the use of DWARF to describe inlined
subroutine calls. This example involves a nested subprogram INNER that makes uplevel
references to the formal parameter and local variable of the containing subprogram OUTER.

inline procedure OUTER (OUTER FORMAL : integer) =
begi n

OQUTER LOCAL : integer;

procedure I NNER (I NNER_FORMAL : integer) =
begi n

| NNER_LOCAL : integer;
print (I NNER_FORMAL + OUTER LOCAL) ;
end;
| NNER(OUTER_LOCAL) ;
| NNER(31) ;
end;
I Call QUTER
!(JJTER(7);
Figure 59. Inlining examples: pseudo-sour ce fragment

There are several approaches that a compiler might take to inlining for this sort of example. This
presentation considers three such approaches, al of which involve inline expansion of
subprogram OUTER. (If OUTER is not inlined, the inlining reduces to asimpler single level
subset of the two level approaches considered here.)

Page 199 Draft 7 October 29, 2001

The approaches are:
1. Inline both OUTER and INNER in all cases
2. Inline OUTER, multiple INNERs

Treat INNER as a non-inlinable part of OUTER, compile and call adistinct normal version
of INNER defined within each inlining of OUTER.

3. Inline OUTER, one INNER

Compile INNER as a single normal subprogram which is called from every inlining of
OUTER.

This discussion does not consider why a compiler might choose one of these approaches; it
considers only how to describe the result.

In the examples that follow in this section, the debugging information entries are given
mnemonic labels of the following form

<i 0>. <ac>. <n>. <s>

where <i o> isether INNER or OUTER to indicate to which subprogram the debugging
information entry applies, <ac> iseither Al or CI to indicate "abstract instance" or "concrete
instance" respectively, <n> isthe number of the alternative being considered, and <s> isa
sequence number that distinguishes the individual entries. There is no implication that symbolic
labels, nor any particular naming convention, are required in actual use.

For conciseness, declaration coordinates and call coordinates are omitted.

D.6.1 Alternative #1: inline both OUTER and INNER

A suitable abstract instance for an alternative where both OUTER and INNER are always inlined
isshown in Figure 60.

Notice in Figure 60 that the debugging information entry for INNER (labelled INNER.AI.1.1) is
nested in (isachild of) that for OUTER (labelled OUTER.AI.1.1). Nonetheless, the abstract
instance tree for INNER is considered to be separate and distinct from that for OUTER.

The call of OUTER shown in Figure 59 might be described as shown in Figure 61.

Page 200 Draft 7 October 29, 2001

I Abstract instance for OUTER
I
OQUTER. Al . 1. 1:
DW TAG subpr ogr am
DW AT _nane(" OUTER")
DW AT _inline(DWINL_decl ared_inlined)
I No | ow hi gh PCs
OUTER. Al . 1. 2:
DW TAG f or mal _par anet er
DW AT _nane(" OUTER_FORMAL")
DW AT type(reference to integer)
I No | ocation
OQUTER. Al . 1. 3:
DW TAG vari abl e
DW AT nane(" OUTER _LOCAL")
DW AT type(reference to integer)
! No location
I
I Abstract instance for |INNER
I
I NNER. Al. 1. 1:
DW TAG_subpr ogr am
DW AT_nane(" | NNER")
DW AT inline(DWINL _declared_inlined)
I No | ow hi gh PCs
I NNER. Al . 1. 2: DW TAG f or mal _par anet er
DW AT _nane(" | NNER_FORMAL")
DW AT type(reference to integer)
I No location
I NNER. Al . 1. 3: DW TAG vari abl e
DW AT nane(" | NNER_LOCAL")
DW AT type(reference to integer)
I No location

0

I No DWTAG inlined_subroutine (concrete instance)
I for INNER corresponding to calls of | NNER

Figure 60. Inlining example #1: abstract instance

Page 201 Draft 7 October 29, 2001

I Concrete instance for call "QUTER(7)"

QUTER Cl . 1. 1:
DW TAG i nl i ned_subrouti ne

No nane

DW AT _abstract _origin(reference to OUTER Al.1.1)

DW AT | ow pc(...)

DW AT _hi gh_pc(...)

QUTER. Cl . 1. 2

QUTER. Cl . 1. 3

DW TAG f or mal _par anet er

No nane

DW AT _abstract _origin(reference to OQUTER Al . 1. 2)
DW AT const _val ue(7)

DW TAG vari abl e

I NNER. CI . 1. 1;
DW TAG i nl i ned_subrouti ne

INNER. CI . 1. 2

INNER. CI . 1.3

Page 202

No nane

DW AT _abstract _origin(reference to OQUTER Al . 1. 3)
DW AT | ocation(...)

No DW TAG subprogram (abstract instance) for |NNER

Concrete instance for call | NNER(OUTER LOCAL)

No nane

DW AT _abstract _origin(reference to I NNER Al.1.1)
DW AT | ow pc(...)
DW AT _hi gh_pc(...)

DW AT static_link(...)
DW TAG f or mal _par anet er

I No nane

DW AT abstract _origin(reference to I NNER Al. 1. 2)

DW AT | ocation(...)

DW TAG vari abl e

I No nane

DW AT _abstract _origin(reference to I NNER Al. 1. 3)

DW AT | ocation(...)

0

Anot her concrete instance of

for

the call "1NNER(31)"

I NNER wi t hi n OQUTER

Figure 61. Inlining example #1: concrete instance

Draft 7

October 29, 2001

D.6.2 Alternative #2: Inline OUTER, multiple INNERSs

In the second alternative we assume that subprogram INNER is not inlinable for some reason,
but subprogram OUTER isinlinable. Each concrete inline instance of OUTER has its own
normal instance of INNER. The abstract instance for OUTER, which includes INNER, is shown
in Figure 62.

Note that the debugging information in this Figure differs from that in Figure 60 in that INNER
lacksaDW_AT inline attribute and therefore is not a distinct abstract instance. INNER is
merely an out-of-line routine that is part of OUTER’ s abstract instance. Thisisreflected in the
Figure by the fact that the labels for INNER use the substring OUTER instead of INNER.

A resulting concrete inline instance of OUTER is shown in Figure 63.

Noticein Figure 63 that OUTER is expanded as a concrete inlined instance, and that INNER is
nested within it as a concrete out-of -line subprogram. Because INNER is cloned for each inline
expansion of OUTER, only the invariant attributes of INNER (for example, DW_AT_name) are
specified in the abstract instance of OUTER, and the low-level, instance-specific attributes of
INNER (for example, DW_AT _low_pc) are specified in each concrete instance of OUTER.

The several calls of INNER within OUTER are compiled as normal calls to the instance of
INNER that is specific to the same instance of OUTER that contains the calls.

Page 203 Draft 7 October 29, 2001

I Abstract instance for OUTER
I
QUTER. Al . 2. 1:
DW TAG subprogram
DW AT _nane(" OUTER")
DW AT _inline(DWINL_decl ared_inlined)
I No | ow hi gh PCs
OQUTER. Al . 2. 2:
DW TAG f or mal _par anet er
DW AT _nane(" OUTER_FORMAL")
DW AT type(reference to integer)
I No | ocation
QUTER. Al . 2. 3:
DW TAG vari abl e
DW AT _nane(" OUTER_LOCAL")
DW AT type(reference to integer)
! No location
I
I Nested out-of-line I NNER subprogram
I
QUTER. Al . 2. 4;
DW TAG subpr ogram
DW AT_nane(" | NNER")
! No DWAT inline
I No | ow high PCs, frame_base, etc.
QUTER. Al . 2. 5;
DW TAG f or mal _par anet er
DW AT_nane(" | NNER_FORVAL")
DW AT type(reference to integer)
I No | ocation
QUTER. Al . 2. 6: DW TAG vari abl e
DW AT _nane(" | NNER_LOCAL")
DW AT type(reference to integer)
I No location

Figure 62. Inlining example #2: abstract instance

Page 204 Draft 7 October 29, 2001

I Concrete instance for call "QUTER(7)"
I
QUTER. Cl . 2. 1:
DW TAG i nl i ned_subrouti ne
I' No nane
DW AT _abstract _origin(reference to OQUTER Al. 2.1)
DW AT | ow pc(...)
DW AT _hi gh_pc(...)
QUTER. Cl . 2. 2:
DW TAG f or mal _par anet er
I' No nane
DW AT _abstract _origin(reference to OQUTER Al . 2. 2)
DW AT | ocation(...)
QUTER. Cl . 2. 3:
DW TAG vari abl e
I' No nane
DW AT _abstract _origin(reference to OQUTER Al. 2. 3)
DW AT | ocation(...)
I
I Nested out-of-line I NNER subprogram
I
QUTER. Cl . 2. 4;
DW TAG subpr ogram
' No nane
DW AT _abstract _origin(reference to OQUTER Al . 2. 4)
DW AT | ow pc(...)
DW AT_hi gh_pc(...)
DW AT frame_base(...)
DW AT static_ link(...)
QUTER. Cl . 2. 5:
DW TAG f or mal _par anet er
I' No nane
DW AT abstract _origin(reference to QUTER Al. 2.5)
DW AT | ocation(...)
QUTER. Cl . 2. 6:
DW TAG vari abl e
I' No nane
DW AT abstract _origin(reference to OQUTER AT. 2. 6)
DW AT | ocation(...)

Figure 63. Inlining example #2: concrete instance

Page 205 Draft 7 October 29, 2001

D.6.3 Alternative #3: inline OUTER, one normal INNER

In the third approach, one normal subprogram for INNER is compiled which is called from all
concrete inline instances of OUTER. The abstract instance for OUTER is shown in Figure 64.

The most distinctive aspect of that Figure is that subprogram INNER exists only within the
abstract instance of OUTER, and not in OUTER’ s concrete instance. In the abstract instance of
OUTER, the description of INNER has the full complement of attributes that would be expected
for anormal subprogram. While attributes such as DW_AT _low_pc, DW_AT _high_pc,
DW_AT _location, and so on, typically are omitted from an abstract instance because they are not
invariant across instances of the containing abstract instance, in this case those same attributes
areincluded precisely because they are invariant--there is only one subprogram INNER to be
described and every description is the same.

A concrete inline instance of OUTER isillustrated in Figure 65.

Notice in Figure 65 that there isno DWARF representation for INNER at all; the representation
of INNER does not vary across instances of OUTER and the abstract instance of OUTER
includes the complete description of INNER, so that the description of INNER may be (and for
reasons of space efficiency, should be) omitted from each concrete instance of OUTER.

There is one aspect of this approach that is problematical from the DWARF perspective. The
single compiled instance of INNER is assumed to access up-level variables of OUTER; however,
those variables may well occur at varying positions within the frames that contain the concrete
inline instances. A compiler might implement thisin several ways, including the use of
additional compiler generated parameters that provide reference parameters for the up-level
variables, or acompiler generated static link like parameter that points to the group of up-level
entities, among other possibilities. In either of these cases, the DWARF description for the
location attribute of each uplevel variable needs to be different if accessed from within INNER
compared to when accessed from within the instances of OUTER. An implementation is likely to
require vendor-specific DWARF attributes and/or debugging information entries to describe such
cases.

Note that in C++, amember function of a class defined within afunction definition does not
require any vendor-specific extensions because the C++ language disallows access to entities
that would give rise to this problem. (Neither ext er n variables nor st at i ¢ members require any
form of static link for accessing purposes.)

Page 206 Draft 7 October 29, 2001

I Abstract instance for OUTER
I
QUTER. Al . 3. 1:
DW TAG subprogram
DW AT_nane(" OQUTER")
DW AT _inline(DWINL_decl ared_inlined)
I No | ow hi gh PCs
QUTER. Al . 3. 2:
DW TAG f or mal _par anet er
DW AT_nane(" OQUTER_FORMAL")
DW AT type(reference to integer)
I No | ocation
QUTER. Al . 3. 3:
DW TAG vari abl e
DW AT_nane(" OUTER_LOCAL")
DW AT type(reference to integer)
I No | ocation
I
I' Normal | NNER
I
QUTER. Al . 3. 4:
DW TAG subpr ogram
DW AT_nane(" | NNER")
DW AT | ow pc(...)
DW AT_hi gh_pc(...)
DW AT frame_base(...)
DW AT static_link(...)
QUTER. Al . 3. 5:
DW TAG f or mal _par anet er
DW AT_narme("1 NNER_FORMAL")
DW AT type(reference to integer)
DW AT | ocation(...)
QUTER. Al . 3. 6:
DW TAG vari abl e
DW AT_nare("1 NNER_LOCAL")
DW AT type(reference to integer)
DW AT | ocation(...)

Figure 64. Inlining example #3: abstract instance

Page 207 Draft 7 October 29, 2001

I Concrete instance for call "QUTER(7)"
I
QUTER. Cl . 3. 1:

DW TAG i nl i ned_subrouti ne
I' No nane
DW AT _abstract _origin(reference to OQUTER Al. 3.1)
DW AT | ow pc(...)
DW AT _hi gh_pc(...)
DW AT frame_base(...)

QUTER. Cl . 3. 2;
DW TAG f or mal _par anet er
I' No nane
DW AT abstract _origin(reference to QUTER Al. 3. 2)
I No type
DW AT | ocation(...)
QUTER. Cl . 3. 3:
DW TAG vari abl e
I' No nane
DW AT _abstract _origin(reference to OQUTER Al. 3. 3)
I No type
DW AT | ocation(...)
! No DW TAG subprogram for "I NNER'
0

Figure 65. Inlining example #3: concrete instance

Page 208 Draft 7 October 29, 2001

Appendix E -- DWARF Compres sion and Duplicate Elimination
(informative)

DWARF can use alot of disk space.

Thisis especially true for C++, where the depth and complexity of headers can mean that many,
many (possibly thousands of) declarations are repeated in every compilation unit. C++ templates
can also mean that some functions and their DWARF descriptions get duplicated.

This Appendix describes techniques for using the DWARF representation in combination with
features and characteristics of some common object file representations to reduce redundancy
without losing information. It is worth emphasizing that none of these techniques are necessary
to provide a complete and accurate DWARF description; they are solely concerned with
reducing the size of DWARF information.

The techniques described here depend more directly and more obviously on object file concepts
and linker mechanisms than most other parts of DWARF. While the presentation tends to use the
vocabulary of specific systems, thisis primarily to aid in describing the techniques by appealing
to well-known terminology. These techniques can be employed on any system that supports
certain genera functional capabilities (described below).

E.1 Overview

The general approach isto break up the debug information of a compilation into separate
compilation units, each consisting of one or more sections. By arranging that a sufficiently
similar partitioning occurs in other compilations, a suitable system linker can del ete redundant
groups of sections when combining object files.

The following uses some traditional section naming here but aside from the DWARF sections,
the names are just mean to suggest traditional contents as a way of explaining the approach, not
to be limiting.

Page 209 Draft 7 October 29, 2001

A traditional relocatable object output from a single compilation might contain sections named:

.data

.text
.debug_info

. debug_abbrev
.debug_line

. debug_ar anges

A relocatable object from a compilation system attempting duplicate DWARF elimination might
contain sections asin:

.data

.text
.debug_info

. debug_abbrev
.debug_line

. debug_ar anges
followed (or preceded, the order is not significant) by a series of section groups:

==== Section group 1

.debug_info
. debug_abbrev
.debug_line

==== Section group N

.debug_info
. debug_abbrev
. debug_line

where each section group might or might not contain executable code (. t ext sections) or data
(. dat a sections).

A section group is anamed set of section contributions within an object file with the property
that the entire set of section contributions must be retained or discarded as awhole; no partia
elimination is allowed. Section groups can generally be handled by alinker in two ways:

11. Given multiple identical (duplicate) section groups, one of them is chosen to be kept and
used, while the rest are discarded.

12. Given a section group that is not referenced from any section outside of the section group,
the section group is discarded.

13. Which handling applies may be indicated by the section group itself and/or selection of
certain linker options.

Page 210 Draft 7 October 29, 2001

For example, if alinker determins that section group 1 from A.o and section group 3 from B.o
areidentical, it could discard one group and arrange that all referencesin A.o and B.o apply to
the remaining one of the two identical section groups. This saves space.

An important part of making it possible to “redirect” references to the surviving section group is
the use of consistently chosen linker global symbols for referring to locations within each section
group. It follows that references are ssmply to external names and the linker already knows how
to match up references and definitions.

What is minimally needed from the object file format and system linker (outside of DWARF
itself, and normal object/linker facilities such as simple relocations) are:

1. A means of referencing from inside one . debug_i nf o compilation unit to another
. debug_i nf o compilation unit (DW_FORM _ref_addr providesthis).

2. A means of having multiple contributions to specific sections (for example, . debug_i nf o,
and so on) in asingle object file.

3. A means of identifying a section group (giving it a name).

4. A means of identifying which sections go together to make up a section group, so that the
group can be treated as a unit (kept or discarded).

5. A means of indicating how each section group should be processed by the linker.

The notion of section and section contribution used here corresponds closely to the similarly
named concepts in the ELF object file representation. The notion of section group isan
abstraction of common extensions of the ELF representation widely known as“ COMDATS’ or

“ COMDAT sections’ . (Other object file representations provide COMDAT-style mechanisms as
well.) There are several variationsin the COMDAT schemes in common use, any of which
should be sufficient for the purposes of the DWARF duplicate elimination techniques described
here.

E.2 Naming and Usage Considerations

A precise description of the means of deriving names usable by the linker to access DWARF
entitiesis not part of this specification. Nonethel ess, an outline of a usable approach is given here
to make this more understandable and to guide implementors.

Implementations should clearly document their naming conventions.

Page 211 Draft 7 October 29, 2001

In the following, it will be helpful to refer to the examplesin Figure 66 through Figure 73 of
Section E.3.

E.2.1 Section Group Names

Section groups must have a section group name. For the subsequent C++ example, aname like
<producer - prefi x>. <fil e-desi gnat or >. <gi d- nunber >

will suffice, where

* <producer - prefi x> issome string specific to the producer, which has a language-

designation embedded in the name when appropriate. (Alternatively, the language name
could be embedded in the <gid-number>).

* <file-designator> namesthefile such aswa.h in the example.

* <gi d- nunber > isastring generated to identify the specific wa.h header file in such away
that

e a'matching' output from another compile generates the same <gid-number>, and
e anon-matching output (say because of #defines) generates a different <gid-number>.

It may be useful to think of a <gid-number> asa kind of “ digital signature” that allows a fast
test for the equality of two section groups.

So, for example, the section group corresponding to filewa. h above is given the name
nmy. conpi |l er. conpany. cpp. wa. h. 123456.

E.2.2 Debugging Information Entry Names

Global labels for debugging information entries (need explained below) within a section group
can be given names of the form

<prefix>. <file-designator>. <gi d- nunber >. <di e- nunber >
such as
nmy. conpi |l er. conpany. wa. h. 123456. 987

Page 212 Draft 7 October 29, 2001

where

» <prefix> distinguishes this as a DWARF debug info name, and should identify the producer
and, when appropriate, the language.

e <file-designator>and<gid- nunber > are as above.

* <di e- nunber > could be a number sequentially assigned to entities (tokens, perhaps) found
during compilation.

In general, every point in the section group . debug_i nf o that could be referenced from outside
by any compilation unit must normally have an external name generated for it in the linker
symbol table, whether the current compilation references all those points or not.

The completeness of the set of names generated is a quality of implementation issue.

It is up to the producer to ensure that if <die-numbers> in separate compilations would not match
properly then a distinct <gid-number> is generated.

Note that only section groups that are designated as duplicate-removal -applies actually require
the

<prefix> <file-designator>. <gi d- nunber >. <di e- nunber >

external labels for debugging information entries as all other section group sections can use
'local’ labels (section-relative relocations).

(Thisis aconsequence of separate compilation, not a rule imposed by this document).

Local labels use references with form DW_FORM ref4 or DW_FORM _ref8 (these are affected
by relocations so DW_FORM _ref _udata, DW_FORM _refl and DW_FORM _ref2 are normally
not usable and DW_FORM _ref _addr is not necessary for a local label).

E.2.3 Use of DW_TAG_compile_unit versus DW_TAG_patrtial_unit

A section group compilation unit that usesDW_TAG_compile_unit is like any other compilation
unit, in that its contents are evaluated by consumers as though it were an ordinary compilation
unit.

A #include directive appearing outside any other declarationsis a good candidate to be
represented using DW_TAG_compile_unit. However, a#include appearing inside a C++
namespace declaration or afunction, for example, is not because the entities included are not
necessarily file level entities.

Page 213 Draft 7 October 29, 2001

This also applies to Fortran INCLUDE lines when declarations are included into a procedure or
modul e context.

Conseguently a compiler must use DW_TAG_partial_unit (instead of DW_TAG_compile_unit)
in a section group whenever the section group contents are not necessarily globally visible. This
directs consumers to ignore that compilation unit when scanning top level declarations and
definitions.

The DW_TAG_partia_unit compilation unit will be referenced from elsewhere and the
referencing locations give the appropriate context for interpreting the partial compilation unit.

A DW_TAG_partia_unit may have, as appropriate, any of the attributes assigned to a
DW_TAG_compile_unit.

E.2.4 Use of DW_TAG_imported_unit

A DW_TAG_imported_unit debugging information entry has an DW_AT _import attribute
referencingaDW_TAG_compile _unit or DW_TAG_partial_unit debugging information entry.

A DW_TAG imported_unit debugging information entry referstoaDW_TAG_compile_unit or
DW_TAG_partial_unit debugging information entry to specify that the DW_TAG_compile_unit
or DW_TAG partial_unit contents logically appear at the point of the DW_TAG_imported_unit
entry.

E.2.5 Use of DW_FORM _ ref addr

Use DW_FORM ref addr to reference from one compilation unit's debugging information
entries to those of another compilation unit.

When referencing into a removable section group . debug_i nf o from another . debug_i nf o
(from anywhere), the

<prefix>. <fil e-designator>. <gid-nunber>. <di e- nunber >
name should be used for an external symbol and a rel ocation generated based on that name.
When referencing into a non-section group . debug_i nf o, fromanother . debug_i nf o (from
anywhere) DW_FORM _ref_addr is still the form to be used, but a section-relative relocation

generated by use of a non-exported name (often called an “ internal name”) may be used for
references within the same object file.

Page 214 Draft 7 October 29, 2001

E.3 Examples

This section provides several examplesin order to have a concrete basis for discussion.

In these exampl es, the focus is on the arrangement of DWARF information into sections
(specifically the . debug_i nf o section) and the naming conventions used to achieve references
into section groups. In practice, all of the examples that follow involve DWARF sections other
than just . debug_i nf o (for example, . debug_l i ne, . debug_ar anges, or others); however, only
the . debug_i nf o section is shown to keep the figures compact and easier to read.

The grouping of sectionsinto a named set is shown, but the means for achieving thisin terms of
the underlying object language is not (and varies from system to system).

E.3.1 C++ Example

The C++ source in Figure 66 is used to illustrate the DWARF representation intended to allow
duplicate elimination.

- File wa.h ----
struct A {
int i;
}s

- File wa.C ----
#i ncl ude "wa. h";
i nt
f(A &)
{

}

return a.i + 2;

Figure 66. Duplicate elimination example #1: C++ source

Page 215 Draft 7 October 29, 2001

Figure 67 shows the section group corresponding to the included file wa. h.

==== Section group name:
nmy. conpi | er. conpany. cpp. wa. h. 123456

== section .debug_info

DW cpp. wa. h. 123456. 1: I linker global synbol
DW TAG conpi l e_uni t
DW AT_I| anguage(DW LANG C pl us_pl us)
I other unit attributes
DW cpp. wa. h. 123456. 2: I linker global synbol
DW TAG base_type
DW AT _nane("int")

DW cpp. wa. h. 123456. 3: I l'inker global synbol
DW TAG structure_type
DW cpp. wa. h. 123456. 4: I linker global synbol

DW TAG nenber
DW AT _nane("i")
DW AT type(DWFORM refn to DW cpp. wa. h. 123456. 2)
I (This is a local reference, so the nore
I conpact form DWFORM refn can be used)

Figure 67. Duplicate elimination example #1: DWARF section group

Page 216 Draft 7 October 29, 2001

Figure 68 shows the “normal” DWARF sections, which are not part of any section group, and
how they make use of the information in the section group shown above.

== section .text
[generated code for function f]

== section .debug_info

DW TAG conpi l e_uni t
L1 I local (non-linker) symnbol
DW TAG ref erence_type
DW AT type(reference to DWcpp. wa. h. 123456. 3)
DW TAG subpr ogram
DW AT nane("f")
DW AT type(reference to DWcpp. wa. h. 123456. 2)
DW TAG vari abl e
DW AT _nane("a")
DW AT type(reference to .L1)

Figure 68. Duplicate elimination example #1: primary compilation unit

This example uses DW_TAG_compile_unit for the section group, implying that the contents of
the compilation unit are globally visible (in accordance with C++ language rules).
DW_TAG_partial_unit is not needed for the same reason.

Other than linker support for section groups as such, DWARF duplicate elimination for C++
requires only DWARF debugging information entries or attributes that are already defined in
DWARF Version 2.

Page 217 Draft 7 October 29, 2001

E.3.2 Fortran Example

For a Fortran example, consider Figure 69.

---- File CommonStuff.fh ----
| MPLI CI T | NTEGER(A- 2)
COMMON / Conmonl/ C(100)
PARAMETER(SEVEN = 7)

---- File Func.f ----
FUNCTI ON FOO (N)
| NCLUDE ' CommpnSt uff. fh'
FOO = C(N + SEVEN)

RETURN
END

Figure 69. Duplicate elimination example #2: Fortran source

Figure 70 shows the section group corresponding to the included file CormonSt uf f . f h.

Page 218 Draft 7 October 29, 2001

==== Section group nane:
nmy. f 90. conmpany. f 90. CommonSt uf f. f h. 654321
== section .debug_info

DW nyf 90. ConmonsSt uf f. f h. 654321. 1: ! l'inker global synbol
DW TAG partial _unit
I ...conpilation unit attributes, including...
DW AT_I| anguage(DW LANG Fort ran90)
DW AT identifier_case(DWID case_insensitive)

DW nyf 90. ConmonsSt uf f. f h. 654321. 2: I l'inker global synbol
3%: DW TAG array_type
I unnaned

DW AT type(reference to DWf90. FO0$mai n. f. 2)
I base type | NTEGER
DW TAG subrange_type
DW AT type(reference to DWf90. F90$nmi n. f. 2)
I base type | NTEGER)
DW AT _I| ower _bound(constant 1)
DW AT _upper _bound(const ant 100)

DW nyf 90. ConmonsSt uf f. f h. 654321. 3: I l'inker global synbol
DW TAG comon_bl ock

DW AT_nane(" Conmonl")

DW AT _| ocati on(Address of comon bl ock Commonl)

DW TAG vari abl e
DW AT _nane("C")
DW AT type(reference to 3%)
DW AT | ocati on(address of C)

DW nyf 90. ConmonsSt uf f. f h. 654321. 4: ! l'inker global synbol
DW TAG const ant
DW AT _nane(" SEVEN")
DW AT type(reference to DWf90. FO0$mai n. f. 2)
I base type | NTEGER
DW AT const _val ue(constant 7)

Figure 70. Duplicate elimination example #2: DWARF section group

Page 219 Draft 7 October 29, 2001

Figure 71 shows the sections for the primary compilation unit.

== section .text
[code for function Foo]

== section .debug_info

DW TAG conpi l e_uni t
DW TAG subpr ogram
DW AT_nane(" Foo")
DW AT type(reference to DWf90. F90$nmi n. f. 2)
| base type | NTEGER

DW TAG i nported_unit
DW AT i nport (reference to
DW nyf 90. CormonsSt uf f. f h. 654321. 1)
DW TAG common_i nclusion ! For Conmonl
DW AT _conmon_reference(reference to
DW nyf 90. CommonSt uf f. f h. 654321. 3)

DW TAG variable ! For function result
DW AT _nane(" Foo")

DW AT type(reference to DWf90. F90$nmi n. f. 2)
I base type | NTEGER

Figure 71. Duplicate elimination example #2: primary unit

A companion main program is shown in Figure 72.

---- File Main.f ----
| NCLUDE ' CommpnSt uff. fh'
C(50) = 8
PRINT *, 'Result = ', FOQ(50 - SEVEN)
END

Figure 72. Duplicate elimination example #2: companion sour ce

Page 220 Draft 7 October 29, 2001

That main program results in an object file that contained a duplicate of the section group named
my. f 90. company. f 90. ConmonSt uf f . f h. 654321 corresponding to the included file aswell as
the remainder of the main subprogram as shown in Figure 73.

== section .debug_info

DW TAG conpi l e_uni t
DW AT_nare(FO0$mai n)
DW TAG base_t ype
DW AT _nane("| NTEGER")
DW AT _encodi ng(DW ATE_si gned)
DW AT byte size(...)

DW TAG base_t ype

I ot her base types
DW TAG subpr ogram
DW AT_name(" FO0$mai n")
DW TAG i nported_unit
DW AT i nport (reference to
DW nyf 90. CommonsSt uf f. f h. 654321. 1)
DW TAG comon_i ncl usi on I for Commonl
DW AT_conmon_ref erence(reference to
DW nyf 90. CommonSt uf f. f h. 654321. 3)

Figure 73. Duplicate elimination example #2: companion DWARF

This example uses DW_TAG_partial_unit for the section group because the included
declarations are not independently visible as global entities.

E.3.3 C Example

The C++ example in Section E.3.1 might appear to be equally valid as a C example. However, it
is prudent to include aDW_TAG_imported_unit in the primary unit (see Figure 68) with an
DW_AT _import attribute that refersto the proper unit in the section group.

The C rules for consistency of global (file scope) symbols across compilations are less strict
than for C++; inclusion of the import unit attribute assures that the declarations of the proper
section group are considered before declarations from other compilations.

Page 221 Draft 7 October 29, 2001

E.4 Summary of Compression Techniques

E.4.1 #include compression

C++ has amuch greater problem than C with the number and size of the headers included and
the amount of datain each, but even with C there is substantial header file information
duplication.

A reasonable approach isto put each header file in its own section group, using the naming rules
mentioned above. The section groups are marked to ensure duplicate removal.

All data instances and code instances (even if they came from the header files above) are put into
non-section group sections such as the base object file. debug_i nf o section.

E.4.2 Eliminating function duplication

Function templates (C++) result in code for the same templ ate instantiation being compiled into
multiple archives or relocatabl e objects. The linker wants to keep only one of a given entity. The
DWAREF description, and everything else for this function, should be reduced to just asingle

copy.

For each such code group (function template in this example) the compiler assigns a name for the
group which will match all other instantiations of this function but match nothing else. The
second and subsequent definitions seen by the static linker are simply discarded.

Referencesto other . debug_i nf o sections follow the approach suggested above, but the naming
rule might be dightly different in that the <file-designator> should be interpreted as a <function-
designator>.

E.4.3 Single-function-per-DWARF-compilation-unit

Section groups can help make it easy for alinker to completely remove unused functions.

Such section groups are not marked for duplicate removal, since the functions are not duplicates
of anything.

Each function is given a compilation unit and a section group. Each such compilation unit is
complete, with its own text, data, and DWARF sections.

There will also be acompilation unit that has the file-level declarations and definitions. Other
per-function compilation unit DWARF information (. debug_i nf o) points to this common file-
level compilation unit using DW_TAG_imported_unit.

Page 222 Draft 7 October 29, 2001

Section groups can use DW_FORM _ref_addr and internal 1abels (section-relative rel ocations) to
refer to the main object file sections, as the section groups here are either deleted as unused or
kept. There isno possibility (aside from error) of a group from some other compilation being
used in place of one of these groups.

E.4.4 Inlining and out-of-line-instances

Abstract instances and concrete-out-of-line instances may be put in distinct compilation units
using section groups. This makes possible some useful duplicate DWARF elimination.

No special provision for eliminating class duplication resulting from template instantiation is
made here, though nothing prevents eliminating such duplicates using section groups.

Page 223 Draft 7 October 29, 2001

Page 224 Draft 7 October 29, 2001

| ndex

... parameters. See unspecified parameters entry
.data, 210
.debug_abbrev, 116, 118, 119, 153, 175, 210
exanpl e, 179
.debug_aranges, 85, 114, 116, 147, 153, 175, 210
.debug_frame, 104, 106, 114, 116, 153
exanpl e, 196
.debug_info, 5, 83, 84, 85, 86, 114, 116, 117, 118, 119,
120, 123, 146, 147, 153, 175, 210, 211, 213, 214, 215,
217, 219, 220, 221, 222
exanpl e, 179
.debug_line, 37, 86, 114, 116, 122, 153, 175, 210
.debug_loc, 24, 122, 153, 175
.debug_macinfo, 37, 99, 101, 122, 153, 175
.debug_pubnames, 84, 114, 116, 117, 146, 153, 175
.debug_pubtypes, 84, 114, 116, 117, 146, 153, 175
.debug_ranges, 31, 123, 153, 175
.debug_str, 116, 124, 153, 175
text, 210, 217, 220

3
32-bit DWARF format, 115

6
64-bit DWARF format, 115

A

abbreviationstable, 117, 119
dynamic formsin, 120
example, 179

abstract instance, 223
example, 200, 203, 206
nested, 53

abstract instance entry, 49

abstract instance root, 49

abstract instance tree, 49, 51

abstract origin attribute, 51, 52

accelerated access, 83
by address, 85
by name, 84

access declaration entry, 69

Index-1 Draft 7

accessibility attribute, 26, 68, 69, 70, 72
encoding, 141
activation, call frame, 102
Ada, 26, 36, 62, 63, 182, 187
address
dereference operator, 16, 17
implicit push for member pointer, 79
implicit push of base, 17, 23
address class, 12, 121
address class attribute, 28, 45, 63
encoding, 144
address range
inlocation list, 25
inrangelist, 32
address register
in call frame information, 103
in line number machine, 87
address space
flat, 28
multiple, 17
segmented, 27, 85, 118, 147
address, uplevel. See static link attribute
alias declaration. See imported declaration entry
alocated attribute, 80
anonymous object containing bitfield, 71
anonymous union, 57, 69
ARM instruction set architecture, 86
array
declaration of type, 64
descriptor for, 181
element ordering, 65
element type, 65
array type entry, 64
examples, 181
artificial attribute, 27
associated attribute, 80
attribute duplication, 6
attribute encodings, 120
attribute ordering, 6
attribute value classes, 11
attributes, 6
list of, 6

B

base address selection entry
inlocation list, 24, 25, 140
inrangelist, 31, 32, 152

October 29, 2001

base type entry, 61
base types attribute, 38
big endian byte order
effect of, 71
bit offset attribute, 61, 70
bit size attribute, 61, 70
block class, 12, 121
block entry. Seetry block entry. Seelexical block entry
builtin type. See base type entry
byte size attribute, 61, 65, 66, 70, 75, 76, 77, 79

C

C, 1,3, 29, 36, 45, 55, 57, 59, 61, 62, 63, 64, 65, 66, 67, 75,
77,98, 181, 182, 221, 222
C++, 1, 3, 26, 27, 30, 36, 40, 41, 42, 43, 47, 52, 54, 55, 56,
57, 58, 62, 63, 66, 67, 68, 69, 72, 75, 77, 78, 83, 84, 98,
206, 209, 212, 215, 217, 221, 222
call column attribute, 50
call file attribute, 50
call frame information
encoding, 150
examples, 195
cal line attribute, 50
calling convention attribute, 44
encoding, 144
case sensitivity, 38
catch block entry, 56
CIE. See common information entry
class template instantiation (entry), 72
classtype entry, 66
as class template instantiation, 72
classes of attribute value, 11. See also attribute encodings
column position of declaration, 30
COMDAT. See section group
common (block) reference attribute, 46
common block. See Fortran, common block
common block entry, 59
common information entry, 105
compilation directory attribute, 37
compilation unit, 35
for template instantiation, 73
header, 118
normal, 35
partial, 35
compression. See DWARF compression
concrete inline instance
example, 200, 203, 206
nested, 53
concrete inlined instance root, 50
concrete inlined instance tree, 50
concrete out-of-line instance, 52, 223
example, 203

Index-2 Draft 7

of inlined subprogram, 52
constant class, 12, 122
constant entry, 57
constant type entry, 63
constant value attribute, 59, 73, 75
containing type attribute, 78
contiguous address range, 31
count attribute, 77

default, 77

D

data location attribute, 80

data member. See member entry (data)

data member location attribute, 68, 70

debugging information entry, 5
globa namefor, 212
list of names, 5
ownership relation, 13

declaration attribute, 29, 40, 57, 67

declaration column attribute, 30

declaration coordinates, 29
in concrete instance, 51

declaration file attribute, 29

declaration line attribute, 29

default value attribute, 58

derived type (C++). See inheritance entry

description attribute, 34

descriptor, array, 181

DIE. See debugging information entry

discontiguous address ranges. See hon-contiguous address
ranges

discriminant (entry), 73

discriminant attribute, 73

discriminant list attribute, 74
encoding, 146

discriminant value attribute, 74

duplicate elimination. See DWARF duplicate elimination

DW_ACCESS private, 26, 141

DW_ACCESS protected, 26, 141

DW_ACCESS public, 26, 141

DW_ADDR far16, 28

DW_ADDR far32, 28

DW_ADDR hugel6, 28

DW_ADDR near16, 28

DW_ADDR near32, 28

DW_ADDR_none, 28, 144

DW_AT _abstract_origin, 6, 51, 52, 130, 156, 157, 159,
160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171,
172, 202, 205, 208

DW_AT_accessibility, 7, 26, 68, 69, 70, 72, 130, 141, 155,
156, 157, 158, 159, 160, 161, 162, 163, 166, 167, 168,
169, 170, 171, 172

October 29, 2001

DW_AT_address class, 7, 28, 45, 63, 130, 159, 164, 165,
168, 169, 172

DW_AT _allocated, 7, 33, 65, 80, 131, 156, 157, 158, 159,
160, 163, 164, 165, 166, 167, 169, 170, 171, 172, 184

DW_AT artificia, 7, 27, 54, 130, 160, 168, 171

DW_AT _associated, 7, 33, 65, 80, 132, 156, 157, 158, 159,
160, 163, 164, 165, 166, 167, 169, 170, 171, 172, 183

DW_AT_base types, 7, 38, 130, 158, 164

DW_AT_bit_offset, 7, 33, 61, 70, 129, 156, 162

DW_AT_bit_size, 7, 33, 61, 70, 129, 156, 162

DW_AT_byte size, 7, 33, 61, 65, 66, 70, 75, 76, 77, 79,
129, 156, 157, 159, 160, 162, 166, 167, 169, 180, 184,
221

DW_AT call_column, 7, 50, 132, 161

DW_AT cadll_file, 7, 50, 132, 161

DW_AT_call_line, 7, 50, 132, 161

DW_AT cadling_convention, 7, 44, 130, 144, 168

DW_AT_common_reference, 7, 46, 129, 157, 220, 221

DW_AT_comp_dir, 7, 37, 129, 158, 164, 180

DW_AT_const_value, 8, 59, 73, 75, 129, 158, 159, 170,
171, 202, 219

DW_AT_containing_type, 8, 78, 129, 165

DW_AT_count, 8, 33, 77, 130, 169

DW_AT_data location, 8, 65, 80, 132, 156, 157, 158, 159,
160, 163, 164, 165, 166, 167, 169, 170, 171, 172, 182,
183, 184, 185, 186, 187

DW_AT_data_ member_location, 8, 17, 68, 70, 130, 161,
162, 184, 189

DW_AT_decl_column, 8, 29, 30, 130, 155

DW_AT decl_file, 8, 29, 130, 155

DW_AT decl_line, 8,29, 131, 155

DW_AT_declaration, 8, 29, 40, 57, 67, 131, 156, 157, 158,
159, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172

DW_AT_default_value, 8, 58, 130, 160

DW_AT_description, 8, 34, 132, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171

DW_AT discr, 8, 73, 74, 129, 131, 146, 172

DW_AT discr_list, 8, 74, 131, 146, 172

DW_AT discr_value, 8, 74, 129, 172

DW_AT encoding, 8, 61, 131, 140, 156, 180, 221

DW_AT_entry_pc, 8, 27, 31, 33, 40, 45, 49, 50, 132, 161,
163, 168

DW_AT extension, 9, 40, 132, 163, 192

DW_AT external, 9, 44, 57, 131, 158, 168, 171

DW_AT_frame_base, 9, 15, 23, 46, 47, 131, 159, 168, 205,
207, 208

DW_AT friend, 9, 69, 131, 160, 171

DW_AT_hi_user, 132

DW_AT_high_pc, 9, 27, 30, 31, 36, 39, 45, 49, 50, 55, 56,
129, 156, 158, 161, 162, 163, 164, 168, 170, 172, 180,
191, 192, 202, 205, 207, 208

DW_AT identifier_case, 9, 38, 131, 144, 158, 164, 219

Index-3 Draft 7

DW_AT_import, 9, 41, 42, 129, 160, 161, 192, 214, 220,
221

DW_AT inline, 9, 48, 49, 130, 145, 168, 201, 203, 204,
207

DW_AT is optional, 9, 58, 130, 160

DW_AT_language, 9, 36, 65, 129, 158, 164, 180, 216, 219

DW_AT lo_user, 132

DW_AT _location, 9, 20, 30, 49, 56, 57, 59, 81, 129, 157,
158, 160, 171, 172, 185, 189, 191, 192, 202, 205, 207,
208, 219

DW_AT_low_pc, 9, 27, 30, 31, 33, 36, 39, 45, 49, 50, 55,
56, 129, 156, 158, 159, 161, 162, 163, 164, 168, 170,
172, 180, 191, 192, 202, 205, 207, 208

DW_AT_lower_bound, 9, 33, 77, 130, 169, 183, 184, 188,
189, 219

DW_AT_macro_info, 9, 37, 131, 158, 164

DW_AT_name, 9, 30, 34, 36, 38, 39, 40, 41, 43, 48, 52, 55,
57,59, 60, 61, 62, 63, 64, 66, 68, 69, 73, 74, 75, 76, 77,
78, 79, 84, 85, 129, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 180,
184, 185, 188, 189, 191, 192, 201, 204, 207, 216, 217,
219, 220, 221

DW_AT_namelist_item, 10, 60, 131, 163

DW_AT_ordering, 10, 65, 129, 145, 156

DW_AT priority, 10, 40, 131, 163

DW_AT _producer, 10, 37, 130, 158, 164, 180

DW_AT prototyped, 10, 45, 76, 130, 168, 169

DW_AT_ranges, 10, 27, 30, 31, 36, 39, 45, 49, 50, 55, 56,
132, 156, 158, 161, 162, 163, 164, 168, 170, 172

DW_AT _return_addr, 10, 46, 49, 130, 159, 161, 168

DW_AT_segment, 10, 27, 28, 45, 49, 58, 131, 156, 158,
159, 160, 161, 162, 163, 164, 168, 170, 171, 172

DW_AT_sibling, 10, 13, 129, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172

DW_AT_specification, 10, 40, 58, 67, 72, 131, 157, 167,
168, 171, 192

DW_AT_start_scope, 10, 49, 59, 61, 130, 156, 157, 158,
159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171

DW_AT_gtatic link, 10, 46, 47, 131, 159, 168, 202, 205,
207

DW_AT_stmt_list, 10, 37, 129, 158, 164, 180

DW_AT_stride, 10, 33, 65, 75, 78, 130, 132, 156, 159, 169,
186

DW_AT _stride_size, 10, 33, 65, 130, 156

DW_AT_string_length, 10, 76, 129, 166

DW_AT_trampoline, 10, 54, 132, 161, 168

DW_AT type, 11, 25, 45, 47, 48, 56, 58, 63, 64, 65, 68, 69,
73,75, 76, 77, 78, 79, 131, 156, 158, 159, 160, 161,
162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 180,
183, 184, 185, 188, 189, 191, 192, 201, 204, 207, 216,
217, 219, 220

DW_AT upper_bound, 11, 33, 77, 130, 169, 183, 184,

October 29, 2001

188, 189, 219
DW_AT_use location, 11, 78, 79, 131, 165
DW_AT _use UTFS§, 11, 39, 124, 132, 158, 164
DW_AT variable parameter, 11, 58, 131, 160
DW_AT virtuality, 11, 27, 69, 72, 131, 142, 161, 168
DW_AT visihility, 11, 26, 129, 142, 156, 157, 158, 159,
160, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172
DW_AT vtable elem_location, 11, 72, 131, 168
DW_ATE_address, 62, 140
DW_ATE_boolean, 62, 140
DW_ATE_complex_float, 62, 140
DW_ATE_float, 62, 140
DW_ATE_hi_user, 141
DW_ATE_imaginary_float, 62, 141
DW_ATE lo_user, 141
DW_ATE_signed, 61, 62, 140, 221
DW_ATE_signed_char, 62, 140
DW_ATE_unsigned, 62, 140, 141, 180
DW_ATE _unsigned_char, 62, 141, 180
DW_CC_hi_user, 144
DW_CC lo_user, 144
DW_CC_nocall, 44, 144
DW_CC_normal, 44, 144
DW_CC_program, 44, 144
DW_CFA_advance loc, 107, 111, 151, 198
DW_CFA_advance locl, 107, 151
DW_CFA_advance loc2, 108, 151
DW_CFA_advance loc4, 108, 151
DW_CFA_def cfa, 109, 110, 151, 152, 197, 198
DW_CFA_def_cfa expression, 109, 110, 151
DW_CFA_def cfa offset, 109, 151, 152, 198
DW_CFA_def _cfa offset_sf, 110, 152
DW_CFA_def_cfa register, 109, 151, 198
DW_CFA_def_cfa sf, 110, 152
DW_CFA_expression, 110, 152
DW_CFA_hi_user, 152
DW_CFA_lo_user, 152
DW_CFA_nop, 106, 107, 109, 151, 197, 198
DW_CFA_offset, 107, 151, 152, 198
DW_CFA_offset_extended, 108, 151, 152
DW_CFA_offset_extended_sf, 110, 152
DW_CFA _register, 108, 151, 197
DW_CFA_remember_state, 109, 151
DW_CFA _restore, 107, 151, 198
DW_CFA _restore_extended, 108, 151
DW_CFA _restore_state, 109, 151
DW_CFA_same value, 108, 151, 197
DW_CFA_set loc, 107, 111, 151
DW_CFA_undefined, 108, 151, 197
DW_CHILDREN_no, 119, 128, 180
DW_CHILDREN_yes, 119, 128, 180
DW_DSC _label, 74, 146
DW_DSC _range, 74, 146

Index-4 Draft 7

DW_FORM_addr, 121, 133, 140, 152, 180
DW_FORM_block, 109, 110, 121, 133
DW_FORM_block1, 121, 133
DW_FORM_block2, 121, 133
DW_FORM_block4, 121, 133
DW_FORM_datal, 122, 133, 180
DW_FORM_data2, 122, 133
DW_FORM_data4, 116, 120, 121, 122, 123, 133, 175, 180
DW_FORM_data8, 116, 120, 121, 122, 123, 133
DW_FORM_flag, 122, 133
DW_FORM_indirect, 120, 134, 180
DW_FORM _ref_addr, 20, 116, 123, 133, 211, 213, 214,
223
DW_FORM _ref_udata, 123, 134, 213
DW_FORM refl, 123, 133, 213
DW_FORM_ref2, 20, 123, 133, 213
DW_FORM_ref4, 20, 123, 133, 180, 213
DW_FORM_ref8, 123, 133, 213
DW_FORM_sdata, 121, 122, 133, 134, 135
DW_FORM _string, 124, 133, 180
DW_FORM _strp, 116, 120, 124, 133, 175
DW_FORM _udata, 121, 122, 133, 134
DW_ID_case_insensitive, 38, 144, 219
DW_ID_case_sensitive, 38, 144
DW_ID_down_case, 38, 144
DW_ID_up_case, 38, 144
DW_INL_declared_inlined, 49, 145, 201, 204, 207
DW_INL_declared_not_inlined, 49, 145
DW_INL _inlined, 49, 145
DW_INL_not_inlined, 49, 145
DW_LANG_Ada83, 36, 143
DW_LANG_Ada95, 36, 143
DW_LANG _C, 36, 143, 180
DW_LANG_C plus plus, 36, 143, 216
DW_LANG_C89, 36, 143, 180
DW_LANG_C99, 36, 143
DW_LANG_Cobol74, 36, 143
DW_LANG_Cobol85, 36, 143
DW_LANG_Fortran77, 36, 143
DW_LANG_Fortran90, 36, 143, 219
DW_LANG_Fortran95, 36, 143
DW_LANG hi_user, 143
DW_LANG Java, 36, 143
DW_LANG lo_user, 143
DW_LANG_Modula2, 37, 143
DW_LANG_Pascal83, 37, 143
DW_LANG PLI, 37,143
DW_LNE_define file, 92, 98, 149
DW_LNE_end_sequence, 97, 149, 194
DW_LNE_hi_user, 149
DW_LNE_lo_user, 149
DW_LNE_set_address, 98, 149
DW_LNS advance_line, 95, 148

October 29, 2001

DW_LNS advance pc, 95, 96, 148, 194
DW_LNS const_add pc, 96, 148
DW_LNS copy, 95, 148

DW_LNS fixed advance pc, 89, 96, 148, 194
DW_LNS hi_user omission, 113
DW_LNS lo_user omission, 113

DW_LNS negate stmt, 90, 95, 148
DW_LNS set_basic_hlock, 95, 148
DW_LNS set_column, 95, 148

DW_LNS set_epilog_begin, 97
DW_LNS set_epilogue _begin, 148
DW_LNS set_file, 95, 148

DW_LNS set_isa, 97, 148

DW_LNS set prologue_end, 96, 148
DW_MACINFO_define, 99, 101, 150
DW_MACINFO_end _file, 99, 100, 150
DW_MACINFO_start_file, 99, 100, 101, 150
DW_MACINFO_undef, 99, 101, 150
DW_MACINFO_vendor_ext, 99, 100, 150
DW_OP_abs, 17, 137

DW_OP_addr, 14, 23, 136
DW_OP_and, 18, 137, 183, 184
DW_ORP _bra, 20, 138

DW_OP_breg0, 15, 139
DW_OP_bregl, 15, 139
DW_OP_bregll, 23

DW_OP_breg31, 15, 139
DW_OP_bregx, 15, 24, 139
DW_OP_cal_ref, 20, 81, 109, 110, 139, 175
DW_OP_cal2, 20, 81, 109, 110, 139
DW_OP_cal4, 20, 81, 110, 139
DW_OP_constls, 14, 136
DW_OP_const1u, 14, 136
DW_OP_const2s, 14, 136
DW_OP_const2u, 14, 136
DW_OP_const4s, 15, 136
DW_OP_const4u, 14, 136
DW_OP_const8s, 15, 136
DW_OP_const8u, 15, 136
DW_OP_consts, 15, 136
DW_OP_constu, 15, 136
DW_OP_deref, 16, 24, 136, 183, 184, 189
DW_OP_deref_size, 16, 139
DW_OP_div, 18, 137

DW_OP_drop, 16, 21, 137
DW_OP_dup, 16, 21, 136

DW_OP_eq, 19, 138

DW_OP _fbreg, 15, 23, 139
DW_OP_ge, 19, 138

DW_OP_gt, 19, 138

DW_OP_hi_user, 139

DW_OP _le, 19, 138

DW_ORP _lit0, 14, 138

Index-5 Draft 7

DW_ORP _lit1, 14, 138, 183

DW_OP_lit2, 184

DW_OP _lit31, 14, 138

DW_OP_lo_user, 139

DW_ORP lt, 19, 138

DW_OP_minus, 18, 137

DW_OP_mod, 18, 137

DW_OP_mul, 18, 137

DW_OP_ne, 19, 137, 138, 189

DW_OP_neg, 18, 137, 189

DW_OP_nop, 21, 139

DW_OP_not, 18, 137

DW_OP _or, 18, 137

DW_OP _over, 16, 21, 137

DW_OP pick, 16, 21, 137

DW_OP_piece, 20, 24, 139

DW_OP_plus, 18, 137, 183, 184, 189

DW_OP_plus_uconst, 18, 24, 137

DW_OP_push_object_address, 17, 70, 80, 110, 139, 183,
184, 185, 186, 189

DW_OP _reg0, 22, 138

DW_OP regl, 22, 138

DW_OP regl0, 24

DW_OP reg3, 24

DW_OP _reg31, 22, 138

DW_OP_regx, 22, 23, 139

DW_OP _rot, 16, 21, 137

DW_OP_shl, 19, 137

DW_OP_shr, 19, 137, 138

DW_OP_shra, 19, 138

DW_OP_skip, 19, 138

DW_OP_swap, 16, 21, 137

DW_OP_xderef, 17, 137

DW_OP_xderef_size, 17, 139

DW_OP_xor, 19, 138

DW_ORD_col_major, 65, 145

DW_ORD_row_major, 65, 145

DW_TAG_access declaration, 5, 69, 126, 155

DW_TAG array type, 5, 64, 125, 156, 183, 184, 188, 189,
219

DW_TAG_base type, 5, 61, 64, 126, 156, 180, 216, 221

DW_TAG_catch_block, 5, 56, 126, 156

DW_TAG class type, 5, 66, 72, 125, 157

DW_TAG_common_block, 5, 59, 125, 157, 219

DW_TAG_common_inclusion, 5, 46, 126, 157, 220, 221

DW_TAG_compile _unit, 5, 35, 118, 125, 158, 180, 213,
214, 216, 217, 220, 221

DW_TAG_const_type, 5, 63, 64, 126, 158

DW_TAG_constant, 5, 57, 126, 158, 219

DW_TAG_dwarf_procedure, 5, 81, 127, 158

DW_TAG entry_point, 5, 43, 125, 159

DW_TAG_enumeration_type, 5, 65, 74, 125, 159

DW_TAG_enumerator, 5, 75, 126, 159

October 29, 2001

DW_TAG file type, 5, 79, 126, 160

DW_TAG_forma_parameter, 5, 56, 57, 76, 125, 160, 201,
202, 204, 205, 207, 208

DW_TAG friend, 5, 69, 126, 160

DW_TAG_hi_user, 113, 127

DW_TAG _imported_declaration, 5, 41, 125, 160, 192

DW_TAG_imported_module, 5, 42, 127, 161, 192

DW_TAG_imported_unit, 5, 39, 127, 161, 214, 220, 221,
222

DW_TAG inheritance, 5, 68, 126, 161

DW_TAG inlined_subroutine, 5, 43, 50, 51, 53, 54, 126,
161, 201, 202, 205, 208

DW_TAG interface type, 5, 68, 127, 161

DW_TAG labdl, 5, 55, 125, 162

DW_TAG lexica_block, 5, 55, 125, 162

DW_TAG_lo_user, 113, 127

DW_TAG_member, 5, 58, 69, 125, 162, 184, 188, 189, 216

DW_TAG_module, 6, 39, 126, 163

DW_TAG_mutable type, 6, 63, 127

DW_TAG_namedlist, 6, 60, 126, 163

DW_TAG_namelist_item, 6, 60, 126, 163

DW_TAG_namespace, 6, 40, 127, 163, 191, 192

DW_TAG_packed type, 6, 63, 126, 164

DW_TAG partia_unit, 6, 35, 127, 164, 214, 217, 219, 221

DW_TAG_pointer_type, 6, 63, 64, 125, 164, 180

DW_TAG_ptr_to_member_type, 6, 78, 126, 165

DW_TAG_reference_type, 6, 63, 125, 165, 217

DW_TAG restrict_type, 6, 63, 64, 127, 163, 165

DW_TAG_set_type, 6, 76, 126, 166

DW_TAG_string_type, 6, 76, 125, 166

DW_TAG_structure_type, 6, 66, 72, 125, 167, 184, 189,
216

DW_TAG_subprogram, 6, 43, 44, 48, 51, 54, 72, 126, 168,
191, 192, 201, 204, 205, 207, 208, 217, 220, 221

DW_TAG_subrange _type, 6, 65, 77, 126, 169, 183, 184,
188, 189, 219

DW_TAG_subroutine_type, 6, 75, 125, 169

DW_TAG_template type parameter, 6, 48, 73, 127, 169

DW_TAG_template value parameter, 6, 73, 127, 170

DW_TAG_thrown_type, 6, 47, 127, 170

DW_TAG_try_block, 6, 56, 127, 170

DW_TAG_typedef, 6, 64, 125, 170, 180

DW_TAG _union_type, 6, 66, 72, 125, 171

DW_TAG_unspecified_parameters, 6, 46, 56, 76, 125, 171

DW_TAG_unspecified_type, 6, 62, 127, 171

DW_TAG variable, 6, 51, 57, 64, 127, 171, 185, 188, 189,
191, 192, 201, 202, 204, 205, 207, 208, 217, 219, 220

DW_TAG variant, 6, 73, 125, 127, 172

DW_TAG variant_part, 6, 73, 127, 172

DW_TAG volatile type, 6, 63, 64, 127, 172

DW_TAG_with_stmt, 6, 56, 126, 172

DW_VIRTUALITY _none, 27, 142

DW_VIRTUALITY _pure virtua, 27, 142

Index-6 Draft 7

DW_VIRTUALITY _virtud, 27, 142
DW_VIS exported, 26, 142
DW_VIS_local, 26, 142
DW_VIS qudified, 26, 142
DWARF compression, 209
DWAREF duplicate elimination, 209
C example, 221
C++ example, 215
examples, 215
Fortran example, 218
DWARF expression, 13
arithmetic operations, 17
control flow operations, 19
examples, 21
literal encodings, 14
logical operations, 17
operator encodings, 136
register name operators, 22
special operations, 20
stack operations, 14
DWAREF procedure, 81
DWAREF procedure entry, 81
DWARF section names, list of, 153

E

encoding attribute, 61
encoding, 140
end of list entry
in location list, 25, 140
inrangelist, 31, 152
entry PC attribute, 27
and abstract instance, 49
for inlined subprogram, 50
for module initialization, 40
for subroutine, 45
entry point entry, 43
enumeration literal. See enumerator entry
enumeration type entry, 74
as array dimension, 65, 75
enumerator entry, 75
error value, 114
exception, thrown. See thrown type entry
extended type (Java). See inheritance entry
extensibility, 2
extension attribute, 40
extension, vendor specific, 113
external attribute, 44, 57

F

FDE. See frame description entry
file containing declaration, 29

October 29, 2001

file type entry, 79
flag class, 12, 122
formal parameter, 46
formal parameter entry, 57, 76
in catch block, 56
with default value, 58
formal type parameter. See template type parameter entry
Fortran, 1, 3, 36, 42, 43, 60, 76, 77, 80, 181
common block, 46, 59
main program, 44
module (Fortran 90), 40
use statement, 42, 43
frame base attribute, 46
frame description entry, 106
friend attribute, 69
friend entry, 69
function entry. See subroutine entry
fundamental type. See base type entry

G
global namespace. See namespace (C++), global

H

hidden indirection. See data location attribute
high PC attribute, 27, 30, 31, 36, 39, 45, 50, 55, 56
and abstract instance, 49

identifier case attribute, 38
encoding, 144
implementing type (Java). See inheritance entry
import attribute, 39, 41, 42
imported declaration entry, 41
imported module entry, 42
imported unit entry, 39
incomplete class/structure/union, 67
incomplete declaration, 29
inheritance entry, 68
initial length, 118
initia length field, 84, 85, 89, 105, 106
encoding, 114
inline attribute, 48, 49
encoding, 145
inlined subprogram call
examples, 199
inlined subprogram entry, 43, 50
in concrete instance, 51
interface type entry, 68
is optiona attribute, 58

Index-7 Draft 7

Java, 3, 36, 66, 67, 68

label entry, 55
language attribute, 36, 65
language name encoding, 142
LEB128
examples, 134
signed, decoding of, 178
signed, encoding as, 134, 177
unsigned, decoding of, 178
unsigned, encoding as, 134, 177
lexical block entry, 55
line number information. See also statement list attribute
line number of declaration, 29
line number opcodes
extended opcode encoding, 149
standard opcode encoding, 148
lineptr class, 12, 122
Little Endian Base 128. See LEB128
little endian byte order
effect of, 71
location attribute, 56, 57, 59, 81
and abstract instance, 49
location description, 22
location expression, 22, 23. See also DWARF expression
examples, 23
usein location list, 24
location list, 22, 24, 46, 122, 140, 175
loclistptr class, 12, 122
lookup
by address, 85
by name, 84
low PC attribute, 27, 30, 31, 36, 39, 45, 50, 55, 56
and abstract instance, 49
lower bound attribute, 77
default, 77

macinfo types, 99
encoding, 150
macptr class, 12, 122
macro formal parameter list, 99
macro information, 99
macro information attribute, 37
member entry (data), 69
asdiscriminant, 73
member function entry, 72
MIPS instruction set architecture, 86

October 29, 2001

Modula2, 1, 37, 40, 56
definition module, 40

module entry, 39

mutable type entry, 63

N

name attribute, 30, 34, 36, 38, 39, 40, 41, 43, 48, 52, 55, 57,
59, 60, 61, 62, 63, 64, 66, 68, 69, 73, 74, 75, 76, 77, 78,
79, 84

namelist entry, 60

namelist item attribute, 60

namelist item entry, 60

namespace (C++), 40
dias, 42
example, 190
global, 41
std, 41
unnamed, 41
using declaration, 42
using directive, 42

namespace declaration entry, 40

namespace extension entry, 40

nested abstract instance, 53

nested concrete inline instance, 53

non-contiguous address ranges, 31

non-defining declaration, 29

normal compilation unit, 35

O

optional parameter, 58
ordering attribute, 65
encoding, 145
out-of-line instance. See concrete out-of-line instance

P

packed type entry, 63

parameter. See macro formal parameter list. Seet hi s
parameter. See variable parameter attribute. See optional
parameter attribute. See unspecified parameters entry.
See template value parameter entry. See template type
parameter entry. See formal parameter entry

partial compilation unit, 35

Pascal, 1, 37, 56, 63, 66, 76, 79

pointer to member type entry, 78

pointer type entry, 63

priority attribute, 40

producer attribute, 37

prototyped attribute, 45, 76

Index-8 Draft 7

rangelist, 31, 152, 175

rangelistptr class, 12, 123

ranges attribute, 27, 31, 36, 39, 45, 50, 55, 56
and abstract instance, 49

reference class, 12, 123

reference type entry, 63

renamed declaration. Seeimported declaration entry

restricted type entry, 63

return address attribute, 46
and abstract instance, 49

return type of subroutine, 45

S

shyte, 83, 90, 154
section group, 210, 213, 215, 216, 218
name, 212
section length
in .debug_aranges header, 85
in .debug_pubnames header, 84
in .debug_pubtypes header, 84
use in headers, 116
section offset
alignment of, 153
in .debug_info header, 118
in .debug_pubnames header, 84
in .debug_pubnames offset/name pair, 84
in .debug_pubtypes header, 84
in .debug_pubtypes name/offset pair, 84
in class lineptr value, 122
in class loclistptr value, 122
in class macptr value, 122
in class rangdistptr value, 123
in class reference value, 123
in class string value, 124
in FDE header, 106
in macro information attribute, 37
in statement list attribute, 37
use in headers, 116
segment attribute, 27, 45
and abstract instance, 49
and data segment, 58
segmented addressing. See address space
set type entry, 76
sibling attribute, 13
specification attribute, 29, 58, 67, 72
start scope attribute, 59, 61
and abstract instance, 49
statement list attribute, 37
static link attribute, 47
stride attribute, 75, 78

October 29, 2001

stride size attribute, 65
string class, 12, 124
string length attribute, 76
string type entry, 76
structure type entry, 66
subprogram entry, 43
as member function, 72
use for template instantiation, 48
usein inlined subprogram, 48
subrange type entry, 77
as array dimension, 65
subroutine type entry, 75

T

tag, 5

tag names. See also debugging information entry
list of, 5

template instantiation, 48
and specia compilation unit, 73

template type parameter entry, 48, 73

template value parameter entry, 73

t hi s parameter, 27, 54

thrown exception. See thrown type entry

thrown type entry, 47

trampoline (subroutine) entry, 54

trampoline attribute, 54

try block entry, 56

type attribute, 25, 45, 47, 48, 56, 58, 63, 64, 65, 68, 69, 73,
75,76, 77,78, 79

type modifier entry. See volatile type entry. See reference
type entry. Seerestricted type entry. See pointer type
entry. See packed type entry. See constant type entry

typedef entry, 64

U

ubyte, 83, 85, 89, 90, 91, 92, 95, 105, 106, 107, 118, 154
uhalf, 83, 84, 85, 89, 96, 108, 118, 154

unallocated variable, 57

union type entry, 66

Index-9 Draft 7

unnamed namespace. See namespace (C++), unnamed
unspecified parameters attribute, 46
unspecified parameters entry, 76
in catch block, 56
unspecified type entry, 62
uplevel address. See static link attribute
upper bound attribute, 77
default, 77
use location attribute, 78
use statement. See Fortran, use statement. See Fortran, use
Statement
use UTF-8 attribute, 39. See dso UTF-8
using declaration. See namespace (C++), using declaration
using directive. See namespace (C++), using directive
UTF-8, 124
uword, 83, 108, 154

variable entry, 57
examples, 181
in concrete instance, 51
variable length data, 134. See also LEB128
variable parameter attribute, 58
variant entry, 73
variant part entry, 73
vendor extensibility, 2, 113
vendor extension, 206
vendor id, 113
virtuality attribute, 27, 69, 72
encoding, 142
visibility attribute, 26
encoding, 142
void type. See unspecified type entry
volatile type entry, 63
vtable element |ocation attribute, 72

w

with statement entry, 56

October 29, 2001

