DWARF Debugging I nformation For mat

UNIX International
Programming Languages SIG
Revision: 2.0.0 (July 27, 1993)

Industry Review Draft

Published by:

UNIX International
Waterview Corporate Center
20 Waterview Boulevard
Parsippany, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1 201-263-8400
Fax: +1 201-263-8401

Copyright 00 1992, 1993 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in al copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name UNIx International
not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission. UNIX International makes no representations about the suitability of this documentation
for any purpose. Itisprovided "asis' without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THISDOCUMENTATION.

NOTICE:

UNIX International is making this documentation available as areference point for the industry. While UNIx
International believes that this specification is well defined in this first release of the document, minor
changes may be made prior to products meeting this specification being made available from UNIx System
Laboratories or UNIX International members.

Trademarks:

Intel386 is atrademark of Intel Corporation.
UNixO is aregistered trademark of UNIx System Laboratories in the United States and other countries.

Industry Review Draft

Programming Languages SIG

FOREWORD

This document specifies the second generation of symbolic debugging information based on the
DWAREF format that has been developed by the UNIX International Programming Languages
Special Interest Group (SIG). It is being circulated for industry review. The first version of the
DWARF specification was published by UNIX International in January, 1992. The current
version adds significant new functionality, but its main thrust is to achieve a much denser
encoding of the DWARF information. Because of the new encoding, DWARF Version 2 is not
binary compatible with DWARF Version 1.

At this point, the SIG believes that this document sufficiently supports the debugging needs of C,
C++, FORTRAN 77, Fortran90, Modula2 and Pascal, and we have released it for public
comment. We will accept comments on this document until September 30, 1994. Comments
may be directed via email to the SIG mailing list (plsig@ui.org). If you are unable to send email,
paper mail, FAX, or machine readable copy on UNIX, MS-DOS, or Macintosh compatible media
can be sent to UNIX International at the address listed below, and will be forwarded to the SIG.

UNIX Internationa
Waterview Corporate Center
20 Waterview Boulevard
Parsippany, NJ 07054
Phone: +1 201-263-8400
Fax: +1201-263-8401

Revision: 2.0.0 Page 1 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 2 July 27,1993
Industry Review Draft

Programming Languages SIG

1. INTRODUCTION

This document defines the format for the information generated by compilers, assemblers and
linkage editors that is necessary for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. Instead, the goal isto
create a method of communicating an accurate picture of the source program to any debugger in a
form that is economically extensible to different languages while retaining backward
compatibility.

The design of the debugging information format is open-ended, allowing for the addition of new
debugging information to accommodate new languages or debugger capabilities while remaining
compatible with other languages or different debuggers.

1.1 Purpose and Scope

The debugging information format described in this document is designed to meet the symbolic,
source-level debugging needs of different languages in a unified fashion by requiring language
independent debugging information whenever possible. Individual needs, such as C++ virtua
functions or Fortran common blocks are accommodated by creating attributes that are used only
for those languages. The UNIX International Programming Languages SIG believes that this
document sufficiently covers the debugging information needs of C, C++, FORTRAN7Y7,
Fortran90, Modula2 and Pascal.

This document describes DWARF Version 2, the second generation of debugging information
based on the DWARF format. While DWARF Version 2 provides new debugging information
not available in Version 1, the primary focus of the changes for Version 2 is the representation of
the information, rather than the information content itself. The basic structure of the Version 2
format remains asin Version 1: the debugging information is represented as a series of debugging
information entries, each containing one or more attributes (name/value pairs). The Version 2
representation, however, is much more compact than the Version 1 representation. In some cases,
this greater density has been achieved at the expense of additional complexity or greater difficulty
in producing and processing the DWARF information. We believe that the reduction in 1/0 and
in memory paging should more than make up for any increase in processing time.

Because the representation of information has changed from Version 1 to Version 2, Version 2
DWAREF information is not binary compatible with Version 1 information. To make it easier for
consumers to support both Version 1 and Version 2 DWARF information, the Version 2
information has been moved to a different object file section, . debug_i nf o.

The intended audience for this document are the developers of both producers and consumers of
debugging information, typically language compilers, debuggers and other tools that need to
interpret a binary program in terms of its original source.

1.2 Overview

There are two major pieces to the description of the DWARF format in this document. The first
piece is the informational content of the debugging entries. The second piece is the way the
debugging information is encoded and represented in an object file.

The informational content is described in sections two through six. Section two describes the
overall structure of the information and attributes that are common to many or all of the different
debugging information entries. Sections three, four and five describe the specific debugging
information entries and how they communicate the necessary information about the source

Revision: 2.0.0 Page 3 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

program to a debugger. Section six describes debugging information contained outside of the
debugging information entries, themselves. The encoding of the DWARF information is
presented in section seven.

Section eight describes some future directions for the DWARF specification.

In the following sections, text in normal font describes required aspects of the DWARF format.
Text in italics is explanatory or supplementary material, and not part of the format definition
itself.

1.3 Vendor Extensibility

This document does not attempt to cover al interesting languages or even to cover al of the
interesting debugging information needs for its primary target languages (C, C++, FORTRAN77,
Fortran90, Modula2, Pascal). Therefore the document provides vendors a way to define their own
debugging information tags, attributes, base type encodings, location operations, language names,
calling conventions and call frame instructions by reserving a portion of the name space and valid
values for these constructs for vendor specific additions. Future versions of this document will
not use names or values reserved for vendor specific additions. All names and values not
reserved for vendor additions, however, are reserved for future versions of this document. See
section 7 for details.

1.4 Changesfrom Version 1

Thefollowing isalist of the major changes made to the DWARF Debugging Information Format
since Version 1 of the format was published (January 20, 1992). The list is not meant to be
exhaustive.

+ Debugging information entries have been moved from the . debug to the . debug_i nf o
section of an object file.

« Thetag, attribute names and attribute forms encodings have been moved out of the debugging
information itself to a separate abbreviations table.

« Explicit sibling pointers have been made optional. Each entry now specifies (through the
abbreviations table) whether or not it has children.

« New more compact attribute forms have been added, including a variable length constant data
form. Attribute values may now have any form within a given class of forms.

« Location descriptions have been replaced by a new, more compact and more expressive
format. There is now a way of expressing multiple locations for an object whose location
changes during its lifetime.

« There is a new format for line number information that provides information for code
contributed to a compilation unit from an included file. Line number information is now in
the. debug | i ne section of an object file.

« Therepresentation of the type of a declaration has been reworked.
+ A new section provides an encoding for pre-processor macro information.

« Debugging information entries now provide for the representation of non-defining
declarations of objects, functions or types.

« More complete support for Modula2 and Pascal has been added.

Revision: 2.0.0 Page 4 July 27,1993
Industry Review Draft

Programming Languages SIG

+ Thereisnow away of describing locations for segmented address spaces.
+ A new section provides an encoding for information about call frame activations.

« The representation of enumeration and array types has been reworked so that DWARF
presents only asingle way of representing lists of items.

+ Support has been added for C++ templates and exceptions.

Revision: 2.0.0 Page 5 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 6 July 27,1993
Industry Review Draft

Programming Languages SIG

2. GENERAL DESCRIPTION
2.1 The Debugging Information Entry

DWAREF uses a series of debugging information entries to define a low-level representation of a
source program. Each debugging information entry is described by an identifying tag and
contains a series of attributes. The tag specifies the class to which an entry belongs, and the
attributes define the specific characteristics of the entry.

The set of required tag names is listed in Figure 1. The debugging information entries they
identify are described in sections three, four and five.

The debugging information entries in DWARF Version 2 are intended to exist in the
. debug_i nf o section of an object file.

[DW TAG access_decl arati on DW TAG array_type O
LDW TAG base_type DW TAG cat ch_bl ock O
V TAG cl ass_type DW TAG comron_bl ock g
V TAG _common_i ncl usi on DW TAG conpi |l e_uni t 0
[PW TAG const _type DW TAG const ant 0
[(DW TAG ent ry_poi nt DW TAG enunerati on_t ype O
(DW TAG _enuner at or DW TAG file_type 0
CHbw TAG for mal _par anet er DW TAG fri end O
V TAG i nported _declaration DWTAG. inheritance B
V TAG i nl i ned_subroutine DW TAG | abel 0
(PW TAG | exi cal _bl ock DW TAG nenber O
[(DW TAG nodul e DW TAG nanel i st N
LDW TAG nanel i st _item DW TAG packed_t ype O
V TAG poi nter_type DW TAG ptr_to_nenber _type B
V TAG reference_type DW TAG set _type S
(DW TAG string_type DW TAG structure_type 0
[(DW TAG _subpr ogram DW TAG subrange_t ype O
[(DW TAG subrouti ne_type DW TAG t enpl at e_t ype_param 0
LW TAG tenpl ate_val ue_param DW TAG t hr own_t ype O
VTAG try_ bl ock DW TAG t ypedef B
V TAG uni on_type DW TAG unspeci fied_paranmeters
[DW TAG vari abl e DW TAG vari ant 0
[DW TAG vari ant _part DW TAG vol atil e_type O
FDW TAG wi t h_st nt H

Figurel. Tagnames
2.2 Attribute Types

Each attribute value is characterized by an attribute name. The set of attribute namesis listed in
Figure 2.

The permissible values for an attribute belong to one or more classes of attribute value forms.
Each form class may be represented in one or more ways. For instance, some attribute values
consist of a single piece of constant data. ‘‘Constant data’’ is the class of attribute value that
those attributes may have. There are severa representations of constant data, however (one, two,
four, eight bytes and variable length data). The particular representation for any given instance of
an attribute is encoded along with the attribute name as part of the information that guides the

Revision: 2.0.0 Page 7 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

[DW AT abstract _origin
[LDW AT address_cl ass

V AT base_types

VAT bit_size
PW AT_cal | i ng_conventi on
[(DW AT _conp_dir
[(DW AT _cont ai ni ng_t ype
Cbw AT dat a_nenber _| ocati on

VAT decl file

V AT _decl aration
(DW AT_di scr
[DW AT _di scr_val ue
[LDw AT _ext er nal

VAT friend
VAT identifier_case
(ODWAT_inline

[DW AT_| anguage
[(DW AT | ow_pc
[bW_AT_rracr o_info
VAT nanelist_item
VAT priority
DW AT _pr ot ot yped
[(DW AT_segnent
LDW AT speci fication
VAT static_link
VAT stride_size
PWAT_type
[DW AT use_ | ocati on
[(DW AT virtuality
HDW AT vt abl e_el em | ocati on

DW AT _accessibility
DWAT artificial
DWAT bit offset
DW AT byte_si ze

DW AT _conmmon_r ef er ence
DW AT _const _val ue
DW AT count

DW AT decl col um
DW AT decl line
DW AT defaul t _val ue
DW AT _di scr _|i st

DW AT _encodi ng

DW AT_frane_base
DW AT _hi gh_pc
DW AT i nport

DW AT is_optional
DW AT | ocati on

DW AT _| ower _bound
DW AT name

DW AT orderi ng

DW AT pr oducer

DW AT return_addr
DW AT _si bl i ng

DW AT _start_scope
DW AT stnt_|i st
DW AT string | ength
DW AT upper _bound
DW AT vari abl e_par anet er
DWAT visibility

I s e Y

Figure 2. Attribute names

interpretation of a debugging information entry. Attribute value forms may belong to one of the
following classes.

address Refers to some location in the address space of the described program.

block An arbitrary number of uninterpreted bytes of data.

constant One, two, four or eight bytes of uninterpreted data, or data encoded in the
variable length format known as LEB128 (see section 7.6).

flag A small constant that indicates the presence or absence of an attribute.

reference Refers to some member of the set of debugging information entries that
describe the program. There are two types of reference. The first is an
offset relative to the beginning of the compilation unit in which the
reference occurs and must refer to an entry within that same compilation
unit. The second type of reference is the address of any debugging
information entry within the same executable or shared object; it may refer
to an entry in a different compilation unit from the unit containing the

Revision: 2.0.0 Page 8 July 27, 1993

Industry Review Draft

Programming Languages SIG

reference.

string A null-terminated sequence of zero or more (non-null) bytes. Data in this
form are generaly printable strings. Strings may be represented directly in
the debugging information entry or as an offset in a separate string table.

There are no limitations on the ordering of attributes within a debugging information entry, but to
prevent ambiguity, no more than one attribute with a given name may appear in any debugging
information entry.

2.3 Rélationship of Debugging Information Entries

A variety of needs can be met by permitting a single debugging information entry to ‘‘own’’ an
arbitrary number of other debugging entries and by permitting the same debugging information
entry to be one of many owned by another debugging information entry. This makes it possible to
describe, for example, the static block structure within a source file, show the members of a
structure, union, or class, and associate declarations with source files or source files with shared
objects.

The ownership relation of debugging information entries is achieved naturaly because the
debugging information is represented as a tree. The nodes of the tree are the debugging
information entries themselves. The child entries of any node are exactly those debugging
information entries owned by that node.*

The tree itself is represented by flattening it in prefix order. Each debugging information entry is
defined either to have child entries or not to have child entries (see section 7.5.3). If an entry is
defined not to have children, the next physically succeeding entry is the sibling of the prior entry.
If an entry is defined to have children, the next physically succeeding entry is the first child of the
prior entry. Additional children of the parent entry are represented as siblings of the first child. A
chain of sibling entriesis terminated by a null entry.

In cases where a producer of debugging information fedls that it will be important for consumers
of that information to quickly scan chains of sibling entries, ignoring the children of individual
siblings, that producer may attach an AT_si bl i ng attribute to any debugging information entry.
The value of this attribute is a reference to the sibling entry of the entry to which the attribute is
attached.

2.4 Location Descriptions

The debugging information must provide consumers a way to find the location of program
variables, determine the bounds of dynamic arrays and strings and possibly to find the base
address of a subroutine's stack frame or the return address of a subroutine. Furthermore, to
meet the needs of recent computer architectures and optimization techniques, the debugging
information must be able to describe the location of an object whose location changes over the
object’slifetime.

1. While the ownership relation of the debugging information entries is represented as a tree, other relations among
the entries exist, for example, a pointer from an entry representing a variable to another entry representing the type
of that variable. If al such relations are taken into account, the debugging entries form a graph, not atree.

Revision: 2.0.0 Page 9 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Information about the location of program objects is provided by location descriptions. Location
descriptions can be either of two forms:

1. Location expressions which are a language independent representation of addressing rules
of arbitrary complexity built from a few basic building blocks, or operations. They are
sufficient for describing the location of any object as long as its lifetime is either static or
the same as the lexical block that ownsit, and it does not move throughout its lifetime.

2. Location lists which are used to describe objects that have a limited lifetime or change their
location throughout their lifetime. Location lists are more completely described below.

The two forms are distinguished in a context sensitive manner. As the value of an attribute, a
location expression is encoded as a block and a location list is encoded as a constant offset into a
location list table.

Note: The Version 1 concept of "location descriptions' was replaced in Version 2 with this new
abstraction because it is denser and more descriptive.

2.4.1 Location Expressions

A location expression consists of zero or more location operations. An expression with zero
operations is used to denote an object that is present in the source code but not present in the
object code (perhaps because of optimization). The location operations fall into two categories,
register names and addressing operations. Register names always appear alone and indicate that
the referred object is contained inside a particular register. Addressing operations are memory
address computation rules. All location operations are encoded as a stream of opcodes that are
each followed by zero or more literal operands. The number of operands is determined by the
opcode.

2.4.2 Register Name Operators
The following operations can be used to name aregister.

Note that the register number represents a DWARF specific mapping of numbers onto the actual
registers of a given architecture. The mapping should be chosen to gain optimal density and
should be shared by all users of a given architecture. The Programming Languages SG
recommends that this mapping be defined by the ABI? authoring committee for each architecture.

1. DWOP_reg0, DWOP _regl, .., DWOP _reg3l
The DW OP_r egn operations encode the names of up to 32 registers, numbered from 0
through 31, inclusive. The object addressed isin register n.

2. DW OP_regx
The DW_OP_r egx operation has a single unsigned LEB128 literal operand that encodes
the name of aregister.

2. System V Application Binary Interface, consisting of the generic interface and processor supplements for each
target architecture.

Revision: 2.0.0 Page 10 July 27,1993
Industry Review Draft

Programming Languages SIG

2.4.3 Addressing Operations

Each addressing operation represents a postfix operation on a simple stack machine. Each
element of the stack is the size of an address on the target machine. The value on the top of the
stack after ‘*executing’’ the location expression is taken to be the result (the address of the object,
or the value of the array bound, or the length of a dynamic string). In the case of locations used
for structure members, the computation assumes that the base address of the containing structure
has been pushed on the stack before evaluation of the addressing operation.

2.4.3.1 Literal Encodings

The following operations all push avalue onto the addressing stack.

1.

10.

11.

DWOP |itO, DWOP_lit1,..,DWOP_|it31
The DW . OP_I it n operations encode the unsigned literal values from O through 31,
inclusive.

DW OP_addr
The DW OP_addr operation has a single operand that encodes a machine address and
whose size is the size of an address on the target machine.

DW OP_const 1u
The single operand of the DW OP_const 1u operation provides a 1-byte unsigned integer
constant.

DW OP_const 1s
The single operand of the DW OP_const 1s operation provides a 1-byte signed integer
constant.

DW OP_const 2u
The single operand of the DW OP_const 2u operation provides a 2-byte unsigned integer
constant.

DW OP_const 2s
The single operand of the DW OP_const 2s operation provides a 2-byte signed integer
constant.

DW OP_const 4u
The single operand of the DW OP_const 4u operation provides a 4-byte unsigned integer
constant.

DW OP_const 4s
The single operand of the DW OP_const 4s operation provides a 4-byte signed integer
constant.

DW OP_const 8u
The single operand of the DW OP_const 8u operation provides an 8-byte unsigned
integer constant.

DW OP_const 8s
The single operand of the DW OP_const 8s operation provides an 8-byte signed integer
constant.

DW OP_constu
The single operand of the DW OP_const u operation provides an unsigned LEB128
integer constant.

Revision: 2.0.0 Page 11 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

12.

DW OP_const s
The single operand of the DW OP_const s operation provides a signed LEB128 integer
constant.

2.4.3.2 Register Based Addressing

The following operations push a value onto the stack that is the result of adding the contents of a
register with a given signed offset.

1

DW OP_f breg

The DW OP_f breg operation provides a signed LEB128 offset from the address
specified by the location descriptor in the DW AT _franme_base attribute of the current
function. (This is typically a "stack pointer" register plus or minus some offset. On more
sophisticated systems it might be a location list that adjusts the offset according to changes
in the stack pointer asthe PC changes.)

DW OP_br eg0, DW OP_bregl, .., DW OP_breg31l
The single operand of the DW OP_br egn operations provides a signed LEB128 offset
from the specified register.

DW OP_br egx
The DW OP_br egx operation has two operands. a signed LEB128 offset from the
specified register which is defined with an unsigned LEB128 number.

2.4.3.3 Stack Operations

The following operations manipulate the *‘location stack.”” Location operations that index the
location stack assume that the top of the stack (most recently added entry) hasindex O.

1. DWOP_dup
The DW_OP_dup operation duplicates the value at the top of the location stack.

2. DWOP _drop
The DW OP_dr op operation pops the value at the top of the stack.

3. DW.OP_pick
The single operand of the DW OP_pi ck operation provides a 1-byte index. The stack
entry with the specified index (0 through 255, inclusive) is pushed on the stack.

4. DW OP_over
The DW OP_over operation duplicates the entry currently second in the stack at the top of
the stack. Thisisequivalent to an DW OP_pi ck operation, with index 1.

5. DW. OP_swap
The DW _OP_swap operation swaps the top two stack entries. The entry at the top of the
stack becomes the second stack entry, and the second entry becomes the top of the stack.

6. DWOP_rot
The DW_OP_r ot operation rotates the first three stack entries. The entry at the top of the
stack becomes the third stack entry, the second entry becomes the top of the stack, and the
third entry becomes the second entry.

7. DW . OP_deref
The DW OP_der ef operation pops the top stack entry and treats it as an address. The
value retrieved from that address is pushed. The size of the data retrieved from the
dereferenced addressis the size of an address on the target machine.

Revision: 2.0.0 Page 12 July 27, 1993

Industry Review Draft

10.

Programming Languages SIG

DW OP_der ef _si ze

The DW OP_der ef _si ze operation behaves like the DW OP_der ef operation: it pops
the top stack entry and treats it as an address. The value retrieved from that address is
pushed. In the DW OP_der ef _si ze operation, however, the size in bytes of the data
retrieved from the dereferenced address is specified by the single operand. This operand is
a 1-byte unsigned integral constant whose value may not be larger than the size of an
address on the target machine. The dataretrieved is zero extended to the size of an address
on the target machine before being pushed on the expression stack.

DW OP_xder ef

The DW OP_xder ef operation provides an extended dereference mechanism. The entry
at the top of the stack is treated as an address. The second stack entry is treated as an
**address spaceidentifier’’ for those architectures that support multiple address spaces. The
top two stack elements are popped, a data item is retrieved through an implementation-
defined address calculation and pushed as the new stack top. The size of the data retrieved
from the dereferenced address is the size of an address on the target machine.

DW OP_xderef _size

The DW OP_xder ef _si ze operation behaves like the DW OP_xder ef operation: the
entry at the top of the stack is treated as an address. The second stack entry is treated as an
‘*address spaceidentifier’’ for those architectures that support multiple address spaces. The
top two stack elements are popped, a data item is retrieved through an implementation-
defined address calculation and pushed as the new stack top. In the
DW OP_xder ef _si ze operation, however, the size in bytes of the data retrieved from
the dereferenced address is specified by the single operand. This operand is a 1-byte
unsigned integral constant whose value may not be larger than the size of an address on the
target machine. The dataretrieved is zero extended to the size of an address on the target
machine before being pushed on the expression stack.

2.4.3.4 Arithmetic and Logical Operations

The following provide arithmetic and logical operations. The arithmetic operations perform
‘*addressing arithmetic,’”’ that is, unsigned arithmetic that wraps on an address-sized boundary.
The operations do not cause an exception on overflow.

1. DWOP_abs
The DW_OP_abs operation pops the top stack entry and pushes its absolute value.

2. DWOP_and
The DW OP_and operation pops the top two stack values, performs a bitwise and
operation on the two, and pushes the result.

3. DWOP_div
The DW_OP_di v operation pops the top two stack values, divides the former second entry
by the former top of the stack using signed division, and pushes the resuilt.

4. DW . OP_nmi nus
The DW_OP_mi nus operation pops the top two stack values, subtracts the former top of
the stack from the former second entry, and pushes the resuilt.

5. DW.COP_nod
The DW OP_nod operation pops the top two stack values and pushes the result of the
calculation: former second stack entry modulo the former top of the stack.

Revision: 2.0.0 Page 13 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

10.

11.

12.

13.

14.

15.

DW OP_nul
The DW OP_nul operation pops the top two stack entries, multiplies them together, and
pushes the resuilt.

DW OP_neg
The DW OP_neg operation pops the top stack entry, and pushes its negation.

DW OP_not
The DW OP_not operation pops the top stack entry, and pushes its bitwise complement.

DW OP_or
The DW OP_or operation pops the top two stack entries, performs a bitwise or operation
on the two, and pushes the result.

DW OP_pl us
The DW OP_pl us operation pops the top two stack entries, adds them together, and
pushes the resuilt.

DW OP_pl us_uconst

The DW OP_pl us_uconst operation pops the top stack entry, adds it to the unsigned
LEB128 constant operand and pushes the result. This operation is supplied specifically to
be able to encode more field offsets in two bytes than can be done with "DW OP_l i tn
DW OP_add".

DW OP_shl
The DW OP_shl operation pops the top two stack entries, shifts the former second entry
left by the number of bits specified by the former top of the stack, and pushes the result.

DW OP_shr

The DW OP_shr operation pops the top two stack entries, shifts the former second entry
right (logically) by the number of bits specified by the former top of the stack, and pushes
the result.

DW OP_shra

The DW_OP_shr a operation pops the top two stack entries, shifts the former second entry
right (arithmetically) by the number of bits specified by the former top of the stack, and
pushes the resuilt.

DW OP_xor
The DW OP_xor operation pops the top two stack entries, performs the logical exclusive-
or operation on the two, and pushes the result.

2.4.3.5 Control Flow Operations

The following operations provide simple control of the flow of alocation expression.

1.

Relational operators

The six relational operators each pops the top two stack values, compares the former top of
the stack with the former second entry, and pushes the constant value 1 onto the stack if the
result of the operation is true or the constant value O if the result of the operation is false.
The comparisons are done as signed operations. The six operators are DW OP_| e (less
than or equal to), DW OP_ge (greater than or equal to), DW OP_eq (equal to), DW OP_I t

(lessthan), DW OP_gt (greater than) and DW OP_ne (not equal to).

Revision: 2.0.0 Page 14 July 27, 1993

Industry Review Draft

2.

Programming Languages SIG

DW OP_ski p

DW OP_ski p is an unconditional branch. Its single operand is a 2-byte signed integer
constant. The 2-byte constant is the number of bytes of the location expression to skip
from the current operation, beginning after the 2-byte constant.

DW OP_bra

DW OP_br a isaconditional branch. Itssingle operand is a 2-byte signed integer constant.
This operation pops the top of stack. If the value popped is not the constant O, the 2-byte
constant operand is the number of bytes of the location expression to skip from the current
operation, beginning after the 2-byte constant.

2.4.3.6 Special Operations

There are two special operations currently defined:

1

DW OP_pi ece

Many compilers store a single variable in sets of registers, or store a variable partially in
memory and partially in registers. DW OP_pi ece provides a way of describing how large
a part of a variable a particular addressing expression refers to.

DW OP_pi ece takes a single argument which is an unsigned LEB128 number. The
number describes the size in bytes of the piece of the object referenced by the addressing
expression whose result is at the top of the stack.

DW OP_nop
The DW OP_nop operation is a place holder. It has no effect on the location stack or any
of itsvalues.

2.4.4 Sample Stack Operations

The stack operations defined in section 2.4.3.3 are fairly conventional, but the following
examplesillustrate their behavior graphically.

Revision: 2.0.0 Page 15 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

0 Before Operation After O
E 0 17 DW OP_dup 0 17 E
o 1 29 1 17 0
o 2 1000 2 29 0
O 3 1000 O
U o 17 DW OP_dr op 0 29 U
01 29 1 1000 7
o 2 1000 O
O 0 17 DW OP_pi ck 2 0 1000 O
U 1 29 1 17 g
B 2 1000 2 29 B
- 3 1000 §
o o0 17 DW OP_over 0 29 O
0 1 29 1 17 0
B 2 1000 2 29 B
0 3 1000 -
0 o 17 DW OP_swap 0 29 0
O 1 29 1 17 O
0 2 1000 2 1000 O
o o 17 DW OP_r ot 0 29 S
o1 29 1 1000 [
g 2 1000 2 17 g

2.4.5 Example Location Expressions

The addressing expression represented by a location expression, if evaluated, generates the
runtime address of the value of a symbol except where the DW OP_r egn, or DW OP_r egx
operations are used.

Here are some examples of how location operations are used to form location expressions:

Revision: 2.0.0

Page 16
Industry Review Draft

July 27, 1993

Programming Languages SIG

DW OP_reg3
Thevalueisin register 3.

DW OP_regx 54
Thevalueisin register 54.

DW OP_addr 0x80d0045c
The value of a static variableis
at machine address 0x80d0045c.

DW OP_bregll 44
Add 44 to the value in
register 11 to get the address of an
automatic variable instance.

DW OP_fbreg -50
Givenan DW AT _f r ane_base value of
"OPBREG31 64," thisexample
computes the address of a local variable
that is-50 bytes fromalogical frame
pointer that is computed by adding
64 to the current stack pointer (register 31).

DW OP_bregx 54 32 DW OP_deref
A call-by-reference parameter
whose addressisin the
word 32 bytes from where register
54 points.

DW OP_pl us_uconst 4
A structure member is four bytes
fromthe start of the structure
instance. The base addressis
assumed to be already on the stack.

DW OP_reg3 DWOP_piece 4 DWOP _regl0 DWOP_piece 2
A variable whose first four bytes reside
inregister 3 and whose next two bytes
residein register 10.

2.4.6 Location Lists

Location lists are used in place of location expressions whenever the object whose location is
being described can change location during its lifetime. Location lists are contained in a separate
object file section called . debug_| oc. A location list is indicated by a location attribute
whose value is represented as a constant offset from the beginning of the . debug_| oc section
to the first byte of the list for the object in question.

Each entry in alocation list consists of:

Revision: 2.0.0 Page 17 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

1. A beginning address. This address is relative to the base address of the compilation unit
referencing this location list. 1t marks the beginning of the address range over which the
location is valid.

2. An ending address, again relative to the base address of the compilation unit referencing
this location list. 1t marks the first address past the end of the address range over which the
location isvalid.

3. A location expression describing the location of the object over the range specified by the
beginning and end addresses.

Address ranges may overlap. When they do, they describe a situation in which an object exists
simultaneously in more than one place. If all of the address ranges in a given location list do not
collectively cover the entire range over which the object in question is defined, it is assumed that
the object is not available for the portion of the range that is not covered.

The end of any given location list is marked by a 0 for the beginning address and a O for the end
address; no location description is present. A location list containing only such a 0 entry
describes an aobject that exists in the source code but not in the executable program.

2.5 Typesof Declarations

Any debugging information entry describing a declaration that has a type has a DW AT _t ype
atribute, whose value is a reference to another debugging information entry. The entry
referenced may describe a base type, that is, atype that is not defined in terms of other data types,
or it may describe a user-defined type, such as an array, structure or enumeration. Alternatively,
the entry referenced may describe a type modifier: constant, packed, pointer, reference or volatile,
which in turn will reference another entry describing a type or type modifier (using a
DW AT _t ype attribute of its own). See section 5 for descriptions of the entries describing base
types, user-defined types and type modifiers.

2.6 Accessibility of Declarations

Some languages, notably C++ and Ada, have the concept of the accessihility of an object or of
some other program entity. The accessibility specifies which classes of other program objects are
permitted access to the object in question.

The accessibility of adeclaration is represented by aDW AT _accessi bi | i ty attribute, whose
value is aconstant drawn from the set of codes listed in Figure 3.

[DW ACCESS publ i c H
[DW ACCESS private U
How ACCESS_pr ot ect ed [

Figure 3. Accessibility codes

2.7 Visibility of Declarations

Modula2 has the concept of the visibility of a declaration. The visibility specifies which
declarations are to be visible outside of the module in which they are declared.

The visibility of a declaration is represented by a DW AT _vi si bi | i ty attribute, whose value
is aconstant drawn from the set of codes listed in Figure 4.

Revision: 2.0.0 Page 18 July 27,1993
Industry Review Draft

Programming Languages SIG

[(DW VI S | ocal O
[(DW WIS exported U
HI)V\/_VI S qualified %
Figure4. Visbility codes

2.8 Virtuality of Declarations

C++ provides for virtual and pure virtual structure or class member functions and for virtual
base classes.

The virtuality of a declaration is represented by a DW AT_vi rtual i ty attribute, whose value
is aconstant drawn from the set of codes listed in Figure 5.

[DW VI RTUALI TY_none
CDW VI RTUALI TY_vi rt ual
HPW VI RTUALI TY_pur e_vi rt ual

Figure5. Virtuality codes

[

2.9 Artificial Entries

A compiler may wish to generate debugging information entries for objects or types that were not
actually declared in the source of the application. An example is a formal parameter entry to
represent the hidden t hi s parameter that most C++ implementations pass as the first argument
to non-static member functions.

Any debugging information entry representing the declaration of an object or type artificially
generated by a compiler and not explicitly declared by the source program may have a
DW AT artificial attribute. Thevalue of thisattributeisaflag.

2.10 Target-Specific Addressing Information

In some systems, addresses are specified as offsets within a given segment rather than as
locations within a single flat address space.

Any debugging information entry that contains a description of the location of an object or
subroutine may have a DW AT_segnent attribute, whose value is a location description. The
description evaluates to the segment value of the item being described. If the entry containing the
DW AT segnent attribute has a DW AT | ow pc or DW AT _hi gh_pc attribute, or a
location description that evaluates to an address, then those values represent the offset portion of
the address within the segment specified by DW AT_segnent .

If an entry hasno DW AT_segnent attribute, it inherits the segment value from its parent entry.
If none of the entries in the chain of parents for this entry back to its containing compilation unit
entry have DW AT_segnent attributes, then the entry is assumed to exist within a flat address
space. Similarly, if the entry has a DW AT_segmrent attribute containing an empty location
description, that entry is assumed to exist within aflat address space.

Some systems support different classes of addresses. The address class may affect the way a
pointer is dereferenced or the way a subroutineis called.

Any debugging information entry representing a pointer or reference type or a subroutine or
subroutine type may have aDW AT _addr ess_cl ass attribute, whose valueisa constant. The
set of permissible values is specific to each target architecture. The vaue DW ADDR_none,
however, is common to all encodings, and means that no address class has been specified.

Revision: 2.0.0 Page 19 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

For example, the Intel 3860 processor might use the following values:

[(Name Vaue Meaning
V ADDR_none 0 no class specified
V ADDR nearl1l6 1 16-hit offset, no segment
PW ADDR f ar 16 2 16-hit offset, 16-bit segment
[DW ADDR _hugel6 3 16-bit offset, 16-hit segment
4
5

[(DW ADDR near 32 32-bit offset, no segment
HDW ADDR_f ar 32 32-bit offset, 16-bit segment

Figure 6. Example address class codes

I i

2.11 Non-Defining Declarations

A debugging information entry representing a program object or type typically represents the
defining declaration of that object or type. In certain contexts, however, a debugger might need
information about a declaration of a subroutine, object or type that is not also a definition to
evaluate an expression correctly.

As an example, consider the following fragment of C code:

voi d myfunc()

i nt X
{

extern float x;
g(x);

}

ANSI-C scoping rules require that the value of the variable x passed to the function g is the value
of the global variable x rather than of the local version.

Debugging information entries that represent non-defining declarations of a program object or
type have a DW AT_decl ar at i on attribute, whose valueis aflag.

2.12 Declaration Coordinates

It is sometimes useful in a debugger to be able to associate a declaration with its occurrence in
the program source.

Any debugging information entry representing the declaration of an object, module, subprogram
or type may have DW AT _decl _fil e, DWAT decl _line and DW AT_decl _col um
attributes, each of whose value is a constant.

The value of the DW AT _decl _fi | e attribute corresponds to a file number from the statement
information table for the compilation unit containing this debugging information entry and
represents the source file in which the declaration appeared (see section 6.2). The value 0
indicates that no source file has been specified.

The value of the DW AT _decl _I i ne attribute represents the source line number at which the
first character of the identifier of the declared object appears. The value 0 indicates that no source
line has been specified.

The value of the DW AT _decl _col um attribute represents the source column number at
which thefirst character of the identifier of the declared object appears. The value O indicates that

Revision: 2.0.0 Page 20 July 27,1993
Industry Review Draft

Programming Languages SIG

no column has been specified.
2.13 ldentifier Names

Any debugging information entry representing a program entity that has been given a name may
have a DW AT _nane attribute, whose value is a string representing the name as it appears in the
source program. A debugging information entry containing no name attribute, or containing a
name attribute whose value consists of a name containing a single null byte, represents a program
entity for which no name was given in the source.

Note that since the names of program objects described by DWARF are the names as they appear
in the source program, implementations of language trandators that use some form of mangled
name (as do many implementations of C++) should use the unmangled form of the name in the
DWARF DW AT _name attribute, including the keyword oper at or, if present. Sequences of
multiple whitespace characters may be compressed.

Revision: 2.0.0 Page 21 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 22 July 27,1993
Industry Review Draft

Programming Languages SIG

3. PROGRAM SCOPE ENTRIES

This section describes debugging information entries that relate to different levels of program
scope: compilation unit, module, subprogram, and so on. These entries may be thought of as
bounded by ranges of text addresses within the program.

3.1 Compilation Unit Entries

An object file may be derived from one or more compilation units. Each such compilation unit
will be described by a debugging information entry with the tag DW TAG _conpi | e_uni t.

A compilation unit typically represents the text and data contributed to an executable by a single
relocatable object file. It may be derived from several source files, including pre-processed
“‘includefiles.””

The compilation unit entry may have the following attributes:

1. A DWAT_| ow _pc attribute whose value is the relocated address of the first machine
instruction generated for that compilation unit.
2. A DW AT_hi gh_pc attribute whose value is the relocated address of the first location
past the last machine instruction generated for that compilation unit.
The address may be beyond the last valid instruction in the executable, of course, for this
and other similar attributes.
The presence of low and high pc attributes in a compilation unit entry imply that the code
generated for that compilation unit is contiguous and exists totally within the boundaries
specified by those two attributes. If that is not the case, no low and high pc attributes
should be produced.
3. A DW AT nane attribute whose value is a null-terminated string containing the full or
relative path name of the primary source file from which the compilation unit was derived.
4., A DW AT | anguage attribute whose constant value is a code indicating the source
language of the compilation unit. The set of language names and their meanings are given
in Figure 7.
[(DW LANG C Non-ANSI C, such asK&R [
[DW LANG C89 ISO/ANSI C 0
VLANG C plus_plus C++ B
V LANG Fortran77 FORTRANT77 0
PW_LANG_Fortran90 Fortran90 H
[DW LANG_Modul a2 Modula2 O
HDW LANG Pascal 83 ISO/ANSI Pascal H
Figure 7. Language hames
5. ADWAT stm |ist attribute whose value is areference to line number information for
this compilation unit.
This information is placed in a separate object file section from the debugging information
entries themselves. The value of the statement list attribute is the offset in the
. debug_I i ne section of thefirst byte of the line number information for this compilation
unit. See section 6.2.
Revision: 2.0.0 Page 23 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

6.

10.

A DW AT_macr o_i nf o attribute whose value is a reference to the macro information for
this compilation unit.

Thisinformation is placed in a separate object file section from the debugging information
entries themselves. The value of the macro information attribute is the offset in the
. debug_nmci nf o section of the first byte of the macro information for this compilation
unit. See section 6.3.

A DW AT _conp_di r attribute whose value is a null-terminated string containing the
current working directory of the compilation command that produced this compilation unit
in whatever form makes sense for the host system.

The suggested form for the value of the DW AT _conp_di r attribute on UNIX systems is
‘“hostname: pathname’’. If no hostname is available, the suggested formis*‘‘: pathname'’.

A DW AT producer attribute whose value is a null-terminated string containing
information about the compiler that produced the compilation unit. The actual contents of
the string will be specific to each producer, but should begin with the name of the compiler
vendor or some other identifying character sequence that should avoid confusion with other
producer values.

A DW AT identifier_case attribute whose constant value is a code describing the
treatment of identifiers within this compilation unit. The set of identifier case codes is
givenin Figure 8.

[DW I D case_sensitive
LDW I D up_case
V1 D down_case
V1D case_insensitive
Figure 8. Identifier case codes

U
O
0
O
2

DWI D _case_sensi tive isthe default for al compilation units that do not have this
attribute. It indicates that names given as the values of DW AT _nane attributes in
debugging information entries for the compilation unit reflect the names as they appear in
the source program. The debugger should be sensitive to the case of identifier names when
doing identifier lookups.

DWI D _up_case means that the producer of the debugging information for this
compilation unit converted al source names to upper case. The values of the name
attributes may not reflect the names as they appear in the source program. The debugger
should convert al names to upper case when doing lookups.

DW. | D_down_case means that the producer of the debugging information for this
compilation unit converted all source names to lower case. The values of the name
attributes may not reflect the names as they appear in the source program. The debugger
should convert al namesto lower case when doing lookups.

DW I D case_insensitive means that the values of the name attributes reflect the
names as they appear in the source program but that a case insensitive lookup should be
used to access those names.

A DW AT base_t ypes attribute whose value is a reference. This attribute points to a
debugging information entry representing another compilation unit. It may be used to
specify the compilation unit containing the base type entries used by entries in the current

Revision: 2.0.0 Page 24 July 27, 1993

Industry Review Draft

Programming Languages SIG

compilation unit (see section 5.1).

This attribute provides a consumer a way to find the definition of base types for a
compilation unit that does not itself contain such definitions. This allows a consumer, for
example, to interpret a type conversion to a base type correctly.

A compilation unit entry owns debugging information entries that represent the declarations made
in the corresponding compilation unit.

3.2 ModuleEntries
Several languages have the concept of a ** module.”

A module is represented by a debugging information entry with the tag DW TAG nodul e.
Module entries may own other debugging information entries describing program entities whose
declaration scopes end at the end of the module itself.

If the module has a name, the module entry has a DW AT_nane attribute whose value is a null-
terminated string containing the module name as it appears in the source program.

If the module contains initialization code, the module entry has a DW AT | ow_pc attribute
whose value is the relocated address of the first machine instruction generated for that
initialization code. It also hasa DW AT _hi gh_pc attribute whose value is the relocated address
of the first location past the last machine instruction generated for the initialization code.

If the module has been assigned a priority, it may have a DW AT priority attribute. The
value of this attribute is a reference to another debugging information entry describing a variable
with a constant value. The value of this variable is the actual constant value of the module's
priority, represented as it would be on the target architecture.

A Modula2 definition module may be represented by a module entry containing a
DW AT decl ar at i on attribute.

3.3 Subroutine and Entry Point Entries

The following tags exist to describe debugging information entries for subroutines and entry
points:

DW TAG_subpr ogram A global or file static subroutine or function.

DW TAG i nl i ned_subr out i ne A particular inlined instance of a subroutine or function.
DW TAG entry_poi nt A Fortran entry point.

3.3.1 General Subroutine and Entry Point I nfor mation

The subroutine or entry point entry has a DW AT_name attribute whose value is a null-
terminated string containing the subroutine or entry point name as it appears in the source
program.

If the name of the subroutine described by an entry with the tag DW TAG_subpr ogr amis
visible outside of its containing compilation unit, that entry has a DW AT_ext er nal attribute,
whose valueis aflag.

Additional attributes for functions that are members of a class or structure are described in
section 5.5.5.

Revision: 2.0.0 Page 25 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

A common debugger feature is to allow the debugger user to call a subroutine within the subject
program. In certain cases, however, the generated code for a subroutine will not obey the
standard calling conventions for the target architecture and will therefore not be safe to call from
within a debugger.

A subroutine entry may contain aDW AT _cal | i ng_convent i on attribute, whose value is a
constant. If this attribute is not present, or its value is the constant DW _CC_nor nal , then the
subroutine may be safely called by obeying the *‘standard’’ calling conventions of the target
architecture. If the value of the calling convention attribute is the constant DW CC_nocal | , the
subroutine does not obey standard calling conventions, and it may not be safe for the debugger to
call this subroutine.

If the semantics of the language of the compilation unit containing the subroutine entry
distinguishes between ordinary subroutines and subroutines that can serve as the ‘‘main
program,’’ that is, subroutines that cannot be called directly following the ordinary calling
conventions, then the debugging information entry for such a subroutine may have a calling
convention attribute whose value is the constant DW CC_pr ogr am

The DW CC_pr ogr amvalue is intended to support Fortran main programs. It is not intended
as a way of finding the entry address for the program.

3.3.2 Subroutineand Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then its debugging information
entry hasa DW AT _t ype attribute to denote the type returned by that function.

Debugging information entries for C voi d functions should not have an attribute for the return
type.

In ANS-C there is a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have a
DW AT _pr ot ot yped attribute, whose value is aflag.

3.3.3 Subroutineand Entry Point L ocations

A subroutine entry has a DW AT_| ow_pc attribute whose value is the relocated address of the
first machine instruction generated for the subroutine. It also has a DW AT _hi gh_pc attribute
whose value is the relocated address of the first location past the last machine instruction
generated for the subroutine.

Note that for the low and high pc attributes to have meaning, DWARF makes the assumption that
the code for a single subroutine is allocated in a single contiguous block of memory.

An entry point has a DW AT _| ow_pc attribute whose value is the relocated address of the first
machine instruction generated for the entry point.

Subroutines and entry points may also have DW AT_segnent and DW AT_addr ess_cl ass
attributes, as appropriate, to specify which segments the code for the subroutine resides in and the
addressing mode to be used in calling that subroutine.

A subroutine entry representing a subroutine declaration that is not also a definition does not have
low and high pc attributes.

Revision: 2.0.0 Page 26 July 27,1993
Industry Review Draft

Programming Languages SIG

3.3.4 Declarations Owned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point are represented by debugging
information entries that are owned by the subroutine or entry point entry. Entries representing the
formal parameters of the subroutine or entry point appear in the same order as the corresponding
declarations in the source program.

There is no ordering requirement on entries for declarations that are children of subroutine or
entry point entries but that do not represent formal parameters. The formal parameter entries
may be inter spersed with other entries used by formal parameter entries, such as type entries.

The unspecified parameters of a variable parameter list are represented by a debugging
information entry with thetag DW TAG unspeci fi ed_par anet er s.

The entry for a subroutine or entry point that includes a Fortran common block has a child entry
with the tag DW TAG common_i ncl usi on. The common inclusion entry has a
DW AT _comon_r ef er ence attribute whose value is a reference to the debugging entry for
the common block being included (see section 4.2).

3.3.5 Low-Level Information

A subroutine or entry point entry may have aDW AT_r et ur n_addr attribute, whose value is a
location description. The location calculated is the place where the return address for the
subroutine or entry point is stored.

A subroutine or entry point entry may also have aDW AT _frane_base attribute, whose value
isalocation description that computes the *‘frame base’’ for the subroutine or entry point.

The frame base for a procedure is typically an address fixed relative to the first unit of storage
allocated for the procedure’s stack frame. The DW AT _f r ane_base attribute can be used in
several ways:

1. Inprocedures that need location lists to locate local variables, the DW AT f rame_base
can hold the needed location list, while all variables location descriptions can be simpler
location expressions involving the frame base.

2. It can be used as a key in resolving "up-level" addressing with nested routines. (See
DW AT static_Ilink,below)

Some languages support nested subroutines. In such languages, it is possible to reference the
local variables of an outer subroutine from within an inner subroutine. The
DW AT static_I|ink and DW AT_frane_base attributes allow debuggers to support this
same kind of referencing.

If a subroutine or entry point is nested, it may have a DW AT_st ati c_I i nk attribute, whose
value is a location description that computes the frame base of the relevant instance of the
subroutine that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the DW AT _f r ane_base attribute value should
obey the following constraints:

1. It should compute avalue that does not change during the life of the procedure, and

2. The computed value should be unique among instances of the same subroutine. (For
typica DW AT franme_base use, this means that a recursive subroutine's stack frame
must have non-zero size.)

Revision: 2.0.0 Page 27 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

If a debugger is attempting to resolve an up-level reference to a variable, it uses the nesting
structure of DWARF to determine which subroutine is the lexical parent and the
DW AT static_I i nk valueto identify the appropriate active frame of the parent. It can then
attempt to find the reference within the context of the parent.

3.3.6 Types Thrown by Exceptions

In C++ a subroutine may declare a set of types for which that subroutine may generate or
“‘throw’’ an exception.

If asubroutine explicitly declares that it may throw an exception for one or more types, each such
type is represented by a debugging information entry with the tag DW TAG t hr own_t ype.
Each such entry is a child of the entry representing the subroutine that may throw this type. All
thrown type entries should follow all entries representing the formal parameters of the subroutine
and precede al entries representing the local variables or lexical blocks contained in the
subroutine. Each thrown type entry contains a DW AT _t ype attribute, whose value is a
reference to an entry describing the type of the exception that may be thrown.

3.3.7 Function Template I nstantiations

In C++ a function template is a generic definition of a function that is instantiated differently
when called with values of different types. DWARF does not represent the generic template
definition, but does represent each instantiation.

A template instantiation is represented by a debugging information entry with the tag
DW TAG subpr ogram With three exceptions, such an entry will contain the same attributes
and have the same types of child entries as would an entry for a subroutine defined explicitly
using the instantiation types. The exceptions are:

1. Each forma parameterized type declaration appearing in the template definition is
represented by a debugging information entry with the tag
DW TAG tenpl ate_type_paraneter. Each such entry has a DW AT nane
attribute, whose value is a null-terminated string containing the name of the formal type
parameter asit appears in the source program. The template type parameter entry also has a
DW AT _t ype attribute describing the actua type by which the formal is replaced for this
instantiation. All template type parameter entries should appear before the entries
describing the instantiated formal parameters to the function.

2. If the compiler has generated a special compilation unit to hold the template instantiation
and that compilation unit has a different name from the compilation unit containing the
template definition, the name attribute for the debugging entry representing that
compilation unit should be empty or omitted.

3. If the subprogram entry representing the template instantiation or any of its child entries
contain declaration coordinate attributes, those attributes should refer to the source for the
template definition, not to any source generated artificially by the compiler for this
instantiation.

3.3.8 Inline Subroutines

A declaration or a definition of an inlinable subroutine is represented by a debugging information
entry with the tag DW TAG _subpr ogr am The entry for a subroutine that is explicitly declared
to be available for inline expansion or that was expanded inline implicitly by the compiler has a
DW AT i nl i ne attribute whose value is a constant. The set of values for the DW AT i nl i ne

Revision: 2.0.0 Page 28 July 27,1993
Industry Review Draft

Programming Languages SIG

[(Name Meaning O
VINL not _inlined Not declared inline nor inlined by the compiler U
VINL_inlined Not declared inline but inlined by the compiler 5

PW. I NL_decl ared_not _i nl i ned Declared inline but not inlined by the compiler

FDW I NL_decl ared_i nli ned Declared inline and inlined by the compiler H

Figure9. Inline codes
attribute is given in Figure 9.
3.3.8.1 Abstract I nstances

For the remainder of this discussion, any debugging information entry that is owned (either
directly or indirectly) by a debugging information entry that contains the DW AT i nl i ne
attribute will be referred to as an *‘ abstract instance entry.’”” Any subroutine entry that contains a
DW AT i nl i ne attribute will be known as an ‘*abstract instance root.”” Any set of abstract
instance entries that are all children (either directly or indirectly) of some abstract instance root,
together with the root itself, will be known as an ‘* abstract instance tree.’”’

A debugging information entry that is a member of an abstract instance tree should not contain a
DW AT high_pc, DWAT |Iow pc, DWAT |location, DWAT return_addr,
DW AT st art_scope, or DW AT_segnent attribute.

It would not make sense to put these attributes into abstract instance entries since such entries do
not represent actual (concrete) instances and thus do not actually exist at run-time.

The rules for the relative location of entries belonging to abstract instance trees are exactly the
same as for other similar types of entries that are not abstract. Specificaly, the rule that requires
that an entry representing a declaration be a direct child of the entry representing the scope of the
declaration applies equally to both abstract and non-abstract entries. Also, the ordering rules for
forma parameter entries, member entries, and so on, all apply regardiess of whether or not a
given entry is abstract.

3.3.8.2 Concrete Inlined Instances

Each inline expansion of an inlinable subroutine is represented by a debugging information entry
with thetag DW TAG i nl i ned_subr out i ne. Each such entry should be adirect child of the
entry that represents the scope within which the inlining occurs.

Each inlined subroutine entry contains a DW AT | ow_pc attribute, representing the address of
the first instruction associated with the given inline expansion. Each inlined subroutine entry
also contains a DW AT _hi gh_pc attribute, representing the address of the first location past the
last instruction associated with the inline expansion.

For the remainder of this discussion, any debugging information entry that is owned (either
directly or indirectly) by a debugging information entry with the tag
DW TAG i nl i ned_subr out i ne will be referred to as a ‘‘ concrete inlined instance entry.’”’
Any entry that has the tag DW TAG i nl i ned_subr out i ne will be known as a *‘concrete
inlined instance root.”” Any set of concrete inlined instance entries that are al children (either
directly or indirectly) of some concrete inlined instance root, together with the root itself, will be
known asa‘‘concrete inlined instance tree.”’

Each concrete inlined instance tree is uniquely associated with one (and only one) abstract
instancetree.

Revision: 2.0.0 Page 29 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Note, however, that the reverse is not true. Any given abstract instance tree may be associated
with several different concrete inlined instance trees, or may even be associated with zero
concrete inlined instance trees.

Also, each separate entry within a given concrete inlined instance tree is uniquely associated with
one particular entry in the associated abstract instance tree. In other words, there is a one-to-one
mapping from entries in a given concrete inlined instance tree to the entries in the associated
abstract instance tree.

Note, however, that the reverseis not true. A given abstract instance tree that is associated with
a given concrete inlined instance tree may (and quite probably will) contain more entries than the
associated concrete inlined instance tree (see below).

Concrete inlined instance entries do not have most of the attributes (except for DW AT _| ow_pc,
DW AT _hi gh_pc, DW AT _| ocati on, DW AT return_addr, DWAT_start_scope
and DW AT_segnent) that such entries would otherwise normally have. In place of these
omitted attributes, each concrete inlined instance entry has a DW AT _abstract _origin
attribute that may be used to obtain the missing information (indirectly) from the associated
abstract instance entry. The value of the abstract origin attribute is a reference to the associated
abstract instance entry.

For each pair of entries that are associated via a DW AT_abstract _ori gi n attribute, both
members of the pair will have the same tag. So, for example, an entry with the tag
DW TAG | ocal _vari abl e can only be associated with another entry that also has the tag
DW TAG | ocal _vari abl e. The only exception to this rule is that the root of a concrete
instance tree (which must always have the tag DW TAG i nl i ned_subr out i ne) can only be
associated with the root of its associated abstract instance tree (which must have the tag
DW TAG_subpr ogr am.

In general, the structure and content of any given concrete instance tree will be directly analogous
to the structure and content of its associated abstract instance tree. There are two exceptions to
this general rule however.

1. No entries representing anonymous types are ever made a part of any concrete instance
inlined tree.

2. No entries representing members of structure, union or class types are ever made a part of
any concrete inlined instance tree.

Entries that represent members and anonymous types are omitted from concrete inlined instance
trees because they would ssimply be redundant duplicates of the corresponding entries in the
associated abstract instance trees. If any entry within a concrete inlined instance tree needs to
refer to an anonymous type that was declared within the scope of the relevant inline function, the
reference should simply refer to the abstract instance entry for the given anonymous type.

If an entry within a concrete inlined instance tree contains attributes describing the declaration
coordinates of that entry, then those attributes should refer to the file, line and column of the
original declaration of the subroutine, not to the point at which it was inlined.

3.3.8.3 Out-of-Linelnstances of Inline Subroutines

Under some conditions, compilers may need to generate concrete executable instances of inline
subroutines other than at points where those subroutines are actually called. For the remainder of
this discussion, such concrete instances of inline subroutines will be referred to as ‘‘ concrete out-

Revision: 2.0.0 Page 30 July 27,1993
Industry Review Draft

Programming Languages SIG

of-lineinstances.”’

In C++, for example, taking the address of a function declared to be inline can necessitate the
generation of a concrete out-of-line instance of the given function.

The DWARF representation of a concrete out-of-line instance of an inline subroutine is
essentially the same as for a concrete inlined instance of that subroutine (as described in the
preceding section). The representation of such a concrete out-of-line instance makes use of
DW AT abstract _ori gi n attributes in exactly the same way as they are used for a concrete
inlined instance (that is, as references to corresponding entries within the associated abstract
instance tree) and, as for concrete instance trees, the entries for anonymous types and for all
members are omitted.

The differences between the DWARF representation of a concrete out-of-line instance of a given
subroutine and the representation of a concrete inlined instance of that same subroutine are as
follows:

1. Theroot entry for a concrete out-of-line instance of a given inline subroutine has the same
tag as does its associated (abstract) inline subroutine entry (that is, it does not have the tag
DW TAG i nl i ned_subrouti ne).

2. Theroot entry for a concrete out-of-line instance tree is always directly owned by the same
parent entry that also owns the root entry of the associated abstract instance.

3.4 Lexical Block Entries

A lexical block is a bracketed sequence of source statements that may contain any number of
declarations. In some languages (C and C++) blocks can be nested within other blocks to any
depth.

A lexica block is represented by a debugging information entry with the tag
DW TAG | exi cal _bl ock.

The lexical block entry has a DW AT _| ow_pc attribute whose value is the relocated address of
the first machine instruction generated for the lexical block. The lexical block entry also has a
DW AT _hi gh_pc attribute whose value is the rel ocated address of the first location past the last
machine instruction generated for the lexical block.

If a name has been given to the lexical block in the source program, then the corresponding
lexical block entry has a DW AT _nane attribute whose value is a null-terminated string
containing the name of the lexical block asit appears in the source program.

Thisisnot the sameasa C or C++ label (see below).

The lexical block entry owns debugging information entries that describe the declarations within
that lexical block. Thereis one such debugging information entry for each local declaration of an
identifier or inner lexical block.

3.5 Labd Entries

A label is a way of identifying a source statement. A labeled statement is usually the target of
oneor more‘‘goto’’ statements.

A label is represented by a debugging information entry with the tag DW TAG | abel . The
entry for a label should be owned by the debugging information entry representing the scope
within which the name of the label could be legally referenced within the source program.

Revision: 2.0.0 Page 31 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

The label entry has a DW AT _| ow_pc attribute whose value is the relocated address of the first
machine instruction generated for the statement identified by the label in the source program. The
label entry also has a DW AT _nane attribute whose value is a null-terminated string containing
the name of the label asit appears in the source program.

3.6 With Statement Entries

Both Pascal and Modula support the concept of a “*with’’ statement. The with statement specifies
a sequence of executable statements within which the fields of a record variable may be
referenced, unqualified by the name of the record variable.

A with statement is represented by a debugging information entry with the tag
DW TAG wi th_stmt. A with statement entry hasa DW AT _| ow_pc attribute whose value is
the relocated address of the first machine instruction generated for the body of the with statement.
A with statement entry also has a DW AT_hi gh_pc attribute whose value is the relocated
address of the first location after the last machine instruction generated for the body of the
Statement.

The with statement entry has a DW AT _t ype attribute, denoting the type of record whose fields
may be referenced without full qualification within the body of the statement. It aso has a
DW AT | ocati on attribute, describing how to find the base address of the record object
referenced within the body of the with statement.

3.7 Try and Catch Block Entries

In C++ alexical block may be designated as a ‘‘catch block.”” A catch block is an exception
handler that handles exceptions thrown by an immediately preceding ‘‘try block.”” A catch block
designates the type of the exception that it can handle.

A try block is represented by a debugging information entry with the tag DW TAG t ry_bl ock.
A caich block is represented by a debugging information entry with the tag
DW TAG cat ch_bl ock. Both try and catch block entries contain aDW AT _| ow_pc attribute
whose value is the relocated address of the first machine instruction generated for that block.
These entries also contain a DW AT _hi gh_pc attribute whose value is the relocated address of
thefirst location past the last machine instruction generated for that block.

Catch block entries have at least one child entry, an entry representing the type of exception
accepted by that catch block. This child entry will have one of the tags
DW TAG formal _paraneter or DW TAG unspeci fi ed_paranet ers, and will have
the same form as other parameter entries.

Thefirst sibling of each try block entry will be a catch block entry.

Revision: 2.0.0 Page 32 July 27,1993
Industry Review Draft

Programming Languages SIG

4. DATA OBJECT AND OBJECT LIST ENTRIES

This section presents the debugging information entries that describe individual data objects:
variables, parameters and constants, and lists of those objects that may be grouped in a single
declaration, such as a common block.

4.1 Data Object Entries

Program variables, forma parameters and constants are represented by debugging information
entries with the tags DWTAG variable, DWTAG fornal _paraneter and
DW TAG const ant , respectively.

The tag DW TAG const ant is used for languages that distinguish between variables that may
have constant value and true named constants.

The debugging information entry for a program variable, formal parameter or constant may have
the following attributes:

1. A DWAT nane attribute whose value is a null-terminated string containing the data
object name as it appears in the source program.

If a variable entry describes a C++ anonymous union, the name attribute is omitted or
consists of asingle zero byte.

2. If the name of a variable is visible outside of its enclosing compilation unit, the variable
entry hasaDW AT _ext er nal attribute, whose valueis aflag.

The definitions of C++ static data members of structures or classes are represented by
variable entries flagged as external. Both file static and local variablesin C and C++ are
represented by non-external variable entries.

3. A DWAT_Il ocati on attribute, whose value describes the location of a variable or
parameter at run-time.

A data object entry representing a non-defining declaration of the object will not have a
location attribute, and will have the DW AT _decl ar at i on attribute.

In a variable entry representing the definition of the variable (that is, with no
DW AT _decl ar ati on attribute) if no location attribute is present, or if the location
attribute is present but describes a null entry (as described in section 2.4), the variable is
assumed to exist in the source code but not in the executable program (but see number 9,
below).

The location of a variable may be further specified with a DW AT_segnent attribute, if
appropriate.

4. A DW AT t ype attribute describing the type of the variable, constant or formal parameter.

If the variable entry represents the defining declaration for a C++ static data member of a
structure, class or union, the entry hasa DW AT_speci fi cat i on attribute, whose value
is a reference to the debugging information entry representing the declaration of this data
member. The referenced entry will be a child of some class, structure or union type entry.

Variable entries containing the DW AT _speci fi cati on attribute do not need to
duplicate information provided by the declaration entry referenced by the specification
attribute. In particular, such variable entries do not need to contain attributes for the name
or type of the data member whose definition they represent.

Revision: 2.0.0 Page 33 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

6.

10.

Some languages distinguish between parameters whose value in the calling function can be
modified by the callee (variable parameters), and parameters whose value in the calling
function cannot be modified by the callee (constant parameters).

If aformal parameter entry represents a parameter whose value in the calling function may
be modified by the callee, that entry may have a DW AT vari abl e_par anet er
attribute, whose value is a flag. The absence of this attribute implies that the parameter’s
value in the calling function cannot be modified by the callee.

Fortran90 has the concept of an optional parameter.

If a parameter entry represents an optional parameter, it has a DW AT i s_opti onal
attribute, whose value is aflag.

A formal parameter entry describing aformal parameter that has a default value may have a
DW AT def aul t _val ue atribute. The value of this attribute is a reference to the
debugging information entry for a variable or subroutine. The default value of the
parameter is the value of the variable (which may be constant) or the value returned by the
subroutine. If the value of the DW AT _def aul t _val ue attribute is 0, it means that no
default value has been specified.

An entry describing a variable whose value is constant and not represented by an object in
the address space of the program, or an entry describing a named constant, does not have a
location attribute. Such entrieshaveaDW AT_const _val ue attribute, whose value may
be a string or any of the constant data or data block forms, as appropriate for the
representation of the variable’s value. The value of this attribute is the actual constant
value of the variable, represented as it would be on the target architecture.

If the scope of an object begins sometime after the low pc value for the scope most closely
enclosing the object, the object entry may have a DW AT_st art _scope attribute. The
value of this attribute is the offset in bytes of the beginning of the scope for the object from
the low pc value of the debugging information entry that defines its scope.

The scope of a variable may begin somewhere in the middle of a lexical block in a
language that allows executable code in a block before a variable declaration, or where
one declaration containing initialization code may change the scope of a subsequent
declaration. For example, in the following C code:

float x = 99.99;

int myfunc()

{
float f

fl oat Xx

X;
88. 99;

return O;

}

ANSI-C scoping rules require that the value of the variable x assigned to the variable f in
the initialization sequence is the value of the global variable x, rather than the local X,
because the scope of the local variable x only starts after the full declarator for the local
X.

Revision: 2.0.0 Page 34 July 27, 1993

Industry Review Draft

Programming Languages SIG

4.2 Common Block Entries

A Fortran common block may be described by a debugging information entry with the tag
DW TAG conmon_bl ock. The common block entry has a DW AT _nane attribute whose
value is a null-terminated string containing the common block name as it appears in the source
program. It also has a DW AT | ocat i on attribute whose value describes the location of the
beginning of the common block. The common block entry owns debugging information entries
describing the variables contained within the common block.

4.3 Imported Declaration Entries

Some languages support the concept of importing into a given module declarations made in a
different module.

An imported declaration is represented by a debugging information entry with the tag
DW TAG i nported_decl arati on. The entry for the imported declaration has a
DW AT nane attribute whose value is a null-terminated string containing the name of the entity
whose declaration is being imported as it appears in the source program. The imported
declaration entry also has a DW AT i nport attribute, whose value is a reference to the
debugging information entry representing the declaration that is being imported.

4.4 Namdlist Entries

At least one language, Fortran90, has the concept of a namelist. A namelist is an ordered list of
the names of some set of declared objects. The namelist object itself may be used as a
replacement for the list of names in various contexts.

A namelist is represented by a debugging information entry with the tag DW TAG_nanel i st .
If the namelit itself has a name, the namelist entry has a DW AT _nane attribute, whose valueis
anull-terminated string containing the namelist’ s name as it appears in the source program.

Each name that is part of the namelist is represented by a debugging information entry with the
tag DW TAG nanel i st _i t em Each such entry is achild of the namelist entry, and all of the
namelist item entries for a given namelist are ordered as were the list of names they correspond to
in the source program.

Each namelist item entry contains a DW AT_narmel i st _i t em attribute whose value is a
reference to the debugging information entry representing the declaration of the item whose name
appears in the namelist.

Revision: 2.0.0 Page 35 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 36 July 27,1993
Industry Review Draft

Programming Languages SIG

5. TYPE ENTRIES

This section presents the debugging information entries that describe program types: base types,
modified types and user-defined types.

If the scope of the declaration of a named type begins sometime after the low pc value for the
scope most closely enclosing the declaration, the declaration may have a
DW AT _start_scope attribute. The value of this attribute is the offset in bytes of the
beginning of the scope for the declaration from the low pc vaue of the debugging information
entry that defines its scope.

5.1 Base Type Entries

A base type is a data type that is not defined in terms of other data types. Each programming
language has a set of base types that are considered to be built into that language.

A basetypeis represented by a debugging information entry with the tag DW TAG _base_t ype.
A base type entry has a DW AT _nane attribute whose value is a null-terminated string
describing the name of the base type as recognized by the programming language of the
compilation unit containing the base type entry.

A base type entry aso has a DW AT_encodi ng attribute describing how the base type is
encoded and is to be interpreted. The value of this attribute is a constant. The set of values and
their meanings for the DW AT_encodi ng attributeis given in Figure 10.

[(Name Meaning O
V ATE_addr ess linear machine address H
V ATE_bool ean trueor false 0
(PDW ATE_conpl ex_f | oat complex floating-point number
[(DW ATE_f | oat floating-point number O
[(DW ATE_si gned signed binary integer 0
Cbw ATE si gned_char signed character 0
V ATE_unsi ghed unsigned binary integer E
V ATE unsi gned_char unsigned character 0

Figure 10. Encoding attribute values
All encodings assume the representation that is‘*normal’’ for the target architecture.

A base type entry hasa DW AT byt e_si ze attribute, whose value is a constant, describing the
size in bytes of the storage unit used to represent an object of the given type.

If the value of an object of the given type does not fully occupy the storage unit described by the
byte size attribute, the base type entry may have a DW AT _bit _si ze atribute and a
DW AT _bi t _of f set attribute, both of whose values are constants. The bit size attribute
describes the actual size in bits used to represent a value of the given type. The bit offset attribute
describes the offset in hits of the high order bit of avalue of the given type from the high order bit
of the storage unit used to contain that value.

For example, the C type i nt on a machine that uses 32-bit integers would be represented by a
base type entry with a name attribute whose value was ‘‘i nt,”’ an encoding attribute whose
value was DW ATE_si gned and a byte size attribute whose value was 4.

Revision: 2.0.0 Page 37 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

5.2 TypeModifier Entries

A base or user-defined type may be modified in different ways in different languages. A type
modifier is represented in DWARF by a debugging information entry with one of the tags given
in Figure 11.

UTag Meaning
V TAG const _type C or C++ congt qualified type
V TAG packed_type Pascal packed type

(DW TAG poi nter_type The address of the object whose type is being modified
[(DW TAG ref erence_type A C++ referenceto the object whose type is being modified
HOW TAG vol atil e_t ype C or C++ volatile qualified type

Figure 11. Type modifier tags

MmOoOoOodgdg

Each of the type modifier entries has a DW AT_t ype attribute, whose value is a reference to a
debugging information entry describing a base type, a user-defined type or another type modifier.

A modified type entry describing a pointer or reference type may have a
DW AT address_cl ass attribute to describe how objects having the given pointer or
reference type ought to be dereferenced.

When multiple type modifiers are chained together to modify a base or user-defined type, they are
ordered as if part of aright-associative expression involving the base or user-defined type.

As examples of how type modifiers are ordered, take the following C declarations:

const char * volatile p;
which represents a volatile pointer to a constant character.
Thisis encoded in DWARF as:
DW TAG vol atile_type -
DW TAG poi nter _type -
DW TAG const _type -
DW TAG base_type

vol atile char * const p;

on the other hand, represents a constant pointer

to a volatile character.

Thisisencoded as:

DW TAG const _type -

DW TAG poi nter_type -
DW TAG vol atile_type -
DW TAG base_t ype

5.3 Typedef Entries

Any arbitrary type named via a typedef is represented by a debugging information entry with the
tag DW TAG t ypedef . The typedef entry has a DW AT _nane attribute whose value is a null-
terminated string containing the name of the typedef as it appears in the source program. The
typedef entry also containsa DW AT _t ype attribute.

If the debugging information entry for a typedef represents a declaration of the type that is not
aso adefinition, it does not contain atype attribute.

Revision: 2.0.0 Page 38 July 27,1993
Industry Review Draft

Programming Languages SIG

5.4 Array TypeEntries

Many languages share the concept of an ‘‘array,”’” which is a table of components of identical
type.

An array type is represented by a debugging information entry with the tag
DW TAG array_type.

If a name has been given to the array type in the source program, then the corresponding array
type entry has a DW AT_nane attribute whose value is a null-terminated string containing the
array type name asit appears in the source program.

The array type entry describing a multidimensional array may have a DW AT _or deri ng
attribute whose constant value is interpreted to mean either row-major or column-major ordering
of array elements. The set of values and their meanings for the ordering attribute are listed in
Figure 12. If no ordering attribute is present, the default ordering for the source language (which
is indicated by the DW AT | anguage attribute of the enclosing compilation unit entry) is
assumed.

[(DW ORD _col _nmaj or O
FDW ORD_r ow_maj or H
Figure 12. Array ordering

The ordering attribute may optionally appear on one-dimensional arrays; it will be ignored.

An array type entry has a DW AT _t ype attribute describing the type of each element of the
array.

If the amount of storage allocated to hold each element of an object of the given array type is
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the array type entry has a DW AT_st ri de_si ze attribute, whose
constant value represents the size in bits of each element of the array.

If the size of the entire array can be determined statically at compile time, the array type entry
may have a DW AT byt e_si ze attribute, whose constant value represents the total size in
bytes of an instance of the array type.

Note that if the size of the array can be determined statically at compile time, this value can
usually be computed by multiplying the number of array elements by the size of each element.

Each array dimension is described by a debugging information entry with either the tag
DW TAG subrange_type or the tag DW TAG enunerati on_type. These entries are
children of the array type entry and are ordered to reflect the appearance of the dimensions in the
source program (i.e. leftmost dimension first, next to leftmost second, and so on).

In languages, such as ANS-C, in which there is no concept of a ‘‘multidimensional array,”” an
array of arrays may be represented by a debugging information entry for a multidimensional
array.

5.5 Structure, Union, and Class Type Entries

The languages C, C++, and Pascal, among others, allow the programmer to define types that are
collections of related components. In C and C++, these collections are called **structures.”” In
Pascal, they are called ‘‘records.”” The components may be of different types. The components
arecalled ‘‘“members’ in C and C++, and ‘‘fields'’ in Pascal.

Revision: 2.0.0 Page 39 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

The components of these collections each exist in their own space in computer memory. The
componentsof a C or C++ “*union’” all coexist in the same memory.

Pascal and other languages have a ‘‘discriminated union,”” also called a ‘‘variant record.”
Here, selection of a number of alternative substructures (‘‘variants'’) is based on the value of a
component that is not part of any of those substructures (the ‘‘discriminant’”).

Among the languages discussed in this document, the *‘class” concept isuniqueto C++. A class
is similar to a structure. A C++ class or structure may have ‘‘member functions’ which are
subroutines that are within the scope of a class or structure.

5.5.1 General Structure Description

Structure, union, and class types are represented by debugging information entries with the tags
DW TAG structure_type, DWTAG union_type and DWTAG class_type,
respectively. If a name has been given to the structure, union, or class in the source program,
then the corresponding structure type, union type, or class type entry has a DW AT_nane
attribute whose value is a null-terminated string containing the type name as it appears in the
source program.

If the size of an instance of the structure type, union type, or class type entry can be determined
statically at compile time, the entry hasa DW AT _byt e_si ze attribute whose constant value is
the number of bytes required to hold an instance of the structure, union, or class, and any padding
bytes.

For C and C++, an incomplete structure, union or classtype is represented by a structure, union
or class entry that does not have a byte size attribute and that has a DW AT _decl arati on
attribute.

The members of a structure, union, or class are represented by debugging information entries that
are owned by the corresponding structure type, union type, or class type entry and appear in the
same order as the corresponding declarations in the source program.

Data member declarations occurring within the declaration of a structure, union or class type
are considered to be ‘“definitions’ of those members, with the exception of C++ ‘‘static’’ data
members, whose definitions appear outside of the declaration of the enclosing structure, union or
class type. Function member declarations appearing within a structure, union or class type
declaration are definitions only if the body of the function also appears within the type
declaration.

If the definition for a given member of the structure, union or class does not appear within the
body of the declaration, that member also has a debugging information entry describing its
definition. That entry will have a DW AT specification attribute referencing the
debugging entry owned by the body of the structure, union or class debugging entry and
representing a non-defining declaration of the data or function member. The referenced entry will
not have information about the location of that member (low and high pc attributes for function
members, location descriptions for data members) and will have a DW AT_decl arati on
attribute.

5.5.2 Derived Classes and Structures

The class type or structure type entry that describes a derived class or structure owns debugging
information entries describing each of the classes or structures it is derived from, ordered as they
were in the source program. Each such entry hasthe tag DW TAG i nheri t ance.

Revision: 2.0.0 Page 40 July 27,1993
Industry Review Draft

Programming Languages SIG

An inheritance entry has a DW AT _t ype attribute whose value is a reference to the debugging
information entry describing the structure or class from which the parent structure or class of the
inheritance entry is derived. It dso hasa DW AT _dat a_nenber _| ocat i on attribute, whose
value is a location description describing the location of the beginning of the data members
contributed to the entire class by this subobject relative to the beginning address of the data
members of the entire class.

An inheritance entry may have a DW AT_accessi bil ity attribute. If no accessibility
atribute is present, private access is assumed. If the structure or class referenced by the
inheritance entry serves as avirtual base class, the inheritance entry hasaDW AT virtual ity
attribute.

In C++, a derived class may contain access declarations that change the accessibility of
individual class members from the overall accessibility specified by the inheritance declaration.
A single access declaration may refer to a set of overloaded names.

If a derived class or structure contains access declarations, each such declaration may be
represented by a debugging information entry with the tag DW TAG access_decl arati on.
Each such entry isachild of the structure or class type entry.

An access declaration entry hasa DW AT _nane attribute, whose value is a null-terminated string
representing the name used in the declaration in the source program, including any class or
structure qualifiers.

An access declaration entry also has a DW AT _accessi bi l ity attribute describing the
declared accessibility of the named entities.

5.5.3 Friends

Each “‘friend’’ declared by a structure, union or class type may be represented by a debugging
information entry that is a child of the structure, union or class type entry; the friend entry has the
tag DW TAG fri end.

A friend entry has a DW AT _fri end attribute, whose value is a reference to the debugging
information entry describing the declaration of the friend.

5.5.4 Structure Data Member Entries

A data member (as opposed to a member function) is represented by a debugging information
entry with the tag DW TAG nenber. The member entry for a named member has a
DW AT _nane attribute whose value is a null-terminated string containing the member name as it
appears in the source program. |If the member entry describes a C++ anonymous union, the name
attribute is omitted or consists of asingle zero byte.

The structure data member entry hasa DW AT _t ype attribute to denote the type of that member.

If the member entry is defined in the structure or class body, it has a
DW AT data_nmenber | ocati on attribute whose value is a location description that
describes the location of that member relative to the base address of the structure, union, or class
that most closely encloses the corresponding member declaration.

The addressing expression represented by the location description for a structure data member
expects the base address of the structure data member to be on the expression stack before being
evaluated.

Revision: 2.0.0 Page 41 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

The location description for a data member of a union may be omitted, since all data members of
a union begin at the same address.

If the member entry describes a bit field, then that entry has the following attributes:

1. A DWAT byte_si ze attribute whose constant value is the number of bytes that contain
an instance of the bit field and any padding bits.

The byte size attribute may be omitted if the size of the object containing the bit field can be
inferred from the type attribute of the data member containing the bit field.

2. ADWAT bit_offset attribute whose constant value is the number of bitsto the left of
the leftmost (most significant) bit of the bit field value.

3. A DWAT_bit_si ze attribute whose constant value is the number of bits occupied by
the bit field value.

The location description for a bit field calculates the address of an anonymous object containing
the bit field. The addressis relative to the structure, union, or class that most closely encloses the
bit field declaration. The number of bytes in this anonymous object is the value of the byte size
attribute of the bit field. The offset (in bits) from the most significant bit of the anonymous object
to the most significant bit of the bit field is the value of the bit offset attribute.

For example, take one possible representation of the following structure definition in both big
and little endian byte orders:

struct S {
i nt j:5;
i nt k:6;
i nt m 5;
i nt n: 8;
}

In both cases, the location descriptions for the debugging information entries for j , k, mand n
describe the address of the same 32-bit word that contains all three members. (In the big-endian
case, the location description addresses the most significant byte, in the little-endian case, the
least significant). The following diagram shows the structure layout and lists the bit offsets for
each case. The offsets are from the most significant bit of the object addressed by the location
description.

Bit Of_fsets Big-Endian
)10 °j k m n pad

k: 31J 2 20 15 7 0
m1ll
n: 16

Bit Offsets: Little-Endian
j:27 o d
k: 21 31 pad 23 N 15 m 10 K 4 0

m 16
n: 8

Revision: 2.0.0 Page 42 July 27,1993
Industry Review Draft

Programming Languages SIG

5.5.5 Structure Member Function Entries

A member function is represented in the debugging information by a debugging information entry
with the tag DW TAG subprogram The member function entry may contain the same
attributes and follows the same rules as non-member global subroutine entries (see section 3.3).

If the member function entry describes a virtual function, then that entry has a
DW AT virtuality atribute.

An entry for avirtual function also has a DW AT_vt abl e_el em | ocat i on attribute whose
value contains a location description yielding the address of the dot for the function within the
virtual function table for the enclosing class or structure.

If a subroutine entry represents the defining declaration of a member function and that definition
appears outside of the body of the enclosing class or structure declaration, the subroutine entry
has a DW AT_speci ficati on attribute, whose value is a reference to the debugging
information entry representing the declaration of this function member. The referenced entry will
be a child of some class or structure type entry.

Subroutine entries containing the DW AT _speci fi cati on attribute do not need to duplicate
information provided by the declaration entry referenced by the specification attribute. In
particular, such entries do not need to contain attributes for the name or return type of the
function member whose definition they represent.

5.5.6 Class Template Instantiations

In C++ aclasstemplate is a generic definition of a class type that is instantiated differently when
an instance of the class is declared or defined. The generic description of the class may include
both parameterized types and parameterized constant values. DWARF does not represent the
generic template definition, but does represent each instantiation.

A class template instantiation is represented by a debugging information with the tag
DW TAG cl ass_t ype. With four exceptions, such an entry will contain the same attributes
and have the same types of child entries as would an entry for a class type defined explicitly using
the instantiation types and values. The exceptions are:

1. Each forma parameterized type declaration appearing in the template definition is
represented by a debugging information entry with the tag
DW TAG tenpl ate_type_paraneter. Each such entry has a DW AT nane
attribute, whose value is a null-terminated string containing the name of the formal type
parameter asit appears in the source program. The template type parameter entry also has a
DW AT _t ype attribute describing the actua type by which the formal is replaced for this
instantiation.

2. Each forma parameterized value declaration appearing in the templated definition is
represented by a debugging information entry with the tag
DW TAG t enpl at e_val ue_paranet er. Each such entry has a DW AT _nane
attribute, whose value is a null-terminated string containing the name of the formal value
parameter asit appearsin the source program. The template value parameter entry also has
a DW AT type attribute describing the type of the parameterized value. Finaly, the
template value parameter entry hasa DW AT_const _val ue attribute, whose value is the
actual constant value of the value parameter for this instantiation as represented on the
target architecture.

Revision: 2.0.0 Page 43 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

3. If the compiler has generated a special compilation unit to hold the template instantiation
and that compilation unit has a different name from the compilation unit containing the
template definition, the name attribute for the debugging entry representing that
compilation unit should be empty or omitted.

4. If the class type entry representing the template instantiation or any of its child entries
contain declaration coordinate attributes, those attributes should refer to the source for the
template definition, not to any source generated artificialy by the compiler.

55.7 Variant Entries

A variant part of a structure is represented by a debugging information entry with the tag
DW TAG vari ant _part andisowned by the corresponding structure type entry.

If the variant part has a discriminant, the discriminant is represented by a separate debugging
information entry which is a child of the variant part entry. This entry has the form of a structure
data member entry. The variant part entry will have a DW AT _di scr attribute whose value is a
reference to the member entry for the discriminant.

If the variant part does not have a discriminant (tag field), the variant part entry has a
DW AT _t ype attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging information entry with the
tag DW TAG vari ant and is a child of the variant part entry. The value that selects a given
variant may be represented in one of three ways. The variant entry may have a
DW AT di scr_val ue attribute whose value represents a single case label. The value of this
attribute is encoded as an LEB128 number. The number is signed if the tag type for the variant
part containing this variant is a signed type. The number is unsigned if the tag type is an
unsigned type.

Alternatively, the variant entry may contain a DW AT _di scr _| i st attribute, whose value
represents a list of discriminant values. This list is represented by any of the block forms and
may contain a mixture of case labels and label ranges. Each item on the list is prefixed with a
discriminant value descriptor that determines whether the list item represents a single label or a
label range. A single case label is represented as an LEB128 number as defined above for the
DW AT _di scr _val ue attribute. A label range is represented by two LEB128 numbers, the
low value of the range followed by the high value. Both values follow the rules for signedness
just described. The discriminant value descriptor is a constant that may have one of the values
givenin Figure 13.

[(DW DSC | abel O

FDW DSC _r ange H

Figure 13. Discriminant descriptor values

If avariant entry has neither a DW AT_di scr _val ue attribute nor a DW AT _di scr _|i st
atribute, or if it has a DW AT _di scr _| i st attribute with 0 size, the variant is a default
variant.

The components selected by a particular variant are represented by debugging information entries
owned by the corresponding variant entry and appear in the same order as the corresponding
declarationsin the source program.

Revision: 2.0.0 Page 44 July 27,1993
Industry Review Draft

Programming Languages SIG

5.6 Enumeration Type Entries
An ‘*enumeration type’’ isa scalar that can assume one of a fixed number of symbolic values.

An enumeration type is represented by a debugging information entry with the tag
DW TAG enuner ati on_t ype.

If a name has been given to the enumeration type in the source program, then the corresponding
enumeration type entry has a DW AT_nane attribute whose value is a null-terminated string
containing the enumeration type name as it appears in the source program. These entries also
have a DW AT byt e_si ze attribute whose constant value is the number of bytes required to
hold an instance of the enumeration.

Each enumeration literal is represented by a debugging information entry with the tag
DW TAG _enurmer at or . Each such entry is a child of the enumeration type entry, and the
enumerator entries appear in the same order as the declarations of the enumeration literals in the
source program.

Each enumerator entry has a DW AT _nane attribute, whose value is a null-terminated string
containing the name of the enumeration literal as it appears in the source program. Each
enumerator entry also hasa DW AT _const _val ue attribute, whose value is the actual numeric
value of the enumerator as represented on the target system.

5.7 Subroutine Type Entries

Itis possible in C to declare pointers to subroutines that return a value of a specific type. In both
ANS C and C++, it is possible to declare pointers to subroutines that not only return a value of
a specific type, but accept only arguments of specific types. The type of such pointers would be
described with a *“ pointer to’” modifier applied to a user-defined type.

A subroutine type is represented by a debugging information entry with the tag
DW TAG subrouti ne_t ype. If aname has been given to the subroutine type in the source
program, then the corresponding subroutine type entry has a DW AT _nane attribute whose value
is a null-terminated string containing the subroutine type name as it appears in the source
program.

If the subroutine type describes a function that returns a value, then the subroutine type entry has
a DW AT type attribute to denote the type returned by the subroutine. If the types of the
arguments are necessary to describe the subroutine type, then the corresponding subroutine type
entry owns debugging information entries that describe the arguments. These debugging
information entries appear in the order that the corresponding argument types appear in the source
program.

In ANS-C there is a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have a
DW AT _pr ot ot yped attribute, whose valueis aflag.

Each debugging information entry owned by a subroutine type entry has a tag whose value has
one of two possible interpretations.

1. Each debugging information entry that is owned by a subroutine type entry and that defines
asingle argument of a specific type hasthetag DW TAG f or mal _par anet er .

Revision: 2.0.0 Page 45 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

The formal parameter entry has a type attribute to denote the type of the corresponding
formal parameter.

2. The unspecified parameters of a variable parameter list are represented by a debugging
infformation entry owned by the subroutine type entry with the tag
DW TAG unspeci fi ed_par anet ers.

5.8 String Type Entries

A‘‘string’’ is a sequence of characters that have specific semantics and operations that separate
them from arrays of characters. Fortran is one of the languages that has a string type.

A dsring type is represented by a debugging information entry with the tag
DW TAG string_type. If aname has been given to the string type in the source program,
then the corresponding string type entry has a DW AT_nane attribute whose value is a null-
terminated string containing the string type name as it appears in the source program.

The string type entry may have aDW AT _st ri ng_| engt h attribute whose value is a location
description yielding the location where the length of the string is stored in the program. The
string type entry may also have a DW AT byt e_si ze attribute, whose constant value is the
size in bytes of the data to be retrieved from the location referenced by the string length attribute.
If no byte size attribute is present, the size of the data to be retrieved is the same as the size of an
address on the target machine.

If no string length attribute is present, the string type entry may have a DW AT byt e_si ze
attribute, whose constant value is the length in bytes of the string.

5.9 Set Entries
Pascal providesthe concept of a‘‘set,”” which represents a group of values of ordinal type.

A set is represented by a debugging information entry with the tag DW TAG set _type. If a
name has been given to the set type, then the set type entry has a DW AT _nane attribute whose
value is a null-terminated string containing the set type name as it appears in the source program.

The set type entry has a DW AT _t ype attribute to denote the type of an element of the set.

If the amount of storage allocated to hold each element of an object of the given set type is
different from the amount of storage that is normally alocated to hold an individual object of the
indicated element type, then the set type entry has a DW AT byt e si ze attribute, whose
constant value represents the size in bytes of an instance of the set type.

5.10 Subrange TypeEntries

Several languages support the concept of a *‘ subrange’’ type object. These objects can represent
a subset of the values that an object of the basis type for the subrange can represent. Subrange
type entries may also be used to represent the bounds of array dimensions.

A subrange type is represented by a debugging information entry with the tag
DW TAG _subr ange_t ype. If a name has been given to the subrange type, then the subrange
type entry has a DW AT _nane attribute whose value is a null-terminated string containing the
subrange type name as it appears in the source program.

The subrange entry may have a DW AT _t ype attribute to describe the type of object of whose
values this subrange is a subset.

Revision: 2.0.0 Page 46 July 27,1993
Industry Review Draft

Programming Languages SIG

If the amount of storage allocated to hold each element of an object of the given subrange typeis
different from the amount of storage that is normally alocated to hold an individual object of the
indicated element type, then the subrange type entry hasa DW AT _byt e_si ze attribute, whose
constant val ue represents the size in bytes of each element of the subrange type.

The subrange entry may have the attributes DW AT | ower bound and
DW AT _upper _bound to describe, respectively, the lower and upper bound values of the
subrange. The DW AT _upper _bound attribute may be replaced by a DW AT_count
attribute, whose value describes the number of elements in the subrange rather than the value of
the last element. If a bound or count value is described by a constant not represented in the
program’ s address space and can be represented by one of the constant attribute forms, then the
value of the lower or upper bound or count attribute may be one of the constant types. Otherwise,
the value of the lower or upper bound or count attribute is a reference to a debugging information
entry describing an object containing the bound value or itself describing a constant value.

If either the lower or upper bound or count values are missing, the bound value is assumed to be a
language-dependent default constant.

The default lower bound value for C or C++ is0. For Fortran, it is 1. No other default values
are currently defined by DWARF.

If the subrange entry has no type attribute describing the basis type, the basis type is assumed to
be the same as the object described by the lower bound attribute (if it references an object). If
there is no lower bound attribute, or it does not reference an object, the basis type is the type of
the upper bound or count attribute (if it references an object). If there is no upper bound or count
attribute or it does not reference an object, the type is assumed to be the same type, in the source
language of the compilation unit containing the subrange entry, as a signed integer with the same
Size as an address on the target machine.

5.11 Pointer to Member Type Entries
In C++, a pointer to a data or function member of a class or structure is a unigue type.

A debugging information entry representing the type of an object that is a pointer to a structure or
class member hasthetag DW TAG ptr _t o_nenber _t ype.

If the pointer to member type has a name, the pointer to member entry has a DW AT _narne
attribute, whose value is a null-terminated string containing the type name as it appears in the
source program.

The pointer to member entry has a DW AT _t ype attribute to describe the type of the class or
structure member to which objects of this type may point.

The pointer to member entry also hasaDW AT _cont ai ni ng_t ype attribute, whose valueis a
reference to a debugging information entry for the class or structure to whose members objects of
this type may point.

Finally, the pointer to member entry has a DW AT _use_| ocat i on attribute whose value is a
location description that computes the address of the member of the class or structure to which
the pointer to member type entry can point.

The method used to find the address of a given member of a class or structure is common to any
instance of that class or structure and to any instance of the pointer or member type. The method
is thus associated with the type entry, rather than with each instance of the type.

Revision: 2.0.0 Page 47 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

The DW AT_use_| ocat i on expression, however, cannot be used on its own, but must be used
in conjunction with the location expressions for a particular object of the given pointer to
member type and for a particular structure or class instance. The DW AT_use_| ocati on
attribute expects two values to be pushed onto the location expression stack before the
DW AT use_ | ocati on expression isevaluated. The first value pushed should be the value of
the pointer to member object itself. The second value pushed should be the base address of the
entire structure or union instance containing the member whose address is being calculated.

o, for an expression like
obj ect. *nbr _ptr

where mbr _pt r has some pointer to member type, a debugger should:

1. Pushthevalueof nbr _pt r onto the location expression stack.

2. Push the base address of obj ect onto the location expression stack.

3. Evaluatethe DW AT use_| ocat i on expression for thetype of mbr _ptr.
5.12 FileTypeEntries
Some languages, such as Pascal, provide a first class data type to represent files.

A file typeisrepresented by a debugging information entry with the tag DW TAG fi |l e_t ype.
If the file type has a name, the file type entry has a DW AT _nane attribute, whose value is a
null-terminated string containing the type name as it appears in the source program.

The file type entry has a DW AT _t ype attribute describing the type of the objects contained in
thefile.

The file type entry also has a DW AT_byt e_si ze attribute, whose value is a constant
representing the size in bytes of an instance of thisfile type.

Revision: 2.0.0 Page 48 July 27,1993
Industry Review Draft

Programming Languages SIG

6. OTHER DEBUGGING INFORMATION

This section describes debugging information that is not represented in the form of debugging
information entries and is not contained within the . debug_i nf o section.

6.1 Accelerated Access

A debugger frequently needs to find the debugging information for a program object defined
outside of the compilation unit where the debugged program is currently stopped. Sometimes it
will know only the name of the object; sometimes only the address. To find the debugging
information associated with a global object by name, using the DWARF debugging information
entries alone, a debugger would need to run through all entries at the highest scope within each
compilation unit. For lookup by address, for a subroutine, a debugger can use the low and high
pc attributes of the compilation unit entries to quickly narrow down the search, but these
attributes only cover the range of addresses for the text associated with a compilation unit entry.
To find the debugging information associated with a data object, an exhaustive search would be
needed. Furthermore, any search through debugging information entries for different
compilation units within a large program would potentially require the access of many memory
pages, probably hurting debugger performance.

To make lookups of program objects by name or by address faster, a producer of DWARF
information may provide two different types of tables containing information about the
debugging information entries owned by a particular compilation unit entry in a more condensed
format.

6.1.1 Lookup by Name

For lookup by name, a table is maintained in a separate object file section called
. debug_pubnanes. The table consists of sets of variable length entries, each set describing
the names of global objects whose definitions or declarations are represented by debugging
information entries owned by a single compilation unit. Each set begins with a header containing
four values: the total length of the entries for that set, not including the length fidd itself, a
version number, the offset from the beginning of the . debug_i nf o section of the compilation
unit entry referenced by the set and the size in bytes of the contents of the . debug_i nfo
section generated to represent that compilation unit. This header is followed by a variable number
of offset/name pairs. Each pair consists of the offset from the beginning of the compilation unit
entry corresponding to the current set to the debugging information entry for the given object,
followed by a null-terminated character string representing the name of the object as given by the
DW AT _nane attribute of the referenced debugging entry. Each set of names is terminated by
zero.

In the case of the name of a static data member or function member of a C++ structure, class or
union, the name presented in the . debug_pubnamnes section is not the simple name given by
the DW AT _nane attribute of the referenced debugging entry, but rather the fully class qualified
name of the data or function member.

6.1.2 Lookup by Address

For lookup by address, a table is maintained in a separate object file section called
. debug_ar anges. Thetable consists of sets of variable length entries, each set describing the
portion of the program’s address space that is covered by a single compilation unit. Each set
begins with a header containing five values:

Revision: 2.0.0 Page 49 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

1. Thetotal length of the entries for that set, not including the length field itself.
2. A version number.

3. The offset from the beginning of the . debug_i nf o section of the compilation unit entry
referenced by the set.

4. Thesizein bytes of an address on the target architecture. For segmented addressing, thisis
the size of the offset portion of the address.

5. The size in bytes of a segment descriptor on the target architecture. If the target system
uses a flat address space, thisvalueisO.

This header is followed by a variable number of address range descriptors. Each descriptor is a
pair consisting of the beginning address of a range of text or data covered by some entry owned
by the corresponding compilation unit entry, followed by the length of that range. A particular
set is terminated by an entry consisting of two zeroes. By scanning the table, a debugger can
quickly decide which compilation unit to look in to find the debugging information for an object
that has a given address.

6.2 Line Number Information

A source-level debugger will need to know how to associate statements in the source files with the
corresponding machine instruction addresses in the executable object or the shared objects used
by that executable object. Such an association would make it possible for the debugger user to
specify machine instruction addresses in terms of source statements. This would be done by
specifying the line number and the source file containing the statement. The debugger can also
use this information to display locations in terms of the source files and to single step from
statement to statement.

As mentioned in section 3.1, above, the line number information generated for a compilation unit
is represented in the . debug_|ine section of an object file and is referenced by a
corresponding compilation unit debugging information entry inthe . debug_i nf o section.

If space were not a consideration, the information provided in the . debug_| i ne section could
be represented as a large matrix, with one row for each instruction in the emitted object code.
The matrix would have columns for:

— the source file name

— the source line number

— the source column number

— whether thisinstruction is the beginning of a source statement
— whether thisinstruction is the beginning of a basic block.

Such a matrix, however, would be impractically large. We shrink it with two techniques. First,
we delete from the matrix each row whose file, line and source column information is identical
with that of its predecessors. Second, we design a byte-coded language for a state machine and
store a stream of bytes in the object file instead of the matrix. This language can be much more
compact than the matrix. When a consumer of the statement information executes, it must *‘run’’
the state machine to generate the matrix for each compilation unit it isinterested in. The concept
of an encoded matrix also leaves room for expansion. In the future, columns can be added to the
matrix to encode other thingsthat are related to individual instruction addresses.

Revision: 2.0.0 Page 50 July 27,1993
Industry Review Draft

6.2.1 De€finitions

Programming Languages SIG

The following terms are used in the description of the line number information format:

state machine

statement program

basic block

sequence

shyte
ubyte
uhalf
sword
uword
LEB128

The hypothetical machine used by a consumer of the line number
information to expand the byte-coded instruction stream into a matrix of
line number information.

A series of byte-coded line number information instructions representing
one compilation unit.

A sequence of instructions that is entered only at the first instruction and
exited only at the last instruction. We define a procedure invocation to
be an exit from a basic block.

A series of contiguous target machine instructions. One compilation
unit may emit multiple sequences (that is, not all instructions within a
compilation unit are assumed to be contiguous).

Small signed integer.

Small unsigned integer.

Medium unsigned integer.

Large signed integer.

Large unsigned integer.

Variable length signed and unsigned data. See section 7.6.

6.2.2 State Machine Registers

The statement information state machine has the following registers:

addr ess

file

i ne

col um

is_stnt

basi ¢c_bl ock

end_sequence

Revision: 2.0.0

The program-counter value corresponding to a machine instruction
generated by the compiler.

An unsigned integer indicating the identity of the source file
corresponding to a machine instruction.

An unsigned integer indicating a source line number. Lines are
numbered beginning at 1. The compiler may emit the value O in cases
where an instruction cannot be attributed to any source line.

An unsigned integer indicating a column number within a source line.
Columns are numbered beginning at 1. The vaue O is reserved to
indicate that a statement begins at the *‘left edge’” of theline.

A boolean indicating that the current instruction is the beginning of a
Statement.

A boolean indicating that the current instruction is the beginning of a
basic block.

A boolean indicating that the current address is that of the first byte after
the end of a sequence of target machine instructions.

Page 51 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

At the beginning of each sequence within a statement program, the state of the registersis:

addr ess 0

file 1

line 1

col um 0

is_stnt determined by def aul t _i s_st nt inthe statement program prologue
basi ¢c_bl ock ““false”’

end_sequence ‘‘fase”

6.2.3

Statement Program | nstructions

The state machine instructions in a statement program belong to one of three categories.

special opcodes These have a ubyte opcode field and no arguments. Most of the

instructions in a statement program are specia opcodes.

standard opcodes These have a ubyte opcode field which may be followed by zero or more

LEB128 arguments (except for DW LNS fi xed_advance_pc, see
below). The opcode implies the number of arguments and their
meanings, but the statement program prologue also specifies the number
of arguments for each standard opcode.

extended opcodes These have a multiple byte format. The first byte is zero; the next bytes

6.2.4

are an unsigned LEB128 integer giving the number of bytes in the
instruction itself (does not include the first zero byte or the size). The
remaining bytes are the instruction itself.

The Statement Program Prologue

The optima encoding of line number information depends to a certain degree upon the
architecture of the target machine. The statement program prologue provides information used by
consumers in decoding the statement program instructions for a particular compilation unit and
aso provides information used throughout the rest of the statement program. The statement
program for each compilation unit begins with a prologue containing the following fields in order:

1

total _| engt h (uword)
The size in bytes of the statement information for this compilation unit (not including the
total | ength field itself).

ver si on (uhalf)
Version identifier for the statement information format.

pr ol ogue_I| engt h (uword)
The number of bytes following the pr ol ogue_1| engt h field to the beginning of the first
byte of the statement program itself.

m ni mrum_i nstruction_| engt h (ubyte)
The size in bytes of the smallest target machine instruction. Statement program opcodes
that alter the addr ess register first multiply their operands by this value.

default _is_stm (ubyte)
Theinitial value of thei s_st nt register.

A simple code generator that emits machine instructions in the order implied by the source
program would set this to ‘‘true,’”’ and every entry in the matrix would represent a

Revision: 2.0.0 Page 52 July 27, 1993

Industry Review Draft

Programming Languages SIG

statement boundary. A pipeline scheduling code generator would set this to ‘‘false’”” and
emit a specific statement program opcode for each instruction that represented a statement
boundary.

6. |ine_base (shyte)
This parameter affects the meaning of the special opcodes. See below.

7. line_range (ubyte)
This parameter affects the meaning of the special opcodes. See below.

8. opcode_base (ubyte)
The number assigned to the first special opcode.

9. standard_opcode_ | engt hs (array of ubyte)
This array specifies the number of LEB128 operands for each of the standard opcodes. The
first element of the array corresponds to the opcode whose value is 1, and the last element
corresponds to the opcode whose value is opcode_base - 1. By increasing
opcode_base, and adding elements to this array, new standard opcodes can be added,
while allowing consumers who do not know about these new opcodes to be able to skip
them.

10. i ncl ude_directories (sequence of path names)

The sequence contains an entry for each path that was searched for included source filesin
this compilation. (The paths include those directories specified explicitly by the user for
the compiler to search and those the compiler searches without explicit direction). Each
path entry is either afull path name or isrelative to the current directory of the compilation.
The current directory of the compilation is understood to be the first entry and is not
explicitly represented. Each entry is a null-terminated string containing a full path name.
The last entry isfollowed by asingle null byte.

11. fil e_names (sequence of file entries)

The sequence contains an entry for each source file that contributed to the statement
information for this compilation unit or is used in other contexts, such as in a declaration
coordinate or amacro fileinclusion. Each entry has a null-terminated string containing the
file name, an unsigned LEB128 number representing the directory index of the directory in
which the file was found, an unsigned LEB128 number representing the time of last
modification for the file and an unsigned LEB128 number representing the length in bytes
of the file. A compiler may choose to emit LEB128(0) for the time and length fields to
indicate that this information is not available. The last entry is followed by a single null
byte.

The directory index represents an entry in the i ncl ude_di rectori es section. The
index is LEB128(0) if the file was found in the current directory of the compilation,
LEB128(1) if it was found in the first directory inthei ncl ude_di rect ori es section,
and so on. The directory index isignored for file names that represent full path names.

The statement program assigns humbers to each of the file entries in order, beginning with
1, and uses those numbers instead of file namesinthef i | e register.

A compiler may generate a single null byte for the file names field and define file names
using the extended opcode DEFI NE_FI LE.

Revision: 2.0.0 Page 53 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

6.2.5 The Statement Program

As stated before, the goal of a statement program is to build a matrix representing one
compilation unit, which may have produced multiple sequences of target-machine instructions.
Within a sequence, addresses may only increase. (Line numbers may decrease in cases of
pipeline scheduling.)

6.2.5.1 Special Opcodes
Each 1-byte specia opcode has the following effect on the state machine:
1. Addasigned integer tothel i ne register.

2. Multiply an unsigned integer by the m ni nrum_i nstruction_| engt h field of the
statement program prologue and add the result to the addr ess register.

3. Append arow to the matrix using the current values of the state machine registers.
4. Setthebasi c_bl ock registerto‘‘fase.”

All of the special opcodes do those same four things; they differ from one another only in what
valuesthey addto thel i ne and addr ess registers.

Instead of assigning a fixed meaning to each special opcode, the statement program uses several
parameters in the prologue to configure the instruction set. There are two reasons for this. First,
although the opcode space available for special opcodes now ranges from 10 through 255, the
lower bound may increase if one adds new standard opcodes. Thus, the opcode_base field of
the statement program prologue gives the value of the first special opcode. Second, the best
choice of special-opcode meanings depends on the target architecture. For example, for a RISC
machine where the compiler-generated code interleaves instructions from different lines to
schedule the pipeling, it is important to be able to add a negative value to the | i ne register to
express the fact that a later instruction may have been emitted for an earlier source line. For a
machine where pipeline scheduling never occurs, it is advantageous to trade away the ability to
decrease the | i ne register (a standard opcode provides an alternate way to decrease the line
number) in return for the ability to add larger positive values to the addr ess register. To
permit this variety of strategies, the statement program prologue definesal i ne_base field that
specifies the minimum value which a special opcode can add to the | i ne register and a
I i ne_r ange field that defines the range of valuesit can add to thel i ne register.

A special opcode value is chosen based on the amount that needs to be added to the | i ne and
addr ess registers. The maximum line increment for a special opcode is the value of the
I i ne_base field in the prologue, plus the value of the | i ne_r ange field, minus 1 (I i ne
base + line range - 1). If thedesired line increment is greater than the maximum line
increment, a standard opcode must be used instead of a special opcode. The *‘address advance’”’
is caculated by dividing the desired address increment by the
m ni num.instruction_|l ength fiedd from the prologue. The special opcode is then
calculated using the following formula:

opcode = (desired line increment - |ine_base) +

(l'ine_range * address advance) + opcode_base

If the resulting opcode is greater than 255, a standard opcode must be used instead.

To decode a special opcode, subtract the opcode_base from the opcode itself. The amount to
increment the addr ess register is the adjusted opcode divided by the | i ne_range. The
amount to increment the | i ne register isthe |l i ne_base plus the result of the adjusted opcode

Revision: 2.0.0 Page 54 July 27,1993
Industry Review Draft

Programming Languages SIG

modulo thel i ne_r ange. That s,
line increnent = line_base + (adjusted opcode % |ine_range)

As an example, suppose that the opcode_base is 16,1 i ne_base is-land | i ne_range is
4. This means that we can use a special opcode whenever two successive rows in the matrix have
source line numbers differing by any value within the range [-1, 2] (and, because of the limited
number of opcodes available, when the difference between addresses iswithin the range [0, 59]).

The opcode mapping would be:
[Opcode Lineadvance Addressadvance U
] - [l
0 16 1 0 0
o 17 0 0 0
0 18 1 0 0
O 19 2 0 O
0 20 -1 1 0
0 21 0 1 .
O O

22 1 1

O O
0o 23 2 1 0
0 253 0 59 O
0 254 1 59 O
H 255 2 59 H

There is no requirement that the expression 255 - |ine_base + 1 beanintegra multiple

of | i ne_range.
6.2.5.2 Standard Opcodes

There are currently 9 standard ubyte opcodes. In the future additional ubyte opcodes may be
defined by setting the opcode_base field in the statement program prologue to a value greater
than 10.

1. DWLNS copy
Takes no arguments. Append a row to the matrix using the current values of the state-
machineregisters. Then set the basi c_bl ock register to “‘false.”

2. DW.LNS_advance_pc
Takes a single unsigned LEB128 operand, multiplies it by the
m ni mum.instruction_|l ength field of the prologue, and adds the result to the
addr ess register of the state machine.

3. DWLNS advance_line
Takesasingle signed LEB128 operand and adds that value to thel i ne register of the state
machine.

4. DWLNS set file
Takes a single unsigned LEB128 operand and stores it in the f i | e register of the state
machine.

5. DWLNS set col um
Takes a single unsigned LEB128 operand and stores it in the col umm register of the state
machine.

Revision: 2.0.0 Page 55 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

DW LNS negate_stnt
Takesno arguments. Setthei s_st nt register of the state machine to the logical negation
of its current value.

DW LNS set basic_bl ock
Takes no arguments. Set the basi ¢_bl ock register of the state machineto *‘true.”’

DW LNS _const _add_pc
Takes no arguments. Add to the addr ess register of the state machine the address
increment value corresponding to special opcode 255.

The motivation for DW LNS _const _add_pc isthis. when the statement program needs
to advance the address by a small amount, it can use a single special opcode, which
occupies a single byte. When it needs to advance the address by up to twice the range of
the last special opcode, it can use DW LNS const _add_pc followed by a special
opcode, for a total of two bytes. Only if it needs to advance the address by more than twice
that range will it need to use both DW LNS advance_pc and a special opcode,
requiring three or more bytes.

DW LNS fi xed_advance_pc

Takes asingle uhalf operand. Add to the addr ess register of the state machine the value
of the (unencoded) operand. This is the only extended opcode that takes an argument that
is not avariable length number.

The motivation for DW LNS fi xed _advance_pc is this: existing assemblers cannot
emit DW LNS advance_pc or special opcodes because they cannot encode LEB128
numbers or judge when the computation of a special opcode overflows and requires the use
of DW LNS_advance_pc. Such assemblers, however, can use
DW LNS fi xed_advance_pc instead, sacrificing compression.

6.2.5.3 Extended Opcodes

There are three extended opcodes currently defined. The first byte following the length field of
the encoding for each contains a sub-opcode.

1. DWLNE end_sequence
Set the end_sequence register of the state machine to ‘‘true’’ and append a row to the
matrix using the current values of the state-machine registers. Then reset the registers to
theinitia values specified above.
Every statement program sequence must end with a DW LNE end_sequence
instruction which creates a row whose address is that of the byte after the last target
machine instruction of the sequence.

2. DWLNE set address
Takes a single relocatable address as an operand. The size of the operand is the size
appropriate to hold an address on the target machine. Set the addr ess register to the
value given by the rel ocatable address.
All of the other statement program opcodes that affect the addr ess register add a delta
to it. Thisinstruction stores a relocatable value into it instead.

3. DWLNE define file
Takes 4 arguments. Thefirst isanull terminated string containing a source file name. The
second is an unsigned LEB128 number representing the directory index of the directory in

Revision: 2.0.0 Page 56 July 27, 1993

Industry Review Draft

Programming Languages SIG

which the file was found. The third is an unsigned LEB128 number representing the time
of last modification of the file. The fourth is an unsigned LEB128 number representing the
length in bytes of the file. The time and length fields may contain LEB128(0) if the
information is not available.

The directory index represents an entry in the i ncl ude_di rect ori es section of the
statement program prologue. The index is LEB128(0) if the file was found in the current
directory of the compilation, LEB128(1) if it was found in the first directory in the
i nclude_directories section, and so on. The directory index is ignored for file
names that represent full path names.

The files are numbered, starting at 1, in the order in which they appear; the names in the
prologue come before names defined by the DW LNE defi ne_fi | e instruction. These
numbers are used in thethef i | e register of the state machine.

Appendix 3 gives some sample statement programs.
6.3 Macro Information

Some languages, such as C and C++, provide a way to replace text in the source program with
macros defined either in the source file itself, or in another file included by the source file.
Because these macros are not themsel ves defined in the target language, it is difficult to represent
their definitions using the standard language constructs of DWARF. The debugging information
therefore reflects the state of the source after the macro definition has been expanded, rather than
as the programmer wrote it. The macro information table provides a way of preserving the
original source in the debugging information.

As described in section 3.1, the macro information for a given compilation unit is represented in
the . debug_naci nf o section of an object file. The macro information for each compilation
unit is represented as a series of ‘‘macinfo’’ entries. Each macinfo entry consists of a ‘‘type
code’’ and up to two additional operands. The series of entries for a given compilation unit ends
with an entry containing atype code of 0.

6.3.1 Macinfo Types

The valid macinfo types are as follows:

DW MACI NFO _defi ne A macro definition.

DW MACI NFO_undef A macro un-definition.

DW MACI NFO start _file The start of a new source file inclusion.

DW MACI NFO end_fil e The end of the current source file inclusion.

DW MACI NFO _vendor _ext Vendor specific macro information directives that do not fit

into one of the standard categories.
6.3.1.1 Define and Undefine Entries

All DW MACI NFO _def i ne and DW MACI NFO_undef entries have two operands. The first
operand encodes the line number of the source line on which the relevant defining or undefining
pre-processor directives appeared.

The second operand consists of a null-terminated character string. In the case of a
DW MACI NFO _undef entry, the value of this string will be simply the name of the pre-
processor symbol which was undefined at the indicated source line.

Revision: 2.0.0 Page 57 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

In the case of a DW MACI NFO_def i ne entry, the value of this string will be the name of the
pre-processor symbol that was defined at the indicated source line, followed immediately by the
macro formal parameter list including the surrounding parentheses (in the case of a function-like
macro) followed by the definition string for the macro. If there is no formal parameter list, then
the name of the defined macro is followed directly by its definition string.

In the case of a function-like macro definition, no whitespace characters should appear between
the name of the defined macro and the following left parenthesis. Also, no whitespace characters
should appear between successive formal parameters in the formal parameter list. (Successive
formal parameters should, however, be separated by commas.) Also, exactly one space character
should separate the right parenthesis which terminates the formal parameter list and the following
definition string.

In the case of a “‘normal’’ (i.e. non-function-like) macro definition, exactly one space character
should separate the name of the defined macro from the following definition text.

6.3.1.2 Start FileEntries

Each DW MACI NFO st art _fil e entry aso has two operands. The first operand encodes the
line number of the source line on which the inclusion pre-processor directive occurred.

The second operand encodes a source file name index. Thisindex corresponds to afile number in
the statement information table for the relevant compilation unit. Thisindex indicates (indirectly)
the name of the file which is being included by the inclusion directive on the indicated source
line.

6.3.1.3 End File Entries

A DW MACI NFO_end_fi | e entry has no operands. The presence of the entry marks the end of
the current source file inclusion.

6.3.1.4 Vendor Extension Entries

A DW MACI NFO _vendor _ext entry has two operands. The first is a constant. The second is
a null-terminated character string. The meaning and/or significance of these operands is
intentionally left undefined by this specification.

A consumer must be able to totally ignore al DW MACI NFO _vendor _ext entries that it does
not understand.

6.3.2 Base Source Entries

In addition to producing a matched pair of DWMACINFO start_file and
DW MACI NFO end_fil e entries for each inclusion directive actually processed during
compilation, a producer should generate such a matched pair also for the ‘‘base’’ source file
submitted to the compiler for compilation. If the base source file for a compilation is submitted
to the compiler via some means other than via a named disk file (e.g. via the standard input
stream on a UNIX system) then the compiler should still produce this matched pair of
DW MACI NFO start _fil e and DW MACI NFO end_fi | e entries for the base source file,
however, the file name indicated (indirectly) by the DW MACI NFO_start _fil e entry of the
pair should reference a statement information file name entry consisting of anull string.

6.3.3 Macinfo Entriesfor Command Line Options

In addition to producing DW MACI NFO_def i ne and DW MACI NFO_undef entriesfor each of
the define and undefine directives processed during compilation, the DWARF producer should

Revision: 2.0.0 Page 58 July 27,1993
Industry Review Draft

Programming Languages SIG

generate a DW MACI NFO _def i ne or DW MACI NFO_undef entry for each pre-processor
symbol which is defined or undefined by some means other than via a define or undefine directive
within the compiled source text. In particular, pre-processor symbol definitions and un-
definitions which occur as aresult of command line options (when invoking the compiler) should
be represented by their own DW MACI NFO_def i ne and DW MACI NFO _undef entries.

All such DW MACI NFO_def i ne and DW MACI NFO_undef entries representing compilation
options should appear before the first DW MACI NFO st art _fil e entry for that compilation
unit and should encode the value O in their line number operands.

6.3.4 General Rulesand Restrictions

All macinfo entries within a . debug_maci nf o section for a given compilation unit should
appear in the same order in which the directives were processed by the compiler.

All macinfo entries representing command line options should appear in the same order as the
relevant command line options were given to the compiler. In the case where the compiler itself
implicitly supplies one or more macro definitions or un-definitions in addition to those which
may be specified on the command line, macinfo entries should also be produced for these implicit
definitions and un-definitions, and these entries should also appear in the proper order relative to
each other and to any definitions or undefinitions given explicitly by the user on the command
line.

6.4 Call Frame Information

Debuggers often need to be able to view and modify the state of any subroutine activation that is
on the call stack. An activation consists of:

+ A code location that is within the subroutine. This location is either the place where the
program stopped when the debugger got control (e.g. a breakpoint), or is a place where a
subroutine made a call or was interrupted by an asynchronous event (e.g. a signal).

« An area of memory that is allocated on a stack called a ‘‘call frame.”” The call frame is
identified by an address on the stack. We refer to this address as the Canonical Frame
Address or CFA.

+ Aset of registersthat arein use by the subroutine at the code location.

Typically, a set of registers are designated to be preserved acrossa call. If a callee wishesto use
such a register, it saves the value that the register had at entry time in its call frame and restores
it on exit. The code that allocates space on the call frame stack and performs the save operation
is called the subroutine’s prologue, and the code that performs the restore operation and
deallocates the frame is called its epilogue. Typically, the prologue code is physically at the
beginning of a subroutine and the epilogue code is at the end.

To be able to view or modify an activation that is not on the top of the call frame stack, the
debugger must “*virtually unwind’’ the stack of activations until it finds the activation of interest.
A debugger unwinds a stack in steps. Starting with the current activation it restores any registers
that were preserved by the current activation and computes the predecessor’'s CFA and code
location. This has the logical effect of returning from the current subroutine to its predecessor.
We say that the debugger virtually unwinds the stack because it preserves enough information to
beableto ‘‘rewind’’ the stack back to the state it was in before it attempted to unwind it.

The unwinding operation needs to know where registers are saved and how to compute the
predecessor’s CFA and code location. When considering an architecture-independent way of

Revision: 2.0.0 Page 59 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

encoding this information one has to consider a number of special things.

+ Prologue and epilogue code is not always in distinct blocks at the beginning and end of a
subroutine. It is common to duplicate the epilogue code at the site of each return from the
code. Sometimes a compiler breaks up the register save/unsave operations and moves them
into the body of the subroutine to just where they are needed.

« Compilers use different ways to manage the call frame. Sometimes they use a frame pointer
register, sometimes not.

« The algorithm to compute the CFA changes as you progress through the prologue and
epilogue code. (By definition, the CFA value does not change.)

« Some subroutines have no call frame.

« Sometimes a register is saved in another register that by convention does not need to be
saved.

« Some architectures have special instructions that perform some or all of the register
management in one instruction, leaving special information on the stack that indicates how
registers are saved.

« Some architectures treat return address values specially. For example, in one architecture,
the call instruction guarantees that the low order two bits will be zero and the return
instruction ignores those bits. This leaves two bits of storage that are available to other uses
that must be treated specially.

6.4.1 Structure of Call Frame Information

DWAREF supports virtual unwinding by defining an architecture independent basis for recording
how procedures save and restore registers throughout their lifetimes. This basis must be
augmented on some machines with specific information that is defined by either an architecture
specific ABI authoring committee, a hardware vendor, or a compiler producer. The body defining
a specific augmentation is referred to below as the ** augmenter.”’

Abstractly, this mechanism describes a very large table that has the following structure:

LOC CFA RO R1 .. RN
LO
L1

LN
The first column indicates an address for every location that contains code in a program. (In
shared objects, this is an object-relative offset.) The remaining columns contain virtual
unwinding rules that are associated with the indicated location. The first column of the rules

defines the CFA rule which is aregister and a signed offset that are added together to compute the
CFA vaue.

The remaining columns are labeled by register number. This includes some registers that have
specia designation on some architectures such as the PC and the stack pointer register. (The
actual mapping of registers for a particular architecture is performed by the augmenter.) The
register columns contain rules that describe whether a given register has been saved and the rule
to find the value for the register in the previous frame.

Revision: 2.0.0 Page 60 July 27,1993
Industry Review Draft

Programming Languages SIG

Theregister rules are:

undefined A register that has this rule has no value in the previous frame. (By
convention, it isnot preserved by acalee.)

same value This register has not been modified from the previous frame. (By
convention, it is preserved by the callee, but the callee has not modified
it.)

offset(N) The previous value of this register is saved at the address CFA+N where
CFA isthe current CFA value and N is asigned offset.

register(R) The previous value of thisregister is stored in another register numbered
R.

architectural The ruleis defined externally to this specification by the augmenter.

This table would be extremely large if actually constructed as described. Most of the entries at
any point in the table are identical to the ones above them. The whole table can be represented
guite compactly by recording just the differences starting at the beginning address of each
subroutine in the program.

The virtual unwind information is encoded in a self-contained section called . debug_f r ame.
Entries in a. debug_f r ane section are aligned on an addressing unit boundary and come in
two forms: A Common Information Entry (CIE) and a Frame Description Entry (FDE). Sizes of
data objects used in the encoding of the . debug_f r ane section are described in terms of the
same data definitions used for the line number information (see section 6.2.1).

A Common Information Entry holds information that is shared among many Frame Descriptors.
There is a least one CIE in every non-empty . debug_frane section. A CIE contains the
following fields, in order:

1. length
A uword constant that gives the number of bytes of the CIE structure, not including the
length field, itself (length mod <addressing unit size> == 0).

2. CE.id
A uword constant that is used to distinguish CIEs from FDEs.

3. version
A ubyte version number. This number is specific to the call frame information and is
independent of the DWARF version number.

4. augnentation
A null terminated string that identifies the augmentation to this CIE or to the FDEs that use
it. If areader encounters an augmentation string that is unexpected, then only the following
fieldscan beread: CIE: | engt h, Cl E_i d, ver si on, augnent ati on; FDE: | engt h,
CIE pointer, initial _|ocation, address range. If thee is no
augmentation, thisvalue is a zero byte.

5. code_al i gnnment _factor
An unsigned LEB128 constant that is factored out of all advance location instructions (see
below).

6. data_alignnent factor
A signed LEB128 constant that is factored out of all offset instructions (see below.)

Revision: 2.0.0 Page 61 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

7.

return_address_register
A ubyte constant that indicates which column in the rule table represents the return address
of the function. Note that this column might not correspond to an actual machine register.

initial _instructions
A sequence of rules that are interpreted to create the initial setting of each column in the
table.

paddi ng
Enough DW_CFA_nop instructions to make the size of this entry match the | engt h value
above.

An FDE contains the following fields, in order:

1.

| engt h

A uword constant that gives the number of bytes of the header and instruction stream for
this function (not including the length field itself) (length mod <addressing unit size> ==
0).

Cl E_poi nter
A uword constant offset into the . debug_f r anme section that denotes the CIE that is
associated with this FDE.

initial_|ocation Anaddressing-unit sized constant indicating the address of the first
location associated with this table entry.

addr ess_range
An addressing unit sized constant indicating the number of bytes of program instructions
described by this entry.

i nstructions
A sequence of table defining instructions that are described below.

6.4.2 Call Framelnstructions

Each call frame instruction is defined to take O or more operands. Some of the operands may be
encoded as part of the opcode (see section 7.23). Theinstructions are as follows:

1.

DW CFA _advance_| oc takes a single argument that represents a constant delta. The
required action is to create a new table row with alocation value that is computed by taking
the current entry’s location value and adding (delta* code_al i gnnment _f act or). All
other values in the new row are initially identical to the current row.

DW CFA of f set takes two arguments: an unsigned LEB128 constant representing a
factored offset and a register number. The required action is to change the rule for the
register indicated by the register number to be an offset(N) rule with a value of (N =
factored offset* dat a_al i gnment _f act or).

DW CFA restore takes a single argument that represents a register number. The
required action is to change the rule for the indicated register to the rule assigned it by the
initial _instructionsintheCIE.

DW CFA set | oc takes a single argument that represents an address. The required
action is to create a new table row using the specified address as the location. All other
values in the new row are initially identica to the current row. The new location value
should always be greater than the current one.

Revision: 2.0.0 Page 62 July 27, 1993

Industry Review Draft

10.

11.

12.

13.
14.

15.

16.

17.

18.

Programming Languages SIG

DW CFA_advance_|I oc1 takes a single ubyte argument that represents a constant delta.
This instruction is identical to DW CFA_advance_| oc except for the encoding and size
of the delta argument.

DW CFA advance_ | oc?2 takes asingle uhaf argument that represents a constant delta.
This instruction is identical to DW CFA _advance_| oc except for the encoding and size
of the delta argument.

DW CFA _advance_| oc4 takesasingle uword argument that represents a constant delta.
This instruction is identical to DW CFA_advance_| oc except for the encoding and size
of the delta argument.

DW CFA of f set _ext ended takes two unsigned LEB128 arguments representing a
register number and a factored offset. This instruction is identical to DW CFA_of f set
except for the encoding and size of the register argument.

DW CFA restore_extended takes a single unsigned LEB128 argument that
represents a register number. This instruction is identical to DW CFA r est or e except
for the encoding and size of the register argument.

DW CFA_undef i ned takesasingle unsigned LEB128 argument that represents a register
number. The required action isto set the rule for the specified register to ‘‘ undefined.’’

DW CFA _same_val ue takes a single unsigned LEB128 argument that represents a
register number. The required action is to set the rule for the specified register to ‘*same
vaue.”’

DW CFA regi ster takes two unsigned LEB128 arguments representing register
numbers. The required action isto set the rule for the first register to be the second register.

DW CFA renenber _state

DW CFA restore_state

These instructions define a stack of information. Encountering the
DW CFA_r enmenber _st at e instruction means to save the rules for every register on the
current row on the stack. Encountering the DW CFA rest ore_st at e instruction
means to pop the set of rules off the stack and place them in the current row. (This
operation is useful for compilers that move epilogue code into the body of a function.)

DW CFA def cf a takestwo unsigned LEB128 arguments representing a register number
and an offset. The required action is to define the current CFA rule to use the provided
register and offset.

DW CFA def _cfa_regi ster takesasingle unsigned LEB128 argument representing
aregister number. The required action is to define the current CFA rule to use the provided
register (but to keep the old offset).

DW CFA def cfa_of fset takes asingle unsigned LEB128 argument representing an
offset. The required action is to define the current CFA rule to use the provided offset (but
to keep the old register).

DW CFA _nop has no arguments and no required actions. It is used as padding to make the
FDE an appropriate size.

Revision: 2.0.0 Page 63 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

6.4.3 Call FrameInstruction Usage

To determine the virtual unwind rule set for a given location (L1), one searches through the FDE
headers looking at the i nitial | ocati on and address_r ange values to see if L1 is
contained in the FDE. If so, then:

1.

Initialize a register set by reading thei niti al _i nstructi ons field of the associated
CIE.

Read and process the FDE's instruction sequence until a DW CFA_advance_| oc,
DW CFA set | oc, or the end of the instruction stream is encountered.

If a DW CFA advance | oc or DW CFA set | oc instruction was encountered, then
compute a new location value (L2). If L1 >= L2 then process the instruction and go back
to step 2.

The end of the instruction stream can be thought of as a
DW CFA set loc(initial _location + address_range)
instruction. Unless the FDE isill-formed, L1 should be less than L2 at this point.

Therulesin the register set now apply to location L1.

For an example, see Appendix 5.

Revision: 2.0.0 Page 64 July 27, 1993

Industry Review Draft

Programming Languages SIG

7. DATA REPRESENTATION

This section describes the binary representation of the debugging information entry itself, of the
attribute types and of other fundamental elements described above.

7.1 Vendor Extensibility

To reserve a portion of the DWARF name space and ranges of enumeration values for use for
vendor specific extensions, special labels are reserved for tag names, attribute names, base type
encodings, location operations, language names, calling conventions and call frame instructions.
The labels denoting the beginning and end of the reserved value range for vendor specific
extensions consist of the appropriate prefix (DW TAG, DW AT, DW ATE, DW OP, DW LANG, or
DW CFA respectively) followed by | o_user or _hi _user. For example, for entry tags, the
special labels are DW TAG | o_user and DW TAG _hi _user. Values in the range between
prefix | o_user and prefix_hi _user inclusive, are reserved for vendor specific extensions.
Vendors may use values in this range without conflicting with current or future system-defined
values. All other values are reserved for use by the system.

Vendor defined tags, attributes, base type encodings, location atoms, language names, calling
conventions and call frame instructions, conventionally use the form prefix_vendor_id _name,
where vendor_id is some identifying character sequence chosen so asto avoid conflicts with other
vendors.

To ensure that extensions added by one vendor may be safely ignored by consumers that do not
understand those extensions, the following rules should be followed:

1. New attributes should be added in such away that a debugger may recognize the format of
anew attribute value without knowing the content of that attribute value.

2. The semantics of any new attributes should not alter the semantics of previously existing
attributes.

3. The semantics of any new tags should not conflict with the semantics of previously existing
tags.
7.2 Reserved Error Values

As a convenience for consumers of DWARF information, the value O is reserved in the encodings
for attribute names, attribute forms, base type encodings, location operations, languages,
statement program opcodes, macro information entries and tag names to represent an error
condition or unknown value. DWARF does not specify names for these reserved values, since
they do not represent valid encodings for the given type and should not appear in DWARF
debugging information.

7.3 Executable Objects and Shared Objects

The relocated addresses in the debugging information for an executable object are virtual
addresses and the relocated addresses in the debugging information for a shared object are offsets
relative to the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects position independent.
Virtual addresses in a shared object may be calculated by adding the offset to the base address at
which the object was attached. This offset is available in the run-time linker’ s data structures.

Revision: 2.0.0 Page 65 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

7.4 File Constraints

All debugging information entries in a relocatable object file, executable object or shared object
arerequired to be physically contiguous.

7.5 Format of Debugging Information

For each compilation unit compiled with a DWARF Version 2 producer, a contribution is made
tothe. debug_i nf o section of the object file. Each such contribution consists of a compilation
unit header followed by a series of debugging information entries. Unlike the information
encoding for DWARF Version 1, Version 2 debugging information entries do not themselves
contain the debugging information entry tag or the attribute name and form encodings for each
attribute. Instead, each debugging information entry begins with a code that represents an entry
in a separate abbreviations table. This code is followed directly by a series of attribute values.
The appropriate entry in the abbreviations table guides the interpretation of the information
contained directly in the . debug_i nf o section. Each compilation unit is associated with a
particular abbreviation table, but multiple compilation units may share the same table.

This encoding was based on the observation that typical DWARF producers produce a very
limited number of different types of debugging information entries. By extracting the common
information from those entries into a separate table, we are able to compress the generated
information.

7.5.1 Compilation Unit Header

The header for the series of debugging information entries contributed by a single compilation
unit consists of the following information:

1. A 4-byte unsigned integer representing the length of the . debug_i nf o contribution for
that compilation unit, not including the length field itself.

2. A 2-byte unsigned integer representing the version of the DWARF information for that
compilation unit. For DWARF Version 2, the valuein thisfield is 2.

3. A 4-byte unsigned offset into the . debug_abbr ev section. This offset associates the
compilation unit with a particular set of debugging information entry abbreviations.

4. A 1-byte unsigned integer representing the size in bytes of an address on the target
architecture. If the system uses segmented addressing, this value represents the size of the
offset portion of an address.

The compilation unit header does not replace the DW TAG conpil e_unit debugging
information entry. It is additional information that is represented outside the standard DWARF
tag/attributes format.

7.5.2 Debugging Information Entry

Each debugging information entry begins with an unsigned LEB128 number containing the
abbreviation code for the entry. This code represents an entry within the abbreviation table
associated with the compilation unit containing this entry. The abbreviation code is followed by
aseries of attribute values.

On some architectures, there are alignment constraints on section boundaries. To make it easier
to pad debugging information sections to satisfy such constraints, the abbreviation code O is
reserved. Debugging information entries consisting of only the O abbreviation code are
considered null entries.

Revision: 2.0.0 Page 66 July 27,1993
Industry Review Draft

Programming Languages SIG

7.5.3 Abbreviation Tables

The abbreviation tables for all compilation units are contained in a separate object file section
called . debug_abbr ev. As mentioned before, multiple compilation units may share the same
abbreviation table.

The abbreviation table for a single compilation unit consists of a series of abbreviation
declarations. Each declaration specifies the tag and attributes for a particular form of debugging
information entry. Each declaration begins with an unsigned LEB128 number representing the
abbreviation code itself. It is this code that appears at the beginning of a debugging information
entry inthe . debug_i nf o section. As described above, the abbreviation code 0 is reserved for
null debugging information entries. The abbreviation code is followed by another unsigned
LEB128 number that encodes the entry’s tag. The encodings for the tag names are given in
Figures 14 and 15.

Following the tag encoding is a 1-byte value that determines whether a debugging information
entry using this abbreviation has child entries or not. If the value is DW CHI LDREN yes, the
next physically succeeding entry of any debugging information entry using this abbreviation is
the first child of the prior entry. If the 1-byte value following the abbreviation’s tag encoding is
DW CHI LDREN_no, the next physically succeeding entry of any debugging information entry
using this abbreviation is a sibling of the prior entry. (Either thefirst child or sibling entries may
be null entries). The encodings for the child determination byte are given in Figure 16. (As
mentioned in section 2.3, each chain of sibling entriesis terminated by a null entry).

Finally, the child encoding is followed by a series of attribute specifications. Each attribute
specification consists of two parts. Thefirst part is an unsigned LEB128 number representing the
attribute’'s name. The second part is an unsigned LEB128 number representing the attribute’s
form. The series of attribute specifications ends with an entry containing O for the name and O for
the form.

The attribute form DW FORM i ndi r ect is a special case. For attributes with this form, the
attribute value itself inthe . debug_i nf o section begins with an unsigned LEB128 number that
represents its form. This allows producers to choose forms for particular attributes dynamically,
without having to add a new entry to the abbreviation table.

The abbreviations for a given compilation unit end with an entry consisting of a O byte for the
abbreviation code.

See Appendix 2 for a depiction of the organization of the debugging information.
7.5.4 Attribute Encodings
The encodings for the attribute names are given in Figures 17 and 18.

The attribute form governs how the value of the attribute is encoded. The possible forms may
belong to one of the following form classes:

address Represented as an abject of appropriate size to hold an address on the
target machine (DW FORM addr). This address is relocatable in a
relocatable object file and is relocated in an executable file or shared object.

block Blocks come in four forms. The first consists of a 1-byte length followed
by 0 to 255 contiguous information bytes (DW FORM bl ockl). The
second consists of a 2-byte length followed by 0 to 65,535 contiguous
information bytes (DW FORM bl ock?2). The third consists of a 4-byte

Revision: 2.0.0 Page 67 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

(OTag name Vaue O
V TAG array_type 0x01 é
V TAG cl ass_t ype 0x02 0
(DW TAG entry_poi nt 0x03 0
[DW TAG enuner ati on_type 0x04 O
(DW TAG f or nal _par anet er 0x05 0
Cbw TAG i nport ed_decl arati on 0x08 O
V TAG | abel 0x0a -
V TAG_| exi cal _bl ock 0x0b 0
(PDW TAG nenber 0x0d 0
[DW TAG poi nter _type OxOf g
LDW TAG ref erence_type 0x10 O
V TAG conpi |l e_uni t 0x11 E
VTAG string type 0x12 0
[PW TAG structure_type 0x13 0
[(DW TAG subrouti ne_type 0x15 O
[DW TAG t ypedef 0x16 0
COw TAG uni on_t ype 0x17 O
V TAG unspeci fied paraneters 0x18 E
V TAG vari ant 0x19 0
PW TAG common_bl ock Oxla 0
[DW TAG _conmmon_i ncl usi on Ox1b U
LDW TAG i nheri t ance Ox1c O
V TAG i nl i ned_subroutine Ox1d E
V TAG nodul e Ox1le 0
(DW TAG ptr_to_nenber_type Ox1f 0
[(DW TAG set _type 0x20 O
[(DW TAG subr ange_t ype 0x21 0
COw TAG wi t h_st nt 0x22 0
V TAG access_decl arati on 0x23 E
V TAG base_type 0x24 a
[PW TAG cat ch_bl ock 0x25 0
[(DW TAG const _type 0x26 g
LDW TAG const ant 0x27 g
V TAG_enuner at or 0x28 E
VTAG file type 0x29 0

Figure 14. Tag encodings (part 1)

length followed by O to 4,294,967,295 contiguous information bytes
(DW FORM bl ock4). The fourth consists of an unsigned LEB128 length
followed by the number of bytes specified by the length
(DW_FORM bl ock). Inal forms, the length is the number of information
bytes that follow. The information bytes may contain any mixture of
relocated (or relocatable) addresses, references to other debugging
information entries or data bytes.

constant There are six forms of constants: one, two, four and eight byte values
(respectively, DW FORM dat al, DW FORM dat a2,
DW FORM dat a4, and DW FORM dat a8). There are aso variable

Revision: 2.0.0 Page 68 July 27,1993
Industry Review Draft

flag

reference

Revision: 2.0.0

Programming Languages SIG

[OTag name Vaue [
VTAG friend 0x2a 5
V TAG narnel i st 0x2b
PW TAG nanel i st _item 0x2c 0
[DW TAG packed_type Ox2d O
[(DW TAG subpr ogr am Ox2e U
Cbw TAG tenpl ate type param 0x2f U
V TAG t enpl at e_val ue_param 0x30 B
V TAG_ t hr own_t ype 0x31 0
[(DW TAG try_bl ock 0x32 0
[DW TAG vari ant _part 0x33 O
[(DW TAG vari abl e ox34 U
V TAG vol atil e _type 0x35 B
VTAG | o_user 0x4080
DW TAG hi _user Oxffff

Figure 15. Tag encodings (part 2)

[(IChild determination name Vaue O

=DW CHI LDREN_no 0 5
DW CHI LDREN_yes 1

Figure 16. Child determination encodings

length constant data forms encoded using LEB128 numbers (see below).
Both signed (DW FORM sdat a) and unsigned (DW FORM udat a)
variable length constants are available.

A flag is represented as a single byte of data (DW FORM f | ag). If theflag
has value zero, it indicates the absence of the attribute. If the flag has a
non-zero value, it indicates the presence of the attribute.

There are two types of reference. The first is an offset relative to the first
byte of the compilation unit header for the compilation unit containing the
reference. The offset must refer to an entry within that same compilation
unit. There are five forms for this type of reference: one, two, four and
eight byte offsets (respectively, DW FORM ref 1, DW FORM r ef 2,
DW FORM r ef 4, and DW FORM r ef 8). There are is also an unsigned
variable length offset encoded wusing LEB128 numbers
(DW_FORM r ef _udat a).

The second type of reference is the address of any debugging information
entry within the same executable or shared abject; it may refer to an entry
in a different compilation unit from the unit containing the reference. This
type of reference (DW FORM r ef _addr) is the size of an address on the
target architecture; it is relocatable in a rel ocatabl e object file and rel ocated
in an executable file or shared object.

The use of compilation unit relative references will reduce the number of
link-time relocations and so speed up linking.

The use of addresstype references allows for the commonization of
information, such as types, across compilation units.

Page 69 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

CAttribute name Vaue Classes O
VAT sibling 0x01 reference H
V AT | ocati on 0x02 block, constant 0
PW AT_name 0x03 string 0
[DW AT _orderi ng 0x09 constant O
[(DW AT byte_ size 0x0b constant 0
Cobw AT bit_of f set 0x0Oc constant O
VAT bit_size 0x0d constant g
VAT stnt_|ist 0x10 constant 0
(DW AT _| ow_pc 0Ox11 address O
[DW AT _hi gh_pc 0x12 address u
[DW AT | anguage 0x13 constant g
V AT _di scr 0x15 reference g
V AT_di scr _val ue 0x16 constant 0
[PWAT_visibility 0x17 constant 0
[DW AT _i nport 0x18 reference O
[DW AT string_l ength 0x19 block, constant 0
Cbw AT common_reference Oxla reference O
VAT conp_dir Ox1b string E
V AT _const _val ue Ox1lc string, constant, block
[(DW_AT_cont ai ni ng_t ype Ox1d reference O
[DW AT _defaul t _val ue Oxle reference O
LDW AT i nline 0x20 constant O
VAT is_optional 0x21 flag E
V AT | ower bound 0x22 constant, reference
PW AT_pr oducer 0x25 string 0
[DW AT_pr ot ot yped 0x27 flag O
[DW AT return_addr 0x2a block, constant 0
CDW AT start_scope 0x2c constant O
VAT stride_size 0Ox2e constant g
V AT upper bound O0x2f constant, reference

Figure 17. Attribute encodings, part 1

string A string is a sequence of contiguous non-null bytes followed by one null
byte. A string may be represented immediately in the debugging
information entry itself (DW FORM st ri ng), or may be represented as a
4-byte offset into a string table contained in the . debug_st r section of
the object file (DW FORM st r p).

The form encodings are listed in Figure 19.
7.6 Variable Length Data

The specia constant data forms DW FORM sdat a and DW FORM udat a are encoded using
““Little Endian Base 128" (LEB128) numbers. LEB128 is a scheme for encoding integers
densely that exploits the assumption that most integers are small in magnitude. (This encoding is
equally suitable whether the target machine architecture represents data in big-endian or little-
endian order. It is ‘‘little endian’’ only in the sense that it avoids using space to represent the
“‘hig"’ end of an unsigned integer, when the big end is all zeroes or sign extension hits).

Revision: 2.0.0 Page 70 July 27,1993
Industry Review Draft

Programming Languages SIG

UAttribute name Vaue Classes O
V AT _abstract _origin 0x31 reference é
V AT _accessibility 0x32 constant 0
(DW AT_addr ess_cl ass 0x33 constant 0
[(DW AT artificial 0x34 flag O
[(DW AT _base_types 0x35 reference 0
Cbw AT cal I'i ng_convention 0x36 constant O
V AT _count 0x37 constant, reference E
V AT_dat a_nenber _| ocation 0x38 block, reference
(PW AT _decl _col um 0x39 constant O
[(DW AT decl _file 0x3a constant U
LDW AT decl _line 0x3b constant O
V AT decl aration 0x3c flag E
V AT discr_|ist 0x3d block 0
(DW AT_encodi ng Ox3e constant 0
[(DW AT _ext er nal Ox 3f flag g
[DW AT _frane_base 0x40 block, constant [
Chw AT friend 0x41 reference O
VAT identifier_case 0x42 constant E
VAT macro_info 0x43 constant 0
(PW AT nanelist_item 0x44 block O
[(DWAT priority 0x45 reference O
Lbw AT_segnent 0x46 block, constant U
V AT _specification 0x47 reference E
VAT static_ |ink 0x48 block, constant 0
(DW AT_type 0x49 reference 0
[(DW AT _use_l ocati on Ox4a block, constant O
[(DW AT vari abl e_par anet er 0x4b flag 0
COW AT virtuality Ox4c constant 0
VAT vtable elem | ocation 0x4d block, reference E
VAT | o_user 0x2000 — a
FDW AT_hi _user ox3fff — A

Figure 18. Attribute encodings, part 2

DW FORM udat a (unsigned LEB128) numbers are encoded as follows: start at the low order
end of an unsigned integer and chop it into 7-bit chunks. Place each chunk into the low order 7
bits of a byte. Typically, several of the high order bytes will be zero; discard them. Emit the
remaining bytes in a stream, starting with the low order byte; set the high order bit on each byte
except the last emitted byte. The high bit of zero on the last byte indicates to the decoder that it
has encountered the last byte.

Theinteger zero isaspecial case, consisting of asingle zero byte.

Figure 20 gives some examples of DW FORM udat a numbers. The 0x80 in each case is the
high order bit of the byte, indicating that an additional byte follows:

The encoding for DW FORM sdat a (signed, 2s complement LEB128) numbers is similar,
except that the criterion for discarding high order bytes is not whether they are zero, but whether
they consist entirely of sign extension bits. Consider the 32-bit integer - 2. The three high level
bytes of the number are sign extension, thus LEB128 would represent it as a single byte

Revision: 2.0.0 Page 71 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

[Form name Vadue Class O
V FORM addr 0x01 address E
V FORM bl ock?2 0x03 bhlock 0
PW FORM bl ock4 0x04 block 0
[(PW FORM dat a2 0x05 constant O
[(DW FORM dat a4 0x06 constant 0
Cbw FORM dat a8 0x07 constant O
V FORM string 0x08 string g
V FORM bl ock 0x09 block 0
PW FORM bl ock1 Ox0a bhlock 0
[DW FORM dat al Ox0b constant O
[LDW FORM f I ag 0x0c flag g
V FORM sdat a 0x0d constant g
VFORM strp Ox0e string 0
PW FORM udat a OxO0f constant 0
[(DW FORM r ef _addr 0x10 reference O
[DW FORM ref 1 Ox11 reference 0
COw FORM r ef 2 0x12 reference O
V FORM ref 4 0x13 reference E
V FORM r ef 8 0x14 reference 0
(DW FORM ref _udata 0x15 reference 0
HDW FORM i ndi r ect 0x16 (seesection7.5.3) H

Figure 19. Attribute form encodings

[CNumber Firstbyte Second byte [
0 0
0 127 127 — c
0 128 0+0x80 1 0
0 129 1+0x80 1 0
0 130 2+0x80 1 O
H12857 57+0x80 100 H

Figure 20. Examples of unsigned LEB128 encodings

containing the low order 7 bits, with the high order bit cleared to indicate the end of the byte
stream. Note that there is nothing within the LEB128 representation that indicates whether an
encoded number is signed or unsigned. The decoder must know what type of number to expect.

Figure 21 gives some examples of DW FORM _sdat a numbers.
Appendix 4 gives algorithms for encoding and decoding these forms.
7.7 Location Descriptions

7.7.1 Location Expressions

A location expression is stored in a block of contiguous bytes. The bytes form a set of
operations. Each location operation has a 1-byte code that identifies that operation. Operations
can be followed by one or more bytes of additional data. All operationsin a location expression
are concatenated from left to right. The encodings for the operations in alocation expression are
described in Figures 22 and 23.

Revision: 2.0.0 Page 72 July 27,1993
Industry Review Draft

Programming Languages SIG

[Number First byte Second byte [
0 0
o - 2 Ox7e — 0
0O 127 127+0x80 0 0
0-127 1+0x80 ox7f 0
0 128 0+0x80 1 0
U.128 0+0x80 Ox 7f O
J 129 1+0x80 1 g
0-129 0x7f+0x80 Ox7e 0

Figure 21. Examples of signed LEB128 encodings

[Operation Code No. of Operands Notes O
V OP_addr 0x03 1 constant address (size target specific) H
V OP_der ef 0x06 O 0
PW OP_const 1u 0x08 1 1-byte constant 0
(DW OP_const 1s 0x09 1 1-byte constant O
[DW OP_const 2u Ox0a 1 2-byte constant 0
Cbw oP_const 2s 0x0b 1 2-byte constant O
V OP_const 4u Ox0c 1 4-byte constant B
V OP_const 4s 0Ox0d 1 4-byte constant 0
PDW OP_const 8u 0Ox0e 1 8-byte constant 0
[(DW OP_const 8s oxof 1 8-byte constant O
[LDbw OP_constu 0x10 1 ULEB128 constant O
V OP_consts Ox11 1 SLEB128 constant B
V OP_dup 0x12 O 0
PW OP_dr op 0x13 O 0
[(DW OP_over 0x14 O 0
[(DW OP_pi ck 0x15 1 1-byte stack index 0
Cbw oP_swap 0x16 O O
V OP_r ot Ox17 O B
V OP_xder ef 0x18 O 5
(DW OP_abs 0x19 O O
[(DW OP_and Oxla O O
[bw OP_di v Oxlb 0 O
V OP_mi nus Oxlc O B
V OP_nod Oxid O 0
W OP_nul Oxle O 0
[DW OP_neg ox1if O O
[DW OP_not 0x20 O 0
Cow oP_or 0x21 0 O
VOP_pl us 0x22 0 E
V OP_pl us_uconst 0x23 1 ULEB128 addend 5
DW_OP_shl 0x24 O O
[(DW OP_shr 0x25 O O
FDW OP_shr a 0x26 0 H

Figure 22. Location operation encodings, part 1

Revision: 2.0.0 Page 73
Industry Review Draft

July 27, 1993

DWARF Debugging Information Format

[Operation Code No. of Operands Notes O
V OP_xor 0x27 O E
V OP_ski p Ox2f 1 signed 2-byte constant 0
PW OP_br a 0x28 1 signed 2-byte constant 0
[(DW OP_eq 0x29 O O
[(DW OP_ge 0x2a O 0
Chw oP gt 0x2b 0 O
VOP | e ox2c 0 .
VOP_ |t 0x2d O 0
(PW OP_ne Ox2e O 0
(DWOP_|it0 0x30 O literals 0..31 = (DW_OP_LITOCiteral) O
(bwor lit1l 0x31 0 g
o - O
Dw oP_l i t31 oxaf 0 .
PW OP_r eg0 0x50 O reg 0..31 = (DW_OP_REGOLtegnum) 0
[DW OP_regl 0x51 O O
Q.. O
Cbw oP reg31 ox6f 0 O
V OP_br eg0 0x70 1 SLEB128 offset E
V OP_bregl ox71 1 basereg 0..31 = (DW_OP_BREGOLtegnum)
0. O
[DW OP_br eg31 0ox8f 1 O
[LDwW OP_r egx 0x90 1 ULEB128 register g
V OP_f breg 0x91 1 SLEB128 offset B
V OP_br egx 0x92 2 ULEB128 register followed by SLEB128 offset 0
PW OP_pi ece 0x93 1 ULEB128 size of piece addressed 0
[(DW OP_der ef _si ze 0x94 1 1-byte size of dataretrieved O
[(DW OP_xderef _size 0x95 1 1-byte size of dataretrieved 0
Cbw oP_nop 0x96 0 O
VOP_| o_user 0xe0 g
V OP_hi _user Oxff N

Figure 23. Location operation encodings, part 2
7.7.2 Location Lists

Each entry in a location list consists of two relative addresses followed by a 2-byte length,
followed by a block of contiguous bytes. The length specifies the number of bytes in the block
that follows. The two addresses are the same size as used by DW FORM addr on the target
machine.

7.8 Base Type Encodings
The values of the constants used in the DW AT _encodi ng attribute are given in Figure 24.
7.9 Accessibility Codes

The encodings of the constants used in the DW AT_accessi bi | ity attribute are given in
Figure 25.

Revision: 2.0.0 Page 74 July 27,1993
Industry Review Draft

Programming Languages SIG

[Base type encoding hame Vaue [
V ATE addr ess Ox1 H
V ATE_bool ean 0x2 [
[DW ATE_conpl ex_float 0x3 [
[(DW ATE f1 oat 0x4 0O
[(DW ATE_si gned ox5 O
Lbw ATE si gned_char ox6 U
V ATE unsi gned 0x7 g
VATE_unsi gned_char 0x8 [
[(PW ATE | o_user 0x80 g

FDW ATE hi _user
Figure 24. Base type encoding values

o
X
=
—
1]

DAccessibility code name Vaue O
V ACCESS _publ i c 1 5
V ACCESS protected 2 0
W ACCESS private 3 0

Figure 25. Accessibility encodings
7.10 Visbility Codes

The encodings of the constants used in the DW AT_vi si bi | i ty attribute are given in Figure
26.

[Visibility code name Value [
VVI'S | ocal 1 H
V VIS exported 2 0
MWVIS qualified 3 0

Figure 26. Visibility encodings
7.11 Virtuality Codes

The encodings of the constants used in the DW AT _vi rtual ity attribute are given in Figure
27.

[Wirtuality code name Vaue O
DW VI RTUALI TY_none o U
BD\N_ VI RTUALI TY_vi rt ual 1 E
DW VI RTUALI TY_pure_vi rtual 2 0

Figure 27. Virtuality encodings
7.12 Source Languages

The encodings for source languages are given in Figure 28. Names marked with T and their
associated values are reserved, but the languages they represent are not supported in DWARF
Version 2.

7.13 Address Class Encodings

The value of the common address class encoding DW_ADDR_none isO.

Revision: 2.0.0 Page 75 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

[1Language name Vaue [
V LANG C89 0x0001 5
V LANG C 0x0002 -
DW LANG Ada83t 0x0003 [
[DW LANG C plus_plus 0x0004 O
[DW LANG Cobol 741 0x0005 O
Cbw LANG Cobol 85t 0x0006 U
VLANG Fortran77 0x0007 o
V LANG_Fortran90 0x0008
(DW LANG Pascal 83 0x0009 g
[DW LANG_Modul a2 0x000a U
[DW LANG | o_user 0x8000 U
HDW_LANG_hi _user Oxffff %

Figure 28. Language encodings
7.14 ldentifier Case

The encodings of the constants used in the DW AT i denti fi er _case attribute are given in

Figure 29.
(dentifier Case Name Vaue [
VI D case_sensitive 0 H
VI D up_case 1 5
PW. I D_down_case 2 0
FDW I D case_insensitive 3 H

Figure 29. Identifier case encodings

7.15 Calling Convention Encodings

The encodings for the values of the DW AT cal | i ng_conventi on attribute are given in

Figure 30.
[ICalling Convention Name Vaue O
V CC_nor nal 0x1 H
V CC_program 0x2
(PW CC_nocal | 0x3
[(DW CC | o_user 0x40 O
HDW CC_hi _user oxff H

Figure 30. Calling convention encodings
7.16 Inline Codes

The encodings of the constants used in the DW AT i nl i ne attribute are given in Figure 31.

Online Code Name Vaue O
VINL_not _inlined 0 H
VINL_inlined 1 0

ODW I NL_decl ared_not _inlined 2 0

FDW I NL_decl ared_i nl i ned 3 A

Figure 31. Inline encodings

Revision: 2.0.0 Page 76
Industry Review Draft

July 27, 1993

Programming Languages SIG

7.17 Array Ordering

The encodings for the values of the order attributes of arraysis givenin Figure 32.

[Ordering name Value O
VORD row major O H

VORD col _major 1 N
Figure 32. Ordering encodings

7.18 Discriminant Lists

The descriptors used in the DW AT _di csr_|i st attribute are encoded as 1-byte constants.
The defined values are presented in Figure 33.

[Descriptor Name Vaue [

VDSC | abel 0 E
VDSC range 1 N

Figure 33. Discriminant descriptor encodings
7.19 Name Lookup Table

Each set of entries in the table of global names contained in the . debug_pubnanes section
begins with a header consisting of: a 4-byte length containing the length of the set of entries for
this compilation unit, not including the length field itself; a 2-byte version identifier containing
the value 2 for DWARF Version 2; a4-byte offset into the . debug_i nf o section; and a4-byte
length containing the size in bytes of the contents of the . debug_i nf o section generated to
represent this compilation unit. This header is followed by a series of tuples. Each tuple consists
of a 4-byte offset followed by a string of non-null bytes terminated by one null byte. Each set is
terminated by a 4-byte word containing the value 0.

7.20 AddressRange Table

Each set of entries in the table of address ranges contained in the . debug_ar anges section
begins with a header consisting of: a 4-byte length containing the length of the set of entries for
this compilation unit, not including the length field itself; a 2-byte version identifier containing
the value 2 for DWARF Version 2; a 4-byte offset into the . debug_i nf o section; a 1-byte
unsigned integer containing the size in bytes of an address (or the offset portion of an address for
segmented addressing) on the target system; and a 1-byte unsigned integer containing the size in
bytes of a segment descriptor on the target system. This header is followed by a series of tuples.
Each tuple consists of an address and a length, each in the size appropriate for an address on the
target architecture. The first tuple following the header in each set begins at an offset that is a
multiple of the size of a single tuple (that is, twice the size of an address). The header is padded,
if necessary, to the appropriate boundary. Each set of tuples is terminated by a O for the address
and 0O for the length.

7.21 Line Number Information

The sizes of the integers used in the line number and call frame information sections are as
follows:

shyte Signed 1-byte value.
ubyte Unsigned 1-byte value.
Revision: 2.0.0 Page 77 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

uhalf Unsigned 2-byte value.
sword Signed 4-byte value.
uword Unsigned 4-byte value.

The version number in the statement program prologue is 2 for DWARF Version 2. The boolean
values ‘‘true’’ and ‘‘false’’ used by the statement information program are encoded as a single
byte containing the value O for ‘‘false,”’ and a non-zero value for ‘‘true.”” The encodings for the
pre-defined standard opcodes are given in Figure 34.

<
QD
c
]

[Opcode Name
V LNS copy
V LNS_advance_pc
PW LNS_advance_l i ne
[DWLNS set file
[DW LNS set col um
CDW LNS negat e_st nt
VLNS set basi c_bl ock
V LNS const _add_pc
FDW LNS fi xed_advance_pc

Figure 34. Standard Opcode Encodings

©oo~NOOULh,WDNE
10 o o |

The encodings for the pre-defined extended opcodes are given in Figure 35.

[Opcode Name Vaue O

V LNE_end_sequence 1
V LNE_set address 2
MW LNE define_file 3
Figure 35. Extended Opcode Encodings

OOOdd

7.22 Macro Information

The source line numbers and source file indices encoded in the macro information section are
represented as unsigned LEB128 numbers as ae the constants in an
DW MACI NFO _vendor _ext entry. The macinfo type is encoded as a single byte. The
encodings are given in Figure 36.

[(Macinfo Type Name Vaue O
V MACI NFO _def i ne 1 H
V MACI NFO_undef 2 0
(PW MACI NFO start _file 3 0
[(DW MACI NFO end_fil e 4 0
HOW MACI NFO vendor _ext 255 H

Figure 36. Macinfo Type Encodings
7.23 Call Frame Information

The value of the CIE id in the CIE header isOxffffffff. Theinitial value of the CIE version
number is 1.

Call frame instructions are encoded in one or more bytes. The primary opcode is encoded in the
high order two bits of the first byte (that is, opcode = byte >> 6). An operand or extended opcode

Revision: 2.0.0 Page 78 July 27,1993
Industry Review Draft

Programming Languages SIG

may be encoded in the low order 6 bits. Additional operands are encoded in subsequent bytes.
Theinstructions and their encodings are presented in Figure 37.

Onstruction High 2Bits Low 6Bits Operand 1 Operand 2 O
V CFA_advance_| oc 0x1 delta H
V CFA of f set 0x2 register ULEB128 offset 0
PW CFA restore 0x3 register 0
[(DW CFA set | oc 0 0x01 address O
[(DW CFA advance | ocl 0 0x02 1-byte delta 0
Cbw CFA advance_| oc2 0 0x03 2-byte delta 0
V CFA advance_ | oc4 0 0x04 4-byte delta B
V CFA of f set _ext ended 0 0x05 ULEB128register ~ULEB128offset [
[PW CFA restore_extended O 0x06 ULEB128 register 0
[(DW CFA _undef i ned 0 0x07 ULEB128 register O
[DW CFA sane_val ue 0 0x08 ULEB128 register O
V CFA regi st er 0 0x09 ULEB128register ~ULEB128 register B
V CFA renenber _state 0 0Ox0a 0
[PW CFA restore_state 0 0x0b 0
[DW CFA def _cfa 0 0x0c ULEB128register ULEB128offset [J
[(DW CFA def cfa register O 0x0d ULEB128 register 0
[bw CFA def cfa_offset 0 0x0e ULEB128 offset O
V CFA _nop 0 0 B
V CFA | o_user 0 Ox1c 0
FDW CFA _hi _user 0 Ox3f A

Figure 37. Call frame instruction encodings
7.24 Dependencies

The debugging information in this format is intended to exist in the . debug_abbrev,
. debug_aranges, .debug franme, .debug info, .debug line, .debug | oc,
. debug_nmci nf o, . debug_pubnanes and . debug_str sections of an object file. The
information is not word-aligned, so the assembler must provide away for the compiler to produce
2-byte and 4-byte quantities without alignment restrictions, and the linker must be able to relocate
a 4-byte reference at an arbitrary alignment. In target architectures with 64-bit addresses, the
assembler and linker must similarly handle 8-byte references at arbitrary alignments.

Revision: 2.0.0 Page 79 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 80 July 27,1993
Industry Review Draft

Programming Languages SIG

8. FUTURE DIRECTIONS

The UNIX International Programming Languages SIG is working on a specification for a set of
interfaces for reading DWARF information, that will hide changes in the representation of that
information from its consumers. It is hoped that using these interfaces will make the transition
from DWARF Version 1 to Version 2 much simpler and will make it easier for a single consumer
to support objects using either Version 1 or Version 2 DWARF.

A draft of this specification is available for review from UNIX International. The Programming
Languages SIG wishes to stress, however, that the specification is still in flux.

Revision: 2.0.0 Page 81 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 82 July 27,1993
Industry Review Draft

Programming Languages SIG

Appendix 1 -- Current Attributesby Tag Value

The list below enumerates the attributes that are most applicable to each type of debugging
information entry. DWARF does not in general require that a given debugging information entry
contain a particular attribute or set of attributes. Instead, a DWARF producer is free to generate
any, all, or none of the attributes described in the text as being applicable to a given entry. Other
attributes (both those defined within this document but not explicitly associated with the entry in
guestion, and new, vendor-defined ones) may also appear in a given debugging entry. Therefore,
the list may be taken as instructive, but cannot be considered definitive.

LTAG NAME APPLICABLE ATTRIBUTES

Eb\/\/_TAG_access_decl aration DECLYtT
DW AT accessibility

O

0 DW AT nare

[] DW AT _si bling
LDW TAG array_type DECL

DW AT abstract _origin
DW AT _accessibility
DW AT _byte_si ze

DW AT decl arati on

DW AT _nane

DW AT ordering

DW AT _si bl i ng

DW AT start_scope

DW AT stride_size

DW AT type
DWAT visibility
V TAG base_t ype DW AT bit of fset

DW AT bit_si ze
DW AT byte_ size
DW AT _encodi ng
DW AT_nane
DW AT _si bl i ng
TAG cat ch_bl ock DW AT _abstract_origin
DW AT hi gh_pc
DW AT | ow _pc
DW AT _segnent
DW AT _si bl i ng

ngDDDD%:]DDDDDDDDDDDDD

I e

—+ OOOono

DW AT decl col umm, DW AT decl file, DWAT decl Iine.

Revision: 2.0.0 Page 83 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME APPLICABLE ATTRIBUTES

EDV\/_TAG_CI ass_type DECL
DW AT abstract _origin
DW AT accessibility
DW AT _byte_si ze
DW AT decl arati on
DW AT nane
DW AT si bling
DW AT start_scope
DWAT visibility
V TAG_common_bl ock DECL
DW AT _decl arati on
DW AT | ocati on
DW AT_nane
DW AT _si bl i ng
DWAT visibility
TAG comon_inclusion DECL
DW AT conmon_r ef erence
DW AT _decl arati on
DW AT _si bl i ng
DWAT visibility
TAG conpi |l e_uni t DW AT base_types
DW AT conp_dir
DW AT identifier_case
DW AT_hi gh_pc
DW AT | anguage
DW AT | ow _pc
DW AT macro_info
DW AT _nane
DW AT _pr oducer
DW AT _si bli ng
DWAT stnt _|ist

[]DDDDDDDDDDD%JDDDD% DDDDDDQDDDDDDDDD

I e e |

PW TAG const _type DW AT _si bl i ng
H DW AT type
Revision: 2.0.0 Page 84

Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME APPLICABLE ATTRIBUTES

O
DECL 5
DW AT_accessibility 0
DW AT_constant _value [
DW AT _decl arati on O
DW AT ext er nal 0
DW AT nane 0
DW AT_si bl i ng .
DW AT start_scope 0
DW AT type 0
DWAT visibility O
TAG entry_poi nt DW AT address_cl ass E

DW AT | ow _pc 0
DW AT nane 0
DW AT return_addr O
DW AT _segnent 0
DW AT _si bl i ng 0
DWAT_static_link E
DW AT type N
TAG enuneration_type DECL O
DW AT abstract_origin E
1l
O
O
O
O
0
1l
[
O
O
O
0
(]
O
O
O
O
0
1l
O
O
5

DDDDDDDDDDDg

|
2
®
(@)
o
5
(7))
—*
Q
=1

g:lDDDDDDDDg

DW AT accessibility
DW AT byte size
DW AT decl arati on
DW AT _nane
DW AT _si bl i ng
DW AT _start _scope
DWAT visibility
V TAG_enuner at or DECL
DW AT _const _val ue
DW AT _namne
DW AT si bling
VTAG fil e_type DECL
DW AT abstract _origin
DW AT byte_ size
DW AT _nane
DW AT si bling
DW AT start_scope
DW AT type
DWAT visibility

%[ZHZIIZIDDDDDDD

nOoOonO

DIII:II:II:II:II:II:II:II%

Revision: 2.0.0 Page 85
Industry Review Draft

July 27, 1993

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME APPLICABLE ATTRIBUTES

EDV\/_TAG_f or mal _par amet er DECL

DW AT abstract _origin
DWAT artificial
DW AT _def aul t _val ue
DW AT i s_optional

DW AT | ocati on

DW AT _nane

DW AT _segnent

DW AT _si bl i ng

DW AT type

DW AT vari abl e_par anet er

TAG friend DECL
DW AT abstract _origin
DWAT friend
DW AT _si bling

TAG i nported _declaration DECL
DW AT accessibility
DW AT i nport
DW AT _nane
DW AT _si bli ng
DW AT start_scope

TAG_ i nheritance DECL
DW AT _accessibility
DW AT _dat a_nenber _| ocati on
DW AT si bling
DW AT type
DWAT virtuality

g:lDDDDD%E]DDDDD% DDD%]DDDDDDDDDDD

TAG i nl i ned_subrouti ne DECL
DW AT abstract _origin
DW AT hi gh_pc
DW AT | ow _pc
DW AT_segnent
DW AT _si bl i ng
DW AT _return_addr
DW AT start_scope

TAG | abel DW AT _abstract _origin
DW AT | ow_pc
DW AT nane
DW AT _segnent
DW AT start_scope
DW AT _si bl i ng

:IDDDDD%:]DDDDDDDD

I e A m w |

Revision: 2.0.0 Page 86
Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME

APPLICABLE ATTRIBUTES

EDV\/_TAG_I exi cal _bl ock

DW AT abstract_origin
DW AT _hi gh_pc

DW AT | ow _pc

DW AT _nane

DW AT_segnent

DW AT_si bl i ng

TAG nenber

DECL

DW AT _accessibility
DW AT _byte_si ze

DW AT _bit_of f set

DW AT bit_si ze
DW AT dat a nenber | ocati on
DW AT decl arati on
DW AT _nane

DW AT _si bl i ng

DW AT type

DWAT visibility

%[jDDDDDDDDDDD§]DDDDD

TAG nodul e

DECL

DW AT _accessibility
DW AT _decl arati on
DW AT _hi gh_pc

DW AT | ow_pc

DW AT _nane

DWAT priority

DW AT_segnent

DW AT_si bl i ng
DWAT visibility

%[jDDDDDDDDDD

TAG nanel i st

OOoOOoOo0Od

DECL

DW AT _accessibility
DW AT abstract_origin
DW AT decl arati on
DW AT si bling
DWAT visibility

>
@®
S
QD
Gl
2

_item

DECL

I e e

g DW AT nanel i st_item
O DW AT _si bl i ng

[(PW TAG packed_t ype DW AT _si bl i ng

H DW AT type

Revision: 2.0.0 Page 87

Industry Review Draft

July 27, 1993

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME APPLICABLE ATTRIBUTES

EDV\/_TAG_poi nter_type DW AT address_cl ass
DW AT sibling
DW AT type
DECL
DW AT abstract _origin
DW AT address_cl ass
DW AT contai ni ng_type
DW AT _decl arati on
DW AT nane
DW AT si bling
DW AT type
DW AT use_ | ocation
DWAT visibility
V TAG reference_type DW AT _address_cl ass
DW AT si bling
DW AT type
V TAG set _type DECL
DW AT abstract _origin
DW AT accessibility
DW AT byte size
DW AT decl arati on
DW AT _nane
DW AT start_scope
DW AT _si bli ng
DW AT type
DWAT visibility
V TAG string_type DECL
DW AT _accessibility
DW AT abstract _origin
DW AT byte size
DW AT decl arati on
DW AT _nane
DW AT_segnent
DW AT _si bli ng
DW AT start_scope
DW AT string | ength
DWAT visibility

gl:ll:l
2
IO
=
o
@
3
@
<
©
(¢

gDDDDDDDDDDD

HnOad

g

nOooOoOoOooOoOoodd

I e e

A R

Revision: 2.0.0 Page 88
Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME

APPLICABLE ATTRIBUTES

EDV\/_TAG_st ructure_type

DECL

DW AT abstract _origin
DW AT accessibility
DW AT _byte_si ze

DW AT decl arati on

DW AT nane

DW AT si bling

DW AT start_scope
DWAT visibility

QDDDDDDDDD

V TAG_subpr ogram

N e Y Y

DECL

DW AT abstract _origin
DW AT accessibility
DW AT _address_cl ass
DWAT artificial
DW AT cal I i ng_conventi on
DW AT _decl arati on
DW AT ext er nal

DW AT frame_base

DW AT _hi gh_pc

DW AT inline

DW AT | ow_pc

DW AT _namne

DW AT pr ot ot yped

DW AT return_addr

DW AT _segnent

DW AT _si bl i ng

DW AT _speci fication
DW AT _start _scope

DW AT static_|ink

DW AT type

DWAT visibility
DWAT virtuality

DW AT vtabl e_el em | ocation

I e e e |

Revision: 2.0.0

Page 89
Industry Review Draft

July 27, 1993

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributesby Tag Value

OTAG NAME APPLICABLE ATTRIBUTES
EDV\/_TAG_subr ange_type DECL
DW AT abstract _origin
DW AT accessibility
DW AT _byte_si ze
DW AT count
DW AT decl arati on
DW AT | ower _bound
DW AT nane
DW AT _si bl i ng
DW AT type
DW AT upper _bound
DWAT visibility
V TAG subroutine_type DECL
DW AT abstract _origin
DW AT _accessibility
DW AT address_cl ass
DW AT _decl arati on
DW AT_nane
DW AT _pr ot ot yped
DW AT _si bl i ng
DW AT start_scope
DW AT type
DWAT visibility
V TAG t enpl at e_t ype_param DECL
DW AT_nane
DW AT _si bli ng
DW AT type
V TAG t enpl at e_val ue_param DECL
DW AT_nane
DW AT_const _val ue
DW AT si bling
DW AT type
[DW TAG t hrown_t ype DECL
0 DW AT _si bli ng
D DW AT type
DW TAG try_bl ock DW AT abstract_origin
0 DW AT _hi gh_pc
O DW AT _| ow_pc
O DW AT segment
H DW AT si bl i ng

(o s B

ngDDDDDDDDDD%

Ié[:H:II:II:I

OOoOo0Od

Revision: 2.0.0 Page 90
Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME APPLICABLE ATTRIBUTES

O
DECL .
DW AT abstract _origin 0
DW AT accessibility 0
DW AT _decl arati on O
DW AT nane 0
DW AT _si bl i ng O
DW AT start_scope E
DW AT type 0
DWAT visibility 0
V TAG uni on_t ype DECL O
DW AT abstract _origin E
DW AT accessibility 0
DW AT byte_size 0
DW AT _decl arati on O
DW AT friends 0
DW AT nane O
DW AT _si bl i ng .
DW AT start_scope 0

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
H

E
@
<
o
®
o
o,

DWAT visibility
TAG unspeci fi ed _paraneters DECL
DW AT abstract _origin
DW AT artificial
DW AT _si bl i ng
V TAG vari abl e DECL
DW AT accessibility
DW AT constant val ue
DW AT decl arati on
DW AT _ext er nal
DW AT | ocati on
DW AT _namne
DW AT _segnent
DW AT si bling
DW AT specification
DW AT start_scope
DW AT type
DWAT visibility

gDDDDgDDDDDDDDDDDQDDDDDDDDD

N s |

Revision: 2.0.0 Page 91 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributesby Tag Value

LTAG NAME

APPLICABLE ATTRIBUTES

[jDDDDDDDg

|
2
®
<
Q
=
QO
5
—

DECL
DW AT accessibility

DW AT abstract _origin

DW AT _decl arati on
DW AT di scr_li st
DW AT _di scr_val ue
DW AT si bling

g

TAG vari ant _part

OooOoooooOod

DECL
DW AT accessibility

DW AT abstract _origin

DW AT decl arati on
DW AT di scr

DW AT _si bl i ng

DW AT type

Eb\N_TAG_voI atile_ type

|

DW AT si bling
DW AT type

EDW_TAG_wi t h_stat enent

OO OOoOOoOOoOodddg

DW AT _accessibility
DW AT address_cl ass
DW AT decl aration
DW AT hi gh_pc

DW AT | ocati on

DW AT _| ow_pc

DW AT_segnent
DW AT _si bli ng

DW AT type

DWAT visibility

Revision: 2.0.0

Page 92
Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 2 -- Organization of Debugging I nformation

The following diagram depicts the relationship of the abbreviation tables contained in the
. debug_abbr ev section to the information contained in the . debug_i nf o section. Values
are given in symbolic form, where possible.

Compilation Unit 1 - .debug info

Abbreviation Table - .debug_abbrev

length
2 al: 1
al (abbreviation table Offset) DV\LTAG_COITpl | e_uni t
4 DW CHI LDREN _yes
1 DW AT_narme DW FORM stri ng
"nmyfile.c" DW AT_pr oducer DW FORM stri ng
"Best Conpiler Corp: Version 1.3" DW AT_conpdi r DW FORM st ri ng
"nynmachi ne: / hone/ nydi r/src: " DW AT_I| anguage DW FORM dat al
DW LANG C89 DW AT_| ow_poc DW FORM addr
0x0 DW _AT_hi gh_pc DW FORM addr
0x55 DWAT_stnt _|ist DW FORM. i ndi r ect
DW FORM dat a4 0 0
0x0
. 2
el 2 DW TAG base_t ype
"char" DW CHI LDREN_no
DW ATE_unsi gned_char DW AT_narme DW FORM stri ng
1 DW AT_encodi ng DW FORM dat al
DW AT _byte_si ze DW FORM dat al
e2: 3 0 0
el
4 3
"] DW TAG poi nter_type
e; O NTER DW CHI LDREN_no
DW AT _type DW FORM ref 4
0 0
0
4
DW TAG t ypedef
DW CHI LDREN_no
Compilation Unit 2 - .debug_info DW AT_nare DW FORM string
DW AT _type DW FORM ref 4
length 0 0
2
al (abbreviation table offset) 0
4
4
"strp"
e2
Revision: 2.0.0 Page 93 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 94 July 27,1993
Industry Review Draft

Programming Languages SIG

Appendix 3 -- Statement Program Examples

Consider this simple source file and the resulting machine code for the Intel 8086 processor:

1: i nt

2: mai n()

0x239: push pb

Ox23a: nmov bp, sp

{

4: printf("Qrit needl ess words\n");
0x23c: nov ax, Oxaa
0x23f: push ax
0x240: call _printf
0x243: pop cx

5: exit(0);
0x244. Xor ax, ax
0x246: push ax
0x247: call _exit
0x24a: pop cx

w

6: }
0x24b: pop bp
Ox24c: ret

7.
0x24d:

If the statement program prol ogue specifies the following:

m ni mum.instruction_length 1

opcode_base 10
l'i ne_base 1
Ii ne_range 15

Then one encoding of the statement program would occupy 12 bytes (the opcode SPECI AL(m,
n) indicates the special opcode generated for a line increment of m and an address increment of
n):

Opcode Operand Byte Stream

DW LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04
SPECI AL(2, 0) Oxb

SPECI AL(2, 3) 0x38

SPECI AL(1, 8) 0x82

SPECI AL(1, 7) 0x73

DW LNS_advance_pc LEB128(2) 0x2, 0x2

DW LNE_end_sequence 0x0, 0Ox1, Ox1

An aternate encoding of the same program using standard opcodes to advance the program
counter would occupy 22 bytes:

Revision: 2.0.0 Page 95 July 27,1993
Industry Review Draft

DWARF Debugging Information Format

Opcode Operand Byte Stream

DW LNS fi xed_advance_pc 0x239 0x9, 0x39, 0x2
SPECI AL(2, 0) 0xb

DW LNS fi xed_advance_pc 0x3 0x9, 0x3, 0xO0
SPECI AL(2, 0) Oxb

DW LNS_fi xed_advance_pc 0x8 0x9, 0x8, 0x0
SPECI AL(1, 0) Oxa

DW LNS fi xed_advance_pc 0x7 0x9, 0x7, 0xO0
SPECI AL(1, 0) Oxa

DW LNS fi xed_advance_pc 0x2 0x9, 0x2, 0xO0
DW LNE_end_sequence 0x0, Ox1, Ox1
Revision: 2.0.0 Page 96

Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 4 -- Encoding and decoding variable length data

Here are algorithms expressed in a C-like pseudo-code to encode and decode signed and unsigned
numbersin LEB128:

Encode an unsigned integer:

do
{
byte = | ow order 7 bits of val ue;
val ue >>= 7;
if (value !'= 0) /* nore bytes to come */
set high order bit of byte;
emt byte;

} while (value !'= 0);
Encode a signed integer:

nore = 1;
negative = (value < 0);
size = no. of bits in signed integer;
whi | e(nor e)
{
byte = | ow order 7 bits of val ue;
val ue >>= 7,
/* the following is unnecessary if the inplenentation of >>=
* uses an arithmetic rather than logical shift for a signed
* |eft operand
*/
if (negative)
/* sign extend */
value |= - (1 << (size - 7));
/* sign bit of byte is 2nd high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) ||

(value == -1 && sign bit of byte is set))
nore = 0;
el se
set high order bit of byte;
emt byte;
}
Revision: 2.0.0 Page 97 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

Decode unsigned LEB128 number:

result = 0;

shift = 0;
whi |l e(true)
{
byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)
br eak;
shift += 7;

}
Decode signed LEB128 number:

result = O;

shift = 0;

size = no. of bits in signed integer;

whi | e(true)

{
byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;

/* sign bit of byte is 2nd high order bit (0x40) */
if (high order bit of byte == 0)
br eak;

if ((shift < size) & (sign bit of byte is set))
/* sign extend */
result |=- (1 << shift);

Revision: 2.0.0 Page 98
Industry Review Draft

July 27, 1993

Programming Languages SIG

Appendix 5 -- Call Frame Information Examples

The following example uses a hypothetical RISC machine in the style of the Motorola 88000.
« Memory is byte addressed.
« Instructions are al 4-bytes each and word aligned.
« Instruction operands are typically of the form:

<destination reg> <source reg> <constant>

The address for the load and store instructions is computed by adding the contents of the
source register with the constant.

There are 8 4-byte registers:

RO always 0

R1 holds return address on call

R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call

R7 stack pointer.

+ The stack grows in the negative direction.

The following are two code fragments from a subroutine called f 0o that uses a frame pointer (in
addition to the stack pointer.) Thefirst column values are byte addresses.

start prol ogue

foo sub R7, R7, <fsize> ; Allocate frane

f oo+4 store Rl, R7, (<fsize>-4) ; Save the return address
f oo+8 store R6, R7, (<fsize>-8) ;. Save R6

foo+12 add R6, R7, O ; R6 is now the Frame ptr

foo+l6 store R4, R6, (<fsize>-12) Save a preserve reg.
Thi s subroutine does not change R5

;; Start epilogue (R7 has been returned to entry val ue)

foo+64 | oad R4, R6, (<fsize>12) ;. Restore R4

foo+68 | oad R6, R7, (<fsize>-8) ; Restore R6

foo+72 | oad Rl, R7, (<fsize>-4) : Restore return address

foo+76 add R7, R7, <fsize> ; Deallocate frane

foo+80 junp R ; Return

f oo+84

Revision: 2.0.0 Page 99 July 27, 1993

Industry Review Draft

DWARF Debugging Information Format

The table for the f 00 subroutine is as follows. It is followed by the corresponding fragments
fromthe. debug_f r ane section.

Loc CFA RO RL R R3 R4 R5 R6 R7 R8
f oo [R7] +0 s u u u s s S S ri
f oo+4 [R7]+fsize s u u u S S S S ri
f oo+8 [R7] +fsize s u u u s s s S c4
foo+l2 [R7]+fsize s u u u s s c8 s c4d
foo+l6 [R6]+fsize s u u u s s c8 s c4d
foo+20 [R6]+fsize s u u u cl2 s c8 s c4d
foo+64 [R6]+fsize s u u u cl2 s c8 s c4
foo+68 [R6]+fsize s u u u S S c8 s c4
foo+72 [R7]+fsize s u u u s s s S c4
foo+76 [R7]+fsize s u u u s S s s rl
foo+80 [R7]+0 s u u u s s s s rl
notes:

1. R8isthereturn address

2. s=same vauerule

3. u=undefined rule

4. rN =register(N) rule

5. cN = offset(N) rule

Common Information Entry (CIE):

cie 32 ; length

ci e+4 Oxffffffff ; CIE.id

ci e+8 1 . version

ci e+9 0 ; augnent ation

cietl0 4 ; code_al i gnment _factor
cietll 4 ; data_alignnment _factor
cietl2 8 ; RB is the return addr.
cie+l3 DWCFA def_cfa (7, 0) ; CFA = [R7]+0

cie+l6 DW.CFA same_val ue (0) ; RO not nodified (=0)

ci e+1l8 DWCFA undefined (1) ; Rl scratch

ci e+20 DW.CFA undefined (2) ; R2 scratch

ci e+22 DW.CFA undefined (3) ; R3 scratch

ci e+24 DW.CFA same_val ue (4) ; R4 preserve

ci e+26 DW.CFA same_val ue (5) ; RS preserve

ci e+28 DW.CFA same_val ue (6) ; R6 preserve

cie+30 DWCFA sanme_value (7) ; R7 preserve

ciet32 DWCFA register (8, 1) RBisinRlL

cie+35 DW.CFA nop ; paddi ng

ci e+36

Revision: 2.0.0 Page 100 July 27, 1993

Industry Review Draft

Frame Description Entry (FDE):

fde 40

fde+4 cie

fde+8 foo

fde+l2 84

fde+1l6 DW.CFA advance_l oc(1)
fde+l7 DW.CFA _def_cfa_offset(<fsize>/4)
fde+19 DWCFA advance_l oc(1)
fde+20 DWCFA offset(8,1)

fde+22 DW CFA advance_l oc(1)
fde+23 DW.CFA of fset (6, 2)

fde+25 DW . CFA _advance_l oc(1)
fde+26 DW CFA def cfa_register(6)
fde+28 DW CFA advance_l oc(1)
fde+29 DWCFA of fset (4, 3)

fde+31 DWCFA advance_l oc(11)
fde+32 DW.CFA restore(4)

fde+33 DW.CFA advance_l oc(1)
fde+34 DW.CFA restore(6)

fde+35 DW CFA def _cfa_register(7)
fde+37 DW CFA advance_l oc(1)
fde+38 DWCFA restore(8)

fde+39 DW.CFA _advance_l oc(1)
fde+40 DW.CFA def cfa_offset(0)
fde+42 DW.CFA_nop

fde+43 DW CFA_nop

f de+44

Revision: 2.0.0

Page 101

Programming Languages SIG

| engt h

ClE ptr

initial _location

addr ess_range

i nstructions

assum ng <fsize> < 512

paddi ng
paddi ng

Industry Review Draft

July 27, 1993

Revision: 2.0.0 Page 102 July 27, 1993
Industry Review Draft

Table of Contents

FOREWORD

1.

5.

INTRODUCTION oo
1.1 Purpose and Scope .
1.2 Oveview .

1.3 Vendor Extensibi I |ty
1.4 Changesfrom Version 1

GENERAL DESCRIPTION . :
2.1 The Debugging Information Entry
2.2 Attribute Types .

2.3 Reationship of Debugging Informatlon Entrles

2.4 Location Descriptions .

2.5 Typesof Declarations

2.6 Accessibility of Declarations .

2.7 Visbility of Declarations .

2.8 Virtudity of Declarations .

2.9 Artificia Entries . .

2.10 Target-Specific Addressing Informatlon
2.11 Non-Defining Declarations

2.12 Declaration Coordinates

2.13 ldentifier Names

PROGRAM SCOPE ENTRIES .

3.1 Compilation Unit Entries

3.2 Module Entries . .

3.3 Subroutine and Entry P0| nt Entrles
3.4 Lexica Block Entries

35 Labe Entries . .

3.6 With Statement Entrles :

3.7 Try and Catch Block Entries

DATA OBJECT AND OBJECT LIST ENTRIES
4.1 DataObject Entries

4.2 Common Block Entries

4.3 Imported Declaration Entries .

4.4 Namelist Entries

TYPEENTRIES . .

5.1 Base TypeEntries .

5.2 TypeModifier Entries .

5.3 Typedef Entries . .

54 Array Type Entries .

5.5 Structure, Union, and Class Type Entrles
5.6 Enumeration Type Entries

5.7 Subroutine Type Entries

©CO~N~N~N RRWWW P

5.8
5.9
5.10
511
5.12

String Type Entries

Set Entries

Subrange Type Entrles .o
Pointer to Member Type Entries .
File Type Entries .

6. OTHER DEBUGGING INFORMATION .

6.1
6.2
6.3
6.4

Accelerated Access

Line Number Information .
Macro Information .

Cadl Frame Information

7. DATA REPRESENTATION

7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9
7.10
711
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
1.22
7.23
7.24

Vendor Extensibility
Reserved Error Values .

Executable Objects and Shared Obj ects .

File Constraints . . .
Format of Debugging Informatl on
Variable Length Data
Location Descriptions .
Base Type Encodings
Accessibility Codes
Visibility Codes

Virtuality Codes

Source Languages

Address Class Encodings
Identifier Case oo
Calling Convention Encodi ngs
Inline Codes .

Array Ordering
Discriminant Lists .
Name Lookup Table
Address Range Table

Line Number Information .
Macro Information .

Call Frame Information
Dependencies

8. FUTURE DIRECTIONS .
Appendix 1 -- Current Attributes by Tag Vaue

Appendix 2 -- Organization of Debugging Information .

Appendix 3 -- Statement Program Examples .

Appendix 4 -- Encoding and decoding variable length data
Appendix 5 -- Call Frame Information Examples

46
46
46
47
48

49
49
50
57
59

65
65
65
65
66
66
70
72
74
74
75
75
75
75
76
76
76
77
77
77
77
77
78
78
79

81
83
93
95
97
99

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

List of Figures

Tag names

Attribute names .

Accessibility codes .

Visibility codes

Virtuality codes .

Example address class codes
Language names

Identifier case codes

Inline codes

Encoding attribute values

Type modifier tags

Array ordering

Discriminant descriptor values

Tag encodings (part 1)

Tag encodings (part 2)

Child determination encodings
Attribute encodings, part 1

Attribute encodings, part 2

Attribute form encodings

Examples of unsigned LEB128 encodings
Examples of signed LEB128 encodings .
L ocation operation encodings, part 1 .
L ocation operation encodings, part 2 .
Base type encoding values .
Accessibility encodings

Visibility encodings

Virtuality encodings

Language encodings

18
19
19
20
23
24
29
37
38
39

68
69
69
70
71
72
72
73
73
74
75
75
75
75
76

Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.

Identifier case encodings

Calling convention encodings .
Inline encodings .

Ordering encodings .
Discriminant descriptor encodings
Standard Opcode Encodings
Extended Opcode Encodings
Macinfo Type Encodings

Call frame instruction encodings .

-V -

76
76
76
77
77
78
78
78
79

