DOS PROTECTED MODE INTERFACE
(DPMI) SPECIFICATION

Version 1.0
March 12, 1991

Application Program Interface (API) for
Protected Mode DOS Applications

© Copyright The DPMI Committee, 1989-1991.
All rights reserved.

Please send written comments to:

Albert Teng, DPMI Committee Secretary
Mailstop: NW1-18

2801 Northwestern Parkway

Santa Clara, CA 95051

FAX: (408) 765-5165

Intel order no.: 240977-001

DOS Protected Mode Interface Version 1.0

Copyright

The DPMI Specification Version 1.0 is copyrighted 1989, 1990, 1991 by the DPMI Committee.
Although this Specification is publicly available and is not confidential or proprietary, it is the sole
property of the DPMI Committee and may not be reproduced or distributed without the written
permission of the Committee.

The founding members of the DPMI Committee are: Borland International, IBM Corporation, Ergo
Computer Solutions, Incorporated, Intelligent Graphics Corporation, Intel Corporation, Locus
Computing Corporation, Lotus Development Corporation, Microsoft Corporation, Phar Lap
Software, Incorporated, Phoenix Technologies Ltd, Quarterdeck Office Systems, and Rational
Systems, Incorporated.

Software vendors can receive additional copies of the DPMI Specification at no charge by
contacting Intel Literature JP26 at (800) 548-4725, or by writing Intel Literature JP26, 3065
Bowers Avenue, P.O. Box 58065, Santa Clara, CA 95051-8065. DPMI Specification Version 0.9
will be sent out along with Version 1.0 for a period about six months. Once DPMI Specification
Version 1.0 has been proven by the implementation of a host, Version 0.9 will be dropped out of
the distribution channel.

Disclaimer of Warranty

THE DPMI COMMITTEE EXCLUDES ANY AND ALL IMPLIED WARRANTIES, INCLUDING
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NO
DPMI COMMITTEE MEMBER MAKES ANY WARRANTY OR REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH RESPECT TO THIS SPECIFICATION, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. NO
MEMBER OF THE DPMI COMMITTEE SHALL HAVE ANY LIABILITY FOR SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RESULTING FROM
THE USE OR MODIFICATION OF THIS SPECIFICATION.

Warning

This DPMI Version 1.0 Specification has not yet been validated by the implementation of a
DPMI 1.0-compliant host. Please report any errors or ambiguities in writing to the DPMI
Committee Secretary.

DOS Protected Mode Interface Version 1.0

Table of Contents

Chapter 1. INTrOAUCTIONcoiviiiee s 4
Chapter 2. DPMI Execution ENVIronment OVEIVIEW...........cceiriinieerniiensiseiseeissseessseneeeens 6
CPU Mode and DPMI Virtual MaChINES ..o 6
DPMI Clients and Their Relationships to a Virtual Machine.............cccoovevvenrenrenineinen. 7
DPMI MUIIEASKING SUPPOM......cvuveeiriiireiiieieiseisieissiee st 7
Extended Memory Allocation ENVIFONMENL ..o 10
Virtual Memory, Page Locking and Virtual DMA SEIVICESc.cuvmirrienieinieneeniieeneens 10
The High Memory Area and Extended Memory Specificationccooevenninnieennnn: 11
Chapter 3. DPMI SEIVICES OVEIVIEW.........c.cuuiuiiiririieieinissisisese it 12
Extended Memory Management SEIVICEScv e 13
LDT Descriptor Management SEIVICEScveuvriurireirireirieiriseiseeisisiseeieess s ssessssssenans 14
Page ManagemeNt SEIVICES.........cvririreiiieeeisiiee i 15
Interrupt Management SEIVICESc..ceriieiireieieeei e 16
TrANSIALON SEIVICES.ouvuiiiiiiicieie ettt 17
DOS Memory Management SEIVICES.........couurrierisrireieieieeeisseissssesssess s 18
DEDUQG SUPPOI SEIVICES ...t 18
MiISCElIANEOUS SEIVICES ...t 18
Chapter 4. DPMI Client Implementation NOTEScooeririenininesieseeesese s 20
ClIENt INIHANZALION. ... 22
ClIENt TEMUNALIONc..cvuieeirieieice e 23
Stacks and Mode SWItCHING.........coveiiriiie s 24
HANAING INEEITUDES ...t 28
HANAING CPU EXCEPLONS. ..ottt 30
Using Real-Mode CallDacKS ..o, 34
USING SNAred MEMOIY ..o 38
Writing Resident SErVICe ProVIENS...........ciirierieieeeeseeee e 41
Chapter 5. DPMI FUNCEION RETEIENCE ..ot 43
DPMI Int 31H Functions Listed by Functional Groupcccvevreenenneniesneseses 44
DPMI Int 31H Functions Listed Alphabetically ..., a7
DPMI Int 31H Functions Listed by NUMDET ... 49
APPENTIX A: GIOSSAIY ... 151
Appendix B: Error Codes and MESSAJEScvueeirrririiirieiisieiseeisieissseesis s 154
Appendix C: Differences between DPMI 0.9 and 1.0.......ccccoiviinniniisieeeseeeeeens 156
New Functions in DPMI VErSIioN 1.0........cccrirnnnininenseseiseseseessse s 156
DPMI Version 0.9 FUNCLONS SUPEISEAET.........cvuiuririiriieireieireieeeisieissie e 157
EITOE COUBS ... s 157
Separate LDT and IDT Per CHENT..........coeriiiiriecreniesese e 157
Termination HanGliNg ..o 158
DPMI Version 0.9 Compatibility NOESceuirriiriireesenesee e 158
Appendix D: DesCriptor USAgE RUIES ..o 159

DOS Protected Mode Interface Version 1.0

Chapter 1. Introduction

The DOS Protected Mode Interface (DPMI) allows DOS programs to access the advanced
features of 80286-, 80386-, and 80486-based PCs in a well-behaved, hardware-independent
fashion that does not compromise system protection. DPMI functions are defined to manage
local descriptor tables, perform mode switching, allocate extended memory, allocate DOS
(conventional) memory, control the interrupt subsystem, communicate with real mode programs,
and read or write certain CPU control registers. Protected mode multitasking environments,
memory managers, or operating systems that implement the DPMI functions are called DPM/
hosts; protected mode applications that request DPMI functions (directly or indirectly) are called
DPMI clients.

The predecessor to DPMI is the Virtual Control Program Interface (VCPI), developed in 1987 by
Phar Lap Software and Quarterdeck Office Systems. VCPI allows 80386 protected-mode DOS
Extender applications to coexist with 80386-specific memory managers and expanded memory
(EMS) emulators. In the VCPI model, the protected mode DOS application is the client and the
EMS emulator is the server, which is invoked via an extension of the EMS Int 67H interface to
switch between real mode and protected mode, allocate memory, and inspect or set the 80386
debug registers. If a protected mode application is loaded and a VCPI server is not present, the
application simply assumes complete control of the machine and carries out the necessary
hardware manipulations directly.

VCPI has been extremely successful, but it can not support the full virtualization needed for
multitasking of DOS-based protected mode applications. VCPI allows client programs to run at
the highest privilege level (Ring 0), making it impossible for a VCPI server to enforce device
virtualization for many devices (for example, to run EGA/VGA graphical applications in a
window), provide centralized virtual memory management services, or shield one protected mode
application from interference by another. Another, somewhat less important drawback of VCPI

is that it is fundamentally based on the concept of 80386 hardware paging, and therefore it
cannot be implemented on 80286 machines.

A DPMI host is similar in many respects to a VCPI server, in that it provides mode-switching
and extended memory management services to client programs. But unlike a VCPI server, a
DPMI host can run at a more privileged level than its clients and can use the hardware to enforce
a "supervisor/user" protection model. This allows a DPMI host to support centralized virtual
memory and maintain full control over client programs' address spaces and access to the
hardware. Furthermore, DPMI's functions for memory and interrupt management are more
general than those in the VCPI, so DPMI can also be implemented on 80286 machines.

VCPI and DPMI are viewed as complementary standards. Developers can use DPMI to achieve
broad compatibility requirements of their DOS-based protected-mode applications, since the
majority of PC operating environments can or will support DPMI. Developers can use VCPI to
implement system-level device drivers and other programs that require the 80386's highest
privilege level.

The initial DPMI prototype was developed by Microsoft for Windows version 3.0, with input from
Lotus Corporation and Rational Systems, as part of a general effort to enhance Windows'
performance by allowing the Windows kernel to run in extended memory. In parallel, Intel was
working with manufacturers of multitasking environments, EMS emulators, and DOS extenders to

DOS Protected Mode Interface Version 1.0

ensure that an extended VCPI specification could fully utilize the 80386's virtualization and
protection features. In February 1990, the parties involved in the above activities agreed to form
the DPMI Committee and formulate an industry-wide standard for protected-mode DOS
applications. The Committee released the first public DPMI Specification, Version 0.9, in May
1990.

(See Appendix A: Glossary for the definitions of DPMI, DPMI client, DPMI host, Expanded
memory, Expanded memory emulator, EMS, Extended memory, and VCPI.)

DOS Protected Mode Interface Version 1.0

Chapter 2. DPMI Execution Environment Overview

This section provides a brief overview of such fundamental DPMI concepts as DPMI virtual
machines, multiple clients in the same virtual machine, multiple clients in different virtual
machines, DPMI multitasking, a unique LDT and IDT per client, extended memory allocation, flat
mode and segmented mode memory models, and virtual memory's relationship to page locking
and virtual DMA services.

CPU Mode and DPMI Virtual Machines

The DPMI interface can be implemented on any microprocessor that supports 80286 protected
mode execution. In other words, on any 80286, 80386, 80486 or other compatible CPUs.
However, the full potential of the DPMI interface can only be realized on 80386 or later CPUs.

The Intel 80386 architecture has three operating modes:

* Real Mode. In this mode, the 80386 microprocessor is essentially a fast 8086 and is fully
compatible with existing DOS programs.

* Protected Mode. The 80386 microprocessor supports a full 32-bit programming model, with
32-bit registers and addressing modes. In the protected mode, the 80386 microprocessor’s
on-chip paged memory management unit is accessible. The 80386 microprocessor can also
run 16-bit 286 programs.

* Virtual-86 Mode. In the virtual-86 mode, one or more 8086-compatible programs can be
running at the same time, each in its own 'private’ address space called a virtual machine
(VM). Each virtual DOS machine (or virtual DOS environment) appears to be a complete real
mode DOS environment to the program running with it. The 80386 processor forces virtual-
86 mode programs to run at Ring 3 so that a host operating environment can fully virtualize
hardware interrupts, I/0 and processor exceptions through the 80386's protection checking
mechanisms. (See the definition of Virtual DOS environment in Appendix A: Glossary.)

DPMI services are tied to DOS services and there is always a DOS real mode environment
available. In DPMI implementations that are designed to take advantage of the 80386 and later
CPUs, a DOS environment will typically run in virtual-86 mode rather than real mode. To avoid
describing the virtual-86 and real modes repetitively, the term real mode is used to refer both the
real mode and the virtual-86 mode throughout the specification. The term virtual machine is also
used to refer to a real mode machine whenever applicable throughout the specification. The term
"80386" as used in the specification refers to the Intel 80386 and all later CPUs that are fully
compatible with it.

Each time a real mode program calls the DPMI interface to request the initial switch to protected
mode, a new DPMI client is created (this process is explained in more detail later). A DOS
environment and the one or more protected mode DPMI clients which were launched from it are
collectively referred to as a (DPMI) virtual machine. In this specification, we often simply use
virtual machine to refer both the virtual-86 machine and the DPMI virtual machine with the
understanding that the DPMI virtual machine concept is also relevant on 80286 CPUs even
though there is no hardware virtual-86 mode support for it.

DOS Protected Mode Interface Version 1.0

DPMI Clients and Their Relationships to a Virtual Machine

Many multitasking hosts can run several DPMI virtual machines concurrently. The DPMI clients
within the same virtual machine form a program stack with the first (least-recently-created) client
sitting at the bottom of the stack and the last (most-recently-created) client sitting at the top of
the stack. The topmost client is called the primary client. Only one client in the program stack of a
VM can be active at one time and the client is called the current client.

Each virtual machine has its own private virtual address space. Clients within a virtual machine
share the address space of the virtual machine. However, the method of the virtual machine
address space is shared is quite different in DPMI 0.9 and DPMI 1.0.

Under a DPMI 0.9 host, all of the DPMI clients in a virtual machine share a single local descriptor
table (LDT) and use the same interrupt descriptor table (IDT). When multiple virtual machines are
present, each has a different LDT and IDT. Thus, the clients within a virtual machine completely

share addressing but the clients in separate machines are isolated from each other. This is fairly
staightforward but does not allow 16-bit and 32-bit clients to execute in the same virtual machine.

Under a DPMI 1.0 host, each DPMI client within a virtual machine has its own LDT and IDT;
consequently, each client has a distinct context for addressing and the handling of exceptions
and interrupts that is not visible to other clients in the same virtual machine or other virtual
machines. When a client becomes "current” by virtue of a switch form real to protected mode (by
any of several means to be described later), its LDT and IDT become active and any software
interrupts and protected mode exceptions it issues are reflected through its IDT. However, the
DPMI host is responsible for ensuring that hardware interrupts and real mode exceptions are sent
to the primary client of the virtual machine, whether or not the primary client is the current client.
It should be noted that in 32-bit DPMI environments, the clients in a particular virtual machine will
share the same linear address space defined by a single page table directory, but this does not
have any effect on client execution.

DPMI Multitasking Support

Some DPMI implementations can support several DPMI virtual machines concurrently, and can
provide true pre-emptive multitasking by treating each virtual machine as an independently-
dispatchable task. There is no multitasking among the clients within the same virtual machine
that is defined by DPMI. Therefore, a DPMI client should not assume it owns the resources of the
entire machine. In particular, a DPMI client should use the Int 2FH Function 1680H DPMI call to
release their CPU time slice when it is idle (for example, when it is polling for keyboard input).
This allows the DPMI host to pass the CPU to other clients, or take power-conserving measures
on laptop and notebook computers.

In order to protect system integrity, DPMI implementations which are specific to 80386 and later
CPUs will typically use the hardware protection mechanisms to virtualize input, output, and
interrupts, and to enforce a "supervisor/user" privilege model. Accordingly, unlike DOS and VCPI
clients, DPMI clients should make no assumptions about the privilege level at which they will run.
For example, when calculating selectors or constructing descriptors to be copied into the LDT, a
client must set the privilege bits equal to its CPL. (One way for a client to determine its CPL is to
examine the Requestor's Privilege Level field of CS created for the client by the host.)

DOS Protected Mode Interface Version 1.0

Under DPMI V 1.0, communication between clients in different virtual machines can be
accomplished only with DPMI shared memory blocks. Clients within the same VM can also
communicate by DPMI shared memory block as well as by resident service providers, DOS
memory blocks, or a switch to real mode (Appendix A:Glossary for information of resident service
providers, shared services and memory blocks). DOS memory blocks allocated by a DPMI client
will only be visible to other clients running in the same virtual machine. Similarly, resident service
providers will only be notified about the loading and termination of DPMI clients in the same
virtual machine. However, DPMI shared memory blocks can be accessed by clients in any virtual
machine. The shared memory blocks can contain either code or data. DPMI hosts will guarantee
that the same linear address is provided to a shared memory block across all virtual machines
and clients. The identical linear address requirement ensures that a shared code memory block
can execute properly when the memory block is accessed by clients with different LDTs.

Figure 1 on page 9 shows two examples of DPMI virtual machines. The first virtual machine is a
virtual machine with a single DPMI client extended from DOS. The client can access a shared
memory block. The second virtual machine is a virtual machine with three DPMI clients forming a
stack in the address space of the virtual machine. Only one of the clients in the second virtual
machine can be active at a time while the two virtual machines could be multitasked under the
host. Two of the clients in the second virtual machine obtain protected mode services from a
resident service provider that installed itself using the DPMI interface. Three out of the four
clients in the two example virtual machines are shown to have access to shared services.

DOS Protected Mode Interface Version 1.0

Figure 1. This example uses two DPMI virtual machines to demonstrate the relationship
between DPMI clients, shared memory blocks, resident service providers, and DOS
address spaces on a 32-bit DPMI host which supports multiple virtual machines.

4
T

I I
| Shared Services (Shared Memory and Serialization Support) |
I

4
T

N
+ + | |
| | [|
+--|protected mode TSR client(IDT/LDT) | |
| | (32-bit) [---+ |
| + + |
I | |
| + + |
Hommmnonoeee + [] _ |11
| |+-|protected mode TSR client(IDT/LDT) | | |
U [e
protected | Il [l
mode | [+ +] |
client | I[| -+ |
| Resident Service Provider | | |
I |-+ |
(IDT/LDT) | I + +
I
Il ' I -
| protected mode client (IDT/LDT) |------ +
R + || + +
I | I
I | I
S ———— + || f S ——— +
I I |+
| Reall | | | Real/ |
| V86 | o | V86 |
| Mode | | Mode |
I I I I
R + f +
Example Virtual machine 1 Example Virtual Machine 2
(single client) (multiple clients, mixed bitness)

DOS Protected Mode Interface Version 1.0

Extended Memory Allocation Environment

A DPMI client can use DPMI calls to allocate extended memory above 1 megabyte in protected
mode and then to allocate and initialize descriptors that make the memory addressable. DPMI
supports the use of 80286 and 80386 extended memory. However, only 32-bit DPMI hosts can
support DPMI calls with attributes for 32-bit addressing and paged memory management. Under
such hosts, 32-bit clients can be implemented using either a flat or segmented memory model.

* The "flat" memory model represents the application's addresss space as a single array of up
to 4 gigabytes. This model essentially "turns off* the segmentation features by initially loading
the segment registers with selectors for descriptors that encompass the entire 32-bit address
space. Once loaded, the segment registers don't need to be changed and all memory
references are "near".

» The segmented memory model represents the application's address space as a collection of
segments up to 4 gigabytes each. (Contrast with the 80286, which has a limit of 64 kilobytes
per segment.)

DPMI offers a rich set of functions for the allocation and management of both extended memory
blocks and descriptors. The table in Appendix D summarizes the various means of descriptor
allocation and rules for the use of descriptors in DPMI functions.

Virtual Memory, Page Locking and Virtual DMA Services

Many implementations of DPMI support demand-paged virtual memory allowing DPMI clients to
allocate more memory than is physically present in the machine (limited only by the amount of
backing store). In many of such implementations, the extended memory owned by a client is by
default swappable or pageable, while the DOS memory in the client's virtual machine is by default
locked. DPMI functions are provided that allow the client to lock and unlock both extended
memory and DOS memory, and to supply information to the DPMI host that may improve virtual
memory performance.

DPMI clients must be careful to lock any memory that might be accessed during a call to DOS, or
that is used by interrupt handler, because the DPMI host may not be able to demand-load the
client's memory under those circumstances (for example, if the DPMI host uses the DOS file
system and DOS is already busy). In DPMI implementations that can handle all possible virtual
memory faults, or that do not support virtual memory at all, the lock requests will return a success
status but will have no effect.

The virtual memory addresses used by a protected mode program have no direct
correspondence to physical memory addresses; virtual addresses which appear to be contiguous
may be mapped to discontiguous physical addresses, or may not be currently mapped to
physical memory at all (if some of the application's memory has been swapped or paged to
backing store). DPMI clients that actually need physical addresses (e.g., to issue commands to a
bus-master device or an on-board DMA controller) must use Virtual DMA Services (VDS)
services (see Appendix A: Glossary) to communicate with the host in order to achieve accurate
physical memory access.

10

DOS Protected Mode Interface Version 1.0

The High Memory Area and Extended Memory Specification

A client program cannot assume that the High Memory Area (HMA) from 1 MB to 1 MB+64 KB-
16 B is available in protected mode unless it has explicitly enabled the A20 address line with the
appropriate eXtended Memory Specification (XMS) function call before entering protected mode.
XMS is the recommended standard way to address the HMA (for additional information about
HMA and XMS, see Appendix A: Glossary). Note that this restriction is only important for
software that specifically needs to access the HMA.

In reality, the A20 address line is always enabled while executing protected mode code under a
DPMI host, but some 80386-specific hosts simulate a 1 MB address wrap for compatibility
reasons. Under these conditions, the HMA will not be accessible unless the A20 was previously
enabled through the XMS interface.

11

DOS Protected Mode Interface Version 1.0

Chapter 3. DPMI Services Overview

DPMI host programs make the services defined in this document available to DPMI clients via
software interrupts 2FH and 31H. Int 2FH is the so-called DOS Multiplex Interrupt, used by many
different drivers and resident utilities, and most of the DPMI functions supported on Int 2FH can
be called in either real mode or protected mode. Furthermore, some of the Int 2FH functions
described in this document may also be supported by other types of 80386 control programs or
multitasking operating systems.

The Int 2FH functions are:

Function 1680H Release Current Virtual Machine's Time Slice
Function 1686H Get CPU Mode

Function 1687H Return Real-to-Protected Mode Switch Entry Point
Function 168AH Get Vendor-Specific API Entry Point

The Int 2FH functions will not be discussed further in this overview section. For additional
information on the Int 2FH functions, see the Implementation Notes for DPMI Clients and DPMI
Function Reference.

The DPMI Int 31H functions are only available to programs which are executing in protected
mode. A client invokes one of these functions by placing a function number in AX, passing other
parameters in registers or by reference, and executing a software interrupt 31H. For example:

mov ax,function_number ; select DPMI function
; load other registers with
. ; function specific parameters
int 31h ; transfer to DPMI host
ic error ; jump if function failed

If the function succeeds, it returns the Carry flag clear and (most commonly) other results in
registers or data structures in the client's address space; if the function fails, it returns with the
Carry flag set and an error code in AX (see Appendix B). DPMI functions preserve all contents of
registers and flags that are not otherwise specified in this document; similarly, all DPMI functions
can be assumed to be reentrant unless this document explicitly states otherwise. Some DPMI
function errors, such as those caused by the client passing an invalid pointer, will cause the host
to fault; the client can detect these events by the installation of an exception handler.

Certain implementations of DPMI, called 32-bit hosts, take advantage of the special features of
80386 and later CPUs and can support 32-bit clients as well as 16-bit clients. On such DPMI
hosts, Int 31H functions that take pointers as parameters will use the extended 32-bit registers for
offsets (for example, ES:EDI instead of ES:DI) when called by 32-bit clients. The high word of
the 32-bit registers will be ignored (and preserved) when DPMI services are requested by 16-bit
clients.

12

DOS Protected Mode Interface Version 1.0

The Int 31H DPMI services made available to protected mode programs fall into eight general
categories:

* Extended Memory Management Services
» LDT Descriptor Management Services

* Page Management Services

* Interrupt Management Services

* Translation Services

 DOS Memory Management Services

» Debug Support Services

* Miscellaneous Services

A general introduction to the Int 31H functions in each of these categories is provided below. For
detailed information on the parameters and results of any particular function, see the DPMI
Function Reference section of this document.

Extended Memory Management Services

The fundamental services in this group are:

0501H Allocate Memory Block

0502H Free Memory Block

0503H Resize Memory Block

050AH Get Memory Block Size and Base

These functions work with blocks of linear memory above 1 megabyte and deal with "linear
addresses.” It's important to note that allocation of memory by these functions does not provide
addressability; once an application owns a block of linear memory, it must then use separate
DPMI function calls to allocate and initialize descriptors that will provide addressability for the
memory, or modify the base and limit fields of existing descriptors.

The following functions are only available on 32-bit DPMI hosts:

0504H Allocate Linear Memory Block
0505H Resize Linear Memory Block

These services differ from Functions 0501H and 0503H in that they always page-align allocated
blocks, they allow memory blocks to be requested at specific linear addresses, and they draw a
distinction between the allocation of linear address space (represented by uncommitted pages,
see Appendix A: Glossary) and the allocation of linear memory (represented by committed
pages, see Appendix A: Glossary). Again, the client is responsible for setting up appropriate
descriptors for the memory with separate function calls.

The next two functions, also available only on 32-bit hosts, allow the inspection or manipulation of
page attributes within memory blocks previously allocated with Functions 0504H and 0505H:

0506H Get Page Attributes
0507H Set Page Attributes

The attribute information maintained on a page-by-page basis includes: whether the page is
committed or uncommitted, mapped (i.e., the page's linear addresses are being used as aliases

13

DOS Protected Mode Interface Version 1.0

for a special type of memory object), read-only or writable, and (if the DPMI host supports these
capabilities) whether the page has been accessed or modified.

DPMI's support for interprocess communication between protected mode clients via named
shared memory segments is implemented in the following functions:

ODOOH Allocate Shared Memory

ODO1H Free Shared Memory

ODO2H Serialize on Shared Memory

ODO3H Free Serialization on Shared Memory

The serialization functions allow applications to temporarily reserve the right of access to shared
memory for inspection or update operations, or to simply use a shared memory block handle as a
semaphore. Client programs must establish addressability to shared memory by building
descriptors in a separate operation.

The last few functions in this group return information about the physical and virtual memory of
the system:

0500H Get Free Memory Information
050BH Get Memory Information
0604H Get Page Size

Because many DPMI hosts will support multitasking, some shared resource results returned by
the memory information functions are subject to change and should be viewed only as advisory.
Other applications may be competing for the same memory resources and/or the DPMI host may
choose to limit the amount of memory visible to a particular client.

LDT Descriptor Management Services

The functions for LDT descriptor management are:

000O0H Allocate LDT Descriptor

0001H Free LDT Descriptor

0002H Map Real-Mode Segment to Descriptor
0003H Get Selector Increment Value
0006H Get Segment Base Address
0007H Set Segment Base Address
0008H Set Segment Limit

0009H Set Descriptor Access Rights
000AH Create Alias Descriptor

000BH Get Descriptor

000CH Set Descriptor

0OO0DH Allocate Specific LDT Descriptor
O00OEH Get Multiple Descriptors

OOOFH Set Multiple Descriptors

The LDT descriptor management services allocate, modify, inspect, and free protected mode
descriptors in the current client's Local Descriptor Table (LDT). The functions in this group do
not allocate memory - either physical memory or virtual address space- in most cases, the
memory being mapped by a new or modified descriptor will have been previously allocated using

14

DOS Protected Mode Interface Version 1.0

one of the functions in the Extended Memory Management group. Similarly, when a descriptor is
released, the corresponding memory usually must be released with a separate function call. LDT
management functions that return selectors will set the correct RPL bits for the client's privilege
level; functions that take selectors as input ignore the RPL bits of the incoming value.

Descriptors created or modified through LDT descriptor management services may only
reference linear addresses between 0 and a host-specific upper bound. Clients may determine
this upper bound by using the Get Memory Information call (Int 31H Function 050BH). Clients of
32-bit hosts may construct descriptors to reference anywhere within this range, whether or not
memory has been allocated for the linear addresses referenced by the descriptor. 16-bit hosts
may be more restrictive with regard to what linear addresses they will allow descriptors to
reference: they may reject requests to point a descriptor to addresses that are neither in memory
blocks that have been allocated by the client nor in conventional memory. To eliminate any
possibility of incompatibility, 16-bit clients should ensure that they only point descriptors to
memory that they have previously allocated through the DPMI memory allocation functions.

16-bit DPMI hosts may handle memory blocks at addresses that the client might not anticipate.
For example, a 16-bit DPMI host on a 286 could implement virtual memory by allocating memory
as "virtual handles" within a 32-bit address space. Consequently, clients should always use the
full 32-bit value of the address of a memory block when constructing descriptors to point into the
memory block, even when running on a 286 processor.

Page Management Services

The services in this group are only useful under DPMI hosts that support page-oriented virtual
memory.

Four functions are provided that allow an application to notify the DPMI host that memory is or is
not eligible for paging to disk:

0600H Lock Linear Region

0601H Unlock Linear Region

0602H Mark Real Mode Region as Pageable
0603H Relock Real Mode Region

These functions are ignored by DPMI implementations that do not support virtual memory; they
will always return the Carry flag clear to indicate success, but have no other effect. DPMI hosts
which support virtual memory may also choose to ignore these calls, but only if the client can't tell
that they have been ignored; for example, such hosts must be able to handle page faults
transparently at arbitrary points during a client's execution, including within interrupt and
exception handlers.

Although the addresses and lengths of memory regions are specified to these functions in bytes,
memory is always locked or unlocked in terms of pages. Page locks are maintained as a count;
a client can make multiple requests to lock the same page, and that page will not be eligible for
swapping until an equivalent number of unlock requests have been made and the lock count has
been decremented to zero.

Two additional functions allow applications to advise the DPMI host about their use of memory:

0702H Mark Page as Demand Paging Candidate

15

DOS Protected Mode Interface Version 1.0

0703H Discard Page Contents

When applications discard memory objects or do not access objects for long periods of time, they
can call these functions to help the host improve the performance of the demand paging. Since
these functions are simply advisory functions, the host may choose to ignore them, and of
course, hosts without virtual memory will always ignore them. In any case, DPMI clients must
function properly whether or not the functions have any effect.

Interrupt Management Services

The following interrupt management services allow protected mode applications to intercept real
and protected mode interrupts and hook processor exceptions:

0200H Get Real Mode Interrupt Vector

0201H Set Real Mode Interrupt Vector

0202H Get Processor Exception Handler Vector
0203H Set Processor Exception Handler Vector
0204H Get Protected Mode Interrupt Vector
0205H Set Protected Mode Interrupt Vector

0210H Get Extended Processor Exception Handler Vector for Protected Mode
0211H Get Extended Processor Exception Handler Vector for Real Mode
0212H Set Extended Processor Exception Handler Vector for Protected Mode
0213H Set Extended Processor Exception Handler Vector for Real Mode

The interrupt management interface seems elaborate, but the large number of apparently
overlapping services exists for a good reason. First, it allows client applications to differentiate
their handling of exceptions (internal interrupts caused by erroneous operations, addressing
problems, and so on) from their handling of interrupts generated by external hardware devices or
by execution of the INT instruction - even when these occur on the same interrupt number.
Secondly, Functions 0202H and 0203H are superseded in DPMI 1.0 by Functions 0210H through
0213H. The latter supply extended information in the stack frame with a common structure for
both 16-bit and 32-bit clients, and allow clients to install separate protected mode handlers for
exceptions that occur in real mode and protected mode.

The next three functions allow clients to cooperate with the DPMI host in maintaining a "virtual
interrupt” flag:

0900H Get and Disable Virtual Interrupt State
0901H Get and Enable Virtual Interrupt State
0902H Get Virtual Interrupt State

For performance reasons, some DPMI hosts will always run in protected mode with the interrupt
flag set (interrupts enabled). Such hosts will maintain a "virtual" interrupt state for each protected
mode client, so that clients can create critical segments of code and protect vital data structures
from their own interrupt service routines. When the program executes a CLI instruction or
invokes Function 0900H, the program's virtual interrupt state will be disabled, and the program
will not receive any hardware interrupts until it executes an STI or calls Function 0901H to re-
enable interrupts. Note that on such systems PUSHFpushes the real (not virtual) interrupt flag
onto the stack, and POPFand IRET(D) do not affect either the real or virtual interrupt status.

16

DOS Protected Mode Interface Version 1.0

Translation Services

The first three services to be discussed in this group are provided so that protected mode
programs can call real mode software directly:

0300H Simulate Real Mode Interrupt
0301H Call Real Mode Procedure with Far Return Frame
0302H Call Real Mode Procedure with Interrupt Return Frame

All three services are used in essentially the same way. The protected mode program sets up a
data structure that contains values for every real mode register, then issues the function call.

The DPMI host saves the protected mode registers, switches the CPU into real mode, loads the
registers from the data structure, and then transfers control to the designated address.
Parameters may also be passed to the real mode procedure on the stack, if necessary. When
the real mode procedure returns, the host stores the (possibly modified) register contents (except
for SS, SP, CS, and IP) back into the same data structure, switches the CPU to protected mode,
restores the protected mode registers, and resumes execution of the protected mode client. The
client can then inspect the data structure to determine the results of the function call.

The three functions listed above differ only in whether the destination real mode routine must exit
by a far return or by an interrupt return (IRET), and in how the address of the destination real
mode routine is supplied to the DPMI host. Function 0300H takes the destination address from a
real mode interrupt vector, and ignores the CS and IP fields in the data structure, while Functions
0301H and 0302H obtain the destination address from the data structure. Function 0301H
assumes that the real mode routine will exit with a far return, while Functions 0300H and 0302H
require the real mode routine to terminate with an interrupt return.

DPMI also provides a mechanism, called a real mode callback, by which real mode software can
call a protected mode program with implicit mode switches. A DPMI client creates and destroys
such linkages with the following functions:

0303H Allocate Real Mode Callback Address
0304H Free Real Mode Callback Address

Real mode callbacks can be used to service interrupts that occur in real mode with a protected
mode handler, or to provide protected mode services to real mode programs. For example,
many mouse drivers can be configured to call an application-defined address whenever there is a
change in the mouse's state. By allocating a real mode callback address and then passing the
address to the mouse driver, a protected mode application can arrange to be notified of mouse
movements or button clicks even though the mouse driver runs entirely in real mode.

The last two functions in this group give client programs access to the primitive building blocks for
the high-level Functions 0300H through 0302H:

0305H Get State Save/Restore Addresses
0306H Get Raw CPU Mode Switch Addresses

These functions allow mode switching to be performed much more quickly, but place the entire
burden of maintaining the proper system context in each mode on the client program.

17

DOS Protected Mode Interface Version 1.0

DOS Memory Management Services

The DPMI DOS memory management functions are:

0100H Allocate DOS Memory Block
0101H Free DOS Memory Block
0102H Resize DOS Memory Block

These DPMI Int 31H functions are exactly analogous to the DOS real mode functions Allocate
Memory Block (Int 21H Function 48H), Free Memory Block (Int 21H Function 49H), and Resize
Memory Block (Int 21H Function 4AH). However, the Int 31H functions listed above can be
called from protected mode, automatically create and destroy descriptors as necessary so that
the DOS memory can be accessed conveniently from protected mode, and do not require explicit
use of the DPMI translation services.

The DOS memory management services exist so that protected mode applications can allocate
and free memory that is directly addressable by real mode applications, terminate-and-stay-
resident utilities, the ROM BIOS, DOS, and DOS device drivers. Such memory is typically used
to communicate with real mode software that is ignorant of extended memory and/or is not
directly supported by DPMI. For example, an application might invoke the ROM BIOS video
driver's palette programming function by allocating a DOS memory block, copying the palette
color table from extended memory into the DOS memory block, and finally passing the address
of the DOS memory block to the ROM BIOS by issuing the appropriate software interrupt via the
DPMI's translation function.

Debug Support Services

DPMI also supports protected mode debuggers by providing access to the CPU's hardware
debugging facilities:

OBOOH Set Debug Watchpoint

OBO1H Clear Debug Watchpoint
0BO2H Get State of Debug Watchpoint
0BO3H Reset Debug Watchpoint

These functions are necessary because the DPMI client is not necessarily running at the highest

privilege level, and because multitasking hosts may need to maintain the debug registers on a
per-client basis.

Miscellaneous Services

DPMI provides applications with information about host services with three functions:
0400H Get DPMI Version

0401H Get DPMI Capabilities
OAOOH Get Vendor-Specific API Entry Point

18

DOS Protected Mode Interface Version 1.0

Two DPMI services support the creation of protected mode resident service providers (terminate-
and-stay-resident utilities and drivers):

0COOH Install Resident Service Provider Callback
0CO1H Terminate and Stay Resident

The next four functions support applications and device drivers that must directly access
memory-mapped peripheral devices:

0508H Map Device in Memory Block (Optional)

0509H Map Conventional Memory in Memory Block (Optional)
0800H Physical Address Mapping

0801H Free Physical Address Mapping

Functions 0508H and 0509H are optional, and when they are implemented are only available on
32-bit hosts. Applications which require Functions 0508H or 0509H to execute are not DPMI-
compliant. Functions 0800H and 0801H are available on all 16-bit and 32-bit hosts.

DPMI supports two functions related to numeric coprocessors:

OEOOH Get Coprocessor Status
OEO1H Set Coprocessor Emulation

These two functions allow protected mode applications to determine whether a numeric
coprocessor is present, and to inspect or set the coprocessor-present and floating point
emulation bits which are maintained by the DPMI host on a per-client basis. Using these calls, a
DPMI client can install private floating point emulation even in an environment where the host
provides emulation and/or there is a real floating point coprocessor present.

19

DOS Protected Mode Interface Version 1.0

Chapter 4. DPMI Client Implementation Notes

Programs that use DPMI services are called DPMI clients. Generally, DPMI clients fall into one
of two categories:

» DOS Extenders which use DPMI services as building blocks for a more extensive interface
that is exported to application programs running under their control,

* Application programs that call DPMI directly.

In the near term, most client programs will need to be able to run in several different
environments, each providing a different interface and range of services. It is recommended that
clients test for the existence of such environments in the following order:

* DOS Protected Mode Interface (DPMI)-compatible host;
» Virtual Control Program Interface (VCPI)-compatible server;
» eXtended Memory Specification (XMS)-compatible driver;

* Top-down memory allocation (see Appendix A: Glossary) or bottom-up (VDISK-compatible)
memory allocation.

Figure 2 on page 21 illustrates a typical DPMI client configuration, consisting of a DOS Extender
and a protected-mode application. The application code relies on the DOS Extender functions
and APIs. The DOS Extender contains separate modules for each possible environment, and
code to implement those services that are lacking in a particular environment.

Existing DOS extenders support APIs that differ from the Int 31h interface. Usually, DOS
extenders use an Int 21h multiplex for their extended APIs. Extenders that support DPMI will
need to initialize differently when they are run under DPMI environments. They will need to enter
protected mode using the DPMI real to protected mode entry point, install their own API handlers,
and then load the DOS extended application program.

20

DOS Protected Mode Interface

Version 1.0

Figure 2. An example of a DPMI client consisting of a DOS Extender and a protected-
mode application. The client should be able to run in the presence of DPMI, VCPI, or

XMS environments or in the absence of all three.

DPMI ||
client |
R + | |
| VCPI [
| client |
Fommmmemeeeee + | |
| XMS |
| client |]
Fommmmmeeeee + ||
Top-down or	
bottom-up	
client	
Hommmmneeeeen +	
L	
S — +	
S	
DPMI	
host	F +
VCPI	
server	XMS +---memmmeeeeen +
	driver
I	
L	1 oISk
,	
Operating System (e.g. DOS)	

21

DOS Protected Mode Interface Version 1.0

Client Initialization

DPMI clients are loaded in real mode. In order to enter protected mode, the client must first call
Int 2FH Function 1687H (see page 53) to test for the presence of a DPMI host and obtain the
address of the real-to-protected mode switch entry point. Function 1687H also returns
information about the DPMI host's capabilities and the size of a private data area which will be
used by the host to hold client-specific data structures. After allocating the required private data
area via the normal real mode memory allocation interface (DOS Int 21H Function 48H), the
client makes a FAR CALL to the mode switch entry point with the following parameters:

AX = flags
Bit Significance
0 0 = 16-hit application
1 = 32-bit application
1-15 reserved, should be zero
ES = real mode segment of DPMI host private data area (must be at least as large
as the size returned in Sl by Int 2FH Function 1687H; ES is ignored if the size
was zero)

If the Carry flag is set upon return, the mode switch was unsuccessful, the client is still running in
real mode, and register AX contains one of the following error codes:

8011H descriptor unavailable (cannot allocate descriptors for CS, DS, ES, SS, PSP, and
environment pointer)
8021H invalid value (32-bit program specified but not supported)

If the mode switch was successful, the mode switch routine returns to the caller in protected
mode with the Carry flag clear and the following results:

CSs = 16-bit selector with base of real mode CS and a 64 KB limit
SS = selector with base of real mode SS and a 64 KB limit

DS = selector with base of real mode DS and a 64 KB limit

ES = selector to program's PSP with a 100H byte limit

FS = 0 (if running on an 80386 or later)

GS = 0 (if running on an 80386 or later)

All other registers are preserved, except that for 32-bit clients the high word of ESP will be forced
to zero. 32-bit clients will initially run with a 16-bit code segment, but all Int 31H calls will still
require 48-bit pointers, and the stack and data descriptors will be 32-bit (the Big bit will be set in
the descriptors). Note that if DS=SS at the time of the mode switch call, only one descriptor may
be allocated, and the same selector may be returned in DS and SS. The client is allowed to
modify or free the CS, DS, and SS descriptors allocated by the mode switch routine.

The environment pointer in the client program's PSP is automatically converted to a selector
during the mode switch. If the client wishes to free the memory occupied by the environment, it
should do so before entering protected mode and zero the word at PSP:2CH (segment address
of the environment). The client may change the environment pointer in the PSP after entering
protected mode but it must restore it to the selector created by the DPMI host before terminating.
The client should not modify or free the PSP or environment descriptors supplied by the DPMI

22

DOS Protected Mode Interface Version 1.0

host.

Example: The following code illustrates how a DPMI client would obtain the address of
the mode switch entry point, allocate the DPMI host private data area, and enter
protected mode.

modesw dd O ; far pointer to DPMI host's
; mode switch entry point

mov ax,1687h ; get address of DPMI host's
int 2fh ; mode switch entry point
or ax,ax ; exit if no DPMI host
jnz error
mov word ptr modesw,di ; save far pointer to host's
mov word ptr modesw+2,es ; mode switch entry point
or sisi ; check private data area size
iz @@l ; jump if no private data area
mov bx,si ; allocate DPMI private data
mov ah,48h ; area below 1 MB boundary
int 21h ; transfer to DOS
jc error ; jump, allocation failed
mov es,ax ; let ES=segment of data area
@@1: mov ax0 ; bit 0=0 indicates 16-bit app
call modesw ; switch to protected mode
jc error ; jump if mode switch failed

; else we're in prot. mode now

Client Termination

A protected mode client terminates by executing an Int 21H in protected mode, passing the
value 4CH in register AH and a return code in register AL. (This mimics the Int 21H Function
4CH termination used by DOS applications in real mode.) The client has the following
responsibilities before termination:

» real mode memory that was unlocked for paging with Int 31H Function 0602H must be
relocked with Int 31H Function 0603H;

* interrupts hooked by the client for real mode with Int 31H Function 0201H must be released
by restoring the address of the original owner of the interrupt.

» protected mode handlers for real mode exceptions installed with Int 31H Function 0213H
should be cleaned up if possible.

When the DPMI host detects an Int 21H Function 4CH termination request, it takes the following
actions (the detailed comparison of DPMI version 0.9 and version 1.0 host termination handling is
in Appendix C, page 158):

» any extended memory blocks that were previously allocated with Function 0501H or 0504H

23

DOS Protected Mode Interface Version 1.0

are unlocked and freed (this is the only cleanup action required by a DPMI V 0.9 host);

* the client's local descriptor table (LDT) is freed in its entirety by DPMI 1.0 hosts. (A DPMI
version 0.9 client should clean up its own segment descriptors before its termination since
some DPMI version 0.9 hosts may not free the terminating client's segment descriptors if the
client is not the primary client);

* physical address mappings created with Int 31H Function 0800H are freed,;
* mappings created with Int 31H Functions 0508H or 0509H are destroyed;

» the client's interrupt descriptor table (IDT) is freed in its entirety and any client exception
handlers installed through Functions 0203H, 0212H and 0213H are deregistered;

» any real mode regions that were unlocked with Function 0602H are relocked;

» any real mode callbacks that were allocated with Function 0303H are deallocated,;
» the client's shared memory block allocations and serializations are freed;

* any debug watchpoints that were set with Function OBOOH are cleared,;

» the coprocessor state (if any) is restored to the default.

After the DPMI host performs the cleanup activities listed above, it will switch to real mode and
re-issue the Int 21H Function 4CH interrupt, passing the return code from the DPMI client down
to DOS. DOS will then terminate the client as a real mode process by releasing its DOS memory
blocks (whether allocated by real mode Int 21H Function 48H or by DPMI Function 0100H),
flushing file buffers, closing file and device handles, and so on.

Clients should only terminate from their main thread of execution, and should not issue the
protected mode Int 21H Function 4CH from within a hardware interrupt handler, exception
handler, or real mode callback. Client may, however, terminate from within a protected mode
routine that has been entered via the DPMI raw mode switch service. Clients which wish to
terminate-and-stay-resident to provide services to protected mode clients should use DPMI
Function OCO1H rather than Int 21H Function 31H.

Note: Although the DPMI host monitors for Int 21H Function 4CH in protected mode, it ignores all
other Int 21H Functions. DOS Extenders typically install an interrupt 21H handler of their own in

order to trap and service DOS function requests by a protected mode application; thus, the DOS

Extender's Int 21H handler will always see the Function 4CH termination request first. The DOS

Extender should perform any cleanup activities of its own and then pass the termination request

to the DPMI host by chaining to the original owner of the protected mode Int 21H vector.

Stacks and Mode Switching

At one point in its execution or another, every DPMI client runs on four different stacks: an
application stack, a locked protected mode stack, a real mode stack, and a DPMI host stack. It
is important to understand how the host maintains these stacks to fully understand the protected
mode environment.

24

DOS Protected Mode Interface Version 1.0

The application stack is the primary stack that the DPMI client executes on. It is initially the real
mode stack that the client was on when it switched into protected mode, although nothing
prevents the client from switching protected mode stacks at any point after the initial mode
switch. The application stack can be unlocked if desired. Software interrupts executed in
protected mode are reflected on this stack.

The locked protected mode stack is provided by the DPMI host. The host automatically switches
to this stack during servicing of hardware interrupts, software interrupts 1CH, 23H, and 24H, all
exceptions, and during the execution of real mode callbacks. Subsequent nested interrupts or
calls will not cause a stack switch. If the client switches off this stack, the new stack must also
be locked and will become the protected mode stack until it switches back. When the interrupt or
call returns, the host switches back to the original protected mode stack. Note that the host must
provide a minimum of one 4 KB locked stack, and that software interrupts other than 1CH, 23H,
and 24H do not use this stack. (Refer Appendix D for descriptor usage rule of locked stack.)

The real mode stack is also provided by the DPMI host, and is usually located in the DPMI host
data area allocated by the client prior to its initial switch into protected mode. The real mode
stack is at least 200H bytes in size and is always located in locked memory. Interrupts that are
reflected to real mode, as well as calls to real mode interrupt handlers or procedures via Int 31H
Functions 0300H, 0301H, or 0302H, will use this stack.

A DPMI host stack is only accessible to the DPMI host; it is used by the host to handle interrupts
and exceptions that occur while the host is executing on behalf of the client. The DPMI host
stack may also be used to contain state information about the client. For example, when the
client requests a mode switch, the original SS:(E)SP of the protected mode program can be
saved on the host stack while the DPMI host switches onto the locked protected mode stack.

There are four different ways that a client can force a mode switch between protected and real
mode:

» Execute the default interrupt reflection handler (all interrupts other than Int 31H and Int 21H
Function 4CH are initialized by the DPMI host to point to a handler that reflects the interrupt
to real mode);

* Use the DPMI translation services (Int 31H Functions 0300H, 0301H, and 0302H) to call a
real mode interrupt handler or procedure;

» Allocate a real mode callback address with Int 31H Function 0303H; when a real mode
program transfer control to the callback address, the DPMI host will switch the CPU from real
mode into protected mode;

» Use the DPMI raw mode switch functions, whose addresses are obtained with Int 31H
Function 0306H.

All of these mode switches except for the raw mode switches may save some information on the
DPMI host's stack. This means that clients should not terminate within nested mode switches
unless they are using the raw mode switching services. However, even clients that use raw
mode switches should not attempt to terminate from a hardware interrupt or exception handler or
real mode callback because the DPMI host performs automatic mode and stack switching during
these events.

Clients that use the raw mode switch services and perform nested mode switches must use the

DPMI state save/restore functions (whose addresses may be obtained with Int 31H Function
0305H), causing the host to maintain information on the "other" mode's current state. This

25

DOS Protected Mode Interface

Version 1.0

information includes the CS:(E)IP, SS:(E)SP, and other segment register contents; values that
the client has no way to access directly. For example, during the service of a hardware interrupt
that occurs in real mode, the DPMI host may preserve the real mode CS:(E)IP, SS:(E)SP, and
segment registers on the host stack. If the client subsequently calls the raw mode switch
function without calling the state save function first, it will inadvertently overwrite the real mode
information already pushed on the host stack, causing a return to the wrong address when the

handler finally executes the IRET.

Example: This example illustrates code that saves the state of the real mode registers
using the DPMI save/restore function, switches to real mode using the raw mode switch
service, issues a DOS call to open a file, switches back to protected mode using the raw
mode switch service, and restores the state of the real mode registers using the
save/restore function. The protected mode registers are saved by pushing them on the
stack in the usual fashion. The example is intended only to show the logical sequence
of execution; in a real program, the real mode and protection mode variables and
functions would likely reside in separate segments.

savsiz dw 0
realsrs dd

0
protsrs dd 0
realrms dd 0

0

protrms dd

protds dw 0
protip dw 0
protcs dw 0
protsp dw 0
protss dw 0
0
0

realsp dw
realss dw

mov ax,305h

int 31h

mov savsiz,ax

mov word ptr realsrs,cx
mov word ptr realsrs+2,bx
mov word ptr protsrs,di
mov word ptr protsrs+2,si

mov ax,306h

int 31h

mov savsiz,ax

mov word ptr realrms,cx
mov word ptr realrms+2,bx
mov word ptr protrms,di
mov word ptr protrms+2,si

; size of state information
; far pointer to real mode
; save/restore state entry point
; far pointer to protected mode
; save/restore state entry point
; far pointer to real mode
; raw mode switch entry point
; far pointer to protected mode
; raw mode switch entry point

; placeholder for protected mode DS
; placeholder for protected mode IP

; placeholder for protected mode CS
; placeholder for protected mode SP
; placeholder for protected mode SS

; placeholder for real mode SP
; placeholder for real mode SS

; this code is executed during
; application initialization

; get addresses of DPMI host's
; state save/restore entry points
; save state info buffer size
; BX:CX = state save/restore
; entry point for real mode
; SI:DI = state save/restore
; entry point for protected mode

; get address of DPMI host's
; raw mode switch entry points
; save state info buffer size
; BX:CX = raw mode switch
; entry point for real mode
; SI:DI = raw mode switch
; entry point for protected mode

26

DOS Protected Mode Interface

callopenfile proc
pusha
push es

sub sp,savsiz
mov di,sp
mov ax,ss
mov es,ax
xor al,al

call protsrs

mov protds,ds
mov protss,ss
mov protsp,sp

; must also initialize the
; Sp and realss variables

; this code is executed during
; program execution

; save protected mode registers

; allocate space on current stack
; to save real mode state
; let ES:DI = address of buffer
; to receive state information
; AL=0 for save state request
; call state save/restore routine

: save current DS for switch back
; save current SS
: save current SP

mov protip,offset returnfromreal ; save return IP

mov protcs,cs

mov ax,seqg filename
mov dx,realss

mov bx,realsp

mov si,seg openfile
mov di,offset openfile

jmp protrms
returnfromreal:

mov ax,ss
mov es,ax

mov di,sp
mov al,1

call protsrs
add sp,savsiz
pop es

popa

ret

callopenfile endp

openfile proc
mov dx,offset filename

mov ah,3dh
int 21h
ic openerr

mov filehandle,bx
mov ax,protds
mov dx,protss
mov bx,protsp
mov si,protcs
mov di,protip

; save return CS

; load real mode DS
; load real mode SS
; load real mode SP

; load real mode CS
; load real mode IP

; Go to openfile

; let ES:DI = address of buffer
; holding state information

; AL=1 to restore state
; call state restore routine
; discard state info buffer

; restore protected mode registers

; this code is executed in real mode

; issue Open File DOS call

; check for error (not shown here)
; save file handle
; load protected mode DS
; load protected mode SS
; load protected mode SP
; load protected mode CS
; load protected mode IP

27

Version 1.0

DOS Protected Mode Interface Version 1.0

jmp realrms

openfile endp

Handling Interrupts

When a DPMI client switches into protected mode, a unique interrupt descriptor table (IDT) is
created for the client by the DPMI host. Initially,all software interrupts (except for Int 31H, Int
2FH and Int 21H Function 4CH) or external hardware interrupts are directed to a handler that
simply reflects the interrupt to real mode; i.e. the DPMI host's default handler simply switches the
CPU into real mode and re-issues the interrupt, so that it can be serviced by the original real
mode owner of the interrupt. The contents of the general registers and flags are passed to the
real mode handler and the modified registers and flags are returned to the protected mode
handler. Segment registers and the stack pointer are not passed between modes; the contents
of the segment registers after the switch to real mode are undefined, and the DPMI host
automatically supplies a valid real mode stack.

DPMI clients can install their own distinct real mode or protected mode handlers for software and
external hardware interrupts with Functions 0201H and 0205H respectively. If a protected mode
handler is installed, it is called instead of any real mode handler or the DPMI host's default
handler. Just as in real mode, the protected mode handler can either service the interrupt and
terminate with an IRET, or transfer to the next handler in the chain by executing a PUSHFCALL
or a FAR JMP. The final handler in the protected mode handler chain (the DPMI host's default
handler) will reflect the interrupt to real mode.

Virtual Interrupts

Under many DPMI hosts, interrupts will always remain enabled in protected mode (i.e. the
interrupt flag will be set at all times) to allow preemptive multitasking. Such hosts will maintain a
virtual interrupt state for each virtual machine, trapping the execution of instructions that ordinarily
affect the hardware interrupt flag and adjusting the client's virtual interrupt flag accordingly.
When the virtual interrupt flag is cleared by the client's execution of CLI or call to DPMI function
Int 31H 0900H, the program will not receive any hardware interrupts until it sets the flag again
with STI or calls Function 0901H. DPMI clients should not use the PUSHFnstruction to examine
their interrupt status. This is because PUSHFpushes the real processor flags onto the stack,
which do not reflect the state of the client's virtual interrupt flag. Similarly, clients cannot use
IRET(D) or POPFto alter the interrupt flag, because these instructions access the physical
interrupt flag and are ignored by the CPU due to the client's privilege level.

Example: The following source code demonstrates how a client would disable virtual
interrupts prior to entry to an interrupt-critical section of code, then restore the virtual
interrupt flag to its previous state at the end of the critical section:

28

DOS Protected Mode Interface Version 1.0

mov ax,0900h ; get previous virtual interrupt
int 31h ; flag and disable interrupts
push ax ; save value 0900H or 0901H

; interrupt-critical code goes here

pop ax
int 31h ; restore previous interrupt flag

If the client already knows (or does not care about) the previous state of the virtual interrupt flag,
it can use CLI and STI instead of DPMI functions 0900H and 0901H. The programmer should
assume that the execution of either of these instructions will be slow.

Hardware Interrupts

The programmable interrupt controllers are mapped by the DPMI host to the system's default
interrupt assignments. On an IBM AT-compatible system, for example, the master interrupt
controller (IRQO through IRQ7) is programmed to use a base interrupt level of 8 and the slave
controller (IRQ8 through IRQ15) uses a base interrupt level of 70H.

All of the code and data that may be touched by hardware interrupt handlers must reside in
locked memory to avoid page faults at interrupt time. The handler will always be called on a
locked stack. As in real mode, hardware interrupt handlers are called with virtual interrupts
disabled and the trace flag reset. In systems where the CPU's interrupt flag is virtualized, IRET
may not restore the interrupt flag. Therefore, clients should execute a STI before executing
IRET or else interrupts will remain disabled.

Protected mode hardware interrupt handlers that call a real mode routine must either ensure that
the real mode code will not modify segment registers or use the DPMI state save/restore services
(see page 94). However, any interrupt handler that executes completely in protected mode, or
uses the translation services (Int 31H Functions 0300H, 0301H, or 0302H), does not need to
save the real mode register state.

Personal computers with two programmable interrupt controllers usually have a BIOS that
redirects one of the interrupts from the slave controller into the range of the master controller for
compatibility with older, 8086/88-based systems. For example, devices jumpered for IRQ2 on
PC/AT-compatible computers actually interrupt on IRQ 9 (Int 71H), but the BIOS on these
systems converts Int 71H to Int 0AH yet sends the EOl command (appropriately) to the slave
controller. A protected mode client that needs access to the redirected interrupt might use a
variation on one of the following techniques:

» Install only a real mode handler for the target interrupt, taking advantage of the built-in
redirection. This method is robust on systems where other software has reprogrammed the
interrupt controllers, or where the slave interrupt controller may be absent.

» Install both real mode and protected mode handlers for the target interrupt. In such cases,
the program must send the EOI command to both the slave and master interrupt controllers
since the BIOS is never called. This method is more efficient in that there are not any
unnecessary switches to real mode.

29

DOS Protected Mode Interface Version 1.0

Software Interrupts

Ordinarily, a handler installed with DPMI Function 0205H will only service software interrupts that
are executed in protected mode; real mode software interrupts are passed to handlers installed
with DOS Int 21H Function 25H issued from real mode, DPMI Int 31H Function 0201H, or by
direct manipulation of the interrupt vector table at real mode address 0000:0000. However, there
are three real mode software interrupts that a DPMI host will always reflect to a protected mode
handler, if one is installed:

Int 1CH ROM BIOS timer tick interrupt
Int 23H DOS Ctrl+C interrupt
Int 24H DOS critical error interrupt

Clients should never terminate during the processing of interrupts that were reflected from real
mode. Such a termination might prevent the DPMI host from cleaning up the client's resources

properly.

Protected mode handlers for software interrupts 0-7 are called with virtual interrupts disabled and
trace flag reset, and these handlers should return with interrupts enabled. All other software
interrupts do not modify the interrupt flag state.

Handling CPU Exceptions

Exceptions are interrupts that are generated internally by the CPU when certain conditions are
detected during the execution of a program. Examples of such conditions are: use of an invalid
selector, use of a selector for which the program has insufficient privileges, use of an offset
outside the limits of a segment, execution of an illegal opcode, or division by zero. The DPMI
host distinguishes between exceptions and external hardware interrupts or software interrupts.

Handlers for exceptions can only be installed with Int 31H Functions 0203H, 0212H, or 0213H. If
the client does not install a handler for a particular exception, or installs a handler but chains to
the host's default handler, the host reflects the exception as a real mode interrupt for exceptions
0,1,2,3,4,5,and 7. The default behavior of exceptions 6 and 8-1FH is to terminate the client
(some hosts may decide that they have to terminate the VM because the fault came from real
mode code or it is in a non-terminatable state).

30

DOS Protected Mode Interface Version 1.0

Function 0203H was defined in DPMI version 0.9 and continues to be supported in DPMI version
1.0 for compatibility reasons. Exception handlers installed with Function 0203H are only called
for exceptions that occur in protected mode. All exceptions are examined by the DPMI host.
The host processes any exception that it is responsible for, such as page fault for virtual memory
management. These transparent exceptions are never passed to the client exception handlers.
All other exceptions become visible exceptions to a client and are passed to the client exception
handler (if any) from the DPMI host. The client exception handlers must return with a FAR
RETURNwith interrupts disabled on a locked stack, and with the SS, (E)SP, CS, and (E)IP
registers at the point of exception pushed on the stack. All other registers are unchanged from
their contents at the point of exception. The stack frame for 16-bit handlers installed with
Function 0203H has the following format:

15 0
[S ——— +
SS
--------------- OEH
SP
--------------- OCH
Flags |
--------------- O0AH
Cs
--------------- 08H
P |
--------------- | 06H
Error Code |
--------------- | 04H
Return CS |
--------------- | 02H
Return IP |
e + O0H <-- SS:SP

The stack frame for 32-bit handlers installed with Function 0203H has the following format:

31 15 0
Reserved | SS |
| 1CH
ESP |
| 18H
EFLAGS |
| 14H
Reserved | CS
| 10H
EIP
| OCH
Error Code |
| 08H
| ReturnCS |
| 04H
Return EIP
+ + O0H <-- SS:ESP

The error code in the stack frame is only valid for the following exceptions:

08H Double fault

O0AH Invalid TSS

OBH Segment not present
OCH Stack fault

ODH General protection fault

31

DOS Protected Mode Interface Version 1.0

OEH Page fault

In the case of other exceptions and faults, the value of the error code is undefined. The fields
marked Return CS , Return (E)IP , and Reserved in the stack frame should not be modified,
but anything else in the stack frame can be altered by the client before returning from the
exception handler.

The exception handler must preserve and restore all registers, and must either jump to the next
handler in the chain or terminate with a RETF(far return) instruction. In the latter case, the
original SS:(E)SP, CS:(E)IP and flags on the stack, including the interrupt flag, will be restored.
The exception handler can arrange to transfer control to a more general error-handling routine
within the application by modifying the CS:(E)IP that is stored in the stack frame above the
Return CS:(E)IP.

DPMI version 1.0 supports an expanded stack frame for exception handlers, and the ability to
install separate handlers for exceptions which occur in real mode and in protected mode with
Functions 0212H and 0213H. The expanded frame is defined on the stack above the frame
previously described for handlers installed with Function 0203H. This allows DPMI 0.9-
compatible handlers and DPMI 1.0-compatible handlers to coexist in the same handler chain; old
handlers will be oblivious to the additional information available beyond the old stack frame, while
new handlers can ignore the old frame and use only the expanded frame higher up on the stack.

The format of the expanded stack frame for both 16-bit and 32-bit handlers installed with
Functions 0212H and 0213H is as follows:

31 15 0
+ + + 58H
PTE
| 54H
CR2
| 50H
Reserved | GS |
| 4CH
Reserved | FS |
| 48H
Reserved | DS |
| 44H
Reserved | ES |
| 40H
Reserved | SS |
| 3CH
ESP
| 38H
EFLAGS |
| 34H
Exception information bits| CS |
| 30H
EIP
| 2CH
Error code
| 28H
Reserved | Return CS (32-bit) or O |
| 24H

Return EIP (32-bit) or CS:IP (16-bit)

+ 20H+SS:(E)SP

A 32-bit stack frame image is always presented, even for 16-bit handlers, and the offset from
SS:(E)SP to the expanded stack frame is always 20H (32) regardless of the handler type. The

32

DOS Protected Mode Interface Version 1.0

DS, ES, FS, and GS registers are saved for both real and protected mode. The client can inspect
the VM bit in EFLAGS to determine the mode at the point of exception. The CS field at
SS:(E)SP+24H is zero if the handler is running in 16-bit protected mode.

The exception information bits at SS:(E)SP+32H have the following meanings:

Bit Significance

0 0= exception occurred in the client
1= exception occurred in the host (most likely due to page fault or invalid
selector passed to host in an Int 31H call)
1 0= exception can be retried
1= exception cannot be retried, handler should perform whatever cleanup is
possible
2 0= host exception should be retried (invalid selector or page causing fault
corrected by exception handler, this is the default)
1= host exception is being redirected somewhere other than a retry address

3-15 reserved

Bits 0 through 2 of the exception information bits are relevant on hosts which support the
Exceptions Restartability capability (see Int 31H Function 0401H). Bits 0 and 1 of the exception
information bits are supplied to the client by the host. The default state of bit 2 as set by the host
is zero, and the client may set the bit to 1 before returning from the exception handler.

Bits 0-14 of the error code at SS:(E)SP+28H are the "virtual* DR6 on debug (Int 1) exceptions,
and correspond to debug breakpoints 0-14. In other words, if bits 0 and 2 are set in the error
code field on an Int 1 exception, then debug watchpoints 0 and 2 have fired. The handle returned
by the Set Debug Watchpoint (Function 0BOOH) corresponds to the bit number in the virtual DR6.
Bit 15 of the virtual DR6 is set (1) if the Int 1 is due to the trap flag. Breakpoints may be
virtualized, and there is no guarantee of correspondence with the actual hardware. The provision
for up to 15 breakpoints is made for future CPUs or external debugging hardware (80386 and
80486 CPUs support only four hardware breakpoints).

The PTE and CR2 fields of the expanded stack frame at SS:(E)SP+50H and 54H respectively
are only valid for page faults (Int OEH). Bits 0-7 of the PTE (page table entry) field are from the
actual PTE and may be virtualized by the host; the remaining bits of the PTE field are undefined.
The CR2 field contains the linear address that caused the fault.

Exception handlers installed with Functions 0212H and 0213H may terminate in any of the
following three ways:

« RETFfrom the old-style stack frame (only modifications to the old-style stack frame will be
recognized and a client may not use this type of return for real-mode exceptions);

¢ Discard the old-style stack frame by adding 20H (32) to (E)SP, then RETFfrom the new-style
(expanded) stack frame;

« FAR JMP to previous owner of the exception (the previous owner should never be CALLed).

The fields at offsets 2CH through 4FH in the expanded stack frame may be modified by an
exception handler. Note that the handler should only modify the values in the particular frame
(SS:(E)SP+0 or SS:(E)SP+20H) that it will use for the RETFE Altered values in the other frame
are ignored by the DPMI host. Real mode exceptions do not have valid data in the old-style
frame. A real mode exception handler must discard the old-style stack frame if it returns.

33

DOS Protected Mode Interface Version 1.0

Example: The following code illustrates how a client would install its own exception
handler for general protection (GP) faults. The actual handler does nothing more than
reach into the stack frame and alter the return address, so that control within the
application restarts at a different point after the exception handler exits.

prevgp dd O ; address of previous
; GP fault handler

; this code is executed during
; application initialization...

mov ax,0210h ; get address of previous
mov bl,13 ; owner of GP fault vector
int 31h

mov word ptr prevgp,dx ; save as far pointer
mov word ptr prevgp,cx

mov ax,0212h ; install our GP fault handler
mov bl,13

mov CX,CS ; CX:DX = handler address
mov dx,offset _ TEXT:gpfisr

int 31h

jc init9 ; jump, couldn't install
. ; continue with initialization

gpfisr proc far ; this is the actual exception
; handler for GP faults
add sp,20h ; discard "old" stack frame
push bp ; point CS:IP in stack frame to
mov bp,sp ; GP fault error message routine

mov word ptr [bp+0eh],offset _ TEXT:gpferr
mov word ptr [bp+12h],cs

pop bp]
ret ; now return from exception
gpfisr endp
gpferr proc near ; this routine executes after
: GPFISR returns to DPMI host
mov ax,4c01h ; terminate DPMI client with
int 21h ; nonzero return code

gpferr endp

Using Real-Mode Callbacks

The DPMI real mode callback mechanism allows a DPMI protected mode client to be called as a
subroutine by real mode programs in a transparent manner. That is, a real mode program can
use a real mode callback to pass information to the DPMI client, or obtain services provided by
the DPMI client, without necessarily being aware of protected mode or extended memory in any
way. The callback mechanism can be thought of as the converse of DPMI Int 31H Functions
0300H, 0301H, and 0302H, which allow a DPMI client to pass information to a real mode

34

DOS Protected Mode Interface Version 1.0

program, or obtain services from a real mode program, in a manner that is similarly transparent
to the real mode program.

In order to make a real mode callback available, the DPMI client must first call Int 31H Function
0303H with the selector and offset of the protected mode routine which will receive control when
the callback is entered, and the selector and offset of a real mode register data structure (in the
same format as used for Int 31H Functions 0300H, 0301H, and 0302H). Function 0303H will
return a real mode address (segment and offset) for the callback entry point that can be passed
to a real mode program via a software interrupt or far call (Int 31H Functions 0300H, 0301H, or
0302H), a DOS memory block, or any other convenient mechanism.

When the real mode program executes a FAR CALL to the real mode callback address supplied
to it by the DPMI client, the DPMI host saves the contents of all real mode registers into the
DPMI client's real mode register data structure, switches the CPU into protected mode, and
enters the DPMI client's callback routine with the following conditions:

Interrupts disabled

CS:(E)IP = selector:offset specified in the original call to Int 31H Function 0303H
DS:(E)SI = selector:offset corresponding to real mode SS:SP

ES:(E)DI = selector:offset of real mode register data structure

SS:(E)SP = locked protected mode stack provided by DPMI host

All other registers undefined

The format of the real mode register data structure is as follows: (Note that the content of the
32H bytes data structure are undefined at the time of the original Int 31H Function 0303H call.)

Offset Length Contents

OOH 4 Dl or EDI

04H 4 Sl or ESI

08H 4 BP or EBP

OCH 4 reserved, should be zero
10H 4 BX or EBX

14H 4 DX or EDX

18H 4 CX or ECX

1CH 4 AX or EAX

20H 2 CPU status flags
22H 2 ES

24H 2 DS

26H 2 FS

28H 2 GS

2AH 2 P

2CH 2 CSs

2EH 2 SP

30H 2 SS

The callback procedure can then extract its parameters from the real mode register data
structure and/or copy parameters from the real mode stack to the protected mode stack. Recall
that the segment register fields of the real mode register data structure contain segment or
paragraph addresses that are not valid in protected mode. Far pointers passed in the real mode
register data structure must be translated to virtual addresses before they can be used. The
recommended procedure is for the DPMI client to allocate a selector for this purpose during its
initialization, then use Int 31H Function 0007H within the callback procedure to set the segment
base to 16 times the value found in the real mode segment register. The DPMI client should not
use Int 31H Function 0002H for this purpose, because selectors allocated by Function 0002H can

35

DOS Protected Mode Interface Version 1.0

never be freed.

The callback procedure exits by executing an IRET with the address of the real mode register
data structure in ES:(E)DI, passing information back to the real mode caller by modifying the
contents of the real mode register data structure and/or manipulating the contents of the real
mode stack. The callback procedure is responsible for setting the proper address for resumption
of real mode execution into the real mode register data structure; typically, this is accomplished
by extracting the return address from the real mode stack and placing it into the CS:IP fields of
the real mode register data structure. After the IRET, the DPMI host switches the CPU back
into real mode, loads all registers (including CS:1P) with the contents of the real mode register
data structure, and finally returns control to the real mode program.

Since the real mode call structure and the selector used for the real mode SS are static, care
must be taken when writing DPMI client callback procedures that may be reentered (for example,
by a real mode program that services hardware interrupts). The simplest method of avoiding
reentrancy is to leave interrupts disabled throughout the entire callback procedure. However, if
the amount of code executed by the callback is large, the client may find it more desirable to
copy the real mode register data structure into a dynamically allocated buffer and then re-enable
interrupts and not use the incoming DS anymore. The real mode register data structure pointed
to by ES:(E)DI upon return from the callback procedure is not required to be at the same address
as the original real mode register data structure.

DPMI hosts must provide a minimum of 16 callback addresses per virtual machine. Real mode

callbacks are a limited system resource. A DPMI client should always use Int 31H Function
0304H to free any callbacks that it is no longer using.

36

DOS Protected Mode Interface Version 1.0

Example: The following code is a example of a real mode interrupt hook. It hooks the
DOS Int 21h and returns an error for the delete file function (AH=41h). Other calls are
passed through to DOS. This example demonstrates the techniques used to hook a real
mode interrupt. Note that since DOS calls are reflected from protected mode to real
mode, the following code will intercept all DOS calls from both real mode and
protected mode.

skkkhkkkkkkkkkkk
’

; This procedure gets the current Int 21h real mode

; Seg:Offset, allocates a real mode call-back address,
; and sets the real mode Int 21h vector to the call-

; back address.

skkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkk
’

Initialization_Code:
; Create a code segment alias to save data in
mov ax, 000Ah
mov bx, cs
int 31h
jc ERROR
mov ds, ax

assume ds:_TEXT
: Get current Int 21h real mode SEG:OFFSET

mov ax, 0200h

mov bl, 21h
int 31h
jc ERROR

mov [Orig_Real_Segq], cx
mov [Orig_Real_Offset], dx

; Allocate a real mode call-back
mov ax, 0303h
push ds
mov bx, cs
mov ds, bx
mov si, OFFSET My _Int_21 Hook
pop es
mov di, OFFSET My_Real Mode_Call_Struc
int 31h
jc ERROR

: Hook real mode int 21h with the call-back
; address

mov ax, 0201h

mov bl, 21h

int 31h

jc ERROR

37

DOS Protected Mode Interface

skkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkk
)

: This is the actual Int 21h hook code. It will return
; an "access denied" error for all calls made in real
; mode to delete a file. Other calls will be passed

; through to DOS.

: ENTRY:

: DS:SI -> Real mode SS:SP

; ES:DI -> Real mode call structure
; Interrupts disabled

 EXIT:
; ES:DI -> Real mode call structure

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkk
)

My_Int_21 Hook:
cmp es:[di.RealMode_AH], 41h
jne Chain_To_DOS

; This is a delete file call (AH=41h). Simulate

; an iret on the real mode stack, set the real

; mode carry flag, and set the real mode AX to 5
: to indicate an access denied error.

cld

lodsw ; Get real mode ret IP
mov es:[di.RealMode_IP], ax
lodsw ; Get real mode ret CS
mov es:[di.RealMode_CS], ax
lodsw ; Get real mode flags

or ax,1 ;Setcarryflag

mov es:[di.RealMode_Flags], ax
add es:[di.RealMode_SP], 6
mov es:[di.RealMode_AX], 5
jmp My_Hook_Exit

; Chain to original Int 21h vector by replacing
; the real mode CS:IP with the original
; Seg:Offset.
Chain_To_DOS:

mov ax, cs:[Orig_Real_Seq]

mov es:[di.RealMode_CS], ax

mov ax, cs:[Orig_Real_Offset]

mov es:[di.RealMode_IP], ax

My_Hook_Exit:
iret

Using Shared Memory

Version 1.0

Shared memory blocks can be used for inter-client communication or simply to hold tables or
subroutine libraries that are needed by more than one client. Explicit use of shared blocks is
necessary because each VM has its own linear address space, and thus cannot inspect or

38

DOS Protected Mode Interface Version 1.0

modify the memory owned by a client in another virtual machine. The basic strategy for use of a
shared memory block is as follows:

» Allocate a shared memory block;
» Establish addressability for the shared block;

* Make a successful serialization request for the shared block (i.e. obtain ownership or right of
access to the block);

» Access the code or data in the shared block;
» Free the serialization of the shared block;

» Deallocate the shared memory block.

Shared memory blocks are allocated with Int 31H Function ODOOH. The client passes the
address of a data structure that specifies the ASCIIZ name and requested size for the shared
block to the host; the host returns the block’'s handle, linear base address, and actual size in the
same structure. The block’s true size is determined by the first client to allocate the block, and
the block will have the same linear address for all clients which allocate it.

After the shared block is allocated, the client must allocate one or more descriptors that will be
used to address the block with Int 31H Function 0000H. Once descriptor(s) have been allocated
and initialized to point to a shared memory block through separate LDT management calls, the
client has the physical capability to read, write, or execute addresses within the block as allowed
by the access rights/type byte. The client should synchronize with any other clients which might
have addressability to the same block, to avoid race conditions or corruption of data. This
synchronization is accomplished with Int 31H Function ODO2H (Serialize on Shared Memory) and
Int 31H Function ODO3H (Free Serialization on Shared Memory). Serialization can be thought of
as representing ownership or right of access to a shared memory block.

In essence, Int 31H Functions 0D02H and 0DO3H treat the handle of a shared memory block as
a semaphore. The client can request exclusive (read/write) or shared (read-only) serialization
with Int 31H Function 0DO2H, and the host will grant the serialization if no other client has already
obtained a conflicting serialization on the same memory block. The client can then go ahead and
manipulate the shared memory block, releasing the serialization with Int 31H Function 0DO3H
when it is finished using the block. If the Int 31H Function ODO2H serialization request fails, the
client will either be suspended until the serialization is available, or the function will return with an
error code, depending on the parameters supplied by the client.

The first paragraph (16 bytes) of the shared memory block (or the entire shared block, if smaller
than 16 bytes) will always be initialized to zero on the first allocation and can be used by clients
as an "area initialized" indicator. For example, a shared memory block might be used by a suite
of cooperating client programs to hold a table of static data or a subroutine library. The first client
to allocate the shared memory block can obtain exclusive ownership of the block with Int 31H
Function ODO2H, load the necessary data or code into the block from disk, set the first 16 bytes
of the block to a nonzero value, and finally release its ownership of the block with Int 31H
Function ODO3H. Other clients that allocate the shared memory block can check the "area
initialized" indicator and know that the desired code or data is already present in memory.

When the client has finished using the shared memory block, it should deallocate the shared
block with Int 31H Function ODO1H. After the block is deallocated, the linear addresses within the
block are no longer valid for the current client, and may cause an exception if accessed.
However, the block is not actually destroyed until all clients which have allocated the block have

39

DOS Protected Mode Interface Version 1.0

also deallocated it.

Note that a client can make multiple (nested) allocation requests for the same shared memory
block, and should assume that each allocation request will return a distinct handle. The shared
block will remain physically accessible to the client until each of its handles to the block have
been deallocated. Similarly, a client can make multiple serialization requests for the same block,
and will retain "ownership" of the block until a corresponding number of deserialization requests
have been issued. Lastly, allocation of zero-length shared memory blocks is explicitly allowed, so
that clients can use the handles resulting from such allocations as pure semaphores.

Example: The following code illustrates how shared memory can be used to load code
and data that can be used by more than one DPMI client. Note that no serialization
calls are required if the memory is already initialized.

memreqstruc struc

length dd ? ; humber of bytes requested
actual dd 7 ; hnumber of bytes allocated
handle dd ? ; handle for shared memory block
base dd ? ; linear address of shared block
nameptrdp ? ; pointer to shared memory name
dw O ; reserved, must be zero
dd O ; reserved, must be zero

memregstruc ends

memname db 'MYBLOCK',0
memreq memregstruc <> ; allocate request block

mov word ptr memreq.length,2000h ; set requested length

mov word ptr memreq.length+2,0 ; of shared block to 8 KB
; initialize nameptr

mov dword ptr memreg.nameptr,offset memname

mov word ptr memreq.nameptr+4, ds

mov di,ds ; ES:DI = address of shared
mov es,di ; memory request structure
mov di,offset memreq
mov ax,0d00h ; DPMI fxn ODOOH = allocate
int 31h ; shared memory block
jc error ; jump if allocation failed
mov cx,1 ; allocate one LDT descriptor
mov ax,0 ; using DPMI Function 0000H
int 31h
jc error ; jump, no descriptor available
mov bx,ax ; let BX = new selector
mov dx,word ptr memreq.base ; let CX:DX = linear base
mov cx,word ptr memreq.base+2 ; address of shared block
mov ax,0007h ; set descriptor base address
int 31h ; using DPMI Function 0007H
jc error ; jump, function failed

mov dx,word ptr memreg.actual ; let CX:DX = length-1
mov cx,word ptr memreqg.actual+2 ; of shared memory block
sub dx,1

sbb ¢x,0 ; (BX still = selector)

40

DOS Protected Mode Interface Version 1.0

mov ax,8 ; set descriptor limit using

int 31h ; DPMI Function 0008H

jc error ; jump, function failed

mov es,bx ; ES = selector for shared block
mov ax,es:[0] ; is block already initialized?

or ax,ax

jnz @@1 ; jump if it's initialized

; not initialized, get ownership
; of the shared memory block
mov di,word ptr memreqg.handle ; SI:DI = handle for
mov si,word ptr memreg.handle+2 ; shared memory block

mov dx,0 ; exclusive + wait for ownership
mov ax,0d02h ; DPMI Fxn ODO2H = serialize
int 31h

jc error ; jump if serialization failed

mov ax,es:[0] ; check again if someone else
or ax,ax ; already initialized block

jnz @@2 ; jump if it's initialized

; load code into the shared
; memory block here...

@@2: ; how release ownership of
; the shared memory block
mov di,word ptr memreqg.handle ; SI:DI = handle for
mov si,word ptr memreqg.handle+2 ; shared memory block

mov dx,0 ; serialization type = exclusive
mov ax,0d03h ; DPMI Fxn ODO3H = release
int 31h
jc error ; jump if serialization failed

@@1: ; finished initializing the

; shared memory block

Writing Resident Service Providers

A DPMI client that provides resident protected mode services (also called a "protected mode
TSR") must install itself using Int 31H Functions 0CO0H and 0CO1H (see the detailed definition of
these functions on pages 139 through 141). The protected mode TSR first declares its intent to
remain resident by calling Function 0COOH, providing the DPMI host with code and data
descriptors and callback entry points for 16-bit and/or 32-bit protected mode. If the TSR does not
wish to provide services in a particular mode, it provides a code descriptor for that mode
containing all zero bytes. The protected mode TSR then terminates and stays resident by calling
Int 31H Function 0CO1H. Note that after this function call, the TSR's original addressing context
is destroyed; its LDT and IDT no longer exist, although any extended memory blocks it owned at
time of termination remain allocated.

Whenever another DPMI client in the same virtual machine loads or terminates, the DPMI host
will inspect its list of protected mode TSRs. If a particular TSR has indicated that it can execute
in the active client's mode, the DPMI host will automatically allocate two LDT descriptors in the
active client's context, initialize them to the values specified in the protected mode TSR's original

41

DOS Protected Mode Interface Version 1.0

Function OCOOH call, and enter the TSR via a FAR CALL at the offset appropriate to the current
mode, passing the following values:

CS = executable selector which maps the same memory as the code descriptor
specified in the Int 31H Function 0COOH data structure for the current mode
(16-bit or 32-hit)

(E)IP = offset specified in the Int 31H Function 0COOH data structure for the current
mode (16-bit or 32-bit)
DS = read/write data selector which maps the same memory as the data descriptor

specified in the Int 31H Function 0COOH data structure for the current mode
(16-bit or 32-hit)

ES =0

FS =0

GS =0

AX = reason for callback: 0=DPMI client loading, 1=DPMI client terminating
BX = unique handle for the client within the virtual machine)

When a new DPMI client is loaded and executes the initial switch to protected mode, the
appropriate callback procedure in the protected mode TSR will be entered by a FAR CALL with
AX=0 before the DPMI host returns to the new program. The TSR may then hook interrupts,
create descriptors, or allocate memory blocks in the new client's context prior to the client's
access to such protected mode resources. For example, the initialization callback gives the TSR
an opportunity to insert itself in the chain of handlers for any arbitrary interrupt or exception. The
TSRs are invoked in the order of their installation but are removed in the reverse order. The
TSR may also need to construct per-client data structures in its own memory, and can use the
value supplied to it in BX as a "handle" for the client. The TSR must exit from the initialization
callback with a RETE

Similarly, when a DPMI client terminates using Int 21H Function 4CH or Int 31H Function 0CO1H,
the TSR's callback procedure will entered by a FAR CALL with AX=1 before the active client's
LDT or IDT has been destroyed. The protected mode TSR can then perform any client
termination responsibilities of which the client is unaware (e.g. unmapping of physical memory),
release any protected mode resources which it has acquired on behalf of the client (e.qg.
ownership of shared memory), and deallocate any per-client data structures of its own. The
termination callback must exit with a RETFand indicate an action to the DPMI host as follows:

Carry = clear to keep resident services in memory
or
Carry = set to remove resident services from memory

A resident service provider should only be removed from memory of the last client of the virtual
machine they are servicing.

Int 31H Functions 0COOH and 0CO1H should only be used by DPMI clients which intend to
provide resident services to other protected mode clients. If the objective is only to provide
resident services to real mode programs, the client should use the DPMI translation service Int
31H Function 0300H to invoke DOS's Int 21H Function 31H directly.

42

DOS Protected Mode Interface Version 1.0

Chapter 5. DPMI Function Reference

The Int 2FH and Int 31H functions supported by DPMI version 1.0 hosts are described in this
section. Each function entry has five parts:

The function name, interrupt and function number, and the DPMI version where the function
is first defined. All subsequent DPMI versions can be assumed to support the function as
documented unless explicitly noted otherwise.

A brief description of the function's purpose and usage.

The parameters supplied by the DPMI client when it makes the function call.

The results returned for the function by the DPMI host.

Programmer's notes giving more detailed information about the function and/or describing
special uses of the function.

Three tables at the beginning of this section list the Int 31H services sorted by functional group,
function number, and name. The Int 2FH functions are not included in these tables.
Programming examples and discussions of the use of the functions "in context" are found in the
"Implementation Notes for DPMI Clients" section of this document.

43

DOS Protected Mode Interface Version 1.0

DPMI Int 31H Functions Listed by Functional Group

Function Function DPMI DPMI
Number Name 0.9 1.0

LDT Management Services

0000H Allocate LDT Descriptor - -
0001H Free LDT Descriptor - -
0002H Map Real-Mode Segment to Descriptor - -
0003H Get Selector Increment Value - -
0006H Get Segment Base Address - -
0007H Set Segment Base Address - -
0008H Set Segment Limit - -
0009H Set Descriptor Access Rights - -
000AH Create Alias Descriptor - -
000BH Get Descriptor - -
000CH Set Descriptor - -
000DH Allocate Specific LDT Descriptor - -
0O0OEH Get Multiple Descriptors -
0O0OFH Set Multiple Descriptors -
Extended Memory Management Services

0500H Get Free Memory Information - -
0501H Allocate Memory Block - -
0502H Free Memory Block - -
0503H Resize Memory Block - -
0504H Allocate Linear Memory Block -
0505H Resize Linear Memory Block -
0506H Get Page Attributes -
0507H Set Page Attributes -
0508H Map Device in Memory Block -
0509H Map Conventional Memory in Memory Block -
050AH Get Memory Block Size and Base -
050BH Get Memory Information -
0800H Physical Address Mapping - -
0801H Free Physical Address Mapping -
ODOOH Allocate Shared Memory -
ODO1H Free Shared Memory -
0DO2H Serialize on Shared Memory -
ODO3H Free Serialization on Shared Memory -

DOS Memory Management Services

0100H Allocate DOS Memory Block - -
0101H Free DOS Memory Block - -
0102H Resize DOS Memory Block - -

44

DOS Protected Mode Interface

Interrupt Management Services

0200H
0201H
0202H
0203H
0204H
0205H
0210H

0211H

0212H

0213H

0900H

0901H
0902H

Get Real Mode Interrupt Vector

Set Real Mode Interrupt Vector

Get Processor Exception Handler Vector

Set Processor Exception Handler Vector

Get Protected Mode Interrupt Vector

Set Protected Mode Interrupt Vector

Get Extended Processor Exception
Handler Vector in Protected Mode

Get Extended Processor Exception
Handler Vector in Real Mode

Set Extended Processor Exception
Handler Vector in Protected Mode

Set Extended Processor Exception
Handler Vector in Real Mode

Get and Disable Virtual Interrupt State

Get and Enable Virtual Interrupt State

Get Virtual Interrupt State

Translation Services

0300H
0301H
0302H
0303H
0304H
0305H
0306H

Simulate Real Mode Interrupt

Call Real Mode Procedure with Far Return Frame

Call Real Mode Procedure with Interrupt Return Frame
Allocate Real Mode Callback Address

Free Real Mode Callback Address

Get State Save/Restore Addresses

Get Raw CPU Mode Switch Addresses

Page Management Services

0600H
0601H
0602H
0603H
0604H
0702H
0703H

Lock Linear Region

Unlock Linear Region

Mark Real Mode Region as Pageable
Relock Real Mode Region

Get Page Size

Mark Page as Demand Paging Candidate
Discard Page Contents

Debug Support Services

0BOOH
0BO1H
0BO2H
0BO3H

Set Debug Watchpoint

Clear Debug Watchpoint

Get State of Debug Watchpoint
Reset Debug Watchpoint

Miscellaneous Services

0400H
0401H
OAOOH
0COOH
0CO1H
OEOOH
OEO1H

Get DPMI Version

Get DPMI Capabilities

Get Vendor-Specific APl Entry Point
Install Resident Service Provider Callback
Terminate and Stay Resident

Get Coprocessor Status

Set Coprocessor Emulation

45

Version 1.0

DOS Protected Mode Interface Version 1.0

Reserved Function Numbers

0004H Reserved
0005H Reserved
0700H Reserved
0701H Reserved

46

DOS Protected Mode Interface

DPMI Int 31H Functions Listed Alphabetically

Function
Name

Allocate DOS Memory Block

Allocate LDT Descriptor

Allocate Linear Memory Block

Allocate Memory Block

Allocate Real Mode Callback Address

Allocate Shared Memory

Allocate Specific LDT Descriptor

Call Real Mode Procedure with Far Return Frame

Call Real Mode Procedure with Interrupt Return Frame

Clear Debug Watchpoint

Create Alias Descriptor

Discard Page Contents

Free DOS Memory Block

Free LDT Descriptor

Free Memory Block

Free Physical Address Mapping

Free Real Mode Callback Address

Free Serialization on Shared Memory

Free Shared Memory

Get and Disable Virtual Interrupt State

Get and Enable Virtual Interrupt State

Get Coprocessor Status

Get Descriptor

Get DPMI Capabilities

Get DPMI Version

Get Extended Processor Exception
Handler Vector in Protected Mode

Get Extended Processor Exception
Handler Vector in Real Mode

Get Free Memory Information

Get Memory Block Size and Base

Get Memory Information

Get Multiple Descriptors

Get Page Attributes

Get Page Size

Get Processor Exception Handler Vector

Get Protected Mode Interrupt Vector

Get Raw CPU Mode Switch Addresses

Get Real Mode Interrupt Vector

Get Segment Base Address

Get Selector Increment Value

Get State of Debug Watchpoint

Get State Save/Restore Addresses

Get Vendor-Specific API Entry Point

a7

Version 1.0
Function DPMI DPMI
Number 0.9 1.0
0100H - -
OOO0O0H - -
0504H -
0501H - -
0303H - -
ODOOH -
O00ODH - -
0301H - -
0302H - -
0BO1H - -
000AH - -
0703H - -
0101H - -
0001H - -
0502H - -
0801H -
0304H - -
ODO3H -
ODO1H -
0900H - -
0901H - -
OEOOH -
000BH - -
0401H -
0400H - -
0210H -
0211H -
0500H - -
050AH -
050BH -
OOOEH -
0506H -
0604H - -
0202H - -
0204H - -
0306H - -
0200H - -
0006H - -
0003H - -
0BO2H - -
0305H - -
OAOOH - -

DOS Protected Mode Interface

Get Virtual Interrupt State
Install Resident Service Provider Callback
Lock Linear Region

Map Conventional Memory in Memory Block

Map Device in Memory Block
Map Real-Mode Segment to Descriptor

Mark Page as Demand Paging Candidate

Mark Real Mode Region as Pageable

Physical Address Mapping

Relock Real Mode Region

Reserved

Reserved

Reserved

Reserved

Reset Debug Watchpoint

Resize DOS Memory Block

Resize Linear Memory Block

Resize Memory Block

Serialize on Shared Memory

Set Coprocessor Emulation

Set Debug Watchpoint

Set Descriptor

Set Descriptor Access Rights

Set Extended Processor Exception
Handler Vector in Protected Mode

Set Extended Processor Exception
Handler Vector in Real Mode

Set Multiple Descriptors

Set Page Attributes

Set Processor Exception Handler Vector

Set Protected Mode Interrupt Vector

Set Real Mode Interrupt Vector

Set Segment Base Address

Set Segment Limit

Simulate Real Mode Interrupt

Terminate and Stay Resident

Unlock Linear Region

48

Version 1.0

0902H - -
0COOH -
0600H - -
0509H -
0508H -
0002H - -
0702H - -
0602H - -
0800H - -
0603H - -
0004H

0005H

0700H

0701H

OBO3H - -
0102H - -
0505H -
0503H - -
0D02H -
OEO1H -
0BOOH - -
000CH - -
0009H - -
0212H -
0213H -
O0O0OFH -
0507H -
0203H - -
0205H - -
0201H - -
0007H - -
0008H - -
0300H - -
0CO1H -
0601H - -

DOS Protected Mode Interface Version 1.0

DPMI Int 31H Functions Listed by Number

Function Function DPMI DPMI
Number Name 0.9 1.0
0000H Allocate LDT Descriptor - -
0001H Free LDT Descriptor - -
0002H Map Real-Mode Segment to Descriptor - -
0003H Get Selector Increment Value - -
0004H Reserved
0005H Reserved
0006H Get Segment Base Address - -
0007H Set Segment Base Address - -
0008H Set Segment Limit - -
0009H Set Descriptor Access Rights - -
000AH Create Alias Descriptor - -
000BH Get Descriptor - -
000CH Set Descriptor - -
00O0DH Allocate Specific LDT Descriptor - -
0O0OEH Get Multiple Descriptors -
0O0OFH Set Multiple Descriptors -
0100H Allocate DOS Memory Block - -
0101H Free DOS Memory Block - -
0102H Resize DOS Memory Block - -
0200H Get Real Mode Interrupt Vector - -
0201H Set Real Mode Interrupt Vector - -
0202H Get Processor Exception Handler Vector - -
0203H Set Processor Exception Handler Vector - -
0204H Get Protected Mode Interrupt Vector - -
0205H Set Protected Mode Interrupt Vector - -
0210H Get Extended Processor Exception -
Handler Vector in Protected Mode
0211H Get Extended Processor Exception -
Handler Vector in Real Mode
0212H Set Extended Processor Exception -
Handler Vector in Protected Mode
0213H Set Extended Processor Exception -
Handler Vector in Real Mode
0300H Simulate Real Mode Interrupt - -
0301H Call Real Mode Procedure with Far Return Frame - -
0302H Call Real Mode Procedure with Interrupt Return Frame - -
0303H Allocate Real Mode Callback Address - -
0304H Free Real Mode Callback Address - -
0305H Get State Save/Restore Addresses - -
0306H Get Raw CPU Mode Switch Addresses - -
0400H Get DPMI Version - -
0401H Get DPMI Capabilities -
0500H Get Free Memory Information - -
0501H Allocate Memory Block - -

49

DOS Protected Mode Interface

0502H
0503H
0504H
0505H
0506H
0507H
0508H
0509H
050AH
050BH
0600H
0601H
0602H
0603H
0604H
0700H
0701H
0702H
0703H
0800H
0801H
0900H
0901H
0902H
OAOOH
OBOOH
0BO1H
0BO2H
0BO3H
0COOH
0CO1H
ODOOH
ODO1H
0DO2H
ODO3H
OEOOH
OEO1H

Free Memory Block

Resize Memory Block

Allocate Linear Memory Block

Resize Linear Memory Block

Get Page Attributes

Set Page Attributes

Map Device in Memory Block

Map Conventional Memory in Memory Block
Get Memory Block Size and Base

Get Memory Information

Lock Linear Region

Unlock Linear Region

Mark Real Mode Region as Pageable
Relock Real Mode Region

Get Page Size

Reserved

Reserved

Mark Page as Demand Paging Candidate
Discard Page Contents

Physical Address Mapping

Free Physical Address Mapping

Get and Disable Virtual Interrupt State
Get and Enable Virtual Interrupt State
Get Virtual Interrupt State

Get Vendor-Specific APl Entry Point
Set Debug Watchpoint

Clear Debug Watchpoint

Get State of Debug Watchpoint
Reset Debug Watchpoint

Install Resident Service Provider Callback
Terminate and Stay Resident

Allocate Shared Memory

Free Shared Memory

Serialize on Shared Memory

Free Serialization on Shared Memory
Get Coprocessor Status

Set Coprocessor Emulation

50

Version 1.0

DOS Protected Mode Interface Version 1.0

Int 2FH Function 1680H [1.0]
Release Current Virtual Machine's Time Slice

Called by a client program to indicate that the program is idle (for example, waiting for keyboard
input). This allows the DPMI host to pass the CPU to other clients, or take power-conserving
measures on laptop and notebook computers.
Call With:

AX = 1680H

Returns:

if function supported by host

AL =0

if function not supported by host

AL = unchanged (80H)
Notes:

o This function is not specific to DPMI hosts. Some operating systems will recognize this call
for programs running in real mode. Programmers are encouraged to use this call in all DOS
and DPMI-client programs. All DPMI hosts will hook Int 2FH and so a DPMI client can use
this API without any other precautions. Non-DPMI programs that can run on DOS 2.xx or
earlier should make sure that the Int 2FH vector is non-zero before executing the Int 2FH.

o When an application calls this function it will regain control at intervals, so it should continue
to re-issue this function call so long as it has nothing to do.

o DPMI client and application vendors are encouraged to use this function. It can significantly
improve the performance of a DOS-based multitasking host.

51

DOS Protected Mode Interface Version 1.0

Int 2FH Function 1686H [0.9]
Get CPU Mode

Returns information about the current CPU mode. Programs which only execute in protected
mode do not need to call this function.

Call With:
AX = 1686H
Returns:

if executing in protected mode

AX =0
if executing in real mode or Virtual 86 mode
AX = nonzero

Notes:

0 Some environments support programs or libraries that can execute in either real or protected
mode (bimodal code). This function is supplied so that such programs can detect at run time
whether they are running in protected mode and make use of system facilities accordingly.

o0 This function should not be used to determine if a DPMI host is present. A client should

make sure that DPMI services are available before calling this function; otherwise, the results
returned by the function may not be valid.

52

DOS Protected Mode Interface Version 1.0

Int 2FH Function 1687H [0.9]
Obtain Real-to-Protected Mode Switch Entry Point

This function can be called in real mode only to test for the presence of a DPMI host, and to
obtain an address of a mode switch routine that can be called to begin execution in protected
mode.
Call With:

AX =1687h

Returns:

if function successful

AX =0
BX = flags

Bit Significance

0 0 = 32-bit programs are not supported

1 = 32-bit programs are supported

1-15 not used
CL = processor type

02H = 80286

03H = 80386

04H = 80486

O05H-FFH Reserved for future Intel processors
DH = DPMI major version as a decimal number (represented in binary)
DL = DPMI minor version as a decimal number (represented in binary)
Sl = number of paragraphs required for DPMI host private data (may be 0)
ES:DI = segment:offset of procedure to call to enter protected mode

if function unsuccessful (no DPMI host present)
AX = nonzero

Notes:

0 The entry point returned by Int 2FH Function 1687H is only called for the first switch to
protected mode by a DPMI client. For further details on the protocol for switching to
protected mode and the environment after switching to protected mode, see page 22.

o Under DPMI hosts, the major version number is returned in DH and the minor version
number is returned in DL. There are two decimal digits for the minor version number with the
least-significant digit representing the revision number of the minor version number. Under
DPMI version 0.9 hosts, DH is returned as 0, and DL is returned as decimal 90 (5AH). In
hypothetical DPMI version 2.3, DH would be returned as 2 and DL would be returned as 30
(1EH).

53

DOS Protected Mode Interface Version 1.0

Int 2FH Function 168AH [1.0]
Get Vendor-Specific APl Entry Point

Returns an address which can be called to use host-specific extensions to the standard set of
DPMI functions. This function is available only in protected mode.

Call With:
AX = 168AH
DS:(E)SI = selector:offset of ASCIIZ (null-terminated) string identifying the DPMI host
vendor
Returns:

if function successful
AL =0
ES:(E)DI = extended API entry point

and DS, FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP are preserved.

if function unsuccessful
AL = unchanged (8AH)

Notes:

o0 The ASCIIZ string specifies a host vendor name or some other unique identifier to obtain a
specific extension entry point. The string comparison used to look up the API entry point is
case-sensitive.

0 Clients must use a FAR CALL to reach the extended API entry point.

o All extended API parameters are specified by the vendor.

o DPMI 1.0 clients should use this function in preference to Int 31H Function OAOOH. This
method of API extension is preferable to the Int 31H extension as it avoids the creation of a
long (and consequently slow) chain of Int 31H handlers which would slow down time-critical

DPMI functions. Note that although this function was not documented for DPMI 0.9, it will
work under any DPMI 0.9 host.

54

DOS Protected Mode Interface Version 1.0

Int 31H Function 0000H [0.9]
Allocate LDT Descriptors

Allocates one or more descriptors in the task's Local Descriptor Table (LDT). The descriptor(s)
allocated must be initialized by the application with other function calls.

Call With:

AX = 0000H

CX = number of descriptors to allocate
Returns:

if function successful
Carry flag = clear
AX = base selector

if function unsuccessful
Carry flag = set
AX = error code
8011H descriptor unavailable

Notes:

o If more than one descriptor was requested, the function returns a base selector referencing
the first of a contiguous array of descriptors. The selector values for subsequent descriptors
in the array can be calculated by adding the value returned by Int 31H Function 0003H.

o The allocated descriptor(s) will be set to "data" with the present bit set and a base and limit of
zero. The privilege level of the descriptor(s) will match the application's code segment

privilege level.

o Refer to the rules for descriptor usage in Appendix D.

55

DOS Protected Mode Interface Version 1.0

Int 31H Function 0001H [0.9]
Free LDT Descriptor

Frees an LDT descriptor.

Call With:

AX = 0001H

BX = selector for the descriptor to free
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8022H invalid selector
Notes:

o Each descriptor allocated with Int 31H Function 0000H must be freed individually with this
function, even if it was previously allocated as part of a contiguous array of descriptors.

o Under DPMI 1.0 hosts, any segment registers which contain the selector being freed are
zeroed by this function.

o0 Refer to the rules for descriptor usage in Appendix D.

56

DOS Protected Mode Interface Version 1.0

Int 31H Function 0002H [0.9]
Segment to Descriptor

Maps a real mode segment (paragraph) address onto an LDT descriptor that can be used by a
protected mode program to access the same memory.

Call With:

AX = 0002H

BX = real mode segment address
Returns:

if function successful
Carry flag = clear
AX = selector for real mode segment

if function unsuccessful
Carry flag = set
AX = error code
8011H descriptor unavailable

Notes:

0

0

The descriptor's limit will be set to 64 KB.
Multiple calls to this function with the same segment address will return the same selector.

The intent of this function is to provide clients with easy access to commonly used real mode
segments such as the BIOS data area at segment 0040H and the video refresh buffers at
segments AOOOH, BOOOH, and B80OH. Clients should not call this function to obtain
descriptors to private data areas.

Descriptors created by this function can never be modified or freed. For this reason, the
function should be used sparingly. Clients which need to examine various real mode
addresses using the same selector should allocate a descriptor with Int 31H Function 0000H
and change the base address in the descriptor as necessary, using the Set Segment Base
Address function (Int 31H Function 0007H).

Refer to the rules for descriptor usage in Appendix D.

57

DOS Protected Mode Interface Version 1.0

Int 31H Function 0003H [0.9]
Get Selector Increment Value

The DPMI functions Allocate LDT Descriptors (Int 31H Function 0000H) and Allocate DOS
Memory Block (Int 31H Function 0100H) can allocate an array of contiguous descriptors, but only
return a selector for the first descriptor. The value returned by this function can be used to
calculate the selectors for subsequent descriptors in the array.
Call With:

AX = 0003H

Returns:

Carry flag = clear (this function always succeeds)
AX = selector increment value

Notes:

0 The increment value is always a power of two.

58

DOS Protected Mode Interface Version 1.0

Int 31H Function 0004H [0.9]
Reserved

DPMI Function 0004H is reserved for historical reasons and should not be called.

59

DOS Protected Mode Interface Version 1.0

Int 31H Function 0005H [0.9]
Reserved

DPMI Function 0005H is reserved for historical reasons and should not be called.

60

DOS Protected Mode Interface Version 1.0

Int 31H Function 0006H [0.9]
Get Segment Base Address

Returns the 32-bit linear base address from the LDT descriptor for the specified segment.

Call With:
AX = 0006H
BX = selector
Returns:

if function successful
Carry flag = clear
CX:DX = 32-bit linear base address of segment

if function unsuccessful
Carry flag = set
AX = error code
8022H invalid selector
Notes:
o Client programs must use the LSL instruction to query the limit for a descriptor. Note that on
80386 machines, the client must use the 32-bit form of LSL if the segment size is greater
than 64 KB.

0 Refer to the rules for descriptor usage in Appendix D.

61

DOS Protected Mode Interface Version 1.0

Int 31H Function 0007H [0.9]
Set Segment Base Address

Sets the 32-bit linear base address field in the LDT descriptor for the specified segment.

Call With:

AX = 0007H

BX = selector

CX:DX = 32-bit linear base address of segment
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8022H invalid selector
8025H invalid linear address (changing the base would cause the

descriptor to reference a linear address range outside that allowed
for DPMI clients)

Notes:

o A DPMI 1.0 host will automatically reload any segment register which contains the selector
specified in register BX. It is suggested that DPMI 0.9 hosts also implement this.

o Refer to the rules for descriptor usage in Appendix D.

62

DOS Protected Mode Interface Version 1.0

Int 31H Function 0008H [0.9]
Set Segment Limit

Sets the limit field in the LDT descriptor for the specified segment.

Call With:

AX = 0008H

BX = selector

CX:DX = 32-bit segment limit
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8021H invalid value (CX <> 0 on a 16-bit DPMI host; or the limit is greater
than 1 MB, but the low twelve bits are not set)
8022H invalid selector
8025H invalid linear address (changing the limit would cause the

descriptor to reference a linear address range outside that allowed
for DPMI clients.)

Notes:

o0 The value supplied to the function in CX:DX is the byte length of the segment-1 (i.e., the
value returned by the LSL instruction).

0 Segment limits greater than or equal to 1 MB must be page-aligned. That is, limits greater
than 1 MB must have the low 12 bits set.

o This function has an implicit effect on the "G" (granularity) bit in an 80386 descriptor's
extended access rights/type byte; i.e., it is the host's responsibility to set the "G" bit correctly.

o Client programs must use the LSL instruction to query the limit for a descriptor. Note that on
80386 machines, the client must use the 32-bit form of LSL if the segment size is greater
than 64 KB.

o A DPMI 1.0 host will reload any segment registers which contain the selector specified in
register BX. Itis suggested that DPMI 0.9 hosts also implement this.

0 Refer to the rules for descriptor usage in Appendix D.

63

DOS Protected Mode Interface Version 1.0

Int 31H Function 0009H [0.9]
Set Descriptor Access Rights

Modifies the access rights and type fields in the LDT descriptor for the specified segment.

Call With:

AX = 0009H

BX = selector

CL = access rights/type byte

CH = 80386 extended access rights/type byte
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8021H invalid value (access rights/type bytes invalid)
8022H invalid selector
8025H invalid linear address (changing the access rights/type bytes would

cause the descriptor to reference a linear address range outside
that allowed for DPMI clients.)

Notes:

o0 The access rights/type byte passed to the function in CL has the following format:

SR S S S S S S—
| P| DPL | 1 |C/DIE/CIWIR| A |
e

| |

| | +- O=not accessed, 1=accessed

| +----- data: O=read, 1=>read/write

| code: must be 1 (readable)

Fommmneen data: O=expand-up, 1=expand-down
code: must be 0 (non-conforming)

Fommmmeee O=data, 1=code

Fommmme e must be 1

+ must equal caller's CPL

+ O=absent, 1=present

If the Present bit is not set in the descriptor, the DPMI host allows any values except in the
DPL and "must be 1" bit fields.

64

DOS Protected Mode Interface Version 1.0

0

0

0

o

On 80386 (and later) machines, the DPMI host interprets the value passed to the function in
CH as follows:

TR U S
| G |B/D| O |Avl] Reserved |
e T L S sty ST R R
| | |
|] +-- ignored
| Hememmmmeeeen canbeOorl
Fommmneeennnaeen must be 0
-------------------- O=default 16-bit, 1=default 32-bit
O=byte granular, 1=page granular

A DPMI 1.0 host will reload any segment registers which contain the selector specified in
register BX. It is suggested that DPMI 0.9 hosts also implement this.

Client programs should use the LAR instruction to examine the access rights of a descriptor.

Refer to the rules for descriptor usage in Appendix D.

65

DOS Protected Mode Interface Version 1.0

Int 31H Function 000AH [0.9]
Create Alias Descriptor

Creates a new LDT data descriptor that has the same base and limit as the specified descriptor.

Call With:
AX = 000AH
BX = selector
Returns:

if function successful
Carry flag = clear
AX = data selector (alias)

if function unsuccessful

Carry flag = set

AX = error code
8011H descriptor unavailable
8022H invalid selector

Notes:

0 The selector supplied to the function may be either a data selector or an executable selector.
Note that the published 0.9 specification was in error to say that the function generates an
error on a data descriptor.

o The descriptor alias returned by this function will not track changes to the original descriptor.
In other words, if an alias is created with this function, and the base or limit of the original
segment is then changed, the two descriptors will no longer map the same memory.

o Refer to the rules for descriptor usage in Appendix D.

66

DOS Protected Mode Interface Version 1.0

Int 31H Function 000BH [0.9]
Get Descriptor

Copies the local descriptor table (LDT) entry for the specified selector into an 8-byte buffer.

Call With:
AX = 000BH
BX = selector

ES:(E)DI = selector:offset of 8-byte buffer
Returns:

if function successful
Carry flag = clear

and buffer pointed to by ES:(E)DI contains descriptor
if function unsuccessful
Carry flag = set
AX = error code
8022H invalid selector
Notes:

0 32-bit programs must use ES:EDI to point to the buffer. 16-bit programs should use ES:DI.

0 Refer to the rules for descriptor usage in Appendix D.

67

DOS Protected Mode Interface Version 1.0

Int 31H Function 000CH [0.9]
Set Descriptor

Copies the contents of an 8-byte buffer into the LDT descriptor for the specified selector.

Call With:

AX = 000CH

BX = selector

ES:(E)DI = selector:offset of 8-byte buffer containing descriptor
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8021H invalid value (access rights/type byte invalid)
8022H invalid selector
8025H invalid linear address (descriptor references a linear address range

outside that allowed for DPMI clients)
Notes:
0 32-bit programs must use ES:EDI to point to the buffer. 16-bit programs should use ES:DI.

0 The descriptor's access rights/type byte (byte 5) follows the same format and restrictions as
the access rights/type parameter (in CL) for the Set Descriptor Access Rights function (Int
31H Function 0009H). On 80386 (or later) machines, the descriptor's extended access
rights/type byte (byte 6) follows the same format and restrictions as the extended access
rights/type parameter (in CH) for the same function, except the low-order 4 bits (marked
"reserved") are used to set the upper 4 bits of the descriptor's limit.

o If the descriptor's present bit is not set, then the only error checking is that the client's CPL
must be equal to the descriptor's DPL field and the "must be 1" bit in the descriptor's byte 5
must be set.

o A DPMI 1.0 host will reload any segment register which contains a selector specified in
register BX. Itis suggested that DPMI 0.9 hosts also implement this.

o Refer to the rules for descriptor usage in Appendix D.

68

DOS Protected Mode Interface Version 1.0
Int 31H Function 000DH [0.9]
Allocate Specific LDT Descriptor
Allocates a specific LDT descriptor.
Call With:
AX = 000DH
BX = selector
Returns:
if function successful
Carry flag = clear
and descriptor has been allocated
if function unsuccessful
Carry flag = set
AX = error code
8011H descriptor unavailable (descriptor is in use)
8022H invalid selector (references GDT or beyond the LDT limit)
Notes:

o0 The first 10H (16) descriptors (selector values 04H-7CH) are reserved for this function and

must not be used by the DPMI host.

o Under DPMI 0.9 hosts, if another application has already been loaded, some of descriptors
reserved for allocation by this function may be already in use and unavailable. Under DPMI
1.0 hosts, each client has its own LDT and thus will have the full 16 descriptors available for

use with this function.

0 Resident service providers (protected-mode TSRs) should not use this function.

0 Refer to the rules for descriptor usage in Appendix D.

69

DOS Protected Mode Interface

Version 1.0

Int 31H Function O00EH
Get Multiple Descriptors

[1.0]

Copies one or more local descriptor table (LDT) entries into a client buffer.

Call With:
AX = 000EH
CX = number of descriptors to copy
ES:(E)DI = selector:offset of a buffer in the following format:
Offset Length Contents
O0OH 2 Selector #1 (set by client)
02H 8 Descriptor #1 (returned by host)
OAH 2 Selector #2 (set by client)
OCH 8 Descriptor #2 (returned by host)
Returns:

if function successful

Carry flag = clear

and buffer contains copies of the descriptors for the specified selectors

if function unsuccessful

Carry flag = set

AX = error code
8022H invalid selector
CX = number of descriptors successfully copied
Notes:

o If an error occurs because of an invalid selector or descriptor, the function returns the
number of descriptors which were successfully copied in CX. All of the descriptors which
were copied prior to the one that failed are valid.

0 32-bit programs must use ES:EDI to point to the buffer. 16-bit programs should use ES:DI.

o Refer to the rules for descriptor usage in Appendix D.

70

DOS Protected Mode Interface Version 1.0

Int 31H Function O00FH [1.0]
Set Multiple Descriptors

Copies one or more descriptors from a client buffer into the local descriptor table (LDT).

Call With:
AX = 000FH
CX = number of descriptors to copy
ES:(E)DI = selector:offset of a buffer in the following format:
Offset Length Contents
O0OH 2 Selector #1
02H 8 Descriptor #1
OAH 2 Selector #2
OCH 8 Descriptor #2
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8021H invalid value (access rights/type bytes invalid)
8022H invalid selector 8025H invalid linear address (descriptor
references a linear address range outside that allowed for DPMI
clients)
CX = number of descriptors successfully copied
Notes:

o If an error occurs because of an invalid selector or descriptor, the function returns the
number of descriptors which were successfully copied in CX. All of the descriptors which
were copied prior to the one that failed are valid. All descriptors from the invalid entry to the
end of the table are not updated.

0 32-bit programs must use ES:EDI to point to the buffer. 16-bit programs should use ES:DI.

o0 A descriptor's access rights/type byte (byte 5) follows the same format and restrictions as the
access rights/type parameter (in CL) for the Set Descriptor Access Rights function (Int 31H
Function 0009H). On 80386 (or later) machines, the descriptor's extended access rights/type
byte (byte 6) follows the same format and restrictions as the extended access rights/type
parameter (in CH) for the same function, except the low-order 4 bits (marked "reserved") are
used to set the upper 4 bits of the descriptor's limit.

o If the descriptor's present bit is not set, then the only error checking is that the client's CPL
must be equal to the descriptor's DPL field and the "must be 1" bit in the descriptor's byte 5

71

DOS Protected Mode Interface Version 1.0

must be set.

o A DPMI 1.0 host will reload any segment register which contains a selector specified in the
data structure supplied to this function. It is suggested that DPMI 0.9 hosts also implement

this.

0 Refer to the rules for descriptor usage in Appendix D.

72

DOS Protected Mode Interface Version 1.0

Int 31H Function 0100H [0.9]
Allocate DOS Memory Block

Allocates a block of memory from the DOS memory pool, i.e. memory below the 1 MB boundary
that is controlled by DOS. Such memory blocks are typically used to exchange data with real
mode programs, TSRs, or device drivers. The function returns both the real mode segment base
address of the block and one or more descriptors that can be used by protected mode
applications to access the block.

Call With:

AX = 0100H

BX = number of (16-byte) paragraphs desired
Returns:

if function successful

Carry flag = clear

AX = real mode segment base address of allocated block
DX = selector for allocated block

if function unsuccessftul
Carry flag = set

AX = error code
0007H memory control blocks damaged (also returned by DPMI 0.9
hosts)
0008H insufficient memory (also returned by DPMI 0.9 hosts).
8011H descriptor unavailable
BX = size of largest available block in paragraphs
Notes:

o If the size of the block requested is greater than 64 KB (BX > 1000H) and the client is a 16-
bit program, contiguous descriptors are allocated and the base selector is returned. The
consecutive selectors for the memory block can be calculated using the value returned by the
Get Selector Increment Value function (Int 31H Function 0003H). Each descriptor has a limit
of 64 KB, except for the last which has a limit of blocksize MOD 64 KB.

o If the DPMI host is 32-bit, the client is 16-bit, and more than one descriptor is allocated, the
limit of the first descriptor will be set to the size of the entire block. Subsequent descriptors
have limits as described in the previous Note. 16-bit DPMI hosts will always set the limit of
the first descriptor to 64 KB even when running on an 80386 (or later) machine.

o When the client is 32-bit, this function always allocates only one descriptor.

o Client programs should never modify or free any descriptors allocated by this function. The
Free DOS Memory Block function (Int 31H Function 0101H) will deallocate the descriptors
automatically.

0 The DOS allocation function (Int 21H Function 48H) is used.

o Refer to the rules for descriptor usage in Appendix D.

73

DOS Protected Mode Interface Version 1.0

Int 31H Function 0101H [0.9]
Free DOS Memory Block

Frees a memory block that was previously allocated with the Allocate DOS Memory Block
function (Int 31H Function 0100H).

Call With:

AX = 0101H

DX = selector of block to be freed
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
0007H memory control blocks damaged (also returned by DPMI 0.9
hosts).
0009H incorrect memory segment specified (also returned by DPMI 0.9
hosts).
8022H invalid selector
Notes:

o All descriptors allocated for the memory block are automatically freed by this function, and
are no longer valid after this function returns.

o Under DPMI 1.0 hosts, any segment registers which contain a selector being freed are
zeroed by this function.

o Refer to the rules for descriptor usage in Appendix D.

74

DOS Protected Mode Interface Version 1.0

Int 31H Function 0102H [0.9]
Resize DOS Memory Block

Changes the size of a memory block that was previously allocated with the Allocate DOS
Memory Block function (Int 31H Function 0100H).

Call With:
AX =0102H
BX = new block size in (16-byte) paragraphs
DX = selector of block to modify

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
0007H memory control blocks damaged (also returned by DPMI 0.9
hosts).
0008H insufficient memory (also returned by DPMI 0.9 hosts).
0009H incorrect memory segment specified (also returned by DPMI 0.9
hosts).
8011H descriptor unavailable
8022H invalid selector
BX = maximum possible block size (paragraphs)
Notes:

0 Requests to increase the size of an existing DOS memory block may fail due to subsequent
DOS memory block allocations causing fragmentation of DOS memory, or insufficient
remaining DOS memory. In addition, the function will fail if the block is growing past a 64 KB
boundary and the next descriptor in the LDT is not available.

0 Arequest to decrease the size of a DOS memory block may cause some descriptors that
were previously allocated to the block to be freed and the limit of the new last descriptor for
the block to be changed.

0 Under a DPMI 1.0 host, any segment registers which contain a selector being modified are
reloaded by this function and any segment registers which contain a selector being freed are
zeroed by this function.

o Client programs should never modify or free any descriptors allocated by this function. The
Free DOS Memory Block function (Int 31H Function 0101H) will deallocate the descriptors
automatically.

o Refer to the rules for descriptor usage in Appendix D.

75

DOS Protected Mode Interface Version 1.0

Int 31H Function 0200H [0.9]
Get Real Mode Interrupt Vector

Returns the contents of the current virtual machine's real mode interrupt vector for the specified
interrupt.

Call With:

AX = 0200H

BL = interrupt number
Returns:

Carry flag = clear (this function always succeeds)
CX:DX = segment:offset of real mode interrupt handler

Notes:
0 The value returned in CX is a real mode segment address, not a selector. Attempts to place
this value into a segment register in protected mode may cause a general protection (GP)

fault.

o All 100H (256) real mode interrupt vectors must be made available through this function by
the DPMI host.

76

DOS Protected Mode Interface Version 1.0

Int 31H Function 0201H [0.9]
Set Real Mode Interrupt Vector

Sets the current virtual machine's real mode interrupt vector for the specified interrupt.

Call With:

AX = 0201H

BL = interrupt number

CX:DX = segment:offset of real mode interrupt handler
Returns:

Carry flag = clear (this function always succeeds)

Notes:

0 The address passed in CX must be a real mode segment address, not a selector.
Consequently, the interrupt handler must either reside in DOS memory (i.e. below the 1 MB
boundary) or the client must allocate a real mode callback address. See Int 31H Functions
0100H and 0303H.

o If the interrupt being hooked is a hardware interrupt, the memory that the interrupt handler
uses must be locked.

1

DOS Protected Mode Interface Version 1.0

Int 31H Function 0202H [0.9]
Get Processor Exception Handler Vector

Returns the address of the current client's protected mode exception handler for the specified
exception number. This function should be avoided by DPMI 1.0 clients (see Notes).

Call With:

AX = 0202H

BL = exception number (O0OH-1FH)
Returns:

if function successful
Carry flag = clear
CX:(E)DX = selector:offset of exception handler

if function unsuccessftul
Carry flag = set
AX = error code
8021H invalid value (BL not in range 0-1FH)
Notes:

0 The value returned in CXis a valid protected mode selector, not a real mode segment
address.

0 32-bit clients will be returned a 32-bit offset in the EDX register.
0 Clients which run under DPMI 1.0 should use Int 31H Functions 0210H and 0211H to obtain

the addresses of exception handlers. This function is supported by DPMI 1.0 hosts solely for
compatibility with DPMI 0.9.

78

DOS Protected Mode Interface Version 1.0

Int 31H Function 0203H [0.9]
Set Processor Exception Handler Vector

Sets the address of a handler for a CPU exception or fault, allowing a protected mode application
to intercept processor exceptions (such as segment not present faults) that are not handled by
the DPMI host and would otherwise generate a fatal error. This function should be avoided by
DPMI 1.0 clients (see Notes).

Call With:
AX = 0203H
BL = exception/fault number (O0H-1FH)

CX:(E)DX = selector:offset of exception handler
Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set

AX = error code
8021H invalid value (BL not in range 0-1FH)
8022H invalid selector
Notes:

o0 The value passed in CX should be a valid protected mode code (executable) selector, not a
real mode segment address.

0 32-bit clients must supply a 32-bit offset in the EDX register. If the client's handler chains to
the next exception handler, it must do so using a 32-bit interrupt stack frame.

o Every exception is first examined by the DPMI host. If the host does not handle the
exception, it reflects the exception to the first handler in the protected mode exception
handler chain. See page 30 for a complete discussion of the environment and
responsibilities of protected mode exception handlers installed with this function.

o Clients which run under DPMI 1.0 should use Int 31H Functions 0212H and 0213H to set the
addresses of exception handlers. This function is supported by DPMI 1.0 hosts solely for
compatibility with DPMI 0.9.

o Refer to the rules for descriptor usage in Appendix D.

79

DOS Protected Mode Interface Version 1.0

Int 31H Function 0204H [0.9]
Get Protected Mode Interrupt Vector

Returns the address of the current protected mode interrupt handler for the specified interrupt.

Call With:

AX = 0204H

BL = interrupt number
Returns:

Carry flag = clear (this function always succeeds)
CX:(E)DX = selector:offset of exception handler

Notes:

0 The value returned in CX is a valid protected mode selector, not a real mode segment
address.

0 32-bit clients will be returned a 32-bit offset in the EDX register.

o DPMI hosts must make all 100H (256) interrupt vectors available through this function.

80

DOS Protected Mode Interface Version 1.0

Int 31H Function 0205H [0.9]
Set Protected Mode Interrupt Vector

Sets the address of protected mode handler for the specified interrupt into the interrupt vector.

Call With:
AX = 0205H
BL = interrupt number

CX:(E)DX = selector:offset of exception handler

Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set

AX = error code
8022H invalid selector

Notes:

0 The value passed in CX should be a valid protected mode code selector, not a real mode
segment address.

0 32-bit clients must supply a 32-bit offset in the EDX register. If the client's handler chains to
the next exception handler it must do so using a 32-bit interrupt stack frame.

o DPMI hosts must support all 100H (256 decimal) interrupt vectors with this function.

o Hardware interrupts are sent to the primary client of the virtual machine while software
interrupts are sent to the current client. (See Appendix A: Glossary for definitions of primary
and current client.)

o Refer to the rules for descriptor usage in Appendix D.

81

DOS Protected Mode Interface Version 1.0

Int 31H Function 0210H [1.0]
Get Extended Processor Exception Handler Vector
(Protected Mode)

Returns the address of the client's protected mode handler for the specified protected mode
exception.

Call With:

AX = 0210H

BL = exception number (O0OH-1FH)
Returns:

if function successful
Carry flag = clear
CX:(E)DX = selector:offset of exception handler

if function unsuccessful
Carry flag = set
AX = error code
8021H invalid value (BL not in range OOH-1FH)
Notes:
o DPMI 1.0 clients should use this function in preference to Int 31H Function 0202H.

o The protected mode exceptions are sent to the protected mode handler of the current client.
(See Appendix A: Glossary for definition of primary client.)

82

DOS Protected Mode Interface Version 1.0

Int 31H Function 0211H [1.0]
Get Extended Processor Exception Handler Vector
(Real Mode)

Returns the address of the client's protected mode handler for the specified real mode exception.

Call With:

AX =0211H

BL = exception number (O0OH-1FH)
Returns:

if function successful
Carry flag = clear
CX:(E)DX = selector:offset of exception handler

if function unsuccessful
Carry flag = set
AX = error code
8021H invalid value (BL not in range OOH-1FH)

Notes:

0 CX:(E)DX does not specify a real-mode segment:offset. The reason is that this function
allows a client to get the address of the exception handler which will receive control in
protected mode when the specified exception occurs in real mode (i.e. the host will provide
an implied mode switch for the purposes of servicing the exception, then return to real mode
after the handler exits)..

o0 Real mode exceptions are sent to the primary client of the virtual machine.

83

DOS Protected Mode Interface Version 1.0

Int 31H Function 0212H [1.0]
Set Extended Processor Exception Handler Vector
(Protected Mode)

Sets the address of the client's protected mode handler for the specified protected mode
exception.

Call With:
AX =0212H
BL = exception/fault number (O0H-1FH)

CX:(E)DX = selector:offset of exception handler
Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set

AX = error code
8021H invalid value (BL not in range OOH-1FH)
8022H invalid selector
Notes:

o DPMI 1.0 clients should use this function in preference to Int 31H Function 0203H.
o0 The protected mode exceptions are sent to the protected mode handler of the current client.

0 Refer to the rules for descriptor usage in Appendix D.

84

DOS Protected Mode Interface Version 1.0

Int 31H Function 0213H [1.0]
Set Extended Processor Exception Handler Vector
(Real Mode)

Sets the address of the client's protected mode handler for the specified real mode exception.

Call With:
AX =0213H
BL = exception/fault number (O0H-1FH)

CX:(E)DX = selector:offset of exception handler
Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set

AX = error code
8021H invalid value (BL not in range OOH-1FH)
8022H invalid selector
Notes:

0 CX:(E)DX does not specify a real-mode segment:offset. The reason is that this function
allows a client to set the address of an exception handler which will receive control in
protected mode when the specified exception occurs in real mode (i.e. the host will provide
an implied mode switch for the purposes of servicing the exception, then return to real mode
after the handler exits).

o Real mode exceptions are sent to the primary client of the virtual machine. (See Appendix A:
Glossary for definition of primary client.)

o Refer to the rules for descriptor usage in Appendix D.

85

DOS Protected Mode Interface Version 1.0

Int 31H Function 0300H [0.9]
Simulate Real Mode Interrupt

Simulates an interrupt in real mode. The function transfers control to the address specified by
the real mode interrupt vector. The real mode handler must return by executing an IRET .

Call With:
AX = 0300H
BL = interrupt number
BH = flags
Bit Significance
0 reserved for historical reason, must be zero
1-7 reserved, must be zero
CX = number of words to copy from protected mode to real mode stack
ES:(E)DI = selector:offset of real mode register data structure in the following format:
Offset Length Contents
OO0H 4 Dl or EDI
04H 4 Sl or ESI
08H 4 BP or EBP
OCH 4 reserved, should be zero
10H 4 BX or EBX
14H 4 DX or EDX
18H 4 CXor ECX
1CH 4 AX or EAX
20H 2 CPU status flags
22H 2 ES
24H 2 DS
26H 2 FS
28H 2 GS
2AH 2 IP (reserved, ignored)
2CH 2 CS (reserved, ignored)
2EH 2 SP
30H 2 SS
Returns:
if function successful
Carry flag = clear
ES:(E)DI = selector:offset of modified real mode register data structure
if function unsuccessful
Carry flag = set
AX = error code
8012H linear memory unavailable (stack)
8013H physical memory unavailable (stack)
8014H backing store unavailable (stack)
8021H invalid value (CX too large)

86

DOS Protected Mode Interface Version 1.0

Notes:

0 32-bit programs must use ES:EDI to point to the real mode register data structure. 16-bit
programs should use ES:DI.

0 The CS:IP in the real mode register data structure is ignored by this function. The
appropriate interrupt handler will be called based on the value passed in BL.

o If the SS:SP fields in the real mode register data structure are zero, a real mode stack will be
provided by the DPMI host. Otherwise, the real mode SS:SP will be set to the specified
values before the interrupt handler is called.

o The flags specified in the real mode register data structure will be pushed on the real mode
stack's IRET frame. The interrupt handler will be called with the interrupt and trace flags
clear.

o Values placed in the segment register positions of the data structure must be valid for real
mode; i.e. the values must be paragraph addresses and not selectors.

o All general register fields in the data structure are DWORDso0 that 32-bit registers can be
passed to real mode. Note, however, that 16-bit hosts are not required to pass the high word
of 32-bit general registers or the FS and GS segment registers to real mode even when
running on an 80386 or later CPU.

0 The target real mode handler must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks while it is running, but must
return on the same stack that it was called on and must return with an IRET.

0 When this function returns, the real mode register data structure will contain the values that
were returned by the real mode interrupt handler.

o ltis the caller's responsibility to remove any parameters that were pushed on the protected
mode stack.

87

DOS Protected Mode Interface Version 1.0

Int 31H Function 0301H [0.9]
Call Real Mode Procedure With Far Return Frame

Simulates a FAR CALL to a real mode procedure. The called procedure must return by
executing a RETF(far return) instruction.

Call With:
AX = 0301H
BH = flags
Bit Significance
0 reserved for historical reason, must be zero
1-7 reserved, must be zero
CX = number of words to copy from protected mode to real mode stack
ES:(E)DI = selector:offset of real mode register data structure in the following format:
Offset Length Contents
OO0H 4 Dl or EDI
04H 4 Sl or ESI
08H 4 BP or EBP
OCH 4 reserved, ignored
10H 4 BX or EBX
14H 4 DX or EDX
18H 4 CXor ECX
1CH 4 AX or EAX
20H 2 CPU status flags
22H 2 ES
24H 2 DS
26H 2 FS
28H 2 GS
2AH 2 P
2CH 2 Cs
2EH 2 SP
30H 2 SS
Returns:
if function successful
Carry flag = clear
ES:(E)DI = selector:offset of modified real mode register data structure
if function unsuccessful
Carry flag = set
AX = error code
8012H linear memory unavailable (stack)
8013H physical memory unavailable (stack)
8014H backing store unavailable (stack)
8021H invalid value (CX too large)

88

DOS Protected Mode Interface Version 1.0

Notes:

0 32-bit programs must use ES:EDI to point to the real mode register data structure. 16-bit
programs should use ES:DI.

0 The CS:IP in the real mode register data structure specifies the address of the real mode
procedure to call.

o If the SS:SP fields in the real mode register data structure are zero, a real mode stack will be
provided by the DPMI host. Otherwise, the real mode SS:SP will be set to the specified
values before the interrupt handler is called.

o Values placed in the segment register positions of the data structure must be valid for real
mode; i.e. the values must be paragraph addresses and not selectors.

o All general register fields in the data structure are DWORDso that 32-bit registers can be
passed to real mode. Note, however, that 16-bit hosts are not required to pass the high word
of 32-bit general registers or the FS and GS segment registers to real mode even when
running on an 80386 or later CPU.

o0 The target real mode procedure must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks while it is running, but must
return on the same stack that it was called on and must exit with a RETF(far return) and
should not clear the stack of any other parameters that were passed to it on the stack.

0 When this function returns, the real mode register data structure will contain the values that
were returned by the real mode procedure.

o ltisthe caller's responsibility to remove any parameters that were pushed on the protected
mode stack.

89

DOS Protected Mode Interface Version 1.0

Int 31H Function 0302H [0.9]
Call Real Mode Procedure With IRET Frame

Simulates a FAR CALL with flags pushed on the stack to a real mode procedure. The real mode
routine must return by executing an IRET instruction.

Call With:
AX = 0302H
BH = flags
Bit Significance
0 reserved for historical reason, must be zero
1-7 reserved, must be zero
CX = number of words to copy from protected mode to real mode stack
ES:(E)DI = selector:offset of real mode register data structure in the following format:
Offset Length Contents
OO0H 4 Dl or EDI
04H 4 Sl or ESI
08H 4 BP or EBP
OCH 4 reserved, ignored
10H 4 BX or EBX
14H 4 DX or EDX
18H 4 CXor ECX
1CH 4 AX or EAX
20H 2 CPU status flags
22H 2 ES
24H 2 DS
26H 2 FS
28H 2 GS
2AH 2 P
2CH 2 Cs
2EH 2 SP
30H 2 SS
Returns:
if function successful
Carry flag = clear
ES:(E)DI = selector:offset of modified real mode register data structure
if function unsuccessful
Carry flag = set
AX = error code
8012H linear memory unavailable (stack)
8013H physical memory unavailable (stack)
8014H backing store unavailable (stack)
8021H invalid value (CX too large)

90

DOS Protected Mode Interface Version 1.0

Notes:

0 32-bit programs must use ES:EDI to point to the real mode register data structure. 16-bit
programs should use ES:DI.

0 The CS:IP in the real mode register data structure specifies the address of the real mode
procedure to call.

o If the SS:SP fields in the real mode register data structure are zero, a real mode stack will be
provided by the DPMI host. Otherwise, the real mode SS:SP will be set to the specified
values before the interrupt handler is called.

o The flags specified in the real mode register data structure will be pushed on the real mode
stack's IRET frame. The procedure will be called with the interrupt and trace flags clear.

o0 Values placed in the segment register positions of the data structure must be valid for real
mode; i.e. the values must be paragraph addresses and not selectors.

o All general register fields in the data structure are DWORDso that 32-bit registers can be
passed to real mode. Note, however, that 16-bit hosts are not required to pass the high word
of 32-bit general registers or the FS and GS segment registers to real mode even when
running on an 80386 or later CPU.

0 The target real mode handler or procedure must return with the stack in the same state as
when it was called. This means that the real mode code may switch stacks while it is
running, but must return on the same stack that it was called on and must return with an
IRET or discard the flags from the stack with a RETF(2) .

0 When this function returns, the real mode register data structure will contain the values that
were returned by the real mode procedure.

o ltis the caller's responsibility to remove any parameters that were pushed on the protected
mode stack.

91

DOS Protected Mode Interface Version 1.0

Int 31H Function 0303H [0.9]
Allocate Real Mode Callback Address

Returns a unique real mode segment:offset, known as a "real mode callback," that will transfer
control from real mode to a protected mode procedure. Callback addresses obtained with this
function can be passed by a protected mode program to a real mode application, interrupt
handler, device driver, or TSR, so that the real mode program can call procedures within the
protected mode program or notify the protected mode program of an event.

Call With:
AX = 0303H
DS:(E)SI = selector:offset of protected mode procedure to call
ES:(E)DI = selector:offset of 32H-byte buffer for real mode register data structure to be
used when calling callback routine.
Returns:

if function successful
Carry flag = clear
CX:DX = segment:offset of real mode callback

if function unsuccessful
Carry flag = set
AX = error code
8015H callback unavailable

Notes:

o DPMI hosts must provide a minimum of 16 callback addresses per client.

0 A descriptor may be allocated for each callback to hold the real mode SS descriptor. Real
mode callbacks are a limited system resource. A client should use the Free Real Mode
Callback Address function (Int 31H Function 0304H) to release a callback that it is no longer
using.

o For further information on writing real mode callback procedures, see page 34.

o The contents of the real mode register data structure is not valid after the function call, but
only at the time of the actual callback.

92

DOS Protected Mode Interface Version 1.0

Int 31H Function 0304H [0.9]
Free Real Mode Callback Address

Releases a real mode callback address that was previously allocated with the Allocate Real
Mode Callback Address function (Int 31H Function 0303H).

Call With:

AX = 0304H

CX:DX = real mode callback address to be freed
Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set
AX = error code
8024H invalid callback address
Notes:

0 Real mode callbacks are a limited system resource. A client should release any callback that
it is no longer using.

93

DOS Protected Mode Interface Version 1.0

Int 31H Function 0305H [0.9]
Get State Save/Restore Addresses

Returns the addresses of two procedures used to save and restore the state of the current task's
registers in the mode which is not currently executing.

Call With:
AX = 0305H
Returns:

Carry flag = clear (this function always succeeds)

AX = size of buffer in bytes required to save state

BX:CX = real mode address of routine used to save/restore state

SI:(E)DI = protected mode address of routine used to save/restore state
Notes:

0 The real mode address returned by this function in BX:CX is called only in real mode to
save/restore the state of the protected mode registers. The protected mode address
returned by this function in SI:(E)DI is called only in protected mode to save/restore the state
of the real mode registers; 16-bit programs should call the address in SI:DI, 32-bit programs
should call the address in SI:EDI. Registers for the current mode can be saved by simply
pushing them on the stack.

0 Both of the state-save procedures are entered by a FAR CALL with the following parameters:

AL = 0 to save state
=1 to restore state
ES:(E)DI = (selector or segment):offset of state-save buffer

The state-save buffer must be at least as large as the value returned in AX by Int 31H
Function 0305H. The state save/restore procedures do not modify any registers. For a
further discussion of use of the state save/restore procedures, see page 25.

o Some DPMI hosts will not require the state to be saved, indicating this by returning a buffer
size of zero in AX. In such cases, the addresses returned by this function can still be called,
although they will simply return without performing any useful function.

o Clients do not need to call the state save/restore procedures before using Int 31H Functions
0300H, 0301H, or 0302H. The state save/restore procedures are provided specifically for
clients that use the raw mode switch services.

o Aclient can use the function to save its state in the destination mode before switching modes

using the raw mode switch or issuing real-mode calls from a protected mode hardware
interrupt handler. Refer to page 24 for the detailed information on stacks and mode switching.

94

DOS Protected Mode Interface Version 1.0

Int 31H Function 0306H [0.9]
Get Raw Mode Switch Addresses

Returns addresses that can be called for low-level mode switching.
Call With:

AX = 0306H
Returns:

Carry flag = clear (this function always succeeds)

BX:CX = real-to-protected mode switch address
SI:(E)DI = protected-to-real mode switch address
Notes:

0 The address returned in BX:CX must only be called in real mode to switch into protected
mode. The address returned in SI:(E)DI must only be called in protected mode to switch into
real mode; 16-bit programs should call the address returned by this function in SI:DI, while
32-bit programs should call the address returned in SI:EDI.

o The mode switch procedures are entered by a FAR JMP to the appropriate address with the
following parameters:

AX =new DS
CX =new ES
DX =new SS
(E)BX = new (E)SP
Si =new CS
(E)DI =new (E)IP

The processor is placed into the desired mode, and the DS, ES, SS, (E)SP, CS, and (E)IP
registers are updated with the specified values; in other words, execution of the client
continues in the requested mode at the address provided in registers SI:(E)DI. The values
specified to be placed into the segment registers must be appropriate for the destination
mode; if invalid selectors are supplied when switching into protected mode, an exception will
occur.

The values in (E)AX, (E)BX, (E)CX, (E)DX, (E)SI, and (E)DI after the mode switch are
undefined. (E)BP will be preserved across the mode switch call so it can be used as a
pointer. On an 80386 or later CPU, the FS and GS segment registers will contain zero after
the mode switch.

If interrupts are disabled when the mode switch procedure is invoked, they will not be re-
enabled by the DPMI host (even temporarily).

o Itis up to the client to save and restore the state of the task when using this function to

switch modes. This usually requires using the state save/restore procedures whose
addresses are returned by Int 31H Function 0305H (see page 94).

95

DOS Protected Mode Interface Version 1.0

o Clients may find it more convenient to use Int 31H Functions 0300H, 0301H, and 0302H for
mode switching than this function.

96

DOS Protected Mode Interface Version 1.0

Int 31H Function 0400H [0.9]
Get Version

Returns the version number of the DPMI Specification implemented by the DPMI host. Clients
can use this information to determine which function calls are supported in the current
environment.
Call With:

AX = 0400H

Returns:

Carry flag = clear (this function always succeeds)

AH = DPMI major version as a binary number
AL = DPMI minor version as a binary number
BX = flags
Bits Significance
0 0 = host is 16-bit DPMI implementation
1 = host is 32-bit (80386) DPMI implementation
1 0 = CPU returned to Virtual 86 mode for reflected interrupts
1 = CPU returned to real mode for reflected interrupts
2 0 = virtual memory not supported
1 = virtual memory supported
3 reserved, for historical reasons
4-15 reserved for later use
CL = processor type
02H = 80286
03H = 80386
04H = 80486
O05H-FFH reserved for future Intel processors
DH = current value of virtual master PIC base interrupt
DL = current value of virtual slave PIC base interrupt
Notes:

0 Under DPMI hosts, the major version number is returned in DH and the minor version
number is returned in DL. There are two decimal digits for the minor version number with the
least-significant digit representing the revision number of the minor version number. Under
DPMI version 0.9 hosts, DH is returned as 0, and DL is returned as decimal 90 (5AH). In
hypothetical DPMI version 2.3, DH would be returned as 2 and DL would be returned as 30
(1EH).

97

DOS Protected Mode Interface Version 1.0

Int 31H Function 0401H [1.0]
Get DPMI Capabilities

Returns information about the capabilities of the DPMI host, including its support or lack of
support for optional features in the DPMI Specification. Clients can use this information to
optimize their use of system resources in the current environment.

Call With:

AX = 0401H
ES:(E)DI = selector:offset of 128-byte buffer

Returns:

if function successful
Carry flag = clear (this function always succeeds in DPMI 1.0)

AX = capabilities flags
Bits Significance
0 0 = PAGED ACCESSED/DIRTY capability not supported
1 = PAGED ACCESSED/DIRTY capability supported
1 0 = EXCEPTIONS RESTARTABILITY capability not supported
1 = EXCEPTIONS RESTARTABILITY capability supported
2 0 = DEVICE MAPPING capability not supported
1 = DEVICE MAPPING capability supported
3 0 = CONVENTIONAL MEMORY MAPPING capability not
supported
1 = CONVENTIONAL MEMORY MAPPING capability supported
4 0 = DEMAND ZERO-FILL capability not supported
1 = DEMAND ZERO-FILL capability supported
5 0 = WRITE-PROTECT CLIENT capability not supported
1 = WRITE-PROTECT CLIENT capability supported
6 0 = WRITE-PROTECT HOST capability not supported
1 =WRITE-PROTECT HOST capability supported
7-15 reserved
CX = reserved, must be 0
DX = reserved, must be 0
ES:(E)DI = selector:offset of 128-byte buffer filled in by host with information as follows:
Offset Length Contents
0 1 Host major version number as a decimal number
1 1 Host minor version number as a decimal number
2 1-126 ASCIIZ (null-terminated) string identifying the

DPMI host vendor

if function unsuccessful
Carry flag = set (this function always fails in DPMI 0.9)

Notes:

0 PAGE ACCESSED/DIRTY capability means the DPMI host maintains page dirty and
accessed bits that can be read and written with the Get and Set Page Attributes functions (Int

98

DOS Protected Mode Interface Version 1.0

31H Functions 0506H and 0507H). This capability must be supported, and must read and
write the hardware-level dirty and accessed bits, if the DPMI host does not provide demand-
paged virtual memory. If the DPMI host does support virtual memory, this capability is
optional, and if present gives the client the ability to read and write virtual page dirty and
accessed bits maintained by the host.

0 EXCEPTION RESTARTABILITY capability means that a faulting instruction inside the host
kernel can always be restarted if the client's exception handler corrects the reason for the
exception and returns. Exception restartability allows a client to provide virtual memory
under a DPMI host without virtual memory, or to support memory-mapped files under any
DPMI host.

o DEVICE MAPPING capability means that the DPMI host supports the optional Map Device
function (Int 31H Function 0508H).

0 CONVENTIONAL MEMORY MAPPING capability means that the DPMI host supports the
optional Map Conventional Memory function (Int 31H Function 0509H).

0 DEMAND ZERO-FILL capability means the DPMI host guarantees that all committed pages
are initialized to zero when they are created. If this capability is not supported, the contents
of newly committed pages are undefined.

0 WRITE-PROTECT CLIENT capability means the DPMI host guarantees that the client is
running at a privilege level such that write protection of pages is effective for the client's
accesses and will geneate page faults.

0 WRITE-PROTECT HOST capability means the DPMI host guarantees that the host has
configured the system such that write protection of pages is effective for the host's accesses
and will generate page faults.

0 The host major and minor version numbers are OEM-specific and are not the DPMI version
numbers.

99

DOS Protected Mode Interface Version 1.0

Int 31H Function 0500H [0.9]
Get Free Memory Information

Returns information about the amount of available physical memory, linear address space, and
disk space for page swapping. Since DPMI clients will often run in multitasking environments,
the information returned by this function should only be considered as advisory. DPMI 1.0 clients
should avoid use of this function (see the last note of the call).

Call With:

AX = 0500H
ES:(E)DI = selector:offset of 48-byte buffer

Returns:
Carry flag = clear (this function always succeeds)
and the buffer is filled in with the following information:

Offset Length Contents

OOH 4 Largest available free block in bytes
04H 4 Maximum unlocked page allocation in pages
08H 4 Maximum locked page allocation in pages
OCH 4 Linear address space size in pages
10H 4 Total number of unlocked pages
14H 4 Total number of free pages
18H 4 Total number of physical pages
1CH 4 Free linear address space in pages
20H 4 Size of paging file/partition in pages
24H OCH Reserved, all bytes set to OFFH
Notes:

0 32-bit programs must use ES:EDI to point to the buffer. 16-bit programs should use ES:DI.

o Only the first field of the returned structure is guaranteed to contain a valid value. Any fields
that are not supported by the DPMI host will be set by the host to -1 (OFFFFFFFFH) to
indicate that the information is not available.

o The field at buffer offset 00H specifies the largest block of contiguous linear memory in bytes
that could be allocated if the memory were to be allocated and left unlocked.

o0 The field at buffer offset 04H specifies the largest number of pages that could be allocated
(the value at offset O0OH divided by the page size).

0 The field at buffer offset 08H specifies the largest block of memory in pages that could be
allocated and then locked.

o The field at buffer offset OCH specifies the size of the total linear address space in pages.
This value includes all linear address space that has already been allocated.

o The field at buffer offset 10H specifies the total number of pages that are currently unlocked

100

DOS Protected Mode Interface Version 1.0

and could be paged out. This value also contains any free pages.

o The field at buffer offset 14H specifies the number of physical pages that currently are not in
use.

0 The field at offset 18H specifies the total number of physical pages that the DPMI host
manages. This value includes all free, locked, and unlocked physical pages.

0 The field at offset 20H specifies the size of the DPMI host's paging partition or file in pages.

0 The size of the pages used by the DPMI host can be obtained with the Get Page Size
function (Int 31H Function 0604H).

o DPMI 1.0 clients should use Int 31H Function 050BH in preference to this function. This
function is supported in DPMI 1.0 solely for backward compatibility with DPMI 0.9.

101

DOS Protected Mode Interface Version 1.0

Int 31H Function 0501H [0.9]
Allocate Memory Block

Allocates and commits a block of linear memory.

Call With:

AX = 0501H

BX:CX = size of block (bytes, must be nonzero)
Returns:

if function successful

Carry flag = clear

BX:CX = linear address of allocated memory block

SI:DI = memory block handle (used to resize and free block)

if function unsuccessful
Carry flag = set

AX = error code
8012H linear memory unavailable
8013H physical memory unavailable
8014H backing store unavailable
8016H handle unavailable
8021H invalid value (BX:CX = 0)
Notes:

o The allocated block is guaranteed to have at least paragraph alignment.
o This function always creates committed pages.

o This function does not allocate any descriptors for the memory block. It is the responsibility
of the client to allocate and initialize any descriptors needed to access the memory with
additional DPMI function calls.

0 Under DPMI hosts that support virtual memory, the memory block will be allocated unlocked.
The client can lock some or all of the memory after it is allocated with the Lock Linear Region
function (Int 31H Function 0600H).

o Under many DPMI hosts, allocations by this function are page granular. This means, for
example, that if the DPMI host uses a page size of 4 KB (1000H), an allocation of 1001H
bytes will actually result in an allocation of 2000H bytes. Therefore, it is best to always
allocate memory in multiples of the unit of granularity (under DPMI 0.9, use 4K bytes), which
can be obtained with Int 31H Function 0604H.

102

DOS Protected Mode Interface Version 1.0

Int 31H Function 0502H [0.9]
Free Memory Block

Frees a memory block that was previously allocated with either the Allocate Memory Block
function (Int 31H Function 0501H) or the Allocate Linear Memory Block function (Int 31H
Function 0504H).

Call With:

AX = 0502H

SI:DI = memory block handle
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8023H invalid handle

Notes:

o This call will correctly free all of the possible page types that can occur in a memory block:
committed pages, uncommitted pages, and mapped pages (see Appendix A: Glossary).

o No descriptors are freed by this call. Itis the client's responsibility to free any descriptors that

it previously allocated to map the memory block. Descriptors should be freed before linear
memory blocks.

103

DOS Protected Mode Interface Version 1.0

Int 31H Function 0503H [0.9]
Resize Memory Block

Changes the size of a memory block that was previously allocated with either the Allocate
Memory Block function (Int 31H Function 0501H) or the Allocate Linear Memory Block function
(Int 31H Function 0504H).

Call With:
AX = 0503H
BX:CX = new size of block (bytes, must be nonzero)
SI:DI = memory block handle

Returns:

if function successful

Carry flag = clear

BX:CX = new linear address of memory block
SI:DI = new handle for memory block

if function unsuccessful
Carry flag = set

AX = error code

8012H linear memory unavailable
8013H physical memory unavailable
8014H backing store unavailable
8016H handle unavailable
8021H invalid value (BX:CX = 0)
8023H invalid handle (in SI:DI)

Notes:

o After this function returns, the previous handle for the memory block is invalid and should not
be used.

0 When increasing the size of a block, this function always creates committed pages. When
decreasing the block size, this call will correctly free all possible page types (committed
pages, uncommitted pages, and mapped pages). The linear address and handle of the
memory block may change as a result of this call.

o ltis the client's responsibility to update any descriptors that map the memory block with the
new linear address after resizing the block.

0 This function returns an error if the client attempts to resize a memory block to zero bytes.

104

DOS Protected Mode Interface Version 1.0

Int 31H Function 0504H [1.0]
Allocate Linear Memory Block

Allocates a block of page-aligned linear address space. The base address of the block may be
specified by the client, and pages within the block may be committed or uncommitted.

Call With:
AX = 0504H
EBX = desired page-aligned linear address of memory block,
or zero if linear address unspecified
ECX = size of block (bytes, must be nonzero)
EDX = flags
Bit Significance
0 0 = create uncommitted pages
1 = create committed pages
1-31 reserved, should be zero
Returns:

if function successful

Carry flag = clear

EBX = linear address of memory block
ESI = handle for memory block

if function unsuccessful
Carry flag = set

AX = error code
8001H unsupported function (16-bit host)
8012H linear memory unavailable
8013H physical memory unavailable
8014H backing store unavailable
8016H handle unavailable
8021H invalid value (ECX = 0)
8025H invalid linear address (EBX not page aligned)

Notes:

o A DPMI 1.0 host that is 16-bit only will not support this function.

0 A 16-bit client of a 32-bit DPMI 1.0 host can use this function.

0 The allocated block is always page-aligned. If a specific linear address is not requested
(EBX = 0), the DPMI host allocates the memory block at any available page-aligned linear
address. If a specific linear address is requested (EBX nonzero), the host either allocates
the block at the specified address or returns error code 8012H (linear memory unavailable).

o Int 31H Function 0501H, which can also be used to allocate linear memory blocks, does not

necessarily page-align its blocks and does not have the ability to create uncommitted pages
or allocate a block at a specific linear address.

105

DOS Protected Mode Interface Version 1.0

Int 31H Function 0505H [1.0]
Resize Linear Memory Block

Changes the size of a memory block that was previously allocated with the Allocate Linear
Memory Block function (Int 31H Function 0504H).

Call With:
AX = 0505H
ESI = memory block handle
ECX = new block size (bytes, must be nonzero)
EDX = flags
Bit Significance
0 0 = create uncommitted pages
1 = create committed pages
1 0 = do not update segment descriptors
1 = segment descriptor update required
2-31 reserved, must be zero

and, if bit 1 of EDX is set (1):

ES:EBX = selector:offset of a buffer containing an array of selectors, 1 word (16 bits) per
selector
EDI = count of selectors in array
Returns:

if function successful

Carry flag = clear

EBX = new linear base address of memory block
ESI = new handle for memory block

if function unsuccessful
Carry flag = set

AX = error code

8001H unsupported function (16-bit host)
8012H linear memory unavailable
8013H physical memory unavailable
8014H backing store unavailable
8016H handle unavailable
8021H invalid value (ECX=0)
8023H invalid handle (in ESI)

Notes:

o A DPMI 1.0 host that is 16-bit only will not support this function.
0 A 16-bit client of a 32-bit DPMI 1.0 host can use this function.

o0 After this function returns, the previous handle for the memory block is invalid and should not
be used.

106

DOS Protected Mode Interface Version 1.0

o If this function fails, the block's size and base address are always unmodified.

o If the size of the block is increased, the new pages are committed or uncommitted according
to the value of bit 0 of EDX, and the block’s linear base address may change. If the size of
the block is decreased, pages at the end of the block are freed, and the block's base address
is always unchanged.

o If the block's linear base address is changed by this function, and the function was called with
bit 1 of EDX set (1), the DPMI host updates the descriptors for each of the segments in the
update list which fall within the memory block. Descriptors for segments which do not fall
within the memory block are not modified. Expand-up segments fall within the memory block
if the segment base is within the block. Expand-down segments fall within the memory block
if the (segment base + the limit - 1) is within the block. In either case, the segment base is
modified by the distance the block moves, and the segment limit is not changed. The moving
of the memory block and the updating of descriptors is performed atomically; i.e. the host will
not deliver any hardware interrupts to the client during the update.

o Int 31H Function 0503H, which also resizes linear memory blocks, does not necessarily
page-align blocks and cannot create uncommitted pages or update descriptors.

107

DOS Protected Mode Interface Version 1.0

Int 31H Function 0506H [1.0]
Get Page Attributes

Returns the attributes of one or more pages within a linear memory block previously allocated
with Int 31H Function 0504H.

Call With:
AX = 0506H
ESI = memory block handle
EBX = base offset in memory block of page (or of first page, if requesting attributes for
multiple pages)
ECX = number of pages
ES:EDX = selector:offset of a buffer to receive page attributes, 1 word (16-bits) per page
(see Note)
Returns:

if function successful
Carry flag = clear

and buffer at ES:EDX filled in with page attributes (see Note)

if function unsuccessful

Carry flag = set

AX = error code
8001H unsupported function (16-bit host)
8023H invalid handle (in ESI)

8025H invalid linear address (Specified range is not within specified block)
Notes:
0o A DPMI 1.0 host that is 16-bit only will not support this function.
0 A 16-bit client of a 32-bit DPMI 1.0 host can use this function.
o If EBXis not aligned, it will be rounded down to the next lower page boundary.
0 The specified buffer is filled in by the DPMI host with the attributes of the requested pages, 1

word (16-bits) per page, in the following format:

Bits Significance
0-2 page type (0-7)
Value Meaning
0 uncommitted page
1 committed page
2 mapped page
3-7 currently unused
3 0 = page is read-only
1 = page is read/write
4 0 = accessed/dirty bits not available for this page

1 = accessed/dirty bits are supplied for this page in bits 5-6

108

DOS Protected Mode Interface Version 1.0

5 0 = page has not been accessed (if bit 4=1)
1 = page has been accessed (if bit 4=1)

6 0 = page has not been modified (if bit 4=1)
1 = page has been modified (if bit 4=1)

7-15 reserved, currently zero

0o Mapped pages can only occur in memory blocks under DPMI hosts that support the Device
Mapping capability or the Conventional Memory Mapping capability. See Int 31H Functions
0401H, 0508H, and 0509H.

o The dirty and accessed bits are only supplied if the DPMI host supports the Page
Accessed/Dirty capability. DPMI hosts that support this capability are required to return dirty
and accessed bits for all committed pages and for mapped pages created with the Map
Conventional Memory call (Int 31H Function 0509H). However, dirty and accessed bits may
not be returned for individual mapped pages created with the Map Device call (Int 31H
Function 0508H) if the host is using page table entries (PTES) to virtualize the device.

109

DOS Protected Mode Interface Version 1.0

Int 31H Function 0507H [1.0]
Set Page Attributes

Sets the attributes of one or more pages within a linear memory block previously allocated with
Int 31H Function 0504H. This function can be used to change a committed page or a mapped
page to an uncommitted page, change an uncommitted page or a mapped page to a committed
page, or modify the read/write bit and optionally the accessed and dirty bits on a committed or
mapped page.

Call With:
AX = 0507H
ESI = memory block handle
EBX = offset within memory block of page(s) whose attributes are to be modified
ECX = number of pages
ES:EDX = selector:offset of a buffer containing page attributes, 1 word (16-bits) per page
(see Note)
Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set

AX = error code
8001H unsupported function (16-bit host)
8002H invalid state (page in wrong state for request)
8013H physical memory unavailable
8014H backing store unavailable
8021H invalid value (illegal request in bits 0-2 of one or more page
attribute words)
8023H invalid handle (in ESI)
8025H invalid linear address (specified range is not within specified block)
ECX = number of pages that have been set
Notes:

o A DPMI 1.0 host that is 16-bit only will not support this function.
0 A 16-bit client of a 32-bit DPMI 1.0 host can use this function.
o If EBXis not aligned, it will be rounded down to the next lower page boundary.

o Anuncommitted page can be created from:
* acommitted page, by releasing the physical memory or backing store allocated to the
page;
* amapped page, by marking it uncommitted; or
an uncommitted page, by doing nothing.

110

DOS Protected Mode Interface Version 1.0

0

0

A committed page can be created from:

* an uncommitted page or mapped page, by allocating physical memory or backing store
(with undefined, or zero-filled contents) for the page; or

* acommitted page, by doing nothing (page contents unmodified).

The attribute word (16-bits) specified for a page has the following format (bits 3-6 are only
relevant if page is being created committed or its attributes are being modified, i.e. the value
in bits 0-2 of the page attribute is 1 or 3):

Bits Significance
0-2 page type (0-7)
Value Meaning
0 create page uncommitted
1 create page committed
2 not allowed
3 modify attributes without changing page type
4-7 not allowed
3 0 = page is read-only
1 = page is read/write
4 0 = don't modify accessed/dirty bits for page
1 = set accessed/dirty bits as specified in bits 5-6
5 0 = mark page as not accessed (if bit 4=1)
1 = mark page as accessed (if bit 4=1)
6 0 = mark page as not dirty (if bit 4=1)
1 = mark page as dirty (if bit 4=1)
7-15 reserved, should be zero

This function, and the optional Map Device and Map Conventional Memory functions (Int 31H
Functions 0508H and 0509H), are the only means of changing the type of a page within an
existing memory block.

The page read/write bit, and optionally the accessed and dirty bits, can be modified on an
existing committed or mapped page, or on a committed page when it is initially created from
an uncommitted page or a mapped page. However, the accessed and dirty bits are ignored if
the host does not support the Page Accessed/Dirty capability. See Int 31H Function 0401H.

Visible page faults (page faults that can be serviced by a client-installed exception handler)

can only occur for uncommitted pages or read-only pages (for definitions of transparent page
fault and visible page fault, see Appendix A: Glossary).

111

DOS Protected Mode Interface Version 1.0

Int 31H Function 0508H [Optional] [1.0]
Map Device in Memory Block

Maps the physical addresses assigned to a device onto the linear addresses of a memory block
previously allocated with Int 31H Function 0504H.

Call With:
AX = 0508H
ESI = memory block handle
EBX = offset within memory block of page(s) to be mapped (must be page-aligned)
ECX = number of pages to map
EDX = physical address of device (must be page-aligned)
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8001H unsupported function (Device Mapping Capability not supported)
8003H system integrity (invalid device address)
8023H invalid handle (in ESI)
8025H invalid linear address (specified range is not within specified block
or EBX/EDX is not page-aligned)

Notes:

0 16-bit DPMI hosts will not support this function. A 16-bit client of a 32-bit DPMI 1.0 host can
use this function.

0 Support of this call by 32-bit DPMI hosts is optional. Application programs or DOS Extenders
which require this call in order to run are not DPMI Compliant.

o Any committed or mapped pages resided in the linear address range that is being mapped
into will be uncommitted or unmapped automatically by the host.

o All pages created by this call have the mapped bit (bit 2) set in the attributes returned by the
Get Page Attributes function (Int 31H Function 0506H).

0 This function differs from the Create Physical Address Mapping function (Int 31H Function
0800H) in that this function supports mapping of physical devices within an existing memory
block, rather than at an arbitrary linear address. Use of an existing memory block gives 32-
bit programs the ability to access physical devices with NEAR pointers, which is often highly
desirable for performance reasons.

0 Unlike Int 31H Function 0800H, this function allows mapping of addresses below 1 MB that

do not lie within RAM available for use by programs; e.g. this function can be used to map
the refresh buffers of IBM-compatible display adapters.

112

DOS Protected Mode Interface Version 1.0

o If the DPMI host is not virtualizing the device, it must disable any memory caching on the
mapped pages; in particular, on the 486 or later, the PCD (page cache disable) bit must be
set in the page table entries.

o DPMI hosts that do not virtualize physical devices can support this function by creating page
table entries that map the physical device. The page table entries must be marked as
mapped so that the host knows not to attempt freeing of physical memory for the pages
when the memory block is freed.

o DPMI hosts are allowed to support this function for some physical devices and not for others,
because mapping of virtualized devices requires page aliasing in the host - a complex task.
DPMI hosts with partial support for this function may fail the function call on virtualized
devices (such as displays), and allow the call on non-virtualized devices (such as the Weitek
coprocessors). Allowing the client to map a physical device so that it can be accessed with
NEARreferences, for example, may help the client achieve considerably better performance.

113

DOS Protected Mode Interface Version 1.0

Int 31H Function 0509H [Optional] [1.0]
Map Conventional Memory in Memory Block

Aliases linear addresses below the 1 MB boundary onto the linear addresses of a memory block
previously allocated with Int 31H Function 0504H.

Call With:
AX = 0509H
ESI = memory block handle
EBX = offset within memory block of page(s) to be mapped (must be page-aligned)
ECX = number of pages to map
EDX = linear address of conventional memory (must be page-aligned)
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8001H unsupported function (Conventional Memory Mapping Capability
not supported)

8003H system integrity (invalid conventional memory address)
8023H invalid handle (in ESI)
8025H invalid linear address (specified range is not within specified block,

or EBX/EDX is not page aligned)
Notes:

o 16-bit DPMI hosts will not support this function. A 16-bit client of a 32-bit DPMI 1.0 host can
use this function.

0 Support of this call by 32-bit DPMI hosts is optional. Application programs or DOS Extenders
which require this call in order to run are not DPMI Compliant.

o Any committed or mapped pages resided in the linear address range that is being mapped
into will be uncommitted or unmapped automatically by the host.

o A client may only map conventional memory that it already owns; i.e. memory which the
client previously allocated with Int 31H Function 0100H or by calling DOS's Int 21H Function
48H directly via the translation services.

o All pages created by this call have the mapped bit (bit 2) set in the attributes returned by the
Get Page Attributes function (Int 31H Function 0506H).

o DPMI hosts that do not implement virtual memory can support this function by simply copying
page table entries. The entries must be marked as mapped so that the host knows not to
free up those physical pages when the memory block is freed.

o DPMI hosts that provide virtual memory must implement some form of page aliasing in order

114

DOS Protected Mode Interface Version 1.0

to support this function.

o The function can provide a large contiguous memory space without virtual memory support.

Implementors of DPMI hosts which do not provide virtual memory are encouraged to
support this function. Without this function, conventional memory may be inaccessible to
a 32-bit nonsegmented client, because the client may need contiguous linear memory for
its code and data. 32-bit clients can always guarantee that conventional memory is not
wasted with the following strategy:

Call DOS to allocate any free conventional memory

If the DPMI host supports virtual memory, call the Mark Real Mode Region Pageable
function (Int 31H Function 0602H) to ensure that the host has not locked down
conventional memory.

If the host does not support virtual memory but supports the Map Conventional Memory
function (Int 31H Function 0509H), allocate a memory block with uncommitted pages,
then use Function 0509H to make the physical memory allocated below 640 KB
addressable in the memory block, and therefore useable by the 32-bit application
program.

115

DOS Protected Mode Interface Version 1.0

Int 31H Function 050AH [1.0]
Get Memory Block Size and Base

Returns the size of a memory block that was previously allocated with Int 31H Function 0501H or
0504H.

Call With:

AX = 050AH

SI:DI = memory block handle
Returns:

if function successful
Carry flag = clear

SI:DI = size of memory block (bytes)

BX:CX = base address of memory block if function unsuccessful
Carry flag = set

AX = error code

8023H invalid handle

116

DOS Protected Mode Interface Version 1.0

Int 31H Function 050BH [1.0]
Get Memory Information

Returns information about available physical and virtual memory. Since DPMI clients will often
run in multitasking environments, some of information related to shared resources returned by
this function should only be considered as advisory.

Call With:

AX = 050BH
ES:(E)DI = selector:offset of 128-byte buffer

Returns:

if function successful
Carry flag = clear (this function always succeeds in DPMI 1.0)

and the buffer pointed to by ES:(E)DI is filled in with the following information:

Offset Length Contents

OOH 4 Total allocated bytes of physical memory controlled by DPMI host
04H 4 Total allocated bytes of virtual memory controlled by DPMI host
08H 4 Total available bytes of virtual memory controlled by DPMI host
OCH 4 Total allocated bytes of virtual memory for this virtual machine
10H 4 Total available bytes of virtual memory for this virtual machine
14H 4 Total allocated bytes of virtual memory for this client

18H 4 Total available bytes of virtual memory for this client

1CH 4 Total locked bytes of memory for this client

20H 4 Maximum locked bytes of memory for this client

24H 4 Highest linear address available to this client

28H 4 Size in bytes of largest available free memory block

2CH 4 Size of minimum allocation unit in bytes

30H 4 Size of the allocation alignment unit in bytes

34H 4CH Reserved, currently zero

if function unsuccessful
Carry flag = set (this function always fails in DPMI 0.9)

Notes:
o DPMI 1.0 clients should use this function in preference to Int 31H Function 0500H.

0 The "total available bytes" field of the data structure pointed by ES:(E)DI means the total
bytes minus all of the allocated bytes.

117

DOS Protected Mode Interface Version 1.0

Int 31H Function 0600H [0.9]
Lock Linear Region

Locks the specified linear address range.

Call With:
AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI = size of region to lock (bytes)

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8013H physical memory unavailable
8017H lock count exceeded
8025H invalid linear address (unallocated pages)
Notes:

o If the function returns an error, none of the memory has been locked.

o If the specified region overlaps part of a page at the beginning or end of the region, the
page(s) will be locked.

o This function may be called more than once for a given page; the DPMI host maintains a lock
count for each page.

o This function is ignored by DPMI implementations that do not support virtual memory; the
function will return the Carry flag clear to indicate success, but has no other effect. DPMI
hosts which support virtual memory may also choose to ignore this function, but such hosts
must be able to handle page faults transparently at arbitrary points during a client's
execution, including within interrupt and exception handlers.

118

DOS Protected Mode Interface Version 1.0

Int 31H Function 0601H [0.9]
Unlock Linear Region

Unlocks a linear address range that was previously locked using the Lock Linear Region function
(Int 31H Function 0600H).

Call With:
AX = 0601H
BX:CX = starting linear address of memory to unlock
SI:DI = size of region to unlock (bytes)

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8002H invalid state (page not locked)
8025H invalid linear address (unallocated pages)
Notes:

o If the function returns an error, none of the memory has been unlocked.

o If the specified region overlaps part of a page at the beginning or end of the region, the
page(s) will be unlocked.

0 Alock count is maintained for each locked page; the page is not unlocked until the lock count
is decremented to zero (i.e. the number of Lock Region Int 31H Function 0600H calls has
been balanced by the same number of Unlock Region Int 31H Function 0601H calls).

o This function is ignored by DPMI implementations that do not support virtual memory; the
function will return the Carry flag clear to indicate success, but has no other effect. DPMI
hosts which support virtual memory may also choose to ignore this function, but such hosts
must be able to handle page faults transparently at arbitrary points during a client's
execution, including within interrupt and exception handlers.

119

DOS Protected Mode Interface Version 1.0

Int 31H Function 0602H [0.9]
Mark Real Mode Region as Pageable

Advises the DPMI host that the specified memory below the 1 MB boundary may be paged to
disk.

Call With:
AX = 0602H
BX:CX = starting linear address of memory to mark as pageable
SI:DI = size of region to be marked (bytes)

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8002H invalid state (region already marked as pageable)
8025H invalid linear address (region is above 1 MB boundary)
Notes:

o If the function returns an error, none of the memory has been marked as pageable.

o If the specified region overlaps part of a page at the beginning or end of the region, the
page(s) will not be marked as pageable.

o Pageability information for a real mode region is maintained as a binary state, not a count.
Therefore, multiple calls to this function for the same region have no effect.

o For compatibility with DPMI version 0.9 hosts, a client must call the Relock Real Mode
Region function (Int 31H Function 0603H) to relock the memory region before terminating.
Memory that remains unlocked after the client has terminated could result in fatal page faults
when another program is executed in the same address space. DPMI 1.0 hosts
automatically relock real mode memory at client termination.

o0 Under some DPMI hosts, all conventional memory may be locked by default. If a protected
mode program is using memory in the first megabyte of address space, it is recommended
that this function be used to turn off automatic page locking for regions of memory that will
not be touched at interrupt time.

0 The client must not mark memory as pageable in regions that it does not own; i.e. it may only
mark as pageable memory that it has previously allocated with Int 31H Function 0100H or by
a direct call to DOS via the translation functions. For example, marking all free DOS memory
as pageable under some DPMI hosts could cause a page fault to occur while inside of DOS,
resulting in a crash. Also, a client should not mark the DPMI host data area as pageable.

o Note that address space marked as pageable by this function can still be locked using the
Lock Linear Region function (Int 31H Function 0600H). This function is just an advisory

120

DOS Protected Mode Interface Version 1.0

service to allow memory that does not need to be locked to be paged out; it disables any
automatic locking of real mode memory performed by the DPMI host.

0 This function is ignored by DPMI implementations that do not support virtual memory; the
function will return the Carry flag clear to indicate success, but has no other effect. DPMI
hosts which support virtual memory may also choose to ignore this function, but such hosts
must be able to handle page faults transparently at arbitrary points during a client's
execution, including within interrupt and exception handlers.

121

DOS Protected Mode Interface Version 1.0

Int 31H Function 0603H [0.9]
Relock Real Mode Region

Relocks a memory region that was previously declared as pageable with the Mark Real Mode
Region as Pageable function (Int 31H Function 0602H).

Call With:
AX = 0603H
BX:CX = starting linear address of memory to relock
SI:DI = size of region to relock (bytes)

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8002H invalid state (region not marked as pageable)
8013H physical memory unavailable
8025H invalid linear address (region is above 1 MB boundary)
Notes:

o If the function returns an error, none of the memory has been relocked.

o If the specified region overlaps part of a page at the beginning or end of the region, the
page(s) will not be relocked.

o This function is ignored by DPMI implementations that do not support virtual memory; the
function will return the Carry flag clear to indicate success, but has no other effect. DPMI
hosts which support virtual memory may also choose to ignore this function, but such hosts
must be able to handle page faults transparently at arbitrary points during a client's
execution, including within interrupt and exception handlers.

o If Function 0602H is implemented as a "no-operation" on a particular DPMI host, this function

will likewise do nothing. In other words, this function should not be used to lock memory, but
only to restore the default state of the host's conventional memory locking.

122

DOS Protected Mode Interface

Version 1.0

Int 31H Function 0604H
Get Page Size

[0.9]

Returns the size of a single memory page in bytes.
Call With:

AX = 0604H
Returns:

if function successful

Carry flag = clear

BX:CX = page size in bytes

if function unsuccessful

Carry flag = set

AX = error code
8001H unsupported function (16-bit host)

123

DOS Protected Mode Interface Version 1.0

Int 31H Function 0700H [0.9]
Reserved

Function 0700H is reserved for historical reasons and should not be called.

124

DOS Protected Mode Interface Version 1.0

Int 31H Function 0701H [0.9]
Reserved

Function 0701H is reserved for historical reasons and should not be called.

125

DOS Protected Mode Interface Version 1.0

Int 31H Function 0702H [0.9]
Mark Page as Demand Paging Candidate

Notifies the DPMI host that a range of pages may be placed at the head of the page-out
candidate list, forcing these pages to be replaced ahead of other pages even if the memory has
been accessed recently. The contents of the pages will be preserved.

Call With:
AX =0702H
BX:CX = starting linear address of pages to mark as paging candidates
SI:DI = size of region to mark (bytes)

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8025H invalid linear address (range unallocated)
Notes:

o This function does not force the pages to be swapped to disk immediately and should be
treated as advisory only.

o This function will always succeed on hosts that do not implement demand-paged virtual
memory.

o Partial pages will not be marked.
0 This function is useful, for example, if a client knows that a given piece of data will not be

accessed for a long period of time. That data is ideal for swapping to disk so that the
physical memory it occupies can be used for other purposes.

126

DOS Protected Mode Interface Version 1.0

Int 31H Function 0703H [0.9]
Discard Page Contents

Discards the entire contents of a given linear memory range. This function is used when a
memory object (such as a data structure) that occupies a given area of memory is no longer
needed, so that the area will not be paged to disk unnecessarily. The contents of the discarded
region will be undefined.

Call With:
AX =0703h
BX:CX = starting linear address of pages to discard
SI:DI = size of region to discard (bytes)

Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8025H invalid linear address (range unallocated)
Notes:

o Partial pages and locked pages will not be discarded.

127

DOS Protected Mode Interface Version 1.0

Int 31H Function 0800H [0.9]
Physical Address Mapping

Converts a physical address into a linear address. This function allows device drivers running
under DPMI hosts which use paging to reach physical memory that is associated with their
devices above the 1 MB boundary Examples of such devices are the Weitek numeric
coprocessor (usually mapped at 3 GB), buffers that hold scanner bit maps, and high-end displays
that can be configured to make display memory appear in extended memory.

Call With:
AX = 0800H
BX:CX = physical address of memory
SI:DI = size of region to map (bytes)
Returns:

if function successful
Carry flag = clear
BX:CX = linear address that can be used to access the physical memory

if function unsuccessful
Carry flag = set

AX = error code
8003H system integrity (DPMI host memory region)
8021H invalid value (address is below 1 MB boundary)
Notes:

o ltis the caller's responsibility to allocate and initialize a descriptor for access to the memory.

o This function should only be used by clients that absolutely require direct access to a
memory mapped device at physical addresses above 1 MB. Clients should not use this
function to access memory below the 1 MB boundary (the real mode addressable region).
See also Int 31H Functions 0002H, 0508H, and 0509H.

o0 When this function is called, the DPMI host either creates page table entries that directly map
the physical addresses requested and returns the linear address of the created page table
entries, or else just returns the linear address of the memory region that is already used to
map the requested device. For example, if the client attempts to map a Weitek coprocessor
and the host already has a linear region set up to map the Weitek chip and virtualize it, it
would simply return the linear address of the existing region. If the host does not virtualize
the Weitek chip, it would create 16 page table entries that map the 64 KB Weitek address
space and return a linear address corresponding to the new page table entries.

o If the host is not virtualizing the device, it must disable any memory caching on the mapped
pages; in particular, on the 80486 the host must set the PCD (page cache disable) bit in the
page table entries.

0 The host is permitted to fail any memory mapping call. However, the host should support this

function whenever possible, to achieve compatibility with application programs that use
memory-mapped devices of which the host is not aware. Useful guidelines are that the host

128

DOS Protected Mode Interface Version 1.0

should fail any attempt to map addresses below 1 MB, or addresses which the host
considers to be general-purpose RAM memory. Attempts to map any other physical address
should succeed, since the host should either (a) already know about the device and be able
to return a linear address used to access the device, or (b) assume the program is attempting
to map a legitimate device of which the host has no knowledge.

o Programs and device drivers which need to perform DMA I/O to physical addresses in a
virtualized hardware environment should use the Virtual DMA Services (see the Glossary
entry for the Virtual DMA Services Specification). Also see page 10 of the DPMI execution
environment section.

129

DOS Protected Mode Interface Version 1.0

Int 31H Function 0801H [1.0]
Free Physical Address Mapping

Releases a mapping of physical to linear addresses that was previously obtained with the
Physical Address Mapping function (Int 31H Function 0800H).

Call With:

AX = 0801H

BX:CX = linear address returned by physical address mapping call
Returns:

if function successful
Carry flag = clear

if function unsuccessftul
Carry flag = set
AX = error code
8025H invalid linear address
Notes:

o The client should call this function when it is finished using a device previously mapped to
linear addresses with the Physical Address Mapping function (Int 31H Function 0800H).

130

DOS Protected Mode Interface Version 1.0

Int 31H Function 0900H [0.9]
Get and Disable Virtual Interrupt State

Disables the virtual interrupt flag and returns the previous state of the virtual interrupt flag.
Call With:

AX = 0900H
Returns:

Virtual interrupts disabled

Carry flag = clear (this function always succeeds)

AL = 0 if virtual interrupts were previously disabled

=1 if virtual interrupts were previously enabled

Notes:

0 AH is not changed by this function. Therefore, the previous state can be restored by simply
executing another Int 31H. See Int 31H Function 0901H.

0 A client that does not need to know the prior interrupt state can execute the CLI instruction

rather than calling this function. The instruction may be trapped by the host and should be
assumed to be very slow.

131

DOS Protected Mode Interface Version 1.0

Int 31H Function 0901H [0.9]
Get and Enable Virtual Interrupt State

Enables the virtual interrupt flag and returns the previous state of the virtual interrupt flag.
Call With:

AX = 0901H
Returns:

Virtual interrupts enabled

Carry flag = clear (this function always succeeds)

AL = 0 if virtual interrupts were previously disabled

=1 if virtual interrupts were previously enabled

Notes:

0 AH is not changed by this function. Therefore, the previous state can be restored by simply
executing another Int 31H. See Int 31H Function 0900H.

0 A client that does not need to know the prior interrupt state can execute the STI instruction

rather than calling this function. The instruction may be trapped by the host and should be
assumed to be very slow.

132

DOS Protected Mode Interface Version 1.0

Int 31H Function 0902H [0.9]
Get Virtual Interrupt State

Returns the current state of the virtual interrupt flag.
Call With:
AX = 0902H
Returns:
Carry flag = clear (this function always succeeds)
AL = 0 if virtual interrupts are disabled
=1 if virtual interrupts are enabled
Notes:
0 This function should be used in preference to the PUSHFinstruction to examine the interrupt
flag, because the PUSHHFNnstruction returns the physical interrupt flag rather than the
virtualized (per-client) interrupt flag. On some DPMI hosts, the physical interrupt flag will

always be enabled, even when hardware interrupts are not being passed through to the
client.

133

DOS Protected Mode Interface Version 1.0

Int 31H Function 0AOOH [0.9]
Get Vendor-Specific APl Entry Point

Returns an address which can be called to use host-specific extensions to the standard set of
DPMI functions. DPMI 1.0 clients should avoid use of this function (see Note).

Call With:
AX = 0AOOH
DS:(E)SI = selector:offset of ASCIIZ (null-terminated) string which identifies the DPMI host
vendor
Returns:

if function successful
Carry flag = clear
ES:(E)DI = selector:offset of extended API entry point
and DS, FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.
if function unsuccessful
Carry flag = set
AX = error code
8001H unsupported function (extension not found)

Notes:

o The null-terminated string specifies the host-specific vendor name or some other unique
identifier to obtain a specific extension entry point. The string comparison used to look up
the API entry point is case-sensitive.

0 Clients must use a FAR CALL to reach the extended API entry point.

o All extended API parameters are specified by the vendor.

o DPMI 1.0 clients should use Int 2FH Function 168AH in preference to this function. DPMI
1.0 hosts support this function solely for backward compatibility with DPMI 0.9 clients.

134

DOS Protected Mode Interface Version 1.0

Int 31H Function 0BOOH [0.9]
Set Debug Watchpoint

Sets a debug watchpoint at the specified linear address.

Call With:
AX = 0BOOH
BX:CX = linear address of watchpoint
DL = size of watchpoint (1, 2, or 4 bytes)
DH = type of watchpoint
0 = execute
1 = write
2 = read/write
Returns:

if function successful
Carry flag = clear
BX = watchpoint handle

if function unsuccessful
Carry flag = set

AX = error code
8016H too many breakpoints
8021H invalid value (in DL or DH)
8025H invalid linear address (linear address not mapped or alignment
error)
Notes:

o Under DPMI 1.0, the handle will be in the range 0-14. Under DPMI 0.9, the handle range is
not limited.

o The watchpoint handle corresponds to the bit number in the Virtual DR6 returned in the
exception frame (see Int 31H Function 0212H and page 18).

135

DOS Protected Mode Interface Version 1.0

Int 31H Function 0BO1H [0.9]
Clear Debug Watchpoint

Clears a debug watchpoint that was previously set using the Set Debug Watchpoint function (Int
31H Function 0BOOH), and releases the watchpoint handle.

Call With:

AX = 0BO1H

BX = watchpoint handle
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8023H invalid handle

136

DOS Protected Mode Interface Version 1.0

Int 31H Function 0BO2H [0.9]
Get State of Debug Watchpoint

Returns the state of a debug watchpoint that was previously set using the Set Debug Watchpoint
function (Int 31H Function 0BOOH).

Call With:

AX = 0B0O2H

BX = watchpoint handle
Returns:

if function successful
Carry flag = clear

AX = watchpoint status
Bit Significance
0 0 = watchpoint has not been encountered
1 = watchpoint has been encountered
1-15 reserved

if function unsuccessful
Carry flag = set
AX = error code
8023H invalid handle

Notes:

0 The client can use Int 31H Function OBO3H to clear the watchpoint state without releasing the
watchpoint handle.

137

DOS Protected Mode Interface Version 1.0

Int 31H Function 0BO3H [0.9]
Reset Debug Watchpoint

Resets the state of a previously defined debug watchpoint; i.e. a subsequent call to Int 31H
Function 0BO2H will indicate that the debug watchpoint has not been encountered.

Call With:

AX = 0BO3H

BX = watchpoint handle
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8023H invalid handle

138

DOS Protected Mode Interface Version 1.0

Int 31H Function OCOOH [1.0]
Install Resident Service Provider Callback

Protected mode resident service providers (protected mode TSRs) can provide services to 16-bit
DPMI programs, 32-bit DPMI programs, or both. A resident service provider uses this function to
request notification from the host whenever another DPMI program in the same virtual machine is
loaded or terminated.

Call With:
AX = 0COOH
ES:(E)DI = selector:offset of 40-byte buffer with the following structure:
Offset Length Contents
O0OH 8 Descriptor for 16-bit data segment
08H 8 Descriptor for 16-bit code segment
10H 2 Offset of 16-bit callback procedure
12H 2 Reserved
14H 8 Descriptor for 32-bit data segment
1CH 8 Descriptor for 32-bit code segment
24H 4 Offset of 32-bit callback procedure
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set

AX = error code
8021H invalid value (access rights/type bytes invalid, or offset outside
segment limits)
8025H invalid linear address (descriptor references a linear address range
outside that allowed for DPMI clients)
8015H callback unavailable (host unable to allocate resources for resident

handler initialization callback)

Notes:

(o]

A DPMI client that uses this function declares its intent to provide resident protected mode
services. The client must subsequently terminate and stay resident using Int 31H Function
0CO1H. DPMI clients which intend to stay resident only to provide services to real mode
programs should not use this function.

The data structure provides room for a data descriptor, a code descriptor, and an offset for

both 16-bit and 32-bit protected modes. The client can conveniently initialize the descriptor

fields to valid values by fetching copies of its current code and data descriptors with Int 31H
Function 000BH.

If only one mode is supported by the resident service provider, then the code descriptor for
the unsupported mode should be initialized to zero.

139

DOS Protected Mode Interface Version 1.0

o This function is called on the locked protected mode stack.

o For further details on programming of resident service providers, see page 41.

140

DOS Protected Mode Interface Version 1.0

Int 31H Function 0CO1H [1.0]
Terminate and Stay Resident

A resident service provider uses this function after its initialization to terminate execution while
leaving its protected mode memory (and optionally some real mode memory) allocated.

Call With:

AX = 0CO01H

BL = return code

DX = number of paragraphs (16-byte blocks) of DOS memory to reserve
Returns:

Nothing (this call never returns)
Notes:

0 This function should only be used by DPMI clients which only provide resident services to
other DPMI protected mode clients. If the objective is only to provide resident services to
real mode programs, the client should use the DPMI translation service Int 31H Function
0300H to invoke DOS's Int 21H Function 31H directly.

o The value in DX only specifies the size of DOS allocated memory to reserve. Any protected
mode memory owned by the program remains allocated unless it is explicitly released before
executing this function. Note that the value in DX must either be 0 or a minimum of 6. If DX
is 0, the DPMI host executes a DOS real mode terminate function (Int 21H Function 4CH),
and no real mode memory is reserved. If DX is nonzero, the DPMI host requests the DOS
real mode terminate-and-stay-resident function (Int 21H Function 31H).

o If the client has not made a prior call to Int 31H Function 0COO0H, the client will simply be
terminated.

o For further details on programming of resident service providers, see page 41.

141

DOS Protected Mode Interface Version 1.0

Int 31H Function ODOOH [1.0]
Allocate Shared Memory

Allocates a memory block that may be shared by DPMI clients.

Call With:
AX = ODOOH
ES:(E)DI = selector:offset of shared memory allocation request structure in the following
format:
Offset Length Contents
OOH 4 Requested length of shared memory block (set by
client, may be zero)
04H 4 Length actually allocated (set by host)
08H 4 Shared memory handle (set by host)
OCH 4 Linear address of shared memory block (set by
host)
10H 6 offset32:selector of ASCIIZ (null-terminated ASCII)
name for shared memory block (set by client)
16H 2 Reserved
18H 4 Reserved, must be zero
Returns:

if function successful
Carry flag = clear

and the request structure fields at offsets 04H, 08H, and OCH updated by host

if function unsuccessful
Carry flag = set

AX = error code
8012H linear memory unavailable
8013H physical memory unavailable
8014H backing store unavailable
8016H handle unavailable
8021H invalid value (name for the memory block is too long)

and the request structure fields at offsets 04H, 08H and OCH unmodified by host
Notes:
o For 16-bit programs, the high word of the offset32 for the ASCIIZ nhame must be zero.

0 The maximum length of the shared memory block name is 128 characters, including the
terminal null character.

0 The linear address provided by the host is guaranteed to be the same for all clients in all

virtual machines using a shared memory block. The client must establish addressability for
the block by allocating and initializing a descriptor with separate function calls.

142

DOS Protected Mode Interface Version 1.0

o No assumptions should be made about handle values. Successive allocations of the same
shared memory block by the same client may return distinct handles; the client is responsible
for tracking and individually deallocating each handle.

0 The first client that allocates a shared memory block determines its size; the length
requested and the length actually allocated will always be equal, if the allocation succeeds at
all. Subsequent allocations by the same or different clients that specify the same or a
different size will succeed, but the size of the block will remain unchanged. The actual size
of the block is always returned to the client at offset 4 in the shared memory allocation
request structure.

o Allocation of zero-length shared memory blocks is explicitly allowed. The handle of a zero-
length block can be used with the serialization functions (Int 31H Functions 0D02H and
0DO03H) as a semaphore for inter-client communication. The linear address that is returned
at offset OCH in the data structure for zero-length blocks is undefined, and any reference to it
may produce a page fault.

0 The first paragraph (16 bytes) of the shared memory block (or the entire shared block, if
smaller than 16 bytes) will always be initialized to zero on the first allocation and can be used
by clients as an "area initialized" indicator. For example, a shared memory block might be
used by a suite of cooperating client programs to hold a table of static data or a subroutine
library. The first client to allocate the shared memory block can obtain exclusive ownership
of the block with Int 31H Function 0DO2H, load the necessary data or code into the block
from disk, set the first 16 bytes of the block to a nonzero value, and finally release its
ownership of the block with Int 31H Function 0DO3H. Other clients that allocate the shared
memory block can check the "area initialized" indicator and know that the desired code or
data is already present in memory.

o Shared memory block allocations and serializations are tracked by the host on a per client

basis. All shared memory allocations for a client are freed by the host when the client
terminates.

143

DOS Protected Mode Interface Version 1.0

Int 31H Function ODO1H [1.0]
Free Shared Memory

Deallocates a shared memory block.

Call With:

AX = 0DO0O1H

SI:DI = handle of shared memory block to free
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8023H invalid handle

Notes:

0 The shared memory handle becomes invalid after the shared memory block is deallocated,
and should not be used in any other function call (such as serialization).

o The host maintains virtual machine use counts and a global use count for each shared
memory block. A virtual machine use count is the number of allocation calls (Int 31H
Function ODOOH) that have been issued by a particular virtual machine for the shared block,
while the global use count corresponds to the number of virtual machines which have access
to the block. When a virtual machine use count reaches zero, the clients in that virtual
machine no longer have addressability to the shared memory block; when the global use
count reaches zero, the shared memory block is destroyed by the host.

o ltis the client's responsibility to free any descriptors that it has allocated to map the shared
memory block.

o Applications should not depend on this function to release a previous successful serialization
for the same shared memory block. Serialization is only released by this function when the
virtual machine use count goes to O (i.e., the client no longer has access to the shared
memory block).

144

DOS Protected Mode Interface Version 1.0

Int 31H Function ODO2H [1.0]
Serialize on Shared Memory

Requests serialization of a shared memory block. Successful serialization symbolizes ownership
or right of access to a block, and can be used by DPMI clients to synchronize the inspection or
modification of a shared memory block.

Call With:
AX = 0D0O2H
SI:DI = shared memory block handle
DX = option flags
Bit Significance
0 0 = suspend client until serialization available
1 = return immediately with error if serialization not available
1 0 = exclusive serialization requested
1 = shared serialization requested
2-15 reserved, must be zero
Returns:

if function successful
Carry flag = clear

if function unsuccessful

Carry flag = set

AX = error code
8004H deadlock (host detected a deadlock situation)
8005H request cancelled with Int 31H Function ODO3H

8017H lock count exceeded

8018H exclusive serialization already owned by another client
8019H shared serialization already owned by another client
8023H invalid handle

Notes:

o For each client, the DPMI host maintains four different local (virtual machine) serialization
counts (exclusive, shared, pending shared, and pending exclusive) for each shared memory
block, as well as a global serialization count. The global serialization count is only updated
when the sum of a virtual machine's exclusive and shared serialization counts goes from 0 to
1 (serialize) or 1 to O (free).

0 A successful exclusive serialization blocks any serialization request (exclusive or shared) for
the same block by another virtual machine. Exclusive serialization should be regarded as
"ownership for writing," and should only be requested if the client intends to modify the block.
A successful shared serialization will only block requests for exclusive serialization by
another client. Shared serialization can be thought of as "read-only access," and should
used when the client only intends to inspect the block and will not change its contents.

0 Setting bit 0 of DX to 1 when the serialization request is made allows a client to determine

whether a shared memory area is serialized without being suspended. Clients which "poll"
for the availability of a resource in this manner are encouraged to yield the CPU with Int 2FH

145

DOS Protected Mode Interface Version 1.0

Function 1680H at appropriate intervals.

0 A serialization call that causes a client to be suspended can be canceled by a client interrupt
service routine (such as a keyboard or timer interrupt handler) requesting the Free
Serialization function (Int 31H Function ODO3H). In such cases, the original serialization
request will return with the Carry flag set and AX = 8005H.

0 A client that has been suspended while waiting for serialization of a shared memory block
can still service interrupts. Some hosts may need to reissue the serialization request on
behalf of the client after the interrupt service routine returns, but this event will be invisible to
the client.

0 Hosts are not required to detect deadlock. Clients that terminate and stay resident in order to

function as resident service providers, executing in the context of other clients, must be
careful to avoid deadlocks and incorrect sequencing in acquiring and releasing resources.

146

DOS Protected Mode Interface Version 1.0

Int 31H Function ODO3H [1.0]
Free Serialization on Shared Memory

Releases a shared memory block serialization that was previously obtained with Int 31H Function
0DO2H.

Call With:
AX = 0DO3H
SI:DI = shared memory block handle
DX = option flags
Bit Significance
0 0 = release exclusive serialization
1 =release shared serialization
1 0 = don't free pending serialization
1 = free pending serialization (see Note)
2-15 reserved, must be zero
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8002H invalid state (client does not own a successful serialization of the
specified type)
8023H invalid handle

Notes:

o For each client, the DPMI host maintains four different local (virtual machine) serialization
counts (exclusive, shared, pending shared, and pending exclusive) for each shared memory
block, as well as a global serialization count. The global serialization count is only updated
when the sum of a virtual machine's exclusive and shared serialization counts goes from 0 to
1 (serialize) or 1 to O (free).

o Aclient's interrupt handler can call this function with bit 1 of DX set to cancel a serialization

request that has suspended the main thread of execution of the same client. In such cases,
the original serialization request will return with the Carry flag set and AX = 8005H.

147

DOS Protected Mode Interface Version 1.0

Int 31H Function OEOOH [1.0]
Get Coprocessor Status

Returns information about whether or not a numeric coprocessor exists, the type of coprocessor
available (if any), and whether or not the host or client is providing coprocessor emulation.

Call With:
AX = OEOOH
Returns:

if function successful
Carry flag = clear (this function always succeeds in DPMI 1.0)

AX = coprocessor status
Bit Significance
0 MPv (MP bit in the virtual MSW/CRO)

0 = numeric coprocessor is disabled for this client
1 = numeric coprocessor is enabled for this client
1 EMv (EM bit in the virtual MSW/CRO)
0 = client is not emulating coprocessor instructions
1 = client is emulating coprocessor instructions
2 MPr (MP bit from the actual MSW/CRO)
0 = numeric coprocessor is not present
1 = numeric coprocessor is present
3 EMr (EM bit from the actual MSW/CRO)
0 = host is not emulating coprocessor instructions
1 = host is emulating coprocessor instructions

4-7 coprocessor type
00H = no coprocessor
02H = 80287
03H = 80387

04H = 80486 with numeric coprocessor
05H-0FH reserved for future numeric processors
8-15 not applicable

if function unsuccessful
Carry flag = set (this function always fails in DPMI 0.9)
Notes:

o Ifthe real EM (EMr) bit is set, the host is supplying or is capable of supplying floating point
emulation.

o If the MPv bit is not set, the host may not need to save the coprocessor state for this virtual
machine to improve system performance.

0 MPr bit setting should be consistent with the setting of coprocessor type information. Ignore
MPr bit information if it is in conflict with the coprocessor type information.

148

DOS Protected Mode Interface Version 1.0

o If the virtual EM (EMv) bit is set, the host delivers all coprocessor exceptions to the client,
and the client is performing its own floating point emulation (whether or not a coprocessor is
present or the host also has a floating point emulator). In other words, if the EMv bit is set,
the host sets the EM bit in the real CRO while the virtual machine is active, and reflects
coprocessor not present faults (Int 7) to the virtual machine.

0 Aclient can determine the CPU type with Int 31H Function 0400H, but a client should not
draw any conclusions about the presence or absence of a coprocessor based on the CPU

type alone.

149

DOS Protected Mode Interface Version 1.0

Int 31H Function OEO1H [1.0]
Set Coprocessor Emulation

Enables or disables the numeric coprocessor for this virtual machine and the reflection of
coprocessor exceptions to the client.

Call With:
AX = OEO1H
BX = coprocessor bits
Bit Significance
0 new value of MPv bit for client's virtual CRO
0 = disable numeric coprocessor for this client
1 = enable numeric coprocessor for this client
1 new value of EMv bit for client's virtual CRO
0 = client will not supply coprocessor emulation
1 = client will supply coprocessor emulation
2-15 not applicable
Returns:

if function successful
Carry flag = clear

if function unsuccessful
Carry flag = set
AX = error code
8026H invalid request (client requested disabling coprocessor on a
processor which does not support this)

Notes:

o If the MPv bit is not set, the host may not need to save the coprocessor state for this virtual
machine to improve system performance.

o If the virtual EM (EMv) bit is set, the host delivers all coprocessor exceptions to the client, so
that the client can provide its own floating point emulation (whether or not a coprocessor is
present or the host also has a floating point emulator). In other words, if the EMv bit is set,
the host sets the EM bit in the real CRO while the client is active, and reflects coprocessor
not present faults (Int 7) to the client.

o Floating point emulation can be tested on a system with a numeric coprocessor by using this
function to enable client handling of coprocessor exceptions and disable the coprocessor.

0 The client should use Int 31H Function 0212H to register an exception handler for
coprocessor not present faults (Int 7) prior to setting the EMv bit with this function.

0 Aclient can determine the CPU type with Int 31H Function 0400H, and the presence or

absence of a coprocessor with Int 31H Function OEOOH. The client should not draw any
conclusions about the presence or absence of a coprocessor based on the CPU type alone.

150

DOS Protected Mode Interface Version 1.0

Appendix A: Glossary

Client, DPMI
A program which uses the Int 2FH and Int 31H calls defined in the DPMI specification to
obtain services from a DPMI host. Each time a real mode program calls the DPMI
interface to request the initial switch to protected mode, a new DPMI client is created.

Committed page
A page, within a memory block, that can be treated by the DPMI client as RAM memory.
The DPMI host backs up all committed pages with physical memory or backing store.
Any page faults on committed pages must be transparent page faults, with the exception
of page faults caused by a write to a write-protected page.

Context (DPMI)
A context is a protected mode address space as defined by an LDT and an IDT. Thus,
each context has its own linear memory, selectors, and interrupt tables allocated to it.

Conventional memory
Memory which lies below the 1 MB boundary and which can be addressed in real mode.

Current client
The DPMI clients within the same virtual machine form a program stack. Only one client
in the program stack of a virtual machine can be active at one time and the client that is
currently active is called the current client. When a client becomes "current" by virtue of a
real mode callback or a raw mode switch, its LDT and IDT become active and software
interrupts and protected mode exceptions it issues are reflected through its IDT.

DOS Protected Mode Interface (DPMI)
DPMI defines an interface for protected mode DOS applications to manage memory,
interrupts, exceptions, debugging registers, and coprocessor emulation in the presence
of an 80386 control program or true protected mode operating system.

Expanded memory and Expanded memory emulator
Bank-switched memory that exists outside the CPU's normal address space and that can
be made addressable in small units called "pages" by calls to a device driver that
supports the Expanded Memory Specification. The pages appear in a "page frame" that
typically lies above the 640 KB boundary and below the 1 MB boundary. Expanded
memory emulators are programs that run on 80386 or later CPUs and use the paging
unit to map extended memory into conventional memory, implementing the EMS
interface without the need for special memory boards or other hardware.

Expanded Memory Specification (EMS)
The expanded memory management interface defined by Lotus, Intel, and Microsoft.
The current version of this specification is 4.0. VCPI is defined as an extension to EMS.
The EMS 4.0 Specification can be obtained by writing to Intel Corporation, 5200 N.E.
Elam Young Parkway, Hillsboro, OR, 97124, USA.

151

DOS Protected Mode Interface Version 1.0

Extended memory
Memory which lies above the 1 MB boundary and can only be addressed in protected
mode.

eXtended Memory Specification (XMS)
A handle-based extended memory management interface defined by Microsoft. The
XMS Specification can be obtained by writing to Microsoft Corporation, Box 97017,
Redmond, WA, 98073, USA.

Host, DPMI
A program or operating system which implements the Int 2FH and Int 31H functions
defined in this specification, and makes these services available to client programs.

Mapped page
A page, within a memory block, which can be treated as present by the DPMI client, but
which maps, directly or indirectly, a physical memory-mapped device or committed
memory allocated in the DOS conventional memory space. Any page faults on mapped
pages (e.g. because the host is virtualizing the device) must be transparent page faults,
with the exception of page faults caused by a write to a write-protected page. Mapped
pages within memory blocks may not be supported in all DPMI hosts.

Memory block
A contiguous block of linear memory. A memory block is allocated, resized, and freed
via calls to the DPMI host, and is identified by an unique handle. Within an existing
memory block, the DPMI client can manipulate individual pages.

Primary Client
DPMI clients within the same virtual machine are viewed as a stack of programs with the
first DPMI client sitting at the bottom of the stack. A primary client of a VM is the topmost
(most recent) client of the stack within the VM. It is the last client of the virtual machine
that called the protected mode entry routine obtained through Int 2FH Function 1687H.
The DPMI host is responsible for ensuring that hardware interrupts and real mode
exceptions are sent to the primary client..

Resident service provider
Resident service provider (somewhat like protected mode TSRs) provides services to
programs running in the same virtual machine. Resident service providers are initialized
only in the virtual machine in which they are started.

Shared services
Shared services (shared memory and serialization support) allow sharing between
programs running in different virtual machines, or between programs running in the same
virtual machine.

Top down allocation
Also called Int 15H allocation. A method of extended memory management which relies
on the existence of the ROM BIOS function "Get Extended Memory Size" (Int 15H
Function 88H). The program which wishes to allocate extended memory first calls Int
15H Function 88H to determine the amount of memory available, then replaces the
previous handler for the function with its own, and returns a lesser value to subsequent
callers of the function. Compared with bottom-up (VDISK compatible) allocation, this
scheme is recommended.

Transparent Exception

152

DOS Protected Mode Interface Version 1.0

An exception which is handled by the DPMI host, without the knowledge of or possibility
of intervention by the DPMI client.

Transparent page fault
A page fault which is handled by the DPMI host, without the knowledge of or possibility of
intervention by the DPMI client. A transparent page fault can result from host
implementation of virtual memory or physical device virtualization.

Uncommitted page
A page whose linear addresses have not been mapped to any physical memory or do not
correspond to any area of backing store. A reference to an uncommitted page will
always generate a visible page fault (Int OEH).

Virtual Control Program Interface (VCPI)
The VCPI is the predecessor to DPMI. VCPI extends the EMS interface to allow DOS
Extenders to run in the presence of EMS emulators or other 80386 control programs.
The Virtual Control Program Interface was a collaborative effort of Phar Lap Software
and Quarterdeck Office Systems, and it became an industry standard in 1989. The VCPI
Specification can be obtained by writing to Phar Lap Software, Inc., 60 Aberdeen
Avenue, Cambridge, MA, 02138, USA.

Virtual DMA Services (VDS)
The VDS Specification defines an interface by which protected mode programs and
device drivers can obtain the necessary information to program a DMA transfer using the
on board DMA controller or a busmaster DMA controller. The VDS Specification version
1.0 (Microsoft Part # 098-10869) can be obtained by writing to: Microsoft Corporation,
Box 97017, Redmond, WA, 98073, USA.

Virtual DOS environment
The environment in which a DOS application runs, under the control of an protected
mode supervisor or operating system which supports multiple virtual machines. The
DOS application executes as though it has sole use of the operating system services and
direct access to the hardware, but the supervisor may selectively virtualize service
requests, exceptions, and I/O operations. For example, the supervisor will typically
handle all hardware interrupts and CPU exceptions, but may then "reflect” these
interrupts or exceptions to the "real mode" handlers.

Virtual machine, DPMI virtual machine
A virtual machine, as the term is used in the DPMI specification, is a DOS address space
and all of the DPMI clients which share access to that DOS address space. Multitasking
hosts that can support multiple virtual-86 address spaces.

Visible exception
Every exception is first examined by the DPMI host. If the host does not handle the
exception, it passes the exception to the first handle in the protected mode exception
handler chain. An exception that is passed to the client handler chain become a visible
exception to a client.

Visible page fault
A page fault which is passed to the DPMI client page fault handler, if one is installed. A
visible page fault results from access to an uncommitted page, or a write access to a
write-protected page.

153

DOS Protected Mode Interface Version 1.0

Appendix B: Error Codes and Messages

Nearly all Int 31H function calls can fail, either because of client errors, unavailable resources, or
internal host problems. Most failures due to client errors and all failures due to unavailable
resources are reported to the client via error codes. Some client errors, such as passing an
invalid pointer in a function call, may cause the host to fault; the client can detect these events by
installing an exception handler.

Internal host errors are handled in a host-specific manner and generally not reported to clients
with an error code. The only exception to this is the case when a host cannot allocate internal
resources. Any Int 31H function is capable of returning error code 8010H to indicate this
condition.

A DPMI 1.0 host signals an error by returning from a function with the Carry flag set and an error
code in AX. If the error code has bit 15 clear (0), the DPMI host is passing a DOS error code
through to the client; for a list of these error codes, consult a DOS technical reference. If the
error code has bit 15 set (1), it is generated within the DPMI host, and is interpreted according to
the list below. All DPMI 1.0 hosts are required to check for the error conditions listed in this
specification, and must return the error codes that are documented for each function.

If Int 31H is invoked with an function number that is not defined in this specification, the DPMI
host will return the "Unsupported Function" error code 8001H. The table lists all defined error
codes and their messages. Unused error codes are reserved for the later versions of the DPMI
spcifications.

Error Name Explanation
Code
8001H Unsupported function Returned in response to any function call

which is not implemented by this host,
because the requested function is either
undefined or optional.

8002H Invalid state Some object is in the wrong state for the
requested operation.
8003H System integrity The requested operation would endanger

system integrity, e.g., a request to map linear
addresses onto system code or data.

8004H Deadlock Host detected a deadlock situation.

8005H Request cancelled A pending serialization request was cancelled.

8010H Resource Unavailable The DPMI host cannot allocate internal
resources to complete an operation.

8011H Descriptor unavailable Host is unable to allocate a descriptor.

8012H Linear memory unavailable Host is unable to allocate the required linear
memory.

8013H Physical memory unavailable | Host is unable to allocate the required
physical memory.

8014H Backing store unavailable Host is unable to allocate the required backing
store.

154

DOS Protected Mode Interface

Version 1.0

8015H Callback unavailable Host is unable to allocate the required
callback address.

8016H Handle unavailable Host is unable to allocate the required handle.

8017H Lock count exceeded A locking operation exceeds the maximum
count maintained by the host.

8018H Resource owned exclusively | A request for serialization of a shared memory
block could not be satisfied because it is
already serialized exclusively by another
client.

8019H Resource owned shared A request for exclusive serialization of a
shared memory block could not be satisfied
because it is already serialized shared by
another client.

8021H Invalid value A numeric or flag parameter has an invalid
value.

8022H Invalid selector A selector does not correspond to a valid
descriptor.

8023H Invalid handle A handle parameter is invalid.

8024H Invalid callback A callback parameter is invalid.

8025H Invalid linear address A linear address range (either supplied as a
parameter or implied by the call) is invalid.

8026H Invalid request The request is not supported by the

underlying hardware.

155

DOS Protected Mode Interface Version 1.0

Appendix C: Differences between DPMI 0.9 and 1.0

This section summarizes the differences between DPMI version 0.9 hosts and DPMI version 1.0
hosts. For more detailed information, see the individual function descriptions and the DPMI 0.9
Specification dated May 15, 1990.

New Functions in DPMI Version 1.0

The following Int 2FH and Int 31H functions are new in the DPMI 1.0 Specification and are not
supported by DPMI 0.9 hosts:

Int 2FH

Function Name

168AH Get Vendor-Specific APl Entry Point

Int 31H

Function Name

OOOEH Get Multiple Descriptors

OOO0FH Set Multiple Descriptors

0210H Get Extended Processor Exception Handler Vector for Protected Mode
0211H Get Extended Processor Exception Handler Vector for Real Mode
0212H Set Extended Processor Exception Handler Vector for Protected Mode
0213H Set Extended Processor Exception Handler Vector for Real Mode
0401H Get DPMI Capabilities

0504H Allocate Linear Memory Block

0505H Resize Linear Memory Block

0506H Get Page Attributes

0507H Set Page Attributes

0508H Map Device in Memory Block

0509H Map Conventional Memory in Memory Block

050AH Get Memory Block Size and Base

050BH Get Memory Information

0801H Free Physical Address Mapping

0COO0H Install Resident Service Provider Callback

0CO1H Terminate and Stay Resident

ODOOH Allocate Shared Memory

ODO1H Free Shared Memory

0DO2H Serialize on Shared Memory

ODO3H Free Serialization on Shared Memory

OEOOH Get Coprocessor Status

OEO1H Set Coprocessor Emulation

156

DOS Protected Mode Interface Version 1.0

DPMI Version 0.9 Functions Superseded

The following Int 31H functions are supported for backward compatibility with DPMI 0.9, but are
not recommended for use by DPMI 1.0 clients.

Int 31H

Function Name Comments

0202H Get Processor Exception Handler Vector Superseded by Int 31H
Functions 0210H and 0211H

0203H Set Processor Exception Handler Vector Superseded by Int 31H
Functions 0212H and 0213H

0500H Get Free Memory Information Superseded by Int 31H
Function 050BH

OAOCOH Get Vendor-Specific APl Entry Point Superseded by Int 2FH

Function 168AH

Error Codes

DPMI 0.9 hosts indicated an error by returning from an Int 31H function call with the Carry bit set.
DPMI 1.0 hosts indicate an error by returning from the function with the Carry bit set but, in
addition, return an error code in AX that provides more information about the cause of the error.
If the Carry flag is set and bit 15 of AX is clear (0), the error code is being passed through from
DOS. If the Carry flag is set and bit 15 of AX is set (1), the error code is generated by the DPMI
host and the meaning of these codes is found in Appendix B of this document.

Separate LDT and IDT Per Client

Under DPMI 0.9 hosts, all protected mode programs in a virtual machine share a single local
descriptor table (LDT) and use the same interrupt descriptor table (IDT). Thus, if the first DPMI
client to start is a 16-bit client, no 32-bit clients will be allowed to execute. Likewise, if the first
client is a 32-bit program, no 16-bit clients can execute.

DPMI 1.0 hosts provide a unique LDT and IDT for each protected mode client, and 32-bit hosts
can run both 16-bit and 32-bit clients at the same time. Hooking an interrupt or exception vector
for one client will not cause it to be hooked for other clients. The DPMI host is only responsible
for reflecting hardware interrupts to the last task which executed the DPMI switch into protected
mode. Communication between clients in separate virtual machines is accomplished by DPMI
shared memory blocks. Clients within the same VM can also communicate by DPMI shared
memory block as well as by resident service providers, DOS memory blocks, or a switch to real
mode.A DPMI 1.0 host determines which LDT and IDT to switch to when entering protected
mode by providing unique addresses for each DPMI client's raw mode switch entry points and
real mode callbacks.

157

DOS Protected Mode Interface Version 1.0

Termination Handling

DPMI 1.0 host handling of client termination differs from DPMI version 0.9 in the following
respects:

In DPMI version 0.9, all clients of the same virtual machine share a single LDT and use a
single IDT, and only those segment descriptors allocated by the client are deallocated when it
terminates. A DPMI version 0.9 client should cleanup its own segment descriptors before its
termination since some DPMI version 0.9 hosts may not free the terminating client's segment
descriptors if the client is not the topmost client. In DPMI version 1.0, each client has its own
LDT which is freed in its entirety at termination.

In DPMI version 0.9, all clients within a VM share a single IDT, and interrupt descriptors and
exception handlers are not automatically freed (i.e. the IDT is unchanged when the client
terminates). In DPMI version 1.0, exception handlers are deregistered automatically at
termination, and each client has its own IDT which is freed in its entirety.

In DPMI version 0.9, real mode memory that has been unlocked by the client must be
explicitly relocked by the client prior to termination. DPMI 1.0 hosts will relock real mode
memory automatically.

DPMI Version 0.9 Compatibility Notes

The selector supplied to Int 31H Function 000AH may be either a data selector or an
executable selector. The DPMI 0.9 specification was in error to say that the function
generates an error on a data descriptor.

The DPMI minor version number defined in Int 2FH Function 1687H and Int 31H Function
0400H have two decimal digits (with the least significant digit representing the revision
number within the minor revision number). Under DPMI version 0.9 hosts, DL is returned as
decimal 90 (5AH). The convention of having two decimal digits returned in DL for the minor
version number was not documented in DPMI 0.9 specification.

Some DPMI version 0.9 clients are incorrectly making use of GDT selector 0040H as
referring to 40:0H in real mode. New DPMI host implementations should determine if they
want to work around the compatibility problem introduced by these clients.

If the present bit of the access right/type bype in the LDT descriptor is not set, a DPMI host
allows any values in the byte except in the DPL and "must be 1" bit fields. The host
requirements for the "must be 1" bit field was not documented in DPMI 0.9 specification.

To be consistent with some existing DPMI version 0.9 implementation, all DPMI hosts
including DPMI version 1.0 hosts must reflect the interrupt in protected mode if it is not
hooked as an protected mode exception (this is an update to page 30 exception handling
description). Furthermore, some DPMI version 0.9 hosts do not reflect some interrupts down
the protected mode exception chain and the clients may need to hook both the protected
mode exception chain and protected mode interrupt chain to handle those m interrupts
correctly.

158

DOS Protected Mode Interface Version 1.0

Appendix D: Descriptor Usage Rules

The following table shows the DPMI client's restrictions on usage of previously allocated
descriptors as input parameters to DPMI functions. The columns represent the ways the DPMI
host allocates descriptors for its clients. (The first two columns represents LDT descriptor
management functions which allocate descriptors, the third column represents DOS memory
functions, and the last column represents "other" descriptors, i.e., unallocated descriptors or
descriptors used by the DPMI host for internal purposes.) Each row represents a set of functions
where a client passes those previously allocated descriptor(s) to the host as input parameters. A
'N' indicates that an "invalid Selector" error will be generated if the given descriptor is used in the
specified function.

Note that a "Y" for a given entry does not indicate that the function will succeed, only that it will
not generate an "Invalid Selector" error. Similarly, an "N" does not necessarily indicate a
descriptor is invalid for referencing memory, only that it cannot be used with that particular
function. This chart does not address the usage of descriptors in pointers.

For example, descriptors allocated by the Allocate LDT Descriptor function may be used in any of
the interrogation and modification functions of LDT Descriptor Management, as well as the
functions which set exception handlers and interrupt vectors. They may not be passed to Allocate
Specific LDT Descriptor or the DOS Memory Block functions.

159

DOS Protected Mode Interface

Version 1.0

Descriptor Allocators

Functions
referring the
allocated descriptors

Allocate LDT
Descriptor,

Allocate Specific LDT
Descriptor,

Create Alias
descriptor,

Initial CS, DS, SS

Segment To
Descriptor,

PSP,
Environment
Pointer,
Callback DS,
Locked Stack SS

Allocate/
Resize
DOS
Memory
Block

GDT-based
Descriptor,
System
Descriptor,
Unallocated
Descriptor

Interrogation Functions:

Get Segment Base
Address,

Get Descriptor,

Get Multiple Descriptor,

Create Segment Alias

Modification Functions:

Set Segment Base
Address,

Set Segment Limit,

Set Descriptor Access
Rights,

Set Descriptor,

SetMultiple Descriptor,

Free LDT Descriptor

Allocate Specific LDT
Descriptor

Free/Resize DOS Memory
Block

Set Exception
Handler/Interrupt
Vector

Notes:

1. Unallocated descriptors within the range of the LDT only.
2. GDT-based segment descriptors only.
3. Although this call will succeed, a fault will result if the exception or interrupt occurs, since the segment can

never be made executable.

160

