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Preface

This guide should be thought of as one of a set of three documents. The other two are:

« TheAlpha Architecture Reference Manual” &dition, which contains the complete
architecture information

« The appropriate hardware reference manual for a particular psocewnhich con-
tains the complete hardware specification for that processor

All three documents are available at:

ftp.compaq.com/pub/products/alphaCPUdocs

Audience

This document provides guidance for compiler writers and other programmers who use
the Alpha 21264 and 21364 microprocessoe$drred to as th81264/21364).

Content

This document contains the following chapters and appendixes:
Chapter 1, Introduction to the 21264 and 21364

Provides an overview of the Alpha architecture and introduces the 21264 and
21364.

Chapter 2, Common 21264/21364 Hardware Features

Contains sections of Chapter 2 of the 21264 and 21364 hardwarenek
manuals that are common to all processors and, most importantly, directly ref-
erenced within this guide. This information is correct but not complete. The
complete information resides in the appropriate hardweference manual.

Chapter 3, Guidelines for Compiler Writers

Provides guidelines for taking advantage of the hardware features of the 21264
and 21364.

Appendix A, 21264/21364 Upper-Lower Rules Summary
Provides rules to follow in scheduling instructions.
Appendix B, Checksum Inner Loop Schedule

Provides an example for the rules described in Appendix A.
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Appendix C, IEEE Floating-Point Conformance

Describes the 21264/21364 support for IEEE floating-point. It is directly based
on Appendix A of the 21264 and 21364 Specifications.

The Glossary lists and defines terms associated with the 21264 and 21364.

An Index is also included.

Terminology and Conventions

viii

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations

- Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values:

K = 210(1024)

M = 220(1,048,576)

G = 2%0(1,073,741,824)

For example:

2KB = 2kilobytes = 2x219pytes
4MB = 4 megabytes= 4x 220 pytes
8GB = 8gigabytes = 8x230pytes
2K pixels = 2kilopixels = 2x 210 pixels
4AMpixels = 4 megapixels= 4 x 220 pixels

Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.

MBZ Must Be Zero
Software must never place a nonzero value in bits and fields spec-
ified as MBZ. A nonzero read produces an lllegal Operand excep-
tion. Also, MBZ fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.

RC Read Clears

Bits and fields are cleared when read. Unless otherwise specified,
such bits cannot be written.
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Abbreviation Meaning
RES Reserved

Bits and fields are reserved by Compaq and should not be used,;
however, zeros can be written to reserved fields that cannot be
masked.

RO Read Only

The value may be read by software. It is written by hardware.
Software write operations are ignored.

ROnN Read Only, and takes the valo@at power-on reset

The value may be read by software. It is written by hardware.
Software write operations are ignored.

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the valnat power-on reset
Bits and fields can be read and written.

wicC Write One to Clear

If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be cleared by hardware.
Software write operations of a 0 do not modify the state of the bit.

W1Ss Write One to Set

If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be set by hardware. Soft-
ware write operations of a 0 do not modify the state of the bit.

e Write Only
Bits and fields can be written but not read.
WO,n Write Only, and takes the valueat power-on reset

Bits and fields can be written but not read.

« Sign extension

SEXT(X) meanx s sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsalignedandnaturally alignedare interchangeable and refer to data objects
that are powers of two in size. An aligned datum of siné?stored in memory at a

byte address that is a multiple ofizhat is, one that haslow-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size B is unalignedif it is stored in a byte address that is not a multiple of
2n.
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Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square

brackets ([]). Muliple contiguous bits are indicated by a pair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See

also Field Notation.

Caution
Cautions indicate potential damage to equipment or loss of data.
Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte Y 1 8 —

Word 2 16 —
Longword 2 4 32 Dword
Quadword 4 8 64 2 longword

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.
Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For exampld&registerName[LowByte]specifiesRegisterName[7:0]

Note
Notes emphasize particularly important information.
Numbering

All numbers are decimal or hexadecimal unless otherwise indicated.r&fig Px indi-

cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 109is a binary number.

Ranges and Extents

Rangesare specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extentsare specified by a pair of numbers in square brackets ([]) separated by a colon
(:) and are inclusive. Bit fields are often specified as extents. For example, bits [7:3]
specifies bits 7, 6, 5, 4, and 3.
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Signal Names
The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21264/21364 (that is,
the signal traverses a chip @rface pin).

AlphaSignal_x[n:n]  When a signal has high and low assertion states, a lower-
case italicx represents the assertion states. For example,
SignalName x[3:0] representSignalName_H[3:0]and
SignalName_L[3:0}

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructions in its normal manner. Further:

« Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

« An UNPREDICTABLE result may acquire an arntity valuesubject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

« Anoccurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the cur-
rent process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

21264/21364 Compiler Writer's Guide Xi



For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor

temporary registers left behind by some previously running process, or on a
sequence of actions of ddfent processes.

X
Do not care. A capital X represents any valid value.
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1

Introduction to the 21264 and 21364

This chapter provides a brief introduction to the Alpha architecture, Compaq Computer
Corporation’s RISC (reduced instruction set computing) architecture designed for high
performance. The chapter then summarizes specific features Afptha 21264 and

21364 microprocessors.

The companion volumes to this guide:

* TheAlpha Architecture Reference Manual &dition contains the completarchitec-
ture information.

* The appropriate hardware reference manoatains the complete hardware speci-
fication.

All three documents are available at:

ftp.compaqg.com/pub/products/alphaCPUdocs
1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with par-
ticular emphasis on speed, multiple instruction issue, multiple processors, and software
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit registers.
All instructions are 32 bits long. Memory operations are either load or store operations.
All data manipulation is done between registers.

The Alpha architecture supports the following data types:

e 8-, 16-, 32-, and 64-bit integers

* |EEE 32-bit and 64-bit floating-point formats

* VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruction
writing to a register or memory location and another instruction reading from that regis-
ter or memory location. This use of resoas makes it easy to build implememndats

that issue multiple instructions every CPU cycle.

The 21264 and 21364 use a set of subroutines, called privileged architectarg lib

code (PALcode), that is specific to a particular Alpha operating system implementation
and hardware platform. These subroutines provide operating system primitives for con-
text switching, interrupts, exceptions, and memory management. These subroutines can
be invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
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The Architecture

function field of the instruction to vector to a specified subroutine. PALcode is written
in standard machine code with some implementation-specific extensions to provide
direct access to low-level hardware functions. PALcode supports optimizations for mul-
tiple operating systems, flexible memory-management implementations, and multi-
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regis-
ter-to-register instructions. The 21264 and 21364 perform single-byte and single-word
load and store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264 and
21364 support a 48-bit or 43-bit virtual address (selectable under Internal Processor
Register (IPR) control).

Virtual addresses as seen by the program are translated into physical memory addresses
by the memory-management mechanism. The 21264 and 21364 support a 44-bit physi-
cal address.

1.1.2 Integer Data Types
Alpha architecture supports the four integer data types listed in Table 1-1.

Table 1-1 Integer Data Types

Data Type Description

Byte A byte is 8 contiguous bits that start at an addressable byte boundary.
A byte is an 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-bit value.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary.
A longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary.
A quadword is a 64-bit value.

Note: Alpha implementations may impose a significant performance penalty
when accessing operands that are not naturally aligned. Refer tdptiee
Architecture Reference Manual"£dition, for details.

1.1.3 Floating-Point Data Types

The following floating-point data types are supported:
* Longword integer format in floating-point unit
* Quadword integer format in floating-point unit
* |EEE floating-point formats
— S floating
— T_floating

1-2  Introduction to the 21264 and 21364 21264/21364 Compiler Writer's Guide



21264 Microprocessor Features

¢ VAX floating-point formats
— F_floating
— G_floating
— D_floating (limited support)

1.2 21264 Microprocessor Features

The 21264 microprocessor is a superscalar pipelined processor. It is packaged in a 587-
pin pin grid array (PGA) carrier and has removable application-specific heat sinks. A
number of configuration options allow its use in a range of system designs ranging from
extremely simple uniprocessor systems with minimum component count to high-per-
formance multiprocessor systems with very high cache and memory bandwidth.

The 21264 can issue four Alpha instructions in a single cycle, thereby minimizing the
average cycles per instruction (CPI). A number of low-latency and/or high-throughput
features in the instruction issue unit and the onchip components of the memory sub-
system further reduce the average CPI.

The 21264 and associated PALcode implements IEEE single-precision and double-pre-
cision, VAX F_floating and G_floating data types, and supports longword

(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

Other 21264 features include:

* The ability to issue up to six instructions (peak) or four instructions (sustained) dur-
ing each CPU clock cycle.

* A peakinstruction execution rate of four times the CPU clock frequency.

* An onchip, demand-paged memory-management unit with translation buffer, which,
when used with PALcode, can implement a variety of page table structures and trans-
lation algorithms. The unit consists of a 128-entry, fully-associative data translation
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB),
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The allocation scheme for the ITB and DTB is round-robin. The size of each
translation buffer entry’s group is specified hint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

* Two onchip, high-throughput pipelined floating-point units, capable of executing
both VAX and IEEE floating-point data types.

* Anonchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

* Anonchip, virtually-indexed, physically-tagged duabhd-ported64KB data
cache.

* Supports a 48-bit or 43-bit virtual address (program selectable).
e Supports a 44-bit physical address.
* Anonchip I/O write buffer with four 64-byte entries for I/O write transactions.

* Anonchip, 8-entry victim data tfer.
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21364 Microprocessor Features

* Anonchip, 32-entry load queue.
e Anonchip, 32-entry store queue.

* Anonchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

* Anonchip, 8-entry probe queue, holding pending system port probe commands.
* Anonchip, duplicate tagreay used to maintain level 2 cache coherency.
* A 64-bit data bus with onchip parity and error cottiea code (ECC) support.

e Support for an external second-level (Bcache) cache. The size and some timing
parameters of the Bcache are programmable.

* Aninternal clock generator providing a high-speed clock used by the 21264, and
two clocks for use by the CPU module.

* Onchip performance counters to measure and analyze CPU and system p
mance.

* Chip- and module-level test support, including an instruction cache testaoe to
support chip- and module-level testing.

e A 2.2-Vexternal interface.

Refer to theAlpha Architecture Reference Manual! Edition, Appendix E, for waivers and
any other implementation-dependent information

1.3 21364 Microprocessor Features

The 21364 microprocessor is a superscalar pipelined processor manufactured using
0.18um CMOS 6-layer metal technology. It is packaged in a 1439-contact land grid
array (LGA) carrier and has removablppication-specific heat sinks. A number of
configuration options allow its use in a range of system designs ranging from extremely
simple uniprocessor systems to large multiprocessor systems.

The 21364 and associated PALcode implements IEEE single-precision and double-pre-
cision, VAX F_floating and G_floating data types, and supports longword

(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

With the exception of an enlarged MAF and VAF (to support the enlarged MAF), the
21364 shares the same core as the 21264/EV68CB microprocessor.

Other 21364 features include:

* The ability to issue up to six instructions (peak) or four instructions (sustained) dur-
ing each CPU clock cycle.

* A peakinstruction execution rate of six times the CPU clock frequency.

* Affords a glueless, scalable multiprocessor system with directory-based coherence
protocol.
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21364 Microprocessor Features

* A demand-paged memory-management unit with translation buffer, which, when
used with PALcode, can implement a variety of page table structures and translation
algorithms. The unit consists of a 128-entry, fully-associative data translation buffer
(DTB) and a 128-entry, fully-associative instruction translatioffdauITB), with
each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB pages.
The allocation scheme for the ITB and DTB is round-robin. The size of each trans-
lation buffer entry’s group is specified lhynt bits stored in the entry. The DTB and
ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

* Two high-throughput pipelined floating-point units, capable of executing both VAX
and IEEE floating-point data types.

* A 64KB virtually-addressed L1 instruction cache with 8-bit ASNs
(MAX_ASN=255).

e Avvirtually-indexed, physically-tagged dual-read-ported, 64KB L1 data cache.

* Anintegrated 1.75MB 7-way associative L2 cache with the following performance
characteristics:

— Sustained access rate at 16 bytes/cycle, fully pipelined with no “bubbles”,
resulting in 16GB/sec total read/write bandwidth at 1 GHz.

— 16 victim buffers for L1 to L2 caches
— 16 victim buffers for L2 cache to local or remote memory
— ECC single-biterror corretion, double-bit error detection (SECDED) code
— 12 nsload-to-use latency at 1 GHz (a 12-cycle latency at 1 GHz)
e Supports a 48-bit or 43-bit virtual address (program selectable).
e Supports a 44-bit physical address.
* Has a four-point integrated network arface for direct interpro@sor interconnect.
— Each processor can directly connect to up to 4 other processors.
— 10-GB/sec per processor.
— 15 ns processor-to-processor latency.
— Out-of-order network with adaptive routing.
— Asynchronous clocking between processors.

e Has 8to 10 channels (2 controllexgl to 5 channels each) of Rambus (RDRAM)
memory.

Up to 800 MHz operation.

— 30 ns CAS latency pin-to-pin.

— 6-GB/sec read or write bandwidth — aggregate 12-GB/sec.
— Directory-based cache coherence.

— ECC SECDED code.

— Afifth channel on each controllefffers RAID-like memory redndancy pro-
tection.

* Has one I/O connection per processor with a 3-GB/sec interface.
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1-6

Has an onchip I/0O write buffer with four 64-byte entries for I/O write transactions.
An onchip, 32-entry load queue.
An onchip, 32-entry store queue.

An onchip, 15-entry miss address file for cache fill requests and I/O read transac-
tions.

A 15-entry onchip L1 Dcache victim buffer and a 16-entry onclyigptem victim
buffer.

An onchip, 32-entry probe queue, holding pending system port probe commands.
Hardware cache/system memory coherence support.

Onchip performance counters to measure and analyze CPU and system p
mance.

Chip- and module-level test support, including an instruction cache testdoe to
support chip- and module-level testing.

A 1.5-V external interface.

Refer to theAlpha Architecture Reference Manual! Edition, Appendix E, for waivers and
any other implementation-dependent information.

Introduction to the 21264 and 21364
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2

Common 21264/21364 Hardware Features

This chapter contains sections of Chapter 2 of the 21264 and 21364 hardfeaemce
manual that are common to all processors afdrencedvithin this guide. This infor-
mation is correct but should not be tight of as complete. You should download the
appropriate hardware reference manual for the processor(ssh@ud also download
the Alpha Architecture Reference Manualll these documents are available in the
same directory:

ftp.compaq.com/pub/products/alphaCPUdocs

2.1 Register Rename Maps

The instruction pefetcher forwards instraions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

* Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies, in
order to allow instructions to be dynamically rescheduled.

* Provide a means of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers frornmttred
register numbers in the instruction to thRysicalregister numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruction’s
destination register specifier from the virtual number in the instruction to a physical
register number chosen from a listfofe physical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physical
register, which holds the old value of an instruction’s virtual destination register, to the
free list until the instruction has been retired, indicating that the control flow up to that
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of the
integer and floating-point register rename maps to the state associated with the instruc-
tion that triggered the condition, and theefatcher restarts at the appropriate virtual
program counter (VPC). At most, 20 valid fetch slots containing up to 80 instructions
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can be in flight between the register maps and the end of the machine’s pipeline, where
the control flow is finally resolved. The map logic is capable of backing up the contents
of the maps to the state associated with any of these 80 instructions in a single cycle.

The register rename logic places instructions into an integer or floating-point issue
gueue, from which they are later issued to functional units for execution.

2.2 Integer Execution Unit

The integer execution unit (Ebox) is a 4-path integer execution unit that is implemented
as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an 80-
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). Fig-

ure 2—1 shows the integer execution unit. In the figiwp, wris the cross-cluster bus

for moving integer result values between clusters.

Figure 2—1 Integer Execution Unit—Clusters 0 and 1

iop_wr
iop_wr
Y Y
uo Ul
Register Register
LO L1
[ ) op_wr A [
iop_wr
Load/Store Data

Load/Store Data

Y

eff VA " l eff VA

FM-05643.Al14

Most instructions have 1-cycle latency for consumers that execute within the same clus-
ter. Also, there is another 1-cycle delay associated with producing a value in one cluster
and consuming the value in the other cluster. The instruction issue queue minimizes the
performance effect of this oss-cluster delay. The Ebox contains the following
resources:

* Four 64-bit adders that are used to calculate results for integer add instructions
(located in U0, U1, LO, and L1)

* The adders in the lower subclusters that are used to generatffie¢htve virtual
address for load and store instructions (located in LO and L1)
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e Four logic units

* Two barrel shifters and associated byte logic (located in U0 and U1)
* Two sets of conditional branch logic (located in U0 and U1)

e Two copies of an 80-entry register file

* One pipelined multiplier (located in U1) with 7-cycle latency for all integer multiply
operations

* One fully-pipelined unit (located in U0), with 3-cycle latency, that executes the fol-
lowing instructions:

— CTLZ,CTPOPR,CTTZ
—  PERR, MINxxx, MAXxxx, UNPKxx, PKxx

The Ebox has 80 register-file entries that contain storage for the values of the 31 Alpha
integer registers (the value of R31 is not stored), the values of 8 PALshadow registers,
and 41 results written by instructions that have not yet been retired.

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identical
values. Each copy of the Ebox register file contains four read ports and six write ports.
The four read ports are used to source operands to each of the two subclusters within a
cluster. The six write ports are used as follows:

e Two write ports are used to write results generated within the cluster.
e Two write ports are used to write results generated by the other cluster.

e Two write ports are used to write results from load instructions. These two ports
are also used for FTQIinstructions.

2.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VAX
and IEEE floating-point instructions. It supports IEEE S_floating-point and T_floating-
point data types and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point format.
The basic structure of the floating-point execution unit is shown in Figure 2—2.

Figure 2—-2 Floating-Point Execution Units
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The Fbox contains the following resources:

e 72-entry physical register file

e  Fully-pipelined multiplier with 4-cycle latency

* Fully-pipelined adder with 4-cycle latency

* Nonpipelined divide unit associated with the adder pipeline

* Nonpipelined square root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha floating-
point registers (F31 is not stored) and 41 values written by instructions that have not
been retired.

The Fbox register file contains six read ports and four write ports. Four read ports are
used to source operands to the add and multiply pipelines, and two read ports are used
to source data for store instructions. Two write ports are used to write results generated
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2.4 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instruc-
tions. The pipeline stages (0 to 6) are shown in Figure 2—3 and described in the follow-
ing paragraphs.

Figure 2-3 Pipeline Organization
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Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction tar-
get address.
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Up to four aligned instructions are fetched from thache, in program order. The

branch prediction tables are also accessed in this cycle. The branch predictor uses tables
and a branch history algorithm to predict a branch instruction target address for one
branch or memory format JSR instruction per cycle. Therefore, the prefetcher is limited
to fetching through one branch per cycle. If there is more than one branch within the
fetch line, and the branch predictor predicts that the first branch will not be taken, it will
predict through subsequent branches at the rate of one per cycle, until it predicts a taken
branch or predicts through the last branch in the fetch line.

The Icache array also contains a line prediction field, the contents of which are applied
to the Icache in the next cycle. The purpose of the line predictor is to remove the pipe-
line bubble which would otherwise beeated when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the IcacheHinb

the branch predictor will generate. On fills, the line predictor value at each fetch line is
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict Icache.
Instructions are mapped in order, executed dynamically, but are retired in order.

In the slot stage, the branch predictor compares the next Icache index that it generates to
the index that was generated by the line predictor. If there is a mismatch, the branch
predictor wins—the instructions fetched during that cycle are aborted, and the index
predicted by the branch predictor is applied to kteche during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory format
calls or jumps. If the line predictor was trained with a true (as opposed to predicted)
memory format call or jump target, then its contents take precedence over the target
hint field associated with these instructions. This allows dynamic calls or jumps to be
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the pipe-
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is accessed.
That enables the fetcher to separate set mispredictions from true Icache misses. If the
access was caused by a set misprediction, the instruction fetcher aborts the last two
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate set
prediction bits.

The instruction data is transfred from the Icache to thateger and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from the
Icache and slotted into the 1Q, the slot logic determines whether the instruction is for
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Although all
four instructions need not be issued simultaneously, distributing their resource usage
improves instruction loading across the units. For example, if a fetch block contains
two instructions that can be placed in either cluster followed by two instructions that
must execute in the lower cluster, the slot logic would designate that combination as
EELL and slot them as UULL. Slot combinations are described in Section 2.5.2 and
Table 2-3.
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Stage 2 — Map

Instructions are sent from the Icache to the integer and flogtoigt register maps dur-

ing the slot stage and register renaming is performed during the map stage. Also, each
instruction is assigned a unique 8-bit number, calletham, which is used to identify

the instruction and its program order with respect to other instructions during the time
that it is in flight. Instructions are considered to be in flight between the time they are
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating-
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (IQ) issues instructions at the rate of four per cycle.
The 15-entry floating-point issue queue (FQ) issues floating-poiataip hstructions,
conditional branch instructions, and store instructions, at the rate of two per cycle. Nor-
mally, instructions are deleted from the 1Q or FQ two cycles after they are issued. For
example, if an instruction is issued in cycigit remains in the FQ or IQ in cycle+1

but does not request service, and is deleted in ayele

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and float-
ing-point register files and receive bypass data.

Stage 5 — Execute
The Ebox and Fbox pipelines begin execution.
Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. Nor-
mally load instructions access the tag and datays while storénstructions only

access the tag arrays. Store data is written to the store queue where it is held until the
store instruction is retired. Most integer operate instructions write their register results
in this cycle.

2.4.1 Pipeline Aborts

2-6

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring any
Ibox pipeline stalls or queuing delay that the triggering instruction might experience.
Table 2-1 lists the timing associated with each common source of pipeline abort.

Table 2—1 Pipeline Abort Delay (GCLK Cycles)

Penalty
Abort Condition (Cycles) Comments
Branch misprediction 7 Integer or floating-point conditional branch
misprediction.
JSR misprediction 8 Memory format JSSR or HW_RET.
Mbox order trap 14 Load-load order or store-load order.

Other Mbox replay traps 13 —
DTB miss 13 —

Common 21264/21364 Hardware Features 21264/21364 Compiler Writer's Guide



Instruction Issue Rules

Table 2—1 Pipeline Abort Delay (GCLK Cycles) (Continued)

Penalty
Abort Condition (Cycles) Comments
ITB miss 7 —
Integer arithmetic trap 12 —

Floating-point arithmetic  13+latency  Add latency of instruction. See Section 2.5.3 for
trap instruction latencies.

2.5 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they are
issued, and their associated latencies.

2.5.1 Instruction Group Definitions

Table 2-2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

Table 2-2 Instruction Name, Pipeline, and Types

Class

Name Pipeline Instruction Type

cmov LO, UO, L1, Ul Integer CMOV — either cluster

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fcbr FA Floating-point conditional branch instructions

fcmovl FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fid LO, L1 All floating-point load instructions

fmul FM Floating-point multiply instruction

fsqrt FA Floating-point square root instruction

fst FSTO, FST1, LO, L1 All floating-point store instructions

ftoi FSTO, FST1, LO, L1 FTOIS, FTOIT

iadd LO, UO, L1, Ul Instructions with opcode {f) except CMPBGE

icbr uo, U1 Integer conditional branch instructions

ild Lo, L1 All integer load instructions

ilog Lo, U0, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

imisc uo CTLZ, CTPOP, CTTZPERR, MINxxx, MAXXXX,
PKxx, UNPKxx

imul Ul Integer multiply instructions

ishf uo, U1 Instructions with opcode 12

ist LO, L1 All integer store instructions
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Table 2-2 Instruction Name, Pipeline, and Types (Continued)

Class

Name Pipeline Instruction Type

itof LO, L1 ITOFS, ITOFF, ITOFT

jsr LO BR, BSR, JMP, CALL, RET, COR, HW_RET,
CALL_PAL

Ida LO, L1, Uo, U1 LDA, LDAH

mem_misc L1 WH64, ECB, WMB

mx_fpcr FM Instructions that move data from the floating-point
control register

mxpr Lo, L1 HW_MTPR, HW_MFPR

(depends on IPR)

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)

rpcc L1 RPCC

rx L1 RS, RC

2.5.2 Ebox Slotting

Instructions that are issued from the 1Q, and could execute in either upper or lower
Ebox subclusters, are slotted to one pair or the other during the pipeline mapping stage
based on the instruction mixture in the fetch line. The codes that are used in Table 2—3
are as follows:

* U—The instruction only executes in an upper subcluster.
e L—The instruction only executes in a lower subcluster.
e E—The instruction could execute in either an upper or lower subcluster.

Table 2—3 defines the slotting rules. The table figstruction Class 3, 2, 1 and iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

Table 2—3 Instruction Group Definitions and Pipeline Unit

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210
EEEE ULUL LLLL LLLL
EEEL ULUL LLLU LLLU
EEEU ULLU LLUE LLUU
EELE ULLU LLUL LLUL
EELL UuulLL LLUU LLUU
EELU ULLU LUEE LULU
EEUE ULUL LUEL LUUL
EEUL ULUL LUEU LULU
EEUU LLUU LULE LULU
ELEE ULUL LULL LULL
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Table 2-3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class Slotting Instruction Class Slotting

3210 3210 3210 3210

ELEL ULUL LULU LULU
ELEU ULLU LUUE LUUL
ELLE ULLU LUUL LUUL
ELLL ULLL LUUU LUUU
ELLU ULLU UEEE ULUL
ELUE ULUL UEEL ULUL
ELUL ULUL UEEU ULLU
ELUU LLUU UELE ULLU
EUEE LULU UELL UuULL
EUEL LUUL UELU ULLU
EUEU LULU UEUE ULUL
EULE LULU UEUL ULUL
EULL UULL UEUU UuLuUuU
EULU LULU ULEE ULUL
EUUE LUUL ULEL ULUL
EUUL LUUL ULEU ULLU
EUUU LUUU ULLE ULLU
LEEE LULU ULLL ULLL

LEEL LUUL ULLU ULLU
LEEU LULU ULUE ULUL
LELE LULU ULUL ULUL
LELL LULL UuLUU UuLuUuU
LELU LULU UUEE UuLL
LEUE LUUL UUEL UULL
LEUL LUUL UUEU UuuLuU
LEUU LLUU UULE UULL
LLEE LLUU UuULL UuulLL
LLEL LLUL UuuLuU UuuLuU
LLEU LLUU UUUE UuulL
LLLE LLLU UuulL UuulL
— — uuuu uuuu
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2.5.3 Instruction Latencies

After an instruction is placed in the 1Q or FQ, its issue point is determined by the avail-
ability of its register operands, functional unit(s), and relationship to other instructions
in the queue. There are register producer-consumer dependencies and dynamic func-
tional unit availability dependencies thaffect instruction issue. The mapper removes
register producer-producer dependencies.

The latency to produce a register result is generally fixed. The one exception is for load
instructions that miss the Dcache. Table 2—4 lists the latency, in cycles, for each
instruction class.

Table 2—4 Instruction Class Latency in Cycles

Class Latency Comments
cmovl 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.
cmov2 1 Possible 1-cycle Ebox cross-cluster delay.
fadd 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issued
from the 1Q.
fcbr — Does not produce register value.
fcmovl 4 Only consumer is fcmov2.
fcmov2 4 Consumer other than fst.
6 Consumer fst or ftoi.
Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi is
issued from the 1Q.
fdiv 12 Single precision - latency to consumer of result value.
9 Single precision - latency to using divider again.
15 Double precision - latency to consumer of result value.
12 Double precision - latency to using divider again.
fid 4 Dcache hit.
14+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if
Bcache latency is greater than 6 cycles.
fmul 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fmul is issued from the FQ to when an fst or ftoi is issued
from the 1Q.
fsqrt 18 Single precision - latency to consumer of result value.
15 Single precision - latency to using unit again.
33 Double precision - latency to consumer of result value.
30 Double precision - latency to using unit again.
fst — Does not produce register value.
ftoi 3 —
iadd 1 Possible 1-cycle Ebox cross-cluster delay.
icbr — Conditional branch. Does not produce register value.
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Table 2—4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments
ild 3 Dcache hit.
13+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if

Bcache latency is greater than 6 cycles.

ilog 1 Possible 1-cycle Ebox cross-cluster delay.
imisc 3 Possible 1-cycle Ebox cross-cluster delay.
imul 7 Possible 1-cycle Ebox cross-cluster delay.
ishf 1 Possible 1-cycle Ebox cross-cluster delay.
ist — Does not produce register value.
itof 4 —
jsr 3 —
Ida 1 Possible 1-cycle Ebox cross-cluster delay.
mem_misc — Does not produce register value.
mxpr lor3 HW_MFPR: Ebox IPRs = 1.
Ibox and Mbox IPRs = 3.

HW_MTPR does not produce a register value.
nop — Does not produce register value.
rpcc 1 Possible 1-cycle cross-cluster delay.
rx 1 —
ubr 3 Unconditional branch. Does not produce register value.

2.6 Instruction Retire Rules

An instruction is retired when it has been executed to completion, and all previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2-5 gives the minimum retire latencies (assuming that all previous instructions
have been retired) for various classes of instructions.

Table 2-5 Minimum Retire Latencies for Instruction Classes

Instruction Class Retire Stage Comments

BSR/JSR 10 JSR instruction mispredict is reported in stage 8.

Floating-point add 11 —

Eloatiﬂg-point conditional 11 Branch instruction mispredict is reported in stage 7.
ranc

Floating-point DIV/SQRT 11 + latency Add latency of unit reuse for the instruction indicated in Table
2—4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2—4. Latency is 11 if hardware detects that
no exception is possible (see Section 2.6.1).

Floating-point multiply 11 —

Integer conditional branch 7 —
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Table 2-5 Minimum Retire Latencies for Instruction Classes (Continued)

Instruction Class Retire Stage Comments

Integer multiply 7113 Latency is 13 cycles for the MUL/V instruction.
Integer operate 7 —

Memory 10 —

2.6.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinations
of source operand values, no extiep can be generated. Instructions with these oper-
ands can be retired before the result is generated. When detected, they are retired with
the same latency as the FP add class. Early retirement is not possible for the following
instruction/operana@tchitecture state conditions:

e Instruction is not a DIV or SQRT.

* SQORT source operand is negative.
e Divide operand exponent_ais 0.

e Either operand is NaN or INF.

e Divide operand exponent_b is 0.

* Trapping mode is /I (inexact).

* INE status bit is O.

Early retirement is also not possible for divide instructions if the resulting exponent has
any of the following characteristics (EXP is the result exponent):

«  DIVT, DIVG: (EXP >= 3FF;¢) OR (EXP <= 2)
« DIVS, DIVF: (EXP >=7F,g OR (EXP <= 382¢)

2.7 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately
upon decode (stage 3). These instructions do not produce a result and are removed from
the pipeline as well. They do not occupy a slot in the issue queues and do not occupy a
functional unit. Table 2—6 lists these instructions and some of their characteristics. The
instruction type in Table 2—6 is from Table C-6 in Appendix C of &lgha Architecture
Reference Manual, "3 Edition.

Table 2—6 Instructions Retired Without Execution

Instruction Type Notes

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

FLTS All (SQRT, ITOF) with F31 as destination.
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Table 2—6 Instructions Retired Without Execution

Instruction Type Notes

INTA, INTL, INTM, INTS All with R31 as destination.

LDQ U All with R31 as destination.
MISC TRAPB and EXCB are always removed. Others are never
removed.

2.8 Replay Traps

There are some situations in which a load or store instruction cannot be executed due to
a condition that occurs after that instruction issues from the 1Q or FQ. The instruction is
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.8.1 Mbox Order Traps

Load and store instructions may be issued from the IQ irffardint order than they

were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the Mbox
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the memory
stream ardoad-loadandstore-loadorder traps.

2.8.1.1 Load-Load Order Trap

The Mbox ensures that load instructions thedid the same piical byte(s) ultimately

issue in correct order by using ttead-loadorder trap. The Mbox compares the

address of each load instruction, as it is issued, to the address of all load instructions in
the load queue. If the Mbox finds a newer load instruction in the load queue, it invokes
aload-loadorder trap on the newer instruction. This is a replay trap that aborts the tar-
get of the trap and all newer instructions from the machine and refetches instructions
starting at the target of the trap.

2.8.1.2 Store-Load Order Trap

The Mbox ensures that a load instruction ultimately issues after an older store instruc-
tion that writes some portion of its memory operand by usingstbes-loadorder trap.

The Mbox compares the address of each store instruction, as it is issued, to the address
of all load instructions in the load queue. If the Mbox finds a newer load instruction in
the load queue, it invokesstiore-loadorder trap on the load instruction. This is a replay
trap. It functions like thdoad-loadorder trap.

The Ibox contains extra hardware to reduce the frequency dfttre-loadtrap. There

is a 1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When an
Icache instruction is fetched, the associated stWait table entry is fetched along with the
Icache instruction. The stWait table produces 1 bit for each instruction accessed from
the Icache. When a load instruction getst@re-loadorder replay trap, its associated bit

in the stWait table is set during the cycle that the load is refetched. Hence, the trapping
load instruction’s stWait bit will be set the next time it is fetched.
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The IQ will not issue load instructions whose stWait bit is set while there are older unis-
sued store instructions in the queue. A load instruction whose stWait bit is set can be
issued the cycle immediately after the last older store instruction is issued from the
gueue. All the bits in the stWait table are unconditionally cleared every 16384 cycles, or
every 65536 cycles if | CTL[ST_WAIT_64K] is set.

2.8.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store queue,
and to ensure that there are never multiple outstanding misseifeiedi physical

addresses that map to the same Dcache or Bcache line. Unlike the order traps, however,
these replay traps are invoked on the incoming instruction that triggered the condition.

2.9 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2—4.

Figure 2—-4 Floating-Point Control Register
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The floating-point control register fields are described in Table 2—-7.

Table 2—7 Floating-Point Control Register Fields

Name Extent  Type  Description
SUM [63] RwW Summary bit. Records bit-wise OR of FPCR exception bits.
INED [62] RW Inexact Disable. If this bit is set and a floating-point instruction that enables

trapping on inexact results generates an inexact value, the result is placed in the
destination register and the trap is suppressed.
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Table 2—7 Floating-Point Control Register Fields (Continued)

Name Extent Type  Description

UNFD [61] RW Underflow Disable. The 21264/21364 hardware cannot generate IEEE compli-
ant denormal results. UNFD is used in conjunction with UNDZ as follows:

UNFD UNDZ Result

0 X Underflow trap.

1 0 Trap to supply a possible denormal result.

1 1 Underflow trap suppressed. Destination is written with a
true zero (+0.0).

UNDZ [60] RW Underflow to zero. When UNDZ is set together with UNFD, underflow traps
are disabled and the 21264/21364 places a true zero in the destination register.
See UNFD, above.

DYN [59:58] RW Dynamic rounding mode. Indicates the rounding mode to be used by an IEEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

Bits Meaning

00 Chopped

01 Minus infinity
10 Normal

11 Plus infinity

IOV [57] RW Integer overflow. An integer arithmetic operation or a conversion from float-
ing-point to integer overflowed the destination precision.

INE [56] RwW Inexact result. A floating-point arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

UNF [55] RW Underflow. A floating-point arithmetic or conversion operation gave a result
that underflowed the destination exponent.

OVF [54] RW Overflow. A floating-point arithmetic or conversion operation gave a result that
overflowed the destination exponent.

DZE [53] RwW Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

INV [52] RW Invalid operation. An attempt was made to perform a floating-point arithmetic
operation and one or more of its operand values were illegal.

OVFD [51] RW Overflow disable. If this bit is set and a floating-point arithmetic operation gen-
erates an overflow condition, then the appropriate IEEE nontrapping result is
placed in the destination register and the trap is suppressed.

DZED [50] RW Division by zero disable. If this bit is set and a floating-point divide by zero is
detected, the appropriate IEEE nontrapping result is placed in the destination
register and the trap is suppressed.

INVD [49] RW Invalid operation disable. If this bit is set and a floating-point operate generates
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an invalid operation condition and 21264/21364 is capable of producing the
correct IEEE nontrapping result, that result is placed in the destination register
and the trap is suppressed.
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Floating-Point Control Register

Table 2—7 Floating-Point Control Register Fields (Continued)

Name Extent Type  Description

DNz [48] RwW Denormal operands to zero. If this bit is set, treat all Denormal operands as a
signed zero value with the same sign as the Denormal operand.

Reserved [47:(}] — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264 or 21364.
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3

Guidelines for Compiler Writers

This chapter is a supplement to Appendix A of thipha Architecture Reference Man-

ual, 4" Edition. That appendix presents general guidelines for software that are less
dependent on the processor implementation. This chapter identifies some of the specific
features of the 21264 and 21364 that affect performance and that can be controlled by a
compiler writer or assembly-language programmer.

Note: Chapter 2 in the appropriate hardware reference manual describes the spe-
cific hardware features for which this chapter provides programming
guidelines. Sections of that chapter are included in this guide and refer-
enced in this chapter. Consult the appropriate hardwaesaete manual
for complete information on hardware features for a particular Alpha pro-
cessor. (The sections of Chapter 2 included in this guide arectdbut not
complete for all 21264 and 21364 processors.) You can download the hard-
ware reference manual for your processor from:

ftp.compaqg.com/pub/products/alphaCPUdocs/

3.1 Architecture Extensions

Various extensions have been provided to the Alatchitecture.

Use the AMASK instruction (see Section 2.15 of the hardware reference manual that is
appropriate for your particular processor) to test for the presence of these extensions.

If you using this document before the 21364 hardware reference manual is available,
you can use the AMASK values that are described in the 21264/EV68CB hardware ref-
erence manual.

Using AMASK makes it possible to generate efficient code that uses the extensions,
while still running correctly on implementations that do not contain them.

See theAlpha Architecture Reference Manuaif‘Edition,for more details on
AMASK.

There are also new instructions for memory prefetch, described in Section 3.6.

3.2 Instruction Alignment

Where possible, branch targets should be octaword aligned. Although any NOP instruc-
tion can be used to pad code for alignment, the UNOP is recommended because it
ensures backwards compatibility. The 21264/21364 discards NOP instructions early in



the pipeline, so the main costs are space in the instruction cache and instruction fetch
bandwidth. See Appendix A of thilpha Architecture Reference Manual” &dition,
for the encodings to use for NOP instructions.

Always align routine beginnings and branch targets that are preceded in program order
by:

e Computed jumps

* Unconditional branches

* Return instructions

Always align targets of computed jumps (JMP and JSR), even if there is a fall-through
path to the target.

Although not generally recommended, it may be beneficial to align branch targets that
can also be reached by a fall through.

3.3 Data Alignment

As in previous implementationsefierences to unaligned data cionie to trap and are
completed in software. Programmers are encouraged to align their data on natural
boundaries. When data cannot be aligned, use the nontrapping sequences listed in the
Alpha Architecture Reference Manuaif‘Edition.

Because the 21264/21364 implements the BWX extension, it is beneficial to do
unaligned word operations with two byte operations. For example, the following
sequence loads an unsigned unaligned word:

LDBU T3, 1(T0)
LDBU T2, (TO)

SLL T3, 8, T3
BIS T2, T3, VO

3.4 Control Flow

As in previous implementations, the compiler should lay out code so that fall through is
the common path. For the 21264/21364, the line predictor is initialized to favor a fall-
through path. Furthermore, on a demand miss, the next three lines are prefetched into
the instruction cache.

3.4.1 Need for Single Successors

Code should be arranged so that each aligned octaword has at most one likely succes-
sor, because each of the following predictors stores only one prediction for each octa-
word:

* The line predictor
e The JMP/JSR predictor (which uses the line predictor)
* Parts of the branch predictor

To ensure that there is only one successor, include at most one change of control flow
instruction in each octaword. BSR and JSR instructions should be the last instruction in
the octaword, so that the octaword does not have both the call target and the fall-
through octaword as successors. If an octaword has a JMP or JSR, there should not be



another control flow instruction, CMOV, LDx_L, STx_C, WMB, MB, RS, RC, or
RPCC instruction; these instructions prevent the line predictor from training. If the
compiler puts multiple rarely taken conditional branches in the same octaword, there
will not be a problem with aliasing in the line predictor or the branch predictor.

3.4.2 Branch Prediction

The branch predictor in the 21264/21364 is sophisticated and can predict branch behav-
ior where the behavior depends on past history of the same branch or previous
branches. For example, branches are predicted that tend to go in the same direction or
that have patterns. However, the following instructions i@ierwith the branch predic-

tor and cause it to predict fall through when placed in the same octaword as conditional
branch instructions: LDx_L, STx_C, WMB, MB, RS, RC, and RPCC.

Branches that cannot be predicted are costly, so try to use the conditional move instruc-
tion (CMOV) or logical operations to eliminate branch instructions. If a conditional
branch guards a few instructions, it is almost always beneficial to eliminate the branch.
For larger blocks of code, the benefit depends on whether the branch is predictable.

3.4.3 Filling Instruction Queues

Normally, the 21264/21364 can fetch one aligned octaword per cycle and fill the
instruction queues. There are some situations where it fetches less, which can reduce
performance if th1264/21364 is removing instructions from the queues (issuing

them) faster than they can be filled. The 21264/21364 can predict at most one branch
per cycle; if an aligned octaword containdranches, it takes cycles to fetch the

entire aligned octaword. Thus, there can be a penalty for placing more than one branch
in an octaword, even if the branches are rarely all taken. However, spacing out branches
by padding the octaword with NOPs does not speed up the fetch. This is usually only a
problem for code with very high ILP (instruction-level parallelism), where instruction
fetch cannot keep up with execution.

3.4.4 Branch Elimination

Removing branches eliminates potential branch mispredicts, improves instruction
fetch, and removes barriers to optimization in the compiler. Many branches can be
removed by using the CMOV instruction or logical instructions. The following sections
describe some techniques for eliminating branches that are specific to the Alpha
instruction set.

3.4.4.1 Example of Branch Elimination with CMOV

The C code in the following example can be implemented without branches by using
the CMOV instruction.

In the example, the variabl® is assigned on both paths, so it is replaced with an uncon-
ditional assignment — the value from one path followed by a CMQOV to conditionally
overwrite it. The variable€ is not live out of the conditional, so its assignment can be
done unconditionally. To conditionalize the store (*p=a), a dummy location called the
bitbucket iscreated on the stack, and the address register fattre is overwritten

with the bitbucket address to prevent the store from occurring when the condition is
false.



The C code:

if (A <B){
C=A+B;
D=C+ 1,
P o= A

}

else {
D=2

}
Implementation using the CMOV instruction:

CMPLT ABRO
ADDL  ABC
ADDL ClR1
MOV 2D

CMOVNE ROR1D
CMOVEQ ROBBP
SIL AP

3.4.4.2 Replacing Conditional Moves with Logical Instructions

If an octaword containe CMOV instructions, it takes+1 cycles to put that aligned
octaword into the instruction queues. This is only a problem for code with very high
ILP. When executing, the CMOV instruction is treated like two dependent instructions.
If possible, it is usually a good idea to replace a CMOV instruction with one or two log-
ical instructions. Integer compare instructions produce a value of zero or one. By sub-
tracting one from the result of a compare, the values are all zeroes or all ones, which
makes a convenient mask in evaluating conditional expressions. For example:

f(A>B) C=0

could be implemented with:
CMPLT BARO
CMOVNE ROR31,C

But a better sequence that consumes the same amount of execution resources but less
fetch resources is:

CMPLT BARO
SUBQ RO,1,RO
AND ROC.C



3.4.4.3 Combining Branches

Multiple dependent branches can often be combined into a single branch. For example,
the C expressiofa > b && c¢ > d) can be computed with:

CMPLT BAR1
BEQ R1L1
CMPLT DCR1
BEQ R1L1

or equivalently as:

CMPLT BAR1
CMPLT DCR2
AND R1,R2,R2
BEQ R2L1

Combining the two branches into one branch avoids the problems caused by multiple
branches in the same aligned octaword. Of even greater benefit, the combined branch is
usually more predictable than the two original branches.

3.4.5 Computed Jumps and Returns

The targets of computed jumps (JMP and JSR instructions) are predicted differently
than PC-relative branches and require special attention. The first time a JMP or JSR
instruction is brought into the cache, the target is computed by using the predicted tar-
get field contained in the jump instruction to compute an index into the cache, com-
bined with the tag currently contained in that index. If that prediction is wrong, the
processor quickly switches to another prediction mode that uses the line predictor for
future occurrences of that jump. Because the line predictor predicts aligned octawords
and not individual instructions, it always predicts the beginning of an aligned octaword
even if the target is not the first instruction. Thus, it is important to align targets of com-
puted jumps. Note that even if the predicted target field is correct in the JMP instruc-
tion, it still mispredicts if the target is not in the cache because the tag is wrong.
Therefore, the compiler should both set the hint field bit and align the jump target so
that line predication will work.

The target of a RET instruction is predicted with a return stack, as described in Appen-
dix A of the Alpha Architecture Reference Manuaif‘ £dition.

3.5 SIMD Parallelism

Programs can do SIMD-style (single instruction stream, multiple data stream) parallel-
ism in registers. SIMD parallelism can greatly reduce the number of instructions exe-
cuted. The MVl instructions support SIMD parallelism and some non-MVI instructions
are also useful. A simple example is implementing a byte-at-a-time copy loop with
guadword copies. Another example is testing for a nonzero byte in an array of eight
bytes with a single quadword load BiNEinstruction can determine if all the bytes are
nonzero or &£MPBGHhstruction can determine which byte is honzero. See Appendix
B for an example.



3.6 Prefetching

Prefetching is very important (by a factor of 2) for loops dominated by memory latency
or bandwidth. The 21264 and 21364 both support three styles of prefetch, but the 21364
has more highly developed support for marking a cache block as having a short tempo-
ral cache life with thesvict nextgualifier.

Table 3-1 Prefetch Support Summary

Prefetch Type

Instruction Processor Support  Description

Normal prefetch PREFETCH 21264 and 21364 Prefetch for loading data that is expected

to be read only. Reduces the latency to
read memory.

Normal prefetch, evict PREFETCH_EN 21264 and 21364 Normal prefetch and mark for preferential

next

eviction in future cache fills.

Prefetch with modify PREFETCH_M 21264 and 21364 Prefetch for data that will probably be

intent written. Reduces the latency to read
memory and bus traffic.
Prefetch with modify PREFETCH_MEN 21364 only Prefetch with modify intent and mark for
intent, evict next preferential eviction in future cache fills.
Write hint — 64 bytes WH64 21264 and 21364 Execute if the program intends to write an
entire aligned block of 64 bytes. Reduces
the amount of memory bandwidth
required to write a block of data.
Write hint — 64 bytes, WH64EN 21364 only Hint to the processor that the correspond-
evict next ing block should be marked for preferen-

tial eviction in future cache fills.

The actual cache eviction policy is implementation-dependent and described in the cor-
responding implementation’s hardwareaefnce manual.

The prefetch instru@ns and write hints are recognized as prefetches or ignored on pre-
21264/21364 implementations, so it is always safe for a compiler to use them. The load
prefetches have no dritecturally visibleeffect, soinserting prefetches never causes a
program error. Because of its more powerful memory system, prefetches on a 21264/
21364 have more potential benefit than previous Alpha implementations and unneces-
sary prefetching is less costly. Support for prefetching varies between implementations;
consult the appropriate hardware reference manual for particular support ahigtiae
Architecture Reference Manualt,héEditionfor general information

How far ahead to prefetch depends on whether the processor is a 212636at. The
number of instructions that are prefetched can be normally controlled by a compiler
switch. The 21264 has an 8-entry miss address file (MAF); the 21364 a 15-entry MAF.
Therefore, prefetch ahead further with the 21364, as follows:

21264

Always prefetch ahead at least two cache blocks for each stream. Prefetch farther
ahead if possible, unless doing so requires more than eight offchip references to be
in progress at the same time. That is, for a loop that referemsreams, prefetch



ahead 2 blocks for each stream on 8locks, whichever is greater. Note, however,
that for short trip count loops, it may be beneficial to reduce ttedgichdistance,
so that the prefetched data is likely to be used.

21364

Always prefetch ahead at least two cache blocks for each stream. Prefetch farther
ahead if possible (up to 10 blocks), unless doing so requires more than 15 offchip
references to be in progress at the same time. That is, for a loop that refemences
streams, prefetch ahead 2 blocks for each stream arilééks, whichever is

greater. Note, however, that for short trip count loops, it may be beneficial to reduce
the prefetch distance, so that the prefetched data is likely to be used.

Prefetches to invalid addresses are dismissed by PALcode, so it is safe to prefetch off
the end of an array, but it does incur a small (less than 30 cycle) performance penalty.
Prefetches can have alignment traps, so align the pointer used to prefetch.

The WH64 instruction sets an aligned 64-byte block to an unknown state. Use WH64
when the program intends to completely write an aligned 64-byte area of memory.
Unlike load prefetches, the WHédstruction modifies data, and it is not safe to execute
WH&64 off the end of an array. Although a conditional branch can guard the WH64
instruction so that it does not go beyond the end of an array, a better solution is to create
a dummy aligned block of 64 bytes of memory on the stack (bitbucket) and use a
CMOV instruction to select the bitbucket address when nearing the end of the array. For
example:

CMPLT ROR1,R2 # test if there are at least 64 bytes left
CMOVEQ R2R3R4 # if not, ovewrite r4 with address of bit bucket
WH64 R4

3.7 Avoiding Replay Traps

The 21264/21364 can have several memory operations in progress at the same time,
rather than necessarily waiting for one memory operation to complete before starting
another. The 21264/21364 can reorder memoigragons if one operation is delayed
because its input operands are not data ready or because of system dynamics.

There are some situations where the execution of a memamatipn must be aborted,
together with all newer instructions in progress. When the situation is corrected, the
instruction is refetched and execution continues. This is called a replay trap and is
described in Section 2.8.

A replay trap is a hardware mechanism for aborting speculative work and is not the
same as a software exception or trap. Typically, the main cost of a replay trap is the pro-
cessor must wait for the condition that caused the trap (such as a cache miss or a store
gueue drain) to clear before executing any instructions after the trapping instruction. In
addition, instructions must be restarted in the pipeline, which adds the penalty listed in
Table 2—1. The actual effect omgormance depends on the length of the stall and how
much the processor can overlap the stall with other work, such as restarting the pipe-
line.

Replay traps occur when there are multiple concurrent loads and/or stores in progress
to the same address or same cache index. The farther apart the loads and/or stores are in
the instruction stream, the less likely they will be active at the same time. It is impossi-



ble to predict exactly how much distance is needed, but 40 instructions should be safe if
the data is in the level 2 cache. The best way to avoid replay traps is to keep values in
registers so that multipleeferences to the same address are not in progress at the same
time.

Generally, there are three causes for multiple loads and stores to the same address. The
following lists those causes and suggests remedies:

* High register pressure causes repeated spills and reloads of variables. Profile infor-
mation is especially useful to ensure that frequently referenced values are kept in
registers.

* Memory aliasing prevents the compiler from keeping values in registers. Pointer
and interprocedural analysis are important techniques for eliminating unnecessary
memory references.

* Reuse of stack location for temporaries leads to repaafedences to the stack
address. Immediate reuse of stack locations is discouraged because it creates a
dependence through memory that the 21264/21364 is unable to break.

Section 2.8 describes the general concept of replay traps and provides some examples.
The following sections describe the replay traps that have been found to occur fre-
guently and contain specific recommendations for avoiding them.

3.7.1 Store-Load Order Trap

Stores go into the store queue, and loads to the same address can get the data from the
store queue. Operations tend to be executed in program order, unless an operation is not
data ready. However, if the processor reorders the instructions so that the load executes
before the store, a replay trap occurs and execution restarts at the load. This is called a
store-load order trap. If this happens frequently enough, the processor will learn to
delay issuing the load until all previous stores have completed. Delaying the load can
decrease performance because it must wait for all stores, rather thatojest to the

same address. However, the delay is faster than replay trapping.

The FTOk and ITOR instructions transfer data between the floating-point and integer
register files. Because they avoid situations where data is stored and immediately
loaded back, they avoid store-load order replay traps and should be used wherever pos-
sible.

3.7.2 Wrong-Size Replay Trap

If there is a store followed by a load that reads the same data, and the load data type is
larger than the store, then the load must get some of the data from the store queue and
the rest from the cache. The processor replay traps until the store queue drains into the
Dcache and then gets all the data from the cache. This is called a wrong-size replay
trap. Unlike the store-load order replay trap, the wrong-size replay trap occurs even if
the store and load execute in order. The trap can take over 20 cycles and can be avoided
by widening the store, narrowing the load, or eliminating the load and getting the value
from a register. If the store data is larger than the load data, a wrong-size replay trap
does not occur.



3.7.3 Load-Miss Load Replay Trap

If there is a load followed by another load to the same address and the first load misses,
then the processor replay traps until the data comes back from the cache. This is called
a load-miss load replay trap.

3.7.4 Mapping to the Same Cache Line

Loads and stores that are in progress at the same time and map to the same cache line
(32KB apart) can replay trap. This is similar to the problem thegatimapped caches
have, the difference being that the 21264/21364 cache can hold two data items that map
to the same index, but can have only one memory operation in progress at a time that
maps to any one cache index. See Section A.3.3 oAthka Architecture Reference
Manual, 4" Edition, for a discussion of laying out data to avoid direct-mapped cache
thrashes. If possible, avoid loops where a single iteration or nearby interations touch
data that is 32KB apart. Avoid creating data that is a multiple of 32KB and pad it with
extra cache blocks if possible. Also note that prefetches can cause these traps and out-
of-order execution can cause multiple iterations of a loop to overlap in execution, so
when padding or spacing data references apart, one must consider factors such as the
prefetchdistance and store delay in computing a safe distance.

3.7.5 Store Queue Overflow

Each store instruction is buffered in the store queue until it retires, up to a maximum of
32. If the store queue overflows, the processor replay traps. To avoid overflow, avoid
code with a burst of more than 32 stores and do not expect the processor to sustain more
than one store per cycle.

3.8 Scheduling

The 21264/21364 can rearrange instruction execution order to achieve maximum
throughput. However, it has limited resources: instruction queue slots and physical reg-
isters. The closer the compiler’s static schedule is to the actual desired issue order, the
less likely the processor will run out of resources and stall. Therefore, it is still benefi-
cial to schedule the code as if the 21264/21364 is an in-order microprocessor, such as
the 21164. Software pipelining is also beneficial for loops.

The basic model is a processor that can execute 4 aligned instructions per cycle. Sched-
ule for the resources described in Table 2—2 and the latencies in Table 2—4 and assume a
cross-cluster delay will occur. When determining load latency, assume that scalar refer-
ences are Dcache hits and array and pointer references are not. Load latencies in Table
2—4 are best case, so schedule for longer latencies if register pressure is not high.
Prefetch data where possible and assume the actual load is a Dcache hit.

To reduce Dcache bus traffic, loaglsould be grouped with loads, stores with stores,
two per cycle. Memory operations to different parts of the same calctol can com-
bine together. Group operations withfdrent offsets off the same puer where possi-
ble. Do operations in memory address order (such as a bunch of stack saves) where
possible.



3.9 Detailed Modeling of the Pipeline

Section 3.8 describes a simple model for a compiler. More detailed models must take
into account physical register allocation and Ebox slotting and clustering. Such models
are difficult to get right because the compiler cannot easily predict the order in which
instructions will be executed. However, it is possible to produce schedules that achieve
higher performance by more accurately modeling the 21264/21364. This section
describes such a model.

3.9.1 Physical Registers

Physical registers are a resource that need to be managed to achieve optimal perfor-
mance. As described in Section 2.1, architectural registers are renamed to physical reg-
isters. A physical register is allocated when an instruction is placed in the instruction
gueue and a physical register is released when the instruction is retired; the physical
register that is released is the prior mapping of the destination register. A distinct phys-
ical register is required to hold the result of each instruction that has not yet retired;
instructions that do not write a register (such as stores, conditional branches, prefetches,
and other instructions that target R31 or F31) do not allocate a physical register.

Table 3-2 presents the minimum latency between an instruction allocating a physical
register and the instruction releasing the physical register. That latency is divided into
the latency from the map stage to the retire stage and an additional latency from the
retire stage until the physical register is actually released. Note that instructions retire
in order — a delay in the retire of one instruction delays the retire and the release of
physical registers for all subsequent instructions. Table 3-2 is an approximation; the
register mapper has a number of special cases and edge conditions that are ignored.

Table 3-2 Minimum Latencies from Map to Release of a Physical Register

Instruction Class Map-to-Retire  Retire-to-Release Map-to-Release

BSR/JSR 8 2 10
Floating-point add 9 4 13
Floating-point conditional branch 9 4 13
Floating-point divide/square root O+laterfcy 4 13+latency
Floating-point load 8 2 10
Floating-point multiply 9 4 13
Floating-point store 12 2 16°
Integer conditional branch 5 22 72
Integer load 8 2 10
Integer multiply 5/11 2 7113
Integer operate 5 2 7
Integer store 8 2 107

1 See Table 2-5 and Section 2.6.1

2 Conditional branches and stores do not release physical registers.

the release of registers from subsequent instructions.

However, their retire point delays



3.9.1.1 Integer Execution Unit

Of the 80 physical registers in the integer execution unit, 33 are available to hold the
results of instructions in flight.

The 80 physical registers are allocated as follows:

e 39registers to hold the values of the 31 Alpha architectural registers — the value of
R31 is not stored — and the values of eight PALshadow registers.

* 41 registers to hold results that are written by instructions that have not retired and
released a physical register. Of those 41, the mapper holds eight in reserve to map
the instructions presented in the next two cy?:]é§1at leaves the 33 registers to
hold the results of instructions in flight.

If 33 instructions that require an integer physical register have been mapped and have
not retired and released a physical register, stage 2 of the pipeline (see Section 2.4)
stalls if an additional integer physical register is requested.

For a schedule of integer instructions that contains loads or stores, the peak sustainable
rate of physical register allocation is 3.3 registers per cycle. (This is obtained by divid-
ing 33 instructions by a 10-cycle map-to-release latency.) Experiments have confirmed
that 3.2 physical registers per cycle is a sustainable rate for integer schedules containing
loads or stores. This assumes the loads and stores are best-case Dcache hits. If there are
no loads or stores, it is possible to sustain 4 physical registers per cycle. Sometimes the
best schedule has loads and stores grouped together and has significant stretches of reg-
ister-to-register instructions.

3.9.1.2 Floating-Point Execution Unit

Of the 72 physical registers in the floating-point execution unit, 37 are available to hold
the results of instructions in flight.

The 72 physical registers are allocated as follows:

* 3lregisters to hold the values of the 31 Alpha architectural registers — the value of
F31 is not stored.

* 41 registers to hold results that are written by instructions that are not yet retired
and released a physical register. Of these 41, the mapper holds 4 in reserve to map
the instructions presented in the next two cy@leEhis leaves 37 registers to hold
the results of instructions in flight.

If 37 instructions that require a floating-point physical register have been mapped and
have not retired and released a physical register, stage 2 of the pipeline (see Section 2.4)
stalls if an additional floating-point physical register is requested.

For a schedule of floating-point instructions that contains floating-point loads, the peak
sustainable rate of physical register allocation is 2.85 registers per cycle. (This is
obtained by dividing 37 instructions by a 13-cycle map-to-release latency.) Experi-

1 Reserving 8 registers is an approximation of a more complicated algorithm.
2 Reserving 4 registers is an approximation of a more complicated algorithm.



ments have confirmed that 2.9 physical registers per &bscdaesustainable rate for
floating-point schedules containing loads. This assumes the loads and stores are best-
case Dcache hits.

Floating-point stores take 3 cycles longer to retire than a floating-point operate. Even
though a store does not free a register, it delays the retiring of subsequent instructions.
For schedules of floating-point instructions that contain floating-point stores, the peak
sustainable rate of physical register allocation is 2.31 registers per cycle. (Thisis
obtained by dividing 37 instructions by a 16-cycle map-to-release latency.) Experi-
ments have confirmed that 2.3 physical registers per cycle is a sustainable rate.

For schedules with no load or stores, only 2 floating-point operate instructions can be
executed per cycle, and physical register allocation should not be a limit for schedules
that respect the latencies of the instructions. This is true for square root and divide only
if the instructions retire early (see Section 2.6.1).

3.9.1.3 Register Files

The integer and floating-point register files are separate. Schedules that intermix inte-
ger and floating-point instructions must separately meet the limits for allocating integer
physical registers and floating-point physical registers. For example, a schedule that
requires two integer physical registers and two floating-point physical registers per
cycle is sustainable.

3.9.2 Ebox Slotting and Clustering

As described in Section 2.2, the integer execution unit has four functional units, imple-
mented as two nearly-identical functional unit clusters labeled 0 and 1. Each cluster has
an upper (U) and lower (L) functional unit called a subcluster. When they are decoded,
instructions are statically assigned @&otted to an upper or lower subcluster. When

they are issued, instructions are dynamically assignedi(stered to cluster O or clus-

ter 1. To obtain optimal performance, the scheduler must understand the algorithms
used for slotting and clustering.

The slotting of an instruction is determined by its opcode and its position in the aligned
octaword that contains the instruction. The details of the slotting algorithm are
described in Section 2.5.2 and in Appendix A.

Most integer instructions have a one-cycle latency for consumers that execute within
the same cluster. There is an additional one-cycle delay associated with producing a
value in one cluster and consuming the value in the other cluster. If it is not possible to
provide two cycles of latency for an integer instruction, controlling the cluster assign-
ment of the producer and consumer is necessary to avoid a stall.

The following rules are used to issue an instruction:
* Aninstruction is a candidate to be issued when its operands are data ready.

— Values produced by integer instructions will be data ready in one cluster before
another.

— Values loaded from cache or memory are available in both clusters at the same
time.

1 The factthat the experimental result is larger than our analytic result is due to approximations
of the map-to-release latencies and number of reserved registers.



* Older data-ready instructions have priority over younger instructions.

* Aninstruction assigned to the upper subcluster (U) will first check if it can issue on
cluster 1, then on cluster O.

* Aninstruction assigned to the lower subcluster (L) will first check if it can issue on
cluster 0, then on cluster 1.

Appendix B contains an example of scheduled code that considers these issue rules.






A

21264/21364 Upper-Lower Rules Summary

As required for instructions, the subclustergper, lower, andeitherare defined in
Table 2-3.

Cases are organized by what is the maximum number of requirements for either upper
or lower.

Cases Quad-pack 3&4

When your quad-pack of instructions has more than two instructions requiring upper, or
more than two instructions requiring lower, the radghan-two's will meet their require-
ment; others will go to the other level. The machine can't execute this in one cycle;
there are only two uppers and two lowers.

SLL U  Requires upper
ZAP = U  Requires upper
addg L  Either; forced to lower
BGT U  Requires upper

Case Quad-pack 2

When your quad-pack of instructions has two instructions requiring upper, and/or two
instructions requiring lower, these two's will meet their requirement; others will go to
the other level.

LDQ L  Requires lower

STT = L Requires lower

NOP U  Vacated slot for NOP; forced to upper
XOR U  Either; forced to upper

Cases Quad-pack 0&1

When your quad-pack has less than two instructions requiring upper, and less than two
instructions requiring lower, each of the first and last PAIR's of instructions will map
one to upper and one to lower. So the CASES here are handled by pairs. Many loops
can be pair-wise assigned.
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Case Either Pair 1 (Also Fits Quad-pack 2, Requires Split by Pairs)

When one or more of the instruction pair has a requirement, that requirement is met; the
other instruction go to the other level.
MB = L  Requires lower
CMOVEQ U  Either; pair forced to upper
Case Last Pair 0
When the third and fourth instructions of the quad-pack have NO requirements (could
be either L or U), the third is lower and the fourth is upper.
ADDT = L  Vacated slot for float; rule assigns to lower
ADDQ U  Either; rule assigns upper
Case First Pair 0
When the first and second instructions of the quad-pack have NO requirements (could

be either L or U), their UL pattern is the same as that of the third and fourth instructions
(whether or not the third and fourth instructions had any requirement)!

BIS U  Either; upper same as third
BIC = L  Either; lower same as fourth
S4ADDQ U  Either; pair forced to upper
BR L  Requires lower
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B

Checksum Inner Loop Schedule

The following algorithm illustrates 21264/21364 scheduling and SIMD parallelism. A
significantly more efficient algorithm is provided aftewards.

# Here we have the inner loop for a one's

#  compliment checksum of 16-bit data.

# $16 is the pointer.

# $17 is the counter.

# $18, and $19 are input quadwords.

#

# We split the input DCBA to OCOA and DOBO.

# The latter gets shifted down

# and they are added into dual acc's $24 and $25.

# The LDBU is the two-block-ahead-pfetch.

# We would want that to be larger for a big loop

# going to memory. This two-at-a-ime speeds the
code and we can only do this for 65536 times without
overflow problems.

#
#
#
# NOPs bring the code density to 2.8 physical registers
#  per cycle (quadpack). Only do this if you are sure.
# If you are going to stall ANYWAY, you dont
# want the NOPs, just code it packed.
In the first aligned octaword, the zaps are upper,
the load is lower, and the ALU is forced to lower
to meet 2 upper and 2 lower. The 1's and O's
on the sides show precedence.

In the second half of the second aligned octaword, the
shift is upper, forcing partner LDA (an ALU operation)
to lower. The indeterminate first 2, then
follow' the second 2.

H* H B

# The third and fourth quad packs have the same pattern
# as the first and second.

# For the fith quad pack, the branch is upper, forcing

# its 'nothing' partner to lower. The first two
# ‘follow the second two.
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# Note that register usage in sequential cycles
# has been held to the same side.

H*

Note, loads can be delayed to prefetch filing
traffic, so leave the MT's in lower wherever
possible to relieve rescheduling strain.

H* *#*

# For iteration counts of moderate size, the BGT will
# be trained, so we only take a mispredict on the
# final fall through. For (consistent) iteration counts

# of 10 or less, the branch can leamn to exit without
# a mispredict. (There still remains a line mispredict
# of one cyce)

# So this will predominantly execute in the proposed

# five cycles per loop iteration.

# The use, use, refil of r18 is totally legal.

# There is no impact on the physical registers of

#  which architectual names are used. so you can
create new R1's every cycle, or do the R18 trick
with no cost. The R18 trick allows 5 cycles of
latency to bring up data from the Dcache. This
is tight. For a heavy-duty loop, we would have
unrolled to do 16 data in 9 cycles (2.9 reg's).

We could then have provided more latency
coverage for the stores. Only one prefetch would
stil be needed in the larger loop. It is still
only 1/2 cache-block per loop. The 21264 releases
the ‘irrelevant’ extra prefetches cheaply. For
a heavy-duty memory loop, we would have the prefetch
at 512($16), eight cache blocks.

H OH OH OH OHOH K OH H OH H R

# Note, side can affect load/store operations.

# We do the Ida $16, 16($16).

# It is NOT possible to do two loads in the next

# cycle because $16 is only valid on one side and loads
# can only be done in lower.

# Note, the data ARRIVING from loads is posted in
#  both sides.

# Note, the extra blank line has no function to
# the assembler. But it is great for a person to
# see where the quad-packs are.

# Note that the example uses Tru64 Unix assembler syntax.

loop:
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ZAPNOT $18, 51, $0 # Ul low zebra
UNOP $31, $31, $31 # L (NOPs not clustered)
ZAP $18, 51, $1 # UO hi zebra
LDQ $18, ($16) # L1 get next data
# LDA result side 1

ADDQ $24, $0, $24 # Ul accum 0

UNOP $31, $31, $31 # L (NOPs not clustered)
SRL $1, 16, $1 # U0 hi=>lo

LDA $17, -8($17) # LO countdown

ZAPNOT $19, 51, $0 # Ul low zebra

UNOP $31, $31, $31 # L (NOPs not clustered)
ZAP $19, 51, $27 # UO hi zebra

LDQ $19, 8($16) # LO get next data
ADDQ $24, $0, $24 # Ul accum 0

ADDQ $25, $1, $25 # LO accum 1

SRL $27, 16, $27 # U0 hi=>lo

LDBU $31, 128($16) # L1 prefetch

LDA $16, 16($16) # Ul move pointer
ADDQ $25, $27, $25 # LO accum 1

BGT $17, loop # UO loop cntl

Wrapup code....

Better Design Algorithm

The following unscheduled algorithm provides superior performance to the previous
algorithm.

LDQ $18, ($16) # Fetch quadword,
#  provide latency, of course.
ADDQ $24, $18, $24 # Full quadword add
# each 16 carries to the bottom
# of some other 16.....
CMPULT $24, $18, $18 # Except the one, out of the top
# $24 is only less, unsigned, than
#  either argument, if there
#  was overflow!
ADDQ $24, $18, $24 # This wraps back the top.
# For scheduling, one might want
# to collect the overflow(s) into
#  separate register(s).
# Collect the 16's within the register
# at wrapup time.

# If we want to maximize the $18

# latency, then, instead --
ADDQ $24, $18, $25 # Pingpong between two accum'’s.

21264/21364 Compiler Writer's Guide Checksum Inner Loop Schedule B-3



CMPULT $25, $24, $24 # One if overflow, else zero.
ADDQ $25, $24, $25 # Gather overflow (has to fit).

The four instructions in the better algorithm replace the following six instructions in the
first algorithm:

ZAPNOT $19, 51, $0 # Ul low zebra

ZAP $18, 51, $1 # UO hi zebra

LDQ $18, ($16) # L1 get next data
# LDA result side 1

SRL $1, 16, $1 # U0 hi=>lo

ADDQ $24, $0, $24 # Ul accum O

ADDQ $25, $1, $25 # LO accum 1
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C

IEEE Floating-Point Conformance

The 21264/21364 supports the IEEE floating-point operations defined il Sys-
tem Reference ManudRevision8 and therefore also from thdpha Architecture Ref-
erence Manual, ¥ Edition. Support for a complete implementation of the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is pro-
vided by a combination of hardware and software.

The 21264/21364 provides the following hardware featurdadibitate complete sup-
port of the IEEE standard:

e The 21264/21364 implements precise exception handling in hardware, as denoted
by the AMASK instruction returning bit 9 set. TRAPB instructions are treated as
NOPs and are not issued.

* The 21264/21364 accepts both Signaling and Quiet NaNs as input operands and
propagates them as specified by the Alpha architecture. In addition, the 21264/
21364 delivers a canonical Quiet NaN when an operation is required to produce a
NaN value and none of its inputs are NaNs. Encodings for Signaling NaN and
Quiet NaN are defined by th&lpha Architecture Reference Manual? Edition.

* The 21264/21364 accepts infinity operands and implements infinity arithmetic as
defined by the IEEE standard and thklpha Architecture Reference Manual 4
Edition.

e The 21264/21364 implements SQRT for single (SQRTS) and double (SQRTT) pre-
cision in hardware.

Note: In addition, the 21264/21364 also implements the VAX SQRTF and
SQRTG instructions.

e The 21264/21364 implements the FPCR[DNZ] bit. When FPCR[DNZ] is set,
denormal input operand traps can be avoided for arithmetic operations that include
the /S qualifier. When FPCR[DNZ] is clear, denormal input operands for arithmetic
operations produce an unmaskable denormal trap. CPYSE/CPYSN, FCMOVXX,
and MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal values
without initiating arithmetic traps.

* The 21264/21364 implements the following disable bits in the floating-point con-
trol register (FPCR):

— Underflow disable (UNFD)
— Overflow disable (OVFD)
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— Inexact result disable (INED)
— Division by zero disable (DZED)
— Invalid operation disable (INVD)

If one of these bits is set, and an instruction with the /S qualifier set generates the
associated exception, the 21264/21364 produces the IEEE nontrapping result and
suppresses the trap. These nontrapping responses include correctly signed
infinity, largest finite number, and Quiet NaNs as specified by the IEEE

standard.

The 21264/21364 will not produce a Denormal result for the underflow exception.
Instead, a true zero (+0) is written to the destination register. In the 21264/21364,
the FPCR underflow to zero (UNDZ) bit must be set if underflow disable (UNFD)

bit is set. If desired, trapping on underflow can be enabled by the instruction and the
FPCR, and software may compute the Denormal value as defined in the IEEE Stan-
dard.

The 21264/21364 records floating-point exception information in two places:

* The FPCR status bits record the occurrence of all exceptions that are detected,
whether or not the corresponding trap is enabled. The status bits are cleared only
through an explicit clear command (MT_FPCR); hence, the exception information
they record is a summary of all exceptions that have occurred since the last time
they were cleared.

e |f an exception is detected and the corresponding trap is enabled by the instruction,
and is not disabled by the FPCR control bits, the 21264/21364&dbrd the
condition in the EXC_SUM register and initiate an arithmetic trap.

The following items apply to Table C-1:

* The 21264/21364 traps on a Denormal input operand for all arithmetic operations
unless FPCR[DNZ] = 1.

* Input operand traps take precedence over arithmetic result traps.
* The following abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

SNaN: Signalling NaN

CQNaN: Canonical Quiet NaN

For IEEE instructions with /S, Table C-1 lists all exceptional input and output con-
ditions recognized by the 21264/21364, along with the result and exception gener-
ated for each condition.

Table C-1 Exceptional Input and Output Conditions

21264/21364 Hardware
Alpha Instructions Supplied Result Exception

ADDx SUBXx INPUT

Inf operand *Inf (none)

QNaN operand QNaN (none)
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Table C-1 Exceptional Input and Output Conditions (Continued)

21264/21364 Hardware

Alpha Instructions Supplied Result Exception
SNaN operand QNaN Invalid Op
Effective subtract of two Inf operands CQNaN Invalid Op
ADDx SUBx OUTPUT

Exponent overflow +Inf or tMAX Overflow
Exponent underflow +0 Underflow
Inexact result Result Inexact
MULXx INPUT

Inf operand *Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0 * Inf CQNaN Invalid Op
MULXx OUTPUT (same as ADDXx)

DIVx INPUT

QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0/0 or Inf/Inf CQNaN Invalid Op
A/0 (A not 0) *Inf Div Zero
Allnf +0 (none)

Inf/A *Inf (none)

DIVx OUTPUT (same as ADDXx)

SQRTx INPUT

+Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
-A (A not0) CQNaN Invalid Op
-0 -0 (none)
SQRTx OUTPUT

Inexact result root Inexact
CMPTEQ CMPTUN INPUT

Inf operand True or False (none)
QNaN operand False for EQ, True for UN (none)
SNaN operand False for EQ, True for UN Invalid Op
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c-4

Table C-1 Exceptional Input and Output Conditions (Continued)

21264/21364 Hardware

Alpha Instructions Supplied Result Exception
CMPTLT CMPTLE INPUT

Inf operand True or False (none)
QNaN operand False Invalid Op
SNaN operand False Invalid Op
CVTfi INPUT

Inf operand 0 Invalid Op
QNaN operand 0 Invalid Op
SNaN operand 0 Invalid Op
CVTfi OUTPUT

Inexact result Result Inexact
Integer overflow Truncated result Invalid Op
CVTif OUTPUT

Inexact result Result Inexact
CVTIf INPUT

Inf operand *Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op

CVT{f OUTPUT (same as ADDXx)

FBEQ FBNE FBLT FBLE FBGT FBGE

LDS LDT
STSSTT
CPYS CPYSN
FCMOVX

See Section 2.9 for information about the floating-point control register (FPCR).

IEEE Floating-Point Conformance
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Glossary

This glossary provides definitions for specific terms and acronyms associated with the
Alpha 21264/21364 microprocessor and chips in general.

abort

The unit stops the operation it is performing, without saving statusetfopmn some
other operation.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of cached
address translations for process-specific addresses when a context switch occurs. ASNs
are processor specific; the hardware makes no attempt to maintain coherency across
multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED
A datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N
(that is, one that has N low-order zeros).
ALU
Arithmetic logic unit.
ANSI
American National Standards Institute. An organization that develops and publishes
standards for the computer industry.
ASIC
Application-specific integrated circuit.
ASM
Address space match.
ASN
Seeaddress space number.
assert
To cause a signal to change to its logical true state.
AST

Seeasynchronous system trap.
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asynchronous system trap (AST)

A software-simulated interrupt to a user-definedtimoe. ASTs enable a user process to

be notified asynchronously, with respect to that process, of the occurrence of a specific
event. If a user process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST rou-
tine exits, the system resumes execution of the process at the point where it was inter-

rupted.

bandwidth
Bandwidth is often used to express the rate of data transfer in a bus or an I/O channel.
barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) instruc-

tion.
Bcache
Seesecond-level cache.
bidirectional
Flowing in two directions. The buses are bidirectional; thagrgboth input and output
signals.
BiSI
Built-in self-initialization.
BiST
Built-in self-test.
bit
Binary digit. The smallest unit of data in a binary notation system, designated as 0 or 1.
bit time
The total time that a signal conveys a single valid piece of information (specified in ns).
All data and commands are associated with a clock and the receiver’s latch on both the
rise and fall of the clock. Bit times are a multiple of the 21264/21364 clocks. Systems
must produce a bit time identical to 21264/21364’s bit time. The bit time is one-half the
period of the forwarding clock.
BIU

Bus interface unitSeeCbox.
block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-back
with a cache miss fill.

board-level cache

Seesecond-level cache.
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boot

Short for bootstrap. Loading an operating system into memory is called booting.

BSR
Boundary-scan register.

buffer
An internal memory area used for temporary storage of data records during input or
output operations.

bugcheck
A software condition, usually the response to software’s detection of an “internal incon-
sistency,” which results in the execution of the system bugcheck code.

bus
A group of signals that consists of many transmission lines or wires. It interconnects
computer system components to provide communications paths for addresses, data, and
control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are numbered
right to left, O through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written con-
currently and independently by different processes or processors.

cache
Seecache memory.
cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in

another processor, it must not receive incorrect data and when cached data is modified,
all other processors that access that data receive modified data. Schemes for maintain-
ing consistency can be implemented in hardware or software. Also called cache consis-

tency.

cache fill
An operation that loads an entire cache block by using multiple read cycles from main
memory.

cache flush

An operation that marks all cache blocks as invalid.
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cache hit

The status returned when a logic unit probes a cache memory and finds a valid cache
entry at the probed address.

cache interference

The result of an operation that adversely affects the mechanisms and procedures used to
keep frequently used items in a cache. Such interference may cause frequently used
items to be removed from a cache or incur significant overhead operations to ensure
correct results. Either action hampers performance.

cache line

Seecache block.
cache line buffer

A buffer used to store a block of cache memory.
cache memory

A small, high-speed memory placed between slower main memory and the processor. A
cache increases effective memory transfer rates and processor speed. It contains copies
of data recently used by the processor and fetches several bytes of data from memory in
anticipation that the processor will access the next sequential series of bytes. The
21264/21364 microprocessor contains two onchip internal ca8leesalsavrite-

through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL instructions

Special instructions used to invoke PALcode.
Cbox

External cache and system interface unit. Controls the Bcache and the system ports.
central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instructions.

CISC
Complex instruction set computing. An instruction set that consists of a large number
of complex instructionsContrast withRISC.

clean
In the cache of a system bus node, refers to a cache line that is valid but has not been
written.

clock

A signal used to synchronize the circuits in a computer.
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clock offset (or clkoffset)

The delay intentionally added to the forwarded clock to meet the setup and hold
requirements at the Receive Flop.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process that
combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test a register for positive/negative ozmo/nonzero. They can also
test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I/O space. The CSR ini-
tiates device activity and records its status.

core
That part of the pipeline that lies between the L1 Icache and the L1 Dcache.
CPI
Cycles per instruction.
CPU
Seecentral processing unit.
CSR
Seecontrol and status register.
cycle
One clock interval.
data bus
A group of wires that carry data.
Dcache
Data cache. A cache reserved for storage of data. The Dcache does not contain instruc-
tions.
DDR
Dual-data rate. A dual-data rate SSRAM can provide data on both the rising and falling
edges of the clock signal.
denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.
DIP

Dual inline package.
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direct-mapping cache

A cache organization in which only one address comparison is needed to locate any
data in the cache, because any block of main memory data can be placed in only one
possible position in the cache.

direct memory access (DMA)

dirty

dirty victim

DMA

DRAM

DTB

DTL

dual issue

ECC

ECC error

ECL

EEPROM

Glossary -6

Access to memory by an I/O device that does not require processor intervention.

One status item for a cache block. The cache block is valid and has been written so that
it may differ from the copy in system main memory.

Used in reference to a cache block in the cachesyfssem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict. The data must
therefore be written to memory.

Seedirect memory access.

Dynamic random-access memory. Read/write memory that mustfteshed (read
from or written to) periodically to maintain the storage of information.

Data translation buffeAlso defined a®stream translation buffer.

Diode-transistor logic.

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

Error correction code. Code and algorithms used by logic to facilitate error detection
and corredbn. See alsd&CC error.

An error detected by ECC logic, to indicate that data (or the protected “entity”) has
been corrupted. The error may bextable (soft error) or uncorrectable (hard error).

Emitter-coupled logic.

Electrically erasable programmable read-only memory. A memory device that can be
byte-erased, written to, and read fro@ontrast withFEPROM.
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external cache

Seesecond-level cache.

FEPROM
Flash-erasable programmable read-only memory. FEPROMSs can be bank- or bulk-
erasedContrast withEEPROM.

FET
Field-effect trasistor.

FEU
The unit within the 21264/21364 microprocessor therfprms floaing-point calcula-
tions.

firmware

Machine instructions stored in nonvolatile memaory.
floating point

A number system in which the position of the radix point is indicated by the exponent
part and another part represents the significant digits or fractional part.

flush
Seecache flush.
forwarded clock

A single-ended dierential sgnal that is aligned with its associated fields. The for-
warded clock is sourced and aligned by the sender with a period that is two times the bit
time. Forwarded clocks must be 50% duty cycle clocks whose rising and falling edges
are aligned with the changing edge of the data.

FPGA

Field-programmable gate array.
FPLA

Field-programmable logiarray.
FQ

Floating-point issue queue.
framing clock

The framing clock defines the start of a transmission either from the system to the
21264/21364 or from the 21264/21364 to the system. The framing clock is a power-of-
2 multiple of the 21264/2136&CLK frequency, and is usually the system clock. The
framing clock and the input oscillator can have the same frequency. The
add_frame_select IPR sets that ratio of bit times to framing clock. The frame clock
could have a period that is four times the bit time with a add_frame_select of 2X.
Transfers begin on the rising and falling edge of the frame clock. This is useful for sys-
tems that have system clocks with a period too small to perform the synchronous reset
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of the clock forward logic. Additionally, the framing clock can have a period that is
less than, equal to, or greater than the time it takes to send a full four cycle command/
address.

GCLK
Global clock within the 21264/21364.
granularity

A characteristic of storage systems that defines the amount of data that can be read and/
or written with a single instruction, or read and/or written independently.

hardware interrupt request (HIR)
An interrupt generated by a peripheral device.
high-impedance state

An electrical state of high resistance to current flow, which makes the device appear not
physically connected to the circuit.

hit
Seecache hit.
Icache

Instruction cache. A cache reserved for storage of instructions. One of theatkeeeof
primary cache (located on the 21264/21364) used to store instructions. The Icache con-
tains 8KB of memory space. It is a direct-mapped cache. Icache blocks, or lines, con-
tain 32 bytes of instruction stream data with associated tag as well as a 6-bit ASM field
and an 8-bit branch history field per block. Icache does not contain hardware for main-
taining cache coherency with memory and is unaffected by the invalidate bus.

IDU

A logic unit within the 21264/21364 microprocessor that fetches, decodes, and issues
instructions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats cover
32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures.

ILP

Instruction-level parallelism.
Inf

Infinity.
Instruction queues

Both the integer issue queue (IQ) and the floating-point issue queue (FQ).
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INT nn

The term INThn, wherennis one of 2, 4, 8, 16, 32, or 64, refers to a data field sizerof
contiguous NATURALLY ALIGNED bytes. For example, INT#fers to a NATU-
RALLY ALIGNED longword.

interface reset

A synchronously received reset signal that is used to preset and start the clock forward-
ing circuitry. During this reset, all forwarded clocks are stopped and the presettable
count values are applied to the counters; than, some number of cycles later, the clocks
are enabled and are free running.

Internal processor register (IPR)

Special registers that are used to configure options or report status.

IOWB

I/O write buffer.
IPGA

Interstitial pin grid array.
IQ

Integer issue queue.
ITB

Instruction translation buffer.
JFET

Junction field-effect transistor.
latency

The amount of time it takes the system to respond to an event.
LCC

Leadless chip carrier.
LFSR

Linear feedback shift register.
load/store architecture

A characteristic of a machine architecture where data items are first loaded into a pro-
cessor register, operated on, and then stored back to memory. No operations on memory
other than load and store are provided by the instruction set.

longword (LW)

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 31.

LQ

Load queue.
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LSB
Least significant bit.
machine check

An operating system action triggered by certain system hardware-detrotes that
can be fatal to system operation. Once triggered, machine check handler software ana-
lyzes the error.

MAF
Miss address file.
main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used in
connection with the microprocessor’s intergaches and an external cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO
Seemust be one.

Mbox
This section of the processor unit performs address translationfacs to the
Dcache, and performs several other functions.

MBZ

Seemust be zero.
MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI protocol
consists of four states that define whether a block is modified (M), exclusive (E), shared
(S), or invalid (1).

MIPS

Millions of instructions per second.
miss

Seecache miss.
module

A board on which logic devices (such as transistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache
Seesecond-level cache.
MOS

Metal-oxide semiconductor.
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MOSFET

Metal-oxide semiconductor field-effect traistor.
MSI

Medium-scale integration.
multiprocessing

A processing method that replicates the sequential computer and interconnects the col-
lection so that each processor can execute the same fiergedt program at the same
time.

must be one (MBO)
A field that must be supplied as one.
must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be assumed to
be UNDEFINED.

NaN

Not-a-Number. An IEEE floating-point bit pattern that represents something other than
a number. This comes in two forms: signaling NaNs (for Alpha, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha, those with an initial fraction bit of 1).

NATURALLY ALIGNED
SeeALIGNED.
NATURALLY ALIGNED data

Data stored in memory such that the address of the data is evenly divisible by the size of
the data in bytes. For example, an ALIGNED longword is stored such that the address
of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.
NVRAM

Nonvolatile random-access memory.
OBL

Observability linear feedback shift register.
octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 127.

OpenVMS Alpha operating system
The version of the open VMS operating system for Alpha platforms.
operand

The data or register upon which an operationaésformed.
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output mux counter

PAL

PALcode

PALmMode

parameter

parity

PGA

pipeline

PLA

PLCC

PLD

PLL

PMOS

PQ

Glossary -12

Counter used to select the output mux that drives address and data. It is reset with the
Interface Reset and incremented by a copy of the locally generated forwarded clock.

Privileged architecture librangee alsd?ALcode.AlsoProgrammable array logic
(hardware). A device that can be programmed by a process that blows individual fuses
to create a circuit.

Alpha privileged architecture library code, written to support Alpha microprocessors.
PALcode implements architecturally defined behavior.

A special environment for running PALcode routines.

A variable that is given a specific value that is passed to a program before execution.

A method for checking the accuracy of data by calculating the sum of the number of
ones in a piece of binary data. Even parity requires the correct sum to be an even num-
ber; odd parity requires the correct sum to be an odd number.

Pin grid array.

A CPU design technique whereby multiple instructions are simultaneously overlapped
in execution.

Programmable logic array.

Plastic leadless chip carrier or plastic-leaded chip carrier.

Programmable logic device.

Phase-locked loop.

P-type metal-oxide semiconductor.

Probe queue.
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PQFP
Plastic quad flat pack.
primary cache

The cache that is the fastest and closest to the processor. The first-level caches, located
on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as a register. This
register may be visible to the programmer through the instruction set.

PROM

Programmable read-only memory.
pull-down resistor

A resistor placed between a signal line and a negative voltage.
pull-up resistor

A resistor placed between a signal line to a positive voltage.

guad issue
Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

guadword
Eight contiguous bytes starting on an arbitrary byte boundary. The bits areemedhb
from right to left, O through 63.

RAM
Random-access memory.

RAS
Row address select.

RAW
Read-after-write.

READ_BLOCK
A transaction where the 21264/21364 requests that an external logic unit fetch read
data.

read data wrapping

System feature that reduces apparent memory latency by allow@thdata cycles to
differ theusual low-to-high sequence. Requires cooperation between the 21264/21364
and external hardware.
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read stream buffers

Arrangement whereby each memory module independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

receive counter

Counter used to enable the receive flops. Itis clocked by the incoming forwarded clock
and reset by the Interface Reset.

receive mux counter

The receive mux counter is preset to a selectable starting point and incremented by the
locally generated forward clock.

register
A temporary storage or control location in hardware logic.

reliability
The probability a device or system will not fail to perform its intended functions during
a specified time interval when operated under stated conditions.

reset
An action that causes a logic unit to interrupt the task it is performing and go to its ini-
tialized state.

RISC
Reduced instruction set computing. A computer with an instruction set that is paired
down and reduced in complexity so that most can &dgrmed in a mgle processor
cycle. High-level compilers synthesize the more complex, least frequently used instruc-
tions by breaking them down into simpler instructions. This approach allows the RISC
architecture to implement a small, hardware-assisted instruction set, thus eliminating
the need for microcode.

ROM
Read-only memory.

RTL
Register-transfer logic.

SAM
Serial access memory.

SBO
Should be one.

SBZ
Should be zero.

scheduling

The process of ordering instruction execution to obtain optimenfopmance.
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SDRAM
Synchronous dynamic random-access memaory.
second-level cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level, external, or module-lexehe.

set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, its location in the cache. Set-associative
organization is a compromise between direct-mapped organization, in which data from
a given address in main memory has only one possible cache location, and fully asso-
ciative organization, in which data from anywhere in main memory can be put any-
where in the cache. An*fway set-associative” cache allows data from a given address

in main memory to be cached in anymfocations.

SIMD

Single instruction stream, multiple data stream.
SIMM

Single inline memory module.
SIP

Single inline package.
SIPP

Single inline pin package.
SMD

Surface mount device.
SNaN

Signaling NaN.SeeNan.
SRAM

SeeSSRAM.
SROM

Serial read-only memory.
SSI

Small-scale integration.
SSRAM

Synchronous static random-access memory.
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stack

An area of memory set aside for temporary dgttarage or for procedure and interrupt
service linkages. A stack uses the last-in/first-out concept. As items are added to
(pushed on) the stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.

STRAM
Self-timed random-access memory.
superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more com-
plex scheduling and contrdbee alsgipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in parallel during a given clock cycle.

system clock

The primary skew controlled clock used throughout the interface components to clock
transfer between ASICs, main memory, and I/O bridges.

tag

The part of a cache block that holds the address information used to determine if a
memory operation is a hit or a miss on that cache block.

target clock
Skew controlled clock that receives the output of the RECEIVE MUX .

TB
Translation buffer.
tristate
Refers to a bused line that has three stdtagh, low, and high-impedance.
TTL
Transistor-transistor logic.
UART

Universal asynchronous receiver-transmitter.
UNALIGNED

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.
unconditional branch instructions

Instructions that change the flow of program control without regard to any condition.
Contrast withconditional branch instructions.
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UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privileged
software (that is, software running in kernel mode) can trigger an UNDEFINED opera-
tion. (This meaning only applies when the word is written in all upper case.)

UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the pro-
cessor continues to execute instructions in its normal manner. Privileged or unprivi-
leged software can trigger UNPREDICTABLE results or occurrences. (This meaning
only applies when the word is written in all upper case.)

UVPROM
Ultraviolet (erasable) programmable read-only memory.
VAF
Seevictim address file.
valid
Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.
VDF
Seevictim data file.
VHSIC
Very-high-speed integrated circuit.
victim

Used in reference to a cache block in the cachesyfsdem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict.

victim address file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

victim data file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

virtual cache

A cache that is addressed with virtual addresses. The tag of the cache is a virtual
address. This process allowselit addresing of the cache without having to go
through the translation buffer making cache hit times faster.

VLSI

Very-large-scale integration.
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VPC

VRAM

WAR

word

Virtual program counter.

Video random-access memory.

Write-after-read.

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are num-
bered from right to left, O through 15.

write data wrapping

write-back

System feature that reduces apparent memory latency by allowing write data cycles to
differ theusual low-to-high sequence. Requires cooperation between the 21264/21364
and external hardware.

A cache management technique in which write operation data is written into cache but
is not written into main memory in the same operation. This may result in temporary
differences between cache data and main memory data. Smiceuhit must maintain
coherency between cache and main memory.

write-back cache

Copies are kept of any data in the region; read and write operations may use the copies,
and write operations use additional state to determine whether there are other copies to
invalidate or update.

write-through cache

A cache management technique in which a write operation to cache also causes the
same data to be written in main memory during the same operation. Copies are kept of
any data in aregion; read operations may use the copies, but write operations update the
actual data location and either update or invalidate all copies.

WRITE_BLOCK

Glossary -18

A transaction where the 21264/21364 requests that an external logic unit process write
data.
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Numerics

21264

features of 1-3
21364

features of 1-4

A

Abbreviations viii
binary multiples viii
register accessviii

Address conventionsix

Aligned, terminology ix

Alignment, instruction 3-1

B

Binary multiple abbreviations viii
Bit notation conventions x

Branch misprediction, pipeline abort delay from
2-6

Branch predictor 3—-3

Branches, CMOV instructions instea®-3

C

Cache line, mapping to same-9
Caution convention x
Computed jumps, aligning targets, 08—2
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Conventions viii
abbreviations viii
address ix
bit notation x
caution X
do not care x
externa) X
field notation x
notg X
numbering x
ranges and extentsx
signal names xi
X, X

D

Data alignment 3-2

Data types
floating-point supporgt 1-2
integer supported 1-2
supported 1-1

Data units, terminology x
Dcache
pipelined 2-6
Do not care conventignx
DTB, pipeline abort delay with 2—6

E

Ebox

described 2-2
executed in pipeling 2—6
slotting, 2-8
subclusters 2—8
Exception condition summayyC-2

External convention x

F

F31
retire instructions with 2—-12
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Fbox
described 2-3
executed in pipeline 2—6
Field notation conventign x

Floating-point arithmetic trap, pipeline abort delay

with, 2-7
Floating-point control register2—14
Floating-point execution unit. See Fbox
FPCR. See Floating-point control register

Ibox
register rename map2—1
IEEE floating-point conformangeC-1

Instruction alignment 3-1

Instruction fetch, pipelined 2—4
Instruction issue rules2—-7

Instruction latencies, pipelingd2—-10
Instruction queues, filling 3-3

Instruction retire latencies, minimym2-11

Instruction retire rules
F31, 2-12
floating-point divide 2-12
floating-point square ropt2—-12
pipelined 2-11
R31, 2-12
Instruction slot, pipelined 2-5
Integer arithmetic trap, pipeline abort delay with
2-7
Integer execution unit. See Ebox

Integer issue queue
pipelined 2-6
ITB miss, pipeline abort delay with2—7

J

JSR misprediction 3-5
pipeline abort delay with 2—6

L

Line predictoy 3-2
Load instructions

Mbox order traps 2—-13
Load-load order trap 2—13

Load-miss load order replay traf8—9
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M

Mbox

order traps 2-13

pipeline abort delay with order trap2—6
pipeline abort delays 2—6

replay traps 2—-13

Modify intent, prefetch with 3-6

N

NOP instruction 3-2
Normal prefetch 3—6
Note convention x
Numbering convention x

P

Pipeline
abort delay 2—-6
Dcache access2—6
Ebox execution 2—6
Ebox slotting 2—-8
Fbox execution 2—-6
instruction fetch 2—4
instruction group definitions 2—7
instruction issue rules2—7
instruction latencies 2—10
instruction retire rules 2—-11
instruction slot 2-5
issue queuge 2—-6
organization 2—-4
register maps 2—6
register reads 2—6
Prediction
branch 3-3
jumps 3-2
line, 3-2
Prefetch 3-6

R

R31
retire instructions with 2-12
Ranges and extents conventjor

Register access abbreviatigngiii
Register maps, pipelined2—6
Register rename map-1
Replay traps 2-13

avoiding 3-7
RO,n convention ix
RW,n convention ix

21264/21364 Compiler Writer's Guide



S

Scheduling instructions 3—9

Security holes
with UNPREDICTABLE results xii

Signal name conventignxi
SIMD parallelism 3-5
Single successoys3—2

Store instructions
Mbox order traps 2—-13
Store queue overfloy 3-9

Store-load order trgp2-13 3-8
Subclusters A-1

T

Terminology viii
aligned ix
data units x
unaligneq ix
UNDEFINED, xi
UNPREDICTABLE, xi

Traps
load-load order 2—-13
Mbox order 2-13
replay, 2-13
store-load order 2-13

U

Unaligned, terminology ix
UNDEFINED, terminology Xxi
UNPREDICTABLE, terminology xi

Vv

Virtual address suppartl-2

w

WAR, eliminating 2-1
WAW, eliminating, 2-1
WH64 instruction 3-7
WO,n convention ix
Write-after-read. See WAR
Write-after-write. See WAW
Wrong-size replay trap 3—8

X

X convention X
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