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Chapters 1 through 8 and appendixes A through E of this book are directly derived from the Alpha Sys-
tem Reference Manual, Version 7 and passed engineering change orders (ECOs) that have been
applied. It is an accurate representation of the described parts of the Alpha architecture.

References in this handbook to the Alpha Architecture Reference Manual are to the Third Edition of
that manual, EY-W938E-DP.
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 Chapter 1

Introduction

Alpha is a 64-bit load/store RISC architecture that is designed with particular emphasis on the
three elements that most affect performance: clock speed, multiple instruction issue, and multi-
ple processors. 

The Alpha architects examined and analyzed current and theoretical RISC architecture design
elements and developed high-performance alternatives for the Alpha architecture. The archi-
tects adopted only those design elements that appeared valuable for a projected 25-year design
horizon. Thus, Alpha becomes the first 21st century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating system or pro-
gramming language. Alpha supports the OpenVMS Alpha, DIGITAL UNIX, and Windows NT
Alpha operating systems and supports simple software migration for applications that run on
those operating systems. 

This manual describes in detail how Alpha is designed to be the leadership 64-bit architecture
of the computer industry. 

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and all opera-
tions are performed between 64-bit registers. It is not a 32-bit architecture that was later
expanded to 64 bits. 

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory operations are
either loads or stores. All data manipulation is done between registers. 

The Alpha architecture facilitates pipelining multiple instances of the same operations because
there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register or memory
and another instruction reading from the same place. That makes it particularly easy to build
implementations that issue multiple instructions every CPU cycle.
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Alpha makes it easy to maintain binary compatibility across multiple implementations and easy
to maintain full speed on multiple-issue implementations. For example, there are no implemen-
tation-specific pipeline timing hazards, no load-delay slots, and no branch-delay slots.

The Alpha Approach to Byte Manipulation
The Alpha architecture reads and writes bytes between registers and memory with the LDBU
and STB instructions. (Alpha also supports word read/writes with the LDWU and STW
instructions.)

Byte shifting and masking is performed with normal 64-bit register-to-register instructions,
crafted to keep instruction sequences short.

The Alpha Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and writes
issued by one processor may be arbitrarily reordered by an implementation. This allows imple-
mentations to use multibank caches, bypassed write buffers, write merging, pipelined writes
with retry on error, and so forth. If strict ordering between two accesses must be maintained,
explicit memory barrier instructions can be inserted in the program. 

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or an interfering
write from another processor, then the conditional store succeeds. Otherwise, the store fails and
the program eventually must branch back and retry the sequence. This style of interlocking
scales well with very fast caches and makes Alpha an especially attractive architecture for
building multiple-processor systems. 

Alpha Instructions Include Hints for Achieving Higher Speed
A number of Alpha instructions include hints for implementations, all aimed at achieving
higher speed. 

• Calculated jump instructions have a target hint that can allow much faster subroutine
calls and returns. 

• There are prefetching hints for the memory system that can allow much higher cache hit
rates. 

• There are granularity hints for the virtual-address mapping that can allow much more
effective use of translation lookaside buffers for large contiguous structures.

PALcode – Alpha’s Very Flexible Privileged Software Library
A Privileged Architecture Library (PALcode) is a set of subroutines that are specific to a par-
ticular Alpha operating system implementation. These subroutines provide operating-system
primitives for context switching, interrupts, exceptions, and memory management. PALcode is
similar to the BIOS libraries that are provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software CALL_PAL
instructions. 
  1–2   Alpha Architecture Handbook
                            



PALcode is written in standard machine code with some implementation-specific extensions to
provide access to low-level hardware.

PALcode lets Alpha implementations run the full OpenVMS Alpha, DIGITAL UNIX, and
Windows NT Alpha operating systems. PALcode can provide this functionality with little
overhead. For example, the OpenVMS Alpha PALcode instructions let Alpha run OpenVMS
with little more hardware than that found on a conventional RISC machine: the PAL mode bit
itself, plus four extra protection bits in each translation buffer entry. 

Other versions of PALcode can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating systems. 

Alpha and Programming Languages
Alpha is an attractive architecture for compiling a large variety of programming languages.
Alpha has been carefully designed to avoid bias toward one or two programming languages.
For example:

• Alpha does not contain a subroutine call instruction that moves a register window by a
fixed amount. Thus, Alpha is a good match for programming languages with many
parameters and programming languages with no parameters. 

• Alpha does not contain a global integer overflow enable bit. Such a bit would need to
be changed at every subroutine boundary when a FORTRAN program calls a C pro-
gram. 

1.2 Data Format Overview

Alpha is a load/store RISC architecture with the following data characteristics:

• All operations are done between 64-bit registers. 

• Memory is accessed via 64-bit virtual byte addresses, using the little-endian or, option-
ally, the big-endian byte numbering convention.

• There are 32 integer registers and 32 floating-point registers. 

• Longword (32-bit) and quadword (64-bit) integers are supported. 

• Five floating-point data types are supported: 

– VAX F_floating (32-bit)

– VAX G_floating (64-bit)

– IEEE single (32-bit)

– IEEE double (64-bit)

– IEEE extended (128-bit)
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1.3 Instruction Format Overview

As shown in Figure 1–1, Alpha instructions are all 32 bits in length. There are four m
instruction format classes that contain 0, 1, 2, or 3 register fields. All formats have a
opcode. 

Figure 1–1: Instruction Format Overview

• PALcode instructions specify, in the function code field, one of a few dozen complex
operations to be performed.

• Conditional branch instructions test register Ra and specify a signed 21-bit PC-rela-
tive longword target displacement. Subroutine calls put the return address in register
Ra. 

• Load and store instructions move bytes, words, longwords, or quadwords between
register Ra and memory, using Rb plus a signed 16-bit displacement as the memory
address.

• Operate instructions for floating-point and integer operations are both represented in
Figure 1–1 by the operate format illustration and are as follows:

– Word and byte sign-extension operators.

– Floating-point operations use Ra and Rb as source registers and write the re
register Rc. There is an 11-bit extended opcode in the function field. 

– Integer operations use Ra and Rb or an 8-bit literal as the source operand, an
the result in register Rc. 

– Integer operate instructions can use the Rb field and part of the function fie
specify an 8-bit literal. There is a 7-bit extended opcode in the function field.

1.4 Instruction Overview

PALcode Instructions

As described in Section 1.1, a Privileged Architecture Library (PALcode) is a set of sub
tines that is specific to a particular Alpha operating-system implementation. These subro
can be invoked by hardware or by software CALL_PAL instructions, which use the fun
field to vector to the specified subroutine.
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Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero/nonzero,
and they can test integer registers for even/odd. Unconditional branch instructions can write a
return address into a register. 

There is also a calculated jump instruction that branches to an arbitrary 64-bit address in a
register.

Load/Store Instructions
Load and store instructions move 8-bit, 16-bit, 32-bit, or 64-bit aligned quantities from and to
memory. Memory addresses are flat 64-bit virtual addresses with no segmentation. 

The VAX floating-point load/store instructions swap words to give a consistent register format
for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies of the
high bit of the datum. A 32-bit floating-point datum is placed in a register in a canonical form
that extends the exponent by 3 bits and extends the fraction with 29 low-order zeros. The 32-
bit operates preserve these canonical forms. 

Compilers, as directed by user declarations, can generate any mixture of 32-bit and 64-bit oper-
ations. The Alpha architecture has no 32/64 mode bit. 

Integer Operate Instructions
The integer operate instructions manipulate full 64-bit values and include the usual assortment
of arithmetic, compare, logical, and shift instructions. 

There are just three 32-bit integer operates: add, subtract, and multiply. They differ from their
64-bit counterparts only in overflow detection and in producing 32-bit canonical results. 

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

• Scaled add/subtract instructions for quick subscript calculation

• 128-bit multiply for division by a constant, and multiprecision arithmetic

• Conditional move instructions for avoiding branch instructions

• An extensive set of in-register byte and word manipulation instructions

• A set of multimedia instructions that support graphics and video

Integer overflow trap enable is encoded in the function field of each instruction, rather than
kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ opcodes exist for spec-
ifying 64-bit ADD with and without overflow checking. That makes it easier to pipeline
implementations. 
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Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and IEEE arith-
metic instructions, plus instructions for performing conversions between floating-point and
integer quantities. 

In addition to the operations found in conventional RISC architectures, Alpha includes condi-
tional move instructions for avoiding branches and merge sign/exponent instructions for simple
field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field of each
instruction, rather than kept in global  state bi ts . That makes i t easier to  pipel ine
implementations.

1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (R0 through R31), each 64 bits wide. R31 reads as zero,
and writes to R31 are ignored.

• All integer data manipulation is between integer registers, with up to two variable regis-
ter source operands (one may be an 8-bit literal) and one register destination operand.

• There are 32 floating-point registers (F0 through F31), each 64 bits wide. F31 reads as
zero, and writes to F31 are ignored.

• All floating-point data manipulation is between floating-point registers, with up to two
register source operands and one register destination operand. 

• Instructions can move data in an integer register file to a floating-point register file, and
data in a floating-point register file to an integer register file. The instructions do not
interpret bits in the register files and do not access memory.

• All memory reference instructions are of the load/store type that moves data between
registers and memory.

• There are no branch condition codes. Branch instructions test an integer or floating-
point register value, which may be the result of a previous compare.

• Integer and logical instructions operate on quadwords.

• Floating-point instructions operate on G_floating, F_floating, and IEEE extended, dou-
ble, and single operands. D_floating "format compatibility," in which binary files of
D_floating numbers may be processed, but without the last 3 bits of fraction precision,
is also provided. 

• A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book. 
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1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base in subscript form, for example, 1016.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that allows pro-
tection mechanisms to be bypassed.

Security holes exist when unprivileged software (software running outside of kernel mode)
can:

• Affect the operation of another process without authorization from the operating sys-
tem;

• Amplify its privilege without authorization from the operating system; or

• Communicate with another process, either overtly or covertly, without authorization
from the operating system.

The Alpha architecture has been designed to contain no architectural security holes. Hardware
(processors, buses, controllers, and so on) and software should likewise be designed to avoid
security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book. Their mean-
ings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger UNDE-
FINED operations. Unprivileged software cannot trigger UNDEFINED operations. However,
either privileged or unprivileged software can trigger UNPREDICTABLE results or
occurrences. 

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the processor;
it continues to execute instructions in its normal manner. In contrast, UNDEFINED operation
can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any state
information that is accessible to the process in its current access mode. UNPREDICT-
ABLE results may be unchanged from their previous values.
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Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an arbi-
trary choice function. The choice function is subject to the same constraints as are
UNPREDICTABLE results and, in particular, must not constitute a security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which the cu
process in the current access mode does not have access, or

– Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result depen
on the value of a register in another process, on the contents of processor tem
registers left behind by some previously running process, or on a sequence of a
of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation. 

• UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions. 

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are inclu-
sive. For example, bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used interchange-
ably to refer to data objects that are powers of two in size. An aligned datum of size 2**N is
stored in memory at a byte address that is a multiple of 2**N, that is, one that has N low-order
zeros. Thus, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it is called
UNALIGNED. 
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1.6.6 Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-zero
value. These fields may be used at some future time. If the processor encounters a non-zero
value in a field specified as MBZ, an Illegal Operand exception occurs. 

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero value. Non-
zero values in SBZ fields produce UNPREDICTABLE results and may produce extraneous
instruction-issue delays.

1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation-specific
purposes. Each implementation must document fully the behavior of all fields marked as IMP
by the Alpha specification.

1.6.11 Illustration Conventions

Illustrations that depict registers or memory follow the convention that increasing addresses
run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or are stylized code
forms found in Section A.4.6.
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 Chapter 2

Basic Architecture

2.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. Virtual addresses are 64
bits long. An implementation may support a smaller virtual address space. The minimum vir-
tual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory addresses by the
memory management mechanism. 

Although the data types in Section 2.2 are described in terms of little-endian byte addressing,
implementations may also include big-endian addressing support, as described in Section 2.3.
All current implementations have some big-endian support.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are numbered
from right to left, 0 through 7, as shown in Figure 2–1.

Figure 2–1: Byte Format

A byte is specified by its address A. A byte is an 8-bit value. The byte is only supported in
Alpha by the load, store, sign-extend, extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, 0 through 15, as shown in Figure 2–2.

7 0

:A
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Figure 2–2: Word Format

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the load, store, sign-extend,
extract, mask, and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 31, as shown in Figure 2–3.

Figure 2–3: Longword Format

A longword is specified by its address A, the address of the byte containing bit 0. A longword
is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bit
increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is only 
ported in Alpha by sign-extended load and store instructions and by longword arithm
instructions.

Note:
Alpha implementations will impose a significant performance penalty when acces
longword operands that are not naturally aligned. (A naturally aligned longword has
as the low-order two bits of its address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits are
bered from right to left, 0 through 63, as shown in Figure 2–4.

Figure 2–4: Quadword Format
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A quadword is specified by its address A, the address of the byte containing bit 0. A quadword
is a 64-bit value. When interpreted arithmetically, a quadword is either a two’s-comple
integer with bits of increasing significance from 0 through 62 and bit 63 as the sign bit, 
unsigned integer with bits of increasing significance from 0 through 63. 

Note:

Alpha implementations will impose a significant performance penalty when acces
quadword operands that are not naturally aligned. (A naturally aligned quadword ha
as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

VAX floating-point numbers are stored in one set of formats in memory and in a second 
formats in registers. The floating-point load and store instructions convert between thes
mats purely by rearranging bits; no rounding or range-checking is done by the load and
instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary byte boun
The bits are labeled from right to left, 0 through 31, as shown in Figure 2–5 .

Figure 2–5: F_floating Datum

An F_floating operand occupies 64 bits in a floating register, left-justified in the 64-bit regis-
ter, as shown in Figure 2–6.

Figure 2–6: F_floating Register Format

The F_floating load instruction reorders bits on the way in from memory, expands the expo-
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the register
an equivalent G_floating number suitable for either F_floating or G_floating operations. The
mapping from 8-bit memory-format exponents to 11-bit register-format exponents is shown in
Table 2–1. This mapping preserves both normal values and exceptional values.

S Frac. HiFraction Lo :AExp.
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The F_floating store instruction reorders register bits on the way to memory and does no
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored by the
store instruction.

An F_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of an F_floating datum is sign magnitude with bit 15 the sign bit, bits <14:7> an
excess-128 binary exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction with the
redundant most significant fraction bit not represented. Within the fraction, bits of increasing
significance are from 16 through 31 and 0 through 6. The 8-bit exponent field encodes the val-
ues 0 through 255.  An exponent value of 0, together with a sign bit of 0, is taken to indicate
that the F_floating datum has a value of 0. 

If the result of a VAX floating-point format instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. Expo-
nent values of 1..255 indicate true binary exponents of –127..127. An exponent value
together with a sign bit of 1, is taken as a reserved operand. Floating-point instruction
cessing a reserved operand take an arithmetic exception. The value of an F_floating datu
the approximate range 0.29*10**–38 through 1.7*10**38. The precision of an F_floa
datum is approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when acces
F_floating operands that are not naturally aligned. (A naturally aligned F_floating da
has zero as the low-order two bits of its address.)

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte boun
The bits are labeled from right to left, 0 through 63, as shown in Figure 2–7.

Figure 2–7: G_floating Datum

Table 2–1: F_floating Load Exponent Mapping (MAP_F)

Memory <14:7> Register <62:52>

1 1111111 1 000 1111111

1 xxxxxxx 1 000 xxxxxxx      (xxxxxxx not all 1’s)

0 xxxxxxx 0 111 xxxxxxx      (xxxxxxx not all 0’s)

0 0000000 0 000 0000000

S Exp. Frac.HiFraction Midh :A

:A+4Fraction MidlFraction Lo

4 3 01516 1431
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A G_floating operand occupies 64 bits in a floating register, arranged as shown in Figure 2–8.

Figure 2–8: G_floating Register Format

A G_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits <14:4> an excess-
1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with the redun-
dant most significant fraction bit not represented. Within the fraction, bits of increasing
significance are from 48 through 63, 32 through 47, 16 through 31, and 0 through 3. The 11-bit
exponent field encodes the values 0 through 2047. An exponent value of 0, together with a sign
bit of 0, is taken to indicate that the G_floating datum has a value of 0. 

If the result of a floating-point instruction has a value of zero, the instruction always produces
a datum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. Exponent values of
1..2047 indicate true binary exponents of –1023..1023. An exponent value of 0, together 
sign bit of 1, is taken as a reserved operand. Floating-point instructions processing a re
operand take a user-visible arithmetic exception. The value of a G_floating datum is 
approximate range 0.56*1 0**–308 through 0.9*10**308. The precision of a G_floating da
is approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when acces
G_floating operands that are not naturally aligned. (A naturally aligned G_floating datum
has zero as the low-order three bits of its address.)

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte boun
The bits are labeled from right to left, 0 through 63, as shown in Figure 2–9.

Figure 2–9: D_floating Datum

A D_floating operand occupies 64 bits in a floating register, arranged as shown in Figure 2–10

Figure 2–10: D_floating Register Format

063 62

S

32 31

Exp. Fraction Hi Fraction Lo :Fx

52 51

S Exp. Frac.HiFraction Midh :A

:A+4Fraction MidlFraction Lo

6 071516 1431

063 62

S

48 47 32 31 16 15

Exp. Fraction Midh Fraction Midl Fraction Lo :Fx

55 54

Frac. Hi
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The reordering of bits required for a D_floating load or store is identical to that required for a
G_floating load or store. The G_floating load and store instructions are therefore used for load-
ing or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of a D_floating datum is identical to an F_floating datum except for 32 addi-
tional low significance fraction bits. Within the fraction, bits of increasing significance are
from 48 through 63, 32 through 47, 16 through 31, and 0 through 6. The exponent conventions
and approximate range of values is the same for D_floating as F_floating. The precision of a
D_floating datum is approximately one part in 2**55, typically 16 decimal digits. 

Notes:

D_floating is not a fully supported data type; no D_floating arithmetic operations are
provided in the architecture. For backward compatibility, exact D_floating arithmetic may
be provided via software emulation. D_floating "format compatibility"in which binary files
of D_floating numbers may be processed, but without the last three bits of fraction
precision, can be obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

Alpha implementations will impose a significant performance penalty on access to
D_floating operands that are not naturally aligned. (A naturally aligned D_floating datum
has zero as the low-order three bits of its address.)

2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, defines four
floating-point formats in two groups, basic and extended, each having two widths, single and
double. The Alpha architecture supports the basic single and double formats, with the basic
double format serving as the extended single format. The values representable within a format
are specified by using three integer parameters:

• P – the number of fraction bits

• Emax – the maximum exponent

• Emin – the minimum exponent

Within each format, only the following entities are permitted:

• Numbers of the form (–1)**S x 2**E x b(0).b(1)b(2)..b(P–1) where:

– S = 0 or 1

– E = any integer between Emin and Emax, inclusive

– b(n) = 0 or 1

• Two infinities – positive and negative

• At least one Signaling NaN

• At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit pattern that repre-
sents something other than a number. NaNs come in two forms: Signaling NaNs and Quiet
  2–6   Alpha Architecture Handbook
                            



NaNs. Signaling NaNs are used to provide values for uninitialized variables and for arithmetic
enhancements. Quiet NaNs provide retrospective diagnostic information regarding previous
invalid or unavailable data and results. Signaling NaNs signal an invalid operation when they
are an operand to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large magnitude.
Negative infinity is less than every finite number; positive infinity is greater than every finite
number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in memory start-
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 31, as
shown in Figure 2–11.

Figure 2–11: S_floating Datum

An S_floating operand occupies 64 bits in a floating register, left-justified in the 64-bit regis-
ter, as shown in Figure 2–12.

Figure 2–12: S_floating Register Format

The S_floating load instruction reorders bits on the way in from memory, expanding the expo-
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the register
an equivalent T_floating number, suitable for either S_floating or T_floating operations. The
mapping from 8-bit memory-format exponents to 11-bit register-format exponents is shown in
Table 2–2.

Table 2–2: S_floating Load Exponent Mapping (MAP_S) 

Memory <30:23> Register <62:52>

1 1111111 1 111 1111111

1 xxxxxxx 1 000 xxxxxxx    (xxxxxxx not all 1’s)

0 xxxxxxx 0 111 xxxxxxx    (xxxxxxx not all 0’s)

0 0000000 0 000 0000000

S Exp. Fraction :A

03031 2223

063 62

S

52 51 29 28

Exp. Fraction 0 :Fx
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This mapping preserves both normal values and exceptional values. Note that the mapping for
all 1’s differs from that of F_floating load, since for S_floating all 1’s is an exceptional va
and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and do
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored b
store instruction. The S_floating load instruction does no checking of the input.

The S_floating store instruction does no checking of the data; the preceding operation should
have specified an S_floating result. 

An S_floating datum is specified by its address A, the address of the byte containing bit 0
memory form of an S_floating datum is sign magnitude with bit 31 the sign bit, bits <30
an excess-127 binary exponent, and bits <22:0> a 23-bit fraction. 

The value (V) of an S_floating number is inferred from its constituent sign (S), exponent (E
and fraction (F) fields as follows:

• If E=255 and F<>0, then V is NaN, regardless of S.

• If E=255 and F=0, then V = (–1)**S x Infinity.

• If 0 < E < 255, then V = (–1)**S x 2**(E–127) x (1.F).

• If E=0 and F<>0, then V = (–1)**S x 2**(–126) x (0.F).

• If E=0 and F=0, then V = (–1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception for a
ety of reasons, including invalid operations, overflow, underflow, division by zero, and ine
results.

Note:
Alpha implementations will impose a significant performance penalty when acces
S_floating operands that are not naturally aligned. (A naturally aligned S_floating d
has zero as the low-order two bits of its address.)

2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in memory 
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 6
shown in Figure 2–13.

Figure 2–13: T_floating Datum

S

:A

:A+4

Fraction Lo

Fraction HiExponent

031 30 1920
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A T_floating operand occupies 64 bits in a floating register, arranged as shown in Figure 2–14

Figure 2–14: T_floating Register Format

The T_floating load instruction performs no bit reordering on input, nor does it perform check-
ing of the input data.

The T_floating store instruction performs no bit reordering on output. This instruction does no
checking of the data; the preceding operation should have specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits <62:52> an excess-
1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S), exponent (E),
and fraction (F) fields as follows:

• If E=2047 and F<>0, then V is NaN, regardless of S.

• If E=2047 and F=0, then V = (–1)**S x Infinity.

• If 0 < E < 2047, then V = (–1)**S x 2**(E–1023) x (1.F).

• If E=0 and F<>0, then V = (–1)**S x 2**(–1022) x (0.F).

• If E=0 and F=0, then V = (–1)**S x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception for a
ety of reasons, including invalid operations, overflow, underflow, division by zero, and ine
results.

Note:
Alpha implementations will impose a significant performance penalty when acces
T_floating operands that are not naturally aligned. (A naturally aligned T_floating da
has zero as the low-order three bits of its address.)

2.2.6.3 X_Floating

Support for 128-bit IEEE extended-precision (X_float) floating-point is initially provid
entirely through software. This section is included to preserve the intended consisten
implementation with other IEEE floating-point data types, should the X_float data type be
ported in future hardware.

An IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in mem
starting on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 1
shown in Figure 2–15.

063 62

S

32 31

Exp. Fraction Hi Fraction Lo :Fx

52 51
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Figure 2–15: X_floating Datum

An X_floating datum occupies two consecutive even/odd floating-point registers (such as
F4/F5), as shown in Figure 2–16.

Figure 2–16: X_floating Register Format

An X_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of an X_floating datum is sign magnitude with bit 127 the sign bit, bits <126:112> an
excess–16383 binary exponent, and bits <111:0> a 112-bit fraction.

The value (V) of an X_floating number is inferred from its constituent sign (S), exponent
and fraction (F) fields as follows: 

• If E=32767 and F<>0, then V is a NaN, regardless of S.

• If E=32767 and F=0, then V = (–1)**S x Infinity.

• If 0 < E < 32767, then V = (–1)**S x 2**(E–16383) x (1.F).

• If E=0 and F<> 0, then V = (–1)**S x 2**(–16382) x (0.F).

• If E = 0 and F = 0, then V = (–1)**S x 0 (zero).

Note:
Alpha implementations will impose a significant performance penalty when acces
X_floating operands that are not naturally aligned. (A naturally aligned X_floating da
has zero as the low-order four bits of its address.)

X_Floating Big-Endian Formats
Section 2.3 describes Alpha support for big-endian data types. It is intended that softw
hardware implementation for a big-endian X_float data type comply with that support and
the following formats. 

0

S Exponent Fraction_high

Fraction_low

48 4763 62

:A

:A+8

127 064 63

S

126 112 111

Exponent Fraction_high Fraction_low

Fn OR  1  Fn
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 and
Figure 2–17: X_floating Big-Endian Datum

Figure 2–18: X_floating Big-Endian Register Format

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in Figure 2–19.

Figure 2–19: Longword Integer Datum

A longword integer operand occupies 64 bits in a floating register, arranged as shown in Fig-
ure 2–20.

Figure 2–20: Longword Integer Floating-Register Format

There is no explicit longword load or store instruction; the S_floating load/store instructions
are used to move longword data into or out of the floating registers. The register bits <61:59>
are set by the S_floating load exponent mapping. They are ignored by S_floating store. They
are also ignored in operands of a longword integer operate instruction, and they are set to 000
in the result of a longword operate instruction.

The register format bit <62> "I" in Figure 2–20 is part of the Integer field in Figure 2–19
represents the high-order bit of that field. 

15

S Exponent Fraction_high

Fraction_low

0

A+8:

A:

Byte

Byte

0 15

S Exponent Fraction_high Fraction_low

Fn OR 1 Fn

Byte Byte

S Integer :A

03031

063 62

S

59 58 29 28

xxx Integer 0 :Fx

61

I
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Note:

Alpha implementations will impose a significant performance penalty when accessing
longwords that are not naturally aligned. (A naturally aligned longword datum has zero as
the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in Figure 2–21.

Figure 2–21: Quadword Integer Datum

A quadword integer operand occupies 64 bits in a floating register, arranged as shown in Fig-
ure 2–22.

Figure 2–22: Quadword Integer Floating-Register Format

There is no explicit quadword load or store instruction; the T_floating load/store instructions
are used to move quadword data between memory and the floating registers. (The ITOFT and
FTOIT are used to move quadword data between integer and floating registers.)

The T_floating load instruction performs no bit reordering on input. The T_floating store
instruction performs no bit reordering on output. This instruction does no checking of the data;
when used to store quadwords, the preceding operation should have specified a quadword
result.

Note:
Alpha implementations will impose a significant performance penalty when accessing
quadwords that are not naturally aligned. (A naturally aligned quadword datum has zero as
the low-order three bits of its address.)

2.2.9 Data Types with No Hardware Support

• The following VAX data types are not directly supported in Alpha hardware. Octaword 

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable-Length Bit Field

• Character String

S

:A

:A+4

Integer Lo

Integer Hi

031 30

063 62

S

32 31

Integer Hi Integer Lo :Fx
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• Trailing Numeric String

• Leading Separate Numeric String

• Packed Decimal String

2.3 Big-Endian Addressing Support

Alpha implementations may include optional big-endian addressing support. 

In a little-endian machine, the bytes within a quadword are numbered right to left:

Figure 2–23: Little-Endian Byte Addressing

In a big-endian machine, they are numbered left to right:

Figure 2–24: Big-Endian Byte Addressing

Bit numbering within bytes is not affected by the byte numbering convention (big-endian or lit-
tle-endian).

The format for the X_floating big-endian data type is shown in Section 2.2.6.3.

The byte numbering convention does not matter when accessing complete aligned quadwords
in memory. However, the numbering convention does matter when accessing smaller or
unaligned quantities, or when manipulating data in registers, as follows:

• A quadword load or store of data at location 0 moves the same eight bytes under both
numbering conventions. However, a longword load or store of data at location 4 must
move the leftmost half of a quadword under the little-endian convention, and the right-
most half under the big-endian convention. Thus, to support both conventions, the con-
vention being used must be known and it must affect longword load/store operations.

• A byte extract of byte 5 from a quadword of data into the low byte of a register requires
a right shift of 5 bytes under the little-endian convention, but a right shift of 2 bytes
under the big-endian convention.

• Manipulation of data in a register is almost the same for both conventions. In both, inte-
ger and floating-point data have their sign bits in the leftmost byte and their least signif-
icant bit in the rightmost byte, so the same integer and floating-point instructions are

5 4 3 2 167 0

2 3 4 5 610 7
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used unchanged for both conventions. Big-endian character strings have their most sig-
nificant character on the left, while little-endian strings have their most significant char-
acter on the right. 

• The compare byte (CMPBGE) instruction is neutral about direction, doing eight byte
compares in parallel. However, following the CMPBGE instruction, the code is differ-
ent that examines the byte mask to determine which string is larger, depending on
whether the rightmost or leftmost unequal byte is used. Thus, compilers must be
instructed to generate somewhat different code sequences for the two conventions.

Implementations that include big-endian support must supply all of the following features:

• A means at boot time to choose the byte numbering convention. The implementation is
not required to support dynamically changing the convention during program execu-
tion. The chosen convention applies to all code executed, both operating-system and
user.

• If the big-endian convention is chosen, the longword-length load/store instructions
(LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2> (bit 2 of the vir-
tual address). This has the effect of accessing the half of a quadword other than the half
that would be accessed under the little-endian convention.

• If the big-endian convention is chosen, the word-length load instruction, LDWU,
inverts bits va<1:2> (bits 1 and 2 of the virtual address). This has the effect of accessing
the half of the longword that would be accessed under the little-endian convention.

• If the big-endian convention is chosen, the byte-length load instruction, LDBU, inverts
bits va<0:2> (bits 0 through 2 of the virtual address). This has the effect of accessing
the half of the word that would be accessed under the little-endian convention.

• If the big-endian convention is chosen, the byte manipulation instructions (EXTxx,
INSxx, MSKxx) invert bits Rbv<2:0>. This has the effect of changing a shift of 5 bytes
into a shift of 2 bytes, for example.

The instruction stream is always considered to be little-endian, and is independent of the cho-
sen byte numbering convention. Compilers, linkers, and debuggers must be aware of this when
accessing an instruction stream using data-stream load/store instructions. Thus, the rightmost
instruction in a quadword is always executed first and always has the instruction-stream
address 0 MOD 8. The same bytes accessed by a longword load/store instruction have data-
stream address 0 MOD 8 under the little-endian convention, and 4 MOD 8 under the big-
endian convention.

Using either byte numbering convention, it is sometimes necessary to access data that origi-
nated on a machine that used the other convention. When this occurs, it is often necessary to
swap the bytes within a datum. See Section A.4.3 for a suggested code sequence.
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 Chapter 3

Instruction Formats

3.1 Alpha Registers 

Each Alpha processor has a set of registers that hold the current processor state. If an Alpha
system contains multiple Alpha processors, there are multiple per-processor sets of these
registers.

3.1.1 Program Counter 

The Program Counter (PC) is a special register that addresses the instruction stream. As each
instruction is decoded, the PC is advanced to the next sequential instruction. This is referred to
as the updated PC. Any instruction that uses the value of the PC will use the updated PC. The
PC includes only bits <63:2> with bits <1:0> treated as RAZ/IGN. This quantity is a long-
word-aligned byte address. The PC is an implied operand on conditional branch and subroutine
jump instructions. The PC is not accessible as an integer register.

3.1.2 Integer Registers 

There are 32 integer registers (R0 through R31), each 64 bits wide. 
 
Register R31 is assigned special meaning by the Alpha architecture. When R31 is specified as
a register source operand, a zero-valued operand is supplied. 

For all cases except the Unconditional Branch and Jump instructions, results of an instruction
that specifies R31 as a destination operand are discarded. Also, it is UNPREDICTABLE
whether the other destination operands (implicit and explicit) are changed by the instruction. It
is implementation dependent to what extent the instruction is actually executed once it has
been fetched. An exception is never signaled for a load that specifies R31 as a destination oper-
ation. For all other operations, it is UNPREDICTABLE whether exceptions are signaled during
the execution of such an instruction. Note, however, that exceptions associated with the
instruction fetch of such an instruction are always signaled.

Implementation note:
As described in Section A.3.5, certain load instructions to an R31 destination are the
preferred method for performing a cache block prefetch.
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There are some interesting cases involving R31 as a destination:

• STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset the
lock_flag, this instruction causes the lock_flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)
 

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.

 
Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_COROUTINE)
instructions, when R31 is specified as the Ra operand, execute normally and update the PC
with the target virtual address. Of course, no PC value can be saved in R31.

3.1.3 Floating-Point Registers 

There are 32 floating-point registers (F0 through F31), each 64 bits wide. 
 
When F31 is specified as a register source operand, a true zero-valued operand is supplied. See
Section 4.7.3 for a definition of true zero.
 
Results of an instruction that specifies F31 as a destination operand are discarded and it is
UNPREDICTABLE whether the other destination operands (implicit and explicit) are changed
by the instruction. In this case, it is implementation-dependent to what extent the instruction is
actually executed once it has been fetched. An exception is never signaled for a load that speci-
fies F31 as a destination operation.  For all other operations, it is UNPREDICTABLE whether
exceptions are signaled during the execution of such an instruction. Note, however, that excep-
tions associated with the instruction fetch of such an instruction are always signaled. 

Implementation note:
As described in Section A.3.5, certain load instructions to an F31 destination are the
preferred method for signalling a cache block prefetch.

 
A floating-point instruction that operates on single-precision data reads all bits <63:0> of the
source floating-point register. A floating-point instruction that produces a single-precision
result writes all bits <63:0> of the destination floating-point register.

3.1.4 Lock Registers 

There are two per-processor registers  associated with the LDx_L and STx_C instructions, the
lock_flag  and the locked_physical_address register. The use of these registers is described in
Section 4.2.
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3.1.5 Processor Cycle Counter (PCC) Register 

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an
unsigned wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are
operating system dependent in their implementation.
 
PCC_CNT is the base clock register for measuring time intervals and is suitable for timing
intervals on the order of nanoseconds. 
 
PCC_CNT increments once per N CPU cycles, where N is an implementation-specific integer
in the range 1..16. The cycle counter frequency is the number of times the processor cycle
counter gets incremented per second. The integer count wraps to 0 from a count of FFFF
FFFF16. The counter wraps no more frequently than 1.5 times the implementation’s int
clock interrupt period (which is two thirds of the interval clock interrupt frequency), wh
guarantees that an interrupt occurs before PCC _CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in a s
implementation. However, if PCC_OFF is used to calculate a per-process or per-thread
count, it must contain a value that, when added to PCC_CNT, returns the total PCC re
count for that process or thread, modulo 2**32.

Implementation Note:

OpenVMS Alpha and DIGITAL UNIX supply a per-process value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each pro
on a multiprocessor system has its own private, independent PCC.
 
The PCC is read by the RPCC instruction. See Section 4.11.8.

3.1.6 Optional Registers 

Some Alpha implementations may include optional memory prefetch or VAX compatib
processor registers.

3.1.6.1 Memory Prefetch Registers 

If the prefetch instructions FETCH and FETCH_M are implemented, an implementation
include two sets of state prefetch registers used by those instructions. The use of thes
ters is described in Section 4.11. These registers are not directly accessible by software 
listed for completeness. 

3.1.6.2 VAX Compatibility Register 

The VAX compatibility instructions RC and RS include the intr_flag register, as describe
Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
trol and assignment statements in an ALGOL-like syntax. 
Instruction Formats 3–3



e other
3.2.1 Operand Notation 

Tables 3–1, 3–2, and 3–3 list the notation for the operands, the operand values, and th
expression operands.

Table 3–1: Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction

Rb An integer register operand in the Rb field of the instruction

#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Ra field of the instruction

Fb A floating-point register operand in the Rb field of the instruction

Fc A floating-point register operand in the Rc field of the instruction

Table 3–2: Operand Value Notation 

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or
a zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register
Fa.

Fbv The value of the floating point Fb operand. This is the contents of register
Fb.

Table 3–3: Expression Operand Notation 

Notation Meaning

IPR_x Contents of Internal Processor Register x)

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X
  3–4   Alpha Architecture Handbook
                            



3.2.2 Instruction Operand Notation 

The notation used to describe instruction operands follows from the operand specifier notation
used in the VAX Architecture Standard. Instruction operands are described as follows:

<name>.<access type><data type> 

3.2.2.1 Operand Name Notation

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand (integer or
floating). It can be one of the following:

3.2.2.2 Operand Access Type Notation

A letter that denotes the operand access type:

Table 3–4: Operand Name Notation 

Name Meaning

disp The displacement field of the instruction

fnc The PALcode function field of the instruction

Ra An integer register operand in the Ra field of the instruction

Rb An integer register operand in the Rb field of the instruction

#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Ra field of the instruction

Fb A floating-point register operand in the Rb field of the instruction

Fc A floating-point register operand in the Rc field of the instruction

Table 3–5: Operand Access Type Notation  

Access Type Meaning

a The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of addressabil-
ity (or scale factor) applied to this operand when the instruction is
decoded.

For example: 

".al" means scale by 4 (longwords) to get byte units (used in branch dis-
placements); ".ab" means the operand is already in byte units (used in
load/store instructions).

i The operand is an immediate literal in the instruction.
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3.2.2.3 Operand Data Type Notation

A letter that denotes the data type of the operand:

3.2.3 Operators 

Table 3–7 describes the operators:

r The operand is read only.

m The operand is both read and written.

w The operand is write only.

Table 3–6: Operand Data Type Notation 

Data Type Meaning

b Byte

f F_floating

g G_floating

l Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

x The data type is specified by the instruction

Table 3–7: Operators

Operator Meaning

! Comment delimiter

+ Addition

- Subtraction

* Signed multiplication

*U Unsigned multiplication

** Exponentiation (left argument raised to right argument)

/ Division

←  Replacement

Table 3–5: Operand Access Type Notation (Continued) 

Access Type Meaning
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|| Bit concatenation

{} Indicates explicit operator precedence

(x) Contents of memory location whose address is x

x <m:n> Contents of bit field of x defined by bits n through m

x <m> M’th bit of x

ACCESS(x,y) Accessibility of the location whose address is x using th
access mode y. Returns a Boolean value TRUE if the
address is accessible, else FALSE. 

AND Logical product 

ARITH_RIGHT_SHIFT(x,y) Arithmetic right shift of first operand by the second oper-
and. Y is an unsigned shift value. Bit 63, the sign bit, is
copied into vacated bit positions and shifted out bits are
discarded. 

BYTE_ZAP(x,y) X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte cor
respondence is y <n>↔ x <8n+7:8n>. This correspon-
dence also exists between y and the result. 

For each bit of y from n = 0 to 7, if y <n> is 0 then byte
<n> of x is copied to byte <n> of result, and if y <n> is 1
then byte <n> of result is forced to all zeros. 

Table 3–7: Operators (Continued)

Operator Meaning
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CASE The CASE construct selects one of several actions based
on the value of its argument. The form of a case is:

CASE argument OF     
     argvalue1: action_1     
     argvalue2: action_2    
      ...     
     argvaluen:action_n     
     [otherwise: default_action]
ENDCASE 

If the value of argument is argvalue1 then action_1 is exe-
cuted; if argument = argvalue2, then action_2 is executed,
and so forth. 

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of
pseudocode operations, one operation per line.

Optionally, the last argvalue may be the atom ‘otherwise’.
The associated default action will be taken if none of the
other argvalues match the argument. 

DIV Integer division (truncates) 

LEFT_SHIFT(x,y) Logical left shift of first operand by the second operand.Y
is an unsigned shift value. Zeros are moved into the
vacated bit positions, and shifted out bits are discarded. 

LOAD_LOCKED The processor records the target physical address in a pe
processor locked_physical_address register and sets th
per-processor lock_flag. 

lg Log to the base 2.

MAP_x F_float or S_float memory-to-register exponent mapping
function. 

MAXS(x,y) Returns the larger of x and y, with x and y interpreted as
signed integers.

MAXU(x,y) Returns the larger of x and y, with x and y interpreted as
unsigned integers.

MINS(x,y) Returns the smaller of x and y, with x and y interpreted as
signed integers. 

MINU(x,y) Returns the smaller of x and y, with x and y interpreted as
unsigned integers. 

x MOD y x modulo y 

Table 3–7: Operators (Continued)

Operator Meaning
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NOT Logical (ones) complement 

OR Logical sum 

PHYSICAL_ADDRESS Translation of a virtual address 

PRIORITY_ENCODE Returns the bit position of most significant set bit, inter-
preting its argument as a positive integer (=int(lg(x))). For
example: 

priority_encode( 255 ) = 7

Relational Operators:

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand.
Y is an unsigned shift value. Zeros are moved into
vacated bit positions, and shifted out bits are discarded. 

SEXT(x) X is sign-extended to the required size. 

STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear
the lock_flag. 

Table 3–7: Operators (Continued)

Operator Meaning

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned

NE Not equal signed and unsigned

GE Greater or equal signed

GEU Greater or equal unsigned

GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit signed
Instruction Formats 3–9



3.2.4 Notation Conventions 

The following conventions are used: 

• Only operands that appear on the left side of a replacement operator are modified. 

• No operator precedence is assumed other than that replacement (←) has the lowest pre-
cedence. Explicit precedence is indicated by the use of "{}".

• All arithmetic, logical, and relational operators are defined in the context of their oper-
ands. For example, "+" applied to G_floating operands means a G_floating add,
whereas "+" applied to quadword operands is an integer add. Similarly, "LT" is a
G_floating comparison when applied to G_floating operands and an integer comparison
when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

• Memory 

• Branch 

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26> of the
instruction.

 
Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value of 31. 

Software Note:
There are several instructions, each formatted as a memory instruction, that do not use the
Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch, Fetch_M, Read
Process Cycle Counter, Read and Clear, Read and Set, and Trap Barrier.

TEST(x,cond) The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x
bears the specified relation to 0, else FALSE is returned.
Integer and floating test conditions are drawn from the
preceding list of relational operators. 

XOR Logical difference 

ZEXT(x) X is zero-extended to the required size. 

Table 3–7: Operators (Continued)

Operator Meaning
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3.3.1 Memory Instruction Format 

The Memory format is used to transfer data between registers and memory, to load an effec-
tive address, and for subroutine jumps. It has the format shown in Figure 3–1.

Figure 3–1: Memory Instruction Format

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address fields, Ra
and Rb, and a 16-bit signed displacement field. 
 
The displacement field is a byte offset. It is sign-extended and added to the contents of register
Rb to form a virtual address. Overflow is ignored in this calculation.
 
The virtual address is used as a memory load/store address or a result value, depending on the
specific instruction. The virtual address (va) is computed as follows for all memory format
instructions except the load address high (LDAH):

va ← {Rbv + SEXT(Memory_disp)}
 

For LDAH the virtual address (va) is computed as follows:

va ← {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement field in the
memory instruction format with a function code that designates a set of miscellaneous instruc-
tions. The format is shown in Figure 3–2. 

Figure 3–2: Memory Instruction with Function Code Format

 
The memory instruction with function code format contains a 6-bit opcode field and a 16-bit
function field. Unused function codes produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.
 
There are two fields, Ra and Rb. The usage of those fields depends on the instruction. See Sec-
tion 4.11.

031 26 25 21 20 16 15

Opcode Ra Rb Memory_disp

031 26 25 21 20 16 15

Opcode Ra Rb Function
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3.3.1.2 Memory Format Jump Instructions 

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the displacement
field is used to provide branch-prediction hints as described in Section 4.3.

3.3.2 Branch Instruction Format 

The Branch format is used for conditional branch instructions and for PC-relative subroutine
jumps. It has the format shown in Figure 3–3.

Figure 3–3: Branch Instruction Format

 
A Branch format instruction contains a 6-bit opcode field, one 5-bit register address field (Ra),
and a 21-bit signed displacement field.
 
The displacement is treated as a longword offset. This means it is shifted left two bits (to
address a longword boundary), sign-extended to 64 bits, and added to the updated PC to form
the target virtual address. Overflow is ignored in this calculation. The target virtual address
(va) is computed as follows:

va ← PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer register
operations. The Operate format allows the specification of one destination operand and two
source operands. One of the source operands can be a literal constant. The Operate format in
Figure 3–4 shows the two cases when bit <12> of the instruction is 0 and 1. 

Figure 3–4: Operate Instruction Format

031 26 25 21 20

Opcode Ra Branch_disp

031 26 25

0

13 12 1121 20 16 15 5 4

Opcode Ra Rb SBZ Function Rc

031 26 25

1

13 12 1121 20 5 4

Opcode Ra LIT Function Rc
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An Operate format instruction contains a 6-bit opcode field and a 7-bit function code field.
Unused function codes for opcodes defined as reserved in the Version 5 Alpha architecture
specification (May 1992) produce an illegal instruction trap. Those opcodes are 01, 02, 03, 04,
05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, 1B, 1D, 1E, and 1F. For other opcodes, unused function
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security holes. 
 
There are three operand fields, Ra, Rb, and Rc.
 
The Ra field specifies a source operand. Symbolically, the integer Rav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
    Rav ← 0
ELSE
    Rav ← Ra
END

 
The Rb field specifies a source operand. Integer operands can specify a literal or an integer
register using bit <12> of the instruction.
 
If bit <12> of the instruction is 0, the Rb field specifies a source register operand.
 
If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed by bits
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and 255
and is zero-extended to 64 bits. Symbolically, the integer Rbv operand is formed as follows:

IF inst <12> EQ 1 THEN 
    Rbv ← ZEXT(inst<20:13>)
ELSE
    IF inst <20:16> EQ 31 THEN
         Rbv ← 0
    ELSE
         Rbv ← Rb
    END
END 

 
The Rc field specifies a destination operand. 

3.3.4 Floating-Point Operate Instruction Format 

The Floating-point Operate format is used for instructions that perform floating-point register
to floating-point register operations. The Floating-point Operate format allows the specifica-
tion of one destination operand and two source operands. The Floating-point Operate format is
shown in Figure 3–5.

Figure 3–5: Floating-Point Operate Instruction Format
031 26 25 21 20 16 15 5 4

Opcode Fa Fb Function Fc
Instruction Formats 3–13



A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-bit func-
tion field. Unused function codes for those opcodes defined as reserved in the Version 5 Alpha
architecture specification (May 1992) produce an illegal instruction trap. Those opcodes are
01, 02, 03, 04, 05, 06, 07, 14, 19, 1B, 1D, 1E, and 1F. For other opcodes, unused function
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security holes.  

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either an integer or
floating-point operand as defined by the instruction.
 
The Fa field specifies a source operand. Symbolically, the Fav operand is formed as follows:

IF inst<25:21> EQ 31 THEN
    Fav ← 0
ELSE
    Fav ← Fa
END

 
The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as follows:

IF inst<20:16> EQ 31 THEN
    Fbv ← 0
ELSE
    Fbv ← Fb
END

Note:

Neither Fa nor Fb can be a literal in Floating-point Operate instructions.
 

The Fc field specifies a destination operand. 

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate format and per-
form register-to-register conversion operations. The Fb operand specifies the source; the Fa
field must be F31.

3.3.4.2 Floating-Point/Integer Register Moves 

Instructions that move data between a floating-point register file and an integer register file are
a subset of of the Floating-point Operate format. The unused source field must be 31.

3.3.5 PALcode Instruction Format 

The Privileged Architecture Library (PALcode) format is used to specify extended processor
functions. It has the format shown in Figure 3–6.
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Figure 3–6: PALcode Instruction Format

The 26-bit PALcode function field specifies the operation. The source and destination oper-
ands for PALcode instructions are supplied in fixed registers that are specified in the individual
instruction descriptions.
 
An opcode of zero and a PALcode function of zero specify the HALT instruction.

031 26 25

Opcode PALcode Function
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 Chapter 4

Instruction Descriptions

4.1 Instruction Set Overview 

This chapter describes the instructions implemented by the Alpha architecture. The instruction
set is divided into the following sections:

Within each major section, closely related instructions are combined into groups and described
together.

The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access type, and
data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

Instruction Type Section

Integer load and store 4.2

Integer control 4.3

Integer arithmetic 4.4

Logical and shift 4.5

Byte manipulation 4.6

Floating-point load and store 4.7

Floating-point control 4.8

Floating-point branch 4.9

Floating-point operate 4.10

Miscellaneous 4.11

VAX compatibility 4.12

Multimedia (graphics and video) 4.13
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• Qualifiers specific to the instructions in the group

• A description of the instruction operation

• Optional programming examples and optional notes on the instruction

4.1.1 Subsetting Rules 

An instruction that is omitted in a subset implementation of the Alpha architecture is not per-
formed in either hardware or PALcode. System software may provide emulation routines for
subsetted instructions.

4.1.2 Floating-Point Subsets 

Floating-point support is optional on an Alpha processor. An implementation that supports
floating-point must implement the following:

• The 32 floating-point registers

• The Floating-point Control Register (FPCR) and the instructions to access it

• The floating-point branch instructions

• The floating-point copy sign (CPYSx) instructions

• The floating-point convert instructions

• The floating-point conditional move instruction (FCMOV)

• The S_floating and T_floating memory operations

Software Note:
A system that will not support floating-point operations is still required to provide the 32
floating-point registers, the Floating-point Control Register (FPCR) and the instructions to
access it, and the T_floating memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement facilitates the implementation of a
floating-point emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group, an
implementation can choose to include or omit separately the ability to perform IEEE
rounding to plus infinity and minus infinity.

Note: 
If one instruction in a group is provided, all other instructions in that group must be
provided. An implementation with full floating-point support includes both groups; a
subset floating-point implementation supports only one of these groups. The individual
instruction descriptions indicate whether an instruction can be subsetted. 
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4.1.3 Software Emulation Rules 

General-purpose layered and application software that executes in User mode may assume that
certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT)  and certain stores (STL, STQ, STF,
STG, STL, and STT) of unaligned data are emulated by system software. General-purpose lay-
ered and application software that executes in User mode may assume that subsetted
instructions are emulated by system software. Frequent use of emulation may be significantly
slower than using alternative code sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need not be pro-
vided in privileged access modes. System software that supports special-purpose dedicated
applications need not provide emulation in User mode if emulation is not needed for correct
execution of the special-purpose applications.

4.1.4 Opcode Qualifiers 

Some Operate format and Floating-point Operate format instructions have several variants. For
example, for the VAX formats, Add F_floating (ADDF) is supported with and without float-
ing underflow enabled and with either chopped or VAX rounding. For IEEE formats, IEEE
unbiased rounding, chopped, round toward plus infinity, and round toward minus infinity can
be selected. 

The different variants of such instructions are denoted by opcode qualifiers, which consist of a
slash (/) followed by a string of selected qualifiers. Each qualifier is denoted by a single char-
acter as shown in Table 4–1. The opcodes for each qualifier are listed in Appendix C.

The default values are normal rounding, exception completion disabled, inexact resu
abled, floating underflow disabled, and integer overflow disabled. 

Table 4–1: Opcode Qualifiers 

Qualifier Meaning

C Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable

S Exception completion enable

U Floating underflow enable

V Integer overflow enable
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4.2 Memory Integer Load/Store Instructions 

The instructions in this section move data between the integer registers and memory. 

They use the Memory instruction format. The instructions are summarized in Table 4–2.

Table 4–2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA Load Address

LDAH Load Address High

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword

LDL_L Load Sign-Extended Longword Locked

LDQ Load Quadword

LDQ_L Load Quadword Locked

LDQ_U Load Quadword Unaligned

LDWU Load Zero-Extended Word from Memory to Register

STB Store Byte

STL Store Longword

STL_C Store Longword Conditional

STQ Store Quadword

STQ_C Store Quadword Conditional

STQ_U Store Quadword Unaligned

STW Store Word
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4.2.1 Load Address 

Format:

Operation:
 Ra ← Rbv + SEXT(disp) !LDA
 Ra ← Rbv + SEXT(disp*65536) !LDAH

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment for LDA, and 65536 times the sign-extended 16-bit displacement for LDAH. The 64-bit
result is written to register Ra.

LDAx Ra.wq,disp.ab(Rb.ab) !Memory format

None

LDA Load Address

LDAH Load Address High

None
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4.2.2 Load Memory Data into Integer Register  

Format:

Operation:
va ← {Rbv + SEXT(disp)}
         
 CASE
  big_endian_data: va’ ← va XOR 0002 !LDQ

  big_endian_data: va’ ← va XOR 1002 !LDL

  big_endian_data: va’ ← va XOR 1102 !LDWU

  big_endian_data: va’ ← va XOR 1112 !LDBU

  little_endian_data: va’ ← va
 ENDCASE

  Ra ← (va’)<63:0>           !LDQ
  Ra ← SEXT((va’)<31:0>) !LDL
  Ra ← ZEXT((va’)<15:0>) !LDWU
  Ra ← ZEXT((va’)<07:0>) !LDBU

Exceptions:

Instruction mnemonics:

Qualifiers:

Description: 
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va’).  

LDx    Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Read

Translation Not Valid

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

LDWU Load Zero-Extended Word from Memory to Register

None
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In the case of LDQ and LDL, the source operand is fetched from memory, sign-extended, and
written to register Ra. 

In the case of LDWU and LDBU, the source operand is fetched from memory, zero-extended,
and written to register Ra. 

In all cases, if the data is not naturally aligned, an alignment exception is generated. 

Notes:

• The word or byte that the LDWU or LDBU instruction fetches from memory is placed
in the low (rightmost) word or byte of Ra, with the remaining 6 or 7 bytes set to zero.

• Accesses have byte granularity. 

• For big-endian access with LDWU or LDBU, the word/byte remains in the rightmost
part of Ra, but the va sent to memory has the indicated bits inverted. See Operation sec-
tion, above.

• No sparse address space mechanisms are allowed with the LDWU and LDBU instruc-
tions.

Implementation Notes:

• The LDWU and LDBU instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction returns bit 0 set. LDWU and LDBU are sup-
ported with software emulation in Alpha implementations for which AMASK does not
return bit 0 set. Software emulation of LDWU and LDBU is significantly slower than
hardware support.

• Depending on an address space region’s caching policy, implementations may 
(partial) cache block in order to do word/byte stores. This may only be done in re
that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and
length-of-access information to devices on I/O buses. But, strictly speaking, this is out-
side the scope of architecture.
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4.2.3 Load Unaligned Memory Data into Integer Register 

Format:

Operation:
 va ← {{Rbv + SEXT(disp)} AND NOT 7}
 Ra ← (va)<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then the low-order three bits are cleared. The source operand is fetched from memory
and written to register Ra.

LDQ_U Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Read

Translation Not Valid

LDQ_U Load Unaligned Quadword from Memory to Register

None
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4.2.4 Load Memory Data into Integer Register Locked  

Format:

Operation:
va ←  {Rbv + SEXT(disp)}

CASE
  big_endian_data:  va’ ← va XOR 0002 ! LDQ_L

  big_endian_data:  va’ ← va XOR 1002 ! LDL_L

  little_endian_data: va’ ← va ! LDL_L
ENDCASE

lock_flag ← 1
locked_physical_address ← PHYSICAL_ADDRESS(va)

Ra ← SEXT((va’)<31:0>) ! LDL_L
Ra ← (va)<63:0> ! LDQ_L

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’). The source operand is fetched
from memory, sign-extended for LDL_L, and written to register Ra.

LDx_L Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Read

Translation Not Valid

LDL_L Load Sign-Extended Longword from Memory to Register
Locked

LDQ_L Load Quadword from Memory to Register Locked

None
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When a LDx_L instruction is executed without faulting, the processor records the target physi-
cal address in a per-processor locked_physical_address register and sets the per-processor
lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed (accessing
within the same 16-byte naturally aligned block as the LDx_L), the store occurs; otherwise, it
does not occur, as described for the STx_C instructions. The behavior of an STx_C instruction
is UNPREDICTABLE, as described in Section 4.2.5, when it does not access the same 16-byte
naturally aligned block as the LDx_L. 

Processor A causes the clearing of a set lock_flag in processor B by doing any of the following
in B’s locked range of physical addresses: a successful store, a successful store_conditi
executing a WH64 instruction that modifies data on processor B. A processor’s locked range is
the aligned block of 2**N bytes that includes the locked_physical_address. The 2**N val
implementation dependent. It is at least 16 (minimum lock range is an aligned 16-byte b
and is at most the page size for that implementation (maximum lock range is one ph
page). 

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL 
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or not a pro
cessor’s lock_flag is cleared on any other CALL_PAL instruction. It is UNPREDICTAB
whether a processor’s lock_flag is cleared by that processor executing a normal load o
instruction. It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that pro
sor executing a taken branch (including BR, BSR, and Jumps); conditional branches th
through do not clear the lock_flag. It is UNPREDICTABLE whether a processor’s lock_fla
cleared by that processor executing a WH64 or ECB instruction.

The sequence:

LDx_L
Modify
STx_C
BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum in 
memory if the branch falls through. If the branch is taken, the store did not modify me
and the sequence may be repeated until it succeeds.

Notes:

• LDx_L instructions do not check for write access; hence a matching STx_C may take
an access-violation or fault-on-write exception. 

Executing a LDx_L instruction on one processor does not affect any architecturally
visible state on another processor, and in particular cannot cause an STx_C on another
processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may be
followed by a conditional branch: on the fall-through path an STx_C is executed,
whereas on the taken path no matching STx_C is executed. 
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If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emulate unaligned LDx_L instructions.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to t
range; hence, no useful program should do this.

• If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U, WH64) is executed on
the given processor between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this. 

• If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

• If a subsetted instruction (for example, floating-point) is executed between the LDx_L
and the STx_C, the sequence above may always fail on some implementations because
of the Illegal Instruction Trap; hence, no useful program should do this.

• If an instruction with an unused function code is executed between the LDx_L and the
STx_C, the sequence above may always fail on some implementations because an
instruction with an unused function code is UNPREDICTABLE.

• If a large number of instructions are executed between the LDx_L and the STx_C, the
sequence above may always fail on some implementations because of a timer interrupt
always clearing the lock_flag before the sequence completes; hence, no useful program
should do this. 

• Hardware implementations are encouraged to lock no more than 128 bytes. Software
implementations are encouraged to separate locked locations by at least 128 bytes from
other locations that could potentially be written by another processor while the first
location is locked.

• Execution of a WH64 instruction on processor A to a region within the lock range of
processor B, where the execution of the WH64 changes the contents of memory, causes
the lock_flag on processor B to be cleared. If the WH64 does not change the contents of
memory on processor B, it need not clear the lock_flag.

Implementation Notes:
Implementations that impede the mobility of a cache block on LDx_L, such as that which
may occur in a Read for Ownership cache coherency protocol, may release the cache block
and make the subsequent STx_C fail if a branch-taken or memory instruction is executed
on that processor.

All implementations should guarantee that at least 40 non-subsetted operate instructions
can be executed between timer interrupts.
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4.2.5 Store Integer Register Data into Memory Conditional 

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data:  va’ ← va XOR 0002 ! STQ_C

 big_endian_data:  va’ ← va XOR 1002 ! STL_C

 little_endian_data: va’ ← va ! STL_C
ENDCASE

IF lock_flag EQ 1 THEN 
  (va’)<31:0> ←  Rav<31:0> ! STL_C
  (va’)       ←  Rav ! STQ_C
Ra ← lock_flag
lock_flag ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’).

If the lock_flag is set and the address meets the following constraints relative to the address
specified by the preceding LDx_L instruction, the Ra operand is written to memory at this
address. If the address meets the following constraints but the lock_flag is not set, a zero is
returned in Ra and no write to memory occurs. The constraints are:

STx_C  Ra.mx,disp.ab(Rb.ab)    !Memory format

Access Violation

Fault on Write

Alignment

Translation Not Valid

STL_C Store Longword from Register to Memory Conditional

STQ_C Store Quadword from Register to Memory Conditional

None
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• The computed virtual address must specify a location within the naturally aligned
16-byte block in virtual memory accessed by the preceding LDx_L instruction.

• The resultant physical address must specify a location within the naturally aligned
16-byte block in physical memory accessed by the preceding LDx_L instruction.

If those addressing constraints are not met, it is UNPREDICTABLE whether the STx_C
instruction succeeds or fails, regardless of the state of the lock_flag, unless the lock_flag is
cleared as described in the next paragraph.

Whether or not the addressing constraints are met, a zero is returned and no write to memory
occurs if the lock_flag was cleared by execution on a processor of a CALL_PAL REI,
CALL_PAL rti, CALL_PAL rfe, or STx_C, after the most recent execution on that processor
of a LDx_L instruction (in processor issue sequence).

In all cases, the lock_flag is set to zero at the end of the operation.

Notes:

• Software will not emulate unaligned STx_C instructions.

• Each implementation must do the test and store atomically, as illustrated in the follow-
ing two examples. (See Section 5.6.1 for complete information.)

– If two processors attempt STx_C instructions to the same lock range and tha
range was accessed by both processors’ preceding LDx_L instructions, exact
of the stores succeeds. 

– A processor executes a LDx_L/STx_C sequence and includes an MB betwee
LDx_L to a particular address and the successful  STx_C to a different address (on
that meets the constraints required for predictable behavior). That instru
sequence establishes an access order under which a store operation by anoth
cessor to that lock range occurs before the LDx_L or after the STx_C.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to t
range; hence, no useful program should do this.

• The following sequence should not be used:

   try_again: LDQ_L   R1, x
              <modify R1>
              STQ_C   R1, x
              BEQ     R1, try_again

That sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the Alpha
architecture. In the case where the STQ_C succeeds and the branch will actually fall
through, that sequence incurs unnecessary delay due to a mispredicted backward
branch. Instead, a forward branch should be used to handle the failure case, as shown
in Section 5.5.2.
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Software Note:

If the address specified by a STx_C instruction does not match the one given in the
preceding LDx_L instruction, an MB is required to guarantee ordering between the two
instructions. 

Hardware/Software Implementation Note:
STQ_C is used in the first Alpha implementations to access the MailBox Pointer Register
(MBPR). In this special case, the effect of the STQ_C is well defined (that is, not
UNPREDICTABLE) even though the preceding LDx_L did not specify the address of the
MBPR. The effect of STx_C in this special case may vary from implementation to
implementation.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to prevent any
other store from changing the state of the lock bit, before its outcome can be determined.

If an implementation could encounter a TB or cache miss on the data reference of the
STx_C in the sequence above (as might occur in some shared I- and D-stream
direct-mapped TBs/caches), it must be able to resolve the miss and complete the store
without always failing.
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4.2.6 Store Integer Register Data into Memory 

Format:

Operation:
va ← {Rbv + SEXT(disp)}
          
CASE
 big_endian_data: va’ ← va XOR 0002 !STQ

 big_endian_data: va’ ← va XOR 1002 !STL

 big_endian_data: va’ ← va XOR 1102 !STW

 big_endian_data: va’ ← va XOR 1112 !STB

 little_endian_data: va’ ← va
ENDCASE

 (va’) ← Rav !STQ
 (va’)<31:00> ← Rav<31:0> !STL
 (va’)<15:00> ← Rav<15:0> !STW
 (va’)<07:00> ← Rav<07:0> !STB

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va’). 

STx    Ra.rx,disp.ab(Rb.ab)    !Memory format

Access Violation

Alignment

Fault on Write

Translation Not Valid

STB Store Byte from Register to Memory

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

STW Store Word from Register to Memory

None
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The Ra operand is written to memory at this address. If the data is not naturally aligned, an
alignment exception is generated. 

Notes:

• The word or byte that the STB or STW instruction stores to memory comes from the
low (rightmost) byte or word of Ra.

• Accesses have byte granularity. 

• For big-endian access with STB or STW, the byte/word remains in the rightmost part of
Ra, but the va sent to memory has the indicated bits inverted. See Operation section,
above.

• No sparse address space mechanisms are allowed with the STB and STW instructions.

Implementation Notes:

• The STB and STW instructions are supported in hardware on Alpha implementations
for which the AMASK instruction returns bit 0 set. STB and STW are supported with
software emulation in Alpha implementations for which AMASK does not return bit 0
set. Software emulation of STB and STW is significantly slower than hardware support.

• Depending on an address space region’s caching policy, implementations may 
(partial) cache block in order to do byte/word stores. This may only be done in re
that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and
length-of-access information to devices on I/O buses. But, strictly speaking, this is out-
side the scope of architecture.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:

Operation:
va ← {{Rbv + SEXT(disp)} AND NOT 7}
(va)<63:0> ← Rav<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then clearing the low order three bits. The Ra operand is written to memory at this
address. 

STQ_U Ra.rq,disp.ab(Rb.ab)    !Memory format

Access Violation

Fault on Write

Translation Not Valid

STQ_U Store Unaligned Quadword from Register to Memory

None
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to subroutine, and
jump instructions. The PC used in these instructions is the updated PC, as described in Section
3.1.1.

To allow implementations to achieve high performance, the Alpha architecture includes
explicit hints based on a branch-prediction model:

• For many implementations of computed branches (JSR/RET/JMP), there is a substan-
tial performance gain in forming a good guess of the expected target I-cache address
before register Rb is accessed.

• For many implementations, the first-level (or only) I-cache is no bigger than a page (8
KB to 64 KB). 

• Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses. 

The Alpha architecture provides three kinds of branch-prediction hints: likely target address,
return-address stack action, and conditional branch-taken. 

For computed branches, the otherwise unused displacement field contains a function code
(JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that statically specifies the
16 low bits of the most likely target address. The PC-relative calculation using these bits can
be exactly the PC-relative calculation used in unconditional branches. The low 16 bits are
enough to specify an I-cache block within the largest possible Alpha page and hence are
expected to be enough for branch-prediction logic to start an early I-cache access for the most
likely target. 

For all branches, hint or opcode bits are used to distinguish simple branches, subroutine calls,
subroutine returns, and coroutine links. These distinctions allow branch-predict logic to main-
tain an accurate stack of predicted return addresses. 

For conditional branches, the sign of the target displacement is used as a taken/fall-through
hint. The instructions are summarized in Table 4–3.

Table 4–3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero
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BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Table 4–3: Control Instructions Summary (Continued)

Mnemonic Operation
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4.3.1 Conditional Branch

Format:

Operation:
{update PC}
va ←  PC + {4*SEXT(disp)}
IF TEST(Rav, Condition_based_on_Opcode) THEN 
   PC ←  va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset.  This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/– 1M instructions.

The test is on the signed quadword integer interpretation of the register contents; all 64 b
tested.

Bxx Ra.rq,disp.al         !Branch format

None

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

None
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4.3.2 Unconditional Branch 

Format:

Operation:
{update PC}
Ra ←  PC
PC ←  PC + {4*SEXT(disp)}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The PC of the following instruction (the updated PC) is written to register Ra and then the PC
is loaded with the target address.

The displacement is treated as a signed longword offset.  This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed displacement gives a
forward/backward branch distance of +/– 1M instructions.

PC-relative addressability can be established by:

        BR Rx,L1 
L1:

Notes:

• BR and BSR do identical operations. They only differ in hints to possible branch-pre-
diction logic. BSR is predicted as a subroutine call (pushes the return address on a
branch-prediction stack), whereas BR is predicted as a branch (no push).

BxR  Ra.wq,disp.al           !Branch format

None

BR Unconditional Branch

BSR Branch to Subroutine

None
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4.3.3 Jumps

Format:

Operation:
{update PC}
va ←  Rbv AND {NOT 3}
Ra ←  PC
PC ←  va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The PC of the instruction following the Jump instruction (the updated PC) is written to register
Ra and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra and Rb may
specify the same register; the target calculation using the old value is done before the new
value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible branch-pre-
diction logic. The displacement field of the instruction is used to pass this information. The
four different "opcodes" set different bit patterns in disp<15:14>, and the hint operand sets
disp<13:0>.

These bits are intended to be used as shown in Table 4–4.

mnemonic Ra.wq,(Rb.ab),hint    !Memory format

None

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

None
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The design in Table 4–4 allows specification of the low 16 bits of a likely longword ta
address (enough bits to start a useful I-cache access early), and also allows distinguish
from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits can im
performance but is not needed for correct operation. See Section A.2.2 for more informat
branch prediction. 

An unconditional long jump can be performed by:

JMP R31,(Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra a
operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE) (that is, the
get address prediction, if any, would come from a predictor implementation stack), the
<13:0> are reserved for software and must be ignored by all implementations. All enco
for bits <13:0> are used by Compaq software or Reserved to Compaq, as follows:

Table 4–4: Jump Instructions Branch Prediction

disp<15:14> Meaning
Predicted
Target<15:0>

Prediction 
Stack Action

00 JMP PC + {4*disp<13:0>} –

01 JSR PC + {4*disp<13:0>} Push PC

10 RET Prediction stack Pop

11 JSR_COROUTINE Prediction stack Pop, push PC

Encoding Meaning

000016 Indicates non-procedure return

000116 Indicates procedure return

All other encodings are reserved to Compaq.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, signed and unsigned com-
pare, and bit count operations. 

Count instruction (CIX) extension implementation note:
The CIX extension to the architecture provides the CTLZ, CTPOP, and CTTZ instructions.
Alpha  processors for which the AMASK instruction returns bit 2 set implement these
instructions. Those processors for which AMASK does not return bit 2 set can take an
Illegal Instruction trap, and software can emulate their function, if required. AMASK is
described in Sections 4.11.1 and D.3. 

The integer instructions are summarized in Table 4–5

There is no integer divide instruction. Division by a constant can be done by using UMU
division by a variable can be done by using a subroutine. See Section A.4.2.

Table 4–5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD Add Quadword/Longword

S4ADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal

CTLZ Count leading zero

CTPOP Count population

CTTZ Count trailing zero

CMPULT Compare Unsigned Quadword Less Than

CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword 

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword

S4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8
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4.4.1 Longword Add

Format:

Operation:
Rc ←  SEXT( (Rav + Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is added to register Rb or a literal and the sign-extended 32-bit sum is written to
Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
32-bit sum. Overflow detection is based on the longword sum Rav<31:0> + Rbv<31:0>.

ADDL Ra.rl,Rb.rl,Rc.wq     !Operate format

ADDL Ra.rl,#b.ib,Rc.wq     !Operate format

Integer Overflow

ADDL Add Longword 

Integer Overflow Enable (/V)
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4.4.2 Scaled Longword Add

Format:

Operation:
CASE 
 S4ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
 S8ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register Rb or a
literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
sum. 

SxADDL Ra.rl,Rb.rq,Rc.wq     !Operate format

SxADDL Ra.rl,#b.ib,Rc.wq     !Operate format

None

S4ADDL Scaled Add Longword by 4

S8ADDL Scaled Add Longword by 8

None
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4.4.3 Quadword Add

Format:

Operation:
Rc ←  Rav + Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is added to register Rb or a literal and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.

The unsigned compare instructions can be used to generate carry. After adding two values, if
the sum is less unsigned than either one of the inputs, there was a carry out of the most signifi-
cant bit. 

ADDQ Ra.rq,Rb.rq,Rc.wq     !Operate format

ADDQ Ra.rq,#b.ib,Rc.wq     !Operate format

Integer Overflow

ADDQ Add Quadword

Integer Overflow Enable (/V)
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4.4.4 Scaled Quadword Add

Format:

Operation:
CASE 
 S4ADDQ: Rc ← LEFT_SHIFT(Rav,2) + Rbv
 S8ADDQ: Rc ← LEFT_SHIFT(Rav,3) + Rbv
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register Rb or a
literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.

SxADDQ Ra.rq,Rb.rq,Rc.wq   !Operate format

SxADDQ Ra.rq,#b.ib,Rc.wq  !Operate format

None

S4ADDQ Scaled Add Quadword by 4
S8ADDQ Scaled Add Quadword by 8

None
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4.4.5 Integer Signed Compare

Format:

Operation:
IF Rav SIGNED_RELATION Rbv THEN
 Rc ← 1
ELSE
 Rc ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is compared to Register Rb or a literal. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero is written to Rc.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included. 

CMPxx Ra.rq,Rb.rq,Rc.wq    !Operate format

CMPxx Ra.rq,#b.ib,Rc.wq    !Operate format

None

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal

CMPLT Compare Signed Quadword Less Than

None
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4.4.6 Integer Unsigned Compare

Format:

Operation:
IF Rav UNSIGNED_RELATION Rbv THEN
  Rc ←  1
ELSE
  Rc ←  0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is compared to Register Rb or a literal. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero is written to Rc.

CMPUxx Ra.rq,Rb.rq,Rc.wq    !Operate format

CMPUxx Ra.rq,#b.ib,Rc.wq    !Operate format

None

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than

None
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4.4.7 Count Leading Zero

Format:

Operation:
temp = 0
FOR i FROM 63 DOWN TO 0
 IF { Rbv<i> EQ 1 } THEN BREAK
 temp = temp + 1
END
 Rc<6:0> ← temp<6:0>
 Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The number of leading zeros in Rb, starting at the most significant bit position, is written to Rc.
Ra must be R31.

CTLZ Rb.rq,Rc.wq ! Operate format

None

CTLZ Count Leading Zero

None
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4.4.8 Count Population

Format:

Operation:
temp = 0
FOR i FROM 0 TO 63
 IF { Rbv<i> EQ 1 } THEN temp = temp + 1
END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The number of ones in Rb is written to Rc. Ra must be R31.

CTPOP Rb.rq,Rc.wq ! Operate format

None

CTPOP Count Population

None
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4.4.9 Count Trailing Zero

Format:

Operation:
temp = 0
FOR i FROM 0 TO 63
  IF { Rbv<i> EQ 1 } THEN BREAK
  temp = temp + 1
END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The number of trailing zeros in Rb, starting at the least significant bit position, is written to Rc.
Ra must be R31.

CTTZ Rb.rq,Rc.wq ! Operate format

None

CTTZ Count Trailing Zero

None
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4.4.10 Longword Multiply

Format:

Operation:
 Rc ←  SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is multiplied by register Rb or a literal and the sign-extended 32-bit product is
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
product. Overflow detection is based on the longword product Rav<31:0> * Rbv<31:0>. On
overflow, the proper sign extension of the least significant 32 bits of the true result is written to
the destination register. 

The MULQ instruction can be used to return the full 64-bit product. 

MULL Ra.rl,Rb.rl,Rc.wq      !Operate format

MULL Ra.rl,#b.ib,Rc.wq      !Operate format

Integer Overflow

MULL Multiply Longword 

Integer Overflow Enable (/V)
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4.4.11 Quadword Multiply

Format:

Operation:
Rc ←  Rav * Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is multiplied by register Rb or a literal and the 64-bit product is written to register
Rc. Overflow detection is based on considering the operands and the result as signed quanti-
ties. On overflow, the least significant 64 bits of the true result are written to the destination
register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit result when
an overflow occurs.

MULQ Ra.rq,Rb.rq,Rc.wq      !Operate format

MULQ Ra.Rq,#b.ib,Rc.wq      !Operate format

Integer Overflow

MULQ Multiply Quadword

Integer Overflow Enable (/V)
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4.4.12 Unsigned Quadword Multiply High

Format:

Operation:
Rc ← {Rav * U Rbv}<127:64> 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a 128-bit result.
The high-order 64-bits are written to register Rc. 

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result as
follows:

Ra and Rb are unsigned:  result of UMULH 
Ra and Rb are signed:     (result of UMULH) – Ra<63>*Rb – Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.

UMULH Ra.rq,Rb.rq,Rc.wq      !Operate format

UMULH Ra.rq,#b.ib,Rc.wq      !Operate format

None

UMULH Unsigned Multiply Quadword High

None
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4.4.13 Longword Subtract

Format:

Operation:
Rc ←  SEXT ((Rav - Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from register Ra and the sign-extended 32-bit difference is
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
difference. Overflow detection is based on the longword difference Rav<31:0> – Rbv<31:0

SUBL Ra.rl,Rb.rl,Rc.wq     !Operate format

SUBL Ra.rl,#b.ib,Rc.wq     !Operate format

Integer Overflow

SUBL Subtract Longword 

Integer Overflow Enable (/V)
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4.4.14 Scaled Longword Subtract

Format:

Operation:
CASE 
 S4SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
 S8SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled by 4
(for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
difference. 

SxSUBL Ra.rl,Rb.rl,Rc.wq     !Operate format

SxSUBL Ra.rl,#b.ib,Rc.wq     !Operate format

None

S4SUBL Scaled Subtract Longword by 4

S8SUBL Scaled Subtract Longword by 8

None
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4.4.15 Quadword Subtract

Format:

Operation:
Rc ←  Rav - Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from register Ra and the 64-bit difference is written to reg-
ister Rc. On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend (Rav) is
less unsigned than the subtrahend (Rbv), a borrow will occur.

SUBQ Ra.rq,Rb.rq,Rc.wq     !Operate format

SUBQ Ra.rq,#b.ib,Rc.wq     !Operate format

Integer Overflow

SUBQ Subtract Quadword 

Integer Overflow Enable (/V)
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4.4.16 Scaled Quadword Subtract

Format:

Operation:
CASE 
 S4SUBQ: Rc ← LEFT_SHIFT(Rav,2) - Rbv
 S8SUBQ: Rc ← LEFT_SHIFT(Rav,3) - Rbv
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled by 4
(for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to Rc. 

SxSUBQ Ra.rq,Rb.rq,Rc.wq   !Operate format

SxSUBQ Ra.rq,#b.ib,Rc.wq     !Operate format

None

S4SUBQ Scaled Subtract Quadword by 4

S8SUBQ Scaled Subtract Quadword by 8

None
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move integer
instructions perform conditionals without a branch. The shift instructions perform left and right
logical shift and right arithmetic shift. These are summarized in Table 4–6.

Software Note:
There is no arithmetic left shift instruction. Where an arithmetic left shift would be use
logical shift will do. For multiplying by a small power of two in address computatio
logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done with 
logical shift and a right arithmetic shift.

Table 4–6: Logical and Shift Instructions Summary

Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical
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4.5.1 Logical Functions

Format:

Operation:
Rc ← Rav AND Rbv !AND
Rc ← Rav OR Rbv !BIS
Rc ← Rav XOR Rbv !XOR
Rc ← Rav AND {NOT Rbv} !BIC
Rc ← Rav OR {NOT Rbv} !ORNOT
Rc ← Rav XOR {NOT Rbv} !EQV

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
These instructions perform the designated Boolean function between register Ra and register
Rb or a literal. The result is written to register Rc.

The NOT function can be performed by doing an ORNOT with zero (Ra = R31).

mnemonic Ra.rq,Rb.rq,Rc.wq     !Operate format

mnemonic Ra.rq,#b.ib,Rc.wq     !Operate format

None

AND Logical Product
BIC Logical Product with Complement

BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement
XOR Logical Difference

None
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4.5.2 Conditional Move Integer  

Format:

Operation:
IF TEST(Rav, Condition_based_on_Opcode) THEN

  Rc ←  Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is tested. If the specified relationship is true, the value Rbv is written to register
Rc.

CMOVxx Ra.rq,Rb.rq,Rc.wq    !Operate format

CMOVxx Ra.rq,#b.ib,Rc.wq    !Operate format

None

CMOVEQ CMOVE if Register Equal to Zero
CMOVGE CMOVE if Register Greater Than or Equal to Zero

CMOVGT CMOVE if Register Greater Than Zero
CMOVLBC CMOVE if Register Low Bit Clear

CMOVLBS CMOVE if Register Low Bit Set
CMOVLE CMOVE if Register Less Than or Equal to Zero

CMOVLT CMOVE if Register Less Than Zero
CMOVNE CMOVE if Register Not Equal to Zero

None
Instruction Descriptions 4–43



Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR  Rb,Rb,Rc

label: ...

For example, a branchless sequence for:

R1=MAX(R1,R2)

is:

CMPLT  R1,R2,R3 ! R3=1 if R1<R2
CMOVNE R3,R2,R1 ! Move R2 to R1 if R1<R2
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4.5.3 Shift Logical

Format:

Operation:
Rc ←  LEFT_SHIFT(Rav, Rbv<5:0>) !SLL
Rc ←  RIGHT_SHIFT(Rav, Rbv<5:0>) !SRL

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb or a literal.
The result is written to register Rc. Zero bits are propagated into the vacated bit positions.

SxL Ra.rq,Rb.rq,Rc.wq        !Operate format

SxL Ra.rq,#b.ib,Rc.wq        !Operate format

None

SLL Shift Left Logical 
SRL Shift Right Logical 

None
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4.5.4 Shift Arithmetic

Format:

Operation:
Rc ← ARITH_RIGHT_SHIFT(Rav, Rbv<5:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or a literal.
The result is written to register Rc. The sign bit (Rav<63>) is propagated into the vacated bit
positions.

SRA Ra.rq,Rb.rq,Rc.wq     !Operate format

SRA Ra.rq,#b.ib,Rc.wq     !Operate format

None

SRA Shift Right Arithmetic

None
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4.6 Byte Manipulation Instructions

Alpha implementations that support the BWX extension provide the following instructions for
loading, sign-extending, and storing bytes and words between a register and memory:

The AMASK instruction reports whether a particular Alpha implementation supports the BWX
extension. AMASK is described in Sections 4.11.1 and D.3. 

LDBU and STB are the recommended way to perform byte load and store operations on Alpha
implementations that support them; use them rather than the extract, insert, and mask byte
instructions described in this section. In particular, the implementation examples in this sec-
tion that illustrate byte operations are not appropriate for Alpha implementations that support
the BWX extension – instead use the recommendations in Section A.4.1.

In addition to LDBU and STB, Alpha provides the instructions in Table 4–7 for operatin
byte operands within registers.

Instruction Meaning Described in Section

LDBU/LDWU Load byte/word unaligned 4.2.2

SEXTB/SEXTW Sign-extend byte/word 4.6.5

STB/STW Store byte/word 4.2.6

Table 4–7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low
Instruction Descriptions 4–47



INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

SEXTB Sign extend byte

SEXTW Sign extend word

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Table 4–7: Byte-Within-Register Manipulation Instructions Summary 
(Continued)

Mnemonic Operation
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4.6.1 Compare Byte

Format:

Operation: 
FOR i FROM 0 TO 7 
 temp<8:0> ← 0 || Rav<i*8+7:i*8>} + {0 || NOT Rbv<i*8+7:i*8>} + 1
 Rc<i> ← temp<8>
END
Rc<63:8> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding bytes of Rav
and Rbv, storing the eight results in the low eight bits of Rc. The high 56 bits of Rc are set to
zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc corresponds to byte 1, and so forth. A result
bit is set in Rc if the corresponding byte of Rav is greater than or equal to Rbv (unsigned).

Notes:

The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize R1 to aligned QW address of string>
LOOP:
    LDQ    R2,  0(R1) ; Pick up 8 bytes
    LDA    R1,  8(R1) ; Increment string pointer
    CMPBGE R31, R2,R3 ; If NO bytes of zero, R3<7:0>=0
    BEQ    R3,  LOOP ; Loop if no terminator byte found
    ...  ; At this point, R3 can be used to 

; determine which byte terminated

CMPBGE Ra.rq,Rb.rq,Rc.wq    !Operate format

CMPBGE Ra.rq,#b.ib,Rc.wq    !Operate format

None

CMPBGE Compare Byte

None
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To compare two character strings for greater/equal/less:

<initialize R1 to aligned QW address of string1>
<initialize R2 to aligned QW address of string2>
LOOP:
    LDQ    R3,  0(R1)    ; Pick up 8 bytes of string1
    LDA    R1,  8(R1)    ; Increment string1 pointer
    LDQ    R4,  0(R2)    ; Pick up 8 bytes of string2
    LDA    R2,  8(R2)    ; Increment string2 pointer
    CMPBGE R31, R3, R6 ; Test for zeros in string1
    XOR    R3,  R4, R5    ; Test for all equal bytes
    BNE    R6,  DONE ; Exit if a zero found
    BEQ    R5,  LOOP ; Loop if all equal

DONE: CMPBGE R31, R5, R5          ; 
    ...

; At this point, R5 can be used to determine the first not-equal 
; byte position (if any), and R6 can be used to determine the
; position of the terminating zero in string1 (if any).

To range-check a string of characters in R1 for ‘0’…‘9’:

    LDQ    R2, lit0s    ; Pick up 8 bytes of the character 
                ; BELOW ‘0’ ‘////////’
    LDQ    R3, lit9s ; Pick up 8 bytes of the character 
                ; ABOVE ‘9’ ‘::::::::’
    CMPBGE R2, R1, R4  ; Some R4<i>=1 if character is LT ‘0’
    CMPBGE R1, R3, R5    ; Some R5<i>=1 if character is GT ‘9’
    BNE    R4, ERROR    ; Branch if some char too low
    BNE    R5, ERROR    ; Branch if some char too high
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4.6.2 Extract Byte

Format:

Operation:
CASE
 big_endian_data:  Rbv’ ← Rbv XOR 1112
 little_endian_data: Rbv’ ← Rbv       
ENDCASE

CASE 
  EXTBL: byte_mask ← 0000 00012
  EXTWx: byte_mask ← 0000 00112
  EXTLx: byte_mask ← 0000 11112
  EXTQx: byte_mask ← 1111 11112
ENDCASE

CASE 
   EXTxL:
    byte_loc ← Rbv’<2:0>*8
    temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
    Rc ← BYTE_ZAP(temp, NOT(byte_mask) )
   EXTxH:
    byte_loc ← 64 - Rbv’<2:0>*8
    temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
    Rc ← BYTE_ZAP(temp, NOT(byte_mask) )
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

EXTxx Ra.rq,Rb.rq,Rc.wq    !Operate format

EXTxx Ra.rq,#b.ib,Rc.wq    !Operate format

None

EXTBL Extract Byte Low
EXTWL Extract Word Low

EXTLL Extract Longword Low
EXTQL Extract Quadword Low

EXTWH Extract Word High
EXTLH Extract Longword High

EXTQH Extract Quadword High

None
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Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions, and then
extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left by 0 to 7 bytes,
inserts zeros into vacated bit positions, and then extracts 2, 4, or 8 bytes into register Rc. The
number of bytes to shift is specified by Rbv’<2:0>. The number of bytes to extract is speci-
fied in the function code. Remaining bytes are filled with zeros.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) = 5), the value of the aligned quadword containing X(R11) is CBAx xxxx, and
the value of the aligned quadword containing X+7(R11) is yyyH GFED, and the datum is
little-endian.

The examples below are the most general case unless otherwise noted; if more information is
known about the value or intended alignment of X, shorter sequences can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = CBAx xxxx
    LDQ_U  R2, X+7(R11)   ; Ignores va<2:0>, R2 = yyyH GFED
    LDA    R3, X(R11)    ; R3<2:0> = (X mod 8) = 5
    EXTQL  R1, R3, R1    ; R1 = 0000 0CBA
    EXTQH  R2, R3, R2    ; R2 = HGFE D000
    OR     R2, R1, R1    ; R1 = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned address X
is: 

    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = CBAx xxxx
    LDQ_U  R2, X+3(R11)   ; Ignores va<2:0>, R2 = yyyy yyyD
    LDA    R3, X(R11)    ; R3<2:0> = (X mod 8) = 5
    EXTLL  R1, R3, R1    ; R1 = 0000 0CBA
    EXTLH  R2, R3, R2    ; R2 = 0000 D000
    OR     R2, R1, R1    ; R1 = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned address X
is: 

    LDQ_U  R1,  X(R11)    ; Ignores va<2:0>, R1 = CBAx xxxx
    LDQ_U  R2,  X+3(R11)   ; Ignores va<2:0>, R2 = yyyy yyyD
    LDA    R3,  X(R11)    ; R3<2:0> = (X mod 8) = 5
    EXTLL  R1,  R3, R1    ; R1 = 0000 0CBA
    EXTLH  R2,  R3, R2    ; R2 = 0000 D000
    OR     R2,  R1, R1    ; R1 = 0000 DCBA
    ADDL   R31, R1, R1    ; R1 = ssss DCBA
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For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a word from unaligned address X is:

    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = yBAx xxxx
    LDQ_U  R2, X+1(R11)   ; Ignores va<2:0>, R2 = yBAx xxxx
    LDA    R3, X(R11)    ; R3<2:0> = (X mod 8) = 5
    EXTWL  R1, R3, R1    ; R1 = 0000 00BA
    EXTWH  R2, R3, R2    ; R2 = 0000 0000
    OR     R2, R1, R1    ; R1 = 0000 00BA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a word from unaligned address X is:

    LDQ_U  R1,  X(R11)    ; Ignores va<2:0>, R1 = yBAx xxxx
    LDQ_U  R2,  X+1(R11)   ; Ignores va<2:0>, R2 = yBAx xxxx
    LDA    R3,  X+1+1(R11)  ; R3<2:0> = 5+1+1 = 7
    EXTQL  R1,  R3, R1    ; R1 = 0000 000y
    EXTQH  R2,  R3, R2 ; R2 = BAxx xxx0
    OR     R2,  R1, R1    ; R1 = BAxx xxxy
    SRA    R1, #48, R1    ; R1 = ssss ssBA

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is: 

    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = yyAx xxxx
    LDA    R3, X(R11)    ; R3<2:0> = (X mod 8) = 5
    EXTBL  R1, R3, R1    ; R1 = 0000 000A

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a byte from address X is: 

    LDQ_U  R1, X(R11)   ; Ignores va<2:0>, R1 = yyAx xxxx
    LDA    R3, X+1(R11)  ; R3<2:0> = (X + 1) mod 8, i.e., 
                ; convert byte position within 
                ; quadword to one-origin based
    EXTQH  R1, R3,  R1   ; Places the desired byte into byte 7
                ; of R1.final by left shifting
                ; R1.initial by ( 8 - R3<2:0> ) byte
                ; positions
    SRA    R1, #56, R1   ; Arithmetic Shift of byte 7 down 
                ; into byte 0,

Optimized examples:
Assume that a word fetch is needed from 10(R3), where R3 is intended to contain a long-
word-aligned address. The optimized sequences below take advantage of the known constant
offset, and the longword alignment (hence a single aligned longword contains the entire word).
The sequences generate a Data Alignment Fault if R3 does not contain a longword-aligned
address. 
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For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending an aligned word from 10(R3) is:

    LDL    R1, 8(R3)    ; R1 = ssss BAxx
                ; Faults if R3 is not longword aligned
    EXTWL  R1, #2, R1    ; R1 = 0000 00BA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending an aligned word from 10(R3) is:

    LDL   R1, 8(R3)    ; R1 = ssss BAxx
                ; Faults if R3 is not longword aligned
    SRA   R1, #16, R1    ; R1 = ssss ssBA

Big-endian examples:
For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

   LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = xxxx xAyy
   LDA    R3, X(R11)    ; R3<2:0> = 5, shift will be 2 bytes
   EXTBL  R1, R3, R1     ; R1 = 0000 000A

The intended sequence for loading a quadword from unaligned address X(R11) is:

   LDQ_U  R1, X(R11)     ; Ignores va<2:0>, R1 = xxxxxABC
   LDQ_U  R2, X+7(R11)    ; Ignores va<2:0>, R2 = DEFGHyyy
   LDA    R3, X+7(R11)    ; R3<2:0> = 4, shift will be 3 bytes
   EXTQH  R1, R3, R1     ; R1 = ABC0 0000
   EXTQL  R2, R3, R2     ; R2 = 000D EFGH
   OR     R1, R2, R1     ; R1 = ABCD EFGH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for longwords
is X+3, and for words is X+1; for little-endian, these are all just X. Also note that the EXTQH
and EXTQL instructions are reversed with respect to the little-endian sequence.
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4.6.3 Byte Insert 

Format:

Operation:
CASE
 big_endian_data:  Rbv’ ← Rbv XOR 1112
 little_endian_data: Rbv’ ← Rbv
ENDCASE

CASE 
  INSBL: byte_mask ← 0000 0000 0000 00012
  INSWx: byte_mask ← 0000 0000 0000 00112
  INSLx: byte_mask ← 0000 0000 0000 11112
  INSQx: byte_mask ← 0000 0000 1111 11112
ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv’<2:0>)

CASE 
  INSxL:
    byte_loc ← Rbv’<2:0>*8
    temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
    Rc ← BYTE_ZAP(temp, NOT(byte_mask<7:0>))
  INSxH:
    byte_loc ← 64 - Rbv’<2:0>*8
    temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
    Rc ← BYTE_ZAP(temp, NOT(byte_mask<15:8>))
ENDCASE

Exceptions:

Instruction mnemonics:

INSxx Ra.rq,Rb.rq,Rc.wq    !Operate format

INSxx Ra.rq,#b.ib,Rc.wq    !Operate format

None

INSBL Insert Byte Low
INSWL Insert Word Low

INSLL Insert Longword Low
INSQL Insert Quadword Low

INSWH Insert Word High
INSLH Insert Longword High

INSQH Insert Quadword High
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Qualifiers:

Description:
INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros, storing the
result in register Rc. Register Rbv’<2:0> selects the shift amount, and the function code
selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions can generate a byte,
word, longword, or quadword datum that is spread across two registers at an arbitrary byte
alignment. 

None
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4.6.4 Byte Mask 

Format:

Operation:
CASE
 big_endian_data:  Rbv’← Rbv XOR 1112
 little_endian_data: Rbv’← Rbv
ENDCASE

CASE 
  MSKBL: byte_mask ← 0000 0000 0000 00012
  MSKWx: byte_mask ← 0000 0000 0000 00112
  MSKLx: byte_mask ← 0000 0000 0000 11112
  MSKQx: byte_mask ← 0000 0000 1111 11112
ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv’<2:0>)

CASE 
  MSKxL:
    Rc ← BYTE_ZAP(Rav, byte_mask<7:0>)
  MSKxH:
    Rc ← BYTE_ZAP(Rav, byte_mask<15:8>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

MSKxx Ra.rq,Rb.rq,Rc.wq    !Operate format

MSKxx Ra.rq,#b.ib,Rc.wq    !Operate format

None

MSKBL Mask Byte Low
MSKWL Mask Word Low

MSKLL Mask Longword Low
MSKQL Mask Quadword Low

MSKWH Mask Word High
MSKLH Mask Longword High

MSKQH Mask Quadword High

None
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Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result in register Rc.
Register Rbv’<2:0> selects the starting position of the field of zero bytes, and the function
code selects the maximum width: 1, 2, 4, or 8 bytes. The instructions generate a byte, word,
longword, or quadword field of zeros that can spread across two registers at an arbitrary byte
alignment. 

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is CBAx xxxx, the
value of the aligned quadword containing X+7(R11) is yyyH GFED, the value to be stored
from R5 is HGFE DCBA, and the datum is little-endian. Slight modifications similar to those
in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about the value
or intended alignment of X, shorter sequences can be used. 

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

    LDA    R6, X(R11)    ; R6<2:0> = (X mod 8) = 5
    LDQ_U  R2, X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = CBAx xxxx
    INSQH  R5, R6, R4    ; R4 = 000H GFED
    INSQL  R5, R6, R3    ; R3 = CBA0 0000
    MSKQH  R2, R6, R2    ; R2 = yyy0 0000
    MSKQL  R1, R6, R1    ; R1 = 000x xxxx
    OR     R2, R4, R2    ; R2 = yyyH GFED
    OR     R1, R3, R1    ; R1 = CBAx xxxx
    STQ_U  R2, X+7(R11)   ; Must store high then low for
    STQ_U  R1, X(R11)    ; degenerate case of aligned QW

The intended sequence for storing an unaligned longword R5 at X is:

    LDA    R6, X(R11)    ; R6<2:0> = (X mod 8) = 5
    LDQ_U  R2, X+3(R11)   ; Ignores va<2:0>, R2 = yyyy yyyD
    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = CBAx xxxx
    INSLH  R5, R6, R4    ; R4 = 0000 000D
    INSLL  R5, R6, R3    ; R3 = CBA0 0000
    MSKLH  R2, R6, R2    ; R2 = yyyy yyy0
    MSKLL  R1, R6, R1    ; R1 = 000x xxxx
    OR     R2, R4, R2    ; R2 = yyyy yyyD
    OR     R1, R3, R1    ; R1 = CBAx xxxx
    STQ_U  R2, X+3(R11)   ; Must store high then low for
    STQ_U  R1, X(R11)    ; degenerate case of aligned
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For software that is not designed to use the BWX extension, the intended sequence for storing
an unaligned word R5 at X is:

    LDA    R6, X(R11)    ; R6<2:0> = (X mod 8) = 5
    LDQ_U  R2, X+1(R11)   ; Ignores va<2:0>, R2 = yBAx xxxx
    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = yBAx xxxx
    INSWH  R5, R6, R4    ; R4 = 0000 0000
    INSWL  R5, R6, R3    ; R3 = 0BA0 0000
    MSKWH  R2, R6, R2    ; R2 = yBAx xxxx
    MSKWL  R1, R6, R1    ; R1 = y00x xxxx
    OR     R2, R4, R2    ; R2 = yBAx xxxx
    OR     R1, R3, R1    ; R1 = yBAx xxxx
    STQ_U  R2, X+1(R11)   ; Must store high then low for
    STQ_U  R1, X(R11)    ; degenerate case of aligned

For software that is not designed to use the BWX extension, the intended sequence for storing
a byte R5 at X is:

    LDA    R6, X(R11)    ; R6<2:0> = (X mod 8) = 5
    LDQ_U  R1, X(R11)    ; Ignores va<2:0>, R1 = yyAx xxxx
    INSBL  R5, R6, R3    ; R3 = 00A0 0000
    MSKBL  R1, R6, R1    ; R1 = yy0x xxxx
    OR     R1, R3, R1    ; R1 = yyAx xxxx
    STQ_U  R1, X(R11)    ; 
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4.6.5 Sign Extend 

Format:

Operation:
CASE     
 SEXTB:  Rc ← SEXT(Rbv<07:0>)
 SEXTW:  Rc ← SEXT(Rbv<15:0>)
ENDCASE                  

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The byte or word in register Rb is sign-extended to 64 bits and written to register Rc. Ra must
be R31.

Implementation Note:
The SEXTB and SEXTW instructions are supported in hardware on Alpha
implementations for which the AMASK instruction returns bit 0 set. SEXTB and SEXTW
are supported with software emulation in Alpha implementations for which AMASK does
not return bit 0 set. Software emulation of SEXTB and SEXTW is significantly slower
than hardware support.

SEXTx   Rb.rq,Rc.wq           !Operate format

SEXTx   #b.ib,Rc.wq           !Operate format

None

SEXTB Sign Extend Byte
SEXTW Sign Extend Word

None
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4.6.6 Zero Bytes 

Format:

Operation:
CASE 
  ZAP:
    Rc ← BYTE_ZAP(Rav, Rbv<7:0>)

  ZAPNOT:
    Rc ←  BYTE_ZAP(Rav, NOT Rbv<7:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
ZAP and ZAPNOT set selected bytes of register Ra to zero and store the result in register Rc.
Register Rb<7:0> selects the bytes to be zeroed. Bit 0 of Rbv corresponds to byte 0, bit 1 of
Rbv corresponds to byte 1, and so on. A result byte is set to zero if the corresponding bit of
Rbv is a one for ZAP and a zero for ZAPNOT.

ZAPx Ra.rq,Rb.rq,Rc.wq    !Operate format

ZAPx Ra.rq,#b.ib,Rc.wq    !Operate format

None

ZAP Zero Bytes
ZAPNOT Zero Bytes Not

None
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4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four data
formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-point and
quadword integer formats, between double and single floating, and between quadword and
longword integers. 

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations are
provided in the architecture. For backward compatibility, exact D_floating arithmetic may
be provided via software emulation. D_floating "format compatibility," in which binary
files of D_floating numbers may be processed but without the last 3 bits of fraction
precision, can be obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also encodes the
choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (not including loads or stores) that yield an F_floating or
G_floating zero result must materialize a true zero.

4.7.1 Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point registers in
canonical form, as subsets of double-precision values, with 11-bit exponents restricted to the
corresponding single-precision range, and with the 29 low-order fraction bits restricted to be all
zero.

Single-precision operations applied to canonical single-precision values give single-precision
results. Single-precision operations applied to non-canonical operands give UNPREDICT-
ABLE results. 

Longword integer values in floating-point registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in bits <28:0>.

4.7.2 Subsets and Faults

All floating-point operations may take floating disabled faults. Any subsetted floating-point
instruction may take an Illegal Instruction Trap. These faults are not explicitly listed in the
description of each instruction.
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All floating-point loads and stores may take memory management faults (access control viola-
tion, translation not valid, fault on read/write, data alignment).

The floating-point enable (FEN) internal processor register (IPR) allows system software to
restrict access to the floating-point registers.

If a floating-point instruction is implemented and FEN = 0, attempts to execute the instruction
cause a floating disabled fault.

If a floating-point instruction is not implemented, attempts to execute the instruction cause an
Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations, either,
or none.

Some floating-point instructions are common to the VAX and IEEE subsets, some are VAX
only, and some are IEEE only. These are designated in the descriptions that follow. If either
subset is implemented, all the common instructions must be implemented.

An implementation that includes IEEE floating-point may subset the ability to perform round-
ing to plus infinity and minus infinity. If not implemented, instructions requesting these
rounding modes take Illegal Instruction Trap.

An implementation that includes IEEE floating-point may implement any subset of the Trap
Disable flags (DNOD, DZED, INED, INVD, OVFD, and UNFD) and Denormal Control flags
(DNZ and UNDZ) in the FPCR:

• If a Trap Disable flag is not implemented, then the corresponding trap occurs as usual. 

• If DNZ is not implemented, then any IEEE operation with a denormal input must take
an Invalid Operation Trap. 

• If UNDZ is not implemented, then any IEEE operation that includes a /S qualifier that
underflows must take an Underflow Trap. 

• If DZED is implemented, then IEEE division of 0/0 must be treated as an invalid opera-
tion instead of a division by zero. 

Any unimplemented bits in the FPCR are read as zero and ignored when set.

4.7.3 Definitions

The following definitions apply to Alpha floating-point support.

Alpha finite number
A floating-point number with a definite, in-range value. Specifically, all numbers in the inclu-
sive ranges –MAX through –MIN, zero, and +MIN through +MAX, where MAX is the larg
non-infinite representable floating-point number and MIN is the smallest non-zero repre
able normalized floating-point number. 
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For VAX floating-point, finites do not include reserved operands or dirty zeros (this differs
from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-point, finites do
not include infinites, NaNs, or denormals, but do include minus zero.

denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies between
zero and the smallest finite number.

dirty zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero form.

infinity

An IEEE floating-point bit pattern that represents plus or minus infinity.

LSB
The least significant bit. For a positive finite representable number A, A + 1 LSB is the next
larger representative number, and A + ½ LSB is exactly halfway between A and the next 
representable number. For a positive representable number A whose fraction field is 
zeros, A – 1 LSB is the next smaller representable number, and A – ½ LSB is exactly ha
between A and the next smaller representable number.

non-finite number
An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand.

Not-a-Number

An IEEE floating-point bit pattern that represents something other than a number. This c
in two forms: signaling NaNs (for Alpha, those with an initial fraction bit of 0) and quiet Na
(for Alpha , those with initial fraction bit of 1).

representable result

A real number that can be represented exactly as a VAX or IEEE floating-point number
finite precision and bounded exponent range.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an arithmeti
but before the trap is actually taken.

true result
The mathematically correct result of an operation, assuming that the input operand values
exact. The true result is typically rounded to the nearest representable result.
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true zero

The value +0, represented as exactly 64 zeros in a floating-point register.

4.7.4 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and fraction. The sign
is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is 23, 52, 55, or 112 bits. Some
encodings represent special values:

The values of MIN and MAX for each of the five floating-point data formats are:

Sign Exponent Fraction
Vax 
Meaning

VAX 
Finite

IEEE 
Meaning

IEEE 
Finite

x All-1’s Non-zero Finite Yes +/–NaN No

x All-1’s 0 Finite Yes +/–Infinity No

0 0 Non-zero Dirty zero No +Denormal No

1 0 Non-zero Resv. operand No –Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No –0 Yes

x Other x Finite Yes finite Yes

Data 
Format

MIN MAX

F_floating 2**–127 * 0.5 2**127 *(1.0 – 2**–24)

(0.293873588e–38) (1.7014117e38)

G_floating 2**–1023 * 0.5 2**1023 * (1.0 – 2**–53)
(0.5562684646268004e–308) (0.89884656743115785407e308)

S_floating 2**–126 * 1.0 2**127 * (2.0 – 2**–23)

(1.17549435e–38) (3.40282347e38)

T_floating 2**–1022 * 1.0 2**1023 * (2.0 – 2**–52)
(2.2250738585072013e–308) (1.7976931348623158e308)

X_floating 2**–16382*1.0 2**16383*(2.0–2**–112)

(See below†)

† (1.18973149535723176508575932662800702e4932)

(See below‡)

‡ (3.36210314311209350626267781732175260e–4932)
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4.7.5 Rounding Modes

All rounding modes map a true result that is exactly representable to that representable value.

VAX Rounding Modes
For VAX floating-point operations, two rounding modes are provided and are specified in each
instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute value (sometimes called
biased rounding away from zero); maps true results ≥ MAX + 1/2 LSB in magnitude to an
overflow; maps true results < MIN – 1/4 LSB in magnitude to an underflow. 

Chopped VAX rounding maps the true result to the smaller in magnitude of two surroun
representable results; maps true results ≥ MAX + 1 LSB in magnitude to an overflow; map
true results < MIN in magnitude to an underflow. 

IEEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal rounding (
ased round to nearest), rounding toward minus infinity, round toward zero, and roun
toward plus infinity. The first three can be specified in the instruction. Rounding toward
infinity can be obtained by setting the Floating-point Control Register (FPCR) to select it and
then specifying dynamic rounding mode in the instruction (See Section 4.7.8). Alpha 
arithmetic does rounding before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable results
true results exactly halfway between mapped to the one whose fraction ends in 0 (som
called unbiased rounding to even); maps true results ≥ MAX + 1/2 LSB in magnitude to an
overflow; maps true results < MIN – 1/2 LSB in magnitude to an underflow. 

Plus infinity IEEE rounding maps the true result to the larger of two surrounding represen
results; maps true results > MAX in magnitude to an overflow; maps positive true re
≤ +MIN – 1 LSB to an underflow; and maps negative true results > –MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding repre
able results; maps true results > MAX in magnitude to an overflow; maps positive true re
< +MIN to an underflow; and maps negative true results ≥ –MIN + 1 LSB to an underflow. 

Chopped IEEE rounding maps the true result to the smaller in magnitude of two surrou
representable results; maps true results ≥ MAX + 1 LSB in magnitude to an overflow; and
maps non-zero true results < MIN in magnitude to an underflow. 

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
described in more detail in Section 4.7.8.
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The following tables summarize the floating-point rounding modes:

4.7.6 Computational Models

The Alpha architecture provides a choice of floating-point computational models. 

There are two computational models available on systems that implement the VAX float-
ing-point subset:

• VAX-format arithmetic with precise exceptions

• High-performance VAX-format arithmetic

There are three computational models available on systems that implement the IEEE float-
ing-point subset:

• IEEE compliant arithmetic

• IEEE compliant arithmetic without inexact exception

• High-performance IEEE-format arithmetic

4.7.6.1 VAX-Format Arithmetic with Precise Exceptions

This model provides floating-point arithmetic that is fully compatible with the floating-point
arithmetic provided by the VAX architecture. It provides support for VAX non-finites and
gives precise exceptions.

This model is implemented by using VAX floating-point instructions with the /S, /SU, and /SV
trap qualifiers. Each instruction can determine whether it also takes an exception on underflow
or integer overflow. The performance of this model depends on how often computations
involve non-finite operands. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).

VAX Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Chopped /C

IEEE Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’

Minus infinity /M

Chopped /C
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4.7.6.2 High-Performance VAX-Format Arithmetic

This model provides arithmetic operations on VAX finite numbers. An imprecise arithmetic
trap is generated by any operation that involves non-finite numbers, floating overflow, and
divide-by-zero exceptions.

This model is implemented by using VAX floating-point instructions with a trap qualifier other
than /S, /SU, or /SV. Each instruction can determine whether it also traps on underflow or inte-
ger overflow. This model does not require the overhead of an operating system completion
handler and can be the faster of the two VAX models.

4.7.6.3 IEEE-Compliant Arithmetic

This model provides floating-point arithmetic that fully complies with the IEEE Standard for
Binary Floating-Point Arithmetic. It provides all of the exception status flags that are in the
standard. It provides a default where all traps and faults are disabled and where IEEE
non-finite values are used in lieu of exceptions. 

Alpha operating systems provide additional mechanisms that allow the user to specify dynami-
cally which exception conditions should trap and which should proceed without trapping. The
operating systems also include mechanisms that allow alternative handling of denormal val-
ues. See Appendix B and the appropriate operating system documentation for a description of
these mechanisms.

This model is implemented by using IEEE floating-point instructions with the /SUI
or /SVI trap qualifiers. The performance of this model depends on how often computations
involve inexact results and non-finite operands and results. Performance also depends on how
the Alpha system chooses to trade off implementation complexity between hardware and oper-
ating system completion handlers (see Section 4.7.7.3). This model provides acceptable
performance on Alpha systems that implement the inexact disable (INED) bit in the FPCR.
Performance may be slow if the INED bit is not implemented.

4.7.6.4 IEEE-Compliant Arithmetic Without Inexact Exception

This model is similar to the model in Section 4.7.6.3, except this model does not signal inexact
results either by the inexact status flag or by trapping. Combining routines that are compiled
with this model and routines that are compiled with the model in Section 4.7.6.3 can give an
application better control over testing when an inexact operation will affect computational
accuracy.

This model is implemented by using IEEE floating-point instructions with the /SU or /SV trap
qualifiers. The performance of this model depends on how often computations involve
non-finite operands and results. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).
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4.7.6.5 High-Performance IEEE-Format Arithmetic

This model provides arithmetic operations on IEEE finite numbers and notifies applications of
all exceptional floating-point operations. An imprecise arithmetic trap is generated by any
operation that involves non-finite numbers, floating overflow, divide-by-zero, and invalid
operations. Underflow results are set to zero. Conversion to integer results that overflow are set
to the low-order bits of the integer value.

This model is implemented by using IEEE floating-point instructions with a trap qualifier other
than /SU, /SV, /SUI, or /SVI. Each instruction can determine whether it also traps on under-
flow or integer overflow. This model does not require the overhead of an operating system
completion handler and can be the fastest of the three IEEE models.

4.7.7 Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions, all sig-
naled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow

• Inexact result

• Integer overflow (conversion to integer only)

4.7.7.1 VAX Trapping Modes

This section describes the characteristics of the four VAX trapping modes, which are summa-
rized in Table 4–8.

When no trap mode is specified (the default):

• Arithmetic is performed on VAX finite numbers. 
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– a floating overflow
– a divide-by-zero 

• Traps are imprecise and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction. 

• An underflow produces a zero result without trapping.
• A conversion to integer that overflows uses the low-order bits of the integer as the

result without trapping.
• The result of any operation that traps is UNPREDICTABLE. 
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When /U or /V mode is specified:

• Arithmetic is performed on VAX finite numbers. 
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero

• Traps are imprecise and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction. 

• An underflow trap produces a zero result.
• A conversion to integer trapping with an integer overflow produces the low-order bits

of the integer value. 
• The result of any other operation that traps is UNPREDICTABLE.

When /S mode is specified:

• Arithmetic is performed on all VAX values, both finite and non-finite. 
• A VAX dirty zero is treated as zero. 
• Exceptions are signaled for:

– a VAX reserved operand, which generates an invalid operation exception
– a floating overflow
– a divide-by-zero

• Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values.  See Section 4.7.7.3.

• An operation that underflows produces a zero result without taking an exception. 
• A conversion to integer that overflows uses the low-order bits of the integer as the

result, without taking an exception. 
• When an operation takes an exception, the result of the operation is UNPREDICT-

ABLE.

When /SU or /SV mode is specified:

• Arithmetic is performed on all VAX values, both finite and non-finite. 
• A VAX dirty zero is treated as zero. 
• Exceptions are signaled for:

– a VAX reserved operand, which generates an invalid operation exception
– an underflow 
– an integer overflow
– a floating overflow
– a divide-by-zero

• Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values.  See Section 4.7.7.3.

• An underflow exception produces a zero. 
• A conversion to integer exception with integer overflow produces the low-order bits of

the integer value. 
• The result of any other operation that takes an exception is UNPREDICTABLE.
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A summary of the VAX trapping modes, instruction notation, and their meaning follows in
Table 4–8:

4.7.7.2 IEEE Trapping Modes

This section describes the characteristics of the four IEEE trapping modes, which are su
rized in Table 4–9.

When no trap mode is specified (the default):

• Arithmetic is performed on IEEE finite numbers. 
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– a floating overflow
– a divide-by-zero
– an invalid operation 

• Traps are imprecise, and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction. 

• An underflow produces a zero result without trapping. 
• A conversion to integer that overflows uses the low-order bits of the integer as the

result without trapping.
• When an operation traps, the result of the operation is UNPREDICTABLE. 

When /U or /V mode is specified :

• Arithmetic is performed on IEEE finite numbers. 
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero
– an invalid operation 

Table 4–8: VAX Trapping Modes Summary

Trap Mode Notation Meaning

Underflow disabled No qualifier
/S

Imprecise
Precise exception completion

Underflow enabled /U
/SU

Imprecise
Precise exception completion

Integer overflow disabled No qualifier
/S

Imprecise
Precise exception completion

Integer overflow enabled /V
/SV

Imprecise
Precise exception completion
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• Traps are imprecise, and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction. 

• An underflow trap produces a zero. 
• A conversion to integer trap with an integer overflow produces the low-order bits of the

integer. 
• The result of any other operation that traps is UNPREDICTABLE.

When /SU or /SV mode is specified:

• Arithmetic is performed on all IEEE values, both finite and non-finite. 
• Alpha systems support all IEEE features except inexact exception (which requires /SUI

or /SVI):
– The IEEE standard specifies a default where exceptions do not fault or trap.In

bination with the FPCR, this mode allows disabling exceptions and producing 
IEEE compliant nontrapping results. See Sections 4.7.7.10 and 4.7.7.11. 

– Each Alpha operating system provides a way to optionally signal IEEE floating
point exceptions. This mode enables the IEEE status flags that keep a record 
each exception that is encountered. An Alpha operating system uses the IEEE
ing-point control (FP_C) quadword, described in Section B.2.1, to maintain the
IEEE status flags and to enable calls to IEEE user signal handlers.

• Exceptions signaled in this mode are precise and an application can locate the instruc-
tion that caused the exception, along with its operand values. See Section 4.7.7.3.

When /SUI or /SVI mode is specified:

• Arithmetic is performed on all IEEE values, both finite and non-finite. 
• Inexact exceptions are supported, along with all the other IEEE features supported by

the /SU or /SV mode.

A summary of the IEEE trapping modes, instruction notation, and their meaning follows in
Table 4–9:

Table 4–9: Summary of IEEE Trapping Modes

Trap Mode Notation Meaning

Underflow disabled and 
inexact disabled

No qualifier Imprecise

Underflow enabled and 
inexact disabled

/U
/SU

Imprecise
Precise exception completion

Underflow enabled and 
inexact enabled

/SUI Precise exception completion

Integer overflow disabled and 
inexact disabled

No qualifier Imprecise
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4.7.7.3 Arithmetic Trap Completion

Because floating-point instructions may be pipelined, the trap PC can be an arbitrary number
of instructions past the one triggering the trap. Those instructions that are executed after the
trigger instruction of an arithmetic trap are collectively referred to as the trap shadow of the
trigger instruction. 

Marking floating-point instructions for exception completion with any valid qualifier combina-
tion that includes the /S qualifier enables the completion of the triggering instruction. For any
instruction so marked, the output register for the triggering instruction cannot also be one of
the input registers, so that an input register cannot be overwritten and the input value is avail-
able after a trap occurs.

See Section B.2  for more information.

The AMASK instruction reports how the arithmetic trap should be completed:

• If AMASK returns with bit 9 clear, floating-point traps are imprecise. Exception com-
pletion requires that generated code must obey the trap shadow rules in Section
4.7.7.3.1, with a trap shadow length as described in Section 4.7.7.3.2. 

• If AMASK returns with bit 9 set, the hardware implements precise floating-point traps.
If the instruction has any valid qualifier combination that includes /S, the trap PC points
to the instruction that immediately follows the instruction that triggered the trap. The
trap shadow contains zero instructions; exception completion does not require that the
generated code follow the conditions in Section 4.7.7.3.1 and the length rules in Section
4.7.7.3.2.

4.7.7.3.1 Trap Shadow Rules

For an operating system (OS) completion handler to complete non-finite operands and excep-
tions, the following conditions must hold.

Conditions 1 and 2, below, allow an OS completion handler to locate the trigger instruction by
doing a linear scan backwards from the trap PC while comparing destination registers in the
trap shadow with the registers that are specified in the register write mask parameter to the
arithmetic trap. 

Integer overflow enabled and
inexact disabled

/V
/SV

Imprecise
Precise exception completion

Integer overflow enabled and 
inexact enabled

/SVI Precise exception completion 

Table 4–9: Summary of IEEE Trapping Modes (Continued)

Trap Mode Notation Meaning
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Condition 3 allows an OS completion handler to emulate the trigger instruction with its origi-
nal input operand values. 

Condition 4 allows the handler to re-execute instructions in the trap shadow with their original
operand values. 

Condition 5 prevents any unusual side effects that would cause problems on repeated execu-
tion of the instructions in the trap shadow.

Conditions:

1. The destination register of the trigger instruction may not be used as the destination reg-
ister of any instruction in the trap shadow.

2. The trap shadow may not include any branch or jump instructions.

3. An instruction in the trap shadow may not modify an input to the trigger instruction.

4. The value in a register or memory location that is used as input to some instruction in
the trap shadow may not be modified by a subsequent instruction in the trap shadow
unless that value is produced by an earlier instruction in the trap shadow.

5. The trap shadow may not contain any instructions with side effects that interact with
earlier instructions in the trap shadow or with other parts of the system. Examples of
operations with prohibited side effects are:

– Modifications of the stack pointer or frame pointer that can change the accessibility
of stack variables and the exception context that is used by earlier instructio
the trap shadow. 

– Modifications of volatile values and access to I/O device registers.

– If order of exception reporting is important, taking an arithmetic trap by an inte
instruction or by a floating-point instruction that does not include a /S quali
either of which can report exceptions out of order. 

An instruction may be in the trap shadows of multiple instructions that include a /S qua
That instruction must obey all conditions for all those trap shadows. For example, the de
tion register of an instruction in multiple trap shadows must be different than the destin
registers of each possible trigger instruction.

4.7.7.3.2 Trap Shadow Length Rules

The trap shadow length rules in Table 4–10 apply only to those floating-point instructions
any valid qualifier combination that includes a /S trap qualifier. Further, the instructio
which the trap shadow extends is not part of the trap shadow and that instruction is no
cuted prior to the arithmetic trap that is signaled by the trigger instruction.

Implementation notes:

• On Alpha implementations for which the IMPLVER instruction returns the value 0, the
trap shadow of an instruction may extend after the result is consumed by a float-
ing-point STx instruction. On all other implementations, the trap shadow ends when a
result is consumed. 

• Because Alpha implementations need not execute instructions that have R31 or F31 as
the destination operand,  instructions with such an destination should not be thought to
end a trap shadow.
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Table 4–10: Trap Shadow Length Rules

Floating-Point 
Instruction Group

Trap Shadow Extends Until Any of the Following 
Occurs:

Floating-point operate 
(except DIVx and SQRTx)

• Encountering a CALL_PAL, EXCB, or TRAPB
instruction.

• The result is consumed by any instruction except
floating-point STx.

• The fourth instruction† after the result is consumed by
a floating-point STx instruction.

Or, following the floating-point STx of the result, the
result of a LDx that loads the stored value is
consumed by any instruction.

• The result of a subsequent floating-point operate
instruction is consumed by any instruction except
floating-point STx.

• The second instruction† after the result of a subse-
quent floating-point operate instruction is consumed
by a floating-point STx instruction.

• The result of a subsequent floating-point DIVx or
SQRTx instruction is consumed by any instruction.

Floating-point DIVx
• Encountering a CALL_PAL, EXCB, or TRAPB

instruction.

• The result is consumed by any instruction except
floating-point STx.

• The fourth instruction† after the result is consumed by
a floating-point STx instruction.

Or, following the floating-point STx of the result, the
result of a LDx that loads the stored value is
consumed by any instruction.

• The result of a subsequent floating-point DIVx is con-
sumed by any instruction.
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4.7.7.4 Invalid Operation (INV) Arithmetic Trap

An invalid operation arithmetic trap is signaled if an operand is a non-finite number or if an
operand is invalid for the operation to be performed. (Note that CMPTxy does not trap on plus
or minus infinity.) Invalid operations are:

• Any operation on a signaling NaN.

• Addition of unlike-signed infinities or subtraction of like-signed infinities, such as
(+infinity + –infinity) or (+infinity – +infinity).

• Multiplication of 0∗infinity.

• IEEE division of 0/0 or infinity/infinity. 

• Conversion of an infinity or NaN to an integer.

• CMPTLE or CMPTLT when either operand is a NaN.

• SQRTx of a negative non-zero number.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

IEEE-compliant system software must also supply an invalid operation indication to the user
for x REM 0 and for conversions to integer that take an integer overflow trap.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, which
IEEE compliant software must change to an invalid operation trap for the user. 

Floating-point SQRTx
• Encountering a CALL_PAL, EXCB, or TRAPB

instruction.

• The result is consumed by any instruction.

• The result of a subsequent SQRTx instruction is con-
sumed by any instruction.

† The length of four instructions is a conservative estimate of how far the trap shadow may 
extend past a consuming floating-point STx instruction. The length of two instructions is a 
conservative estimate of how far the trap shadow may extend after a subsequent float-
ing-point operate instruction is consumed by a floating-point STx instruction. Compilers can 
make a more precise estimate by consulting the DECchip 21064 and DECchip 21064A 
Alpha AXP Microprocessors Hardware Reference Manual, EC-QD2RA-TE.

Table 4–10: Trap Shadow Length Rules (Continued)

Floating-Point 
Instruction Group

Trap Shadow Extends Until Any of the Following 
Occurs:
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An implementation may choose not to take an INV trap for a valid IEEE operation that
involves denormal operands if:

• The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

• The implementation supports the DNZ (denormal operands to zero) bit and DNZ is set.

• The instruction produces the result and exceptions required by Section 4.7.10, as modi-
fied by the DNZ bit described in Section 4.7.7.11.

An implementation may choose not to take an INV trap for a valid IEEE operation that
involves denormal operands, and direct hardware implementation of denormal arithmetic is
permitted if:

• The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

• The implementation supports both the DNOD (denormal operand exception disable) bit
and the DNZ (denormal operands to zero) bit and DNOD is set while DNZ is clear.

• The instruction produces the result and exceptions required by Section 4.7.10, possibly
modified by the UDNZ bit described in Section 4.7.7.11.

Regardless of the setting of the INVD (invalid operation disable) bit, the implementation may
choose not to trap on valid operations that involve quiet NaNs and infinities as operands for
IEEE instructions that are modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

4.7.7.5 Division by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid operation
trap and the denominator is zero. 

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, which
IEEE compliant software must change to an invalid operation trap for the user. 

4.7.7.6 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude the largest
finite number of the destination format. 

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.
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4.7.7.7 Underflow (UNF) Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest finite num-
ber of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result register. In the
case of an IEEE operation that takes an underflow arithmetic trap, a true zero is stored even if
the result after rounding would have been –0 (underflow below the negative denormal ran

If an underflow occurs and underflow traps are enabled by the instruction, an underflow 
metic trap is signaled. However, under some conditions, the FPCR can dynamically disa
trap, as described in Section 4.7.7.10, producing the result described in Section 4.7.10, a
ified by the UNDZ bit described in Section 4.7.7.11.

4.7.7.8 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded result.

If an inexact result occurs, the normal rounded result is still stored in the result register
inexact result occurs and inexact result traps are enabled by the instruction, an inexac
arithmetic trap is signaled. However, under some conditions, the FPCR can dynamical
able the trap; see Section 4.7.7.10 for information. 

4.7.7.9 Integer Overflow (IOV) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the rou
result is outside the range –2**63..2**63–1. In conversions from quadword integer to l
word integer, an integer overflow occurs if the result is outside the range –2**31..2**31–1

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the low-o
64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the instruction, an
ger overflow arithmetic trap is signaled. 

4.7.7.10 IEEE Floating-Point Trap Disable Bits

In the case of IEEE exception completion modes, any of the traps described in Sections 
through 4.7.7.9 may be disabled by setting the appropriate trap disable bit in the FPCR
trap disable bits only affect the IEEE trap modes when the instruction is modified by any
qualifier combination that includes the /S (exception completion) qualifier. The trap dis
bits (DNOD, DZED, INED, INVD, OVFD, and UNFD) do not affect any of the VAX tra
modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware impl
tation sets the result of the operation to the nontrapping result value as specified in the
standard and Section 4.7.10 and modified by the denormal control bits. If the implemen
is unable to calculate the required result, it ignores the trap disable bit and signals a 
usual. 

Note that a hardware implementation may choose to support any subset of the trap disab
including the empty subset.
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4.7.7.11 IEEE Denormal Control Bits

In the case of IEEE exception completion modes, the handling of denormal operands and
results is controlled by the DNZ and UNDZ bits in the FPCR. These denormal control bits only
affect denormal handling by IEEE instructions that are modified by any valid qualifier combi-
nation that includes the /S (exception completion) qualifier.

The denormal control bits apply only to the IEEE operate instructions – ADD, SUB, MUL,
DIV, SQRT, CMPxx, and CVT with floating-point source operand.

If both the UNFD (underflow disable) bit and the UNDZ (underflow to zero) bit are set in
FPCR, the implementation sets the result of an underflow operation to a true zero resu
zeroing of a denormal result by UNDZ must also be treated as an inexact result.

If the DNZ (denormal operands to zero) bit is set in the FPCR, the implementation treats
denormal operand as if it were a signed zero value. The source operands in the register
changed. If DNZ is set, IEEE operations with any valid qualifier combination that includes
qualifier signal arithmetic traps as if any denormal operand were zero; that is, with DNZ s

• An IEEE operation with a denormal operand never generates an overflow, underflow, or
inexact result arithmetic trap.

• Dividing by a denormal operand is a division by zero or invalid operation as appropri-
ate.

• Multiplying a denormal by infinity is an invalid operation.

• A SQRT of a negative denormal produces a –0 instead of an invalid operation.

• A denormal operand, treated as zero, does not take the denormal operand exception trap
controlled by the DNOD bit in the FPCR.

Note that a hardware implementation may choose to support any subset of the denormal con-
trol bits, including the empty subset.

4.7.8 Floating-Point Control Register (FPCR)

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its function
field (function field bits <12:11> = 11), the rounding mode to be used for the instruction is
derived from the FPCR register. The layout of the rounding mode bits and their assignments
matches exactly the format used in the 11-bit function field of the floating-point operate
instructions. The function field is described in Section 4.7.9. 

In addition, the FPCR gives a summary of each exception type for the exception conditions
detected by all IEEE floating-point operates thus far, as well as an overall summary bit that
indicates whether any of these exception conditions has been detected. The individual excep-
tion bits match exactly in purpose and order the exception bits found in the exception summary
quadword that is pushed for arithmetic traps. However, for each instruction, these exception
bits are set independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that the excep-
tional condition was encountered by an instruction is still  recorded in the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs to both
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VAX and IEEE subsets, appropriately set the FPCR exception bits. It is UNPREDICTABLE
whether floating-point operates that belong only to the VAX floating-point subset set the
FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one. Once set
to one, these exception bits are only cleared when software writes zero into these bits by writ-
ing a new value into the FPCR. 

Section 4.7.2 allows certain of the FPCR bits to be subsetted.

The format of the FPCR is shown in Figure 4–1 and described in Table 4–11.

Figure 4–1: Floating-Point Control Register (FPCR) Format

Table 4–11: Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to 
FPCR<57 |56 | 55 | 54 | 53 | 52>.

62 Inexact Disable (INED)†. Suppress INE trap and place correct IEEE nontrapping
result in the destination register.

61 Underflow Disable (UNFD)†. Suppress UNF trap and place correct IEEE nontrap-
ping result in the destination register if the implementation is capable of produc-
ing correct IEEE nontrapping result. The correct result value is determined
according to the value of the UNDZ bit.

60 Underflow to Zero (UNDZ)†. When set together with UNFD, on underflow, the
hardware places a true zero (64 bits of zero) in the destination register rather than
the result specified by the IEEE standard.

59–58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by 
IEEE floating-point operate instruction when the instruction’s function field spec
ifies dynamic mode (/D). Assignments are:
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FPCR is read from and written to the floating-point registers by the MT_FPCR and MF_FPCR
instructions respectively, which are described in Section 4.7.8.1.

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide oper-
ation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51 Overflow Disable (OVFD)†. Suppress OVF trap and place correct IEEE nontrap-
ping result in the destination register if the implementation is capable of produc-
ing correct IEEE nontrapping results.

50 Division by Zero Disable (DZED)†. Suppress DZE trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable of
producing correct IEEE nontrapping results.

49 Invalid Operation Disable (INVD)†. Suppress INV trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable of
producing correct IEEE nontrapping results.

48 Denormal Operands to Zero (DNZ)†. Treat all denormal operands as a signed zero
value with the same sign as the denormal. 

47 Denormal Operand Exception Disable (DNOD)†. Suppress INV trap for valid
operations that involve denormal operand values and place the correct IEEE non-
trapping result in the destination register if the implementation is capable of pro-
cessing the denormal operand. If the result of the operation underflows, the
correct result is determined according to the value of the UNDZ bit. If DNZ is set,
DNOD has no effect because a denormal operand is treated as having a zero value
instead of a denormal value. 

46–0 Reserved. Read as Zero. Ignored when written.

† Bit only has meaning for IEEE instructions when any valid qualifier combination that 
includes exception completion (/S) is specified.

Table 4–11: Floating-Point Control Register (FPCR) Bit Descriptions (Continued)

Bit Description (Meaning When Set)
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FPCR and the instructions to access it are required for an implementation that supports float-
ing-point (see Section 4.7.8). On implementations that do not support floating-point, the
instructions that access FPCR (MF_FPCR and MT_FPCR) take an Illegal Instruction Trap.

Software Note:
Support for FPCR is required on a system that supports the OpenVMS Alpha operating
system even if that system does not support floating-point.

4.7.8.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of float-
ing-point instructions, accessing the FPCR must be synchronized with other floating-point
instructions. An EXCB instruction must be issued both prior to and after accessing the FPCR
to ensure that the FPCR access is synchronized with the execution of previous and subsequent
floating-point instructions; otherwise synchronization is not ensured. 

Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that only
floating-point instructions issued after the second EXCB are affected by and affect the new
value of the FPCR. Issuing an EXCB followed by an MF_FPCR followed by another EXCB
ensures that the value read from the FPCR only records the exception information for float-
ing-point instructions issued prior to the first EXCB.

Consider the following example:

ADDT/D
EXCB ;1
MT_FPCR F1,F1,F1
EXCB ;2
SUBT/D

Without the first EXCB, it is possible in an implementation for the ADDT/D to execute in par-
allel with the MT_FPCR. Thus, it would be UNPREDICTABLE whether the ADDT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary were subsequently set by the ADDT/D.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to execute in
parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether the SUBT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary field of FPCR were previously set by the SUBT/D.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that code
needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should be issued before
attempting to write the FPCR if the code expects changes to bits <59:52> not to have depen-
dencies with prior instructions. An EXCB should be issued after attempting to write the FPCR
if the code expects subsequent instructions to have dependencies with changes to bits <59:52>.
  4–82   Alpha Architecture Handbook
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4.7.8.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

Software Note:

Compaq software should initialize FPCR<DYN> = 10 during program activation. Using
this default, a program can be coded to use only dynamic rounding without the need to
explicitly set the rounding mode to normal rounding in its start-up code. 

Program activation normally clears all other fields in the FPCR. However, this behavior
may depend on the operating system.

4.7.8.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR value of one
process does not affect the rounding behavior and exception summary of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by image activa-
tion) is valid for the entirety of the program and remains in effect until subsequently changed
by the programmer or until image run-down occurs. 

Software Notes:
The following software notes apply to saving and restoring the FPCR:

1. The IEEE standard precludes saving and restoring the FPCR across subroutine calls. 

2. The IEEE standard requires that an implementation provide status flags that are set
whenever the corresponding conditions occur and are reset only at the user’s request
The exception bits in the FPCR do not satisfy that requirement, because they c
spuriously set by instructions in a trap shadow that should not have been execut
the trap been taken synchronously. 

The IEEE status flags can be provided by software (as software status bits) as fol

Trap interface software (usually the operating system) keeps a set of softw
status bits and a mask of the traps that the user wants to receive. Code is ge
with the /SUI qualifiers. For a particular exception, the software clears 
corresponding trap disable bit if either the corresponding software status bit is 0 o
if the user wants to receive such traps. If a trap occurs, the software locate
offending instruction in the trap shadow, simulates it and sets any of the soft
status bits that are appropriate. Then, the software either delivers the trap 
user program or disables further delivery of such traps. The user program 
interface to this trap interface software to set or clear any of the software status 
or to enable or disable floating-point traps. See Section B.2.

When such a scheme is being used, the trap disable bits and denormal contr
should be modified only by the trap interface software. If the disable bits ar
spuriously cleared, unnecessary traps may occur. If they are spuriously se
software may fail to set the correct values in the software status bits. Programs s
call routines in the trap interface software to set or clear bits in the FPCR.
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Compaq software may choose to initialize the software status bits and the trap disable
bits to all 1’s to avoid any initial trapping when an exception condition first occurs.
software may choose to initialize those bits to all 0’s in order to provide a summa
the exception behavior when the program terminates.

In any event, the exception bits in the FPCR are still useful to programs. A pro
can clear all of the exception bits in the FPCR, execute a single floating-poi
instruction, and then examine the status bits to determine which hardware-de
exceptions the instruction encountered. For this operation to work in the presen
various implementation options, the single instruction should be followed by a TR
or EXCB instruction, and exception completion by the system software should save
and restore the FPCR registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of 
ing-point registers, they should not be used to manipulate FPCR values.

4.7.9 Floating-Point Instruction Function Field Format

The function code for IEEE and VAX floating-point instructions, bits <15..5>, contain
function field. That field is shown in Figure 4–2 and described for IEEE floating-point in T
4–12 and for VAX floating-point in Table 4–13. Function codes for the independent fl
ing-point instructions, those with opcode 1716, do not correspond to the function fields below

The function field contains subfields that specify the trapping and rounding modes th
enabled for the instruction, the source datatype, and the instruction class.

Figure 4–2: Floating-Point Instruction Function Field

Opcode Fa Fb Fc
T
R
P

R
N
D

S
R
C

F
N
C

31 25 20 15 12 10 8 4 0591113162126
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Table 4–12: IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning†

15–13 TRP Trapping modes:

12–11 RND Rounding modes:

10–9 SRC Source datatype:

Contents Meaning for Opcodes 1416 and 1616

000 Imprecise (default)

001 Underflow enable (/U) — floating-point output 
Integer overflow enable (/V) — integer output

010 UNPREDICTABLE for opcode 1616 instructions 
Reserved for opcode 1416 instructions

011 UNPREDICTABLE for opcode 1616 instructions 

Reserved for opcode 1416 instructions

100 UNPREDICTABLE for opcode 1616 instructions 
Reserved for opcode 1416 instructions

101 /SU — floating-point output 
/SV — integer output

110 UNPREDICTABLE for opcode 1616 instructions 
Reserved for opcode 1416 instructions

111 /SUI — floating-point output 
/SVI — integer output

Contents Meaning for Opcodes 1616 and 1416

00 Chopped (/C)
01 Minus infinity (/M)

10 Normal (default)
11 Dynamic (/D)

Contents Meaning for 
Opcode 1616

Meaning for 
Opcode 1416

00 S_floating S_floating

01 Reserved Reserved
10 T_floating T_floating

11 Q_fixed Reserved
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8–5 FNC Instruction class:

† Encodings for the instructions CVTST and CVTST/S are exceptions to this table; use the 
encodings in Section C.1.

Table 4–12: IEEE Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning†

Contents Meaning for
Opcode 1616

Meaning for 
Opcode 1416

0000 ADDx Reserved
0001 SUBx Reserved

0010 MULx Reserved
0011 DIVx Reserved

0100 CMPxUN ITOFS/ITOFT
0101 CMPxEQ Reserved

0110 CMPxLT Reserved
0111 CMPxLE Reserved

1000 Reserved Reserved
1001 Reserved Reserved

1010 Reserved Reserved
1011 Reserved SQRTS/SQRTT

1100 CVTxS Reserved
1101 Reserved Reserved

1110 CVTxT Reserved

1111 CVTxQ Reserved
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Table 4–13: VAX Floating-Point Function Field Bit Summary

Bits Field Meaning

15–13 TRP Trapping modes:

12–11 RND Rounding modes:

10–9 SRC Source datatype:†

Contents Meaning for Opcodes 1416 and 1516

000 Imprecise (default)

001 Underflow enable (/U) – floating-point output 
Integer overflow enable (/V)  – integer output

010 UNPREDICTABLE for opcode 1516 instructions 

Reserved for opcode 1416 instructions

011 UNPREDICTABLE for opcode 1516 instructions 
Reserved for opcode 1416 instructions

100 /S  – Exception completion enable 

101 /SU  – floating-point output 
/SV  – integer output

110 UNPREDICTABLE for opcode 1516 instructions 

Reserved for opcode 1416 instructions

111 UNPREDICTABLE for opcode 1516 instructions 
Reserved for opcode 1416 instructions

Contents Meaning for Opcodes 1516 and 1416

00 Chopped (/C)

01 UNPREDICTABLE
10 Normal (default)

11 UNPREDICTABLE

Contents Meaning for Opcode 1516 Meaning for Opcode 1416

00 F_floating F_floating
01 D_floating F_floating

10 G_floating G_floating
11 Q_fixed Reserved
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4.7.10 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985) is
included by reference.

This standard leaves certain operations as implementation dependent. The remainder of this
section specifies the behavior of the Alpha architecture in these situations. Note that this
behavior may be supplied by either hardware (if the invalid operation disable, or INVD, bit is
implemented) or by software. See Sections 4.7.7.10, 4.7.7.11, 4.7.8,  4.7.8.3, and Section B.1.

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of a NaN or an Infinity value to an integer gives a result of zero.

Conversion of a NaN value from S_floating to T_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN.

Conversion of a NaN value from T_floating to S_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN, and bits
<28:0> are cleared to zero.

8–5 FNC Instruction class:

† In the SRC field, both 00 and 01 specify the F_floating source datatype for opcode 1416.

Table 4–13: VAX Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning

Contents Meaning for 
Opcode 1516

Meaning for 
Opcode 1416

0000 ADDx Reserved
0001 SUBx Reserved

0010 MULx Reserved
0011 DIVx Reserved

0100 CMPxUN ITOFF
0101 CMPxEQ Reserved

0110 CMPxLT Reserved
0111 CMPxLE Reserved

1000 Reserved Reserved
1001 Reserved Reserved

1010 Reserved SQRTF/SQRTG
1011 Reserved Reserved

1100 CVTxF Reserved
1101 CVTxD Reserved

1110 CVTxG Reserved
1111 CVTxQ Reserved
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4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid operation
exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of its inputs are NaN values, the
result of the operation is the quiet NaN value that has the sign bit set to one, all exponent bits
set to one (to indicate a NaN), the most significant fraction bit set to one (to indicate that the
NaN is quiet), and all other fraction bits cleared to zero. This value is referred to as "the canon-
ical quiet NaN."

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of its inputs are NaN values,
the IEEE standard requires that quiet NaN values be propagated when possible. With the Alpha
architecture, the result of such an operation is a NaN generated according to the first of the fol-
lowing rules that is applicable:

1. If the operand in the Fb register of the operation is a quiet NaN, that value is used as the
result.

2. If the operand in the Fb register of the operation is a signaling NaN, the result is the
quiet NaN formed from the Fb value by setting the most significant fraction bit (bit 51)
to a one bit.

3. If the operation uses its Fa operand and the value in the Fa register is a quiet NaN, that
value is used as the result.

4. If the operation uses its Fa operand and the value in the Fa register is a signaling NaN,
the result is the quiet NaN formed from the Fa value by setting the most significant
fraction bit (bit 51) to a one bit.

5. The result is the canonical quiet NaN.
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4.8 Memory Format Floating-Point Instructions 

The instructions in this section move data between the floating-point registers and memory.
They use the Memory instruction format. They do not interpret the bits moved in any way; spe-
cifically, they do not trap on non-finite values.

The instructions are summarized in Table 4–14.

Table 4–14: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset

LDF Load F_floating VAX

LDG Load G_floating (Load D_floating) VAX

LDS Load S_floating (Load Longword Integer) Both

LDT Load T_floating (Load Quadword Integer) Both

STF Store F_floating VAX

STG Store G_floating (Store D_floating) VAX

STS Store S_floating (Store Longword Integer) Both

STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating 

Format:

Operation:
va ←  {Rbv + SEXT(disp)}

CASE                    
 big_endian_data:  va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

Fa ← (va’)<15> || MAP_F((va’)<14:7>) || (va’)<6:0> ||
      (va’)<31:16> || 0<28:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDF fetches an F_floating datum from memory and writes it to register Fa. If the data is not
naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an 11-bit
register-format exponent according to Table 2–1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit dis
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverte
any memory management fault is reported for va (not va’). The source operand is fetche
from memory and the bytes are reordered to conform to the F_floating register forma
result is then zero-extended in the low-order longword and written to register Fa.

LDF  Fa.wf,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDF Load F_floating

None
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4.8.2 Load G_floating 

Format:

Operation:
va ← {Rbv + SEXT(disp)}
Fa ← (va)<15:0> || (va)<31:16> || (va)<47:32> || (va)<63:48>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDG fetches a G_floating (or D_floating) datum from memory and writes it to register Fa. If
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory, the bytes are reordered to conform to the
G_floating register format (also conforming to the D_floating register format), and the result is
then written to register Fa. 

LDG Fa.wg,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDG Load G_floating (Load D_floating)

None
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:59>
4.8.3 Load S_floating 

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data:  va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

Fa ← (va’)<31> || MAP_S((va’)<30:23>) || (va’)<22:0> || 0<28:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDS fetches a longword (integer or S_floating) from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated. The MAP_S function causes
the 8-bit memory-format exponent to be expanded to an 11-bit register-format exponent
according to Table 2–2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit dis
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverte
any memory management fault is reported for va (not va’). The source operand is fetche
from memory, is zero-extended in the low-order longword, and then written to registe
Longword integers in floating registers are stored in bits <63:62,58:29>, with bits <61
ignored and zeros in bits <28:0>. 

LDS Fa.ws,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDS Load S_floating (Load Longword Integer)

None
Instruction Descriptions 4–93



4.8.4 Load T_floating  

Format:

Operation:
va ← {Rbv + SEXT(disp)}

Fa ← (va)<63:0> 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDT fetches a quadword (integer or T_floating) from memory and writes it to register Fa. If
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory and written to register Fa.

LDT Fa.wt,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDT Load T_floating (Load Quadword Integer)

None
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4.8.5 Store F_floating 

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data:  va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

(va’)<31:0> ← Fav<44:29> || Fav<63:62> || Fav<58:45>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally aligned, an
alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’). The bits of the source operand are
fetched from register Fa, the bits are reordered to conform to F_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.

STF Fa.rf,disp.ab(Rb.ab)  !Memory format

Access Violation

Fault on Write

Alignment

Translation Not Valid

STF Store F_floating

None
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4.8.6 Store G_floating 

Format:

Operation:
va ← {Rbv + SEXT(disp)}
(va)<63:0> ← Fav<15:0> || Fav<31:16> || Fav<47:32> || Fav<63:48>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa, the bytes are reordered to conform to the
G_floating memory format (also conforming to the D_floating memory format), and the result
is then written to memory.

STG Fa.rg,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STG Store G_floating (Store D_floating)

None
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4.8.7 Store S_floating 

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data:  va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

(va’)<31:0> ← Fav<63:62> || Fav<58:29>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
STS stores a longword (integer or S_floating) datum from Fa to memory. If the data is not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’). The bits of the source operand are
fetched from register Fa, the bits are reordered to conform to S_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.

STS Fa.rs,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STS Store S_floating (Store Longword Integer)

None
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4.8.8 Store T_floating 

Format:

Operation:

va ← {Rbv + SEXT(disp)}
(va)<63:0> ← Fav<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data is not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa and written to memory.

STT Fa.rt,disp.ab(Rb.ab)  !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STT Store T_floating (Store Quadword Integer)

None
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format instructions
test the value of a floating-point register and conditionally change the PC. 

They do not interpret the bits tested in any way; specifically, they do not trap on non-finite
values.

The test is based on the sign bit and whether the rest of the register is all zero bits. All 64 bits
of the register are tested. The test is independent of the format of the operand in the register.
Both plus and minus zero are equal to zero. A non-zero value with a sign of zero is greater than
zero. A non-zero value with a sign of one is less than zero. No reserved operand or non-finite
checking is done. 

The floating-point branch operations are summarized in Table 4–15:

Table 4–15: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset

FBEQ Floating Branch Equal Both

FBGE Floating Branch Greater Than or Equal Both

FBGT Floating Branch Greater Than Both

FBLE Floating Branch Less Than or Equal Both

FBLT Floating Branch Less Than Both

FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch 

Format:

Operation:
{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Fav, Condition_based_on_Opcode) THEN 
  PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset.  This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of  +/–1M instructions.

FBxx Fa.rq,disp.al  !Branch format

None

FBEQ Floating Branch Equal

FBGE Floating Branch Greater Than or Equal
FBGT Floating Branch Greater Than

FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than

FBNE Floating Branch Not Equal

None
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Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the result of
the compare. 

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as floating
minus zero, so it is treated as equal to zero by the branch instructions. To branch prop-
erly on the largest negative integer, convert it to floating or move it to an integer regis-
ter and do an integer branch.
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4.10 Floating-Point Operate Format Instructions 

The floating-point bit-operate instructions perform copy and integer convert operations on
64-bit register values. The bit-operate instructions do not interpret the bits moved in any way;
specifically, they do not trap on non-finite values. 

The floating-point arithmetic-operate instructions perform add, subtract, multiply, divide, com-
pare, register move, squre root, and floating convert operations on 64-bit register values in one
of the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well as the
rounding mode and trapping mode to be used. These instructions use the Floating-point Oper-
ate format. 

Floating-point convert and square-root  (FIX) extension implementation note:
The FIX extension to the architecture provides the FTOIx, ITOFx, and SQRTx
instructions. Alpha  processors for which the AMASK instruction returns bit 1 set
implement these instructions. Those processors for which AMASK does not return bit 1 set
can take an Illegal Instruction trap, and software can emulate their function, if required.
AMASK is described in Sections 4.11.1 and D.3. 

The floating-point operate instructions are summarized in Table 4–16.

Table 4–16: Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Bit and FPCR Operations:

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both
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Arithmetic Operations

ADDF Add F_floating VAX

ADDG Add G_floating VAX

ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX

CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX

CVTGD Convert G_floating to D_floating VAX

CVTGF Convert G_floating to F_floating VAX

CVTGQ Convert G_floating to Quadword VAX

CVTQF Convert Quadword to F_floating VAX

CVTQG Convert Quadword to G_floating VAX

CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTST Convert S_floating to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX

DIVG Divide G_floating VAX

DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

FTOIS Floating-point to integer register move, S_floating IEEE

FTOIT Floating-point to integer register move, T_floating IEEE

ITOFF Integer to floating-point register move, F_floating VAX

ITOFS Integer to floating-point register move, S_floating IEEE

ITOFT Integer to floating-point register move, T_floating IEEE

Table 4–16: Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
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Arithmetic Operations

MULF Multiply F_floating VAX

MULG Multiply G_floating VAX

MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

SQRTF Square root F_floating VAX

SQRTG Square root G_floating VAX

SQRTS Square root S_floating IEEE

SQRTT Square root T_floating IEEE

SUBF Subtract F_floating VAX

SUBG Subtract G_floating VAX

SUBS Subtract S_floating IEEE

SUBT Subtract T_floating IEEE

Table 4–16: Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
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4.10.1 Copy Sign 

Format:

Operation:
CASE 
  CPYS:  Fc ← Fav<63> || Fbv<62:0>
  CPYSN: Fc ← NOT(Fav<63>) || Fbv<62:0>
  CPYSE: Fc ← Fav<63:52> || Fbv<51:0>
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case of CPYSN)
and concatenated with the exponent and fraction bits from Fb; the result is stored in Fc. 

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with the fraction
bits from Fb; the result is stored in Fc. 

No checking of the operands is performed. 

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute value
can be done using CPYS F31,Fx,Fy. Floating-point negation can be done using
CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using CPYSE.

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

None

CPYS Copy Sign

CPYSE Copy Sign and Exponent
CPYSN Copy Sign Negate

None
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4.10.2 Convert Integer to Integer 

Format:

Operation:
CASE 
   CVTQL: Fc ← Fbv<31:30> || 0<2:0> || Fbv<29:0> ||0<28:0>
   CVTLQ: Fc ← SEXT(Fbv<63:62> || Fbv<58:29>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The two’s-complement operand in register Fb is converted to a two’s-complement resu
written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of the o
and, with zero fill and optional integer overflow checking. Integer overflow occurs if F
outside the range –2**31..2**31–1. If integer overflow occurs, the truncated result is stor
Fc, and an arithmetic trap is taken if enabled. 

The conversion from longword to quadword is a repositioning of 32 bits of the operand,
sign extension. 

CVTxy Fb.rq,Fc.wx     !Floating-point Operate format

Integer Overflow, CVTQL only

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword

Trapping: Exception Completion  (/S) (CVTQL only)
Integer Overflow Enable (/V) (CVTQL only)
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4.10.3 Floating-Point Conditional Move 

Format:

Operation:
IF TEST(Fav, Condition_based_on_Opcode) THEN

  Fc ← Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is tested. If the specified relationship is true, register Fb is written to register Fc;
otherwise, the move is suppressed and register Fc is unchanged. The test is based on the sign
bit and whether the rest of the register is all zero bits, as described for floating branches in Sec-
tion 4.9.

FCMOVxx  Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

None

FCMOVEQ FCMOVE if Register Equal to Zero

FCMOVGE FCMOVE if Register Greater Than or Equal to Zero
FCMOVGT FCMOVE if Register Greater Than Zero

FCMOVLE FCMOVE if Register Less Than or Equal to Zero
FCMOVLT FCMOVE if Register Less Than Zero

FCMOVNE FCMOVE if Register Not Equal to Zero

None
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Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

        FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

       FByy Fa,label ! yy = NOT xx
       CPYS Fb,Fb,Fc
label: ...

For example, a branchless sequence for:

       F1=MAX(F1,F2)

is:
       CMPxLT  F1,F2,F3 ! F3=one if F1<F2; x=F/G/S/T
       FCMOVNE F3,F2,F1 ! Move F2 to F1 if F1<F2
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4.10.4 Move from/to Floating-Point Control Register 

Format:

Operation:
CASE 
    MF_FPCR: Fa   ← FPCR
    MT_FPCR: FPCR ← Fav
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written to
(MT_FPCR), a floating-point register. The floating-point register to be used is specified by the
Fa, Fb, and Fc fields all pointing to the same floating-point register. If the Fa, Fb, and Fc fields
do not all point to the same floating-point register, then it is UNPREDICTABLE which regis-
ter is used. If the Fa, Fb, and Fc fields do not all point to the same floating-point register, the
resulting values in the Fc register and in FPCR are UNPREDICTABLE.

If  the  Fc f ield  is  F31 in  the  case  of  MT_FPCR,  t he re sul t ing va lue  i n  FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.8.

Mx_FPCR  Fa.rq,Fa.rq,Fa.wq    !Floating-point Operate format

None

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

None
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4.10.5 VAX Floating Add 

Format:

Operation:
Fc ← Fav + Fbv 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs. See Section 4.7.7 for details of the stored result on overflow or underflow. 

ADDx Fa.rx,Fb.rx,Fc.wx    !Floating-point Operate format

Invalid Operation
Overflow

Underflow

ADDF Add F_floating
ADDG Add G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion  (/S)
Underflow Enable (/U)
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4.10.6 IEEE Floating Add 

Format:

Operation:
Fc ← Fav + Fbv 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision and then the corresponding range is checked for
overflow/underflow. The single-precision operation on canonical single-precision values pro-
duces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result. 

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

ADDS Add S_floating

ADDT Add T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
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4.10.7 VAX Floating Compare 

Format:

Operation:
IF Fav SIGNED_RELATION Fbv THEN
  Fc ← 4000 0000 0000 000016
ELSE 
  Fc ← 0000 0000 0000 000016

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, a non-zero floating value (0.5) is written to register Fc; otherwise, a true zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive relations
are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included. 

CMPGyy Fa.rg,Fb.rg,Fc.wq    !Floating-point Operate format

Invalid Operation

CMPGEQ Compare G_floating Equal
CMPGLE Compare G_floating Less Than or Equal

CMPGLT Compare G_floating Less Than

Trapping: Exception Completion (/S)
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4.10.8 IEEE Floating Compare 

Format:

Operation:
IF Fav SIGNED_RELATION Fbv THEN
  Fc ← 4000 0000 0000 000016
ELSE 
  Fc ← 0000 0000 0000 000016

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, a non-zero floating value (2.0) is written to register Fc; otherwise, a true zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive relations are
possible: less than, equal, greater than, and unordered. The unordered relation is true if one or
both operands are NaN. (This behavior must be provided by an operating system (OS) comple-
tion handler, since NaNs trap.) Comparisons ignore the sign of zero, so +0 = –0. 

Comparisons with plus and minus infinity execute normally and do not take an invalid oper
trap. 

Notes:

• In order to use CMPTxx with exception completion handling, it is necessary to specify
the /SU IEEE trap mode, even though an underflow trap is not possible.

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included. 

CMPTyy Fa.rx,Fb.rx,Fc.wq    !Floating-point Operate format

Invalid Operation

CMPTEQ Compare T_floating Equal
CMPTLE Compare T_floating Less Than or Equal

CMPTLT Compare T_floating Less Than
CMPTUN Compare T_floating Unordered

Trapping: Exception Completion (/SU)
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4.10.9 Convert VAX Floating to Integer 

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The floating operand in register Fb is converted to a two’s-complement quadword numb
written to register Fc. The conversion aligns the operand fraction with the binary point ju
the right of bit zero, rounds as specified, and complements the result if negative. Regis
must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (t
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTAB
this occurs.

See Section 4.7.7 for details of the stored result on integer overflow.

CVTGQ Fb.rx,Fc.wq      !Floating-point Operate format

Invalid Operation

Integer Overflow

CVTGQ Convert G_floating to Quadword

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Integer Overflow Enable (/V)
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4.10.10 Convert Integer to VAX Floating 

Format:

Operation:
Fc ← {conversion of Fbv<63:0>}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The two’s-complement quadword operand in register Fb is converted to a single- or
ble-precision floating result and written to register Fc. The conversion complements a nu
if negative, normalizes it, rounds to the target precision, and packs the result with an app
ate sign and exponent field. Register Fa must be F31.

CVTQy Fb.rq,Fc.wx      !Floating-point Operate format

None

CVTQF Convert Quadword to F_floating

CVTQG Convert Quadword to G_floating

Rounding: Chopped (/C)
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4.10.11 Convert VAX Floating to VAX Floating 

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The floating operand in register Fb is converted to the specified alternate floating format and
written to register Fc. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs. 

See Section 4.7.7 for details of the stored result on overflow or underflow. 

Notes:

• The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing three
fraction bits. The conversion from G_floating to D_floating adds three low-order zeros
as fraction bits, then the 8-bit exponent range is checked for overflow/underflow. 

• The conversion from G_floating to F_floating rounds or chops to single precision, then
the 8-bit exponent range is checked for overflow/underflow. 

• No conversion from F_floating to G_floating is required, since F_floating values are
always stored in registers as equivalent G_floating values.

CVTxy Fb.rx,Fc.wx     !Floating-point Operate format

Invalid Operation
Overflow

Underflow

CVTDG Convert D_floating to G_floating
CVTGD Convert G_floating to D_floating

CVTGF Convert G_floating to F_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
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4.10.12 Convert IEEE Floating to Integer 

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The floating operand in register Fb is converted to a two’s-complement number and writ
register Fc. The conversion aligns the operand fraction with the binary point just to the rig
bit zero, rounds as specified, and complements the result if negative. Register Fa must be

See Section 4.7.7 for details of the stored result on integer overflow and inexact result.

CVTTQ Fb.rx,Fc.wq     !Floating-point Operate format

Invalid Operation
Inexact Result

Integer Overflow

CVTTQ Convert T_floating to Quadword

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Integer Overflow Enable (/V)

Inexact Enable (/I)
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4.10.13 Convert Integer to IEEE Floating 

Format:

Operation:
Fc ← {conversion of Fbv<63:0>}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two’s-complement operand in register Fb is converted to a single- or double-prec
floating result and written to register Fc. The conversion complements a number if neg
normalizes it, rounds to the target precision, and packs the result with an appropriate si
exponent field. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on inexact result.

Notes:

• In order to use CVTQS or CVTQT with exception completion handling, it is necessary
to specify the /SUI IEEE trap mode, even though an underflow trap is not possible.

CVTQy Fb.rq,Fc.wx      !Floating-point Operate format

Inexact Result

CVTQS Convert Quadword to S_floating

CVTQT Convert Quadword to T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Inexact Enable (/I)
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4.10.14 Convert IEEE S_Floating to IEEE T_Floating 

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The S_floating operand in register Fb is converted to T_floating format and written to register
Fc. Register Fa must be F31. 

Notes:

• The conversion from S_floating to T_floating is exact. No rounding occurs. No under-
flow, overflow, or inexact result can occur. In fact, the conversion for finite values is the
identity transformation.

• A trap handler can convert an S_floating denormal value into the corresponding
T_floating finite value by adding 896 to the exponent and normalizing.

CVTST Fb.rx,Fc.wx ! Floating-point Operate format

Invalid Operation

CVTST Convert S_floating to T_floating

Trapping: Exception Completion (/S)
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4.10.15 Convert IEEE T_Floating to IEEE S_Floating 

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The T_floating operand in register Fb is converted to S_floating format and written to register
Fc. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result. 

CVTTS Fb.rx,Fc.wx      !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

CVTTS Convert T_floating to S_floating

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)

Inexact Enable (/I)
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4.10.16 VAX Floating Divide 

Format:

Operation:
Fc ←  Fav / Fbv 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The dividend operand in register Fa is divided by the divisor operand in register Fb and the
quotient is written to register Fc.

The quotient is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7  for details of the stored result on overflow or underflow. 

DIVx Fa.rx,Fb.rx,Fc.wx   !Floating-point Operate format

Invalid Operation
Division by Zero

Overflow
Underflow

DIVF Divide F_floating

DIVG Divide G_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
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4.10.17 IEEE Floating Divide 

Format:

Operation:
Fc ← Fav / Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The dividend operand in register Fa is divided by the divisor operand in register Fb and the
quotient is written to register Fc.

The quotient is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7  for details of the stored result on overflow, underflow, or inexact result. 

DIVx Fa.rx,Fb.rx,Fc.wx    !Floating-point Operate format

Invalid Operation
Division by Zero

Overflow
Underflow

Inexact Result

DIVS Divide S_floating
DIVT Divide T_floating

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)

Inexact Enable (/I)
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4.10.18 Floating-Point Register to Integer Register Move 

Format:

Operation:
CASE:
   FTOIS:
     Rc<63:32> ← SEXT(Fav<63>)
     Rc<31:0> ← Fav<63:62> || Fav <58:29>
   FTOIT:
     Rc <- Fav
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Data in a floating-point register file is moved to an integer register file. 

The Fb field must be F31. 

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

FTOIS is exactly equivalent to the sequence:
   STS
   LDL

FTOIT is exactly equivalent to the sequence:
   STT
   LDQ

Software Note:
FTOIS and FTOIT are no slower than the corresponding store/load sequence and can be
significantly faster.

FTOIx  Fa.rq,Rc.wq    !Floating-point Operate format

None

FTOIS Floating-point to Integer Register Move, S_floating

FTOIT Floating-point to Integer Register Move, T_floating

None
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4.10.19 Integer Register to Floating-Point Register Move 

Format:

Operation:
CASE:
  ITOFF:
    Fc ← Rav<31> || MAP_F(Rav<30:23> || Rav<22:0> || 0<28:0>
  ITOFS:
    Fc ← Rav<31> || MAP_S(Rav<30:23> || Rav<22:0> || 0<28:0>
  ITOFT:
    Fc <- Rav
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Data in an integer register file is moved to a floating-point register file. 

The Rb field must be R31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

ITOFF is equivalent to the following sequence, except that the word swapping that LDF nor-
mally performs is not performed by ITOFF:

   STL
   LDF

ITOFx  Ra.rq,Fc.wq    !Floating-point Operate format

None

ITOFF Integer to Floating-point Register Move, F_floating

ITOFS Integer to Floating-point Register Move, S_floating
ITOFT Integer to Floating-point Register Move, T_floating

None
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ITOFS is exactly equivalent to the sequence:

   STL
   LDS

ITOFT is exactly equivalent to the sequence:

   STQ
   LDT

Software Note:

ITOFF, ITOFS, and ITOFT are no slower than the corresponding store/load sequence and
can be significantly faster.
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4.10.20 VAX Floating Multiply 

Format:

Operation:
Fc ← Fav * Fbv 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7  for details of the stored result on overflow or underflow. 

MULx Fa.rx,Fb.rx,Fc.wx    !Floating-point Operate format

Invalid Operation
Overflow

Underflow

MULF Multiply F_floating
MULG Multiply G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
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4.10.21 IEEE Floating Multiply 

Format:

Operation:
Fc ← Fav * Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result. 

MULx Fa.rx,Fb.rx,Fc.wx    !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

MULS Multiply S_floating

MULT Multiply T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
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4.10.22 VAX Floating Square Root 

Format:

Operation:
Fc ← Fb ** (1/2)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of this instruction must be set to a value of F31.)
    
The result is rounded or chopped to the specified precision. The single-precision operation on a
canonical single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the operand has exp=0 and is not a true zero (that is, VAX
reserved operands and dirty zeros trap). An invalid operation is signaled if the sign of the oper-
and is negative.

The contents of the Fc are UNPREDICTABLE if an invalid operation is signaled.

Notes:

• Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier is ignored.

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Invalid operation

SQRTF  Square root F_floating

SQRTG Square root G_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U) — See Notes below
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4.10.23 IEEE Floating Square Root 

Format:

Operation:
Fc ← Fb ** (1/2)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of this instruction must be set to a value of F31.)
    
The result is rounded to the specified precision. The single-precision operation on a canonical
single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the sign of the operand is less than zero. However, SQRT
(–0) produces a result of –0.

Notes:

• Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier is ignored.

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Inexact result
Invalid operation

SQRTS Square root S_floating

SQRTT Square root T_floating

Rounding: Chopped (/C)
Dynamic (/D)

Minus infinity (/M)
Trapping: Inexact Enable  (/I)

Exception Completion (/S)
Underflow Enable (/U) — See Notes below
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4.10.24 VAX Floating Subtract 

Format:

Operation:
Fc ← Fav - Fbv 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written to register Fc.

The difference is rounded or chopped to the specified precision and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical sin-
gle-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7  for details of the stored result on overflow or underflow. 

SUBx Fa.rx,Fb.rx,Fc.wx    !Floating-point Operate format

Invalid Operation
Overflow

Underflow

SUBF Subtract F_floating
SUBG Subtract G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
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4.10.25 IEEE Floating Subtract 

Format:

Operation:
Fc ← Fav - Fbv 

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written to register Fc.

The difference is rounded to the specified precision and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

See Section 4.7.7  for details of the stored result on overflow, underflow, or inexact result. 

SUBx Fa.rx,Fb.rx,Fc.wx    !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

SUBS Subtract S_floating

SUBT Subtract T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
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4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4–17.

Table 4–17: Miscellaneous Instructions Summary

Mnemonic Operation

AMASK Architecture Mask

CALL_PAL Call Privileged Architecture Library Routine

ECB Evict Cache Block

EXCB Exception Barrier

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

IMPLVER Implementation Version

MB Memory Barrier

RPCC Read Processor Cycle Counter

TRAPB Trap Barrier

WH64 Write Hint — 64 Bytes

WMB Write Memory Barrier
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4.11.1 Architecture Mask 

Format:

Operation:
Rc ← Rbv AND {NOT CPU_feature_mask}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Rbv represents a mask of the requested architectural extensions. Bits are cleared that corre-
spond to architectural extensions that are present. Reserved bits and bits that correspond to
absent extensions are copied unchanged. In either case, the result is placed in Rc.  If the result
is zero, all requested features are present. 

Software may specify an Rbv of all 1’s to determine the complete set of architectural e
sions implemented by a processor. Assigned bit definitions are located in Section D.3.

Ra must be R31 or the result in Rc is UNPREDICTABLE and it is UNPREDICTAB
whether an exception is signaled.

Software Note:

Use this instruction to make instruction-set decisions; use IMPLVER to make code-tu
decisions.

Implementation Note:
Instruction encoding is implemented as follows:

• On 21064/21064A/21066/21068/21066A (EV4/EV45/LCA/LCA45 chips), AMASK
copies Rbv to Rc.

• On 21164 (EV5), AMASK copies Rbv to Rc.

AMASK  Rb.rq,Rc.wq     !Operate format

AMASK  #b.ib,Rc.wq     !Operate format

None

AMASK    Architecture Mask

None
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• On 21164A (EV56), 21164PC (PCA56), and 21264 (EV6), AMASK correctly indicates
support for architecture extensions by copying Rbv to Rc and clearing appropriate bits.

Bits are assigned and placed in Appendix D for architecture extensions as ECOs for those
extensions are passed. The low 8 bits are reserved for standard architecture extensions so
they can be tested with a literal; application-specific extensions are assigned from bit 8
upward.  
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4.11.2 Call Privileged Architecture Library 

Format:

Operation:
{Stall instruction issuing until all       
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The CALL_PAL instruction is not issued until all previous instructions are guaranteed to com-
plete without exceptions. If an exception occurs, the continuation PC in the exception stack
frame points to the CALL_PAL instruction. The CALL_PAL instruction causes a trap to
PALcode. 

CALL_PAL  fnc.ir  !PAL format

None

CALL_PAL Call Privileged Architecture Library

None
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cache
4.11.3 Evict Data Cache Block 

Format:

Operation:
va ← Rbv

IF { va maps to memory space } THEN
 Prepare to reuse cache resources that are occupied by the
 the addressed byte.
END

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The ECB instruction provides a hint that the addressed location will not be referenced again in
the near future, so any cache space it occupies should be made available to cache other mem-
ory locations. If the cache copy of the location is dirty, the processor may start writing it back;
if the cache has multiple sets, the processor may arrange for the set containing the addressed
byte to be the next set allocated.

The ECB instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth) during execution, it is treated as a
NOP.

If the address maps to non-memory-like (I/O) space, ECB is treated as a NOP.

Software Note:

• ECB makes a particular cache location available for reuse by evicting and invalidating
its contents. The intent is to give software more control over cache allocation policy in
set-associative caches so that "useful" blocks can be retained in the cache.

• ECB is a performance hint — it does not serialize the eviction of the addressed 
block with any preceding or following memory operation.

ECB  (Rb.ab)     ! Memory format

None

ECB Evict Cache Block

None
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cation
 line is
• ECB is not intended for flushing caches prior to power failure or low power operation
— CFLUSH is intended for that purpose.

Implementation Note:
Implementations with set-associative caches are encouraged to update their allo
pointer so that the next D-stream reference that misses the cache and maps to this
allocated into the vacated set.
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4.11.4 Exception Barrier  

Format:

Operation:
{EXCB does not appear to issue until completion of all
 exceptions and dependencies on the Floating-point Control
 Register (FPCR) from prior instructions.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The EXCB instruction allows software to guarantee that in a pipelined implementation, all pre-
vious instructions have completed any behavior related to exceptions or rounding modes before
any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are guaranteed to have
been made, whether or not there is an associated exception. Also, all potential floating-point
exceptions and integer overflow exceptions are guaranteed to have been taken. EXCB is thus a
superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB instruction acts
like a fault. In this case, the value of the Program Counter reported to the program may be the
address of the EXCB instruction (or earlier) but is never the address of an instruction follow-
ing the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.8.1.

EXCB                  ! Memory format

None

EXCB Exception Barrier

None
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4.11.5 Prefetch Data 

Format:

Operation:
va ← {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is given by Rbv. This address is used to designate an aligned 512-byte
block of data. An implementation may optionally attempt to move all or part of this block (or a
larger surrounding block) of data to a part of the memory hierarchy that has faster-access, in
anticipation of subsequent Load or Store instructions that access that data.

Implementation Note:
FETCHx is intended to help software overlap memory latencies when such latencies are on
the order of at least 100  cycles. FETCHx is unlikely to help (or be implemented) for
significantly shorter memory latencies. Code scheduling and cache-line prefetching (See
Section A.3.5) should be used to overlap such shorter latencies.

Existing Alpha implementations (through the 21264) have memory latencies that are too
short to profitably implement FETCHx. Therefore, FETCHx does not improve memory
performance in existing Alpha implementations.

The FETCH instruction is a hint to the implementation that may allow faster execution. An
implementation is free to ignore the hint. If prefetching is done in an implementation, the order
of fetch within the designated block is UNPREDICTABLE. 

The FETCH_M instruction gives the additional hint that modifications (stores) to some or all
of the data block are anticipated. 

FETCHx  0(Rb.ab)        !Memory format

None

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

None
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No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_M) that
uses the same address would fault, the prefetch request is ignored. It is UNPREDICTABLE
whether a TB-miss fault is ever taken by FETCHx. 

Implementation Note:
Implementations are encouraged to take the TB-miss fault, then continue the prefetch.
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4.11.6 Implementation Version 

Format:

Operation:
Rc ← value, which is defined in Appendix D

Exceptions:

Instruction mnemonics:

Description:
A small integer is placed in Rc that specifies the major implementation version of the proces-
sor on which it is executed. This information can be used to make code-scheduling or tuning
decisions, or the information can be used to branch to different pieces of code optimized for
different implementations.

Notes:

• The value returned by IMPLVER does not identify the particular processor type.
Rather, it identifies a group of processors that can be treated similarly for performance
characteristics such as scheduling. Ra must be R31 and Rb must be the literal #1 or the
result in Rc is UNPREDICTABLE and it is UNPREDICTABLE whether an exception
is signaled.

Software Note:
Use this instruction to make code-tuning decisions; use AMASK to make instruction-set
decisions.

IMPLVER Rc       !Operate format

None

IMPLVER Implementation Version
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4.11.7 Memory Barrier

Format:

Operation:
{Guarantee that all subsequent loads or stores 
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The use of the Memory Barrier (MB) instruction is required only in multiprocessor systems.

In the absence of an MB instruction, loads and stores to different physical locations are
allowed to complete out of order on the issuing processor as observed by other processors. The
MB instruction allows memory accesses to be serialized on the issuing processor as observed
by other processors. See Chapter 5 for details on using the MB instruction to serialize these
accesses. Chapter 5 also details coordinating memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the progress of
memory operations.

MB                 !Memory format

None

MB Memory Barrier

None
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4.11.8 Read Processor Cycle Counter 

Format:

Operation:
Ra ← {cycle counter}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is written with the processor cycle counter (PCC). The PCC register consists of
two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an unsigned, wrapping counter,
PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are operating-system depen-
dent in their implementation. 

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle count,
that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT. The following
example computes that cycle count, modulo 2**32, and returns the count value in R0. Notice
the care taken not to cause an unwanted sign extension.

    RPCC  R0 ; Read the process cycle counter
    SLL   R0, #32, R1 ; Line up the offset and count fields
    ADDQ  R0, R1, R0  ; Do add
    SRL   R0, #32, R0 ; Zero extend the count to 64  bits

The following example code returns the value of PCC_CNT in R0<31:0> and all zeros in
R0<63:32>.

    RPCC  R0
    ZAPNOT R0,#15,R0

RPCC Ra.wq      !Memory format

None

RPCC Read Processor Cycle Counter

None
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4.11.9 Trap Barrier 

Format:

Operation:
{TRAPB does not appear to issue until all prior instructions
 are guaranteed to complete without causing any arithmetic traps}.

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The TRAPB instruction allows software to guarantee that in a pipelined implementation, all
previous arithmetic instructions will complete without incurring any arithmetic traps before the
TRAPB or any instructions after it are issued. 

If an arithmetic exception occurs for which trapping is enabled, the TRAPB instruction acts
like a fault. In this case, the value of the Program Counter reported to the program may be the
address of the TRAPB instruction (or earlier) but is never the address of the instruction follow-
ing the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for each excep-
tion domain, to isolate the address range in which an exception occurs. If the address of the
instruction following the TRAPB were allowed, there would be no way to distinguish an
exception in the address range preceding a label from an exception in the range that includes
the label along with the faulting instruction and a branch back to the label. This case arises
when the code is not following exception completion rules but is inserting TRAPB instruc-
tions to isolate exceptions to the proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see Section 4.11.4.

TRAPB                 !Memory format

None

TRAPB Trap Barrier

None
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4.11.10 Write Hint 

Format:

Operation:
va ← Rbv
IF { va maps to memory space } THEN
 Write UNPREDICTABLE data to the aligned 64-byte region 
 containing the addressed byte.
END

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The WH64 instruction provides a hint that the current contents of the aligned 64-byte block
containing the addressed byte will never be read again but will be overwritten in the near
future. 

The processor may allocate cache resources to hold the block without reading its previous con-
tents from memory; the contents of the block may be set to any value that does not introduce a
security hole, as described in Section 1.6.3.

The WH64 instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth), it is treated as a NOP.

If the address maps to non-memory-like (I/O) space, WH64 is treated as a NOP.

Software Note:
This instruction is a performance hint that should be used when writing a large continuous
region of memory. The intended code sequence consists of one WH64 instruction followed
by eight quadword stores for each aligned 64-byte region to be written.

Sometimes, the UNPREDICTABLE data will exactly match some or all of the previous
contents of the addressed block of memory. 

WH64  (Rb.ab)     ! Memory format

None

WH64 Write Hint - 64 Bytes

None
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Implementation Note:

If the 64-byte region containing the addressed byte is not in the data cache,
implementations are encouraged to allocate the region in the data cache without first
reading it from memory. However, if any of the addressed bytes exist in the caches of
other processors, they must be kept coherent with respect to those processors.

Processors with cache blocks smaller than 64 bytes are encouraged to implement WH64 as
defined. However, they may instead implement the instruction by allocating a smaller
aligned cache block for write access or by treating WH64 as a NOP.

Processors with cache blocks larger than 64 bytes are also encouraged to implement WH64
as defined. However, they may instead treat WH64 as a NOP.
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4.11.11 Write Memory Barrier 

Format:

Operation:
{ Guarantee that 
{  All preceding stores that access memory-like
{    regions are ordered before any subsequent stores
{    that access memory-like regions and 
{  All preceding stores that access non-memory-like 
{    regions are ordered before any subsequent stores 
{    that access non-memory-like regions.

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The WMB instruction provides a way for software to control write buffers. It guarantees that
writes preceding the WMB are not aggregated with writes that follow the WMB. 

WMB guarantees that writes to memory-like regions that precede the WMB are ordered before
writes to memory-like regions that follow the WMB. Similarly, WMB guarantees that writes to
non-memory-like regions that precede the WMB are ordered before writes to non-mem-
ory-like regions that follow the WMB. It does not order writes to memory-like regions relative
to writes to non-memory-like regions.

WMB causes writes that are contained in buffers to be completed without unnecessary delay. It
is particularly suited for batching writes to high-performance I/O devices. 

WMB prevents writes that precede the WMB from being merged with writes that follow the
WMB. In particular, two writes that access the same location and are separated by a WMB
cause two distinct and ordered write events.

In the absence of a WMB (or IMB or MB) instruction, stores to memory-like or non-mem-
ory-like regions can be aggregated and/or buffered and completed in any order.

WMB                   !Memory format

None

WMB Write Memory Barrier

None
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The WMB instruction is the preferred method for providing high-bandwidth write streams
where order must be preserved between writes in that stream.

Notes:

WMB is useful for ordering streams of writes to a non-memory-like region, such as to mem-
ory-mapped control registers or to a graphics frame buffer. While both MB and WMB can
ensure that writes to a non-memory-like region occur in order, without being aggregated or
reordered, the WMB is usually faster and is never slower than MB.

WMB can correctly order streams of writes in programs that operate on shared sections of data
if the data in those sections are protected by a classic semaphore protocol. The following
example illustrates such a protocol:

The example above is similar to that in Section 5.5.4, except a WMB is substituted for the sec-
ond MB in the lock-update-release sequence. It is correct to substitute WMB for the second
MB only if:

1. All data locations that are read or written in the critical section are accessed only after
acquiring a software lock by using lock_variable (and before releasing the software
lock).

2. For each read u of shared data in the critical section, there is a write v such that:

a. v is BEFORE the WMB

b. v follows u in processor issue sequence (see Section 5.6.1.1)

c. v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1), or 
both.

3. Both lock_variable and all the shared data are in memory-like regions (or lock_variable
and all the shared data are in non-memory-like regions). If the lock_variable is in a
non-memory-like region, the atomic lock protocol must use some implementation-spe-
cific hardware support.

The substitution of a WMB for the second MB is usually faster and never slower.

Processor i Processor j

<Acquire lock>

MB

<Read and write data
in shared section>

WMB

<Release lock> ⇒ <Acquire lock>

MB

<Read and write data in shared section>

WMB
  4–148   Alpha Architecture Handbook
                            



hese
some
t VAX

 they
 work.
4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4–18 for use in translated VAX code. T
instructions are not a permanent part of the architecture and will not be available in 
future implementations. They are intended to preserve customer assumptions abou
instruction atomicity in porting code from VAX to Alpha.

These instructions should be generated only by the VAX-to-Alpha software translator;
should never be used in native Alpha code. Any native code that uses them may cease to

Table 4–18: VAX Compatibility Instructions Summary

Mnemonic Operation

RC Read and Clear

RS Read and Set
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4.12.1 VAX Compatibility Instructions 

Format:

Operation:
Ra ← intr_flag
intr_flag ← 0 !RC
intr_flag ← 1 !RS

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha instructions
between RS and RC (corresponding to a single VAX instruction) was executed without inter-
ruption or exception. 

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor encounters a
CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when that processor
cutes an LDx_L or STx_C instruction. A processor’s intr_flag is not affected when that
processor executes a normal load or store instruction. 

A processor’s intr_flag is not affected when that processor executes a taken branch.

Notes:

• These instructions are intended only for use by the VAX-to-Alpha software translator;
they should never be used by native code.

Rx Ra.wq      !Memory format

None

RC Read and Clear

RS Read and Set

None
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4.13 Multimedia (Graphics and Video) Support 

Alpha provides the following instructions that enhance support for graphics and video
algorithms:

The MIN and MAX instructions allow the clamping of pixel values to maximium values that
are allowed in different standards and stages of the CODECs. 

The PERR instruction accelerates the macroblock search in motion estimation.

The pack and unpack (PKxB and UNPKBx) instructions accelerate the blocking of interleaved
YUV coordinates for processing by the CODEC.

Implementation Note:
Alpha  processors for which the AMASK instruction returns bit 8 set implement these
instructions. Those processors for which AMASK does not return bit 8 set can take an
Illegal Instruction trap, and software can emulate their function, if required.

Mnemonic Operation

MINUB8  Vector Unsigned Byte Minimum

MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum

MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum

MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum

MAXSW4 Vector Signed Word Maximum

PERR Pixel Error

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words
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4.13.1 Byte and Word Minimum and Maximum 

Format:

Operation:
CASE
  MINUB8:
    FOR i FROM 0 TO 7
    Rcv<i*8+7:i*8> = MINU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
    END
  MINSB8:
    FOR i FROM 0 TO 7
    Rcv<i*8+7:i*8> = MINS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
    END
  MINUW4:
    FOR i FROM 0 TO 3
    Rcv<i*16+15:i*16> = MINU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
    END
  MINSW4:
    FOR i FROM 0 TO 3
    Rcv<i*16+15:i*16> = MINS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
    END
  MAXUB8:
    FOR i FROM 0 TO 7
    Rcv<i*8+7:i*8> = MAXU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
    END
  MAXSB8:
    FOR i FROM 0 TO 7
    Rcv<i*8+7:i*8> = MAXS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
    END
  MAXUW4:
    FOR i FROM 0 TO 3
    Rcv<i*16+15:i*16> = MAXU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
    END
  MAXSW4:
    FOR i FROM 0 TO 3
    Rcv<i*16+15:i*16> = MAXS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
    END
ENDCASE:

Exceptions:

MINxxx Ra.rq,Rb.rq,Rc.wq
Ra.rq,#b.ib,Rc.wq

! Operate Format

MAXxxx Ra.rq,Rb.rq,Rc.wq
Ra.rq,#b.ib,Rc.wq

! Operate Format

None
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Instruction mnemonics:

Qualifiers:

Description:
For MINxB8, each byte of Rc is written with the smaller of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MINxW4, each word of Rc is written with the smaller of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned values.

For MAXxB8, each byte of Rc is written with the larger of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MAXxW4, each word of Rc is written with the larger of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned values.

MINUB8 Vector Unsigned Byte Minimum
MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum
MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum
MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum
MAXSW4 Vector Signed Word Maximum

None
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4.13.2 Pixel Error  

Format:

Operation:
temp = 0
FOR i FROM 0 TO 7
 IF { Rav<i*8+7:i*8> GEU Rbv<i*8+7:i*8>} THEN
  temp ← temp + (Rav<i*8+7:i*8> - Rbv<i*8+7:i*8>)
 ELSE
  temp ← temp + (Rbv<i*8+7:i*8> - Rav<i*8+7:i*8>)
END
Rc ← temp

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The absolute value of the difference between each of the bytes in Ra and Rb is calculated. The
sum of the resulting bytes is written to Rc.

PERR Ra.rq,Rb.rq,Rc.wq ! Operate Format

None

PERR Pixel Error

None
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4.13.3 Pack Bytes 

Format:

Operation:
CASE
 PKLB: 
  BEGIN
  Rc<07:00> ← Rbv<07:00>
  Rc<15:08> ← Rbv<39:32>
  Rc<63:16> ← 0
  END
 PKWB: 
  BEGIN
  Rc<07:00> ← Rbv<07:00>
  Rc<15:08> ← Rbv<23:16>
  Rc<23:16> ← Rbv<39:32>
  Rc<31:24> ← Rbv<55:48>
  Rc<63:32> ← 0
  END
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
For PKLB, the component longwords of Rb are truncated to bytes and written to the lower two
byte positions of Rc. The upper six bytes of Rc are written with zero.

For PKWB, the component words of Rb are truncated to bytes and written to the lower four
byte positions of Rc. The upper four bytes of Rc are written with zero.

PKxB Rb.rq,Rc.wq   ! Operate Format

None

PKLB Pack Longwords to Bytes

PKWB  Pack Words to Bytes

None
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4.13.4 Unpack Bytes 

Format:

Operation:
temp = 0
CASE
 UNPKBL:
  BEGIN
  temp<07:00> = Rbv<07:00>
  temp<39:32> = Rbv<15:08>
  END
 UNPKBW:
  BEGIN
  temp<07:00> = Rbv<07:00>
  temp<23:16> = Rbv<15:08>
  temp<39:32> = Rbv<23:16>
  temp<55:48> = Rbv<31:24>
  END
ENDCASE
Rc ← temp

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

For UNPKBL, the lower two component bytes of Rb are zero-extended to longwords. The
resulting longwords are written to Rc.

For UNPKBW, the lower four component bytes of Rb are zero-extended to words. The result-
ing words are written to Rc.

UNPKBx Rb.rq,Rc.wq   ! Operate Format

None

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words

None
  4–156   Alpha Architecture Handbook
                            



ion’s
esses,

 by a
ssors.
 Chapter 5

System Architecture and Programming

Implications

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and the system struc-
ture, of both uniprocessor and multiprocessor implementations. Architectural implications
considered in the following sections are: 

• Physical address space behavior

• Caches and write buffers

• Translation buffers and virtual caches

• Data sharing

• Read/write ordering 

• Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware implementors need
to take these issues into consideration. 

5.2 Physical Address Space Characteristics

Alpha physical address space is divided into four equal-size regions. The regions are delin-
eated by the two most significant, implemented, physical address bits. Each reg
characteristics are distinguished by the coherency, granularity, and width of memory acc
and whether the region exhibits memory-like behavior or non-memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementations must provide a coherent view of memory, in which each write
processor or I/O device (hereafter, called "processor") becomes visible to all other proce
No distinction is made between coherency of "memory space" and "I/O space."
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Memory coherency may be provided in different ways for each of the four physical address
regions. 

Possible per-region policies include, but are not restricted to:

• No caching

No copies are kept of data in a region; all reads and writes access the actual data
location (memory or I/O register), but a processor may elide multiple accesses to the
same data (see Section 5.2.3).

• Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes update
the actual data location and either update or invalidate all copies.

• Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies, and
writes use additional state to determine whether there are other copies to invalidate or
update.

Software/Hardware Note:
To produce separate and distinct accesses to a specific location, the location must be a
region with no caching and a memory barrier instruction must be inserted between
accesses. See Section 5.2.3.

Part of the coherency policy implemented for a given physical address region may include
restrictions on excess data transfers (performing more accesses to a location than is necessary
to acquire or change the location’s value) or may specify data transfer widths (the gran
used to access a location).

Independent of coherency policy, a processor may use different hardware or different
ware resource policies for caching or buffering different physical address regions. 

5.2.2 Granularity of Memory Access

For each region, an implementation must support aligned quadword access and may op
support aligned longword access or byte access. If byte access is supported in a region,
word access and aligned longword access are also supported.

For a quadword access region, accesses to physical memory must be implemented su
independent accesses to adjacent aligned quadwords produce the same results regardle
order of execution. Further, an access to an aligned quadword must be done in a single
operation. 

For a longword access region, accesses to physical memory must be implemented su
independent accesses to adjacent aligned longwords produce the same results regardle
order of execution. Further, an access to an aligned longword must be done in a single 
operation, and an access to an aligned quadword must also be done in a single 
operation.
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For a byte access region, accesses to physical memory must be implemented such that indepen-
dent accesses to adjacent bytes or adjacent aligned words produce the same results, regardless
of the order of execution. Further, an access to a byte, an aligned word, an aligned longword,
or an aligned quadword must be done in a single atomic operation.

In this context, "atomic" means that the following is true if different processors do simulta-
neous reads and writes of the same data:

• The result of any set of writes must be the same as if the writes had occurred sequen-
tially in some order, and

• Any read that observes the effect of a write on some part of memory must observe the
effect of that write (or of a later write or writes) on the entire part of memory that is
accessed by both the read and the write.

When a write accesses only part of a given word, longword, or quadword, a read of the entire
structure may observe the effect of that partial write without observing the effect of an earlier
write of another byte or bytes to the same structure. See Sections 5.6.1.5 and 5.6.1.6.

5.2.3 Width of Memory Access

Subject to the granularity, ordering, and coherency constraints given in Sections 5.2.1, 5.2.2,
and 5.6, accesses to physical memory may be freely cached, buffered, and prefetched. 

A processor may read more physical memory data (such as a full cache block) than is actually
accessed, writes may trigger reads, and writes may write back more data than is actually
updated. A processor may elide multiple reads and/or writes to the same data. 

5.2.4 Memory-Like and Non-Memory-Like Behavior

Memory-like regions obey the following rules:

• Each page frame in the region either exists in its entirety or does not exist in its entirety;
there are no holes within a page frame.

• All locations that exist are read/write.

• A write to a location followed by a read from that location returns precisely the bits
written; all bits act as memory.

• A write to one location does not change any other location.

• Reads have no side effects.

• Longword access granularity is provided, and if the byte/word extension is imple-
mented, byte access granularity is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

• Unimplemented locations or bits may exist anywhere.

• Some locations or bits may be read-only and others write-only.
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• Address ranges may overlap, such that a write to one location changes the bits read
from a different location.

• Reads may have side effects, although this is strongly discouraged.

• Longword granularity need not be supported and, even if the byte/word extension is
implemented, byte access granularity need not be implemented.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

Hardware/Software Coordination Note:
The details of such behavior are outside the scope of the Alpha architecture. Specific
processor and I/O device implementations may choose and document whatever behavior
they need. It is the responsibility of system designers to impose enough consistency to
allow processors successfully to access matching non-memory devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a virtual instruction cache (virtual I-cache) or a virtual data
cache (virtual D-cache). A system may also choose to include either a combined data and
instruction translation buffer (TB) or separate data and instruction TBs (DTB and ITB). The
contents of these caches and/or translation buffers may become invalid, depending on what
operating system activity is being performed. 

Whenever a non-software field of a valid page table entry (PTE) is modified, copies of that
PTE must be made coherent. PALcode mechanisms are available to clear all TBs, both DTB
and ITB entries for a given VA, either DTB or ITB entries for a given VA, or all entries with
the address space match (ASM) bit clear. Virtual D-cache entries are made coherent whenever
the corresponding DTB entry is requested to be cleared by any of the appropriate PALcode
mechanisms. Virtual I-cache entries can be made coherent via the IMB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has the Address
Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then entries can also effec-
tively be made coherent by assigning a new, unused ASN to the currently running process and
not reusing the previous ASN before calling the appropriate PALcode routine to invalidate the
translation buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only one proces-
sor is not always sufficient. An operating system must arrange to perform the above actions on
each processor that could possibly have copies of the PTE or data for any affected page. 

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memory access time by mak-
ing local copies of recently used memory contents (or those expected to be used) or by
buffering writes to complete at a later time. Caches and write buffers are examples of these
mechanisms. They must be implemented so that their existence is transparent to software
(except for timing, error reporting/control/recovery, and modification to the I-stream). 
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The following requirements must be met by all cache/write-buffer implementations. All pro-
cessors must provide a coherent view of memory. 

• Write buffers may be used to delay and aggregate writes. From the viewpoint of another
processor, buffered writes appear not to have happened yet. (Write buffers must not
delay writes indefinitely. See Section 5.6.1.9.)

• Write-back caches must be able to detect a later write from another processor and inval-
idate or update the cache contents.

• A processor must guarantee that a data store to a location followed by a data load from
the same location reads the updated value.

• Cache prefetching is allowed, but virtual caches must not prefetch from invalid pages.
See Sections 5.6.1.3, 5.6.4.3, and 5.6.4.4.

• A processor must guarantee that all of its previous writes are visible to all other proces-
sors before a HALT instruction completes. A processor must guarantee that its caches
are coherent with the rest of the system before continuing from a HALT.

• If battery backup is supplied, a processor must guarantee that the memory system
remains coherent across a powerfail/recovery sequence. Data that was written by the
processor before the powerfail may not be lost, and any caches must be in a valid state
before (and if) normal instruction processing is continued after power is restored. 

• Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that creates or
modifies the instruction stream must execute a CALL_PAL IMB before trying to exe-
cute the new instructions. 

In this context, to "modify the virtual I-stream" means either: 

– any Store to the same physical address that is subsequently fetched as an ins
by some corresponding (virtual address, ASN) pair, or 

– any change to the virtual-to-physical address mapping so that different values are
fetched. 

For example, if two different virtual addresses, VA1 and VA2, map to the same 
frame, a store to VA1 modifies the virtual I-stream fetched by VA2.

However, the following sequence does not modify the virtual I-stream (this might
happen in soft page faults).

1. Change the mapping of an I-stream page from valid to invalid.

2. Copy the corresponding page frame to a new page frame. 

3. Change the original mapping to be valid and point to the new page frame.

• Physical instruction caches are not required to notice modifications of the physical
I-stream (they need not be coherent with the rest of memory), except for certain paging
activity. (See Section 5.6.4.4.) Software that creates or modifies the instruction stream
must execute a CALL_PAL IMB before trying to execute the new instructions. 

In this context, to "modify the physical I-stream" means any Store to the same physical
address that is subsequently fetched as an instruction.
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5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer. 

5.5.1 Atomic Change of a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change of a shared
aligned longword or quadword. ("Change" means that the new value is not a function of the old
value.) In particular, an ordinary STL or STQ instruction can be used to change a variable that
could be simultaneously accessed via an LDx_L/STx_C sequence. 

5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic update of a
shared aligned longword or quadword. ("Update" means that the new value is a function of the
old value.) 

The following sequence performs a read-modify-write operation on location x. Only regis-
ter-to-register operate instructions and branch fall-throughs may occur in the sequence:

try_again:
LDQ_L  R1,x
<modify R1>
STQ_C  R1,x
BEQ   R1,no_store
:

no_store:
<code to check for excessive iterations>
BR      try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes to loca-
tion x (more precisely, the locked range including x) between the LDQ_L and STQ_C
instructions, then the STQ_C shown in the example stores the modified value in x and sets R1
to 1. If, however, the sequence encounters exceptions or interrupts that eventually continue the
sequence, or another processor writes to x, then the STQ_C does not store and sets R1 to 0. In
this case, the sequence is repeated by the branches to no_store and try_again. This repetition
continues until the reasons for exceptions or interrupts are removed and no interfering store is
encountered. 

To be useful, the sequence must be constructed so that it can be replayed an arbitrary number
of times, giving the same result values each time. A sufficient (but not necessary) condition is
that, within the sequence, the set of operand destinations and the set of operand sources are
disjoint. 

Note:
A sufficiently long instruction sequence between LDx_L and STx_C will never complete,
because periodic timer interrupts will always occur before the sequence completes. The
rules in Section A.5 describe sequences that will eventually complete in all Alpha
implementations.
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This load-locked/store-conditional paradigm may be used whenever an atomic update of a
shared aligned quadword is desired, including getting the effect of atomic byte writes.

5.5.3 Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned longword
or quadword), the programmer can acquire control of the data structure by using an atomic
update to set a software lock variable. Such a software lock can be cleared with an ordinary
store instruction.

A software-critical section, therefore, may look like the sequence:

stq_c_loop:
spin_loop:
      LDQ  R1,lock_variable ; This optional spin-loop code
      BLBS R1,already_set ;  should be used unless the
                   ;  lock is known to be low-contention.
      LDQ_L R1,lock_variable  ; \
      BLBS R1,already_set   ;  \
      OR  R1,#1,R2      ;   > Set lock bit
      STQ_C R2,lock_variable  ;  /
      BEQ  R2,stq_c_fail    ; /

      MB
      <critical section: updates various data structures>
      MB            ; Second MB 
      STQ  R31,lock_variable  ; Clear lock bit
       :
       :
already_set:
      <code to block or reschedule or test for too many iterations>
      BR  spin_loop
stq_c_fail:
      <code to test for too many iterations>
      BR  stq_c_loop

This code has a number of subtleties:

• If the lock_variable is already set, the spin loop is done without doing any stores. This
avoidance of stores improves memory subsystem performance and avoids the deadlock
described below. The loop uses an ordinary load. This code sequence is preferred unless
the lock is known to be low-contention, because the sequence increases the probability
that the LDQ_L hits in the cache and the LDQ_L/STQ_C sequence complete quickly
and successfully.

• If the lock_variable is actually being changed from 0 to 1, and the STQ_C fails (due to
an interrupt, or because another processor simultaneously changed lock_variable), the
entire process starts over by reading the lock_variable again. 

• Only the fall-through path of the BLBS instructions does a STx_C; some implementa-
tions may not allow a successful STx_C after a branch-taken.

• Only register-to-register operate instructions are used to do the modify.
System Architecture and Programming Implications 5–7
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• Both conditional branches are forward branches, so they are properly predicted not to
be taken (to match the common case of no contention for the lock).

• The OR writes its result to a second register; this allows the OR and the BLBS to be
interchanged if that would give a faster instruction schedule.

• Other operate instructions (from the critical section) may be scheduled into the
LDQ_L..STQ_C sequence, so long as they do not fault or trap and they give correct
results if repeated; other memory or operate instructions may be scheduled between the
STQ_C and BEQ.

• The memory barrier instructions are discussed in Section 5.5.4. It is correct to substitute
WMB for the second MB only if:

– All data locations that are read or written in the critical section are accessed
after acquiring a software lock by using lock_variable (and before releasing th
software lock).

– For each read u of shared data in the critical section, there is a write v such that:

1. v is BEFORE the WMB

2. v follows u in processor issue sequence (see Section 5.6.1.1)

3. v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1), or
both.

– Both lock_variable and all the shared data are in memory-like regions
lock_variable and all the shared data are in non-memory-like regions). If
lock_variable is in a non-memory-like region, the atomic lock protocol must 
some implementation-specific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

• An ordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C sequence
(to move the BLBS after the BEQ) because that sequence may repeatedly change the software
lock_variable from "locked" to "locked," with each write causing extra access delays in all
other caches that contain the lock_variable. In the extreme, spin-waits that contain writes may
deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not changing)
the lock_variable, then the writes on the first processor may cause the STx_C of the
modify on the second processor always to fail.

This deadlock situation is avoided by:

• Having only one processor execute a store (no STx_C), or

• Having no write in the spin loop, or

• Doing a write only if the shared variable actually changes state (1 → 1 does not change
state).
  5–8   Alpha Architecture Handbook
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5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three steps:

1. Acquire software lock

2. Critical section — read/write shared data

3. Clear software lock

In the absence of explicit instructions to the contrary, the Alpha architecture allows reads and
writes to be reordered. While this may allow more implementation speed and overlap, 
also create undesired side effects on shared data structures. Normally, the critical section just
described would have two instructions added to it:

<acquire software lock>
MB (memory barrier #1)
<critical section – read/write shared data>
MB (memory barrier #2)
<clear software lock>
<endcode_example>

The first memory barrier prevents any reads (from within the critical section) from b
prefetched before the software lock is acquired; such prefetched reads would potentiall
tain stale data. 

The second memory barrier prevents any writes and reads in the critical section being d
past the clearing of the software lock. Such delayed accesses could interact with the ne
of the shared data, defeating the purpose of the software lock entirely. It is correct to sub
WMB for the second MB only if:

1. All data locations that are read or written in the critical section are accessed only
acquiring a software lock by using lock_variable (and before releasing the soft
lock).

2. For each read u of shared data in the critical section, there is a write v such that:

a.  v is BEFORE the WMB

b.  v follows u in processor issue sequence (see Section 5.6.1.1)

c.  v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1), or both.

3. Both lock_variable and all the shared data are in memory-like regions (or lock_va
and all the shared data are in non-memory-like regions). If the lock_variable is
non-memory-like region, the atomic lock protocol must use some implementation
cific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

Software Note:
In the VAX architecture, many instructions provide noninterruptable read-modify-write
sequences to memory variables. Most programmers never regard data sharing as an

In the Alpha architecture, programmers must pay more attention to synchronizing acc
shared data; for example, to AST routines. In the VAX architecture, a programmer can us
System Architecture and Programming Implications 5–9



an ADDL2 to update a variable that is shared between a "MAIN" routine and an AST
routine, if running on a single processor. In the Alpha architecture, a programmer must
deal with AST shared data by using multiprocessor shared data sequences.

5.6 Read/Write Ordering

This section applies to programs that run on multiple processors or on one or more processors
that are interacting with DMA I/O devices. To a program running on a single processor and not
interacting with DMA I/O devices, all memory accesses appear to happen in the order speci-
fied by the programmer. This section deals with predictable read/write ordering across multiple
processors and/or DMA I/O devices.

The order of reads and writes done in an Alpha implementation may differ from that specified
by the programmer.

For any two memory accesses A and B, either A must occur before B in all Alpha implementa-
tions, B must occur before A, or they are UNORDERED. In the last case, software cannot
depend upon one occurring first: the order may vary from implementation to implementation,
and even from run to run or moment to moment on a single implementation.

If two accesses cannot be shown to be ordered by the rules given, they are UNORDERED and
implementations are free to do them in any order that is convenient. Implementations may take
advantage of this freedom to deliver substantially higher performance. 

The discussion that follows first defines the architectural issue sequence of memory accesses
on a single processor, then defines the (partial) ordering on this issue sequence that all Alpha
implementations are required to maintain. 

The individual issue sequences on multiple processors are merged into access sequences at
each shared memory location. The discussion defines the (partial) ordering on the individual
access sequences that all Alpha implementations are required to maintain.

The net result is that for any code that executes on multiple processors, one can determine
which memory accesses are required to occur before others on all Alpha implementations and
hence can write useful shared-variable software.

Software writers can force one access to occur before another by inserting a memory barrier
instruction (MB, WMB, or CALL_PAL IMB) between the accesses.

5.6.1 Alpha Shared Memory Model

An Alpha system consists of a collection of processors, I/O devices (and possibly a bridge to
connect remote I/O devices), and shared memories that are accessible by all processors.

Note:
An example of an unshared location is a physical address in I/O space that refers to a CSR
that is local to a processor and not accessible by other processors.

A processor is an Alpha CPU.
  5–10   Alpha Architecture Handbook
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In most systems, DMA I/O devices or other agents can read or write shared memory locations.
The order of accesses by those agents is not completely specified in this document. It is possi-
ble in some systems for read accesses by I/O devices or other agents to give results indicating
some reordering of accesses. However, there are guarantees that apply in all systems. See Sec-
tion 5.6.4.7.

A shared memory is the primary storage place for one or more locations.
 

A location is a byte, specified by its physical address. Multiple virtual addresses may map to
the same physical address. Ordering considerations are based only on the physical address.
This definition of location specifically includes locations and registers in memory mapped I/O
devices and bridges to remote I/O (for example, Mailbox Pointer Registers, or MBPRs).

Implementation Note:

An implementation may allow a location to have multiple physical addresses, but the rules
for accesses via mixtures of the addresses are implementation-specific and outside the
scope of this section. Accesses via exactly one of the physical addresses follow the rules
described next.

Each processor may generate accesses to shared memory locations. There are six types of
accesses:

1. Instruction fetch by processor i to location x, returning value a, denoted Pi:I<4>(x,a).

2. Data read (including load-locked) by processor i to location x, returning value a,
denoted Pi:R<size>(x,a).

3. Data write (including successful store-conditional) by processor i to location x, storing
value a, denoted Pi:W<size>(x,a).

4. Memory barrier issued by processor i, denoted Pi:MB.

5. Write memory barrier issued by processor i, denoted Pi:WMB.

6. I-stream memory barrier issued by processor i, denoted Pi:IMB.

The first access type is also called an I-stream access or I-fetch. The next two are also called
D-stream accesses. The first three types are collectively called read/write accesses, denoted
Pi:Op<m>(x,a), where m is the size of the access in bytes, x is the (physical) address of the
access, and a is a value representable in m bytes; for any k in the range 0..m–1, byte k of value
a (where byte 0 is the low-order byte) is the value written to or read from location x+k by the
access. This relationship reflects little-endian addressing; big-endian addressing represe
is as described in Chapter 2.

The last three types collectively are called barriers or memory barriers.

The size of a read/write access is 8 for a quadword access, 4 for a longword access (in
all instruction fetches), 2 for a word access, or 1 for a byte access. All read/write acces
this chapter are naturally aligned. That is, they have the form Pi:Op<m>(x,a), wher
address x is divisible by size m.

The word "access" is also used as a verb; a read/write access Pi:Op<m>(x,a) accesses  z if
x ≤ z < x+m. Two read/write accesses Op1<m>(x,a) and Op2<n>(y,b) are defined to ove
System Architecture and Programming Implications 5–11



there is at least one byte that is accessed by both, that is, if max(x,y) < min(x+m,y+n).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a hypothetical sim-
ple implementation that contains one processor and a single shared memory, with no caches or
buffers. This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a single data
read from memory for a Load instruction or a single data write to memory for a Store
instruction.

3. Update: The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done and the
PC is updated to point to a PALcode fault handler. If the read/write step gets a memory man-
agement fault, the read/write is not done and the PC is updated to point to a PALcode fault
handler. 

5.6.1.2 Definition of Before and After

The ordering relation BEFORE (⇐ ) is a partial order on memory accesses. It is further defined
in Sections 5.6.1.3 through 5.6.1.9.

The ordering relation BEFORE (⇐ ), being a partial order, is acyclic.

The BEFORE order cannot be observed directly, nor fully predicted before an actual execu-
tion, nor reproduced exactly from one execution to another. Nonetheless, some useful ordering
properties must hold in all Alpha implementations.

If u ⇐ v, then v is said to be AFTER u.

5.6.1.3 Definition of Processor Issue Constraints

Processor issue constraints are imposed on the processor issue sequence defined in Section
5.6.1.1, as shown in Table 5–1: 
  5–12   Alpha Architecture Handbook
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Where "overlap" denotes the condition max(x,y) < min(x+m,y+n).

For two accesses u and v issued by processor Pi, if u precedes v by processor issue constraint,
then u precedes v in BEFORE order. u and v on Pi are ordered by processor issue constraint if
any of the following applies:

1. The entry in Table 5–1 indicated by the access type of u (1st) and v (2nd) indicates the
accesses are ordered.

2. u and v are both writes to memory-like regions and there is a WMB between u and v in
processor issue sequence.

3. u and v are both writes to non-memory-like regions and there is a WMB between u and
v in processor issue sequence.

4. u is a TB fill that updates a PTE, for example, a PTE read in order to satisfy a TB 
and v is an I- or D-stream access using that PTE (see Sections 5.6.4.3 and 5.6.4.4

In Table 5–1, 1st and 2nd refer to the ordering of accesses in the processor issue sequ
Note that Table 5–1 imposes no direct constraint on the ordering relationship between
overlapping read/write accesses, though there may be indirect constraints due to the tran
of BEFORE (⇐ ). Conditions 2 through 4, above, impose ordering constraints on some pa
nonoverlapping read/write accesses. 

Table 5–1 permits a read access Pi:R<n>(y,b) to be ordered BEFORE an overlapping
access Pi:W<m>(x,a) that precedes the read access in processor issue order. This asy
for reads allows reads to be satisfied by using data from an earlier write in processor
sequence by the same processor (for example, by hitting in a write buffer) before the
completes. The write access remains "visible" to the read access; "visibility" is describ
Sections 5.6.1.5 and 5.6.1.6 and illustrated in Litmus Test 11 in Section 5.6.2.11.

An I-fetch Pi:I<4>(y,b) may also be ordered BEFORE an overlapping write Pi:W<m>(x,a)
precedes it in processor issue sequence. In that case, the write may, but need not, be v
the I-fetch. This asymmetry in Table 5–1 allows writes to the I-stream to be incoherent u
CALL_PAL IMB is executed.

Implementations are free to perform memory accesses from a single processor in any se
that is consistent with processor issue constraints.

Table 5–1:  Processor Issue Constraints

1st↓ 2nd → Pi:I<n=4>(y,b) Pi:R<n>(y,b) Pi:W<n>(y,b) Pi:MB Pi:IMB

Pi:I<m=4>(x,a) ⇐ if overlap ⇐ if overlap ⇐ ⇐

Pi:R<m>(x,a) ⇐ if overlap ⇐ if overlap ⇐ ⇐

Pi:W<m>(x,a) ⇐ if overlap ⇐ ⇐

Pi:MB ⇐ ⇐ ⇐ ⇐

Pi:IMB ⇐ ⇐ ⇐ ⇐ ⇐
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5.6.1.4 Definition of Location Access Constraints

Location access constraints are imposed on overlapping read/write accesses. If u and v are
overlapping read/write accesses, at least one of which is a write, then u and v must be compara-
ble in the BEFORE (⇐ ) ordering, that is, either u ⇐ v or v ⇐ u.

There is no direct requirement that nonoverlapping accesses be comparable in the BEFORE
(⇐ ) ordering.

All writes accessing any given byte are totally ordered, and any read or I-fetch accessing a
given byte is ordered with respect to all writes accessing that byte.

5.6.1.5 Definition of Visibility 

If u is a write access Pi:W<m>(x,a) and v is an overlapping read access Pj:R<n>(y,b), u is visi-
ble to v only if:

u ⇐ v, or

u precedes v in processor issue sequence (possible only if Pi=Pj). 

If u is a write access Pi:W<m>(x,a) and v is an overlapping instruction fetch Pj:I<4>(y,b),
there are the following rules for visibility:

1. If u ⇐ v, then u is visible to v.

2. If u precedes v in processor issue sequence, then:

a. If there is a write w such that:

u overlaps w and precedes w in processor issue sequence, and
w is visible to v,

then u is visible to v.

b. If there is an instruction fetch w such that:

u is visible to w, and
w overlaps v and precedes v in processor issue sequence,

then u is visible to v.

3. If u does not precede v in either processor issue sequence or BEFORE order, then u is
not visible to v.

Note that the rules of visibility for reads and instruction fetches are slightly different. If a write
u precedes an overlapping instruction fetch v in processor issue sequence, but u is not
BEFORE v, then u may or may not be visible to v.

5.6.1.6 Definition of Storage

The property of storage applies only to memory-like regions.

The value read from any byte by a read access or instruction fetch v, is the value written by the
latest (in BEFORE order) write u to that byte that is visible to v. More formally:

If u is Pi:W<m>(x,a), and v is either Pj:I<4>(y,b) or Pj:R<n>(y,b), and z is a byte accessed
by both u and v, and u is visible to v; and there is no write that is AFTER u, is visible to v,
  5–14   Alpha Architecture Handbook
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and accesses byte z; then the value of byte z read by v is exactly the value written by u. In
this situation, u is a source of v.

The only way to communicate information between different processors is for one to write a
shared location and the other to read the shared location and receive the newly written value.
(In this context, the sending of an interrupt from processor Pi to Pj is modeled as Pi writing to a
location INTij, and Pj reading from INTij.)

5.6.1.7 Definition of Dependence Constraint

The depends relation (DP) is defined as follows. Given u and v issued by processor Pi, where u
is a read or an instruction fetch and v is a write, u precedes v in DP order (written u DP v, that
is, v depends on u) in either of the following situations: 

• u determines the execution of v, the location accessed by v, or the value written by v.

• u determines the execution or address or value of another memory access z that pre-
cedes v or might precede v (that is, would precede v in some execution path depending
on the value read by u) by processor issue constraint (see Section 5.6.1.3).

Note that the DP relation does not directly impose a BEFORE (⇐) ordering between accesses
u and v.

The dependence constraint requires that the union of the DP relation and the "is a source of"
relation (see Section 5.6.1.6) be acyclic. That is, there must not exist reads and/or I-fetches  R1,
…, Rn, and writes W1, …, Wn, such that:

1. n ≥ 1,

2. For each i, 1 ≤ i ≤ n, Ri DP Wi,

3. For each i, 1 ≤ i < n, Wi is a source of Ri + 1, and

4. Wn is a source of R1.

That constraint eliminates the possibility of "causal loops." A simple example of a "ca
loop" is when the execution of a write on Pi depends on the execution of a write on Pj an
versa, creating a circular dependence chain. The following simple example of a "causal l
is written in the style of the litmus tests in Section 5.6.2, where initially x and y are 1:

Processor Pi executes:

   LDQ   R1,x
   STQ   R1,y

Processor Pj executes:

   LDQ   R1,y
   STQ   R1,x
System Architecture and Programming Implications 5–15
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Representing those code sequences in the style of the litmus tests in Section 5.6.2, it is impos-
sible for the following sequence to result:

Analysis:

Given the initial condition x, y = 1, the access sequence above would also be impossible if the
code were:

Processor Pi’s program:

LDQ   R1,x
BNE   R1,done
STQ   R31,y

done:

Processor Pj’s program:

LDQ   R1,y
BNE   R1,done
STQ   R31,x

done:

5.6.1.8 Definition of Load-Locked and Store-Conditional

The property of load-locked and store-conditional applies only to memory-like regions.

For each successful store-conditional v, there exists a load-locked u such that the following are
true:

1. u precedes v in the processor issue sequence.

2. There is no load-locked or store-conditional between u and v in the processor issue
sequence.

3. If u and v access within the same naturally aligned 16-byte physical and virtual bloc
memory, then for every write w by a different processor that accesses within u’s lock
range (where w is either a store or a successful store conditional), it must be true thw
⇐ u or v ⇐ w.

u’s lock range contains the region of physical memory that u accesses. See Sections 4.2.4 and
4.2.5, which define the lock range and conditions for success or failure of a store conditio

Pi Pj

[U1] Pi:R<8>(x,0) [V1] Pj:R<8>(y,0)

[U2] Pi:W<8>(y,0) [V2] Pj:W<8>(x,0)

<1> By the definitions of storage and visibility, U2 is the source of V1, and V2 is the
source of U1.

<2> By the definition of DP and examination of the code, U1 DP U2, and V1 DP V2.

<3> Thus, U1 DP U2, U2 is the source of V1, V1 DP V2, and V2 is the source of U1.
This circular chain is forbidden by the dependence constraint.
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5.6.1.9 Timeliness

Even in the absence of a barrier after the write, no write by a processor may be delayed indefi-
nitely in the BEFORE ordering.

5.6.2 Litmus Tests

Many issues about writing and reading shared data can be cast into questions about whether a
write is before or after a read. These questions can be answered by rigorously checking
whether any ordering satisfies the rules in Sections 5.6.1.3 through 5.6.1.8.

In litmus tests 1–9 below, all initial quadword memory locations contain 1. In all these li
tests, it is assumed that initializations are performed by a write or writes that are BEFOR
the explicitly listed accesses, that all relevant writes other than the initializations are exp
shown, and that all accesses shown are to memory-like regions (so the definition of s
applies).

5.6.2.1 Litmus Test 1 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Thus, once a processor reads a new value from a location, it must never see an old value
must not go backward. V2 must read 2.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(x,2)

[V2]Pj:R<8>(x,1)

<1> By the definition of storage (Section 5.6.1.6), V1 reading 2 implies that U1 is visib
to V1.

<2> By the rules for visibility (Section 5.6.1.5), U1 being visible to V1, but being issue
by a different processor, implies that U1 ⇐ V1.

<3> By the processor issue constraints (Section 5.6.1.3), V1 ⇐ V2.

<4> By the transitivity of the partial order ⇐, it follows from <2> and <3> that U1 ⇐
V2.

<5> By the rules for visibility, it follows from U1 ⇐ V2 that U1 is visible to V2.

<6> Since U1 is AFTER the initialization of x, U1 is the latest (in the ⇐ ordering) write
to x that is visible to V1.

<7> By the definition of storage, it follows that V2 should read the value written by U1
in contradiction to the stated result.
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5.6.2.2 Litmus Test 2 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Thus, once processor Pj reads a new value written by U1, any other writes that must precede
the read must also precede U1. V3 must read 2.

5.6.2.3 Litmus Test 3 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Again, time cannot go backwards. If V1 is ordered before U1, then processor Pk cannot read
first the later value 3 and then the earlier value 2. Alternatively, if V1 is ordered before U1, U2
must read 2.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[V2]Pj:R<8>(x,2)

[V3]Pj:R<8>(x,3)

<1> Since V1 precedes V2 in processor issue sequence, V1 is visible to V2.

<2> V2 reading 2 implies U1 is the latest (in ⇐ order) write to x visible to V2.

<3> From <1> and <2>, V1 ⇐ U1.

<4> Since U1 is visible to V2, and they are issued by different processors, U1 ⇐ V2.

<5> By the processor issue constraints, V2 ⇐ V3.

<6> From <4> and <5>, U1 ⇐ V3.

<7> From <6> and the visibility rules, U1 is visible to V3.

<8> Since both V1 and the initialization of x are BEFORE U1, U1 is the latest write to x
that is visible to V3.

<9> By the definition of storage, it follows that V3 should read the value written by U1,
in contradiction to the stated result.

Pi Pj Pk

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3) [W1]Pk:R<8>(x,3)

[U2]Pi:R<8>(x,3) [W2]Pk:R<8>(x,2)

<1>  U2 reading 3 implies V1 is the latest write to x visible to U2, therefore U1 ⇐ V1.

<2> W1 reading 3 implies V1 is visible to W1, so V1 ⇐ W1 ⇐ W, therefore V1 is also
visible to W2.

<3> W2 reading 2 implies U1 is the latest write to x visible to W2, therefore V1 ⇐ U1.

<4> From <1> and <3>, U1 ⇐ V1 ⇐ U1.
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5.6.2.4 Litmus Test 4 (Sequence Okay)

Initially, locations x and y contain 1:

Analysis:

There are no conflicts in the sequence. There are no violations of the definition of BEFORE.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Initially, locations x and y contain 1:

Analysis:

There is U2 ⇐ V1 ⇐ V2 ⇐ V3 ⇐ U1. There are no conflicts in this sequence. There are no
violations of the definition of BEFORE.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Initially, locations x and y contain 1:

Analysis:

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

<1> V1 reading 2 implies U2 ⇐ V1, by storage and visibility.

<2> Since V2 does not read 2, there cannot be U1 ⇐ V2.

<3> By the access order constraints, it follows from <2> that V2 ⇐ U1.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[V2]Pj:MB

[U2]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

<1> V1 reading 2 implies U2 ⇐ V1, by storage and visibility.

<2> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<3>  V3 reading 1 implies V3 ⇐ U1, by storage and visibility.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB

[U3]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

<1>  U1 ⇐ U2 ⇐ U3, by processor issue constraints.

<2> V1 reading 2 implies U3 ⇐ V1, by storage and visibility.

<3> V2 reading 1 implies V2 ⇐ U1, by storage and visibility.
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There is V2 ⇐ U1 ⇐ U2 ⇐ U3 ⇐ V1. There are no conflicts in this sequence. There are no
violations of the definition of BEFORE.

In litmus tests 4, 5, and 6, writes to two different locations x and y are observed (by another
processor) to occur in the opposite order than that in which they were performed. An update to
y propagates quickly to Pj, but the update to x is delayed, and Pi and Pj do not both have MBs.

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Initially, locations x and y contain 1:

Analysis:

Both <1> and <5> cannot be true, so if V1 reads 2, then V3 must also read 2.

If both x and y are in memory-like regions, the sequence remains impossible if U2 is changed
to a WMB. Similarly, if both x and y are in non-memory-like regions, the sequence remains
impossible if U2 is changed to a WMB.

5.6.2.8 Litmus Test 8 (Impossible Sequence)

Initially, locations x and y contain 1:

Analysis:

Both <1> and <5> cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

<1> V3 reading 1 implies V3 ⇐ U1, by storage and visibility.

<2> V1 reading 2 implies U3 ⇐ V1, by storage and visibility.

<3> U1 ⇐ U2 ⇐ U3, by processor issue constraints.

<4> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<5> By <2>, <3>, and <4>, U1 ⇐ U2 ⇐ U3 ⇐ V1 ⇐ V2 ⇐ V3.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:R<8>(y,1) [V3]Pj:R<8>(x,1)

<1> V3 reading 1 implies V3 ⇐ U1, by storage and visibility.

<2> U3 reading 1 implies U3 ⇐ V1, by storage and visibility.

<3>  U1 ⇐ U2 ⇐ U3, by processor issue constraints.

<4> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<5> By <2>, <3>, and <4>, U1 ⇐ U2 ⇐ U3 ⇐ V1 ⇐ V2 ⇐ V3.
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5.6.2.9 Litmus Test 9 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Both <1> and <2> cannot be true. Time cannot go backwards. If V3 reads 2, then U3 must read
2. Alternatively, if U3 reads 3, then V3 must read 3.

5.6.2.10 Litmus Test 10 (Sequence Okay)

For an aligned quadword location, x, initially 10000000116:

Analysis:

There is no ordering cycle, so the sequence is permitted.

5.6.2.11 Litmus Test 11 (Impossible Sequence)

For an aligned quadword location, x, initially 10000000116:

Analysis:

Both <1> and <2> cannot be true.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[U2]Pi:R<8>(x,2) [V2]Pj:R<8>(x,3)

[U3]Pi:R<8>(x,3) [V3]Pj:R<8>(x,2)

<1> V3 reading 2 implies U1 is the latest write to x visible to V3, therefore V1 ⇐ U1.

<2> U3 reading 3 implies V1 is the latest write to x visible to U3, therefore U1 ⇐ V1.

Pi Pj

[U1]Pi:W<4>(x,2) [V1]Pj:W<4>(x+4,2)

[U2]Pi:R<8>(x,10000000216) [V2]Pj:R<8>(x,20000000116)

<1> Since U2 reads 1 from x+4, V1 is not visible to U2. Thus U2 ⇐ V1.

<2> Similarly, V2 ⇐ U1.

<3> U1 is visible to U2, but since they are issued by the same processor, it is not neces-
sarily the case that U1 ⇐ U2.

<4> Similarly, it is not necessarily the case that V1 ⇐ V2.

Pi Pj

[U1]Pi:W<4>(x,2)  [V1]Pj:R<8>(x,20000000116)

[U2]Pi:MB or WMB

[U3]Pi:W<4>(x+4,2)

<1> V1 reading 20000000116 implies U3 ⇐ V1 ⇐ U1 by storage and visibility.

<2>  U1 ⇐ U2 ⇐ U3, by processor issue constraints.
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5.6.3 Implied Barriers

There are no implied barriers in Alpha. If an implied barrier is needed for functionally correct
access to shared data, it must be written as an explicit instruction. (Software must explicitly
include any needed MB, WMB, or CALL_PAL IMB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:

• Entry to PALcode

• Sending and receiving interrupts

• Returning from exceptions, interrupts, or machine checks

• Swapping context

• Invalidating the Translation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some PALcode/cache
implementations may have an implied CALL_PAL IMB in the I-stream TB fill routine, but
this is transparent to the non-PALcode programmer.

5.6.4 Implications for Software

Software must explicitly include MB, WMB, or CALL_PAL IMB instructions according to the
following circumstances.

5.6.4.1 Single Processor Data Stream

No barriers are ever needed. A read to physical address x will always return the value written
by the immediately preceding write to x in the processor issue sequence.

5.6.4.2 Single Processor Instruction Stream

An I-fetch from virtual or physical address x does not necessarily return the value written by
the immediately preceding write to x in the issue sequence. To make the I-fetch reliably get the
newly written instruction, a CALL_PAL IMB is needed between the write and the I-fetch.

5.6.4.3 Multiprocessor Data Stream (Including Single Processor with DMA I/O)

Generally, the only way to reliably communicate shared data is to write the shared data on one

processor or DMA I/O device, execute an MB (or the logical equivalent1 if it is a DMA I/O
device), then write a flag (equivalently, send an interrupt) signaling the other processor that the
shared data is ready. Each receiving processor must read the new flag (equivalently, receive the
interrupt), execute an MB, then read or update the shared data. In the special case in which data

1 In this context, the logical equivalent of an MB for a DMA device is whatever is necessary under the 
applicable I/O subsystem architecture to ensure that preceding writes will be BEFORE (see Section 
5.6.1.2) the subsequent write of a flag or transmission of an interrupt. Not all I/O devices behave 
exactly as required by the Alpha architecture. To interoperate properly with those devices, some spe-
cial action might be required by the program executing on the CPU. For example, PCI bus devices 
require that after the CPU has received an interrupt, the CPU must read a CSR location on the PCI 
device, execute an MB, then read or update the shared data. From the perspective of the Alpha archi-
tecture, this CSR read can be regarded as a necessary assist to help the DMA I/O device complete its 
logical equivalent of an MB.
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is communicated through just one location in memory, memory barriers are not necessary.

Software Note:
Note that this section does not describe how to reliably communicate data from a processor
to a DMA device. See Section 5.6.4.7.

Leaving out the first MB removes the assurance that the shared data is written before the flag is
written. 

Leaving out the second MB removes the assurance that the shared data is read or updated only
after the flag is seen to change; in this case, an early read could see an old value, and an early
update could be overwritten. 

This implies that after a DMA I/O device has written some data to memory (such as paging in

a page from disk), the DMA device must logically execute an MB1 before posting a comple-
tion interrupt, and the interrupt handler software must execute an MB before the data is
guaranteed to be visible to the interrupted processor. Other processors must also execute MBs
before they are guaranteed to see the new data.

An important special case occurs when a write is done (perhaps by an I/O device) to some
physical page frame, then an MB is executed, and then a previously invalid PTE is changed to
be a valid mapping of the physical page frame that was just written. In this case, all processors
that access virtual memory by using the newly valid PTE must guarantee to deliver the newly
written data after the TB miss, for both I-stream and D-stream accesses.

5.6.4.4 Multiprocessor Instruction Stream (Including Single Processor with DMA I/O)

The only way to update the I-stream reliably is to write the shared I-stream on one processor or
DMA I/O device, then execute a CALL_PAL IMB (or an MB if the processor is not going to
execute the new I-stream, or the logical equivalent of an MB if it is a DMA I/O device), then
write a flag (equivalently, send an interrupt) signaling the other processor that the shared
I-stream is ready. Each receiving processor must read the new flag (equivalently, receive the
interrupt), execute a CALL_PAL IMB, then fetch the shared I-stream. 

Software Note:
Note that this section does not describe how to reliably communicate I-stream from a
processor to a DMA device. See Section 5.6.4.7.

Leaving out the first CALL_PAL IMB (or MB) removes the assurance that the shared I-stream
is written before the flag.

Leaving out the second CALL_PAL IMB removes the assurance that the shared I-stream is
read only after the flag is seen to change; in this case, an early read could see an old value.

1 See Footnote 1 on page 5-22.
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This implies that after a DMA I/O device has written some I-stream to memory (such as pag-

ing in a page from disk), the DMA device must logically execute an MB1 before posting a
completion interrupt, and the interrupt handler software must execute a CALL_PAL IMB
before the I-stream is guaranteed to be visible to the interrupted processor. Other processors
must also execute CALL_PAL IMB instructions before they are guaranteed to see the new
I-stream.

An important special case occurs under the following circumstances:

1. A write (perhaps by an I/O device) is done to some physical page frame.

2. A CALL_PAL IMB (or MB) is executed.

3. A previously invalid PTE is changed to be a valid mapping of the physical page frame
that was written in step 1.

In this case, all processors that access virtual memory by using the newly valid PTE must guar-
antee to deliver the newly written I-stream after the TB miss.

5.6.4.5 Multiprocessor Context Switch

If a process migrates from executing on one processor to executing on another, the context
switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually having that con-
text reloaded on another processor. In between, some shared mechanism must be used to
communicate that the context saved in memory by the first processor is available to the second
processor. This could be done by using an interrupt, by using a flag bit associated with the
saved context, or by using a shared-memory multiprocessor data structure, as follows:

1 See Footnote 1 on page 5-22.

First Processor Second Processor

:

Save state of current process.

MB [1]

Pass ownership of process con-
text data structure memory. ⇒ Pick up ownership of process context data

structure memory.

MB [2]

Restore state of new process context data struc-
ture memory.

Make I-stream coherent [3].

Make TB coherent [4].

:

Execute code for new process that accesses
memory that is not common to all processes.
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MB [1] ensures that the writes done to save the state of the current process happen before
the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen after the
ownership is picked up and hence are reliably the values written by the processor saving
the old state. Leaving this MB out makes the code fail if an old value of the context
remains in the second processor’s cache and invalidates from the writes done on th
processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page
that may have occurred on the first processor just before the save of the process sta
must be done with a series of TB invalidate instructions to remove any nonglobal 
mapping for this process, or by assigning an ASN that is unused on the second proce
the process. One of these actions must occur sometime before starting execution
code for the new process that accesses memory (instruction or data) that is not com
all processes. A common method is to assign a new ASN after gaining ownership 
new process and before loading its context, which includes its ASN.

The D-cache on the second processor must be made coherent with any write 
D-stream that may have occurred on the first processor just before the save of proces
state. This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the I-
that may have occurred on the first processor just before the save of process state. This c
be done with a CALL_PAL IMB sometime before the execution of any code that is
common to all processes, More commonly, this can be done by forcing a TB miss (v
new ASN or via TB invalidate instructions) and using the TB-fill rule (see Section 5.6.
This latter approach does not require any additional instruction.

Combining all these considerations gives the following, where, on a single processor, th
no need for the barriers:
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5.6.4.6 Multiprocessor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second processor, and
that processor receives the interrupt, then accesses the shared data, the sequence from Section
5.6.4.3 must be used:

First Processor Second Processor

:

Pick up ownership of process con-
text data structure memory.

MB

Assign new ASN or invalidate
TBs.

Save state of current process.

Restore state of new process.

MB

Pass ownership of process context
data structure memory.
:

⇒
:
Pickup ownership of new process context
data structure memory.

: MB

Assign new ASN or invalidate TBs.

Save state of current process.

Restore state of new process.

MB

Pass ownership of old process context data
structure memory.

:

Execute code for new process that accesses
memory that is not common to all processes.
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Leaving out the MB at the beginning of the interrupt-receipt routine causes the code to fail if
an old value of the context remains in the second processor’s cache, and invalidates fr
writes done on the first processor are not delivered soon enough. 

5.6.4.7 Implications for Memory Mapped I/O

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a proces
DMA I/O device to another processor that work reliably in all Alpha systems. Special co
erations apply to the communication of data or I-stream from a processor to a DMA
device. These considerations arise from the use of bridges to connect to I/O buses with d
that are accessible by memory accesses to non-memory-like regions of physical memory

The following communication method works in all Alpha systems.

To reliably communicate shared data from a processor to an I/O device:

1. Write the shared data to a memory-like physical memory region on the processor.

2. Execute an MB instruction.

3. Write a flag (equivalently, send an interrupt or write a register location implement
the I/O device).

The receiving I/O device must:

1. Read the flag (equivalently, detect the interrupt or detect the write to the register
tion implemented in the I/O device).

2. Execute the equivalent of an MB1

3. Read the shared data.

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance t
shared data is written before the flag is. Unlike the case in Section 5.6.4.3, writing the shared
data to a non-memory-like physical memory region removes the assurance that the I/O 

First Processor Second Processor

:

Write data

MB

Send interrupt ⇒ Receive interrupt

MB

Access data

:

1 In this context, the logical equivalent of an MB for a DMA device is whatever is necessary under the 
applicable I/O subsystem architecture to ensure that preceding writes will be BEFORE (see Section 
5.6.1.2) the subsequent reads of shared data. Typically, this action is defined to be present between 
every read and write access done by the I/O device, according to the applicable I/O subsystem archi-
tecture.
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will detect the writes of the shared data before detecting the flag write, interrupt, or device reg-
ister write.
 
This implies that after a processor has prepared a data buffer to be read from memory by a
DMA I/O device (such as writing a buffer to disk), the processor must execute an MB before
starting the I/O. The I/O device, after receiving the start signal, must logically execute an MB
before reading the data buffer, and the buffer must be located in a memory-like physical mem-
ory region.

There are methods of communicating data that may work in some systems but are not guaran-
teed in all systems. Two notable examples are:

1. If an Alpha processor writes a location implemented in a component located on an I/O
bus in the system, then executes a memory barrier, then writes a flag in some memory
location (in a memory-like or non-memory-like region), a device on the I/O bus may be
able to detect (via read access) the result of the flag in memory write and the write of
the location on the I/O bus out of order (that is, in a different order than the order in
which the Alpha processor wrote those locations).

2. If an Alpha processor writes a location that is a control register within an I/O device,
then executes a memory barrier, then writes a location in memory (in a memory-like or
non-memory-like region), the I/O device may be able to detect (via read access) the
result of the memory write before receiving and responding to the write of its own con-
trol register.

In almost every case, a mechanism that ensures the completion of writes to control register
locations within I/O devices is provided. The normal and strongly recommended mechanism is
to read a location after writing it, which guarantees that the write is complete. In any case, all
systems that use a particular I/O device should provide the same mechanism for that device.

5.6.4.8 Multiple Processors Writing to a Single I/O Device

Generally, for multiple processors to cooperate in writing to a single I/O device, the first pro-
cessor must write to the device, execute an MB, then notify other processors. Another
processor that intends to write the same I/O device after the first processor must receive the
notification, execute an MB, and then write to the I/O device. For example:

First Processor Second Processor
:
Write CSR_A

MB
Write flag (in memory) ⇒ Read flag (in memory)

MB
Write CSR_B

:
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The MB on the first processor guarantees that the write to CSR_A precedes the write to flag in
memory, as perceived on other processors. (The MB does not guarantee that the write to
CSR_A has completed. See Section 5.6.4.7 for a discussion of how a processor can guarantee
that a write to an I/O device has completed at that device.) The MB on the second processor
guarantees that the write to CSR_B will reach the I/O device after the write to CSR_A.

5.6.5 Implications for Hardware

The coherency point for physical address x is the place in the memory subsystem at which
accesses to x are ordered. It may be at a main memory board, or at a cache containing x exclu-
sively, or at the point of winning a common bus arbitration. 

The coherency point for x may move with time, as exclusive access to x migrates between
main memory and various caches.

MB and CALL_PAL IMB force all preceding writes to at least reach their respective coher-
ency points. This does not mean that main-memory writes have been done, just that the order
of the eventual writes is committed. For example, on the XMI with retry, this means getting the
writes acknowledged as received with good parity at the inputs to memory board queues; the
actual RAM write happens later.

MB and CALL_PAL IMB also force all queued cache invalidates to be delivered to the local
caches before starting any subsequent reads (that may otherwise cache hit on stale data) or
writes (that may otherwise write the cache, only to have the write effectively overwritten by a
late-delivered invalidate).

WMB ensures that the final order of writes to memory-like regions is committed and that the
final order of writes to non-memory-like regions is committed. This does not imply that the
final order of writes to memory-like regions relative to writes to non-memory-like regions is
committed. It also prevents writes that precede the WMB from merging with writes that fol-
low the WMB. For example, an implementation with a write buffer might implement WMB by
closing all valid write buffer entries from further merging and then drain the write buffer
entries in order.

Implementations may allow reads of x to hit (by physical address) on pending writes in a write
buffer, even before the writes to x reach the coherency point for x. If this is done, it is still true
that no earlier value of x may subsequently be delivered to the processor that took the hit on the
write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but only if
there cannot be a pending write under a synonym virtual address. Lack of a write-buffer match
on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value when-
ever a PALcode routine is executed that affects the validity, fault behavior, protection
behavior, or virtual-to-physical mapping specified for one or more pages. Becoming coherent
can be delayed until the next subsequent MB instruction or TB fill (using the new mapping) if
the implementation of the PALcode routine always forces a subsequent TB fill.
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5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently and to for-
ward results from one instruction to another. Thus, when an arithmetic trap is detected, the PC
may have advanced an arbitrarily large number of instructions past the instruction T (calculat-
ing result R) whose execution triggered the trap.

When the trap is detected, any or all of these subsequent instructions may run to completion
before the trap is actually taken. The set of instructions subsequent to T that complete before
the trap is taken are collectively called the trap shadow of T. The PC pushed on the stack when
the trap is taken is the PC of the first instruction past the trap shadow.

The instructions in the trap shadow of T may use the UNPREDICTABLE result R of T, they
may generate additional traps, and they may completely change the PC (branches, JSR).

Thus, by the time a trap is taken, the PC pushed on the stack may bear no useful relationship to
the PC of the trigger instruction T, and the state visible to the programmer may have been
updated using the UNPREDICTABLE result R. If an instruction in the trap shadow of T uses
R to calculate a subsequent register value, that register value is UNPREDICTABLE, even
though there may be no trap associated with the subsequent calculation. Similarly:

• If an instruction in the trap shadow of T stores R or any subsequent UNPREDICT-
ABLE result, the stored value is UNPREDICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent UNPREDICTABLE
result as the basis of a conditional or calculated branch, the branch target is UNPRE-
DICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent UNPREDICTABLE
result as the basis of an address calculation, the memory address actually accessed is
UNPREDICTABLE.

Software can follow the rules in Section 4.7.7.3 to reliably bound how far the PC may advance
before taking a trap, how far an UNPREDICTABLE result may propagate or continue from a
trap by supplying a well-defined result R within an arithmetic trap handler. Arithmetic instruc-
tions that do not use the /S exception completion qualifier can reliably produce that behavior
by inserting TRAPB instructions at appropriate points.
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 Chapter 6

Common PALcode Architecture

6.1 PALcode

In a family of machines, both users and operating system developers require functions to be
implemented consistently. When functions conform to a common interface, the code that uses
those functions can be used on several different implementations without modification. 

These functions range from the binary encoding of the instruction and data to the exception
mechanisms and synchronization primitives. Some of these functions can be implemented cost
effectively in hardware, but others are impractical to implement directly in hardware. These
functions include low-level hardware support functions such as Translation Buffer miss fill
routines, interrupt acknowledge, and vector dispatch. They also include support for privileged
and atomic operations that require long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as a prob-
lem because the VAX architecture lends itself to a microcoded implementation. 

One of the goals of Alpha architecture is to implement functions consistently without micro-
code. However, it is still desirable to provide an architected interface to these functions that
will be consistent across the entire family of machines. The Privileged Architecture Library
(PALcode) provides a mechanism to implement these functions without microcode.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Instructions that require complex sequencing as an atomic operation 
• Instructions that require VAX style interlocked memory access
• Privileged instructions 
• Memory management control, including translation buffer (TB) management
• Context swapping
• Interrupt and exception dispatching 
• Power-up initialization and booting
• Console functions
• Emulation of instructions with no hardware support
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The Alpha architecture lets these functions be implemented in standard machine code that is
resident in main memory. PALcode is written in standard machine code with some implemen-
tation-specific extensions to provide access to low-level hardware. This lets an Alpha
implementation make various design trade-offs based on the hardware technology being used
to implement the machine. The PALcode can abstract these differences and make them invisi-
ble to system software.

For example, in a MOS VLSI implementation, a small (32-entry) fully associative TB can be
the right match to the media, given that chip area is a costly resource. In an ECL version, a
large (1024 entry) direct-mapped TB can be used because it will use RAM chips and does not
have fast associative memories available. This difference would be handled by implementa-
tion-specific versions of the PALcode on the two systems, both versions providing transparent
TB miss service routines. The operating system code would not need to know there were any
differences.

An Alpha Privileged Architecture Library (PALcode) of routines and environments is supplied
by Compaq. Other systems may use a library supplied by Compaq or architect and implement a
different library of routines. Alpha systems are required to support the replacement of PAL-
code defined by Compaq with an operating system-specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following ways:

• Complete control of the machine state.

• Interrupts are disabled.

• Implementation-specific hardware functions are enabled, as described below.

• I-stream memory management traps are prevented (by disabling I-stream mapping,
mapping PALcode with a permanent TB entry, or by other mechanisms).

Complete control of the machine state allows all functions of the machine to be controlled.
Disabling interrupts allows the system to provide multi-instruction sequences as atomic opera-
tions. Enabling implementation-specific hardware functions allows access to low-level system
hardware. Preventing I-stream memory management traps allows PALcode to implement
memory management functions such as translation buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small number of addi-
tional functions are needed to implement the PALcode. Five opcodes are reserved to
implement PALcode functions: PAL19, PAL1B, PAL1D, PAL1E, and PAL1F. These instruc-
tions produce an trap if executed outside the PALcode environment. 

• PALcode needs a mechanism to save the current state of the machine and dispatch into
PALcode.

• PALcode needs a set of instructions to access hardware control registers. 
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• PALcode needs a hardware mechanism to transition the machine from the PALcode
environment to the non-PALcode environment. This mechanism loads the PC, enables
interrupts, enables mapping, and disables PALcode privileges. 

An Alpha implementation may also choose to provide additional functions to simplify or
improve performance of some PALcode functions. The following are some examples:

• An Alpha implementation may include a read/write virtual function that allows PAL-
code to perform mapped memory accesses using the mapping hardware rather than pro-
viding the virtual-to-physical translation in PALcode routines. PALcode may provide a
special function to do physical reads and writes and have the Alpha loads and stores
continue to operate on virtual address in the PALcode environment. 

• An Alpha implementation may include hardware assists for various functions, such as
saving the virtual address of a reference on a memory management error rather than
having to generate it by simulating the effective address calculation in PALcode. 

• An Alpha implementation may include private registers so it can function without hav-
ing to save and restore the native general registers. 

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may reside in main memory
and maintain privileged data structures in main memory, the operating system code that allo-
cates physical memory cannot use all of physical memory.

The amount of memory PALcode requires is small, so the loss to the system is negligible.

6.6 PALcode Replacement

Alpha systems are required to support the replacement of PALcode supplied by Compaq with
an operating system-specific version. The following functions must be implemented in PAL-
code, not directly in hardware, to facilitate replacement with different versions.

• Translation Buffer fill. Different operating systems will want to replace the Translation
Buffer (TB) fill routines. The replacement routines will use different data structures.
Page tables will not be present in these systems. Therefore, no portion of the TB fill
flow that would change with a change in page tables may be placed in hardware, unless
it is placed in a manner that can be overridden by PALcode.

• Process structure. Different operating systems might want to replace the process con-
text switch routines. The replacement routines will use different data structures. The
HWPCB or PCB will not be present in these systems. Therefore, no portion of the con-
text switching flows that would change with a change in process structure may be
placed in hardware. 

PALcode can be viewed as consisting of the following somewhat intertwined components:

• Chip/architecture component

• Hardware platform component

• Operating system component
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PALcode should be written modularly to facilitate the easy replacement or conditional build-
ing of each component. Such a practice simplifies the integration of CPU hardware, system
platform hardware, console firmware, operating system software, and compilers.

PALcode subsections that are commonly subject to modification include:

• Translation Buffer fill

• Process structure and context switch

• Interrupt and exception frame format and routine dispatch

• Privileged PALcode instructions

• Transitions to and from console I/O mode

• Power-up reset

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6–1 and Section C.11 must be recognized by
monic and opcode in all operating system implementations, but the effect of each instruc
dependent on the implementation. Compaq defines the operation of these PALcode in
tions for operating system implementations supplied by Compaq.

Table 6–1: PALcode Instructions that Require Recognition

Mnemonic Name

BPT Breakpoint trap

BUGCHK Bugcheck trap

CSERVE Console service

GENTRAP Generate trap

RDUNIQUE Read unique value

SWPPAL Swap PALcode

WRUNIQUE Write unique value
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The PALcode instructions listed in Table 6–2 and described in the following sections mu
supported by all Alpha implementations: 

Table 6–2: Required PALcode Instructions

Mnemonic Type Operation

DRAINA Privileged Drain aborts

HALT Privileged Halt processor

IMB Unprivileged I-stream memory barrier
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6.7.1 Drain Aborts 

Format:

Operation:

IF PS<literal>(<)CM> NE 0 THEN 
   {privileged instruction exception}

{Stall instruction issuing until all prior 
 instructions are guaranteed to complete 
 without incurring aborts.}

Exceptions:

Instruction mnemonics:

Description:
If aborts are deliberately generated and handled (such as nonexistent memory aborts while siz-
ing memory or searching for I/O devices), the DRAINA instruction forces any outstanding
aborts to be taken before continuing.

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue at least
until all previously issued instructions have completed and any associated aborts have been
signaled, as follows:

• For operate instructions, this usually means stalling until the result register has been
written. 

• For branch instructions, this usually means stalling until the result register and PC have
been written. 

• For load instructions, this usually means stalling until the result register has been writ-
ten. 

• For store instructions, this usually means stalling until at least the first level in a poten-
tially multilevel memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed portions of
a cache block have been transferred error free before continuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate target loca-
tion of the store has received error-free data before continuing. An implementation-specific
technique must be used to guarantee the ultimate completion of a write in implementations that
have multilevel memory hierarchies or store-and-forward bus adapters.

CALL_PAL  DRAINA    !PALcode format

Privileged Instruction

CALL_PAL  DRAINA Drain Aborts
  6–6   Alpha Architecture Handbook
                            



6.7.2 Halt

Format:

Operation:
IF PS<literal>(<)CM> NE 0 THEN 
     {privileged instruction exception}

CASE {halt_action} OF 
   ! Operating System or Platform dependent choice
     halt: {halt}
     restart/boot/halt: {restart/boot/halt}
     boot/halt: {boot/halt}
     debugger/halt: {debugger/halt}
     restart/halt: {restart/halt}
ENDCASE

Exceptions:

Instruction mnemonics:

Description:
The HALT instruction stops normal instruction processing and initiates some other operating
system or platform-specific behavior, depending on the HALT action setting. The choice of
behavior typically includes the initiation of a restart sequence, a system bootstrap, or entry into
console mode. See Console Interface (III), Chapter 3, in the Alpha Architecture Reference
Manual.

CALL_PAL  HALT    !PALcode format

Privileged Instruction

CALL_PAL HALT Halt Processor
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6.7.3 Instruction Memory Barrier

Format:

Operation:
{Make instruction stream coherent with data stream}

Exceptions:

Instruction mnemonics:

Description:
An IMB instruction must be executed after software or I/O devices write into the instruction
stream or modify the instruction stream virtual address mapping, and before the new value is
fetched as an instruction. An implementation may contain an instruction cache that does not
track either processor or I/O writes into the instruction stream. The instruction cache and mem-
ory are made coherent by an IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an instruction
from the modified location, it is UNPREDICTABLE whether the old or new value is fetched. 

Software Note:

In a multiprocessor environment, executing an IMB on  one processor does not affect
instruction caches on  other processors. Thus, a single IMB on one processor  is
insufficient to guarantee that all processors see a  modification of the instruction stream.

The cache coherency and sharing rules are described in Console Interface (III), Chapter 2, in
the Alpha Architecture Reference Manual.

CALL_PAL  IMB    !PALcode format

None

CALL_PAL IMB I-stream Memory Barrier
  6–8   Alpha Architecture Handbook
                            



 Chapter 7

Console Subsystem Overview

On an Alpha system, underlying control of the system platform hardware is provided by a con-
sole subsystem. The console subsystem:

• Initializes, tests, and prepares the system platform hardware for Alpha system software. 

• Bootstraps (loads into memory and starts the execution of) system software. 

• Controls and monitors the state and state transitions of each processor in a multiproces-
sor system. 

• Provides services to system software that simplify system software control of and
access to platform hardware.

• Provides a means for a console operator to monitor and control the system. 

The console subsystem interacts with system platform hardware to accomplish the first three
tasks. The actual mechanisms of these interactions are specific to the platform hardware; how-
ever, the net effects are common to all systems. 

The console subsystem interacts with system software once control of the system platform
hardware has been transferred to that software. 

The console subsystem interacts with the console operator through a virtual display device or
console terminal. The console operator may be a person or a management application. 
Console Subsystem Overview 7–1
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 Chapter 8

Input/Output Overview

Conceptually, Alpha systems can consist of processors, memory,  a processor-memory inter-
connect (PMI), I/O buses, bridges, and I/O devices.

Figure 8–1 shows the Alpha system overview.

Figure 8–1: Alpha System Overview

As shown in Figure 8–1, processors, memory, and  possibly I/O devices,  are connecte
PMI.

A bridge connects an I/O bus to the system, either directly to the PMI or through anoth
bus.  The I/O bus address space is available to the processor either directly or indirectly
rect access is provided through either an I/O mailbox  or an I/O mapping mechanism. T
mapping mechanism includes provisions for mapping between PMI and I/O bus address
access to I/O bus operations.

Alpha I/O operations can include:

• Accesses between the processor and an I/O device across the PMI

• Accesses between the processor and an I/O device across an I/O bus

• DMA accesses — I/O devices initiating reads and writes to memory

• Processor interrupts requested by devices

• Bus-specific I/O accesses

Processor-Memory Interconnect

I/O Device Processor Memory

I/O Bus

I/O Device I/O Device

Bridge





 Chapter 9

OpenVMS Alpha

The following sections specify the Privileged Architecture Library (PALcode) instructions, that are
required to support an OpenVMS Alpha system.

9.1 Unprivileged OpenVMS Alpha PALcode

The unprivileged PALcode instructions provide support for system operations to all modes of opera-
tion (kernel, executive, supervisor, and user).

Table 9–1 describes the unprivileged OpenVMS Alpha PALcode instructions.

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary 

Mnemonic Operation and Description

BPT Breakpoint

The BPT instruction is provided for program debugging. It switches the pro-
cessor to kernel mode and pushes R2..R7, the updated PC, and PS on the ker-
nel stack. It then dispatches to the address in the Breakpoint vector, stored in a
control block.

BUGCHK Bugcheck

The BUGCHK instruction is provided for error reporting. It switches the pro-
cessor to kernel mode and pushes R2..R7, the updated PC, and PS on the ker-
nel stack. It then dispatches to the address in the bugcheck vector, stored in a
control block. The value in R16 specifies the particular bugcheck type.
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CHME Change mode to executive

The CHME instruction allows a process to change its mode in a controlled
manner. A change in mode also results in a change of stack pointers: the old
pointer is saved, the new pointer is loaded. Registers R2..R7, PS, and PC are
pushed onto the selected stack. The saved PC addresses the instruction fol-
lowing the CHME instruction. The value in R16 specifies the particular
exception type.

CHMK Change mode to kernel

CHMK allows a process to change its mode to kernel in a controlled manner.
A change in mode also results in a change of stack pointers: the old pointer is
saved, the new pointer is loaded. R2..R7, PS, and PC are pushed onto the ker-
nel stack. The saved PC addresses the instruction following the CHMK
instruction. The value in R16 specifies the particular exception type.

CHMS Change mode to supervisor

CHMS  allows a process to change its mode in a controlled manner. A change
in mode also results in a change of stack pointers: the old pointer is saved, the
new pointer is loaded. R2..R7, PS, and PC are pushed onto the selected stack.
The saved PC addresses the instruction following the CHMS instruction. The
value in R16 specifies the particular exception type.

CHMU Change mode to user

CHMU  allows a process to call a routine via the change mode mecha-
nism.R2..R7, PS, and PC are pushed onto the current stack. The saved PC
addresses the instruction following the CHMU instruction. The value in R16
specifies the particular exception type.

CLRFEN Clear floating-point enable

CLRFEN  writes a zero to the floating-point enable register.

GENTRAP Generate trap

GENTRAP  is provided for reporting runtime software conditions. It switches
the processor to kernel mode and pushes registers R2..R7, the updated PC,
and the PS on the kernel stack. It then dispatches to the address of the GEN-
TRAP vector, stored in a control block.

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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IMB I-Stream memory barrier

IMB ensures that the contents of an instruction cache are coherent after the
instruction stream has been modified by software or I/O devices.If the instruc-
tion stream is modified and an IMB is not executed before fetching an instruc-
tion from the modified location, it is UNPREDICTABLE whether the old or
new value is fetched.

INSQHIL Insert into longword queue at header, interlocked 

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

INSQHILR Insert into longword queue at header, interlocked resident 

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. This instruction requires that the queue be memory-
resident and that the queue header and elements are quadword-aligned.

INSQHIQ Insert into quadword queue at header, interlocked 

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

INSQHIQR Insert into quadword queue at header, interlocked resident 

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.This instruction requires that the queue be memory-
resident and that the queue header and elements are octaword-aligned.

INSQTIL Insert into longword queue at tail, interlocked 

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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INSQTILR Insert into longword queue at tail, interlocked resident 

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. This instruction requires that the queue be memory-
resident and that the queue header and elements are quadword-aligned.

INSQTIQ Insert into quadword queue at tail, interlocked 

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

INSQTIQR Insert into quadword queue at tail, interlocked resident 

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16.  The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. This instruction requires that the queue be memory-
resident and that the queue header and elements are octaword-aligned.

INSQUEL Insert into longword queue 

The entry specified in R17 is inserted into the absolute queue following the
entry specified by the predecessor addressed by R16 for INSQUEL, or fol-
lowing the entry specified by the contents of the longword addressed by R16
for INSQUEL/D. The insertion is a noninterruptible operation. 

INSQUEQ Insert into quadword queue 

The entry specified in R17 is inserted into the absolute queue following the
entry specified by the predecessor addressed by R16 for INSQUEQ, or fol-
lowing the entry specified by the contents of the quadword addressed by R16
for INSQUEQ/D. The insertion is a noninterruptible operation. 

PROBE  Probe read/write access 

PROBE checks the read (PROBER) or write (PROBEW) accessibility of the
first and last byte specified by the base address and the signed offset; the bytes
in between are not checked. System software must check all pages between
the two bytes if they are to be accessed. <p> PROBE is only intended to check
a single datum for accessibility.

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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RD_PS Read processor status 

RD_PS writes the Processor Status (PS) to register R0.

READ_UNQ Read unique context 

READ_UNQ reads the hardware process (thread) unique context value, if
previously written by WRITE_UNQ, and places that value in R0.

REI Return from exception or interrupt 

The PS, PC, and saved R2..R7 are popped from the current stack and held in
temporary registers. The new PS is checked for validity and consistency. If it
is valid and consistent, the current stack pointer is then saved and a new stack
pointer is selected. Registers R2 through R7 are restored by using the saved
values held in the temporary registers. A check is made to determine if an
AST or interrupt is pending.If the enabling conditions are present for an inter-
rupt or AST at the completion of this instruction, the interrupt or AST occurs
before the next instruction.

REMQHIL Remove from longword queue at header, interlocked 

The self-relative queue entry following the header, pointed to by R16, is
removed from the queue, and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation. 

REMQHILR Remove from longword queue at header, interlocked resident 

The queue entry following the header, pointed to by R16, is removed from the
self-relative queue, and the address of the removed entry is returned in R1.
The removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation. This
instruction requires that the queue be memory-resident and that the queue
header and elements are quadword-aligned.

REMQHIQ Remove from quadword queue at header, interlocked 

The self-relative queue entry following the header, pointed to by R16, is
removed from the queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation. 

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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REMQHIQR Remove from quadword queue at header, interlocked resident 

The queue entry following the header, pointed to by R16, is removed from the
self-relative queue and the address of the removed entry is returned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
als at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation. This instruction
requires that the queue be memory-resident and that the queue header and ele-
ments are octaword-aligned.

REMQTIL Remove from longword queue at tail, interlocked 

The queue entry preceding the header, pointed to by R16, is removed from the
self-relative queue and the address of the removed entry is returned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
als at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation. 

REMQTILR Remove from longword queue at tail, interlocked resident 

The queue entry preceding the header, pointed to by R16, is removed from the
self-relative queue and the address of the removed entry is returned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
als at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation. This instruction
requires that the queue be memory-resident and that the queue header and ele-
ments are quadword-aligned.

REMQTIQ Remove from quadword queue at tail, interlocked 

The self-relative queue entry preceding the header, pointed to by R16, is
removed from the queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation. 

REMQTIQR Remove from quadword queue at tail, interlocked resident 

The queue entry preceding the header, pointed to by R16, is removed from the
self-relative queue and the address of the removed entry is returned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
als at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation. This instruction
requires that the queue be memory-resident and that the queue header and ele-
ments are octaword-aligned.

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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REMQUEL Remove from longword queue 

The queue entry addressed by R16 for REMQUEL or the entry addressed by
the longword addressed by R16 for REMQUEL/D is removed from the long-
word absolute queue, and the address of the removed entry is returned in R1.
The removal is a noninterruptible operation. 

REMQUEQ Remove from quadword queue 

The queue entry addressed by R16 for REMQUEQ or the entry addressed by
the quadword addressed by R16 for REMQUEL/D is removed from the quad-
word absolute queue, and the address of the removed entry removed is
returned in R1. The removal is a noninterruptible operation. 

RSCC Read system cycle counter 

Register R0 is written with the value of the system cycle counter. This counter
is an unsigned 64-bit integer that increments at the same rate as the process
cycle counter. The system cycle counter is suitable for timing a general range
of intervals to within 10% error and may be used for detailed performance
characterization. 

SWASTEN Swap AST enable 

SWASTEN swaps the AST enable bit for the current mode. The new state for
the enable bit is supplied in register R16<0> and previous state of the enable
bit is returned, zero-extended, in R0. A check is made to determine if an AST
is pending. If the enabling conditions are present for an AST at the completion
of this instruction, the AST occurs before the next instruction.

WRITE_UNQ Write unique context 

WRITE_UNQ writes the hardware process (thread) unique context value
passed in R16 to internal storage or to the hardware privileged context block.

WR_PS_SW Write processor status software field 

WR_PS_SW writes the Processor Status software field (PS<SW>) with the
low-order three bits of R16<2:0>.

Table 9–1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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9.2 Privileged OpenVMS Alpha Palcode 

The privileged PALcode instructions can be called in kernel mode only. 

Table 9–2 describes the privileged OpenVMS Alpha PALcode instructions.

Table 9–2 : Privileged OpenVMS Alpha PALcode Instructions Summary 

Mnemonic Operation and Description

CFLUSH Cache flush 

At least the entire physical page specified by a page frame number in R16 is
flushed from any data caches associated with the current processor. After doing
a CFLUSH, the first subsequent load on the same processor to an arbitrary
address in the target page is fetched from physical memory. 

CSERVE Console service 

CSERVE is specific to each PALcode and console implementation and is not
intended for operating system use.

DRAINA Drain aborts 

DRAINA stalls instruction issuing until all prior instructions are guaranteed to
complete without incurring aborts.

HALT Halt processor 

HALT stops normal instruction processing.

LDQP Load quadword physical 

The quadword-aligned memory operand, whose physical address is in R16, is
fetched and written to R0. If the operand address in R16 is not quadword-
aligned, the result is UNPREDICTABLE.

MFPR Move from processor register 

The internal processor register specified by the PALcode function field is writ-
ten to R0.

MTPR Move to processor register 

The source operands in integer registers R16 (and R17, reserved for future use)
are written to the internal processor register specified by the PALcode function
field. The effect of loading a processor register is guaranteed to be active on the
next instruction. 
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STQP Store quadword physical 

The quadword contents of R17 are written to the memory location whose phys-
ical address is in R16. If the operand address in R16 is not quadword-aligned,
the result is UNPREDICTABLE.

SWPCTX Swap privileged context 

SWPCTX  returns ownership of the data structure that contains the current
hardware privileged context (the HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

SWPPAL Swap PALcode image 

SWPPAL causes the current PALcode to be replaced by the specified new
PALcode image. Intended for use by operating systems only during bootstraps
and by consoles during transitions to console I/O mode.

WTINT Wait for interrupt 

WTINT requests that, if possible, the PALcode wait for the first of either of the
following conditions before returning: any interrupt other than a clock tick; or,
the first clock tick after a specified number of clock ticks has been skipped.

Table 9–2 : Privileged OpenVMS Alpha PALcode Instructions Summary  (Continued)

Mnemonic Operation and Description
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 Chapter 10

Digital UNIX

The following sections specifiy the Privileged Architecture Library (PALcode) instructions that are
required to support a Digital UNIX system.

10.1 Unprivileged Digital UNIX PALcode

Table 10–1 describes the unprivileged Digital UNIX PALcode instructions.

Table 10–1 : Unprivileged Digital UNIX PALcode Instruction Summary 

Mnemonic Operation and Description

bpt Break point trap 

The bpt instruction switches mode to kernel, builds a stack frame on the kernel
stack, and dispatches to the breakpoint code. 

bugchk Bugcheck 

The bugchk instruction switches mode to kernel, builds a stack frame on the
kernel stack, and dispatches to the breakpoint code.

callsys System call 

The callsys instruction switches mode to kernel, builds a callsys stack frame,
and dispatches to the system call code.

clrfen Clear floating-point enable 

The clrfen instruction writes a zero to the floating-point enable register.

gentrap Generate trap 

The gentrap instruction switches mode to kernel, builds a stack frame on the
kernel stack, and dispatches to the gentrap code.

imb I-stream memory barrier 

The imb instruction makes the I-cache coherent with main memory. 
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10.2 Privileged Digital UNIX PALcode

The privileged PALcode instructions can be called only from kernel mode. They provide an interface
to control the privileged state of the machine.

Table 10–2 describes the privileged Digital UNIX PALcode instructions.

rdunique Read unique 

The rdunique instruction returns the process unique value.

urti Return from user mode trap 

The urti instruction pops from the user stack the registers a0 through a2, t
global pointer, the new user assembler temporary register, the stack pointer, 
program counter, and the processor status register.

wrunique Write unique 

The wrunique instruction sets the process unique register.

Table 10–2 : Privileged Digital UNIX PALcode Instruction Summary 

Mnemonic Operation and Description

cflush Cache flush The cflush instruction flushes an entire physical page pointed to by
the specified page frame number (PFN) from any data caches associated with
the current processor. All processors must implement this instruction.

cserve Console service This instruction is specific to each PALcode and console
implementation and is not intended for operating system use.

draina Drain aborts The draina instruction stalls instruction issuing until all prior
instructions are guaranteed to complete without incurring aborts.

halt Halt processor The halt instruction stops normal instruction processing.
Depending on the halt action setting, the processor can either enter console
mode or the restart sequence.

rdmces Read machine check error summary The rdmces instruction returns the MCES
register in v0.

rdps Read processor status The rdps instruction returns the current PS. 

rdusp Read user stack pointer The rdusp instruction reads the user stack pointer while
in kernel mode and returns it. 

rdval Read system value The rdval instruction reads a 64-bit per-processor value and
returns it.

Table 10–1 : Unprivileged Digital UNIX PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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retsys Return from system call  The retsys instruction pops the return address, the user
stack pointer, and the user global pointer from the kernel stack. It then saves the
kernel stack pointer, sets mode to user, enables interrupts, and jumps to the
address popped off the stack. 

rti Return from trap, fault or interrupt The rti instruction pops certain registers
from the kernel stack. If the new mode is user, the kernel stack is saved and the
user stack restored. 

swpctx Swap privileged context The swpctx instruction saves the current process data
in the current process control block (PCB). Then swpctx switches to the PCB
and loads the new process context.

swpipl Swap IPL The swpipl instruction returns the current value IPL and sets the IPL.

swppal Swap PALcode image The swppal instruction causes the current PALcode to
be replaced by the specified new PALcode image. Intended only for use by
operating systems during bootstraps and by consoles during transitions to con-
sole I/O mode.

tbi TB invalidate The tbi instruction removes entries from the instruction and data
translation buffers when the mapping entries change. 

whami Who_Am_I The whami instruction returns the processor number for the cur-
rent processor. The processor number is in the range 0 to the number of proces-
sors minus one (0..numproc–1) that can be configured in the system. 

wrent Write system entry address The wrent instruction sets the virtual address of 
system entry points.

wrfen Write floating-point enable The wrfen instruction writes a bit to the floating
point enable register.

wripir Write interprocessor interrupt request The wripr instruction generates an inte
processor interrupt on the processor number passed as an input parameter.
interrupt request is recorded on the target processor and initiated when 
proper enabling conditions are present.

wrkgp Write kernel global pointer The wrkgp instruction writes the kernel globa
pointer internal register. 

wrmces Write machine check error summary The wrmces instructions clears t
machine check in progress bit and clears the processor- or system-correcta
error in progress bit in the MCES register. The instruction also sets or clears t
processor- or system-correctable error reporting enable bit in the MCES regis-
ter. 

wrperfmon Performance monitoring function The wrperfmon instruction alerts any perfor-
mance monitoring software/hardware in the system to monitor the performan
of this process. 

wrusp Write user stack pointer The wrusp instruction writes a value to the user sta
pointer while in kernel mode. 

Table 10–2 : Privileged Digital UNIX PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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wrval Write system value  The wrval instruction writes a 64-bit per-processor value. 

wrvptptr Write virtual page table pointer The wrvptptr instruction writes a pointer to the
virtual page table pointer (vptptr).

wtint Wait for interrupt The wtint instruction requests that, if possible, the PALcode
wait for the first of either of the following conditions before returning: any
interrupt other than a clock tick; or, the first clock tick after a specified number
of clock ticks has been skipped. 

Table 10–2 : Privileged Digital UNIX PALcode Instruction Summary  (Continued)

Mnemonic Operation and Description
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 Chapter 11

Windows NT Alpha

The following sections specify the Privileged Architecture Library (PALcode) instructions that are
required to support a Windows NT Alpha system.

11.1 Unprivileged Windows NT Alpha PALcode

The unprivileged PALcode instuctions provide support for system operations and may be called from
both kernel and user modes.

Table 11–1 : Unprivileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

bpt Breakpoint trap (standard user-mode breakpoint) 

The bpt instruction raises a breakpoint general exception to the kernel, setting a
USER_BREAKPOINT breakpoint type. 

callkd Call kernel debugger 

The callkd instruction raises a breakpoint general exception to the kernel, set-
ting the breakpoint type with the value supplied as an input parameter.

callsys System service call 

The callsys instruction raises a system service call exception to the kernel. Call-
sys switches to kernel mode if necessary, builds a trap frame on the kernel
stack, and then enters the kernel at the kernel system service exception handler.

gentrap Generate a trap 

The gentrap instruction generates a software general exception that raises an
exception code to the current thread. The exception code is generated from a
trap number that is specified as an input parameter. Gentrap is used to raise
software-detected exceptions such as bound check errors or overflow condi-
tions. 
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11.2 Privileged Windows NT Alpha PALcode

The privileged PALcode instuctions provide support for system operations and may be called from
only kernel mode.

imb Instruction memory barrier 

The imb instruction guarantees that all subsequent instruction stream fetches
are coherent with respect to main memory. Imb must be issued before execut-
ing code in memory that has been modified (either by stores from the processor
or DMA from an I/O processor). User-mode code that modifies the I-stream
must call the appropriate Windows NT API to ensure I-cache coherency.

kbpt Kernel breakpoint trap 

The kbpt instruction raises a breakpoint general exception to the kernel, setting
a KERNEL_BREAKPOINT breakpoint type. 

rdteb Read thread environment block pointer 

The rdteb instruction returns the contents of the TEB internal processor register
for the currently executing thread (the base address of the thread environment
block). 

Table 11–2 : Privileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

csir Clear software interrupt request 

The csir instruction clears the specified bit in the SIRR internal processor regis-
ter.

dalnfix Disable alignment fixups

The dalnfix instruction disables alignment fixups in PALcode and generates
alignment fault exceptions whenever an alignment fault occurs. After dalnfix is
executed on a processor, all alignment faults on that processor are not fixed-up
by PALcode and alignment fault exceptions are dispatched to the kernel until
the ealnfix instruction is executed on that processor.

di Disable all interrupts 

The di instruction disables all interrupts by clearing the interrupt enable (IE) bit
in the PSR internal processor register. The IRQL field is unaffected. Interrupts
may be re-enabled via the ei instruction.

Table 11–1 : Unprivileged Windows NT Alpha PALcode Instruction Summary 

Mnemonic Operation and description
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draina Drain all aborts including machine checks 

The draina instruction drains all aborts, including machine checks, from the
current processor. Draina guarantees that no abort is signaled for an instruction
issued before the draina while any instruction issued subsequent to the draina is
executing. 

dtbis Data translation buffer invalidate single 

The dtbis instruction invalidates a single data stream translation. The transla-
tion for the virtual address must be invalidated in all data translation buffers
and in all virtual data caches. 

ealnfix Enable alignment fixups

The ealnfix instruction enables alignment fixups in PALcode and prevents
alignment fault exceptions. After ealnfix is executed on a processor, all align-
ment faults on that processor are fixed-up by PALcode and no alignment fault
exceptions are dispatched to the kernel until the dalnfix instruction is executed
on that processor.

ei Enable interrupts 

The ei instruction enables interrupts for the IRQL set in the PSR internal pro-
cessor register by setting the interrupt enable (IE) bit in the PSR. 

halt Halt the operating system by forcing illegal instruction trap 

The halt instruction forces an illegal instruction exception.

initpal Initialize PALcode data structures with operating system values 

The initpal instruction is called early in the kernel initialization sequence to
establish values for internal processor registers (IPRs) that are needed for trap
and fault handling. The KGP and PCR registers are initialized once and persist
throughout the run time of the operating system. 

initpcr Initialize processor control region data

The initpcr instruction caches process-specific information, including parts of
the interrupt level table (ILT), for use by the PALcode.

rdcounters Read the software event counters

The rdcounters instruction is only used with debug PALcode. With production
PALcode, rdcounters returns a status value of zero, indicating that it is not
implemented in the current PALcode image.

Table 11–2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description
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rdirql Read the current IRQL from the PSR 

The rdirql instruction returns the contents of the interrupt request level (IRQL)
field of the PSR internal processor register. 

rdksp Read initial kernel stack pointer for the current thread 

The rdksp instruction returns the contents of the IKSP (initial kernel stack
pointer) internal processor register for the currently executing thread. 

rdmces Read the machine check error summary register 

The rdmces instruction returns the contents of the machine check error sum-
mary (MCES) internal processor register. 

rdpcr Read the processor control region base address 

The rdpcr instruction returns the contents of the PCR internal processor register
(the base address value of the processor control region).

rdpsr Read the current processor status register (PSR) 

The rdpsr instruction returns the contents of the current PSR (Processor Status
Register) internal processor register. 

rdstate Read the current internal processor state

The rdstate instruction returns the internal processor state to an internal buffer.

rdthread Read the thread value for the current thread 

The rdthread instruction returns the contents of the THREAD internal proces-
sor register (the value of the currently executing thread). 

reboot Transfer to console firmware 

The reboot instruction stops the operating system from executing and returns
execution to the boot environment. Reboot is responsible for completing the
ARC restart block before returning to the boot environment. 

restart Restart the operating system from the restart block 

The restart instruction restores saved processor state and resumes execution of
the operating system. 

Table 11–2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description
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retsys Return from system service call exception 

The retsys instruction returns from a system service call exception by unwind-
ing the trap frame and returning to the code stream that was executing when the
original exception was initiated. In addition, retsys accepts a parameter to set
software interrupt requests that became pending while the exception was han-
dled. 

rfe Return from trap or interrupt 

The rfe instruction returns from exceptions by unwinding the trap frame and
returning to the code stream that was executing when the original exception
was initiated. In addition, rfe accepts a parameter to set software interrupt
requests that became pending while the exception was handled. 

ssir Set software interrupt request 

The ssir instruction sets software interrupt requests by setting the appropriate
bits in the SIRR internal processor register.

swpctx Swap thread context 

The swpctx instruction swaps the privileged portions of thread context. Thread
context is swapped by establishing the new IKSP, THREAD, and TEB internal
processor register values.

swpirql Swap the current interrupt request level 

The swpirql instruction swaps the current IRQL field in the PSR internal pro-
cessor register by setting the processor so that only permitted interrupts are
enabled for the new IRQL. Swpirql updates the IRQL field and returns the pre-
vious IRQL. 

swpksp Swap the initial kernel stack pointer for the current thread 

The swpksp instruction returns the value of the previous IKSP internal proces-
sor register and writes a new IKSP for the currently executing thread. 

swppal Swap the currently executing PALcode 

The swppal instruction swaps the currently executing PALcode by transferring
to the base address of the new PALcode image in the PALcode environment. 

swpprocess Swap process context (swap address space) 

The swpprocess instruction swaps the privileged process context by changing
the address space for the currently executing thread. 

Table 11–2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description
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tbia Translation buffer invalidate all 

The tbia instruction invalidates all translations and virtual cache blocks within
the processor. 

tbim Translation buffer invalidate multiple

The tbim instruction invalidates multiple virtual translations for the current
ASN. The translation for the virtual address must be invalidated in all processor
translation buffers and virtual caches. 

tbimasn Translation buffer invalidate multiple for ASN

The tbimasn instruction invalidates multiple virtual translations for a specified
ASN. The translation for the virtual addresses must be invalidated in all proces-
sor translation buffers and virtual caches. 

tbis Translation buffer invalidate single 

The tbis instruction invalidates a single virtual translation. The translation for
the passed virtual address must be invalidated in all processor translation buff-
ers and virtual caches. 

tbisasn Translation buffer invalidate single for ASN 

The tbisasn instruction invalidates a single virtual translation for a specified
address space. The translation for the passed virtual address must be invali-
dated in all processor translation buffers and virtual caches. 

wrentry Write kernel exception entry routine

The wrentry instruction provides the registry of exception handling routines for
the exception classes. The kernel must use wrentry to register an exception han-
dler for each of the exception classes. 

wrmces Write the machine check error summary register 

The wrmces instruction writes new values for the MCES internal processor
register and returns the previous values of that register.

wrperfmon Write performance counter interrupt control information 

The wrperfmon instruction writes control information for the two processor
performance counters. One parameter identifies the selected performance
counter, while another controls whether the selected performance counter is
enabled or disabled. The instruction returns the previous enable state for the
selected performance counter.

Table 11–2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description



 Appendix A

Software Considerations

A.1 Hardware-Software Compact

The Alpha architecture, like all RISC architectures, depends on careful attention to data align-
ment and instruction scheduling to achieve high performance. 

Since there will be various implementations of the Alpha architecture, it is not obvious how
compilers can generate high-performance code for all implementations. This chapter gives
some scheduling guidelines that, if followed by all compilers and respected by all implementa-
tions, will result in good performance. As such, this section represents a good-faith compact
between hardware designers and software writers. It represents a set of common goals, not a
set of architectural requirements. Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below provide an advantage only for fre-
quently executed code. For rarely executed code, they may produce a bigger program that is
not any faster. Some of the branching optimizations also depend on good prediction of which
path from a conditional branch is more frequently executed. These optimizations are best deter-
mined by using an execution profile, either an estimate generated by compiler heuristics, or a
real profile of a previous run, such as that gathered by PC-sampling in PCA.

Each computer architecture has a  "natural word size." For the PDP-11, it is 16 bits; for VAX,
32 bits; and for Alpha, 64 bits. Other architectures also have a natural word size that varies
between 16 and 64 bits. Except for very low-end implementations, ALU data paths, cache
access paths, chip pin buses, and main memory data paths are all usually the natural word size. 

As an architecture becomes commercially successful, high-end implementations inevitably
move to double-width data paths that can transfer an aligned (at an even natural word address)
pair of natural words in one cycle. For Alpha, this means 128-bit wide data paths will eventu-
ally be implemented. It is difficult to get much speed advantage from paired transfers unless
the code being executed has instructions and data appropriately aligned on aligned octaword
boundaries. Since this is difficult to retrofit to old code, the following sections sometimes
encourage "over-aligning" to octaword boundaries in anticipation of high-speed Alpha
implementations.
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In some cases, there are performance advantages to aligning instructions or data to cache-block
boundaries, or putting data whose use is correlated into the same cache block, or trying to
avoid cache conflicts by not having data whose use is correlated placed at addresses that are
equal modulo the cache size. Since the Alpha architecture will have many implementations, an
exact cache design cannot be outlined here. 

In each case below, the performance implication is given by an order-of-magnitude number: 1,
3, 10, 30, or 100. A factor of 10 means that the performance difference being discussed will
likely range from 3 to 30 across all Alpha implementations. 

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruction stream. 

A.2.1 Instruction Alignment 

Code PSECTs should be octaword aligned. Targets of frequently taken branches should be at
least quadword aligned, and octaword aligned for very frequent loops. Compilers could use
execution profiles to identify frequently taken branches.

Quadword I-fetch implementors should give first priority to executing aligned quadwords
quickly. Octaword-fetch implementors should give first priority to executing aligned octa-
words quickly, and second priority to executing aligned quadwords quickly. Dual-issue
implementations should give first priority to issuing both halves of an aligned quadword in one
cycle, and second priority to buffering and issuing other combinations.

A.2.2 Branch Prediction and Minimizing Branch-Taken — Factor of 3

In many Alpha implementations, an unexpected change in I-stream address will result in about
10 lost instruction times.  "Unexpected" may mean any branch-taken or may mean a mispre-
dicted branch. In many implementations, even a correctly predicted branch to a quadword
target address will be slower than straight-line code.

Compilers should follow these rules to minimize unexpected branches:

1. Branch prediction is implementation specific. Based on execution profiles, compilers
should physically rearrange code so that it has matching behavior. 

2. Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This requires unrolling loops so that they contain at least 20
instructions, and putting subroutines of less than 20 instructions directly in line. It also
requires using execution profiles to rearrange code so that the frequent case of a condi-
tional branch falls through. For very high-performance loops, it will be profitable to
move instructions across conditional branches to fill otherwise wasted instruction issue
slots, even if the instructions moved will not always do useful work. Note that using the
Conditional Move instructions can sometimes avoid breaking up basic blocks.

3. In an if-then-else construct whose execution profile is skewed even slightly away from
50%-50% (51-49 is enough), put the infrequent case completely out of line, so that the
frequent case encounters zero branch-takens, and the infrequent case encounters two
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branch-takens. If the infrequent case is rare (5%), put it far enough away that it never
comes into the I-cache. If the infrequent case is extremely rare (error message code),
put it on a page of rarely executed code and expect that page never to be paged in. 

4. There are two functionally identical branch-format opcodes, BSR and BR, as shown in
Figure A–1.

Figure A–1:  Branch-Format BSR and BR Opcodes

Compilers should use the first one for subroutine calls, and the second for GOTOs.
Some implementations may push a stack of predicted return addresses for BSR and not
push the stack for BR. Failure to compile the correct opcode will result in mispredicted
return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction, shown in Figure A–2, has 16 unused bits. T
should be used by the compilers to communicate a hint about expected branch
behavior (see Section 4.3). 

Figure A–2:  Memory-Format JSR Instruction

If the JSR is used for a computed GOTO or a CASE statement, compile bits <15:14>
as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0> equals
(likely_target_addr) <15:0>. In other words, pick the low 14 bits so that a normal
PC+displacement*4 calculation will match the low 16 bits of the most likely target
longword address. (Implementations will likely prefetch from the matching cache
block.) 

If the JSR is used for a computed subroutine call, compile bits  <15:14> as 01, and bits
<13:0> as above. Some implementations will prefetch the call target using the
prediction and also push updated PC on a return-prediction stack. 

If the JSR is used as a subroutine return, compile bits  <15:14> as 10. Some
implementations will pop an address off a return-prediction stack. 

If the JSR is used as a coroutine linkage, compile bits  <15:14> as 11. Some
implementations will pop an address off a return-prediction stack and also push
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code with no branch-takens as
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Displacement Branch Format

Branch FormatDisplacement
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RaBR

26 25
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quickly as possible, second priority to predicting conditional branches based on the sign of the
displacement field (backward taken, forward not-taken), and third priority to predicting sub-
routine return addresses by running a small prediction stack. (VAX traces show a stack of two
to four entries correctly predicts most branches.)

A.2.3 Improving I-Stream Density — Factor of 3 

Compilers should try to use profiles to make sure almost 100% of the bytes brought into an
I-cache are actually executed. This requires aligning branch targets and putting rarely executed
code out of line.

A.2.4 Instruction Scheduling — Factor of 3

The performance of Alpha programs is sensitive to how carefully the code is scheduled to min-
imize instruction-issue delays.

"Result latency" is defined as the number of CPU cycles that must elapse between an instruc-
tion that writes a result register and one that uses that register, if execution-time stalls are to be
avoided. Thus, with a latency of zero, the instruction writes a result register and the instruction
that uses that register can be multiple-issued in the same cycle. With a latency of 2, if the writ-
ing instruction is issued at cycle N, the reading instruction can issue no earlier than cycle N+2.
Latency is implementation specific.

Most Alpha instructions have a non-zero result latency. Compilers should schedule code so
that a result is not used too soon, at least in frequently executed code (inner loops, as identified
by execution profiles). In general, this will require unrolling loops and inlining short
procedures.

Compilers should try to schedule code to match the above latency rules and also to match the
multiple-issue rules. If doing both is impractical for a particular sequence of code, the latency
rules are more important (since they apply even in single-issue implementations). 

Implementors should give first priority to minimizing the latency of back-to-back integer oper-
ations, of address calculations immediately followed by load/store, of load immediately
followed by branch, and of compare immediately followed by branch. Give second priority to
minimizing latencies in general.

A.3  Data-Stream Considerations

The following sections describe considerations for the data stream.  

A.3.1  Data Alignment — Factor of 10

Data PSECTs should be at least octaword aligned, so that aggregates (arrays, some records,
subroutine stack frames) can be allocated on aligned octaword boundaries to take advantage of
any implementations with aligned octaword data paths, and to decrease the number of cache
fills in almost all implementations.

Aggregates (arrays, records, common blocks, and so forth) should be allocated on at least
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aligned octaword boundaries whenever language rules allow. In some implementations, a
series of writes that completely fill a cache block may be a factor of 10 faster than a series of
writes that partially fill a cache block, when that cache block would give a read miss. This is
true of write-back caches that read a partially filled cache block from memory, but optimize
away the read for completely filled blocks. 

For such implementations, long strings of sequential writes will be faster if they start on a
cache-block boundary (a multiple of 128 bytes will do well for most, if not all, Alpha imple-
mentations). This applies to array results that sweep through large portions of memory, and to
register-save areas for context switching, graphics frame buffer accesses, and other places
where exactly 8, 16, 32, or more quadwords are stored sequentially. Allocating the targets at
multiples of 8, 16, 32, or more quadwords, respectively, and doing the writes in order of
increasing address will maximize the write speed.

Items within aggregates that are forced to be unaligned (records, common blocks) should gen-
erate compile-time warning messages and inline byte extract/insert code. Users must be
educated that the warning message means that they are taking a factor of 30 performance hit.

Compiled code for parameters should assume that the parameters are aligned. Unaligned actu-
als will cause run-time alignment traps and very slow fixups. The fixup routine, if invoked,
should generate warning messages to the user, preferably giving the first few statement num-
bers that are doing unaligned parameter access, and at the end of a run the total number of
alignment traps (and perhaps an estimate of the performance improvement if the data were
aligned). Users must be educated that the trap routine warning message means they are taking a
factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated in memory
should normally be allocated an aligned quadword to itself, even if the datum is only a byte
wide. This allows aligned quadword loads and stores and avoids partial-quadword writes
(which may be half as fast as full-quadword writes, due to such factors as read-modify-write a
quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second priority
to fast writes of full cache blocks.

A.3.2  Shared Data in Multiple Processors — Factor of 3

Software locks are aligned quadwords and should be allocated to large cache blocks that either
contain no other data or read-mostly data whose usage is correlated with the lock. 

Whenever there is high contention for a lock, one processor will have the lock and be using the
guarded data, while other processors will be in a read-only spin loop on the lock bit. Under
these circumstances, any write to the cache block containing the lock will likely cause excess
bus traffic and cache fills, thus affecting performance on all processors that are involved and
the buses between them. In some decomposed FORTRAN programs, refills of the cache blocks
containing one or two frequently used locks can account for a third of all the bus bandwidth the
program consumes.

Whenever there is almost no contention for a lock, one processor will have the lock and be
using the guarded data. Under these circumstances, it might be desirable to keep the guarded
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data in the same cache block as the lock.

For the high-sharing case, compilers should assume that almost all accesses to shared data
result in cache misses all the way back to main memory, for each distinct cache block used.
Such accesses will likely be a factor of 30 slower than cache hits. It is helpful to pack corre-
lated shared data into a small number of cache blocks. It is helpful also to segregate blocks
written by one processor from blocks read by others. 

Therefore, accesses to shared data, including locks, should be minimized. For example, a
four-processor decomposition of some manipulation of a 1000-row array should avoid access-
ing lock variables every row, but instead might access a lock variable every 250 rows.

Array manipulation should be partitioned across processors so that cache blocks do not thrash
between processors. Having each of four processors work on every fourth array element
severely impairs performance on any implementation with a cache block of four elements or
larger. The processors all contend for copies of the same cache blocks and use only one quar-
ter of the data in each block. Writes in one processor severely impair cache performance on all
processors.

A better decomposition is to give each processor the largest possible contiguous chunk of data
to work on (N/4 consecutive rows for four processors and row-major array storage; N/4 col-
umns for column-major storage). With the possible exception of three cache blocks at the
partition boundaries, this decomposition will result in each processor caching data that is
touched by no other processor.

Operating-system scheduling algorithms should attempt to minimize process migration from
one processor to another. Any time migration occurs, there are likely to be a large number of
cache misses on the new processor. 

Similarly, operating-system scheduling algorithms should attempt to enforce some affinity
between a given device’s interrupts and the processor on which the interrupt-handler ru
control data structures and locks for different devices should be disjoint. Observing 
guidelines allows higher cache hit rates on the corresponding I/O control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of transferring 
lated lock values and other isolated, shared write data between processors.

Implementors should assume that the amount of shared data will continue to increase, 
time the need for efficient sharing implementations will also increase.

A.3.3  Avoiding Cache/TB Conflicts — Factor of 1

Occasionally, programs that run with a direct-mapped cache or TB will thrash, taking exces-
sive cache or TB misses. With some work, thrashing can be minimized at compile time.

Note:
No Alpha processor through and including the 21264 has implemented a direct-mapped
TB.
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In a frequently executed loop, compilers could allocate the data items accessed from memory
so that, on each loop iteration, all of the memory addresses accessed are either in exactly the
same aligned 64-byte block or differ in bits VA<10:6>. For loops that go through arrays in a
common direction with a common stride, this requires allocating the arrays, checking that the
first-iteration addresses differ, and if not, inserting up to 64 bytes of padding between the
arrays. This rule will avoid thrashing in small direct-mapped data caches with block sizes up to
64 bytes and total sizes of 2K bytes or more. 

Example:

   REAL*4 A(1000),B(1000)
   DO 60 i=1,1000
60 A( i ) = f(B( i ))

Figures A–3, A–4, and A–5 show bad, better, and best allocation in cache, respectively.

BAD allocation (A and B thrash in 8 KB direct-mapped cache):

Figure A–3:  Bad Allocation in Cache

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B can be
in cache simultaneously): 

Figure A–4:  Better Allocation in Cache

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B can be in
cache simultaneously, and both arrays fit entirely in 8 KB or bigger cache): 

Figure A–5:  Best Allocation in Cache

In a frequently executed loop, compilers could allocate the data items accessed from memory
so that, on each loop iteration, all of the memory addresses accessed are either in exactly the
same 8 KB page, or differ in bits VA<17:13>. For loops that go through arrays in a common
direction with a common stride, this requires allocating the arrays, checking that the first-itera-
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tion addresses differ, and if they do not, inserting up to 8K bytes of padding between the
arrays. This rule will avoid thrashing in direct-mapped TBs and in some large direct-mapped
data caches with total sizes of 32 pages (256 KB) or more.

Usually, this padding will mean zero extra bytes in the executable image, just a skip in virtual
address space to the next-higher page boundary. 

For large caches, the rule above should be applied to the I-stream, in addition to all the
D-stream references. Some implementations will have combined I-stream/D-stream large
caches. 

Both of the rules above can be satisfied simultaneously, thus often eliminating thrashing in all
anticipated direct-mapped cache/TB implementations. 

A.3.4  Sequential Read/Write — Factor of 1

All other things being equal, sequences of consecutive reads or writes should use ascending
(rather than descending) memory addresses. Where possible, the memory address for a block
of 2**Kbytes should be on a 2**K boundary, since this minimizes the number of different
cache blocks used and minimizes the number of partially written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword load or
store instructions should be broken up with intervening instructions (if there is any useful work
to be done). 

For consecutive reads, implementors should give first priority to prefetching ascending cache
blocks and second priority to absorbing up to eight consecutive quadword load instructions
(aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read overhead for
fully written aligned cache blocks and second priority to absorbing up to eight consecutive
quadword store instructions (aligned on a 64-byte boundary) without stalling. 

A.3.5  Prefetching — Factor of 3

Prefetching can be directed  toward a cache block  (a cache line) in the primary cache.

Alpha hardware, beginning with the 21164 (EV5) and subsequent, supports cache block
prefetching. Cache block prefetching is performed by the following load operations to the R31
or F31 register: 

Table A–1:  Cache Block Prefetching

Type Instructions Operation

Normal Prefetch LDL  R31, xxx (Rn) If the load operation hits in the Dcache, the
instruction is dismissed; otherwise, the
addressed cache block  is allocated into the
Dcache.
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A.4  Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word (Within Register) Memory Accesses

The instruction sequences given in Section 4.6 for byte-within-register  accesses are worst-case
code. More importantly, they do not reflect the instructions available with the BWX extension,
described in the Sections 4.2.2, 4.2.6, and 4.6.5, and in Section D.3. If the BWX extension
instructions are available, it is wise to consider them rather than the sequences that follow. 

The following sequences are appropriate if the BWX extension instructions are not available.

In the common case of accessing a byte or aligned word field at a known offset from a pointer
that is expected to be at least longword aligned, the common-case code is much shorter.
"Expected" means that the code should run fast for a longword-aligned pointer and trap for
unaligned. The trap handler may at its option fix up the unaligned reference.

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D rounded
down to a multiple of 4 ((D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned word is: 

LDL   R1,D.lw(Rx) ! Traps if unaligned
EXTWL R1,#D.mod,R1 ! Picks up word at byte 0 or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned word is: 

LDL     R1,D.lw(Rx) ! Traps if unaligned
SLL     R1,#48-8*D.mod,R1 ! Aligns word at high end of R1
SRA     R1,#48,R1  ! SEXT to low end of R1

Prefetch with
Modify Intent

LDS   F31,  xxx (Rn) If the load operation hits a dirty, modified,
Dcache block, the instruction is dismissed. Oth-
erwise, the addressed cache block is allocated
into the Dcache for write access — its dirty and
modified bits are set.

Prefetch, Evict
Next

LDQ  R31, xxx (Rn) Prefetch a cache block and mark that block in an
associated cache to be evicted on the next cach
fill to an associated address. (This operation is
useful to prefetch data that is not to be repeat
edly referenced.)

Table A–1:  Cache Block Prefetching

Type Instructions Operation
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Note:

The shifts often can be combined with shifts that might surround subsequent arithmetic
operations (for example, to produce word overflow from the high end of a register).

In the common case, the intended sequence for loading and zero-extending a byte is: 

LDL     R1,D.lw(Rx)     ! 
EXTBL   R1,#D.mod,R1    ! 

In the common case, the intended sequence for loading and sign-extending a byte is: 

LDL     R1,D.lw(Rx)       ! 
SLL     R1,#56-8*D.mod,R1 ! 
SRA     R1,#56,R1         ! 

In the common case, the intended sequence for storing an aligned word R5 is:
LDL     R1,D.lw(Rx)     ! 
INSWL   R5,#D.mod,R3    !
MSKWL   R1,#D.mod,R1    !
BIS     R3,R1,R1        !
STL     R1,D.lw(Rx)     ! 

In the common case, the intended sequence for storing a byte R5 is:

LDL     R1,D.lw(Rx)     ! 
INSBL   R5,#D.mod,R3    ! 
MSKBL   R1,#D.mod,R1    ! 
BIS     R3,R1,R1        ! 
STL     R1,D.lw(Rx)     ! 

A.4.2  Division

In all implementations, floating-point division is likely to have a substantially longer result
latency than floating-point multiply. In addition, in many implementations multiplies will be
pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply by the exact
reciprocal, if it is representable without overflow or underflow. If language rules or surround-
ing context allow,  multiplication by the reciprocal can closely approximate other divisions by
constants.

Integer division does not exist as a hardware opcode. Division by a constant can always be
done via UMULH of another appropriate constant, followed by a right shift. A subroutine can
do general quadword division by true variables. The subroutine could test for small divisors
(less than about 1000 in absolute value) and for those, do a table lookup on the exact constant
and shift count for an UMULH/shift sequence. For the remaining cases, a table lookup on
about a 1000-entry table and a multiply can give a linear approximation to 1/divisor that is
accurate to 16 bits. 

Using this approximation, a multiply and a back-multiply and a subtract can generate one
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16-bit quotient digit plus a 48-bit new partial dividend. Three more such steps can generate the
full quotient. Having prior knowledge of the possible sizes of the divisor and dividend, normal-
izing away leading bytes of zeros, and performing an early-out test can reduce the average
number of multiplies to about five (compared to a best case of one and a worst case of nine). 

A.4.3  Byte Swap

When it is necessary to swap all the bytes of a datum, perhaps because the datum originated on
a machine of the opposite byte numbering convention, the simplest sequence is to use the VAX
floating-point load instruction to swap words, followed by an integer sequence to swap four
pairs of bytes. Assume as shown below that an aligned quadword datum is in memory at loca-
tion X and is to be left in R1 after byte-swapping; temp is an aligned quadword temporary, and
"." (period) in the comments stands for a byte of zeros. Similar sequences can be used for data
in registers, sometimes doing the byte swaps first and word swap second:

; X  = ABCD EFGH
LDG   F0,X               ; F0 = GHEF CDAB
STT   F0,temp
LDQ   R1,temp            ; R1 = GHEF CDAB
SLL   R1,#8,R2           ; R2 = HEFC DAB.
SRL   R1,#8,R1           ; R1 = .GHE FCDA
ZAP   R2,#55(hex),R2     ; R2 = H.F. D.B.
ZAP   R1,#AA(hex),R1     ; R1 = .G.E .C.A
OR    R1,R2,R1           ; R1 = HGFE DCBA

For bulk swapping of arrays, this sequence can be usefully unrolled about four times and
scheduled, using four different aligned quadword memory temps.

A.4.4  Stylized Code Forms

Using the same stylized code form for a common operation improves the readability of  com-
piler output and increases the likelyhood that an implementation will speed up the stylized
form.

A.4.4.1  NOP

The universal NOP form is:

UNOP            ==      LDQ_U   R31,0(Rx)

In most implementations, UNOP should encounter no operand issue delays, no destination
issue delay, and no functional unit issue delays. (In some implementations, it may encounter an
operand issue delay for Rx.) Implementations are free to optimize UNOP into no action and
zero execution cycles.

If the actual instruction is encoded as LDQ_U Rn,0(Rx), where n is other than 31, and such an
instruction generates a memory-management exception, it is UNPREDICTABLE whether
UNOP would generate the same exception. On most implementations, UNOP does not gener-
ate memory management exceptions.
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The standard NOP forms are:

NOP            ==      BIS     R31,R31,R31
FNOP           ==      CPYS    F31,F31,F31

These generate no exceptions. In most implementations, they should encounter no operand
issue delays and no destination issue delay. Implementations are free to optimize these into no
action and zero execution  cycles.

A.4.4.2  Clear a Register

The standard clear register forms are:

CLR            ==      BIS     R31,R31,Rx
FCLR           ==      CPYS    F31,F31,Fx

These generate no exceptions. In most implementations, they should encounter no operand
issue delays and no functional unit issue delay. 

A.4.4.3  Load Literal

The standard load integer literal (ZEXT 8-bit) form is: 

MOV #lit8,Ry   ==   BIS R31, lit8, Ry 

The Alpha literal construct in Operate instructions creates a canonical longword constant for
values 0..255.

A longword constant stored in an Alpha 64-bit register is in canonical form when bits
<63:32>=bit <31>. 

A canonical 32-bit literal can usually be generated with one or two instructions, but sometimes
three instructions are needed.  Use the following procedure to determine the offset fields of the
instructions:

val  =  <sign-extended, 32-bit value>
low  = val <15:0>
tmp1 = val - SEXT(low) ! Account for LDA instruction
     
high = tmp1 <31:16>
tmp2 = tmp1 - SHIFT_LEFT( SEXT(high,16) )
     
if tmp2 NE 0 then
   ! original val was in range 7FFF800016..7FFFFFFF16
     extra = 400016
     tmp1 = tmp1 - 4000000016
     high = tmp1 <31:16>
else
     extra = 0
endif
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The general sequence is:

LDA  Rdst, low(R31)
LDAH Rdst, extra(Rdst)  ! Omit if extra=0
LDAH Rdst, high(Rdst)   ! Omit if high=0

A.4.4.4  Register-to-Register Move

The standard register move forms are:

MOV  RX,RY      ==      BIS   RX,RX,RY
FMOV FX,FY      ==      CPYS  FX,FX,FY

These move forms generate no exceptions. In most implementations, these should encounter no
functional unit issue delay.

A.4.4.5  Negate

The standard register negate forms are:

NEGz Rx,Ry      ==      SUBz    R31,Rx,Ry     ! z = L or Q
NEGz Fx,Fy      ==      SUBz    F31,Fx,Fy     ! z = F G S or T
FNEGz Fx,Fy     ==      CPYSN   Fx,Fx,Fy      ! z = F G S or T

The integer subtract generates no Integer Overflow trap if Rx contains the largest negative
number (SUBz/V would trap). The floating subtract generates a floating-point exception for a
non-finite value in Fx. The CPYSN form generates no exceptions. 

A.4.4.6  NOT

The standard integer register NOT form is:

NOT Rx,Ry       ==      ORNOT   R31,Rx,Ry

This generates no exceptions. In most implementations, this should encounter no functional
unit issue delay.

A.4.4.7  Booleans

The standard alternative to BIS is:

OR Rx,Ry,Rz     ==      BIS     Rx,Ry,Rz

The standard alternative to BIC is:

ANDNOT Rx,Ry,Rz ==      BIC     Rx,Ry,Rz

The standard alternative to EQV is:

XORNOT Rx,Ry,Rz ==      EQV     Rx,Ry,Rz
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A.4.5 Exceptions and Trap Barriers

The EXCB instruction allows software to guarantee that in a pipelined implementation, all pre-
vious instructions have completed any behavior that is related to exceptions or rounding modes
before any instructions after the EXCB are issued. In particular, all changes to the float-
ing-point control register (FPCR) are guaranteed to have been made, whether or not there is an
associated exception. Also, all potential floating-point exceptions and integer overflow excep-
tions are guaranteed to have been taken.

The TRAPB instruction guarantees that it and any following instructions do not issue until all
possible preceding traps have been signaled. This does not mean that all preceding instructions
have necessarily run to completion (for example, a Load instruction may have passed all the
fault checks but not yet delivered data from a cache miss). 

EXCB is thus a superset of TRAPB.

A.4.6 Pseudo-Operations (Stylized Code Forms)

This section summarizes the pseudo-operations for the Alpha architecture that may be used by
various software components in an Alpha system. Most of these forms are discussed in preced-
ing sections. 

In the context of this section, pseudo-operations all represent a single underlying machine
instruction.   Each pseudo-operation represents a particular instruction with either replicated
fields (such as FMOV), or hard-coded zero fields.  Since the pattern is distinct, these
pseudo-operations can be decoded by instruction decode mechanisms.

In Table A–2, the pseudo-operation codes can be viewed as macros with parameters. The for
mal form is listed in the left column, and the expansion in the code stream is listed in the
column.  

Some instruction mnemonics have synonyms. These differ from pseudo-operations in tha
synonym represents the same underlying instruction with no special encoding of op
fields. As a result, synonyms cannot be distinquished from each other. They are not lis
the table. Examples of synonyms are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT.

Table A–2:  Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation
in Listing Meaning

Actual Instruction 
Encoding

BR target Branch to target (21-bit signed
displacement)

BR R31, target

CLR Rx Clear integer register BIS R31, R31, Rx

FABS Fx, Fy No-exception generic floating
absolute value

CPYS F31, Fx, Fy

FCLR Fx Clear a floating-point register CPYS F31, F31, Fx

FMOV Fx, Fy Floating-point move CPYS Fx, Fx, Fy
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FNEG Fx, Fy No-exception generic floating
negation

CPYSN Fx, Fx, Fy

FNOP Floating-point no-op CPYS F31, F31, F31

MOV Lit, Rx Move 16-bit sign-extended 
literal to Rx

LDA Rx,lit(R31)

MOV {Rx/Lit8}, Ry Move Rx/8-bit zero-extended
literal to Ry

BIS R31,{Rx/Lit8},Ry

MF_FPCR Fx Move from FPCR MF_FPCR Fx, Fx, Fx      

MT_FPCR Fx Move to FPCR MT_FPCR Fx, Fx, Fx

NEGF Fx, Fy Negate F_floating SUBF F31, Fx, Fy          

NEGF/S Fx, Fy Negate F_floating, semi-precise SUBF/S F31, Fx, Fy            

NEGG Fx, Fy Negate G_floating SUBG F31, Fx, Fy        

NEGG/S Fx, Fy Negate G_floating, 
semi-precise

SUBG/S F31, Fx, Fy           

NEGL {Rx/Lit8}, Ry Negate longword SUBL R31,{Rx/Lit},Ry  

NEGL/V {Rx/Lit8}, Ry Negate longword with 
overflow detection

SUBL/V R31, {Rx/Lit}, Ry

NEGQ {Rx/Lit8}, Ry Negate quadword SUBQ R31, {Rx/Lit}, Ry                

NEGQ/V {Rx/Lit8}, Ry Negate quadword with 
overflow detection

SUBQ/V R31, {Rx/Lit}, Ry   

NEGS Fx, Fy Negate S_floating SUBS F31, Fx, Fy    

NEGS/SU Fx, Fy Negate S_floating, software
with underflow detection

SUBS/SU F31, Fx, Fy

NEGS/SUI Fx, Fy Negate S_floating, software
with underflow and inexact
result detection

SUBS/SUI F31, Fx, Fy

NEGT Fx, Fy Negate T_floating SUBT F31, Fx, Fy

NEGT/SU Fx, Fy Negate T_floating, software
with underflow detection

SUBT/SU F31, Fx, Fy

NEGT/SUI Negate T_floating, software
with underflow and inexact
result detection

SUBT/SUI F31,Fx, Fy

NOP Integer no-op BIS R31, R31, R31

NOT {Rx/Lit8}, Ry Logical NOT of Rx/8-bit
zero-extended literal storing
results in Ry

ORNOT R31, {Rx/Lit}, Ry

Table A–2:  Decodable Pseudo-Operations (Stylized Code Forms) (Continued)

Pseudo-Operation
in Listing Meaning

Actual Instruction 
Encoding
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A.5 Timing Considerations:  Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_C will never complete,
because periodic timer interrupts will always occur before the sequence completes. The follow-
ing rules describe sequences that will eventually complete in all Alpha implementations:

• At most 40 operate or conditional-branch (not taken) instructions executed in the
sequence between LDx_L and STx_C.

• At most two I-stream TB-miss faults. Sequential instruction execution guarantees this.

• No other exceptions triggered during the last execution of the sequence.

 Implementation Note:

On all expected implementations, this allows for about 50 µsec of execution time, even
with 100 percent cache misses. This should satisfy any requirement for a 1-msec timer
interrupt rate.

SEXTL {Rx/Lit8}, Ry Longword sign-extension of Rx
storing results in Ry

ADDL R31, {Rx/Lit}, Ry

UNOP Universal NOP for both integer
and floating-point code

LDQ_U R31,0(Rx)

Table A–2:  Decodable Pseudo-Operations (Stylized Code Forms) (Continued)

Pseudo-Operation
in Listing Meaning

Actual Instruction 
Encoding
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 Appendix B

IEEE Floating-Point Conformance

A subset of IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard
754-1985) is provided in the Alpha floating-point instructions. This appendix describes how to
construct a complete IEEE implementation. 

The order of presentation parallels the order of the IEEE specification.

B.1 Alpha Choices for IEEE Options

Alpha supports IEEE single, double, and optionally (in software) extended double formats.
There is no hardware support for the optional extended double format.

Alpha hardware supports normal and chopped IEEE rounding modes. IEEE plus infinity and
minus infinity rounding modes can be implemented in hardware or software.

Alpha hardware does not support optional IEEE software trap enable/disable modes. See the
following discussion about software support.

Alpha hardware supports add, subtract, multiply, divide, convert between floating formats,
convert between floating and integer formats, compare, and square root. Software routines sup-
port remainder, round to integer in floating-point format, and convert binary to/from decimal. 

In the Alpha architecture, copying without change of format is not considered an operation.
(LDx, CPYSx, and STx do not check for non-finite numbers; an operation would.) Compilers
may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alpha choice is that the accuracy provided by conversions between decimal strings and
binary floating-point numbers will meet or exceed IEEE standard requirements. It is imple-
mentation dependent whether the software binary/decimal conversions beyond 9 or 17 digits
treat any excess digits as zeros. 
 B–1



Overflow and underflow, NaNs, and infinities encountered during software binary to decimal
conversion return strings that specify the conditions.

Alpha hardware supports comparisons of same-format numbers. Software supports compari-
sons of different-format numbers.

In the Alpha architecture, results are true-false in response to a predicate.

Alpha hardware supports the required six predicates and the optional unordered predicate. The
other 19 optional predicates can be constructed from sequences of two comparisons and two
branches.

Alpha hardware supports infinity arithmetic with the compare instructions (CMPTyy). When a
/S qualifier is included, Alpha hardware may optionally support infinity arithmetic when infin-
ity operands are encountered and, together with overflow disable (OVFD) and division by zero
disable (DZED), when infinity is to be generated from finite operands. Otherwise, Alpha hard-
ware supports infinity arithmetic by trapping. That is the case when an infinity operand is
encountered and when an infinity is to be created from finite operands by overflow or division
by zero. An OS completion handler (interposed between the hardware and the IEEE user) pro-
vides correct infinity arithmetic.

When a /S qualifier is included, Alpha hardware may optionally support NaNs and invalid
operations, controlled by the INVD option. Otherwise, Alpha hardware supports NaNs and
invalid operations by trapping when a NaN operand is encountered and when a NaN is to be
created.  An OS completion handler (interposed between the hardware and the IEEE user) pro-
vides correct Signaling and Quiet NaN behavior.

In the Alpha architecture, Quiet NaNs do not afford retrospective diagnostic information.

In the Alpha architecture, copying a Signaling NaN without a change of format does not signal
an invalid exception (LDx, CPYSx, and STx do not check for non-finite numbers). Compilers
may generate ADDx F31,Fx,Fy to get the opposite effect.

Alpha hardware fully supports negative zero operands and follows the IEEE rules for creating
negative zero results except for underflow. When a /S qualifier is included, Alpha hardware
may optionally support underflow and denormalized numbers, controlled by the UNFD option.
Otherwise, Alpha hardware supports underflow and denormalized numbers by trapping when a
denormalized operand is encountered, when a denormalized result is created, and when an
underflow occurs. An OS completion handler (interposed between the hardware and the IEEE
user) provides correct denormalized and underflow arithmetic.

Except for the optional trap disable bits in the FPCR, Alpha hardware does not supply IEEE
exception trap behavior; the hardware traps are a superset of the IEEE-required conditions. An
OS completion handler (interposed between the hardware and the IEEE user) provides correct
IEEE exception behavior.

In the Alpha architecture, tininess is detected by hardware after rounding, and loss of accuracy
is detected by software as an inexact result.
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In the Alpha architecture, user signal handlers are supported by compilers and an OS comple-
tion handler  (interposed between the hardware and the IEEE user), as described in the next
section. 

B.2 Alpha Support for OS Completion Handlers

Alpha floating-point trap behavior is statically controlled by the /S, /U, and /I mode qualifiers
on floating-point instructions. Changing these options usually requires recompiling. Instruc-
tions with any valid qualifier combination that includes the /S qualifier can be dynamically
controlled by the optional trap disable bits and denormal control bits in the FPCR.

Each Alpha implementation may choose how to distribute support for the completion modes
(/S, /SU,   /SV, /SUI, and /SVI), between hardware and software.  An implementation may
minimize hardware complexity by trapping to implementation software for support of excep-
tions and non-finites.  An implementation may choose increased floating-point performance at
the cost of increased hardware complexity by providing hardware support for exceptions and
non-finites.

However completion mode support is distributed, application software on any system that
meets the Alpha architecture specification will see consistent floating-point semantics because
Alpha implementation software provides support for any floating-point feature that is not
directly supported by the hardware.

Each Alpha operating system must include an OS completion handler that does software com-
pletion of instructions that have any valid qualifier combination that includes the /S qualifier,
and that finishes the computation of any floating-point operation that is not completed by the
hardware.  The OS completion handler is responsible for providing the result specified by the
architecture. The handler either continues execution of the application program or signals an
exception to the application.  

If the exception summary parameter of an arithmetic trap indicates that an instruction requir-
ing software completion caused the trap, the operating system must finish the operation.  An
OS completion handler uses the register write mask parameter to ignore instructions in the trap
shadow and to locate the trigger instruction of the arithmetic trap. The handler then uses the
trigger instruction input register values to compute the result in the output register and to
record any appropriate signal status. The handler then continues execution with the instruction
following the trigger instruction, unless the application has requested execution of an optional
signal handler.

It is recommended that the OS completion handler report an enabled IEEE exception to the
user application as a fault, rather than as a trap. When reported as a fault, the reported PC
points to the trigger instruction, rather than after the trigger instruction. Regardless of whether
an enabled fault occurs, it is recommended that the completion trap handler set the result regis-
ter and status flags to the IEEE standard nontrapping results, as defined in the IEEE Standard
section in Section 4.7.10. That behavior makes it possible for the user application to continue
from a fault by stepping over the trigger instruction.

The Floating-Point Control Register (FPCR) contains several trap disable bits and denormal
control bits.  Implementation of these bits in the FPCR is optional.  A system that includes
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these bits may choose to complete computations involving non-finite values without the assis-
tance of software completion.  Operating systems use these FPCR bits to enable hardware
completion of instructions with any valid qualifier combination that includes /S in those cases
where the operating system does not require a trap to do exception signaling.

To get the optional full IEEE user trap handler behavior, an OS completion handler must be
provided that implements the exception status flags, dynamic user trap handler disabling, han-
dler saving and restoring, default behavior for disabled user trap handlers, and linkages that
allow a user handler to return a substitute result. OS completion handlers can use the
FP_Control quadword, along with the floating-point control register (FPCR),  to provide vari-
ous levels of IEEE-compliant behavior.

OS completion handlers provide two options for special handling of denormal numbers in
instructions that are compiled with any valid qualifier combination that includes the /S quali-
fier. These options are controlled by bits defined by implementation software in the IEEE
Floating-Point Control (FP_C) Quadword. 

• The first option maps all denormal results to a true zero value. That option is useful for
improving the performance of IEEE compliant code that does not need gradual under-
flow and for mixing IEEE instructions that both include and do not include the /S qual-
ifier. 

• A second option treats all denormal input operands as if they were signed zeros. That
option is useful for improving the performance of IEEE compliant code that encounters
spurious denormal values in uninitialized data. 

The optional UNDZ and DNZ (denormal control) bits in the FPCR can assist hardware to
improve the performance of these denormal handling options.

B.2.1 IEEE Floating-Point Control (FP_C) Quadword  

Operating system implementations provide the following support for an IEEE floating-point
control quadword (FP_C), illustrated in Figure B–1 and described in Table B–1. 

Figure B–1:  IEEE Floating-Point Control (FP_C) Quadword

• The operating system software completion mechanism maintains the FP_C. Therefore,
the FP_C affects (and is affected by) only those instructions with any valid qualifier
combination that includes the /S qualifier.

• The FP_C quadword is context switched when the operating system switches the thread
context. (The FP_C can be placed in a currently switched data structure.)

• Although the operating system can keep the FP_C in a user mode memory location,
user code may not directly access the FP_C.
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• Integer overflow (IOV) exceptions are controlled by the INVE enable mask bit
(FP_C<1>), as allowed by the IEEE standard. Implementation software is responsible
for setting the INVS status bit (FP_C<17>) when a CVTTQ or CVTQL instruction
traps into the software completion mechanism for integer overflow .  

• At process creation, all trap enable flags in the FP_C are clear. The settings of other
FP_C bits, defined in Table B–1 as reserved for implementation software, are de
by operating system software.

At other events such as forks or thread creation, and at asynchronous routine calls such 
and signals, the operating system controls all assigned FP_C bits and those defined as r
for implementation software.

Table B–1:   Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

63–48 Reserved for implementation software.

47–23 Reserved for future architecture definition.

22 Denormal operand status (DNOS)
A floating arithmetic or conversion operation used a denormal operand valu
This status field is left unchanged if the system is treating denormal operand val-
ues as if they were signed zero values. If an operation with a denormal operand
causes other exceptions, all appropriate status bits are set. 

21 Inexact result status (INES) 
A floating arithmetic or conversion operation gave a result that differed from th
mathematically exact result. 

20 Underflow status (UNFS) 
A floating arithmetic or conversion operation underflowed the destination expo-
nent. 

19 Overflow status (OVFS) 
A floating arithmetic or conversion operation overflowed the destination exp
nent. 

18 Division by zero status (DZES) 
An attempt was made to perform a floating divide operation with a divisor of zero.

17 Invalid operation status (INVS) 
An attempt was made to perform a floating arithmetic, conversion, or comparis
operation, and one or more of the operand values were illegal. 

16–12 Reserved for implementation software.

11–7 Reserved for future architecture definition.

6 Denormal operand exception enable (DNOE)
Initiate an INV exception if a floating arithmetic or conversion operation involve
a denormal operand value. This exception does not signal if the system is trea
denormal operand values as if they were signed zero values. If an operation 
initiate more than one enabled exception, the denormal operand exception has
ority. 
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B.3 Mapping to IEEE Standard

There are five IEEE exceptions, each of which can be "IEEE software trap-enabled" or dis-
abled (the default condition). Implementing the IEEE software trap-enabled mode is optional
in the IEEE standard. 

The assumption, therefore, is that the only access to IEEE-specified software trap-enabled
results will be generated in assembly language code. The following design allows this, but only
if such assembly language code has TRAPB instructions after each floating-point instruction,
and generates the IEEE-specified scaled result in a trap handler by emulating the instruction
that was trapped by hardware overflow/underflow detection, using the original operands. 

There is a set of detailed IEEE-specified result values, both for operations that are specified to
raise IEEE traps and those that do not. This behavior is created on Alpha by four layers of
hardware, PALcode, the operating-system completion handler, and the user signal handler, as
shown in Figure B–2.

5 Inexact result enable (INEE) 
Initiate an INE exception if the result of a floating arithmetic or conversion oper
tion differs from the mathematically exact result. 

4 Underflow enable (UNFE)
Initiate a UNF exception if a floating arithmetic or conversion operation unde
flows the destination exponent. 

3 Overflow enable (OVFE) 
Initiate an OVF exception if a floating arithmetic or conversion operation ove
flows the destination exponent.

2 Division by zero enable (DZEE) 
Initiate a DZE exception if an attempt is made to perform a floating divide oper
tion with a divisor of zero.

1 Invalid operation enable (INVE) 
Initiate an INV exception if an attempt is made to perform a floating arithmeti
conversion, or comparison operation, and one or more of the operand value
illegal. 

0 Reserved for implementation software.

Table B–1:   Floating-Point Control (FP_C) Quadword Bit Summary (Continued)

Bit Description
  B–6   Alpha Architecture Handbook
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Figure B–2:  IEEE Trap Handling Behavior

The IEEE-specified trap behavior occurs only with respect to the user signal handler (the last
layer in Figure B–2); any trap-and-fixup behavior in the first three layers is outside the s
of the IEEE standard.

The IEEE number system is divided into finite and non-finite numbers:
The finites are normal numbers:

• –MAX..–MIN, –0, 0, +MIN..+MAX

• The non-finites are:

• Denormals, +/– Infinity, Signaling NaN, Quiet NaN

Alpha hardware must treat minus zero operands and results as special cases, as require
IEEE standard.

If the DNZ (denormal operands to zero) bit in the FPCR is set or if the OS completion handler
is treating denormal operands as zero, then IEEE trap handling is done as if each de
operand had the corresponding signed zero value.

Table B–2 specifies, for the IEEE /S qualifier modes, which layer does each piece of tra
dling. The table describes where the hardware and PALcode can trap to the OS com
handler. However, for IEEE operations with any valid qualifier combination that includes
/S qualifier, the system may choose not to trap to the OS completion handler, provided th
applicable exception is disabled by the trap disable bits in the FPCR and the hardwa
PALcode can produce the expected IEEE result as modified by the denormal control bits
FPCR. See Section 4.7.8 for more detail on the hardware instruction descriptions. 

Hardware

PALcode

User Signal  Handler

Traps to PALcode

Traps to Operating System

Traps to User IEEE Trap Handler
(IEEE Standard)

  Operating System
IEEE Floating-Point Conformance B–7



Table B–2:   IEEE Floating-Point Trap Handling

Alpha Instructions Hardware1
PAL-
Code

OS 
Completion 
Handler

User 
Signal
Handler

FBEQ FBNE FBLT FBLE FBGT
FBGE

Bits Only – No Exceptions

LDS LDT Bits Only—No Exceptions

STS STT Bits Only—No Exceptions

CPYS CPYSN Bits Only—No Exceptions

FCMOVx Bits Only—No Exceptions

ADDx SUBx INPUT Exceptions:

Denormal operand Trap Trap Supply sum [Denormal Op2]

+/-Inf operand Trap Trap Supply sum –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

+Inf + –Inf Trap Trap Supply QNaN [Invalid Op]

ADDx SUBx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply 
+/–Inf
+/–MAX

[Overflow3]
Scale by bias
adjust

Exponent underflow and disabled Supply +0 – – –4

Exponent underflow and enabled Supply +0 
and trap

Trap Supply 
+/–MIN
denorm 
+/–0

[Underflow3] 
Scale by bias 
adjust

Inexact and disabled – – – –

Inexact and enabled Supply sum
and trap

Trap – [Inexact]

MULx INPUT Exceptions:

Denormal operand Trap Trap Supply prod. [Denormal Op2]

+/-Inf operand Trap Trap Supply prod. –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

0 * Inf Trap Trap Supply QNaN [Invalid Op]
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MULx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply 
+/–Inf 
+/–MAX

[Overflow3]
Scale by bias
adjust

Exponent underflow and disabled Supply +0 – – –

Exponent underflow and enabled Supply +0 
and Trap

Trap Supply 
+/–MIN
denorm 
+/–0

[Underflow3]
Scale by bias
adjust

Inexact and disabled – – – –

Inexact and enabled Supply prod.
and trap

Trap – [Inexact]

DIVx INPUT Exceptions:
Denormal operand Trap Trap Supply quot. [Denormal Op2]

+/-Inf operand Trap Trap Supply quot. –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

0/0 or Inf/Inf Trap Trap Supply QNaN [Invalid Op]

A/0 Trap Trap Supply 
+/– Inf

[Div. Zero]

DIVx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply 
+/–Inf 
+/– MAX

[Overflow3]
Scale by bias
adjust

Exponent underflow and disabled Supply +0 – – –

Exponent underflow and enabled Supply +0 
and trap

Trap Supply 
+/– MIN 
denorm 
+/–0

[Underflow3]
Scale by bias
adjust

Inexact and disabled – – – –

Inexact and enabled Supply quot.
and trap

Trap – [Inexact]

CMPTEQ CMPTUN INPUT Exceptions:

Denormal operand Trap Trap Supply (=) [Denormal Op2]

QNaN operand Trap Trap Supply False
for EQ, True
for UN

–

SNaN operand Trap Trap Supply 
False/ True

[Invalid Op]

Table B–2:   IEEE Floating-Point Trap Handling (Continued)

Alpha Instructions Hardware1
PAL-
Code

OS 
Completion 
Handler

User 
Signal
Handler
IEEE Floating-Point Conformance B–9



CMPTLT CMPTLE INPUT Exceptions:

Denormal operand Trap Trap Supply ≤ or < [Denormal Op2]

QNaN operand Trap Trap Supply False [Invalid Op]

SNaN operand Trap Trap Supply False [Invalid Op]

CVTfi INPUT Exceptions:

Denormal operand Trap Trap Supply Cvt [Denormal Op2]

+/-Inf operand Trap Trap Supply 0 [Invalid Op]

QNaN operand Trap Trap Supply 0 –

SNaN operand Trap Trap Supply 0 [Invalid Op]

CVTfi OUTPUT Exceptions:

Inexact and disabled – – – –

Inexact and enabled Supply Cvt
and trap

Trap – [Inexact]

Integer overflow Supply Trunc.
result and trap
if enabled

Trap – [Invalid Op5]

CVTif OUTPUT Exceptions:

Inexact and disabled – – – –

Inexact and enabled Supply Cvt
and trap

Trap – [Inexact]

CVTff INPUT Exceptions:

Denormal operand Trap Trap Supply Cvt [Denormal Op2]

+/-Inf operand Trap Trap Supply Cvt –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

CVTff OUTPUT Exceptions:
Exponent overflow Trap Trap Supply 

+/–Inf 
+/–MAX

[Overflow3]
Scale by bias
adjust

Exponent underflow and disabled Supply +0 – – –

Exponent underflow and enabled Supply +0 
and trap

Trap Supply 
+/– MIN 
denorm 
+/–0

[Underflow3]
Scale by bias
adjust

Inexact and disabled – – – –

Inexact and enabled Supply Cvt
and trap

Trap – [Inexact]

Table B–2:   IEEE Floating-Point Trap Handling (Continued)

Alpha Instructions Hardware1
PAL-
Code

OS 
Completion 
Handler

User 
Signal
Handler
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Other IEEE operations (software subroutines or sequences of instructions) are listed here for
completeness:

Remainder
Round float to integer-valued float
Convert binary to/from decimal
Compare, other combinations than the four above

SQRTx INPUT Exceptions
Negative nonzero operand Trap Trap Supply QNan [Invalid Op]

+/–0 Supply +/–0 – – –

+ Denormal operand Trap Trap Supply SQRT [Denormal Op2]

– Denormal operand Trap Trap Supply QNaN [Denormal Op/
Invalid Op]

+ Infinity operand Trap Trap Supply +Inf –

– Infinity operand Trap Trap Supply QNaN [Invalid Op]

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

SQRTx OUTPUT Exceptions
Exponent overflow Not possible

Exponent underflow Not possible

Inexact and disabled – – – –

Inexact and enabled Supply SQRT Trap – [Inexact]

1 This column describes the minimum necessary hardware support.
2 [Denormal Op] signals have priority over all other signals.
3 [Overflow] and [Underflow] signals have priority over [Inexact] signals.
4 An implementation could choose instead to trap to PALcode and have the PALcode

supply a zero result on all underflows.
5 An implementation could choose instead to trap to PALcode on extreme values and

have the PALcode supply a truncated result on all overflows.

Table B–2:   IEEE Floating-Point Trap Handling (Continued)

Alpha Instructions Hardware1
PAL-
Code

OS 
Completion 
Handler

User 
Signal
Handler
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Table B–3 shows the IEEE standard charts. In the charts, the second column is the resu
the user signal handler is disabled; the third column is the result when that handler is en
The OS completion handler supplies the IEEE default that is specified in the second co
The contents of the Alpha registers contain sufficient information for an enabled user ha
to compute the value in the third column.

Table B–3:   IEEE Standard Charts

Exception
User Signal Handler 
Disabled (IEEE Default)

User Signal Handler  
Enabled (Optional)

Invalid Operation

(1) Input signaling NaN Quiet NaN

(2) Mag. subtract Inf. Quiet NaN

(3) 0 * Inf. Quiet NaN

(4) 0/0 or Inf/Inf Quiet NaN

(5) x REM 0 or Inf REM y Quiet NaN

(6) SQRT(negative non-zero) Quiet NaN

(7) Cvt to int(ovfl) Low-order bits

(8) Cvt to int(Inf, NaN) 0

(9) Compare unordered Quiet NaN

Division by Zero

x/0, x finite <>0 +/–Inf

Overflow

Round nearest +/–Inf. Res/2**192 or 1536

Round to zero +/–MAX Res/2**192 or 1536

Round to –Inf +MAX/–Inf Res/2**192 or 1536

Round to +Inf +Inf/–MAX Res/2**192 or 1536

Underflow

Underflow 0/denorm Res*2**192 or 1536

Inexact

Inexact Rounded Res
  B–12   Alpha Architecture Handbook
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 Appendix C

Instruction Summary

This appendix summarizes all instructions and opcodes in the Alpha architecture. All values
are in hexadecimal radix.

C.1 Common Architecture Instruction Summary

This section summarizes all common Alpha instructions. Table C–1 describes the conte
the Format and Opcode columns in Table C–2.

Table C–2 shows qualifiers for operate format instructions. Qualifiers for IEEE and V
floating-point instructions are shown in Sections C.2 and C.3, respectively.

Table C–1:  Instruction Format and Opcode Notation

Instruction 
Format

Format 
Symbol

Opcode 
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field

Floating- point F-P oo.fff oo is the 6-bit opcode field 
fff is the 11-bit function code field

Memory Mem oo oo is the 6-bit opcode field
Memory/ func code Mfc oo.ffff oo is the 6-bit opcode field 

ffff is the 16-bit function code in the dis-
placement field

Memory/ branch Mbr oo.h oo is the 6-bit opcode field 
h is the high-order two bits of the displace-
ment field

Operate Opr oo.ff oo is the 6-bit opcode field
 ff is the 7-bit function code field

PALcode Pcd oo oo is the 6-bit opcode field; the particular 
PALcode instruction is specified in the 
26-bit function code field.
 C–1



Table C–2:  Common Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword
ADDL/V 10.40
ADDQ Opr 10.20 Add quadword
ADDQ/V 10.60
ADDS F-P 16.080 Add S_floating
ADDT F-P 16.0A0 Add T_floating
AMASK Opr 11.61 Architecture mask
AND Opr 11.00 Logical product
BEQ Bra 39 Branch if =  zero
BGE Bra 3E Branch if ≥ zero
BGT Bra 3F Branch if > zero
BIC Opr 11.08 Bit clear
BIS Opr 11.20 Logical sum
BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if ≤ zero
BLT Bra 3A Branch if < zero
BNE Bra 3D Branch if ≠ zero
BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine
CALL_PAL Pcd 00 Trap to PALcode
CMOVEQ Opr 11.24 CMOVE if =  zero
CMOVGE Opr 11.46 CMOVE if ≥ zero
CMOVGT Opr 11.66 CMOVE if > zero
CMOVLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set
CMOVLE Opr 11.64 CMOVE if ≤ zero
CMOVLT Opr 11.44 CMOVE if < zero
CMOVNE Opr 11.26 CMOVE if ≠ zero
CMPBGE Opr 10.0F Compare byte
CMPEQ Opr 10.2D Compare signed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal
CMPGLE F-P 15.0A7 Compare G_floating less than or equal
CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal
CMPLT Opr 10.4D Compare signed quadword less than
CMPTEQ F-P 16.0A5 Compare T_floating equal
CMPTLE F-P 16.0A7 Compare T_floating less than or equal
CMPTLT F-P 16.0A6 Compare T_floating less than
CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal
CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign
CPYSE F-P 17.022 Copy sign and exponent
CPYSN F-P 17.021 Copy sign negate
CTLZ Opr 1C.32 Count leading zero
CTPOP Opr 1C.30 Count population
CTTZ Opr 1C.33 Count trailing zero
CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G_floating to D_floating
CVTGF F-P 15.0AC Convert G_floating to F_floating
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CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQS F-P 16.0BC Convert quadword to S_floating
CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S_floating to T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T_floating to S_floating
DIVF F-P 15.083 Divide F_floating
DIVG F-P 15.0A3 Divide G_floating
DIVS F-P 16.083 Divide S_floating
DIVT F-P 16.0A3 Divide T_floating
ECB Mfc 18.E800 Evict cache block
EQV Opr 11.48 Logical equivalence
EXCB Mfc 18.0400 Exception barrier
EXTBL Opr 12.06 Extract byte low
EXTLH Opr 12.6A Extract longword high
EXTLL Opr 12.26 Extract longword low
EXTQH Opr 12.7A Extract quadword high
EXTQL Opr 12.36 Extract quadword low
EXTWH Opr 12.5A Extract word high
EXTWL Opr 12.16 Extract word low
FBEQ Bra 31 Floating branch if =  zero
FBGE Bra 36 Floating branch if ≥ zero
FBGT Bra 37 Floating branch if > zero
FBLE Bra 33 Floating branch if ≤ zero
FBLT Bra 32 Floating branch if < zero
FBNE Bra 35 Floating branch if ≠ zero
FCMOVEQ F-P 17.02A FCMOVE if = zero
FCMOVGE F-P 17.02D FCMOVE if ≥ zero
FCMOVGT F-P 17.02F FCMOVE if > zero
FCMOVLE F-P 17.02E FCMOVE if ≤ zero
FCMOVLT F-P 17.02C FCMOVE if < zero
FCMOVNE F-P 17.02B FCMOVE if ≠ zero
FETCH Mfc 18.8000 Prefetch data
FETCH_M Mfc 18.A000 Prefetch data, modify intent
FTOIS F-P 1C.78 Floating to integer move, S_floating
FTOIT F-P 1C.70 Floating to integer move, T_floating
IMPLVER Opr 11.6C Implementation version
INSBL Opr 12.0B Insert byte low
INSLH Opr 12.67 Insert longword high
INSLL Opr 12.2B Insert longword low
INSQH Opr 12.77 Insert quadword high
INSQL Opr 12.3B Insert quadword low
INSWH Opr 12.57 Insert word high
INSWL Opr 12.1B Insert word low
ITOFF F-P 14.014 Integer to floating move, F_floating
ITOFS F-P 14.004 Integer to floating move, S_floating
ITOFT F-P 14.024 Integer to floating move, T_floating
JMP Mbr 1A.0 Jump
JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return

Table C–2:  Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
Instruction Summary C–3



LDA Mem 08 Load address
LDAH Mem 09 Load address high
LDBU Mem 0A Load zero-extended byte
LDWU Mem 0C Load zero-extended word
LDF Mem 20 Load F_floating
LDG Mem 21 Load G_floating
LDL Mem 28 Load sign-extended longword 
LDL_L Mem 2A Load sign-extended longword locked
LDQ Mem 29 Load quadword 
LDQ_L Mem 2B Load quadword locked
LDQ_U Mem 0B Load unaligned quadword 
LDS Mem 22 Load S_floating
LDT Mem 23 Load T_floating
MAXSB8 Opr 1C.3E Vector signed byte maximum
MAXSW4 Opr 1C.3F Vector signed word maximum
MAXUB8 Opr 1C.3C Vector unsigned byte maximum
MAXUW4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier
MF_FPCR F-P 17.025 Move from FPCR
MINSB8 Opr 1C.38 Vector signed byte minimum
MINSW4 Opr 1C.39 Vector signed word minimum
MINUB8 Opr 1C.3A Vector unsigned byte minimum
MINUW4 Opr 1C.3B Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low
MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low
MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low
MSKWH Opr 12.52 Mask word high
MSKWL Opr 12.12 Mask word low
MT_FPCR F-P 17.024 Move to FPCR
MULF F-P 15.082 Multiply F_floating
MULG F-P 15.0A2 Multiply G_floating
MULL Opr 13.00 Multiply longword
MULL/V 13.40
MULQ Opr 13.20 Multiply quadword
MULQ/V 13.60
MULS F-P 16.082 Multiply S_floating
MULT F-P 16.0A2 Multiply T_floating
ORNOT Opr 11.28 Logical sum with complement
PERR Opr 1C.31 Pixel error
PKLB Opr 1C.37 Pack longwords to bytes
PKWB Opr 1C.36 Pack words to bytes
RC Mfc 18.E000 Read and clear
RET Mbr 1A.2 Return from subroutine
RPCC Mfc 18.C000 Read process cycle counter
RS Mfc 18.F000 Read and set
S4ADDL Opr 10.02 Scaled add longword by 4
S4ADDQ Opr 10.22 Scaled add quadword by 4
S4SUBL Opr 10.0B Scaled subtract longword by 4
S4SUBQ Opr 10.2B Scaled subtract quadword by 4
S8ADDL Opr 10.12 Scaled add longword by 8
S8ADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8

Table C–2:  Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
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S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SEXTB Opr 1C.00 Sign extend byte
SEXTW Opr 1C.01 Sign extend word
SLL Opr 12.39 Shift left logical
SQRTF F-P 14.08A Square root F_floating
SQRTG F-P 14.0AA Square root G_floating
SQRTS F-P 14.08B Square root S_floating
SQRTT F-P 14.0AB Square root T_floating
SRA Opr 12.3C Shift right arithmetic
SRL Opr 12.34 Shift right logical
STB Mem 0E Store byte
STF Mem 24 Store F_floating
STG Mem 25 Store G_floating
STS Mem 26 Store S_floating
STL Mem 2C Store longword 
STL_C Mem 2E Store longword conditional
STQ Mem 2D Store quadword
STQ_C Mem 2F Store quadword conditional
STQ_U Mem 0F Store unaligned quadword 
STT Mem 27 Store T_floating
STW Mem 0D Store word
SUBF F-P 15.081 Subtract F_floating
SUBG F-P 15.0A1 Subtract G_floating
SUBL Opr 10.09 Subtract longword
SUBL/V 10.49
SUBQ Opr 10.29 Subtract quadword
SUBQ/V 10.69
SUBS F-P 16.081 Subtract S_floating
SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier
UMULH Opr 13.30 Unsigned multiply quadword high
UNPKBL Opr 1C.35 Unpack bytes to longwords
UNPKBW Opr 1C.34 Unpack bytes to words
WH64 Mfc 18.F800 Write hint — 64 bytes
WMB Mfc 18.4400 Write memory barrier
XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes
ZAPNOT Opr 12.31 Zero bytes not

Table C–2:  Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
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C.2 IEEE Floating-Point Instructions

Table C–3 lists the hexadecimal value of the 11-bit function code field for the IEEE f
ing-point instructions, with and without qualifiers. The opcode for the following instruction
1616, except for SQRTS and SQRTT, which are opcode 1416.

Table C–3:  IEEE Floating-Point Instruction Function Codes

None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0
ADDT 0A0 020 060 0E0 1A0 120 160 1E0
CMPTEQ 0A5        
CMPTLE 0A7
CMPTLT 0A6        
CMPTUN 0A4        
CVTQS 0BC 03C 07C 0FC     
CVTQT 0BE 03E 07E 0FE     
CVTST See below
CVTTQ See below
CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 0E3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2
MULT 0A2 022 062 0E2 1A2 122 162 1E2
SQRTS 08B 00B 04B 0CB 18B 10B 14B 1CB
SQRTT 0AB 02B 06B 0EB 1AB 12B 16B 1EB
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT 0A1 021 061 0E1 1A1 121 161 1E1

/SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0 
ADDT 5A0 520 560 5E0 7A0 720 760 7E0 
CMPTEQ 5A5        
CMPTLE 5A7        
CMPTLT 5A6        
CMPTUN 5A4        
CVTQS     7BC 73C 77C 7FC 
CVTQT     7BE 73E 77E 7FE 
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC 
DIVS 583 503 543 5C3 783 703 743 7C3 
DIVT 5A3 523 563 5E3 7A3 723 763 7E3 
MULS 582 502 542 5C2 782 702 742 7C2 
MULT 5A2 522 562 5E2 7A2 722 762 7E2 
SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB
SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB
SUBS 581 501 541 5C1 781 701 741 7C1 
SUBT 5A1 521 561 5E1 7A1 721 761 7E1 

None /S     

CVTST 2AC 6AC       
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Programming Note:
To use CMPTxx with software completion trap handling, specify the /SU IEEE trap mode,
even though an underflow trap is not possible. To use CVTQS or CVTQT with software
completion trap handling, specify the /SUI IEEE trap mode, even though an underflow trap
is not possible.

C.3 VAX Floating-Point Instructions

Table C–4 lists the hexadecimal value of the 11-bit function code field for the VAX flo
ing-point instructions. The opcode for the following instructions is 1516, except for SQRTF
and SQRTG, which are opcode 1416.

None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F 

/D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F 

Table C–4:  VAX Floating-Point Instruction Function Codes

None /C /U /UC /S /SC /SU /SUC 

ADDF 080 000 180 100 480 400 580 500 
CVTDG 09E 01E 19E 11E 49E 41E 59E 51E 
ADDG 0A0 020 1A0 120 4A0 420 5A0 520 
CMPGEQ 0A5    4A5    
CMPGLE 0A7    4A6    
CMPGLT 0A6    4A7    
CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D 
CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C 
CVTQF 0BC 03C       
CVTQG 0BE 03E       
CVTGQ See below
DIVF 083 003 183 103 483 403 583 503 
DIVG 0A3 023 1A3 123 4A3 423 5A3 523 
MULF 082 002 182 102 482 402 582 502 
MULG 0A2 022 1A2 122 4A2 422 5A2 522 
SQRTF 08A 00A 18A 10A 48A 40A 58A 50A
SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A
SUBF 081 001 181 101 481 401 581 501 
SUBG 0A1 021 1A1 121 4A1 421 5A1 521 

None /C /V /VC /S /SC /SV /SVC 

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F 

Table C–3:  IEEE Floating-Point Instruction Function Codes (Continued)
Instruction Summary C–7
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C.4 Independent Floating-Point Instructions

Table C–5 lists the hexadecimal value of the 11-bit function code field for the floating-p
instructions that are not directly tied to IEEE or VAX floating point. The opcode for the 
lowing instructions is 1716. 

C.5 Opcode Summary

Table C–6 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the table,
column headings that appear over the instructions have a granularity of 816. The rows beneath
the leftmost column supply the individual hex number to resolve that granularity. 

If an instruction column has a 0 (zero) in the right (low) hex digit, replace that 0 with the n
ber to the left of the backslash in the leftmost column on the instruction’s row. If an instru
column has an 8 in the right (low) hexadecimal digit, replace that 8 with the number t
right of the backslash in the leftmost column. 

For example, the third row (2/A) under the 10 column contains the symbol INTS*, repre
ing all the integer shift instructions. The opcode for those instructions would then be16

because the 0 in 10 is replaced by the 2 in the leftmost column. Likewise, the third row under
the 18 column contains the symbol JSR*, representing all jump instructions. The opco
those instructions is 1A because the 8 in the heading is replaced by the number to the rig
the backslash in the leftmost column.

Table C–5:  Independent Floating-Point Instruction Function Codes

 None  /V  /SV 
CPYS 020
CPYSE 022
CPYSN 021
CVTLQ 010
CVTQL 030 130 530
FCMOVEQ 02A
FCMOVGE 02D
FCMOVGT 02F
FCMOVLE 02E
FCMOVLT 02C
MF_FPCR 025
MT_FPCR 024
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6 are
The instruction format is listed under the instruction symbol. The symbols in Table C–
explained in Table C–7.

Table C–6:  Opcode Summary

00 08 10 18 20 28 30 38

0/8 PAL*
(pal) 

LDA 
(mem) 

INTA* 
(op) 

MISC* 
(mem) 

LDF 
(mem) 

LDL 
(mem) 

BR 
(br) 

BLBC
 (br) 

1/9 Res LDAH
(mem)

INTL*
 (op) 

\PAL\ LDG 
(mem) 

LDQ 
(mem) 

FBEQ 
(br)  

BEQ 
(br) 

2/A Res LDBU
(mem)

INTS* 
(op) 

JSR* 
(mem) 

LDS 
(mem) 

LDL_L 
(mem) 

FBLT 
(br)  

BLT
 (br) 

3/B Res LDQ_U
(mem) 

INTM* 
(op) 

\PAL\ LDT 
(mem) 

LDQ_L 
(mem) 

FBLE 
(br)  

BLE 
(br) 

4/C Res LDWU
(mem)

ITFP* FPTI* STF 
(mem) 

STL 
(mem) 

BSR 
(br)  

BLBS
(br) 

5/D Res STW
(mem)

FLTV* 
(op) 

\PAL\ STG
(mem)

STQ
(mem)

FBNE
(br) 

BNE 
(br) 

6/E Res STB
(mem)

FLTI*
 (op) 

\PAL\ STS
(mem)

STL_C
(mem)

FBGE
(br) 

BGE 
(br) 

7/F Res STQ_U 
(mem)

FLTL* 
(op) 

\PAL\ STT
(mem)

STQ_C
(mem)

FBGT
(br) 

BGT 
(br) 

Table C–7:  Key to Opcode Summary

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes
FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes
FPTI* Floating-point to integer register move opcodes

INTA* Integer arithmetic instruction opcodes
INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes
INTS* Integer shift instruction opcodes

ITFP* Integer to floating-point register move opcodes
JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes
PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Compaq
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C.6 Common Architecture Opcodes in Numerical Order

Table C–8:  Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode
00 CALL_PAL 11.26 CMOVNE 14.014 ITOFF
01 OPC01 11.28 ORNOT 14.024 ITOFT
02 OPC02 11.40 XOR 14.02A SQRTG/C
03 OPC03 11.44 CMOVLT 14.02B SQRTT/C
04 OPC04 11.46 CMOVGE 14.04B SQRTS/M
05 OPC05 11.48 EQV 14.06B SQRTT/M
06 OPC06 11.61 AMASK 14.08A SQRTF
07 OPC07 11.64 CMOVLE 14.08B SQRTS
08 LDA 11.66 CMOVGT 14.0AA SQRTG
09 LDAH 11.6C IMPLVER 14.0AB SQRTT
0A LDBU 12.02 MSKBL 14.0CB SQRTS/D
0B LDQ_U 12.06 EXTBL 14.0EB SQRTT/D
0C LDWU 12.0B INSBL 14.10A SQRTF/UC
0D STW 12.12 MSKWL 14.10B SQRTS/UC
0E STB 12.16 EXTWL 14.12A SQRTG/UC
0F STQ_U 12.1B INSWL 14.12B SQRTT/UC
10.00 ADDL 12.22 MSKLL 14.14B SQRTS/UM
10.02 S4ADDL 12.26 EXTLL 14.16B SQRTT/UM
10.09 SUBL 12.2B INSLL 14.18A SQRTF/U
10.0B S4SUBL 12.30 ZAP 14.18B SQRTS/U
10.0F CMPBGE 12.31 ZAPNOT 14.1AA SQRTG/U
10.12 S8ADDL 12.32 MSKQL 14.1AB SQRTT/U
10.1B S8SUBL 12.34 SRL 14.1CB SQRTS/UD
10.1D CMPULT 12.36 EXTQL 14.1EB SQRTT/UD
10.20 ADDQ 12.39 SLL 14.40A SQRTF/SC
10.22 S4ADDQ 12.3B INSQL 14.42A SQRTG/SC
10.29 SUBQ 12.3C SRA 14.48A SQRTF/S
10.2B S4SUBQ 12.52 MSKWH 14.4AA SQRTG/S
10.2D CMPEQ 12.57 INSWH 14.50A SQRTF/SUC
10.32 S8ADDQ 12.5A EXTWH 14.50B SQRTS/SUC
10.3B S8SUBQ 12.62 MSKLH 14.52A SQRTG/SUC
10.3D CMPULE 12.67 INSLH 14.52B SQRTT/SUC
10.40 ADDL/V 12.6A EXTLH 14.54B SQRTS/SUM
10.49 SUBL/V 12.72 MSKQH 14.56B SQRTT/SUM
10.4D CMPLT 12.77 INSQH 14.58A SQRTF/SU
10.60 ADDQ/V 12.7A EXTQH 14.58B SQRTS/SU
10.69 SUBQ/V 13.00 MULL 14.5AA SQRTG/SU
10.6D CMPLE 13.20 MULQ 14.5AB SQRTT/SU
11.00 AND 13.30 UMULH 14.5CB SQRTS/SUD
11.08 BIC 13.40 MULL/V 14.5EB SQRTT/SUD
11.14 CMOVLBS 13.60 MULQ/V 14.70B SQRTS/SUIC
11.16 CMOVLBC 14.004 ITOFS 14.72B SQRTT/SUIC
11.20 BIS 14.00A SQRTF/C 14.74B SQRTS/SUIM
11.24 CMOVEQ 14.00B SQRTS/C 14.76B SQRTT/SUIM
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14.78B SQRTS/SUI 15.12F CVTGQ/VC 15.521 SUBG/SUC
14.7AB SQRTT/SUI 15.180 ADDF/U 15.522 MULG/SUC
14.7CB SQRTS/SUID 15.181 SUBF/U 15.523 DIVG/SUC
14.7EB SQRTT/SUID 15.182 MULF/U 15.52C CVTGF/SUC
15.000 ADDF/C 15.183 DIVF/U 15.52D CVTGD/SUC
15.001 SUBF/C 15.19E CVTDG/U 15.52F CVTGQ/SVC
15.002 MULF/C 15.1A0 ADDG/U 15.580 ADDF/SU
15.003 DIVF/C 15.1A1 SUBG/U 15.581 SUBF/SU
15.01E CVTDG/C 15.1A2 MULG/U 15.582 MULF/SU
15.020 ADDG/C 15.1A3 DIVG/U 15.583 DIVF/SU
15.021 SUBG/C 15.1AC CVTGF/U 15.59E CVTDG/SU
15.022 MULG/C 15.1AD CVTGD/U 15.5A0 ADDG/SU
15.023 DIVG/C 15.1AF CVTGQ/V 15.5A1 SUBG/SU
15.02C CVTGF/C 15.400 ADDF/SC 15.5A2 MULG/SU
15.02D CVTGD/C 15.401 SUBF/SC 15.5A3 DIVG/SU
15.02F CVTGQ/C 15.402 MULF/SC 15.5AC CVTGF/SU
15.03C CVTQF/C 15.403 DIVF/SC 15.5AD CVTGD/SU
15.03E CVTQG/C 15.41E CVTDG/SC 15.5AF CVTGQ/SV
15.080 ADDF 15.420 ADDG/SC 16.000 ADDS/C
15.081 SUBF 15.421 SUBG/SC 16.001 SUBS/C
15.082 MULF 15.422 MULG/SC 16.002 MULS/C
15.083 DIVF 15.423 DIVG/SC 16.003 DIVS/C
15.09E CVTDG 15.42C CVTGF/SC 16.020 ADDT/C
15.0A0 ADDG 15.42D CVTGD/SC 16.021 SUBT/C
15.0A1 SUBG 15.42F CVTGQ/SC 16.022 MULT/C
15.0A2 MULG 15.480 ADDF/S 16.023 DIVT/C
15.0A3 DIVG 15.481 SUBF/S 16.02C CVTTS/C
15.0A5 CMPGEQ 15.482 MULF/S 16.02F CVTTQ/C
15.0A6 CMPGLT 15.483 DIVF/S 16.03C CVTQS/C
15.0A7 CMPGLE 15.49E CVTDG/S 16.03E CVTQT/C
15.0AC CVTGF 15.4A0 ADDG/S 16.040 ADDS/M
15.0AD CVTGD 15.4A1 SUBG/S 16.041 SUBS/M
15.0AF CVTGQ 15.4A2 MULG/S 16.042 MULS/M
15.0BC CVTQF 15.4A3 DIVG/S 16.043 DIVS/M
15.0BE CVTQG 15.4A5 CMPGEQ/S 16.060 ADDT/M
15.100 ADDF/UC 15.4A6 CMPGLT/S 16.061 SUBT/M
15.101 SUBF/UC 15.4A7 CMPGLE/S 16.062 MULT/M
15.102 MULF/UC 15.4AC CVTGF/S 16.063 DIVT/M
15.103 DIVF/UC 15.4AD CVTGD/S 16.06C CVTTS/M
15.11E CVTDG/UC 15.4AF CVTGQ/S 16.06F CVTTQ/M
15.120 ADDG/UC 15.500 ADDF/SUC 16.07C CVTQS/M
15.121 SUBG/UC 15.501 SUBF/SUC 16.07E CVTQT/M
15.122 MULG/UC 15.502 MULF/SUC 16.080 ADDS
15.123 DIVG/UC 15.503 DIVF/SUC 16.081 SUBS
15.12C CVTGF/UC 15.51E CVTDG/SUC 16.082 MULS
15.12D CVTGD/UC 15.520 ADDG/SUC 16.083 DIVS

Table C–8:  Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode
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16.0A0 ADDT 16.182 MULS/U 16.5A3 DIVT/SU
16.0A1 SUBT 16.183 DIVS/U 16.5A4 CMPTUN/SU
16.0A2 MULT 16.1A0 ADDT/U 16.5A5 CMPTEQ/SU
16.0A3 DIVT 16.1A1 SUBT/U 16.5A6 CMPTLT/SU
16.0A4 CMPTUN 16.1A2 MULT/U 16.5A7 CMPTLE/SU
16.0A5 CMPTEQ 16.1A3 DIVT/U 16.5AC CVTTS/SU
16.0A6 CMPTLT 16.1AC CVTTS/U 16.5AF CVTTQ/SV
16.0A7 CMPTLE 16.1AF CVTTQ/V 16.5C0 ADDS/SUD
16.0AC CVTTS 16.1C0 ADDS/UD 16.5C1 SUBS/SUD
16.0AF CVTTQ 16.1C1 SUBS/UD 16.5C2 MULS/SUD
16.0BC CVTQS 16.1C2 MULS/UD 16.5C3 DIVS/SUD
16.0BE CVTQT 16.1C3 DIVS/UD 16.5E0 ADDT/SUD
16.0C0 ADDS/D 16.1E0 ADDT/UD 16.5E1 SUBT/SUD
16.0C1 SUBS/D 16.1E1 SUBT/UD 16.5E2 MULT/SUD
16.0C2 MULS/D 16.1E2 MULT/UD 16.5E3 DIVT/SUD
16.0C3 DIVS/D 16.1E3 DIVT/UD 16.5EC CVTTS/SUD
16.0E0 ADDT/D 16.1EC CVTTS/UD 16.5EF CVTTQ/SVD
16.0E1 SUBT/D 16.1EF CVTTQ/VD 16.6AC CVTST/S
16.0E2 MULT/D 16.2AC CVTST 16.700 ADDS/SUIC
16.0E3 DIVT/D 16.500 ADDS/SUC 16.701 SUBS/SUIC
16.0EC CVTTS/D 16.501 SUBS/SUC 16.702 MULS/SUIC
16.0EF CVTTQ/D 16.502 MULS/SUC 16.703 DIVS/SUIC
16.0FC CVTQS/D 16.503 DIVS/SUC 16.720 ADDT/SUIC
16.0FE CVTQT/D 16.520 ADDT/SUC 16.721 SUBT/SUIC
16.100 ADDS/UC 16.521 SUBT/SUC 16.722 MULT/SUIC
16.101 SUBS/UC 16.522 MULT/SUC 16.723 DIVT/SUIC
16.102 MULS/UC 16.523 DIVT/SUC 16.72C CVTTS/SUIC
16.103 DIVS/UC 16.52C CVTTS/SUC 16.72F CVTTQ/SVIC
16.120 ADDT/UC 16.52F CVTTQ/SVC 16.73C CVTQS/SUIC
16.121 SUBT/UC 16.540 ADDS/SUM 16.73E CVTQT/SUIC
16.122 MULT/UC 16.541 SUBS/SUM 16.740 ADDS/SUIM
16.123 DIVT/UC 16.542 MULS/SUM 16.741 SUBS/SUIM
16.12C CVTTS/UC 16.543 DIVS/SUM 16.742 MULS/SUIM
16.12F CVTTQ/VC 16.560 ADDT/SUM 16.743 DIVS/SUIM
16.140 ADDS/UM 16.561 SUBT/SUM 16.760 ADDT/SUIM
16.141 SUBS/UM 16.562 MULT/SUM 16.761 SUBT/SUIM
16.142 MULS/UM 16.563 DIVT/SUM 16.762 MULT/SUIM
16.143 DIVS/UM 16.56C CVTTS/SUM 16.763 DIVT/SUIM
16.160 ADDT/UM 16.56F CVTTQ/SVM 16.76C CVTTS/SUIM
16.161 SUBT/UM 16.580 ADDS/SU 16.76F CVTTQ/SVIM
16.162 MULT/UM 16.581 SUBS/SU 16.77C CVTQS/SUIM
16.163 DIVT/UM 16.582 MULS/SU 16.77E CVTQT/SUIM
16.16C CVTTS/UM 16.583 DIVS/SU 16.780 ADDS/SUI
16.16F CVTTQ/VM 16.5A0 ADDT/SU 16.781 SUBS/SUI
16.180 ADDS/U 16.5A1 SUBT/SU 16.782 MULS/SUI
16.181 SUBS/U 16.5A2 MULT/SU 16.783 DIVS/SUI

Table C–8:  Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode
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16.7A0 ADDT/SUI 18.4000 MB 1F PAL1F
16.7A1 SUBT/SUI 18.4400 WMB 20 LDF
16.7A2 MULT/SUI 18.8000 FETCH 21 LDG
16.7A3 DIVT/SUI 18.A000 FETCH_M 22 LDS
16.7AC CVTTS/SUI 18.C000 RPCC 23 LDT
16.7AF CVTTQ/SVI 18.E000 RC 24 STF
16.7BC CVTQS/SUI 18.E800 ECB 25 STG
16.7BE CVTQT/SUI 18.F000 RS 26 STS
16.7C0 ADDS/SUID 18.F800 WH64 27 STT
16.7C1 SUBS/SUID 19 PAL19 28 LDL
16.7C2 MULS/SUID 1A.0 JMP 29 LDQ
16.7C3 DIVS/SUID 1A.1 JSR 2A LDL_L
16.7E0 ADDT/SUID 1A.2 RET 2B LDQ_L
16.7E1 SUBT/SUID 1A.3 JSR_COROUTINE 2C STL
16.7E2 MULT/SUID 1B PAL1B 2D STQ
16.7E3 DIVT/SUID 1C.00 SEXTB 2E STL_C
16.7EC CVTTS/SUID 1C.01 SEXTW 2F STQ_C
16.7EF CVTTQ/SVID 1C.30 CTPOP 30 BR
16.7FC CVTQS/SUID 1C.31 PERR 31 FBEQ 
16.7FE CVTQT/SUID 1C.32 CTLZ 32 FBLT 
17.010 CVTLQ 1C.33 CTTZ 33 FBLE 
17.020 CPYS 1C.34 UNPKBW 34 BSR
17.021 CPYSN 1C.35 UNPKBL 35 FBNE 
17.022 CPYSE 1C.36 PKWB 36 FBGE 
17.024 MT_FPCR 1C.37 PKLB 37 FBGT 
17.025 MF_FPCR 1C.38 MINSB8 38 BLBC
17.02A FCMOVEQ 1C.39 MINSW4 39 BEQ
17.02B FCMOVNE 1C.3A MINUB8 3A BLT
17.02C FCMOVLT 1C.3B MINUW4 3B BLE
17.02D FCMOVGE 1C.3C MAXUB8 3C BLBS
17.02E FCMOVLE 1C.3D MAXUW4 3D BNE
17.02F FCMOVGT 1C.3E MAXSB8 3E BGE
17.030 CVTQL 1C.3F MAXSW4 3F BGT
17.130 CVTQL/V 1C.70 FTOIT
17.530 CVTQL/SV 1C.78 FTOIS
18.0000 TRAPB 1D PAL1D
18.0400 EXCB 1E PAL1E

Table C–8:  Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode
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C.7 OpenVMS Alpha PALcode Instruction Summary

Table C–9:  OpenVMS Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

AMOVRM 00.00A1 Atomic move from register to memory
AMOVRR 00.00A0 Atomic move from register to register
BPT 00.0080 Breakpoint
BUGCHK 00.0081 Bugcheck
CHMK 00.0083 Change mode to kernel
CHME 00.0082 Change mode to executive
CHMS 00.0084 Change mode to supervisor
CHMU 00.0085 Change mode to user
CLRFEN 00.00AE Clear floating-point enable
GENTRAP 00.00AA Generate software trap
IMB 00.0086 I-stream memory barrier
INSQHIL 00.0087 Insert into longword queue at head interlocked
INSQHILR 00.00A2 Insert into longword queue at head interlocked resident
INSQHIQ 00.0089 Insert into quadword queue at head interlocked
INSQHIQR 00.00A4 Insert into quadword queue at head interlocked resident
INSQTIL 00.0088 Insert into longword queue at tail interlocked
INSQTILR 00.00A3 Insert into longword queue at tail interlocked resident
INSQTIQ 00.008A Insert into quadword queue at tail interlocked
INSQTIQR 00.00A5 Insert into quadword queue at tail interlockedresident
INSQUEL 00.008B Insert entry into longword queue
INSQUEL/D 00.008D Insert entry into longword queue deferred
INSQUEQ 00.008C Insert entry into quadword queue
INSQUEQ/D 00.008E Insert entry into quadword queue deferred
PROBER 00.008F Probe for read access
PROBEW 00.0090 Probe for write access
RD_PS 00.0091 Move processor status
READ_UNQ 00.009E Read unique context
REI 00.0092 Return from exception or interrupt
REMQHIL 00.0093 Remove from longword queue at head interlocked
REMQHILR 00.00A6 Remove from longword queue at head interlocked resident
REMQHIQ 00.0095 Remove from quadword queue at head interlocked
REMQHIQR 00.00A8 Remove from quadword queue at head interlocked resident
REMQTIL 00.0094 Remove from longword queue at tail interlocked
REMQTILR 00.00A7 Remove from longword queue at tail interlocked resident
REMQTIQ 00.0096 Remove from quadword queue at tail interlocked
REMQTIQR 00.00A9 Remove from quadword queue at tail interlocked resident
REMQUEL 00.0097 Remove entry from longword queue
REMQUEL/D 00.0099 Remove entry from longword queue deferred
REMQUEQ 00.0098 Remove entry from quadword queue
REMQUEQ/D 00.009A Remove entry from quadword queue deferred
RSCC 00.009D Read system cycle counter
SWASTEN 00.009B Swap AST enable for current mode
WRITE_UNQ 00.009F Write unique context
WR_PS_SW 00.009C Write processor status software field
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Table C–10:  OpenVMS Alpha Privileged PALcode Instructions

Mnemonic Opcode Description
CFLUSH 00.0001 Cache flush
CSERVE 00.0009 Console service
DRAINA 00.0002 Drain aborts
HALT 00.0000 Halt processor
LDQP 00.0003 Load quadword physical
MFPR_ASN 00.0006 Move from processor register ASN
MFPR_ESP 00.001E Move from processor register ESP
MFPR_FEN 00.000B Move from processor register FEN
MFPR_IPL 00.000E Move from processor register IPL
MFPR_MCES 00.0010 Move from processor register MCES
MFPR_PCBB 00.0012 Move from processor register PCBB
MFPR_PRBR 00.0013 Move from processor register PRBR
MFPR_PTBR 00.0015 Move from processor register PTBR
MFPR_SCBB 00.0016 Move from processor register SCBB
MFPR_SISR 00.0019 Move from processor register SISR
MFPR_SSP 00.0020 Move from processor register SSP
MFPR_TBCHK 00.001A Move from processor register TBCHK
MFPR_USP 00.0022 Move from processor register USP
MFPR_VPTB 00.0029 Move from processor register VPTB
MFPR_WHAMI 00.003F Move from processor register WHAMI
MTPR_ASTEN 00.0026 Move to processor register ASTEN
MTPR_ASTSR 00.0027 Move to processor register ASTSR
MTPR_DATFX 00.002E Move to processor register DATFX
MTPR_ESP 00.001F Move to processor register ESP
MTPR_FEN 00.000B Move to processor register FEN
MTPR_IPIR 00.000D Move to processor register IPRI
MTPR_IPL 00.000E Move to processor register IPL
MTPR_MCES 00.0011 Move to processor register MCES
MTPR_PERFMON 00.002B Move to processor register PERFMON
MTPR_PRBR 00.0014 Move to processor register PRBR
MTPR_SCBB 00.0017 Move to processor register SCBB
MTPR_SIRR 00.0018 Move to processor register SIRR
MTPR_SSP 00.0021 Move to processor register SSP
MTPR_TBIA 00.001B Move to processor register TBIA
MTPR_TBIAP 00.001C Move to processor register TBIAP
MTPR_TBIS 00.001D Move to processor register TBIS
MTPR_TBISD 00.0024 Move to processor register TBISD
MTPR_TBISI 00.0025 Move to processor register TBISI
MTPR_USP 00.0023 Move to processor register USP
MTPR_VPTB 00.002A Move to processor register VPTB
STQP 00.0004 Store quadword physical
SWPCTX 00.0005 Swap privileged context
SWPPAL 00.000A Swap PALcode image
WTINT 00.003E Wait for interrupt
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C.8 DIGITAL UNIX PALcode Instruction Summary

Table C–11:  DIGITAL UNIX Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap
bugchk 00.0081 Bugcheck
callsys 00.0083 System call
clrfen 00.00AE Clear floating-point enable
gentrap 00.00AA Generate software trap
imb 00.0086 I-stream memory barrier
rdunique 00.009E Read unique value
urti 00.0092 Return from user mode trap
wrunique 00.009F Write unique value

Table C–12:  DIGITAL UNIX Privileged PALcode Instructions

Mnemonic Opcode Description
cflush 00.0001 Cache flush
cserve 00.0009 Console service
draina 00.0002 Drain aborts
halt 00.0000 Halt the processor
rdmces 00.0010 Read machine check error summary register
rdps 00.0036 Read processor status
rdusp 00.003A Read user stack pointer
rdval 00.0032 Read system value
retsys 00.003D Return from system call
rti 00.003F Return from trap or interrupt
swpctx 00.0030 Swap privileged context
swpipl 00.0035 Swap interrupt priority level
swppal 00.000A Swap PALcode image
tbi 00.0033 Translation buffer invalidate
whami 00.003C Who am I
wrent 00.0034 Write system entry address
wrfen 00.002B Write floating-point enable
wripir 00.000D Write interprocessor interrupt request
wrkgp 00.0037 Write kernel global pointer
wrmces 00.0011 Write machine check error summary register
wrperfmon 00.0039 Performance monitoring function
wrusp 00.0038 Write user stack pointer
wrval 00.0031 Write system value
wrvptptr 00.002D Write virtual page table pointer
wtint 00.003E Wait for interrupt
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C.9 Windows NT Alpha Instruction Summary

Table C–13:  Windows NT Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap
callkd 00.00AD Call kernel debugger
callsys 00.0083 Call system service
gentrap 00.00AA Generate trap
imb 00.0086 Instruction memory barrier
kbpt 00.00AC Kernel breakpoint trap
rdteb 00.00AB Read TEB internal processor register

Table C–14:  Windows NT Alpha Privileged PALcode instructions

Mnemonic Opcode Description

csir 00.000D Clear software interrupt request
dalnfix 00.0025 Disable alignment fixups
di 00.0008 Disable interrupts
draina 00.0002 Drain aborts
dtbis 00.0016 Data translation buffer invalidate single
ealnfix 00.0024 Enable alignment fixups
ei 00.0009 Enable interrupts
halt 00.0000 Trap to illegal instruction
initpal 00.0004 Initialize the PALcode
initpcr 00.0038 Initialize processor control region data
rdcounters 00.0030 Read PALcode event counters
rdirql 00.0007 Read current IRQL
rdksp 00.0018 Read initial kernel stack
rdmces 00.0012 Read machine check error summary
rdpcr 00.001C Read PCR (processor control registers)
rdpsr 00.001A Read processor status register
rdstate 00.0031 Read internal processor state
rdthread 00.001E Read the current thread value
reboot 00.0002 Transfer to console firmware
restart 00.0001 Restart the processor
retsys 00.000F Return from system service call
rfe 00.000E Return from exception
swpirql 00.0006 Swap IRQL
swpksp 00.0019 Swap initial kernel stack
swppal 00.000A Swap PALcode
swpprocess 00.0011 Swap privileged process context
swpctx 00.0010 Swap privileged thread context
ssir 00.000C Set software interrupt request
tbia 00.0014 Translation buffer invalidate all
tbim 00.0020 Translation buffer invalidate multiple
tbimasn 00.0021 Translation buffer invalidate multiple ASN
tbis 00.0015 Translation buffer invalidate single
tbisasn 00.0017 Translation buffer invalidate single ASN
wrentry 00.0005 Write system entry
wrmces 00.0013 Write machine check error summary
wrperfmon 00.0032 Write performance monitoring values
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C.10 PALcode Opcodes in Numerical Order

Opcodes 00.003816 through 00.003F16 are reserved for processor implementation-specific
PALcode instructions. All other opcodes are reserved for use by Compaq.

Table C–15:  PALcode Opcodes in Numerical Order

Opcode16 Opcode10 OpenVMS Alpha
DIGITAL 
UNIX

Windows NT 
Alpha

00.0000 00.0000 HALT halt halt
00.0001 00.0001 CFLUSH cflush restart
00.0002 00.0002 DRAINA draina draina
00.0003 00.0003 LDQP — reboot
00.0004 00.0004 STQP — initpal
00.0005 00.0005 SWPCTX — wrentry
00.0006 00.0006 MFPR_ASN — swpirql
00.0007 00.0007 MTPR_ASTEN — rdirql
00.0008 00.0008 MTPR_ASTSR — di
00.0009 00.0009 CSERVE cserve ei
00.000A 00.0010 SWPPAL swppal swppal
00.000B 00.0011 MFPR_FEN — —
00.000C 00.0012 MTPR_FEN — ssir
00.000D 00.0013 MTPR_IPIR wripir csir
00.000E 00.0014 MFPR_IPL — rfe
00.000F 00.0015 MTPR_IPL — retsys
00.0010 00.0016 MFPR_MCES rdmces swpctx
00.0011 00.0017 MTPR_MCES wrmces swpprocess
00.0012 00.0018 MFPR_PCBB — rdmes
00.0013 00.0019 MFPR_PRBR — wrmces
00.0014 00.0020 MTPR_PRBR — tbia
00.0015 00.0021 MFPR_PTBR — tbis
00.0016 00.0022 MFPR_SCBB — dtbis
00.0017 00.0023 MTPR_SCBB — tbisasn
00.0018 00.0024 MTPR_SIRR — rdksp
00.0019 00.0025 MFPR_SISR — swpksp
00.001A 00.0026 MFPR_TBCHK — rdpsr
00.001B 00.0027 MTPR_TBIA — —
00.001C 00.0028 MTPR_TBIAP — rdpcr
00.001D 00.0029 MTPR_TBIS — —
00.001E 00.0030 MFPR_ESP — rdthread
00.001F 00.0031 MTPR_ESP — —
00.0020 00.0032 MFPR_SSP — tbim
00.0021 00.0033 MTPR_SSP — tbimasn
00.0022 00.0034 MFPR_USP — —
00.0023 00.0035 MTPR_USP — —
00.0024 00.0036 MTPR_TBISD — ealnfix
00.0025 00.0037 MTPR_TBISI — dalnfix
00.0026 00.0038 MFPR_ASTEN — —
00.0027 00.0039 MFPR_ASTSR — —
00.0029 00.0041 MFPR_VPTB — —
00.002A 00.0042 MTPR_VPTB — —
00.002B 00.0043 MTPR_PERFMON wrfen —
00.002D 00.0045 — wrvptptr —
00.002E 00.0046 MTPR_DATFX — —
00.0030 00.0048 — swpctx rdcounters
00.0031 00.0049 — wrval rdstate
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00.0032 00.0050 — rdval wrperfmon
00.0033 00.0051 — tbi —
00.0034 00.0052 — wrent —
00.0035 00.0053 — swpipl —
00.0036 00.0054 — rdps —
00.0037 00.0055 — wrkgp initpcr
00.0038 00.0056 — wrusp —
00.0039 00.0057 — wrperfmon —
00.003A 00.0058 — rdusp —
00.003C 00.0060 — whami —
00.003D 00.0061 — retsys —
00.003E 00.0062 WTINT wtint —
00.003F 00.0063 MFPR_WHAMI rti —
00.0080 00.0128 BPT bpt bpt
00.0081 00.0129 BUGCHK bugchk —
00.0082 00.0130 CHME — —
00.0083 00.0131 CHMK callsys callsys
00.0084 00.0132 CHMS — —
00.0085 00.0133 CHMU — —
00.0086 00.0134 IMB imb imb
00.0087 00.0135 INSQHIL — —
00.0088 00.0136 INSQTIL — —
00.0089 00.0137 INSQHIQ — —
00.008A 00.0138 INSQTIQ — —
00.008B 00.0139 INSQUEL — —
00.008C 00.0140 INSQUEQ — —
00.008D 00.0141 INSQUEL/D — —
00.008E 00.0142 INSQUEQ/D — —
00.008F 00.0143 PROBER — —
00.0090 00.0144 PROBEW — —
00.0091 00.0145 RD_PS — —
00.0092 00.0146 REI urti —
00.0093 00.0147 REMQHIL — —
00.0094 00.0148 REMQTIL — —
00.0095 00.0149 REMQHIQ — —
00.0096 00.0150 REMQTIQ — —
00.0097 00.0151 REMQUEL — —
00.0098 00.0152 REMQUEQ — —
00.0099 00.0153 REMQUEL/D  —
00.009A 00.0154 REMQUEQ/D — —
00.009B 00.0155 SWASTEN — —
00.009C 00.0156 WR_PS_SW — —
00.009D 00.0157 RSCC — —
00.009E 00.0158 READ_UNQ rdunique —
00.009F 00.0159 WRITE_UNQ wrunique —
00.00A0 00.0160 AMOVRR — —
00.00A1 00.0161 AMOVRM — —
00.00A2 00.0162 INSQHILR — —
00.00A3 00.0163 INSQTILR — —
00.00A4 00.0164 INSQHIQR — —
00.00A5 00.0165 INSQTIQR — —
00.00A6 00.0166 REMQHILR — —
00.00A7 00.0167 REMQTILR — —

Table C–15:  PALcode Opcodes in Numerical Order (Continued)

Opcode16 Opcode10 OpenVMS Alpha
DIGITAL 
UNIX

Windows NT 
Alpha
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C.11 Required PALcode Opcodes

The opcodes listed in Table C–16 are required for all Alpha implementations. The not
used is oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit
function code.

C.12 Opcodes Reserved to PALcode

The opcodes listed in Table C–17 are reserved for use in implementing PALcode.

00.00A8 00.0168 REMQHIQR — —
00.00A9 00.0169 REMQTIQR — —
00.00AA 00.0170 GENTRAP gentrap gentrap
00.00AB 00.0171 — — rdteb
00.00AC 00.0172 — — kbpt
00.00AD 00.0173 — — callkd
00.00AE 00.0174 CLRFEN clrfen

Table C–16:  Required PALcode Opcodes

Mnemonic Type Opcode
DRAINA Privileged 00.0002

HALT Privileged 00.0000
IMB Unprivileged 00.0086

Table C–17:  Opcodes Reserved for PALcode

Mnemonic Mnemonic Mnemonic
PAL19 19 PAL1B 1B PAL1D 1D

PAL1E 1E PAL1F 1F

Table C–15:  PALcode Opcodes in Numerical Order (Continued)

Opcode16 Opcode10 OpenVMS Alpha
DIGITAL 
UNIX

Windows NT 
Alpha
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C.13 Opcodes Reserved to Compaq

The opcodes listed in Table C–18 are reserved to Compaq.

Programming Note:
The code points 18.4800 and 18.4C00 are reserved for adding weaker memory 
instructions. Those code points must operate as a Memory Barrier instruction 
18.4000) for implementations that precede their definition as weaker memory b
instructions. Software must use the 18.4000 code point for MB. 

C.14 Unused Function Code Behavior

Unused function codes for all opcodes assigned (not reserved) in the Version 5 Alpha ar
ture specification (May 1992) produce UNPREDICTABLE but not UNDEFINED results; t
are not security holes.

Unused function codes for opcodes defined as reserved in the Version 5 Alpha archit
specification produce an illegal instruction trap. Those opcodes are 01, 02, 03, 04, 05, 0
0A, 0C, 0D, 0E, 14, 19, 1B, 1C, 1D, 1E, and 1F. Unused function codes for those op
reserved to PALcode produce an illegal instruction trap only if not used in the PAL
environment.

Table C–18:  Opcodes Reserved for Compaq

Mnemonic Mnemonic Mnemonic

OPC01 01 OPC02 02 OPC03 03
OPC04 04 OPC05 05 OPC06 06

OPC07 07
Instruction Summary C–21
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C.15 ASCII Character Set

Table C–19 shows the 7-bit ASCII character set and the corresponding hexadecimal va
each character.

Table C–19:  ASCII Character Set

Char
Hex 
Code Char

Hex 
Code Char

Hex 
Code Char

Hex 
Code

NUL 0 SP 20 @ 40 ‘ 60

SQH 1 ! 21 A 41 a 61
STX 2 " 22 B 42 b 62

ETX 3 # 23 C 43 c 63
EOT 4 $ 24 D 44 d 64

ENQ 5 % 25 E 45 e 65
ACK 6 & 26 F 46 f 66

BEL 7 ' 27 G 47 g 67
BS 8  ( 28 H 48 h 68

HT 9  ) 29 I 49 i 69
LF A * 2A J 4A j 6A

VT B + 2B K 4B k 6B
FF C , 2C L 4C l 6C

CR D - 2D M 4D m 6D
SO E . 2E N 4E n 6E

SI F / 2F O 4F o 6F
DLE 10 0 30 P 50 p 70

DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72

DC3 13 3 33 S 53 s 73
DC4 14 4 34 T 54 t 74

NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 v 76

ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 x 78

EM 19 9 39 Y 59 y 79
SUB 1A : 3A Z 5A z 7A

ESC 1B ; 3B [ 5B { 7B
FS 1C < 3C \ 5C | 7C

GS 1D = 3D ] 5D } 7D
RS 1E > 3E ^ 5E ~ 7E

US 1F ? 3F _ 5F DEL 7F
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 Appendix D

Registered System and Processor Identifiers

This appendix contains a table of the processor type assignments, PALcode implementation
information, and the architecture mask (AMASK) and implementation value (IMPLVER)
assignments.

D.1 Processor Type Assignments 

The following processor types are defined.

Table D–1:   Processor Type Assignments

Major Type Minor Type

  1 = EV3

  2 = EV4 (21064)   0 = Pass 2 or 2.1

  1 = Pass 3 (also EV4s)

  3 = Simulation

  4 = LCA Family: 
     LCA4s (21066) 
     LCA4s embedded (21068) 
     LCA45 (21066A, 21068A)

  0 = Reserved

  1 = Pass 1 or 1.1 (21066)

  2 = Pass 2 (21066)

  3 = Pass 1 or 1.1 (21068)

  4 = Pass 2 (21068)

  5 = Pass 1 (21066A)

  6 = Pass 1 (21068A)
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For OpenVMS Alpha and DIGITAL UNIX, the processor types are stored in the Per-CPU Slot
Table (SLOT[176]), pointed to by HWRPB[160].

D.2 PALcode Variation Assignments 

The PALcode variation assignments are as follows:

  5 = EV5 (21164)   0 = Reserved (Pass 1)

  1 = Pass 2, 2.2 (rev BA, CA)

  2 = Pass 2.3 (rev DA, EA)

  3 = Pass 3

  4 = Pass 3.2

  5 = Pass 4

  6 = EV45 (21064A)   0 = Reserved

  1 = Pass 1

  2 = Pass 1.1

  3 = Pass 2

  7 = EV56 (21164A)   0 = Reserved

  1 = Pass 1

  2 = Pass 2

  8 = EV6 (21264)   0 = Reserved

1 = Pass 1

2 = Pass 2, 2.1

3 = Pass 2.2

4 = Pass 2.3

  5 = Pass 3

  9 = PCA56 (21164PC)   0 = Reserved

  1 = Pass 1

Table D–2:   PALcode Variation Assignments

Token PALcode Type Summary Table

0 Console N/A

1 OpenVMS Alpha Console Interface (III), Chapter 3, in the
Alpha Architecture Reference Manual.

Table D–1:   Processor Type Assignments (Continued)

Major Type Minor Type
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D.3 Architecture Mask and Implementation Values

The following bits are defined for the AMASK instruction.

The following values are defined for the IMPLVER instruction.

2 DIGITAL UNIX Console Interface (III), Chapter 3 in the
Alpha Architecture Reference Manual

3–127 Reserved to Compaq

128–255 Reserved to non-Compaq

Table D–3:   AMASK Bit Assignments 

Bit Meaning

0 Support for the byte/word extension (BWX)
The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)
The instructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF,
ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

2 Support for the count extension (CIX)
The instructions that comprise the CIX extension are CTLZ, CTPOP, and  CTTZ.

8 Support for the multimedia extension (MVI)
The instructions that comprise the MVI extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC is the same
as the instruction PC after the trapping instruction is executed.

Table D–4:   IMPLVER Value Assignments 

Value Meaning

0 21064 (EV4) 
21064A (EV45) 
21066A/21068A (LCA45)

1 21164 (EV5) 
21164A (EV56) 
21164PC (PCA56)

2 21264 (EV6)

Table D–2:   PALcode Variation Assignments

Token PALcode Type Summary Table
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 Appendix E

Waivers and Implementation-Dependent

Functionality

This appendix describes waivers to the Alpha architecture and functionality that is specific to
particular hardware implementations.

E.1 Waivers  

The following waivers have been passed for the Alpha architecture. 

E.1.1 DECchip 21064, DECchip 21066, and DECchip 21068 IEEE Divide 
Instruction Violation

The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs violate the architected han-
dling of IEEE divide instructions DIVS and DIVT with respect to reporting Inexact Result
exceptions. 

Note:
The DECchip 21064A, DECchip 21066A, and DECchip 21068A CPUs are compliant and
require no waiver. The DECchip 21164 is also compliant.

As specified by the architecture, floating-point exceptions generated by the CPU are recorded
in two places for all IEEE floating-point instructions:

1. If an exception is detected and the corresponding trap is enabled (such as ADD/U for
underflow), the CPU initiates a trap and records the exception in the exception sum-
mary register (EXC_SUM).

2. The exceptions are also recorded as flags that can be tested in the floating-point control
register (FPCR). The FPCR can only be accessed with MTPR/MFPR instructions and
an explicit MT_FPCR is required to clear the FPCR. The FPCR is updated irrespective
of whether the trap is enabled or not.
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The DECchip 21064, DECchip 21066, and DECchip 21068 implementations differ from the
above specification in handling the Inexact condition for the IEEE DIVS and DIVT instruc-
tions in two ways:

1. The DIVS and DIVT instructions with the /Inexact modifier trap unconditionally and
report the INE exception in the EXC_SUM register (except for NaN, infinity, and
denormal inputs that result in INVs). This allows for a software calculation to deter-
mine the correct INE status.

2. The FPCR <INE> bit is never set by DIVS or DIVT. This is because the DECchip
21064, DECchip 21066, and DECchip 21068 do not include hardware to determine that
particular exactness.

E.1.2 DECchip 21064, DECchip 21066, and DECchip 21068 Write Buffer 
Violation

The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs can be made to violate the
architecture by, under one contrived case, indefinitely delaying a buffered off-chip write. 

Note:

The DECchip 21064A, DECchip 21066A, and DECchip 21068A CPUs are compliant and
require no waiver. The DECchip 21164 is also compliant.

The CPUs in violation can send a buffered write off-chip when one of the following condi-
tions is met:

1. The write buffer contains at least two valid entries.

2. The write buffer contains one valid entry and 256 cycles have elapsed since the execu-
tion of the last write.

3. The write buffer contains an MB or STx_C instruction.

4. A load miss hits an entry in the write buffer.

The write can be delayed indefinitely under condition 2 above, when there is an indefinite
stream of writes to addresses within the same aligned 32-byte write buffer block.

E.1.3 DECchip 21264 LDx_L/STx_C with WH64 Violation

The DECchip 21264 violates the architected relationship between the LDx_L and STx_C
instructions when an intervening WH64 instruction is executed.

As specified in Section 4.2.4:

If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U, WH64) is executed on the
given processor between the LDx_L and the STx_C, the sequence above may always fail
on some implementations; hence, no useful program should do this.
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The DECchip 21264 varies from that description, with regard to the WH64 instruction, as
follows:

If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U) is executed on the given
processor between the LDx_L and the STx_C, the sequence above may always fail on
some implementations; hence, no useful program should do this.

If a WH64 memory access is executed on any given 21264 processor between the LDx_L
and STx_C, and:

– The WH64 access is to the same aligned 64-byte block that STx_C is accessi
and

– No CALL_PAL REI, rei, or rfe instruction has been executed since the most-re
LDx_L (ensuring that the sequence cannot occur as the result of  unfortunate 
cidences with interrupts)

then, the load-locked/store-conditional sequence may sometimes fail when it w
otherwise succeed and sometimes succeed when it otherwise would fail; hence no
program should do this.

E.2 Implementation-Specific Functionality

The following functionality, although a documentated part of the Alpha architecture, is im
mented in a manner that is specific to the particular hardware implementation.

E.2.1 DECchip 21064/21066/21068 Performance Monitoring 

Note:
All functions, arguments, and descriptions in this section apply to the DEC
21064/21064A, 21066/21066A, and 21068/21068A.

PALcode instructions control the DECchip 21064/21066/21068 on-chip performance cou
For OpenVMS Alpha, the instruction is MTPR_PERFMON; for DIGITAL UNIX and Wi
dows NT Alpha, the instruction is wrperfmon.

The instruction arguments and results are described in the following sections. The scrat
ister usage is operating system specific.

Two on-chip counters count events. The bit width of the counters (8, 12, or 16 bits) c
selected and the event that they count can be switched among a number of available 
One possible event is an "external" event. For example, the processor board can sup
event that causes the counter to increment. In this manner, off-chip events can be counte

The two counters can be switched independently. There is no hardware support for re
writing, or resetting the counters. The only way to monitor the counters is to enable th
cause an interrupt on overflow.
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The performance monitor functions, described in Section E.2.1.2, can provide the following,
depending on implementation:

• Enable the performance counters to interrupt and trap into the performance monitoring
vector in the operating system.

• Disable the performance counter from interrupting. This does not necessarily mean that
the counters will stop counting.

• Select which events will be monitored and set the width of the two counters.

• In the case of OpenVMS Alpha and DIGITAL UNIX, implementations can choose to
monitor selected processes. If that option is selected, the PME bit in the PCB controls
the enabling of the counters. Since the counters cannot be read/written/reset, if more
than one process is being monitored, the rounding error may become significant.

E.2.1.1 DECchip 21064/21066/21068 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular operating
system.

For the OpenVMS Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then dis-
patches in the form of an exception (not in the form of an interrupt) to the operating system by
ve c to r i ng  to  t he  S C B  p er f o rm a n c e  m on i to r  e n t r y  p o in t  t h r ou gh  S C B B +6 50
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode. 

Two interrupts are generated if both counters overflow. For each interrupt, the status of each
counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DIGITAL UNIX Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame and dispatches to the
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.

Two interrupts are generated if both counters overflow. For each interrupt, registers a0..a2 are
as follows:

a0 = osfint$c_perf (4)
a1 = scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the Windows NT Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds a frame on the kernel stack and dispatches to the
kernel at the interrupt entry point.
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E.2.1.2 Functions and Arguments for the DECchip 21064/21066/21068

The functions execute on a single (the current running) processor only and are described in
Table E–1. 

• The OpenVMS Alpha MTPR_PERFMON instruction is called with a function code in
R16, a function-specific argument in R17, and status is returned in R0. 

• The DIGITAL UNIX wrperfmon instruction is called with a function code in a0, a func-
tion specific argument in a1, and status is returned in v0. 

• The Windows NT Alpha wrperfmon instruction is called with input parameters a0
through a3, as shown in Table E–1.

Table E–1:  DECchip  21064/21066/21068 Performance Monitoring   Functions

Function Register Usage Comments

Enable performance monitoring Enable takes effect at the next IPL change

DIGITAL UNIX 

Input: a0 = 1 Function code
a1 = 0 Argument

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS Alpha
Input: R16 = 1 Function code

R17 = 0 Argument
Output: R0 = 1 Success

R0 = 0 Failure (not generated)
Windows NT Alpha 

Input: a0 = 0 Select counter 0
a0 = 1 Select counter 1

a1 = 1 Enable selected counter

Disable performance monitoring Disable takes effect at the next IPL change

DIGITAL UNIX 
Input: a0 = 0 Function code

a1 = 0 Argument
Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS Alpha

Input: R16 = 0 Function code
R17 = 0 Argument

Output: R0 = 1 Success
R0 = 0 Failure (not generated)
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Windows NT Alpha

Input: a0 = 0 Select counter 0
a0 = 1 Select counter 1

a1 = 0 Disable selected counter

Select desired events (mux_ctl)

DIGITAL UNIX 
Input: a0 = 2 Function code

a1 = mux_ctl mux_ctl is the exact contents of those fields
from the ICCSR register, in write format,
described in Table E–2.

Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS Alpha

Input: R16 = 2 Function code 
R17 = mux_ctl mux_ctl is the exact contents of those fields

from the ICCSR register, in write format,
described in Table E–2.

Output: R0 = 1 Success

R0 = 0 Failure (not generated)
Windows NT Alpha

Input: a2 = PCMUX0 For ICCSR<PCMUX0> field when a0 = 0
a2 = PCMUX1 For ICCSR<PCMUX1> field when a0 = 1

a3 = PC0 For ICCSR<PC0> field when a0 = 0
a3 = PC1 For ICCSR<PC1> field when a0 = 1

Select performance monitoring options

DIGITAL UNIX 

Input: a0 = 3 Function code
a1 = opt Function argument opt  is:   

     <0> = log all processes if set   
     <1> = log only selected if set

Output: v0 = 1 Success

v0 = 0 Failure (not generated)

Table E–1:  DECchip  21064/21066/21068 Performance Monitoring   Functions 
(Continued)

Function Register Usage Comments
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OpenVMS Alpha
Input: R16 = 3 Function code

R17 = opt  Function argument opt is:   
     <0> = log all processes if set   
     <1> = log only selected if set

Output: R0 = 1 Success
R0 = 0  Failure (not generated)

Table E–2:  DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register

Bits Option Description

34:32 PCMUX1 Event selection, counter 1:

Table E–1:  DECchip  21064/21066/21068 Performance Monitoring   Functions 
(Continued)

Function Register Usage Comments

Value Description

0 Total D-cache misses
1 Total I-cache misses

2 Cycles of dual issue
3 Branch mispredicts (conditional, JSR, HW_REI)

4 FP operate instructions (not BR, LOAD, STORE)
5 Integer operates (including LDA, LDAH into R0–R30)

6 Total store instructions
7 External events supplied by pin
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11:8 PCMUX0 Event selection, counter 0:

3 PC0 Frequency setting, counter 0:

0 PC1 Frequency setting, counter 1:

Table E–2:  DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register
(Continued)

Bits Option Description

Value Description

0 Total issues divided by 2
1 Unused

2 Nothing issued, no valid I-stream data
3 Unused

4 All load instructions
5 Unused

6 Nothing issued, resource conflict
7 Unused

8 All branches (conditional, unconditional, JSR, HW_REI)
9 Unused

10 Total cycles
11 Cycles while in PALcode environment

12 Total nonissues divided by 2
13 Unused

14 External event supplied by pin. 
15 Unused

Value Description

0 2**16 (65536) events per interrupt

1 2**12 (4096) events per interrupt

Value Description

0 2**12 (4096) events per interrupt

1 2**8 (256) events per interrupt
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E.2.2 DECchip 21164/21164PC Performance Monitoring 

Unless otherwise stated, the term "21164" in this section means implementations of the 21164
at all frequencies. 

PALcode instructions control the DECchip 21164/21164PC on-chip performance counters. For
OpenVMS Alpha, the instruction is MTPR_PERFMON; for DIGITAL UNIX and Windows
NT Alpha, the instruction is wrperfmon.

The instruction arguments and results are described in the following sections. The scratch reg-
ister usage is operating system specific.

Three on-chip counters count events. Counters 0 and 1 are 16-bit counters; counter 2 is a 14-bit
counter. Each counter can be individually programmed. Counters can be read and written and
are not required to interrupt. The counters can be collectively restricted according to the pro-
cessor mode.

Processes can be selectively monitored with the PME bit.

E.2.2.1 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular operating
system.

For the OpenVMS Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then dis-
patches in the form of an exception (not in the form of an interrupt) to the operating system by
ve c to r i ng  to  t he  S C B  p er f o rm a n c e  m on i to r  e n t r y  p o in t  t h r ou gh  S C B B +6 50
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode. 

An interrupt is generated for each counter overflow. For each interrupt, the status of each
counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt
R4 = 2 if performance counter 2 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DIGITAL UNIX Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame and dispatches to the
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.
An interrupt is generated for each counter overflow. For each interrupt, registers a0..a2 are as
follows:

a0 = osfint$c_perf (4)
a1 = scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt
Waivers and Implementation-Dependent Functionality E–9
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For the Windows NT Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds a frame on the kernel stack and dispatches to the
kernel at the interrupt entry point.

E.2.2.2 Windows NT Alpha Functions and Argument

The functions for Windows NT Alpha execute on only a single (the current running) processor.
The wrperfmon instruction is called with the following input registers:

Input 
Register

Contents
 (Bits) Meaning

a0 63–0 The register in Table E–3, which contains the value to be written
to the hardware PMCTR register.

a1 0 When a1 = 0, write  a0 to the hardware PMCTR register.

When a1 = 1, read the hardware PMCTR register. The returne
PMCTR register is written to register v0.

a2 2–0 Has meaning when PCSEL1 in Table E–3 has the value 0xF. Co
tents are determined by processor type:

a3 2–0 Has meaning when PCSEL2 in Table E–3 has the value 0xF. Co
tents are determined by processor type:

Processor Contents Reference

21164 CBOX1 Table E–15
21164PC PM0_MUX Table E–17

Processor Contents Reference

21164 CBOX2 Table E–16
21164PC PM1_MUX Table E–18
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Table E–3:  Bit Summary of  PMCTR Register for Windows NT Alpha

Bits Name Meaning

63–48 CTR0 Counter 0 value

47–32 CTR1 Counter 1 value

31 PCSEL0 Counter 0 selection:

30 Must be set to one1

29–16 CTR2 Counter 2 value

15–14 CTL0 Counter 0 control:

13–12 CTL1 Counter 1 control:

11–10 CTL2 Counter 2 control:

Value Meaning

0 Cycles

1 Issues

Value Meaning

0 Counter disable, interrupt disable
1 Counter enable, interrupt disable

2 Counter enable, interrupt at count 65536
3 Counter enable, interrupt at count 256

Value Meaning

0 Counter disable, interrupt disable

1 Counter enable, interrupt disable
2 Counter enable, interrupt at count 65536

3 Counter enable, interrupt at count 256

Value Meaning

0 Counter disable, interrupt disable

1 Counter enable, interrupt disable
2 Counter enable, interrupt at count 16384

3 Counter enable, interrupt at count 256
Waivers and Implementation-Dependent Functionality E–11
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E.2.2.3 OpenVMS Alpha and DIGITAL UNIX Functions and Arguments

The functions execute only on a single (the current running) processor and are described in
Table E–4.

The OpenVMS Alpha MTPR_PERFMON instruction is called with a function code in R16,
function-specific argument in R17, and status is returned in R0.

The DIGITAL UNIX wrperfmon instruction is called with a function code in a0, a functi
specific argument in a1, and status is returned in v0. 

9–8 MODE_SELECT1 Select  modes in which to count: 

7–4 PCSEL1 Counter 1 selection. See Table E–13

3–0 PCSEL2 Counter 2 selection. See Table E–14

1 Windows NT Alpha uses  bits 30 and 9–8 differently than as documented in the 21164 Hard
ware Reference Manual; it uses the processor executive mode to run user  (nonprivilege
code. Therefore, bit 30 is always set to one and bits 9–8 are used to select the mode. 

Table E–4:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions

Function Register Usage Comments

Enable performance monitoring; do not reset counters

DIGITAL UNIX
Input: a0 = 1 Function code value

a1 = arg Argument from Table E–5
Output: v0 = 1 Success 

v0 = 0 Failure (not generated)
OpenVMS Alpha

Input: R16 = 1 Function code value
R17 = arg Argument from Table E–5

Output: R0 = 1 Success
R0 = 0 Failure (not generated)

Table E–3:  Bit Summary of  PMCTR Register for Windows NT Alpha 
(Continued)

Bits Name Meaning

Value Meaning

0 Count all modes
1 Count PALmode only

2 Count all  modes except PALmode
3 Count only user mode
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Enable performance monitoring; start the counters from zero

DIGITAL UNIX

Input: a0 = 7 Function code value 
a1 = arg Argument from Table E–5

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS Alpha
Input: R16 = 7 Function code value

R17 = arg Argument from Table E–5
Output: R0 = 1 Success 

R0 = 0 Failure (not generated)

Disable performance monitoring; do not reset counters

DIGITAL UNIX 
Input: a0 = 0 Function code value

a1 = arg Argument from Table E–6
Output: v0 = 1 Success 

v0 = 0 Failure (not generated)
OpenVMS Alpha

Input: R16 = 0 Function code value 
R17 = arg Argument from Table E–6

Output: R0 = 1 Success 
R0 = 0 Failure (not generated)

Select desired events (MUX_SELECT)

DIGITAL UNIX 
Input: a0 = 2 Function code value

a1 = arg Argument from Table E–7 or E–8
Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS Alpha

Input: R16 = 2 Function code value 
R17 = arg Argument from Table E–7 or E–8

Output: R0 = 1 Success 
R0 = 0 Failure (not generated)

Table E–4:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions (Continued)

Function Register Usage Comments
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Select Processor Mode options

DIGITAL UNIX 

Input: a0 = 3 Function code value 
a1 = arg Argument from Table E–9

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS Alpha
Input: R16 = 3 Function code value 

R17 = arg Argument from Table E–9
Output: R0 = 1 Success 

R0 = 0 Failure (not generated)

Select interrupt frequencies

DIGITAL UNIX 

Input: a0 = 4 Function code value 
a1 = arg Argument from Table E–10

Output: v0 = 1 Success 
v0 = 0 Failure (not generated)

OpenVMS Alpha
Input: R16 = 4 Function code value 

R17 = arg Argument from Table E–10
Output: R0 = 1 Success 

R0 = 0 Failure (not generated)

Read the counters

DIGITAL UNIX 
Input: a0 = 5 Function code value 

a1 = arg Argument from Table E–11
Output: v0 = val Return value from Table E–11

OpenVMS Alpha
Input: R16 = 5 Function code value 

R17 = arg Argument from Table E–11
Output: R0 = val Return value from Table E–11

Table E–4:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions (Continued)

Function Register Usage Comments
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Write the counters

DIGITAL UNIX 

Input: a0 = 6 Function code value 
a1 = arg Argument from Table E–12

Output: v0 = 1 Success 
v0 = 0 Failure (not generated)

OpenVMS Alpha
Input: R16 = 6 Function code value 

R17 = arg Argument from Table E–12
Output: R0 = 1 Success 

R0 = 0 Failure (not generated)

Table E–5:  21164/21164PC Enable Counters for OpenVMS Alpha and DIGITAL 
UNIX

Bits Meaning When Set

2 Operate on counter 2

1 Operate on counter 1

0 Operate on counter 0

Table E–6:  21164/21164PC Disable Counters for OpenVMS Alpha and DIGITAL 
UNIX

Bits Meaning When Set

2 Operate on counter 2

1 Operate on counter 1

0 Operate on counter 0

Table E–4:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions (Continued)

Function Register Usage Comments
Waivers and Implementation-Dependent Functionality E–15
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Table E–7:  21164 Select Desired Events  for OpenVMS Alpha and DIGITAL 
UNIX

Bits Name Meaning

63:32 MBZ

31 PCSEL0 Counter 0 selection:

30:25 MBZ

24:22 CBOX2 CBOX2 event selection (only has meaning when event selection field
PCSEL2 is value <15>; otherwise MBZ). CBOX2 described in Table E
16.

21:19 CBOX1 CBOX1 event selection (only has meaning when event selection f
PCSEL1 is value <15>; otherwise MBZ). CBOX1 described in Table E
15.

18:8 MBZ

7:4 PCSEL1 Counter 1 event selection. PCSEL1 described in Table E–13.

3:0 PCSEL2 Counter 2 event selection. PCSEL2 described in Table E–14.

Table E–8:  21164PC   Select  Desired  Events for OpenVMS Alpha and DIGITAL 
UNIX

Bits Name Meaning

63:32 MBZ

31 PCSEL0 Counter 0 selection:

30:14 MBZ

13:11 PM1_MUX PM1_MUX event selection (only has meaning when event selec-
tion field PCSEL2  is value <15>; otherwise MBZ). PM1_MUX is
described in Table E–18.

10:8 PM0_MUX PM0_MUX event selection (only has meaning when event selec-
tion field PCSEL1 is value <15>; otherwise MBZ). PM0_MUX is
described in Table E–17.

Value Meaning

0 Cycles

1 Issues

Value Meaning

0 Cycles

1 Issues
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Setting any of the "NOT" bits causes the counters to not count when the processor is running in
the specified mode. Under OpenVMS Alpha, "NOT_KERNEL" also stops the count in execu-
tive and supervisor mode, except as noted below:

Note:
DIGITAL UNIX counts user mode by using the executive counter; that is, the count for
executive mode is returned as the user mode count. 

7:4 PCSEL1 Counter 1 event selection. PCSEL1 described in Table E–13.

3:0 PCSEL2 Counter 2 event selection. PCSEL2 described in Table E–14.

Table E–9:  21164/21164PC Select Special Options for OpenVMS Alpha and 
DIGITAL UNIX

Bits Meaning

63:31 MBZ

30 Stop count in user mode

29:10 MBZ

9 Stop count in PALmode

8 Stop count in kernel mode

7:1 MBZ

0 Monitor selected processes (when clear monitor all processes)

NOT_BITS Counters Operate Under These Modes When Bits Set:

K U  P

0  0  0 K E S U P

0  0  1 K E S U

0  1  0 K E S P

0  1  1 K E S

1  0  0 U P

1  0  1 U

1  1  0 P

1  1  1 E S  (here "NOT_KERNEL" stops kernel counter only)

Table E–8:  21164PC   Select  Desired  Events for OpenVMS Alpha and DIGITAL 
UNIX (Continued)

Bits Name Meaning
Waivers and Implementation-Dependent Functionality E–17
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Table E–10:  21164/21164PC Select Desired Frequencies for OpenVMS Alpha an
DIGITAL UNIX

Table E–10 contains the selection definitions for each of the three counters. All frequ
fields are two-bit fields with the following values defined: 

Bits Meaning When Set

63:10 MBZ

9:8 Counter 0 frequency:

7:6 Counter 1 frequency:

5:4 Counter 2 frequency:

3:0 MBZ

Value Meaning

0 Do not interrupt

1 Unused
2 Low frequency (2**16 (65536) events per interrupt)

3  High frequency (2**8 (256) events per interrupt)

Value Meaning

0 Do not interrupt
1 Unused

2 Low frequency (2**16 (65536) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

Value Meaning

0 Do not interrupt
1 Unused

2 Low frequency (2**14 (16384) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)
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Table E–11:  21164/21164PC Read Counters for OpenVMS Alpha and DIGITAL 
UNIX

Bits Meaning When Returned

63:48 Counter 0 returned value

47:32 Counter 1 returned value

31:30 MBZ

29:16 Counter 2 returned value

15:1 MBZ

0 Set means success; clear means failure

Table E–12:  21164/21164PC Write Counters for OpenVMS Alpha and DIGITAL 
UNIX

Bits Meaning

63:48 Counter 0 written value

47:32 Counter 1 written value

31:30 MBZ

29:16 Counter 2 written value

15:0 MBZ

Table E–13:  21164/21164PC Counter 1 (PCSEL1) Event Selection

The following values choose the counter 1 (PCSEL1) event selection:

Value Meaning

0 Nothing issued, pipeline frozen

1 Some but not all issuable instructions issued

2 Nothing issued, pipeline dry

3 Replay traps (ldu, wb/maf, litmus test)

4 Single issue cycles

5 Dual issue cycles

6 Triple issue cycles

7 Quad issue cycles

8 Flow change (all branches, jsr-ret, hw_rei), where:
  If PCSEL2 has value 3, flow change is a conditional branch
  If PCSEL2 has value 2, flow change is a JSR-RET
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9 Integer operate instructions

10 Floating point operate instructions

11 Load instructions

12 Store instructions

13 Instruction cache access

14 Data cache access

15 For the 21164, use CBOX1 event  selection in Table E–15.
For the 21164PC, use PM0_MUX event selection in Table E–17.

Table E–14:  21164/21164PC Counter 2 (PCSEL2) Event Selection

The following values choose the counter 2 (PCSEL2) event selection:

Value Meaning

0 Long stalls (> 15 cycles)

1 Unused value

2 PC mispredicts

3 Branch mispredicts

4 I-cache misses

5 ITB misses

6 D-cache misses

7 DTB misses

8 Loads merged in MAF

9 LDU replays

10 WB/MAF full replays

11 Event from external pin

12 Cycles

13 Memory barrier instructions

14 LDx/L instructions

15 For the 21164, use CBOX2  event selection  in Table E–16.
For the 21164PC, use PM1_MUX event selection in Table E–18.

Table E–13:  21164/21164PC Counter 1 (PCSEL1) Event Selection (Continued)

The following values choose the counter 1 (PCSEL1) event selection:

Value Meaning
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Table E–15:  21164 CBOX1 Event Selection

The following values choose the CBOX1 event selection.

Value Meaning

0 S-cache access

1 S-cache read

2 S-cache write

3 S-cache victim

4 Unused value

5 B-cache hit

6 B-cache victim

7 System  request

Table E–16:  21164 CBOX2 Event Selection

The following values choose the CBOX2 event selection.

Value Meaning

0 S-cache misses

1 S-cache read misses

2 S-cache write misses

3 S-cache shared writes

4 S-cache writes

5 B-cache misses

6 System invalidates

7 System read requests
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Table E–17:  21164PC PM0_MUX Event Selection

The following values choose the PM0_MUX event selection and perform the chosen operation
in Counter 0.

Value Meaning

0 B-cache read operations

1 B-cache D read hits

2 B-cache D read fills

3 B-cache write operations

4 Undefined

5 B-cache clean write hits

6 B-cache victims

7 Read miss 2 launched

Table E–18:  21164PC PM1_MUX Event Selection

The following values choose the PM1_MUX event selection and perform the chosen operation
in Counter 1.

Value Meaning

0 B-cache D read operations

1 B-cache read hits

2 B-cache read fills

3 B-cache write hits

4 B-cache write fills

5 System read/flush B-cache hits

6 System read/flush B-cache misses

7 Read miss 3 launched
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E.2.3 21264 Performance Monitoring 

PALcode instructions control the 21264 on-chip performance counters. For OpenVMS Alpha,
the instruction is MTPR_PERFMON; for DIGITAL UNIX and Windows NT Alpha, the
instruction is wrperfmon.

The instruction arguments and results are described in the following sections. The scratch reg-
ister usage is operating system specific.

Two 20-bit on chip counters count events. Counters can be individually programmed, read, and
written. 

Processes can be selectively monitored with the PME bit.

Profile monitoring for the 21264 is called aggregate mode profile monitoring because it pro-
vides an aggregate count.

E.2.3.1 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular operating
system.

For the OpenVMS Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then dis-
patches in the form of an exception (not in the form of an interrupt) to the operating system by
ve c to r i ng  to  t he  S C B  p er f o rm a n c e  m on i to r  e n t r y  p o in t  t h r ou gh  S C B B +6 50
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode. 

An interrupt is generated for each counter overflow. For each interrupt, the status of each
counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DIGITAL UNIX Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame and dispatches to the
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.
An interrupt is generated for each counter overflow. For each interrupt, registers a0..a2 are as
follows:

a0 = osfint$c_perf (4)
a1 = scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt
Waivers and Implementation-Dependent Functionality E–23
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For the Windows NT Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds a frame on the kernel stack and dispatches to the
kernel at the interrupt entry point.

E.2.3.2 Windows NT Alpha Functions and Argument

The functions for Windows NT Alpha execute on only a single (the current running) processor.
The wrperfmon instruction is called with the following input registers:

Input 
Register

Contents
 (Bits) Meaning

a0 63–0 The register in Table E–19, which contains the value to be writte
to the hardware PCTR_CTL  register.

a1 0 When a1 = 0, write  a0 to the hardware PCTR_CTL  register.

When a1 = 1, read the hardware PCTR_CTL register. The
returned PCTR_CTL register is written to register v0.

Table E–19:  Bit Summary of  PCTR_CTL  Register for Windows NT Alpha

Bits Name Meaning

63–48 SEXT[PCTR0_CTL[47]

47–28 PCTR0 Counter 0 value. 
Enabled by setting I_CTL[PCT0_EN] and either
I_CTL[SPCE] or PCTX[PPCE]. On overflow, an
interrupt is triggered at ISUM[PC0], if enabled by
IER_CM[PCEN0].
Mode is determined by SL0 and operation is
described in SL1.

27–26 Reserved

25–6 PCTR1 Counter 1 value.
Enabled by setting I_CTL[PCT1_EN] and either
I_CTL[SPCE] or PCTX[PPCE]. On overflow, an
interrupt is triggered at ISUM[PC1], if enabled by
IER_CM[PCEN1].
Operation is described in SL1.

5 Reserved

4 SL0 PCTR0 input selecter:

Value Meaning

0 Aggregate counting mode
1 Reserved
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E.2.3.3 OpenVMS Alpha and DIGITAL UNIX Functions and Arguments

The functions execute only on a single (the current running) processor and are described in
Table E–20.

The OpenVMS Alpha MTPR_PERFMON instruction is called with a function code in R16,
function-specific argument in R17, and any output is returned in R0.

The DIGITAL UNIX wrperfmon instruction is called with a function code in a0, a functio
specific argument in a1, and any output is returned in v0.
 

3–2 SL1 PCTR1 input selector. If SL0 value is 0:

1–0 Reserved

Table E–20:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions

Function Register Usage Comments

Enable performance monitoring

DIGITAL UNIX
Input: a0 = 1 Function code value

a1 = arg Argument from Table E–21

OpenVMS Alpha 

Input: R16 = 1 Function code value

R17 = arg Argument from Table E–21

Table E–19:  Bit Summary of  PCTR_CTL  Register for Windows NT Alpha

Bits Name Meaning

Bit value Meaning

0000 Counter 1 counts cycles.

0001 Counter 1 counts retired conditional
branches.

0010 Counter 1 counts retired branch mispre-
dicts.

0011 Counter 1 counts retired DTB single
misses * 2.

0100 Counter 1 counts retired DTB double
double misses.

0101 Counter 1 counts retired ITB misses.
0110 Counter 1 counts retired unaligned traps.

0111 Counter 1 counts replay traps.
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Disable performance monitoring

DIGITAL UNIX 

Input: a0 = 0 Function code value
a1 = arg Argument from Table E–22

OpenVMS Alpha
Input: R16 = 0 Function code value 

R17 = arg Argument from Table E–22

Select desired events (MUX_SELECT)

DIGITAL UNIX 
Input: a0 = 2 Function code value

a1 = arg Argument from Table E–23

OpenVMS Alpha 

Input: R16 = 2 Function code value 
R17 = arg Argument from Table E–23

Select logging options

DIGITAL UNIX 
Input: a0 = 3 Function code value 

a1[0] = 1 
a1[0] = 0 

Log all processes
Log only selected processes

OpenVMS Alpha

Input: R16 = 3 Function code value 

R17[0] = 1
R17[0] = 0 

Log all processes
Log only selected processes

Read the counters

DIGITAL UNIX 
Input: a0 = 5 Function code value 

Output: v0 = contents of the counters; see Table E–24

OpenVMS Alpha

Input: R16 = 5 Function code value 
Output: R0 = contents of the counters; see Table E–24

Table E–20:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions

Function Register Usage Comments
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Write the counters

DIGITAL UNIX 

Input: a0 = 6 Function code value 
a1 = arg Argument from Table E–25

OpenVMS Alpha

Input: R16 = 6 Function code value 

R17 = arg Argument from Table E–25

Enable and write selected counters
DIGITAL UNIX

Input: a0 = 7 Function code value
a1 = arg Argument from Table E–26

OpenVMS Alpha
Input: R16 = 7 Function code value

R17 = arg Argument from Table E–26

Table E–21:  21264 Enable Counters for OpenVMS Alpha and DIGITAL UNIX

R17/a1 Bits Meaning When Set

1 Set I_CTL[PCT1_EN], which enables counter 1

0 Set I_CTL[PCT0_EN], which enables counter 0

Table E–22:  21264 Disable Counters for OpenVMS Alpha and DIGITAL UNIX

R17/a1 Bits Meaning When Set

1 Clear I_CTL[PCT1_EN], which disables counter 1

0 Clear I_CTL[PCT0_EN], which disables counter 0

Table E–20:  OpenVMS Alpha and DIGITAL UNIX Performance Monitoring 
Functions

Function Register Usage Comments
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Table E–23:  21264 Select Desired Events  for OpenVMS Alpha and DIGITAL 
UNIX

R17/a1 Bits Meaning

4

3–2

Table E–24:  21264 Read Counters for OpenVMS Alpha and DIGITAL UNIX

R0/v0 Bits Meaning When Returned

63–48 Reserved

47–28 Counter 0 returned value

27–26 Reserved

25–6 Counter 1 returned value

5–0 Reserved

Table E–25:  21264 Write Counters for OpenVMS Alpha and DIGITAL UNIX

R17/a1 Bits Meaning

63–48 Reserved

47–28 Counter 0 value to write

27–26 Reserved

25–6 Counter 1 value to write

Bit value Meaning

1 Counter 0 counts retired instructions.

0 Counter 0 counts cycles.

Bit value Meaning

0000 Counter 1 counts cycles.
0001 Counter 1 counts retired conditional branches.

0010 Counter 1 counts retired branch mispredicts.
0011 Counter 1 counts retired DTB single misses * 2.

0100 Counter 1 counts retired DTB double double misses.
0101 Counter 1 counts retired ITB misses.

0110 Counter 1 counts retired unaligned traps.
0111 Counter 1 counts replay traps.
  E–28  Alpha Architecture Handbook



Table E–26:  21264 Enable and Write Counters for OpenVMS Alpha and 
DIGITAL UNIX

5–2 Reserved

1 When set, write to Counter 1

0 When set, write to Counter 0

R17/a1 Bits Meaning

63–48 Reserved

47–28 Counter 0 value to write; writing zeroes clears the counter

27–26 Reserved

25–6 Counter 1 value to write; writing zeroes clears the counter

5–2 Reserved

1 When set,  enable and write to Counter 1

0 When set,  enable and write to Counter 0

Table E–25:  21264 Write Counters for OpenVMS Alpha and DIGITAL UNIX 

R17/a1 Bits Meaning
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A
Aborts, forcing, 6–6

ACCESS(x,y) operator, 3–7

Add instructions
add longword, 4–25
add quadword, 4–27
add scaled longword, 4–26
add scaled quadword, 4–28
See also Floating-point operate

ADDF instruction, 4–110

ADDG instruction, 4–110

ADDL instruction, 4–25

ADDQ instruction, 4–27

Address space match (ASM)
virtual cache coherency, 5–4

Address space number (ASN) register
virtual cache coherency, 5–4

ADDS instruction, 4–111

ADDT instruction, 4–111

AFTER, defined for memory access, 5–12

Aligned byte/word memory accesses, A–9

ALIGNED data objects, 1–8

Alignment
atomic byte, 5–3
atomic longword, 5–2
atomic quadword, 5–2
D_floating, 2–6
data considerations, A–4
double-width data paths, A–1
F_floating, 2–4
G_floating, 2–5
instruction, A–2
longword, 2–2
longword integer, 2–12
memory accesses, A–9
quadword, 2–3
quadword integer, 2–12
S_floating, 2–8
T_floating, 2–9
X_floating, 2–10

Alpha architecture
addressing, 2–1
overview, 1–1
porting operating systems to, 1–1
programming implications, 5–1
registers, 3–1
security, 1–7
See also Conventions

Alpha privileged architecture library. See PALcode

AMASK (Architecture mask) instruction, 4–133

AMASK bit assignments, D–3

AND instruction, 4–42

AND operator, 3–7

Architecture extensions,AMASK with, 4–133

ARITH_RIGHT_SHIFT(x,y) operator, 3–7

Arithmetic instructions, 4–24
See also specific arithmetic instructions

Arithmetic left shift instruction, 4–41

Arithmetic traps
denormal operand exception disabling, 4–81
denormal operand exception enabled for, B–5
denormal operand status of, B–5
disabling, 4–78
division by zero, 4–77, 4–81
division by zero, disabling, 4–81
division by zero, enabling, B–6
division by zero, status of, B–5
dynamic rounding mode, 4–80
enabling, B–5
inexact result, 4–78, 4–81
inexact result, disabling, 4–80
inexact result, enabling, B–6
inexact result, status of, B–5
integer overflow, 4–78, 4–81
integer overflow, disabling, B–5
integer overflow, enabling, B–5
invalid operation, 4–76, 4–81
invalid operation, disabling, 4–81
invalid operation, enabling, B–6
invalid operation, status of, B–5
overflow, 4–77, 4–81
overflow, disabling, 4–81
overflow, enabling, B–6
overflow, status of, B–5
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programming implications for, 5–30
TRAPB instruction with, 4–144
underflow, 4–78, 4–81
underflow to zero, disabling, 4–80
underflow, disabling, 4–80
underflow, enabling, B–6
underflow, status of, B–5

ASCII character set, C–22

Atomic access, 5–3

Atomic operations
accessing longword datum, 5–2
accessing quadword datum, 5–2
updating shared data structures, 5–7
using load locked and store conditional, 5–7

Atomic sequences, A–16

B
BEFORE, defined for memory access, 5–12

BEQ instruction, 4–20

BGE instruction, 4–20

BGT instruction, 4–20

BIC instruction, 4–42

Big-endian addressing, 2–13
byte operation examples, 4–54
byte swapping for, A–11
extract byte with, 4–51
insert byte with, 4–55
load F_floating with, 4–91
load long/quad locked with, 4–9
load S_floating with, 4–93
mask byte with, 4–57
store byte/word with, 4–15
store F_floating with, 4–95
store long/quad conditional with, 4–12
store long/quad with, 4–15
store S_floating with, 4–97

Big-endian data types, X_floating, 2–10

BIS instruction, 4–42

BLBC instruction, 4–20

BLBS instruction, 4–20

BLE instruction, 4–20

BLT instruction, 4–20

BNE instruction, 4–20

Boolean instructions, 4–41
logical functions, 4–42

Boolean stylized code forms, A–13

BPT (PALcode) instruction
required recognition of, 6–4

bpt (PALcode) instruction
required recognition of, 6–4

BR instruction, 4–21

Branch instructions, 4–18
backward conditional, 4–20
conditional branch, 4–20
floating-point, summarized, 4–99
format of, 3–12
forward conditional, 4–20
opcodes and format summarized, C–1
unconditional branch, 4–21
See also Control instructions

Branch prediction model, 4–18

Branch prediction stack,with BSR instruction, 4–21

BSR instruction, 4–21

BUGCHK (PALcode) instruction
required recognition of, 6–4

bugchk (PALcode) instruction
required recognition of, 6–4

Byte data type, 2–1
atomic access of, 5–3

Byte manipulation, 1–2

Byte manipulation instructions, 4–47

Byte swapping, A–11

BYTE_ZAP(x,y) operator, 3–7

C
/C opcode qualifier

IEEE floating-point, 4–67
VAX floating-point, 4–67

C opcode qualifier, 4–67

Cache coherency
barrier instructions for, 5–25
defined, 5–2
in multiprocessor environment, 5–6

Caches
design considerations, A–1
I-stream considerations, A–4
MB and IMB instructions with, 5–25
requirements for, 5–5
translation buffer conflicts, A–6
with powerfail/recovery, 5–5

CALL_PAL (call privileged architecture library) 
instruction, 4–135

CASE operator, 3–8

Causal loops, 5–15

CFLUSH (PALcode) instruction
ECB compared with, 4–138
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Changed datum, 5–6

Clear a register, A–12

CMOVEQ instruction, 4–43

CMOVGE instruction, 4–43

CMOVGT instruction, 4–43

CMOVLBC instruction, 4–43

CMOVLE instruction, 4–43

CMOVLT instruction, 4–43

CMOVNE instruction, 4–43

CMPBGE instruction, 4–49

CMPEQ instruction, 4–29

CMPGLE instruction, 4–112

CMPGLT instruction, 4–112

CMPLE instruction, 4–29

CMPLT instruction, 4–29

CMPTEQ instruction, 4–113

CMPTLE instruction, 4–113

CMPTLT instruction, 4–113

CMPTUN instruction, 4–113

CMPULE instruction, 4–30

CMPULT instruction, 4–30

Code forms, stylized, A–11
Boolean, A–13
load literal, A–12
negate, A–13
NOP, A–11
NOT, A–13
register, clear, A–12
register-to-register move, A–13

Code scheduling
IMPLVER instruction with, 4–141

Code sequences, A–9

CODEC, 4–151

Coherency
cache, 5–2
memory, 5–1

Compare instructions
compare integer signed, 4–29
compare integer unsigned, 4–30
See also Floating-point operate

Conditional move instructions, 4–43
See also Floating-point operate

Console overview, 7–1

Control instructions, 4–18

Conventions
code examples, 1–9
extents, 1–8
figures, 1–9
instruction format, 3–10

notation, 3–10
numbering, 1–7
ranges, 1–8

Count instructions
Count leading zero, 4–31
Count population, 4–32
Count trailing zero, 4–33

CPYS instruction, 4–105

CPYSE instruction, 4–105

CPYSN instruction, 4–105

CSERVE (PALcode) instruction
required recognition of, 6–4

cserve (PALcode) instruction
required recognition of, 6–4

CTLZ instruction, 4–31

CTPOP instruction, 4–32

CTTZ instruction, 4–33

CVTDG instruction, 4–116

CVTGD instruction, 4–116

CVTGF instruction, 4–116

CVTGQ instruction, 4–114

CVTLQ instruction, 4–106

CVTQF instruction, 4–115

CVTQG instruction, 4–115

CVTQL instruction, 4–106
FP_C quadword with, B–5

CVTQS instruction, 4–118

CVTQT instruction, 4–118

CVTST instruction, 4–120

CVTTQ instruction, 4–117
FP_C quadword with, B–5

CVTTS instruction, 4–119

D
/D opcode qualifier

FPCR (floating-point control register), 4–79
IEEE floating-point, 4–67

D_floating data type, 2–5
alignment of, 2–6
mapping, 2–6
restricted, 2–6

Data alignment, A–4

Data caches
ECB instruction with, 4–136
WH64 instruction with, 4–145

Data format, overview, 1–3

Data sharing (multiprocessor), A–5
synchonization requirement, 5–6
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Data stream considerations, A–4

Data structures, shared, 5–6

Data types
byte, 2–1
IEEE floating-point, 2–6
longword, 2–2
longword integer, 2–11
quadword, 2–2
quadword integer, 2–12
unsupported in hardware, 2–12
VAX floating-point, 2–3
word, 2–1

Denormal, 4–64

Denormal operand exception disable, 4–81

Denormal operand exception enable (DNOE)
FP_C quadword bit, B–5

Denormal operand status (DNOS)
FP_C quadword bit, B–5

Denormal operands to zero, 4–81

Depends order (DP), 5–15

DIGITAL UNIX PALcode, instruction summary,
C–16

Dirty zero, 4–64

DIV operator, 3–8

DIVF instruction, 4–121

DIVG instruction, 4–121

Division
integer, A–10
performance impact of, A–10

Division by zero enable (DZEE)
FP_C quadword bit, B–6

Division by zero status (DZES)
FP_C quadword bit, B–5

DIVS instruction, 4–122

DIVT instruction, 4–122

DNOD bit. See Denormal operand exception disable

DNZ. See Denormal operands to zero

DP. See Depends order

DRAINA (PALcode) instruction
required, 6–5

draina (PALcode) instruction
required, 6–5

DYN bit. See Arithmetic traps, dynamic rounding 
mode

DZE bit
See also Arithmetic traps, division by zero

DZED bit. See Trap disable bits, division by zero

E
ECB (Evict data cache block) instruction, 4–136

CFLUSH (PALcode) instruction with, 4–138
EQV instruction, 4–42

EXCB (exception barrier) instruction, 4–138
with FPCR, 4–84

Exception handlers, B–3
TRAPB instruction with, 4–144

Exceptions
F31 with, 3–2
R31 with, 3–1

EXTBL instruction, 4–51

EXTLH instruction, 4–51

EXTLL instruction, 4–51

EXTQH instruction, 4–51

EXTQL instruction, 4–51

Extract byte instructions, 4–51

EXTWH instruction, 4–51

EXTWL instruction, 4–51

F
F_floating data type, 2–3

alignment of, 2–4
compared to IEEE S_floating, 2–8
MAX/MIN , 4–65

FBEQ instruction, 4–100

FBGE instruction, 4–100

FBGT instruction, 4–100

FBLE instruction, 4–100

FBLT instruction, 4–100

FBNE instruction, 4–100

FCMOVEQ instruction, 4–107

FCMOVGE instruction, 4–107

FCMOVGT instruction, 4–107

FCMOVLE instruction, 4–107

FCMOVLT instruction, 4–107

FCMOVNE instruction, 4–107

FETCH (prefetch data) instruction, 4–139

FETCH_M (prefetch data, modify intent) instruction,
4–139

Finite number, Alpha, contrasted with VAX, 4–63

Floating-point branch instructions, 4–99

Floating-point control register (FPCR)
accessing, 4–82
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at processor initialization, 4–83
bit descriptions, 4–80
instructions to read/write, 4–109
operate instructions that use, 4–102
saving and restoring, 4–83
trap disable bits in, 4–78

Floating-point convert instructions, 3–14
Fa field requirements, 3–14

Floating-point division, performance impact of,
A–10

Floating-point format, number representation 
(encodings), 4–65

Floating-point instructions
branch, 4–99
faults, 4–62
function field format, 4–84
introduced, 4–62
memory format, 4–90
opcodes and format summarized, C–1
operate, 4–102
rounding modes, 4–66
terminology, 4–63
trapping modes, 4–69
traps, 4–62

Floating-point load instructions, 4–90
load F_floating, 4–91
load G_floating, 4–92
load S_floating, 4–93
load T_floating, 4–94
with non-finite values, 4–90

Floating-point operate instructions, 4–102
add (IEEE), 4–111
add (VAX), 4–110
compare (IEEE), 4–113
compare (VAX), 4–112
conditional move, 4–107
convert IEEE floating to integer, 4–117
convert integer to IEEE floating, 4–118
convert integer to integer, 4–106
convert integer to VAX floating, 4–115
convert S_floating to T_floating, 4–119
convert T_floating to S_floating, 4–120
convert VAX floating to integer, 4–114
convert VAX floating to VAX floating, 4–116
copy sign, 4–105
divide (IEEE), 4–122
divide (VAX), 4–121
format of, 3–13
from integer moves, 4–124
move from/to FPCR, 4–109
multiply (IEEE), 4–127
multiply (VAX) , 4–126
subtract (IEEE), 4–131
subtract (VAX), 4–130
to integer moves, 4–123
unused function codes with, 3–14

Floating-point registers, 3–2

Floating-point single-precision operations, 4–62

Floating-point store instructions, 4–90
store F_floating, 4–95
store G_floating, 4–96
store S_floating, 4–97
store T_floating, 4–98
with non-finite values, 4–90

Floating-point support
floating-point control (FP_C) quadword, B–4
IEEE, 2–6
IEEE standard 754-1985, 4–88
instruction overview, 4–62
longword integer, 2–11
operate instructions, 4–102
optional, 4–2
quadword integer, 2–12
rounding modes, 4–66
single-precision operations, 4–62
trap modes, 4–69
VAX , 2–3

Floating-point to integer move, 4–123

Floating-point to integer move instructions, 3–14

Floating-point trapping modes, 4–69
See also Arithmetic traps

FNOP code form, A–11

FP_C quadword, B–4

FPCR. See Floating-point control register

FTOIS instruction, 4–123

FTOIT instruction, 4–123

Function codes
IEEE floating-point, C–6
in numerical order, C–10
independent floating-point, C–8
VAX floating-point, C–7
See also Opcodes

G
G_floating data type, 2–4

alignment of, 2–5
mapping, 2–5
MAX/MIN , 4–65

GENTRAP (PALcode) instruction
required recognition of, 6–4

gentrap (PALcode) instruction
required recognition of, 6–4

H
HALT (PALcode) instruction

required, 6–7
halt (PALcode) instruction

required, 6–7
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I
I/O devices, DMA

MB and WMB with, 5–22
reliably communicating with processor, 5–27
shared memory locations with, 5–11

I/O interface overview, 8–1

IEEE floating-point
exception handlers, B–3
floating-point control (FP_C) quadword, B–4
format, 2–6
FPCR (floating-point control register), 4–79
function field format, 4–85
hardware support, B–2
NaN, 2–6
options, B–1
S_floating, 2–7
standard charts, B–12
standard, mapping to, B–6
T_floating, 2–8
trap handling, B–6
X_floating, 2–9
See also Floating-point instructions

IEEE floating-point control word, B–4

IEEE floating-point instructions
add instructions, 4–111
compare instructions, 4–113
convert from integer instructions, 4–118
convert S_floating to T_floating, 4–119
convert T_floating to S_floating, 4–120
convert to integer instructions, 4–117
divide instructions, 4–122
from integer moves, 4–124
function codes for, C–6
multiply instructions, 4–127
operate instructions, 4–102
square root instructions, 4–129
subtract instructions, 4–131
to register moves, 4–123

IEEE standard, 4–88
conformance to, B–1
mapping to, B–6

IGN (ignore), 1–9

IMB (PALcode) instruction, 5–23
required, 6–8
virtual I-cache coherency, 5–5

imb (PALcode) instruction
required, 6–8

IMP (implementation dependent), 1–9

IMPLVER (Implementation version) instruction,
4–141

IMPLVER value assignments, D–3

Independent floating-point function codes, C–8

INE bit
See also Arithmetic traps, inexact result

INED bit. See Trap disable bits, inexact result trap

Inexact result enable (INEE)
FP_C quadword bit, B–6

Inexact result status (INES)
FP_C quadword bit, B–5

Infinity , 4–64
conversion to integer, 4–88

INSBL instruction, 4–55

Insert byte instructions, 4–55

INSLH instruction, 4–55

INSLL instruction, 4–55

INSQH instruction, 4–55

INSQL instruction, 4–55

Instruction encodings
common architecture, C–1
numerical order, C–10
opcodes and format summarized, C–1

Instruction fetches (memory), 5–11

Instruction formats
branch, 3–12
conventions, 3–10
floating-point convert, 3–14
floating-point operate, 3–13
floating-point to integer move, 3–14
memory, 3–11
memory jump, 3–12
operand values, 3–10
operators, 3–6
overview, 1–4
PALcode, 3–14
registers, 3–1

Instruction set
access type field, 3–5
Boolean, 4–41
branch, 4–18
byte manipulate, 4–47
conditional move (integer), 4–43
data type field, 3–6
floating-point subsetting, 4–2
integer arithmetic, 4–24
introduced, 1–6
jump, 4–18
load memory integer, 4–4
miscellaneous, 4–132
multimedia, 4–151
name field, 3–5
opcode qualifiers, 4–3
operand notation, 3–5
overview, 4–1
shift, arithmetic, 4–46
software emulation rules, 4–3
store memory integer, 4–4
VAX compatibility, 4–149
See also Floating-point instructions
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Instruction stream. See I-stream

Instructions, overview, 1–4

INSWH instruction, 4–55

INSWL instruction, 4–55

Integer division, A–10

Integer registers
defined, 3–1
R31 restrictions, 3–1

INV bit
See also Arithmetic traps, invalid operation

Invalid operation enable (INVE)
FP_C quadword bit, B–6

Invalid operation status (INVS)
FP_C quadword bit, B–5

INVD bit. See Trap disable bits, invalid operation

IOV bit
See also Arithmetic traps, integer overflow

I-stream
coherency of, 6–8
design considerations, A–2
modifying physical, 5–5
modifying virtual, 5–5
PALcode with, 6–2
with caches, 5–5

ITOFF instruction, 4–124

ITOFS instruction, 4–124

ITOFT instruction, 4–124

J
JMP instruction, 4–22

JSR instruction, 4–22

JSR_COROUTINE instruction, 4–22

Jump instructions, 4–18, 4–22
branch prediction logic, 4–22
coroutine linkage, 4–23
return from subroutine, 4–22
unconditional long jump, 4–23
See also Control instructions

L
LDA instruction, 4–5

LDAH instruction, 4–5

LDBU instruction, 4–6

LDF instruction, 4–91

LDG instruction, 4–92

LDL instruction, 4–6

LDL_L instruction, 4–9
restrictions, 4–10
with processor lock register/flag, 4–10

with STx_C instruction, 4–9
LDQ instruction, 4–6

LDQ_L instruction, 4–9
restrictions, 4–10
with processor lock register/flag, 4–10
with STx_C instruction, 4–10

LDQ_U instruction, 4–8

LDS instruction, 4–93
with FPCR, 4–84

LDT instruction, 4–94

LDWU instruction, 4–6

LEFT_SHIFT(x,y) operator, 3–8

lg operator, 3–8

Literals, operand notation, 3–5

Litmus tests, shared data veracity, 5–17

Load instructions
emulation of, 4–3
FETCH instruction, 4–139
Load address, 4–5
Load address high, 4–5
load byte, 4–6
load longword, 4–6
load quadword, 4–6
load quadword locked, 4–10
load sign-extended longword locked, 4–9
load unaligned quadword, 4–8
load word, 4–6
multiprocessor environment, 5–6
serialization, 4–142
See also Floating-point load instructions

Load literal, A–12

Load memory integer instructions, 4–4

LOAD_LOCKED operator, 3–8

Load-locked, defined, 5–16

Location, 5–11

Location access constraints, 5–14

Lock flag, per-processor
defined, 3–2
when cleared, 4–10
with load locked instructions, 4–10

Lock registers, per-processor
defined, 3–2
with load locked instructions, 4–10

Lock variables, with WMB instruction, 4–148

Logical instructions. See Boolean instructions

Longword data type, 2–2
alignment of, 2–12
atomic access of, 5–2

LSB (least significant bit), defined for floating-point,
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4–64

M
/M opcode qualifier, IEEE floating-point, 4–67

MAP_F function, 2–4

MAP_S function, 2–7

MAP_x operator, 3–8

Mask byte instructions, 4–57

MAX, defined for floating-point, 4–65

MAXS(x,y) operator, 3–8

MAXSB8 instruction, 4–152

MAXSW4 instruction, 4–152

MAXU(x,y) operator, 3–8

MAXUB8 instruction, 4–152

MAXUW4 instruction, 4–152

MB (Memory barrier) instruction, 4–142
compared with WMB, 4–148
multiprocessors only, 4–142
with DMA I/O, 5–22
with LDx_L/STx_C, 4–14
with multiprocessor D-stream, 5–22
with shared data structures, 5–9
See also IMB, WMB

MBZ (must be zero), 1–9

Memory access
aligned byte/word, A–9
coherency of, 5–1
granularity of, 5–2
width of, 5–3
with WMB instruction, 4–147

Memory alignment, requirement for, 5–2

Memory barrier instructions. See MB, IMB 
(PALcode), and WMB instructions

Memory barriers, 5–22

Memory format instructions
opcodes and format summarized, C–1

Memory instruction format, 3–11

Memory jump instruction format, 3–12

Memory management
support in PALcode, 6–2

Memory prefetch registers
defined, 3–3

Memory-like behavior, 5–3

MF_FPCR instruction, 4–109

MIN, defined for floating-point, 4–65

MINS(x,y) operator, 3–8

MINSB8 instruction, 4–152

MINSW4 instruction, 4–152

MINU(x,y) operator, 3–8

MINUB8 instruction, 4–152

MINUW4 instruction, 4–152

Miscellaneous instructions, 4–132

Move instructions (conditional). See Conditional 
move instructions

Move, register-to-register, A–13

MSKBL instruction, 4–57

MSKLH instruction, 4–57

MSKLL instruction, 4–57

MSKQL instruction, 4–57

MSKWH instruction, 4–57

MSKWL instruction, 4–57

MT_FPCR instruction, 4–109
synchronization requirement, 4–82

MULF instruction, 4–126

MULG instruction, 4–126

MULL instruction, 4–34
with MULQ, 4–34

MULQ instruction, 4–35
with MULL , 4–34
with UMULH , 4–35

MULS instruction, 4–127

MULT instruction, 4–127

Multimedia instructions, 4–151

Multiply instructions
multiply longword, 4–34
multiply quadword, 4–35
multiply unsigned quadward high, 4–36
See also Floating-point operate

Multiprocessor environment
cache coherency in, 5–6
context switching, 5–24
I-stream reliability, 5–23
MB and WMB with, 5–22
no implied barriers, 5–22
read/write ordering, 5–10
serialization requirements in, 4–142
shared data, 5–6, A–5
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N
NaN (Not-a-Number)

conversion to integer, 4–88
copying, generating, propograting, 4–89
defined, 2–6
quiet, 4–64
signaling, 4–64

NATURALLY ALIGNED data objects, 1–8

Negate stylized code form, A–13

Non-finite number, 4–64

Nonmemory-like behavior, 5–3

NOP, universal (UNOP), A–11

NOT instruction, ORNOT with zero, 4–42

NOT operator, 3–9

NOT stylized code form, A–13

O
Opcode qualifiers

default values, 4–3
notation, 4–3
See also specific qualifiers

Opcodes
common architecture, C–1
DIGITAL UNIX PALcode, C–16
in numerical order, C–10
OpenVMS Alpha PALcode, C–14
PALcode in numerical order, C–18
reserved, C–21
summary, C–8
unused function codes for, C–21
Windows NT Alpha PALcode, C–17
See also Function codes

OpenVMS Alpha PALcode, instruction summary,
C–14

Operand expressions, 3–4

Operand notation
defined, 3–4

Operand values, 3–4

Operate instruction format
unused function codes with, 3–13

Operate instructions
opcodes and format summarized, C–1

Operate instructions, convert with integer overflow,
4–78

Operators, instruction format, 3–6

Optimization. See Performance optimizations

OR operator, 3–9

ORNOT instruction, 4–42

Overflow enable (OVFE)
FP_C quadword bit, B–6

Overflow status (OVFS)
FP_C quadword bit, B–5

Overlap
with location access constraints, 5–14
with processor issue constraints, 5–13
with visibility, 5–14

OVF bit
See also Arithmetic traps, overflow

OVFD bit. See Trap disable bits, overflow disable

P
Pack to bytes instructions, 4–155

PALcode
barriers with, 5–22
CALL_PAL instruction, 4–135
compared to hardware instructions, 6–1
implementation-specific, 6–2
instead of microcode, 6–1
instruction format, 3–14
overview, 6–1
recognized instructions, 6–4
replacing, 6–3
required, 6–2
required instructions, 6–5
running environment, 6–2
special functions function support, 6–2

PALcode instructions
opcodes and format summarized, C–1
required, C–20
reserved, function codes for, C–20

PALcode instructions, required privileged, 6–5

PALcode instructions, required unprivileged, 6–5

PALcode opcodes in numerical order, C–18

PALcode variation assignments, D–2

PCC_CNT, 3–3, 4–143

PCC_OFF, 3–3, 4–143

Performance monitoring, E–3, E–9, E–23

Performance optimizations
branch prediction, A–2
code sequences, A–9
data stream, A–4
for I-streams, A–2
instruction alignment, A–2
instruction scheduling, A–4
I-stream density, A–4
shared data, A–5

Performance tuning
IMPLVER instruction with, 4–141

PERR (Pixel error) instruction, 4–154

Physical address space
described, 5–1

PHYSICAL_ADDRESS operator, 3–9

Pipelined implementations, using EXCB instruction
Index–9



es
with, 4–138

Pixel error instruction, 4–154

PKLB (Pack longwords to bytes) instruction, 4–155

PKWB (Pack words to bytes) instruction, 4–155

Prefetch data (FETCH instruction), 4–139

PRIORITY_ENCODE operator, 3–9

Privileged Architecture Library. See PALcode

Processor communication, 5–15

Processor cycle counter (PCC) register, 3–3
RPCC instruction with, 4–143

Processor issue constraints, 5–12

Processor issue sequence, 5–12

Processor type assignments, D–1

Program counter (PC) register, 3–1
with EXCB instruction, 4–138

Pseudo-ops, A–14

Q
Quadword data type, 2–2

alignment of, 2–3, 2–12
atomic access of, 5–2
integer floating-point format, 2–12
T_floating with, 2–12

R
R31

restrictions, 3–1
RAZ (read as zero), 1–9

RC (read and clear) instruction, 4–150

RDUNIQUE (PALcode) instruction
required recognition of, 6–4

Read/write ordering (multiprocessor), 5–10
determining requirements, 5–10
hardware implications for, 5–29
memory location defined, 5–11

Read/write, sequential, A–8

Regions in physical address space, 5–1

Registers, 3–1
floating-point, 3–2
integer, 3–1
lock, 3–2
memory prefetch, 3–3
optional, 3–3
processor cycle counter, 3–3
program counter (PC), 3–1
value when unused, 3–10
VAX compatibility, 3–3
See also specific registers

Register-to-register move, A–13

Relational Operators, 3–9

Representative result, 4–64

Reserved instructions, opcodes for, C–21

Result latency, A–4

RET instruction, 4–22

RIGHT_SHIFT(x,y) operator, 3–9

Rounding modes. See Floating-point rounding mod

RPCC (read processor cycle counter) instruction,
4–143

RS (read and set) instruction, 4–150

S
S_floating data type

alignment of, 2–8
compared to F_floating, 2–8
exceptions, 2–8
mapping, 2–7
MAX/MIN , 4–65
NaN with T_floating convert, 4–88
operations, 4–62

S4ADDL instruction, 4–26

S4ADDQ instruction, 4–28

S4SUBL instruction, 4–38

S4SUBQ instruction, 4–40

S8ADDL instruction, 4–26

S8ADDQ instruction, 4–28

S8SUBL instruction, 4–38

S8SUBQ instruction, 4–40

SBZ (should be zero), 1–9

Security holes, 1–7
with UNPREDICTABLE results, 1–8

Sequential read/write, A–8

Serialization, MB instruction with, 4–142

SEXT(x) operator, 3–9

Shared data (multiprocessor), A–5
changed vs. updated datum, 5–6

Shared data structures
atomic update, 5–7
ordering considerations, 5–9
using memory barrier (MB) instruction, 5–9

Shared memory
accessing, 5–11
defined, 5–10
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Shift arithmetic instructions, 4–46

Sign extend instructions, 4–60

Single-precision floating-point, 4–62

SLL instruction, 4–45

Software considerations, A–1
See also Performance optimizations

SQRTF instruction, 4–128

SQRTG instruction, 4–128

SQRTS instruction, 4–129

SQRTT instruction, 4–129

Square root instructions
IEEE, 4–129
VAX , 4–128

SRA instruction, 4–46

SRL instruction, 4–45

STB instruction, 4–15

STF instruction, 4–95

STG instruction, 4–96

STL instruction, 4–15

STL_C instruction, 4–12
when guaranteed ordering with LDL_L, 4–14
with LDx_L instruction, 4–12
with processor lock register/flag, 4–12

Storage, defined, 5–14

Store instructions
emulation of, 4–3
FETCH instruction, 4–139
multiprocessor environment, 5–6
serialization, 4–142
Store byte, 4–15
store longword, 4–15
store longword conditional, 4–12
store quadword, 4–15
store quadword conditional, 4–12
Store word, 4–15
STQ_U, 4–17
See also Floating-point store instructions

Store memory integer instructions, 4–4

STORE_CONDITIONAL operator, 3–9

Store-conditional, defined, 5–16

STQ instruction, 4–15

STQ_C instruction, 4–12
when guaranteed ordering with LDQ_L, 4–14
with LDx_L instruction, 4–12
with processor lock register/flag, 4–12

STQ_U instruction, 4–17

STS instruction, 4–97
with FPCR, 4–84

STT instruction, 4–98

STW instruction, 4–15

SUBF instruction, 4–130

SUBG instruction, 4–130

SUBL instruction, 4–37

SUBQ instruction, 4–39

SUBS instruction, 4–131

SUBT instruction, 4–131

Subtract instructions
subtract longword, 4–37
subtract quadword, 4–39
subtract scaled longword, 4–38
subtract scaled quadword, 4–40
See also Floating-point operate

SUM bit. See Summary bit

Summary bit, in FPCR, 4–80

SWPPAL (PALcode) instruction
required recognition of, 6–4

swppal (PALcode) instruction
required recognition of, 6–4

T
T_floating data type

alignment of, 2–9
exceptions, 2–9
format, 2–9
MAX/MIN , 4–65
NaN with S_floating convert, 4–88

TEST(x,cond) operator, 3–10

Timeliness of location access, 5–17

Timing considerations, atomic sequences, A–16

Trap disable bits, 4–78
denormal operand exception, 4–81
division by zero, 4–81
DZED with DZE arithmetic trap, 4–77
DZED with INV arithmetic trap, 4–76
IEEE compliance and, B–4
inexact result, 4–80
invalid operation, 4–81
overflow disable, 4–81
underflow, 4–80
underflow to zero, 4–80
when unimplemented, 4–78

Trap enable bits, B–5

Trap handler, with non-finite arithmetic operands,
4–74

Trap handling, IEEE floating-point, B–6

Trap modes
floating-point, 4–69

Trap shadow
defined for floating-point, 4–64
programming implications for, 5–30
Index–11



TRAPB (trap barrier) instruction
described, 4–144
with FPCR, 4–84

True result, 4–64

True zero, 4–65

U
UMULH instruction, 4–36

with MULQ, 4–35
UNALIGNED data objects, 1–8

Unconditional long jump, 4–23

UNDEFINED operations, 1–7

Underflow enable (UNFE)
FP_C quadword bit, B–6

Underflow status (UNFS)
FP_C quadword bit, B–5

UNDZ bit. See Trap disable bits, underflow to zero

UNF bit
See also Arithmetic traps, underflow

UNFD bit. See Trap disable bits, underflow

UNOP code form, A–11

UNORDERED memory references, 5–10

Unpack to bytes instructions, 4–156

UNPKBL (Unpack bytes to longwords) instruction,
4–156

UNPKBW (Unpack bytes to words) instruction,
4–156

UNPREDICTABLE results, 1–7

Updated datum, 5–6

V
VAX compatibility instructions, restrictions for,

4–149

VAX compatibility register, 3–3

VAX floating-point
D_floating, 2–5
F_floating, 2–3
G_floating, 2–4
See also Floating-point instructions

VAX floating-point instructions
add instructions, 4–110
compare instructionsCMPGEQ instruction,

4–112
convert from integer instructions, 4–115
convert to integer instructions, 4–114
convert VAX floating format instructions,

4–116
divide instructions, 4–121
from integer move, 4–124
function codes for, C–7

function field format, 4–87
multiply instructions, 4–126
operate instructions, 4–102
square root instructions, 4–128
subtract instructions, 4–130

VAX rounding modes, 4–66

Vector instructions
byte and word maximum, 4–152
byte and word minimum, 4–152

Virtual D-cache, 5–4

Virtual I-cache, 5–4
maintaining coherency of, 5–5

Visibility, defined, 5–14

W
Waivers, E–1

WH64 (Write hint) instruction, 4–145

WH64 instruction
lock_flag with, 4–10

Windows NT Alpha PALcode, instruction summary,
C–17

WMB (Write memory barrier) instruction, 4–147
atomic operations with, 5–8
compared with MB, 4–148
with shared data structures, 5–9

Word data type, 2–1
atomic access of, 5–3

Write buffers, requirements for, 5–5

Write-back caches, requirements for, 5–5

wrunique (PALcode) instruction
required recognition of, 6–4

X
x MOD y operator, 3–8

X_floating data type, 2–9
alignment of, 2–10
big-endian format, 2–10
MAX/MIN , 4–65
Index–12



XOR instruction, 4–42

XOR operator, 3–10

Y
YUV coordinates, interleaved, 4–151

Z
ZAP instruction, 4–61

ZAPNOT instruction, 4–61

Zero byte instructions, 4–61

ZEXT(x)operator, 3–10
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