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Preface

Chapters 1 through 8 and appendixes A through E of this book are directly derived from the Alpha Sys-
tem Reference Manual, Version 7 and passed engineering change orders (ECOs) that have been
applied. It is an accurate representation of the described parts of the Alpha architecture.

References in this handbook to the Alpha Architecture Reference Manual are to the Third Edition of
that manual, EY -W938E-DP.
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Chapter 1

| ntroduction

Alphais a 64-bit load/store RISC architecture that is designed with particular emphasis on the
three elements that most affect performance: clock speed, multiple instruction issue, and multi-
ple processors.

The Alpha architects examined and analyzed current and theoretical RISC architecture design
elements and developed high-performance alternatives for the Alpha architecture. The archi-
tects adopted only those design elements that appeared valuable for a projected 25-year design
horizon. Thus, Alphabecomes the first 21st century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating system or pro-
gramming language. Alpha supports the OpenVMS Alpha, DIGITAL UNIX, and Windows NT
Alpha operating systems and supports simple software migration for applications that run on
those operating systems.

This manual describesin detail how Alphais designed to be the leadership 64-bit architecture
of the computer industry.

1.1 The Alpha Approach to RISC Architecture

AlphalsaTrue 64-Bit Architecture

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and all opera-
tions are performed between 64-bit registers. It is not a 32-bit architecture that was later
expanded to 64 hits.

AlphalsDesigned for Very High-Speed | mplementations

Theinstructions are very simple. All instructions are 32 bitsin length. Memory operations are
either loads or stores. All data manipulation is done between registers.

The Alpha architecture facilitates pipelining multiple instances of the same operations because
there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register or memory

and another instruction reading from the same place. That makes it particularly easy to build
implementations that issue multiple instructions every CPU cycle.
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Alphamakes it easy to maintain binary compatibility across multiple implementations and easy
to maintain full speed on multiple-issue implementations. For example, there are no implemen-
tation-specific pipeline timing hazards, no load-delay dots, and no branch-delay dots.

The Alpha Approach to Byte Manipulation

The Alpha architecture reads and writes bytes between registers and memory with the LDBU
and STB instructions. (Alpha also supports word read/writes with the LDWU and STW
instructions.)

Byte shifting and masking is performed with normal 64-bit register-to-register instructions,
crafted to keep instruction sequences short.

The Alpha Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an |/O device), a sequence of reads and writes
issued by one processor may be arbitrarily reordered by an implementation. This allows imple-
mentations to use multibank caches, bypassed write buffers, write merging, pipelined writes
with retry on error, and so forth. If strict ordering between two accesses must be maintained,
explicit memory barrier instructions can be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or an interfering
write from another processor, then the conditional store succeeds. Otherwise, the store fails and
the program eventually must branch back and retry the sequence. This style of interlocking
scales well with very fast caches and makes Alpha an especially attractive architecture for
building multiple-processor systems.

Alpha lnstructionsInclude Hintsfor Achieving Higher Speed
A number of Alphainstructionsinclude hints for implementations, all aimed at achieving
higher speed.

e Calculated jump instructions have a target hint that can allow much faster subroutine
calls and returns.

e There are prefetching hints for the memory system that can allow much higher cache hit
rates.

e There are granularity hints for the virtual-address mapping that can allow much more
effective use of translation lookaside buffers for large contiguous structures.

PALcode — Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are specific to a par-
ticular Alpha operating system implementation. These subroutines provide operating-system
primitives for context switching, interrupts, exceptions, and memory management. PALcodeis
similar to the BIOS libraries that are provided in personal computers.

PAL code subroutines are invoked by implementation hardware or by software CALL_PAL
instructions.
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PALcode iswritten in standard machine code with some implementation-specific extensions to
provide accessto low-level hardware.

PAL code lets Alpha implementations run the full OpenVMS Alpha, DIGITAL UNIX, and
Windows NT Alpha operating systems. PALcode can provide this functionality with little
overhead. For example, the OpenVMS Alpha PAL code instructions let Alpha run OpenVMS
with little more hardware than that found on a conventional RISC machine: the PAL mode bit
itself, plus four extra protection bitsin each translation buffer entry.

Other versions of PALcode can be developed for real-time, teaching, and other applications.

PAL code makes Alpha an especially attractive architecture for multiple operating systems.

Alpha and Programming L anguages

Alphais an attractive architecture for compiling a large variety of programming languages.
Alpha has been carefully designed to avoid bias toward one or two programming languages.
For example:

e Alphadoes not contain a subroutine call instruction that moves a register window by a
fixed amount. Thus, Alpha is a good match for programming languages with many
parameters and programming languages with no parameters.

e Alpha does not contain a global integer overflow enable bit. Such a bit would need to
be changed at every subroutine boundary when a FORTRAN program calls a C pro-
gram.

1.2 Data Format Overview

Alphaisaload/store RISC architecture with the following data characteristics:
e All operations are done between 64-bit registers.

e Memory is accessed via 64-bit virtual byte addresses, using the little-endian or, option-
aly, the big-endian byte numbering convention.

e There are 32 integer registers and 32 floating-point registers.
e Longword (32-bit) and quadword (64-hit) integers are supported.
¢ Fivefloating-point data types are supported:

— VAXF_floating (32-bit)

— VAX G_floating (64-bit)

— |EEE single (32-bit)

— |EEE double (64-bit)

— |EEE extended (128-bit)
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1.3 Instruction Format Overview

As shown in Figure 1-1, Alpha instructions are all 32 bits in length. There are four major
instruction format classes that contain 0, 1, 2, or 3 register fields. All formats have a 6-bit
opcode.

Figure 1-1: Instruction Format Overview

31 26 25 2120 16 15 5 4 0

Opcode Number PALcode Format
Opcode RA Disp Branch Format

Opcode RA RB Disp Memory Format
Opcode RA RB Function RC | Operate Format

e PAL code instructions specify, in the function code field, one of afew dozen complex
operations to be performed.

e Conditional branch instructions test register Ra and specify a signed 21-bit PC-rela-
tive longword target displacement. Subroutine calls put the return address in register
Ra.

e Load and store instructions move bytes, words, longwords, or quadwords between
register Ra and memory, using Rb plus a signed 16-hit displacement as the memory
address.

e Operateinstructions for floating-point and integer operations are both represented in
Figure 1-1 by the operate format illustration @ne as fdbws:

— Word and byte sign-extension operators.

— Floating-point operations use Ra and Rb as source registers and write the result in
register Rc. There is an 11-bit extended opcode in the function field.

— Integer operations use Ra and Rb or an 8-bit literal as the source operand, and write
the result in register Rc.

— Integer operate instructions can use the Rb field and part of the function field to
specify an 8-bit literal. Tére is a 7-bit extended opcode in the figrctield.

1.4 Instruction Overview

PALcodelnstructions

As described in Section 1.1, a Privileged Architecture Library (PALcode) is a set of subrou-
tines that is specific to a particular Alpha operating-system implementation. These subroutines
can be invoked by hardware or by software CALL_PAL instructions, which use the function
field to vector to the specified subroutine.
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Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero/nonzero,
and they can test integer registers for even/odd. Unconditional branch instructions can write a
return address into aregister.

Thereis also a calculated jump instruction that branches to an arbitrary 64-bit addressin a
register.

Load/Store I nstructions

Load and store instructions move 8-bit, 16-bit, 32-hit, or 64-bit aligned quantities from and to
memory. Memory addresses are flat 64-bit virtual addresses with ho segmentation.

The VAX floating-point load/store instructions swap words to give a consistent register format
for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies of the
high bit of the datum. A 32-bit floating-point datum is placed in a register in a canonical form
that extends the exponent by 3 bits and extends the fraction with 29 low-order zeros. The 32-
bit operates preserve these canonical forms.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and 64-bit oper-
ations. The Alpha architecture has no 32/64 mode hit.

Integer Operate Instructions

The integer operate instructions manipulate full 64-bit values and include the usual assortment
of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates. add, subtract, and multiply. They differ from their
64-bit counterparts only in overflow detection and in producing 32-bit canonical results.

Thereisno integer divide instruction.

The Alpha architecture also supports the following additional operations:
e Scaled add/subtract instructions for quick subscript calculation
e 128-hit multiply for division by a constant, and multiprecision arithmetic
e Conditional move instructions for avoiding branch instructions
* Anextensive set of in-register byte and word manipulation instructions
e A set of multimediainstructions that support graphics and video

Integer overflow trap enable is encoded in the function field of each instruction, rather than
kept in aglobal state bit. Thus, for example, both ADDQ/V and ADDQ opcodes exist for spec-
ifying 64-bit ADD with and without overflow checking. That makes it easier to pipeline
implementations.
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Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and |EEE arith-
metic instructions, plusinstructions for performing conversions between floating-point and
integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha includes condi-
tional move instructions for avoiding branches and merge sign/exponent instructions for simple
field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field of each
instruction, rather than kept in global state bits. That makes it easier to pipeline
implementations.

1.5 Instruction Set Characteristics

Alphainstruction set characteristics are as follows:

All instructions are 32 bits long and have a regular format.

There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads as zero,
and writes to R31 are ignored.

All integer data manipulation is between integer registers, with up to two variable regis-
ter source operands (one may be an 8-bit literal) and one register destination operand.

There are 32 floating-point registers (FO through F31), each 64 bits wide. F31 reads as
zero, and writesto F31 are ignored.

All floating-point data manipulation is between floating-point registers, with up to two
register source operands and one register destination operand.

Instructions can move data in an integer register file to afloating-point register file, and
data in a floating-point register file to an integer register file. The instructions do not
interpret bitsin the register files and do not access memory.

All memory reference instructions are of the load/store type that moves data between
registers and memory.

There are no branch condition codes. Branch ingtructions test an integer or floating-
point register value, which may be the result of a previous compare.

Integer and logical instructions operate on quadwords.

Floating-point instructions operate on G_floating, F_floating, and | EEE extended, dou-
ble, and single operands. D_floating "format compatibility," in which binary files of
D_floating numbers may be processed, but without the last 3 bits of fraction precision,
is also provided.

A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book.
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1.6.1 Numbering

1.6.2

1.6.3

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base in subscript form, for example, 10,¢

Security Holes

A security hole is an error of commission, omission, or oversight in a system that allows pro-
tection mechanisms to be bypassed.

Security holes exist when unprivileged software (software running outside of kernel mode)
can:

e Affect the operation of another process without authorization from the operating sys-
tem;

*  Amplify its privilege without authorization from the operating system; or

e Communicate with another process, either overtly or covertly, without authorization
from the operating system.

The Alpha architecture has been designed to contain no architectural security holes. Hardware
(processors, buses, controllers, and so on) and software should likewise be designed to avoid
security holes.

UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book. Their mean-
ings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger UNDE-
FINED operations. Unprivileged software cannot trigger UNDEFINED operations. However,
either privileged or unprivileged software can trigger UNPREDICTABLE results or
occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the processor;
it continues to execute instructions in its norma manner. In contrast, UNDEFINED operation
can halt the processor or cause it to lose information.

Theterms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

e Reallts or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

e An UNPREDICTABLE result may acquire an arbitrary value subject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any state
information that is accessible to the process in its current access mode. UNPREDICT-
ABLE results may be unchanged from their previous values.
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Operations that produce UNPREDICTABLE results may also produce exceptions.

e An occurrence specified as UNPREDICTABLE may happen or not based on an arbi-
trary choice function. The choice function is subject to the same constraints as are
UNPREDICTABLE results and, in particular, must not constitute a security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the current
process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result depended
on the value of a register in another process, on the contents of processor temporary
registers left behind by some previously running process, or on a sequence of actions
of different processes.

UNDEFINED

e Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

e UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods and are inclusive. For
example, arange of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are inclu-
sive. For example, bits <7:3> specify an extent of bitsincluding bits 7, 6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used interchange-
ably to refer to data objects that are powers of two in size. An aligned datum of size 2**N is
stored in memory at a byte address that is a multiple of 2**N, that is, one that has N low-order
zeros. Thus, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

If adatum of size 2**N is stored at a byte address that is not a multiple of 2**N, it is called
UNALIGNED.
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1.6.6 Must BeZero (MB2Z)
Fields specified as Must be Zero (MBZ) must never be filled by software with a non-zero

value. These fields may be used at some future time. If the processor encounters a non-zero
valuein afield specified asMBZ, an Illegal Operand exception occurs.

1.6.7 Read AsZero (RAZ)

Fields specified as Read as Zero (RAZ) return azero when read.

1.6.8 Should Be Zero (SBZ)
Fields specified as Should be Zero (SBZ) should be filled by software with a zero value. Non-

zero values in SBZ fields produce UNPREDICTABLE results and may produce extraneous
instruction-issue delays.

1.6.9 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IM P)
Fields specified as Implementation Dependent (IMP) may be used for implementation-specific
purposes. Each implementation must document fully the behavior of all fields marked as IMP
by the Alpha specification.

1.6.11 Illustration Conventions

Illustrations that depict registers or memory follow the convention that increasing addresses
run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or are stylized code
formsfound in Section A.4.6.
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Chapter 2

Basic Architecture

2.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. Virtual addresses are 64
bits long. An implementation may support a smaller virtual address space. The minimum vir-
tual address sizeis 43 bits.

Virtual addresses as seen by the program are translated into physical memory addresses by the
memory management mechanism.

Although the data types in Section 2.2 are described in terms of little-endian byte addressing,
implementations may also include big-endian addressing support, as described in Section 2.3.
All current implementations have some big-endian support.

2.2 Data Types

221

Following are descriptions of the Alpha architecture data types.
Byte

A byte is 8 contiguous bits starting on an addressabl e byte boundary. The bits are numbered
from right to left, 0 through 7, as shown in Figure 2—-1.

Figure 2—-1: Byte Format

7 0

A byteis specified by its address A. A byteis an 8-bit value. The byte is only supported in
Alphaby the load, store, sign-extend, extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 15, as shown in Figure 2-2.
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2.2.3

Figure 2—2: Word Format

15 0

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the load, store, sign-extend,
extract, mask, and insert instructions.

L ongwor d

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2—3: Longword Format

31 0

A longword is specified by its address A, the address of the byte containing bit 0. A longword
isa 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits of

increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is only sup-
ported in Alpha by sign-extended load and store instructions and by longword arithmetic
instructions.

Note:

Alpha implementations will impose a significant performance penalty when accessing
longword operands that are not naturally aligned. (A naturally aligned longword has zero
as the low-order two bits of its address.)

2.2.4 Quadword

63

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 63, as shown in Figure 2—4.

Figure 2—4: Quadword Format

2-2 A
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2.25

A quadword is specified by its address A, the address of the byte containing bit 0. A quadword

is a 64-bit value. When interpreted arithmetically, a quadword is either a two’s-complement
integer with bits of increasing significance from 0 through 62 and bit 63 as the sign bit, or an
unsigned integer with bits of increasing significance from 0 through 63.

Note:

Alpha implementations will impose a significant performance penalty when accessing
quadword operands that are not naturally aligned. (A naturally aligned quadword has zero
as the low-order three bits of its address.)

VAX Floating-Point Formats

VAX floating-point numbers are stored in one set of formats in memory and in a second set of
formats in registers. The floating-point load and store instructions convert between these for-

mats purely by rearranging bits; no rounding or range-checking is done by the load and store
instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary byte boundary.
The bits are labeled from right to left, 0 through 31, as shown in Figure 2-5.

Figure 2-5: F_floating Datum

31 16 15 14 7 6 0

Fraction Lo S Exp. Frac. Hi |:A

An F_floating operand occupies 64 bitsin afloating register, left-justified in the 64-hit regis-
ter, as shown in Figure 2—6.

Figure 2—6: F_floating Register Format

63 62 52 51 29 28 0

S

Exp. Fraction 0 ‘Fx

The F_floating load instruction reorders bits on the way in from memory, expands the expo-
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This producesin the register
an equivalent G_floating number suitable for either F_floating or G_floating operations. The
mapping from 8-bit memory-format exponents to 11-hit register-format exponents is shown in
Table 2—1. This mapping preserves both normal values and exceptional values.
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Table 2-1: F_floating Load Exponent Mapping (MAP_F)

Memory <14:7> Register <62:52>

11111111 10001111111

1 XXXXXXX 1 000 xxxxxxx  (xxxxxxx not all 1's)
0 XXXXXXX 0 111 xxxxxxx  (xxxxxxx not all 0's)
0 0000000 0 000 0000000

The F_floating store instruction reorders register bits on the way to memory and does no
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored by the
store instruction.

An F_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of an F_floating datum is sign magnitude with bit 15 the sign bit, bits <14:7> an
excess-128 hinary exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction with the
redundant most significant fraction bit not represented. Within the fraction, bits of increasing
significance are from 16 through 31 and 0 through 6. The 8-hit exponent field encodes the val-
ues 0 through 255. An exponent value of 0, together with asign bit of 0, is taken to indicate
that the F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the instruction

aways produces a datum with a sign bit of 0, an exponent of 0, and al fraction bits of 0. Expo-

nent values of 1..255 indicate true binary exponents of —127..127. An exponent value of 0,
together with a sign bit of 1, is taken as a reserved operand. Floating-point instructions pro-
cessing a reserved operand take an arithmetic exception. The value of an F_floating datum is in
the approximate range 0.29*10**-38 through 1.7*10**38. The precision of an F_floating
datum is approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when accessing
F_floating operands that are not naturally aligned. (A naturally aligned F_floating datum
has zero as the low-order two bits of its address.)

2.2.5.2 G _floating
A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are labeled from right to left, 0 through 63, as shown in Figure 2—7.

Figure 2—7: G_floating Datum

31 16 15 14 4 3 0

Fraction Midh S Exp. Frac.Hi|:A

Fraction Lo Fraction Midl A+4
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A G_floating operand occupies 64 bits in a floating registeanged as shown in Figure 2-8.

Figure 2-8: G_floating Register Format

63 62 52 51 32 31 v

S Exp. Fraction Hi Fraction Lo ‘Fx

A G_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits <14:4> an excess-
1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with the redun-
dant most significant fraction bit not represented. Within the fraction, bits of increasing
significance are from 48 through 63, 32 through 47, 16 through 31, and O through 3. The 11-bit
exponent field encodes the values 0 through 2047. An exponent value of 0, together with asign
bit of 0, istaken to indicate that the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction always produces

adatum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. Exponent values of

1..2047 indicate true binary exponents of —1023..1023. An exponent value of 0, together with a
sign bit of 1, is taken as a reserved operand. Floating-point instructions processing a reserved
operand take a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*1 0**—308 through 0.9*10**308. The precision of a G_floating datum

is approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when accessing
G_floating operands that are not naturally alignéd.naturally aligned G_floating datum
has zero as the low-order three bits of its address.)

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are labeled from right to left, 0 through 63, as shown in Figure 2-9.

Figure 2-9: D_floating Datum
31 16 15 14 76 0

Fraction Midh S Exp. Frac.Hi |:A

Fraction Lo Fraction Midl A+4

A D_floating operand occupies 64 bits in a floating registeanged as shown in Figure 2—-10.

Figure 2-10: D_floating Register Format

63 62 55 54 48 47 32 31 16 15 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo ‘Fx
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2.2.6

The reordering of bitsrequired for aD_floating load or store isidentical to that required for a
G_floating load or store. The G_floating load and store instructions are therefore used for load-
ing or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of aD_floating datum is identical to an F_floating datum except for 32 addi-
tional low significance fraction bits. Within the fraction, bits of increasing significance are
from 48 through 63, 32 through 47, 16 through 31, and O through 6. The exponent conventions
and approximate range of values isthe same for D_floating as F_floating. The precision of a
D_floating datum is approximately one part in 2**55, typically 16 decimal digits.

Notes:

D_floating is not a fully supported data type; no D_floating arithmetic operations are
provided in the architecture. For backward compatibility, exact D_floating arithmetic may
be provided via software emulation. D_floating "format compatibility"in which binary files
of D_floating numbers may be processed, but without the last three bits of fraction
precision, can be obtained via conversions to G _floating, G arithmetic operations, then
conversion back to D_floating.

Alpha implementations will impose a significant performance penalty on access to
D_floating operands that are not naturally aligned. (A naturally aligned D_floating datum
has zero as the low-order three bits of its address.)

| EEE Floating-Point Formats

The |EEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, defines four
floating-point formats in two groups, basic and extended, each having two widths, single and
double. The Alpha architecture supports the basic single and double formats, with the basic
double format serving as the extended single format. The values representable within aformat
are specified by using three integer parameters:

e P—the number of fraction bits

e Emax — the maximum exponent

e Emin - the minimum exponent

Within each format, only the following entities are permitted:

¢ Numbers of the form (—1)**S x 2**E x b(0).b(1)b(2)..b(P-1) where:
— S=0o0r1
— E = any integer between Emin and Emayx, inclusive
— b(n)=0or1

e Two infinities— positive and negative

e Atleast one Signaling NaN

e Atleast one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an |EEE floating-point bit pattern that repre-
sents something other than a number. NaNs come in two forms: Signaling NaNs and Quiet
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NaNs. Signaling NaNs are used to provide values for uninitialized variables and for arithmetic
enhancements. Quiet NaNs provide retrospective diagnostic information regarding previous
invalid or unavailable data and results. Signaling NaNs signal an invalid operation when they
are an operand to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic exception.

Arithmetic with the infinitiesis handled as if the operands were of arbitrarily large magnitude.
Negative infinity is less than every finite number; positive infinity is greater than every finite
number.

2.2.6.1 S Floating

An |EEE single-precision, or S_floating, datum occupies 4 contiguous bytes in memory start-
ing on an arbitrary byte boundary. The bits are labeled from right to left, O through 31, as
shown in Figure 2-11.

Figure 2-11: S_floating Datum

31 30 23 22 0

S Exp. Fraction A

An S floating operand occupies 64 bitsin afloating register, left-justified in the 64-hit regis-
ter, as shown in Figure 2—-12.

Figure 2-12: S floating Register Format

63 62 52 51 29 28 0

S

Exp. Fraction 0 ‘Fx

The S_floating load instruction reorders bits on the way in from memory, expanding the expo-
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the register
an equivalent T_floating number, suitable for either S floating or T_floating operations. The
mapping from 8-bit memory-format exponents to 11-hit register-format exponents is shown in
Table 2-2.

Table 2-2: S_floating Load Exponent Mapping (MAP_S)

Memory <30:23>  Register <62:52>

11111111 11111111111

1 XXXXXXX 1 000 xxxxxxx  (xxxxxxx not all 1's)
0 XXXXXXX 0 111 xxxxxxx (Xxxxxxx not all 0's)
0 0000000 0 000 0000000
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This mapping preserves both normal values and exceptional values. Note that the mapping for
all 1's differs from that of F_floating load, since for S_floating all 1's is an exceptional value
and for F_floating all 1's is a normal value.

The S_floating store instruction reorders register bits on the way to memory and does no
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ighored by the
store instruction. The S_floating load instruction does no checking of the input.

The S_floating store instruction does no checking of the data; ¢eeging operation should
have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of an S_floating datum is sign magnitude with bit 31 the sign bit, bits <30:23>
an excess-127 binary exponent, and bits <22:0> a ZBabfion.

The value (V) of an S_floating number is irfed fromits constituent sign (S), exponent (E),
and fraction (F) fields as follows:

e |f E=255 and F<>0, then V isNaN, regardless of S.

e |f E=255 and F=0, then V = (—-1)**S x Infinity.

e IfO0<E<255,thenV = (-1)**S x 2**(E-127) x (1.F).

e If E=0 and F<>0, then V = (-1)**S x 2**(—-126) x (0.F).

e |f E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception for a vari-
ety of reasons, including invalid operations, overflow, underflow, division by zero, and inexact
results.

Note:

Alpha implementations will impose a significant performance penalty when accessing
S floating operands that are not naturally aligned. (A naturally aligned S_floating datum
has zero as the low-order two bits of its address.)

2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in memory start-
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 63, as
shown in Figure 2—-13.

Figure 2-13: T_floating Datum

31 30 20 19 0

Fraction Lo A

S Exponent Fraction Hi ‘A+4
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A T_floating operand occupies 64 bits in a floating registeanged as shown in Figure 2—-14.

Figure 2-14: T_floating Register Format

63 62

52 51 32 31

S Exp.

Fraction Hi Fraction Lo

‘FX

The T_floating load instruction performs no bit reordering on input, nor does it perform check-
ing of the input data.

The T_floating store instruction performs no bit reordering on output. Thisinstruction does no

checking of the data; the preceding operation should have specified aT_floating result.

A T_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of aT_floating datum is sign magnitude with bit 63 the sign bit, bits <62:52> an excess-
1023 binary exponent, and bits <51:0> a 52-bit fraction.

Thevalue (V) of aT_floating number isinferred from its constituent sign (S), exponent (E),
and fraction (F) fields as follows:

Floating-point operations on T_floating numbers may take an arithmetic exception for a vari-
ety of reasons, including invalid operations, overflow, underflow, division by zero, and inexact
results.

Note:

Alpha implementations will impose a significant performance penalty when accessing
T floating operands that are not naturally aligned. (A naturally aligned T_floating datum

If E=2047 and F<>0, then V is NaN, regardless of S.

If E=2047 and F=0, then V = (-1)**S x Infinity.

If 0<E <2047, thenV = (—1)**S x 2**(E-1023) x (1.F).
If E=0 and F<>0, then V = (-1)**S x 2**(—-1022) x (0.F).
If E=0 and F=0, then V = (-1)**S x 0 (zero).

has zero as the low-order three bits of its address.)

2.2.6.3 X_Floating

Support for 128-bit IEEE extended-precision (X_float) floating-point is initially provided
entirely through software. This section is included to preserve the intended consistency of
implementation with other IEEE floating-point data types, should the X_float data type be sup-

ported in future hardware.

An |IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in memory,
starting on an arbitrary byte boundary. The bits are labeled from right to left, O through 127, as

shown in Figure 2-15.
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Figure 2-15: X floating Datum

63 62 48 47 0

Fraction_low A

S Exponent Fraction_high :A+8

An X _floating datum occupies two consecutive even/odd floating-point registers (such as
F4/F5), as shown in Figure 2-16.

Figure 2-16: X floating Register Format

127 126 112 111 64 63 NS

RSN <
S| Exponent Fraction_high Fraction_low
AR <<
N A J
g %
FnOR 1 Fn

An X_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of an X_floating datum is sign magnitude with bit 127 the sign bit, bits <126:112> an
excess—16383 binary exponent, and bits <111:0> a 112-bit fraction.

The value (V) of an X_floating number is inferred from its constituent sign (S), exponent (E),
and fraction (F) fields as follows:

e |f E=32767 and F<>0, then V isaNaN, regardless of S.

e |f E=32767 and F=0, then V = (—-1)**S x Infinity.

e If0<E<32767,thenV = (—1)**S x 2**(E-16383) x (1.F).
e If E=0 and F<> 0, thenV = (—1)**S x 2**(-16382) x (0.F).
e |fE=0andF=0,thenV =(-1)**S x 0 (zero).

Note:

Alpha implementations will impose a significant performance penalty when accessing
X floating operands that are not naturally aligned. (A naturally aligned X_floating datum
has zero as the low-order four bits of its address.)

X _Floating Big-Endian For mats

Section 2.3 describes Alpha support for big-endian data types. It is intended that software or
hardware implementation for a big-endian X_float data type comply with that support and have
the following formats.
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Figure 2-17: X floating Big-Endian Datum

Byte
0

A: S Exponent Fraction_high

Byte
15

A+8: Fraction_low

Figure 2-18: X_floating Big-Endian Register Format

Byte
0

Byte

Y > X 15
AN ASRY
S| Exponent Fraction_high Fraction_low
AR <
N A Y
v '
FnOR 1 Fn

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer oprand occupies 32 bits in memoayranged as shwn in Figure 2—-19.

Figure 2—19: Longword Integer Datum

3130 0

S Integer A

A longword integer operand occupies 64 bits in a floating register, arranged as shown in Fig-
ure 2—20.

Figure 2—20: Longword Integer Floating-Register Format

63 62 61 5958 29 28

S| 1| xxx Integer 0 ‘Fx

There is no explicit longword load or store instruction; the S_floating load/store instructions
are used to move longword datainto or out of the floating registers. The register bits <61:59>
are set by the S_floating load exponent mapping. They are ignored by S floating store. They
are also ignored in operands of alongword integer operate instruction, and they are set to 000
in the result of alongword operate instruction.

The register format bit <62> "I" in Figure 2-20 is part of the Integer field in Figure 2—-19 and
represents the high-order bit of that field.
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Note:

Alpha implementations will impose a significant performance penalty when accessing
longwords that are not naturally aligned. (A naturally aligned longword datum has zero as
the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memorginged as shown in Figure 2-21.

Figure 2—21: Quadword Integer Datum

3130 0

Integer Lo A

S Integer Hi A+4

A quadword integer operand occupies 64 hits in afloating register, arranged as shown in Fig-
ure 2—-22.

Figure 2—22: Quadword Integer Floating-Register Format

63 62 32 31 0

S Integer Hi Integer Lo ‘Fx

There isno explicit quadword load or store instruction; the T_floating load/store instructions
are used to move quadword data between memory and the floating registers. (The ITOFT and
FTOIT are used to move quadword data between integer and floating registers.)

The T_floating load instruction performs no bit reordering on input. The T_floating store
instruction performs no bit reordering on output. This instruction does no checking of the data;
when used to store quadwords, the preceding operation should have specified a quadword
result.

Note:

Alpha implementations will impose a significant performance penalty when accessing
guadwords that are not naturally aligned. (A naturally aligned quadword datum has zero as
the low-order three bits of its address.)

2.2.9 Data Typeswith No Hardware Support

e Thefollowing VAX datatypesare not directly supported in Alpha hardware. Octaword
e H floating

e D floating (except load/store and convert to/from G_floating)

e Variable-Length Bit Field

e Character String
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Trailing Numeric String
L eading Separate Numeric String
Packed Decimal String

2.3 Big-Endian Addressing Support

Alphaimplementations may include optional big-endian addressing support.

In alittle-endian machine, the bytes within a quadword are numbered right to | eft:

Figure 2-23: Little-Endian Byte Addressing

In a big-endian machine, they are numbered |eft to right:

Figure 2—-24: Big-Endian Byte Addressing

Bit numbering within bytesis not affected by the byte numbering convention (big-endian or lit-
tle-endian).

Theformat for the X_floating big-endian data type is shown in Section 2.2.6.3.

The byte numbering convention does not matter when accessing complete aligned quadwords
in memory. However, the numbering convention does matter when accessing smaller or
unaligned quantities, or when manipulating datain registers, as follows:

A quadword load or store of data at location O moves the same eight bytes under both
numbering conventions. However, a longword load or store of data at location 4 must
move the leftmost half of a quadword under the little-endian convention, and the right-
most half under the big-endian convention. Thus, to support both conventions, the con-
vention being used must be known and it must affect longword |oad/store operations.

A byte extract of byte 5 from a quadword of datainto the low byte of aregister requires
aright shift of 5 bytes under the little-endian convention, but a right shift of 2 bytes
under the big-endian convention.

Manipulation of datain aregister is almost the same for both conventions. In both, inte-
ger and floating-point data have their sign bitsin the leftmost byte and their least signif-
icant bit in the rightmost byte, so the same integer and floating-point instructions are
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used unchanged for both conventions. Big-endian character strings have their most sig-
nificant character on the left, while little-endian strings have their most significant char-
acter on theright.

e The compare byte (CMPBGE) instruction is neutral about direction, doing eight byte
compares in parallel. However, following the CMPBGE instruction, the code is differ-
ent that examines the byte mask to determine which string is larger, depending on
whether the rightmost or leftmost unequal byte is used. Thus, compilers must be
instructed to generate somewhat different code sequences for the two conventions.

Implementations that include big-endian support must supply all of the following features:

* A means at boot time to choose the byte numbering convention. The implementation is
not required to support dynamically changing the convention during program execu-
tion. The chosen convention applies to all code executed, both operating-system and
user.

e |f the big-endian convention is chosen, the longword-length load/store instructions
(LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2> (hit 2 of the vir-
tual address). This has the effect of accessing the half of a quadword other than the half
that would be accessed under the little-endian convention.

e |f the big-endian convention is chosen, the word-length load instruction, LDWU,
inverts bits va<1:2> (bits 1 and 2 of the virtual address). This hasthe effect of accessing
the half of the longword that would be accessed under the little-endian convention.

e |f the big-endian convention is chosen, the byte-length load instruction, LDBU, inverts
bits va<0:2> (bits 0 through 2 of the virtual address). This has the effect of accessing
the half of the word that would be accessed under the little-endian convention.

e |f the big-endian convention is chosen, the byte manipulation instructions (EXTXxX,
INSxx, MSKxx) invert bits Rbv<2:0>. This has the effect of changing a shift of 5 bytes
into a shift of 2 bytes, for example.

The instruction stream is always considered to be little-endian, and is independent of the cho-
sen byte numbering convention. Compilers, linkers, and debuggers must be aware of thiswhen
accessing an instruction stream using data-stream load/store instructions. Thus, the rightmost
instruction in a quadword is always executed first and always has the instruction-stream
address 0 MOD 8. The same bytes accessed by alongword load/store instruction have data-
stream address 0 MOD 8 under the little-endian convention, and 4 MOD 8 under the big-
endian convention.

Using either byte numbering convention, it is sometimes necessary to access data that origi-

nated on a machine that used the other convention. When this occurs, it is often necessary to
swap the bytes within a datum. See Section A.4.3 for a suggested code sequence.
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Chapter 3

| nstruction Formats

3.1 Alpha Registers

311

312

Each Alpha processor has a set of registers that hold the current processor state. If an Alpha
system contains multiple Alpha processors, there are multiple per-processor sets of these
registers.

Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream. As each
instruction is decoded, the PC is advanced to the next sequential instruction. Thisisreferred to
as the updated PC. Any instruction that uses the value of the PC will use the updated PC. The
PC includes only bits <63:2> with bits <1:0> treated as RAZ/IGN. This quantity is along-
word-aligned byte address. The PC is an implied operand on conditional branch and subroutine
jump instructions. The PC is not accessible as an integer register.

Integer Registers
There are 32 integer registers (RO through R31), each 64 hits wide.

Register R31 is assigned specia meaning by the Alpha architecture. When R31 is specified as
aregister source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of an instruction
that specifies R31 as a destination operand are discarded. Also, it is UNPREDICTABLE
whether the other destination operands (implicit and explicit) are changed by the instruction. It
is implementation dependent to what extent the instruction is actually executed once it has
been fetched. An exception is never signaled for aload that specifies R31 as a destination oper-
ation. For all other operations, it is UNPREDICTABLE whether exceptions are signaled during
the execution of such an instruction. Note, however, that exceptions associated with the
instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Section A.3.5, certain load instructions to an R31 destination are the
preferred method for performing a cache block prefetch.
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3.13

314

There are someinteresting cases involving R31 as a destination:
e STx CR31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset the
lock_flag, this ingtruction causes the lock flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

+ LDx_L R3Ldisp(Rb)

This instruction produces no useful result since it causes both lock flag and
locked physical_addressto become UNPREDICTABLE.

Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_COROUTINE)
instructions, when R31 is specified as the Ra operand, execute normally and update the PC
with the target virtual address. Of course, no PC value can be saved in R31.

Floating-Point Registers
There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is supplied. See
Section 4.7.3 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded and it is
UNPREDICTABLE whether the other destination operands (implicit and explicit) are changed
by the instruction. In this case, it isimplementation-dependent to what extent the instruction is
actually executed once it has been fetched. An exception is never signaled for aload that speci-
fies F31 as a destination operation. For al other operations, itis UNPREDICTABLE whether
exceptions are signaled during the execution of such an instruction. Note, however, that excep-
tions associated with the ingtruction fetch of such an instruction are always signaled.

Implementation note:

As described in Section A.3.5, certain load instructions to an F31 destination are the
preferred method for signalling a cache block prefetch.

A floating-point instruction that operates on single-precision data reads all bits <63:0> of the
source floating-point register. A floating-point instruction that produces a single-precision
result writes all bits <63:0> of the destination floating-point register.

Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C instructions, the
lock flag and the locked physical address register. The use of these registersis described in
Section 4.2.
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3.1.5 Processor Cycle Counter (PCC) Register

The PCC register consists of two 32-hit fields. The low-order 32 bits (PCC<31:0>) are an
unsigned wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are
operating system dependent in their implementation.

PCC_CNT isthe base clock register for measuring time intervals and is suitable for timing
intervals on the order of nanoseconds.

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific integer
in the range 1..16. The cycle counter frequency is the number of times the processor cycle
counter gets incremented per second. The integer count wraps to 0 from a count of FFFF
FFFF.5. The counter wraps no more frequently than 1.5 times the implementation’s interval

clock interrupt period (which is two thirds of the interval clock interrupt frequency), which
guarantees that an interrupt occurs before PCC _CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in a simple
implementation. However, if PCC_OFF is used to calculate a per-process or per-thread cycle
count, it must contain a value that, when added to PCC_CNT, returns the total PCC register
count for that process or thread, modulo 2**32.

Implementation Note:
OpenVMS Alpha and DIGITAL UNIX supply agu-process value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each processor
on a multiprocessor system has its own private, independent PCC.

The PCC is read by the RPCC instruction. See Section 4.11.8.

3.1.6 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX compatibility
processor registers.

3.1.6.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an implementation will
include two sets of state prefetch registers used by those instructions. The use of these regis-
ters is described in Section 4.11. These registers are not directly accessible by software and are
listed for completeness.

3.1.6.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as described in
Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence of con-
trol and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation

Tables 3-1, 3-2, and 3-3 list the notation for the operands, the operand values, and the other
expression operands.

Table 3—1: Operand Notation

Notation Meaning

Ra Aninteger register operand in the Rafield of the instruction

Rb An integer register operand in the Rb field of the instruction

#b Aninteger literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Rafield of the instruction
Fb A floating-point register operand in the Rb field of the instruction
Fc A floating-point register operand in the Rc field of the instruction

Table 3—2: Operand Value Notation

Notation Meaning

Rav The value of the Raoperand. Thisisthe contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or
a zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register
Fa.

Fbv The value of the floating point Fb operand. Thisis the contents of register
Fb.

Table 3—3: Expression Operand Notation

Notation Meaning

IPR_X Contents of Internal Processor Register x)

IPR_SP[mode]  Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n
X[m] Element m of array X
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3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier notation
used in the VAX Architecture Standard. Instruction operands are described as follows:

<name>. <access type><data type>

3.2.2.1 Operand Name Notation

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand (integer or
floating). It can be one of the following:

Table 3—4: Operand Name Notation

Name Meaning

disp The displacement field of the instruction

fnc The PALcode function field of the instruction

Ra An integer register operand in the Rafield of the instruction

Rb Aninteger register operand in the Rb field of the instruction

#b Aninteger literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Rafield of the instruction
Fb A floating-point register operand in the Rb field of the instruction
Fc A floating-point register operand in the Rc field of the instruction

3.2.2.2 Operand Access Type Notation

A letter that denotes the operand access type:

Table 3-5: Operand Access Type Notation

Access Type Meaning

a The operand is used in an address calculation to form an effective
address. The datatype code that follows indicates the units of addressabil-
ity (or scale factor) applied to this operand when the ingruction is
decoded.

For example:

".a" means scale by 4 (longwords) to get byte units (used in branch dis-
placements); ".ab" means the operand is already in byte units (used in
|oad/store instructions).

i The operand is an immediate literal in theinstruction.
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Table 3-5: Operand Access Type Notation (Continued)

Access Type Meaning

r The operand is read only.
m The operand is both read and written.
w The operand is write only.

3.2.2.3 Operand Data Type Notation

A letter that denotes the data type of the operand:

Table 3—6: Operand Data Type Notation

Data Type Meaning

b Byte

f F floating

g G_floating

I Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE doublefloating (T_floating)

w Word

X The datatypeis specified by the instruction

3.2.3 Operators

Table 3—7 describes the enators:

Table 3—7: Operators

Operator Meaning

! Comment delimiter

+ Addition

- Subtraction

* Signed multiplication
*U Unsigned multiplication

* %

Exponentiation (left argument raised to right argument)
Division

Replacement

3-6 Alpha Architecture Handbook



Table 3—7: Operators (Continued)

Operator Meaning

Il Bit concatenation

{} Indicates explicit operator precedence

x) Contents of memory |location whose addressis x

X <m:n> Contents of bit field of x defined by bits n through m

X <m> M’th bit of x

ACCESS(x,y) Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the
address is accessible, else FALSE.

AND Logical product

ARITH_RIGHT_SHIFT(x,y)

BYTE_ZAP(x,y)

Arithmetic right shift of first operand by the second oper-
and. Y is an unsigned shift value. Bit 63, the sign bit, is
copied into vacated bit positions and shifted out bits are
discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y hit to x byte cor-
respondence is y <n» X <8n+7:8n>. This correspon-
dence also exists between y and the result.

For each bit of y from n =0 to 7, if y <n> is O then byte
<n> of x is copied to byte <n> of result, and if y <n>is 1
then byte <n> of result is forced to all zeros.
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Table 3—7: Operators (Continued)

Operator Meaning
CASE The CASE construct selects one of several actions based
on the value of itsargument. The form of acaseis:
CASE argurent CF
argval uel: action_1
argval ue2: action_2
argval uen: action_n
[otherw se: default_action]
ENDCASE
If the value of argument is argvaluel then action 1 isexe-
cuted; if argument = argvalue2, then action_2 is executed,
and so forth.
Once a single action is executed, the code stream breaks
to the ENDCASE (thereis an implicit break asin Pascal).
Each action may nonetheless be a sequence of
pseudocode operations, one operation per line.
Optionally, the last argvalue may be the atom ‘otherwise’.
The associated default action will be taken if none of the
other argvalues match the argument.
DIV Integer division (truncates)

LEFT_SHIFT(x,y)

LOAD_LOCKED

lg

MAP_x

MAXS(X,Y)

MAXU(X,y)

MINS(X,y)

MINU(X,y)

X MODy

Logical left shift of first operand by the second operand.Y
is an unsigned shift value. Zeros are moved into the
vacated bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per-
processor locked physical _address register and sets the
per-processor lock_flag.

Log to the base 2.

F _float or S_float memory-to-register exponent mapping
function.

Returns the larger of x and y, with x and y interpreted as
signed integers.

Returns the larger of x and y, with x and y interpreted as
unsigned integers.

Returns the smaller of x and y, with x and y interpreted as
signed integers.

Returns the smaller of x and y, with x and y interpreted as
unsigned integers.

x modulo y
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Table 3—7: Operators (Continued)

Operator Meaning
NOT Logical (ones) complement
OR Logica sum

PHYSICAL_ADDRESS
PRIORITY_ENCODE

Relational Operators:

RIGHT_SHIFT(x,y)

SEXT(X)
STORE_CONDITIONAL

Translation of avirtual address

Returns the bit position of most significant set hit, inter-
preting its argument as a positive integer (=int(Ig(x))). For
example:

priority encode( 255 ) =7

Operator Meaning

LT L ess than signed

LTU L ess than unsigned

LE Less or equal signed

LEU Less or equal unsigned
EQ Equal signed and unsigned
NE Not equal signed and unsigned
GE Greater or equal signed
GEU Greater or equal unsigned
GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bhit signed

Logical right shift of first operand by the second operand.
Y is an unsigned shift value. Zeros are moved into
vacated bit positions, and shifted out bits are discarded.

X is sign-extended to the required size.

If thelock flag isset, then do the indicated store and clear
the lock_flag.
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Table 3—7: Operators (Continued)

Operator Meaning

TEST(x,cond) The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x
bears the specified relation to 0, else FALSE is returned.
Integer and floating test conditions are drawn from the
preceding list of relational operators.

XOR Logical difference
ZEXT(X) X is zero-extended to the required size.

3.2.4 Notation Conventions

Thefollowing conventions are used:

e Only operands that appear on the left side of a replacement operator are modified.

* No operator precedence is assumed other than that replacement () has the lowest pre-
cedence. Explicit precedence isindicated by the use of "{}".

e All arithmetic, logical, and relational operators are defined in the context of their oper-
ands. For example, "+" applied to G_floating operands means a G_floating add,
whereas "+" applied to quadword operands is an integer add. Similarly, "LT" is a
G_floating comparison when applied to G_floating operands and an integer comparison
when applied to quadword operands.

3.3 Instruction Formats

There arefive basic Alphainstruction formats:

¢  Memory
e Branch
e Operate

e Floating-point Operate

e PALcode
All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26> of the
instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to avalue of 31.

Softwar e Note:

There are several instructions, each formatted as a memory instruction, that do not use the
Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch, Fetch M, Read
Process Cycle Counter, Read and Clear, Read and Set, and Trap Barrier.
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3.3.1 Memory Instruction Format

The Memory format is used to transfer data between registers and memory, to load an effec-
tive address, and for subroutine jumps. It has the format shown in Figure 3—1.

Figure 3—1. Memory Instruction Format

31 26 25 2120 16 15 0

Opcode Ra Rb Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address fields, Ra
and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents of register
Rb to form avirtual address. Overflow isignored in this calculation.

The virtual addressis used as amemory |load/store address or aresult value, depending on the
specific instruction. The virtual address (va) is computed as follows for all memory format
instructions except the load address high (LDAH):

va « {Rov + SEXT(Menory_disp)}
For LDAH the virtual address (va) is computed as follows:
va « {Rov + SEXT(Menory_di sp*65536) }

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement field in the
memory instruction format with a function code that designates a set of miscellaneous instruc-
tions. The format is shown in Figure 3-2.

Figure 3—-2: Memory Instruction with Function Code Format

31 26 25 2120 16 15 0

Opcode Ra Rb Function

The memory instruction with function code format contains a 6-bit opcode field and a 16-bit
function field. Unused function codes produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are two fields, Raand Rb. The usage of those fields depends on the instruction. See Sec-
tion 4.11.
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3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, IMP, JISR_COROUTINE) the displacement
field is used to provide branch-prediction hints as described in Section 4.3.

3.3.2 Branch Instruction For mat

The Branch format is used for conditional branch instructions and for PC-relative subroutine
jumps. It has the format shown in Figure 3-3.

Figure 3—-3: Branch Instruction Format

31 26 25 2120 0

Opcode Ra Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address field (Ra),
and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This meansiit is shifted left two bits (to
address alongword boundary), sign-extended to 64 bits, and added to the updated PC to form
the target virtual address. Overflow isignored in this calculation. The target virtual address
(va) is computed as follows:

va « PC + {4*SEXT(Branch_di sp)}
3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer register
operations. The Operate format allows the specification of one destination operand and two
source operands. One of the source operands can be a literal constant. The Operate format in
Figure 3—4 shows the two cases when bit <12> of the instruction is 0 and 1.

Figure 3—4: Operate Instruction Format

31 26 25 2120 16151312 11 5 4 0

Opcode | Ra Rb [SBZ|0| Function Rc

31 26 25 2120 1312 11 5 4 0

Opcode | Ra LIT

[EnY

Function Rc
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An Operate format instruction contains a 6-bit opcode field and a 7-bit function code field.
Unused function codes for opcodes defined as reserved in the Version 5 Alpha architecture
specification (May 1992) produce an illegal instruction trap. Those opcodes are 01, 02, 03, 04,
05, 06, 07, OA, OC, 0D, OE, 14, 19, 1B, 1D, 1E, and 1F. For other opcodes, unused function
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security holes.

There are three operand fields, Ra, Rb, and Rc.

The Rafield specifies a source operand. Symbolically, the integer Rav operand is formed as
follows:

| F inst<25: 21> EQ 31 THEN
Rav —~ O

BLSE
Rav — Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an integer
register using hit <12> of the instruction.

If bit <12> of theinstruction is 0, the Rb field specifies a source register operand.

If bit <12> of theinstruction is 1, an 8-bit zero-extended literal constant is formed by bits
<20:13> of theinstruction. The literal is interpreted as a positive integer between 0 and 255
and is zero-extended to 64 bits. Symbolically, the integer Rbv operand is formed as follows:

IFinst <12> EQ 1 THEN
Rov ~ ZEXT(i nst <20: 13>)
ELSE
I F inst <20:16> EQ 31 THEN
Rov « 0
ELSE
Rv « Ro
END
END

The Rc field specifies a destination operand.

Floating-Point Operate | nstruction For mat

The Floating-point Operate format is used for instructions that perform floating-point register
to floating-point register operations. The Floating-point Operate format allows the specifica-
tion of one destination operand and two source operands. The Floating-point Operate format is
shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 2120 16 15 5 4 0

Opcode Fa Fb Function Fc
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A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-bit func-
tion field. Unused function codes for those opcodes defined as reserved in the Version 5 Alpha
architecture specification (May 1992) produce an illegal instruction trap. Those opcodes are
01, 02, 03, 04, 05, 06, 07, 14, 19, 1B, 1D, 1E, and 1F. For other opcodes, unused function
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security holes.

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either an integer or
floating-point operand as defined by the instruction.

The Fafield specifies a source operand. Symbolically, the Fav operand is formed as follows:

| F inst<25: 21> EQ 31 THEN
Fav « O

ELSE
Fav — Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as follows:

| F inst<20: 16> EQ 31 THEN
Fov - O

ELSE
Fov —~ Fb

END

Note:
Neither Fa nor Fb can be aliteral in Floating-point Operate instructions.
The Fc field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate format and per-
form register-to-register conversion operations. The Fb operand specifies the source; the Fa
field must be F31.

3.3.4.2 Floating-Point/Integer Register Moves

Instructions that move data between a floating-point register file and an integer register file are
a subset of of the Floating-point Operate format. The unused source field must be 31.

3.3.5 PALcode Instruction For mat

The Privileged Architecture Library (PALcode) format is used to specify extended processor
functions. It has the format shown in Figure 3—6.
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Figure 3—6: PALcode Instruction Format

31 26 25

0

Opcode

PALcode Function

The 26-bit PALcode function field specifies the operation. The source and destination oper-
ands for PAL code instructions are supplied in fixed registers that are specified in the individual
instruction descriptions.

An opcode of zero and a PAL code function of zero specify the HALT instruction.

Instruction Formats 3-15






Chapter 4

Instruction Descriptions

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The instruction
set is divided into the following sections:

Instruction Type Section
Integer load and store 4.2
Integer control 4.3
Integer arithmetic 4.4
Logical and shift 45
Byte manipulation 4.6
Floating-point load and store 4.7
Floating-point control 4.8
Floating-point branch 49
Floating-point operate 4.10
Miscellaneous 411
VAX compatibility 4,12

Multimedia (graphics and video) 4,13

Within each major section, closely related instructions are combined into groups and described
together.

Theinstruction group description is composed of the following:

The group name

The format of each instruction in the group, which includes the name, access type, and
datatype of each instruction operand

The operation of the instruction
Exceptions specific to the instruction

The instruction mnemonic and nhame of each instruction in the group
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e Quadlifiers specific to the instructions in the group
e A description of the instruction operation

e Optiona programming examples and optional notes on the instruction

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture is not per-
formed in either hardware or PALcode. System software may provide emulation routines for
subsetted instructions.

4.1.2 Floating-Point Subsets
Floating-point support is optional on an Alpha processor. An implementation that supports
floating-point must implement the following:
e The 32 floating-point registers
e TheFloating-point Control Register (FPCR) and the instructions to access it
e Thefloating-point branch instructions
e Thefloating-point copy sign (CPY Sx) instructions
e Thefloating-point convert instructions
e Thefloating-point conditional move instruction (FCMOV)
e TheS floating and T_floating memory operations

Softwar e Note:

A system that will not support floating-point operations is still required to provide the 32
floating-point registers, the Floating-point Control Register (FPCR) and the instructions to
access it, and the T_floating memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement facilitates the implementation of a
floating-point emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset groups:

1. VAX Floating-point Operate and Memory instructions (F_and G_floating).

2. |EEE Floating-point Operate instructions (S_and T_floating). Within this group, an
implementation can choose to include or omit separately the ability to perform |IEEE
rounding to plusinfinity and minus infinity.

Note:

If one instruction in a group is provided, all other instructions in that group must be
provided. An implementation with full floating-point support includes both groups; a
subset floating-point implementation supports only one of these groups. The individual
instruction descriptions indicate whether an instruction can be subsetted.

4-2 Alpha Architecture Handbook



4.1.3 Software Emulation Rules

General-purpose layered and application software that executes in User mode may assume that
certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores (STL, STQ, STF,
STG, STL, and STT) of unaligned data are emulated by system software. General-purpose lay-
ered and application software that executes in User mode may assume that subsetted
instructions are emulated by system software. Frequent use of emulation may be significantly
slower than using alternative code sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need not be pro-
vided in privileged access modes. System software that supports special-purpose dedicated
applications need not provide emulation in User mode if emulation is not needed for correct
execution of the special-purpose applications.

4.1.4 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have severa variants. For
example, for the VAX formats, Add F_floating (ADDF) is supported with and without float-
ing underflow enabled and with either chopped or VAX rounding. For IEEE formats, IEEE
unbiased rounding, chopped, round toward plus infinity, and round toward minus infinity can
be selected.

The different variants of such instructions are denoted by opcode qualifiers, which consist of a

slash (/) followed by a string of selected qualifiers. Each qualifier is denoted by a single char-
acter as shown in Table 4-1. The opcodes for each qualifier are listed in Appendix C.

Table 4-1: Opcode Qualifiers

Qualifier  Meaning

C Chopped rounding
D Rounding mode dynamic
M Round toward minus infinity

Inexact result enable
Exception completion enable

Floating underflow enable

< C w»w

Integer overflow enable

The default values are normal rounding, exception completion disabled, inexact result dis-
abled, floating underflow disabled, and integeerdow disabled.
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4.2 Memory Integer Load/Store I nstructions
Theinstructions in this section move data between the integer registers and memory.
They use the Memory instruction format. The instructions are summarized in Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA Load Address

LDAH Load Address High

LDBU L oad Zero-Extended Byte from Memory to Register
LDL L oad Sign-Extended Longword

LDL L L oad Sign-Extended Longword Locked

LDQ L oad Quadword

LDQ L L oad Quadword L ocked

LDQ U L oad Quadword Unaligned

LDWU Load Zero-Extended Word from Memory to Register
STB Store Byte

STL Store Longword

STL_ C Store Longword Conditional

STQ Store Quadword

STQ C Store Quadword Conditional

STQ U Store Quadword Unaligned

STW Store Word
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4.2.1 Load Address

Format:

LDAX Rawg,disp.ab(Rb.ab) I'Memory format
Operation:

Ra — Rov + SEXT(disp) ' LDA

Ra ~ Rov + SEXT(di sp*65536) ! LDAH
Exceptions:

None

I nstruction mnemonics:

LDA Load Address
LDAH Load Address High
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment for LDA, and 65536 times the sign-extended 16-bit displacement for LDAH. The 64-hbit
result is written to register Ra.
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4.2.2 Load Memory Data into Integer Register

Format:

LDx Rawg,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rov + SEXT(disp)}

CASE
bi g_endi an_data: va’ ~ va XCR 000, I'LDQ
bi g_endi an_data: va’ ~ va XCR 100, I LDL
bi g_endian_data: va’ ~ va XCR 110, I LD
bi g_endian_data: va’ ~ va XCR 111, ! LDBU
little endian_data: va’ ~ va
ENDCASE
Ra ~ (va')<63:0> 'LDQ
Ra — SEXT((va')<31:0>) I LDL
Ra — ZEXT((va')<15: 0>) | LD\
Ra — ZEXT((va')<07:0>) ! LDBU
Exceptions:
Access Violation
Alignment
Fault on Read

Translation Not Valid

I nstruction mnemonics:

LDBU Load Zero-Extended Byte from Memory to Register
LDL L oad Sign-Extended Longword from Memory to Register
LDQ L oad Quadword from Memory to Register
LDWU Load Zero-Extended Word from Memory to Register
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va ).

4-6 Alpha Architecture Handbook



In the case of LDQ and LDL, the source operand is fetched from memory, sign-extended, and
written to register Ra.

In the case of LDWU and LDBU, the source operand is fetched from memory, zero-extended,
and written to register Ra.

Inall cases, if the datais not naturally aligned, an alignment exception is generated.

Notes:

e Theword or byte that the LDWU or LDBU instruction fetches from memory is placed
in the low (rightmost) word or byte of Ra, with the remaining 6 or 7 bytes set to zero.

e Accesses have byte granularity.

e For big-endian access with LDWU or LDBU, the word/byte remains in the rightmost
part of Ra, but the va sent to memory has the indicated bits inverted. See Operation sec-
tion, above.

¢ No sparse address space mechanisms are allowed with the LDWU and LDBU instruc-
tions.

Implementation Notes:

e The LDWU and LDBU instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction returns bit O set. LDWU and LDBU are sup-
ported with software emulation in Alphaimplementations for which AMASK does not
return bit O set. Software emulation of LDWU and LDBU is significantly slower than
hardware support.

e Depending on an address space region’s caching policy, implementations may read a
(partial) cache block in order to do word/byte stores. This may only be done in regions
that have memory-like behavior.

e |mplementations are expected to provide sufficient low-order address bits and
length-of -access information to devices on /O buses. But, strictly speaking, thisis out-
side the scope of architecture.
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4.2.3 Load Unaligned Memory Data into Integer Register

Format:

LDQ_U Ra.wq,disp.ab(Rb.ab) 'Memory format
Operation:

va « {{Rbv + SEXT(disp)} AND NOr 7}

Ra ~ (va)<63:0>
Exceptions:

Access Violation
Fault on Read
Translation Not Valid

I nstruction mnemonics:

LDQ U Load Unaligned Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then the low-order three bits are cleared. The source operand is fetched from memory
and written to register Ra.
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4.2.4 Load Memory Datainto I nteger Register L ocked

Format:

LDx_L Rawg,disp.ab(Rb.ab) I'Memory format

Operation:
va « {Rov + SEXT(disp)}

CASE
big_endian_data: va ~ va XCR000, ! LDQL
bi g_endi an_data: va’ ~ va X(OR 100, ! LDL_L
little endian_data: va’ — va I LDOL L

ENDCASE

lock flag « 1

| ocked_physi cal _address ~ PHYS CAL_ADDRESS(va)

Ra — SEXT((va')<31:0>) I DL L

Ra ~ (va)<63:0> I LDQ L

Exceptions:

Access Violation

Alignment

Fault on Read

Translation Not Valid

I nstruction mnemonics:

LDL L Load Sign-Extended Longword from Memory to Register
L ocked
LDQ L L oad Quadword from Memory to Register Locked
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’ ). The source operand is fetched
from memory, sign-extended for LDL_L, and written to register Ra.
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When aLDx_L instruction is executed without faulting, the processor records the target physi-
cal addressin a per-processor locked physical _address register and sets the per-processor
lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed (accessing
within the same 16-byte naturally aligned block as the LDx_L), the store occurs; otherwise, it
does not occur, as described for the STx_C instructions. The behavior of an STx_C instruction
is UNPREDICTABLE, as described in Section 4.2.5, when it does not access the same 16-byte
naturally aligned block asthe LDx_L.

Processor A causes the clearing of a set lock_flag in processor B by doing any of the following

in B's locked range of physical addresses: a successful store, a successful store_conditional, or
executing a WH64 instruction that modifies data on proceBsArprocessor’s locked range is

the aligned block of 2**N bytes that includes the locked_physical _address. The 2**N value is
implementation dependent. It is at least 16 (minimum lock range is an aligned 16-byte block)
and is at most the page size for that implementation (maximum lock range is one physical

page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL REI,
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or not a pro-
cessor’s lock _flag is cleared on any other CALL_PAL instruction. It is UNPREDICTABLE
whether a processor’s lock_flag is cleared by that processor executing a normal load or store
instruction. It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that proces-
sor executing a taken branch (including BR, BSR, and Jumps); conditional branches that fall
through do not clear the lock_flag. It is UNPREDICTABLE whether a processor’s lock_flag is
cleared by that processor executing a WH64 or ECB instruction.

The sequence:

LDx L
Modify
STx_C
BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum in shared
memory if the branch falls through. If the branch is taken, the store did not modify memory
and the sequence may be repeated until it succeeds.

Notes:

e LDx_ L instructions do not check for write access; hence a matching STx_C may take
an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any architecturally
visible state on another processor, and in particular cannot cause an STx_C on another
processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may be

followed by a conditional branch: on the fall-through path an STx_C is executed,
whereas on the taken path no matching STx_C is executed.
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If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clearslock_flag.

e Softwarewill not emulate unaligned LDx_L instructions.

e |f the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to the lock
range; hence, no useful program should do this.

e |f any other memory access (ECB, LDx, LDQ U, STx, STQ_U, WH®64) is executed on
the given processor between the LDx_L and the STx_C, the sequence above may
aways fail on some implementations; hence, no useful program should do this.

e |f a branch is taken between the LDx_L and the STx_C, the sequence above may
aways fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

e |f asubsetted instruction (for example, floating-point) is executed between the LDx_L
and the STx_C, the sequence above may always fail on some implementations because
of the lllegal Instruction Trap; hence, ho useful program should do this.

e |f aningtruction with an unused function code is executed between the LDx_L and the
STx_C, the sequence above may always fail on some implementations because an
instruction with an unused function code is UNPREDICTABLE.

e |f alarge number of instructions are executed between the LDx_L and the STx_C, the
sequence above may always fail on some implementations because of atimer interrupt
aways clearing the lock_flag before the sequence compl etes; hence, no useful program
should do this.

e Hardware implementations are encouraged to lock no more than 128 bytes. Software
implementations are encouraged to separate locked locations by at least 128 bytes from
other locations that could potentially be written by another processor while the first
location is locked.

e Execution of a WH64 instruction on processor A to a region within the lock range of
processor B, where the execution of the WH64 changes the contents of memory, causes
the lock_flag on processor B to be cleared. If the WH64 does not change the contents of
memory on processor B, it need not clear the lock_flag.

Implementation Notes:

Implementations that impede the mobility of a cache block on LDx_L, such as that which
may occur in a Read for Ownership cache coherency protocol, may release the cache block
and make the subsequent STx_C fail if a branch-taken or memory instruction is executed
on that processor.

All implementations should guarantee that at least 40 non-subsetted operate instructions
can be executed between timer interrupts.
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4.25 Sorelnteger Register Data into Memory Conditional

Format:

STx_C Ra.mx,disp.ab(Rb.ab) 'Memory format

Operation:
va « {Rov + SEXT(disp)}

CASE

bi g_endian_data: va ~ va XCR 000, I STQC
bi g_endi an_data: va ~ va XCR 100, I STL C
little endian_data: va’ — va I STL C

ENDCASE

IF lock flag EQ 1 THEN
(va’')<31: 0> ~ Rav<3l:0> I STL C
(va’) « Rav I STQC

Ra ~ lock_flag

lock flag - O

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

I nstruction mnemonics:

STL_ C Store Longword from Register to Memory Conditional
STQ C Store Quadword from Register to Memory Conditional
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va' ).

If the lock_flag is set and the address meets the following constraints relative to the address
specified by the preceding LDx_L instruction, the Ra operand is written to memory at this
address. If the address meets the following constraints but the lock_flag is not set, azerois
returned in Ra and no write to memory occurs. The congtraints are:
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e The computed virtual address must specify a location within the naturally aligned
16-byte block in virtual memory accessed by the preceding LDx_L instruction.

e The resultant physical address must specify a location within the naturally aligned
16-byte block in physical memory accessed by the preceding LDx_L instruction.

If those addressing constraints are not met, it is UNPREDICTABLE whether the STx_C
instruction succeeds or fails, regardless of the state of the lock_flag, unless the lock_flag is
cleared as described in the next paragraph.

Whether or not the addressing constraints are met, a zero is returned and no write to memory
occurs if the lock_flag was cleared by execution on a processor of a CALL_PAL REl,
CALL_PAL rti, CALL_PAL rfe, or STx_C, after the most recent execution on that processor
of aLDx_L instruction (in processor issue sequence).

Inall cases, thelock flag is set to zero at the end of the operation.

Notes:
e Softwarewill not emulate unaligned STx_C instructions.

e Each implementation must do the test and store atomically, asillustrated in the follow-
ing two examples. (See Section 5.6.1 for complete information.)

— If two processors attempt STx_C instructions to the same lock range and that lock
range was accessed by both processors’ preceding LDx_L instructions, exactly one
of the stores succeeds.

— A processor executes a LDx_L/STx_C sequence and includes an MB between the
LDx_L to a particular address and thecessful STx_C to a different address (one
that meets the constraints required for predictable behavior). That instruction
sequence establishes an access order under which a store operation by another pro-
cessor to that lock range occurs before the LDx_L or after the STx_C.

e |f the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to the lock
range; hence, no useful program should do this.

e Thefollowing sequence should not be used:

try again: LDQL R, x
<nodi fy RL>
STQC RL, x
BEQ Rl, try again

That sequence penalizes performance when the STQ C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the Alpha
architecture. In the case where the STQ_C succeeds and the branch will actually fall
through, that sequence incurs unnecessary delay due to a mispredicted backward
branch. Instead, a forward branch should be used to handle the failure case, as shown
in Section 5.5.2.
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Softwar e Note:

If the address specified by a STx_C instruction does not match the one given in the
preceding LDx_L instruction, an MB is required to guarantee ordering between the two
instructions.

Har dwar e/Softwar e Implementation Note:

STQ _C isused in the first Alpha implementations to access the MailBox Pointer Register
(MBPR). In this specia case, the effect of the STQ C is well defined (that is, not
UNPREDICTABLE) even though the preceding LDx_L did not specify the address of the
MBPR. The effect of STx_C in this special case may vary from implementation to
implementation.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to prevent any
other store from changing the state of the lock bit, before its outcome can be determined.

If an implementation could encounter a TB or cache miss on the data reference of the
STx_C in the sequence above (as might occur in some shared |- and D-stream
direct-mapped TBs/caches), it must be able to resolve the miss and complete the store
without always failing.
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4.2.6 Sorelnteger Register Datainto Memory

Format:
STx Raurx,disp.ab(Rb.ab) !Memory format

Operation:
va « {Rov + SEXT(disp)}

CASE
bi g_endi an_data: va’ ~ va XCR 000, I STQ
bi g_endi an_data: va’ ~ va XCR 100, I STL
bi g_endi an_data: va’ ~ va XCR 110, I STW
bi g_endi an_data: va’ ~ va XCR 111, | STB
little endian_data: va’ — va

ENDCASE
(va') <« Rav I STQ
(va')<31:00> ~ Rav<3l: 0> I STL
(va')<15: 00> ~ Rav<15: 0> I STW
(va')<07: 00> ~ Rav<07:0> | STB

Exceptions:

Access Violation
Alignment

Fault on Write
Translation Not Valid

I nstruction mnemonics:

STB Store Byte from Register to Memory

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

STW Store Word from Register to Memory
Qualifiers:

None

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va ).
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The Raoperand is written to memory at this address. |f the data is not naturally aligned, an
alignment exception is generated.

Notes:

e The word or byte that the STB or STW instruction stores to memory comes from the
low (rightmost) byte or word of Ra.

e Accesses have byte granularity.

e For big-endian access with STB or STW, the byte/word remains in the rightmost part of
Ra, but the va sent to memory has the indicated bits inverted. See Operation section,
above.

* No sparse address space mechanisms are allowed with the STB and STW instructions.

Implementation Notes:

e The STB and STW instructions are supported in hardware on Alpha implementations
for which the AMASK instruction returns bit 0 set. STB and STW are supported with
software emulation in Alphaimplementations for which AMASK does not return bit 0
set. Software emulation of STB and STW issignificantly dower than hardware support.

e Depending on an address space region’s caching policy, implementations may read a
(partial) cache block in order to do byte/word stores. This may only be done in regions
that have memory-like behavior.

e |mplementations are expected to provide sufficient low-order address bits and
length-of -access information to devices on /O buses. But, strictly speaking, thisis out-
side the scope of architecture.
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4.2.7 SoreUnaligned Integer Register Data into Memory

Format:
STQ U Rarg,disp.ab(Rb.ab) IMemory format

Operation:

va « {{Rov + SEXT(disp)} AND NOr 7}
(va)<63: 0> ~ Rav<63: 0>

Exceptions:

Access Violation
Fault on Write
Translation Not Valid

I nstruction mnemonics:

STQ U Store Unaligned Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then clearing the low order three bits. The Ra operand is written to memory at this
address.
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to subroutine, and
jump instructions. The PC used in these instructions is the updated PC, as described in Section
3.1.1.

To allow implementations to achieve high performance, the Alpha architecture includes
explicit hints based on a branch-prediction model:

e For many implementations of computed branches (JSR/RET/IJMP), there is a substan-
tial performance gain in forming a good guess of the expected target |-cache address
before register Rb is accessed.

e For many implementations, the first-level (or only) I-cache is no bigger than a page (8
KB to 64 KB).

e Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target address,
return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function code
(IMP/ISR/RET/JSR_COROUTINE), and, for JSR and JMP, afield that statically specifiesthe
16 low bits of the most likely target address. The PC-relative calculation using these bits can
be exactly the PC-relative calculation used in unconditional branches. The low 16 bits are
enough to specify an I-cache block within the largest possible Alpha page and hence are
expected to be enough for branch-prediction logic to start an early I-cache access for the most
likely target.

For all branches, hint or opcode bits are used to distinguish simple branches, subroutine calls,
subroutine returns, and coroutine links. These distinctions allow branch-predict logic to main-
tain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken/fall-through
hint. The instructions are summarized in Table 4-3.

Table 4-3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero
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Table 4-3: Control Instructions Summary (Continued)

Mnemonic Operation

BNE Branch if Register Not Equal to Zero
BR Unconditiona Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE

Jump to Subroutine Return
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4.3.1 Conditional Branch

Format:
Bxx Ra.rqg,disp.al 'Branch format

Operation:

{update PG

va « PC + {4*SEXT(disp)}

| F TEST(Rav, Condition_based_on_(pcode) THEN
PC - va

Exceptions:

None

I nstruction mnemonics:

BEQ Branch if Register Equal to Zero
BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero
BLBC Branch if Register Low Bit Is Clear
BLBS Branch if Register Low Bit Is Set
BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero
BNE Branch if Register Not Equal to Zero
Qualifiers:
None
Description:

Register Raistested. If the specified relationship is true, the PC isloaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This meansit is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/— 1M instructions.

The test is on the signed quadword integer interpretation of the register contents; all 64 bits are
tested.
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4.3.2 Unconditional Branch

Format:

BxR Rawaq,disp.a IBranch format

Operation:

{update PG

Ra -« PC

PC « PC + {4*SEXT(disp)}
Exceptions:

None

I nstruction mnemonics:

BR Unconditiona Branch
BSR Branch to Subroutine
Qualifiers:
None
Description:

The PC of the following instruction (the updated PC) is written to register Ra and then the PC
is loaded with the target address.

The displacement is treated as a signed longword offset. This meansit is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit sighed displacement gives a
forward/backward branch distance of +/— 1M instructions.

PC-relative addressability can be established by:

BR Rx, L1
L1:
Notes:

e BR and BSR do identical operations. They only differ in hints to possible branch-pre-
diction logic. BSR is predicted as a subroutine call (pushes the return address on a
branch-prediction stack), whereas BR is predicted as a branch (no push).
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4.3.3 Jumps

Format:
mnemonic Ra.wg,(Rb.ab),hint 'Memory format

Operation:

{update PG

va « Rov AND {NOr 3}
m «— FC

PC - va

Exceptions:

None

I nstruction mnemonics:

JMP Jump
JSR Jump to Subroutine
RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:
None
Description:

The PC of the instruction following the Jump instruction (the updated PC) is written to register
Ra and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bhits of Rb are ignored. Ra and Rb may
specify the same register; the target calculation using the old value is done before the new
valueisassigned.

All Jump instructions do identical operations. They only differ in hints to possible branch-pre-
diction logic. The displacement field of the instruction is used to pass thisinformation. The
four different "opcodes" set different bit patterns in disp<15:14>, and the hint operand sets
disp<13:0>.

These bits are intended to be used as shown in Table 4-4.
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Table 4—4: Jump Instructions Branch Prediction

disp<1514> Meaning  TECTCL, Stack Adtor
00 JMP PC + {4*disp<13:0>} —

01 JSR PC + {4*disp<13:0>} Push PC

10 RET Prediction stack Pop

11 JSR_COROUTINE Prediction stack Pop, push PC

The design in Table 4—-4 allows specification of the low 16 bits of a likely longword target
address (enough bits to start a useful I-cache access early), and also allows distinguishing call
from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits can improve

performance but is not needed for correct operation. See Section A.2.2 for more information on
branch prediction.

An unconditional long jump can be performed by:

JMP R31, (Rb), hi nt

Coroutine linkage can be performed by specifying the same register in both the Ra and Rb
operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE) (that is, the tar-
get address prediction, if any, would come from a predictor implementation stack), then bits
<13:0> are reserved for software and must be ignored by all implementations. All encodings
for bits <13:0> are used by Compaq software or Reserved to Compad, as follows:

Encoding Meaning
00006 Indicates non-procedure return
00014 Indicates procedure return

All other encodings are reserved to Compag.

Instruction Descriptions 4-23



4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, signed and unsigned com-
pare, and bit count operations.

Count instruction (CI X) extension implementation note:

The CIX extension to the architecture provides the CTLZ, CTPOP, and CTTZ instructions.
Alpha processors for which the AMASK instruction returns bit 2 set implement these
instructions. Those processors for which AMASK does not return bit 2 set can take an
Illegal Instruction trap, and software can emulate their function, if required. AMASK is
described in Sections4.11.1 and D.3.

The integer instructions are summarized in Table 4-5

Table 4-5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD Add Quadword/Longword

SAADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal
CTLZ Count leading zero

CTPOP Count population

CTTZ Count trailing zero

CMPULT Compare Unsigned Quadword Less Than
CMPULE Compare Unsigned Quadword Less Than or Equal
MUL Multiply Quadword/Longword

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/L ongword

$4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done by using UMULH;
division by a variable can be done by using a subroutine. See Section A.4.2.
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4.4.1 Longword Add

Format:
ADDL Rarl,Rb.rl,Rc.wq IOperate format
ADDL Raurl #h.ib,Rc.wq !Operate format
Operation:

R -~ SEXT( (Rav + Rov)<31:0>)

Exceptions:

Integer Overflow

I nstruction mnemonics:

ADDL Add Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rais added to register Rb or aliteral and the sign-extended 32-bit sum is written to
Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
32-bit sum. Overflow detection is based on the longword sum Rav<31:0> + Rbv<31:0>.
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4.4.2 Scaled Longword Add
Format:

SXADDL Ra.rl,Rb.rq,Rc.wq !Operate format
SxADDL Ra.rl #b.ib,Rc.wq !Operate format

Operation:

CASE

SAADDL: R~
SBADDL: R
ENDCASE

BEFT_SH FT(Rav, 2)) + Rov)<31: 0>)

SEXT (((L
SEXT (((LEFT_SH FT(Rav, 3)) + Rov)<31:0>)

Exceptions:

None

| nstruction mnemonics:

SAADDL Scaled Add Longword by 4
SBADDL Scaled Add Longword by 8
Qualifiers:
None
Description:

Register Rais scaled by 4 (for SAADDL) or 8 (for SSADDL) and is added to register Rb or a
literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Raand Rb are ignored. Rcis a proper sign extension of the truncated 32-bit
sum.
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4.4.3 Quadword Add

Format:
ADDQ Ra.rg,Rb.rg,Rc.wq |Operate format
ADDQ Ra.rg,#b.ib,Rc.wq !Operate format
Operation:

R -« Rav + Rov

Exceptions:

Integer Overflow

I nstruction mnemonics:

ADDQ Add Quadword

Qualifiers:
Integer Overflow Enable (/V)

Description:
Register Rais added to register Rb or aliteral and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.

The unsigned compare instructions can be used to generate carry. After adding two values, if

the sum is less unsigned than either one of the inputs, there was a carry out of the most signifi-
cant bit.

Instruction Descriptions 4-27



4.4.4 Scaled Quadword Add

Format:

SXADDQ Ra.rg,Rb.rg,Rc.wq !Operate format

SXADDQ Rarg,#b.ib,Rc.wg !Operate format

Operation:

CASE

SIADDQ Rc — LEFT _SHFT(Rav,2) + Rov
SBADDQ Rc ~ LEFT _SHFT(Rav, 3) + Rov
ENDCASE

Exceptions:

None

I nstruction mnemonics:

SAADDQ Scaled Add Quadword by 4
SBADDQ Scaled Add Quadword by 8
Qualifiers:
None
Description:

Register Rais scaled by 4 (for SAADDQ) or 8 (for SSADDQ) and is added to register Rb or a
literal, and the 64-bit sum iswritten to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.
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445 Integer Signed Compare

Format:

CMPxx Ra.rg,Rb.rg,Rc.wq !Operate format

CMPxx Rarg,#b.ib,Rc.wg !Operate format

Operation:

| F Rav Sl G\ED _RELATI ON Rov THEN
R -1

ELSE

R: «— 0

Exceptions:

None

I nstruction mnemonics:

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal
CMPLT Compare Sighed Quadword Less Than
Qualifiers:
None
Description:

Register Rais compared to Register Rb or aliteral. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero iswritten to Rc.
Notes:

e Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A ,B isthe same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included.
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4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rg,Rb.rg,Rc.wq !Operate format

CMPUXxx Ra.rg,#b.ib,Rc.wq !Operate format

Operation:

| F Rav UNSI G\ED_RELATI ON Rov THEN
R - 1

ELSE
R: «— 0

Exceptions:

None

I nstruction mnemonics:

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than
Qualifiers:
None
Description:

Register Ra is compared to Register Rb or aliteral. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero iswritten to Rc.
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4.4.7 Count Leading Zero

Format:

CTLZ Rb.rg,Rc.wq I Operate format

Operation:

tenp =0

FORi FROM 63 DOM TO O

IF{ Rov<i> EQ 1 } THEN BREAK
tenp = tenp + 1

END

Rc<6: 0> ~ tenp<6: 0>
Rc<63: 7> ~ 0O

Exceptions:

None

I nstruction mnemonics:

CTLZ Count Leading Zero

Qualifiers:

None
Description:

The number of leading zeros in Rb, starting at the most significant bit position, iswritten to Rc.
Ramust be R31.
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4.4.8 Count Population

Format:

CTPOP Rb.rq,Rc.wq I Operate format

Operation:

tenp =0

FORi FROM O TO 63

IF{ Rovsi> EQ1 } THEN tenp =tenp + 1
END

Rc<6: 0> ~ tenp<6: 0>

Rc<63:7> ~ 0O

Exceptions:

None

I nstruction mnemonics:

CTPOP Count Population
Qualifiers:

None
Description:

The number of onesin Rb is written to Rc. Ramust be R31.
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4.4.9 Count Trailing Zero

Format:

CTTZ Rb.rq,Rc.wq I Operate format

Operation:

tenp =0

FORi FROM O TO 63
IF{ Rov<i> EQ 1 } THEN BREAK
tenp = tenp + 1

END

Rc<6: 0> ~ tenp<6: 0>

Rc<63: 7> ~ 0O

Exceptions:

None

I nstruction mnemonics:

CTTZ Count Trailing Zero
Qualifiers:

None
Description:

The number of trailing zerosin Rb, starting at the least significant bit position, iswritten to Rc.
Ramust be R31.
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4.4.10 Longword Multiply

Format:
MULL Rarl,Rb.rl,Rc.wq IOperate format
MULL Raurl #h.ib,Rc.wq !Operate format
Operation:

R « SEXT ((Rav * Rov)<31:0>)

Exceptions:

Integer Overflow

I nstruction mnemonics:

MULL Multiply Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rais multiplied by register Rb or aliteral and the sign-extended 32-bit product is
written to Rc.

The high 32 bits of Raand Rb are ignored. Rcis a proper sign extension of the truncated 32-bit
product. Overflow detection is based on the longword product Rav<31:0> * Rbv<31:0>. On
overflow, the proper sign extension of the least significant 32 bits of the true result is written to
the destination register.

The MULQ instruction can be used to return the full 64-bit product.
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4.4.11 Quadword Multiply

Format:
MULQ Ra.rg,Rb.rg,Rc.wq !Operate format
MULQ Ra.Rqg#b.ib,Rc.wq IOperate format
Operation:

R -« Rav * Rov

Exceptions:

Integer Overflow

I nstruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rais multiplied by register Rb or a literal and the 64-bit product is written to register
Rc. Overflow detection is based on considering the operands and the result as signed quanti-
ties. On overflow, the least significant 64 bits of the true result are written to the destination
register.

The UMULH instruction can be used to generate the upper 64 hits of the 128-bit result when
an overflow occurs.
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4.4.12 Unsigned Quadword Multiply High

Format:
UMULH Ra.rq,Rb.rq,Rc.wq !Operate format
UMULH Ra.rg,#b.ib,Rc.wqg !0Operate format
Operation:

R - {Rav * U Rov}<127: 64>

Exceptions:

None

I nstruction mnemonics:

UMULH Unsigned Multiply Quadword High
Qualifiers:

None
Description:

Register Raand Rb or aliteral are multiplied as unsigned numbers to produce a 128-bit resullt.
The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result as
follows:

Raand Rb are unsigned: result of UMULH
Ra and Rb are signed: (result of UMULH) — Ra<63>*Rb — Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.
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4.4.13 Longword Subtract

Format:
SUBL Ra.rl,Rb.rl,Rc.wq IOperate format
SUBL Ra.rl,#b.ib,Rc.wq !Operate format
Operation:

R « SEXT ((Rav - Rov)<31:0>)
Exceptions:

Integer Overflow

I nstruction mnemonics:

SUBL Subtract Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or aliteral is subtracted from register Ra and the sign-extended 32-bit differenceis
written to Rc.

The high 32 bits of Raand Rb are ignored. Rcis a proper sign extension of the truncated 32-bit
difference. Ovettbw detection is based on the longword difference Rav<31:0> — Rbv<31:0>.
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4.4.14 Scaled Longword Subtract

Format:

SxSUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SxSUBL Raurl #h.ib,Rc.wq !Operate format

Operation:

CASE
SASUBL:
S8SUBL:

ENDCASE

BEFT_SH FT(Rav, 2)) - Rov)<31l: 0>)

RE « SEXT (((L
Re « SEXT (((LEFT_SH FT(Rav, 3)) - Rov)<31:0>)

Exceptions:

None

I nstruction mnemonics:

SASUBL Scaled Subtract Longword by 4
S8SUBL Scaled Subtract Longword by 8
Qualifiers:
None
Description:

Register Rb or aliteral is subtracted from the scaled value of register Ra, which is scaled by 4
(for SASUBL) or 8 (for SBSUBL), and the sign-extended 32-hit differenceiswritten to Rc.

The high 32 bits of Raand Rb are ignored. Rcis a proper sign extension of the truncated 32-bit
difference.
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4.4.15 Quadword Subtract

Format:
SUBQ Ra.rg,Rb.rg,Rc.wq !Operate format
SUBQ Ra.rg,#b.ib,Rc.wq IOperate format
Operation:

R -« Rav - Rov

Exceptions:

Integer Overflow

I nstruction mnemonics:

SUBQ Subtract Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or aliteral is subtracted from register Ra and the 64-bit difference is written to reg-
ister Rc. On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend (Rav) is
less unsigned than the subtrahend (Rbv), a borrow will occur.
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4.4.16 Scaled Quadword Subtract

Format:

SxSUBQ Ra.rg,Rb.rg,Rc.wq !Operate format

SxSUBQ Rarg,#b.ib,Rc.wq IOperate format

Operation:

CASE

ASBQ R ~ LEFT SHFT(Rav,2) - Rov
BIBQ R ~ LEFT_SHFT(Rav, 3) - Rov
ENDCASE

Exceptions:

None

I nstruction mnemonics:

SASUBQ Scaled Subtract Quadword by 4
S8SUBQ Scaled Subtract Quadword by 8
Qualifiers:
None
Description:

Register Rb or aliteral is subtracted from the scaled value of register Ra, which is scaled by 4
(for SASUBQ) or 8 (for SBSUBQ), and the 64-hit difference is written to Rc.

4-40 Alpha Architecture Handbook



4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move integer
instructions perform conditional s without a branch. The shift instructions perform left and right
logical shift and right arithmetic shift. These are summarized in Table 4—6.

Table 4-6: Logical and Shift Instructions Summary

Mnemonic Operation
AND Logical Product
BIC Logical Product with Complement
BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference
CMOVxx Conditional Move Integer
SLL Shift Left Logical
SRA Shift Right Arithmetic
SRL Shift Right Logical
Softwar e Note:

There is no arithmetic left shift instruction. Where an arithmetic left shift would be used, a
logical shift will do. For multiplying by a small power of two in address computations,
logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift widhrflow checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done with a left
logical shift and a right arithmetic shift.
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45.1 Logical Functions

Format:
mnemonic Ra.rg,Rb.rg,Rc.wq !Operate format
mnemonic Ra.rg,#b.ib,Rc.wq !Operate format
Operation:
R « Rav AND Rov 1 AND
R « Rav QR Rov 1BI'S
R -« Rav XXR Rov I XCR
Re « Rav AND {NOT Rov} IBIC
R - Rav QR {NOI Rov} I CRNOT
R« Rav XCR {NOTI' Rov} | EQV
Exceptions:
None

I nstruction mnemonics:

AND Logical Product
BIC Logical Product with Complement
BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference

Qualifiers:
None

Description:

These instructions perform the designated Boolean function between register Ra and register
Rb or aliteral. Theresult iswritten to register Rc.

The NOT function can be performed by doing an ORNOT with zero (Ra= R31).
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4.5.2 Conditional Move Integer

Format:
CMOVxx Rarg,Rb.rg,Rc.wq IOperate format
CMOVxx Rarg,#b.ib,Rc.wg Operate format
Operation:

| F TEST(Rav, Condition_based_on_(pcode) THEN

R -« Rov

Exceptions:

None

I nstruction mnemonics:

CMOVEQ CMOVE if Register Equal to Zero
CMOVGE CMOVE if Register Greater Than or Equal to Zero
CMOVGT CMOVE if Register Greater Than Zero
CMoOvLBC CMOVE if Register Low Bit Clear
CMOVLBS CMOVE if Register Low Bit Set
CMOVLE CMOVE if Register Less Than or Equal to Zero
CMOVLT CMOVE if Register Less Than Zero
CMOVNE CMOVE if Register Not Equal to Zero
Qualifiers:
None
Description:
Register Rais tested. If the specified relationship istrue, the value Rbv is written to register

Rc.
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Notes:
Except that it islikely in many implementations to be substantially faster, the instruction:

OVDVEQ Ra, Rb, Re
is exactly equivalent to:

BNE Ra, | abel

R B R

| abel :

For example, a branchless sequence for:

RL=MAX(R1, R2)
is:
OWLT RL, R, R3 I RB=1if RI<R2
OMOWNE R3, R?, RL I Mve R to Rl if RIKR?
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4.5.3 Shift Logical

Format:
SxL Rarg,Rb.rg,Rc.wq IOperate format
SxL Rarg,#b.ib,Rc.wg !Operate format
Operation:
Rt — LEFT_SHFT(Rav, Rbv<5:0>) ISLL
Rt « R GHT_SHFT(Rav, Rov<5:0>) ISR
Exceptions:
None

I nstruction mnemonics:

SLL Shift Left Logical
SRL Shift Right Logical
Qualifiers:
None
Description:

Register Rais shifted logically left or right 0 to 63 bits by the count in register Rb or aliteral.
Theresult is written to register Rc. Zero bits are propagated into the vacated bit positions.
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45.4 Shift Arithmetic

Format:
SRA Ra.rg,Rb.rg,Rc.wq !Operate format
SRA Rarg,#b.ib,Rc.wg !Operate format
Operation:

R — AR TH R GHT_SH FT(Rav, Rov<5: 0>)

Exceptions:

None

I nstruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Raisright shifted arithmetically 0 to 63 bits by the count in register Rb or aliteral.
The result is written to register Rc. The sign bit (Rav<63>) is propagated into the vacated bit
positions.
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4.6 Byte Manipulation Instructions

Alphaimplementations that support the BWX extension provide the following instructions for
loading, sign-extending, and storing bytes and words between a register and memory:

Instruction Meaning Described in Section
LDBU/LDWU Load byte/word unaligned 4.2.2
SEXTB/SEXTW Sign-extend byte/word 4.6.5
STB/STW Store byte/word 4.2.6

The AMASK instruction reports whether a particular Alphaimplementation supports the BWX
extension. AMASK isdescribed in Sections4.11.1 and D.3.

LDBU and STB are the recommended way to perform byte load and store operations on Alpha
implementations that support them; use them rather than the extract, insert, and mask byte
instructions described in this section. In particular, the implementation examples in this sec-
tion that illustrate byte operations are not appropriate for Alpha implementations that support
the BWX extension — instead use the recommendations in Section A.4.1.

In addition to LDBU and STB, Alpha provides the instructions in Table 4—7 for operating on
byte operands within registers.

Table 4-7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
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Table 4-7: Byte-Within-Register Manipulation Instructions Summary

(Continued)
Mnemonic Operation
INSWH Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
MSKBL Mask Byte Low
MSKWL Mask Word Low
MSKLL Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High
SEXTB Sign extend byte
SEXTW Sign extend word
ZAP Zero Bytes
ZAPNOT Zero Bytes Not
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4.6.1 CompareByte

Format:
CMPBGE Rarg,Rb.rg,Rc.wq IOperate format
CMPBGE Ra.rg,#b.ib,Rc.wq !Operate format
Operation:

FORi FROMO TO 7

tenp<8:0> —~ 0 || Rav<i *8+7:i*8>} + {0 || NOT Rov<i *8+7:i*8>} + 1
Re<i> ~ tenp<8>

END

Rc<63:8> ~ 0

Exceptions:

None

I nstruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding bytes of Rav
and Rbv, storing the eight results in the low eight bits of Rc. The high 56 bits of Rc are set to
zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc corresponds to byte 1, and so forth. A result
bit is set in Rc if the corresponding byte of Rav is greater than or equal to Rbv (unsigned).

Notes:
Theresult of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for abyte of zeros in a character string:

<initialize RL to aligned QVaddress of string>

LOCP:
LDQ R2, O(R1) ; Pick up 8 bytes
LDA Rl, 8(Rl) ; I ncrenent string pointer
OWB&E R31, R, R3 ; I f NO bytes of zero, R3<7:0>=0
BEQ R3, LQCP ; Loop if no termnator byte found

; At this point, R3 can be used to
; determne which byte termnated
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To compare two character strings for greater/equal/less:

<initialize RL to aligned QVaddress of stringl>
<initialize R to aligned QVaddress of string2>

LOCP.
LDQ R3, O(R1) ; Pick up 8 bytes of stringl
LDA Rl, 8(Rl) ; Increnent stringl pointer
LDQ R4, 0O(R2) ; Pick up 8 bytes of string2
LDA R2, 8(R2) ; Increnent string2 pointer
OWB&E R31, R3, R6 ; Test for zeros in stringl
XR B, R B ; Test for all equal bytes
BNE R6, DON\E . Exit if a zero found
BEQ B, LaCP ; Loop if all equal

DONE OWBCE R31, R5, RS
; At this point, RS can be used to determne the first not-equal
; byte position (if any), and R6 can be used to deternine the

; position of the terminating zero in stringl (if any).

To range-check a string of characters in R1 for.:®':

LDQ R, litOs ; Pick up 8 bytes of the character
: BELOW ‘O ‘/iir
LDQ R3,Iit9s ; Pick up 8 bytes of the character
:ABOVE ‘9 i
CMPBGE R2,R1, R4 : Some R4<i>=1 if character is LT ‘0’
CMPBGE R1, R3, R5 : Some R5<i>=1 if character is GT ‘9’
BNE R4, ERROR : Branch if some char too low
BNE R5, ERROR ; Branch if some char too high
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4.6.2 Extract Byte

Format:
EXTxx Ra.rg,Rb.rg,Rc.wq
EXTxx Ra.rg,#b.ib,Rc.wq
Operation:
CASE
bi g_endian_data: Rov' ~ Rov XCR 111,
little endian_data: Rov’ « Rov
ENDCASE
CASE
EXTBL: byte mask ~ 0000 0001,
EXTW: byte nask — 0000 0011,
EXTLx: byte nask ~ 0000 1111,
EXTQx: byte mask ~ 1111 1111,
ENDCASE
CASE
EXTxL:
byte loc ~ Rov’'<2:0>*8
tenp —« RQGHT_SH FT(Rav, byte | oc<5: 0>)
Rc —~ BYTE ZAP(tenp, NOI(byte mask) )
EXTxH
byte loc ~ 64 - Rov’' <2:0>*8
tenp —~ LEFT_SH FT(Rav, byte | oc<5: 0>)
Rc —~ BYTE ZAP(tenp, NOI(byte mask) )
ENDCASE
Exceptions:
None

I nstruction mnemonics:

EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
Qualifiers:
None

!Operate format

!Operate format
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Description:

EXTxL shiftsregister Raright by 0 to 7 bytes, inserts zeros into vacated bit positions, and then
extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left by 0 to 7 bytes,
inserts zeros into vacated bit positions, and then extracts 2, 4, or 8 bytes into register Rc. The
number of bytes to shift is specified by Rbv’ <2:0>. The number of bytes to extract is speci-
fied in the function code. Remaining bytes are filled with zeros.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) = 5), the value of the aligned quadword containing X(R11) is CBAX xxxx, and
the value of the aligned quadword containing X+7(R11) isyyyH GFED, and the datum is
little-endian.

The examples below are the most general case unless otherwise noted; if more information is
known about the value or intended alignment of X, shorter sequences can be used.

Theintended sequence for loading a quadword from unaligned address X(R11) is:

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = CBAX XXXX
LDQ U R2, X+7(RL1) ; lgnores va<2: 0>, R2 = yyyH GFED
LDA R3, X(Rl1) ; R3<2:0> = (X nod 8 =5

EXTQL R, R3, RL ; RL = 0000 OCBA

EXTCH R, R3, R ; R2 = H&FE D000

R R, R, RL ; RL = HFE DCBA

The intended sequence for loading and zero-extending alongword from unaligned address X

is:
LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = CBAX XXXX
LDQ U R2, X+3(RL1) ; lgnores va<2: 0>, R2 = yyyy yyyD
LDA R3, X(Rl1) ; R3<2:0> = (X nod 8 =5
EXTLL R, R3, RL ; RL = 0000 OCBA
EXTLH R2, R3, R2 ; R2 = 0000 D000
R R, R, RL ; RL = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned address X

is:

LDQ U R, X(R11) ; lgnores va<2: 0>, RL = CBAX XXXX
LDQ U R2, X+3(R11) ; lgnores va<2: 0>, R2 = yyyy yyyD
LDA R3, X(R11) ; R3<2:0> = (X nod 8 =5

EXTLL R, R3, RL ; RL = 0000 OCBA

EXTLH R, R3, R2 ; R2 = 0000 DOOO

R R, R, R ; RL = 0000 DCBA

ADDL R31, R, R : Rl = ssss DCBA
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For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending aword from unaligned address X is:

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = yBAX XXXX
LDQ U R2, X+1(RL1) ; lgnores va<2: 0>, R2 = yBAX XXXX
LDA R3, X(R11) ; R3<2:0> = (X nod 8) =5

EXTW. Rl, R3, RL ; RL = 0000 O0BA

EXTWH R, R3, R ; R2 = 0000 0000

R R, R, RL ; RL = 0000 O0BA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending aword from unaligned address X is.

LDQ U R, X(R11) ; lgnores va<2: 0>, RL = yBAX XXXX
LDQU R, X+1(R11) ; lgnores va<2: 0>, R2 = yBAX XXXX
LDA R3, X+1+1(Rl11) ; R3<2:0> = 6+1+1 = 7

EXTQA R, R3, R ; RL = 0000 000y

EXTCH R, R3, R . R2 = BAXx xxx0

R R, R, R 7 RL = BAXX XXXy

SRA R, #48, RL : Rl = ssss ssSBA

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = yyAX XXXX
LDA R3, X(Rl1) ; R3<2:0> = (X nod 8 =5
EXTBL Rl, R3, RL ; RL = 0000 000A

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a byte from address X is:

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = yyAX XXXX
LDA R3, X+1(RlL1) ; R3<2:0>=(X+1) nod 8, i.e.,
; convert byte position wthin
; quadword to one-origin based
EXTAH R, RB, RL ; Places the desired byte into byte 7
; of RL.final by left shifting
; Rl.initial by ( 8 - R3<2:0> ) byte
; positions
SRA R1, #56, Rl ; Arithnetic Shift of byte 7 down
; into byte O,

Optimized examples:

Assume that aword fetch is needed from 10(R3), where R3 is intended to contain along-
word-aligned address. The optimized sequences below take advantage of the known constant
offset, and the longword alignment (hence a single aligned longword contains the entire word).
The sequences generate a Data Alignment Fault if R3 does not contain alongword-aligned
address.
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For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending an aligned word from 10(R3) is:

LDL RlL, 8(R3) ;. Rl = ssss BAxx
; Faults if R3is not |ongword aligned
EXTW. R1, #2, RL ; RL = 0000 O0BA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending an aligned word from 10(R3) is:

LDL Rl 8(R3) ;. Rl = ssss BAxx
; Faults if R3is not |ongword aligned
SRA Ri1, #16, Rl . Rl = ssss ssBA

Big-endian examples:

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

LDQ U R1, X(R11) ; lgnores va<2: 0>, RL = xXXxX XAyy
LDA R3, X(R11) ; R3<2:0> =05, shift will be 2 bytes
EXTBL R, R3, RL ; RL = 0000 O00A

Theintended sequence for loading a quadword from unaligned address X(R11) is:

LDQ U R1, X(R11) ; lgnores va<2: 0>, RL = xxxxXABC
LDQ U R2, X+7(R11) ; lgnores va<2: 0>, R2 = DEFGHyyy
LDA R3, X+7(R11) ; R3<2:0> =4, shift will be 3 bytes
EXTQH R, R3, RL ; RL = ABQD 0000

EXTQL R, R3, R ; R2 = 000D EFCH

R R, R, RL ; RL = ABOD BEFCH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for longwords
is X+3, and for words is X+1; for little-endian, these are all just X. Also note that the EXTQH
and EXTQL instructions are reversed with respect to the little-endian sequence.
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4.6.3 Bytelnsert

Format:
INSxx Ra.rg,Rb.rg,Rc.wq !Operate format
INSxx Rarg,#b.ib,Rc.wg !Operate format
Operation:
CASE

bi g_endian_data: Rov' ~ Rov XCR 111,

little endian _data: Rov’ ~ Rov
ENDCASE

CASE
INSBL: byte _nask — 0000 0000 0000 0001,

| NSW: byte mask ~ 0000 0000 0000 0011,
I NSLx: byte_nask ~ 0000 0000 0000 1111,
I NSQx: byte mask ~ 0000 0000 1111 1111,

ENDCASE
byte mask ~ LEFT_SH FT(byte nask, Rov’' <2:0>)

CASE
I NSxL:
byte loc ~ Rov’' <2:0>*8
tenp —~ LEFT_SH FT(Rav, byte | oc<5: 0>)
Rc —~ BYTE ZAP(tenp, NOT(byte nask<7:0>))
| NSxH
byte loc « 64 - Rov’' <2:0>*8
tenp —« RQGHT_SH FT(Rav, byte | oc<5: 0>)
Rc —~ BYTE ZAP(tenp, NOT(byte nask<15: 8>))
ENDCASE

Exceptions:

None

I nstruction mnemonics:

INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
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Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into afield of zeros, storing the
result in register Rc. Register Rbv’ <2:0> selects the shift amount, and the function code
sel ects the maximum field width: 1, 2, 4, or 8 bytes. The instructions can generate a byte,
word, longword, or quadword datum that is spread across two registers at an arbitrary byte
alignment.
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4.6.4 Byte Mask

Format:
M SKxx Ra.rg,Rb.rg,Rc.wq !Operate format
MSKxx Rarg,#b.ib,Rc.wg !Operate format
Operation:
CASE
bi g_endian_data: Rov' - Rov XCR 111,
little endian_data: Rov’ —« Rov
ENDCASE
CASE

MBKBL: byte mask ~ 0000 0000 0000 0001,
MBKW: byte nmask ~ 0000 0000 0000 0011,
MBKLx: byte _nask ~ 0000 0000 0000 1111,
MBKQx: byte mask ~ 0000 0000 1111 1111,
ENDCASE
byte mask ~ LEFT_SH FT(byte nask, Rov’' <2:0>)

CASE
IVBKXL.:
Rc — BYTE ZAP(Rav, byte mask<7:0>)
MBKxH
Rc — BYTE ZAP(Rav, byte nmask<15: 8>)
ENDCASE

Exceptions:

None

I nstruction mnemonics:

MSKBL Mask Byte Low
MSKWL Mask Word Low
MSKLL Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High
Qualifiers:
None
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Description:

MSKXxL and MSKxH set selected bytes of register Ra to zero, storing the result in register Rc.
Register Rbv’ <2:0> selects the starting position of the field of zero bytes, and the function
code sel ects the maximum width: 1, 2, 4, or 8 bytes. The instructions generate a byte, word,
longword, or quadword field of zeros that can spread across two registers at an arbitrary byte
alignment.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (eamod 8) = 5, the value of the aligned quadword containing X(R11) is CBAX xxxx, the
value of the aligned quadword containing X+7(R11) isyyyH GFED, the value to be stored
from R5 isHGFE DCBA, and the datum is little-endian. Slight modifications similar to those
in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about the value
or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

LDA R6, X(R11) ; R6<2:0> = (Xnod 8 =5

LDQ U R2, X+7(RL1) ; lgnores va<2: 0>, R2 = yyyH GFED

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = CBAX XXXX

INSGH BB, R, R4 ; R4 = 000H G-ED

INSL RS, R, R3 ; R3 = CBAD 0000

MBKCH R2, R, R2 ; R2 = yyy0 0000

MBKQL R, R6, RL : RL = 000X XXXX

R R, M R ; R = yyyH G-ED

R R, 3, RL  RL = GBAX XXXX

STQU R2, X+7(RlL1) ; Must store high then | ow for

STQU R, X(R11) ; degenerate case of aligned QN
The intended sequence for storing an unaligned longword R5 at X is:

LDA R6, X(Rl1) ; R6<2:0> = (X nod 8 =5

LDQ U R2, X+3(RL1) ; lgnores va<2: 0>, R2 = yyyy yyyD

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = CBAX XXXX

INSLH RS, R, R4 ; R4 = 0000 000D

INSLL R5, R, R3 ; R3 = CBAD 0000

MKLH R2, R6, R2 ; R =yyyy yyy0

MBKLL R1, R, RL : RL = 000X XXXX

R R, R, R ; R =yyyy yyyD

R R, 3, RL  RL = GBAX XXXX

STQU R2, X+3(RlL1) ; Must store high then | ow for

STQU R, X(R11) ; degenerate case of aligned
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For software that is not designed to use the BWX extension, the intended sequence for storing
an unaligned word R5 at X is:

LDA R6, X(Rl1) ; R6<2:0> = (X nod 8 =5

LDQ U R2, X+1(RL1) ; lgnores va<2: 0>, R2 = yBAX XXXX
LDQ U Ri1, X(RL1) ; lgnores va<2: 0>, RL = yBAX XXXX
INSWH RS, R, R4 ; R4 = 0000 0000

INSW R5, R6, R3 ; R3 = OBAD 0000

MBKWH R2, R, R2 i R2 = yBAX XXXX

MKW Rl, R6, RL ; RL = y0O0x XXXX

R R, M R i R2 = yBAX XXXX

R R, 3, RL 7 RL = yBAX XXXX

STQU R2, X+1(Rl11) ; Must store high then | ow for
STQU R, X(R11) ; degenerate case of aligned

For software that is not designed to use the BWX extension, the intended sequence for storing
abyteR5 at X is;

LDA R6, X(Rl1) ; R6<2:0> = (X nod 8 =5

LDQ U R1, X(RL1) ; lgnores va<2: 0>, RL = yyAX XXXX
INSBL R5, R, R3 ; R3 = 00A0 0000

MBKBL R, , RL 7 RL = yyOx XXXX

R R, 3, RL 7 RL = yyAX XXXX

STQU R, X(RL1) ;
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4.6.5 Sign Extend

Format:
SEXTx Rb.rgq,Rc.wq IOperate format
SEXTx #b.ib,Rcwq 'Operate format
Operation:
CASE

SEXTB: Rc  SEXT(Rov<07: 0>)
SEXTW Rc  SEXT(Rov<15: 0>)
ENDCASE

Exceptions:

None

I nstruction mnemonics:

SEXTB Sign Extend Byte
SEXTW Sign Extend Word
Qualifiers:
None
Description:
The byte or word in register Rb is sign-extended to 64 bits and written to register Rc. Ra must

be R31.

Implementation Note:

The SEXTB and SEXTW instructions are supported in hardware on Alpha
implementations for which the AMASK instruction returns bit 0 set. SEXTB and SEXTW
are supported with software emulation in Alpha implementations for which AMASK does
not return bit 0 set. Software emulation of SEXTB and SEXTW is significantly slower
than hardware support.
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4.6.6 Zero Bytes

Format:

ZAPx Ra.rg,Rb.rg,Rc.wq !Operate format

ZAPX Rarg,#b.ib,Rc.wg !Operate format

Operation:

CASE
ZAP:
Rc — BYTE ZAP(Rav, Rov<7:0>)

ZAPNOT:

Re ~ BYTE ZAP(Rav, NOT Rov<7:0>)
ENDCASE

Exceptions:

None

I nstruction mnemonics:

ZAP Zero Bytes
ZAPNOT Zero Bytes Not
Qualifiers:
None
Description:

ZAPand ZAPNOT set selected bytes of register Rato zero and store the result in register Rc.
Register Rb<7:0> selects the bytes to be zeroed. Bit 0 of Rbv corresponds to byte 0, bit 1 of
Rbv corresponds to byte 1, and so on. A result byte is set to zero if the corresponding bit of
Rbv isaone for ZAP and a zero for ZAPNOT.
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4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four data
formats:

e F floating (VAX single)
e G floating (VAX double, 11-bit exponent)
e S floating (IEEE single)
e T floating (IEEE double, 11-hit exponent)

Data conversion instructions are also provided to convert operands between floating-point and
guadword integer formats, between double and single floating, and between quadword and
longword integers.

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations are
provided in the architecture. For backward compatibility, exact D_floating arithmetic may
be provided via software emulation. D_floating "format compatibility," in which binary
files of D_floating numbers may be processed but without the last 3 hits of fraction
precision, can be obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also encodes the
choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (not including loads or stores) that yield an F_floating or
G_floating zero result must materialize atrue zero.

4.7.1 Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point registersin
canonical form, as subsets of double-precision values, with 11-bit exponents restricted to the
corresponding single-precision range, and with the 29 low-order fraction bits restricted to be all
zero.

Single-precision operations applied to canonical single-precision values give single-precision
results. Single-precision operations applied to non-canonical operands give UNPREDICT-
ABLE results.

Longword integer values in floating-point registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in hits <28:0>.

4.7.2 Subsetsand Faults

All floating-point operations may take floating disabled faults. Any subsetted floating-point
instruction may take an lllegal Instruction Trap. These faults are not explicitly listed in the
description of each instruction.
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All floating-point loads and stores may take memory management faults (access control viola-
tion, translation not valid, fault on read/write, data alignment).

The floating-point enable (FEN) internal processor register (IPR) allows system software to
restrict access to the floating-point registers.

If afloating-point instruction isimplemented and FEN = 0O, attempts to execute the instruction
cause afloating disabled fault.

If afloating-point instruction is not implemented, attempts to execute the instruction cause an
Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alphaimplementation may provide both VAX and |EEE floating-point operations, either,
or none.

Some floating-point instructions are common to the VAX and |EEE subsets, some are VAX
only, and some are | EEE only. These are designated in the descriptions that follow. If either
subset is implemented, all the common instructions must be implemented.

An implementation that includes | EEE floating-point may subset the ability to perform round-
ing to plusinfinity and minus infinity. If not implemented, instructions requesting these
rounding modes take Illegal Instruction Trap.

An implementation that includes | EEE floating-point may implement any subset of the Trap
Disable flags (DNOD, DZED, INED, INVD, OVFD, and UNFD) and Denormal Control flags
(DNZ and UNDZ) in the FPCR:

e |f aTrap Disable flag is not implemented, then the corresponding trap occurs as usual.

e |f DNZ is not implemented, then any |EEE operation with a denormal input must take
an Invalid Operation Trap.

e |f UNDZ is not implemented, then any |EEE operation that includes a /S qualifier that
underflows must take an Underflow Trap.

e |f DZED isimplemented, then IEEE division of 0/0 must be treated as an invalid opera-
tion instead of a division by zero.

Any unimplemented hitsin the FPCR are read as zero and ignored when set.

4.7.3 Definitions

The following definitions apply to Alpha floating-point support.

Alpha finite number

A floating-point number with a definite, in-range value. Specifically, all numbersin the inclu-

sive ranges —MAX through —MIN, zero, and +MIN through +MAX, where MAX is the largest
non-infinite representable floating-point number and MIN is the smallest non-zero represent-
able normalized floating-point number.
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For VAX floating-point, finites do not include reserved operands or dirty zeros (this differs
from the usual VAX interpretation of dirty zeros as finite). For | EEE floating-point, finites do
not include infinites, NaNs, or denormals, but do include minus zero.

denormal

An |EEE floating-point bit pattern that represents a number whose magnitude lies between
zero and the smallest finite number.

dirty zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero form.

infinity
An |EEE floating-point bit pattern that represents plus or minus infinity.

LSB

The least significant bit. For a positive finite representable number A, A + 1 LSB is the next

larger representative number, and A + % LSB is exactly halfway between A and the next larger
representable number. For a positive representable number A whose fraction field is not all
zeros, A — 1 LSB is the next smaller representable number, and A — %2 LSB is exactly halfway
betweenrA and the next smaller representable number.

non-finite number
An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand.

Not-a-Number

An |EEE floating-point bit pattern that represents something other than a number. This comes
in two forms: signaling NaNs (for Alpha, those with an initial fraction bit of 0) and quiet NaNs
(for Alpha , those with initialraction bit of 1).

representable result

A real number that can be represented exactly as a VAX or IEEE floating-point number, with
finite precision and bounded exponent range.

reser ved oper and
A VAX floating-point bit pattern that represents an illegal value.

trap shadow

The set of instructions potentially executed after an instruction that signals an arithmetic trap
but before the trap is actually taken.

trueresult

The mathematically correct nglg of an operation, assuming that the input operand values are
exact. The true result is typically rounded to the nearest representable result.
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4.7.4

truezero

Thevalue +0, represented as exactly 64 zeros in afloating-point register.

Encodings

Floating-point numbers are represented with three fields: sign, exponent, and fraction. The sign
is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is 23, 52, 55, or 112 bits. Some
encodings represent special values.

Sign Exponent Fraction Vax . VAX IEEE. “.EE.E
M eaning Finite M eaning Finite

X All-1's Non-zero  Finite Yes +/-NaN No

X All-1's 0 Finite Yes +/—Infinity No

0 0 Non-zero  Dirty zero No +Denormal No

1 0 Non-zero  Resv. @pgand No —Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No -0 Yes

X Other X Finite Yes finite Yes

Thevalues of MIN and MAX for each of the five floating-point data formats are:

Data

Format MIN MAX

F_floating 2**-127* 0.5 2*%127 *(1.0 — 2**—24)
(0.293873588e-38) (1.7014117e38)

G_floating 2**-1023*0.5 2*¥1023 * (1.0 — 2**-53)
(0.5562684646268004e—308) (0.89884656743115785407e308)

S floating 2**~126 * 1.0 2+%127 * (2.0 — 2**—23)
(1.17549435e—-38) (3.40282347e38)

T floating 2**-1022* 1.0 2*%1023 * (2.0 — 2**-52)
(2.2250738585072013e-308) (1.7976931348623158e308)

X_floating 2**~16382*1.0 2*¥16383*%(2.0—-2**~112)

(See beIovT/)

(See below?)

T (1.18973149535723176508575932662800702e4932)
¥ (3.36210314311209350626267781732175260e—4932)
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4.7.5 Rounding M odes

All rounding modes map atrue result that is exactly representable to that representable value.

VAX Rounding M odes

For VAX floating-point operations, two rounding modes are provided and are specified in each
instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute value (sometimes called
biased rounding away from zero); maps true results = MAX + 1/2 LSB in magnitude to an
overflow; maps true results < MIN — 1/4 LSB in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two surrounding
representable results; maps true resedAX + 1 LSB in magnitude to an overflow; maps
true results < MIN in magnitude to an underflow.

|EEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal rounding (unbi-
ased round to nearest), rounding toward minus infinity, round toward zero, and rounding
toward plus infinity. The first three can be specified in the instruction. Rounding toward plus
infinity can be obtained by setting the Floating-point Control RegifteCR) to select it and

then specifying dynamic rounding mode in the instruction (See Section 4.7.8). Alpha IEEE
arithmetic does rounding before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the one whose fraction ends in 0 (sometimes
called unbiased rounding to even); maps true reauMAX + 1/2 LSB in magnitude to an
overflow; maps true results < MIN — 1/2 LSB in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding representable
results; maps true results > MAX in magnitude to an overflow; maps positive true results
< +MIN -1 LSB to an underflow; and maps negative true results > —MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding represent-
able results; maps true results > MAX in magnitude to an overflow; maps positive true results
< +MIN to an underflow; and maps negative true resait$/1IN + 1 LSB to an underflow.

Chopped IEEE rounding maps the true result to the smaller in magnitude of two surrounding
representable results; maps true resulldAX + 1 LSB in magnitude to an overflow; and
maps non-zero trueselts < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register and is
described in more detail in Section 4.7.8.
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The following tables summarize the floating-point rounding modes:

VAX Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Chopped /IC

|EEE Rounding M ode Instruction Notation

Normal rounding (No qualifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’
Minus infinity IM

Chopped /IC

4.7.6 Computational Models

The Alpha architecture provides a choice of floating-point computational models.
There are two computational models available on systems that implement the VAX float-
ing-point subset:

e VAX-format arithmetic with precise exceptions

e High-performance VA X-format arithmetic

There are three computational models available on systems that implement the |EEE float-
ing-point subset:

e |EEE compliant arithmetic

e |EEE compliant arithmetic without inexact exception

¢ High-performance |EEE-format arithmetic

4.7.6.1 VAX-Format Arithmetic with Precise Exceptions

This model provides floating-point arithmetic that is fully compatible with the fl oati ng-point
arithmetic provided by the VAX architecture. It provides support for VAX non-finites and
gives precise exceptions.

Thismodel isimplemented by using VAX floating-point instructions with the /S, /SU, and /SV
trap qualifiers. Each instruction can determine whether it also takes an exception on underflow
or integer overflow. The performance of this model depends on how often computations
involve non-finite operands. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).
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4.7.6.2 High-Performance VAX-Format Arithmetic

This model provides arithmetic operations on VAX finite numbers. An imprecise arithmetic
trap is generated by any operation that involves non-finite numbers, floating overflow, and
divide-by-zero exceptions.

This model isimplemented by using VAX floating-point instructions with atrap qualifier other
than /S, /SU, or /SV. Each instruction can determine whether it also traps on underflow or inte-
ger overflow. This model does not require the overhead of an operating system completion
handler and can be the faster of the two VAX models.

4.7.6.3 |EEE-Compliant Arithmetic

This model provides floating-point arithmetic that fully complies with the |IEEE Standard for
Binary Floating-Point Arithmetic. It provides all of the exception status flags that are in the
standard. It provides a default where all traps and faults are disabled and where IEEE
non-finite values are used in lieu of exceptions.

Alpha operating systems provide additional mechanisms that allow the user to specify dynami-
cally which exception conditions should trap and which should proceed without trapping. The
operating systems also include mechanisms that allow alternative handling of denormal val-
ues. See Appendix B and the appropriate operating system documentation for a description of
these mechanisms.

This model is implemented by using |EEE floating-point instructions with the /SUI
or /SVI trap qualifiers. The performance of this model depends on how often computations
involve inexact results and non-finite operands and results. Performance also depends on how
the Alpha system chooses to trade off implementation complexity between hardware and oper-
ating system completion handlers (see Section 4.7.7.3). This model provides acceptable
performance on Alpha systems that implement the inexact disable (INED) bit in the FPCR.
Performance may be slow if the INED hit is not implemented.

4.7.6.4 |EEE-Compliant Arithmetic Without I nexact Exception

Thismodel is similar to the model in Section 4.7.6.3, except this model does not signal inexact
results either by the inexact status flag or by trapping. Combining routines that are compiled
with this model and routines that are compiled with the model in Section 4.7.6.3 can give an
application better control over testing when an inexact operation will affect computational
accuracy.

This model isimplemented by using |EEE floating-point instructions with the /SU or /SV trap
qualifiers. The performance of this model depends on how often computations involve
non-finite operands and results. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).
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4.7.6.5 High-Performance | EEE-Format Arithmetic

This model provides arithmetic operations on | EEE finite numbers and notifies applications of
all exceptional floating-point operations. An imprecise arithmetic trap is generated by any
operation that involves non-finite numbers, floating overflow, divide-by-zero, and invalid
operations. Underflow results are set to zero. Conversion to integer results that overflow are set
to the low-order bits of the integer value.

This model isimplemented by using | EEE floating-point instructions with atrap qualifier other
than /SU, /SV, /SUI, or /SVI. Each instruction can determine whether it also traps on under-
flow or integer overflow. This model does not require the overhead of an operating system
completion handler and can be the fastest of the three IEEE models.

4.7.7 Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions, all sig-
naled by an arithmetic exception trap. These exceptions are:

e |nvalid operation
e Division by zero
e Oveflow

e Underflow

* Inexact result

* |Integer overflow (conversion to integer only)

4.7.7.1 VAX Trapping Modes

This section describes the characteristics of the four VAX trapping modes, which are summa-
rized in Table 4-8.
When no trap mode is specified (the default):
e Arithmeticis performed on VAX finite numbers.
e Operations give imprecise traps whenever the following occur:
— an operand is a non-finite number
— afloating overflow
— adivide-by-zero
e Traps are imprecise and it is not always possible to determine which instruction trig-
gered atrap or the operands of that instruction.
e Anunderflow produces a zero result without trapping.
e A conversion to integer that overflows uses the low-order bits of the integer as the
result without trapping.
e Theresult of any operation that trapsis UNPREDICTABLE.
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When /U or /V mode is specified:

Arithmetic is performed on VAX finite numbers.

Operations give imprecise traps whenever the following occur:

— an operand is a non-finite number

— an underflow

— an integer overflow

— afloating overflow

— adivide-by-zero

Traps are imprecise and it is not always possible to determine which instruction trig-
gered atrap or the operands of that instruction.

An underflow trap produces a zero result.

A conversion to integer trapping with an integer overflow produces the low-order bits
of the integer value.

Theresult of any other operation that trapsis UNPREDICTABLE.

When /S mode is specified:

Arithmetic is performed on all VAX values, both finite and non-finite.

A VAX dirty zero istreated as zero.

Exceptions are signaled for:

— a VAXreserved operand, which gaates afnvalid operation exception

— afloating overflow

— adivide-by-zero

Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values. See Section 4.7.7.3.

An operation that underflows produces a zero result without taking an exception.

A conversion to integer that overflows uses the low-order bits of the integer as the
result, without taking an exception.

When an operation takes an exception, the result of the operation is UNPREDICT-
ABLE.

When /SU or /SV mode is specified:

Arithmetic is performed on all VAX values, both finite and non-finite.

A VAX dirty zero istreated as zero.

Exceptions are signaled for:

— a VAXreserved operand, which gaates afnvalid operation exception

— an underflow

— an integer overflow

— afloating overflow

— adivide-by-zero

Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values. See Section 4.7.7.3.

An underflow exception produces a zero.

A conversion to integer exception with integer overflow produces the low-order bits of
the integer value.

The result of any other operation that takes an exception is UNPREDICTABLE.
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A summary of the VAX trapping modes, instruction notation, and their meaning followsin
Table 4-8:

Table 4-8: VAX Trapping Modes Summary

Trap Mode Notation Meaning
Underflow disabled No qualifier  Imprecise

/S Precise exception completion
Underflow enabled /U Imprecise

/SU Precise exception completion

Integer overflow disabled  No qualifier  Imprecise

/S Precise exception completion
Integer overflow enabled  /V Imprecise
ISV Precise exception completion

4.7.7.2 |EEE Trapping Modes

This section describes the characteristics of the four IEEE trapping modes, which are summa-
rized in Table 4-9.

When no trap mode is specified (the default):
e Arithmetic is performed on |EEE finite numbers.
e Operations give imprecise traps whenever the following occur:
— an operand is a non-finite number
a floating overflow
a divide-by-zero
an invalid operation
e Traps are imprecise, and it is not always possible to determine which instruction trig-
gered atrap or the operands of that instruction.
¢ Anunderflow produces a zero result without trapping.
e A conversion to integer that overflows uses the low-order bits of the integer as the
result without trapping.
* When an operation traps, the result of the operationis UNPREDICTABLE.

When /U or /V mode is specified :

e Arithmetic is performed on |EEE finite numbers.

e Operations give imprecise traps whenever the following occur:
— an operand is a non-finite number
— an underflow
— an integer overflow
— afloating overflow
— adivide-by-zero
— aninvalid operation
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e Traps are imprecise, and it is not always possible to determine which instruction trig-
gered atrap or the operands of that instruction.

e Anunderflow trap produces a zero.

e A conversion to integer trap with an integer overflow produces the low-order bits of the

integer.

e Theresult of any other operation that trapsis UNPREDICTABLE.

When /SU or /SV mode is specified:
e Arithmeticis performed on all IEEE values, both finite and non-finite.
e Alphasystems support all | EEE features except inexact exception (which requires /SUI

or /SVI):

— The IEEE standard specifies a default where exceptions do not fault or trap.In com-
bination with the FPCR, this mode allows disabling exceptions and producing
IEEE compliant nontrapping results. See Sections 4.7.7.10 and 4.7.7.11.

— [Each Alpha operating system provides a way to optionally signal IEEE floating-
point exceptions. This mode enables the IEEE status flags that keep a record of
each exception that is encountered. An Alpha operating system uses the IEEE float-
ing-point control (FP_C) quadword, described in Section B.2.1, to maintain the
IEEE status flags and to enable calls to IEEE user signal handlers.

e EXxceptions signaled in this mode are precise and an application can locate the instruc-
tion that caused the exception, along with its operand values. See Section 4.7.7.3.

When /SUl or /SVI mode is specified:
e Arithmeticis performed on all IEEE values, both finite and non-finite.
* |nexact exceptions are supported, along with all the other |1EEE features supported by

the /SU or /SV mode.

A summary of the |EEE trapping modes, instruction notation, and their meaning followsin

Table 4-9:

Table 4-9: Summary of IEEE Trapping Modes

Trap Mode Notation Meaning

Underflow disabled and No qualifier Imprecise

inexact disabled

Underflow enabled and /U Imprecise

inexact disabled /SU Precise exception completion
Underflow enabled and /SUI Precise exception completion
inexact enabled

Integer overflow disabled and  No qualifier Imprecise

inexact disabled
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Table 4-9: Summary of IEEE Trapping Modes (Continued)

Trap Mode Notation Meaning
Integer overflow enabledand  /V Imprecise
inexact disabled ISV Precise exception completion
Integer overflow enabledand  /SVI Precise exception completion

inexact enabled

4.7.7.3 Arithmetic Trap Completion

Because floating-point instructions may be pipelined, the trap PC can be an arbitrary number
of instructions past the one triggering the trap. Those instructions that are executed after the
trigger instruction of an arithmetic trap are collectively referred to as the trap shadow of the
trigger instruction.

Marking floating-point instructions for exception completion with any valid qualifier combina-
tion that includes the /S qualifier enables the completion of the triggering instruction. For any
instruction so marked, the output register for the triggering instruction cannot also be one of
the input registers, so that an input register cannot be overwritten and the input value is avail-
able after atrap occurs.

See Section B.2 for more information.

The AMASK instruction reports how the arithmetic trap should be completed:

e |f AMASK returns with bit 9 clear, floating-point traps are imprecise. Exception com-
pletion requires that generated code must obey the trap shadow rules in Section
4.7.7.3.1, with atrap shadow length as described in Section 4.7.7.3.2.

* |f AMASK returns with bit 9 set, the hardware implements precise floating-point traps.
If theinstruction has any valid qualifier combination that includes /S, the trap PC points
to the instruction that immediately follows the instruction that triggered the trap. The
trap shadow contains zero instructions; exception completion does not require that the
generated code follow the conditionsin Section 4.7.7.3.1 and the length rulesin Section
4.7.7.3.2.

4.7.7.3.1 Trap Shadow Rules

For an operating system (OS) completion handler to compl ete non-finite operands and excep-
tions, the following conditions must hold.

Conditions 1 and 2, below, allow an OS completion handler to locate the trigger instruction by
doing alinear scan backwards from the trap PC while comparing destination registersin the
trap shadow with the registers that are specified in the register write mask parameter to the
arithmetic trap.
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Condition 3 allows an OS completion handler to emulate the trigger instruction with its origi-
nal input operand values.

Condition 4 allows the handler to re-execute instructions in the trap shadow with their original
operand values.

Condition 5 prevents any unusual side effects that would cause problems on repeated execu-
tion of the instructions in the trap shadow.

Conditions:

1. Thedestination register of thetrigger instruction may not be used as the destination reg-
ister of any instruction in the trap shadow.

The trap shadow may not include any branch or jump instructions.
Aninstruction in the trap shadow may not modify an input to the trigger instruction.

The value in aregister or memory location that is used as input to some instruction in
the trap shadow may not be modified by a subsequent instruction in the trap shadow
unless that value is produced by an earlier instruction in the trap shadow.

5. The trap shadow may not contain any instructions with side effects that interact with
earlier ingtructions in the trap shadow or with other parts of the system. Examples of
operations with prohibited side effects are:

— Modifications of the stack pointer or frame pointer that can changetesibility
of stack variables and the exception context that is used by earlier instructions in
the trap shadow.

— Maodifications of volatile values and access to I/O device registers.

— If order of exception reporting is important, taking an arithmetic trap by an integer
instruction or by a floating-point instruction that does not include a /S qualifier,
either of which can report exceptions out of order.

An instruction may be in the trap shadows of multiple instructions that include a /S qualifier.
That instruction must obey all conditions for all those trap shadows. For example, the destina-
tion register of an instruction in multiple trap shadows must be different than the destination
registers of each possible trigger instruction.

4.7.7.3.2 Trap Shadow Length Rules

The trap shadow length rules in Table 4-10 apply only to those floating-point instructions with
any valid qualifier combination that includes a /S trap qualifier. Further, the instruction to
which the trap shadow extends is not part of the trap shadow and that instruction is not exe-
cuted prior to the arithmetic trap that is signaled by the trigger instruction.

Implementation notes:

e On Alphaimplementations for which the IMPLVER instruction returns the value 0, the
trap shadow of an instruction may extend after the result is consumed by a float-
ing-point STx instruction. On all other implementations, the trap shadow ends when a
result is consumed.

e Because Alphaimplementations need not execute instructions that have R31 or F31 as
the destination operand, instructions with such an destination should not be thought to
end atrap shadow.
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Table 4-10: Trap Shadow Length Rules

Floating-Point Trap Shadow Extends Until Any of the Following
Instruction Group Occurs:

Floating-point operate
(except DIV and SQRTX)
e Encountering a CALL_PAL, EXCB, or TRAPB
instruction.

e The result is consumed by any instruction except
floating-point STx.

» Thefourthinstruction™ after the result is consumed by
afloating-point STx instruction.

Or, following the floating-point STx of the result, the
result of a LDx that loads the stored value is
consumed by any instruction.

e The result of a subsequent floating-point operate
instruction is consumed by any instruction except
floating-point STx.

» The second instruction’ after the result of a subse-
quent floating-point operate instruction is consumed
by afloating-point STx instruction.

e The result of a subsequent floating-point DIVX or
SQRTX instruction is consumed by any instruction.

Floating-point DIV X

e Encountering a CALL_PAL, EXCB, or TRAPB
instruction.

e The result is consumed by any instruction except
floating-point STx.

e Thefourthinstruction’ after the result is consumed by
afloating-point STx instruction.

Or, following the floating-point STx of the result, the
result of a LDx that loads the stored value is
consumed by any instruction.

e Theresult of asubsequent floating-point DIV X iscon-
sumed by any instruction.
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Table 4-10: Trap Shadow Length Rules (Continued)

Floating-Point Trap Shadow Extends Until Any of the Following
Instruction Group Occurs:

Floating-point SQRTx
e Encountering a CALL_PAL, EXCB, or TRAPB
instruction.

e Theresult is consumed by any instruction.

* Theresult of a subsequent SQRTX instruction is con-
sumed by any instruction.

T The length of four instructionsis a conservative estimate of how far the trap shadow may
extend past a consuming floating-point STx instruction. The length of two instructionsis a
conservative estimate of how far the trap shadow may extend after a subsequent float-
ing-point operate instruction is consumed by a floating-point STx instruction. Compilers can
make a more precise estimate by consulting the DECchip 21064 and DECchip 21064A
Alpha AXP Microprocessors Hardware Reference Manual, EC-QD2RA-TE.

4.7.7.4 Invalid Operation (INV) Arithmetic Trap

Aninvalid operation arithmetic trap is signaled if an operand is a non-finite number or if an
operand is invalid for the operation to be performed. (Note that CMPTxy does nhot trap on plus
or minus infinity.) Invalid operations are:

e Any operation on asignaling NaN.

e Addition of unlike-signed infinities or subtraction of like-signed infinities, such as
(+infinity + —infinity) or (+infinity — +infinity).

e Multiplication of Onfinity.

e |EEE division of 0/0 or infinity/infinity.

e Conversion of aninfinity or NaN to an integer.

e CMPTLE or CMPTLT when either operand is a NaN.
e SORTXx of anegative non-zero number.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE valueis
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct |EEE result, as described in
Section 4.7.10.

|EEE-compliant system software must also supply an invalid operation indication to the user
for x REM 0 and for conversions to integer that take an integer overflow trap.

If an implementation does not support the DZED (division by zero disable) bit, it may respond

to the IEEE division of 0/0 by delivering adivision by zero trap to the operating system, which
|EEE compliant software must change to an invalid operation trap for the user.
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An implementation may choose not to take an INV trap for a valid |EEE operation that
involves denormal operandsif:

e The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

e  Theimplementation supports the DNZ (denormal operandsto zero) bit and DNZ is set.

e Theinstruction produces the result and exceptions required by Section 4.7.10, as modi-
fied by the DNZ bit described in Section 4.7.7.11.

An implementation may choose not to take an INV trap for a valid |EEE operation that
involves denormal operands, and direct hardware implementation of denormal arithmeticis
permitted if:

e The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

¢ Theimplementation supports both the DNOD (denormal operand exception disable) bit
and the DNZ (denormal operands to zero) bit and DNOD is set while DNZ is clear.

e Theinstruction produces the result and exceptions required by Section 4.7.10, possibly
modified by the UDNZ bit described in Section 4.7.7.11.

Regardless of the setting of the INVD (invalid operation disable) bit, the implementation may
choose not to trap on valid operations that involve quiet NaNs and infinities as operands for
|EEE instructions that are modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

4.7.7.5 Divison by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid operation
trap and the denominator is zero.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE valueis
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct |EEE result, as described in
Section 4.7.10.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering adivision by zero trap to the operating system, which
|EEE compliant software must change to an invalid operation trap for the user.

4.7.7.6 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude the largest
finite number of the destination format.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE valueis
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct |EEE result, as described in
Section 4.7.10.
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4.7.7.7 Underflow (UNF) Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest finite num-
ber of the destination format.

If an underflow occurs, atrue zero (64 bits of zero) is always stored in the result register. In the
case of an |EEE operation that takes an underflow arithmetic trap, atrue zero is stored even if
the result after rounding would have been —0 (underflow below the negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an underflow arith-
metic trap is signaled. However, under some conditions, the FPCR can dynamically disable the
trap, as described in Section 4.7.7.10, producing the result described in Section 4.7.10, as mod-
ified by the UNDZ bit described in Section 4.7.7.11.

4.7.7.8 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded result.

If an inexact result occurs, the normal rounded result is still stored in the result register. If an
inexact result occurs and inexact result traps are enabled by the instruction, an inexact result
arithmetic trap is signaled. However, under some conditions, the FPCR can dynamically dis-
able the trap; see Section 4.7.7.10 for information.

4.7.7.9 Integer Overflow (I0V) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the rounded
result is outside the range —2**63..2**63-1. In conversions from quadword integer to long-
word integer, an integer overflow occurs if the result is outside the range —2**31..2**31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the low-order
64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the instruction, an inte-
ger overflow arithmetic trap is signaled.

4.7.7.10 1EEE Floating-Point Trap Disable Bits

In the case of IEEE exception completion modes, any of the traps described in Sections 4.7.7.4
through 4.7.7.9 may be disabled by setting the appropriate trap disable bit in the FPCR. The
trap disable bits only affect the IEEE trap modes when the instruction is modified by any valid
qualifier combination that includes the /S (exception completion) qualifier. The trap disable
bits (DNOD, DZED, INED, INVD, OVFD, and UNFD) do not affect any of the VAX trap
modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware implemen-
tation sets the result of the operation to the nontrapping result value as specified in the IEEE
standard and Section 4.7.10 and modified by the denormal control bits. If the implementation
is unable to calculate the required result, it ignores the trap disable bit and signals a trap as
usual.

Note that a hardware implementation may choose to support any subset of the trap disable bits,
including the empty subset.
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4.7.7.11 |EEE Denormal Control Bits

In the case of |IEEE exception completion modes, the handling of denormal operands and
resultsis controlled by the DNZ and UNDZ bitsin the FPCR. These denormal control bits only
affect denormal handling by |EEE instructions that are modified by any valid qualifier combi-
nation that includes the /S (exception completion) qualifier.

The denormal control bits apply only to the IEEE operate instructigkBB, SUB, MUL,
DIV, SQRT, CMPxx, and CVT with floating-point sourceesand.

If both the UNFD (underflow disable) bit and the UNDZ (underflow to zero) bit are set in the
FPCR, the implementation sets the result of an underflow operation to a true zero result. The
zeroing of a denormal result by UNDZ must also be treated as an inexact result.

If the DNZ (denormal operands to zero) bit is set in the FPCR, the implementation treats each
denormal operand as if it were a signed zero value. The source operands in the register are not
changed. If DNZ is set, IEEE operations with any valid qualifier combination that includes a /S
qualifier signal arithmetic traps as if any denormal operand were zero; that is, with DNZ set:

e AnI|EEE operation with a denormal operand never generates an overflow, underflow, or
inexact result arithmetic trap.

e Dividing by adenormal operand is a division by zero or invalid operation as appropri-
ate.

e Multiplying adenormal by infinity is an invalid operation.
* A SQRT of a negative denormal produces a —0 instead of an invalid operation.

e A denormal operand, treated as zero, does not take the denormal operand exception trap
controlled by the DNOD bit in the FPCR.

Note that a hardware implementation may choose to support any subset of the denormal con-
trol bits, including the empty subset.

4.7.8 Floating-Point Control Register (FPCR)

When an | EEE floating-point operate instruction specifies dynamic mode (/D) in its function
field (function field bits <12:11> = 11), the rounding mode to be used for the instruction is
derived from the FPCR register. The layout of the rounding mode bits and their assignments
matches exactly the format used in the 11-bit function field of the floating-point operate
instructions. The function field is described in Section 4.7.9.

In addition, the FPCR gives a summary of each exception type for the exception conditions
detected by all |EEE floating-point operates thus far, as well as an overall summary bit that
indicates whether any of these exception conditions has been detected. The individual excep-
tion bits match exactly in purpose and order the exception bits found in the exception summary
guadword that is pushed for arithmetic traps. However, for each instruction, these exception
bits are set independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that the excep-
tional condition was encountered by an instruction is still recorded in the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs to both
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VAX and |EEE subsets, appropriately set the FPCR exception bits. It is UNPREDICTABLE
whether floating-point operates that belong only to the VAX floating-point subset set the
FPCR exception bits.

Alphafloating-point hardware only transitions these exception bits from zero to one. Once set
to one, these exception bits are only cleared when software writes zero into these bits by writ-
ing anew value into the FPCR.

Section 4.7.2 alows certain of the FPCR bits to be subsetted.

The format of the FPCR is shown in Figure 4—1 and described in Table 4-11.

Figure 4-1: Floating-Point Control Register (FPCR) Format
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Table 4-11: Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 |56 | 55|54 | 53| 52>.

62 Inexact Disable (INED)T. Suppress INE trap and place correct IEEE nontrapping
result in the destination register.

61 Underflow Disable (UNFD)T. Suppress UNF trap and place correct | EEE nontrap-
ping result in the destination register if the implementation is capable of produc-
ing correct |IEEE nontrapping result. The correct result value is determined
according to the value of the UNDZ hit.

60 Underflow to Zero (UNDZ)T. When set together with UNFD, on underflow, the
hardware places atrue zero (64 bits of zero) in the destination register rather than
the result specified by the |EEE standard.

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by an
IEEE floating-point operate instruction when the instruction’s function field spec-
ifies dynamic mode (/D). Assignments are:

DYN |EEE Rounding Mode Selected

00 Chopped rounding mode
01 Minus infinity

10 Normal rounding

11 Plus infinity
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Table 4-11: Floating-Point Control Register (FPCR) Bit Descriptions (Continued)

Bit Description (Meaning When Set)

57 Integer Overflow (I0V). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide oper-
ation with adivisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand val ues were
illegal.

51 Overflow Disable (OVFD)T. Suppress OVF trap and place correct IEEE nontrap-

ping result in the destination register if the implementation is capable of produc-
ing correct IEEE nontrapping results.

50 Division by Zero Disable (DZED)T. Suppress DZE trap and place correct |IEEE
nontrapping result in the destination register if the implementation is capable of
producing correct | EEE nontrapping results.

49 Invalid Operation Disable (INVD)T. Suppress INV trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable of
producing correct | EEE nontrapping results.

48 Denormal Operandsto Zero (D NZ)T. Treat all denormal operands as asigned zero
value with the same sign as the denormal.

a7 Denormal Operand Exception Disable (DNOD)T. Suppress INV trap for valid
operations that involve denormal operand values and place the correct | EEE non-
trapping result in the destination register if the implementation is capable of pro-
cessing the denormal operand. If the result of the operation underflows, the
correct result is determined according to the value of the UNDZ bit. If DNZ is set,
DNOD has no effect because a denormal operand is treated as having a zero value
instead of a denormal value.

46-0 Reserved. Read as Zero. Ignored when written.

T Bit only has meaning for |EEE instructions when any valid qualifier combination that
includes exception completion (/S) is specified.

FPCR isread from and written to the floating-point registers by the MT_FPCR and MF_FPCR
instructions respectively, which are described in Section 4.7.8.1.
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FPCR and the instructions to access it are required for an implementation that supports float-
ing-point (see Section 4.7.8). On implementations that do not support floating-point, the
instructions that access FPCR (MF_FPCR and MT_FPCR) take an Illegal Instruction Trap.

Softwar e Note:

Support for FPCR is required on a system that supports the OpenVMS Alpha operating
system even if that system does not support floating-point.

4.7.8.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of float-
ing-point instructions, accessing the FPCR must be synchronized with other floating-point
instructions. An EXCB instruction must be issued both prior to and after accessing the FPCR
to ensure that the FPCR access is synchronized with the execution of previous and subsequent
floating-point instructions; otherwise synchronization is not ensured.

Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that only
floating-point instructions issued after the second EXCB are affected by and affect the new
value of the FPCR. Issuing an EXCB followed by an MF_FPCR followed by another EXCB
ensures that the value read from the FPCR only records the exception information for float-
ing-point instructions issued prior to the first EXCB.

Consider the following example:

ADDT/ D

EXCB 01
MI_FPCR F1, F1, F1

EXCB ;2
SUBT/ D

Without the first EXCB, it is possible in an implementation for the ADDT/D to execute in par-
allel withthe MT_FPCR. Thus, it would be UNPREDICTABLE whether the ADDT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary were subsequently set by the ADDT/D.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to executein
parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether the SUBT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary field of FPCR were previously set by the SUBT/D.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that code
needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should be issued before
attempting to write the FPCR if the code expects changes to bits <59:52> not to have depen-
dencies with prior instructions. An EXCB should be issued after attempting to write the FPCR
if the code expects subsequent instructions to have dependencies with changes to bits <59:52>.
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4.7.8.2 Default Values of the FPCR
Processor initialization |eaves the value of FPCR UNPREDICTABLE.

Softwar e Note:

Compaq software should initialize FPCR<DY N> = 10 during program activation. Using
this default, a program can be coded to use only dynamic rounding without the need to
explicitly set the rounding mode to normal rounding in its start-up code.

Program activation normally clears all other fields in the FPCR. However, this behavior
may depend on the operating system.

4.7.8.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR value of one
process does not affect the rounding behavior and exception summary of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by image activa-
tion) isvalid for the entirety of the program and remains in effect until subsequently changed
by the programmer or until image run-down occurs.

Softwar e Notes:
The following software notes apply to saving and restoring the FPCR;
1. ThelEEE standard precludes saving and restoring the FPCR across subroutine calls.

2. The IEEE standard requires that an implementation provide status flags that are set
whenever the corresponding conditions occur aredresebnly at the user’s request.
The exception bits in the FPCR do not satisfy that requirement, because they can be
spuriously set by instructions in a trap shadow that should not have been executed had
the trap been taken synchronously.

The IEEE status flags can be provided by software (as software status bits) as follows:

Trap interface softwareugually the operating system) keeps a set of software
status bits and a mask of the traps that the user wants to receive. Code is generated
with the /SUI qualifiers. For a particular exception, the software clears the
corresponding trap disable bit if either theregponding software status bit is O or

if the user wants to receive such traps. If a trap occurs, the software locates the
offending instruction in the trap shadow, simulates it and sets any of the software
status bits that are appropriate. Then, the software either delivers the trap to the
user program or disables further delivery of such traps. The user program must
interface to this trap intéace software to set or clear any of the software status bits

or to enable or disable floating-point traps. See Section B.2.

When such a scheme is being used, the trap disable bits and denormal control bits
should be modified only by the trap irfce software. If the disable bits are
spuriously cleared, unnecessary traps may occur. If they are spuriously set, the
software may fail to set the correct values in the software status bits. Programs should
call routines in the trap iatface software to set or cldaits in the FPCR.
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Compaq software may choose to initialize the software status bits and the trap disable

bits to all 1's to avoid any initial trapping when an exception condition first occurs. Or,
software may choose to initialize those bits to all 0's in order to provide a summary of
the exception behavior when the program terminates.

In any event, the exception bits in the FPCR are still useful to programs. A program
can clear all of the excaph bits in the FPCR, execute a single floating-point
instruction, and then examine the status bits to determine which hardware-defined
exceptions the instruction encountered. For this operation to work in the presence of
various implementation options, the single instruction should be followed by a TRAPB
or EXCB instruction, and exception completion by the system soétwghald save

and restore the FPCR registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of float-
ing-point registers, they should not be used to manipulate FPCR values.

4.7.9 Floating-Point Instruction Function Field For mat

The function code for IEEE and VAX floating-point instructions, bits <15..5>, contain the
function field. That field is shown in Figure 4—2 and described for IEEE floating-point in Table
4-12 and for VAX floating-point in Table 4-13. Function codes for the independent float-
ing-point instructions, those with opcode;d,7do not correspond to the function fields below.

The function field contains subfields that specify the trapping and rounding modes that are
enabled for the instruction, the source datatype, and the instruction class.

Figure 4-2: Floating-Point Instruction Function Field
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Table 4-12: |IEEE Floating-Point Function Field Bit Summary

Bits Field |\/|eaning'IL
15-13 TRP  Trapping modes:
Contents Meaning for Opcodes 14,5 and 16,¢
000 Imprecise (default)
001 Underflow enable (/U) — floating-point output
Integer overflow enable (/V) — integer output
010 UNPREDICTABLE for opcode }ginstructions
Reserved for opcode jdinstructions
011 UNPREDICTABLE for opcode }ginstructions
Reserved for opcode jdinstructions
100 UNPREDICTABLE for opcode }ginstructions
Reserved for opcode jdinstructions
101 /SU — floating-point output
/SV — integer output
110 UNPREDICTABLE for opcode }ginstructions
Reserved for opcode jdinstructions
111 /SUI — floating-point output
ISVI — integer output
12-11 RND Rounding modes:
Contents  Meaning for Opcodes 16,5 and 1444
00 Chopped (/C)
01 Minus infinity (/M)
10 Normal (default)
11 Dynamic (/D)
10-9 SRC  Source datatype:

Contents

00
01
10
11

M eaning for Meaning for
Opcode 1644 Opcode 1444
S floating S floating
Reserved Reserved
T floating T floating
Q_fixed Reserved
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Table 4-12: |IEEE Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning'

8-5 FNC Instruction class:
Contents Meaning for M eaning for
Opcode 1644 Opcode 1444
0000 ADDX Reserved
0001 SUBX Reserved
0010 MULX Reserved
0011 DIVX Reserved
0100 CMPXUN ITOFS/ITOFT
0101 CMPXEQ Reserved
0110 CMPXLT Reserved
0111 CMPXLE Reserved
1000 Reserved Reserved
1001 Reserved Reserved
1010 Reserved Reserved
1011 Reserved SQRTS/SQRTT
1100 CVTxS Reserved
1101 Reserved Reserved
1110 CVTXT Reserved
1111 CVTxQ Reserved

T Encodings for the instructions CVTST and CV TST/S are exceptions to thistable; use the
encodings in Section C.1.

4-86 Alpha Architecture Handbook



Table 4-13: VAX Floating-Point Function Field Bit Summary

Bits Field Meaning
15-13 TRP  Trapping modes:
Contents Meaning for Opcodes 14,5 and 15:¢
000 Imprecise (default)
001 Underflow enable (/U) — floating-point output
Integer overflow enable (/V) — integer output
010 UNPREDICTABLE for opcode }ginstructions
Reserved for opcode jdinstructions
011 UNPREDICTABLE for opcode }jinstructions
Reserved for opcode jdinstructions
100 /S — Exception completion enable
101 /SU - floating-point output
ISV — integer output
110 UNPREDICTABLE for opcode }ginstructions
Reserved for opcode jdinstructions
111 UNPREDICTABLE for opcode }jinstructions
Reserved for opcode jdinstructions
12-11 RND Rounding modes:
Contents Meaning for Opcodes 15,5 and 1444
00 Chopped (/C)
01 UNPREDICTABLE
10 Normal (default)
11 UNPREDICTABLE
10-9

SRC  source datatypE:

Contents
00
01
10
11

Meaning for Opcode 15, Meaning for Opcode 1444

F floating F floating
D_floating F floating
G_floating G_floating
Q fixed Reserved
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Table 4-13: VAX Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning

8-5 FNC Instruction class:
Contents Meaning for Meaning for
Opcode 1544 Opcode 1444
0000 ADDx Reserved
0001 SUBX Reserved
0010 MULXx Reserved
0011 DIVx Reserved
0100 CMPXUN ITOFF
0101 CMPXEQ Reserved
0110 CMPXLT Reserved
0111 CMPXLE Reserved
1000 Reserved Reserved
1001 Reserved Reserved
1010 Reserved SQRTF/SQRTG
1011 Reserved Reserved
1100 CVTxF Reserved
1101 CVTxD Reserved
1110 CVTxG Reserved
1111 CVTxQ Reserved

T Inthe SRC field, both 00 and 01 specify the F_floating source datatype for opcode 14

4.7.10 |EEE Sandard

The |[EEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985) is
included by reference.

This standard leaves certain operations as implementation dependent. The remainder of this
section specifies the behavior of the Alpha architecture in these situations. Note that this
behavior may be supplied by either hardware (if the invalid operation disable, or INVD, bitis
implemented) or by software. See Sections 4.7.7.10, 4.7.7.11, 4.7.8, 4.7.8.3, and Section B.1.

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of aNaN or an Infinity value to an integer gives aresult of zero.

Conversion of aNaN value from S floatingto T_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN.

Conversion of aNaN value from T_floatingto S floating gives a result identical to the input,

except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN, and bits
<28:0> are cleared to zero.
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4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid operation
exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of itsinputs are NaN values, the
result of the operation is the quiet NaN value that has the sign bit set to one, al exponent bits
set to one (to indicate a NaN), the most significant fraction bit set to one (to indicate that the
NaN isquiet), and all other fraction bits cleared to zero. Thisvalueisreferred to as "the canon-
ical quiet NaN."

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of itsinputs are NaN values,
the | EEE standard requires that quiet NaN values be propagated when possible. With the Alpha
architecture, the result of such an operation is a NaN generated according to the first of the fol-
lowing rules that is applicable:

1

If the operand in the Fb register of the operation isaquiet NaN, that valueis used as the
result.

If the operand in the Fb register of the operation is a signaling NaN, the result is the
quiet NaN formed from the Fb value by setting the most significant fraction bit (bit 51)
to aone bit.

If the operation uses its Fa operand and the value in the Faregister is a quiet NaN, that
valueis used asthe result.

If the operation uses its Fa operand and the value in the Faregister is a signaling NaN,
the result is the quiet NaN formed from the Fa value by setting the most significant
fraction hit (bit 51) to a one hit.

Theresult is the canonical quiet NaN.

Instruction Descriptions 4-89



4.8 Memory Format Floating-Point I nstructions
The instructions in this section move data between the floating-point registers and memory.
They use the Memory instruction format. They do not interpret the bits moved in any way; spe-
cificaly, they do not trap on non-finite values.

The instructions are summarized in Table 4-14.

Table 4-14: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset
LDF Load F_floating VAX
LDG Load G _floating (Load D_floating) VAX
LDS Load S floating (Load Longword Integer) Both
LDT Load T_floating (Load Quadword Integer) Both
STF Store F_floating VAX
STG Store G_floating (Store D_floating) VAX
STS Store S floating (Store Longword Integer) Both
STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating

Format:
LDF Fa.wf,disp.ab(Rb.ab) 'Memory format

Operation:
va « {Rov + SEXT(disp)}

CASE
bi g_endian_data: va ~ va XCR 100,

little endian_data: va’ — va
ENDCASE

Fa — (va')<15> || MAP F((va')<14:7>) || (va' )<6:0> ||
(va')<31l:16> || 0<28:0>

Exceptions:
Access Violation
Fault on Read
Alignment
Translation Not Valid

I nstruction mnemonics:

LDF Load F_floating
Qualifiers:

None
Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the datais not
naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an 11-bit
register-format exponent according to Table 2—-1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (ndf) v@ihe source operand is fetched
from memory and the bytes are reordered to conform to the F_floating register format. The
result is then zero-extended in the low-order longword and written to register Fa.
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4.8.2 Load G_floating

Format:

LDG Fa.wg,disp.ab(Rb.ab) IMemory format

Operation:

va « {Rov + SEXT(disp)}
Fa —~ (va)<15:0> || (va)<31l:16> || (va)<47:32> || (va)<63:48>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

I nstruction mnemonics:

LDG Load G_floating (Load D_floating)
Qualifiers:

None
Description:

LDG fetchesa G_floating (or D_floating) datum from memory and writes it to register Fa. If
the datais not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory, the bytes are reordered to conform to the
G_floating register format (also conforming to the D_floating register format), and the result is
then written to register Fa.
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4.8.3 Load S floating

Format:
LDS Fa.ws,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rov + SEXT(disp)}

CASE
bi g_endian_data: va ~ va XCR 100,

little endian_data: va’ — va
ENDCASE

Fa — (va')<31> || MAP_S((va')<30:23>) || (va')<22:0> || 0<28:0>

Exceptions:
Access Violation
Fault on Read
Alignment
Translation Not Valid

I nstruction mnemonics:

LDS Load S_floating (Load Longword Integer)
Qualifiers:

None
Description:

LDSfetches alongword (integer or S_floating) from memory and writes it to register Fa. If the
datais not naturally aligned, an alignment exception is generated. The MAP_S function causes
the 8-bit memory-format exponent to be expanded to an 11-bit register-format exponent
according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (ndf) v@ihe source operand is fetched
from memory, is zero-extended in the low-order longword, and then written to register Fa.
Longword integers in floating registers are stored in bits <63:62,58:29>, with bits <61:59>
ignored and zeros in bits <28:0>.
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4.8.4 Load T_floating

Format:
LDT Fa.wt,disp.ab(Rb.ab) IMemory format
Operation:

va « {Rov + SEXT(disp)}

Fa — (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

I nstruction mnemonics:

LDT Load T_floating (Load Quadword I nteger)
Qualifiers:

None
Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register Fa. If
the datais not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory and written to register Fa.
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485 SoreF_floating

Format:
STF Faurf,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rov + SEXT(disp)}

CASE
bi g_endian_data: va ~ va XCR 100,

little endian_data: va’ — va
ENDCASE

(va' )<31: 0> ~ Fav<44:29> || Fav<63:62> || Fav<58: 45>

Exceptions:
Access Violation

Fault on Write
Alignment
Translation Not Valid

I nstruction mnemonics:

STF Store F_floating
Qualifiers:

None
Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally aligned, an
alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va' ). The bits of the source operand are
fetched from register Fa, the bits are reordered to conform to F_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.
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4.8.6 SoreG_floating

Format:
STG Fa.rg,disp.ab(Rb.ab) IMemory format

Operation:

va « {Rov + SEXT(disp)}
(va)<63: 0> ~ Fav<15:0> || Fav<3l:16> || Fav<47:32> || Fav<63:48>

Exceptions:
Access Violation
Fault on Write
Alignment
Translation Not Valid

I nstruction mnemonics:

STG Store G_floating (Store D_floating)
Qualifiers:

None
Description:

STG storesa G_floating (or D_floating) datum from Fato memory. If the datais not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa, the bytes are reordered to conform to the
G_floating memory format (also conforming to the D_floating memory format), and the result
is then written to memory.

4-96 Alpha Architecture Handbook



4.8.7 SoreS floating

Format:
STS Fa.rs,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rov + SEXT(disp)}

CASE
bi g_endian_data: va ~ va XCR 100,

little endian_data: va’ — va
ENDCASE

(va')<31: 0> ~ Fav<63:62> || Fav<58:29>

Exceptions:
Access Violation
Fault on Write
Alignment
Translation Not Valid

I nstruction mnemonics:

STS Store S floating (Store Longword Integer)
Qualifiers:

None
Description:

STS stores alongword (integer or S_floating) datum from Fato memory. If the datais not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va' ). The bits of the source operand are
fetched from register Fa, the bits are reordered to conform to S _floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.
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4.8.8 SoreT_floating

Format:

STT Faurt,disp.ab(Rb.ab) IMemory format

Operation:

va « {Rov + SEXT(disp)}
(va)<63: 0> ~ Fav<63: 0>

Exceptions:
Access Violation
Fault on Write
Alignment
Translation Not Valid

I nstruction mnemonics:

STT Store T_floating (Store Quadword Integer)
Qualifiers:

None
Description:

STT stores aquadword (integer or T_floating) datum from Fato memory. If the datais not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa and written to memory.
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format instructions
test the value of a floating-point register and conditionally change the PC.

They do not interpret the bits tested in any way; specifically, they do not trap on non-finite
values.

Thetest is based on the sign bit and whether the rest of the register is all zero bits. All 64 bits
of the register are tested. The test isindependent of the format of the operand in the register.
Both plus and minus zero are equal to zero. A non-zero value with a sign of zero is greater than
zero. A non-zero value with asign of oneisless than zero. No reserved operand or non-finite
checking is done.

The floating-point branch operations are summarized in Table 4-15:

Table 4-15: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset
FBEQ Floating Branch Equal Both
FBGE Floating Branch Greater Than or Equal Both
FBGT Floating Branch Greater Than Both
FBLE Floating Branch Less Than or Equal Both
FBLT Floating Branch Less Than Both
FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch

Format:
FBxx Fa.rqg,disp.al IBranch format

Operation:

{update PG

va « PC + {4*SEXT(disp)}

| F TEST(Fav, Condition_based_on_(pcode) THEN
PC - va

Exceptions:

None

I nstruction mnemonics:

FBEQ Floating Branch Equal
FBGE Floating Branch f&@ater Than cEqual
FBGT Floating Branch €ater Than
FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than
FBNE Floating Branch Not Equal
Qualifiers:
None
Description:

Register Fais tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This meansit is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/—1M instructions.
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Notes:

To branch properly on non-finite operands, compare to F31, then branch on the result of
the compare.

The largest negative integer (8000 0000 0000 00004¢) is the same bit pattern as floating
minus zero, so it is treated as equal to zero by the branch instructions. To branch prop-
erly on the largest negative integer, convert it to floating or move it to an integer regis-
ter and do an integer branch.
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4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert operations on
64-bit register values. The bit-operate instructions do not interpret the bits moved in any way;
specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply, divide, com-
pare, register move, squre root, and floating convert operations on 64-bit register valuesin one
of the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well as the
rounding mode and trapping mode to be used. These instructions use the Floating-point Oper-
ate format.

Floating-point convert and square-root (FIX) extenson implementation note:

The FIX extension to the architecture provides the FTOIX, ITOFx, and SQRTX
instructions. Alpha processors for which the AMASK instruction returns bit 1 set
implement these instructions. Those processors for which AMASK does not return bit 1 set
can take an lllegal Instruction trap, and software can emulate their function, if required.
AMASK isdescribed in Sections4.11.1 and D.3.

The floating-point operate instructions are summarized in Table 4-16.

Table 4-16: Floating-Point Operate Instructions Summary

Mnemonic Operation Subset
Bit and FPCR Operations:

CPYS Copy Sign Both
CPYSE Copy Sign and Exponent Both
CPYSN Copy Sign Negate Both
CVTLQ Convert Longword to Quadword Both
CVTQL Convert Quadword to Longword Both
FCMOV xx Floating Conditional Move Both
MF_FPCR Move from Floating-point Control Register Both
MT_FPCR Move to Floating-point Control Register Both
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Table 4-16: Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
Arithmetic Operations

ADDF Add F_floating VAX
ADDG Add G_floating VAX
ADDS Add S floating |IEEE
ADDT Add T_floating |IEEE
CMPGxx Compare G_floating VAX
CMPTxx Compare T_floating |IEEE
CVTDG Convert D_floating to G_floating VAX
CVTGD Convert G_floating to D_floating VAX
CVTGF Convert G_floating to F_floating VAX
CVTGQ Convert G_floating to Quadword VAX
CVTQF Convert Quadword to F_floating VAX
CVTQG Convert Quadword to G_floating VAX
CVTQS Convert Quadword to S floating |IEEE
CVTQT Convert Quadword to T_floating |IEEE
CVTST Convert S floatingto T_floating |IEEE
CVTTQ Convert T_floating to Quadword |IEEE
CVTTS Convert T floatingto S floating |IEEE
DIVF Divide F_floating VAX
DIVG Divide G_floating VAX
DIVS Divide S floating |IEEE
DIVT Divide T_floating |IEEE
FTOIS Floating-point to integer register move, S floating |IEEE
FTOIT Floating-point to integer register move, T_floating |IEEE
ITOFF Integer to floating-point register move, F_floating VAX
ITOFS Integer to floating-point register move, S floating |IEEE
ITOFT Integer to floating-point register move, T_floating |IEEE
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Table 4-16: Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset

Arithmetic Operations

MULF Multiply F_floating VAX
MULG Multiply G_floating VAX
MULS Multiply S floating |IEEE
MULT Multiply T_floating |IEEE
SQRTF Squareroot F_floating VAX
SQRTG Squareroot G_floating VAX
SQRTS Squareroot S floating |EEE
SQRTT Squareroot T_floating |EEE
SUBF Subtract F_floating VAX
SUBG Subtract G_floating VAX
SUBS Subtract S floating |EEE
SUBT Subtract T_floating |IEEE
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4.10.1 Copy Sign

Format:

CPYSy Farq,Fb.rg,Fc.wq I'Floating-point Operate format

Operation:

CASE
CPYS: Fc ~ Fav<63> || Fbv<62: 0>
CPYSN Fc ~ NOT(Fav<63>) || Fbv<62: 0>
CPYSE Fc ~ Fav<63:52> || Fbv<51: 0>
ENDCASE

Exceptions:

None

I nstruction mnemonics:

CPYS Copy Sign
CPYSE Copy Sign and Exponent
CPYSN Copy Sign Negate
Qualifiers:
None
Description:

For CPY S and CPY SN, the sign bit of Fais fetched (and complemented in the case of CPY SN)
and concatenated with the exponent and fraction bits from Fb; the result is stored in Fc.

For CPY SE, the sign and exponent bits from Fa are fetched and concatenated with the fraction
bits from Fb; the result is stored in Fc.

No checking of the operands is performed.

Notes:

* Register moves can be performed using CPY S Fx,Fx,Fy. Floating-point absolute value
can be done using CPYSF31,Fx,Fy. Floating-point negation can be done using
CPY SN Fx,Fx,Fy. Floating values can be scaled to aknown range by using CPY SE.
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4.10.2 Convert Integer to Integer

Format:
CVTxy Fb.rg,Fc.wx IFloating-point Operate format
Operation:
CASE
OVTQL: Fc ~ Fbv<31:30> || 0<2:0> || Fbv<29:0> || 0<28: 0>
Q/TLQ Fc ~ SEXT(Fbv<63: 62> || Fbv<58: 29>)
ENDCASE
Exceptions:

Integer Overflow, CVTQL only

I nstruction mnemonics:

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword
Qualifiers:

Trapping: Exception Completion (/S) (CVTQL only)

Integer Overflow Enable (/V) (CVTQL only)

Description:

The two’s-complement operand in register Fb is converted to a two’s-complement result and
written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of the oper-
and, with zero fill and optional integer overflow checking. Integer overflow occurs if Fb is
outside the range —2**31..2**31-1. If integer overflow occurs, the truncated result is stored in
Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the operand, with
sign extension.
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4.10.3 Floating-Point Conditional Move

Format:
FCMOQOVxx

Operation:

Farg,Fb.rg,Fc.wq I'Floating-point Operate format

| F TEST(Fav, Condition_based_on (pcode) THEN

Fc — Fbv

Exceptions:

None

I nstruction mnemonics:

FCMOVEQ
FCMOVGE
FCMOVGT
FCMOVLE
FCMOVLT
FCMOVNE

Qualifiers:

None

Description:

FCMOVE if Register Equal to Zero

FCMOVE if Register Greater Than or Equal to Zero
FCMOVE if Register Greater Than Zero

FCMOVE if Register Less Than or Equal to Zero
FCMOVE if Register Less Than Zero

FCMOVE if Register Not Equal to Zero

Register Faistested. If the specified relationship istrue, register Fb is written to register Fc;
otherwise, the move is suppressed and register Fc is unchanged. The test is based on the sign
bit and whether the rest of the register is all zero bits, as described for floating branchesin Sec-

tion 4.9.
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Notes:
Except that it islikely in many implementations to be substantially faster, the instruction:

FOMDVWxx Fa, Fb, Fc
is exactly equivalent to:
FByy Fa, | abel I yy = NOT xx
CPYS Fb, Fb, Fc

| abel :

For example, a branchless sequence for:

F1=NAX(F1, F2)

is:
OWXLT F1,F2, F3 ! F3=one if F1<F2; x=F G ST
FOMOWE F3, F2, F1 ! Move F2 to F1 if Fl<F2
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4.10.4 Movefrom/to Floating-Point Control Register

Format:
Mx_FPCR Farg,Farg,Fawq IFloating-point Operate format
Operation:
CASE
MF_FPCR Fa ~ FPCR
M_FPCR FPCR ~ Fav
ENDCASE
Exceptions:
None

I nstruction mnemonics:

MF_FPCR Move from Floating-point Control Register
MT_FPCR Move to Floating-point Control Register
Qualifiers:
None
Description:

The Floating-point Control Register (FPCR) isread from (MF_FPCR) or written to
(MT_FPCR), afloating-point register. The floating-point register to be used is specified by the
Fa, Fb, and Fc fields all pointing to the same floating-point register. If the Fa, Fb, and Fc fields
do not all point to the same floating-point register, then it is UNPREDICTABLE which regis-
ter isused. If the Fa, Fb, and Fc fields do not all point to the same floating-point register, the
resulting values in the Fc register and in FPCR are UNPREDICTABLE.

If the Fc field is F31 in the case of MT_FPCR, the resulting value in FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.8.
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4.10.5 VAX Floating Add

For mat:
ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc - Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

I nstruction mnemonics:

ADDF Add F_floating

ADDG Add G floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:
Register Fais added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

Aninvalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,

VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs. See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.6 IEEE Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc - Fav + Fbv

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

I nstruction mnemonics:

ADDS Add S floating
ADDT Add T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minusinfinity (/M)
Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/1)

Description:

Register Fais added to register Fb, and the sum is written to register Fc.

The sum isrounded to the specified precision and then the corresponding range is checked for
overflow/underflow. The single-precision operation on canonical single-precision values pro-
duces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.7 VAX Floating Compare

For mat:
CMPGyy Farg,Fb.rg,Fc.wq I'Fl oating-point Operate format

Operation:

| F Fav Sl G\ED_RELATI ON Fbv THEN
Fc ~ 4000 0000 0000 0000:¢

ELSE
Fc —~ 0000 0000 0000 0000:g

Exceptions:

Invalid Operation

I nstruction mnemonics:

CMPGEQ Compare G_floating Equal

CMPGLE Compare G_floating Less Than or Equal

CMPGLT Compare G_floating Less Than
Qualifiers:

Trapping: Exception Completion (/S)
Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, anon-zero floating value (0.5) is written to register Fc; otherwise, atrue zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive relations
are possible: less than, equal, and greater than.

Aninvalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

Notes:

e Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A ,B isthe same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included.
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4.10.8 |IEEE Floating Compare

For mat:
CMPTyy Farx,Fb.rx,Fc.wq I'Floating-point Operate format

Operation:

| F Fav Sl G\ED_RELATI ON Fbv THEN
Fc ~ 4000 0000 0000 0000:¢

ELSE
Fc —~ 0000 0000 0000 0000:g

Exceptions:

Invalid Operation

I nstruction mnemonics:

CMPTEQ Compare T_floating Equal

CMPTLE Compare T_floating Less Than or Equal

CMPTLT Compare T_floating Less Than

CMPTUN Compare T_floating Unordered
Qualifiers:

Trapping: Exception Completion (/SU)
Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, anon-zero floating value (2.0) is written to register Fc; otherwise, atrue zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive relations are
possible: less than, equal, greater than, and unordered. The unordered relation is true if one or
both operands are NaN. (This behavior must be provided by an operating system (OS) comple-
tion handler, since NaNs trap.) Comparisons ignore the sign of zero, so +0 = —0.

Comparisons with plus and minus infinity execute normally and do not take an invalid operation
trap.

Notes:

e |norder to use CMPTxx with exception completion handling, it is necessary to specify
the /SU |EEE trap mode, even though an underflow trap is not possible.

e Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A ,B isthe same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included.
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4.10.9 Convert VAX Floating to Integer

For mat:
CVTGQ Fb.rx,Fc.wq IFloating-point Operate format

Operation:

Fc ~ {conversion of Fbv}

Exceptions:

Invalid Operation
Integer Overflow

I nstruction mnemonics:

CVTGQ Convert G_floating to Quadword
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Integer Overflow Enable (/V)

Description:

The floating operand in register Fb is converted to a two’s-complement quadword number and
written to register Fc. The conversion aligns the operand fraction with the binary point just to
the right of bit zero, rounds as specified, and complements the result if negative. Register Fa
must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on integer overflow.
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4.10.10 Convert Integer to VAX Floating

Format:
CVTQy Fb.rq,Fc.wx IFloating-point Operate format

Operation:

Fc ~ {conversion of Fbv<63: 0>}

Exceptions:

None

I nstruction mnemonics:

CVTQF Convert Quadword to F_floating
CVTQG Convert Quadword to G_floating
Qualifiers:
Rounding: Chopped (/C)
Description:

The two’s-complement quadword operand in register Fb is converted to a single- or dou-
ble-precision floating result and written to register Fc. The conversion complements a number
if negative, normalizes it, rounds to the target precision, and packs the result with an appropri-
ate sign and exponent field. Register Fa must be F31.
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4.10.11 Convert VAX Floatingto VAX Floating

For mat:
CVTxy Fb.rx,Fc.wx I'Floating-point Operate format

Operation:

Fc ~ {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow

I nstruction mnemonics:

CVTDG Convert D_floating to G_floating

CVTGD Convert G_floating to D_floating

CVTGF Convert G_floating to F_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:

The floating operand in register Fb is converted to the specified alternate floating format and
written to register Fc. Register Famust be F31.

Aninvalid operation trap is signaled if the operand has exp=0 and is not atrue zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

Notes:

e The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing three
fraction bits. The conversion from G_floating to D_floating adds three low-order zeros
as fraction bits, then the 8-bit exponent range is checked for overflow/underflow.

e Theconversion from G_floating to F_floating rounds or chopsto single precision, then
the 8-bit exponent range is checked for overflow/underflow.

* No conversion from F_floating to G_floating is required, since F_floating values are
aways stored in registers as equivalent G_floating values.
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4.10.12 Convert |EEE Floating to I nteger

Format:
CVTTQ Fb.rx,Fc.wq IFloating-point Operate format

Operation:

Fc ~ {conversion of Fbv}

Exceptions:

Invalid Operation
Inexact Result
Integer Overflow

I nstruction mnemonics:

CVTTQ Convert T_floating to Quadword
Qualifiers:
Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Integer Overflow Enable (/V)
Inexact Enable (/1)

Description:

The floating operand in register Fb is converted to a two’s-complement number and written to
register Fc. The conversion aligns the operand fraction with the binary point just to the right of
bit zero, punds as specified, and complements the result if negative. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on integer overflow and inexact result.
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4.10.13 Convert Integer to | EEE Floating

Format:

CVTQy Fb.rg,Fc.wx

Operation:

Fc ~ {conversion of Fbv<63: 0>}

Exceptions:

Inexact Result

I nstruction mnemonics:

!Floating-point Operate format

CVTQS Convert Quadword to S floating
CVTQT Convert Quadword to T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Exception Completion (/S)

Inexact Enable (/1)

Description:

The two’s-complement operand in register Fb is converted to a single- or double-precision
floating result and written to register Fc. The conversion complements a number if negative,
normalizes it, rounds to the target precision, and packs the result with an appropriate sign and

exponent field. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on inexact result.

Notes:

e |norder touse CVTQS or CVTQT with exception completion handling, it is necessary

to specify the /SUI IEEE trap mode, even though an underflow trap is not possible.
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4.10.14 Convert IEEE S Floating to IEEE T_Floating

Format:

CVTST Fb.rx,Fc.wx I Floating-point Operate format

Operation:

Fc ~ {conversion of Fbv}

Exceptions:

Invalid Operation

I nstruction mnemonics:

CVTST Convert S floatingto T_floating
Qualifiers:

Trapping: Exception Completion (/S)
Description:

The S floating operand inregister Fb is converted to T_floating format and written to register
Fc. Register Famust be F31.

Notes:

e The conversion from S floating to T_floating is exact. No rounding occurs. No under-
flow, overflow, or inexact result can occur. I n fact, the conversion for finite values is the
identity transformation.

e A trap handler can convert an S floating denormal value into the corresponding
T _floating finite value by adding 896 to the exponent and normalizing.
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4.10.15 Convert IEEE T_Floatingto IEEE S _Floating

Format:

CVTTS Fb.rx,Fc.wx I'Floating-point Operate format

Operation:

Fc ~ {conversion of Fbv}

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

I nstruction mnemonics:

CVTTS Convert T floatingto S floating
Qualifiers:
Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/1)

Description:

The T_floating operand in register Fb is converted to S _floating format and written to register
Fc. Register Famust be F31.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.16 VAX Floating Divide

For mat:
DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:
Fc « Fav / Fbv

Exceptions:
Invalid Operation
Division by Zero
Overflow
Underflow

I nstruction mnemonics:

DIVF Divide F_floating

DIVG Divide G_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:

The dividend operand in register Fais divided by the divisor operand in register Fb and the
quotient iswritten to register Fc.

The quotient is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

Aninvalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.17 1EEE Floating Divide

For mat:
DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:
Fc ~ Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow
Inexact Result

I nstruction mnemonics:

DIVS Divide S floating
DIVT Divide T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minusinfinity (/M)
Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/1)

Description:

The dividend operand in register Fais divided by the divisor operand in register Fb and the
quotient iswritten to register Fc.

The quotient is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.18 Floating-Point Register to Integer Register Move

For mat:
FTOIX Farg,Rc.wq I'Floating-point Operate format

Operation:
CASE
FTas
Rc<63: 32> ~ SEXT(Fav<63>)
Rc<31: 0> ~ Fav<63: 62> || Fav <58:29>
FTAT:
Rc <- Fav
ENDCASE

Exceptions:

None

I nstruction mnemonics:

FTOIS Floating-point to Integer Register Move, S floating
FTOIT Floating-point to Integer Register Move, T_floating
Qualifiers:
None
Description:

Datain afloating-point register file is moved to an integer register file.
The Fb field must be F31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

FTOIS is exactly equivalent to the sequence:
STS
LDOL

FTOIT isexactly equivalent to the sequence:
STT

LDQ

Softwar e Note:

FTOIS and FTOIT are no slower than the corresponding store/load sequence and can be
significantly faster.
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4.10.19 Integer Register to Floating-Point Register Move

Format:

ITOFx Rarg,Fc.wq IFloating-point Operate format

Operation:
CASE:
| TOFF:
Fc « Rav<31> || MAP_F(Rav<30:23> || Rav<22:0> || 0<28:0>
| TGRS
Fc « Rav<31> || MAP_S(Rav<30:23> || Rav<22:0> || 0<28:0>
| TGFT:
Fc <- Rav
ENDCASE

Exceptions:

None

I nstruction mnemonics:

ITOFF Integer to Floating-point Register Move, F_floating
ITOFS Integer to Floating-point Register Move, S floating
ITOFT Integer to Floating-point Register Move, T_floating
Qualifiers:
None
Description:

Datain an integer register file is moved to afloating-point register file.
The Rb field must be R31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

ITOFF is equivalent to the following sequence, except that the word swapping that L DF nor-
mally performsis not performed by | TOFF:

STL
LDF
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ITOFS isexactly equivalent to the sequence:

STL
LDS

ITOFT isexactly equivalent to the sequence:

STQ
LDT

Softwar e Note:

ITOFF, ITOFS, and ITOFT are no slower than the corresponding store/load sequence and

can be significantly faster.
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4.10.20 VAX Floating Multiply

For mat:
MULX Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:
Fc - Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

I nstruction mnemonics:

MULF Multiply F_floating

MULG Multiply G_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

Aninvalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.21 1EEE Floating Multiply

For mat:
MULX Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:
Fc - Fav * Fbv

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

I nstruction mnemonics:

MULS Multiply S floating
MULT Multiply T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minusinfinity (/M)
Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/1)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

Instruction Descriptions 4-127



4.10.22 VAX Floating Square Root

For mat:
SQRTX Fb.rx,Fc.wx I'Floating-point Operate format

Operation:
Fc « Fb ** (1/2)

Exceptions:

Invalid operation

I nstruction mnemonics:

SQRTF Square root F_floating

SQRTG Squareroot G_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U) — See Notes below

Description:
The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of thisinstruction must be set to a value of F31.)

The result isrounded or chopped to the specified precision. The single-precision operation on a
canonical single-precision value produces a canonical single-precision result.

Aninvalid operation is signaled if the operand has exp=0 and is not atrue zero (that is, VAX
reserved operands and dirty zeros trap). An invalid operation is signaled if the sign of the oper-
and is negative.

The contents of the Fc are UNPREDICTABLE if an invalid operation is signaled.

Notes:

e Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier isignored.
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4.10.23 |EEE Floating Square Root

Format:

SQRTX Fb.rx,Fc.wx I'Floating-point Operate format

Operation:
Fc « Fb ** (1/2)

Exceptions:

Inexact result
Invalid operation

I nstruction mnemonics:

SQRTS Squareroot S floating
SQRTT Squareroot T_floating
Qualifiers:
Rounding: Chopped (/C)
Dynamic (/D)
Minusinfinity (/M)
Trapping: Inexact Enable (/1)

Exception Completion (/S)
Underflow Enable (/U) — See Notes below

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of thisinstruction must be set to a value of F31.)

The result is rounded to the specified precision. The single-precision operation on a canonical
single-precision value produces a canonical single-precision result.

Aninvalid operation is signaled if the sign of the operand is |ess than zero. However, SQRT
(-0) produces a result of 0.

Notes:

e Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier isignored.
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4.10.24 VAX Floating Subtract

For mat:
SUBX Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:
Fc - Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

I nstruction mnemonics:

SUBF Subtract F_floating

SUBG Subtract G_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written to register Fc.

The difference is rounded or chopped to the specified precision and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical sin-
gle-precision values produces a canonical single-precision result.

Aninvalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.25 |EEE Floating Subtract

For mat:
SUBX Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:
Fc - Fav - Fbv

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

I nstruction mnemonics:

SUBS Subtract S floating
SUBT Subtract T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minusinfinity (/M)
Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/1)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written to register Fc.

The difference is rounded to the specified precision and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4-17.

Table 4-17: Miscellaneous Instructions Summary

Mnemonic Operation

AMASK Architecture Mask
CALL_PAL Call Privileged Architecture Library Routine
ECB Evict Cache Block

EXCB Exception Barrier

FETCH Prefetch Data

FETCH M Prefetch Data, Modify Intent
IMPLVER Implementation Version

MB Memory Barrier

RPCC Read Processor Cycle Counter
TRAPB Trap Barrier

WH64 Write Hint — 64 Bytes
WMB Write Memory Barrier
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4.11.1 Architecture Mask

Format:
AMASK Rb.rq,Rc.wq !Operate format
AMASK #b.ib,Rc.wq 'Operate format
Operation:

Rt —~ Rov AND {NOT CPU f eat ure_mask}

Exceptions:

None

I nstruction mnemonics:

AMASK Architecture Mask
Qualifiers:

None
Description:

Rbv represents a mask of the requested architectural extensions. Bits are cleared that corre-
spond to architectural extensions that are present. Reserved bits and bits that correspond to
absent extensions are copied unchanged. In either case, the result is placed in Rc. If the result
is zero, all requested features are present.

Software may specify an Rbv of all 1's to determine the complete set of architectural exten-
sions implemented by a processor. Assigned bit definitions are located in Section D.3.

Ra must be R31 or the result in Rc is UNPREDICTABLE and it is UNPREDICTABLE
whether an exception is signaled.

Softwar e Note:

Use this instruction to make instruction-set decisions; use IMPLVER to make code-tuning
decisions.

Implementation Note:
Instruction encoding is implemented as follows:

* On 21064/21064A/21066/21068/21066A (EV4/EV45/LCA/LCA45 chips), AMASK
copies Rbv to Rc.

e On 21164 (EV5), AMASK copies Rbv to Rc.
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e 0On21164A (EV56), 21164PC (PCA56), and 21264 (EV6), AMASK correctly indicates
support for architecture extensions by copying Rbv to Rc and clearing appropriate bits.

Bits are assigned and placed in Appendix D for architecture extensions as ECOs for those
extensions are passed. The low 8 bits are reserved for standard architecture extensions so
they can be tested with a literal; application-specific extensions are assigned from bit 8
upward.
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4.11.2 Call Privileged Architecture Library

Format:

CALL_PAL fnc.ir 'PAL format

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
conpl ete w thout incurring exceptions.}
{Trap to PALcode.}

Exceptions:

None

I nstruction mnemonics:

CALL_PAL Call Privileged Architecture Library
Qualifiers:

None
Description:

The CALL_PAL instruction is not issued until all previous instructions are guaranteed to com-
plete without exceptions. If an exception occurs, the continuation PC in the exception stack
frame points to the CALL_PAL instruction. The CALL_PAL instruction causes atrap to
PALcode.
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4.11.3 Evict Data Cache Block

Format:

ECB (Rb.ab) ' Memory format

Operation:
va « Rov
IF { va naps to nenory space } THEN
Prepare to reuse cache resources that are occupied by the

the addressed byte.
END

Exceptions:

None

I nstruction mnemonics:

ECB Evict Cache Block
Qualifiers:

None
Description:

The ECB instruction provides a hint that the addressed location will not be referenced againin
the near future, so any cache space it occupies should be made available to cache other mem-
ory locations. If the cache copy of the location is dirty, the processor may start writing it back;
if the cache has multiple sets, the processor may arrange for the set containing the addressed
byte to be the next set allocated.

The ECB instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth) during execution, it istreated as a
NOP.

If the address maps to non-memory-like (1/0) space, ECB istreated asa NOP.

Softwar e Note:

e ECB makes a particular cache location available for reuse by evicting and invalidating
its contents. The intent is to give software more control over cache allocation policy in
set-associ ative caches so that "useful" blocks can be retained in the cache.

e ECB is a performance hint — it does not serialize the eviction of the addressed cache
block with any preceding or following memory operation.
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e ECB isnot intended for flushing caches prior to power failure or low power operation
— CFLUSH is intended for that purpose.

Implementation Note:

Implementations with set-associative caches are encouraged to update their allocation
pointer so that the next D-stream reference that misses the cache and maps to this line is
allocated into the vacated set.
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4.11.4 Exception Barrier

Format:

EXCB I Memory format

Operation:

{EXCB does not appear to issue until conpletion of all
exceptions and dependenci es on the Fl oating-poi nt Control
Register (FPCR fromprior instructions.}

Exceptions:

None

I nstruction mnemonics:

EXCB Exception Barrier
Qualifiers:

None
Description:

The EXCB instruction allows software to guarantee that in a pipelined implementation, all pre-
vious instructions have completed any behavior related to exceptions or rounding modes before
any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are guaranteed to have
been made, whether or not there is an associated exception. Also, all potential floating-point
exceptions and integer overflow exceptions are guaranteed to have been taken. EXCB isthus a
superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB instruction acts
like afault. In this case, the value of the Program Counter reported to the program may be the
address of the EXCB instruction (or earlier) but is never the address of an instruction follow-
ing the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.8.1.
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4.11.5 Prefetch Data

Format:
FETCHXx O(Rb.ab) 'Memory format

Operation:

va « {Rov}
{ptionally prefetch aligned 512-byte bl ock surroundi ng va.}

Exceptions:

None

I nstruction mnemonics:

FETCH Prefetch Data

FETCH M Prefetch Data, Modify Intent
Qualifiers:

None
Description:

The virtual address is given by Rbv. This address is used to designate an aligned 512-byte
block of data. An implementation may optionally attempt to move al or part of thisblock (or a
larger surrounding block) of data to a part of the memory hierarchy that has faster-access, in
anticipation of subsequent Load or Store instructions that access that data.

Implementation Note:

FETCHXx isintended to help software overlap memory latencies when such latencies are on
the order of at least 100 cycles. FETCHX is unlikely to help (or be implemented) for
significantly shorter memory latencies. Code scheduling and cache-line prefetching (See
Section A.3.5) should be used to overlap such shorter latencies.

Existing Alpha implementations (through the 21264) have memory latencies that are too
short to profitably implement FETCHXx. Therefore, FETCHXx does not improve memory
performance in existing Alphaimplementations.

The FETCH instruction is a hint to the implementation that may allow faster execution. An
implementation is free to ignore the hint. If prefetching is done in an implementation, the order
of fetch within the designated block is UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to some or all
of the data block are anticipated.

Instruction Descriptions 4-139



No exceptions are generated by FETCHXx. If aLoad (or Store in the case of FETCH_M) that
uses the same address would fault, the prefetch request isignored. It is UNPREDICTABLE

whether a TB-miss fault is ever taken by FETCHX.

Implementation Note:
Implementations are encouraged to take the TB-miss fault, then continue the prefetch.
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4.11.6 Implementation Version

Format:

IMPLVER Rc !Operate format

Operation:
Rc ~ value, which is defined in Appendix D

Exceptions:

None

I nstruction mnemonics:

IMPLVER Implementation Version

Description:

A small integer is placed in Rc that specifies the major implementation version of the proces-
sor on which it is executed. Thisinformation can be used to make code-scheduling or tuning
decisions, or the information can be used to branch to different pieces of code optimized for
different implementations.

Notes:

e The vaue returned by IMPLVER does not identify the particular processor type.
Rather, it identifies a group of processors that can be treated similarly for performance
characteristics such as scheduling. Ra must be R31 and Rb must be the literal #1 or the
result in Rc is UNPREDICTABLE and it is UNPREDICTABLE whether an exception
issignaled.

Softwar e Note:

Use this instruction to make code-tuning decisions; use AMASK to make instruction-set
decisions.
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4.11.7 Memory Barrier

Format:

MB !Memory format

Operation:

{Quarantee that all subsequent |oads or stores
will not access nenory until after all previous
| oads and stores have accessed nenory, as
observed by ot her processors.}

Exceptions:

None

I nstruction mnemonics:

MB Memory Barrier
Qualifiers:

None
Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor systems.

In the absence of an MB instruction, loads and stores to different physical locations are
allowed to complete out of order on the issuing processor as observed by other processors. The
MB instruction allows memory accesses to be serialized on the issuing processor as observed
by other processors. See Chapter 5 for details on using the MB instruction to serialize these
accesses. Chapter 5 also details coordinating memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the progress of
memory operations.
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4.11.8 Read Processor Cycle Counter

Format:
RPCC Rawq IMemory format

Operation:

Ra ~ {cycle counter}

Exceptions:

None

I nstruction mnemonics:

RPCC Read Processor Cycle Counter
Qualifiers:

None
Description:

Register Ra is written with the processor cycle counter (PCC). The PCC register consists of
two 32-hit fields. The low-order 32 hits (PCC<31:0>) are an unsigned, wrapping counter,
PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are operating-system depen-
dent in their implementation.

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle count,
that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT. The following
example computes that cycle count, modulo 2** 32, and returns the count value in RO. Notice
the care taken not to cause an unwanted sign extension.

RPCC RO ; Read the process cycl e count er

S.IL RO, #32, Rl ; Line up the offset and count fields
ADDQ RO, RI, RO : Do add

SR RO, #32, RO : Zero extend the count to 64 bits

The following exampl e code returns the value of PCC_CNT in R0<31:0> and all zerosin
R0<63:32>.

RPCC RO
ZAPNOT RO, #15, RO
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4119 Trap Barrier

Format:

TRAPB !Memory format

Operation:

{TRAPB does not appear to issue until all prior instructions
are guaranteed to conpl ete w thout causing any arithmetic traps}.

Exceptions:

None

I nstruction mnemonics:

TRAPB Trap Barrier
Qualifiers:

None
Description:

The TRAPB instruction allows software to guarantee that in a pipelined implementation, all
previous arithmetic instructions will complete without incurring any arithmetic traps before the
TRAPB or any instructions after it are issued.

If an arithmetic exception occurs for which trapping is enabled, the TRAPB instruction acts
like afault. In this case, the value of the Program Counter reported to the program may be the
address of the TRAPB instruction (or earlier) but is never the address of the instruction follow-
ing the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for each excep-
tion domain, to isolate the address range in which an exception occurs. If the address of the
instruction following the TRAPB were allowed, there would be no way to distinguish an
exception in the address range preceding a label from an exception in the range that includes
the label along with the faulting instruction and a branch back to the label. This case arises
when the code is not following exception completion rules but isinserting TRAPB instruc-
tions to isolate exceptions to the proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see Section 4.11.4.
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4.11.10 WriteHint

Format:

WH64 (Rb.ab) I Memory format

Operation:

va ~ Rov

IF { va naps to nenory space } THEN

Wite UNPRED CTABLE data to the aligned 64-byte regi on
contai ni ng the addressed byte.

END

Exceptions:

None

I nstruction mnemonics:

WH64 Write Hint - 64 Bytes
Qualifiers:

None
Description:

The WH64 instruction provides a hint that the current contents of the aligned 64-byte block
containing the addressed byte will never be read again but will be overwritten in the near
future.

The processor may allocate cache resources to hold the block without reading its previous con-
tents from memory; the contents of the block may be set to any value that does not introduce a
security hole, as described in Section 1.6.3.

The WH64 instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth), it istreated as a NOP.

If the address maps to non-memory-like (1/0) space, WH64 is treated as a NOP.

Softwar e Note:

This instruction is a performance hint that should be used when writing a large continuous
region of memory. The intended code sequence consists of one WH64 instruction followed
by eight quadword stores for each aligned 64-byte region to be written.

Sometimes, the UNPREDICTABLE data will exactly match some or all of the previous
contents of the addressed block of memory.
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Implementation Note:
If the 64-byte region containing the addressed byte is not in the data cache,
implementations are encouraged to allocate the region in the data cache without first
reading it from memory. However, if any of the addressed bytes exist in the caches of
other processors, they must be kept coherent with respect to those processors.

Processors with cache blocks smaller than 64 bytes are encouraged to implement WH64 as
defined. However, they may instead implement the instruction by allocating a smaller
aligned cache block for write access or by treating WH64 as a NOP.

Processors with cache blocks larger than 64 bytes are also encouraged to implement WH64
as defined. However, they may instead treat WH64 as a NOP.
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4.11.11 WriteMemory Barrier

Format:

WMB !Memory format

Operation:

{ Quarantee that

{ Al preceding stores that access menory-|ike

{ regions are ordered before any subsequent stores
{ that access nenory-|ike regions and

{ Al preceding stores that access non-nenory-Ilike

{ regions are ordered before any subsequent stores
{ that access non-nenory-1like regions.

Exceptions:

None

I nstruction mnemonics:

WMB Write Memory Barrier
Qualifiers:

None
Description:

The WMB instruction provides away for software to control write buffers. It guarantees that
writes preceding the WMB are not aggregated with writes that follow the WMB.

WMB guarantees that writesto memory-like regions that precede the WMB are ordered before
writes to memory-like regions that follow the WMB. Similarly, WMB guarantees that writesto
non-memory-like regions that precede the WMB are ordered before writes to non-mem-
ory-like regions that follow the WMB. It does not order writes to memory-like regionsrelative
to writes to non-memory-like regions.

WMB causes writes that are contained in buffers to be completed without unnecessary delay. It
is particularly suited for batching writes to high-performance I/0O devices.

WMB prevents writes that precede the WMB from being merged with writes that follow the
WMB. In particular, two writes that access the same |ocation and are separated by aWMB
cause two distinct and ordered write events.

In the absence of aWMB (or IMB or MB) instruction, stores to memory-like or non-mem-
ory-like regions can be aggregated and/or buffered and completed in any order.

Instruction Descriptions 4-147



The WMB instruction is the preferred method for providing high-bandwidth write streams
where order must be preserved between writes in that stream.

Notes:

WMB is useful for ordering streams of writes to a non-memory-like region, such as to mem-
ory-mapped control registers or to a graphics frame buffer. While both MB and WMB can
ensure that writes to a non-memory-like region occur in order, without being aggregated or
reordered, the WMB is usually faster and is never slower than MB.

WMB can correctly order streams of writes in programs that operate on shared sections of data
if the data in those sections are protected by a classic semaphore protocol. The following
exampleillustrates such a protocol:

Processor | Processor |

<Acquire lock>
MB

<Read and write data
in shared section>

WMB

<Release lock> O  <Acquirelock>
MB
<Read and write data in shared section>
WMB

The example above issimilar to that in Section 5.5.4, except a WMB is substituted for the sec-
ond MB in the lock-update-release sequence. It is correct to substitute WMB for the second
MB only if:

1. All datalocations that are read or written in the critical section are accessed only after
acquiring a software lock by using lock_variable (and before releasing the software
lock).

2. For each read u of shared data in the critical section, thereis awrite v such that:
a VvisBEFORE the WMB
b. vfollowsuin processor issue sequence (see Section 5.6.1.1)

c. Vv either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1), or
both.

3. Bothlock variable and all the shared data are in memory-likeregions (or lock_variable
and all the shared data are in non-memory-like regions). If the lock variable isin a
non-memory-like region, the atomic lock protocol must use some implementation-spe-
cific hardware support.

The substitution of a WMB for the second MB isusually faster and never slower.
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4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4-18 for use in translated VAX code. These
instructions are not a permanent part of the architecture and will not be available in some
future implementations. They are intended to preserve customer assumptions about VAX
instruction atomicity in porting code from VAX to Alpha.

These instructions should be generated only by the VAX-to-Alpha software translator; they
should never be used in native Alpha code. Any native code that uses them may cease to work.

Table 4-18: VAX Compatibility Instructions Summary

Mnemonic Operation
RC Read and Clear
RS Read and Set
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4.12.1 VAX Compatibility Instructions

Format:

RX Rawq !Memory format

Operation:
Ra — intr_flag
intr_ flag « O IRC
intr_ flag « 1 I'RS
Exceptions:

None

I nstruction mnemonics:

RC Read and Clear
RS Read and Set
Qualifiers:
None
Description:

Theintr_flag isreturned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alphainstructions
between RS and RC (corresponding to a single VAX instruction) was executed without inter-
ruption or exception.

Intr_flag is a per-processor state bit. Theintr_flag is cleared if that processor encounters a
CALL_PAL REl instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when that processor exe-
cutes an LDx_L or STx_C instruction. A processor’s intr_flag isaféected when that
processor executes a normal load or store instruction.

A processor’s intr_flag is nofffacted when that prossor executes a taken branch.

Notes:

e Theseinstructions are intended only for use by the VA X-to-Alpha software translator;
they should never be used by native code.
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4.13 Multimedia (Graphicsand Video) Support

Alpha provides the following instructions that enhance support for graphics and video

algorithms:
Mnemonic Operation
MINUBS8 Vector Unsigned Byte Minimum
MINSBS8 Vector Signed Byte Minimum
MINUW4 Vector Unsigned Word Minimum
MINSW4 Vector Signed Word Minimum
MAXUBS Vector Unsigned Byte Maximum
MAXSB8 Vector Signed Byte Maximum
MAXUW4 Vector Unsigned Word Maximum
MAXSwW4 Vector Signed Word Maximum
PERR Pixel Error
PKLB Pack Longwordsto Bytes
PKWB Pack Wordsto Bytes
UNPKBL Unpack Bytes to Longwords
UNPKBW Unpack Bytes to Words

The MIN and MAX instructions allow the clamping of pixel values to maximium values that
are dlowed in different standards and stages of the CODECs.

The PERR instruction accel erates the macroblock search in motion estimation.

The pack and unpack (PKxB and UNPKBX) instructions accelerate the blocking of interleaved
Y UV coordinates for processing by the CODEC.

Implementation Note:

Alpha processors for which the AMASK instruction returns bit 8 set implement these
instructions. Those processors for which AMASK does not return bit 8 set can take an
Illegal Instruction trap, and software can emulate their function, if required.
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4.13.1 Byteand Word Minimum and Maximum

Format:

MINxXxx

MAXXXX

Operation:

CASE
M NUBS:
FORi FROMO TO 7

Rarqg,Rb.rq,Rc.wq I Operate Format
Rarg,#b.ib,Rc.wqg

Rarqg,Rb.rq,Rc.wq I Operate Format
Rarg,#b.ib,Rc.wqg

Rev<i *8+7:1*8> = M NUJ Rav<i *8+7: i *8>, Rov<i *8+7: i *8>)

END
M NSBS:
FORi FROMO TO 7

Rev<i *8+7:1*8> = M NS(Rav<i *8+7: i *8>, Rov<i *8+7: i *8>)

END

M NUW:
FORi FROMO TO 3
Rev<i *16+15:i *16>
END

M NSW:
FORi FROMO TO 3
Rev<i *16+15:i *16>
END

MAXUBS:
FORi FROMO TO 7

M NJ Rav<i *16+15: i * 16>, Rov<i *16+15: i *16>)

M NS( Rav<i *16+15: i * 16>, Rov<i *16+15: i *16>)

Rov<i *8+7:1 *8> = MAXU(Rav<i *8+7:i *8>, Rov<i *8+7:i *8>)

END
MAXSBS:
FORi FROMO TO 7

Rov<i *8+7:1 *8> = MAXS(Rav<i *8+7:i *8>, Rov<i *8+7:i *8>)

END
MAXUVM:
FORi FROMO TO 3
Rev<i *16+15:i *16>
END
MAXS\W:
FORi FROMO TO 3
Rev<i *16+15:i *16>
END
ENDCASE:

Exceptions:

None

4-152 Alpha Architecture Handbook

= MAXU Rav<i *16+15: i *16>, Rov<i * 16+15: i *16>)

= MAXS( Rav<i *16+15: i *16>, Rov<i * 16+15: i *16>)



I nstruction mnemonics:

MINUBS8
MINSB8
MINUW4
MINSWA4
MAXUBS
MAXSB8
MAXUW4
MAXSWA4

Qualifiers:

None

Description:

Vector Unsigned Byte Minimum
Vector Signed Byte Minimum
Vector Unsigned Word Minimum
Vector Signed Word Minimum
Vector Unsigned Byte Maximum
Vector Signed Byte Maximum
Vector Unsigned Word Maximum
Vector Signed Word Maximum

For MINXxB8, each byte of Rc iswritten with the smaller of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MINxW4, each word of Rc iswritten with the smaller of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned val ues.

For MAXXxB8, each byte of Rc is written with the larger of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MAXxW4, each word of Rc is written with the larger of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned val ues.
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4.13.2 Pixel Error

Format:
PERR Rarg,Rb.rg,Rc.wq ! Operate Format

Operation:

tenp =0

FORi FROMO TO 7
IF { Rav<i *8+7:i*8> (BEU Rov<i *8+7:1*8>} THEN
tenp — tenp + (Rav<i *8+7:i*8> - Rov<i*8+7:i*8>)
ELSE
tenp — tenp + (Rov<i *8+7:i*8> - Rav<i *8+7:i *8>)

END

R ~ tenp

Exceptions:

None

I nstruction mnemonics:

PERR Pixel Error
Qualifiers:

None
Description:

The absolute value of the difference between each of the bytesin Raand Rb is calculated. The
sum of the resulting bytesiswritten to Rc.
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4.13.3 Pack Bytes

For mat:
PKxB Rb.rg,Rc.wq I Operate Format

Operation:

CASE

PKLB:
BEQ N
Rc<07: 00> — Rov<07: 00>
Rc<15: 08> — Rov<39: 32>
Rc<63: 16> ~ O
END

PKVB:
BEQ N
Rc<07: 00> — Rov<07: 00>
Rc<15: 08> — Rov<23: 16>
Rc<23: 16> — Rov<39: 32>
Rc<31: 24> — Rov<bb5: 48>
Rc<63:32> ~ O
END

ENDCASE

Exceptions:

None

I nstruction mnemonics:

PKLB Pack Longwordsto Bytes
PKWB Pack Words to Bytes
Qualifiers:
None
Description:

For PKLB, the component longwords of Rb are truncated to bytes and written to the lower two
byte positions of Rc. The upper six bytes of Rc are written with zero.

For PKWB, the component words of Rb are truncated to bytes and written to the lower four
byte positions of Rc. The upper four bytes of Rc are written with zero.
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4.13.4 Unpack Bytes

Format:
UNPKBx Rb.rq,Rc.wq I Operate Format

Operation:

tenp =0
CASE
UNPKBL.:
BEA N
t enp<07: 00>
t enp<39: 32>
END
UNPKBW
BEA N
t enp<07: 00>
t enp<23: 16>
t enp<39: 32>
t enp<55: 48>
END
ENDCASE
R ~ tenp

Rov<07: 00>
Rov<15: 08>

Rov<07: 00>
Rov<15: 08>
Rov<23: 16>
Rov<31: 24>

Exceptions:

None

I nstruction mnemonics:

UNPKBL Unpack Bytesto Longwords
UNPKBW Unpack Bytesto Words
Qualifiers:
None
Description:

For UNPKBL, the lower two component bytes of Rb are zero-extended to longwords. The
resulting longwords are written to Rc.

For UNPKBW, the lower four component bytes of Rb are zero-extended to words. The result-
ing words are written to Rc.
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Chapter 5

System Architecture and Programming

Implications

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and the system struc-
ture, of both uniprocessor and multiprocessor implementations. Architectural implications
considered in the following sections are:

e Physical address space behavior

e Cachesand write buffers

e Trandation buffers and virtual caches
e Datasharing

e Read/write ordering

e Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware implementors need
to take these issues into consideration.

5.2 Physical Address Space Char acteristics

Alpha physical address space is divided into four equal-size regions. The regions are delin-

eated by the two most significant, implemented, physical address bits. Each region’s
characteristics are distinguished by the coherency, granularity, and width of memory accesses,
and whether the region exhibits memory-like behavior or non-memory-like behavior.

5.2.1 Coherency of Memory Access
Alpha implementations must provide a coherent view of memory, in which each write by a

processor or 1/O device (hereafter, called "processor") becomes visible to all other processors.
No distinction is made between @rkncy of "memory space" and "I/O space."
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Memory coherency may be provided in different ways for each of the four physical address
regions.

Possible per-region policiesinclude, but are not restricted to:
e No caching

No copies are kept of data in a region; al reads and writes access the actual data
location (memory or 1/O register), but a processor may elide multiple accesses to the
same data (see Section 5.2.3).

e Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes update
the actual data location and either update or invalidate all copies.

e Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies, and
writes use additional state to determine whether there are other copies to invalidate or
update.

Softwar e/Har dwar e Note:

To produce separate and distinct accesses to a specific location, the location must be a
region with no caching and a memory barrier instruction must be inserted between
accesses. See Section 5.2.3.

Part of the coherency policy implemented for a given physical address region may include
restrictions on excess data transfers (performing more accesses to a location than is necessary

to acquire or change the location’s value) or may specify data transfer widths (the granularity
used to access a location).

Independent of coherency policy, a processor may use different hardware or different hard-
ware resource policies for caching offfieting different fhysical address regions.

Granularity of Memory Access

For each region, an implementation must support aligned quadword access and may optionally
support aligned longword access or byte access. If byte access is supported in a region, aligned
word access and aligned longword access are also supported.

For a quadword access region, accesses to physical memory must be implemented such that
independent accesses to adjacent aligned quadwords produce the same results regardless of the
order of execution. Further, an access to an aligned quadword must be done in a single atomic
operation.

For a longword access region, accesses to physical memory must be implemented such that
independent accesses to adjacent aligned longwords produce the same results regardless of the
order of execution. Further, an access to an aligned longword must be done in a single atomic
operation, and an access to an aligned quadword must also be done in a single atomic
operation.
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For a byte access region, accesses to physical memory must be implemented such that indepen-
dent accesses to adjacent bytes or adjacent aligned words produce the same results, regardless
of the order of execution. Further, an access to a byte, an aligned word, an aligned longword,
or an aligned quadword must be done in a single atomic operation.

In this context, "atomic" means that the following is true if different processors do simulta-
neous reads and writes of the same data:

The result of any set of writes must be the same as if the writes had occurred sequen-
tially in some order, and

Any read that observes the effect of awrite on some part of memory must observe the
effect of that write (or of alater write or writes) on the entire part of memory that is
accessed by both the read and the write.

When a write accesses only part of a given word, longword, or quadword, a read of the entire
structure may observe the effect of that partial write without observing the effect of an earlier
write of another byte or bytes to the same structure. See Sections 5.6.1.5 and 5.6.1.6.

5.2.3 Width of Memory Access

Subject to the granularity, ordering, and coherency constraints given in Sections 5.2.1, 5.2.2,
and 5.6, accesses to physical memory may be freely cached, buffered, and prefetched.

A processor may read more physical memory data (such as afull cache block) than is actually
accessed, writes may trigger reads, and writes may write back more data than is actually
updated. A processor may elide multiple reads and/or writes to the same data.

5.2.4 Memory-Like and Non-Memory-Like Behavior

Memory-like regions obey the following rules:

Each page framein theregion either existsin its entirety or does not exist in its entirety;
there are no holes within a page frame.

All locations that exist are read/write.

A write to a location followed by a read from that location returns precisely the bits
written; al bits act as memory.

A write to one location does not change any other location.
Reads have no side effects.

Longword access granularity is provided, and if the byte/word extension is imple-
mented, byte access granularity is provided.

Instruction-fetch is supported.
L oad-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

Unimplemented locations or bits may exist anywhere.

Some locations or bits may be read-only and others write-only.
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e Address ranges may overlap, such that a write to one location changes the bits read
from a different location.

¢ Reads may have side effects, although thisis strongly discouraged.

e Longword granularity need not be supported and, even if the byte/word extension is
implemented, byte access granularity need not be implemented.

e |nstruction-fetch need not be supported.
e Load-locked and store-conditional need not be supported.

Har dwar e/Softwar e Coor dination Note:

The details of such behavior are outside the scope of the Alpha architecture. Specific
processor and 1/0O device implementations may choose and document whatever behavior
they need. It is the responsibility of system designers to impose enough consistency to
allow processors successfully to access matching non-memory devices in a coherent way.

5.3 Trandation Buffersand Virtual Caches

A system may choose to include avirtual instruction cache (virtual |-cache) or avirtual data
cache (virtual D-cache). A system may also choose to include either a combined data and
instruction translation buffer (TB) or separate data and instruction TBs (DTB and ITB). The
contents of these caches and/or translation buffers may become invalid, depending on what
operating system activity is being performed.

Whenever a non-software field of a valid page table entry (PTE) is modified, copies of that
PTE must be made coherent. PAL code mechanisms are available to clear all TBs, both DTB
and ITB entriesfor agiven VA, either DTB or ITB entries for agiven VA, or all entries with
the address space match (ASM) bit clear. Virtual D-cache entries are made coherent whenever
the corresponding DTB entry is requested to be cleared by any of the appropriate PALcode
mechanisms. Virtual |-cache entries can be made coherent viathe IMB instruction.

If a processor implements address space numbers (ASNSs), and the old PTE has the Address
Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then entries can also effec-
tively be made coherent by assigning a new, unused ASN to the currently running process and
not reusing the previous ASN before calling the appropriate PAL code routine to invalidate the
translation buffer (TB).

In amultiprocessor environment, making the TBs and/or caches coherent on only one proces-
sor is not aways sufficient. An operating system must arrange to perform the above actions on
each processor that could possibly have copies of the PTE or data for any affected page.

5.4 Cachesand Write Buffers

A hardware implementation may include mechanisms to reduce memory access time by mak-
ing local copies of recently used memory contents (or those expected to be used) or by
buffering writes to complete at a later time. Caches and write buffers are examples of these
mechanisms. They must be implemented so that their existence is transparent to software
(except for timing, error reporting/control/recovery, and modification to the |-stream).
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The following requirements must be met by all cache/write-buffer implementations. All pro-
cessors must provide a coherent view of memory.

e Write buffers may be used to delay and aggregate writes. From the viewpoint of another
processor, buffered writes appear not to have happened yet. (Write buffers must not
delay writes indefinitely. See Section 5.6.1.9.)

e  Write-back caches must be able to detect alater write from another processor and inval-
idate or update the cache contents.

e A processor must guarantee that a data store to a location followed by a data load from
the same location reads the updated value.

e Cache prefetching is allowed, but virtual caches must not prefetch from invalid pages.
See Sections 5.6.1.3, 5.6.4.3, and 5.6.4.4.

e A processor must guarantee that all of its previous writes are visible to all other proces-
sors before a HALT instruction completes. A processor must guarantee that its caches
are coherent with the rest of the system before continuing from aHALT.

e |f battery backup is supplied, a processor must guarantee that the memory system
remains coherent across a powerfail/recovery sequence. Data that was written by the
processor before the powerfail may not be lost, and any caches must be in a valid state
before (and if) normal instruction processing is continued after power is restored.

e Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that creates or
modifies the instruction stream must execute a CALL_PAL IMB before trying to exe-
cute the new instructions.

In this context, to "modify the virtual |-stream" means either:

— any Store to the same physical address that is subsequently fetched as an instruction
by some corresponding (virtual address, ASN) pair, or

— any change to the virtual-to-physical address mapping so fferedt values are
fetched.

For example, if two different virtual addresses, VA1 and VA2, map to the same page
frame, a store to VA1 modifies the virtual I-stream fetched by VAZ2.

However, the following sequence does not modify the virtuatelast (this might
happen in soft page faults).

1. Change the mapping of an I-stream page from valid to invalid.
2. Copy the corresponding page frame to a new fragee.
3. Change the original mapping to be valid and point to the new page frame.

e Physical instruction caches are not required to notice modifications of the physical
I-stream (they need not be coherent with the rest of memory), except for certain paging
activity. (See Section 5.6.4.4.) Software that creates or modifies the instruction stream
must execute aCALL_PAL IMB before trying to execute the new instructions.

In this context, to "modify the physical I-stream" means any Store to the same physical
address that is subsequently fetched as an instruction.
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5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

5.5.1 Atomic Changeof a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change of a shared
aligned longword or quadword. ("Change' means that the new value is not afunction of the old
value.) In particular, an ordinary STL or STQ instruction can be used to change a variable that
could be simultaneously accessed viaan LDx_L/STx_C sequence.

5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic update of a
shared aligned longword or quadword. ("Update" means that the new value is a function of the
old value.)

The following sequence performs a read-modify-write operation on location x. Only regis-
ter-to-register operate instructions and branch fall-throughs may occur in the sequence:

try again:
LDQL RIL, X
<nodi fy RL>
STQC Ri,x
BEQ R, no_store
no_store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes to loca-
tion x (more precisely, the locked range including x) between the LDQ L and STQ_C
instructions, then the STQ_C shown in the example stores the modified value in x and sets R1
to 1. If, however, the sequence encounters exceptions or interrupts that eventually continue the
sequence, or another processor writes to X, then the STQ_C does not store and setsR1t0 0. In
this case, the sequence is repeated by the branches to no_store and try_again. This repetition
continues until the reasons for exceptions or interrupts are removed and no interfering storeis
encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary number
of times, giving the same result values each time. A sufficient (but not necessary) condition is
that, within the sequence, the set of operand destinations and the set of operand sources are
disjoint.

Note:

A sufficiently long instruction sequence between LDx_L and STx_C will never complete,
because periodic timer interrupts will always occur before the sequence completes. The
rules in Section A.5 describe sequences that will eventually complete in all Alpha
implementations.
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This |oad-locked/store-conditional paradigm may be used whenever an atomic update of a
shared aligned quadword is desired, including getting the effect of atomic byte writes.

5.5.3 Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned longword
or quadword), the programmer can acquire control of the data structure by using an atomic
update to set a software lock variable. Such a software lock can be cleared with an ordinary
store instruction.

A software-critical section, therefore, may look like the sequence:

stq_c_| oop:
spi n_| oop:
LDQ RiL,lock variable ; This optional spin-l1oop code
BLBS R1, al ready_set ; shoul d be used unl ess the
; lock is known to be | ow contention.
LDQ L R, lock variable P\
BLBS R1, al ready_set ;o\
R R,#,R ; > Set lock bit
STQ C R2, I ock_vari abl e v
BEQ R2,stqg_c fail 0
MB
<critical section: updates various data structures>
MB ; Second MB
STQ R31,lock variabl e ; Qear lock bit

al ready_set:

<code to block or reschedule or test for too nany iterations>
BR spin_| oop

stg_c fail:

<code to test for too many iterations>
BR stq_c_loop

This code has a number of subtleties:

If the lock _variable is already set, the spin loop is done without doing any stores. This
avoidance of stores improves memory subsystem performance and avoids the deadlock
described below. The loop uses an ordinary load. This code sequence is preferred unless
the lock is known to be low-contention, because the sequence increases the probability
that the LDQ_L hits in the cache and the LDQ_L/STQ_C sequence complete quickly
and successfully.

If the lock variable is actually being changed from 0 to 1, and the STQ_C fails (due to
an interrupt, or because another processor simultaneously changed lock_variable), the
entire process starts over by reading the lock_variable again.

Only the fall-through path of the BLBS instructions does a STx_C; some implementa-
tions may not allow a successful STx_C after a branch-taken.

Only register-to-register operate instructions are used to do the modify.
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e Both conditional branches are forward branches, so they are properly predicted not to
be taken (to match the common case of no contention for the lock).

* The OR writes its result to a second register; this allows the OR and the BLBS to be
interchanged if that would give afaster instruction schedule.

e Other operate instructions (from the critical section) may be scheduled into the
LDQ L..STQ _C sequence, so long as they do not fault or trap and they give correct
results if repeated; other memory or operate instructions may be scheduled between the
STQ_C and BEQ.

e Thememory barrier instructions are discussed in Section 5.5.4. It is correct to substitute
WMB for the second MB only if:

— All data locations that are read or written in the critical section are accessed only
after acquiring a softare lock by using ldc variable (and before releasing the
software lock).

— For each read of shared data in the critical section, there is a wr#ech that:
1. vis BEFORE the WMB
2. vfollowsuin processor issue sequence (see Section 5.6.1.1)

3. veither depends om(see Section 5.6.1.7) or overlapésee Section 5.6.1), or
both.

— Both lock variable and all the shared data are in memory-like regions (or
lock variable and all the shared data are in non-memory-like regions). If the
lock variable is in a non-memory-like region, the atomic lock protocol must use
some implementation-specific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.
e Anordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C sequence
(to move the BLBS after the BEQ) because that sequence may repeatedly change the software
lock_variable from "locked" to "locked," with each write causing extra access delaysin all
other caches that contain the lock _variable. In the extreme, spin-waits that contain writes may
deadlock asfollows:

If, when one processor spins with writes, another processor is modifying (not changing)
the lock_variable, then the writes on the first processor may cause the STx_C of the
modify on the second processor always to fail.

This deadlock situation is avoided by:
e Having only one processor execute a store (no STx_C), or

e Having no write in the spin loop, or

e Doing awrite only if the shared variable actually changes state (1 — 1 does not change
state).

5-8 Alpha Architecture Handbook



5.5.4 Ordering Considerationsfor Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three steps:
1. Acquire software lock
2. Critical section — read/write shared data
3. Clear software lock

In the absence of explicit instructions to the contrary, the Afphhitecture allows reads and
writes to be reordered. While this may allow more implementation speed and overlap, it can
also create undesired side effects on shared data structures. Normallitidhleserction just
described would have two instructions added to it:

<acqui re software | ock>

MB (nmemory barrier #1)

<critical section —read/wite shared data>
MB (nermory barrier #2)

<cl ear software | ock>

<endcode_exanpl e>

The first memory barrier prevents any reads (from within the critical section) from being
prefetched before the software lock is acquired; such prefetched reads would potentially con-
tain stale data.

The second memory barrier prevents any writes and reads in the critical section being delayed
past the clearing of the software lock. Such delayed accesses could interact with the next user
of the shared data, defeating the purpose of the software lock entirely. It is correct to substitute
WMB for the second MB only if:

1. All data locations that are read or written in the critical section are accessed only after
acquiring a software lock by using lock_variable (and before releasing the software
lock).

2. For each read of shared data in the critical section, there is a wrgach that:
a. vis BEFORE the WMB
b. vfollowsuin processor issue sequence (see Section 5.6.1.1)
c. v either depends am(see Section 5.6.1.7) or overlap&ee Section 5.6.1), or both.

3. Both lock variable and all the shared data are in memory-like regions (or lock_variable
and all the shared data are in non-memory-like regions). If the lock_variable is in a
non-memory-like region, the atomic lock protocol must use some implementation-spe-
cific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

Softwar e Note:

In the VAX architecture, many instructions provide noeiniptable read-modify-write
sequences to memory variables. Most programmers never regard data sharing as an issue.

In the Alpha architecture, programmers must pay more attention to synchronizing access to
shared data; for example, to AST routines. In the \a@k&hitecture, a programmer can use

System Architecture and Programming Implications 5-9



an ADDLZ2 to update a variable that is shared between a "MAIN" routine and an AST
routing, if running on a single processor. In the Alpha architecture, a programmer must
deal with AST shared data by using multiprocessor shared data sequences.

5.6 Read/WriteOrdering

This section applies to programs that run on multiple processors or on one or more Processors
that are interacting with DMA 1/O devices. To a program running on a single processor and not
interacting with DM A 1/O devices, all memory accesses appear to happen in the order speci-
fied by the programmer. This section deals with predictable read/write ordering across multiple
processors and/or DMA 1/0O devices.

The order of reads and writes done in an Alpha implementation may differ from that specified
by the programmer.

For any two memory accesses A and B, either A must occur before B in all Alphaimplementa-
tions, B must occur before A, or they are UNORDERED. In the last case, software cannot
depend upon one occurring first: the order may vary from implementation to implementation,
and even from run to run or moment to moment on a single implementation.

If two accesses cannot be shown to be ordered by the rules given, they are UNORDERED and
implementations are free to do them in any order that is convenient. | mplementations may take
advantage of this freedom to deliver substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory accesses
on a single processor, then defines the (partial) ordering on this issue sequence that all Alpha
implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access sequences at
each shared memory location. The discussion defines the (partial) ordering on the individual
access sequences that all Alphaimplementations are required to maintain.

The net result is that for any code that executes on multiple processors, one can determine
which memory accesses are required to occur before others on all Alphaimplementations and
hence can write useful shared-variable software.

Software writers can force one access to occur before another by inserting a memory barrier
instruction (MB, WMB, or CALL_PAL IMB) between the accesses.

5.6.1 Alpha Shared Memory Mode

An Alpha system consists of a collection of processors, 1/0 devices (and possibly a bridge to
connect remote /O devices), and shared memories that are accessible by all processors.

Note:

An example of an unshared location is a physical addressin I/O space that refersto a CSR
that is local to a processor and not accessible by other processors.

A processor isan Alpha CPU.
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In most systems, DMA /O devices or other agents can read or write shared memory locations.
The order of accesses by those agentsis not completely specified in this document. It is possi-
ble in some systems for read accesses by 1/O devices or other agents to give results indicating
some reordering of accesses. However, there are guarantees that apply in all systems. See Sec-
tion 5.6.4.7.

A shared memory isthe primary storage place for one or more locations.

A location is a byte, specified by its physical address. M ultiple virtual addresses may map to
the same physical address. Ordering considerations are based only on the physical address.
This definition of location specifically includes locations and registers in memory mapped 1/0
devices and bridges to remote 1/O (for example, Mailbox Pointer Registers, or MBPRS).

Implementation Note:

An implementation may allow alocation to have multiple physical addresses, but the rules
for accesses via mixtures of the addresses are implementation-specific and outside the
scope of this section. Accesses via exactly one of the physical addresses follow the rules
described next.

Each processor may generate accesses to shared memory locations. There are six types of
accesses:

1. Instruction fetch by processor i to location X, returning value a, denoted Pi:l<4>(x,a).

2. Data read (including load-locked) by processor i to location X, returning value a,
denoted Pi:R<size>(x,d).

3. Datawrite (including successful store-conditional) by processor i to location X, storing
value a, denoted Pi:W<size>(x,a).

4. Memory barrier issued by processor i, denoted Pi:MB.

5. Write memory barrier issued by processor i, denoted Pi:WMB.

6. |-stream memory barrier issued by processor i, denoted Pi:IMB.

The first access typeis also called an I-stream access or |-fetch. The next two are also called

D-stream accesses. The first three types are collectively called read/write accesses, denoted
Pi:Op<m>(x,a), where misthe size of the accessin bytes, x is the (physical) address of the

access, and a is avalue representable in m bytes; for any k in the range 0..m-1, bykeof value

a (where byte 0 is the low-order byte) is the value written teead from loction x+k by the

access. This relationship reflects little-endian addressing; big-endian addressing representation
is as described in Chapter 2.

The last three types collectivedye called barriers or memory barriers.

The size of a read/write access is 8 for a quadword access, 4 for a longword access (including
all instruction fetches), 2 for a word access, or 1 for a byte access. All read/write accesses in
this chapter are naturally aligned. That is, they have the form Pi:Op<m>(x,a), where the

addresx is divisible by sizem.

The word "access" is also used as a verb; a read/write access Pi:Op<m>(x,a) accegskes byte
X £ z < x+m. Two read/write accesses Opl<m>(x,a) and Op2<n>(y,b) are defined to overlap if
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there is at least one byte that is accessed by both, that is, if max(x,y) < min(x+m,y+n).

5.6.1.1 Architectural Definition of Processor |ssue Sequence

The issue sequence for a processor is architecturally defined with respect to a hypothetical sim-
ple implementation that contains one processor and a single shared memory, with no caches or
buffers. Thisisthe instruction execution model:

1. I-fetch: An Alphainstruction is fetched from memory.

2. Read/Write: That instruction is executed and runsto completion, including asingle data
read from memory for a Load instruction or a single data write to memory for a Store
instruction.

3. Update: The PC for the processor is updated.
4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the |-fetch is not done and the
PC is updated to point to a PALcode fault handler. If the read/write step gets a memory man-
agement fault, the read/write is not done and the PC is updated to point to a PALcode fault
handler.

5.6.1.2 Definition of Before and After

The ordering relation BEFORE ([0 ) is a partial order on memory accesses. It is further defined
in Sections 5.6.1.3 through 5.6.1.9.

The ordering relation BEFORE (O ), being apartia order, isacyclic.
The BEFORE order cannot be observed directly, nor fully predicted before an actual execu-
tion, nor reproduced exactly from one execution to another. Nonethel ess, some useful ordering

properties must hold in al Alphaimplementations.

Iful v,thenvissaidto be AFTER u.

5.6.1.3 Definition of Processor |ssue Constraints

Processor issue constraints are imposed on the processor issue sequence defined in Section
5.6.1.1, as shown in Table 5-1:
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Table 5-1: Processor Issue Constraints

1stl 2nd - Pi:l<n=4>(y,b) Pi:R<n>(y,b) Pi:W<n>(y,b) Pi:MB Pi:IMB
Pi:l<m=4>(x,a) O if overlap O if overlap O O
Pi:R<m>(x,a) O if overlap O if overlap O
Pi:W<m>(x,a) O if overlap O O
Pi:MB O O O O
Pi:IMB O O O O O

Where "overlap" denotes the condition max(X,y) < min(x+m,y+n).

For two accesses u and v issued by processor Pi, if u precedes v by processor issue constraint,
then u precedes vin BEFORE order. u and v on Pi are ordered by processor issue constraint if
any of the following applies:

1. The entry in Table 5-1 indicated by the access type(tft) andv (2nd) indicates the
accesses are ordered.

2. uandv are both writes to memory-like regions and there is a WMB betwesiav in
processor issue sequence.

3. uandv are both writes to non-memory-like regions and there is a WMB betwaed
V in processor issue sequence.

4, uis a TB fill that updates a PTE, for example, a PTE read in order to satisfy a TB miss,
andv is an I- or D-stream access using that PTE (see Sections 5.6.4.3 and 5.6.4.4).

In Table 5-11st and2nd refer to the ordering of accesses in the processor issue sequence.
Note that Table 5—-1 imposes no direct constraint on the ordering relationship between non-
overlapping read/write accesses, though there may be indirect constraints due to the transitivity
of BEFORE (d ). Conditions 2 through 4, above, impose ordering constraints on some pairs of
nonoverlapping read/write accesses.

Table 5-1 permits a read access Pi:R<n>(y,b) to be ordered BEFORE an overlapping write
access Pi:W<m>(x,a) that precedes the read access in processor issue order. This asymmetry
for reads allows reads to be satisfied by using data from an earlier write in processor issue
sequence by the same processor (for example, by hitting in a write buffer) before the write
completes. The write access remains "visible" to the read access; "visibility" is described in
Sections 5.6.1.5 and 5.6.1.6 and illustrated in Litmus Test 11 in Section 5.6.2.11.

An I-fetch Pi:l<4>(y,b) may also be ordered BEFORE an overlapping write Pi:W<m>(x,a) that
precedes it in processor issue sequence. In that case, the write may, but need not, be visible to
the I-fetch. This asymmetry in Table 5-1 allows writes to the I-stream to be incoherent until a
CALL_PAL IMB is executed.

Implementations are free to perform memory accesses from a single processor in any sequence
that is consistent with processor issue constraints.
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5.6.1.4 Definition of L ocation Access Constraints

L ocation access constraints are imposed on overlapping read/write accesses. If u and v are
overlapping read/write accesses, at least one of which is awrite, then u and v must be compara-
bleinthe BEFORE (O ) ordering, that is, eitheru 0 vorv O u.

There is no direct requirement that nonoverlapping accesses be comparable in the BEFORE
(0 ) ordering.

All writes accessing any given byte are totally ordered, and any read or |-fetch accessing a
given byte is ordered with respect to all writes accessing that byte.
5.6.1.5 Definition of Vighbility

If uisawrite access Pi:W<m>(x,a) and v is an overlapping read access Pj:R<n>(y,b), uisvisi-
bleto v only if:

ul v,or
u precedes v in processor issue sequence (possible only if Pi=F)).

If uisawrite access Pi:W<m>(x,a) and v is an overlapping instruction fetch Pj:1<4>(y,b),
there are the following rules for visibility:

1. Iful v, thenuisvisibletov.
2. If u precedes v in processor issue sequence, then:
a. If thereis awrite w such that:

u overlaps w and precedes w in processor issue sequence, and
wisvisibletov,

thenuisvisibletov.
b. If thereis an instruction fetch w such that:

uisvisibleto w, and
w overlapsv and precedes v in processor issue sequence,

thenuisvisibletov.

3. If udoes not precede v in either processor issue sequence or BEFORE order, thenu is
not visible to v.

Note that the rules of visibility for reads and instruction fetches are dightly different. If awrite
u precedes an overlapping instruction fetch v in processor issue sequence, but u is not
BEFORE v, then u may or may not bevisibletov.

5.6.1.6 Definition of Storage
The property of storage applies only to memory-like regions.

The value read from any byte by a read access or instruction fetch v, isthe value written by the
latest (in BEFORE order) write u to that byte that isvisible to v. More formally:

If uis Pi:W<m>(x,a), and v is either Pj:1<4>(y,b) or Pj:R<n>(y,b), and z is a byte accessed
by both u and v, and u isvisible to v; and there is no write that isAFTER u, isvisible to v,
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and accesses byte z; then the value of byte z read by v is exactly the value written by u. In
this situation, u is a source of v.

The only way to communicate information between different processorsis for one to write a
shared location and the other to read the shared location and receive the newly written value.
(In this context, the sending of an interrupt from processor Pi to Pj ismodeled as Pi writing to a
location INTIj, and Pj reading from INTij.)

5.6.1.7 Definition of Dependence Constraint

The depends relation (DP) is defined as follows. Given u and v issued by processor Pi, where u
isaread or an instruction fetch and v is awrite, u precedesv in DP order (written u DP v, that
is, v depends on u) in either of the following situations:;

e udetermines the execution of v, the location accessed by v, or the value written by v.

e U determines the execution or address or value of another memory access z that pre-
cedes v or might precede v (that is, would precede v in some execution path depending
on the value read by u) by processor issue constraint (see Section 5.6.1.3).

Note that the DP relation does not directly impose a BEFORE (0 ) ordering between accesses
uandv.

The dependence constraint requires that the union of the DP relation and the "is a source of"
relation (see Section 5.6.1.6) be acyclic. That is, there must not exist reads and/or |-fetches R1,
..., Rn, and writes W1, ..., W, such that:

1. n=1,

2. Foreach, 1<i<n, RiDP Wi,

3. Foreach, 1<i<n,Wiis asource of Ri + 1, and
4. Wnis a source of R1.

That constraint eliminates the possibility of "causal loops." A simple example of a "causal
loop" is when the execution of a write on Pi depends on the execution of a write on Pj and vice
versa, creamg a circular dependence chain. The following simple example of a "causal loop"
is written in the style of the litmus tests in Section 5.6.2, where initiadlydy are 1:

Processor Pi executes:

LDQ RL, x
SIQ Ry

Processor Pj executes:

LDQ RL,y
STQ RL,x
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Representing those code sequences in the style of the litmus testsin Section 5.6.2, it isimpos-
sible for the following sequence to result:

Pi Pj

[U1] Pi:R<8>(x,0) [V1] Pj:R<8>(y,0)

[U2] Pi:W<8>(y,0) [V2] Pj:W<8>(x,0)
Analysis:

<1> By the definitions of storage and visibility, U2 is the source of V1, and V2 is the
source of U1.

<2> By the definition of DP and examination of the code, U1 DP U2, and V1 DP V2.

<3> Thus, Ul DP U2, U2 is the source of V1, V1 DP V2, and V2 is thecsmf Ul.
This circular chain is forbidden by the dependence constraint.

Given theinitial condition x, y = 1, the access sequence above would also be impossible if the
code were:

Processor Pi's program:

LDQ R, x
BNE RI, done
STQ R3l,y

done:

Processor Pj's program:

LDQ RL,y
BNE RI, done
STQ R31,x

done:

5.6.1.8 Definition of L oad-L ocked and Store-Conditional

The property of load-locked and store-conditional applies only to memory-like regions.

For each successful store-conditionathere exists a load-lockedsuch that the following are
true:

1. uprecedew in the processor issue sequence.

2. There is no load-locked or store-conditional betweeandv in the processor issue
sequence.

3. If uandv access within the same naturally aligned 16-byte physical and virtual block in
memory, then for every writes by a different processor that accesses wittsnock
range (wherav is either a store or a successful store conditional), it must be truge that
U uorvld w

u's lock range contains the region of physical memory thetcesses. See Siens 4.2.4 and
4.2.5, which define the lock range and conditions for success or failure of a store conditional.
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5.6.1.9 Timeliness

56.2

Even in the absence of a barrier after the write, no write by a processor may be delayed indefi-
nitely in the BEFORE ordering.

Litmus Tests

Many issues about writing and reading shared data can be cast into questions about whether a
write is before or after aread. These questions can be answered by rigorously checking
whether any ordering satisfies the rules in Sections 5.6.1.3 through 5.6.1.8.

In litmus tests 1-9 below, all initial quadword memory locations contain 1. In all these litmus
tests, it is assumed that initializations are performed by a write or writes that are BEFORE all
the explicitly listed accesses, that all relevant writes other than the initializations are explicitly
shown, and that all accesses shown are to memory-like regions (so the definition of storage

applies).

5.6.2.1 LitmusTest 1 (Impossible Sequence)

Initially, locationx contains 1:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(x,2)
[V2]Pj:R<8>(x,1)
Analysis:
<1> By the definition of storage (Section 5.6.1.6), V1 reading 2 implies that U1 is visible
to V1.

<2> By the rules for visibility (Section 5.6.1.5), U1 being visible to V1, but being issued
by a different processor, plies that U110 V1.

<3> By the processor issue constraints (Section 5.6.1.3)] WR.

<4> By the transitivity of the partial ordét , it follows from <2> and <3> that U
V2.

<5> By the rules for visibility, it follows from ULl V2 that Ul is visible to V2.

<6> Since Ul is AFTER the initialization &f U1 is the latest (in the ordering) write
to x that is visible to V1.

<7> By the definition of storage, it follows that V2 should read the value written by U1,
in contradiction to the stated result.

Thus, once a processor reads a new value from a location, it must never see an old value — time
must not go backward. V2 must read 2.
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5.6.2.2 Litmus Test 2 (Impossible Sequence)
Initially, location x contains 1:
Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)
[V2]Pj:R<8>(x,2)
[V3]Pj:R<8>(x,3)

Analysis:
<1> Since V1 precedes V2 in processor issue sequence, V1isvisibleto V2.
<2> V2reading 2impliesUlisthelatest (in O order) writeto x visibleto V2.
<3> From<1>and<2> V10O Ul
<4> SinceUlisvisibleto V2, and they areissued by different processors, U1 0 V2.
<5> By the processor issue constraints, V2 0 V3.
<6> From<4>and<5> U100 V3.
<7> From <6> and thevisibility rules, Ul isvisibleto V3.

<8> Since both V1 and the initialization of x are BEFORE U1, U1 is the latest write to x
that isvisibleto V3.

<9> By the definition of storage, it follows that V3 should read the value written by U1,
in contradiction to the stated result.

Thus, once processor Pj reads a new value written by U1, any other writes that must precede
the read must also precede U1. V3 must read 2.

5.6.2.3 Litmus Test 3 (Impossible Sequence)

Initially, location x contains 1:

Pi Pi Pk
[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3) [W1]Pk:R<8>(x,3)
[U2]Pi:R<8>(x,3) [W2]Pk:R<8>(x,2)

Analysis:

<1> U2reading 3impliesV1isthe latest writeto x visible to U2, therefore U1 O V1.

<2> Wi1reading 3impliesV1isvisibletoWl1,soV10O W10 W, therefore V1isaso
visibleto W2.

<3> W2reading 2 implies Ul isthelatest write to x visibleto W2, therefore V1 O U1.

<4> From<l>and<3> U100 V10O U1l

Again, time cannot go backwards. If V1 is ordered before U1, then processor Pk cannot read
first the later value 3 and then the earlier value 2. Alternatively, if V1 is ordered before U1, U2
must read 2.
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5.6.2.4 Litmus Test 4 (Sequence Okay)

Initially, locations x and y contain 1.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)
Analysis:

<1> Vlreading 2impliesU2 0 V1, by storage and visibility.
<2> Since V2 does not read 2, there cannot be U1 0 V2.

<3> By the access order constraints, it follows from <2>that V2 O U1.
There are no conflicts in the sequence. There are no violations of the definition of BEFORE.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Initially, locations x and y contain 1.

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)
[V2]Pj:MB
[U2]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)
Analysis:

<1> Vlreading 2impliesU2 0 V1, by storage and visibility.
<2> V10 V20O V3, by processor issue constraints.
<3> V3readinglimpliesV3 O Ul, by storage and visibility.

ThereisU2 0 V10O V20O V30O UL There are no conflicts in this sequence. There are no
violations of the definition of BEFORE.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Initially, locations x and y contain 1.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB

[U3]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)
Analysis:

<1> U100 U220 U3, by processor issue constraints.
<2> Vlreading 2impliesU3 0 V1, by storage and visibility.
<3> V2reading limpliesV2 O U1, by storage and visibility.
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ThereisV2 0O U100 U20 U3 0O V1. There are no conflicts in this sequence. There are no
violations of the definition of BEFORE.

In litmus tests 4, 5, and 6, writes to two different locations x and y are observed (by another
processor) to occur in the opposite order than that in which they were performed. An update to
y propagates quickly to Pj, but the update to x is delayed, and Pi and Pj do not both have M Bs.

5.6.2.7 LitmusTest 7 (Impossible Sequence)

Initially, locations x and y contain 1.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB [V2]Fj:MB

[U3]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)
Analysis:

<1> V3reading 1impliesV3 0O U1, by storage and visibility.
<2> Vlreading 2impliesU3 0 V1, by storage and visibility.
<3> Ul0O U200 US, by processor issue constraints.
<4> V10O V20O V3, by processor issue constraints.

<5> By<2><3>and<4>Ul10 U20 U30O vi0O v20O V3.
Both <1> and <5> cannot be true, so if V1 reads 2, then V3 must also read 2.

If both x and y are in memory-like regions, the sequence remains impossible if U2 is changed
toaWMB. Similarly, if both x and y are in non-memory-like regions, the sequence remains
impossible if U2 ischanged to aWMB.

5.6.2.8 Litmus Test 8 (Impossible Sequence)

Initially, locations x and y contain 1.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:R<8>(y,1) [V3]Pj:R<8>(x,1)
Analysis:

<1> V3reading 1impliesV3 0O U1, by storage and visibility.
<2> U3reading 1impliesU3 O V1, by storage and visibility.
<3> U100 U220 U3, by processor issue constraints.
<4> V10O V20O V3, by processor issue constraints.
<6> By<2><3>and<4>U10 U20 U30O vid v20O V3.
Both <1> and <5> cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa.
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5.6.2.9 Litmus Test 9 (Impossible Sequence)

Initially, location x contains 1:

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[U2]Pi:R<8>(x,2) [V2]Pj:R<8>(x,3)

[U3]Pi:R<8>(x,3) [V3]Pj:R<8>(x,2)
Analysis:

<1> V3reading 2implies Ul isthe latest writetox visibleto V3, therefore V1O U1l

<2> U3reading 3impliesV1isthe latest writeto x visibleto U3, therefore U1 0 V1.

Both <1> and <2> cannot be true. Time cannot go backwards. If V3 reads 2, then U3 must read
2. Alternatively, if U3 reads 3, then V3 must read 3.

5.6.2.10 LitmusTest 10 (Sequence Okay)
For an aligned quadword location, X, initially 100000001¢:
Pi Pj
[U1]Pi:W<4>(x,2) [V1]Pj:W<4>(x+4,2)
[U2]Pi:R<8>(x,100000002;5) [V 2]Pj:R<8>(x,20000000115)

Analysis:
<1> SinceU2reads1 from x+4, V1isnotvisibleto U2. ThusU2 O V1.
<2> Similarly, V20 U1l.

<3> Ulisvishleto U2, but sincethey are issued by the same processor, it is not neces-
sarily thecasethat U1 0 U2.

<4> Similarly, itis not necessarily the casethat V1 V2.
Thereisno ordering cycle, so the sequence is permitted.

5.6.2.11 LitmusTest 11 (Impossible Sequence)
For an aligned quadword location, X, initially 1000000014¢:
Pi Pj
[U1]Pi:W<4>(x,2) [V 1] Pj:R<8>(x,200000001,¢)

[U2]Pi:MB or WMB
[U3]Pi:W<4>(x+4,2)
Analysis:

<1> V1reading 200000001, impliesU3 0 V1O U1 by storage and visibility.

<2> U100 U220 U3, by processor issue constraints.
Both <1> and <2> cannot be true.
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5.6.3

564

Implied Barriers

There are no implied barriersin Alpha. If an implied barrier is needed for functionally correct
access to shared data, it must be written as an explicit instruction. (Software must explicitly
include any needed MB, WMB, or CALL_PAL IMB instructions.)
Alphatransitions such as the following have no built-in implied memory barriers:

e Entry to PALcode

e Sending and receiving interrupts

e Returning from exceptions, interrupts, or machine checks

e Swapping context

e |nvalidating the Trandation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some PAL code/cache
implementations may have an implied CALL_PAL IMB in the |-stream TB fill routine, but
thisis transparent to the non-PALcode programmer.

Implicationsfor Software

Software must explicitly include MB, WMB, or CALL_PAL IMB instructions according to the
following circumstances.

5.6.4.1 Single Processor Data Stream

No barriers are ever needed. A read to physical address x will always return the value written
by the immediately preceding write to x in the processor issue sequence.

5.6.4.2 Single Processor Instruction Stream

An |-fetch from virtual or physical address x does not necessarily return the value written by
the immediately preceding write to X in the issue sequence. To make the |-fetch reliably get the
newly written instruction, a CALL_PAL IMB is needed between the write and the |-fetch.

5.6.4.3 Multiprocessor Data Sream (Including Single Processor with DM A 1/0)

Generally, the only way to reliably communicate shared datais to write the shared data on one

processor or DMA 1/O device, execute an MB (or the logical equivalent! if it isa DMA 1/0
device), then write aflag (equivalently, send an interrupt) signaling the other processor that the
shared data is ready. Each receiving processor must read the new flag (equivalently, receive the
interrupt), execute an MB, then read or update the shared data. In the special case in which data

1

5-22

In this context, the logical equivalent of an MB for aDMA device is whatever is necessary under the
applicable I/O subsystem architecture to ensure that preceding writes will be BEFORE (see Section
5.6.1.2) the subsequent write of aflag or transmission of an interrupt. Not all 1/O devices behave
exactly as required by the Alpha architecture. To interoperate properly with those devices, some spe-
cia action might be required by the program executing on the CPU. For example, PCI bus devices
require that after the CPU has received an interrupt, the CPU must read a CSR location on the PCI
device, execute an MB, then read or update the shared data. From the perspective of the Alpha archi-
tecture, this CSR read can be regarded as a necessary assist to help the DMA 1/O device complete its
logical equivalent of an MB.
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is communicated through just one location in memory, memory barriers are not necessary.

Softwar e Note:

Note that this section does not describe how to reliably communicate data from a processor
toaDMA device. See Section 5.6.4.7.

Leaving out the first MB removes the assurance that the shared data is written before the flag is
written.

L eaving out the second MB removes the assurance that the shared datais read or updated only
after the flag is seen to change; in this case, an early read could see an old value, and an early
update could be overwritten.

Thisimplies that after a DMA 1/O device has written some data to memory (such as paging in

apage from disk), the DMA device must logically execute an MB* before posting a comple-
tion interrupt, and the interrupt handler software must execute an MB before the data is
guaranteed to be visible to the interrupted processor. Other processors must also execute MBs
before they are guaranteed to see the new data.

An important special case occurs when awrite is done (perhaps by an I/O device) to some
physical page frame, then an MB is executed, and then a previously invalid PTE is changed to
be a valid mapping of the physical page frame that was just written. In this case, all processors
that access virtual memory by using the newly valid PTE must guarantee to deliver the newly
written data after the TB miss, for both |-stream and D-stream accesses.

5.6.4.4 Multiprocessor Instruction Stream (Including Single Processor with DMA 1/0O)

The only way to update the |-stream reliably is to write the shared |-stream on one processor or
DMA 1/0 device, then execute a CALL_PAL IMB (or an MB if the processor is not going to
execute the new I-stream, or the logical equivalent of an MB if it isa DMA 1/0O device), then
write aflag (equivalently, send an interrupt) signaling the other processor that the shared
I-stream is ready. Each receiving processor must read the new flag (equivalently, receive the
interrupt), execute a CALL_PAL IMB, then fetch the shared I-stream.

Softwar e Note:

Note that this section does not describe how to reliably communicate I-stream from a
processor to a DMA device. See Section 5.6.4.7.

Leaving out the first CALL_PAL IMB (or MB) removes the assurance that the shared |-stream
is written before the flag.

Leaving out the second CALL_PAL IMB removes the assurance that the shared I-stream is
read only after the flag is seen to change; in this case, an early read could see an old val ue.

1 SeeFootnote 1 on page 5-22.
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Thisimpliesthat after aDMA |/O device has written some |-stream to memory (such as pag-

ing in a page from disk), the DMA device must logically execute an MB? before posting a
completion interrupt, and the interrupt handler software must execute a CALL_PAL IMB
before the |-stream is guaranteed to be visible to the interrupted processor. Other processors
must also execute CALL_PAL IMB instructions before they are guaranteed to see the new
|-stream.

Animportant specia case occurs under the following circumstances:
1. A write (perhaps by an 1/O device) is done to some physical page frame.
2. A CALL_PAL IMB (or MB) is executed.

3. A previoudy invalid PTE is changed to be a valid mapping of the physical page frame
that was written in step 1.

In this case, all processors that access virtual memory by using the newly valid PTE must guar-
antee to deliver the newly written |-stream after the TB miss.

5.6.4.5 Multiprocessor Context Switch

If a process migrates from executing on one processor to executing on another, the context
switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually having that con-
text reloaded on another processor. In between, some shared mechanism must be used to
communicate that the context saved in memory by the first processor is available to the second
processor. This could be done by using an interrupt, by using a flag bit associated with the
saved context, or by using a shared-memory multiprocessor data structure, as follows:

First Processor Second Processor

Save state of current process.

MB [1]

Pass ownership of process con-

text data structure memory. O Pick up ownership of process context data
structure memory.
MB [2]
Restore state of new process context data struc-
ture memory.

Make |-stream coherent [3].
Make TB coherent [4].

Execute code for new process that accesses
memory that is not common to all processes.

1 SeeFootnote 1 on page 5-22.
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MB [1] ensures that the writes done to save the state of the current process happen before
the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen after the
ownership is picked up and hence are reliably the values written by the processor saving

the old state. Leaving this MB out makes the code fail if an old value of the context
remains in the second processor’'s cache and invalidates from the writes done on the first
processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page tables
that may have occurred on the first processor just before the save of the process state. This
must be done with a series of TB invalidate instructions to remove any nonglobal page
mapping for this process, or by assigning an ASN that is unused on the second processor to
the process. One of these actions must occur sometime before starting execution of the
code for the new process that accesses memory (instruction or data) that is not common to
all processes. A common method is to assign a new ASN after gaining ownership of the
new process and before loading its context, which includes its ASN.

The D-cache on the second processor must be made coherent with any write to the
D-stream that may have occurred on the first gsoe just before the save of process
state. This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the |-stream
that may have occurred on the first processsr pefore the save of process state. This can

be done with a CALL_PAL IMB sometime before the execution of any code that is not
common to all processes, More commonly, this can be done by forcing a TB miss (via the
new ASN or via TB invalidate instructions) and using the TB-fill rule (see Section 5.6.4.3).
This latter approach does not require any additional instruction.

Combining all these considerations gives the following, where, on a single processor, there is
no need for the barriers:
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First Processor Second Processor

Pick up ownership of process con-
text data structure memory.

MB

Assign new ASN or invalidate
TBs.

Save state of current process.

Restore state of new process.

MB
Pass ownership of process context :
data structure memory. O Pickup ownership of new process context
: data structure memory.
MB

Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.

MB

Pass ownership of old process context data
structure memory.

Execute code for new process that accesses
memory that is not common to all processes.

5.6.4.6 Multiprocessor Send/Receive | nterrupt

If one processor writes some shared data, then sends an interrupt to a second processor, and
that processor receives the interrupt, then accesses the shared data, the sequence from Section
5.6.4.3 must be used:
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First Processor Second Processor

Write data

MB

Send interrupt O Receive interrupt
MB

Access data

Leaving out the MB at the beginning of the interrupt-receipt routine causes the codeto fail if
an old value of the context remains in the second processor’s cache, and invalidates from the
writes done on the first processor are not delivered soon enough.

5.6.4.7 Implicationsfor Memory Mapped 1/0

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a processor or
DMA I/O device to another processor that work reliably in all Alpha systems. Special consid-
erations apply to the communication of data or I-stream from a processor to a DMA 1/O
device. These considerations arise from the use of bridges to connect to I/O buses with devices
that are accessible by memory accesses to non-memory-like regions of physical memory.

The following communication method works in all Alpha systems.

To reliably communicate shared data from a processor to an 1/O device:
1. Write the shared data to a memory-like physical memory region on the processor.

2. Execute an MB instruction.

3. Write a flag (equivalently, send an interrupt or write a register location implemented in
the I/O device).

The receiving I/O device must:
1. Read the flag (equivalently, detect the interrupt or detect the write to the register loca-
tion implemented in the 1/0O device).
2. Execute the equivalent of an MB
3. Read the shared data.

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance that the
shared data is written before the flag is. Unlike the case in Section 5.6.4i8gwhe shared
data to a non-memory-like physical memory region removes the assurance that the 1/0 device

1 Inthiscontext, the logical equivalent of an MB for a DMA deviceis whatever is hecessary under the
applicable I/O subsystem architecture to ensure that preceding writes will be BEFORE (see Section
5.6.1.2) the subsequent reads of shared data. Typically, thisaction is defined to be present between
every read and write access done by the 1/0O device, according to the applicable I/O subsystem archi-
tecture.
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will detect the writes of the shared data before detecting the flag write, interrupt, or device reg-
ister write.

Thisimplies that after a processor has prepared a data buffer to be read from memory by a
DMA 1/0 device (such as writing a buffer to disk), the processor must execute an MB before
starting the I/0. The 1/O device, after receiving the start signal, must logically execute an MB
before reading the data buffer, and the buffer must be located in a memory-like physical mem-
ory region.

There are methods of communicating data that may work in some systems but are not guaran-
teed in all systems. Two notable examples are:

1. If an Alpha processor writes a location implemented in a component located on an 1/O
bus in the system, then executes a memory barrier, then writes a flag in some memory
location (in a memory-like or non-memory-like region), a device on the I/O bus may be
able to detect (viaread access) the result of the flag in memory write and the write of
the location on the I/O bus out of order (that is, in a different order than the order in
which the Alpha processor wrote those locations).

2. If an Alpha processor writes a location that is a control register within an 1/O device,
then executes a memory barrier, then writes a location in memory (in a memory-like or
non-memory-like region), the 1/0 device may be able to detect (via read access) the
result of the memory write before receiving and responding to the write of its own con-
trol register.

In almost every case, a mechanism that ensures the completion of writes to control register
locations within I/O devicesis provided. The normal and strongly recommended mechanismis
to read alocation after writing it, which guarantees that the write is complete. In any case, all
systems that use a particular |/O device should provide the same mechanism for that device.

5.6.4.8 Multiple Processors Writingto a Single 1/0O Device

Generally, for multiple processors to cooperate in writing to asingle 1/0 device, the first pro-
cessor must write to the device, execute an M B, then notify other processors. Another
processor that intends to write the same I/O device after the first processor must receive the
notification, execute an MB, and then write to the 1/O device. For example:

First Processor Second Processor

Write CSR_A

MB

Write flag (in memory) O Read flag (in memory)
MB

Write CSR_B
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5.6.5

The MB on the first processor guarantees that the write to CSR_A precedes the writeto flag in
memory, as perceived on other processors. (The MB does not guarantee that the write to
CSR_A has completed. See Section 5.6.4.7 for a discussion of how a processor can guarantee
that awrite to an |/O device has completed at that device.) The MB on the second processor
guarantees that the write to CSR_B will reach the I/O device after the writeto CSR_A.

Implicationsfor Hardware

The coherency point for physical address x is the place in the memory subsystem at which
accesses to x are ordered. It may be at a main memory board, or at a cache containing x exclu-
sively, or at the point of winning a common bus arbitration.

The coherency point for X may move with time, as exclusive access to x migrates between
main memory and various caches.

MB and CALL_PAL IMB force all preceding writes to at |east reach their respective coher-
ency points. This does not mean that main-memory writes have been done, just that the order
of the eventual writesis committed. For example, on the XM1 with retry, this means getting the
writes acknowledged as received with good parity at the inputs to memory board queues; the
actual RAM write happens later.

MB and CALL_PAL IMB also force all queued cache invalidates to be delivered to the local
caches before starting any subsequent reads (that may otherwise cache hit on stale data) or
writes (that may otherwise write the cache, only to have the write effectively overwritten by a
late-delivered invalidate).

WMB ensures that the final order of writes to memory-like regions is committed and that the
final order of writes to non-memory-like regions is committed. This does not imply that the
final order of writes to memory-like regions relative to writes to non-memory-like regionsis
committed. It also prevents writes that precede the WM B from merging with writes that fol-
low the WMB. For example, an implementation with awrite buffer might implement WMB by
closing all valid write buffer entries from further merging and then drain the write buffer
entriesin order.

Implementations may allow reads of x to hit (by physical address) on pending writesin awrite
buffer, even before the writes to x reach the coherency point for x. If thisis done, it is still true
that no earlier value of x may subsequently be delivered to the processor that took the hit on the
write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but only if
there cannot be a pending write under a synonym virtual address. Lack of awrite-buffer match
on untranslated address hits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value when-
ever a PALcode routine is executed that affects the validity, fault behavior, protection
behavior, or virtual-to-physical mapping specified for one or more pages. Becoming coherent
can be delayed until the next subsequent MB instruction or TB fill (using the new mapping) if
the implementation of the PALcode routine always forces a subsequent TB fill.

System Architecture and Programming Implications 5-29



5.7 Arithmetic Traps

Alphaimplementations are allowed to execute multiple instructions concurrently and to for-
ward results from one instruction to another. Thus, when an arithmetic trap is detected, the PC
may have advanced an arbitrarily large number of instructions past the instruction T (calculat-
ing result R) whose execution triggered the trap.

When the trap is detected, any or all of these subsequent instructions may run to completion
before the trap is actually taken. The set of instructions subsequent to T that complete before
the trap istaken are collectively called the trap shadow of T. The PC pushed on the stack when
the trap istaken isthe PC of the first instruction past the trap shadow.

The instructions in the trap shadow of T may use the UNPREDICTABLE result R of T, they
may generate additional traps, and they may completely change the PC (branches, JSR).

Thus, by the time atrap is taken, the PC pushed on the stack may bear no useful relationship to
the PC of the trigger instruction T, and the state visible to the programmer may have been
updated using the UNPREDICTABLE result R. If an instruction in the trap shadow of T uses
R to calculate a subsequent register value, that register value is UNPREDICTABLE, even
though there may be no trap associated with the subsequent calculation. Similarly:

e |f an instruction in the trap shadow of T stores R or any subsequent UNPREDICT-
ABLE result, the stored valueis UNPREDICTABLE.

e |f aningtruction in the trap shadow of T uses R or any subsequent UNPREDICTABLE
result as the basis of a conditional or calculated branch, the branch target is UNPRE-
DICTABLE.

e |f aningtruction in the trap shadow of T uses R or any subsequent UNPREDICTABLE
result as the basis of an address calculation, the memory address actually accessed is
UNPREDICTABLE.

Software can follow the rules in Section 4.7.7.3 to reliably bound how far the PC may advance
before taking atrap, how far an UNPREDICTABLE result may propagate or continue from a
trap by supplying awell-defined result R within an arithmetic trap handler. Arithmetic instruc-
tions that do not use the /S exception completion qualifier can reliably produce that behavior
by inserting TRAPB instructions at appropriate points.
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Chapter 6

Common PAL code Architecture

6.1 PALcode

In afamily of machines, both users and operating system developers require functions to be
implemented consistently. When functions conform to a common interface, the code that uses
those functions can be used on several different implementations without modification.

These functions range from the binary encoding of the instruction and data to the exception
mechanisms and synchronization primitives. Some of these functions can be implemented cost
effectively in hardware, but others are impractical to implement directly in hardware. These
functions include low-level hardware support functions such as Translation Buffer miss fill
routines, interrupt acknowledge, and vector dispatch. They also include support for privileged
and atomic operations that require long instruction sequences.

Inthe VAX, these functions are generally provided by microcode. This is not seen as a prob-
lem because the VAX architecture lends itself to a microcoded i mplementation.

One of the goals of Alphaarchitecture is to implement functions consistently without micro-
code. However, it is still desirable to provide an architected interface to these functions that
will be consistent across the entire family of machines. The Privileged Architecture Library
(PALcode) provides a mechanism to implement these functions without microcode.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:;

e |nstructions that require complex sequencing as an atomic operation

e |nstructions that require VAX style interlocked memory access

e Privileged instructions

e Memory management control, including translation buffer (TB) management
e Context swapping

e |nterrupt and exception dispatching

e Power-up initialization and booting

e Consolefunctions

e Emulation of instructions with no hardware support
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The Alpha architecture lets these functions be implemented in standard machine code that is
resident in main memory. PALcode is written in standard machine code with some implemen-
tation-specific extensions to provide access to low-level hardware. This lets an Alpha
implementation make various design trade-offs based on the hardware technology being used
to implement the machine. The PALcode can abstract these differences and make them invisi-
ble to system software.

For example, inaMOS VLS| implementation, a small (32-entry) fully associative TB can be
the right match to the media, given that chip area is a costly resource. In an ECL version, a
large (1024 entry) direct-mapped TB can be used because it will use RAM chips and does not
have fast associative memories available. This difference would be handled by implementa-
tion-specific versions of the PALcode on the two systems, both versions providing transparent
TB miss service routines. The operating system code would not need to know there were any
differences.

An Alpha Privileged Architecture Library (PALcode) of routines and environmentsis supplied
by Compag. Other systems may use alibrary supplied by Compag or architect and implement a
different library of routines. Alpha systems are required to support the replacement of PAL-
code defined by Compag with an operating system-specific version.

6.3 PAL code Environment

The PALcode environment differs from the normal environment in the following ways:
e Complete control of the machine state.
e |nterrupts are disabled.
¢ |mplementation-specific hardware functions are enabled, as described below.

e |-stream memory management traps are prevented (by disabling |-stream mapping,
mapping PALcode with a permanent TB entry, or by other mechanisms).

Complete control of the machine state allows all functions of the machine to be controlled.
Disabling interrupts all ows the system to provide multi-instruction sequences as atomic opera-
tions. Enabling implementation-specific hardware functions allows access to low-level system
hardware. Preventing |I-stream memory management traps allows PA L code to implement
memory management functions such as translation buffer fill.

6.4 Special Functions Required for PAL code

PAL code uses the Alpha instruction set for most of its operations. A small number of addi-
tional functions are needed to implement the PALcode. Five opcodes are reserved to
implement PAL code functions: PAL19, PAL1B, PAL1D, PAL1E, and PAL1F. These instruc-
tions produce an trap if executed outside the PAL code environment.

e PALcode needs a mechanism to save the current state of the machine and dispatch into
PAL code.

e PALcode needs aset of instructions to access hardware control registers.
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PAL code needs a hardware mechanism to transition the machine from the PALcode
environment to the non-PAL code environment. This mechanism loads the PC, enables
interrupts, enables mapping, and disables PAL code privileges.

An Alphaimplementation may also choose to provide additional functions to simplify or
improve performance of some PAL code functions. The following are some examples:

An Alpha implementation may include a read/write virtual function that allows PAL-
code to perform mapped memory accesses using the mapping hardware rather than pro-
viding the virtual-to-physical trandation in PALcode routines. PALcode may provide a
special function to do physical reads and writes and have the Alpha loads and stores
continue to operate on virtual address in the PAL code environment.

An Alpha implementation may include hardware assists for various functions, such as
saving the virtual address of a reference on a memory management error rather than
having to generate it by simulating the effective address cal culation in PALcode.

An Alphaimplementation may include private registers so it can function without hav-
ing to save and restore the native general registers.

6.5 PAL code Effectson System Code

PAL code will have one effect on system code. Because PALcode may reside in main memory
and maintain privileged data structures in main memory, the operating system code that allo-
cates physical memory cannot use all of physical memory.

The amount of memory PALcode requiresis small, so the loss to the system is negligible.

6.6 PAL code Replacement

Alpha systems are required to support the replacement of PALcode supplied by Compag with
an operating system-specific version. The following functions must be implemented in PAL-
code, not directly in hardware, to facilitate replacement with different versions.

Trandation Buffer fill. Different operating systems will want to replace the Translation
Buffer (TB) fill routines. The replacement routines will use different data structures.
Page tables will not be present in these systems. Therefore, no portion of the TB fill
flow that would change with a change in page tables may be placed in hardware, unless
itis placed in amanner that can be overridden by PAL code.

Process structure. Different operating systems might want to replace the process con-
text switch routines. The replacement routines will use different data structures. The
HWPCB or PCB will not be present in these systems. Therefore, no portion of the con-
text switching flows that would change with a change in process structure may be
placed in hardware.

PAL code can be viewed as consisting of the following somewhat intertwined components:;

Chip/architecture component
Hardware platform component

Operating system component
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PAL code should be written modularly to facilitate the easy replacement or conditional build-
ing of each component. Such a practice simplifies the integration of CPU hardware, system
platform hardware, console firmware, operating system software, and compilers.

PA L code subsections that are commonly subject to modification include:

Trandation Buffer fill

Process structure and context switch

Interrupt and exception frame format and routine dispatch
Privileged PAL code instructions

Trangtions to and from console 1/0 mode

Power-up reset

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6—-1 and Section C.11 must be recognized by mne-
monic and opcode in all operating system implementations, but the effect of each instruction is
dependent on the implementation. Compaq defines the operation of these PALcode instruc-
tions for operating system implementations supplied by Compag.

Table 6-1: PALcode Instructions that Require Recognition

Mnemonic Name

BPT Breakpoint trap
BUGCHK Bugcheck trap
CSERVE Console service
GENTRAP Generate trap
RDUNIQUE Read unigue value
SWPPAL Swap PAL code

WRUNIQUE Write unique value
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The PALcode instructions listed in Table 6—-2 and described in the following sections must be
supported by all Alpha implementations:

Table 6—2: Required PALcode Instructions

Mnemonic Type Operation

DRAINA Privileged Drain aborts

HALT Privileged Halt processor

IMB Unprivileged |-stream memory barrier
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6.7.1 Drain Aborts

Format:
CALL_PAL DRAINA 'PALcode format

Operation:

IF Pliteral >(<)CQw NE O THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to conpl ete
wi thout incurring aborts.}

Exceptions:

Privileged Instruction

I nstruction mnemonics:

CALL_PAL DRAINA Drain Aborts

Description:
If aborts are deliberately generated and handled (such as nonexistent memory aborts while siz-

ing memory or searching for I/O devices), the DRAINA instruction forces any outstanding
aborts to be taken before continuing.

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue at least
until all previously issued instructions have completed and any associated aborts have been
signaled, asfollows:

e For operate instructions, this usually means stalling until the result register has been
written.

e For branch instructions, this usually means stalling until the result register and PC have
been written.

e For load instructions, this usually means stalling until the result register has been writ-
ten.

e For storeinstructions, this usually means stalling until at least the first level in a poten-
tially multilevel memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed portions of
a cache block have been transferred error free before continuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate target loca-
tion of the store has received error-free data before continuing. An implementation-specific
technique must be used to guarantee the ultimate completion of a write in implementations that
have multilevel memory hierarchies or store-and-forward bus adapters.
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6.7.2 Halt

Format:

CALL_PAL HALT IPAL code format

Operation:

IF Pliteral >(<)CQw NE O THEN
{privileged instruction exception}

CASE {halt_action} CF
I Qperating Systemor M atform dependent choice

hal t: {hal t}

restart/boot/hal t: {restart/boot/hal t}

boot / hal t: {boot / hal t}

debugger/hal t: {debugger/ hal t}

restart/halt: {restart/halt}
ENDCASE

Exceptions:

Privileged Instruction

I nstruction mnemonics:

CALL_PAL HALT Halt Processor

Description:

The HALT instruction stops normal instruction processing and initiates some other operating
system or platform-specific behavior, depending on the HALT action setting. The choice of
behavior typically includes the initiation of arestart sequence, a system bootstrap, or entry into
console mode. See Console Interface (111), Chapter 3, in the Alpha Architecture Reference
Manual.
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6.7.3 Instruction Memory Barrier

Format:

CALL_PAL IMB IPAL code format

Operation:

{Make instruction streamcoherent with data strean}

Exceptions:

None

I nstruction mnemonics:

CALL_PAL IMB |-stream Memory Barrier

Description:

An IMB instruction must be executed after software or 1/0 devices write into the instruction
stream or modify the instruction stream virtual address mapping, and before the new value is
fetched as an instruction. An implementation may contain an instruction cache that does not
track either processor or 1/O writes into the instruction stream. The instruction cache and mem-
ory are made coherent by an IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an instruction
from the modified location, it is UNPREDICTABLE whether the old or new value is fetched.

Softwar e Note:

In a multiprocessor environment, executing an IMB on one processor does not affect
instruction caches on other processors. Thus, a single IMB on one processor is
insufficient to guarantee that all processors see a modification of the instruction stream.

The cache coherency and sharing rules are described in Console Interface (I11), Chapter 2, in
the Alpha Architecture Reference Manual.
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Chapter 7

Console Subsystem Overview

On an Alpha system, underlying control of the system platform hardware is provided by a con-
sole subsystem. The consol e subsystem:

Initializes, tests, and prepares the system platform hardware for Alpha system software.
Bootstraps (loads into memory and starts the execution of) system software.

Controls and monitors the state and state transitions of each processor in a multiproces-
sor system.

Provides services to system software that simplify system software control of and
access to platform hardware.

Provides a means for a console operator to monitor and control the system.

The console subsystem interacts with system platform hardware to accomplish the first three
tasks. The actual mechanisms of these interactions are specific to the platform hardware; how-
ever, the net effects are common to all systems.

The console subsystem interacts with system software once control of the system platform
hardware has been transferred to that software.

The consol e subsystem interacts with the console operator through a virtual display device or
console terminal. The console operator may be a person or a management application.
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Chapter 8

| nput/Output Overview

Conceptually, Alpha systems can consist of processors, memory, a processor-memory inter-
connect (PMI), 1/O buses, bridges, and 1/0 devices.

Figure 8-1 shows the Alpha system overview.

Figure 8-1: Alpha System Overview

Processor-Memory Interconnect

1/0 Device Processor Memory Bridge

1/0 Bus
| |

1/0 Device 1/0 Device

As shown in Figure 8-1, processors, memory, and possibly I/O devices, are connected by a
PMI.

A bridge connects an I/O bus to the system, either directly to the PMI or through another 1/0
bus. The I/O bus address space is available to the processor either directly or indirectly. Indi-
rect access is provided through either an I1/O mailbox or an I/O mapping mechanism. The I/O
mapping mechanism includes provisions for mapping between PMI and I/O bus addresses and
access to /O bus operations.
Alpha I/O operations can include:

e Accesses between the processor and an 1/O device across the PMI

e Accesses between the processor and an 1/0 device across an |/O bus

¢ DMA accesses — I/O devices initiating reads and writes to memory

e Processor interrupts requested by devices

e Bus-specific I/0O accesses






Chapter 9

OpenVM S Alpha

The following sections specify the Privileged Architecture Library (PALcode) instructions, that are
required to support an OpenVMS Alpha system.

9.1 Unprivileged OpenVM S Alpha PAL code

The unprivileged PAL code instructions provide support for system operations to all modes of opera-
tion (kernel, executive, supervisor, and user).

Table 9-1 describes the unprivileged OpenVMS Alpha PALcode instructions.

Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description
BPT Breakpoint

The BPT instruction is provided for program debugging. It switches the pro-
cessor to kernel mode and pushes R2..R7, the updated PC, and PS on the ker-
nel stack. It then dispatches to the address in the Breakpoint vector, stored in a
control block.

BUGCHK Bugcheck

The BUGCHK instruction is provided for error reporting. It switches the pro-
cessor to kernel mode and pushes R2..R7, the updated PC, and PS on the ker-
nel stack. It then dispatches to the address in the bugcheck vector, stored in a
control block. The value in R16 specifies the particular bugcheck type.
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Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and Description

CHME

CHMK

CHMS

CHMU

CLRFEN

GENTRAP

Change mode to executive

The CHME ingruction allows a process to change its mode in a controlled
manner. A change in mode also results in a change of stack pointers. the old
pointer is saved, the new pointer is loaded. Registers R2..R7, PS, and PC are
pushed onto the selected stack. The saved PC addresses the instruction fol-
lowing the CHME instruction. The value in R16 specifies the particular
exception type.

Change mode to kernel

CHMK allows a process to change its mode to kernel in a controlled manner.
A change in mode also results in a change of stack pointers: the old pointer is
saved, the new pointer isloaded. R2..R7, PS, and PC are pushed onto the ker-
nel stack. The saved PC addresses the instruction following the CHMK
instruction. The value in R16 specifies the particular exception type.

Change mode to supervisor

CHMS alows a processto change its mode in a controlled manner. A change
in mode also results in achange of stack pointers: the old pointer is saved, the
new pointer is loaded. R2..R7, PS, and PC are pushed onto the selected stack.
The saved PC addresses the instruction following the CHM S instruction. The
value in R16 specifies the particular exception type.

Change mode to user
CHMU allows a process to call a routine via the change mode mecha-
nism.R2..R7, PS, and PC are pushed onto the current stack. The saved PC

addresses the instruction following the CHMU instruction. The value in R16
specifies the particular exception type.

Clear floating-point enable

CLRFEN writes azero to the floating-point enable register.
Generate trap

GENTRAP isprovided for reporting runtime software conditions. It switches
the processor to kernel mode and pushes registers R2..R7, the updated PC,
and the PS on the kernel stack. It then dispatches to the address of the GEN-
TRAP vector, stored in a control block.
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Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and Description

IMB

INSQHIL

INSQHILR

INSQHIQ

INSQHIQR

INSQTIL

|-Stream memory barrier

IMB ensures that the contents of an instruction cache are coherent after the
instruction stream has been modified by software or I/O devices.If the instruc-
tion stream is modified and an IMB is not executed before fetching an instruc-
tion from the modified location, it is UNPREDICTABLE whether the old or
new valueis fetched.

Insert into longword gqueue at header, interlocked

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

Insert into longword gqueue at header, interlocked resident

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. This instruction requires that the queue be memory-
resident and that the queue header and elements are quadword-aligned.

Insert into quadword gueue at header, interlocked

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

Insert into quadword queue at header, interlocked resident

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.This instruction requires that the queue be memory-
resident and that the queue header and elements are octaword-aligned.

Insert into longword queue at tail, interlocked

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.
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Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and Description

INSQTILR

INSQTIQ

INSQTIQR

INSQUEL

INSQUEQ

PROBE

Insert into longword gqueue at tail, interlocked resident

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. This instruction requires that the queue be memory-
resident and that the queue header and elements are quadword-aligned.

Insert into quadword gueue at tail, interlocked

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment.

Insert into quadword queue at tail, interlocked resident

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. This instruction requires that the queue be memory-
resident and that the queue header and elements are octaword-aligned.

Insert into longword queue

The entry specified in R17 is inserted into the absolute queue following the
entry specified by the predecessor addressed by R16 for INSQUEL, or fol-
lowing the entry specified by the contents of the longword addressed by R16
for INSQUEL/D. The insertion is a noninterruptible operation.

Insert into quadword queue

The entry specified in R17 is inserted into the absolute queue following the
entry specified by the predecessor addressed by R16 for INSQUEQ, or fol-
lowing the entry specified by the contents of the quadword addressed by R16
for INSQUEQ/D. The insertion is a noninterruptible operation.

Probe read/write access

PROBE checks the read (PROBER) or write (PROBEW) accessihility of the
first and last byte specified by the base address and the signed offset; the bytes
in between are not checked. System software must check all pages between
the two bytesif they areto be accessed. <p> PROBE isonly intended to check
asingle datum for accessibility.
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Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and Description

RD_PS

READ_UNQ

REI

REMQHIL

REMQHILR

REMQHIQ

Read processor status

RD_PS writes the Processor Status (PS) to register RO.

Read unique context

READ_UNQ reads the hardware process (thread) unique context value, if
previoudy written by WRITE_UNQ, and places that value in RO.

Return from exception or interrupt

The PS, PC, and saved R2..R7 are popped from the current stack and held in
temporary registers. The new PSis checked for validity and consistency. If it
isvalid and consistent, the current stack pointer isthen saved and a new stack
pointer is selected. Registers R2 through R7 are restored by using the saved
values held in the temporary registers. A check is made to determine if an
AST or interrupt is pending.If the enabling conditions are present for an inter-
rupt or AST at the completion of thisinstruction, the interrupt or AST occurs
before the next instruction.

Remove from longword queue at header, interlocked

The self-relative queue entry following the header, pointed to by R16, is
removed from the queue, and the address of the removed entry is returned in
R1. Theremoval isinterlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation.

Remove from longword queue at header, interlocked resident

The queue entry following the header, pointed to by R16, is removed from the
self-relative queue, and the address of the removed entry is returned in R1.
The removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation. This
instruction requires that the queue be memory-resident and that the queue
header and el ements are quadword-aligned.

Remove from quadword queue at header, interlocked

The self-relative queue entry following the header, pointed to by R16, is
removed from the queue and the address of the removed entry is returned in
R1. Theremoval isinterlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation.
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Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and Description

REMQHIQR

REMQTIL

REMQTILR

REMQTIQ

REMQTIQR

Remove from quadword queue at header, interlocked resident

The queue entry following the header, pointed to by R16, is removed from the
self-relative queue and the address of the removed entry isreturned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
as at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is anoninterruptible operation. Thisinstruction
requires that the queue be memory-resident and that the queue header and ele-
ments are octaword-aligned.

Remove from longword queue at tail, interlocked

The gueue entry preceding the header, pointed to by R16, isremoved from the
self-relative gueue and the address of the removed entry isreturned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
as at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation.

Remove from longword queue at tail, interlocked resident

The gueue entry preceding the header, pointed to by R16, isremoved from the
self-relative queue and the address of the removed entry isreturned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
as at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation. Thisinstruction
requires that the queue be memory-resident and that the queue header and ele-
ments are quadword-aligned.

Remove from quadword queue at tail, interlocked

The self-relative queue entry preceding the header, pointed to by R16, is
removed from the queue and the address of the removed entry is returned in
R1. Theremoval isinterlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a multi-
processor environment. The removal is a noninterruptible operation.

Remove from quadword queue at tail, interlocked resident

The gueue entry preceding the header, pointed to by R16, isremoved from the
self-relative queue and the address of the removed entry isreturned in R1. The
removal is interlocked to prevent concurrent interlocked insertions or remov-
as at the head or tail of the same queue by another process, in a multiproces-
sor environment. The removal is a noninterruptible operation. Thisinstruction
requires that the queue be memory-resident and that the queue header and ele-
ments are octaword-aligned.
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Table 9-1 : Unprivileged OpenVMS Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and Description

REMQUEL

REMQUEQ

RSCC

SWASTEN

WRITE_UNQ

WR_PS SW

Remove from longword queue

The queue entry addressed by R16 for REMQUEL or the entry addressed by
the longword addressed by R16 for REMQUEL/D is removed from the long-
word absolute queue, and the address of the removed entry is returned in R1.
The removal is a noninterruptible operation.

Remove from quadword gqueue

The queue entry addressed by R16 for REMQUEQ or the entry addressed by
the quadword addressed by R16 for REMQUEL/D is removed from the quad-
word absolute queue, and the address of the removed entry removed is
returned in R1. The removal is a noninterruptible operation.

Read system cycle counter

Register RO iswritten with the value of the system cycle counter. This counter
is an unsigned 64-bit integer that increments at the same rate as the process
cycle counter. The system cycle counter is suitable for timing a general range
of intervals to within 10% error and may be used for detailed performance
characterization.

Swap AST enable

SWASTEN swaps the AST enable bit for the current mode. The new state for
the enable bit is supplied in register R16<0> and previous state of the enable
bit is returned, zero-extended, in RO. A check is made to determine if an AST
ispending. If the enabling conditions are present for an AST at the completion
of thisinstruction, the AST occurs before the next instruction.

Write unigue context

WRITE_UNQ writes the hardware process (thread) unique context value
passed in R16 to internal storage or to the hardware privileged context block.
Write processor status software field

WR_PS SW writes the Processor Status software field (PS<SW>) with the
low-order three bits of R16<2:0>.
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9.2 Privileged OpenVM S Alpha Palcode

The privileged PAL code instructions can be called in kernel mode only.
Table 9-2 describes the privileged OpenVMS Alpha PALcode instructions.

Table 9-2 : Privileged OpenVMS Alpha PALcode Instructions Summary

Mnemonic Operation and Description

CFLUSH Cache flush

At least the entire physical page specified by a page frame number in R16 is
flushed from any data caches associated with the current processor. After doing
a CFLUSH, the first subsequent load on the same processor to an arbitrary
addressin the target page is fetched from physical memory.

CSERVE Console service
CSERVE is specific to each PALcode and console implementation and is not
intended for operating system use.

DRAINA Drain aborts
DRAINA stalls instruction issuing until all prior instructions are guaranteed to
complete without incurring aborts.

HALT Halt processor

HALT stops normal instruction processing.
LDQP Load quadword physical
The quadword-aligned memory operand, whose physical addressisin R16, is

fetched and written to RO. If the operand address in R16 is not quadword-
aligned, the result is UNPREDICTABLE.

MFPR Move from processor register
The internal processor register specified by the PALcode function field is writ-
ten to RO.

MTPR Move to processor register
The source operands in integer registers R16 (and R17, reserved for future use)
are written to the internal processor register specified by the PAL code function

field. The effect of loading a processor register is guaranteed to be active on the
next instruction.
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Table 9-2 : Privileged OpenVMS Alpha PALcode Instructions Summary (Continued)

Mnemonic

Operation and Description

STQP

SWPCTX

SWPPAL

WTINT

Store quadword physical

The quadword contents of R17 are written to the memory location whose phys-
ical addressisin R16. If the operand address in R16 is not quadword-aligned,
theresult isUNPREDICTABLE.

Swap privileged context
SWPCTX returns ownership of the data structure that contains the current

hardware privileged context (the HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

Swap PALcode image
SWPPAL causes the current PALcode to be replaced by the specified new

PAL code image. Intended for use by operating systems only during bootstraps
and by consoles during transitions to console I/0O mode.

Wait for interrupt
WTINT requests that, if possible, the PALcode wait for the first of either of the

following conditions before returning: any interrupt other than a clock tick; or,
the first clock tick after a specified number of clock ticks has been skipped.
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Chapter 10

Digital UNIX

The following sections specifiy the Privileged Architecture Library (PALcode) instructions that are
required to support aDigital UNIX system.

10.1 Unprivileged Digital UNIX PAL code

Table 10-1 describes the unprivileged Digital UNIX PALcode instructions.

Table 10-1 : Unprivileged Digital UNIX PALcode Instruction Summary

Mnemonic Operation and Description

bpt Break point trap
The bpt instruction switches mode to kernel, builds a stack frame on the kernel
stack, and dispatches to the breakpoint code.

bugchk Bugcheck
The bugchk instruction switches mode to kernel, builds a stack frame on the
kernel stack, and dispatches to the breakpoint code.

callsys System call
The callsys instruction switches mode to kernel, builds a callsys stack frame,
and dispatches to the system call code.

clrfen Clear floating-point enable

The clrfen instruction writes a zero to the floating-point enabl e register.

gentrap Generate trap

The gentrap instruction switches mode to kernel, builds a stack frame on the
kernel stack, and dispatches to the gentrap code.

imb |-stream memory barrier

The imb instruction makes the I-cache coherent with main memory.
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Table 10-1 : Unprivileged Digital UNIX PALcode Instruction Summary (Continued)

M nemonic

Operation and Description

rdunique

urti

wrunigue

Read unique

The rdunique instruction returns the process unique value.

Return from user mode trap

The urti instruction pops from the user stack the registers a0 through a2, the
global pointer, the new user assembler temporary register, the stack pointer, the

program counter, and the processor status register.

Write unique

The wrunique instruction sets the process unique register.

10.2 Privileged Digital UNIX PAL code

The privileged PALcode instructions can be called only from kernel mode. They provide an interface

to control the privileged state of the machine.

Table 10-2 describes the privileged Digital UNIX PALcode instructions.

Table 10-2 : Privileged Digital UNIX PALcode Instruction Summary

M nemonic

Operation and Description

cflush

cserve

draina

halt

rdmces

rdps
rdusp

rdval

Cache flush The cflush instruction flushes an entire physical page pointed to by
the specified page frame number (PFN) from any data caches associated with
the current processor. All processors must implement this instruction.

Console service This instruction is specific to each PALcode and console
implementation and is not intended for operating system use.

Drain aborts The draina instruction stalls instruction issuing until al prior
instructions are guaranteed to complete without incurring aborts.

Halt processor The halt instruction stops normal instruction processing.
Depending on the halt action setting, the processor can either enter console
mode or the restart sequence.

Read machine check error summary The rdmces instruction returns the MCES
register in vO.

Read processor status The rdps instruction returns the current PS.

Read user stack pointer The rdusp instruction reads the user stack pointer while
in kernel mode and returnsiit.

Read system value The rdval instruction reads a 64-hit per-processor value and
returnsit.
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Table 10-2 : Privileged Digital UNIX PALcode Instruction Summary (Continued)

Mnemonic Operation and Description

retsys Return from system call Theretsysinstruction pops the return address, the user
stack pointer, and the user global pointer from the kernel stack. It then savesthe
kernel stack pointer, sets mode to user, enables interrupts, and jumps to the
address popped off the stack.

rti Return from trap, fault or interrupt The rti instruction pops certain registers
from the kernel stack. If the new mode is user, the kernel stack is saved and the
user stack restored.

swpctx Swap privileged context The swpctx instruction saves the current process data
in the current process control block (PCB). Then swpctx switches to the PCB
and |oads the new process context.

swpipl Swap IPL The swpipl instruction returns the current value |PL and setsthe IPL.

swppal Swap PALcode image The swppal instruction causes the current PALcode to
be replaced by the specified new PALcode image. Intended only for use by
operating systems during bootstraps and by consoles during transitions to con-
sole I/0 mode.

thi TB invalidate The tbi instruction removes entries from the instruction and data
translation buffers when the mapping entries change.

whami Who_Am_| The whami instruction returns the processor number for the cur-
rent processor. The processor number isin the range 0 to the number of proces-
sors minus one (0..numproc—1) that can be configured in the system.

wrent Write system entry address The wrent instruction sets the virtual address of the
system entry points.

wrfen Write floating-point enable The wrfen instruction writes a bit to the floating-
point enable register.

wripir Write interprocessor interrupt request The wripr instruction generates an inter-
processor interrupt on the processor number passed as an input parameter. The
interrupt request is recorded on the target processor and initiated when the
proper enabling conditions are present.

wrkgp Write kernel global pointer The wrkgp instruction writes the kernel global
pointer internal register.

wrmces Write machine check error summary The wrmces instructions clears the
machine check in progress bit and clears the processor- or system-correctable
error in progress bit in the MCES register. The instruction also sets or clears the
processor- or system-aectable error reporting enable bit in the MCE§ise
ter.

wrperfmon Performance monitoring function The wrperfmon instruction alertsenfiyrp
mance monitoring software/hardware in the system to monitor the performance
of this process.

wrusp Write user stack pointer The wrusp instruction writes a value to the user stack
pointer while in kernel mode.
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Table 10-2 : Privileged Digital UNIX PALcode Instruction Summary (Continued)

Mnemonic Operation and Description

wrval Write system value The wrval instruction writes a 64-bit per-processor value.

wrvptptr Write virtual page table pointer The wrvptptr instruction writes a pointer to the
virtual page table pointer (vptptr).

wtint Wait for interrupt The wtint instruction requests that, if possible, the PALcode

wait for the first of either of the following conditions before returning: any
interrupt other than a clock tick; or, the first clock tick after a specified number
of clock ticks has been skipped.
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Chapter 11

Windows NT Alpha

The following sections specify the Privileged Architecture Library (PALcode) instructions that are
required to support aWindows NT Alpha system.

11.1 Unprivileged Windows NT Alpha PAL code

The unprivileged PAL code instuctions provide support for system operations and may be called from
both kernel and user modes.

Table 11-1 : Unprivileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

bpt Breakpoint trap (standard user-mode breakpoint)

The bpt instruction raises a breakpoint general exception to the kernel, setting a
USER_BREAKPOINT breakpoint type.

callkd Call kernel debugger

The callkd instruction raises a breakpoint general exception to the kernel, set-
ting the breakpoint type with the value supplied as an input parameter.

callsys System service call

The callsysinstruction raises a system service call exception to the kernel. Call-
sys switches to kernel mode if necessary, builds a trap frame on the kernel
stack, and then enters the kernel at the kernel system service exception handler.

gentrap Generate atrap

The gentrap instruction generates a software general exception that raises an
exception code to the current thread. The exception code is generated from a
trap number that is specified as an input parameter. Gentrap is used to raise
software-detected exceptions such as bound check errors or overflow condi-
tions.
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Table 11-1 : Unprivileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

imb Instruction memory barrier

The imb instruction guarantees that all subsequent instruction stream fetches
are coherent with respect to main memory. Imb must be issued before execut-
ing code in memory that has been modified (either by stores from the processor
or DMA from an I/O processor). User-mode code that modifies the |-stream
must call the appropriate Windows NT API to ensure |-cache coherency.

kbpt Kernel breakpoint trap
The kbpt instruction raises a breakpoint general exception to the kernel, setting
aKERNEL_BREAKPOINT breakpoint type.

rdteb Read thread environment block pointer
The rdteb instruction returns the contents of the TEB internal processor register

for the currently executing thread (the base address of the thread environment
block).

11.2 Privileged Windows NT Alpha PAL code

The privileged PAL code instuctions provide support for system operations and may be called from
only kernel mode.

Table 11-2 : Privileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

csir Clear software interrupt request

The csir instruction clears the specified bit in the SIRR internal processor regis-
ter.

dalnfix Disable alignment fixups

The dalnfix instruction disables alignment fixups in PALcode and generates
alignment fault exceptions whenever an alignment fault occurs. After dalnfix is
executed on a processor, all alignment faults on that processor are not fixed-up
by PALcode and alignment fault exceptions are dispatched to the kernel until
the ealnfix instruction is executed on that processor.

di Disable all interrupts
Thedi instruction disables all interrupts by clearing the interrupt enable (1E) bit

in the PSR internal processor register. The IRQL field is unaffected. Interrupts
may be re-enabled viathe ei instruction.
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Table 11-2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description

draina Drain all aborts including machine checks

The draina instruction drains all aborts, including machine checks, from the
current processor. Draina guarantees that no abort is signaled for an instruction
issued before the drainawhile any instruction issued subsequent to the drainais
executing.

dtbis Datatranslation buffer invalidate single
The dtbis instruction invalidates a single data stream translation. The transla-

tion for the virtual address must be invalidated in all data translation buffers
and in all virtual data caches.

ealnfix Enable alignment fixups
The eanfix instruction enables alignment fixups in PALcode and prevents
alignment fault exceptions. After ealnfix is executed on a processor, all align-
ment faults on that processor are fixed-up by PALcode and no alignment fault

exceptions are dispatched to the kernel until the dalnfix instruction is executed
on that processor.

e Enable interrupts
The el instruction enables interrupts for the IRQL set in the PSR internal pro-
cessor register by setting the interrupt enable (1E) bit in the PSR.

halt Halt the operating system by forcing illegal instruction trap

The halt instruction forces an illegal instruction exception.

initpal Initialize PAL code data structures with operating system values
The initpal instruction is called early in the kernel initialization sequence to
establish values for internal processor registers (IPRs) that are needed for trap

and fault handling. The KGP and PCR registers are initialized once and persist
throughout the run time of the operating system.

initper Initialize processor control region data
The initper instruction caches process-specific information, including parts of
the interrupt level table (ILT), for use by the PAL code.

rdcounters Read the software event counters
The rdcounters instruction is only used with debug PAL code. With production

PALcode, rdcounters returns a status value of zero, indicating that it is not
implemented in the current PALcode image.
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Table 11-2

: Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic

Operation and description

rdirgl

rdksp

rdmces

rdpcr

rdpsr

rdstate

rdthread

reboot

restart

Read the current IRQL from the PSR

The rdirgl instruction returns the contents of the interrupt request level (IRQL)
field of the PSR internal processor register.

Read initial kernel stack pointer for the current thread

The rdksp instruction returns the contents of the IKSP (initial kernel stack
pointer) internal processor register for the currently executing thread.

Read the machine check error summary register

The rdmces instruction returns the contents of the machine check error sum-
mary (MCES) internal processor register.

Read the processor control region base address

The rdpcr ingtruction returns the contents of the PCR internal processor register
(the base address val ue of the processor control region).

Read the current processor status register (PSR)

The rdpsr instruction returns the contents of the current PSR (Processor Status
Register) internal processor register.

Read the current internal processor state

The rdstate instruction returns the internal processor state to an internal buffer.

Read the thread value for the current thread

The rdthread instruction returns the contents of the THREAD internal proces-
sor register (the value of the currently executing thread).

Transfer to console firmware

The reboot instruction stops the operating system from executing and returns

execution to the boot environment. Reboot is responsible for completing the
ARC restart block before returning to the boot environment.

Restart the operating system from the restart block

The restart instruction restores saved processor state and resumes execution of
the operating system.

114 Alpha Architecture Handbook



Table 11-2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description

retsys Return from system service call exception

The retsys instruction returns from a system service call exception by unwind-
ing the trap frame and returning to the code stream that was executing when the
original exception was initiated. In addition, retsys accepts a parameter to set
software interrupt requests that became pending while the exception was han-
dled.

rfe Return from trap or interrupt
The rfe instruction returns from exceptions by unwinding the trap frame and
returning to the code stream that was executing when the original exception

was initiated. In addition, rfe accepts a parameter to set software interrupt
requests that became pending while the exception was handled.

ssir Set software interrupt request
The ssir instruction sets software interrupt requests by setting the appropriate
bitsin the SIRR internal processor register.

swpctx Swap thread context
The swpctx instruction swaps the privileged portions of thread context. Thread

context is swapped by establishing the new IKSP, THREAD, and TEB internal
processor register values.

swpirgl Swap the current interrupt request level
The swpirgl instruction swaps the current IRQL field in the PSR internal pro-
cessor register by setting the processor so that only permitted interrupts are

enabled for the new IRQL. Swpirgl updates the IRQL field and returns the pre-
vious IRQL.

swpksp Swap theinitial kerndl stack pointer for the current thread
The swpksp instruction returns the value of the previous IKSP internal proces-
sor register and writes a new |KSP for the currently executing thread.
swppal Swap the currently executing PALcode
The swppal instruction swaps the currently executing PAL code by transferring
to the base address of the new PAL code image in the PALcode environment.
SWpprocess Swap process context (swap address space)

The swpprocess instruction swaps the privileged process context by changing
the address space for the currently executing thread.
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Table 11-2 : Privileged Windows NT Alpha PALcode Instruction Summary (Continued)

Mnemonic Operation and description

thia Tranglation buffer invalidate all
The thiainstruction invalidates all translations and virtual cache blocks within
the processor.

thim Translation buffer invalidate multiple
The thim instruction invalidates multiple virtual translations for the current
ASN. Thetranslation for the virtual address must beinvalidated in all processor
translation buffers and virtual caches.

tbimasn Translation buffer invalidate multiple for ASN
The thimasn instruction invalidates multiple virtual translations for a specified
ASN. Thetranslation for the virtual addresses must be invalidated in al proces-
sor translation buffers and virtual caches.

this Translation buffer invalidate single
The this instruction invalidates a single virtual translation. The translation for
the passed virtual address must be invalidated in all processor translation buff-
ers and virtual caches.

tbisasn Translation buffer invalidate single for ASN
The tbisasn instruction invalidates a single virtual tranglation for a specified
address space. The tranglation for the passed virtual address must be invali-
dated in all processor translation buffers and virtual caches.

wrentry Write kernel exception entry routine
The wrentry instruction provides the registry of exception handling routines for
the exception classes. The kernel must use wrentry to register an exception han-
dler for each of the exception classes.

wrmces Write the machine check error summary register
The wrmces instruction writes new values for the MCES internal processor
register and returns the previous values of that register.

wrperfmon Write performance counter interrupt control information

The wrperfmon instruction writes control information for the two processor
performance counters. One parameter identifies the selected performance
counter, while another controls whether the selected performance counter is
enabled or disabled. The instruction returns the previous enable state for the
selected performance counter.




Appendix A

Software Consider ations

A.l Hardware-Software Compact

The Alpha architecture, like all RISC architectures, depends on careful attention to data align-
ment and instruction scheduling to achieve high performance.

Since there will be various implementations of the Alpha architecture, it is not obvious how
compilers can generate high-performance code for all implementations. This chapter gives
some scheduling guidelines that, if followed by all compilers and respected by all implementa-
tions, will result in good performance. As such, this section represents a good-faith compact
between hardware designers and software writers. It represents a set of common goals, not a
set of architectural requirements. Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below provide an advantage only for fre-
guently executed code. For rarely executed code, they may produce a bigger program that is
not any faster. Some of the branching optimizations also depend on good prediction of which
path from aconditional branch is more frequently executed. These optimizations are best deter-
mined by using an execution profile, either an estimate generated by compiler heuristics, or a
real profile of a previous run, such as that gathered by PC-sampling in PCA.

Each computer architecture has a "natural word size." For the PDP-11, it is 16 bits; for VAX,
32 bits; and for Alpha, 64 bits. Other architectures also have a natural word size that varies
between 16 and 64 bits. Except for very low-end implementations, ALU data paths, cache
access paths, chip pin buses, and main memory data paths are all usually the natural word size.

As an architecture becomes commercially successful, high-end implementations inevitably
move to double-width data paths that can transfer an aligned (at an even natural word address)
pair of natural words in one cycle. For Alpha, this means 128-bit wide data paths will eventu-
ally be implemented. It is difficult to get much speed advantage from paired transfers unless
the code being executed has instructions and data appropriately aligned on aligned octaword
boundaries. Since this is difficult to retrofit to old code, the following sections sometimes
encourage "over-aligning" to octaword boundaries in anticipation of high-speed Alpha
implementations.



A.2

In some cases, there are performance advantages to aligning instructions or data to cache-block
boundaries, or putting data whose use is correlated into the same cache block, or trying to
avoid cache conflicts by not having data whose use is correlated placed at addresses that are
egual modulo the cache size. Since the Alpha architecture will have many implementations, an
exact cache design cannot be outlined here.

In each case below, the performance implication is given by an order-of-magnitude number: 1,

3, 10, 30, or 100. A factor of 10 means that the performance difference being discussed will
likely range from 3 to 30 across all Alphaimplementations.

| nstruction-Sream Consider ations

The following sections describe considerations for the instruction stream.

A.2.1 Instruction Alignment

Code PSECTs should be octaword aligned. Targets of frequently taken branches should be at
least quadword aligned, and octaword aligned for very frequent loops. Compilers could use
execution profilesto identify frequently taken branches.

Quadword I-fetch implementors should give first priority to executing aligned quadwords
quickly. Octaword-fetch implementors should give first priority to executing aligned octa-
words quickly, and second priority to executing aligned quadwords quickly. Dual-issue
implementations should give first priority to issuing both halves of an aligned quadword in one
cycle, and second priority to buffering and issuing other combinations.

A.2.2 Branch Prediction and Minimizing Branch-Taken — Factor of 3

In many Alphaimplementations, an unexpected change in |-stream address will result in about
10 lost instruction times. "Unexpected" may mean any branch-taken or may mean a mispre-
dicted branch. In many implementations, even a correctly predicted branch to a quadword
target address will be dower than straight-line code.

Compilers should follow these rules to minimize unexpected branches:

1. Branch prediction is implementation specific. Based on execution profiles, compilers
should physically rearrange code so that it has matching behavior.

2. Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This requires unrolling loops so that they contain at least 20
instructions, and putting subroutines of less than 20 instructions directly in line. It also
requires using execution profilesto rearrange code so that the frequent case of a condi-
tional branch falls through. For very high-performance loops, it will be profitable to
move instructions across conditional branchesto fill otherwise wasted instruction issue
slots, even if the instructions moved will not always do useful work. Note that using the
Conditional Move instructions can sometimes avoid breaking up basic blocks.

3. Inanif-then-else construct whose execution praofile is skewed even slightly away from
50%-50% (51-49 is enough), put the infrequent case completely out of line, so that the
frequent case encounters zero branch-takens, and the infrequent case encounters two
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branch-takens. If the infrequent case is rare (5%), put it far enough away that it never
comes into the I-cache. If the infrequent case is extremely rare (error message code),
put it on a page of rarely executed code and expect that page never to be paged in.

4. There are two functionally identical branch-format opcodes, BSR and BR, as shown in
Figure A-1.

Figure A-1: Branch-Format BSR and BR Opcodes

31 26 25 2120 0

BSR Ra Displacement Branch Format

BR Ra Displacement Branch Format

Compilers should use the first one for subroutine calls, and the second for GOTOs.
Some implementations may push a stack of predicted return addresses for BSR and not
push the stack for BR. Failure to compile the correct opcode will result in mispredicted
return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction, shown in Figure A-2, has 16 unused bits. These
should be used by the compilers to communicate a hint about expected branch-target
behavior (see Section 4.3).

Figure A—2: Memory-Format JSR Instruction
31 16 15 0

JSR Ra Rb Memory Format

If the JSR is used for a computed GOTO or a CASE statement, compile bits <15:14>
as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:.0> equals
(likely_target addr) <15:0>. In other words, pick the low 14 bits so that a normal
PC+displacement*4 calculation will match the low 16 bits of the most likely target
longword address. (Implementations will likely prefetch from the matching cache
block.)

If the JSR isused for a computed subroutine call, compile bits <15:14> as 01, and bits
<13:0> as above. Some implementations will prefetch the call target using the
prediction and also push updated PC on areturn-prediction stack.

If the JSR is used as a subroutine return, compile bits <15:14> as 10. Some
implementations will pop an address off a return-prediction stack.

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. Some
implementations will pop an address off a return-prediction stack and also push
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code with no branch-takens as
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quickly as possible, second priority to predicting conditional branches based on the sign of the
displacement field (backward taken, forward not-taken), and third priority to predicting sub-
routine return addresses by running a small prediction stack. (VAX traces show a stack of two
to four entries correctly predicts most branches.)

A.2.3 Improving I-Stream Density — Factor of 3

Compilers should try to use profiles to make sure almost 100% of the bytes brought into an
I-cache are actually executed. This requires aligning branch targets and putting rarely executed
code out of line.

A.2.4 Instruction Scheduling — Factor of 3

The performance of Alpha programsis sensitive to how carefully the code is scheduled to min-
imize instruction-issue delays.

"Result latency" is defined as the number of CPU cycles that must elapse between an instruc-
tion that writes aresult register and one that uses that register, if execution-time stalls are to be
avoided. Thus, with alatency of zero, the instruction writes aresult register and the instruction
that uses that register can be multiple-issued in the same cycle. With alatency of 2, if the writ-
ing instruction isissued at cycle N, the reading instruction can issue no earlier than cycle N+2.
Latency is implementation specific.

Most Alphainstructions have a non-zero result latency. Compilers should schedule code so
that aresult is not used too soon, at least in frequently executed code (inner loops, as identified
by execution profiles). In general, this will require unrolling loops and inlining short
procedures.

Compilers should try to schedule code to match the above latency rules and also to match the
multiple-issue rules. If doing both isimpractical for a particular sequence of code, the latency
rules are more important (since they apply even in single-issue implementations).

Implementors should give first priority to minimizing the latency of back-to-back integer oper-
ations, of address calculations immediately followed by load/store, of load immediately
followed by branch, and of compare immediately followed by branch. Give second priority to
minimizing latenciesin general.

A.3 Data-Sream Considerations

The following sections describe considerations for the data stream.

A.3.1 Data Alignment — Factor of 10

Data PSECTs should be at least octaword aligned, so that aggregates (arrays, some records,
subroutine stack frames) can be allocated on aligned octaword boundaries to take advantage of
any implementations with aligned octaword data paths, and to decrease the number of cache
fillsin amost al implementations.

Aggregates (arrays, records, common blocks, and so forth) should be allocated on at | east
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aligned octaword boundaries whenever language rules allow. In some implementations, a
series of writes that completely fill a cache block may be afactor of 10 faster than a series of
writes that partially fill a cache block, when that cache block would give aread miss. Thisis
true of write-back caches that read a partially filled cache block from memory, but optimize
away the read for completely filled blocks.

For such implementations, long strings of sequential writes will be faster if they start on a
cache-block boundary (a multiple of 128 bytes will do well for most, if not all, Alpha imple-
mentations). This appliesto array results that sweep through large portions of memory, and to
register-save areas for context switching, graphics frame buffer accesses, and other places
where exactly 8, 16, 32, or more quadwords are stored sequentially. Allocating the targets at
multiples of 8, 16, 32, or more quadwords, respectively, and doing the writes in order of
increasing address will maximize the write speed.

Items within aggregates that are forced to be unaligned (records, common blocks) should gen-
erate compile-time warning messages and inline byte extract/insert code. Users must be
educated that the warning message means that they are taking a factor of 30 performance hit.

Compiled code for parameters should assume that the parameters are aligned. Unaligned actu-
als will cause run-time alignment traps and very slow fixups. The fixup routine, if invoked,
should generate warning messages to the user, preferably giving the first few statement num-
bers that are doing unaligned parameter access, and at the end of a run the total number of
alignment traps (and perhaps an estimate of the performance improvement if the data were
aligned). Users must be educated that the trap routine warning message means they are taking a
factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated in memory
should normally be allocated an aligned quadword to itself, even if the datum is only a byte
wide. This allows aligned quadword loads and stores and avoids partial-quadword writes
(which may be half as fast as full-quadword writes, due to such factors as read-modify-write a
guadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second priority
to fast writes of full cache blocks.

A.3.2 Shared Data in Multiple Processors — Factor of 3

Software locks are aligned quadwords and should be allocated to large cache blocks that either
contain no other data or read-mostly data whose usage is correlated with the lock.

Whenever there is high contention for alock, one processor will have the lock and be using the
guarded data, while other processors will be in a read-only spin loop on the lock bit. Under
these circumstances, any write to the cache block containing the lock will likely cause excess
bus traffic and cache fills, thus affecting performance on all processors that are involved and
the buses between them. In some decomposed FORTRAN programs, refills of the cache blocks
containing one or two frequently used locks can account for athird of all the bus bandwidth the
program consumes.

Whenever there is almost no contention for alock, one processor will have the lock and be
using the guarded data. Under these circumstances, it might be desirable to keep the guarded
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datain the same cache block as the | ock.

For the high-sharing case, compilers should assume that almost all accesses to shared data
result in cache misses all the way back to main memory, for each distinct cache block used.
Such accesses will likely be afactor of 30 slower than cache hits. It is helpful to pack corre-
lated shared data into a small number of cache blocks. It is helpful also to segregate blocks
written by one processor from blocks read by others.

Therefore, accesses to shared data, including locks, should be minimized. For example, a
four-processor decomposition of some manipulation of a 1000-row array should avoid access-
ing lock variables every row, but instead might access alock variable every 250 rows.

Array manipulation should be partitioned across processors so that cache blocks do not thrash
between processors. Having each of four processors work on every fourth array element
severely impairs performance on any implementation with a cache block of four elements or
larger. The processors all contend for copies of the same cache blocks and use only one quar-
ter of the datain each block. Writes in one processor severely impair cache performance on all
processors.

A better decomposition is to give each processor the largest possible contiguous chunk of data
to work on (N/4 consecutive rows for four processors and row-major array storage; N/4 col-
umns for column-major storage). With the possible exception of three cache blocks at the
partition boundaries, this decomposition will result in each processor caching data that is
touched by no other processor.

Operating-system scheduling algorithms should attempt to minimize process migration from
one processor to another. Any time migration occurs, there are likely to be alarge number of
cache misses on the new processor.

Similarly, operating-system scheduling algorithms should attempt to enforce some affinity
between a given device’s interrupts and the processor on which the interrupt-handler runs. I/O
control data structures and locks for different devices should be disjoint. Observing these
guidelines allows higher cache hit rates on the corresponding I/O control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of transferring iso-
lated lock values and other isolated, shared write data between processors.

Implementors should assume that the amount of shared data will continue to increase, so over
time the need for efficient sharing implementations will also increase.

A.3.3 Avoiding Cache/TB Conflicts — Factor of 1

Occasionally, programs that run with a direct-mapped cache or TB will thrash, taking exces-
sive cache or TB misses. With some work, thrashing can be minimized at compiletime.

Note:

No Alpha processor through and including the 21264 has implemented a direct-mapped
TB.
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In afrequently executed loop, compilers could allocate the data items accessed from memory
so that, on each loop iteration, all of the memory addresses accessed are either in exactly the
same aligned 64-byte block or differ in bits VA<10:6>. For loops that go through arraysin a
common direction with a common stride, this requires allocating the arrays, checking that the
first-iteration addresses differ, and if not, inserting up to 64 bytes of padding between the
arrays. Thisrule will avoid thrashing in small direct-mapped data caches with block sizes up to
64 bytes and total sizes of 2K bytes or more.

Example:
REAL*4 A(1000), B( 1000)
DO 60 i =1, 1000

60 ACi ) =f(B( 1))

Figures A-3, A—4, and A-5 show bad, better, and best allocation in cache, respectively.

BAD allocation (A and B thrash in 8 KB direct-mapped cache):

Figure A—3: Bad Allocation in Cache

4K 8K 12K 16K

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B can be
in cache simultaneously):

Figure A—4. Better Allocation in Cache

4K 8K+64 12K 16K

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B can bein
cache simultaneously, and both arraysfit entirely in 8 KB or bigger cache):

Figure A-5: Best Allocation in Cache

A B

4K-64 8K 12K 16K

In afrequently executed loop, compilers could allocate the data items accessed from memory
so that, on each loop iteration, all of the memory addresses accessed are either in exactly the
same 8 KB page, or differ in bits VA<17:13>. For loops that go through arrays in acommon
direction with a common stride, this requires allocating the arrays, checking that the first-itera-
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tion addresses differ, and if they do not, inserting up to 8K bytes of padding between the
arrays. Thisrule will avoid thrashing in direct-mapped TBs and in some large direct-mapped
data caches with total sizes of 32 pages (256 KB) or more.

Usually, this padding will mean zero extra bytesin the executable image, just a skip in virtual
address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-stream, in addition to all the
D-stream references. Some implementations will have combined |-stream/D-stream large
caches.

Both of the rules above can be satisfied simultaneously, thus often eliminating thrashing in all
anticipated direct-mapped cache/TB implementations.

A.3.4 Sequential Read/Write — Factor of 1

All other things being equal, sequences of consecutive reads or writes should use ascending
(rather than descending) memory addresses. Where possible, the memory address for a block
of 2**Kbytes should be on a 2**K boundary, since this minimizes the number of different
cache blocks used and minimizes the number of partially written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword load or
store instructions should be broken up with intervening instructions (if thereis any useful work
to be done).

For consecutive reads, implementors should give first priority to prefetching ascending cache
blocks and second priority to absorbing up to eight consecutive quadword load instructions
(aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read overhead for

fully written aligned cache blocks and second priority to absorbing up to eight consecutive
guadword store instructions (aligned on a 64-byte boundary) without stalling.

A.3.5 Prefetching — Factor of 3

Prefetching can be directed toward a cache block (acacheline) inthe primary cache.
Alpha hardware, beginning with the 21164 (EV5) and subsequent, supports cache block

prefetching. Cache block prefetching is performed by the following load operationsto the R31
or F31 register:

Table A-1: Cache Block Prefetching

Type Instructions Operation

Normal Prefetch LDL R31, xxx (Rn) If the load operation hits in the Dcache, the
instruction is dismissed; otherwise, the
addressed cache block is alocated into the
Dcache.
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Table A-1: Cache Block Prefetching

Type Instructions Operation

Prefetch  with LDS F31, xxx (Rn) If the load operation hits a dirty, modified,

Modify Intent Dcache block, the instruction is dismissed. Oth-
erwise, the addressed cache block is alocated
into the Dcache for write access — its dirty and
modified bits are set.

Prefetch, Evict LDQ R31, xxx (Rn) Pefetch a cache block and mark that block in an

Next associated cache to be evicted on the next cache
fill to an associated address. (This operation is
useful to prefetch data that is not to be repeat-
edly rerenced.)

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word (Within Register) Memory Accesses

The instruction sequences given in Section 4.6 for byte-within-register accesses are worst-case
code. More importantly, they do not reflect the instructions available with the BWX extension,
described in the Sections 4.2.2, 4.2.6, and 4.6.5, and in Section D.3. If the BWX extension
instructions are available, it is wise to consider them rather than the sequences that follow.

The following sequences are appropriate if the BWX extension instructions are not available.

In the common case of accessing a byte or aligned word field at a known offset from a pointer
that is expected to be at least longword aligned, the common-case code is much shorter.
"Expected" means that the code should run fast for alongword-aligned pointer and trap for

unaligned. The trap handler may at its option fix up the unaligned reference.

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D rounded
down to amultiple of 4 (D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned word is:

LDL RL, D IwWRX) ! Traps if unaligned
EXTW. R1, #D. nod, RL ! Picks up word at byte O or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned word is:

LDL RL, D. | W Rx) ! Traps if unaligned
SLL R1, #48- 8*D. nod, RL ! Aligns word at high end of RL
SRA R1, #48, RL I SEXT to |l ow end of RL
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Note:

The shifts often can be combined with shifts that might surround subsequent arithmetic
operations (for example, to produce word overflow from the high end of aregister).

In the common case, the intended sequence for loading and zero-extending a byteis:

LDL RL, D | W Rx) !
EXTBL  RL, #D. nod, RL !

In the common case, the intended sequence for loading and sign-extending a byte is:

LDL RL, D | W Rx) !
SLL RL, #56- 8*D. nod, RL !
SRA RL, #56, R !

In the common case, the intended sequence for storing an aligned word R5 is:
LDL RL, D | W Rx) !
INSW R5, #D nod, R3 !
MBKW.  RL, #D nod, RL !
B S R3, RL, RL !
STL RL, D | W Rx) !
In the common case, the intended sequence for storing abyte R5is:

LDL RL, D | W Rx) !
INSBL RS, #D. nod, R3 !
MSKBL  RL, #D. mod, RL !
B'S R3, RL, Rl !
STL RL, D | W Rx) !

A.4.2 Divison

In all implementations, floating-point division is likely to have a substantially longer result
latency than floating-point multiply. In addition, in many implementations multiplies will be
pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply by the exact
reciprocal, if it is representable without overflow or underflow. If language rules or surround-
ing context allow, multiplication by the reciprocal can closely approximate other divisions by
constants.

Integer division does not exist as a hardware opcode. Division by a constant can always be
done via UMULH of another appropriate constant, followed by aright shift. A subroutine can
do general guadword division by true variables. The subroutine could test for small divisors
(less than about 1000 in absolute value) and for those, do a table lookup on the exact constant
and shift count for an UM ULH/shift sequence. For the remaining cases, a table lookup on
about a 1000-entry table and a multiply can give alinear approximation to 1/divisor that is
accurate to 16 bits.

Using this approximation, a multiply and a back-multiply and a subtract can generate one
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16-bit quotient digit plus a 48-bit new partial dividend. Three more such steps can generate the
full quotient. Having prior knowledge of the possible sizes of the divisor and dividend, normal-
izing away leading bytes of zeros, and performing an early-out test can reduce the average
number of multipliesto about five (compared to a best case of one and aworst case of nine).

A.4.3 Byte Swap

When it is hecessary to swap all the bytes of a datum, perhaps because the datum originated on
a machine of the opposite byte numbering convention, the simplest sequence isto usethe VAX
floating-point load instruction to swap words, followed by an integer sequence to swap four
pairs of bytes. Assume as shown below that an aligned quadword datum isin memory at loca-
tion X and isto be left in R1 after byte-swapping; temp is an aligned quadword temporary, and
"." (period) in the comments stands for a byte of zeros. Similar sequences can be used for data
in registers, sometimes doing the byte swaps first and word swap second:

;. X = ABCD EFCH
LDG FO, X . FO = GEF (DAB
SIT FO,tenp
LDQ Ri,tenp . Rl = GEF CDAB
SLIL R, #8, R ;. R = HEFC DAB.
SR RL#8,RL Rl =.GE FCDA
ZAP  R2,#55(hex), R2 . R =HF DB
ZAP  RL, #AA(hex), RL c RL=.GE.CA
R R, R, RL . Rl = HGFE DCBA

For bulk swapping of arrays, this sequence can be usefully unrolled about four times and
scheduled, using four different aligned quadword memory temps.

A.44 Sylized Code Forms

Using the same stylized code form for a common operation improves the readability of com-
piler output and increases the likelyhood that an implementation will speed up the stylized
form.

A.441 NOP
The universal NOP form is:

UNCP = LDQU R31, O(R)

In most implementations, UNOP should encounter no operand issue delays, no destination
issue delay, and no functional unit issue delays. (In some implementations, it may encounter an
operand issue delay for Rx.) Implementations are free to optimize UNOP into no action and
Zero execution cycles.

If the actual instruction is encoded as LDQ_U Rn,0(Rx), where nis other than 31, and such an
instruction generates a memory-management exception, it is UNPREDICTABLE whether
UNOP would generate the same exception. On most implementations, UNOP does not gener-
ate memory management exceptions.
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The standard NOP forms are:

NCP == Bl S R31, R31, R31
FNCP == cPYS F31, F31, 31

These generate no exceptions. In most implementations, they should encounter no operand
issue delays and no destination issue delay. | mplementations are free to optimize these into no
action and zero execution cycles.

A.4.4.2 Clear aRegister

The standard clear register forms are:

AR == B S R31, R31, Rx
FCLR == aPYS F31, F31, Fx

These generate no exceptions. In most implementations, they should encounter no operand
issue delays and no functional unit issue delay.

A.443 LoadLiteral
The standard load integer literal (ZEXT 8-hit) form is:

MV #it8 Ry == BISR3, lit8, Ry

The Alpha literal construct in Operate instructions creates a canonical longword constant for
values 0..255.

A longword constant stored in an Alpha 64-bit register is in canonical form when bits
<63:32>=hit <31>.

A canonical 32-hit literal can usually be generated with one or two instructions, but sometimes
three instructions are needed. Use the following procedure to determine the offset fields of the

instructions:
val = <sign-extended, 32-bit val ue>
low = val <15:0>
tnmpl = val - SEXT(I ow ! Account for LDA instruction
high = tnpl <31: 16>
tnmp2 = tnpl - SH FT_LEFT( SEXT(hi gh, 16) )

if tmp2 NE O then
I original val was in range 7FFF8000¢. . 7TFFFFFFFg
extra = 40004
tnpl = tnpl - 4000000044
high = tnpl <31: 16>
el se

extra =0
endi f
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The general sequenceis:

LDA Rdst, | ow R31)
LDAH Rdst, extra(Rdst) I Ont if extra=0
LDAH Rdst, hi gh(Rdst) I Omt if high=0

A.4.4.4 Register-to-Register Move

The standard register move forms are:

MV RX, RY == BIS RXRXRY
FMDV FX, FY == CPYS FX FX FY

These move forms generate no exceptions. |n most implementations, these should encounter no
functional unit issue delay.

A.4.45 Negate
The standard register negate forms are:

NE& Rx, Ry == SUBz R31, R, Ry l' z=Lor Q
NE& Fx, Fy = SuUBz F31, Fx, Fy ' z=FGSor T
FNE& Fx, Fy = CPYSN X, Fx, Fy 1l z=FGSo T

The integer subtract generates no Integer Overflow trap if Rx contains the largest negative
number (SUBz/V would trap). The floating subtract generates a floating-point exception for a
non-finite value in Fx. The CPY SN form generates no exceptions.

A446 NOT
The standard integer register NOT formis:

NOT Rx, Ry = CR\NOT  R31, Rx, Ry

This generates no exceptions. In most implementations, this should encounter no functional
unit issue delay.

A.4.47 Booleans
The standard alternative to BISis:

R R, Ry, Rz == Bl S RX, Ry, Rz
The standard aternative to BIC is:

ANDNOT RX, Ry, Rz == Bl C RX, Ry, Rz
The standard alternative to EQV is:

XCRN\OT' Rx, Ry, == EQV R, Ry, Rz
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A.45 Exceptionsand Trap Barriers

The EXCB instruction allows software to guarantee that in a pipelined implementation, all pre-
vious instructions have completed any behavior that is related to exceptions or rounding modes
before any instructions after the EXCB are issued. In particular, all changes to the float-
ing-point control register (FPCR) are guaranteed to have been made, whether or not thereis an
associated exception. Also, all potential floating-point exceptions and integer overflow excep-
tions are guaranteed to have been taken.

The TRAPB instruction guarantees that it and any following instructions do not issue until all
possible preceding traps have been signaled. This does not mean that all preceding instructions
have necessarily run to completion (for example, a Load instruction may have passed all the
fault checks but not yet delivered data from a cache miss).

EXCB isthus a superset of TRAPB.

A.4.6 Pseudo-Operations (Sylized Code Forms)

This section summarizes the pseudo-operations for the Alpha architecture that may be used by
various software components in an Alpha system. Most of these forms are discussed in preced-
ing sections.

In the context of this section, pseudo-operations all represent a single underlying machine
instruction. Each pseudo-operation represents a particular instruction with either replicated
fields (such as FMOV), or hard-coded zero fields. Since the pattern is distinct, these
pseudo-operations can be decoded by instruction decode mechanisms.

In Table A-2, the pseudo-operation codes can be viewedaomwith parameters. The for-
mal form is listed in the left column, and the expansion in the code stream is listed in the right
column.

Some instruction mnemonics have synonyms. These differ from pseudo-operations in that each
synonym represents the same underlying instruction with no special encoding of operand
fields. As a result, synonyms cannot be distinquished from each other. They are not listed in
the table. Examples of synonyms are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT.

Table A—2: Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation Actual Instruction

in Listing Meaning Encoding

BR target Branch to target (21-bit signed BR R31, target
displacement)

CLR Rx Clear integer register BIS R31, R31, Rx

FABS Fx, Fy No-exception generic floating CPYS F31, Fx, Fy
absolute value

FCLR Fx Clear afloating-point register CPYS F31, F31, Fx

FMOV Fx, Fy Floating-point move CPYS Fx, Fx, Fy
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Table A-2: Decodable Pseudo-Operations (Stylized Code Forms) (Continued)

Pseudo-Operation

Actual Instruction

in Listing Meaning Encoding
FNEG Fx, Fy No-exception generic floating CPYSN Fx, Fx, Fy
negation
FNOP Floating-point no-op CPYS F31, F31, F31
MOV Lit, Rx Move 16-bit sign-extended LDA Rx,lit(R31)
literal to Rx
MOV {Rx/Lit8}, Ry Move Rx/8-bit zero-extended BIS R31,{ Rx/Lit8},Ry
literal to Ry
MF_FPCR  Fx Move from FPCR MF_FPCR  Fx, Fx, Fx
MT_FPCR  Fx Moveto FPCR MT_FPCR Fx, Fx, Fx
NEGF Fx, Fy Negate F_floating SUBF F31, Fx, Fy
NEGF/S Fx, Fy Negate F_floating, semi-precise  SUBF/S F31, Fx, Fy
NEGG Fx, Fy Negate G_floating SUBG F31, Fx, Fy
NEGG/S Fx, Fy Negate G_floating, SUBG/S F31, Fx, Fy
semi-precise
NEGL {Rx/Lit8}, Ry  Negate longword SUBL R31{Rx/Lit},Ry
NEGL/NV {Rx/Lit8}, Ry  Negate longword with SUBL/V R31, {Rx/Lit}, Ry
overflow detection
NEGQ {Rx/Lit8}, Ry  Negate quadword SUBQ R31,{Rx/Lit} ,Ry
NEGQ/V {Rx/Lit8}, Ry  Negate quadword with SUBQ/V R31,{Rx/Lit},Ry
overflow detection
NEGS Fx, Fy Negate S floating SUBS F31, Fx, Fy
NEGS/SU Fx, Fy Negate S floating, software SUBS/SU  F31, Fx, Fy
with underflow detection
NEGS/SUI  Fx, Fy Negate S floating, software SUBS/SUI  F31, Fx, Fy
with underflow and inexact
result detection
NEGT Fx, Fy Negate T_floating SUBT F31, Fx, Fy
NEGT/SU Fx, Fy Negate T_floating, software SUBT/SU  F31, Fx, Fy
with underflow detection
NEGT/SUI Negate T_floating, software SUBT/SUI F31,Fx, Fy
with underflow and inexact
result detection
NOP Integer no-op BIS R31, R31, R31
NOT {Rx/Lit8}, Ry Logicd NOT of Rx/8bit ORNOT R31, {Rx/Lit}, Ry
zero-extended literal storing
resultsin Ry
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Table A-2: Decodable Pseudo-Operations (Stylized Code Forms) (Continued)

Pseudo-Operation Actual Instruction
in Listing Meaning Encoding

SEXTL {Rx/Lit8}, Ry  Longword sign-extension of Rx ~ADDL R31, {Rx/Lit}, Ry
storing resultsin Ry

UNOP Universal NOP for both integer LDQ_U R31,0(Rx)
and floating-point code

A.5 Timing Considerations. Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_C will never complete,
because periodic timer interrupts will always occur before the sequence completes. The follow-
ing rules describe sequences that will eventually completein all Alphaimplementations:

At most 40 operate or conditional-branch (not taken) instructions executed in the
sequence between LDx_L and STx_C.

At most two |-stream TB-miss faults. Sequential instruction execution guarantees this.
No other exceptions triggered during the last execution of the sequence.
I mplementation Note:

On all expected implementations, this allows for about 50 psec of execution time, even

with 100 percent cache misses. This should satisfy any requirement for a 1-msec timer
interrupt rate.
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Appendix B

| EEE Floating-Point Conformance

A subset of |EEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard
754-1985) is provided in the Alpha floating-point instructions. This appendix describes how to
construct a complete |IEEE implementation.

The order of presentation parallels the order of the IEEE specification.

B.1 Alpha Choicesfor |IEEE Options

Alpha supports | EEE single, double, and optionally (in software) extended double formats.
Thereis no hardware support for the optiona extended double format.

Alpha hardware supports normal and chopped | EEE rounding modes. | EEE plus infinity and
minus infinity rounding modes can be implemented in hardware or software.

Alpha hardware does not support optional | EEE software trap enabl e/disable modes. See the
following discussion about software support.

Alpha hardware supports add, subtract, multiply, divide, convert between floating formats,
convert between floating and integer formats, compare, and sgquare root. Software routines sup-
port remainder, round to integer in floating-point format, and convert binary to/from decimal.

In the Alpha architecture, copying without change of format is not considered an operation.
(LDx, CPY Sx, and STx do not check for non-finite numbers; an operation would.) Compilers
may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alphachoiceis that the accuracy provided by conversions between decimal strings and
binary floating-point numbers will meet or exceed | EEE standard requirements. It isimple-
mentation dependent whether the software binary/decimal conversions beyond 9 or 17 digits
treat any excess digits as zeros.



Overflow and underflow, NaNs, and infinities encountered during software binary to decimal
conversion return strings that specify the conditions.

Alpha hardware supports comparisons of same-format numbers. Software supports compari-
sons of different-format numbers.

In the Alpha architecture, results are true-false in response to a predicate.

Alpha hardware supports the required six predicates and the optional unordered predicate. The
other 19 optional predicates can be constructed from sequences of two comparisons and two
branches.

Alpha hardware supports infinity arithmetic with the compare instructions (CMPTyy). When a
/S qualifier isincluded, Alpha hardware may optionally support infinity arithmetic when infin-
ity operands are encountered and, together with overflow disable (OVFD) and division by zero
disable (DZED), when infinity is to be generated from finite operands. Otherwise, Alpha hard-
ware supports infinity arithmetic by trapping. That is the case when an infinity operand is
encountered and when an infinity is to be created from finite operands by overflow or division
by zero. An OS completion handler (interposed between the hardware and the |EEE user) pro-
vides correct infinity arithmetic.

When a/S qualifier isincluded, Alpha hardware may optionally support NaNs and invalid
operations, controlled by the INVD option. Otherwise, Alpha hardware supports NaNs and
invalid operations by trapping when a NaN operand is encountered and when a NaN is to be
created. An OS completion handler (interposed between the hardware and the |EEE user) pro-
vides correct Signaling and Quiet NaN behavior.

In the Alpha architecture, Quiet NaNs do not afford retrospective diagnostic information.

In the Alpha architecture, copying a Sighaling NaN without a change of format does not signal
an invalid exception (LDx, CPY Sx, and STx do not check for non-finite numbers). Compilers
may generate ADDx F31,Fx,Fy to get the opposite effect.

Alphahardware fully supports negative zero operands and follows the |EEE rules for creating
negative zero results except for underflow. When a /S qualifier isincluded, Alpha hardware
may optionally support underflow and denormalized numbers, controlled by the UNFD option.
Otherwise, Alpha hardware supports underflow and denormalized numbers by trapping when a
denormalized operand is encountered, when a denormalized result is created, and when an
underflow occurs. An OS completion handler (interposed between the hardware and the IEEE
user) provides correct denormalized and underflow arithmetic.

Except for the optional trap disable bits in the FPCR, Alpha hardware does not supply IEEE
exception trap behavior; the hardware traps are a superset of the | EEE-required conditions. An
OS completion handler (interposed between the hardware and the IEEE user) provides correct
|EEE exception behavior.

In the Alpha architecture, tininess is detected by hardware after rounding, and loss of accuracy
is detected by software as an inexact result.
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In the Alpha architecture, user signal handlers are supported by compilers and an OS comple-
tion handler (interposed between the hardware and the |EEE user), as described in the next
section.

B.2 Alpha Support for OS Completion Handlers

Alphafloating-point trap behavior is statically controlled by the/S, /U, and /I mode qualifiers
on floating-point instructions. Changing these options usually requires recompiling. Instruc-
tions with any valid qualifier combination that includes the /S qualifier can be dynamically
controlled by the optional trap disable bits and denormal control bitsin the FPCR.

Each Alphaimplementation may choose how to distribute support for the completion modes
(/s,/sU, [sV, [SUI, and /SVI), between hardware and software. An implementation may
minimize hardware complexity by trapping to implementation software for support of excep-
tions and non-finites. An implementation may choose increased floating-point performance at
the cost of increased hardware complexity by providing hardware support for exceptions and
non-finites.

However completion mode support is distributed, application software on any system that
meets the Alpha architecture specification will see consistent floating-point semantics because
Alphaimplementation software provides support for any floating-point feature that is not
directly supported by the hardware.

Each Alpha operating system must include an OS completion handler that does software com-
pletion of instructions that have any valid qualifier combination that includes the /S qualifier,
and that finishes the computation of any floating-point operation that is not completed by the
hardware. The OS completion handler is responsible for providing the result specified by the
architecture. The handler either continues execution of the application program or signals an
exception to the application.

If the exception summary parameter of an arithmetic trap indicates that an instruction requir-
ing software completion caused the trap, the operating system must finish the operation. An
OS completion handler uses the register write mask parameter to ignore instructions in the trap
shadow and to locate the trigger instruction of the arithmetic trap. The handler then uses the
trigger instruction input register values to compute the result in the output register and to
record any appropriate signal status. The handler then continues execution with the instruction
following the trigger instruction, unless the application has requested execution of an optional
signal handler.

It isrecommended that the OS completion handler report an enabled |EEE exception to the
user application as a fault, rather than as a trap. When reported as a fault, the reported PC
points to the trigger instruction, rather than after the trigger instruction. Regardless of whether
an enabled fault occurs, it is recommended that the compl etion trap handler set the result regis-
ter and status flags to the |EEE standard nontrapping results, as defined in the IEEE Standard
section in Section 4.7.10. That behavior makes it possible for the user application to continue
from afault by stepping over the trigger instruction.

The Floating-Point Control Register (FPCR) contains several trap disable bits and denormal
control bits. Implementation of these bitsin the FPCR is optional. A system that includes
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these hits may choose to complete computations involving non-finite values without the assis-
tance of software completion. Operating systems use these FPCR bits to enable hardware
completion of instructions with any valid qualifier combination that includes /S in those cases
where the operating system does not require a trap to do exception signaling.

To get the optional full IEEE user trap handler behavior, an OS completion handler must be
provided that implements the exception status flags, dynamic user trap handler disabling, han-
dler saving and restoring, default behavior for disabled user trap handlers, and linkages that
allow a user handler to return a substitute result. OS completion handlers can use the
FP_Control quadword, along with the floating-point control register (FPCR), to provide vari-
ous levels of IEEE-compliant behavior.

OS completion handlers provide two options for special handling of denormal numbersin
instructions that are compiled with any valid qualifier combination that includes the /S quali-
fier. These options are controlled by bits defined by implementation software in the IEEE
Floating-Point Control (FP_C) Quadword.

e Thefirst option maps al denormal results to atrue zero value. That option is useful for
improving the performance of IEEE compliant code that does not need gradual under-
flow and for mixing |EEE instructions that both include and do not include the /S qual-
ifier.

e A second option treats all denormal input operands as if they were signed zeros. That
option is useful for improving the performance of IEEE compliant code that encounters
spurious denormal values in uninitialized data.

The optional UNDZ and DNZ (denormal control) bits in the FPCR can assist hardware to
improve the performance of these denormal handling options.

B.2.1 |EEE Floating-Point Control (FP_C) Quadword

Operating system implementations provide the following support for an | EEE floating-point
control quadword (FP_C), illustrated in Figure B—1 and described in Table B-1.

Figure B-1: IEEE Floating-Point Control (FP_C) Quadword

63 23222120191817 16 76543210
D|1|U|O|D| I D|1|U|O[D| I

N[N[N|V|Z|N N[{N[N[V[Z[N

Reserved olelElEIEIV Reserved olelelrlEIV

S|S|S|S|S|S E|E|E|E|E|E

* The operating system software completion mechanism maintains the FP_C. Therefore,
the FP_C affects (and is affected by) only those instructions with any valid qualifier
combination that includes the /S qualifier.

e TheFP_C quadword is context switched when the operating system switches the thread
context. (The FP_C can be placed in a currently switched data structure.)

e Although the operating system can keep the FP_C in a user mode memory location,
user code may not directly accessthe FP_C.
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* Integer overflow (IOV) exceptions are controlled by the INVE enable mask bit
(FP_C<1>), as dlowed by the |EEE standard. Implementation software is responsible
for setting the INVS status bit (FP_C<17>) when a CVTTQ or CVTQL instruction
traps into the software compl etion mechanism for integer overflow .

e At process creation, al trap enable flags in the FP_C are clear. The settings of other
FP_C bits, defined in Table B—1 as reserved for implementation software, are defined

by operating system software.

At other events such as forks or thread creation, and at asynchronous routine calls such as traps
and signals, the operating system controls all assigned FP_C bits and those defined as reserved

for implementation software.

Table B-1: Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

63-48 Reserved for implementation software.
47-23 Reserved for future architecture definition.

22 Denormal operand status (DNOS)
A floating arithmetic or conversion operation used a denormal operand value.
This status field is left unchanged if the system is treating denorraedrug val-
ues as if they were signemtro values. If an operatiomith a denormal operand
causes other exceptions, all appropriate status bits are set.

21 Inexact result status (INES)
A floating arithmetic or conversion operation gave a result that differed from the

mathematically exact result.

20 Underflow status (UNFS)
A floating arithmetic or conversion operation @nfiowed the destination expo-

nent.

19 Overflow status (OVFS)
A floating arithmetic or conversion operation overflowed the destination expo-

nent.

18 Division by zero status (DZES)
An attempt was made to perform a tiog divide operation with a divisor of zero.

17 Invalid operation status (INVS)
An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

16-12 Reserved for implementation software.
11-7 Reserved for future architecture definition.

6 Denormal operand exception enable (DNOE)
Initiate an INV exception if a floating arithmetic or conversion operation involves
a denormal operand value. This exception does not signal if the system is treating
denormal operand values as if they were signed zero values. If an operation can
initiate more than one enabled exception, the denormal operand exception has pri-
ority.
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Table B-1: Floating-Point Control (FP_C) Quadword Bit Summary (Continued)

Bit Description

5 Inexact result enable (INEE)
Initiate an INE exception if the result of a floating arithmetic or conversion opera-
tion differs from the mathematically exact result.

4 Underflow enable (UNFE)
Initiate a UNF exception if a floating arithmetic or conversion operation under-
flows the destination exponent.

3 Overflow enable (OVFE)
Initiate an OVF exception if a floating arithmetic or conversion operation over-
flows the destination exponent.

2 Division by zero enable (DZEE)
Initiate a DZE exception if an attempt is made to perform a floating divide opera-
tion with a divisor of zero.

1 Invalid operation enable (INVE)
Initiate an INV exception if an attempt is made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values is
illegal.

0 Reserved for implementation software.

B.3 Mappingto |EEE Sandard

There are five |EEE exceptions, each of which can be "|EEE software trap-enabled" or dis-
abled (the default condition). Implementing the |EEE software trap-enabled mode is optional
in the |IEEE standard.

The assumption, therefore, is that the only access to |EEE-specified software trap-enabled
results will be generated in assembly language code. The following design allows this, but only
if such assembly language code has TRAPB instructions after each floating-point instruction,
and generates the | EEE-specified scaled result in atrap handler by emulating the instruction
that was trapped by hardware overflow/underflow detection, using the original operands.

There isaset of detailed | EEE-specified result values, both for operations that are specified to
raise |EEE traps and those that do not. This behavior is created on Alpha by four layers of
hardware, PAL code, the operating-system completion handler, and the user signal handler, as
shown in Figure B-2.
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Figure B-2: IEEE Trap Handling Behavior

Hardware

Traps to PALcode

PALcode

Traps to Operating System

Operating System

| Traps to User IEEE Trap Handler
- (IEEE Standard)

User Signal Handler

The IEEE-specified trap behavior occurs only with respect to the user signal handler (the last
layer in Figure B-2); any trap-and-fixup behavior in the first three layers is outside the scope
of the IEEE standard.

The IEEE number system is divided into finite and non-finite numbers:
The finites are normal numbers:

¢ _MAX.—-MIN, -0, 0, +MIN..+MAX
*  Thenon-finites are:

e Denormals, +/—- Infinity, Signaling NaN, Quiet NaN

Alpha hardware must treat minus zero operands and results as special cases, as required by the
IEEE standard.

If the DNZ (denormal operands to zero) bit in the FPCR is set or if the OS d¢amgiandler
is treating denormal operands as zero, then IEEE trap handling is done as if each denormal
operand had the corresponding signed zero value.

Table B-2 specifies, for the IEEE /S qualifier modes, which layer does each piece of trap han-
dling. The table describes where the hardware and PALcode can trap to the OS completion
handler. However, for IEEE operations with any valid qualifier combination that includes the
/S qualifier, the system may choose not to trap to the OS completion handler, provided that any
applicable exception is disabled by the trap disable bits in the FPCR and the hardware and
PALcode can produce the expected IEEE result as modified by the denormal control bits in the
FPCR. See Section 4.7.8 for more detail on the hardware instruction descriptions.
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Table B-2: |EEE Floating-Point Trap Handling

(ON) User
PAL- Completion Signal

Alpha Instructions Hardwarel Code Handler Handler

FBEQ FBNEFBLT FBLEFBGT Bits Only — No Exceptions

FBGE

LDS LDT Bits Only—No Exceptions

STS STT Bits Only—No Exceptions

CPYS CPYSN Bits Only—No Exceptions

FCMOVx Bits Only—No Exceptions

ADDx SUBx INPUT Exceptions:

Denormal operand Trap Trap Supply sum  [Denormal Of]

+/-Inf operand Trap Trap Supply sum -

QNaN operand Trap Trap Supply QNaN -

SNaN operand Trap Trap Supply QNaN [Invalid Op]

+Inf + —Inf Trap Trap Supply QNaN [Invalid Op]

ADDx SUBx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply [Overflow?]
+/=Inf Scale by bias
+/-MAX adjust

Exponent underflow and disabled  Supply +0 - - _4

Exponent underflow and enabled  Supply +0  Trap Supply [Underflow?]

and trap +/-MIN Scale by bias
denorm adjust
+/-0

Inexact and disabled - - - -

Inexact and enabled Supply sum Trap - [Inexact]

and trap

MULX INPUT Exceptions:

Denormal operand Trap Trap Supply prod. [Denormal Of]

+/-Inf operand Trap Trap Supply prod. -

QNaN operand Trap Trap Supply QNaN -

SNaN operand Trap Trap Supply QNaN [Invalid Op]

0 * Inf Trap Trap Supply QNaN [Invalid Op]
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Table B-2: |EEE Floating-Point Trap Handling (Continued)
oS User
PAL- Completion Signal

Alpha Instructions Hardwarel Code Handler Handler

MULXx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply [Overflow?]
+/—Inf Scale by bias
+/-MAX adjust

Exponent underflow and disabled  Supply +0 - - -

Exponent underflow and enabled  Supply +0  Trap Supply [Underflow?]

and Trap +/-MIN Scale by bias
denorm adjust
+/-0
Inexact and disabled - - - -
Inexact and enabled Supply prod. Trap - [Inexact]
and trap

DIVX INPUT Exceptions:

Denormal operand Trap Trap Supply quot.  [Denormal Op]

+/-Inf operand Trap Trap Supply quot. -

QNaN operand Trap Trap Supply QNaN -

SNaN operand Trap Trap Supply QNaN [Invalid Op]

0/0 or Inf/Inf Trap Trap Supply QNaN [Invalid Op]

A/0 Trap Trap Supply [Div. Zero]
+/— Inf

DIVXx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply [Overflow?]
+/—Inf Scale by bias
+/— MAX adjust

Exponent underflow and disabled  Supply +0 - - -

Exponent underflow and enabled  Supply +0  Trap Supply [Underflow?]

and trap +/—MIN Scale by bias
denorm adjust
+/-0
Inexact and disabled - - - -
Inexact and enabled Supply quot. Trap - [Inexact]
and trap

CMPTEQ CMPTUN INPUT Exceptions:

Denormal operand Trap Trap Supply () [Denormal Of]

QNaN operand Trap Trap Supply False-
for EQ, True
for UN

SNaN operand Trap Trap Supply [Invalid Op]
False/ True
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Table B-2:

IEEE Floating-Point Trap Handling (Continued)

oS User
PAL- Completion Signal

Alpha Instructions Hardwarel Code Handler Handler

CMPTLT CMPTLE INPUT Exceptions:

Denormal operand Trap Trap Supply < or < [Denormal Op?]

QNaN operand Trap Trap Supply False [Invalid Op]

SNaN operand Trap Trap Supply False [Invalid Op]

CVTfi INPUT Exceptions:

Denormal operand Trap Trap Supply Cvt [Denormal Op?]

+/-Inf operand Trap Trap Supply 0 [Invalid Op]
QNaN operand Trap Trap Supply O -
SNaN operand Trap Trap Supply O [Invalid Op]
CVTfi OUTPUT Exceptions:
Inexact and disabled - - - -
Inexact and enabled Supply Cvt  Trap - [Inexact]
and trap

Integer overflow Supply Trunc. Trap - [Invalid Op”]
result and trap
if enabled

CVTif OUTPUT Exceptions:

Inexact and disabled - - - -

Inexact and enabled Supply Cvt  Trap - [Inexact]

and trap

CVTff INPUT Exceptions:

Denormal operand Trap Trap Supply Cvt  [Denormal Of]

+/-Inf operand Trap Trap Supply Cvt -

QNaN operand Trap Trap Supply QNaN -

SNaN operand Trap Trap Supply QNaN [Invalid Op]

CVT{f OUTPUT Exceptions:

Exponent overflow Trap Trap Supply [Overflow?]
+/=Inf Scale by bias
+/-MAX adjust

Exponent underflow and disabled  Supply +0 - - -

Exponent underflow and enabled  Supply +0  Trap Supply [Underflow?]

and trap +/—MIN Scale by bias
denorm adjust
+/-0
Inexact and disabled - - - -
Inexact and enabled Supply Cvt  Trap - [Inexact]
and trap
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Table B-2: |EEE Floating-Point Trap Handling (Continued)

oS User
PAL- Completion Signal
Alpha Instructions Hardwarel Code Handler Handler
SQRTxXx INPUT Exceptions
Negative nonzero operand Trap Trap Supply QNan [Invalid Op]
+/-0 Supply +/-0 - - -
+ Denormal operand Trap Trap Supply SQRT [Denormal Of]
— Denormal operand Trap Trap Supply QNaN [Denormal Op/
Invalid Op]

+ Infinity operand Trap Trap Supply +Inf -
— Infinity operand Trap Trap Supply QNaN [Invalid Op]
QNaN operand Trap Trap Supply QNaN -
SNaN operand Trap Trap Supply QNaN [Invalid Op]
SQRTx OUTPUT Exceptions
Exponent overflow Not possible
Exponent underflow Not possible
Inexact and disabled - - - -
Inexact and enabled Supply SQRT  Trap - [Inexact]

L This column describes the minimum necessary hardware support.

2 [Denormal Op] signals have priority over all other signals.

3 [Overflow] and [Underflow] signals have priority over [Inexact] signals.

4

An implementation could choose instead to trap to PAL code and have the PALcode
supply a zero result on all underflows.

An implementation could choose instead to trap to PALcode on extreme values and
have the PA L code supply atruncated result on all overflows.

Other |EEE operations (software subroutines or sequences of instructions) are listed here for
compl eteness:

Remainder

Round float to integer-valued float

Convert binary to/from decimal

Compare, other combinations than the four above
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Table B—3 shows the IEEE standard charts. In the charts, the second column is the result when
the user signal handler is disabled; the third column is the result when that handler is enabled.
The OS completion handler supplies the IEEE default that is specified in the second column.
The contents of the Alpha registers contain sufficient information for an enabled user handler
to compute the value in the third column.

Table B-3: IEEE Standard Charts

User Signal Handler User Signal Handler

Exception Disabled (IEEE Default) Enabled (Optional)

Invalid Operation

(D) Input signaling NaN Quiet NaN
(2) Mag. subtract Inf. Quiet NaN
(3) 0* Inf. Quiet NaN
(4) 0/0 or Inf/Inf Quiet NaN

(5) x REM Oor Inf REM y Quiet NaN
(6) SQRT(negative non-zero)  Quiet NaN

(7) Cvt to int(ovfl) Low-order bits

(8) Cvt to int(Inf, NaN) 0

(9) Compare unordered Quiet NaN

Division by Zero

x/0, x finite <>0 +/—Inf

Overflow

Round narest +/—Inf. Re@**192 or 1536
Round to zero +/—-MAX Res/2**192 or 1536
Round to —Inf +MAX/=Inf Res/2**192 or 1536
Round to +Inf +Inf/—-MAX Res/2**192 or 1536
Underflow

Underflow 0/denorm Res*2**192 or 1536
I nexact

Inexact Rounded Res
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Appendix C

Instruction Summary

This appendix summarizes all instructions and opcodes in the Alpha architecture. All values
are in hexadecimal radix.

Common Architecture Instruction Summary

This section summarizes all common Alpha instructions. Table C-1 describes the contents of
the Format and Opcode columns in Table C-2.

Table C-1: Instruction Format and Opcode Notation

Instruction Format  Opcode
Format Symbol Notation Meaning
Branch Bra 00 00 isthe 6-hit opcode field
Floating- point F-P 0o.fff 00 isthe 6-hit opcode field
fff isthe 11-bit function code field
Memory Mem 00 00 isthe 6-hit opcode field
Memory/ func code  Mfc oo.ffff 00 isthe 6-hit opcode field
ffff isthe 16-bit function code in the dis-
placement field
Memory/ branch Mbr 00.h 00 isthe 6-hit opcode field
h isthe high-order two bits of the displace-
ment field
Operate Opr o0o.ff 00 isthe 6-hit opcode field
ff isthe 7-bit function code field
PALcode Pcd 00 00 isthe 6-hit opcode field; the particular

PALcode instruction is specified in the
26-bit function code field.

Table C-2 shows qualifiers for operate format instructions. Qualifiers for IEEE and VAX
floating-point instructions are shown in Sections C.2 and C.3, respectively.



Table C—-2: Common Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating

ADDG F-P 15.0A0 Add G_floating

ADDL Opr 10.00 Add longword

ADDL/V 10.40

ADDQ Opr 10.20 Add quadword

ADDQ/V 10.60

ADDS F-P 16.080 Add S floating

ADDT F-P 16.0A0 Add T_floating

AMASK Opr 11.61 Architecture mask

AND Opr 11.00 Logical product

BEQ Bra 39 Branchif = zero

BGE Bra 3E Branch if = zero

BGT Bra 3F Branch if > zero

BIC Opr 11.08 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear

BLBS Bra 3C Branch if low bit set

BLE Bra 3B Branch if <zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if # zero

BR Bra 30 Unconditional branch

BSR Mbr 34 Branch to subroutine

CALL_PAL Pcd 00 Trap to PALcode

CMOVEQ Opr 11.24 CMOVE if = zero

CMOVGE Opr 11.46 CMOVE if = zero

CMOVGT Opr 11.66 CMOVE if > zero

CMoOvLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set

CMOVLE Opr 11.64 CMOVE if <zero

CMOVLT Opr 11.44 CMOVE if < zero

CMOVNE Opr 11.26 CMOVE if # zero

CMPBGE Opr 10.0F Compare byte

CMPEQ Opr 10.2D Compare signed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal
CMPGLE F-P 15.0A7 Compare G_floating less than or equal
CMPGLT F-P 15.0A6  Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal
CMPLT Opr 10.4D Compare signed quadword less than
CMPTEQ F-P 16.0A5 CompareT_floating equal
CMPTLE F-P 16.0A7 CompareT_floating less than or equal
CMPTLT F-P 16.0A6  Compare T_floating less than
CMPTUN F-P 16.0A4  Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal
CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate

CTLZ Opr 1C.32 Count leading zero

CTPOP Opr 1C.30 Count population

CTTZ Opr 1C.33 Count trailing zero

CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G floating to D_floating
CVTGF F-P 15.0AC Convert G _floating to F_floating
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Table C—2: Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description

CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC  Convert quadword to F_floating
CVTQG F-P 15.0BE  Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQS F-P 16.0BC  Convert quadwordto S floating
CVTQT F-P 16.0BE  Convert quadwordto T_floating
CVTST F-P 16.2AC  Convert S floatingto T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T _floatingto S floating
DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S floating

DIVT F-P 16.0A3 Divide T floating

ECB Mfc 18.E800 Evict cache block

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if = zero

FBGE Bra 36 Floating branch if = zero

FBGT Bra 37 Floating branch if > zero

FBLE Bra 33 Floating branch if < zero

FBLT Bra 32 Floating branch if < zero

FBNE Bra 35 Floating branch if # zero
FCMOVEQ F-P 17.02A  FCMOVE if =zero

FCMOVGE F-P 17.02D FCMOVE if = zero

FCMOVGT F-P 17.02F FCMOVE if > zero

FCMOVLE F-P 17.02E FCMOVE if <zero

FCMOVLT F-P 17.02C FCMOVE if < zero

FCMOVNE F-P 17.02B FECMOVE if # zero

FETCH Mfc 18.8000 Prefetch data

FETCH M Mfc 18.A000 Prefetch data, modify intent
FTOIS F-P 1C.78 Floating to integer move, S floating
FTOIT F-P 1C.70 Floating to integer move, T_floating
IMPLVER Opr 11.6C Implementation version

INSBL Opr 12.0B Insert byte low

INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high

INSQL Opr 12.3B Insert quadword low

INSWH Opr 12.57 Insert word high

INSWL Opr 12.1B Insert word low

ITOFF F-P 14.014 Integer to floating move, F_floating
ITOFS F-P 14.004 Integer to floating move, S_floating
ITOFT F-P 14.024 Integer to floating move, T_floating
JMP Mbr 1A.0 Jump

JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A 3 Jump to subroutine return
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Table C—2: Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description

LDA Mem 08 Load address

LDAH Mem 09 Load address high

LDBU Mem 0A L oad zero-extended byte
LDWU Mem 0oC L oad zero-extended word

LDF Mem 20 Load F_floating

LDG Mem 21 Load G_floating

LDL Mem 28 L oad sign-extended longword
LDL L Mem 2A L oad sign-extended longword locked
LDQ Mem 29 L oad quadword

LDQ L Mem 2B L oad quadword locked
LDQ U Mem 0B L oad unaligned quadword
LDS Mem 22 Load S floating

LDT Mem 23 Load T_floating

MAXSB8 Opr 1C.3E Vector signed byte maximum
MAXSwW4 Opr 1C.3F Vector signed word maximum
MAXUBS Opr 1C.3C Vector unsigned byte maximum
MAXUW4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Move from FPCR

MINSBS8 Opr 1C.38 Vector signed byte minimum
MINSW4 Opr 1C.39 Vector signed word minimum
MINUBS8 Opr 1C.3A Vector unsigned byte minimum
MINUW4 Opr 1C.3B Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high

MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high

MSKQL Opr 12.32 Mask quadword low

MSKWH Opr 12.52 Mask word high

MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to FPCR

MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2  Multiply G_floating

MULL Opr 13.00 Multiply longword

MULL/NV 13.40

MULQ Opr 13.20 Multiply quadword

MULQ/V 13.60

MULS F-P 16.082 Multiply S floating

MULT F-P 16.0A2  Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement
PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwordsto bytes
PKWB Opr 1C.36 Pack words to bytes

RC Mfc 18.E000 Read and clear

RET Mbr 1A 2 Return from subroutine

RPCC Mfc 18.C000 Read process cycle counter

RS Mfc 18.FO00 Read and set

SAADDL Opr 10.02 Scaled add longword by 4
SAADDQ Opr 10.22 Scaled add quadword by 4
SASUBL Opr 10.0B Scaled subtract longword by 4
$ASUBQ Opr 10.2B Scaled subtract quadword by 4
SBADDL Opr 10.12 Scaled add longword by 8
SBADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
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Table C—2: Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description

S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SEXTB Opr 1C.00 Sign extend byte

SEXTW Opr 1C.01 Sign extend word

SLL Opr 12.39 Shift left logical

SQRTF F-P 14.08A  Squareroot F_floating
SQRTG F-P 14.0AA  Squareroot G_floating
SQRTS F-P 14.08B Squareroot S floating
SQRTT F-P 14.0AB Squareroot T floating
SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

STB Mem OE Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STS Mem 26 Store S floating

STL Mem 2C Store longword

STL_ C Mem 2E Store longword conditional
STQ Mem 2D Store quadword

STQ C Mem 2F Store quadword conditional
STQ U Mem OF Store unaligned quadword
STT Mem 27 Store T_floating

STW Mem 0D Store word

SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1  Subtract G_floating

SUBL Opr 10.09 Subtract longword
SUBL/V 10.49

SUBQ Opr 10.29 Subtract quadword
SUBQ/V 10.69

SUBS F-P 16.081 Subtract S floating

SUBT F-P 16.0A1  Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier

UMULH Opr 13.30 Unsigned multiply quadword high
UNPKBL Opr 1C.35 Unpack bytes to longwords
UNPKBW Opr 1C.34 Unpack bytes to words
WH64 Mfc 18.F800  Write hint — 64 bytes
WMB Mfc 18.4400 Write memory barrier
XOR Opr 11.40 Logical difference

ZAP Opr 12.30 Zero bytes

ZAPNOT Opr 12.31 Zero bytes not
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C.2 |EEE Floating-Point Instructions

Table C-3 lists the hexadecimal value of the 11-bit function code field for the IEEE float-
ing-point instructions, with and without qualifiers. The opcode for the following instructions is
16,6, except for SQRTS and SQRTT, which are opcodg.14

Table C-3: IEEE Floating-Point Instruction Function Codes

None /C M /D /U /ucC /UM /UD
ADDS 080 000 040 0Co 180 100 140 1C0
ADDT O0AO 020 060 OEO 1A0 120 160 1EO0

CMPTEQ O0A5

CMPTLE O0A7

CMPTLT O0AG6

CMPTUN O0A4

CVTQS OBC 03C o7C OFC

CVTQT OBE 03E O7E OFE

CVTST See below

CVTTQ See below

CVTTS OAC 02C 06C OEC 1AC 12C 16C 1EC

DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 0c2 182 102 142 1C2
MULT 0A2 022 062 OE2 1A2 122 162 1E2

SQRTS 08B 00B 04B 0oCB 18B 10B 14B 1CB
SQRTT OAB 02B 06B OEB 1AB 12B 16B 1EB
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT O0A1 021 061 OEl 1A1 121 161 1E1

/SU /SUC  /SUM  /SUD /SUI /SUIC  /SUIM  /SUID

ADDS 580 500 540 5CO0 780 700 740 7CO
ADDT 5A0 520 560 5EO0 7A0 720 760 7EOQ
CMPTEQ 5A5
CMPTLE 5A7
CMPTLT 5AG6
CMPTUN 5A4

CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E TFE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7TEC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 TA2 722 762 7E2

SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB
SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB

SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1
None /S

CVTST 2AC 6AC
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Table C-3:

IEEE Floating-Point Instruction Function Codes (Continued)

None /C v IVC ISV ISVC ISVI /ISVIC
CVTTQ OAF 02F 1AF 12F 5AF 52F 7TAF 12F
/D VD /ISVD ISVID IM INM ISVM  /SVIM
CVTTQ OEF 1EF S5EF 7EF 06F 16F 56F 76F

Programming Note:

To use CMPTxx with software completion trap handling, specify the /SU |EEE trap mode,
even though an underflow trap is not possible. To use CVTQS or CVTQT with software
completion trap handling, specify the /SUI | EEE trap mode, even though an underflow trap
isnot possible.

C.3 VAX Floating-Point Instructions

Table C—4 lists the hexadecimal value of the 11-bit function code field for the VAX float-
ing-point instructions. The opcode for the following instructions ig18xcept for SQRTF

and SQRTG, whiclare opcode 14.

Table C—4: VAX Floating-Point Instruction Function Codes

None /IC /U /UC /S /ISC /ISU /SUC
ADDF 080 000 180 100 480 400 580 500
CVTDG 09E 01E 19E 11E 49E 41E 59E 51E
ADDG 0AO 020 1A0 120 4A0 420 5A0 520
CMPGEQ O0A5 4A5
CMPGLE O0A7 4A6
CMPGLT O0A6 4A7
CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D
CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C
CVTQF 0BC 03C
CVTQG OBE 03E
CVTGQ See below
DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SQRTF 08A 00A 18A 10A 48A 40A 58A 50A
SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A
SUBF 081 001 181 101 481 401 581 501
SUBG 0A1 021 1A1 121 4A1 421 5A1 521
None /IC N NC IS /ISC ISV /ISVC
CVTGQ 0AF 02F 1AF 12F AAF 42F 5AF 52F
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C.4 Independent Floating-Point I nstructions

C.5

Table C-5 lists the hexadecimal value of the 11-bit function code field for the floating-point
instructions that are not directly tied to IEEE or VAX floating point. The opcode for the fol-
lowing instructions is 14%.

Table C-5: Independent Floating-Point Instruction Function Codes

None N ISV

CPYS 020
CPYSE 022
CPYSN 021
CVTLQ 010
CVTQL 030 130 530

FCMOVEQ 02A
FCMOVGE 02D

FCMOVGT 02F
FCMOVLE 02E
FCMOVLT 02C
MF_FPCR 025
MT_FPCR 024
Opcode Summary

Table C-6 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the table, the
column headings that appear over the instructions have a granulariy h& rows beneath

the leftmost column supply the individual hex number to resolve that granularity.

If an instruction column has a 0 (zero) in the right (low) hex digit, replace that 0 with the num-
ber to the left of the backslash in the leftmost column on the instruction’s row. If an instruction
column has an 8 in the right (low) hexadecimal digit, replace that 8 with the number to the
right of the backslash in the leftmost column.

For example, the third row (2/A) under the 10 column contains the symbol INTS*, represent-
ing all the integer shift instructions. The opcode for those instructions would then e 12
because the 0 in 10 is replaced by the 2 in the leftnobsinn. Likewise, the third row under

the 18 column contains the symbol JSR*, representing all jump instructions. The opcode for
those instructions is 1Adzause the 8 in the heading is replaced by the number to the right of
the backslash in the leftmost column.
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The instruction format is listed under the instruction symbol. The symbols in Table C-6 are
explained in Table C-7.

Table C-6: Opcode Summary

00 08 10 18 20 28 30 38
0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem)  (mem)  (mem)  (br) (br)
1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem)  (mem)  (br) (br)
2/A  Res LDBU INTS*  JSR* LDS LDL L FBLT BLT
(mem) (op) (mem)  (mem)  (mem)  (br) (br)
3/B Res LDQ U INTM* \PAL\ LDT LDQ L FBLE BLE
(mem) (op) (mem)  (mem)  (br) (br)
4/C Res LDWU ITFP* FPTI* STF STL BSR BLBS
(mem) (mem) (mem) (br) (br)
5/D Res STW FLTV* \PAL\ STG STQ FBNE BNE
(mem) (op) (mem)  (mem)  (br) (br)
6/E Res STB FLTI* \PAL\ STS STL_ C FBGE BGE
(mem) (op) (mem)  (mem)  (br) (br)
7/F  Res STQ U FLTL* \PAL\ STT STQ C FBGT BGT
(mem) (op) (mem)  (mem)  (br) (br)

Table C-7: Key to Opcode Summary

Symbol Meaning

FLTI* |EEE floating-point instruction opcodes
FLTL* Floating-point Operate instruction opcodes
FLTV* VAX floating-point instruction opcodes

FPTI* Floating-point to integer register move opcodes
INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes

ITFP* Integer to floating-point register move opcodes
JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcodeinstruction (CALL_PAL) opcodes
\PAL\ Reserved for PALcode

Res Reserved for Compaqg

Instruction Summary C-9



C.6 Common Architecture Opcodesin Numerical Order

Table C—8: Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

00 CALL_PAL 11.26 CMOVNE 14.014 ITOFF

01 OPCO1 11.28 ORNOT 14.024 ITOFT

02 OPC02 11.40 XOR 14.02A  SQRTG/C

03 OPCO3 11.44 CMOVLT 14.02B  SQRTT/C

04 OPCO04 11.46 CMOVGE 14.04B  SQRTS/M

05 OPCO05 11.48 EQV 14.06B  SQRTT/M
06 OPCO06 11.61 AMASK 14.08A  SQRTF

07 OPCO7 11.64 CMOVLE 14.08B  SQRTS

08 LDA 11.66 CMOVGT 14.0AA SQRTG

09 LDAH 11.6C IMPLVER 14.0AB  SOQRTT

0A LDBU 12.02 MSK BL 140CB  SQRTS/D
0B LDQ U 12.06 EXTBL 140EB  SQRTT/D

oC LDWU 12.0B INSBL 1410A  SQRTF/UC
oD STW 12.12 MSKWL 1410B  SQRTS/UC
OE STB 12.16 EXTWL 1412A  SQRTG/UC
OF STQ U 12.1B INSWL 1412B  SQRTT/UC
10.00 ADDL 12.22 MSKLL 14.14B  SQRTS/UM
10.02 S4ADDL 12.26 EXTLL 14.16B  SQRTT/UM
10.09 SUBL 12.2B INSLL 1418A  SQRTF/U
10.0B SASUBL 12.30 ZAP 14188  SQRTS/U
10.0F CMPBGE 12.31 ZAPNOT 141AA  SQRTG/U
10.12 S8ADDL 12.32 MSK QL 141AB  SQRTT/U
10.1B S8SUBL 12.34 SRL 141CB  SQRTS/UD
10.1D CMPULT 12.36 EXTQL 141EB  SQRTT/UD
10.20 ADDQ 12.39 SLL 14.40A  SQRTF/SC
10.22 S4ADDQ 12.3B INSQL 14.42A  SQRTG/SC
10.29 SUBQ 12.3C SRA 1448A  SQRTF/S
10.2B S4SUBQ 1252 MSKWH 144AA  SQRTG/S
10.2D CMPEQ 1257 INSWH 1450A  SQRTF/SUC
10.32 SBADDQ 12.5A EXTWH 1450B  SQRTS/SUC
10.3B S8SUBQ 12.62 MSKLH 1452A  SQRTG/SUC
10.3D CMPULE 12.67 INSLH 1452B  SQRTT/SUC
10.40 ADDL/V 12.6A EXTLH 1454B  SQRTS/SUM
10.49 SUBL/V 12.72 MSKQH 1456B  SQRTT/SUM
10.4D CMPLT 12.77 INSQH 1458A  SQRTF/SU
10.60 ADDQ/V 12.7A EXTQH 1458B  SQRTS/SU
10.69 SUBQIV 13.00 MULL 145AA  SQRTG/SU
10.6D CMPLE 13.20 MULQ 145AB  SQRTT/SU
11.00 AND 13.30 UMULH 145CB  SQRTS/SUD
11.08 BIC 13.40 MULL/V 145EB  SQRTT/SUD
11.14 CMOVLBS 13.60 MULQ/NV 1470B  SQRTS/SUIC
11.16 CMOVLBC 14.004 ITOFS 14.72B  SQRTT/SUIC
11.20 BIS 14.00A  SQRTF/C 14.74B  SQRTS/SUIM
11.24 CMOVEQ 14.00B  SQRTS/C 14.76B  SQRTT/SUIM
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Table C—8: Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode

1478B  SQRTS/SUI 1512F CVTGQ//C 15521  SUBG/SUC
147AB  SQRTT/SUI 15180 ADDFU 15.522 MULG/SUC
147CB  SQRTS/SUID 15181  SUBFU 15.523 DIVG/SUC
147EB  SQRTT/SUID 15.182 MULF/U 1552C  CVTGF/SUC
15000 ADDF/C 15.183 DIVF/U 1552D  CVTGD/SUC
15.001 SUBF/C 1519E CVTDG/U 1552F  CVTGQ/SVC
15.002 MULF/C 151A0 ADDG/U 15580  ADDF/SU
15.003 DIVFIC 151A1 SUBG/U 15.581 SUBF/SU
1501E  CVTDGIC 151A2 MULG/U 15.582 MULF/SU
15020 ADDG/C 151A3 DIVG/U 15.583 DIVF/SU
15.021 SUBG/C 151AC CVTGFU 1559E  CVTDG/SU
15.022 MULG/C 151AD CVTGD/U 155A0 ADDG/SU
15.023 DIVG/C 151AF CVTGQNV 155A1  SUBG/SU
1502C CVTGF/C 15400  ADDF/SC 155A2 MULG/SU
1502D CVTGD/C 15401  SUBF/SC 155A3 DIVG/SU
15.02F CVTGQ/C 15.402 MULF/SC 155AC CVTGF/SU
15.03C CVTQF/C 15.403 DIVF/SC 155AD CVTGD/SU
15.03E CVTQG/C 1541E  CVTDG/SC 155AF CVTGQ/SV
15080 ADDF 15420  ADDG/SC 16.000 ADDSIC
15.081 SUBF 15421  SUBG/SC 16.001 SUBS/C
15.082 MULF 15.422 MULG/SC 16.002 MULS/C
15.083 DIVF 15.423 DIVG/SC 16.003 DIVS/C
1509E CVTDG 1542C  CVTGF/SC 16.020 ADDT/C
150A0 ADDG 1542D  CVTGD/SC 16.021  SUBT/C
150A1 SUBG 1542F  CVTGQ/SC 16.022 MULT/C
15.0A2 MULG 15480  ADDF/S 16.023 DIVT/C
15.0A3 DIVG 15481  SUBF/S 16.02C CVTTSC
15.0A5 CMPGEQ 15.482 MULF/S 16.02F CVTTQ/C
150A6 CMPGLT 15.483 DIVF/S 16.03C CVTQS/C
150A7 CMPGLE 1549E  CVTDG/S 16.03E  CVTQT/C
150AC CVTGF 154A0 ADDG/S 16.040 ADDSM
150AD CVTGD 154A1  SUBG/S 16.041  SUBS/M
15.0AF CVTGQ 154A2  MULGIS 16.042 MULS/M
150BC CVTQF 15.4A3  DIVG/S 16.043 DIVSM
150BE CVTQG 154A5 CMPGEQ/S 16.060 ADDT/M
15100 ADDF/UC 15.4A6  CMPGLT/S 16.061  SUBT/M
15.101 SUBF/UC 154A7 CMPGLE/S 16.062 MULT/M
15.102 MULF/UC 154AC CVTGF/S 16.063 DIVT/M
15.103 DIVF/UC 154AD CVTGD/S 16.06C CVTTSM
15.11E  CVTDG/UC 154AF CVTGQ/S 16.06F CVTTQ/M
15120 ADDG/UC 15500 ADDF/SUC 16.07C CVTQSM
15.121 SUBG/UC 15501  SUBF/SUC 16.07E  CVTQT/M
15.122 MULG/UC 15.502 MULF/SUC 16.080 ADDS
15.123 DIVG/UC 15.503 DIVF/SUC 16.081 SUBS
1512C CVTGF/UC 1551E  CVTDG/SUC 16.082 MULS
1512D CVTGD/UC 15520 ADDG/SUC 16.083 DIVS
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Table C—8: Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode

16.0A0 ADDT 16.182 MULS/U 165A3  DIVT/SU
16.0A1  SUBT 16.183 DIVSU 16.5A4  CMPTUN/SU
16.0A2  MULT 16.1A0 ADDT/U 16.5A5 CMPTEQ/SU
16.0A3 DIVT 16.1A1  SUBT/U 165A6  CMPTLT/SU
16.0A4 CMPTUN 16.1A2  MULT/U 165A7 CMPTLE/SU
16.0A5 CMPTEQ 16.1A3  DIVT/U 165AC CVTTSSU
16.0A6  CMPTLT 16.1AC CVTTSU 165AF CVTTQ/SV
16.0A7 CMPTLE 16.1AF  CVTTQNV 165C0 ADDS/SUD
16.0AC CVTTS 16.1C0 ADDSUD 165C1  SUBS/SUD
16.0AF CVTTQ 16.1C1  SUBS/UD 165C2  MULS/SUD
16.0BC CVTQS 16.1C2 MULS/UD 165C3  DIVSSUD
16.0BE  CVTQT 16.1C3  DIVSUD 165E0  ADDT/SUD
16.0C0 ADDSD 16.1E0 ADDT/UD 165E1  SUBT/SUD
16.0C1  SUBS/D 16.1E1  SUBT/UD 165E2  MULT/SUD
16.0C2  MULSD 16.1E2  MULT/UD 16.5E3  DIVT/SUD
16.0C3  DIVSD 16.1E3  DIVT/UD 165EC  CVTTSSUD
16.0E0 ADDT/D 16.1EC  CVTTS/UD 1656EF  CVTTQ/SVD
16.0E1  SUBT/D 16.1IEF  CVTTQ/VD 16.6AC  CVTST/S
16.0E2  MULT/D 16.2AC  CVTST 16700 ADDS/SUIC
16.0E3  DIVT/D 16500 ADDS/SUC 16,701  SUBS/SUIC
16.0EC  CVTTSD 16501  SUBS/SUC 16.702 MULS/SUIC
16.0EF CVTTQ/D 16.502 MULS/SUC 16.703 DIVS/SUIC
16.0FC  CVTQS/D 16.503 DIVS/SUC 16.720  ADDT/SUIC
16.0FE  CVTQT/D 16520  ADDT/SUC 16.721  SUBT/SUIC
16100 ADDSUC 16521  SUBT/SUC 16.722 MULT/SUIC
16.101 SUBS/UC 16.522 MULT/SUC 16.723 DIVT/SUIC
16.102 MULS/UC 16.523 DIVT/SUC 16.72C  CVTTSSUIC
16.103 DIVSUC 1652C CVTTSSUC 16.72F  CVTTQI/SVIC
16.120 ADDT/UC 16.52F  CVTTQ/SVC 16.73C  CVTQS/SUIC
16.121 SUBT/UC 16540 ADDSSUM 16.73E  CVTQT/SUIC
16.122 MULT/UC 16541  SUBS/SUM 16.740  ADDSSUIM
16.123 DIVT/UC 16.542 MUL S/SUM 16.741  SUBS/SUIM
16.12C  CVTTSUC 16.543 DIVS/SUM 16.742 MULS/SUIM
16.12F  CVTTQ/VC 16560  ADDT/SUM 16.743 DIVS/SUIM
16.140 ADDSUM 16561  SUBT/SUM 16.760  ADDT/SUIM
16.141 SUBS/UM 16.562 MULT/SUM 16.761  SUBT/SUIM
16.142 MULSUM 16.563 DIVT/SUM 16.762 MULT/SUIM
16.143 DIVS/UM 1656C  CVTTS/SUM 16.763 DIVT/SUIM
16.160 ADDT/UM 16.56F  CVTTQ/SVM 16.76C  CVTTS/SUIM
16.161 SUBT/UM 16580 ADDS/SU 16.76F  CVTTQ/SVIM
16.162 MULT/UM 16581  SUBS/SU 16.77C  CVTQS/SUIM
16.163 DIVT/UM 16.582 MULS/SU 16.77E  CVTQT/SUIM
16.16C  CVTTS/UM 16.583 DIVS/SU 16.780  ADDS/SUI
16.16F  CVTTQ/NVM 16.5A0 ADDT/SU 16.781  SUBS/SUI
16.180 ADDSU 165A1  SUBT/SU 16.782 MULS/SUI
16.181 SUBS/U 16.5A2  MULT/SU 16.783 DIVS/SUI
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Table C—8: Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode
16.7A0 ADDT/SUI 18.4000 MB 1F PAL1F
16.7A1  SUBT/SUI 18.4400 WMB 20 LDF
16.7A2  MULT/SUI 18.8000 FETCH 21 LDG
16.7A3  DIVT/SUI 18.A000 FETCH_M 22 LDS
16.7AC CVTTS/SUI 18.C000 RPCC 23 LDT
16.7AF  CVTTQ/SVI 18.E000 RC 24 STF
16.7BC  CVTQS/SUI 18.E800 ECB 25 STG
16.,7BE  CVTQT/SUI 18.F000 RS 26 STS
16.7C0  ADDS/SUID 18.F800 WH64 27 STT
16.7C1  SUBS/SUID 19 PAL19 28 LDL
16.7C2  MULS/SUID 1A.0 IMP 29 LDQ
16.7C3  DIVS/SUID 1A.1 JSR 2A LDL_L
16.7E0 ADDT/SUID 1A.2 RET 2B LDQ L
16.7E1  SUBT/SUID 1A.3 JSR_COROUTINE  2C STL
16.7E2  MULT/SUID 1B PAL1B 2D STQ
16.7E3  DIVT/SUID 1C.00 SEXTB 2E STL_ C
16.7EC  CVTTS/SUID 1C.01 SEXTW 2F STQ C
16.,7EF  CVTTQ/SVID 1C.30 CTPOP 30 BR
16.7FC  CVTQS/SUID 1C.31 PERR 31 FBEQ
16.,7FE  CVTQT/SUID 1C.32 CTLZ 32 FBLT
17.010 CVTLQ 1C.33 CTTZ 33 FBLE
17.020 CPYS 1C.34 UNPKBW 34 BSR
17.021 CPYSN 1C.35 UNPKBL 35 FBNE
17.022 CPYSE 1C.36 PKWB 36 FBGE
17.024 MT_FPCR 1C.37 PKLB 37 FBGT
17.025 MF_FPCR 1C.38 MINSB8 38 BLBC
17.02A  FCMOVEQ 1C.39 MINSW4 39 BEQ
17.02B  FCMOVNE 1C.3A MINUB8 3A BLT
17.02C  FCMOVLT 1C.3B MINUW4 3B BLE
17.02D FCMOVGE 1C.3C MAXUBS 3C BLBS
17.02E FCMOVLE 1C.3D MAXUW4 3D BNE
17.02F  FCMOVGT 1C.3E MAXSB8 3E BGE
17.030 CVTQL 1C.3F MAXSW4 3F BGT
17130  CVTQLN 1C.70 FTOIT

17530  CVTQL/SV 1C.78 FTOIS

18.0000 TRAPB 1D PAL1D

18.0400 EXCB 1E PAL1E
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C.7 OpenVMS Alpha PAL code I nstruction Summary

Table C-9: OpenVMS Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

AMOVRM 00.00A1 Atomic move from register to memory

AMOVRR 00.00A0  Atomic move from register to register

BPT 00.0080  Breakpoint

BUGCHK 00.0081  Bugcheck

CHMK 00.0083  Change mode to kernel

CHME 00.0082  Change mode to executive

CHMS 00.0084  Change mode to supervisor

CHMU 00.0085  Change mode to user

CLRFEN 00.00AE Clear floating-point enable

GENTRAP 00.00AA  Generate software trap

IMB 00.0086  |-stream memory barrier

INSQHIL 00.0087  Insert into longword queue at head interlocked
INSQHILR 00.00A2 Insertinto longword queue at head interlocked resident
INSQHIQ 00.0089 Insert into quadword queue at head interlocked
INSQHIQR 00.00A4 Insert into quadword queue at head interlocked resident
INSQTIL 00.0088 Insert into longword queue at tail interlocked

INSQTILR 00.00A3 Insertinto longword queue at tail interlocked resident
INSQTIQ 00.008A Insert into quadword queue at tail interlocked
INSQTIQR 00.00A5 Insert into quadword queue at tail interlockedresident
INSQUEL 00.008B  Insert entry into longword queue

INSQUEL/D 00.008D Insert entry into longword queue deferred

INSQUEQ 00.008C Insert entry into quadword queue

INSQUEQ/D 00.008E Insert entry into quadword queue deferred

PROBER 00.008F  Probe for read access

PROBEW 00.0090  Probe for write access

RD _PS 00.0091 Move processor status

READ_UNQ 00.009E  Read unique context

REI 00.0092  Return from exception or interrupt

REMQHIL 00.0093  Remove from longword queue at head interlocked
REMQHILR 00.00A6 Remove from longword queue at head interlocked resident
REMQHIQ 00.0095  Remove from quadword queue at head interlocked
REMQHIQR 00.00A8 Remove from quadword queue at head interlocked resident
REMQTIL 00.0094  Remove from longword queue at tail interlocked
REMQTILR 00.00A7 Remove from longword queue at tail interlocked resident
REMQTIQ 00.0096  Remove from quadword queue at tail interlocked
REMQTIQR 00.00A9 Remove from quadword queue at tail interlocked resident
REMQUEL 00.0097  Remove entry from longword queue

REMQUEL/D 00.0099  Remove entry from longword queue deferred
REMQUEQ 00.0098  Remove entry from quadword queue
REMQUEQ/D  00.009A  Remove entry from quadword queue deferred
RSCC 00.009D Read system cycle counter

SWASTEN 00.009B  Swap AST enable for current mode
WRITE_UNQ 00.009F  Write unique context

WR_PS SW 00.009C  Write processor status software field
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Table C-10: OpenVMS Alpha Privileged PALcode Instructions

Mnemonic Opcode Description

CFLUSH 00.0001 Cache flush

CSERVE 00.0009 Console service

DRAINA 00.0002 Drain aborts

HALT 00.0000 Halt processor

LDQP 00.0003 L oad quadword physical
MFPR_ASN 00.0006 Move from processor register ASN
MFPR_ESP 00.001E Move from processor register ESP
MFPR_FEN 00.000B Move from processor register FEN
MFPR_IPL 00.000E Move from processor register 1PL
MFPR_MCES 00.0010 Move from processor register MCES
MFPR_PCBB 00.0012 Move from processor register PCBB
MFPR_PRBR 00.0013 Move from processor register PRBR
MFPR_PTBR 00.0015 Move from processor register PTBR
MFPR_SCBB 00.0016 Move from processor register SCBB
MFPR_SISR 00.0019 Move from processor register SISR
MFPR_SSP 00.0020 Move from processor register SSP
MFPR_TBCHK 00.001A Move from processor register TBCHK
MFPR_USP 00.0022 Move from processor register USP
MFPR_VPTB 00.0029 Move from processor register VPTB
MFPR_WHAMI 00.003F Move from processor register WHAMI
MTPR_ASTEN 00.0026 Move to processor register ASTEN
MTPR_ASTSR 00.0027 Move to processor register ASTSR
MTPR_DATFX 00.002E Move to processor register DATFX
MTPR_ESP 00.001F Move to processor register ESP
MTPR_FEN 00.000B Move to processor register FEN
MTPR_IPIR 00.000D Move to processor register IPRI
MTPR_IPL 00.000E Move to processor register |PL
MTPR_MCES 00.0011 Move to processor register MCES
MTPR_PERFMON 00.002B Move to processor register PERFMON
MTPR_PRBR 00.0014 Move to processor register PRBR
MTPR_SCBB 00.0017 Move to processor register SCBB
MTPR_SIRR 00.0018 Move to processor register SIRR
MTPR_SSP 00.0021 Move to processor register SSP
MTPR_TBIA 00.001B Move to processor register TBIA
MTPR_TBIAP 00.001C Move to processor register TBIAP
MTPR_TBIS 00.001D Move to processor register TBIS
MTPR_TBISD 00.0024 Move to processor register TBISD
MTPR_TBISI 00.0025 Move to processor register TBISI
MTPR_USP 00.0023 Move to processor register USP
MTPR_VPTB 00.002A Move to processor register VPTB
STQP 00.0004 Store quadword physical

SWPCTX 00.0005 Swap privileged context

SWPPAL 00.000A Swap PALcodeimage

WTINT 00.003E Wait for interrupt
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C.8 DIGITAL UNIX PALcode Instruction Summary

Table C-11: DIGITAL UNIX Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap

bugchk 00.0081 Bugcheck

callsys 00.0083 System call

clrfen 00.00AE Clear floating-point enable
gentrap 00.00AA Generate software trap

imb 00.0086 |-stream memory barrier
rdunique 00.009E Read unigue value

urti 00.0092 Return from user mode trap
wrunique 00.009F Write unigue value

Table C-12: DIGITAL UNIX Privileged PALcode Instructions

Mnemonic Opcode Description

cflush 00.0001 Cache flush

cserve 00.0009 Console service

draina 00.0002 Drain aborts

halt 00.0000 Halt the processor

rdmces 00.0010 Read machine check error summary register
rdps 00.0036 Read processor status

rdusp 00.003A Read user stack pointer

rdval 00.0032 Read system value

retsys 00.003D Return from system call

rti 00.003F Return from trap or interrupt

swpctx 00.0030 Swap privileged context

swpipl 00.0035 Swap interrupt priority level

swppal 00.000A Swap PALcodeimage

tbi 00.0033 Tranglation buffer invalidate

whami 00.003C Who am |

wrent 00.0034 Write system entry address

wrfen 00.002B Write floating-point enable

wripir 00.000D Write interprocessor interrupt request
wrkgp 00.0037 Write kernel global pointer

wrmces 00.0011 Write machine check error summary register
wrperfmon 00.0039 Performance monitoring function
wrusp 00.0038 Write user stack pointer

wrval 00.0031 Write system value

wrvptptr 00.002D Write virtual page table pointer

wtint 00.003E Wait for interrupt
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C.9 Windows NT Alpha Instruction Summary

Table C-13: Windows NT Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap

callkd 00.00AD Call kernel debugger

callsys 00.0083 Call system service

gentrap 00.00AA Generate trap

imb 00.0086 Instruction memory barrier

kbpt 00.00AC Kernel breakpoint trap

rdteb 00.00AB Read TEB internal processor register

Table C-14: Windows NT Alpha Privileged PALcode instructions

Mnemonic Opcode Description

csir 00.000D Clear software interrupt request
dalnfix 00.0025 Disable alignment fixups

di 00.0008 Disable interrupts

draina 00.0002 Drain aborts

dtbis 00.0016 Datatranslation buffer invalidate single
ealnfix 00.0024 Enable alignment fixups

e 00.0009 Enable interrupts

halt 00.0000 Trap to illegal instruction

initpal 00.0004 Initialize the PAL code

initper 00.0038 Initialize processor control region data
rdcounters 00.0030 Read PAL code event counters

rdirgl 00.0007 Read current IRQL

rdksp 00.0018 Read initial kernel stack

rdmces 00.0012 Read machine check error summary
rdpcr 00.001C Read PCR (processor control registers)
rdpsr 00.001A Read processor status register

rdstate 00.0031 Read internal processor state

rdthread 00.001E Read the current thread value

reboot 00.0002 Transfer to console firmware

restart 00.0001 Restart the processor

retsys 00.000F Return from system service call

rfe 00.000E Return from exception

swpirgl 00.0006 Swap IRQL

swpksp 00.0019 Swap initial kernel stack

swppal 00.000A Swap PALcode

SWpprocess 00.0011 Swap privileged process context
swpctx 00.0010 Swap privileged thread context

ssir 00.000C Set software interrupt request

thia 00.0014 Tranglation buffer invalidate all

thim 00.0020 Translation buffer invalidate multiple
tbimasn 00.0021 Translation buffer invalidate multiple ASN
this 00.0015 Translation buffer invalidate single
tbisasn 00.0017 Translation buffer invalidate single ASN
wrentry 00.0005 Write system entry

wrmces 00.0013 Write machine check error summary
wrperfmon 00.0032 Write performance monitoring values
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C.10 PALcode Opcodesin Numerical Order

Opcodes 00.003816 through 00.003F16 are reserved for processor implementation-specific
PALcode instructions. All other opcodes are reserved for use by Compag.

Table C-15: PALcode Opcodes in Numerical Order

DIGITAL Windows NT
Opcodeg Opcodey OpenVMS Alpha  UNIX Alpha
00.0000 00.0000 HALT halt halt
00.0001 00.0001 CFLUSH cflush restart
00.0002 00.0002 DRAINA draina draina
00.0003 00.0003 LDQP — reboot
00.0004 00.0004 STQP — initpal
00.0005 00.0005 SWPCTX — wrentry
00.0006 00.0006 MFPR_ASN — swpirq|
00.0007 00.0007 MTPR_ASTEN — rdirgl
00.0008 00.0008 MTPR_ASTSR — di
00.0009 00.0009 CSERVE cserve ei
00.000A 00.0010 SWPPAL swppal swppal
00.000B 00.0011 MFPR_FEN — —
00.000C 00.0012 MTPR_FEN — ssir
00.000D 00.0013 MTPR_IPIR wripir csir
00.000E 00.0014 MFPR_IPL — rfe
00.000F 00.0015 MTPR_IPL — retsys
00.0010 00.0016 MFPR_MCES rdmces SWpCtx
00.0011 00.0017 MTPR_MCES wrmces swpprocess
00.0012 00.0018 MFPR_PCBB — rdmes
00.0013 00.0019 MFPR_PRBR — wrmces
00.0014 00.0020 MTPR_PRBR — thia
00.0015 00.0021 MFPR_PTBR — tbis
00.0016 00.0022 MFPR_SCBB — dtbis
00.0017 00.0023 MTPR_SCBB — tbisasn
00.0018 00.0024 MTPR_SIRR — rdksp
00.0019 00.0025 MFPR_SISR — swpksp
00.001A 00.0026 MFPR_TBCHK — rdpsr
00.001B 00.0027 MTPR_TBIA — —
00.001C 00.0028 MTPR_TBIAP — rdpcr
00.001D 00.0029 MTPR_TBIS — —
00.001E 00.0030 MFPR_ESP — ragiad
00.001F 00.0031 MTPR_ESP — —
00.0020 00.0032 MFPR_SSP — tbim
00.0021 00.0033 MTPR_SSP — tbimasn
00.0022 00.0034 MFPR_USP — —
00.0023 00.0035 MTPR_USP — —
00.0024 00.0036 MTPR_TBISD — ealnfix
00.0025 00.0037 MTPR_TBISI — dalnfix
00.0026 00.0038 MFPR_ASTEN — —
00.0027 00.0039 MFPR_ASTSR — —
00.0029 00.0041 MFPR_VPTB — —
00.002A 00.0042 MTPR_VPTB — —
00.002B 00.0043 MTPR_PERFMON  wrfen —
00.002D 00.0045 — wrvptptr —
00.002E 00.0046 MTPR_DATFX — —
00.0030 00.0048 — swpctx rdcounters
00.0031 00.0049 — wrval rdstate
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Table C-15: PALcode Opcodes in Numerical Order (Continued)

DIGITAL Windows NT
Opcodeg Opcodey OpenVMS Alpha  UNIX Alpha
00.0032 00.0050 — rdval wrperfmon
00.0033 00.0051 — tbi —
00.0034 00.0052 — wrent —
00.0035 00.0053 — swpipl —
00.0036 00.0054 — rdps —
00.0037 00.0055 — wrkgp initpcr
00.0038 00.0056 — wrusp —
00.0039 00.0057 — wrperfmon —
00.003A 00.0058 — rdusp —
00.003C 00.0060 — whami —
00.003D 00.0061 — retsys —
00.003E 00.0062 WTINT wtint —
00.003F 00.0063 MFPR_WHAMI rti —
00.0080 00.0128 BPT bpt bpt
00.0081 00.0129 BUGCHK bugchk —
00.0082 00.0130 CHME — —
00.0083 00.0131 CHMK callsys callsys
00.0084 00.0132 CHMS — —
00.0085 00.0133 CHMU — —
00.0086 00.0134 IMB imb imb
00.0087 00.0135 INSQHIL — —
00.0088 00.0136 INSQTIL — —
00.0089 00.0137 INSQHIQ — —
00.008A 00.0138 INSQTIQ — —
00.008B 00.0139 INSQUEL — —
00.008C 00.0140 INSQUEQ — —
00.008D 00.0141 INSQUEL/D — —
00.008E 00.0142 INSQUEQ/D — —
00.008F 00.0143 PROBER — —
00.0090 00.0144 PROBEW — —
00.0091 00.0145 RD_PS — —
00.0092 00.0146 REI urti —
00.0093 00.0147 REMQHIL — —
00.0094 00.0148 REMQTIL — —
00.0095 00.0149 REMQHIQ — —
00.0096 00.0150 REMQTIQ — —
00.0097 00.0151 REMQUEL — —
00.0098 00.0152 REMQUEQ — —
00.0099 00.0153 REMQUEL/D —
00.009A 00.0154 REMQUEQ/D — —
00.009B 00.0155 SWASTEN — —
00.009C 00.0156 WR_PS_SW — —
00.009D 00.0157 RSCC — —
00.009E 00.0158 READ_UNQ rdunique —
00.009F 00.0159 WRITE_UNQ wrunique —
00.00A0 00.0160 AMOVRR — —
00.00A1 00.0161 AMOVRM — —
00.00A2 00.0162 INSQHILR — —
00.00A3 00.0163 INSQTILR — —
00.00A4 00.0164 INSQHIQR — —
00.00A5 00.0165 INSQTIQR — —
00.00A6 00.0166 REMQHILR — —
00.00A7 00.0167 REMQTILR — —
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Table C-15: PALcode Opcodes in Numerical Order (Continued)

DIGITAL Windows NT
Opcodeg Opcodey OpenVMS Alpha  UNIX Alpha
00.00A8 00.0168 REMQHIQR — —
00.00A9 00.0169 REMQTIQR — —
00.00AA 00.0170 GENTRAP gentrap gentrap
00.00AB 00.0171 — — rdteb
00.00AC 00.0172 — — kbpt
00.00AD 00.0173 — — callkd
00.00AE 00.0174 CLRFEN clrfen

C.11 Required PAL code Opcodes

The opcodes listed in Table C-16 are required for all Alpha implementations. The notation
used is oo.ffff, wher@o is the hexadecimal 6-bit opcode dffifdl is the hexadecimal 26-bit
function code.

Table C-16: Required PALcode Opcodes

Mnemonic  Type Opcode
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged  00.0086

C.12 Opcodes Reserved to PAL code

The opcodes listed in Table C-17 are reserved for use in implementing PALcode.

Table C-17: Opcodes Reserved for PALcode

Mnemonic Mnemonic Mnemonic
PAL19 19 PAL1B 1B PAL1D 1D
PAL1E 1E PAL1F 1F
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C.13 Opcodes Reserved to Compaq

The opcodes listed in Table C-18 are reserved to Compag.

Table C-18: Opcodes Reserved for Compaq

Mnemonic Mnemonic Mnemonic
OPCO01 01 OPCO02 02 OPCO03 03
OPC04 04 OPCO05 05 OPCO06 06
OPCO7 07

Programming Note:

The code points 18.4800 and 18.4C00 are reserved for adding weaker memory barrier
instructions. Those code points must operate as a Memory Barrier instruction (MB

18.4000) for implementations that precede their definition as weaker memory barrier

instructions. Software must use the 18.4000 code point for MB.

C.14 Unused Function Code Behavior

Unused function codes for all opcodes assigned (not reserved) in the Version 5 Alpha architec-
ture specification (May 1992) produce UNPREDICTABLE but not UNDEFINED results; they
are not security holes.

Unused function codes for opcodes defined as reserved in the Version 5 Alpha architecture
specification produce an illegal instruction trap. Those opcodes are 01, 02, 03, 04, 05, 06, 07,
0A, 0C, 0D, OE, 14, 19, 1B, 1C, 1D, 1E, and 1F. Unused function codes for those opcodes
reserved to PALcode produce an illegal instruction trap only if not used in the PALcode
environment.
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C.15 ASCII Character Set

Table C-19 shows the 7-bit ASCII character set and the corresponding hexadecimal value for
each character.

Table C-19: ASCII Character Set

Hex Hex Hex Hex
Char Code Char Code Char Code Char Code
NUL 0 SP 20 @ 40 ‘ 60
SQH 1 ! 21 A 41 a 61
STX 2 " 22 B 42 b 62
ETX 3 # 23 C 43 (o 63
EOT 4 $ 24 D 44 d 64
ENQ 5 % 25 E 45 e 65
ACK 6 & 26 F 46 f 66
BEL 7 ' 27 G 47 g 67
BS 8 ( 28 H 48 h 68
HT 9 ) 29 | 49 i 69
LF A * 2A J 4A i 6A
VT B + 2B K 4B k 6B
FF C , 2C L 4C [ 6C
CR D 2D M 4D m 6D
SO E . 2E N 4E n 6E
SI F / 2F O 4F o] 6F
DLE 10 0 30 P 50 p 70
DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72
DC3 13 3 33 S 53 S 73
DC4 14 4 34 T 54 t 74
NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 Y 76
ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 X 78
EM 19 9 39 Y 59 y 79
SUB 1A : 3A Z 5A z A
ESC 1B : 3B [ 5B { 7B
FS 1C < 3C \ 5C | 7C
GS 1D = 3D ] 5D } 7D
RS 1E > 3E A 5E ~ TE
us 1F ? 3F 5F DEL TF

C-22 Alpha Architecture Handbook



Appendix D

Registered System and Processor |dentifiers

This appendix contains a table of the processor type assignments, PAL code implementation
information, and the architecture mask (AMASK) and implementation value (IMPLVER)
assignments.

D.1 Processor Type Assignments

Thefollowing processor types are defined.

Table D-1: Processor Type Assignments

Major Type Minor Type
1= EV3
2= EV4(21064) 0=  Pass2or21
1=  Pass3(also EV4s)
3= Simulation
4= LCA Family:
LCA4s (21066)

LCA4s embedded (21068)
LCA45 (21066A, 21068A)

0= Reserved

1= Pass 1 or 1.1 (21066)
2= Pass 2 (21066)

3= Pass 1 or 1.1 (21068)
4= Pass 2 (21068)

5= Pass 1 (21066A)

6= Pass 1 (21068A)




Table D-1: Processor Type Assignments (Continued)

Major Type Minor Type

5= EV5(21164) 0= Reserved (Pass 1)
= Pass2,22(rev BA,CA)
= Pass23(rev DA, EA)
= Pass3
= Pass3.2
= Pass4

6= EV45(21064A) =  Reserved
= Passl
= Passll
= Pass2

7= EV56 (21164A) =  Reserved
= Passl
= Pass2

8= EV6(21264) =  Reserved
= Pass 1
= Pass 2, 2.1
= Pass 2.2
= Pass 2.3
= Pass3

9=  PCA56 (21164PC) =  Reserved
= Passl

For OpenVMS Alphaand DIGITAL UNIX, the processor types are stored in the Per-CPU Slot
Table (SLOT[176]), pointed to by HWRPB[160].

D.2 PALcode Variation Assignments

The PALcode variation assignments are as follows:

Table D-2: PALcode Variation Assignments

Token PALcode Type Summary Table
0 Console N/A
1 OpenvVMS Alpha Console Interface (Ill), Chapter 3, in the

Alpha Architecture Reference Manual.
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Table D-2: PALcode Variation Assignments

Token PALcode Type Summary Table

2 DIGITAL UNIX Console Interface (Ill), Chapter 3 in the
Alpha Architecture Reference Manual

3-127 Reserved to Compagqg

128-255 Reserved to non-Compagq

D.3 Architecture Mask and | mplementation Values

Thefollowing bits are defined for the AMASK instruction.

Table D-3: AMASK Bit Assignments

Bit

Meaning

0

Support for the byte/word extension (BWX)
The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

Support for the square-root and floating-point convert extension (FIX)
The ingtructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF,
ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

Support for the count extension (CIX)
The instructions that comprise the CIX extension are CTLZ, CTPOP, and CTTZ.

Support for the multimedia extension (MV1)

The instructions that comprise the MVI extension are MAXSB8, MAXSWA4,
MAXUBS, MAXUW4, MINSB8, MINSW4, MINUBS8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

Support for precise arithmetic trap reporting in hardware. The trap PC is the same
asthe instruction PC after the trapping instruction is executed.

Thefollowing values are defined for the IMPLVER instruction.

Table D—4: IMPLVER Value Assignments

Value Meaning
0 21064 (EV4)
21064A (EV45)
21066A/21068A (LCA45)
1 21164 (EV5)
21164A (EV56)
21164PC (PCA56)
2 21264 (EV6)
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Appendix E

Walvers and | mplementation-Dependent

Functionality

This appendix describes waivers to the Alpha architecture and functionality that is specific to
particular hardware implementations.

E.1 Waivers

Thefollowing waivers have been passed for the Alphaarchitecture.

E.1.1 DECchip 21064, DECchip 21066, and DECchip 21068 | EEE Divide
Instruction Violation

The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs violate the architected han-
dling of IEEE divideinstructions DIV S and DIV T with respect to reporting Inexact Result
exceptions.

Note:

The DECchip 21064A, DECchip 21066A, and DECchip 21068A CPUs are compliant and
require no waiver. The DECchip 21164 is al'so compliant.

As specified by the architecture, floating-point exceptions generated by the CPU are recorded
in two places for al |IEEE floating-point instructions:

1. If an exception is detected and the corresponding trap is enabled (such as ADD/U for
underflow), the CPU initiates a trap and records the exception in the exception sum-
mary register (EXC_SUM).

2. Theexceptions are also recorded as flags that can be tested in the floating-point control
register (FPCR). The FPCR can only be accessed with MTPR/MFPR instructions and
an explicit MT_FPCR isrequired to clear the FPCR. The FPCR is updated irrespective
of whether the trap is enabled or not.



The DECchip 21064, DECchip 21066, and DECchip 21068 implementations differ from the
above specification in handling the Inexact condition for the IEEE DIVS and DIVT instruc-
tionsin two ways:

1. The DIVS and DIVT instructions with the /Inexact modifier trap unconditionally and
report the INE exception in the EXC_SUM register (except for NaN, infinity, and
denormal inputs that result in INVs). This alows for a software calculation to deter-
mine the correct INE status.

2. The FPCR <INE> hit is never set by DIVS or DIVT. This is because the DECchip
21064, DECchip 21066, and DECchip 21068 do not include hardware to determine that
particular exactness.

E.1.2 DECchip 21064, DECchip 21066, and DECchip 21068 Write Buffer
Violation

The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs can be made to violate the
architecture by, under one contrived case, indefinitely delaying a buffered off-chip write.

Note:

The DECchip 21064A, DECchip 21066A, and DECchip 21068A CPUs are compliant and
require no waiver. The DECchip 21164 is al'so compliant.

The CPUs in violation can send a buffered write off-chip when one of the following condi-
tionsis met:

1. Thewrite buffer contains at |east two valid entries.

2. Thewrite buffer contains one valid entry and 256 cycles have elapsed since the execu-
tion of the last write.

3. Thewrite buffer containsan MB or STx_C instruction.
A load miss hits an entry in the write buffer.

The write can be delayed indefinitely under condition 2 above, when there is an indefinite
stream of writes to addresses within the same aligned 32-byte write buffer block.

E.1.3 DECchip 21264 LDx_L/STx_C with WH64 Violation

The DECchip 21264 violates the architected relationship between the LDx_L and STx_C
instructions when an intervening WHG64 instruction is executed.

As specified in Section 4.2.4:
If any other memory access (ECB, LDx, LDQ U, STx, STQ_U, WH64) is executed on the

given processor between the LDx_L and the STx_C, the sequence above may aways fail
on some implementations; hence, no useful program should do this.

E-2 Alpha Architecture Handbook



E.2

E21

The DECchip 21264 varies from that description, with regard to the WH64 instruction, as
follows:

If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U) is executed on the given
processor between the LDx_L and the STx_C, the sequence above may aways fail on
some implementations; hence, no useful program should do this.

If a WH64 memory access is executed on any given 21264 processor between the LDx_L
and STx_C, and:

— The WH64 access is to the same aligned 64-byte block that STx_C is accessing,
and

— No CALL_PAL RElI, rei, or rfe instruction has been executed since the most-recent
LDx_L (ensuring that the sequence cannot occur as the result of unfortunate coin-
cidences with interrupts)

then, the load-locked/store-conditional sequence may sometimes fail when it would
otherwise succeed and sometimes succeed when it otherwise would fail; hence no useful
program should do this.

| mplementation-Specific Functionality

The following functionality, although a documentated part of the Alpha architecture, is imple-
mented in a manner that is specific to the particular hardware implementation.

DECchip 21064/21066/21068 Perfor mance M onitoring

Note:

All functions, arguments, and descriptions in this section apply to the DECchip
21064/21064A, 21066/21066A, and 21068/21068A.

PALcode instructions control the DECchip 21064/21066/21068 on-chip performance counters.
For OpenVMS Alpha, the instruction is MTPR_PERFMON; for DIGITAL UNIX and Win-
dows NT Alpha, the instruction is wrperfmon.

The instruction arguments and results are described in the following sections. The scratch reg-
ister usage is operating system specific.

Two on-chip counters count events. The bit width of the counters (8, 12, or 16 bits) can be
selected and the event that they count can be switched among a number of available events.
One possible event is an "external" event. For example, the processor board can supply an
event that causes the counter to increment. In this manner, off-chip events can be counted.

The two counters can be switched independently. There is no hardware support for reading,

writing, or resetting the counters. The only way to monitor the counters is to enable them to
cause an interrupt on overflow.
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The performance monitor functions, described in Section E.2.1.2, can provide the following,
depending on implementation:

e Enable the performance counters to interrupt and trap into the performance monitoring
vector in the operating system.

¢ Disable the performance counter from interrupting. This does not necessarily mean that
the counters will stop counting.

¢ Select which events will be monitored and set the width of the two counters.

* |n the case of OpenVMS Alpha and DIGITAL UNIX, implementations can choose to
monitor selected processes. If that option is selected, the PME bit in the PCB controls
the enabling of the counters. Since the counters cannot be read/written/reset, if more
than one process is being monitored, the rounding error may become significant.

E.2.1.1 DECchip 21064/21066/21068 Per for mance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular operating
system.

For the OpenVMS Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then dis-
patches in the form of an exception (not in the form of an interrupt) to the operating system by
vectoring to the SCB performance monitor entry point through SCBB+650
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode.

Two interrupts are generated if both counters overflow. For each interrupt, the status of each
counter overflow isindicated by register R4:

R4 = 0 if performance counter O caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DIGITAL UNIX Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PAL code builds an appropriate stack frame and dispatches to the
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.

Two interrupts are generated if both counters overflow. For each interrupt, registers a0..a2 are
asfollows:

a0 = osfint$c_perf (4)

al = sch$v_perfmon (650)

a2 = 0 if performance counter O caused the interrupt
a2 = 1if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the Windows NT Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds a frame on the kernel stack and dispatches to the
kernel at the interrupt entry point.
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E.2.1.2 Functionsand Argumentsfor the DECchip 21064/21066/21068

The functions execute on a single (the current running) processor only and are described in
Table E-1.

e The OpenVMS Alpha MTPR_PERFMON instruction is called with a function code in
R16, afunction-specific argument in R17, and statusisreturned in RO.

e TheDIGITAL UNIX wrperfmon instruction is called with afunction code in a0, afunc-
tion specific argument in al, and statusis returned in vO.

e The Windows NT Alpha wrperfmon instruction is called with input parameters a0
through a3, as shown in Table E-1.

Table E-1: DECchip 21064/21066/21068 Performance Monitoring Functions

Function Register Usage

Comments

Enable performance monitoring

Enabletakes effect at the next IPL change

DIGITAL UNIX
Input: a0=1 Function code
al=0 Argument
Output: v0=1 Success
v0=0 Failure (not generated)

OpenVMS Alpha
Input: R16=1

Function code

R17=0 Argument
Output: RO=1 Success
RO=0 Failure (not generated)
Windows NT Alpha
Input; a0=0 Select counter 0
=1 Select counter 1
al=1 Enable selected counter

Disable performance monitoring

Disable takes effect at the next |PL change

DIGITAL UNIX
Input; a0=0 Function code
al=0 Argument
Output: v0=1 Success
v0=0 Failure (not generated)
OpenVMS Alpha
Input; R16=0 Function code
R17=0 Argument
Output: RO=1 Success
RO=0 Failure (not generated)
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Table E-1: DECchip 21064/21066/21068 Performance Monitoring Functions

(Continued)

Function Register Usage

Comments

Windows NT Alpha
Input:

a0=0
a0=1
al=0

Select counter 0
Select counter 1
Disable sdl ected counter

Select desired events (mux_ctl)

DIGITAL UNIX
Input: a0=2
al = mux_ctl

Output: v0=1
vO=0
OpenVMS Alpha
Input: R16 =2

R17 = mux_ctl

Output: RO=1
RO=0
Windows NT Alpha

Input: a2 = PCMUXO

a2 = PCMUX1
a3 =PCO
a3=PC1l

Function code

mux_ctl is the exact contents of those fields
from the ICCSR register, in write format,
described in Table E-2.

Success
Failure (not generated)

Function code

mux_ctl is the exact contents of those fields
from the ICCSR register, in write format,
described in Table E-2.

Success
Failure (not generated)

For ICCSR<PCMUXO0> field when a0 = 0
For ICCSR<PCMUX1> field when a0 =1
For ICCSR<PCO> field when a0 =0
For ICCSR<PC1> field when a0 =1

Select performance monitoring options

DIGITAL UNIX
Input: a0=3
al = opt

Output: v0=1
vO=0

Function code
Function argumeanpt is:
<0> = log all processes if set
<1> = log only selected if set
Success
Failure (not generated)
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Table E-1: DECchip 21064/21066/21068 Performance Monitoring Functions

(Continued)
Function Register Usage Comments
OpenVMS Alpha
Input: R16=3 Function code
R17 = opt Function argument opt is:

<0> =log all processesif set
<1> =log only selected if set
Output: RO=1 Success
RO=0 Failure (not generated)

Table E-2: DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register

Bits  Option Description

34:32 PCMUX1 Event selection, counter 1:

Value Description

Total D-cache misses

Total 1-cache misses

Cycles of dual issue

Branch mispredicts (conditional, JSR, HW_REI)

FP operateinstructions (not BR, LOAD, STORE)

Integer operates (including LDA, LDAH into RO—R30)
Total store instructions

External events supplied by pin

N o ok NP O
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Table E-2: DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register
(Continued)

Bits  Option Description

11:8 PCMUXO Event selection, counter O:

Value Description

0 Total issues divided by 2

1 Unused

2 Nothing issued, no valid I-stream data
3 Unused

4 All load ingtructions

5 Unused

6 Nothing issued, resource conflict

7 Unused

8 All branches (conditional, unconditional, JSR, HW_REI)
9 Unused

10 Total cycles

11 Cycles while in PALcode environment
12 Total nonissues divided by 2

13 Unused

14 External event supplied by pin.

15 Unused

3 PCO Frequency setting, counter O:

Value Description

0 2**16 (65536) events per interrupt

1 2**12 (4096) events per interrupt

0 PC1 Frequency setting, counter 1:

Value Description

0 2**12 (4096) events per interrupt

1 2**8 (256) events per interrupt
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E.2.2 DECchip 21164/21164PC Perfor mance M onitoring

Unless otherwise stated, the term "21164" in this section means implementations of the 21164
at all frequencies.

PAL code instructions control the DECchip 21164/21164PC on-chip performance counters. For
OpenVMS Alpha, the instruction is MTPR_PERFMON; for DIGITAL UNIX and Windows
NT Alpha, theinstruction is wrperfmon.

The instruction arguments and results are described in the following sections. The scratch reg-
ister usage is operating system specific.

Three on-chip counters count events. Counters 0 and 1 are 16-bit counters; counter 2 is a 14-bit
counter. Each counter can be individually programmed. Counters can be read and written and
are not required to interrupt. The counters can be collectively restricted according to the pro-
cessor mode.

Processes can be selectively monitored with the PME bit.

E.2.2.1 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular operating
system.

For the OpenVMS Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then dis-
patches in the form of an exception (not in the form of an interrupt) to the operating system by
vectoring to the SCB performance monitor entry point through SCBB+650
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode.

Aninterrupt is generated for each counter overflow. For each interrupt, the status of each
counter overflow isindicated by register R4:

R4 = 0 if performance counter O caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt
R4 = 2 if performance counter 2 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DIGITAL UNIX Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PAL code builds an appropriate stack frame and dispatches to the
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.
Aninterrupt is generated for each counter overflow. For each interrupt, registers a0..a2 are as
follows:

a0 = osfint$c_perf (4)

al = sch$v_perfmon (650)

a2 = 0 if performance counter O caused the interrupt

a2 = 1if performance counter 1 caused the interrupt
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For the Windows NT Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds a frame on the kernel stack and dispatches to the
kernel at the interrupt entry point.

E.2.2.2 Windows NT Alpha Functions and Argument

The functions for Windows NT Alpha execute on only a single (the current running) processor.
Thewrperfmon instruction is called with the following input registers:

Input Contents
Register  (Bits) M eaning
20 63-0 The register in Table E-3, which contains the value to be written
to the hardware PMCTR register.
al 0 When al = 0, write a0 to the hardware PMCTR register.
When al = 1, read the hardware PMCTR register. The returned
PMCTR register is written to register vO.
a2 2-0 Has meaning when PCSEL1 in Table E-3 has the value OxF. Con-
tents are determined by processor type:
Processor Contents Reference
21164 CBOX1 Table E-15
21164PC PMO_MUX Table E-17
a3 2-0 Has meaning when PCSEL?2 in Table E-3 has the value OxF. Con-

tents are determined by processor type:

Processor Contents Reference

21164 CBOX2 Table E-16
21164PC PM1_MUX Table E-18
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Table E-3: Bit Summary of PMCTR Register for Windows NT Alpha

Bits Name Meaning
63-48 CTRO Counter 0 value
47-32 CTR1 Counter 1 value
31 PCSELO Counter 0 selection:
Value Meaning
0 Cycles
1 Issues
30 Must be set to orfe
29-16 CTR2 Counter 2 value
15-14 CTLO Counter 0 control:
Value Meaning
0 Counter disable, interrupt disable
1 Counter enable, interrupt disable
2 Counter enable, interrupt at count 65536
3 Counter enable, interrupt at count 256
13-12 CTL1 Counter 1 control:
Value Meaning
0 Counter disable, interrupt disable
1 Counter enable, interrupt disable
2 Counter enable, interrupt at count 65536
3 Counter enable, interrupt at count 256
11-10 CTL2 Counter 2 control:
Value Meaning
0 Counter disable, interrupt disable
1 Counter enable, interrupt disable
2 Counter enable, interrupt at count 16384
3 Counter enable, interrupt at count 256
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Table E-3: Bit Summary of PMCTR Register for Windows NT Alpha
(Continued)

Bits Name Meaning

9-8 MODE SELECH Select modes in which to count:

Value Meaning
0 Count all modes
1 Count PALmode only
2 Count all modes except PALmode
3 Count only user mode
7-4 PCSEL1 Counter 1 selection. See Table E-13
3-0 PCSEL2 Counter 2 selection. See Table E-14

1 Windows NT Alpha uses bits 30 and 9-8 differently than as documented in the 21164 Hard-
ware Reference Manual; it uses the processor executive mode to run user (nonprivileged)
code. Therefore, bit 30 is always set to one and bits 9-8 are used to select the mode.

E.2.2.3 OpenVMS Alpha and DIGITAL UNIX Functionsand Arguments

The functions execute only on a single (the current running) processor and are described in
Table E-4.

The OpenVMS Alpha MTPR_PERFMONMStruction is called with a function code in R16, a
function-specific argument in R17, and status is returned in RO.

The DIGITAL UNIX wrperfmon instruction is called with a function code in a0, a function
specific argument in al, and status is returned in vO.

Table E-4. OpenVMS Alpha and DIGITAL UNIX Performance Monitoring
Functions

Function Register Usage Comments

Enable performance monitoring; do not reset counters

DIGITAL UNIX
Input: a0=1 Function code value
al =arg Argument from Table E-5
Output: vo=1 Success
v0=0 Failure (not generated)
OpenVMS Alpha
Input: R16 =1 Function code value
R17 = arg Argument from Table E-5
Output: RO=1 Success
RO=0 Failure (not generated)
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Table E-4:. OpenVMS Alpha and DIGITAL UNIX Performance Monitoring

Functions (Continued)

Function Register Usage

Comments

Enable performance monitoring; start the countersfrom zero

DIGITAL UNIX
Input: a=7
al = arg
Output: vo=1
v0=0
OpenVMS Alpha
Input: R16 =7
R17 = arg
Output: RO=1
RO=0

Function code value
Argument from Table E-5

Success

Failure (not generated)

Function code value
Argument from Table E-5
Success

Failure (not generated)

Disable perfor mance monitoring; do not reset counters

DIGITAL UNIX
Input: a0=0
al = arg
Output: vo=1
v0=0
OpenVMS Alpha
Input: R16 =0
R17 = arg
Output: RO=1
RO=0

Function code value
Argument from Table E—6
Success

Failure (not generated)

Function code value
Argument from Table E—6
Success

Failure (not generated)

Select desired events (MUX_SELECT)

DIGITAL UNIX
Input: a0=2
al = arg
Output: vo=1
vO=0
OpenVMS Alpha
Input: R16 =2
R17 = arg
Output: RO=1
RO=0

Function code value

Argument from Table E-7 or E-8
Success

Failure (not generated)

Function code value

Argument from Table E-7 or E-8
Success

Failure (not generated)

Waivers and | mplementati on-Dependent Functionality E-13



Table E-4:. OpenVMS Alpha and DIGITAL UNIX Performance Monitoring

Functions (Continued)

Function Register Usage

Comments

Select Processor M ode options

DIGITAL UNIX
Input: a=3
al = arg
Output: vo=1
v0=0
OpenVMS Alpha
Input: R16 =3
R17 = arg
Output: RO=1
RO=0

Function code value

Argument from Table E-9
Success

Failure (not generated)

Function code value
Argument from Table E-9
Success

Failure (not generated)

Select interrupt frequencies

DIGITAL UNIX
Input: a0=4 Function code value
al = arg Argument from Table E-10
Output: vO=1 Success
v0=0 Failure (not generated)
OpenVMS Alpha
Input: R16 =4 Function code value
R17 = arg Argument from Table E-10
Output: RO=1 Success
RO=0 Failure (not generated)
Read the counters
DIGITAL UNIX
Input: a0=>5 Function code value
al = arg Argument from Table E-11
Output: v0 = val Return value from Table E-11
OpenVMS Alpha
Input: R16 =5 Function code value
R17 = arg Argument from Table E-11

Output: RO = val

Return value from Table E-11
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Table E-4:. OpenVMS Alpha and DIGITAL UNIX Performance Monitoring
Functions (Continued)

Function Register Usage Comments

Writethecounters

DIGITAL UNIX
Input: =6 Function code value
al =arg Argument from Table E-12
Output: vo=1 Success
v0=0 Failure (not generated)
OpenVMS Alpha
Input: R16 =6 Function code value
R17 = arg Argument from Table E-12
Output: RO=1 Success
RO=0 Failure (not generated)

Table E-5: 21164/21164PC Enable Counters for OpenVMS Alpha and DIGITAL
UNIX

Bits Meaning When Set

2 Operate on counter 2
1 Operate on counter 1
0 Operate on counter O

Table E-6: 21164/21164PC Disable Counters for OpenVMS Alpha and DIGITAL
UNIX

Bits Meaning When Set

2 Operate on counter 2
1 Operate on counter 1
0 Operate on counter O

Waivers and I mplementati on-Dependent Functionality E-15



Table E-7: 21164 Select Desired Events for OpenVMS Alpha and DIGITAL
UNIX

Bits Name Meaning

63:32 MBZ
31 PCSELO Counter O selection:

Value  Meaning

0 Cycles
1 Issues
30:25 MBZ

24:22 CBOX2 CBOX2 event selection (only has meaning when event selection field
PCSELZ2 is value <15>; otherwise MBZ). CBOX2 described in Table E—
16.

21:19 CBOX1 CBOX1 event selection (only has meaning when event selection field
PCSELL1 is value <15>; otherwise MBZ). CBOX1 described in Table E—
15.

18:8 MBZ
7:4 PCSEL1 Counter 1 event selection. PCSEL1 described in Table E-13.
3.0 PCSEL2 Counter 2 event selection. PCSEL2 described in Table E-14.

Table E-8: 21164PC Select Desired Events for OpenVMS Alpha and DIGITAL

UNIX

Bits Name Meaning

63:32 MBZ

31 PCSELO Counter 0 selection:
Value Meaning
0 Cycles
1 Issues

30:14 MBZ

13:11 PM1_MUX PM1 MUX event selection (only has meaning when event selec-
tion field PCSEL2 isvalue <15>; otherwise MBZ). PM1 MUX is
described in Table E-18.

10:8 PMO_MUX PMO_MUX event selection (only has meaning when event selec-
tion field PCSELL1 is value <15>; otherwise MBZ). PMO_MUX is
described in Table E-17.
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Table E-8: 21164PC Select Desired Events for OpenVMS Alpha and DIGITAL
UNIX (Continued)

Bits Name Meaning

74 PCSEL1 Counter 1 event selection. PCSEL1 described in Table E-13.
3.0 PCSEL2 Counter 2 event selection. PCSEL2 described in Table E-14.

Table E-9: 21164/21164PC Select Special Options for OpenVMS Alpha and

DIGITAL UNIX
Bits Meaning
63:31 MBZ
30 Stop count in user mode
29:10 MBZ
9 Stop count in PALmode
8 Stop count in kernel mode
7:1 MBZ
0 Monitor selected processes (when clear monitor all processes)

Setting any of the "NOT" bits causes the counters to not count when the processor is running in
the specified mode. Under OpenVMS Alpha, "NOT_KERNEL" also stops the count in execu-
tive and supervisor mode, except as noted bel ow:

NOT_BITS Counters Operate Under These Modes When Bits Set:

K U P

0O 0 ©O K ESUP

0O 0 1 K ESU

0O 1 o0 K E S P

o 1 1 K E S

1 0 O upe

1 0 1

1 1 O P

1 1 1 E S (here"NOT_KERNEL" stops kernel counter only)
Note:

DIGITAL UNIX counts user mode by using the executive counter; that is, the count for
executive mode is returned as the user mode count.
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Table E-10: 21164/21164PC Select Desired Frequencies for OpenVMS Alpha and
DIGITAL UNIX

Table E-10 contains the selection definitions for each of the three counters. All frequency
fields are two-bit fields with the following values defined:

Bits Meaning When Set
63:10 MBZ

9:8 Counter 0 frequency:

Value  Meaning

0 Do not interrupt

1 Unused

2 Low frequency (2**16 (65536) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

7:6 Counter 1 frequency:

Value  Meaning

0 Do not interrupt

1 Unused

2 Low frequency (2**16 (65536) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

5:4 Counter 2 frequency:

Value  Meaning

0 Do not interrupt

1 Unused

2 Low frequency (2**14 (16384) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

3.0 MBZ
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Table E-11: 21164/21164PC Read Counters for OpenVMS Alpha and DIGITAL

UNIX
Bits Meaning When Returned
63:48  Counter O returned value
47:32  Counter 1 returned value
31:30 MBz
29:16  Counter 2 returned value
15:1 MBZ
0 Set means success; clear means failure

Table E-12: 21164/21164PC Write Counters for OpenVMS Alpha and DIGITAL

UNIX
Bits Meaning
63:48  Counter O written value
47:32  Counter 1 written value
31:30 MBz
29:16  Counter 2 written value
15:0 MBZ

Table E-13: 21164/21164PC Counter 1 (PCSEL1) Event Selection

The following values choose the counter 1 (PCSEL 1) event selection:

Value

Meaning

o N o oM WN P O

Nothing issued, pipeline frozen

Some but not all issuable instructions issued
Nothing issued, pipeline dry

Replay traps (Idu, wh/maf, litmus test)
Single issue cycles

Dual issue cycles

Triple issue cycles

Quad issue cycles

Flow change (all branches, jsr-ret, hw_rei), where:
If PCSEL2 hasvalue 3, flow change is a conditional branch
If PCSEL2 hasvalue 2, flow changeis a JSR-RET
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Table E-13: 21164/21164PC Counter 1 (PCSEL1) Event Selection (Continued)

The following values choose the counter 1 (PCSEL 1) event selection:

Value  Meaning

9 Integer operate instructions

10 Floating point operate instructions

11 Load instructions

12 Store instructions

13 Instruction cache access

14 Data cache access

15 For the 21164, use CBOX1 event selection in Table E-15.

For the 21164PC, use PM0O_MUX event selection in Table E-17.

Table E-14: 21164/21164PC Counter 2 (PCSEL?2) Event Selection

The following val ues choose the counter 2 (PCSEL 2) event selection:

Value  Meaning

0 Long stalls (> 15 cycles)

1 Unused value

2 PC mispredicts

3 Branch mispredicts

4 I-cache misses

5 ITB misses

6 D-cache misses

7 DTB misses

8 Loads merged in MAF

9 LDU replays

10 WB/MAF full replays

11 Event from external pin

12 Cycles

13 Memory barrier instructions
14 LDx/L instructions

15 For the 21164, use CBOX2 event selection in Table E-16.

For the 21164PC, use PM1_MUX event selection in Table E-18.
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Table E-15: 21164 CBOX1 Event Selection

The following val ues choose the CBOX 1 event selection.

Value Meaning

S-cache access
S-cache read
S-cache write
S-cache victim
Unused value
B-cache hit

B-cache victim

N o o~ WN P O

System request

Table E-16: 21164 CBOX2 Event Selection

The following val ues choose the CBOX 2 event selection.

Value Meaning

S-cache misses
S-cache read misses
S-cache write misses
S-cache shared writes
S-cache writes
B-cache misses
System invalidates
System read requests

N o o~ WwN P O
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Table E-17: 21164PC PM0O_MUX Event Selection

The following values choose the PMO_MUX event selection and perform the chosen operation
in Counter 0.

Value Meaning

B-cache read operations
B-cache D read hits
B-cache D read fills
B-cache write operations
Undefined

B-cache clean write hits
B-cache victims

Read miss 2 launched

N o o~ WN P O

Table E-18: 21164PC PM1_MUX Event Selection

The following values choose the PM1_MUX event selection and perform the chosen operation
in Counter 1.

Value Meaning

B-cache D read operations
B-cache read hits

B-cache read fills

B-cache write hits

B-cache writefills

System read/flush B-cache hits
System read/flush B-cache misses
Read miss 3 launched

N o o~ WN P O
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E.2.3 21264 Performance Monitoring

PAL code instructions control the 21264 on-chip performance counters. For OpenVMS Alpha,
the instruction is MTPR_PERFMON; for DIGITAL UNIX and Windows NT Alpha, the
instruction is wrperfmon.

The instruction arguments and results are described in the following sections. The scratch reg-
ister usage is operating system specific.

Two 20-bit on chip counters count events. Counters can be individually programmed, read, and
written.

Processes can be selectively monitored with the PME bit.

Profile monitoring for the 21264 is called aggregate mode profile monitoring because it pro-
vides an aggregate count.

E.2.3.1 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular operating
system.

For the OpenVMS Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then dis-
patches in the form of an exception (not in the form of an interrupt) to the operating system by
vectoring to the SCB performance monitor entry point through SCBB+650
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode.

Aninterrupt is generated for each counter overflow. For each interrupt, the status of each
counter overflow isindicated by register R4:

R4 = 0 if performance counter O caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DIGITAL UNIX Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PAL code builds an appropriate stack frame and dispatches to the
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.
Aninterrupt is generated for each counter overflow. For each interrupt, registers a0..a2 are as
follows:

a0 = osfint$c_perf (4)

al = sch$v_perfmon (650)

a2 = 0 if performance counter O caused the interrupt

a2 = 1if performance counter 1 caused the interrupt
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For the Windows NT Alpha Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter causes an
interrupt to PALcode. The PALcode builds a frame on the kernel stack and dispatches to the
kernel at the interrupt entry point.

E.2.3.2 Windows NT Alpha Functionsand Argument

The functions for Windows NT Alpha execute on only a single (the current running) processor.
Thewrperfmon instruction is called with the following input registers:

Input Contents

Register  (Bits) M eaning

20 63-0 The register in Table E-19, which contains the value to be written
to the hardware PCTR_CTL register.

al 0 When al = 0, write a0 to the hardware PCTR_CTL register.

When al = 1, read the hardware PCTR_CTListeg The
returned PCTR_CTL register is written to register v0.

Table E-19: Bit Summary of PCTR_CTL Register for Windows NT Alpha

Bits Name Meaning

63-48 SEXT[PCTRO_CTL[47]

47-28 PCTRO Counter 0 value.
Enabled by setting | CTL[PCTO_EN] and either
|_CTL[SPCE] or PCTX[PPCE]. On overflow, an
interrupt is triggered at ISUM[PCQO], if enabled by
IER_CM[PCENQO].
Mode is determined by SLO and operation is
described in SL1.

27-26 Reserved

25-6 PCTR1 Counter 1 value.
Enabled by setting | CTL[PCT1 _EN] and either
|_CTL[SPCE] or PCTX[PPCE]. On overflow, an
interrupt is triggered at ISUM[PC1], if enabled by
IER_CM[PCENL1].
Operation is described in SL1.

Reserved
4 SLO PCTRO input selecter:
Value Meaning
0 Aggregate counting mode
1 Reserved
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Table E-19: Bit Summary of PCTR_CTL Register for Windows NT Alpha

Bits Name Meaning
3-2 SL1 PCTRL1 input selector. If SLO value is O:
Bit value Meaning
0000 Counter 1 counts cycles.
0001 Counter 1 counts retired conditiona
branches.
0010 Counter 1 counts retired branch mispre-
dicts.
0011 Counter 1 counts retired DTB single
misses* 2.
0100 Counter 1 counts retired DTB double
double misses.
0101 Counter 1 counts retired ITB misses.
0110 Counter 1 counts retired unaligned traps.
0111 Counter 1 counts replay traps.

1-0 Reserved

E.2.3.3 OpenVM S Alpha and DIGITAL UNIX Functionsand Arguments

The functions execute only on a single (the current running) processor and are described in
Table E-20.

The OpenVMS Alpha MTPR_PERFMONMStruction is called with a function code in R16, a
function-specific argument in R17, and any output is returned in RO.

The DIGITAL UNIX wrperfmon instruction is called with a function code in a0, a function-
specific argument in al, and any output is returned in vO.

Table E-20: OpenVMS Alpha and DIGITAL UNIX Performance Monitoring
Functions

Function Register Usage Comments

Enable performance monitoring

DIGITAL UNIX
Input: ad=1 Function code value
al=arg Argument from Table E-21
OpenVMS Alpha
Input: R16=1 Function code value

R17 = arg Argument from Table E-21
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Table E-20: OpenVMS Alpha and DIGITAL UNIX Performance Monitoring
Functions

Function Register Usage Comments

Disable perfor mance monitoring

DIGITAL UNIX
Input: ad=0 Function code value
al=arg Argument from Table E-22
OpenVMS Alpha
Input: R16=0 Function code value

R17 = arg Argument from Table E-22

Select desired events (MUX_SELECT)

DIGITAL UNIX
Input: a0=2 Function code value
al = arg Argument from Table E-23
OpenVMS Alpha
Input: R16=2 Function code value

R17 = arg Argument from Table E-23

Select logging options

DIGITAL UNIX
Input: a0=3 Function code value
al[0]=1 Log all processes
al[0]=0 Log only selected processes
OpenVMS Alpha
Input: R16=3 Function code value

R17[0]=1 Log all processes
R17[0]=0 Log only selected processes

Read the counters

DIGITAL UNIX

Input: a0=5 Function code value

Output: vO = contents of the counters; see Table E-24
OpenVMS Alpha

Input: R16=5 Function code value

Output: RO = contents of the counters; see Table E-24
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Table E-20: OpenVMS Alpha and DIGITAL UNIX Performance Monitoring
Functions

Function Register Usage Comments

Writethecounters

DIGITAL UNIX
Input: ad=6 Function code value
al=arg Argument from Table E-25
OpenVMS Alpha
Input: R16=6 Function code value

R17 = arg Argument from Table E-25

Enable and write selected counters

DIGITAL UNIX
Input: a0=7 Function code value
al = arg Argument from Table E-26
OpenVMS Alpha
Input: R16=7 Function code value

R17 = arg Argument from Table E-26

Table E-21: 21264 Enable Counters for OpenVMS Alpha and DIGITAL UNIX

R17/al Bits Meaning When Set
1 Set|_CTL[PCT1_EN], which enables counter 1
0 Set|_CTL[PCTO_EN], which enables counter 0

Table E-22: 21264 Disable Counters for OpenVMS Alpha and DIGITAL UNIX

R17/al Bits Meaning When Set
1 Clear |_CTL[PCT1 _EN], which disables counter 1
0 Clear |_CTL[PCTO_EN], which disables counter O
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Table E-23: 21264 Select Desired Events for OpenVMS Alpha and DIGITAL
UNIX

R17/al Bits Meaning

4 Bit value Meaning
1 Counter 0 counts retired instructions.
0 Counter 0 counts cycles.

3-2 Bit value Meaning
0000 Counter 1 counts cycles.
0001 Counter 1 counts retired conditional branches.
0010 Counter 1 counts retired branch mispredicts.
0011 Counter 1 counts retired DTB single misses * 2.
0100 Counter 1 counts retired DTB double double misses.
0101 Counter 1 counts retired ITB misses.
0110 Counter 1 counts retired unaligned traps.
0111 Counter 1 counts replay traps.

Table E-24: 21264 Read Counters for OpenVMS Alpha and DIGITAL UNIX

RO/vO Bits Meaning When Returned
63-48 Reserved

47-28 Counter 0 returned value
27-26 Reserved

25-6 Counter 1 returned value
5-0 Reserved

Table E-25: 21264 Write Counters for OpenVMS Alpha and DIGITAL UNIX

R17/al Bits Meaning

63-48 Reserved
47-28 Counter 0 value to write
27-26 Reserved
25-6 Counter 1 value to write
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Table E-25: 21264 Write Counters for OpenVMS Alpha and DIGITAL UNIX

R17/al Bits Meaning

5-2 Reserved
1 When set, write to Counter 1
0 When set, write to Counter 0

Table E-26: 21264 Enable and Write Counters for OpenVMS Alpha and

DIGITAL UNIX
R17/al Bits Meaning
63-48 Reserved
47-28 Counter 0 value to write; writing zeroes clears the counter
27-26 Reserved
25-6 Counter 1 value to write; writing zeroes clears the counter
5-2 Reserved
1 When set, enable and write to Counter 1
0 When set, enable and write to Counter O
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CMOVLT instruction 4-43
CMOVNE instruction 4-43
CMPBGE instruction 4-49
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CMPLE instruction 4-29
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CMPTEQ instruction 4-113
CMPTLE instruction 4-113
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CMPTUN instruction 4-113
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NOP, A-11

NOT, A-13
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CODEC, 4-151
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CVTQT instruction 4-118
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CVTTS instruction 4-119

D

/D opcode qualifier
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IEEE floating-point 4-67
D_floating data typge 2-5
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mapping 2—6
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Data stream considerations, A—4 DZED bit. See Trap disable bits, division by zero
Data structures, shared—6

Data types E
byte, 2-1 . . .
IEEE floating-point 2—6 ECB (Evict data cache blpck) |ns_truct|p|4—136
longword, 2—2 CFLUSH (PALcode) instruction with4-138
longword integeyr 2-11 EQV instruction 4-42
guadword 2-2 . L o
quadword integer 2-12 EXCB_ (exception barrier) instructipr4—138
unsupported in hardware2—12 with FPCR 4-84
VAX floating-point, 2—3 Exception handlersB-3
word, 2-1 TRAPB instruction with 4-144
Denorma] 4-64 Exceptions
Denormal operand exception disabié—81 F31 with 3-2
. R31 with, 3-1
Denormal operand exception enable (DNOE) EXTBL instruction 451
FP_C quadword hit B-5 |.ns ruc |.or1 -
Denormal operand status (DNOS) EXTLH instruction 4-51
FP_C quadword hijt B-5 EXTLL instruction, 4-51
Denormal operands to zeral—-81 EXTQH instruction 4-51
Depends order (DR)5-15 EXTQL instruction 4-51
DIGITAL UNIX PALcode, instruction summary Extract byte instructions4-51

C-16
Dirty zerq 4-64
DIV operatoy 3-8

EXTWH instruction 4-51
EXTWL instruction 4-51

DIVF instruction 4-121 F
DIVG instruction 4-121
o n F_floating data type 2—-3
Division alignment of 2—4
integer A-10 compared to IEEE S_floating2—8
performance impact of A-10 MAX/MIN , 4-65
Division by zero enable (DZEE) FBEQ instruction 4—-100

FP_C quadword hit B—6
Division by zero status (DZES)
FP_C quadword hit B-5

FBGE instruction 4-100
FBGT instruction 4-100

DIVS instruction 4-122 FBLE instruction 4-100
DIVT instruction, 4-122 FBLT instruction 4-100
DNOD bit. See Denormal operand exception disable FBNE instruction 4-100
DNZ. See Denormal operands to zero FCMOVEQ instruction 4-107
DP. See Depends order FCMOVGE instruction 4-107
DRAINA (PALcode) instruction FCMOVGT instruction 4-107
required 6-5 FCMOVLE instruction 4-107
draina (PALcode) instruction FCMOVLT instruction 4-107
required 6-5 _ , FCMOVNE instruction 4-107
DYN b|t.mSOedeeAr|thmet|c traps, dynamic rounding FETCH (prefetch data) instructipn—139
DZE bit FETCH_M (prefetch data, modify intent) instructjon

4-139
Finite number, Alpha, contrasted with VAX—-63
Floating-point branch instructions4—99

Floating-point control register (FPCR)
accessing 4-82

See also Arithmetic traps, division by zero
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at processor initialization, 4—83 Floating-point registefs 3—2

bit descriptions 4-80 ; L . :
instructions to read/write 4-109 Floating-point single-precision operation4—62

operate instructions that ysé-102 Floating-point store instructions4—90
saving and restoring4—83 store F_floating 4-95
trap disable bits in 4-78 store G_floating 4-96
Floating-point convert instructions3-14 store S_floating 4-97
Fa field requirements3-14 store T_floating 4-98
. o . with non-finite values 4—90
Floating-point division, performance impact of i ,
A—10 Floating-point support
, ) . floating-point control (FP_C) quadward3—4
Floating-point format, number representation IEEE, 2-6
(encodings) 4-65 IEEE standard 754-19854—88

instruction overviey 4—62

Floating-point instructions longword integer 211

branch 4-99 operate instructions4-102
faults, 4-62 optional 4-2

function field format 4-84 quadword integer 2—12
introduced 4-62 rounding modes 4—66

memory format 4-90 _ single-precision operations4—62
opcodes and format summarize@-1 trap modes 4—69

operate 4-102 VAX, 2-3

rounding modes 4—-66 . . .
terminoﬁ)gy 4-63 Floating-point to integer moye4—123

trapping modes 4—69 Floating-point to integer move instructign8-14

traps 4-62 . . .
. . . . Floating-point trapping modesA—69
Floating-point load instructions4—90 See also Arithmetic traps

load F_floating 4-91
load G_floating 4-92 FNOP code form A-11

load S_floating 4-93 FP_C quadword B-4

load T_floating 4-94 . . .
with nEn-finitegvaIues 4-90 FPCR. See Floating-point control register

Floating-point operate instructiongt—102 FTOIS instruction 4-123
add (IEEE) 4-111 FTOIT instruction 4-123
add (VAX), 4-110 .
compare (IEEE) 4-113 Function codes .
compare (VAX) 4-112 IEEE floating-poinf C-6
conditional move 4-107 in numerical ordegr C-10
convert IEEE floating to integer4—117 independent floating-pointC-8
convert integer to IEEE floating4—118 VAX floating-point, C-7
convert integer to integer4—106 See also Opcodes
convert integer to VAX floating 4-115
convert S_floating to T_floating4—119 G
convert T_floating to S_floating4—120
convert VAX floating to integer 4-114 G_floating data type 2—4

convert VAX floating to VAX floating 4-116

copy sign 4-105 alignment of 2-5

o ing 2-5
divide (IEEE) 4-122 mapping
divide (VAX), 4-121 MAX/MIN , 4-65 .
format of 3-13 GENTRAP (PALcode) instruction
from integer moves 4-124 required recognition ¢f 6—4
mo?{[_e Ifrorlré/tEoEFPgng;mQ gentrap (PALcode) instruction
mﬂldglg EVAX))’ 4:126 required recognition of 6—4
subtract (IEEE) 4-131
subtract (VAX) 4-130 H
to integer moves 4-123
unused function codes withi3—14 HALT (PALcode) instruction
required 6-7
halt (PALcode) instruction
required 6-7
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1/O devices, DMA
MB and WMB with, 5-22
reliably communicating with processob-27
shared memory locations wjttb—11

1/0 interface overview 8—1

|IEEE floating-point

exception handlefsB-3

floating-point control (FP_C) quadwaqrdB—4
format, 2—6

FPCR (floating-point control register—79
function field format 4-85

hardware suppartB-2

NaN, 2-6

options B-1

S floating 2-7

standard charfsB-12

standard, mapping toB—6

T_floating, 2-8

trap handling B—6

X_floating, 2-9

See also Floating-point instructions

IEEE floating-point control word B—4

IEEE floating-point instructions
add instructions 4-111
compare instructions4-113
convert from integer instructionsA-118
convert S_floating to T_floating4—119
convert T_floating to S_floating4—120
convert to integer instructionsd—117
divide instructions 4-122
from integer moves 4-124
function codes fqr C-6
multiply instructions 4-127
operate instructions4—-102
square root instructions4—129
subtract instructions4-131
to register moves 4—123
IEEE standard 4—-88
conformance tp B-1
mapping t¢ B-6
IGN (ignore), 1-9
IMB (PALcode) instruction 5-23
required 6-8
virtual I-cache coherengy5-5
imb (PALcode) instruction
required 6-8
IMP (implementation dependentl—-9

IMPLVER (Implementation version) instructipn
4-141

IMPLVER value assignmentsD—3
Independent floating-point function coge€-8

INE bit
See also Arithmetic traps, inexact result

Index—6

INED bit. See Trap disable bits, inexact result trap

Inexact result enable (INEE)
FP_C quadword hit B—6
Inexact result status (INES)
FP_C quadword hitB-5
Infinity, 4-64
conversion to integer4—88
INSBL instruction 4-55

Insert byte instructions4-55
INSLH instruction 4-55
INSLL instruction 4-55
INSQH instruction 4-55
INSQL instruction 4-55

Instruction encodings

common architectureC-1
numerical order C-10
opcodes and format summarize@-1

Instruction fetches (memory)5-11

Instruction formats

branch 3-12
conventions 3-10
floating-point convert 3-14
floating-point operate 3—13
floating-point to integer moye3-14
memory 3-11
memory jump 3-12
operand valugs3-10
operators 3—6
overview, 1-4
PALcode 3-14
registers 3—-1

Instruction set

access type field3-5
Boolean 4-41

branch 4-18

byte manipulate 4-47
conditional move (integer)4-43
data type field 3—6
floating-point subsetting 4—2
integer arithmetic 4-24
introduced 1-6

jump, 4-18

load memory integer4—4
miscellaneous 4-132
multimediag 4-151

name field 3-5

opcode qualifiers 4-3
operand notatign 3—5
overview, 4-1

shift, arithmetic 4-46
software emulation rules4-3
store memory integerd—4
VAX compatibility, 4-149
See also Floating-point instructions



Instruction stream. See |-stream
Instructions, overview, 1-4
INSWH instruction 4-55
INSWL instruction 4-55
Integer division A-10
Integer registers
defined 3-1
R31 restrictions 3—1
INV bit
See also Arithmetic traps, invalid operation
Invalid operation enable (INVE)
FP_C quadword hijt B—6
Invalid operation status (INVS)
FP_C quadword hijt B-5
INVD bit. See Trap disable bits, invalid operation

IOV bit
See also Arithmetic traps, integer overflow
I-stream

coherency aof 6-8

design considerationsA-2
modifying physical 5-5
modifying virtual, 5-5
PALcode with 6-2

with caches 5-5

ITOFF instruction 4-124
ITOFS instruction 4-124
ITOFT instruction 4-124

J

JMP instruction 4-22
JSR instruction 4-22
JSR_COROUTINE instructign4-22

Jump instructions 4-18 4-22
branch prediction logic 4—22
coroutine linkage 4-23
return from subroutine 4-22
unconditional long jump 4-23
See also Control instructions

L

LDA instruction, 4-5
LDAH instruction, 4-5
LDBU instruction 4-6
LDF instruction 4-91
LDG instruction 4-92
LDL instruction, 4—-6

LDL_L instruction 4-9
restrictions 4-10
with processor lock register/flagi—10

with STx_C instruction 4-9
LDQ instruction 4—6
LDQ_L instruction 4-9
restrictions 4-10

with processor lock register/flagd—10
with STx_C instruction 4-10

LDQ_U instruction 4-8
LDS instruction 4-93
with FPCR 4-84
LDT instruction 4-94
LDWU instruction 4-6
LEFT_SHIFT(x,y) operatqr 3-8
lg operatoy 3-8
Literals, operand notation3-5
Litmus tests, shared data veragity—17

Load instructions

emulation of 4-3

FETCH instruction 4-139

Load address 4-5

Load address high4-5

load byte 4-6

load longworg 4-6

load quadword 4-6

load quadword locked4—-10

load sign-extended longword locked—9
load unaligned quadwoyd4—8

load word 4-6

multiprocessor environment5—6
serialization 4-142

See also Floating-point load instructions

Load literal A-12
Load memory integer instructiongl—4
LOAD_LOCKED operatoy 3-8
Load-locked, defined 5-16
Location 5-11
Location access constraints—14
Lock flag, per-processor

defined 3-2

when cleared 4-10
with load locked instructions4—-10

Lock registers, per-processor
defined 3-2
with load locked instructions4—-10
Lock variables, with WMB instructign4—-148

Logical instructions. See Boolean instructions

Longword data type 2—2

alignment of 2-12
atomic access pf5-2

LSB (least significant bit), defined for floating-paint
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4-64 Memory-like behavigr 5-3
MF_FPCR instruction 4-109

M MIN, defined for floating-point 4—65

IM opcode qualifier, IEEE floating-point4—67 MINS(x,y) operatoy 3-8

MAP_F function 2-4 MINSBS instruction 4—-152

MAP_S function 2-7 MINSW4 instruction 4-152

MAP_x operatoy 3-8 MINU(x,y) operatoy 3-8

Mask byte instructions 4-57 MINUBS instruction 4-152

MAX, defined for floating-point 4-65 MINUW4 instruction 4-152

MAXS(x,y) operator 3-8 Miscellaneous instructions4—132

MAXSBS instruction 4-152 Move instructions (conditional). See Conditional

MAXSW4 instruction 4—152 move Instructions

MAXU(x,y) operator 3-8

MAXUBS instruction, 4-152
MAXUWS4 instruction, 4-152

MB (Memory barrier) instruction 4—142

Move, register-to-registerA-13
MSKBL instruction 4-57
MSKLH instruction 4-57
MSKLL instruction, 4-57

compared with WMB 4-148 MSKQL instruction 4-57
multiprocessors only 4—142 MSKWH instruction 4—57
with DMA 1/0, 5-22 . 1on

with LDx_L/STx_C, 4-14 MSKWL instruction 4-57
with multiprocessor D-stregmb5—22 MT_ FPCR instruction 4—-109

with shared data structure$-9
See also IMB, WMB

MBZ (must be zerq) 1-9
Memory access

synchronization requiremgn#—82
MULF instruction 4-126

MULG instruction 4-126

aligned byte/word A-9 MULL instruction, 4-34
coherency of 5-1 with MULQ, 4-34
granularity of 5-2 MULO instruction 4—35
width of, 5-3 Q instruction

! : . with MULL, 4-34
with WMB instruction 4-147 with UMULH, 4-35

Memory alignment, requirement fol5—2 MULS instruction 4-127

Memory barrier instructions. Sge MB, !MB MULT instruction, 4—127
(PALcode), and WMB instructions ) o )
Multimedia instructions 4-151

Memory barriers 5-22 o )
M f tinstructi Multiply instructions
emory format instructions _ multiply longword 434
opcodes and format summarize@-1 multiply quadword 4-35
Memory instruction format 3-11 multiply unsigned quadward high4—36

Memory jump instruction format3-12 See also FIoatlpg-pomt operate
Multiprocessor environment
Memory management

cache coherency jn5—-6

support in PALcodge 6-2 context switching 5-24
Memory prefetch registers I-stream reliability 5-23
defined 3-3 MB and WMB with, 5-22

no implied barriers 5-22
read/write ordering 5-10
serialization requirements,ind—142
shared data5-6, A-5
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N

NaN (Not-a-Number)
conversion to integer, 4-88
copying, generating, propograting—89
defined 2-6
quiet, 4-64
signaling 4-64
NATURALLY ALIGNED data objects 1-8
Negate stylized code formA-13
Non-finite numbey 4—-64
Nonmemory-like behavigr5-3
NOP, universal (UNOR) A-11
NOT instruction, ORNOT with zefo4—-42
NOT operatoy 3-9

NOT stylized code form A-13

O

Opcode qualifiers
default values 4-3
notation 4-3
See also specific qualifiers
Opcodes

common architectuge C-1

DIGITAL UNIX PALcode, C-16

in numerical order C-10
OpenVMS Alpha PALcode C-14
PALcode in numerical orderC-18
reserveqd C-21

summary C-8

unused function codes forC-21
Windows NT Alpha PALcode C-17
See also Function codes

OpenVMS Alpha PALcode, instruction summary
Cc-14
Operand expressions3—4
Operand notation
defined 3-4
Operand valugs 3—4
Operate instruction format
unused function codes with3—13
Operate instructions
opcodes and format summarize@-1
Operate instructions, convert with integer overflow
4-78
Operators, instruction format3—6
Optimization. See Performance optimizations
OR operator 3-9
ORNOT instruction 4-42

Overflow enable (OVFE)
FP_C quadword hit B—6

Overflow status (OVFS)
FP_C quadword hitB-5

Overlap
with location access constraint§—14
with processor issue constraints—13
with visibility, 5-14

OVF bit
See also Arithmetic traps, overflow

OVFD bit. See Trap disable bits, overflow disable

P

Pack to bytes instructions4—155

PALcode

barriers with 5-22

CALL_PAL instruction 4-135

compared to hardware instructioné—1

implementation-specific 6-2

instead of microcode6-1

instruction format 3—14

overview, 6-1

recognized instructions6—4

replacing 6-3

required 6-2

required instructions 6—-5

running environment 6—2

special functions function supppré—2
PALcode instructions

opcodes and format summarize@-1

required C-20

reserved, function codes folC-20
PALcode instructions, required privilege®—5

PALcode instructions, required unprivilege@-5
PALcode opcodes in numerical orgde€—18
PALcode variation assignment®-2
PCC_CNT 3-3 4-143

PCC_OFF 3-3 4-143

Performance monitoringe-3, E-9, E-23

Performance optimizations
branch prediction A-2
code sequencesA-9
data stream A-4
for I-streams A-2
instruction alignment A-2
instruction scheduling A-4
I-stream density A-4
shared data A-5

Performance tuning
IMPLVER instruction with 4-141

PERR (Pixel error) instructign4—154

Physical address space
described 5-1
PHYSICAL_ADDRESS operator3-9

Pipelined implementations, using EXCB instruction
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with, 4-138 Register-to-register moyeA-13

Pixel error instruction 4-154 Relational Operators3-9

PKLB (Pack longwords to bytes) instructiod—155 Representative resul4—64

PKWB (Pack words to bytes) instructiod—155 Reserved instructions, opcodes, f@@—21

Prefetch data (FETCH instructign}—139 Result latency A-4

PRIORITY_ENCODE operator3-9 RET instruction 4-22

Privileged Architecture Library. See PALcode RIGHT_SHIFT(x,y) operatqr 3-9

Processor communicatiprb—15 Rounding modes. See Floating-point rounding modes

Processor cycle counter (PCC) regist8+3 RPCC (read processor cycle counter) instrugtion
RPCC instruction with 4-143 4-143

Processor issue constraints—12 RS (read and set) instructiod—150

Processor issue sequence-12
Processor type assignmentS—1 S

Program counter (PC) registeB—1
with EXCB instruction 4-138

S _floating data type
alignment of 2-8

Pseudo-ops A-14 compared to F_floating2-8
exceptions 2—8

Q mapping 2-7
MAX/MIN , 4-65

NaN with T_floating conveyt 4—88
operations 4-62

S4ADDL instruction 4-26

Quadword data type2—-2
alignment of 2-3, 2-12
atomic access pf5-2

integer floating-point format 2-12 S4ADDQ instruction 4-28
T_floating with, 2-12 S4SUBL instruction 4—-38
R S4SUBQ instruction 4-40

S8ADDL instruction 4-26
S8ADDQ instruction 4-28
S8SUBL instruction 4-38
S8SUBQ instruction 4-40
SBZ (should be zerp)1-9

R31
restrictions 3—1
RAZ (read as zerg)1-9
RC (read and clear) instructipr—150

RDUNIQUE (PALcode) instruction

required recognition ¢f 6-4 Security holes 1-7

Read/write ordering (multiprocesspr5—10 with UNPREDICTABLE results 1-8
determining requirements5—10 Sequential read/writeA-8
hardware implications for 5-29 Serialization, MB instruction with 4—142

memory location defingd5-11
Read/write, sequentialA—8 SEXT(x) operatar 3-9
Shared data (multiprocesspri—5

changed vs. updated daturb—6
foali int 3_2 Shared data structures
incig 'g?'%g'?t - atomic update 5-7
Iockg é_z ordering considerations5-9 _
memory prefetch 3-3 using memory barrier (MB) instructiprb—9

Regions in physical address spaée-1
Registers 3-1

optional 3-3 Shared memory
processor cycle countei3—3 accessing 5-11
program counter (PC)3-1 defined 5-10

value when unused3-10
VAX compatibility, 3—-3
See also specific registers
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Shift arithmetic instructions, 4-46
Sign extend instructions4—60
Single-precision floating-point4—62
SLL instruction 4-45

Software considerationsA—1

See also Performance optimizations
SQRTF instruction 4-128

SQRTG instruction 4-128
SQRTS instruction 4-129
SQRTT instruction 4-129

Square root instructions
IEEE, 4-129
VAX, 4-128

SRA instruction 4-46
SRL instruction 4-45
STB instruction 4-15
STF instruction 4-95
STG instruction 4-96
STL instruction 4-15

STL_C instruction 4-12

when guaranteed ordering with LDL, 14-14
with LDx_L instruction 4-12
with processor lock register/flagi—12

Storage, defined5-14

Store instructions
emulation of 4-3
FETCH instruction 4-139
multiprocessor environmentc—6
serialization 4-142
Store byte 4-15
store longword 4-15
store longword conditiongl4—12
store quadword 4-15
store quadword conditional4d—12
Store word 4-15
STQ_ U, 4-17
See also Floating-point store instructions

Store memory integer instructiong—4
STORE_CONDITIONAL operatqgr 3-9
Store-conditional, defined5-16

STQ instruction 4-15

STQ_C instruction 4-12

when guaranteed ordering with LDQ, 4-14
with LDx_L instruction 4-12
with processor lock register/flagi—12

STQ_U instruction 4-17

STS instruction 4-97
with FPCR 4-84

STT instruction 4-98
STW instruction 4-15
SUBF instruction 4-130
SUBG instruction 4-130
SUBL instruction 4-37
SUBQ instruction 4-39
SUBS instruction 4-131
SUBT instruction 4-131

Subtract instructions

subtract longword 4-37
subtract quadword 4—39
subtract scaled longword4—38
subtract scaled quadwqrd—40
See also Floating-point operate

SUM bit. See Summary bit
Summary bit, in FPCR 4-80

SWPPAL (PALcode) instruction
required recognition of 6—4

swppal (PALcode) instruction
required recognition ¢f 6—4

T

T_floating data type
alignment of 2-9
exceptions 2-9
format, 2-9
MAX/MIN , 4-65
NaN with S_floating convert4—88

TEST(x,cond) operator3—-10
Timeliness of location acces$-17
Timing considerations, atomic sequencés-16

Trap disable bits 4-78
denormal operand exceptiod—81
division by zerg 4-81
DZED with DZE arithmetic trap 4—77
DZED with INV arithmetic trap 4-76
IEEE compliance andB-4
inexact result 4—-80
invalid operation 4-81
overflow disable 4-81
underflow, 4-80
underflow to zerp 4-80
when unimplemented4—-78

Trap enable bits B-5

Trap handler, with non-finite arithmetic operands
4-74
Trap handling, IEEE floating-pointB—6

Trap modes
floating-point 4—69
Trap shadow

defined for floating-point 4-64
programming implications for 5-30
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TRAPB (trap barrier) instruction
described, 4-144
with FPCR 4-84

True resulf 4-64
True zerq 4-65

U

UMULH instruction, 4-36
with MULQ, 4-35
UNALIGNED data objects 1-8
Unconditional long jump 4-23
UNDEFINED operations 1-7

Underflow enable (UNFE)
FP_C quadword hit B—6
Underflow status (UNFS)
FP_C quadword hit B-5
UNDZ bit. See Trap disable bits, underflow to zero

UNF bit
See also Arithmetic traps, underflow
UNFD bit. See Trap disable bits, underflow

UNOP code form A-11
UNORDERED memory reference$-10
Unpack to bytes instructionsA—156

UNPKBL (Unpack bytes to longwords) instructjon
4-156

UNPKBW (Unpack bytes to words) instruction
4-156

UNPREDICTABLE results 1-7
Updated datum 5-6

Vv

VAX compatibility instructions, restrictions for
4-149
VAX compatibility register 3-3
VAX floating-point
D_floating, 2-5
F_floating 2-3
G_floating 2-4
See also Floating-point instructions
VAX floating-point instructions
add instructions 4-110
compare instructionsCMPGEQ instructjon
4-112
convert from integer instructionsA-115
convert to integer instructions4-114
convert VAX floating format instructions
4-116
divide instructions 4-121
from integer move 4-124
function codes fqr C-7

Index-12

function field format 4-87
multiply instructions 4-126
operate instructions4-102
square root instructions4-128
subtract instructions4-130

VAX rounding modes 4—-66

Vector instructions

byte and word maximum4-152
byte and word minimum 4-152

Virtual D-cachg 5-4
Virtual I-cache 5-4

maintaining coherency pf5-5
Visibility, defined, 5-14

w

Waivers E-1
WH64 (Write hint) instruction 4-145
WH®64 instruction
lock_flag with, 4-10
Windows NT Alpha PALcode, instruction summary
Cc-17
WMB (Write memory barrier) instructign4—147

atomic operations with5-8
compared with MB 4-148
with shared data structure$-9

Word data type 2—-1
atomic access pf5-3
Write buffers, requirements for5-5

Write-back caches, requirements,f&-5

wrunique (PALcode) instruction
required recognition of 6—4

X

x MOD y operatoy 3-8

X_floating data type 2-9
alignment of 2-10
big-endian format 2-10
MAX/MIN , 4-65




XOR instruction, 4-42
XOR operatoy 3—-10

Y

YUV coordinates, interleaved4—-151

Z

ZAP instruction 4-61
ZAPNOT instruction 4-61
Zero byte instructions 4-61
ZEXT(x)operatoy 3-10
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