COMPAQ

Compiler Writer’s Guide for the
Alpha 21264

Order Number: EC-RJ66A-TE

This document provides guidance for writing compilers for the Alpha 21264 micro-
processor. You can access this document from the following website:

ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html

Revision/Update Information: Thisisanew document.

Compaq Computer Corporation

June 1999
The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL

ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS 1S” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaqg Computer Corporation.

© 1999 Digital Equipment Corporation.
All rights reserved. Printed in the U.S.A.

COMPAQ, the Compag logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.
Pentium is aregistered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

21264 Compiler Writer’s Guide

Table of Contents

Preface

1 Introduction

11 The ArChiteCtUre o e e e 1-1
111 AdArESSING . . .ttt 1-2
1.1.2 INteger Data TYPES. . . . oo 1-2
1.1.3 Floating-Point Data TYPESo oo e 1-2
1.2 MICrOproCeSSOr FEAtUIES. o ottt et e e e e e e e 1-3
2 Internal Architecture
2.1 MicroarChiteCtUre. o 2-1
2.1.1 Instruction Fetch, Issue, and Retire Unit 2-2
2111 Virtual Program Counter LOgICo oot e 2-2
2112 Branch Predictor e 2-3
2113 Instruction-Stream Translation Buffer. 2-5
2114 Instruction FetCch LOgiCo e e 2-5
2.1.1.5 Register Rename Mapsot 2-6
2.1.1.6 Integer IsSsue QUEUE 2-6
2117 Floating-Point Issue QUEUE e 2-7
2118 Exception and Interrupt LOgiCo 2-8
2.1.19 Retire LOgIC. . . oot e 2-8
2.1.2 Integer Execution Unit 2-8
2.1.3 Floating-Point Execution Unit. e e e 2-10
214 External Cache and System Interface Unit 2-11
2141 Victim Address File and Victim Data File 2-11
2142 /O Write BUffer e 2-11
2143 Probe QUEUE. 2-11
2144 Duplicate Dcache Tag Arrayottt e et 2-11
2.15 Onchip Caches. 2-11
2151 Instruction Cache 2-11
2152 Data Cache. e 2-12
2.16 Memory Reference Unit. e 2-12
2.16.1 Load QUEBUE ... 2-13
2.1.6.2 StOrE QUEBUE . . o oottt 2-13
2.1.6.3 Miss Address File 2-13
2164 Dstream Translation Buffer. 2-13
217 SROM INterface 2-13
2.2 Pipeline Organization 2-13
221 Pipeline ADOrtS e 2-16
2.3 Instruction Issue RUIES 2-16

21264 Compiler Writer’s Guide iii

23.1 Instruction Group Definitions 2-17
2.3.2 EDOX SIOtting e 2-18
233 INStruction LatenCiesot 2-19
24 Instruction Retire RUIES o 2-21
2.4.1 Floating-Point Divide/Square Root Early Retire. 2-21
25 Retire of Operate Instructions into R31/F31 i 2-22
2.6 Load Instructions to R31 and F3L 2-22
2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU Instructions 2-23
2.6.2 Prefetch with Modify Intent: LDS Instruction i, 2-23
2.6.3 Prefetch, Evict Next: LDQ Instruction. i 2-23
2.7 Special Cases of Alpha Instruction EXecution. i, 2-23
271 Load Hit Speculation e 2-23
2.7.2 Floating-Point Store INStructions e 2-25
2.7.3 CMOV INSLIUCHION. . . o o e e e e e 2-25
2.8 Memory and I/O Address Space Instructions i 2-26
2.8.1 Memory Address Space Load Instructions i 2-26
2.8.2 I/O Address Space Load Instructions. i 2-27
2.8.3 Memory Address Space Store INStructions 2-28
28.4 I/O Address Space Store INStructions 2-28
29 MAF Memory Address Space MergingRules 2-29
2.10 INStrUCHON OrderiNg.ttt e e e e 2-29
2.11 REpIaY TrapS. . oot 2-30
2111 MBOX Order Traps . ..ottt e 2-30
21111 Load-Load Order Trapottt e e e e 2-31
2.111.2 Store-Load Order Trapo vt 2-31
2112 Other Mbox Replay Traps oo e 2-31
2.12 I/0 Write Buffer and the WMB INstructiont 2-31
2121 Memory Barrier (MB/WMB/TB Fill Flow) i 2-31
21211 MB INStruction ProCesSINg . . . oottt e e e 2-32
2.12.1.2 WMB INStruction ProCessiNg.o oottt e 2-33
21213 TB Il FIOW . . .o 2-33
2.13 Performance Measurement Support—Performance Counters 2-35
2.14 Floating-Point Control Register. e e 2-35
2.15 AMASK and IMPLVER Values e e 2-36
2151 AMASK . L 2-37
2.15.2 IMPLVER . . o 2-37
2.16 Design EXamples e 2-37
Guidelines for Compiler Writers

31 Architecture EXIENSIONS.ot e e 3-1
3.2 INStruction AlIgNMENt. e e 3-1
3.3 Data AlIgNment e 3-2
3.4 Control FIOW 3-2
34.1 Need for Single SUCCESSOrS. i e 3-2
34.2 Branch Prediction. 3-3
3.4.3 Filling InsStruction QUEUES. i e e e 3-3
344 Branch Elimination. 3-3
3441 Example of Branch Elimination with CMOV 3-3
3.4.42 Replacing Conditional Moves with Logical Instructions 34
3443 Combining BranChes. e 3-4
3.4.5 Computed Jumps and RetUINS e 3-5
35 SIMD Parallelism. 3-5
3.6 PrefetChing e 3-6
3.7 Avoiding Replay Trapsot e 3-6
3.7.1 Store-Load Order Replay Trap. . .« .ottt e e e 3-7
3.7.2 Wrong-Size Replay Trapottt e 3-8

21264 Compiler Writer’s Guide

3.7.3 Load-Load Order Replay Trapottt e e e 3-8
3.74 Load-Miss Load Replay Trap.o v it e e 3-8
3.75 Mappingtothe Same Cache Line i 3-8
3.7.6 Store Queue OVerflow 3-9
3.8 Scheduling. 3-9
3.9 Detailed Modeling of the Pipeline 3-9
391 Physical Registers 3-9
3911 Integer Execution Unit. e 3-10
3.9.12 Floating-Point Execution Unit i i 3-11
3.9.13 Register Files e e 3-12
3.9.2 Ebox Slotting and Clustering i e 3-12
A Ebox Slotting Rules
Al Rulel — Fourof aKind. A-1
A2 Rule2 —Threeof aKind A-1
A3 Rule3—TwoofaKind A-2
A4 Rule 4 — OneofaKindand NoneofaKind. A-2
B An Example of Carefully Tuned Code
B.1 Initial Example C Code e B-1
B.2 Inner Loop as Alpha Assembly Language.t B-1
B.3 Applying SIMD ParallelismtothelnnerLoop B-2
B.4 Optimizing the SIMD LOOPottt e e e e e e e B-2
B.5 Branch Prediction Considerations.t B-3
B.6 Instruction Latency Considerations i B-3
B.7 Physical Register Considerationst B-4
B.8 Memory Bandwidth Considerations.t e B-4
B.9 Ebox Slotting Considerationst B—4

C Controlling the Execution Order of Loads

D 21264 Support for IEEE Floating-Point

Glossary

Index

21264 Compiler Writer’s Guide v

Figures

2-1 21264 BIOCK Diagramt 2-3
2-2 Branch PrediCtor e 2-4
2-3 Local Predictor e 2-4
2-4 Global PrediCtor. e 2-5
2-5 Choice Predictor 2-5
2-6 Integer Execution Unit—Clusters0and 1.t 2-9
2-7 Floating-Point Execution Unit e e e 2-10
2-8 Pipeline Organization 2-14
2-9 Pipeline Timing for Integer Load Instructions i, 2-24
2-10 Pipeline Timing for Floating-Point Load Instructions. 2-25
2-11 Floating-Point Control Register. e e e e 2-35
2-12 Typical Uniprocessor Configurationt i 2-38
2-13 Typical Multiprocessor Configuration i e 2-38

vi 21264 Compiler Writer’s Guide

Tables

1-1 INteger Data TYPES . . . oottt e
2-1 Pipeline Abort Delay (GCLK CyCles).o e e e e
2-2 Instruction Name, Pipeline, and TYPest e
2-3 Instruction Group Definitions and Pipeline Unit
2-4 Instruction Class Latency in Cycles e e e
2-5 Minimum Retire Latencies for Instruction Classes
2-6 Instructions Retired Without EXecution
2-7 Rules for I/O Address Space Load Instruction DataMerging
2-8 Rules for I/O Address Space Store Instruction Data Merging.
2-9 MAF Merging RUIES.
2-10 Memory Reference Orderingot e
2-11 I/O Reference Ordering oottt e e e
2-12 TBFill Flow Example Sequence 1 e e e e
2-13 TBFill Flow Example Sequence 2 e
2-14 Floating-Point Control Register Fields i
2-15 21264 AMASK VAIUES. . . . oottt
2-16 AMASK Bit ASSIgNMENtSt
3-1 Minimum Latencies From Map to Release of a Physical Register
A-1 Instruction Slotting for an Aligned Octaword
D-1 Exceptional Input and Output Conditions e

21264 Compiler Writer’s Guide

vii

Audience

Preface

This document provides guidance for compiler writers and other programmers who use
the Alpha 21264 microprocessor (referred to as the 21264).

Content

This document contains the following chapters and appendixes:

Chapter 1, Introduction, introduces the 21264 and provides an overview of the
Alphaarchitecture. It isa direct copy of Chapter 1 of the 21264 Specifications.

Chapter 2, Internal Architecture, describes the major hardware functions and the
internal chip architecture. It is provided mainly as a reference for Chapter 3 and
describes performance measurement facilities, coding rules, and design examples.
It isadirect copy of Chapter 2 of the 21264 Specifications.

Chapter 3, Guidelines for Compiler Writers, provides guidelines for taking advan-
tage of the hardware features of the 21264 that are described in Chapter 2.

Appendix A, Ebox Slotting Rules, provides rules to follow in scheduling instruc-
tions.

Appendix B, An Example of Carefully Tuned Code, provides an example for the
rules described in Chapter 3 and Appendix A.

Appendix C, Controlling the Execution Order of Loads, provides information for
avoiding load order replay traps.

Appendix D, 21264 Support for IEEE Floating-Point, describes the 21264 support
for |EEE floating-point.

The Glossary lists and defines terms associated with the 21264.

An Index is also included.

Documentation Included by Reference

The companion volume to this specification, the Alpha Architecture Handbook, Version
4, contains the instruction set architecture. You can access this document from the fol -
lowing website: ftp. digital.conif pub/Digital/info/sen conduc-
tor/literature/dsc-library. htm

21264 Compiler Writer’s Guide ix

Also available is the Alpha Architecture Reference Manual, Third Edition, which con-
tains the complete architecture information. That manual is available at bookstores
from the Digital Press as EY-W938E-DP.

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations
« Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 219(1024)

M = 2%0(1,048576)

G = 2%9(1,073,741,824)

For example:

2KB = 2kilobytes = 2x210pytes
4MB = 4megabytes = 4x2% pytes
8GB = 8gigabytes = 8x 2% pytes
2K pixels = 2kilopixels = 2x 210 pixels
AM pixels = 4megapixels = 4 x 220 pixels

» Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.
MBZ Must Be Zero

Software must never place anonzero value in bits and fields spec-
ified as MBZ. A nonzero read produces an Illegal Operand excep-
tion. Also, MBZ fields are reserved for future use.

RAZ Read AsZero
Bits and fields return a zero when read.
RC Read Clears

Bits and fields are cleared when read. Unless otherwise specified,
such bits cannot be written.

RES Reserved
Bits and fields are reserved by Compag and should not be used;
however, zeros can be written to reserved fields that cannot be
masked.

X 21264 Compiler Writer’s Guide

Abbreviation Meaning

RO Read Only
The value may be read by software. It is written by hardware.
Software write operations are ignored.

RO,n Read Only, and takes the value n at power-on reset
The value may be read by software. It is written by hardware.
Software write operations are ignored.

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the value n at power-on reset
Bits and fields can be read and written.

WicC Write Oneto Clear

If read operations are allowed to the register, then the value may
be read by software. If it isawrite-only register, then aread oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be cleared by hardware.
Software write operations of a0 do not modify the state of the bit.

W1S Write One to Set
If read operations are allowed to the register, then the value may
be read by software. If it isawrite-only register, then aread oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be set by hardware. Soft-
ware write operations of a0 do not modify the state of the bit.

WO Write Only
Bits and fields can be written but not read.
WO,n Write Only, and takes the value n at power-on reset

Bits and fields can be written but not read.

« Signextension
SEXT(x) means X is sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The terms alighed and naturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2" is stored in memory at abyte
address that is amultiple of 2™; that is, one that has n low-order zeros. For example, an
aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 2" isunaligned if it is stored in a byte address that is not a multiple of
2",

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square
brackets ([]). Multiple contiguous bits are indicated by apair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifiesbits9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See
also Field Notation.

21264 Compiler Writer’s Guide xi

Caution
Cautions indicate potential damage to equipment or loss of data.
Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte Yo 1 8 —

Word 1 2 16 —
Longword 2 4 32 Dword
Quadword 4 8 64 2 longword
Octaword 8 16 128 —

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.
Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For example, Register Name[L owByte] specifies Register Name[7:0].

Note
Notes emphasize particularly important information.
Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates ahexadecimal number. For example, 19 is decimal, but 0x19 and Ox19A are hexa-
decimal (also see Addresses). Otherwise, the base isindicated by a subscript; for
example, 100, is a binary number.

Ranges and Extents

Ranges are specified by a pair of humbers separated by two periods (..) and are inclu-
sive. For example, arange of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbersin square brackets ([]) separated by a colon
(:) and areinclusive. Bit fields are often specified as extents. For example, bits[7:3]
specifieshbits 7, 6, 5, 4, and 3.

Signal Names
The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21264 (that is, the sig-
nal traverses a chip interface pin).

Xii 21264 Compiler Writer’s Guide

AlphaSignal_x[n:n] When asignal has high and low assertion states, alower-
case italic x represents the assertion states. For example,
SignalName_x[3:0] represents SignalName_H[3:0] and
SignalName_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to anormal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructions in its normal manner. Further:

» Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

« AnUNPREDICTABLE result may acquire an arbitrary value subject to afew con-
straints. Such aresult may be an arbitrary function of the input operands or of any
state information that is accessible to the processin its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

« An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be afunction of,
the contents of memory locations or registers that are inaccessible to the current
processin the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the cur-
rent process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

X

Do not care. A capital X represents any valid value.

21264 Compiler Writer’s Guide xiii

Revision History

The following table lists the revision history for this document.

Date Revision Comments

June 17, 1999 1.0 First release

Xiv 21264 Compiler Writer’s Guide

1

Introduction

This chapter provides a brief introduction to the Alpha architecture, Compaq’s RISC
(reduced instruction set computing) architecture designed for high performance. The
chapter then summarizes the specific features of the Alpha 21264 microprocessor
(hereafter called the 21264) that implements the Alpha architecture.

The companion volume to this specification, Apha Architecture Handbook, Version
4, contains the instruction set architecture. Also available i8lft& Architecture
Reference Manual, Third Edition, which contains the complete architecture informa-
tion.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with par-
ticular emphasis on speed, multiple instruction issue, multiple processors, and software
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit registers.
All instructions are 32 bits long. Memory operations are either load or store operations.
All data manipulation is done between registers.

The Alpha architecture supports the following data types:
e 8-, 16-, 32-, and 64-hit integers

e |EEE 32-bit and 64-bit floating-point formats

e VAX architecture 32-bit and 64-bit floating-point formats

In the Alphaarchitecture, instructions interact with each other only by one instruction
writing to aregister or memory location and another instruction reading from that regis-
ter or memory location. This use of resources makesit easy to build implementations
that issue multiple instructions every CPU cycle.

The 21264 uses a set of subroutines, called privileged architecture library code (PAL-
code), that is specific to a particular Alpha operating system implementation and hard-
ware platform. These subroutines provide operating system primitives for context
switching, interrupts, exceptions, and memory management. These subroutines can be
invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode iswritten
in standard machine code with some implementati on-specific extensions to provide

21264 Compiler Writer’s Guide Introduction 1-1

The Architecture

direct accessto low-level hardware functions. PAL code supports optimizations for mul-
tiple operating systems, flexible memory-management implementations, and multi-
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regis-
ter-to-register instructions. The 21264 performs single-byte and single-word load and
store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264 sup-
ports a48-bit or 43-bit virtual address (selectable under IPR contral).

Virtual addresses as seen by the program are translated into physical memory addresses
by the memory-management mechanism. The 21264 supports a 44-bit physical address.

1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1-1.

Table 1-1 Integer Data Types

Data Type Description

Byte A byteis 8 contiguous bits that start at an addressable byte boundary.
A byteisan 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a16-bit value.

Longword A longword is 4 contiguous bytesthat start at an arbitrary byte boundary.
A longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytesthat start at an arbitrary byte boundary.

Octaword An octaword is 16 contiguous bytes that start at an arbitrary byte bound-
ary.

Note: Alpha implementations may impose a significant performance penalty

when accessing operands that are not naturally aligned. ReferAipliae
Architecture Handbook, Version 4 for details.

1.1.3 Floating-Point Data Types
The 21264 supports the following floating-point data types:
e Longword integer format in floating-point unit
e Quadword integer format in floating-point unit
* |EEE floating-point formats
— S _floating
— T _floating

1-2 Introduction 21264 Compiler Writer’s Guide

Microprocessor Features

* VAX floating-point formats
— F_floating
— G_floating
— D_floating (limited support)

1.2 Microprocessor Features

The 21264 microprocessor is a superscalar pipelined processor. It is packaged in a 587-
pin PGA carrier and has removable application-specific heat sinks. A number of config-
uration options allow its use in a range of system designs ranging from extremely sim-
ple uniprocessor systems with minimum component count to high-performance
multiprocessor systems with very high cache and memory bandwidth.

The 21264 can issue four Alpha instructions in a single cycle, thereby minimizing the
average cycles per instruction (CPI). A number of low-latency and/or high-throughput
features in the instruction issue unit and the onchip components of the memory sub-

system further reduce the average CPI.

The 21264 and associated PALcode implements IEEE single-precision and double-pre-
cision, VAX F_floating and G_floating data types, and supports longword

(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

Other 21264 features include:
e The ability to issue up to four instructions during each CPU clock cycle.
* A peak instruction execution rate of four times the CPU clock freguency.

* An onchip, demand-paged memory-management unit with translation buffer, which,
when used with PAL code, can implement avariety of page table structures and trans-
lation algorithms. The unit consists of a 128-entry, fully-associative data translation
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB),
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The alocation scheme for the ITB and DTB isround-robin. The size of each
translation buffer entry’s group is specified by hint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

e Two onchip, high-throughput pipelined floating-point units, capable of executing
both VAX and |EEE floating-point data types.

e Anonchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

e Anonchip, virtualy-indexed, physically-tagged dual-read-ported, 64K B data
cache.

e Supports a 48-hit or 43-bit virtual address (program selectable).
e Supports a 44-bit physical address.
e Anonchip I/O write buffer with four 64-byte entries for 1/0O write transactions.

e Anonchip, 8-entry victim data buffer.

21264 Compiler Writer’s Guide Introduction 1-3

Microprocessor Features

1-4

Introduction

An onchip, 32-entry load queue.
An onchip, 32-entry store queue.

An onchip, 8-entry miss address file for cache fill requests and 1/0 read
transactions.

An onchip, 8-entry probe queue, holding pending system port probe commands.
An onchip, duplicate tag array used to maintain level 2 cache coherency.
A 64-bit data bus with onchip parity and error correction code (ECC) support.

Support for an external second-level (Bcache) cache. The size and some timing
parameters of the Bcache are programmable.

Aninternal clock generator providing a high-speed clock used by the 21264, and
two clocks for use by the CPU module.

Onchip performance counters to measure and analyze CPU and system perfor-
mance.

Chip and module level test support, including an instruction cache test interface to
support chip and module level testing.

A 2.2-V externa interface.

21264 Compiler Writer’s Guide

Microarchitecture

2

Internal Architecture

This chapter provides both an overview of the 21264 microarchitecture and a system

designer’s view of the 21264 implementation of the Alpha architecture. The combination
of the 21264 microarchitecture and privileged architecture library code (PALcode)
defines the chip’s implementation of the Alpha architecture. If a certain piece of hardware
seems to be “architecturally incomplete,” the missing functionality is implemented in
PALcode.

This chapter describes the major functional hardware units and is not intended to be a
detailed hardware description of the chip. It is organized as follows:

e 21264 microarchitecture

* Pipeline organization

e Instruction issue and retire rules

e Load instructionsto R31/F31 (software-directed data prefetch)
e Specia cases of Alphainstruction execution

e Memory and /O address space

* Missaddressfile (MAF) and load-merging rules
* Instruction ordering

* Replay traps

e /O write buffer and the WMB instruction

e Performance measurement support

e Floating-point control register

* AMASK and IMPLVER instruction values

e Design examples

2.1 Microarchitecture

The 21264 microprocessor is a high-performance third-generation implementation of
the Compag Alphaarchitecture. The 21264 consists of the following sections, as
shown in Figure 2-1:

e |nstruction fetch, issue, and retire unit (1box)

* Integer execution unit (Ebox)

21264 Compiler Writer’s Guide Internal Architecture 2-1

Microarchitecture

Floating-point execution unit (Fbox)

Onchip caches (Icache and Dcache)

Memory reference unit (Mbox)

External cache and system interface unit (Cbox)

Pipeline operation sequence

2.1.1 Instruction Fetch, Issue, and Retire Unit

The instruction fetch, issue, and retire unit (Ibox) consists of the following subsections:

Virtual program counter logic

Branch predictor

Instruction-stream translation buffer (1TB)
Instruction fetch logic

Register rename maps

Integer and floating-point issue queues
Exception and interrupt logic

Retirelogic

2.1.1.1 Virtual Program Counter Logic

2-2

The virtual program counter (VPC) logic maintains the virtual addresses for instruc-
tionsthat areinflight. There can be up to 80 instructions, in 20 successive fetch dlots, in
flight between the register rename mappers and the end of the pipeline. The VPC logic
contains a 20-entry table to store these fetched V PC addresses.

Internal Architecture 21264 Compiler Writer’s Guide

Microarchitecture

Figure 2—1 21264 Block Diagram

Instruction Cache

A J
Ibox :
) Four Physical
Fetch Unit |_VI"ual Address »| B Instructions Address
VPC
Queue < Next Address | Predecode |-
A
Y
Branch Retire Decode and 128
Predictor Unit Rename Registers
I
Y Y Y
Integer Issue Queue FP Issue Queue
(20 Entries) (15 Entries) Chox C; ;:tr;e
Probe
Queue 128
Ebox Yy Y | | Fbox Y Y - Cache
Duplicate
Address INT INT Address FP FP Tag Store Index
ALU 0 UNIT UNIT ALU 1 ADD MUL 20
(Lo) 0 1 (L1) DIV
(Uo) (V1) SQRT IOWB System
—TAK TAA AR AA[— < 50 5
Y Y Y Victim o
Integer Registers 0 Integer Registers 1 FP Registers Buffer System
(80 Registers) (80 Registers) (72 Registers) Address
|l ————
A A T T A A A Arbiter 15
A A
Y Y Y Y
Mbox Data
DTB Load Store Miss Address| |
(Dual-ported, 128-entry)| | Queue Queue File 128
Physical A
YAddress Y y ba@
Dual-Ported Data Cache -
FM-05642-Al4

2.1.1.2 Branch Predictor

The branch predictor is composed of three units: the local, global, and choice predic-
tors. Figure 2—2 shows how the branch predictor generates the predicted branch
address.

21264 Compiler Writer's Guide Internal Architecture 2-3

Microarchitecture

Figure 2—-2 Branch Predictor

Local Global Choice
Predictor Predictor Predictor

Y Y

N A&<—

Predicted
L—> Branch
Address

FM-05810.A14

Local Predictor

Thelocal predictor uses a 2-level table that holds the history of individual branches.

The 2-level table design approaches the prediction accuracy of alarger single-level

table while requiring fewer total bits of storage. Figure 2—3 shows how the local pre-
dictor generates a prediction. Bits [11:2] of the VPC of the current branch are used as
the index to a 1K entry table in which each entry is a 10-bit value. This 10-bit value is
used as the index to a 1K entry table of 3-bit saturating counters. The value of the satu-
rating counter determines the predication, taken/not-taken, of the current branch.

Figure 2—3 Local Predictor

M’ Loca|
History
Table
»1 1K x 10
10
| cal
ndex »1 Predictor +/-
1K x 3
2 A
3
1
\

Local Branch Prediction

FM-05811.Al4

Global Predictor

The global predictor isindexed by a global history of all recent branches. The global

predictor correlates the local history of the current branch with all recent branches. Fig-

ure 2—4 shows how the global predictor generates a prediction. The global path history
is comprised of the taken/not-taken state of the 12 most-recent branches. These 12
states are used to form an index into a 4K entry table of 2-bit saturating counters. The
value of the saturating counter determines the predication, taken/not-taken, of the cur-
rent branch.

2-4 Internal Architecture 21264 Compiler Writer’s Guide

Microarchitecture

Figure 2—-4 Global Predictor

Global
Path
History
2 Y
Global
|
ndex »1 Predictor +/-
4K x 2

2 X

1

Y

Global Branch Prediction

FM-05812.Al4

Choice Predictor

The choice predictor monitorsthe history of the local and global predictors and chooses

the best of the two predictors for a particular branch. Figure 2-5 shows how the choice
predictor generates its choice of the result of the local or global prediction. The 12-bit
global path history (see Figure 2—4) is used to index a 4K entry table of 2-bit saturating
counters. The value of the saturating counter determines the choice between the outputs
of the local and global predictors.

Figure 2-5 Choice Predictor

Global
Path
History
12 Y 2
Choice
»| Predictor 5 1 » Choice Prediction
4K X 2

FM-05813.Al14

2.1.1.3 Instruction-Stream Translation Buffer

The Ibox includes a 128-entry, fully-associative instruction-stream trand ation buffer
(ITB) that is used to store recently used instruction-stream (Istream) address transla-
tions and page protection information. Each of the entriesin the ITB can map 1, 8, 64,
or 512 contiguous 8 KB pages. The allocation scheme is round-robin.

The ITB supports an 8-bit ASN and contains an ASM hit. The Icache is virtually
addressed and contains the access-check information, so the ITB is accessed only for
Istream references which missin the Icache.

Istream transactions to 1/O address space are UNDEFINED.
2.1.1.4 Instruction Fetch Logic

The instruction prefetcher (predecode) reads an octaword, containing up to four natu-
raly aligned instructions per cycle, from the Icache. Branch prediction and line predic-
tion bits accompany the four instructions. The branch prediction scheme operates most

21264 Compiler Writer’s Guide Internal Architecture 2-5

Microarchitecture

efficiently when only one branch instruction is contained among the four fetched
instructions. The line prediction scheme attempts to predict the Icache line that the
branch predictor will generate, and is described in Section 2.2.

An entry from the subroutine return prediction stack, together with set prediction bits
for use by the Icache stream controller, are fetched a ong with the octaword. The I cache
stream controller generates fetch requests for additional Icache lines and stores the
Istream data in the Icache. There is no separate buffer to hold Istream requests.

2.1.1.5 Register Rename Maps

2.1.1.6 Integer

The instruction prefetcher forwards instructions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

* Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies, in
order to alow instructions to be dynamically rescheduled.

* Provide ameans of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers frairtuble
register numbers in the instruction to gigsical register numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruction’s
destination register specifier from the virtual number in the instruction to a physical
register number chosen from a list of free physical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physical
register, which holds the old value of an instruction’s virtual destination register, to the
free list until the instruction has been retired, indicating that the control flow up to that
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of the
integer and floating-point register rename maps to the state associated with the instruc-
tion that triggered the condition, and the prefetcher restarts at the appropriate VPC. At
most, 20 valid fetch slots containing up to 80 instructions can be in flight between the
register maps and the end of the machine’s pipeline, where the control flow is finally
resolved. The map logic is capable of backing up the contents of the maps to the state
associated with any of these 80 instructions in a single cycle.

The register rename logic places instructions into an integer or floating-point issue
gueue, from which they are later issued to functional units for execution.

Issue Queue

The 20-entry integer issue queue (IQ), associated with the integer execution units
(Ebox), issues the following types of instructions at a maximum rate of four per cycle:

* Integer operate
* Integer conditional branch

¢ Unconditional branch — both displacement and memory format

2-6 Internal Architecture 21264 Compiler Writer’s Guide

Microarchitecture

* Integer and floating-point load and store

e PAL-reserved instructions: HW_MTPR, HW_MFPR, HW_LD, HW_ST,
HW_RET

¢ Integer-to-floating-point (ITOFX) and floati ng-point-to-integer (FTOIX)

Each queue entry asserts four request signals—one for each of the Ebox subclusters. A
gueue entry asserts a request when it contains an instruction that can be executed by the
subcluster, if the instruction’s operand register values are available within the subclus-
ter.

There are two arbiters—one for the upper subclusters and one for the lower subclusters.
(Subclusters are described in Section 2.1.2.) Each arbiter picks two of the possible 20
requesters for service each cycle. A given instruction only requests upper subclusters or
lower subclusters, but because many instructions can only be executed in one type or
another this is not too limiting.

For example, load and store instructions can only go to lower subclusters and shift
instructions can only go to upper subclusters. Other instructions, such as addition and
logic operations, can execute in either upper or lower subclusters and are statically
assigned before being placed in the 1Q.

The 1Q arbiters choose between simultaneous requesters of a subcluster based on the
age of the request—older requests are given priority over newer requests. If a given
instruction requests both lower subclusters, and no older instruction requests a lower
subcluster, then the arbiter assigns subcluster LO to the instruction. If a given instruction
requests both upper subclusters, and no older instruction requests an upper subcluster,
then the arbiter assigns subcluster U1 to the instruction. This asymmetry between the
upper and lower subcluster arbiters is a circuit implementation optimization with negli-
gible overall performance effect.

2.1.1.7 Floating-Point Issue Queue

The 15-entry floating-point issue queue (FQ) associated with the Fbox issues the fol-
lowing instruction types:

* Foating-point operates

* Foating-point conditional branches

¢ Foating-point stores

* Floating-point register to integer register transfers (FTOIX)

Each queue entry has three request lines—one for the add pipeline, one for the multiply
pipeline, and one for the two store pipelines. There are three arbiters—one for each of
the add, multiply, and store pipelines. The add and multiply arbiters pick one requester
per cycle, while the store pipeline arbiter picks two requesters per cycle, one for each
store pipeline.

The FQ arbiters pick between simultaneous requesters of a pipeline based on the age of
the request—older requests are given priority over newer requests. Floating-point store
instructions and FTQlinstructions in even-numbered queue entries arbitrate for one
store port. Floating-point store instructions and FEai@s$tructions in odd-numbered

gueue entries arbitrate for the second store port.

21264 Compiler Writer’s Guide Internal Architecture 2-7

Microarchitecture

Floating-point store instructions and FTOIX instructions are queued in both the integer
and floating-point queues. They wait in the floating-point queue until their operand reg-
ister values are available. They subsequently request service from the store arbiter.
Upon being issued from the floating-point queue, they signal the corresponding entry in
the integer queue to request service. Upon being issued from the integer queue, the
operation is compl eted.

2.1.1.8 Exception and Interrupt Logic

There are two types of exceptions: faults and synchronous traps. Arithmetic exceptions
are precise and are reported as synchronous traps.

The four sources of interrupts are listed as follows:
* Level-sensitive hardware interrupts sourced by the IRQ_H[5:0] pins

* Edge-sensitive hardware interrupts generated by the serial line receive pin,
performance counter overflows, and hardware corrected read errors

e Softwareinterrupts sourced by the software interrupt request (SIRR) register
e Asynchronous system traps (ASTS)

Interrupt sources can be individually masked. In addition, AST interrupts are qualified
by the current processor mode.

2.1.1.9 Retire Logic

The Ibox fetches instructions in program order, executes them out of order, and then
retires them in order. The Ibox retire logic maintains the architectural state of the
machine by retiring an instruction only if all previous instructions have executed with-
out generating exceptions or branch mispredictions. Retiring an instruction commitsthe
machine to any changes the instruction may have made to the software-visible state.
The three software-visible states are listed as follows:

e |Integer and floating-point registers
* Memory

* Internal processor registers (including control/status registers and translation
buffers)

Theretire logic can sustain a maximum retire rate of eight instructions per cycle, and
can retire up to as many as 11 instructionsin asingle cycle.

2.1.2 Integer Execution Unit

Theinteger execution unit (Ebox) isa4-path integer execution unit that isimplemented

as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an 80-
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). Fig-
ure 2—6 shows the integer execution unit. In the figopewr is the cross-cluster bus

for moving integer result values between clusters.

2-8 Internal Architecture 21264 Compiler Writer’s Guide

Microarchitecture

Figure 2-6 Integer Execution Unit—Clusters 0 and 1

iop_wr
iop_wr
Y Y
uo Ul
Register Register
LO L1
LA A op_wr L | K A
iop_wr
Load/Store Data

Load/Store Data

Y
eff VA Y i eff VA

FM-05643.Al14

Most instructions have 1-cyclelatency for consumers that execute within the same clus-
ter. Also, there is another 1-cycle delay associated with producing avaluein one cluster
and consuming the value in the other cluster. The instruction issue queue minimizesthe
performance effect of this cross-cluster delay. The Ebox contains the following
resources:

* Four 64-bit adders that are used to calculate results for integer add instructions
(located in UO, U1, LO, and L1)

e The addersin the lower subclusters that are used to generate the effective virtua
address for load and store instructions (located in LO and L 1)

e Four logic units

* Two barrel shifters and associated byte logic (located in UO and U1)
e Two sets of conditional branch logic (located in UO and U1)

e Two copies of an 80-entry register file

e Onepipelined multiplier (located in U1) with 7-cycle latency for dl integer multiply
operations

e Onefully-pipelined unit (located in UQ), with 3-cycle latency, that executes the fol-
lowing instructions. PERR, MINxxx, MAXxxx, UNPKxx, PKxx

The Ebox has 80 register-file entries that contain storage for the values of the 31 Alpha
integer registers (the value of R31 is hot stored), the values of 8 PAL shadow registers,
and 41 results written by instructions that have not yet been retired.

21264 Compiler Writer’s Guide Internal Architecture 2-9

Microarchitecture

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identical
values. Each copy of the Ebox register file contains four read ports and six write ports.
The four read ports are used to source operands to each of the two subclusters within a
cluster. The six write ports are used as follows:

e Two write ports are used to write results generated within the cluster.
* Two write portsare used to write results generated by the other cluster.

* Two write ports are used to write results from load instructions. These two ports
are also used for FTOIX instructions.

2.1.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VAX
and | EEE floating-point instructions. It supports IEEE S floating-point and T_floating-
point data types and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point format.
The basic structure of the floating-point execution unit is shown in Figure 2—7.

Figure 2—7 Floating-Point Execution Unit

Floating-Point
Execution Units

FP Mul

Reg

FP Add

FP Div

SQRT

LK98-0004A

The Fbox contains the following resources:

e Fully-pipelined multiplier with 4-cycle latency

e 72-entry physical register file

e Fully-pipeined adder with 4-cycle latency

* Nonpipelined divide unit associated with the adder pipeline

* Nonpipelined sguare root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha floating-
point registers (F31 is not stored) and 41 values written by instructions that have not
been retired.

The Fbox register file contains six reads ports and four write ports. Four read ports are
used to source operands to the add and multiply pipelines, and two read ports are used
to source data for store instructions. Two write ports are used to write results generated
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2-10 Internal Architecture 21264 Compiler Writer’s Guide

Microarchitecture

2.1.4 External Cache and System Interface Unit

The interface for the system and external cache (Cbox) controls the Bcache and system
ports. It contains the following structures:

* Victim addressfile (VAF)

* Victim datafile (VDF)

e |/O write buffer (IOWB)

e Probe queue (PQ)

e Duplicate Dcachetag (DTAG)
2.1.4.1 Victim Address File and Victim Data File

The victim address file (VAF) and victim data file (VDF) together form an 8-entry vic-
tim buffer used for holding:

e Dcache blocksto be written to the Bcache

e |stream cache blocks from memory to be written to the Bcache

* Bcache blocks to be written to memory

e Cache blocks sent to the system in response to probe commands
2.1.4.2 1/O Write Buffer

The I/O write buffer (IOWB) consists of four 64-byte entries and associated address
and control logic used for buffering 1/0 write data between the store queue and the sys-
tem port.

2.1.4.3 Probe Queue

The probe queue (PQ) is an 8-entry queue that holds pending system port cache probe
commands and addresses.

2.1.4.4 Duplicate Dcache Tag Array

Theduplicate Dcachetag (DTAG) array holds aduplicate copy of the Dcache tags and
is used by the Chox when processing Dcache fills, I cache fills, and system port probes.

2.1.5 Onchip Caches
The 21264 contains two onchip primary-level caches.

2.1.5.1 Instruction Cache

The instruction cache (Icache) is a 64K B virtual -addressed, 2-way set-predict cache.
Set prediction is used to approximate the performance of a 2-set cache without slowing
the cache access time. Each Icache block contains:

e 16 Alphainstructions (64 bytes)

e Virtual tag bits[47:15]

e 8-bit address space humber (ASN) field

e 1-bit address space match (ASM) hit

e 1-bit PALcode bit to indicate physical addressing

21264 Compiler Writer’s Guide Internal Architecture 2-11

Microarchitecture

e Vdid hit
e Dataand tag parity bits

e Four access-check bits for the following modes: kernel, executive, supervisor, and

user (KESU)
e Additional predecoded information to assist with instruction processing and fetch
control

2.1.5.2 Data Cache

The data cache (Dcache) isa 64K B, 2-way set-associative, virtually indexed, physically
tagged, write-back, read/write all ocate cache with 64-byte blocks. During each cycle
the Dcache can perform one of the following transactions:

* Two quadword (or shorter) read transactions to arbitrary addresses

e Two quadword write transactions to the same aligned octaword

¢ Two non-overlapping less-than-quadword writes to the same aligned quadword

e One sequential read and write transaction from and to the same aligned octaword
Each Dcache block contains:

e 64 data bytes and associated quadword ECC bits

e Physical tag bits

e Vdid, dirty, shared, and modified bits

* Tag parity bit calculated across the tag, dirty, shared, and modified bits

e One bhit to control round-robin set allocation (one bit per two cache blocks)

The Dcache contains two sets, each with 512 rows containing 64-byte blocks per row
(that is, 32K bytes of data per set). The 21264 requires two additional bits of virtual
address beyond the bits that specify an 8KB page, in order to specify a Dcache row
index. A given virtual address might be found in four unique locationsin the Dcache,
depending on the virtual-to-physical translation for those two bits. The 21264 prevents
this aliasing by keeping only one of the four possible translated addresses in the cache
at any time.

2.1.6 Memory Reference Unit

The memory reference unit (Mbox) controls the Dcache and ensures architecturally
correct behavior for load and store instructions. The Mbox contains the following struc-
tures:

e Load queue (LQ)

* Store queue (SQ)

* Missaddressfile (MAF)

e Dstream trandation buffer (DTB)

2-12 Internal Architecture 21264 Compiler Writer’s Guide

Pipeline Organization

2.1.6.1 Load Queue

Theload queue (LQ) isareorder buffer for load instructions. It contains 32 entries and
maintains the state associated with load instructions that have been issued to the Mbox,
but for which results have not been delivered to the processor and the instructions
retired. The Mbox assigns load instructions to LQ slots based on the order in which
they were fetched from the Icache, then places them into the L Q after they areissued by
the 1Q. The LQ helps ensure correct Alpha memory reference behavior.

2.1.6.2 Store Queue

The store queue (SQ) is areorder buffer and graduation unit for store instructions. It
contains 32 entries and maintains the state associated with store instructions that have
been issued to the Mbox, but for which data has not been written to the Dcache and the
instruction retired. The Mbox assigns store instructions to SQ slots based on the order
in which they were fetched from the Icache and places them into the SQ after they are
issued by the 1Q. The SQ holds data associated with store instructions issued from the
IQ until they areretired, at which point the store can be allowed to update the Dcache.
The SQ also helps ensure correct Alpha memory reference behavior.

2.1.6.3 Miss Address File

The 8-entry miss address file (MAF) holds physical addresses associated with pending
Icache and Dcache fill requests and pending I/O space read transactions.

2.1.6.4 Dstream Translation Buffer

The Mbox includes a 128-entry, fully associative Dstream trandation buffer (DTB) used
to store Dstream address trand ations and page protection information. Each of the entries
inthe DTB can map 1, 8, 64, or 512 contiguous 8K B pages. The allocation schemeis
round-robin. The DTB supports an 8-bit ASN and containsan ASM hit.

2.1.7 SROM Interface

The seria read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the Icache.

2.2 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alphainstruc-
tions. The pipeline stages (0 to 6) are shown in Figure 2—8 and described in the follow-
ing paragraphs.

21264 Compiler Writer’s Guide Internal Architecture 2-13

Pipeline Organization

Figure 2-8 Pipeline Organization

0 1 2 3 4 5 6
o ALU
Branch Shifter ‘
Predictor
éme_ger | ALU shifter
egister Integer » ioli
Integer Multiplier
\ Rename | | Issue »| Redister <>
\ Map Queue lgile Address System
((20) Bus
(64 Bits)
Address
|
— Four 64KB Bus
] Instructions Data |-« Interface j€—>
) Cache Unit Cache
Instruction - - B
Floating-Point us
Cache - 128 Bit
o > Add, Divide, (its)
(64KB)) Floating ; >
Floating- : Floating- and Square Root
(2-Set) : | Point - i
> Point Issue >] Point
Register Queue Reé;illzter o | Floating-Point <>
Re'\r)lame (15) Multiply Physical
ap Address
A (44 Bits)
* FM-05575.A14

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction tar-
get address.

Up to four aligned instructions are fetched from the Icache, in program order. The
branch prediction tables are al so accessed in this cycle. The branch predictor usestables
and a branch history algorithm to predict a branch instruction target address for one
branch or memory format JSR instruction per cycle. Therefore, the prefetcher islimited
to fetching through one branch per cycle. If there is more than one branch within the
fetch line, and the branch predictor predictsthat the first branch will not be taken, it will
predict through subsequent branches at the rate of one per cycle, until it predicts ataken
branch or predicts through the last branch in the fetch line.

The Icache array also contains aline prediction field, the contents of which are applied
to the Icache in the next cycle. The purpose of the line predictor isto remove the pipe-
line bubble which would otherwise be created when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the Icache line which
the branch predictor will generate. On fills, the line predictor value at each fetch lineis
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict | cache.
Instructions are mapped in order, executed dynamically, but are retired in order.

2-14 Internal Architecture 21264 Compiler Writer’s Guide

Pipeline Organization

In the slot stage the branch predictor compares the next |cache index that it generatesto

the index that was generated by the line predictor. If there is amismatch, the branch
predictor wins—the instructions fetched during that cycle are aborted, and the index
predicted by the branch predictor is applied to the Icache during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory format
calls or jumps. If the line predictor was trained with a true (as opposed to predicted)
memory format call or jump target, then its contents take precedence over the target
hint field associated with these instructions. This allows dynamic calls or jumps to be
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the pipe-
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is accessed.
That enables the fetcher to separate set mispredictions from true Icache misses. If the
access was caused by a set misprediction, the instruction fetcher aborts the last two
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate set
prediction bits.

The instruction data is transferred from the Icache to the integer and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from the
Icache and slotted into the 1Q, the slot logic determines whether the instruction is for
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Although all
four instructions need not be issued simultaneously, distributing their resource usage
improves instruction loading across the units. For example, if a fetch block contains
two instructions that can be placed in either cluster followed by two instructions that
must execute in the lower cluster, the slot logic would designate that combination as
EELL and slot them as UULL. Slot combinations are described in Section 2.3.1 and
Table 2-3.

Stage 2 — Map

Instructions are sent from the | cache to the integer and floating-point register maps dur-
ing the slot stage and register renaming is performed during the map stage. Also, each
instruction is assigned a unique 8-bit number, called an inum, which is used to identify
the instruction and its program order with respect to other instructions during the time
that it isin flight. Instructions are considered to be in flight between the time they are
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating-
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (1Q) issues instructions at the rate of four per cycle.
The 15-entry floating-point issue queue (FQ) issues floating-point operate instructions,
conditional branch instructions, and store instructions, at the rate of two per cycle. Nor-
mally, instructions are deleted from the |Q or FQ two cycles after they are issued. For
example, if aninstruction isissued in cyclen, it remainsinthe FQ or IQ incycle n+1
but does not request service, and is deleted in cycle n+2.

21264 Compiler Writer’s Guide Internal Architecture 2-15

Instruction Issue Rules

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and float-
ing register files and receive bypass data.

Stage 5 — Execute
The Ebox and Fbox pipelines begin execution.
Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. Nor-
mally load instructions access the tag and data arrays while store instructions only
access the tag arrays. Store datais written to the store queue where it is held until the
store instruction is retired. Most integer operate instructions write their register results
in thiscycle.

2.2.1 Pipeline Aborts

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring any
Ibox pipeline stalls or queuing delay that the triggering instruction might experience.
Table 2—1 lists the timing associated with each common source of pipeline abort.

Table 2—-1 Pipeline Abort Delay (GCLK Cycles)

Penalty
Abort Condition (Cycles) Comments
Branch misprediction 7 Integer or floating-point conditional branch
misprediction.
JSR misprediction 8 Memory format JSR or HW_RET.
Mbox order trap 14 L oad-load order or store-load order.
Other Mbox replay traps 13 —
DTB miss 13 —
ITB miss 7 —
Integer arithmetic trap 12 —

Floating-point arithmetic 13+latency Add latency of instruction. See Section 2.3.3 for
trap instruction latencies.

2.3 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they are
issued, and their associated latencies.

2-16 Internal Architecture 21264 Compiler Writer’s Guide

Instruction Issue Rules

2.3.1 Instruction Group Definitions

Table 2-2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

Table 2-2 Instruction Name, Pipeline, and Types

Class

Name Pipeline Instruction Type

ild LO, L1 All integer load instructions

fld LO, L1 All floating-point load instructions

ist LO, L1 All integer store instructions

fst FSTO, FST1, L0, L1 All floating-point store instructions

Ida LO, L1, U0, U1 LDA, LDAH

mem_misc L1 WH64, ECB, WMB

rpcc L1 RPCC

rx L1 RS, RC

mxpr LO, L1 HW_MTPR, HW_MFPR

(depends on IPR)

ibr uo, U1 Integer conditional branch instructions

jsr LO BR, BSR, IMP, CALL, RET, COR, HW_RET,
CALL_PAL

iadd LO, U0, L1, U1 Instructions with opcode 10,4, except CMPBGE

ilog LO,UQ, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

ishf uo, U1 Instructions with opcode 124

cmov LO,UQ, L1, Ul Integer CMOV - either cluster

imul Ul Integer multiply instructions

imisc uo PERR, MINxxx, MAXxxx, PKxx, UNPKxx

for FA Floating-point conditional branch instructions

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fmul FM Floating-point multiply instruction

fcmovl FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fsqrt FA Floating-point square root instruction

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)

ftoi FSTO, FST1, LO, L1 FTOIS, FTOIT

itof Lo, L1 ITOFS, ITOFF, ITOFT

mx_fpcr FM Instructions that move data from the floating-point

control register

21264 Compiler Writer’s Guide Internal Architecture 2-17

Instruction Issue Rules

2.3.2 Ebox Slotting

Instructions that are issued from the 1Q, and could execute in either upper or lower

Ebox subclusters, are slotted to one pair or the other during the pipeline mapping stage

based on the instruction mixture in the fetch line. The codes that are used in Table 2-3
are as follows:

Code Meaning

U Theinstruction only executesin an upper subcluster.
L Theinstruction only executesin alower subcluster.
E The instruction could execute in either an upper or lower subcluster, or the instruc-

tion does not execute in an integer pipeline (such as floating-point instructions).

Table 2—-3 defines the slotting rules. The table fieftkuction Class 3, 2, 1 and O iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

Table 2—3 Instruction Group Definitions and Pipeline Unit

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210
EEEE ULUL LLLL LLLL
EEEL ULUL LLLU LLLU
EEEU UuLLU LLUE LLUU
EELE uLLU LLUL LLUL
EELL UuLL LLUU LLUU
EELU UuLLU LUEE LULU
EEUE ULUL LUEL LUUL
EEUL ULUL LUEU LULU
EEUU LLUU LULE LULU
ELEE ULUL LULL LULL
ELEL ULUL LULU LULU
ELEU UuLLU LUUE LUUL
ELLE uLLU LUUL LUUL
ELLL ULLL LUUU LUUU
ELLU UuLLU UEEE ULUL
ELUE ULUL UEEL ULUL
ELUL ULUL UEEU uLLU
ELUU LLUU UELE uLLU
EUEE LULU UELL UulLL
EUEL LUUL UELU uLLU
EUEU LULU UEUE ULUL

2-18 Internal Architecture 21264 Compiler Writer’s Guide

Instruction Issue Rules

Table 2—3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210

EULE LULU UEUL ULUL
EULL UuLL UEUU UuLuu
EULU LULU ULEE ULUL
EUUE LUUL ULEL ULUL
EUUL LUUL ULEU ULLU
EUUU LUUU ULLE ULLU
LEEE LULU ULLL ULLL

LEEL LUUL ULLU ULLU
LEEU LULU ULUE ULUL
LELE LULU ULUL ULUL
LELL LULL UuLuUu UuLuUu
LELU LULU UUEE UulLL
LEUE LUUL UUEL UulLL
LEUL LUUL UUEU uuLu
LEUU LLUU UULE UulLL
LLEE LLUU UulLL UulLlL
LLEL LLUL UuulLu uulLu
LLEU LLUU UUUE uuulL
LLLE LLLU uuulL uuulL
— — uuuu uuuu

2.3.3 Instruction Latencies

After aninstruction is placed in the 1Q or FQ, itsissue point is determined by the avail-
ability of itsregister operands, functional unit(s), and relationship to other instructions
in the queue. There are register producer-consumer dependencies and dynamic func-
tional unit availability dependencies that affect instruction issue. The mapper removes
register producer-producer dependencies.

21264 Compiler Writer’s Guide Internal Architecture 2-19

Instruction Issue Rules

Thelatency to produce aregister result is generally fixed. The one exception isfor load
instructions that miss the Dcache. Table 2—4 lists the latency, in cycles, for each
instruction class.

Table 2—4 Instruction Class Latency in Cycles

Class Latency Comments
ild 3 Dcache hit.
13+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if
Bcache latency is greater than 6 cycles.
fld 4 Dcache hit.
14+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if
Bcache latency is greater than 6 cycles.
ist — Does not produce register value.
fst — Does not produce register value.
rpcc 1 Possible 1-cycle cross-cluster delay.
rx 1 —
mxpr lor3 HW_MFPR: Ebox IPRs = 1.

Ibox and Mbox IPRs = 3.
HW_MTPR does not produce a register value.

icbr — Conditional branch. Does not produce register value.
ubr 3 Unconditional branch. Does not produce register value.
jsr 3 —
iadd 1 Possible 1-cycle Ebox cross-cluster delay.
ilog 1 Possible 1-cycle Ebox cross-cluster delay.
ishf 1 Possible 1-cycle Ebox cross-cluster delay.
cmovl 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.
cmov2 1 Possible 1-cycle Ebox cross-cluster delay.
imul 7 Possible 1-cycle Ebox cross-cluster delay.
imisc 3 Possible 1-cycle Ebox cross-cluster delay.
fcbr — Does not produce register value.
fadd 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issued from
the 1Q.
fmul 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fmul is issued from the FQ to when an fst or ftoi is issued from
the 1Q.
fcmovl 4 Only consumer is fcmov2.
fcmov2 4 Consumer other than fst.
6 Consumer fst or ftoi.

Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi is issued
from the 1Q.

2-20 Internal Architecture 21264 Compiler Writer’s Guide

Instruction Retire Rules

Table 2—4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments

fdiv 12 Single precision - latency to consumer of result value.
9 Single precision - latency to using divider again.
15 Double precision - latency to consumer of result value.
12 Double precision - latency to using divider again.

fsort 18 Single precision - latency to consumer of result value.
15 Single precision - latency to using unit again.
33 Double precision - latency to consumer of result value.
30 Double precision - latency to using unit again.

ftoi 3 —

itof 4 —

nop — Does not produce register value.

2.4 Instruction Retire Rules

Aningruction isretired when it has been executed to completion, and al previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2-5 gives the minimum retire latencies (assuming that all previous instructions
have been retired) for various classes of instructions.

Table 2-5 Minimum Retire Latencies for Instruction Classes

Instruction Class Retire Stage

Comments

Integer conditional branch 7

Integer multiply 7/13
Integer operate 7
Memory 10
Floating-point add 11
Floating-point multiply 11

Floating-point DIV/ISQRT 11 + latency

Floating-point conditional 11

branch

BSR/JSR

10

Latency is 13 cycles for the MUL/V instruction.

Add latency of unit reuse for the instruction indicated in Table
2—4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2—4. Latency is 11 if hardware detects that
no exception is possible (see Section 2.4.1).

Branch instruction mispredict is reported in stage 7.

JSR instruction mispredict is reported in stage 8.

2.4.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinations

of source operand values, no exception can be generated. Instructions with these oper-
ands can be retired before the result is generated. When detected, they are retired with
the same latency as the FP add class. Early retirement is not possible for the following

instruction/operand/architecture state conditions:

21264 Compiler Writer’s Guide

Internal Architecture 2-21

Retire of Operate Instructions into R31/F31

e |nstructionisnot aDIV or SQRT.
* SQRT source operand is negative.
e Divide operand exponent_aisO.

e Either operand isNaN or INF.

e Divide operand exponent_bisO.

e Trapping modeis/l (inexact).

* INE status hitisO.

Early retirement is also not possible for divide instructionsif the resulting exponent has
any of the following characteristics (EXP is the result exponent):

« DIVT, DIVG: (EXP >= 3FF4) OR (EXP <= 2;¢)
« DIVS, DIVF: (EXP>= 7F;5) OR (EXP <= 382;4)

2.5 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately

upon decode (stage 3). These instructions do not produce aresult and are removed from

the pipeline as well. They do not occupy aslot in the issue queues and do not occupy a
functional unit. However, they do affect the slotting of other instructions contained in

the same aligned octaword, as defined in Table 2—3. Table 2—6 lists these instructions
and some of their characteristics. The instruction type in Table 2—6 is from Table C-6 in
Appendix C of theAlpha Architecture Handbook, Version 4.

Table 2-6 Instructions Retired Without Execution

Instruction Type Notes

INTA, INTL, INTM, INTS All with R31 as destination.

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

LDQ_U All with R31 as destination.

MISC TRAPB and EXCB are always removed. Others are never
removed.

FLTS All (SQRT, ITOF) with F31 as destination.

2.6 Load Instructions to R31 and F31

2-22

This section describes how the 21264 processes software-directed prefetch transactions
and load instructions with a destination of R31 and F31.

Load operations to R31 and F31 may generate exceptions. These exceptions must be
dismissed by PALcode.

Internal Architecture 21264 Compiler Writer’s Guide

Special Cases of Alpha Instruction Execution

2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU Instructions

The 21264 processes these instructions as normal cache line prefetches. If the load
instruction hits the Dcache, the instruction is dismissed, otherwise the addressed cache
block is allocated into the Dcache.

2.6.2 Prefetch with Modify Intent: LDS Instruction

The 21264 processes an LD S instruction, with F31 as the destination, as a prefetch with
modify intent transaction (ReadBlIkModSpec command). If the transaction hits adirty
Dcache block, the instruction is dismissed. Otherwise, the addressed cache block is
alocated into the Dcache for write access, with its dirty and modified bits set.

2.6.3 Prefetch, Evict Next: LDQ Instruction

The 21264 processes this instruction like a normal prefetch transaction (ReadBIkSpec
command), with one exception—if the load misses the Dcache, the addressed cache
block is allocated into the Dcache, but the Dcache set allocation pointer is left pointing
to this block. The next miss to the same Dcache line will evict the block. For example,
this instruction might be used when software is reading an array that is known to fit in
the offchip Bcache, but will not fit into the onchip Dcache. In this case, the instruction
ensures that the hardware provides the desired prefetch function without displacing use-
ful cache blocks stored in the other set within the Dcache.

2.7 Special Cases of Alpha Instruction Execution

This section describes the mechanisms that the 21264 uses to process irregular instruc-
tions in the Alpha instruction set, and cases in which the 21264 processes instructions
in a non-intuitive way.

2.7.1 Load Hit Speculation

The latency of integer load instructions that hit in the Dcache is three cycles.

Figure 2—9 shows the pipeline timing for these integer load instructions. In Figure 2-9:

Symbol Meaning

Q I ssue queue

R Register file read
E Execute

D Dcache access

B Data bus active

21264 Compiler Writer’s Guide Internal Architecture 2-23

Special Cases of Alpha Instruction Execution

2-24

Figure 2-9 Pipeline Timing for Integer Load Instructions

Hit

Cycle Number 1 2 3 4 (5 6 7 8
ILD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05814.Al4

There are two cyclesin which the |Q may speculatively issue instructions that use load

data before Dcache hit information is known. Any instructionsthat are issued by the 1Q

within this 2-cycle speculative window are kept in the 1Q with their requests inhibited

until the load instruction’s hit condition is known, even if they are not dependent on the
load operation. If the load instruction hits, then these instructions are removed from the
gueue. If the load instruction misses, then the execution of these instructions is aborted
and the instructions are allowed to request service again.

For example, in Figure 2-9, instruction 1 and instruction 2 are issued within the specu-
lative window of the load instruction. If the load instruction hits, then both instructions
will be deleted from the queue by the start of cycle 7—one cycle later than normal for
instruction 1 and at the normal time for instruction 2. If the load instruction misses, both
instructions are aborted from the execution pipelines and may request service again in
cycle 6.

IQ-issued instructions are aborted if issued within the speculative window of an integer
load instruction that missed in the Dcache, even if they are not dependent on the load
data. However, if software misses are likely, the 21264 can still benefit from scheduling
the instruction stream for Dcache miss latency. The 21264 includes a saturating counter
that is incremented when load instructions hit and is decremented when load instruc-
tions miss. When the upper bit of the counter equals zero, the integer load latency is
increased to five cycles and the speculative window is removed. The counter is 4 bits
wide and is incremented by 1 on a hit and is decremented by two on a miss.

Since load instructions to R31 do not produce a result, they do not create a speculative
window when they execute and, therefore, never waste 1Q-issue cycles if they miss.
Floating-point load instructions that hit in the Dcache have a latency of four cycles. Fig-
ure 2—10 shows the pipeline timing for floating-point load instructions. In Figure 2—-10:

Symbol Meaning

Q I ssue queue

R Register file read
E Execute

D Dcache access

B Data bus active

Internal Architecture 21264 Compiler Writer’s Guide

Special Cases of Alpha Instruction Execution

Figure 2-10 Pipeline Timing for Floating-Point Load Instructions

Hit
Cycle Number 1 2 3 4 (5 6 7 8
FLD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05815.A14

The speculative window for floating-point load instructions is one cycle wide.
FQ-issued instructions that are issued within the speculative window of afloating-point
load instruction that has missed, are only aborted if they depend on the load being suc-
cessful.

For example, in Figure 2-10 instruction 1 is issued in the speculative window of the
load instruction.

If instruction 1 is not a user of the data returned by the load instruction, then it is
removed from the queue at its normal time (at the start of cycle 7).

If instruction 1 is dependent on the load instruction data and the load instruction hits,
instruction 1 is removed from the queue one cycle later (at the start of cycle 8). If the
load instruction misses, then instruction 1 is aborted from the Fbox pipeline and may
request service again in cycle 7.

2.7.2 Floating-Point Store Instructions

Floating-point store instructions are duplicated and loaded into both the IQ and the FQ
from the mapper. Each IQ entry contains a control bit, foWait, that when set prevents
that entry from asserting its requests. This bit is initially set for each floating-point store
instruction that enters the 1Q, unless it was the target of a replay trap. The instruction’s
FQ clone is issued when its Ra register is about to become clean, resulting in its IQ
clone’s fpWait bit being cleared and allowing the 1Q clone to issue and be executed by
the Mbox. This mechanism ensures that floating-point store instructions are always
issued to the Mbox, along with the associated data, without requiring the floating-point
register dirty bits to be available within the 1Q.

2.7.3 CMOV Instruction

For the 21264, the Alpha CMQOV instruction has three operands, and so presents a spe-
cial case. The required operation is to move either the value in register Rb or the value
from the old physical destination register into the new destination register, based upon
the value in Ra. Since neither the mapper nor the Ebox and Fbox data paths are other-
wise required to handle three operand instructions, the CMQOV instruction is decom-
posed by the Ibox pipeline into two 2-operand instructions:

The Alpha architecture instruction CMOV Ra, Rb?Rc

Becomes the 21264 instructions CMOV1Ra, oldRc O newRcl
CMOV2 newRcl, Rb 0 newRc2

21264 Compiler Writer’s Guide Internal Architecture 2-25

Memory and I/O Address Space Instructions

Thefirst instruction, CMOV 1, tests the value of Ra and records the result of thistest in
a 65th hit of its destination register, newRcl. It also copies the value of the old physical
destination register, oldRc, to newRcl.

The second instruction, CMOV 2, then copies either the valuein newRc1 or the valuein
Rb into a second physical destination register, newRc2, based on the CMOV predicate
bit stored in newRc1.

In summary, the original CMQOV instruction is decomposed into two dependent instruc-
tions that each use a physical register from the freelist.

To further simplify this operation, the two component instructions of a CMOV instruc-
tion are driven through the mappersin successive cycles. Hence, if a fetch line contains
n CMOV instructions, it takes n+1 cycles to run that fetch line through the mappers.

For example, the following fetch line;

ADD OMDVx SUB OMDVy

Results in the following three map cycles:

ADD QMDVxX1

avOVx2 SUB OVDVy1

Qvovy2

The Ebox executes integer CMOV instructions as two distinct 1-cycle latency opera-

tions. The Fbox add pipeline executes floating-point CMOV instructions as two distinct
4-cycle latency operations.

2.8 Memory and I/O Address Space Instructions

This section provides an overview of the way the 21264 processes memory and I/O
address space instructions.

The 21264 supports, and internally recognizes, a 44-bit physical address space that is
divided equally between memory address space and 1/0O address space. Memory
address space resides in the lower half of the physical address space (PA[43]=0)

and 1/0 address space resides in the upper half of the physical address space
(PA[43]=1).

The 1 Q can issue any combination of load and store instructions to the Mbox at the rate
of two per cycle. Thetwo lower Ebox subclusters, LO and L1, generate the
48-bit effective virtual address for these instructions.

Aninstruction is defined to be newer than another instruction if it follows that instruc-
tion in program order and is older if it precedes that instruction in program order.

2.8.1 Memory Address Space Load Instructions

The Mbox begins execution of aload instruction by tranglating its virtual addressto a
physical address using the DTB and by accessing the Dcache. The Dcacheis virtually
indexed, allowing these two operations to be done in parallel. The Mbox puts informa-
tion about the load instruction, including its physical address, destination register, and
dataformat, into the LQ.

2-26 Internal Architecture 21264 Compiler Writer’s Guide

Memory and I/O Address Space Instructions

If the requested physical location isfound in the Dcache (a hit), the datais formatted
and written into the appropriate integer or floating-point register. If thelocationisnotin
the Dcache (amiss), the physical addressis placed in the miss address file (MAF) for
processing by the Cbox. The MAF performs a merging function in which a new miss
addressis compared to miss addresses already held inthe MAF. If the new miss address
points to the same Dcache block as a miss address in the MAF, then the new miss
addressis discarded.

When Dcache fill datais returned to the Dcache by the Cbox, the Mbox satisfies the
requesting load instructions in the LQ.

2.8.2 1/0 Address Space Load Instructions

Because |/0 space load instructions may have side effects, they cannot be performed
speculatively. When the Mbox receives an |/O space load instruction, the Mbox places
the load instruction in the LQ, whereit is held until it retires. The Mbox replays retired
1/0 space load instructions from the LQ to the MAF in program order, at arate of one
per GCLK cycle.

The Mbox allocates anew MAF entry to an I/O load instruction and increases |/O band-

width by attempting to merge I/O load instructions in a merge register. Table 2—7 shows
the rules for merging data. The columns represent the load instructions replayed to the
MAF while the rows represent the size of the load in the merge register.

Table 2—7 Rules for I/O Address Space Load Instruction Data Merging

Merge Register/

Replayed Instruction Load Byte/Word Load Longword Load Quadword
Byte/Word No merge No merge No merge

Longword No merge Mergeup to 32 bytes No merge

Quadword No merge No merge Merge up to 64 bytes

In summary, Table 2—7 shows some of the following rules.

e Byte/word load instructions and different size load instructions are not allowed to
merge.

* A stream of ascending non-overlapping, but not necessarily consecutive, longword
load instructions are allowed to merge into naturally aligned 32-byte blocks.

* A stream of ascending non-overlapping, but not necessarily consecutive, quadword
load instructions are allowed to merge into naturally aligned 64-byte blocks.

e Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

* Tominimize latency the I/O register merge window is closed when atimer detects
no /O load instruction activity for 14 cycles, or zero cyclesif the last QW/LW of
the block is addressed.

After the Mbox I/O register has closed its merge window, the Cbox sends /O read
requests offchip in the order that they were received from the Mbox.

21264 Compiler Writer’s Guide Internal Architecture 2-27

Memory and I/O Address Space Instructions

2.8.3 Memory Address Space Store Instructions

The Mbox begins execution of a store instruction by tranglating its virtual addressto a
physical address using the DTB and by probing the Dcache. The Mbox puts informa-
tion about the store instruction, including its physical address, its data and the results of
the Dcache probe, into the store queue (SQ).

If the Mbox does not find the addressed location in the Dcache, it places the address
into the MAF for processing by the Cbox. If the Mbox finds the addressed location in a
Dcache block that is not dirty, then it places a ChangeToDirty request into the MAF.

A storeinstruction can write its data into the Dcache when it is retired, and when the
Dcache block containing its addressis dirty and not shared. SQ entries that meet these
two conditions can be placed into the writable state. These SQ entries are placed into
the writable state in program order at a maximum rate of two entries per cycle. The
Mbox transfers writable store queue entry data from the SQ to the Dcache in program
order at amaximum rate of two entries per cycle. Dcache lines associated with writable
store queue entries are locked by the Mbox. System port probe commands cannot evict
these blocks until their associated writable SQ entries have been transferred into the
Dcache. Thisrestriction assistsin STx_C instruction and Dcache ECC processing.

SQ entry datathat has not been transferred to the Dcache may source datato newer [oad
instructions. The Mbox compares the virtual Dcache index bits of incoming load
instructions to queued SQ entries, and sources the data from the SQ, bypassing the
Dcache, when necessary.

2.8.4 1/0 Address Space Store Instructions

The Mbox begins processing |/O space store instruction, like memory space store
instruction, by translating the virtual address and placing the state associated with the
store instruction into the SQ.

The Mbox replays retired 1/0 space store entries from the SQ to the IOWB in program
order at arate of one per GCLK cycle. The Mbox never alows queued I/O space store
instructions to source data to subsequent load instructions.

The Cbox maximizes I/O bandwidth when it allocates anew IOWB entry to an 1/O

store instruction by attempting to merge 1/O load instructions in amerge register. Table

2-8 shows the rules for I/O space store instruction data merging. The columns represent
the load instructions replayed to the IOWB while the rows represent the size of the store
in the merge register.

Table 2—-8 Rules for I/O Address Space Store Instruction Data Merging

Merge Register/ Store

Replayed Instruction Byte/Word Store Longword Store Quadword
Byte/Word No merge No merge No merge

Longword No merge Mergeup to 32 bytes No merge

Quadword No merge No merge Merge up to 64 bytes

2-28 Internal Architecture 21264 Compiler Writer’s Guide

MAF Memory Address Space Merging Rules

Table 2—-8 shows some of the following rules:

* Byte/word store instructions and different size store instructions are not allowed to
merge.

e A stream of ascending non-overlapping, but not necessarily consecutive, longword
store instructions are alowed to merge into naturally aligned 32-byte blocks.

* A stream of ascending non-overlapping, but not necessarily consecutive, quadword
store instructions are allowed to merge into naturally aligned 64-byte blocks.

* Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32 BYTE_|O field.

e |ssued MB, WMB, and I/O load instructions close the /O register merge window.
To minimize latency, the merge window is also closed when atimer detects no 1/0O
store instruction activity for 1024 cycles.

After the IOWB merge register has closed its merge window, the Cbox sends 1/0 space
store requests offchip in the order that they were received from the Mbox.

2.9 MAF Memory Address Space Merging Rules

Because all memory transactions are to 64-byte blocks, efficiency isimproved by merg-

ing several small data transactions into a single larger data transaction.

Table 2-9 lists the rules the 21264 uses when merging memory transactions into 64-
byte naturally aligned data block transactions. Rows represent the merged instruction in
the MAF and columns represent the new issued transaction.

Table 2-9 MAF Merging Rules
MAF/New LDx STx STx _C WH64 ECB Istream

LDx Merge — — — — —
STx Merge Merge — — — —
STx_C — — Merge — — —
WH64 — — — Merge — —
ECB — — — — Merge —

Istream — — — — — Merge

In summary, Table 2—9 shows that only like instruction types, with the exception of
load instructions merging with store instructions, are merged.

2.10 Instruction Ordering

In the absence of explicit instruction ordering, such as with MB or WMB instructions,
the 21264 maintains a default instruction ordering relationship between pairs of load
and store instructions.

21264 Compiler Writer’s Guide Internal Architecture 2-29

Replay Traps

The 21264 maintains the default memory data instruction ordering as shown in
Table 2—10 (assume address X and address Y are different).

Table 2-10 Memory Reference Ordering

First Instruction in Pair

Second Instruction in Pair

Reference Order

Load memory to address X
Load memory to address X
Store memory to address X
Store memory to address X
Load memory to address X
Load memory to address X
Store memory to address X

Store memory to address X

Load memory to address X
Load memory to address Y
Store memory to address X
Store memory to address Y
Store memory to address X
Store memory to address Y
Load memory to address X
Load memory to address Y

Maintained (litmus test 1)
Not maintained
Maintained

Maintained

Maintained

Not maintained
Maintained

Not maintained

The 21264 maintains the default I/O instruction ordering as shown in Table 2-11

(assume address X and address Y are different).

Table 2-11 1/0 Reference Ordering

First Instruction in Pair

Second Instruction in Pair

Reference Order

Load I/O to address X
Load I/O to address X
Store 1/0 to address X
Store 1/0 to address X
Load I/O to address X
Load I/O to address X
Store 1/0 to address X
Store 1/0O to address X

Load 1/O to address X
Load I/O to address Y
Store 1/0 to address X
Store 1/0 to address Y
Store 1/0 to address X
Store 1/O to address Y
Load 1/O to address X
Load I/O to address Y

Maintained
Maintained
Maintained
Maintained
Maintained
Not maintained
Maintained

Not maintained

2.11 Replay Traps

There are some situations in which a load or store instruction cannot be executed due to
a condition that occurs after that instruction issues from the 1Q or FQ. The instruction is
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.11.1 Mbox Order Traps

Load and store instructions may be issued from the 1Q in a different order than they
were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the Mbox
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the memory
stream aréoad-load andstore-load order traps.

2-30 Internal Architecture 21264 Compiler Writer’s Guide

/O Write Buffer and the WMB Instruction

2.11.1.1 Load-Load Order Trap

The Mbox ensures that load instructions that read the same physical byte(s) ultimately
issue in correct order by using the load-load order trap. The Mbox compares the
address of each load instruction, asit isissued, to the address of all load instructionsin
the load queue. If the Mbox finds a newer load instruction in the load queue, it invokes
aload-load order trap on the newer instruction. Thisis areplay trap that aborts the tar-
get of the trap and all newer instructions from the machine and refetches instructions
starting at the target of the trap.

2.11.1.2 Store-Load Order Trap

The Mbox ensures that aload instruction ultimately issues after an older store instruc-

tion that writes some portion of its memory operand by using the store-load order trap.
The Mbox compares the address of each store instruction, as it is issued, to the address
of all load instructionsin the load queue. If the Mbox finds a newer load instruction in
theload queue, it invokes astore-load order trap on the load instruction. Thisisareplay
trap. It functions like the load-load order trap.

The Ibox contains extra hardware to reduce the frequency of the store-load trap. There
isa1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When an
Icache instruction is fetched, the associated stWait table entry is fetched along with the
Icache instruction. The stWait table produces 1 bit for each instruction accessed from
the Icache. When aload instruction gets a store-load order replay trap, its associated bit
in the stWait table is set during the cycle that the load is refetched. Hence, the trapping
load instruction’s stWait bit will be set the next time it is fetched.

The 1Q will not issue load instructions whose stWait bit is set while there are older unis-
sued store instructions in the queue. A load instruction whose stWait bit is set can be
issued the cycle immediately after the last older store instruction is issued from the
gueue. All the bits in the stWait table are unconditionally cleared every 16384 cycles.

2.11.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store queue,
and to ensure that there are never multiple outstanding misses to different physical
addresses that map to the same Dcache or Bcache line. Unlike the order traps, however,
these replay traps are invoked on the incoming instruction that triggered the condition.

2.12 1/O Write Buffer and the WMB Instruction

The I/O write buffer IOWB) consists of four 64-byte entries with the associated
address and control logic used to buffer I1/O write data between the store queue (SQ)
and the system port.

2.12.1 Memory Barrier (MB/WMB/TB Fill Flow)

The Cbox CSR SYSBUS_MB_ENABLE bit determines if MB instructions produce
external system port transactions. When the SYSBUS_MB_ENABLE bit equals 0, the
Cbox CSR MB_CNT]I3:0] field contains the number of pending uncommitted transac-
tions. The counter will increment for each of the following commands:

« RdBIk, RdBIkMod, RdBIKI
« RdBIkSpec (valid), RdBIkModSpec (valid), RdBIkSpecl (valid)

21264 Compiler Writer’s Guide Internal Architecture 2-31

/O Write Buffer and the WMB Instruction

* RdBlkVic, RdBIkModVic, RdBIkVicl

e CleanToDirty, SharedToDirty, STChangeToDirty, Inval ToDirty
* FetchBIk, FetchBlkSpec (valid), Evict

¢ RdByte, RdLw, RdQw, WrByte, WrLW, WrQW

The counter is decremented with the C (commit) bit in the Probe and SysDc commands.
Systems can assert the C hit in the SysDc fill response to the commands that originally
incremented the counter, or attached to the last probe seen by that command when it
reached the system serialization point. If the number of uncommitted transactions
reaches 15 (saturating the counter), the Cbox will stall MAF and |OWB processing
until at least one of the pending transactions has been committed. Probe processing is
not interrupted by the state of this counter.

2.12.1.1 MB Instruction Processing

When an MB instruction is fetched in the predicted instruction execution path, it stalls
in the map stage of the pipeline. This aso stalsal instructions after the MB, and con-

trol of instruction flow is based upon the value in Cbox CSR SYSBUS MB_ENABLE
asfollows:

e If Chox CSR SYSBUS MB_ENABLE isclear, the Cbox waits until the IQ is
empty and then performs the following actions:

2-32

a

b.

Sends al pending MAF and IOWB entries to the system port.

Monitors Cbox CSR MB_CNT[3:0], a4-bit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

Waits until the MAF contains no more Dstream references and the SQ, LQ, and
IOWB are empty.

When all of the above have occurred and a probe response has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

e If Cbox CSR SYSBUS MB_ENABLE isset, the Cbox waits until the 1Q is empty
and then performs the following actions:

a

b.

C.

Sends all pending MAF and IOWB entries to the system port
Sends the MB command to the system port

Waits until the MB command is acknowledged, then marks the youngest entry
in the probe queue

Waits until the MAF contains no more Dstream references and the SQ, LQ, and
IOWB are empty

When all of the above have occurred and a probe response has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

Because the MB instruction is executed speculatively, MB processing can begin
and the original MB can be killed. In theinternal acknowledge case, the MB may
have already been sent to the system interface, and the system is still expected to
respond to the MB.

Internal Architecture 21264 Compiler Writer’s Guide

/O Write Buffer and the WMB Instruction

2.12.1.2 WMB Instruction Processing

Write memory barrier (WMB) instructions are issued into the Mbox store-queue, where
they wait until they are retired and all prior store instructions become writable. The
Mbox then stallsthe writable pointer and informs the Cbox. The Cbox closesthe |IOWB
merge register and responds in one of the following two ways:

e |f Cbox CSR SYSBUS MB_ENABLE isclear, the Cbox performs the following
actions:

a
b.

Stalls further MAF and IOWB processing.

Monitors Cbox CSR MB_CNT[3:0], a4-bit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

When a probe response has been sent to the system for the marked probe queue
entry, the Cbox considers the WMB to be satisfied.

e If Cbox CSR SYSBUS MB_ENABLE isset, the Chox performs the following
actions:

a

b.

C.

2.12.1.3 TB Fill Flow

Stalls further MAF and IOWB processing.
Sends the MB command to the system port.

Waits until the MB command is acknowledged by the system with a SysDc
MBDone command, then sends acknowledge and marks the youngest entry in
the probe queue.

When a probe response has been sent to the system for the marked probe queue
entry, the Chox considers the WMB to be satisfied.

Load instructions (HW_LDs) to avirtual page table entry (VPTE) are processed by the
21264 to avoid litmus test problems associated with the ordering of memory transac-
tions from another processor against loading of a page table entry and the subsequent
virtual-mode load from this processor.

Consider the sequence shown in Table 2—12. The data could be in the Bcache. Pj should
fetch datai if it is using PTEi.

Table 2-12 TB Fill Flow Example Sequence 1

Pi Pj
Write Datai Load/Store datai
MB <TB miss>
Write PTEi Load-PTE
<write TB>
Load/Store (restart)

21264 Compiler Writer’s Guide Internal Architecture 2-33

/O Write Buffer

and the WMB Instruction

Also consider the related sequence shown in Table 2—-13. In this case, the data could be
cached in the Bcache; Pj should fetch datai if it is using PTEi.

Table 2-13 TB Fill Flow Example Sequence 2

Pi Pj

Write Datai Istream read datai

MB <TB miss>

Write PTE LoapI-F’TE
<write TB>

Istream read (restart) - will miss the Icache

The 21264 processes Dstream loads to the PTE by injecting, in hardware, some mem-

ory

barrier processing between the PTE transaction and any subsequent load or store

instruction. This is accomplished by the following mechanism:

1.
2.

The integer queue issues a HW_LD instruction with VPTE.

The integer queue issues a HW_MTPR instruction with a DTB_PTEQ, that is data-
dependent on the HW_LD instruction with a VPTE, and is required in order to fill
the DTBs. The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4]
and [0].

When a HW_MTPR instruction with a DTB_PTEQ is issued, the Ibox signals the
Cbox indicating that a HW_LD instruction with a VPTE has been processed. This
causes the Chox to begin processing the MB instruction. The Ibox prevents any
subsequent memory operations being issued by not clearing the IPR scoreboard bit
[0]. IPR scoreboard bit [0] is one of the scoreboard bits associated with the
HW_MTPR instruction with DTB_PTEO.

When the Cbox completes processing the MB instruction (using one of the above
sequences, depending upon the state of SYSBUS_MB_ENABLE), the Chox sig-
nals the Ibox to clear IPR scoreboard bit [0].

The 21264 uses a similar mechanism to process Istream TB misses and fills to the PTE
for the Istream.

1.
2.

The integer queue issues a HW_LD instruction with VPTE.

The IQ issues a HW_MTPR instruction with an ITB_PTE that is data-dependent
upon the HW_LD instruction with VPTE. This is required in order to fill the ITB.
The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4] and [0].

The Cbox issues a HW_MTPR instruction for the ITB_PTE and signals the Ibox
that a HW_LD/VPTE instruction has been processed, causing the Chox to start pro-
cessing the MB instruction. The Mbox stalls Ibox fetching from when the HW_LD/
VPTE instruction finishes until the probe queue is drained.

When the 21264 is finished (SYS_MB selects one of the above sequences), the
Cbox directs the Ibox to clear IPR scoreboard bit [0]. Also, the Mbox directs the
Ibox to start prefetching.

Inserting MB instruction processing within the TB fill flow is only required for multi-
processor systems. Uniprocessor systems can disable MB instruction processing by
deasserting Ibox CSR |_CTL[TB_MB_EN].

2-34 Internal Architecture 21264 Compiler Writer’s Guide

Performance Measurement Support—Performance Counters

2.13 Performance Measurement Support—Performance Counters

The 21264 provides hardware support for obtaining program performance feedback
information without requiring program modification.

2.14 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2—11.

Figure 2—11 Floating-Point Control Register

636261 6059585756 5554 5352 5150494847 0

SUMJ

INED ——
UNFD
UNDZ
DYN
[0}V
INE
UNF
OVF
DZE
INV
OVFD
DZED
INVD

DNZ LK99-0050A

The floating-point control register fields are described in Table 2-14.

Table 2-14 Floating-Point Control Register Fields

Name Extent Type Description
SUM [63] RwW Summary bit. Records bit-wise OR of FPCR exception bits.
INED [62] RwW Inexact Disable. If this bit is set and a floating-point instruction that enables

trapping on inexact results generates an inexact value, the result is placed in the
destination register and the trap is suppressed.

UNFD [61] RW Underflow Disable. The 21264 hardware cannot generate |EEE compliant
denormal results. UNFD isused in conjunction with UNDZ as follows:

UNFD UNDZ Result

0 X Underflow trap.
1 0 Trap to supply apossible denormal result.
1 1 Underflow trap suppressed. Destination is written

with atrue zero (+0.0).

21264 Compiler Writer’s Guide Internal Architecture 2-35

AMASK and IMPLVER Values

Table 2-14 Floating-Point Control Register Fields (Continued)

Name

Extent Type

Description

UNDZ

DYN

o)V

INE

UNF

OVF

DZE

INV

OVFD

DZED

INVD

DNz

Reserved

(60]

RwW

[59:58] RW

(57]

[56]

[59]

[54]

(53]

[52]

[51]

(50]

[49]

(48]

RwW

(470t —

Underflow to zero. When UNDZ is set together with UNFD, underflow traps are
disabled and the 21264 places atrue zero in the destination register. See UNFD,
above.

Dynamic rounding mode. Indicates the rounding mode to be used by an |IEEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

Bits Meaning

00 Chopped

01 Minusinfinity
10 Norma

11 Plusinfinity

Integer overflow. An integer arithmetic operation or a conversion from floating-
point to integer overflowed the destination precision.

Inexact result. A floating-point arithmetic or conversion operation gave aresult
that differed from the mathematically exact result.

Underflow. A floating-point arithmetic or conversion operation gave aresult
that underflowed the destination exponent.

Overflow. A floating-point arithmetic or conversion operation gave aresult that
overflowed the destination exponent.

Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

Invalid operation. An attempt was made to perform afloating-point arithmetic
operation and one or more of its operand values were illegal .

Overflow disable. If thisbit is set and a floating-point arithmetic operation gen-
erates an overflow condition, then the appropriate | EEE nontrapping result is
placed in the destination register and the trap is suppressed.

Division by zero disable. If thisbit is set and a floating-point divide by zero is
detected, the appropriate | EEE nontrapping result is placed in the destination
register and the trap is suppressed.

Invalid operation disable. If this bit is set and a floating-point operate generates
an invalid operation condition and 21264 is capable of producing the correct

| EEE nontrapping result, that result is placed in the destination register and the
trap is suppressed.

Denormal operandsto zero. If thisbit is set, treat all Denormal operands asa
signed zero value with the same sign as the Denormal operand.

L Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264.

2.15 AMASK and IMPLVER Values

The AMASK and IMPLVER instructions return processor type and supported architec-
ture extensions, respectively.

2-36

Internal Architecture

21264 Compiler Writer’s Guide

Design Examples

2.15.1 AMASK
The 21264 returns the AMASK instruction values provided in Table 2-15.

Table 2-15 21264 AMASK Values

21264 Pass Level AMASK Value Returned
Pass 1 00116
Pass 2 30316

The AMASK bit definitions provided in Table 2—15 are defined in Table 2—-16.

Table 2-16 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)
Theinstructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)
Theinstructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF,
ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

8 Support for the multimedia extension (MV1)
Theinstructions that comprise the MV 1 extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUBS8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC isthe same as
the instruction PC after the trapping instruction is executed.

2.15.2 IMPLVER
For the 21264, the IMPLVER instruction returns the value 2.

2.16 Design Examples

The 21264 can be designed into many different uniprocessor and multiprocessor system
configurations. Figures 2—12 and 2-13 illustrate two possible configurations. These
configurations employ additional system/memaory controller chipsets.

Figure 2—-12 shows a typical uniprocessor system with a second-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

21264 Compiler Writer’s Guide Internal Architecture 2-37

Design Examples

2-38

Figure 2—12 Typical Uniprocessor Configuration

L2 Cache 21264 21272 Core Duplicate
Logic Chipset | »| Tag Store
Tag > (Optional)
Store > 'ag
Address - Control
\ Out - Chips
Address ——"
Address| Data Slice Arra
) . ysS
/ In Chips
Data
Store [> Data
Host PCI »1 Address
Data [> Bridge Chip
3 >»1 Data

Yy
< 64-bit PCI Bus >
FM-05573.Al14

Figure 2—13 shows a typical multiprocessor system, each processor with a second-level
cache. Each interface controller must employ a duplicate tag store to maintain cache
coherency. This system configuration could be used in a networked database server
application.

Figure 2—13 Typical Multiprocessor Configuration

21272 Core
21264 Logic Chipset DRAM
> > Arrays
L2 o
Cache '~ ™ . »1 Address
< <> Control -< »|Data
Chip
o 21264 o Data Slice
<> > Chips DRAM
Arrays
L2 -
Cache |~ 7~)
»| Address
<> < > Host PCI Host PCI
Bridge Chip Bridge Chip | |« »| Data
A A A A

Yy
< 64-bit PCI Bus >
Y\
< 64-bit PCI Bus > EM-05574.A14

Internal Architecture 21264 Compiler Writer’s Guide

Architecture Extensions

3

Guidelines for Compiler Writers

This chapter is a supplement to Appendix A of the Alpha Architecture Handbook, Ver-
sion 4. That appendix presents general guidelines for software that are independent of
the processor implementation. This chapter identifies some of the specific features of
the 21264 that affect performance and that can be controlled by a compiler writer or
assembly-language programmer. Chapter 2 describes the specific hardware features of
the 21264 for which this chapter provides programming guidelines.

3.1 Architecture Extensions

The 21264 provides four extensions to the Alpha architecture, consisting of three
instruction extensions and precise exception reporting for arithmetic operations. The
three instruction extensions are:

* BWX for byte/word operations
e FIX for floating-point operations
e MVI for multimedia

Usethe AMASK instruction (see Section 2.15) to test for the presence of these exten-
sions. Using AMASK makes it possible to generate efficient code that uses the exten-
sions, while still running correctly on implementations that do not contain them. Seethe
Alpha Architecture Handbook, Version 4 for more details.

The 21264 also has new instructions for memory prefetch, described in Section 3.6.

3.2 Instruction Alignment

Where possible, branch targets should be octaword (16-byte) aligned. Use NOP instruc-
tions to pad code for alignment. The 21264 discards NOP instructions early in the pipe-
line, so the main costs are space in the instruction cache and instruction fetch
bandwidth. Appendix A of the Alpha Architecture Handbook, Version 4, defines three
stylized NOPs: a universal NOP, an integer NOP, and a floating-point NOP:

NP == LDQURBL, O(R)
NP == BIS R, R31, R3l
FNCP == OPYS F31, F31, F31

From the standpoint of instruction scheduling, the 21264 treats all three NOP forms
identically. See Section 2.5.

21264 Compiler Writer’s Guide Guidelines for Compiler Writers ~ 3-1

Data Alignment

Always align routine beginnings and branch targets that are preceded in program order
by:

e Computed jumps
¢ Unconditiona branches
¢ Return instructions

Always align targets of computed jumps (JMP and JSR), even if thereis afall-through
path to the target.

Although not generally recommended, it may be beneficial to align branch targets that
can aso be reached by afall through.

3.3 Data Alignment

Asin previous implementations, references to unaligned data continue to trap and are
completed in software. Programmers are encouraged to align their data on natural
boundaries. When data cannot be aligned, use the nontrapping sequences listed in the
Alpha Architecture Handbook, Version 4.

Because the 21264 implements the BWX extension, it is beneficial to do unaligned
word (16-bit) operations with two byte operations. For example, the following
sequence loads an unsigned, unaligned word:

LDBU T3, 1(T0)

LDBU T2, (T0)

SLL T3, 8, T3
BS T2, T3, O

3.4 Control Flow

Asin previous implementations, the compiler should lay out code so that fall throughis
the common path. For the 21264, the line predictor isinitialized to favor afall-through
path. Furthermore, on a demand miss, the next three lines are prefetched into the
instruction cache. However, code layout does not affect branch prediction. Branch pre-
diction on the 21264 is fully dynamic; the direction of the branch does not affect the
prediction.

3.4.1 Need for Single Successors

Code should be arranged so that each alignhed octaword (group of four instructions) has
at most one likely successor, because each of the following predictors stores only one
prediction for each octaword:

* Theline predictor
e The IMP/JSR predictor (which uses the line predictor)
e Parts of the branch predictor

To ensure that there is only one successor, include at most one change of control flow
instruction in each octaword. BSR and JSR instructions should be the last instruction in
the octaword, so that the octaword does not have both the call target and the fall-
through octaword as successors. If an octaword has a IMP or JSR, there should not be
another control flow instruction, CMOV, LDx_L, STx_C, WMB, MB, RS, RC, or

3-2 Guidelines for Compiler Writers 21264 Compiler Writer’s Guide

Control Flow

RPCC instruction; these instructions prevent the line predictor from training. If the
compiler puts multiple rarely taken conditional branches in the same octaword, there
will not be a problem with adiasing in the line predictor or the branch predictor.

3.4.2 Branch Prediction

The branch predictor in the 21264 is sophisticated and can predict branch behavior
where the behavior depends on past history of the same branch or previous branches.
For example, branches are predicted that tend to go in the same direction or that have
patterns. However, the following instructions interfere with the branch predictor and
cause it to predict fall through when placed in the same octaword as conditional branch
instructions: LDx_L, STx_C, WMB, MB, RS, RC, and RPCC.

Branches that cannot be predicted are costly, so try to use the conditional move instruc-
tion (CMQV) or logical operations to eliminate branch instructions. If a conditional
branch guards afew instructions, it is almost always beneficial to eliminate the branch.
For larger blocks of code, the benefit depends on whether the branch is predictable.

3.4.3 Filling Instruction Queues

Normally, the 21264 can fetch one aligned octaword per cycle and fill the instruction
gueues. There are some situations where it fetches less, which can reduce performance
if the 21264 isremoving instructions from the queues (issuing them) faster than they
can befilled. The 21264 can predict at most one branch per cycle; if an aligned octa-
word contains n branches, it takes n cyclesto fetch the entire aligned octaword. Thus,
there can be a penalty for placing more than one branch in an octaword, even if all the
branches are rarely taken. However, spacing out branches by padding the octaword with
NOPs does not speed up the fetch. Thisis usually only a problem for code with very
high ILP (instruction-level parallelism), where instruction fetch cannot keep up with
execution.

3.4.4 Branch Elimination

Removing branches eliminates potential branch mispredicts, improves instruction
fetch, and removes barriers to optimization in the compiler. Many branches can be
removed by using the CMOV instruction or logical instructions. The following sections
describe some techniques for eliminating branches that are specific to the Alpha
instruction set.

3.4.4.1 Example of Branch Elimination with CMOV

The C code in the following example can be implemented without branches by using
the CMQV instruction.

In the example, the variable d is assigned on both paths, so it is replaced with an uncon-

ditional assignment — the value from one path followed by a CMOV to conditionally
overwrite it. The variable is not live out of the conditional, so its assignment can also
be done unconditionally. To conditionalize the store (*p=a), a dummy location called
the bit bucketBB) is created on the stack, and the address register for the store is over-
written with the bit bucket address to prevent the store from occurring when the condi-
tion is false.

21264 Compiler Writer’s Guide Guidelines for Compiler Writers ~ 3-3

Control Flow

The C code:

if (a<h) {
c=a+b
d=c + 1;
*p:a;

Implementation using the CMQV instruction;

QWLT A B, =)
ADDL A B C

ADL G 1, RL
MY 2, D

QVDANE RO, R, D

QD/EQ RO, BB, P

STL A (P

3.4.4.2 Replacing Conditional Moves with Logical Instructions

If an octaword contains n CMQV instructions, it takes n+1 cyclesto put that aligned
octaword into the instruction queues. Thisis only a problem for code with very high
ILP. When executing, the CMQV instruction istreated like two dependent instructions.
If possible, it isusually agood ideato replace a CMOV instruction with one or two log-
ical instructions. Integer compare instructions produce a value of zero or one. By sub-
tracting one from the result of acompare, the values are all zeroes or al ones, which
makes a convenient mask in evaluating conditional expressions. For example:

if (a<hb)yc=0
could be implemented with:

QWLT A B, RO
OMDINE RO, R31, C

But a better sequence that consumes the same amount of execution resources but less
fetch resourcesis:

QWPLT A B, RO
SBQ R, 1, RO
AD R, o C

3.4.4.3 Combining Branches

Multiple dependent branches can often be combined into a single branch. For example,
the Cexpression(a < b & & ¢ < d) can be computed with:

QWPLT A B, RL
BEQ R, L1
QWwLT G D, RL
BEQ R, L1

3-4 Guidelines for Compiler Writers 21264 Compiler Writer’s Guide

SIMD Parallelism

or equivaently as:

QWLT A B RL
aWLT G D R
AND R, R, R
BRQ R, L1

Combining the two branches into one branch avoids the problems caused by multiple
branchesin the same aligned octaword. Of even greater benefit, the combined branch is
usually more predictable than the two original branches.

3.4.5 Computed Jumps and Returns

The targets of computed jumps (JMP and JSR instructions) are predicted differently
than PC-relative branches and require special attention. Thefirst time a IMP or JSR
instruction is brought into the cache, the target is computed by using the predicted tar-
get field contained in the jump instruction to compute an index into the cache, com-
bined with the tag currently contained in that index. If that prediction iswrong, the
processor quickly switches to another prediction mode that uses the line predictor for
future occurrences of that jump.

Because the line predictor predicts aligned octawords and not individual instructions, it
aways predicts the beginning of an aligned octaword even if the target is not the first
instruction. Thus, it isimportant to align targets of computed jumps. Note that even if
the predicted target field is correct in the IMP instruction, it still mispredictsif the tar-
get is not in the cache because the tag iswrong. Therefore, the compiler should both set
the hint field bit and align the jump target so that line prediction will work.

Thetarget of aRET instruction is predicted with a return stack.

e BSR and JSR instructions push the return address on the prediction stack.

* RET instructions pop the current stack entry as prediction for the return address.
e JSR _COROUTINE instructions both pop and push the stack.

Calls and returns must be nested and appropriately paired for the stack to generate cor-
rect predictions. The stack holds 32 predictions and is actually implemented as alinked
list on top of acircular buffer. Each push to the stack allocates a new entry in the buffer
and the prediction for agiven call isoverwritten and lost if 32 or more calls are fetched
before the matching return.

3.5 SIMD Parallelism

Programs can do SIMD-style (single instruction stream, multiple data stream) parallel-
isminregisters. SIMD parallelism can greatly reduce the number of instructions exe-

cuted. The MV I instructions support SIMD parallelism and some non-MV 1 instructions

are also useful. A simple example isimplementing a byte-at-a-time copy loop with

guadword copies. Another example istesting for a nonzero bytein an array of eight

bytes with a single quadword load — a BNE instruction can determine if any byte is
nonzero; a CMPBGE instruction can determine which byte is nonzero. See Appendix B
for an example of SIMD parallelism.

21264 Compiler Writer’s Guide Guidelines for Compiler Writers ~ 3-5

Prefetching

3.6 Prefetching

Prefetching is very important (by afactor of 2) for loops dominated by memory latency
or bandwidth. The 21264 has three styles of prefetch:

e Prefetch for loading data that is expected to be read only (normal prefetch).
Reduces the latency to read memory.

e Prefetch for datathat will probably be written (prefetch with modify intent).
Reduces the latency to read memory and bus traffic.

* A specia WH64 instruction to execute if the program intends to write an entire
aligned block of 64 bytes (write hint 64). Reduces the amount of memory band-
width required to write a block of data.

The prefetch instructions and write hints are recognized as prefetches or ignored on pre-
21264 implementations, so it is always safe for acompiler to use them. The load
prefetches have no architecturally visible effect, so inserting prefetches never causes a
program error. Because of its more powerful memory system, prefetches on a 21264
have more potential benefit than previous Alphaimplementations and unnecessary
prefetching is less costly. See Section 2.6 for a description of the instructions.

Always prefetch ahead at least two cache blocks. Prefetch farther ahead if possible,
unless doing so requires more than eight offchip referencesto be in progress at the same
time. That is, for aloop that references n streams, prefetch ahead two blocks or 8/n
blocks, whichever is greater. Note, however, that for short trip count loops, it may be
beneficial to reduce the prefetch distance, so that the prefetched dataislikely to be
used.

Prefetches to invalid addresses are dismissed by PALcode, so it is safe to prefetch off
the end of an array, but it doesincur asmall (Iess than 30 cycle) performance penalty.
Prefetches can have alignment traps, so align the pointer used to prefetch.

The WH64 instruction sets an aligned 64-byte block to an unknown state. Use WH64
when the program intends to completely write an aligned 64-byte area of memory.
Unlike load prefetches, the WH64 instruction modifies data, and it is not safe to execute
WH64 off the end of an array. Although a conditional branch can guard the WH64
instruction so that it does not go beyond the end of an array, a better solution isto create
adummy aligned block of 64 bytes of memory (the bit bucket) on the stack and use a
CMOV instruction to select the bitbucket address when nearing the end of the array. For
example:

OWLT R, R, R2 # test if there are at least 64 bytes |eft
OMOVEQ Rz, R3, R4 #if not, overwite R4 with address

of the bit bucket
W64 R4

3.7 Avoiding Replay Traps

The 21264 can have several memory operations in progress at the same time, rather
than waiting for one memory operation to compl ete before starting another. The 21264
can reorder memory operations if one operation is delayed because its input operands
are not data ready or because of system dynamics.

3-6 Guidelines for Compiler Writers 21264 Compiler Writer’s Guide

Avoiding Replay Traps

There are some situations where the execution of a memory operation must be aborted,
together with all newer instructions in progress. When the situation is corrected, the
instruction is refetched and execution continues. Thisis called areplay trap and is
described in Section 2.11.

A replay trap is a hardware mechanism for aborting speculative work and is not the

same as a software exception or trap. Typically, the main cost of areplay trap isthat the
processor must wait for the condition that caused the trap (such as a cache missor a

store queue drain) to clear before executing any instructions after the trapping instruc-

tion. In addition, instructions must be restarted in the pipeline, which adds to the pen-

alty listed in Table 2—1. The actual effect on performance depends on the length of the
stall and how much the processor can overlap the stall with other work, such as restart-
ing the pipeline.

Replay traps occur when there are multiple concurrent loads and/or stores in progress

to the same address or same cache index. The farther apart the loads and/or stores are in
the instruction stream, the less likely they will be active at the same time. It is impossi-
ble to predict exactly how much distance is needed, but 40 instructions should be safe if
the data is in the level 2 cache. The best way to avoid replay traps is to keep values in
registers so that multiple references to the same address are not in progress at the same
time.

Generally, there are three causes for multiple loads and stores to the same address. The
following lists these causes and suggests remedies:

e High register pressure causes repeated spills and reloads of variables. Profile infor-
mation is especially useful to ensure that frequently referenced values are kept in
registers.

* Memory aiasing prevents the compiler from keeping valuesin registers. Pointer
and interprocedural analysis are important techniques for eliminating unnecessary
memory references.

* Reuse of stack location for temporaries |eads to repeated references to the stack
address. Immediate reuse of stack locationsis discouraged because it creates a
dependence through memory that the 21264 is unable to remove.

Section 2.11 describes the general concept of replay traps and provides some exampl es.
The following sections describe the replay traps that have been found to occur fre-
quently and contains specific recommendations for avoiding them.

3.7.1 Store-Load Order Replay Trap

Stores go into the store queue, and loads to the same address can get the data from the
store queue. Operations tend to be executed in program order, unless an operation is not
dataready. However, if the processor reorders the instructions so that a newer load to
the same address executes before the store, areplay trap occurs and execution restarts at
theload. Thisis called a store-load order replay trap. If this happens frequently enough,
the processor will learn to delay issuing the load until all previous stores have com-
pleted. Delaying the load can decrease performance because it must wait for all stores,
rather than just stores to the same address. However, the delay is usually faster than

replay trapping.

21264 Compiler Writer’s Guide Guidelines for Compiler Writers ~ 3-7

Avoiding Replay Traps

The new instructions, FTOIx and I TOFx, transfer data between the floating-point and
integer register files. Since they avoid situations where data is stored and immediately
loaded back, they avoid store-load order replay traps and should be used wherever pos-
sible.

3.7.2 Wrong-Size Replay Trap

If thereis a store followed by aload that reads the same data, and the load datatype is
larger than the store, then the load must get some of the data from the store queue and
the rest from the cache. The processor replay traps until the store queue drains into the
Dcache and then gets all the data from the cache. Thisis called awrong-size replay
trap. Unlike the store-load order replay trap, the wrong-size replay trap occurs even if
the store and load executein order. The trap can take over 20 cycles and can be avoided
by widening the store, narrowing the load, or eliminating the load and getting the value
from aregister. If the store datais larger than the load data, awrong-size replay trap
does not occur.

3.7.3 Load-Load Order Replay Trap

If two loads to the same address issue out of order, the processor will replay trap and
execute starting from the newer load. Unlike the store-load order replay trap, thereisno
mechanism that learns to delay the newer load until the first has issued. However,
instructions tend to issue in program order, unless they are not data ready. See Appen-
dix C for a code sequence that can enforce an ordering between loads.

3.7.4 Load-Miss Load Replay Trap

If thereisaload followed by another load to the same address and the first load misses,
then the processor replay traps until the data is loaded into the register for the first load.
Thisiscaled aload-missload replay trap. This trap occurs even if the loads are issued
in program order, so long asthe first load is waiting for a Dcache miss when the second
load issues. See Appendix C.

3.7.5 Mapping to the Same Cache Line

Loads and storesthat are in progress at the same time and map to the same cache line
(32K B apart) can replay trap. Thisis similar to the problem that direct-mapped caches
have, the difference being that the 21264 cache can hold two data items that map to the
same index, but can have only one memory operation in progress at atime that mapsto
any one cache index.

If possible, avoid loops where a single iteration or nearby interations touch datathat is
32K B apart. Avoid creating arrays with dimensions that are multiples of 32KB; pad the
array with extra cache blocks if necessary. Also note that prefetches can cause these
traps and out-of-order execution can cause multiple iterations of aloop to overlap in
execution, so when padding or spacing data references apart, one must consider factors
such as the prefetch distance and store delay in computing a safe distance.

3-8 Guidelines for Compiler Writers 21264 Compiler Writer’s Guide

Scheduling

3.7.6 Store Queue Overflow

Each store instruction is buffered in the store queue until it retires, up to a maximum of
32 stores. If the store queue overflows, the processor replay traps. To avoid overflow,
avoid code with a burst of more than 32 stores and do not expect the processor to sus-
tain more than one store per cycle.

3.8 Scheduling

The 21264 can rearrange instruction execution order to achieve maximum throughput.
However, it has limited resources: instruction queue slots and physical registers. The

closer the compiler’s static schedule is to the actual desired issue order, the less likely
the processor will run out of resources and stall. Therefore, it is still beneficial to sched-
ule the code as if the 21264 were an in-order microprocessor, such as the 21164. Soft-
ware pipelining is also beneficial for loops.

The basic model is a processor that can execute 4 aligned instructions per cycle. Sched-
ule for the resources as described in Table 2—2 and the latencies in Table 2—4 and
assume a cross-cluster delay will occur. When determining load latency, assume that
scalar references are Dcache hits and array and pointer references are not. Load laten-
cies in Table 2—4 are best case, so schedule for longer latencies if register pressure is not
high. Prefetch data where possible and assume the actual load is a Dcache hit.

To reduce Dcache bus traffic, loads should be grouped with loads, stores with stores,
two per cycle. Memory operations to different parts of the same cache block can com-
bine together. Group operations with different offsets off the same pointer where possi-
ble. Also, do operations in memory address order (such as a bunch of stack saves)
where possible.

3.9 Detailed Modeling of the Pipeline

Section 3.8 describes a simple model of the pipeline for use by a compiler. More
detailed models must take into account physical register allocation and Ebox slotting
and clustering. For most programs, the increase in speed from getting these details right
is minimal because the out-of-order issue mechanisms of the 21264 can smooth-out
minor scheduling mistakes without an effect on performance. Also, it is often difficult

for the compiler to accurately model the physical register usage and Ebox clustering
because the compiler cannot easily predict the order in which instructions will be exe-
cuted. However, for tightly scheduled loops, such as the example in Appendix B, it is
possible to produce schedules that achieve higher performance by more accurately
modeling the 21264. This section describes such a model.

3.9.1 Physical Registers

Physical registers are a resource that the compiler must manage to achieve optimal per-
formance. As described in Section 2.1.1.5, architectural registers are renamed to physi-
cal registers. A physical register is allocated when an instruction is placed in the
instruction queue and a physical register is released when the instruction is retired; the
physical register that is released is the prior mapping of the destination register. A dis-
tinct physical register is required to hold the result of each instruction that has not yet

21264 Compiler Writer’s Guide Guidelines for Compiler Writers ~ 3-9

Detailed Modeling of the Pipeline

retired; instructions that do not write aregister (such as stores, conditional branches,
prefetches, and other instructions that target R31 or F31) do not allocate a physical reg-
ister.

Table 3—1 presents the minimum latency between an instruction allocating a physical
register and the instruction releasing the physical register. That latency is divided into
the latency from the map stage to the retire stage and an additional latency from the
retire stage until the physical register is actually released. Note that instructions retire
in order — a delay in the retire of one instruction delays the retire and the release of
physical registers for all subsequent instructions. Table 3—1 is an approximation and
ignores several special cases and edge conditions in the register mapper.

Table 3—1 Minimum Latencies From Map to Release of a Physical Register

Instruction Class

Map-to-Retire Retire-to-Release Map-to-Release

Integer conditional branch 5 2! 7t
Integer multiply 5/112 2 7/132
Integer operate 5 2 7
Integer load 8 2 10
Integer store 8 2! 10t
Floating-point load 8 2 10
Floating-point store 12 4t 16t
Floating-point add 9 13
Floating-point multiply 9 13
Floating-point divide/square root 9+latency® 4 13+latency
Floating-point conditional branch 9 4 13
BSR/JSR 8 2 10

1 Conditional branches and stores do not release physical registers. However, their retire point delays

the release of registers from subsequent instructions.
2 Without/with the /V qualifier.

3 See Table 2-5 and Section 2.4.1

3.9.1.1 Integer Execution Unit

Of the 80 physical registers in the integer execution unit, 33 are available to hold the
results of instructions in flight.

The 80 physical registers are allocated as follows:

* 39 registers to hold the values of the 31 Alpha architectural registers — the value of
R31 is not stored — and the values of 8 PALshadow registers.

e 4lregistersto hold resultsthat are written by instructions that have not retired and
released a physical register. Of those 41, the mapper holds 8 in reserve to map the
instructions presented in the next two cyclest. This leaves 33 registers to hold the
results of instructionsin flight.

1 Reserving 8 registers is an approximation of a more complicated algorithm.

3-10 Guidelines for Compiler Writers

21264 Compiler Writer’s Guide

Detailed Modeling of the Pipeline

If 33 instructions that require an integer physical register have been mapped and have
not retired and released a physical register, stage 2 of the pipeline (see Section 2.2)
stalsif an additional integer physical register is requested.

For aschedule of integer instructions that contains loads or stores, the peak sustainable
rate of physical register allocation is 3.3 registers per cycle. (Thisisobtained by divid-
ing 33 instructions by a 10-cycle map-to-release latency.) Experiments have confirmed
that 3.2 physical registers per cycleisasustainable rate for integer schedules containing
loads or stores. Thisassumes theloads and stores are best-case Dcache hits. If there are
no loads or stores, it is possible to sustain 4 physical registers per cycle. Sometimesthe
best schedule has loads and stores grouped together and has significant stretches of reg-
ister-to-register instructions.

3.9.1.2 Floating-Point Execution Unit

Of the 72 physical registersin the floating-point execution unit, 37 are available to hold
the results of instructionsin flight.

The 72 physical registers are allocated as follows:

e 3lregisters to hold the values of the 31 Alpha architectural registers — the value of
F31 is not stored.

* 41 registersto hold results that are written by instructions that have not yet retired
and released a physical register. Of these 41, the mapper holds 4 in reserve to map
the instructions presented in the next two cyclesl. This leaves 37 registers to hold
the results of instructionsin flight.

If 37 instructions that require afloating-point physical register have been mapped and
have not retired and released a physical register, stage 2 of the pipeline (see Section 2.2)
stallsif an additional floating-point physical register is requested.

For a schedul e of floating-point instructions that contains floating-point |oads, the peak
sustainable rate of physical register allocation is 2.85 registers per cycle. (Thisis
obtained by dividing 37 instructions by a 13-cycle map-to-release latency.) Experi-
ments have confirmed that 2.9 physical registers per cyclezis asustainable rate for
floating-point schedules containing loads. This assumes the loads and stores are best-
case Dcache hits.

Floating-point stores take 3 cycles longer to retire than a floating-point operate. Even
though a store does not free aregister, it delays the retiring of subsequent instructions.
For schedules of floating-point instructions that contain floating-point stores, the peak
sustainable rate of physical register allocation is 2.31 registers per cycle. (Thisis
obtained by dividing 37 instructions by a 16-cycle map-to-release latency.) Experi-
ments have confirmed that 2.3 physical registers per cycleis a sustainable rate.

For schedules with no load or stores, only 2 floating-point operate instructions can be
executed per cycle, and physical register allocation should not be alimit for schedules
that respect the latencies of theinstructions. Thisistruefor square root and divide only
if theinstructions retire early (see Section 2.4.1).

1 Reserving 4 registers is an approximation of a more complicated algorithm.
2 Thefact that the experimental result is larger than our analytic result is due to approximations of the
map-to-release latencies and number of reserved registers.

21264 Compiler Writer’s Guide Guidelines for Compiler Writers 3-11

Detailed Modeling of the Pipeline

3.9.1.3 Register Files

The integer and floating-point register files are separate. Schedules that intermix inte-
ger and floating-point instructions must separately meet the limitsfor allocating integer
physical registers and floating-point physical registers. For example, a schedul e that
requires two integer physical registers and two floating-point physical registers per
cycleis sustainable.

3.9.2 Ebox Slotting and Clustering

Asdescribed in Section 2.1.2, the integer execution unit has four functional units,
implemented as two nearly-identical functional unit clusterslabeled 0 and 1. Each clus-
ter has an upper (U) and lower (L) functional unit called a subcluster. When instructions
are decoded, they are statically assigned (or slotted) to an upper or lower subcluster.
When instructions are issued, they are dynamically assigned (or clustered) to cluster O
or cluster 1. To obtain optimal performance, the programmer must understand the algo-
rithms used for slotting and clustering.

The dotting of an instruction is determined by its opcode and its position in the aligned
octaword that contains the instruction. The details of the slotting algorithm are
described in Section 2.3.2 and in Appendix A.

Most integer instructions have a one-cycle latency for consumers that execute within
the same cluster. There is an additional one-cycle delay associated with producing a
value in one cluster and consuming the value in the other cluster. If it isnot possible to
provide two cycles of latency for an integer instruction, controlling the cluster assign-
ment of the producer and consumer is necessary to avoid a stall.

The following rules are used to issue an instruction:
e Aninstruction is a candidate to be issued when its operands are data ready.

— Values produced by integer instructions will be data ready in one cluster before
another.

— Values loaded from cache or memory are available in both clusters at the same
time.

e Older data-ready instructions have priority over younger instructions.

* Aninstruction assigned to the upper subcluster (U) will first check if it canissueon
cluster 1, then on cluster O.

e Aninstruction assigned to the lower subcluster (L) will first check if it can issue on
cluster O, then on cluster 1.

Appendix B contains an example of scheduled code that considers these issue rules.

3-12 Guidelines for Compiler Writers 21264 Compiler Writer’s Guide

Rule 1 — Four of a Kind

A

Ebox Slotting Rules

Ebox slotting is the assignment of integer instructions to upper (U) and lower (L) sub-
clusters (see Section 2.1.2). The dotting of an instruction is determined by its opcode
(see Section 2.3.1) and by the contents of the aligned octaword that contains the instruc-
tion (see Section 2.3.2).

Table 2-2 classifies the subcluster requirements of each instruction. There are three cat-
egories:

Code Meaning

U Theinstruction only executesin an upper subcluster.
L Theinstruction only executesin alower subcluster.
E The instruction could execute in either an upper or lower subcluster, or the instruc-

tion does not execute in an integer pipeline (such as floating-point instructions).

If all of the instructions in an aligned octaword are classified as U or L, the slotting
assignments are completely determined by the instruction classification. If one or more
of the instructions are classified as E, the slotting assignments are determined by all of
the instructions in the aligned octaword, as defined in Table 2—3. Instructions that do
not execute on an integer functional unit, such as floating-point instructions and NOPs,
do affect the slotting of integer instructions contained in the same aligned octaword.

This appendix provides some slotting rules that can be inferred from Table 2-3. Table
A-1 presents the slotting assignments from Table 2—3, sorted by the relevant rule.

Sections A.1 through A.4 list the rules for slotting four instructions contained in an
aligned octaword.
A.1 Rule 1 — Four of a Kind

a. If dl four instructions in an octaword are classified U, the classification is hon-
ored, and the slotting isall U.

b. If al four instructions in an octaword are classified L, the classification is hon-
ored, and the dlottingisall L.

A.2 Rule 2 — Three of a Kind

a. If threeand only threeinstructions are classified U, the classification is honored
and the other instruction isslotted to L.

21264 Compiler Writer’s Guide Ebox Slotting Rules A-1

Rule 3 — Two of a Kind

b. If three and only threeinstructions are classified L, the classification ishonored
and the other instruction is slotted to U.

A.3 Rule 3 — Two of a Kind

a. If two and only two instructions are classified U, the classification is honored
and the other two instructions are lotted to L.

b. If two and only two instructions are classified L, the classification is honored
and the other two instructions are dotted to U.

A.4 Rule 4 — One of a Kind and None of a Kind

A-2

If an aligned octaword contains at most one instruction classified as U and at most one
instruction classified as L, then the slotting is done in terms of the two aligned quad-
words contained in the octaword. Note we use little endian ordering of quadwords
within octawords and instructions within quadwords; see the Alpha Architecture Hand-
book, \Version 4, Section 2.3.

a. If oneand only one instruction in an octaword is classified U and at most one
instruction in the octaword is classified as L, then in the aligned quadword con-
taining the instruction classified as U, the classification of the instruction to U
is honored, and the other instruction in the quadword is dotted to L.

b. If oneand only oneinstruction in an octaword is classified L and at most one
instruction in the octaword is classified as U, then in the aligned quadword con-
taining theinstruction classified asL, the classification of theinstructiontoL is
honored, and the other instruction in the quadword is slotted to U.

c. If bothinstructionsin the second quadword of an octaword are classified asE,
then the first instruction in the second quadword is slotted to L and the second
isdotted to U.

d. If bothinstructionsin the first quadword of an octaword are classified as E,
then the slotting of these instructions is the same as the dotting of the second
quadword. That is, the first instruction in the first quadword is given the same
dotting as the first instruction in the second quadword, and the second instruc-
tioninthefirst quadword is given the same slotting as the second instruction in
the second quadword.

Table A-1 Instruction Slotting for an Aligned Octaword

Rules from Sections A.1 Classification * Slotting
Through A.4 3210 3210
Rule 1la uuuu uuuu
Rule 1b LLLL LLLL
Rule 2a EUUU LUuUuU
UEUU uL uUu
UUEU uulLu
UUUE UuuultL
LUuUuU LUuUuU

Ebox Slotting Rules 21264 Compiler Writer’s Guide

Rule 4 — One of a Kind and None of a Kind

Table A-1 Instruction Slotting for an Aligned Octaword (Continued)

Rules from Sections A.1 Classification Slotting
Through A.4 3210 3210
uL uUu uL uu
uuLu vuuLu
uuultL uuultL
Rule 2b ELLL uLLL
LELL LULL
LLEL LLUL
LLLE LLLU
uLLL uLLL
LULL LULL
LLUL LLUL
LLLU LLLU
Rule 3a UUEE uulLL
UUEL uulLL
UULE uulLL
UEUE UL UL
UEUL UL UL
UL UE UL UL
UEEU uL L U
UEL U uL L U
UL EU uL L U
EUUE LUUL
EUUL LUUL
LUUE LUUL
EUEU LuL U
LUEU LuL U
EUL U LuL U
EEUU LLUU
ELUU LLUU
LEUU LLUU
Rule 3b LLEE LLUU
LLEU LLUU
LLUE LLUU
LELE LuL U

21264 Compiler Writer’s Guide

Ebox Slotting Rules

A-3

Rule 4 — One of a Kind and None of a Kind

Table A-1 Instruction Slotting for an Aligned Octaword (Continued)

Rules from Sections A.1 Classification * Slotting
Through A.4 3210 321

Rule 3a, 3b

Rule 4a, 4b

Rule 4a, 4d

Rule 4b, 4d

rrmmyc mr —r—rccmmimmmHr- -~ ccccmmoaommacmmr>-rH—r — — ™
cfmr— moa<cmmmmIoCccr r—|r ccrrrrrcmCcmm~™- O O - O mamm C
rmc|lcrlcmmrHCrH - CcCcCcr|jcrcrcrl,mrhmCCcCCcPmMHP O cccrr
c|lc m/rmrmcCc|rccrrcrrmc|lCcckmCPHQP r|rmrOrrrrCcCcCcCcr - cCc cCc|o

mm mm mMmc m -~ m”~~ mMmCcmcr CcrCcr |k m mmcacme - K mmeE ™
r,mCccr|)mrPbCccrHrrrrCccr QP CCC|lCCCCCCCcccr0PP &

mmmmmMmTmMmCcm ™~ m~~ mcccr CcrPr M| KKK KrmcmrQPE P cm
c/cmrmrcCcjccrQHrr~rrccrHPrFHPh P CcCcrHrrPr CcjCcCcCcrHr QPP PP C CcCcCccCcc

Rule 4a, 4b, 4d

A-4 Ebox Slotting Rules 21264 Compiler Writer’s Guide

Rule 4 — One of a Kind and None of a Kind

Table A-1 Instruction Slotting for an Aligned Octaword (Continued)

Rules from Sections A.1 Classification Slotting
Through A.4 3210 3210
UL EE UL UL
Rule 4c, 4a EEEU uL L U
EEUE UL UL
Rule 4c, 4b EELE uL L U
EEEL UL UL
Rule 4c, 4a, 4b EEUL UL UL
EELU uL L U
Rule 4c, 4d EEEE UL UL

1

Instructions are ordered right to left within an octaword, in little-endian order,
as defined in the Alpha Architecture Handbook, Version 4, Section 2.3. The

first instruction is on the right, and the last is on the left.

21264 Compiler Writer’s Guide

Ebox Slotting Rules

A-5

Initial Example C Code

B

An Example of Carefully Tuned Code

This appendix provides an example of high performance coding techniques for the
21264. Asthe example, we consider aloop to compute the sum of avector of 16-bit
integers. After presenting the loop written in C code, we introduce a succession of cod-
ing techniques that tune the loop for the 21264.

B.1 Initial Example C Code

The following is the loop written in C:

unsi gned int sun{ unsigned short *p, int |ength)
{
unsi gned int csum= 0;
for (i=0; i <length; i++) {
csum += *p++;
}

return csum

}
B.2 Inner Loop as Alpha Assembly Language

Thefollowing is asimple translation of the inner loop from Section B.1 into Alpha
assembly language:

$16 is the pointer p
$17 is the counter |ength
$0 is csum assune it is initalized to zero

| oop:
LDNJ $18, ($16) # Load *p
LDA $16, 2($16) # P+
LDA $17 -1($17) # Decrenent | ength
ADDQ $0, $18, $0 # csum += *p
BGT $17, | oop # Loop back

To obtain high performance we need to apply a number of standard optimizations to
this loop, such asloop unrolling, software pipelining, and prefetching. Before we do
this, we introduce SIMD parallelism and change the loop to operate on four 16-bit
words at atime. To keep the example simple, we assume that the vector p is quadword-
aigned, that the vector length is a multiple of four, and that the length is less than
65536. Our strategy isto load a quadword HGFEDCBA and split it into two chunks

21264 Compiler Writer’s Guide An Example of Carefully Tuned Code B-1

Applying SIMD Parallelism to the Inner Loop

HGOODCO00 and O0OFEOOBA.. By splitting the quadword, we introduce 16 guard bits
between the data chunks. We then sum each chunk within the loop, accumulating two
sums per chunk. On loop exit, we will need to accumulate al of the partial sums.

B.3 Applying SIMD Parallelism to the Inner Loop

Thefollowing isa SIMD version of the inner loop from Section B.2:

$16 is the pointer p
$17 is the counter |ength
$24, $25 hold the partial suns on |oop exit

| oop:
LDQ $18, ($16) # Load *p: HGE-EDCBA
ZAPNOT $18, 0x33, $0 # Chunk 0: OOFEOORA
ZAP $18, 0x33, $1 # Chunk 1: H300DA0
SR $1, 16, $1 # Shift: 00HR0DC
ADDQ $24, $0, $24 # Accumul ate 0
ADDQ $25, $1, $25 # Accumul ate 1
LDA $16, 8($16) # p++
LDA $17, -4($17) # Decrenent |ength
BGT $17, | oop # Loop back

At the end of the loop, the partial sums arein $24 and $25, and they need to be accumu-
lated.

B.4 Optimizing the SIMD Loop

B-2

We now consider an optimized version of the SIMD loop from Section B.3. We apply
the standard optimizations. unroll the SIMD loop by two, software pipeline the loop,
and introduce a prefetch. We carefully schedule the code to control physical register uti-
lization and Ebox dlotting and clustering, as described in Section 3.9.

The following code is blocked into five aligned octaword groups of four instructions;
each group is contained in an aligned octaword. For each instruction, we indicate the
functional unit on which the instruction will execute (one of UOQ, U1, LO, L1).

The goal of thisloop isto execute in five cycles; it is scheduled as if the target isan in-
order processor.

$16 is the pointer p

$17 is the counter length

$24, $25 hold the partial suns on | oop exit

$18, $19 have the first two quadwords of data:
$18: HGFEDBA

$19: PONMLKII

.align 4 # ctaword al i gnnent

| oop:
ZAPNOT $18, 0x33, $0 # UL chunk 0: OOFEOOBA
B S $31, $31, $31 # L NP
ZAP $18, 0x33, $1 # W chunk 1: H30DX0
LDQ $18, 16($16) # L1 |l oad 2 ahead *p: HGEEDCBA

An Example of Carefully Tuned Code 21264 Compiler Writer’s Guide

BI S

LDA

Bl S

LQ

LDL

LDat
ADDQ
BGT
Bl S

$24,
$31,

$1,

$17,

$19,
$31,
$19,
$19,

$24,
$25,
$27,
$31,

$16,
$25,
$17,
$31,

$0, $24
$31, $31
16, $1
-8($17)
0x33, $0
$31, $31
0x33, $27
24(%16)

$0, $24
$1, $25
16, $27
512($16)

16($16)

$27, $25
| oop

$31, $31

Branch Prediction Considerations

I I S Y
oc6" E

H*H OB OH

* H B

6™ &

L

accumul ate 0

NCP

shi ft: 00HX0DC

count down

chunk 3: OONMDOJI
NCP

chunk 4: PQOLKOO

| oad 2 ahead *p: PONMLKII L1

accumul ate 0
accumul ate 1
shi ft: 00PAOLK
pref etch

p++
accunul ate 1
| oop control
NCP (replace with fall through)

Sections B.5 through B.8 discuss how thisloop is optimized for the 21264, considering
branch prediction, instruction latency, physical register utilization, memory bandwidth,
and Ebox dotting and clustering.

B.5 Branch Prediction Considerations

We are assuming the loop from Section B.4 has alarge trip count. The branch predictor
will quickly train on aloop-closing branch (within afew iterations) and essentially no
cycleswill be spent in branch mispredict penalties.

B.6 Instruction Latency Considerations

When an integer ALU instruction produces aresult in one octaword that is consumed in
the next, both the producer and consumer are carefully scheduled so that they are
assigned to the same cluster. The scheduling avoids stalls due to the one cycle cross-
cluster delay. For example, the result of the ZAPNOT in the first octaword in the code
example from Section B.4 is read by the ADDQ in the second octaword; both the ZAP-
NOT and the ADDQ will execute on cluster 1. Cluster assignment is controlled by
observing the rules described in Section 3.9.2; we describe this process in Section B.9.

1 Inthefifth aligned octaword group, consider that the fourth instruction, rather than being a NOP, was
the beginning of the epilog of the loop. If this fourth instruction wasan L or E, it would function as
shown. If the fourth instruction was U, that octaword would slot LLUU. To preserve the five-cycle
schedule, the first two instructions would need to be swapped:

ADDQ LO
LDA L1
BGT Ul
XXX U0

21264 Compiler Writer’s Guide

An Example of Carefully Tuned Code B-3

Physical Register Considerations

Thevector datais prefetched with aLDL in the fourth octaword. We are assuming each
LDQ isaDcache hit. We have allowed five cycles from the LDQ to the consumers of
the load data. Thisislonger than the minimum latency. However, there will be conten-
tion for the Dcache with the prefetched data returning from memory. Some stalls may
occur. It isbest to separate as far as possible loads from consumers. In this software
pipelined schedule, we read the data from the previous load in the same cycle that we
issue the next instance of the load. We could only increase the distance from load to
consumer by further unrolling the loop.

B.7 Physical Register Considerations

Asdescribed in Section 3.9.1, aphysical register is alocated when an instruction is
mapped and released when the instruction retires. Instructions that do not write aregis-
ter, or that write register R31, do not require a physical register. Each of the first four
octawords in the schedule described in Section B.9 require allocation of three physical
registers. The fifth octaword requires two physical registers. On average, the schedule
requires 2.8 physical registers per octaword. As described in Section 3.9.1, thisisasus-
tainable rate for integer schedules containing loads. This schedule will not stall due to
physical register requirements.

We added 3 NOPsto the schedul e to reduce the physical register requirements. Without
the NOPs, the requirement is 3.5 physical registers per octaword, which isnot a sustain-
able rate for a schedule with loads. If we know we are going to stall for other reasons
(for example, we exceed the memory bandwidth of the machine), then the NOPs serve
No purpose.

Physical registers are released when instructions retire, and instructions retire in order.

The latency from map-to-release (see Table 3-1) is longer for integer loads and stores
than for integer operates. In the example in Section B.4, we place the loads as the last
instruction in each octaword, to permit the integer operates that precede the load in the
octaword to retire without waiting for the load.

Branches might require additional processing when they are retired. To minimize retire
latency, it is best not to put an instruction with a long retire latency (such as a load) in
the same octaword as a branch. This is a small effect, and should only be done if it does
not introduce any other stalls in the schedule.

B.8 Memory Bandwidth Considerations

The loop in Section B.4 is attempting to do two quadword fetches (16 bytes) every five
cycles. For example, on a 500-MHz machine, this is 16 bytes per 10 hanoseconds or 1.6
GB/second. This rate is comfortably within the Bcache bandwidth of a 500-MHz
machine, but might be slightly beyond the sustainable memory bandwidth. For mem-
ory-resident data, we cannot achieve a loop iteration in five cycles. However, by
prefetching 512 bytes ahead, we will continually have eight cache-line requests out-
standing, which will fully utilize the available memory bandwidth and achieve the peak
performance of the system.

B.9 Ebox Slotting Considerations

This section describes how the instructions from Section B.4 are slotted and clustered,
using the rules defined in Appendix A and Section 3.9.2.

B-4 An Example of Carefully Tuned Code 21264 Compiler Writer’s Guide

Ebox Slotting Considerations

First Aligned Octaword
For the following first aligned octaword from Section B.4:

ZAPNOT $18, 0x33, $0 # UL chunk 0: OOFEOOBA
BIS $31, $31, $31 #L NP
ZAP $18, 0x33, $1 # W chunk 1: H30DMO0
LDQ $18, 16($16) # L1 | oad 2 ahead *p: HG-EDCBA
e Slotting
ZAPNOT and ZAP are classified U, LDQ isL, and BISisclassified E. By rule 3a,
BlSisassigned L.
e Clustering
All of the instructions in the octaword are data ready, so they are issued in order as
follows:
— ZAPNOT

Slotted upper (U). R18 is generated by a load and is available on both clusters
simultaneously. Upper instructions try cluster 1 first. This succeeds. Assigned
to Ul.

- BIS
Because the BIS is a NOP, it is not clustered.
- ZAP

Slotted upper (U). R18 is available on both clusters. Upper instructions try
cluster 1 first. This fails. Cluster 0 is available. Assigned to UO.

- LDQ
Slotted lower (L). R16 is available only on cluster 1 (except for the first loop
iteration) because R16 was written into cluster 1 in the fifth aligned octaword.
Cluster 1 is available. Assigned to L1.
Second Aligned Octaword
For the following second aligned octaword from Section B.4:

ADDQ $24, $0, $24 # UL accunul ate O
Bl S $31, $31, $31 #L NP
SR $1, 16, $1 # W shift: O0OH30DC
LDA $17, -8($17) # LO count down
e Slotting

SRL isclassfied U and the remaining operations are classified E. By Rule 4a, LDA
isassigned L and, by rule 4d, ADDQ and BIS areassigned U and L.

e Clustering

All of the instructions in the octaword are data ready, so they are issued in order as
follows:

— ADDQ

21264 Compiler Writer’s Guide An Example of Carefully Tuned Code B-5

Ebox Slotting Considerations

Slotted upper (U). R24 is available on both clusters. RO is available only on
cluster 1. Assigned to U1.

BIS

Because the BIS is a NOP, it is not clustered.

SRL

Slotted upper (U). R1 is available only on cluster 0. Assigned to UOQ.
LDA

Slotted lower (L). R17 is available on both clusters. Lower instructions try
cluster 0O first. This succeeds. Assigned to LO.

Third Aligned Octaword
For the following third aligned octaword from Section B.4:

ZAPNOT $19, 0x33, $0 # UL chunk 3: OONMWDOJI

Bl S $31, $31, $31 #L NP

ZAP $19, 0x33, $27 # W chunk 4: POOOLKOO

LDQ $19, 24($16) # L0 load 2 ahead *p: PONMLKJI L1
e Slotting

The pattern is the same as the first octaword. ZAP and ZAPNOT are classified U,
LDQisL, and BlSisclassified E. By rule 3a, BISisassigned L.

e Clustering

All of the instructions in the octaword are data ready, so they are issued in order as
follows:

ZAPNOT

Slotted upper (U). R19 is generated by a load, and is available on both clusters
simultaneously. Upper instructions try cluster 1 first. This succeeds. Assigned
to ULl.

BIS
Because the BIS is a NOP, it is not clustered.
ZAP

Slotted upper (U). R19 is available on both clusters. Upper instructions try
cluster 1 first. This fails. Cluster 0 is available. Assigned to UO.

LDQ

Slotted lower (L). R16 is available on both clusters. Lower instructions try
cluster O first. This succeeds. Assigned to LO.

B-6 An Example of Carefully Tuned Code 21264 Compiler Writer’s Guide

Ebox Slotting Considerations

Fourth Aligned Octaword
For the following fourth aligned octaword from Section B.4:

ADDQ $24, $0, $24 # UL accumul ate O

ADDQ $25, $1, $25 # L0 accumul ate 1

SR $27, 16, $27 # W0 shift: OOPQOOLK

LOL $31, 512($16) # L1 prefetch
Slotting

Thefourth octaword has the same pattern as the second. SRL isclassfied U, LDL is
classified L, and the remaining operations are classified E. By rule 4d, ADDQ and
ADDQ areassigned U and L.

Clustering

All of the instructions in the octaword are data ready, so they areissued in order as
follows:

— ADDQ

Slotted upper (U). R24 is available on both clusters. RO is available only on
cluster 1. Assigned to U1l.

— ADDQ

Slotted lower (L). R25 and R1 are available on both clusters. Lower instruc-
tions try cluster O first. This succeeds. Assigned to LO.

- SRL
Slotted upper (U). R27 is available only on cluster 0. Assigned to UO.
- LDL

Slotted lower (L). R16 is available on both clusters. Lower instructions try
cluster O first. This fails. Assigned to L1.

Fifth Aligned Octaword
For the following fifth aligned octaword from Section B.4:

LDA $16, 16($16) # UL p++

ADDQ $25, $27, $25 # L0 accumul ate 1

BGT $17, | oop # W | oop control

BIS $31, $31, $31 # L NP (replace with fall through)
Slotting

In the fifth octaword, the branch is classified U and the remaining operations are
classified E. By Rule 4a, BISisassigned L, and, by rule 4d, LDA and ADDQ are
assigned U and L, respectively.

Clustering

All of the instructions in the octaword are data ready, so they areissued in order as
follows:

— LDA

21264 Compiler Writer’s Guide An Example of Carefully Tuned Code B-7

Ebox Slotting Considerations

Slotted upper (U). R16 is available on both clusters. Upper instructions try
cluster 1 first. This succeeds. Assigned to U1.

— ADDQ

Slotted lower (L). R25 is available only on cluster 0. R27 is available only on
cluster 0. Assigned to LO.

- BGT

Slotted upper (U). R17 is available on both clusters. Upper instructions try
cluster 1 first. This fails. Cluster 0 is available. Assigned to UO.

- BIS
Because the BIS is a NOP, it is not clustered.

B-8 An Example of Carefully Tuned Code 21264 Compiler Writer’s Guide

C

Controlling the Execution Order of Loads

The 21264 has no training mechanism that is similar to the stWait table, for avoiding a
load-miss load replay trap or aload-load order replay trap (see Section 3.7). A load-
miss load replay trap occurs when aload is followed by another load to the same
address and the first load misses. The processor replay traps until the datais loaded into
theregister for thefirst load. A load-load order replay trap occurs when two loadsto the
same address issue out of order. Of the two traps, aload-missload replay trap is more
costly, because it must wait for data to return from the Bcache or memory.

The best way to avoid either load replay trap isto keep the value from the first [oad in a
register and avoid doing the second load. Most reloads can be identified and removed
by a compiler that uses partial redundancy elimination. However, some constructs
require additional work. We present an example and some solutions below.

Caution: Most repeated loads do not cause atrap. Extrainstructions should be
inserted to remove a possible replay trap only when it is known through
profiling that areplay trap is occurring or in very carefully scheduled code.
Introducing extrainstructions to guard against every possible load-miss
load or load-load order replay trap can be very expensive. Experimentation
has determined that it usually lowers performance.

Sample Problem

Consider the following C fragment:

long *p, *q,s;
if (*p) {
*q = 0’

= *p;

s
}

A straightforward trandation is:

LDQ $0, 0($16) # Load *p

BEQ $0, skip # Skip ahead if zero

STQ $31, 0(%$17) # Possibly aliasing store to *q
LDQ $0, 0($16) # Load *p

ski p:

21264 Compiler Writer’s Guide Controlling the Execution Order of Loads C-1

We need to reload * p because the store to *q may change the value of *p, if p equals g.

Assume that p and g are very unlikely to be equal 1. Assume that we also know that the
first reference to *p islikely to missthe data cache; for example, it could be the first
reference to an array element. When we execute this code fragment, the first LDQ will
miss the Dcache and the second LDQ will replay trap until the data from the first load
returns.

Introducing a Test

We can avoid the second load by testing if p equals g. To keep our example simple, we
assume both p and q are aligned pointers. If p and g are not equal, there is no alias and
we do not need the second |oad; we can reuse the register holding the loaded value. If p
and g are equal, we can use the register that holds the value that is stored in q.

LDQ $0, 0($16) # Load *p

BEQ $0, skip # Skip ahead if zero

STQ $31, 0($17) # Possibly aliasing store to *q
OWEQ $16, $17, $1 # Test if p==q?

OMOINE $1, $31, $0 # 1f yes, place *q value into $0

ski p:

On the frequently executed path, we have replaced aLDQ with a CMPEQ and a
CMOVNE. This should usually be faster than doing the LDQ. If areplay trap is occur-
ring, the replacement will be much faster.

Introducing a Delay

An dternative method is to delay the second LDQ by introducing an explicit data
dependency between the two loads. This delays the second load, but avoids areplay
trap, which would delay all subsequent instructions.

We exploit theidentity: A xor 0 = A

LDQ $0, 0($16) # Load *p

BEQ $0, skip # Skip ahead if zero

STQ $31, 0($17) # Possibly aliasing store to *q
XR $0, $0, $1 # $1is zero

XR $16, $1, $16 # $16 i s unchanged

LDQ $0, 0($16) # Load *p

ski p:

Theresult of the first load contributes to the address cal cul ation of the second load, and
the second load cannot issue until the datafrom thefirst load is available. This avoids
the replay trap; the second LDQ is delayed, but all subsequent instructions that are not
dependent on the load can continue issuing.

We can avoid using an extraregister by overwriting and restoring $16. (Note that thisis
not safe to do with $30, the stack pointer.)

1 If they are equal, we may have a store-load order replay trap.

C-2 Controlling the Execution Order of Loads 21264 Compiler Writer’s Guide

We exploit theidentity: (A xor B) xor B = A

LDQ $0, 0($16) # Load *p

BEQ $0, skip # Skip ahead if zero

STQ $31, 0($17) # Possibly aliasing store to *q
XR $16, $0, $16 #

XR $16, $0, $16 # $16 i s unchanged

LDQ $0, 0($16) # Load *p

ski p:

This same technique can be used for tightly scheduled code, where a specific timing is
desired. For example, in atight software pipelined loop, we can issue aload every 7
cycles, as follows. The following code fragment illustrates the technique. We use a

MULQ to generate a zero.
| oop:
XR $16, $0, $16 # L1 7 cycles fromlast ML
MLQ $0, $31, $0 # UL nakes a zero in 7 cycles
on cluster 1
LDA $17, -1($17) # LO decrenent |ength
B S $31, $31, $31 # U NP
LDQ $2, 0($16) # L1 one iteration behind ML
every seventh cycl e
LDA $16, 8($16) # UL increnent pointer
QG her possible code......

BGT $17, | oop # W | oop back

Multiple Load Quadword-Unaligned Instructions

Multiple load quadword-unaligned instructions can also introduce multiple references
to the same quadword. For example, the standard Alpha sequence for loading an
unaligned quadword begins:

LDQU $0, ($16)
LDQU $1, 7($16)

If the data referenced by R16 is actually aligned, these loads will be to the same
address. If the first load missesin the Dcache, aload-missload replay trap occurs. If the
trap does occur, it can be avoided by using the techniques described above. Either we
can explicitly test for alignment and perform only one load when the pointer is aligned,
or we can introduce a register dependence between the two uses of R16.

21264 Compiler Writer’s Guide Controlling the Execution Order of Loads C-3

D

21264 Support for IEEE Floating-Point

The 21264 supports the | EEE floating-point operations as described in the Alpha Archi-
tecture Handbook, Version 4. Appendix B of that document describes how to construct
acomplete IEEE implementation for Alpha

Support in the 21264 for a complete implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is provided by a combina-
tion of hardware and software. The 21264 provides much more hardware support for
the complete implementation of |EEE floating-point than was provided by earlier
Alphaimplementations. The |EEE floating-point instructions with the /S qualifier that
are executed by the 21264 only need assi stance from software completion when han-
dling denormal values or results.

NaNs, Infinities, and Denormals

Exceptions

The 21264 provides the following support for NaNs, infinities, and denormalsfor |IEEE
floating-point instructions with the /S qualifier:

* The 21264 accepts both Signaling and Quiet NaNs as input operands and propa-
gates them as specified by the Alpha architecture. In addition, the 21264 deliversa
canonical Quiet NaN when an operation is required to produce a NaN vaue and
none of itsinputs are NaNs. Encodings for Signaling NaN and Quiet NaN are
defined by the Alpha Architecture Handbook, Version 4.

* The 21264 accepts infinity operands and implements infinity arithmetic as defined
by the |EEE standard and the Alpha Architecture Handbook, Version 4.

* The 21264 implements the FPCR[DNZ] hit. When FPCR[DNZ] is set, denormal
input operand traps can be avoided for arithmetic operations that include the /S
qualifier. When FPCR[DNZ] is clear, denormal input operands for arithmetic oper-
ations produce an unmaskable denormal trap. CPY SE/CPY SN, FCM OV xx, and
MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal values
without initiating arithmetic traps.

The 21264 implements precise exception handling in hardware. For |EEE floating-
point instructions with the /S qualifier, thisis denoted by the AMASK instruction
returning bit 9 set. TRAPB instructions are treated as NOPs and are not issued.

For |EEE floating-point instructions with the /S qualifier, the 21264 implements the fol-
lowing disable bitsin the floating-point control register (FPCR):

¢ Underflow disable (UNFD) and underflow to zero (UNDZ)

21264 Compiler Writer’s Guide 21264 Support for IEEE Floating-Point D-1

e Overflow disable (OVFD)

* Inexact result disable (INED)

e Division by zero disable (DZED)
e |nvalid operation disable (INVD)

If one of these bitsis set, and an instruction with the /S qualifier set generates the asso-
ciated exception, the 21264 produces the |EEE nontrapping result and suppresses the
trap. These nontrapping responses include correctly signed infinity, largest finite num-
ber, and Quiet NaNs as specified by the |EEE standard.

For |EEE floating-point instructions with the /S qualifier, the 21264 will not produce a
denormal result for the underflow exception. Instead, atrue zero (+0) is written to the
destination register. In the 21264, the FPCR underflow to zero (UNDZ) bit must be set
if underflow disable (UNFD) bit isset. If desired, trapping on underflow can be enabled
by the instruction and the FPCR, and software may compute the denormal value as
defined in the |EEE standard.

For |EEE floating-point instructions with the /S qualifier, the 21264 records floating-
point exception information in two places:

* The FPCR status bits record the occurrence of all exceptions that are detected,
whether or not the corresponding trap is enabled. The status bits are cleared only
through an explicit clear command (MT_FPCR); hence, the exception information
they record isasummary of al exceptions that have occurred since the last time
they were cleared.

e |f an exception is detected and the corresponding trap is enabled by the instruction,
and is not disabled by the FPCR control bits, the 21264 will record the
condition in the EXC_SUM register and initiate an arithmetic trap.

See Section 2.14 for information about the floating-point control register (FPCR).
Square Root

The 21264 implements |EEE SQRT for single (SQRTS) and double (SQRTT) precision
in hardware. Note that the 21264 also implements the VAX SQRTF and SQRTG
instructions.

Exceptional Input and Output Conditions

For IEEE floating-point instructions with the /S qualifier, Table D-1 lists all excep-
tional input and output conditions recognized by the 21264, along with the result and
exception generated for each condition.

The following items apply to Table D-1.:

* The 21264 traps on a Denormal input operand for all arithmetic operations unless
FPCR[DNZ] = 1.

e |nput operand traps take precedence over arithmetic result traps.
e Thefollowing abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

D-2 21264 Support for IEEE Floating-Point 21264 Compiler Writer’s Guide

SNaN: Signalling NaN
CQONaN: Canonical Quiet NaN

Table D-1 Exceptional Input and Output Conditions

21264 Hardware

Alpha Instructions Supplied Result Exception
ADDx SUBx INPUT

Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
Effective subtract of two Inf operands CQONaN Invalid Op
ADDx SUBx OUTPUT

Exponent overflow +Inf or tMAX Overflow
Exponent underflow +0 Underflow
Inexact result Result Inexact
MULXx INPUT

Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0 * Inf CONaN Invalid Op
MULx OUTPUT (same as ADDX)

DIVx INPUT

QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0/0 or Inf/Inf CQNaN Invalid Op
A/0 (A not 0) +Inf Div Zero
AlInf 10 (none)

Inf/A £Inf (none)

DIVx OUTPUT (same as ADDXx)

SQRTx INPUT

+Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
-A (A not 0) CONaN Invalid Op
-0 -0 (none)

21264 Compiler Writer’s Guide

21264 Support for IEEE Floating-Point D-3

Table D-1 Exceptional Input and Output Conditions (Continued)

21264 Hardware

Alpha Instructions Supplied Result Exception
SQRTx OUTPUT

Inexact result root Inexact
CMPTEQ CMPTUN INPUT

Inf operand True or False (none)
QNaN operand Falsefor EQ, Truefor UN (none)
SNaN operand False for EQ, Truefor UN Invalid Op
CMPTLT CMPTLE INPUT

Inf operand True or False (none)
QNaN operand False Invalid Op
SNaN operand False Invalid Op
CVTfi INPUT

Inf operand 0 Invalid Op
QNaN operand 0 Invalid Op
SNaN operand 0 Invalid Op
CVTfi OUTPUT

Inexact result Result Inexact
Integer overflow Truncated result Invalid Op
CVTif OUTPUT

Inexact result Result Inexact
CVTIff INPUT

Inf operand *Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op

CVT{f OUTPUT (same as ADDx)

FBEQ FBNE FBLT FBLE FBGT FBGE
LDS LDT

STSSTT

CPYS CPYSN

FCMOVX

D-4 21264 Support for IEEE Floating-Point 21264 Compiler Writer’s Guide

Glossary

This glossary provides definitions for specific terms and acronyms associated with the
Alpha 21264 microprocessor and chipsin general.

abort

The unit stops the operation it is performing, without saving status, to perform some
other operation.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of cached
addresstranslations for process-specific addresses when a context switch occurs. ASNs
are processor specific; the hardware makes no attempt to maintain coherency across
multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED
A datum of size 2**N is stored in memory at a byte address that is amultiple of 2**N
(that is, one that has N low-order zeros).
ALU
Arithmetic logic unit.
ANSI
American National Standards Institute. An organization that develops and publishes
standards for the computer industry.
ASIC
Application-specific integrated circuit.
ASM
Address space match.
ASN
See address space humber.
assert
To cause asignal to change to itslogical true state.
AST

See asynchronous system trap.

21264 Compiler Writer’s Guide Glossary-1

asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable auser processto
be notified asynchronously, with respect to that process, of the occurrence of a specific
event. If auser process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST rou-
tine exits, the system resumes execution of the process at the point where it was inter-
rupted.

bandwidth
Bandwidth is often used to express the rate of datatransfer in abus or an 1/0 channdl.
barrier transaction

A transaction on the external interface as aresult of an MB (memory barrier) instruc-

tion.

Bcache
See second-level cache.

bidirectional
Flowing intwo directions. The buses are bidirectional; they carry both input and output
signals.

BiSlI
Built-in self-initialization.

BiST
Built-in self-test.

bit
Binary digit. The smallest unit of datain abinary notation system, designated as O or 1.

bit time
Thetotal timethat asignal conveysasingle valid piece of information (specified in ns).
All data and commands are associated with a clock and the receiver’s latch on both the
rise and fall of the clock. Bit times are a multiple of the 21264 clocks. Systems must
produce a bit time identical to 21264's bit time. The bit time is one-half the period of
the forwarding clock.

BIU

Bus interface unitSee Cbox.
Block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-back
with a cache miss fill.

board-level cache

See second-level cache.

Glossary-2 21264 Compiler Writer’s Guide

boot
Short for bootstrap. Loading an operating system into memory is called booting.

BSR
Boundary-scan register.

buffer
Aninternal memory area used for temporary storage of data records during input or
output operations.

bugcheck
A software condition, usually the response to software’s detection of an “internal incon-
sistency,” which results in the execution of the system bugcheck code.

bus
A group of signals that consists of many transmission lines or wires. It interconnects
computer system components to provide communications paths for addresses, data, and
control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are numbered
right to left, O through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written con-
currently and independently by different processes or processors.

cache
See cache memory.
cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in

another processor, it must not receive incorrect data and when cached data is modified,
all other processors that access that data receive modified data. Schemes for maintain-
ing consistency can be implemented in hardware or software. Also called cache consis-

tency.

cache fill
An operation that loads an entire cache block by using multiple read cycles from main
memory.

cache flush

An operation that marks all cache blocks as invalid.

21264 Compiler Writer’s Guide Glossary-3

cache hit

The status returned when alogic unit probes a cache memory and finds avalid cache
entry at the probed address.

cache interference

Theresult of an operation that adversely affects the mechanisms and procedures used to
keep frequently used itemsin a cache. Such interference may cause frequently used
items to be removed from a cache or incur significant overhead operations to ensure
correct results. Either action hampers performance.

cacheline

See cache block.
cache line buffer

A buffer used to store a block of cache memory.
cache memory

A small, high-speed memory placed between slower main memory and the processor. A
cache increases effective memory transfer rates and processor speed. It contains copies
of datarecently used by the processor and fetches several bytes of datafrom memory in
anticipation that the processor will access the next sequential series of bytes. The 21264
microprocessor contains two onchip internal caches. See also write-through cache and
write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL instructions

Special instructions used to invoke PAL code.
Cbox

External cache and system interface unit. Controls the Bcache and the system ports.
central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instructions.

CISC
Complex instruction set computing. An instruction set that consists of alarge number
of complex instructions. Contrast with RISC.

clean
In the cache of a system bus node, refersto a cache line that is valid but has not been
written.

clock

A signal used to synchronize the circuits in a computer.

Glossary-4 21264 Compiler Writer’s Guide

clock offset (or clkoffset)

The delay intentionally added to the forwarded clock to meet the setup and hold
requirements at the Receive Flop.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process that
combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test aregister for positive/negative or for zero/nonzero. They can also
test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I1/0O space. The CSR ini-
tiates device activity and records its status.

CPI
Cycles per instruction.
CPU
See central processing unit.
CSR
See control and status register.
cycle
One clock interval.
data bus
A group of wires that carry data.
Dcache
Data cache. A cache reserved for storage of data. The Dcache does not contain instruc-
tions.
DDR
Dual-data rate. A dual-data rate SSRAM can provide data on both the rising and falling
edges of the clock signal.
denormal
An |IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.
DIP

Dual inline package.

21264 Compiler Writer’s Guide Glossary-5

direct-mapping cache

A cache organization in which only one address comparison is needed to locate any
datain the cache, because any block of main memory data can be placed in only one
possible position in the cache.

direct memory access (DMA)

Access to memory by an I/O device that does not require processor intervention.

dirty
One statusitem for a cache block. The cache block is valid and has been written so that
it may differ from the copy in system main memory.

dirty victim
Used in reference to a cache block in the cache of a system bus node. The cache block
isvalid but is about to be replaced due to a cache block resource conflict. The data must
therefore be written to memory.

DMA
See direct memory access.

DRAM
Dynamic random-access memory. Read/write memory that must be refreshed (read
from or written to) periodically to maintain the storage of information.

DTB
Data translation buffer. Also defined as Dstream trandlation buffer.

DTL
Diode-transistor logic.

dual issue
Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

ECC
Error correction code. Code and algorithms used by logic to facilitate error detection
and correction. See also ECC error.

ECC error
An error detected by ECC logic, to indicate that data (or the protected “entity”) has
been corrupted. The error may be correctable (soft error) or uncorrectable (hard error).

ECL
Emitter-coupled logic.

EEPROM

Electrically erasable programmable read-only memory. A memory device that can be
byte-erased, written to, and read fra@ontrast with FEPROM.

Glossary-6 21264 Compiler Writer’s Guide

external cache

FEPROM

FET

FEU

firmware

See second-level cache.

Flash-erasable programmabl e read-only memory. FEPROMSs can be bank- or bulk-
erased. Contrast with EEPROM.

Field-effect transistor.

The unit within the 21264 microprocessor that performs floating-point calculations.

Machine instructions stored in nonvolatile memory.

floating point

flush

A number system in which the position of the radix point isindicated by the exponent
part and ancther part represents the significant digits or fractional part.

See cache flush.

forwarded clock

FPGA

FPLA

FQ

A single-ended differential signal that is aligned with its associated fields. The for-
warded clock is sourced and aligned by the sender with aperiod that istwo times the bit
time. Forwarded clocks must be 50% duty cycle clocks whose rising and falling edges
are aligned with the changing edge of the data.

Field-programmabl e gate array.

Field-programmable logic array.

Floating-point issue queue.

framing clock

The framing clock defines the start of atransmission either from the system to the
21264 or from the 21264 to the system. The framing clock is a power-of-2 multiple of
the 21264 GCLK freguency, and is usually the system clock. The framing clock and
the input oscillator can have the same frequency. The add frame select IPR sets that
ratio of bit timesto framing clock. The frame clock could have a period that is four
times the bit time with aadd_frame_select of 2X. Transfers begin on therising and
falling edge of the frame clock. Thisisuseful for systemsthat have system clocks with
aperiod too small to perform the synchronous reset of the clock forward logic. Addi-
tionally, the framing clock can have a period that is less than, equal to, or greater than
the time it takes to send afull four cycle command/address.

21264 Compiler Writer’s Guide Glossary-7

GCLK
Global clock within the 21264.
granularity

A characteristic of storage systemsthat defines the amount of data that can be read and/
or written with a single instruction, or read and/or written independently.

hardware interrupt request (HIR)
Aninterrupt generated by a periphera device.
high-impedance state

An electrical state of high resistance to current flow, which makes the device appear not
physically connected to the circuit.

hit
See cache hit.
Icache

Instruction cache. A cache reserved for storage of instructions. One of the three areas of
primary cache (located on the 21264) used to store instructions. The lcache contains
8K B of memory space. It isadirect-mapped cache. Icache blocks, or lines, contain 32
bytes of instruction stream data with associated tag aswell as a 6-bit ASM field and an
8-hit branch history field per block. Icache does not contain hardware for maintaining
cache coherency with memory and is unaffected by the invalidate bus.

IDU

A logic unit within the 21264 microprocessor that fetches, decodes, and issues instruc-
tions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats cover
32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures.

ILP
Instruction-level parallelism.
Inf
Infinity.
Instruction queues
Both the integer issue queue (1Q) and the floating-point issue queue (FQ).

Glossary-8 21264 Compiler Writer’s Guide

INT nn

Theterm INTnn, wherennisoneof 2, 4, 8, 16, 32, or 64, refersto adatafield size of nn
contiguous NATURALLY ALIGNED bytes. For example, INT4 refersto aNATU-
RALLY ALIGNED longword.

interface reset

A synchronously received reset signal that is used to preset and start the clock forward-
ing circuitry. During thisreset, all forwarded clocks are stopped and the presettable
count values are applied to the counters; then, some number of cycles later, the clocks
are enabled and are free running.

Internal processor register (IPR)
Special registersthat are used to configure options or report status.

IOWB

I/O write buffer.
IPGA

Interstitial pin grid array.
IQ

Integer issue queue.
ITB

Instruction trandation buffer.
JFET

Junction field-effect transistor.
latency

The amount of time it takes the system to respond to an event.
LCC

Leadless chip carrier.
LFSR

Linear feedback shift register.
load/store architecture

A characteristic of a machine architecture where data items are first loaded into a pro-
cessor register, operated on, and then stored back to memory. No operations on memory
other than load and store are provided by the instruction set.

longword (LW)

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 31.

LQ
Load queue.

21264 Compiler Writer’s Guide Glossary-9

LSB
Least significant bit.
machine check

An operating system action triggered by certain system hardware-detected errors that
can be fatal to system operation. Once triggered, machine check handler software ana-
lyzes the error.

MAF
Miss addressfile.
main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used in
connection with the microprocessor’s internal caches and an external cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO
See must be one.

Mbox
This section of the processor unit performs address translation, interfaces to the
Dcache, and performs several other functions.

MBZ

See must be zero.
MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI protocol
consists of four states that define whether a block is modified (M), exclusive (E), shared
(S), orinvalid (1).

MIPS

Millions of instructions per second.
miss

See cache miss.
module

A board on which logic devices (such as transistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache
See second-level cache.
MOS

Metal-oxide semiconductor.

Glossary-10 21264 Compiler Writer’s Guide

MOSFET

M etal -oxide semiconductor field-effect transistor.
MSI

Medium-scale integration.
multiprocessing

A processing method that replicates the sequential computer and interconnects the col-
lection so that each processor can execute the same or a different program at the same
time.

must be one (MBO)
A field that must be supplied as one.
must be zero (MBZ)

A field that isreserved and must be supplied as zero. If examined, it must be assumed to
be UNDEFINED.

NaN

Not-a-Number. An |EEE floating-point bit pattern that represents something other than
anumber. This comesin two forms: signaling NaNs (for Alpha, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha, those with an initial fraction bit of 1).

NATURALLY ALIGNED
See ALIGNED.
NATURALLY ALIGNED data

Datastored in memory such that the address of the datais evenly divisible by the size of
the datain bytes. For example, an ALIGNED longword is stored such that the address
of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.
NVRAM

Nonvolatile random-access memory.
OBL

Observability linear feedback shift register.
octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 127.

OpenVMS Alpha operating system
The version of the open VMS operating system for Alpha platforms.
operand

The data or register upon which an operation is performed.

21264 Compiler Writer’s Guide Glossary-11

output mux counter

PAL

PALcode

PALmode

parameter

parity

PGA

pipeline

PLA

PLCC

PLD

PLL

PMOS

PQ

Glossary-12

Counter used to select the output mux that drives address and data. It is reset with the
Interface Reset and incremented by a copy of the locally generated forwarded clock.

Programmable array logic (hardware). A device that can be programmed by a process
that blows individual fuses to create a circuit.

Alphaprivileged architecture library code, written to support Alpha microprocessors.
PAL code implements architecturally defined behavior.

A special environment for running PALcode routines.

A variable that is given a specific value that is passed to a program before execution.

A method for checking the accuracy of data by calculating the sum of the number of
ones in apiece of binary data. Even parity requires the correct sum to be an even num-
ber; odd parity requires the correct sum to be an odd number.

Pin grid array.

A CPU design technique whereby multiple instructions are simultaneously overlapped
in execution.

Programmable logic array.

Plastic leadless chip carrier or plastic-leaded chip carrier.

Programmable logic device.

Phase-locked loop.

P-type metal-oxide semiconductor.

Probe queue.

21264 Compiler Writer’s Guide

PQFP
Plastic quad flat pack.
primary cache

The cache that is the fastest and closest to the processor. The first-level caches, located
on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as aregister. This
register may be visible to the programmer through the instruction set.

PROM

Programmabl e read-only memory.
pull-down resistor

A resistor placed between asignal line and a negative voltage.
pull-up resistor

A resistor placed between a signal line and a positive voltage.

QNaN
Quiet Nan. See NaN.
guad issue
Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.
quadword
Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 63.
RAM
Random-access memory.
RAS
Row address select.
RAW
Read-after-write.
READ_BLOCK

A transaction where the 21264 requests that an external logic unit fetch read data.
read data wrapping

System feature that reduces apparent memory latency by allowing read data cyclesto
differ the usual low-to-high sequence. Requires cooperation between the 21264 and
externa hardware.

21264 Compiler Writer’s Guide Glossary-13

read stream buffers

Arrangement whereby each memory modul e independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

receive counter

Counter used to enable thereceive flops. It isclocked by the incoming forwarded clock
and reset by the Interface Reset.

receive mux counter

The receive mux counter is preset to a selectable starting point and incremented by the
locally generated forward clock.

register
A temporary storage or control location in hardware logic.

reliability
The probability adevice or system will not fail to perform itsintended functions during
aspecified time interval when operated under stated conditions.

reset
An action that causes alogic unit to interrupt the task it is performing and go to itsini-
tialized state.

RISC
Reduced instruction set computing. A computer with an instruction set that is paired
down and reduced in complexity so that maost can be performed in a single processor
cycle. High-level compilers synthesize the more complex, least frequently used instruc-
tions by breaking them down into simpler instructions. This approach allows the RISC
architecture to implement asmall, hardware-assisted instruction set, thus eliminating
the need for microcode.

ROM
Read-only memory.

RTL
Register-transfer logic.

SAM
Serial access memory.

SBO
Should be one.

SBZ
Should be zero.

scheduling

The process of ordering instruction execution to obtain optimum performance.

Glossary-14 21264 Compiler Writer’s Guide

SDRAM
Synchronous dynamic random-access memory.
second-level cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level, external, or module-level cache.

set-associative

A form of cache organization in which the location of adata block in main memory
constrains, but does not completely determine, its location in the cache. Set-associative
organization is a compromise between direct-mapped organization, in which datafrom
agiven addressin main memory has only one possible cache location, and fully asso-

ciative organization, in which data from anywhere in main memory can be put any-

where in the cache. Am*way set-associative” cache allows data from a given address
in main memory to be cached in anyndbcations.

SIMD

Single instruction stream, multiple data stream.
SIMM

Single inline memory module.
SIP

Single inline package.
SIPP

Single inline pin package.
SMD

Surface mount device.
SNaN

Signaling NaN See Nan.
SRAM

See SSRAM.
SROM

Serial read-only memory.
SSI

Small-scale integration.
SSRAM

Synchronous static random-access memory.

21264 Compiler Writer’s Guide Glossary-15

stack

An area of memory set aside for temporary data storage or for procedure and interrupt
servicelinkages. A stack usesthe last-in/first-out concept. Asitems are added to
(pushed on) the stack, the stack pointer decrements. Asitems are retrieved from
(popped off) the stack, the stack pointer increments.

STRAM
Sdf-timed random-access memory.
superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more com-
plex scheduling and control. See also pipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in paralel during agiven clock cycle.

system clock

The primary skew controlled clock used throughout the interface components to clock
transfer between ASICs, main memory, and 1/0 bridges.

tag

The part of a cache block that holds the address information used to determineif a
memory operation is a hit or amiss on that cache block.

target clock
Skew controlled clock that receives the output of the RECEIVE MUX.

B
Translation buffer.
tristate
Refers to abused line that has three states: high, low, and high-impedance.
TTL
Transistor-transistor logic.
UART

Universal asynchronous receiver-transmitter.
UNALIGNED

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.
unconditional branch instructions

Instructions that change the flow of program control without regard to any condition.
Contrast with conditional branch instructions.

Glossary-16 21264 Compiler Writer’s Guide

UNDEFINED

An operation that may halt the processor or cause it to loseinformation. Only privileged
software (that is, software running in kernel mode) can trigger an UNDEFINED opera-
tion. (This meaning only applies when the word iswritten in all uppercase.)

UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the pro-
cessor continues to execute instructionsin its normal manner. Privileged or unprivi-
leged software can trigger UNPREDICTABLE results or occurrences. (This meaning
only applies when the word is written in all uppercase.)

UVPROM
Ultraviolet (erasable) programmable read-only memory.
VAF
See victim addressfile.
valid
Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.
VDF
See victim datafile.
VHSIC
Very-high-speed integrated circuit.
victim

Used in reference to a cache block in the cache of a system bus node. The cache block
isvalid but is about to be replaced due to a cache block resource conflict.

victim address file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

victim data file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

virtual cache

A cache that is addressed with virtual addresses. The tag of the cache isavirtua
address. This process allows direct addressing of the cache without having to go
through the trandation buffer making cache hit times faster.

VLSI
Very-large-scale integration.

21264 Compiler Writer’s Guide Glossary-17

VPC

Virtual program counter.

VRAM

Video random-access memory.
WAR

Write-after-read.
word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are num-
bered from right to left, O through 15.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycles to
differ the usual low-to-high sequence. Requires cooperation between the 21264 and
externa hardware.

write-back

A cache management technique in which write operation data is written into cache but
is not written into main memory in the same operation. This may result in temporary
differences between cache data and main memory data. Some logic unit must maintain
coherency between cache and main memory.

write-back cache

Copies are kept of any datain the region; read and write operations may use the copies,
and write operations use additional state to determine whether there are other copiesto
invalidate or update.

write-through cache

A cache management technigque in which awrite operation to cache also causes the
same data to be written in main memory during the same operation. Copies are kept of
any datain aregion; read operations may use the copies, but write operations update the
actual datalocation and either update or invalidate all copies.

WRITE_BLOCK

A transaction where the 21264 requests that an external logic unit process write data.

Glossary-18 21264 Compiler Writer’s Guide

Numerics
21264, features of, 1-3

A

Abbreviations x
binary multiples x
register accessx

Address conventionsxi

Aligned, terminology Xxi

Alignment

datg 3-2
instruction 3-1

AMASK instruction values 2—-36

B

Binary multiple abbreviationsx

Bit notation conventionsxi

Branch mispredication, pipeline abort delay from
2-16

Branch predictgr 2-3, 3—3

Branches, CMOQOV instructions instea8-3

Byte, Xii

C

Cache line, mapping to samé&-8
Caution convention Xii

Chox

described 2-11
duplicate Dcache tag arrapy—11
1/0 write buffer, 2—-11
probe queug 2-11
victim address file 2-11
victim data filg 2-11
Choice predictar 2-5

Clustering, Ebox 3-12

21264 Compiler Writer’s Guide

Index

CMOV instruction

instead of branch 3—-3

special cases pf2—-25
Computed jumps, aligning targets a3—2
Conventions X

abbreviations x
address xi

bit notation xi
caution Xxii

do not care xii
externa) Xii
field notation xii
note Xii
numbering xii
ranges and extent«ii
signal names xii
X, Xxii

D

Data alignment 3-2
Data cache. See Dcache

Data merging

load instructions in I/O address spa@-27
store instructions in 1/O address spa@:-28

Data types

floating point support 1-2
integer supported 1-2
supported 1-1

Data units, terminology xii

Dcache
described 2—-12
pipelined 2-16

Do not care conventignxii

Dstream translation buffer2—13
See also DTB

DTAG. See Duplicate Dcache tag array
DTB, pipeline abort delay with2—16
Duplicate Dcache tag array2—11

Index-1

E

Ebox
described, 2-8
executed in pipeline2-16
register files with 3-12
scheduling considerations3—10
slotting, 2-18 3-12
slotting rules A-1
subclusters 2—-18 3-12

Evict next, prefetch with 2—23

Exception and interrupt logic2—8

Exception condition summayyD—3

External cache and system interface unit. See Cbox
External convention xii

F

F31

load instructions with 2—22
retire instructions with 2—22

Fbox

described 2-10

executed in pipeline2-16
register files with 3-12
scheduling considerations3—11

Field notation conventignxii

Floating-point arithmetic trap, pipeline abort delay
with, 2-16

Floating-point control register2—35
Floating-point execution unit. See Fbox
Floating-point issue queye2—7

FPCR. See Floating-point control register
FQ. See Floating-point issue queue

G
Global predictoy 2—4

I/O address space

instruction data merging2—28
load instruction data merging2—27
load instructions with 2—-27

store instructions with 2—28

1/0O write buffer, 2—11
defined 2-31

Index—2

Ibox

branch predictqr 2—3

exception and interrupt logic2—8
floating-point issue queye2—7
instruction fetch logic 2-5
instruction-stream translation buffe—5
integer issue queye2—6

register rename mapL—6

retire logig 2-8

subsections in 2-2

virtual program counter logjc2—2

Icache
described 2-11

pipelined 2-14
IEEE floating-point conformangeD-1
IMPLVER instruction values 2—37
Instruction alignment 3—-1
Instruction fetch logic 2-5
Instruction fetch, issue, and retire unit. See lbox
Instruction fetch, pipelingd2—-14
Instruction issue rules2—-16
Instruction latencies, pipelingd?2—19
Instruction ordering 2—29
Instruction queues, filling 3—-3
Instruction retire latencies, minimyn2-21

Instruction retire rules
F31, 2-22
floating-point divide 2-21
floating-point square ropt2—-21
pipelined 2-21
R31, 2-22
Instruction slot, pipelined 2-14
Instruction-stream translation buffeP—5
Integer arithmetic trap, pipeline abort delay with
2-16
Integer execution unit. See Ebox
Integer issue queye2—6
pipelined 2-15
IOWB. See 1/O write buffer
IQ. See Integer issue queue
Istream 2-5
ITB, 2-5
ITB miss, pipeline abort delay with?—16

J

JSR misprediction 3-5
pipeline abort delay with 2-16
Jumps, computed3-2, 3-5

21264 Compiler Writer’s Guide

L

Latencies

instruction class, 2—-19
minimum retire for instruction classe2-21
physical register allocation3—10

LDBU instruction, normal prefetch with2—23
LDF instruction, normal prefetch with2—23
LDG instruction, normal prefetch with2—23
LDQ instruction, prefetch with evict ngx2—-23
LDS instruction, prefetch with modify inten2—23
LDT instruction, normal prefetch with2—23
LDWU instruction, normal prefetch with2—23
Line predictor 3-2

initialized, 3-2
Load hit speculation 2—23

Load instructions

I/0O reference ordering2—-30
Mbox order traps 2—30
memory reference ordering2—30

Load queue, describged?—13

Load-load order replay trap3—8
Load-load order trgp2—-31

Load-miss load order replay traf3—8, C-1
Local predictoy 2—4

Longword xii

LQ. See Load queue

M

MAF. See Miss address file
MB instruction processing2-32
MB_CNT Cbhox CSR, operatign2—-31

Mbox
described 2-12
Dstream translation buffer2—13
load queuge 2-13
miss address file2—13
order traps 2-30
pipeline abort delay with order traj2—16
pipeline abort delays2-16
store queug 2-13

Memory address space

load instructions with 2—26
merging rules 2—29
store instructions with 2—28

Memory barriers 2-31
Memory reference unit. See Mbox

Microarchitecture
summarized 2-1

21264 Compiler Writer’s Guide

Miss address file 2—13

I/O address space logd2-27
memory address space loads-27
memory address space stqrés-28

Modify intent, prefetch with 2—23 3-6

N

Normal prefetch 2—-23 3-6
Note convention Xii
Numbering conventian xii

O

Octaword xii

P

Physical register allocation latengie3-10
Pipeline
abort delay 2-16
Dcache access2—-16
detailed modeling ¢f 3-9
Ebox execution 2—16
Ebox slotting 2-18
Fbox execution 2-16
instruction fetch 2-14
instruction group definitions2-17
instruction issue rulgs2-16
instruction latencigs 2—19
instruction retire rules 2—-21
instruction slof 2—-14
issue queue 2-15
organization 2-13
register maps 2—-15
register reads 2—16
Pipeline model 3-9
physical registers with3-9
Prediction
branch 3-3
jumps 3-2
line, 3-2
Prefetch 2—-22 2-23 3-6

Probe queue 2-11

Q

Quadword Xxii

R

R31

load instructions with 2—22
retire instructions with 2—22
speculative loads {02-24

Ranges and extents conventioxii

Index—3

Register access abbreviations, x
Register maps, pipelined, 2-15
Register rename map2-6
Replay traps 2-30

avoiding 3-6

load-load order 3-8

load-miss load 3-8

mapping to same cache lin@-8
store queue overflow3-9

RET instruction, predicted target,08-5
Retire logic 2-8

RO,n convention xi

RW,n convention xi

S

Scheduling instructions3-9

Security holes
with UNPREDICTABLE results xiii
Signal name conventignxii

SIMD parallelism 3-5

Single successors3—2

Slotting rules, Ebox A-1

Slotting, Ebox 3-12

SQ. See Store queue

SROM interface, in microarchitectyre—13

Store instructions

I/O address spa¢ce?2—28

I/O reference ordering2—30
Mbox order traps 2—-30

memory address spgce—28
memory reference orderingd?—30

Store queug 2-13

Store queue overflow3—-9
Store-load order replay traf8—7
Store-load order trgp2-31

SYSBUS MB_ENABLE Cbox CSR
operation 2-31

T

TB fill flow, 2-33

Terminology x
aligned xi
data units xii
unaligned xi
UNDEFINED, xiii
UNPREDICTABLE, xiii

Index—4

Traps
load-load order 2-31
Mbox order 2-30
replay, 2—-30
store-load order 2—-31

U

Unaligned, terminology xi
UNDEFINED, terminology xiii
UNPREDICTABLE, terminology xiii

Vv

VAF. See Victim address file

VDF. See Victim data file

Victim address file, described2—11
Victim data file, described2-11

Virtual address suppqrtl—2

Virtual program counter logjc2—2

VPC. See Virtual program counter logic

w

WAR, eliminating 2-6

WAW, eliminating 2-6

WH64 instruction 3—6

WH64 instruction, as prefet¢ch3—6
WMB instruction processing2-33
WO,n convention Xi

Word, xii

Write-after-read. See WAR
Write-after-write. See WAW
Wrong-size replay trgp3—-8

X

X convention xiii

21264 Compiler Writer’s Guide

	Table of Contents
	1
	 Introduction
	2
	 Internal Architecture
	3
	 Guidelines for Compiler Writers
	A
	 Ebox Slotting Rules
	B
	 An Example of Carefully Tuned Code
	C
	 Controlling the Execution Order of Loads
	D
	 21264 Support for IEEE Floating-Point
	Glossary

	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� Microprocessor Features

	Internal Architecture
	2.1� Microarchitecture
	2.1.1� Instruction Fetch, Issue, and Retire Unit
	2.1.1.1� Virtual Program Counter Logic
	2.1.1.2� Branch Predictor
	2.1.1.3� Instruction-Stream Translation Buffer
	2.1.1.4� Instruction Fetch Logic
	2.1.1.5� Register Rename Maps
	2.1.1.6� Integer Issue Queue
	2.1.1.7� Floating-Point Issue Queue
	2.1.1.8� Exception and Interrupt Logic
	2.1.1.9� Retire Logic

	2.1.2� Integer Execution Unit
	2.1.3� Floating-Point Execution Unit
	2.1.4� External Cache and System Interface Unit
	2.1.4.1� Victim Address File and Victim Data File
	2.1.4.2� I/O Write Buffer
	2.1.4.3� Probe Queue
	2.1.4.4� Duplicate Dcache Tag Array

	2.1.5� Onchip Caches
	2.1.5.1� Instruction Cache
	2.1.5.2� Data Cache

	2.1.6� Memory Reference Unit
	2.1.6.1� Load Queue
	2.1.6.2� Store Queue
	2.1.6.3� Miss Address File
	2.1.6.4� Dstream Translation Buffer

	2.1.7� SROM Interface

	2.2� Pipeline Organization
	2.2.1� Pipeline Aborts

	2.3� Instruction Issue Rules
	2.3.1� Instruction Group Definitions
	2.3.2� Ebox Slotting
	2.3.3� Instruction Latencies

	2.4� Instruction Retire Rules
	2.4.1� Floating-Point Divide/Square Root Early Retire

	2.5� Retire of Operate Instructions into R31/F31
	2.6� Load Instructions to R31 and F31
	2.6.1� Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU Instructions
	2.6.2� Prefetch with Modify Intent: LDS Instruction
	2.6.3� Prefetch, Evict Next: LDQ Instruction

	2.7� Special Cases of Alpha Instruction Execution
	2.7.1� Load Hit Speculation
	2.7.2� Floating-Point Store Instructions
	2.7.3� CMOV Instruction

	2.8� Memory and I/O Address Space Instructions
	2.8.1� Memory Address Space Load Instructions
	2.8.2� I/O Address Space Load Instructions
	2.8.3� Memory Address Space Store Instructions
	2.8.4� I/O Address Space Store Instructions

	2.9� MAF Memory Address Space Merging Rules
	2.10� Instruction Ordering
	2.11� Replay Traps
	2.11.1� Mbox Order Traps
	2.11.1.1� Load-Load Order Trap
	2.11.1.2� Store-Load Order Trap

	2.11.2� Other Mbox Replay Traps

	2.12� I/O Write Buffer and the WMB Instruction
	2.12.1� Memory Barrier (MB/WMB/TB Fill Flow)
	2.12.1.1� MB Instruction Processing
	2.12.1.2� WMB Instruction Processing
	2.12.1.3� TB Fill Flow

	2.13� Performance Measurement Support—Performance Counters
	2.14� Floating-Point Control Register
	2.15� AMASK and IMPLVER Values
	2.15.1� AMASK
	2.15.2� IMPLVER

	2.16� Design Examples

	Guidelines for Compiler Writers
	3.1� Architecture Extensions
	3.2� Instruction Alignment
	3.3� Data Alignment
	3.4� Control Flow
	3.4.1� Need for Single Successors
	3.4.2� Branch Prediction
	3.4.3� Filling Instruction Queues
	3.4.4� Branch Elimination
	3.4.4.1� Example of Branch Elimination with CMOV
	3.4.4.2� Replacing Conditional Moves with Logical Instructions
	3.4.4.3� Combining Branches

	3.4.5� Computed Jumps and Returns

	3.5� SIMD Parallelism
	3.6� Prefetching
	3.7� Avoiding Replay Traps
	3.7.1� Store-Load Order Replay Trap
	3.7.2� Wrong-Size Replay Trap
	3.7.3� Load-Load Order Replay Trap
	3.7.4� Load-Miss Load Replay Trap
	3.7.5� Mapping to the Same Cache Line
	3.7.6� Store Queue Overflow

	3.8� Scheduling
	3.9� Detailed Modeling of the Pipeline
	3.9.1� Physical Registers
	3.9.1.1� Integer Execution Unit
	3.9.1.2� Floating-Point Execution Unit
	3.9.1.3� Register Files

	3.9.2� Ebox Slotting and Clustering

	Ebox Slotting Rules
	A.1� Rule 1 — Four of a Kind
	A.2� Rule 2 — Three of a Kind
	A.3� Rule 3 — Two of a Kind
	A.4� Rule 4 — One of a Kind and None of a Kind

	An Example of Carefully Tuned Code
	B.1� Initial Example C Code
	B.2� Inner Loop as Alpha Assembly Language
	B.3� Applying SIMD Parallelism to the Inner Loop
	B.4� Optimizing the SIMD Loop
	B.5� Branch Prediction Considerations
	B.6� Instruction Latency Considerations
	B.7� Physical Register Considerations
	B.8� Memory Bandwidth Considerations
	B.9� Ebox Slotting Considerations

	Controlling the Execution Order of Loads
	21264 Support for IEEE Floating-Point
	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

